WorldWideScience

Sample records for relativistic scott correction

  1. Relativistic Scott correction in self-generated magnetic fields

    DEFF Research Database (Denmark)

    Erdos, Laszlo; Fournais, Søren; Solovej, Jan Philip

    2012-01-01

    /3}$ and it is unchanged by including the self-generated magnetic field. We prove the first correction term to this energy, the so-called Scott correction of the form $S(\\alpha Z) Z^2$. The current paper extends the result of \\cite{SSS} on the Scott correction for relativistic molecules to include a self......-generated magnetic field. Furthermore, we show that the corresponding Scott correction function $S$, first identified in \\cite{SSS}, is unchanged by including a magnetic field. We also prove new Lieb-Thirring inequalities for the relativistic kinetic energy with magnetic fields....

  2. The relativistic Scott correction for atoms and molecules

    DEFF Research Database (Denmark)

    Solovej, Jan Philip; Sørensen, Thomas Østergaard; Spitzer, Wolfgang L.

    We prove the first correction to the leading Thomas-Fermi energy for the ground state energy of atoms and molecules in a model where the kinetic energy of the electrons is treated relativistically. The leading Thomas-Fermi energy, established in [25], as well as the correction given here are of s......We prove the first correction to the leading Thomas-Fermi energy for the ground state energy of atoms and molecules in a model where the kinetic energy of the electrons is treated relativistically. The leading Thomas-Fermi energy, established in [25], as well as the correction given here...... are of semi-classical nature. Our result on atoms and molecules is proved from a general semi-classical estimate for relativistic operators with potentials with Coulomb-like singularities. This semi-classical estimate is obtained using the coherent state calculus introduced in [36]. The paper contains...

  3. The relativistic Scott correction for atoms and molecules

    DEFF Research Database (Denmark)

    Solovej, Jan Philip; Sørensen, Thomas Østergaard; Spitzer, Wolfgang L.

    2010-01-01

    We prove the first correction to the leading Thomas-Fermi energy for the ground state energy of atoms and molecules in a model where the kinetic energy of the electrons is treated relativistically. The leading Thomas-Fermi energy, established in [25], as well as the correction given here......, are of semiclassical nature. Our result on atoms and molecules is proved from a general semiclassical estimate for relativistic operators with potentials with Coulomb-like singularities. This semiclassical estimate is obtained using the coherent state calculus introduced in [36]. The paper contains a unified treatment...

  4. Relativistic neoclassical transport coefficients with momentum correction

    International Nuclear Information System (INIS)

    Marushchenko, I.; Azarenkov, N.A.

    2016-01-01

    The parallel momentum correction technique is generalized for relativistic approach. It is required for proper calculation of the parallel neoclassical flows and, in particular, for the bootstrap current at fusion temperatures. It is shown that the obtained system of linear algebraic equations for parallel fluxes can be solved directly without calculation of the distribution function if the relativistic mono-energetic transport coefficients are already known. The first relativistic correction terms for Braginskii matrix coefficients are calculated.

  5. Relativistic corrections to molecular dynamic dipole polarizabilities

    DEFF Research Database (Denmark)

    Kirpekar, Sheela; Oddershede, Jens; Jensen, Hans Jørgen Aagaard

    1995-01-01

    obtained from the use of the Darwin and mass-velocity operators to first order are included at both levels of approximation. We find that correlation and relativistic contributions are not even approximately additive for the two molecules. The importance of the relativistic corrections is smallest...

  6. Relativistic duality, and relativistic and radiative corrections for heavy-quark systems

    International Nuclear Information System (INIS)

    Durand, B.; Durand, L.

    1982-01-01

    We give a JWKB proof of a relativistic duality relation which relates an appropriate energy average of the physical cross section for e + e - →qq-bar bound states→hadrons to the same energy average of the perturbative cross section for e + e - →qq-bar. We show that the duality relation can be used effectively to estimate relativistic and radiative corrections for bound-quark systems to order α/sub s//sup ts2/. We also present a formula which relates the square of the ''large'' 3 S 1 Salpeter-Bethe-Schwinger wave function for zero space-time separation of the quarks to the square of the nonrelativistic Schroedinger wave function at the origin for an effective potential which reproduces the relativistic spectrum. This formula allows one to use the nonrelativistic wave functions obtained in potential models fitted to the psi and UPSILON spectra to calculate relativistic leptonic widths for qq-bar states via a relativistic version of the van Royen--Weisskopf formula

  7. Relativistic corrections for the conventional, classical Nyquist theorem

    International Nuclear Information System (INIS)

    Theimer, O.; Dirk, E.H.

    1983-01-01

    New expressions for the Nyquist theorem are derived under the condition in which the random thermal speed of electrons, in a system of charged particles, can approach the speed of light. Both the case in which, the electron have not drift velocity relative to the ions or neutral particles and the case in which drift occours are investigated. In both instances, the new expressions for the Nyquist theorem are found to contain relativistic correction terms; however for electron temperatures T approx. 10 9 K and drift velocity magnitudes w approx. 0.5c, where c is the speed of light, the effects of these correction terms are generally small. The derivation of these relativistic corrections is carried out by means of procedures developed in an earlier work. A relativistic distribution function, which incorporates a constant drift velocity with a random thermal velocity for a given particle species, is developed

  8. Scott Correction for Large Atoms and Molecules in a Self-Generated Magnetic Field

    DEFF Research Database (Denmark)

    Erdös, Laszlo; Fournais, Søren; Solovej, Jan Philip

    2012-01-01

    constant. We show that, in the simultaneous limit $Z\\to\\infty$, $\\al\\to 0$ such that $\\kappa =Z\\al^2$ is fixed, the ground state energy of the system is given by a two term expansion $c_1Z^{7/3} + c_2(\\kappa) Z^2 + o(Z^2)$. The leading term is given by the non-magnetic Thomas-Fermi theory. Our result shows......We consider a large neutral molecule with total nuclear charge $Z$ in non-relativistic quantum mechanics with a self-generated classical electromagnetic field. To ensure stability, we assume that $Z\\al^2\\le \\kappa_0$ for a sufficiently small $\\kappa_0$, where $\\al$ denotes the fine structure...... that the magnetic field affects only the second (so-called Scott) term in the expansion....

  9. Relativistic corrections to one-particle neutron levels in the harmonic oscillator well

    International Nuclear Information System (INIS)

    Yanavichyus, A.I.

    1983-01-01

    Relativistic corrections to mass and potential energy for one-particle levels in the harmonic oscillator well are calculated in the first approximation of the perturbation theory. These corrections are, mainly negliqible, but they sharply increase with growth of the head and orbital quantum numbers. For the state 1s the relativistic correction is of the order of 0.01 MeV, and for 3p it is equal to 0.4 MeV. Thus, the relativistic correction for certain states approaches the energy of spin-orbital interactions and it should be taken into account in calculating the energy of one-particle levels

  10. Relativistic corrections to the quarkonium decays

    International Nuclear Information System (INIS)

    Rai, Ajay Kumar; Pandya, J.N.; Patel, Bhavin; Vinodkumar, P.C.

    2007-01-01

    We study the corrections of the relative order ν 4 to the decays of 1 S 0 heavy quarkonium (η c and η b ) into two photons and 3 S 1 heavy quarkonium (J/ψ and γ) into lepton pair in non-relativistic QCD formalism

  11. Relativistic corrections to the fine structure of positronium

    International Nuclear Information System (INIS)

    Faustov, R. N.; Martynenko, A. P.

    1997-01-01

    The quasipotential method is used to calculate relativistic corrections in the positronium-fine-structure intervals 2 3 S 1 -2 3 P J . From analysis of one- and two-photon interactions, corrections of order mα 6 are found for positronium S states in the second order of perturbation theory. The contribution of the two-photon annihilation diagrams to the interaction operator for P-wave positronium is determined, and corrections of orders α 5 R ∞ and α 5 ln αR ∞ to the P-wave levels of positronium are calculated

  12. Relativistic corrections to the Cooperon mass: BCS versus BEC picture

    Energy Technology Data Exchange (ETDEWEB)

    Lipavský, P., E-mail: lipavsky@karlov.mff.cuni.cz

    2017-02-15

    Highlights: • Tate's measurement of relativistic effects on the Cooper pair mass show the increase while a decrease was expected. • This disagreement raised a question whether it has fundamental significance or is due to the details of the particular physical system being studied. • The most fundamental were speculations about gravitomagnetic forces enhanced by the Higgs mechanism. • These were recently disproved experimentally. • This paper shows that the relativistic mass corrections might be sensitive to the pairing scenario: the predicted mass decrease corresponds to the Bose–Einstein condensation of preformed Cooper pairs, while the pairing in the Bardeen–Cooper–Schrieffer condensate leads to an increase of experimentally observed magnitude. - Abstract: Relativistic corrections to the Cooperon mass are discussed for preformed Cooper pairs that become superconductive via the Bose–Einstein condensation (BEC) and for Cooperons in the Bardeen–Copper–Schrieffer (BCS) condensate. The distinction explains experimental results of Tate et al. (1989).

  13. Relativistic corrections to η{sub c}-pair production in high energy proton–proton collisions

    Energy Technology Data Exchange (ETDEWEB)

    Martynenko, A.P., E-mail: a.p.martynenko@samsu.ru [Samara State University, Pavlov Street 1, 443011, Samara (Russian Federation); Samara State Aerospace University named after S.P. Korolyov, Moskovskoye Shosse 34, 443086, Samara (Russian Federation); Trunin, A.M., E-mail: amtrnn@gmail.com [Samara State Aerospace University named after S.P. Korolyov, Moskovskoye Shosse 34, 443086, Samara (Russian Federation)

    2013-06-10

    On the basis of perturbative QCD and the relativistic quark model we calculate relativistic corrections to the double η{sub c} meson production in proton–proton interactions at LHC energies. Relativistic terms in the production amplitude connected with the relative motion of heavy quarks and the transformation law of the bound state wave functions to the reference frame of moving charmonia are taken into account. For the gluon and quark propagators entering the amplitude we use a truncated expansion in relative quark momenta up to the second order. Relativistic corrections to the quark bound state wave functions are considered by means of the Breit-like potential. It turns out that the examined effects decrease total non-relativistic cross section more than two times and on 20 percents in the rapidity region of LHCb detector.

  14. Relativistic corrections to fine structure of positronium

    International Nuclear Information System (INIS)

    Martynenko, A.P.; Faustov, R.N.

    1997-01-01

    On the basis of the quasipotential method, we have calculated the relativistic corrections in the positronium fine structure intervals 2 3 S 1 -2 3 P J . The contributions of order of mα 6 for the positronium S-levels were obtained from the one-photon, two-photon interactions and the second-order perturbation theory. We have obtained also the contribution of the two-photon annihilation diagrams to the interaction operator of the P-wave positronium. The corrections of order of α 5 R ∞ and α 5 1nαR ∞ to the P-wave energy levels of positronium were calculated

  15. One-pion exchange current corrections for nuclear magnetic moments in relativistic mean field theory

    International Nuclear Information System (INIS)

    Li Jian; Yao, J.M.; Meng Jie; Arima, Akito

    2011-01-01

    The one-pion exchange current corrections to isoscalar and isovector magnetic moments of double-closed shell nuclei plus and minus one nucleon with A = 15, 17, 39 and 41 have been studied in the relativistic mean field (RMF) theory and compared with previous relativistic and non-relativistic results. It has been found that the one-pion exchange current gives a negligible contribution to the isoscalar magnetic moments but a significant correction to the isovector ones. However, the one-pion exchange current enhances the isovector magnetic moments further and does not improve the corresponding description for the concerned nuclei in the present work. (author)

  16. Relativistic and the first sectorial harmonics corrections in the critical inclination

    Science.gov (United States)

    Rahoma, W. A.; Khattab, E. H.; Abd El-Salam, F. A.

    2014-05-01

    The problem of the critical inclination is treated in the Hamiltonian framework taking into consideration post-Newtonian corrections as well as the main correction term of sectorial harmonics for an earth-like planet. The Hamiltonian is expressed in terms of Delaunay canonical variables. A canonical transformation is applied to eliminate short period terms. A modified critical inclination is obtained due to relativistic and the first sectorial harmonics corrections.

  17. Theoretical investigation of the energy spectra of the oxygen isoelectronic sequences taking into account relativistic corrections

    International Nuclear Information System (INIS)

    Bogdanovich, P.O.; Shadzhyuvene, S.D.; Boruta, I.I.; Rudzikas, Z.B.

    1976-01-01

    A method for calculating energy spectra of atoms and ions having complex electron configurations is developed which takes into account relativistic corrections of the order of magnitude of the square of the structure constant. The corrections included are caused by the dependence of the electron mass on velocity; by orbit-orbit interaction; by contact interaction and by spin-orbit interaction. The method described is realized in the form of universal algorithms and programs which are written in the Fortran 4 in the BESM-6 version. Examples are given of calculating the ground ls 2 2s 2 2p 6 configuration and two excited ls 2 2s 2 2p 3 3s and ls 2 2s2p 5 ones of the isoelectronic oxygen series, both with and without taking into account the relativistic corrections. The value of the nuclear charge varies from Z=8 to Z=80. The contribution of relativistic corrections increases with Z. The effect of relativistic corrections on the distance between the centers of gravity of ground and excited configurations increases with Z. The comparison of the results obtained with experimental data is made

  18. Pion-cloud corrections to the relativistic S + V harmonic potential model

    International Nuclear Information System (INIS)

    Palladino, B.E.; Ferreira, P.L.

    1988-01-01

    Pionic corrections to the mass spectrum of low-lying s-wave baryons are incorporated in a relativistic independent quark model with equally mixed Lorentz scalar and vector harmonic potentials. (M.W.O.) [pt

  19. The chromatic correction in RHIC [Relativistic Heavy Ion Collider

    International Nuclear Information System (INIS)

    Lee, S.Y.; Dell, G.F.; Hahn, H.; Parzen, G.

    1987-01-01

    The scheme for the correction of chromatic effects in the Relativistic Heavy Ion Collider at BNL is discussed. This scheme uses six families of sextupoles excited by four independent power supplies, and provides adequate control of linear and quadratic terms in the tune vs momentum dependence and reduces the variation of the betatron amplitude, vs momentum

  20. Analytical model for relativistic corrections to the nuclear magnetic shielding constant in atoms

    International Nuclear Information System (INIS)

    Romero, Rodolfo H.; Gomez, Sergio S.

    2006-01-01

    We present a simple analytical model for calculating and rationalizing the main relativistic corrections to the nuclear magnetic shielding constant in atoms. It provides good estimates for those corrections and their trends, in reasonable agreement with accurate four-component calculations and perturbation methods. The origin of the effects in deep core atomic orbitals is manifestly shown

  1. Analytical model for relativistic corrections to the nuclear magnetic shielding constant in atoms

    Energy Technology Data Exchange (ETDEWEB)

    Romero, Rodolfo H. [Facultad de Ciencias Exactas, Universidad Nacional del Nordeste, Avenida Libertad 5500 (3400), Corrientes (Argentina)]. E-mail: rhromero@exa.unne.edu.ar; Gomez, Sergio S. [Facultad de Ciencias Exactas, Universidad Nacional del Nordeste, Avenida Libertad 5500 (3400), Corrientes (Argentina)

    2006-04-24

    We present a simple analytical model for calculating and rationalizing the main relativistic corrections to the nuclear magnetic shielding constant in atoms. It provides good estimates for those corrections and their trends, in reasonable agreement with accurate four-component calculations and perturbation methods. The origin of the effects in deep core atomic orbitals is manifestly shown.

  2. Absence of a Scott correction for the total binding energy of noninteracting fermions in a smooth potential well

    International Nuclear Information System (INIS)

    Huxtable, B.D.

    1988-01-01

    It is shown, for V in a particular class of smooth functions, that the total binding energy, E(Z), of Z noninteracting Fermions in the potential well Z 4/3 V(Z 1/3 X) obeys E(Z) = c TF (V)Z 7/3 + O(Z 5/3 ) as Z → ∞. Here c TF (V) is the coefficient predicted by Thomas-Fermi theory. This result is consistent with the conjectured Scott correction, which occurs at order Z 2 , to the total binding energy of an atomic number Z. This correction is thought to arise only because V(x)∼ - |x| -1 near x = 0 in the atomic problem, and so V is not a smooth function

  3. Relativistic corrections to the form factors of Bc into P-wave orbitally excited charmonium

    Science.gov (United States)

    Zhu, Ruilin

    2018-06-01

    We investigated the form factors of the Bc meson into P-wave orbitally excited charmonium using the nonrelativistic QCD effective theory. Through the analytic computation, the next-to-leading order relativistic corrections to the form factors were obtained, and the asymptotic expressions were studied in the infinite bottom quark mass limit. Employing the general form factors, we discussed the exclusive decays of the Bc meson into P-wave orbitally excited charmonium and a light meson. We found that the relativistic corrections lead to a large correction for the form factors, which makes the branching ratios of the decay channels B (Bc ± →χcJ (hc) +π± (K±)) larger. These results are useful for the phenomenological analysis of the Bc meson decays into P-wave charmonium, which shall be tested in the LHCb experiments.

  4. On the Relativistic Correction of Particles Trajectory in Tandem Type Electrostatic Accelerator

    Science.gov (United States)

    Minárik, Stanislav

    2015-08-01

    A constant potential is applied to the acceleration of the ion-beam in the tandem type electrostatic accelerator. However, not just one voltage is applied, but instead a number of applications can be made in succession by means of the tandem arrangement of high voltage tubes. This number of voltage applications, which is the number of so-called "stages" of a tandem accelerator, may be two, three, or four, depending on the chosen design. Electrostatic field with approximately constant intensity acts on ions in any stage. In general, non-relativistic dynamics is used for the description of the ion transport in tandem accelerator. Energies of accelerated ions are too low and relativistic effects cannot be commonly observed by standard experimental technique. Estimation of possible relativistic correction of ion trajectories is therefore only a matter of calculation. In this note, we briefly present such calculation. Our aim is to show how using the relativistic dynamics modifies the particles trajectory in tandem type accelerator and what parameters determine this modification.

  5. Analytical calculations of intense Gaussian laser beam propagating in plasmas with relativistic collision correction

    International Nuclear Information System (INIS)

    Wang Ying; Yuan Chengxun; Gao Ruilin; Zhou Zhongxiang

    2012-01-01

    Theoretical investigations of a Gaussian laser beam propagating in relativistic plasmas have been performed with the WKB method and complex eikonal function. We consider the relativistic nonlinearity induced by intense laser beam, and present the relativistically generalized forms of the plasma frequency and electron collision frequency in plasmas. The coupled differential equations describing the propagation variations of laser beam are derived and numerically solved. The obtained simulation results present the similar variation tendency with experiments. By changing the plasma density, we theoretically analyze the feasibility of using a plasmas slab of a fixed thickness to compress the laser beam-width and acquire the focused laser intensity. The present work complements the relativistic correction of the electron collision frequency with reasonable derivations, promotes the theoretical approaching to experiments and provides effective instructions to the practical laser-plasma interactions.

  6. Matrix elements of the electric multiple transition and relativistic correction operators in the case of complex configurations

    International Nuclear Information System (INIS)

    Kanyauskas, Yu.M.; Rudzikas, Z.B.

    1976-01-01

    Operators and their submatrix elements are studied in the framework of the electric multipole transitions of complex atoms with account of relativistic corrections of the order of the square of the fine structure constant. The analysis is performed by means of irreducible tensor operators and genealogical coefficients. It has been assumed that angular momenta of individual shells are coupled with each other according to ls, lk, jk and jj coupling. Formulas are given for the operator which causes the relativistic corrections for the single-electron multipole transition and for its submatrix element in the case of configurations with two unfilled shells. A possibility is discussed of using the formulas suggested for calculation. As follows from analysis, the relativistic correction operators even with the pure ls coupling allow intercombination transitions with ΔS equals +-1. The expressions obtained may turn out to be useful for performing calculations in the case of the intermediate type of coupling

  7. Non-Gaussianities due to relativistic corrections to the observed galaxy bispectrum

    International Nuclear Information System (INIS)

    Dio, E. Di; Perrier, H.; Durrer, R.; Dizgah, A. Moradinezhad; Riotto, A.; Marozzi, G.; Noreña, J.

    2017-01-01

    High-precision constraints on primordial non-Gaussianity (PNG) will significantly improve our understanding of the physics of the early universe. Among all the subtleties in using large scale structure observables to constrain PNG, accounting for relativistic corrections to the clustering statistics is particularly important for the upcoming galaxy surveys covering progressively larger fraction of the sky. We focus on relativistic projection effects due to the fact that we observe the galaxies through the light that reaches the telescope on perturbed geodesics. These projection effects can give rise to an effective f NL that can be misinterpreted as the primordial non-Gaussianity signal and hence is a systematic to be carefully computed and accounted for in modelling of the bispectrum. We develop the technique to properly account for relativistic effects in terms of purely observable quantities, namely angles and redshifts. We give some examples by applying this approach to a subset of the contributions to the tree-level bispectrum of the observed galaxy number counts calculated within perturbation theory and estimate the corresponding non-Gaussianity parameter, f NL , for the local, equilateral and orthogonal shapes. For the local shape, we also compute the local non-Gaussianity resulting from terms obtained using the consistency relation for observed number counts. Our goal here is not to give a precise estimate of f NL for each shape but rather we aim to provide a scheme to compute the non-Gaussian contamination due to relativistic projection effects. For the terms considered in this work, we obtain contamination of f NL loc ∼ O(1).

  8. Non-Gaussianities due to relativistic corrections to the observed galaxy bispectrum

    Energy Technology Data Exchange (ETDEWEB)

    Dio, E. Di [INAF—Osservatorio Astronomico di Trieste, Via G.B. Tiepolo 11, Trieste, I-34143 Italy (Italy); Perrier, H.; Durrer, R.; Dizgah, A. Moradinezhad; Riotto, A. [University of Geneva, Department of Theoretical Physics and Center for Astroparticle Physics (CAP), 24 quai E. Ansermet, Geneva 4, CH-1211 Switzerland (Switzerland); Marozzi, G. [Centro Brasileiro de Pesquisas Físicas, Rua Dr. Xavier Sigaud 150, Urca, Rio de Janeiro, CEP 22290-180 Brazil (Brazil); Noreña, J., E-mail: Enea.DiDio@oats.inaf.it, E-mail: Hideki.Perrier@unige.ch, E-mail: Ruth.Durrer@unige.ch, E-mail: Marozzi@cbpf.br, E-mail: amoradinejad@physics.harvard.edu, E-mail: jorge.norena@pucv.cl, E-mail: Antonio.Riotto@unige.ch [Instituto de Física, Pontificia Universidad Católica de Valparaíso, Casilla, Valparaíso, 4059 Chile (Chile)

    2017-03-01

    High-precision constraints on primordial non-Gaussianity (PNG) will significantly improve our understanding of the physics of the early universe. Among all the subtleties in using large scale structure observables to constrain PNG, accounting for relativistic corrections to the clustering statistics is particularly important for the upcoming galaxy surveys covering progressively larger fraction of the sky. We focus on relativistic projection effects due to the fact that we observe the galaxies through the light that reaches the telescope on perturbed geodesics. These projection effects can give rise to an effective f {sub NL} that can be misinterpreted as the primordial non-Gaussianity signal and hence is a systematic to be carefully computed and accounted for in modelling of the bispectrum. We develop the technique to properly account for relativistic effects in terms of purely observable quantities, namely angles and redshifts. We give some examples by applying this approach to a subset of the contributions to the tree-level bispectrum of the observed galaxy number counts calculated within perturbation theory and estimate the corresponding non-Gaussianity parameter, f {sub NL}, for the local, equilateral and orthogonal shapes. For the local shape, we also compute the local non-Gaussianity resulting from terms obtained using the consistency relation for observed number counts. Our goal here is not to give a precise estimate of f {sub NL} for each shape but rather we aim to provide a scheme to compute the non-Gaussian contamination due to relativistic projection effects. For the terms considered in this work, we obtain contamination of f {sub NL}{sup loc} ∼ O(1).

  9. Spin-orbit ZORA and four-component Dirac-Coulomb estimation of relativistic corrections to isotropic nuclear shieldings and chemical shifts of noble gas dimers.

    Science.gov (United States)

    Jankowska, Marzena; Kupka, Teobald; Stobiński, Leszek; Faber, Rasmus; Lacerda, Evanildo G; Sauer, Stephan P A

    2016-02-05

    Hartree-Fock and density functional theory with the hybrid B3LYP and general gradient KT2 exchange-correlation functionals were used for nonrelativistic and relativistic nuclear magnetic shielding calculations of helium, neon, argon, krypton, and xenon dimers and free atoms. Relativistic corrections were calculated with the scalar and spin-orbit zeroth-order regular approximation Hamiltonian in combination with the large Slater-type basis set QZ4P as well as with the four-component Dirac-Coulomb Hamiltonian using Dyall's acv4z basis sets. The relativistic corrections to the nuclear magnetic shieldings and chemical shifts are combined with nonrelativistic coupled cluster singles and doubles with noniterative triple excitations [CCSD(T)] calculations using the very large polarization-consistent basis sets aug-pcSseg-4 for He, Ne and Ar, aug-pcSseg-3 for Kr, and the AQZP basis set for Xe. For the dimers also, zero-point vibrational (ZPV) corrections are obtained at the CCSD(T) level with the same basis sets were added. Best estimates of the dimer chemical shifts are generated from these nuclear magnetic shieldings and the relative importance of electron correlation, ZPV, and relativistic corrections for the shieldings and chemical shifts is analyzed. © 2015 Wiley Periodicals, Inc.

  10. Scott S Snyder

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics. Scott S Snyder. Articles written in Pramana – Journal of Physics. Volume 62 Issue 3 March 2004 pp 565-568 Experimental Particle Physics. Prospects for Higgs search at DØ · Scott S Snyder DØ Collaboration · More Details Abstract Fulltext PDF. The status of the Higgs search ...

  11. Reinterpretation of the ''relativistic mass'' correction to the spin magnetic moment of a moving particle

    International Nuclear Information System (INIS)

    Hegstrom, R.A.; Lhuillier, C.

    1977-01-01

    Starting from a classical covariant equation of motion for the spin of a particle moving in a homogeneous electromagnetic field (the Bargmann-Michel-Telegdi equation), we show that the ''relativistic mass'' correction to the electron spin magnetic moment, which has been obtained previously from relativistic quantum-mechanical treatments of the Zeeman effect, may be reinterpreted as the combination of three classical effects: (i) the difference in time scales in the electron rest frame vis-a-vis the lab frame, (ii) the Lorentz transformation of the magnetic field between the two frames, and (iii) the Thomas precession of the electron spin due to the acceleration of the electron produced by the magnetic field

  12. Tadpole renormalization and relativistic corrections in lattice NRQCD

    Science.gov (United States)

    Shakespeare, Norman H.; Trottier, Howard D.

    1998-08-01

    We make a detailed comparison of two tadpole renormalization schemes in the context of the quarkonium hyperfine splittings in lattice NRQCD. We renormalize improved gauge-field and NRQCD actions using the mean-link u0,L in the Landau gauge, and using the fourth root of the average plaquette u0,P. Simulations are done for the three quarkonium systems cc¯, bc¯, and bb¯. The hyperfine splittings are computed both at leading [O(MQv4)] and at next-to-leading [O(MQv6)] order in the relativistic expansion, where MQ is the renormalized quark mass, and v2 is the mean-squared velocity. Results are obtained at a large number of lattice spacings, in the range of about 0.14-0.38 fm. A number of features emerge, all of which favor tadpole renormalization using u0,L. This includes a much better scaling behavior of the hyperfine splittings in the three quarkonium systems when u0,L is used. We also find that relativistic corrections to the spin splittings are smaller when u0,L is used, particularly for the cc¯ and bc¯ systems. We also see signs of a breakdown in the NRQCD expansion when the bare quark mass falls below about 1 in lattice units. Simulations with u0,L also appear to be better behaved in this context: the bare quark masses turn out to be larger when u0,L is used, compared to when u0,P is used on lattices with comparable spacings. These results also demonstrate the need to go beyond tree-level tadpole improvement for precision simulations.

  13. Relativistic corrections to the elastic electron scattering from 208Pb

    International Nuclear Information System (INIS)

    Chandra, H.; Sauer, G.

    1976-01-01

    In the present work we have calculated the differential cross sections for the elastic electron scattering from 208 Pb using the charge distributions resulting from various corrections. The point proton and neutron mass distributions have been calculated from the spherical wave functions for 208 Pb obtained by Kolb et al. The relativistic correction to the nuclear charge distribution coming from the electromagnetic structure of the nucleon has been accomplished by assuming a linear superposition of Gaussian shapes for the proton and the neutron charge form factor. Results of this calculation are quite similar to an earlier calculation by Bertozzi et al., who have used a different wave function for 208 Pb and have assumed exponential smearing for the proton corresponding to the dipole fit for the form factor. Also in the present work, reason for the small spin orbit contribution to the effective charge distribution is discussed in some detail. It is also shown that the use of a single Gaussian shape for the proton smearing usually underestimates the actual theoretical cross section

  14. Optics measurement and correction during beam acceleration in the Relativistic Heavy Ion Collider

    Energy Technology Data Exchange (ETDEWEB)

    Liu, C. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Marusic, A. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.; Minty, M. [Brookhaven National Lab. (BNL), Upton, NY (United States). Collider-Accelerator Dept.

    2014-09-09

    To minimize operational complexities, setup of collisions in high energy circular colliders typically involves acceleration with near constant β-functions followed by application of strong focusing quadrupoles at the interaction points (IPs) for the final beta-squeeze. At the Relativistic Heavy Ion Collider (RHIC) beam acceleration and optics squeeze are performed simultaneously. In the past, beam optics correction at RHIC has taken place at injection and at final energy with some interpolation of corrections into the acceleration cycle. Recent measurements of the beam optics during acceleration and squeeze have evidenced significant beta-beats which if corrected could minimize undesirable emittance dilutions and maximize the spin polarization of polarized proton beams by avoidance of higher-order multipole fields sampled by particles within the bunch. In this report the methodology now operational at RHIC for beam optics corrections during acceleration with simultaneous beta-squeeze will be presented together with measurements which conclusively demonstrate the superior beam control. As a valuable by-product, the corrections have minimized the beta-beat at the profile monitors so reducing the dominant error in and providing more precise measurements of the evolution of the beam emittances during acceleration.

  15. Citation for Scott Doney

    Science.gov (United States)

    Glover, David M.; Doney, Scott

    “A man of genius makes no mistakes. His errors are volitional and are the portals of discovery. James Joyce, Ulysses (1922). ”After collaborating with Scott Doney for the past 14 years I know what Joyce meant. When working with someone as bright as Scott it inevitably happens that you just don't understand. And because we're trained skeptics the question immediately arises, ”has our friend and colleague made a mistake?“ But we're wrong; we just didn't see the portal through which people like Scott had already proceeded. Certainly this is what we reserve these awards of ‘outstandingness’ for; those whose insight lead through the portals of discovery”.

  16. Ab initio NMR parameters of BrCH3 and ICH3 with relativistic and vibrational corrections

    Science.gov (United States)

    Uhlíková, Tereza; Urban, Štěpán

    2018-05-01

    This study is focused on two effects identified when NMR parameters are calculated based on first principles. These effects are 1. vibrational correction of properties when using ab initio optimized equilibrium geometry; 2. relativistic effects and limits of using the Flygare equation. These effects have been investigated and determined for nuclear spin-rotation constants and nuclear magnetic shieldings for the CH3Br and CH3I molecules. The most significant result is the difference between chemical shieldings determined based on the ab initio relativistic four-component Dirac-Coulomb Hamiltonian and chemical shieldings calculated using experimental values and the Flygare equation. This difference is approximately 320 ppm and 1290 ppm for 79Br and 127I in the CH3X molecule, respectively.

  17. Sorting chromatic sextupoles for easily and effectively correcting second order chromaticity in the Relativistic Heavy Ion Collider

    International Nuclear Information System (INIS)

    Luo, Y.; Tepikian, S.; Fischer, W.; Robert-Demolaize, G.; Trbojevic, D.

    2009-01-01

    Based on the contributions of the chromatic sextupole families to the half-integer resonance driving terms, we discuss how to sort the chromatic sextupoles in the arcs of the Relativistic Heavy Ion Collider (RHIC) to easily and effectively correct the second order chromaticities. We propose a method with 4 knobs corresponding to 4 pairs of chromatic sextupole families to online correct the second order chromaticities. Numerical simulation justifies this method, showing that this method reduces the unbalance in the correction strengths of sextupole families and avoids the reversal of sextupole polarities. Therefore, this method yields larger dynamic apertures for the proposed RHIC 2009 100GeV polarized proton run lattices

  18. The ρ - ω mass difference in a relativistic potential model with pion corrections

    International Nuclear Information System (INIS)

    Palladino, B.E.; Ferreira, P.L.

    1988-01-01

    The problem of the ρ - ω mass difference is studied in the framework of the relativistic, harmonic, S+V independent quark model implemented by center-of-mass, one-gluon exchange and plon-cloud corrections stemming from the requirement of chiral symmetry in the (u,d) SU(2) flavour sector of the model. The plonic self-energy corrections with different intermediate energy states are instrumental of the analysis of the problem, which requires and appropriate parametrization of the mesonic sector different from that previously used to calculate the mass spectrum of the S-wave baryons. The right ρ - ω mass splitting is found, together with a satisfactory value for the mass of the pion, calculated as a bound-state of a quark-antiquark pair. An analogous discussion based on the cloudy-bag model is also presented. (author) [pt

  19. Evaluating safety of concrete gravity dam on weak rock: Scott Dam

    International Nuclear Information System (INIS)

    Goodman, R.E.; Ahlgren, C.S.

    2000-01-01

    Scott Dam is owned and operated by Pacific Gas and Electric Co. (PG and E) as part of the Potter Valley Project. Although it is an unimpressive concrete gravity dam [233 m (765 ft) long with maximum water surface 33.4 m (110 ft) above tail water], the dam has unusually complex and weak foundation rocks; thick condition caused design changes during construction, numerous subsequent special investigations, and several corrections and additions. A main stumbling block to clarification of the dam safety issue for Scott Dam has always been difficulty in characterizing the foundation material. This paper discusses an approach to this problem as well s how the safety of the dam was subsequently confirmed. Following a comprehensive program of research, investigations, and analysis from 1991 to 1997

  20. Relativistic correction to the deuteron magnetic moment and angular condition

    International Nuclear Information System (INIS)

    Kondratyuk, L.A.; Strikman, M.I.

    1983-01-01

    The relativistic correction (RC) to the deuteron magnetic moment μsub(d) is investigated using the light-cone dynamics. The restrictions imposed by the angular condition on the electromagnetic current operator of deuteron are discussed in detail. It is shown that the additive model for the current operator of interacting consistuencies is consistent with the angular condition only for the two first terms of expansion of the ''good'' electromagnetic current component jsub(+) in powers of the momentum transfer q. The RC into μsub(d) is calculated using the mattix element of the ''good'' component. The account of RC decreases essentially the discrepancy between the theoretical and experimental values. The value of Δsub(μ) is determined for the Hamada-Johnston potential hard core potential (0.93x10 -2 ) for the Reid soft core potential (0.71x10 -2 ) and for the Paris potential (0.63x10 -2 )

  1. Sextupole correction of the longitudinal transport of relativistic beams in dispersionless translating sections

    Directory of Open Access Journals (Sweden)

    R. J. England

    2005-01-01

    Full Text Available We examine the use of sextupole magnets to correct nonlinearities in the longitudinal phase space transformation of a relativistic beam of charged particles in a dispersionless translating section, or dogleg. Through heuristic analytical arguments and examples derived from recent experimental efforts, augmented by simulations using the particle tracking codes PARMELA and ELEGANT, sextupole corrections are found to be effective in optimizing the use of such structures for beam compression or for shaping the current profile of the beam, by manipulation of the second-order longitudinal dispersion. Recent experimental evidence of the use of sextupoles to manipulate second-order horizontal and longitudinal dispersion of the beam is presented. The theoretical and experimental results indicate that these manipulations can be used to create an electron bunch with a current profile having a long ramp followed by a sharp cutoff, which is optimal for driving large-amplitude wake fields in a plasma wake field accelerator.

  2. Calculation of 125Te NMR Chemical Shifts at the Full Four-Component Relativistic Level with Taking into Account Solvent and Vibrational Corrections: A Gateway to Better Agreement with Experiment.

    Science.gov (United States)

    Rusakova, Irina L; Rusakov, Yuriy Yu; Krivdin, Leonid B

    2017-06-29

    Four-component relativistic calculations of 125 Te NMR chemical shifts were performed in the series of 13 organotellurium compounds, potential precursors of the biologically active species, at the density functional theory level under the nonrelativistic and four-component fully relativistic conditions using locally dense basis set scheme derived from relativistic Dyall's basis sets. The relativistic effects in tellurium chemical shifts were found to be of as much as 20-25% of the total calculated values. The vibrational and solvent corrections to 125 Te NMR chemical shifts are about, accordingly, 6 and 8% of their total values. The PBE0 exchange-correlation functional turned out to give the best agreement of calculated tellurium shifts with their experimental values giving the mean absolute percentage error of 4% in the range of ∼1000 ppm, provided all corrections are taken into account.

  3. Approximate relativistic corrections to atomic radial wave functions

    International Nuclear Information System (INIS)

    Cowan, R.D.; Griffin, D.C.

    1976-01-01

    The mass-velocity and Darwin terms of the one-electron-atom Pauli equation have been added to the Hartree-Fock differential equations by using the HX formula to calculate a local central field potential for use in these terms. Introduction of the quantum number j is avoided by omitting the spin-orbit term of the Pauli equation. The major relativistic effects, both direct and indirect, are thereby incorporated into the wave functions, while allowing retention of the commonly used nonrelativistic formulation of energy level calculations. The improvement afforded in calculated total binding energies, excitation energies, spin-orbit parameters, and expectation values of r/sub m/ is comparable with that provided by fully relativistic Dirac-Hartree-Fock calculations

  4. Relativistic effects in the Thomas--Fermi atom

    International Nuclear Information System (INIS)

    Waber, J.T.; Canfield, J.M.

    1975-01-01

    Two methods of applying relativistic corrections to the Thomas--Fermi atom are considered, and numerical calculations are discussed. Radial charge distributions calculated from a relativistic Thomas--Fermi equation agree in gross form with those from more complicated self-consistent calculations. Energy eigenvalues for mercury, as determined from the relativistic Thomas--Fermi solution, are compared with other calculated and experimental values

  5. A rigorous approach to relativistic corrections of bound state energies for spin-1/2 particles

    International Nuclear Information System (INIS)

    Gesztesy, F.; Thaller, B.; Grosse, H.

    1983-01-01

    Under fairly general conditions on the interactions we prove holomorphy of the Dirac resolvent around its nonrelativistic limit. As a consequences, perturbation theory in terms of resolvents (instead of Hamiltonians) yields holomorphy of Dirac eigenvalues and eigenfunctions with respect to c - 1 and a new method of calculating relativistic corrections to bound state energies. Due to a formulation in an abstract setting our method is applicable in many different concrete situation. In particular our approach covers the case of the relavistic hydrogen atom in external electromagnetic fields. (Author)

  6. Blanco White and Walter Scott Blanco white y Walter Scott

    Directory of Open Access Journals (Sweden)

    Fernando DURÁN LÓPEZ

    2011-01-01

    Full Text Available The first edition of Ivanhoe; a romance. By the author of Waverley was published in Edinburgh in 1820. From the beginning of year 1823, José María Blanco White translated several excerpts from Ivanhoe in the numbers 1-3 of the magazine Variedades, owned by the publisher Rudolph Ackermann. in these articles and other later writings, the translator praised Scott as a model for a new way of painting history in a narrative. This paper studies his ideas on Scott’s historical novel, as well as his translation technique, compared with that of José Joaquín de Mora. En 1820 se publicó en Edimburgo la primera edición de Ivanhoe; a romance. By the author of Waverley. Desde comienzos de 1823, en los tres primeros números de su revista Variedades, promovida por el editor Rudolph Ackermann, José María Blanco White tradujo varios fragmentos de Ivanhoe entre grandes elogios. Asimismo, Blanco White tomó a Scott como modelo de referencia de una nueva manera de pintar la historia por medio de la novela en otros varios escritos críticos de años posteriores. El artículo estudia las ideas de Blanco White acerca de la novela histórica de Scott y su técnica como traductor, comparada con la de José Joaquín Mora.

  7. Second-order perturbations of cosmological fluids: Relativistic effects of pressure, multicomponent, curvature, and rotation

    International Nuclear Information System (INIS)

    Hwang, Jai-chan; Noh, Hyerim

    2007-01-01

    We present general relativistic correction terms appearing in Newton's gravity to the second-order perturbations of cosmological fluids. In our previous work we have shown that to the second-order perturbations, the density and velocity perturbation equations of general relativistic zero-pressure, irrotational, single-component fluid in a spatially flat background coincide exactly with the ones known in Newton's theory without using the gravitational potential. We also have shown the effect of gravitational waves to the second order, and pure general relativistic correction terms appearing in the third-order perturbations. Here, we present results of second-order perturbations relaxing all the assumptions made in our previous works. We derive the general relativistic correction terms arising due to (i) pressure, (ii) multicomponent, (iii) background spatial curvature, and (iv) rotation. In the case of multicomponent zero-pressure, irrotational fluids under the flat background, we effectively do not have relativistic correction terms, thus the relativistic equations expressed in terms of density and velocity perturbations again coincide with the Newtonian ones. In the other three cases we generally have pure general relativistic correction terms. In the case of pressure, the relativistic corrections appear even in the level of background and linear perturbation equations. In the presence of background spatial curvature, or rotation, pure relativistic correction terms directly appear in the Newtonian equations of motion of density and velocity perturbations to the second order; to the linear order, without using the gravitational potential (or metric perturbations), we have relativistic/Newtonian correspondences for density and velocity perturbations of a single-component fluid including the rotation even in the presence of background spatial curvature. In the small-scale limit (far inside the horizon), to the second-order, relativistic equations of density and

  8. Wigner expansions for partition functions of nonrelativistic and relativistic oscillator systems

    Science.gov (United States)

    Zylka, Christian; Vojta, Guenter

    1993-01-01

    The equilibrium quantum statistics of various anharmonic oscillator systems including relativistic systems is considered within the Wigner phase space formalism. For this purpose the Wigner series expansion for the partition function is generalized to include relativistic corrections. The new series for partition functions and all thermodynamic potentials yield quantum corrections in terms of powers of h(sup 2) and relativistic corrections given by Kelvin functions (modified Hankel functions) K(sub nu)(mc(sup 2)/kT). As applications, the symmetric Toda oscillator, isotonic and singular anharmonic oscillators, and hindered rotators, i.e. oscillators with cosine potential, are addressed.

  9. Relativistic description of directly interacting pions and nucleons

    International Nuclear Information System (INIS)

    Heller, L.

    1976-01-01

    The expected magnitudes of the leading relativistic effects on an off-energy-shell T matrix element are estimated using the Bakamjian--Thomas formulation of relativistic potential theory. For pion-nucleon scattering at medium energy, the two largest corrections are expected to result from the use of relativistic relative momenta rather than nonrelativistic values. The importance of additional terms depends upon the detailed behavior of the T matrix

  10. Relativistic Coulomb excitation

    International Nuclear Information System (INIS)

    Winther, A.; Alder, K.

    1979-01-01

    Coulomb excitation of both target and projectile in relativistic heavy ion collisions is evaluated including the lowest order correction for the deviation from a straight line trajectory. Explicit results for differential and total cross sections are given in the form of tables and figures. (Auth.)

  11. Relativistic solitons and pulsars

    Energy Technology Data Exchange (ETDEWEB)

    Karpman, V I [Inst. of Terrestrial Magnetism, Ionosphere, and Radio-Wave Propagation, Moscow; Norman, C A; ter Haar, D; Tsytovich, V N

    1975-05-01

    A production mechanism for stable electron bunches or sheets of localized electric fields is investigated which may account for pulsar radio emission. Possible soliton phenomena in a one-dimensional relativistic plasma are analyzed, and it is suggested that the motion of a relativistic soliton, or ''relaton'', along a curved magnetic-field line may produce radio emission with the correct polarization properties. A general MHD solution is obtained for relatons, the radiation produced by a relativistic particle colliding with a soliton is evaluated, and the emission by a soliton moving along a curved field line is estimated. It is noted that due to a number of severe physical restrictions, curvature radiation is not a very likely solution to the problem of pulsar radio emission. (IAA)

  12. Refitting density dependent relativistic model parameters including Center-of-Mass corrections

    International Nuclear Information System (INIS)

    Avancini, Sidney S.; Marinelli, Jose R.; Carlson, Brett Vern

    2011-01-01

    Full text: Relativistic mean field models have become a standard approach for precise nuclear structure calculations. After the seminal work of Serot and Walecka, which introduced a model Lagrangian density where the nucleons interact through the exchange of scalar and vector mesons, several models were obtained through its generalization, including other meson degrees of freedom, non-linear meson interactions, meson-meson interactions, etc. More recently density dependent coupling constants were incorporated into the Walecka-like models, which are then extensively used. In particular, for these models a connection with the density functional theory can be established. Due to the inherent difficulties presented by field theoretical models, only the mean field approximation is used for the solution of these models. In order to calculate finite nuclei properties in the mean field approximation, a reference set has to be fixed and therefore the translational symmetry is violated. It is well known that in such case spurious effects due to the center-of-mass (COM) motion are present, which are more pronounced for light nuclei. In a previous work we have proposed a technique based on the Pierls-Yoccoz projection operator applied to the mean-field relativistic solution, in order to project out spurious COM contributions. In this work we obtain a new fitting for the density dependent parameters of a density dependent hadronic model, taking into account the COM corrections. Our fitting is obtained taking into account the charge radii and binding energies for He 4 , O 16 , Ca 40 , Ca 48 , Ni 56 , Ni 68 , Sn 100 , Sn 132 and Pb 208 . We show that the nuclear observables calculated using our fit are of a quality comparable to others that can be found in the literature, with the advantage that now a translational invariant many-body wave function is at our disposal. (author)

  13. ASK Talks with W. Scott Cameron

    Science.gov (United States)

    Cameron, W. Scott

    2002-01-01

    This paper presents an interview with Scott Cameron who is the Capital Systems Manager for the Food and Beverage Global Business Unit of Procter and Gamble. He has been managing capital projects and mentoring other project managers for the past 20 years at Procter and Gamble within its Beauty Care, Health Care, Food and Beverage, and Fabric and Home Care Businesses. Scott also has been an Academy Sharing Knowledge (ASK) feature writer since Volume One.

  14. Knudsen effects in a Scott effect experiment.

    Science.gov (United States)

    Wells, C. W.; Wood, L. T.; Hildebrandt, A. F.

    1973-01-01

    A thermal torque sometimes observed in Scott effect measurements has been studied experimentally and an explanation for the thermal torque proposed. The magnitude of the thermal torque can be comparable to the Scott torque depending on geometrical and thermal anisotropies. The thermal torque is predicted to decrease with application of an axial magnetic field.

  15. The relativistic gravity train

    Science.gov (United States)

    Seel, Max

    2018-05-01

    The gravity train that takes 42.2 min from any point A to any other point B that is connected by a straight-line tunnel through Earth has captured the imagination more than most other applications in calculus or introductory physics courses. Brachystochron and, most recently, nonlinear density solutions have been discussed. Here relativistic corrections are presented. It is discussed how the corrections affect the time to fall through Earth, the Sun, a white dwarf, a neutron star, and—the ultimate limit—the difference in time measured by a moving, a stationary and the fiducial observer at infinity if the density of the sphere approaches the density of a black hole. The relativistic gravity train can serve as a problem with approximate and exact analytic solutions and as numerical exercise in any introductory course on relativity.

  16. Metric Scott analysis

    Czech Academy of Sciences Publication Activity Database

    Ben Yaacov, I.; Doucha, Michal; Nies, A.; Tsankov, T.

    2017-01-01

    Roč. 318, October (2017), s. 46-87 ISSN 0001-8708 Institutional support: RVO:67985840 Keywords : continuous logic * infinitary logic * Scott sentence Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics Impact factor: 1.373, year: 2016 http://www.sciencedirect.com/science/article/pii/S0001870816309896?via%3Dihub

  17. On the relativistic extended Thomas-Fermi method

    International Nuclear Information System (INIS)

    Centelles, M.; Vinas, X.; Barranco, M.; Schuck, P.

    1990-01-01

    We have derived the semiclassical relativistic energy functional for a set of fermions moving in the mean field arising from scalar and vector fields, including up to ℎ 2 corrective terms. The method is applied to a relativistic harmonic oscillator model for which the semiclassical result can be compared with the exact solution of the Dirac equation. (orig.)

  18. On the relativistic extended Thomas-Fermi method

    International Nuclear Information System (INIS)

    Centelles, M.; Vinas, X.; Barranco, M.; Schuck, P.

    1990-01-01

    We have derived the semiclassical relativistic energy functional for a set of fermions moving in the mean field arising from scalar and vector fields, including up to ℎ 2 corrective terms. The method is applied to a relativistic harmonic oscillator model for which the semiclassical result can be compared with the exact solution of the Dirac equation

  19. Gravitation relativiste

    CERN Document Server

    Hakim, Rémi

    1994-01-01

    Il existe à l'heure actuelle un certain nombre de théories relativistes de la gravitation compatibles avec l'expérience et l'observation. Toutefois, la relativité générale d'Einstein fut historiquement la première à fournir des résultats théoriques corrects en accord précis avec les faits.

  20. New derivation of relativistic dissipative fluid dynamics

    International Nuclear Information System (INIS)

    Jaiswal, Amaresh; Bhalerao, Rajeev S.; Pal, Subrata

    2012-01-01

    Relativistic dissipative hydrodynamics has been quite successful in explaining the spectra and azimuthal anisotropy of particles produced in heavy-ion collisions at the RHIC and recently at the LHC. The first-order dissipative fluid dynamics or the relativistic Navier-Stokes (NS) theory involves parabolic differential equations and suffers from a causality and instability. The second-order or Israel-Stewart (IS) theory with its hyperbolic equations restores causality but may not guarantee stability. The correct formulation of relativistic viscous fluid dynamics is far from settled and is under intense investigation

  1. Local density approximations for relativistic exchange energies

    International Nuclear Information System (INIS)

    MacDonald, A.H.

    1986-01-01

    The use of local density approximations to approximate exchange interactions in relativistic electron systems is reviewed. Particular attention is paid to the physical content of these exchange energies by discussing results for the uniform relativistic electron gas from a new point of view. Work on applying these local density approximations in atoms and solids is reviewed and it is concluded that good accuracy is usually possible provided self-interaction corrections are applied. The local density approximations necessary for spin-polarized relativistic systems are discussed and some new results are presented

  2. Relativistic description of pair production of doubly heavy baryons in e+e− annihilation

    International Nuclear Information System (INIS)

    Martynenko, A. P.; Trunin, A. M.

    2015-01-01

    Relativistic corrections in the pair production of S-wave doubly heavy diquarks in electron-positron annihilation were calculated on the basis of perturbative QCD and the quark model. The relativistic corrections to the wave functions for quark bound states were taken into account with the aid of the Breit potential in QCD. Relativistic effects change substantially the nonrelativistic cross sections for pair diquark production. The yield of pairs of (ccq) doubly heavy baryons at B factories was estimated

  3. Relativistic density functional theory with picture-change corrected electron density based on infinite-order Douglas-Kroll-Hess method

    Science.gov (United States)

    Oyama, Takuro; Ikabata, Yasuhiro; Seino, Junji; Nakai, Hiromi

    2017-07-01

    This Letter proposes a density functional treatment based on the two-component relativistic scheme at the infinite-order Douglas-Kroll-Hess (IODKH) level. The exchange-correlation energy and potential are calculated using the electron density based on the picture-change corrected density operator transformed by the IODKH method. Numerical assessments indicated that the picture-change uncorrected density functional terms generate significant errors, on the order of hartree for heavy atoms. The present scheme was found to reproduce the energetics in the four-component treatment with high accuracy.

  4. Core-dependent and ligand-dependent relativistic corrections to the nuclear magnetic shieldings in MH4-n Y n (n = 0-4; M = Si, Ge, Sn, and Y = H, F, Cl, Br, I) model compounds.

    Science.gov (United States)

    Maldonado, Alejandro F; Aucar, Gustavo A; Melo, Juan I

    2014-09-01

    The nuclear magnetic shieldings of Si, Ge, and Sn in MH(4-n) Y(n) (M = Si, Ge, Sn; Y = F, Cl, Br, I and n = 1-4) molecular systems are highly influenced by the substitution of one or more hydrogens by heavy-halogen atoms. We applied the linear response elimination of small components (LRESC) formalism to calculate those shieldings and learn whether including only a few of the leading relativistic correction terms is sufficient to be able to quantitatively reproduce the full relativistic value. It was observed that the nuclear magnetic shieldings change as the number of heavy halogen substituents and their weights vary, and the pattern of σ(M) generally does not exhibit the normal halogen dependence (NHD) behavior that can be seen in similar molecular systems containing carbon atoms. We also analyzed each relativistic correction afforded by the LRESC method and split them in two: core-dependent and ligand-dependent contributions; we then looked for the electronic mechanisms involved in the different relativistic effects and in the total relativistic value. Based on this analysis, we were able to study the electronic mechanism involved in a recently proposed relativistic effect, the "heavy atom effect on vicinal heavy atom" (HAVHA), in more detail. We found that the main electronic mechanism is the spin-orbit or σ p (T(3)) correction, although other corrections such as σ p (S(1)) and σ p (S(3)) are also important. Finally, we analyzed proton magnetic shieldings and found that, for molecules containing Sn as the central atom, σ(H) decreases as the number of heavy halogen substituents (of the same type: either F, Cl, or Br) increases, albeit at different rates for different halogens. σ(H) only increase as the number of halogen substituents increases if the halogen is iodine.

  5. Philip Glass, Scott Walker ja Sigur Ros! / Immo Mihkelson

    Index Scriptorium Estoniae

    Mihkelson, Immo, 1959-

    2007-01-01

    Pimedate Ööde 11. filmifestivali muusikafilme - Austraalia "Glass: Philipi portree 12 osas" (rež. Scott Hicks), Islandi "Sigur Ros kodus" (rež. Dean DeBois), Suurbritannia "Scott Walker: 30 Century Man" (rež. Stephen Kijak)

  6. Application of independent component analysis to ac dipole based optics measurement and correction at the Relativistic Heavy Ion Collider

    Directory of Open Access Journals (Sweden)

    X. Shen

    2013-11-01

    Full Text Available Correction of beta-beat is of great importance for performance improvement of high energy accelerators, like the Relativistic Hadron Ion Collider (RHIC. At RHIC, using the independent component analysis method, linear optical functions are extracted from the turn by turn beam position data of the ac dipole driven betatron oscillation. Despite the constraint of a limited number of available quadrupole correctors at RHIC, a global beta-beat correction scheme using a beta-beat response matrix method was developed and experimentally demonstrated. In both rings, a factor of 2 or better reduction of beta-beat was achieved within available beam time. At the same time, a new scheme of using horizontal closed orbit bump at sextupoles to correct beta-beat in the arcs was demonstrated in the Yellow ring of RHIC at beam energy of 255 GeV, and a peak beta-beat of approximately 7% was achieved.

  7. Degenerate Perturbation Theory for Electronic g Tensors: Leading-Order Relativistic Effects.

    Science.gov (United States)

    Rinkevicius, Zilvinas; de Almeida, Katia Julia; Oprea, Cornel I; Vahtras, Olav; Ågren, Hans; Ruud, Kenneth

    2008-11-11

    A new approach for the evaluation of the leading-order relativistic corrections to the electronic g tensors of molecules with a doublet ground state is presented. The methodology is based on degenerate perturbation theory and includes all relevant contributions to the g tensor shift up to order O(α(4)) originating from the one-electron part of the Breit-Pauli Hamiltonian-that is, it allows for the treatment of scalar relativistic, spin-orbit, and mixed corrections to the spin and orbital Zeeman effects. This approach has been implemented in the framework of spin-restricted density functional theory and is in the present paper, as a first illustration of the theory, applied to study relativistic effects on electronic g tensors of dihalogen anion radicals X2(-) (X = F, Cl, Br, I). The results indicate that the spin-orbit interaction is responsible for the large parallel component of the g tensor shift of Br2(-) and I2(-), and furthermore that both the leading-order scalar relativistic and spin-orbit corrections are of minor importance for the perpendicular component of the g tensor in these molecules since they effectively cancel each other. In addition to investigating the g tensors of dihalogen anion radicals, we also critically examine the importance of various relativistic corrections to the electronic g tensor of linear molecules with Σ-type ground states and present a two-state model suitable for an approximate estimation of the g tensor in such molecules.

  8. Generative complexity of Gray-Scott model

    Science.gov (United States)

    Adamatzky, Andrew

    2018-03-01

    In the Gray-Scott reaction-diffusion system one reactant is constantly fed in the system, another reactant is reproduced by consuming the supplied reactant and also converted to an inert product. The rate of feeding one reactant in the system and the rate of removing another reactant from the system determine configurations of concentration profiles: stripes, spots, waves. We calculate the generative complexity-a morphological complexity of concentration profiles grown from a point-wise perturbation of the medium-of the Gray-Scott system for a range of the feeding and removal rates. The morphological complexity is evaluated using Shannon entropy, Simpson diversity, approximation of Lempel-Ziv complexity, and expressivity (Shannon entropy divided by space-filling). We analyse behaviour of the systems with highest values of the generative morphological complexity and show that the Gray-Scott systems expressing highest levels of the complexity are composed of the wave-fragments (similar to wave-fragments in sub-excitable media) and travelling localisations (similar to quasi-dissipative solitons and gliders in Conway's Game of Life).

  9. Listening in the Silences for Fred Newton Scott

    Science.gov (United States)

    Mastrangelo, Lisa

    2009-01-01

    As part of her recent sabbatical, the author proposed going to the University of Michigan Bentley Archives to do research on Fred Newton Scott, founder and chair of the Department of Rhetoric and teacher from 1889 to 1926 at the University of Michigan. Scott ran the only graduate program in rhetoric and composition in the country between those…

  10. 77 FR 7182 - Scott W. Houghton, M.D.; Decision and Order

    Science.gov (United States)

    2012-02-10

    ... DEPARTMENT OF JUSTICE Drug Enforcement Administration [Docket No. 12-09] Scott W. Houghton, M.D... CFR 0.100(b), I order that DEA Certificate of Registration BH8796077, issued to Scott W. Houghton, M.D., be, and it hereby is, revoked. I further order that any pending application of Scott W. Houghton, M.D...

  11. Gauge invariance and relativistic effects in X-ray absorption and scattering by solids

    International Nuclear Information System (INIS)

    Bouldi, N.; Brouder, C.

    2017-01-01

    There is an incompatibility between gauge invariance and the semi-classical time-dependent perturbation theory commonly used to calculate light absorption and scattering cross-sections. There is an additional incompatibility between perturbation theory and the description of the electron dynamics by a semi-relativistic Hamiltonian. In this paper, the gauge-dependence problem of exact perturbation theory is described, the proposed solutions are reviewed and it is concluded that none of them seems fully satisfactory. The problem is finally solved by using the fully relativistic absorption and scattering cross-sections given by quantum electrodynamics. Then, a new general Foldy-Wouthuysen transformation is presented. It is applied to the many-body case to obtain correct semi-relativistic transition operators. This transformation considerably simplifies the calculation of relativistic corrections. In the process, a new light-matter interaction term emerges, called the spin-position interaction, that contributes significantly to the magnetic X-ray circular dichroism of transition metals. We compare our result with the ones obtained by using several semi-relativistic time-dependent Hamiltonians. In the case of absorption, the final formula agrees with the result obtained from one of them. However, the correct scattering cross-section is not given by any of the semi-relativistic Hamiltonians. (authors)

  12. Relativistic corrections to exclusive χc J+γ production from e+e- annihilation

    Science.gov (United States)

    Brambilla, Nora; Chen, Wen; Jia, Yu; Shtabovenko, Vladyslav; Vairo, Antonio

    2018-05-01

    We calculate in the nonrelativistic QCD (NRQCD) factorization framework all leading relativistic corrections to the exclusive production of χc J+γ in e+e- annihilation. In particular, we compute for the first time contributions induced by octet operators with a chromoelectric field. The matching coefficients multiplying production long distance matrix elements (LDMEs) are determined through perturbative matching between QCD and NRQCD at the amplitude level. Technical challenges encountered in the nonrelativistic expansion of the QCD amplitudes are discussed in detail. The main source of uncertainty comes from the not so well known LDMEs. Accounting for it, we provide the following estimates for the production cross sections at √{s }=10.6 GeV : σ (e+e-→χc 0+γ )=(1.4 ±0.3 ) fb , σ (e+e-→χc 1+γ )=(15.0 ±3.3 ) fb , and σ (e+e-→χc 2+γ )=(4.5 ±1.4 ) fb .

  13. A general relativistic signature in the galaxy bispectrum: the local effects of observing on the lightcone

    Energy Technology Data Exchange (ETDEWEB)

    Umeh, Obinna; Jolicoeur, Sheean; Maartens, Roy [Department of Physics and Astronomy, University of the Western Cape, Robert Sobukwe Road, Cape Town 7535 (South Africa); Clarkson, Chris, E-mail: umeobinna@gmail.com, E-mail: beautifulheart369@gmail.com, E-mail: roy.maartens@gmail.com, E-mail: chris.clarkson@gmail.com [School of Physics and Astronomy, Queen Mary University of London, Mile End Road, London E1 4NS (United Kingdom)

    2017-03-01

    Next-generation galaxy surveys will increasingly rely on the galaxy bispectrum to improve cosmological constraints, especially on primordial non-Gaussianity. A key theoretical requirement that remains to be developed is the analysis of general relativistic effects on the bispectrum, which arise from observing galaxies on the past lightcone, as well as from relativistic corrections to the dynamics. As an initial step towards a fully relativistic analysis of the galaxy bispectrum, we compute for the first time the local relativistic lightcone effects on the bispectrum, which come from Doppler and gravitational potential contributions. For the galaxy bispectrum, the problem is much more complex than for the power spectrum, since we need the lightcone corrections at second order. Mode-coupling contributions at second order mean that relativistic corrections can be non-negligible at smaller scales than in the case of the power spectrum. In a primordial Gaussian universe, we show that the local lightcone projection effects for squeezed shapes at z ∼ 1 mean that the bispectrum can differ from the Newtonian prediction by ∼> 10% when the short modes are k ∼< (50 Mpc){sup −1}. These relativistic projection effects, if ignored in the analysis of observations, could be mistaken for primordial non-Gaussianity. For upcoming surveys which probe equality scales and beyond, all relativistic lightcone effects and relativistic dynamical corrections should be included for an accurate measurement of primordial non-Gaussianity.

  14. STS-87 Mission Specialist Winston E. Scott suits up

    Science.gov (United States)

    1997-01-01

    STS-87 Mission Specialist Winston Scott dons his launch and entry suit with the assistance of a suit technician in the Operations and Checkout Building. This is Scotts second space flight. He and the five other crew members will depart shortly for Launch Pad 39B, where the Space Shuttle Columbia awaits liftoff on a 16-day mission to perform microgravity and solar research. Scott is scheduled to perform an extravehicular activity spacewalk with Mission Specialist Takao Doi, Ph.D., of the National Space Development Agency of Japan, during STS-87. He also performed a spacewalk on STS-72.

  15. Quasi-linear equation for magnetoplasma oscillations in the weakly relativistic approximation

    International Nuclear Information System (INIS)

    Rizzato, F.B.

    1985-01-01

    Some limitations which are present in the dynamical equations for collisionless plasmas are discussed. Some elementary corrections to the linear theories are obtained in a heuristic form, which directly lead to the so-called quasi-linear theories in its non-relativistic and relativistic forms. The effect of the relativistic variation of the gyrofrequency on the diffusion coefficient is examined in a typically perturbative approximation. (author)

  16. Collaborations Between Scott and Skidmore

    Directory of Open Access Journals (Sweden)

    Alicia Robinson

    2017-04-01

    Full Text Available This essay examines the collaboration between architect and designer George Gilbert Scott and metalworker Francis Skidmore. It compares their metalwork screens at the cathedrals of Hereford, Lichfield, and Salisbury—projects which sometimes overlapped and were all completed in the relatively short time span between 1861 and 1870—within the wider context of Skidmore’s career. While Scott was lauded in his lifetime and has been much studied since, Skidmore has not often been written about, despite having achieved an impressive scale and pace of work in British cathedrals, parish churches, and town halls. This essay therefore shines particular light on Skidmore’s work as designer and maker, and particularly the high profile commissions for these great cathedrals, restored and enhanced with the aesthetics and ambition of the Victorian era.

  17. Statistical thermodynamics of a two-dimensional relativistic gas.

    Science.gov (United States)

    Montakhab, Afshin; Ghodrat, Malihe; Barati, Mahmood

    2009-03-01

    In this paper we study a fully relativistic model of a two-dimensional hard-disk gas. This model avoids the general problems associated with relativistic particle collisions and is therefore an ideal system to study relativistic effects in statistical thermodynamics. We study this model using molecular-dynamics simulation, concentrating on the velocity distribution functions. We obtain results for x and y components of velocity in the rest frame (Gamma) as well as the moving frame (Gamma;{'}) . Our results confirm that Jüttner distribution is the correct generalization of Maxwell-Boltzmann distribution. We obtain the same "temperature" parameter beta for both frames consistent with a recent study of a limited one-dimensional model. We also address the controversial topic of temperature transformation. We show that while local thermal equilibrium holds in the moving frame, relying on statistical methods such as distribution functions or equipartition theorem are ultimately inconclusive in deciding on a correct temperature transformation law (if any).

  18. Leading quantum gravitational corrections to scalar QED

    International Nuclear Information System (INIS)

    Bjerrum-Bohr, N.E.J.

    2002-01-01

    We consider the leading post-Newtonian and quantum corrections to the non-relativistic scattering amplitude of charged scalars in the combined theory of general relativity and scalar QED. The combined theory is treated as an effective field theory. This allows for a consistent quantization of the gravitational field. The appropriate vertex rules are extracted from the action, and the non-analytic contributions to the 1-loop scattering matrix are calculated in the non-relativistic limit. The non-analytical parts of the scattering amplitude, which are known to give the long range, low energy, leading quantum corrections, are used to construct the leading post-Newtonian and quantum corrections to the two-particle non-relativistic scattering matrix potential for two charged scalars. The result is discussed in relation to experimental verifications

  19. Relativistic multiple scattering X-alpha calculations

    International Nuclear Information System (INIS)

    Chermette, H.; Goursot, A.

    1986-01-01

    The necessity to include self-consistent relativistic corrections in molecular calculations has been pointed out for all compounds involving heavy atoms. Most of the changes in the electronic properties are due to the mass-velocity and the so-called Darwin terms so that the use of Wood and Boring's Hamiltonian is very convenient for this purpose as it can be easily included in MSXalpha programs. Although the spin orbit operator effects are only obtained by perturbation theory, the results compare fairly well with experiment and with other relativistic calculations, namely Hartree-Fock-Slater calculations

  20. Heroes for the past and present: a century of remembering Amundsen and Scott.

    Science.gov (United States)

    Roberts, Peder

    2011-12-01

    In 1911-1912 Roald Amundsen and Robert Falcon Scott led rival parties in a race to the geographic South Pole. While both parties reached the Pole--Amundsen first--Scott's men died on the return journey. Amundsen became a Norwegian icon through his record-setting travels; Scott became a symbol of courage and devotion to science. The memory of each was invoked at various points during the twentieth century in the context of contemporary Antarctic events. Scott's status as a scientific figure was central to the Scott Polar Research Institute, while Amundsen's lack of scientific legacy became a way for British polar explorers to differentiate themselves from Norwegian contemporaries during the interwar years. After 1945 Scott and Amundsen were again invoked as exemplars of national polar achievement, even as the rise of large-scale science on the continent overshadowed past British and Norwegian achievements. In the present Amundsen and Scott remain wedded to particular values, focused respectively on national achievement and sacrifice in the name of science, while their race has become secondary. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. On Scott-Phillips' General Account of Communication.

    Science.gov (United States)

    Planer, Ronald J

    2017-12-01

    The purpose of this paper is to critically engage with a recent attempt by Thom Scott-Phillips to offer a general account of communication. As a general account, it is intended to apply equally well to both non-human and human interactions which are prima facie communicative in character. However, so far, Scott-Phillips has provided little detail regarding how his account is supposed to apply to the latter set of cases. After presenting what I take to be the most plausible way of filling in those details, I argue that his account would appear to be too narrow: it (minimally) fails to capture a range of human interactions which strike us as instances of communication. To wit, these are cases in which some but not all of the information an act is designed to convey to a reactor actually reaches that reactor. An alternative account incorporating Scott-Phillips' main insights is then sketched, and it is suggested that this account, or something like it, would accommodate the full range of non-human and human interactions that are intuitively communicative.

  2. Relativistic Quantum Mechanics

    International Nuclear Information System (INIS)

    Antoine, J-P

    2004-01-01

    The aim of relativistic quantum mechanics is to describe the finer details of the structure of atoms and molecules, where relativistic effects become nonnegligible. It is a sort of intermediate realm, between the familiar nonrelativistic quantum mechanics and fully relativistic quantum field theory, and thus it lacks the simplicity and elegance of both. Yet it is a necessary tool, mostly for quantum chemists. Pilkuhn's book offers to this audience an up-to-date survey of these methods, which is quite welcome since most previous textbooks are at least ten years old. The point of view of the author is to start immediately in the relativistic domain, following the lead of Maxwell's equations rather than classical mechanics, and thus to treat the nonrelativistic version as an approximation. Thus Chapter 1 takes off from Maxwell's equations (in the noncovariant Coulomb gauge) and gradually derives the basic aspects of Quantum Mechanics in a rather pedestrian way (states and observables, Hilbert space, operators, quantum measurement, scattering,. Chapter 2 starts with the Lorentz transformations, then continues with the Pauli spin equation and the Dirac equation and some of their applications (notably the hydrogen atom). Chapter 3 is entitled 'Quantum fields and particles', but falls short of treating quantum field theory properly: only creation/annihilation operators are considered, for a particle in a box. The emphasis is on two-electron states (the Pauli principle, the Foldy--Wouthuysen elimination of small components of Dirac spinors, Breit projection operators. Chapter 4 is devoted to scattering theory and the description of relativistic bound states. Chapter 5, finally, covers hyperfine interactions and radiative corrections. As we said above, relativistic quantum mechanics is by nature limited in scope and rather inelegant and Pilkuhn's book is no exception. The notation is often heavy (mostly noncovariant) and the mathematical level rather low. The central topic

  3. From Lattice Boltzmann to hydrodynamics in dissipative relativistic fluids

    Science.gov (United States)

    Gabbana, Alessandro; Mendoza, Miller; Succi, Sauro; Tripiccione, Raffaele

    2017-11-01

    Relativistic fluid dynamics is currently applied to several fields of modern physics, covering many physical scales, from astrophysics, to atomic scales (e.g. in the study of effective 2D systems such as graphene) and further down to subnuclear scales (e.g. quark-gluon plasmas). This talk focuses on recent progress in the largely debated connection between kinetic transport coefficients and macroscopic hydrodynamic parameters in dissipative relativistic fluid dynamics. We use a new relativistic Lattice Boltzmann method (RLBM), able to handle from ultra-relativistic to almost non-relativistic flows, and obtain strong evidence that the Chapman-Enskog expansion provides the correct pathway from kinetic theory to hydrodynamics. This analysis confirms recently obtained theoretical results, which can be used to obtain accurate calibrations for RLBM methods applied to realistic physics systems in the relativistic regime. Using this calibration methodology, RLBM methods are able to deliver improved physical accuracy in the simulation of the physical systems described above. European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie Grant Agreement No. 642069.

  4. Meson-exchange-current corrections to magnetic moments in quantum hadrodynamics

    International Nuclear Information System (INIS)

    Morse, T.M.

    1990-01-01

    Corrections to the magnetic moments of the non-relativistic shell model (Schmidt lines) have a long history. In the early fifties calculations of pion exchange and core polarization contributions to nuclear magnetic moments were initiated. These calculations matured by the early eighties to include other mesons and the delta isobar. Relativistic nuclear shell model calculations are relatively recent. Meson exchange and the delta isobar current contributions to the magnetic moments of the relativistic shell model have remained largely unexplored. The disagreement between the valence values of spherical relativistic mean-field models and experiment was a major problem with early (1975-1985) quantum hydrodynamics (QHD) calculations of magnetic moments. Core polarization calculations (1986-1988) have been found to resolve the large discrepancy, predicting isoscalar magnetic moments to within typically five percent of experiment. The isovector magnetic moments, however, are about twice as far from experiment with an average discrepancy of about ten percent. The pion, being the lightest of the mesons, has historically been expected to dominate isovector corrections. Because this has been found to be true in non-relativistic calculations, the author calculated the pion corrections in the framework of QHD. The seagull and in-flight pion exchange current diagram corrections to the magnetic moments of eight finite nuclei (plus or minus one valence nucleon from the magic A = 16 and A = 40 doubly closed shell systems) are calculated in the framework of QHD, and compared with earlier non-relativistic calculations and experiment

  5. RELATIVISTIC MEASUREMENTS FROM TIMING THE BINARY PULSAR PSR B1913+16

    Energy Technology Data Exchange (ETDEWEB)

    Weisberg, J. M.; Huang, Y., E-mail: jweisber@carleton.edu [Department of Physics and Astronomy, Carleton College, Northfield, MN 55057 (United States)

    2016-09-20

    We present relativistic analyses of 9257 measurements of times-of-arrival from the first binary pulsar, PSR B1913+16, acquired over the last 35 years. The determination of the “Keplerian” orbital elements plus two relativistic terms completely characterizes the binary system, aside from an unknown rotation about the line of sight, leading to a determination of the masses of the pulsar and its companion: 1.438 ± 0.001 M {sub ☉} and 1.390 ± 0.001 M {sub ☉}, respectively. In addition, the complete system characterization allows for the creation of relativistic gravitation test by comparing measured and predicted sizes of various relativistic phenomena. We find that the ratio of the observed orbital period decrease caused by gravitational wave damping (corrected by a kinematic term) to the general relativistic prediction is 0.9983 ± 0.0016, thereby confirms the existence and strength of gravitational radiation as predicted by general relativity. For the first time in this system, we have also successfully measured the two parameters characterizing the Shapiro gravitational propagation delay, and found that their values are consistent with general relativistic predictions. For the first time in any system, we have also measured the relativistic shape correction to the elliptical orbit, δ {sub θ} , although its intrinsic value is obscured by currently unquantified pulsar emission beam aberration. We have also marginally measured the time derivative of the projected semimajor axis, which, when improved in combination with beam aberration modeling from geodetic precession observations, should ultimately constrain the pulsar’s moment of inertia.

  6. Wave-splitting in the bistable Gray-Scott model

    DEFF Research Database (Denmark)

    Rasmussen, K.E.; Mazin, W.; Mosekilde, Erik

    1996-01-01

    The Gray-Scott model describes a chemical reaction in which an activator species grows autocatalytically on a continuously fed substrate. For certain feed rates and activator life times the model shows the coexistence of two homogeneous steady states. The blue state, where the activator concentra......The Gray-Scott model describes a chemical reaction in which an activator species grows autocatalytically on a continuously fed substrate. For certain feed rates and activator life times the model shows the coexistence of two homogeneous steady states. The blue state, where the activator...

  7. Genetics Home Reference: Aarskog-Scott syndrome

    Science.gov (United States)

    ... A characteristic of X-linked inheritance is that fathers cannot pass X-linked traits to their sons. Evidence suggests that Aarskog-Scott syndrome is inherited in an autosomal dominant or autosomal recessive pattern in some families, although ...

  8. An estimating function approach to inference for inhomogeneous Neyman-Scott processes

    DEFF Research Database (Denmark)

    Waagepetersen, Rasmus Plenge

    “This paper is concerned with inference for a certain class of inhomogeneous Neyman-Scott point processes depending on spatial covariates. Regression parameter estimates obtained from a simple estimating function are shown to be asymptotically normal when the “mother” intensity for the Neyman-Scott...

  9. Relativistic three-particle dynamical equations: II. Application to the trinucleon system

    International Nuclear Information System (INIS)

    Adhikari, S.K.; Tomio, L.

    1993-11-01

    The contribution of relativistic dynamics on the neutron-deuteron scattering length and triton binding energy is calculated employing five sets tri nucleon potential models and four types of three-dimensional relativistic three-body equations suggested in the preceding paper. The relativistic correction to binding energy may vary a lot and even change sign depending on the relativistic formulation employed. The deviations of these observables from those obtained in nonrelativistic models follow the general universal trend of deviations introduced by off- and on-shell variations of two- and three-nucleon potentials in a nonrelativistic model calculation. Consequently, it will be difficult to separate unambiguously the effect of off-and on-shell variations of two and three-nucleon potentials on low-energy three-nucleon observables from the effect of relativistic dynamics. (author)

  10. Relativistic theory of the falling retroreflector gravimeter

    Science.gov (United States)

    Ashby, Neil

    2018-02-01

    We develop a relativistic treatment of interference between light reflected from a falling cube retroreflector in the vertical arm of an interferometer, and light in a reference beam in the horizontal arm. Coordinates that are nearly Minkowskian, attached to the falling cube, are used to describe the propagation of light within the cube. Relativistic effects such as the dependence of the coordinate speed of light on gravitational potential, propagation of light along null geodesics, relativity of simultaneity, and Lorentz contraction of the moving cube, are accounted for. The calculation is carried to first order in the gradient of the acceleration of gravity. Analysis of data from a falling cube gravimeter shows that the propagation time of light within the cube itself causes a significant reduction in the value of the acceleration of gravity obtained from measurements, compared to assuming reflection occurs at the face. An expression for the correction to g is derived and found to agree with experiment. Depending on the instrument, the correction can be several microgals, comparable to commonly applied corrections such as those due to polar motion and earth tides. The controversial ‘speed of light’ correction is discussed. Work of the US government, not subject to copyright.

  11. Scott Brothers Windows and Doors Information Sheet

    Science.gov (United States)

    Scott Brothers Windows and Doors (the Company) is located in Bridgeville, Pennsylvania. The settlement involves renovation activities conducted at property constructed prior to 1978, located in Pittsburgh, Pennsylvania.

  12. On the relativistic and nonrelativistic electron descriptions in high-energy atomic collisions

    International Nuclear Information System (INIS)

    Voitkiv, A.B

    2007-01-01

    We consider the relativistic and nonrelativistic descriptions of an atomic electron in collisions with point-like charged projectiles moving at relativistic velocities. We discuss three different forms of the fully relativistic first-order transition amplitude. Using the Schroedinger-Pauli equation to describe the atomic electron we establish the correct form of the nonrelativistic first-order transition amplitude. We also show that the so-called semi-relativistic treatment, in which the Darwin states are used to describe the atomic electron, is in fact fully equivalent to the nonrelativistic consideration. The comparison of results obtained with the relativistic and nonrelativistic electron descriptions shows that the latter is accurate within 20-30% up to Z a ∼ a is the atomic nuclear charge

  13. Theoretical study of relativistic corrections induced by an ultra-short and intense light pulse in matter

    International Nuclear Information System (INIS)

    Hinschberger Schreiber, Yannick

    2012-01-01

    This thesis focuses on the relativistic corrections induced by an ultra-short and intense light pulse in condensed matter. It is part of the new theme of the coherent ultra-fast demagnetization of ferromagnetic systems induced by a femtosecond laser pulse [Nature, 5, 515 (2009)] [1]. A relativistic coupling between spins and photons has been proposed to explain the experimental results obtained in [1]. The first part of this work focuses on the nonrelativistic limit of the Dirac's formalism. By means of the Foldy-Wouthuysen transformation the nonrelativistic approximation of the external-electromagnetic-field Dirac equation to fifth order in powers of 1/m is obtained. Generalizing this result we postulate a general expression of the direct spin-field electronic Hamiltonian valid at any order in 1/m. A similar work is performed on a two-interacting electrons system described with the Breit Hamiltonian, whose the diagonalization at third order in 1/m illustrates an original coupling between the spin, the coulomb interaction and the time-dependent external electromagnetic field. In a second part, a classical model is developed for modeling ultrafast nonlinear coherent magneto-optical experiments performed on ferromagnetic thin films. Theoretical predictions of the Faraday rotation angles are compared to available experimental values and give meaningful insights about the physical mechanisms underlying the observed coherent magneto-optical phenomena. The crucial role played by the spin-orbit mechanism resulting from the direct interaction between the external electric field of the laser and the electron spins of the sample is underlined. (author) [fr

  14. 78 FR 5854 - Application of Scott Air, LLC for Certificate Authority

    Science.gov (United States)

    2013-01-28

    ... DEPARTMENT OF TRANSPORTATION Office of the Secretary Application of Scott Air, LLC for Certificate Authority AGENCY: Department of Transportation. ACTION: Notice of order to show cause (Order 2013-1-12... to show cause why it should not issue an order finding Scott Air, LLC fit, willing, and able, and...

  15. An Overview of Justice in Sir Walter Scott Waverley Novels: The Heart of Mid-Lothian

    Directory of Open Access Journals (Sweden)

    Enrique García Díaz

    2014-12-01

    Full Text Available Although Sir Walter Scott is a well-known writer most of his readers know that he became an advocate in 1792, when he was admitted to the bar. Since then Scott and other advocates walked the floor at Parliament House (home of the Faculty of Advocates and the Court of Session waiting to be hired. Scott’s own experiences as a fledgling advocate are echoed in those of Alain Fairford in his novel Redgauntlet (Scott 1824, which provides a vivid picture of Parliament House in the eighteenth century. During his life, Scott combined extensive writing and editing issues with his daily work as Clerk of Session and Sheriff-Depute of Selkirkshire. Walter Scott was not unaware of Justice and Law and The Heart of Mid-Lothian is the novel in which he introduces to the reader the Scottish Legal System during the eighteenth century. However, there are few more examples that I will explain. Aunque Sir Walter Scott es un conocido escritor, la mayoría de sus lectores saben que en 1792 se hizo abogado, cuando fue admitido en el colegio de abogados. Desde entonces Scott y otros abogados rondaron el Parlamento con la esperanza de ser contratados. Las propias experiencias de Scott como un abogado novel se reflejan en las de Alain Fairford en su novela Redgauntlet (Scott 1824, lo que ofrece una vívida imagen del Parlamento (sede de la facultad de Derecho y Tribunal Supremo en el siglo XVIII. Durante su vida, Scott compaginó una profusa actividad como escritor y editor con su trabajo diario como juez en Selkirk. Walter Scott conocía la justicia y el derecho y El corazón de Mid-Lothian es la novela en la presenta al lector el régimen jurídico de Escocia durante el siglo XVIII. Sin embargo, se explicarán algunos otros ejemplos. DOWNLOAD THIS PAPER FROM SSRN: http://ssrn.com/abstract=2543538

  16. Executive dysfunctions as part of the behavioural phenotype of Aarskog-Scott syndrome

    NARCIS (Netherlands)

    Egger, J.I.M.; Verhoeven, W.M.A.; Janssen, G.T.L.; Aken, L. van; Hoogeboom, A.J.M.

    2012-01-01

    Introduction Aarskog syndrome (AAS) also called Aarskog-Scott syndrome faciodigitogenital syndrome or faciogenital dysplasia is a genetically heterogeneous developmental disorder, first described in 1970 by the Norwegian pediatrician Dagfin Aarskog and further delineated by Scott in 1971. It is a

  17. Third-order perturbations of a zero-pressure cosmological medium: Pure general relativistic nonlinear effects

    International Nuclear Information System (INIS)

    Hwang, Jai-chan; Noh, Hyerim

    2005-01-01

    We consider a general relativistic zero-pressure irrotational cosmological medium perturbed to the third order. We assume a flat Friedmann background but include the cosmological constant. We ignore the rotational perturbation which decays in expanding phase. In our previous studies we discovered that, to the second-order perturbation, except for the gravitational wave contributions, the relativistic equations coincide exactly with the previously known Newtonian ones. Since the Newtonian second-order equations are fully nonlinear, any nonvanishing third- and higher-order terms in the relativistic analyses are supposed to be pure relativistic corrections. In this work, we derive such correction terms appearing in the third order. Continuing our success in the second-order perturbations, we take the comoving gauge. We discover that the third-order correction terms are of φ v order higher than the second-order terms where φ v is a gauge-invariant combination related to the three-space curvature perturbation in the comoving gauge; compared with the Newtonian potential, we have δΦ∼(3/5)φ v to the linear order. Therefore, the pure general relativistic effects are of φ v order higher than the Newtonian ones. The corrections terms are independent of the horizon scale and depend only on the linear-order gravitational potential (curvature) perturbation strength. From the temperature anisotropy of cosmic microwave background, we have (δT/T)∼(1/3)δΦ∼(1/5)φ v ∼10 -5 . Therefore, our present result reinforces our previous important practical implication that near the current era one can use the large-scale Newtonian numerical simulation more reliably even as the simulation scale approaches near (and goes beyond) the horizon

  18. Exact quantisation of the relativistic Hopfield model

    Energy Technology Data Exchange (ETDEWEB)

    Belgiorno, F., E-mail: francesco.belgiorno@polimi.it [Dipartimento di Matematica, Politecnico di Milano, Piazza Leonardo 32, IT-20133 Milano (Italy); INdAM-GNFM (Italy); Cacciatori, S.L., E-mail: sergio.cacciatori@uninsubria.it [Department of Science and High Technology, Università dell’Insubria, Via Valleggio 11, IT-22100 Como (Italy); INFN sezione di Milano, via Celoria 16, IT-20133 Milano (Italy); Dalla Piazza, F., E-mail: f.dallapiazza@gmail.com [Università “La Sapienza”, Dipartimento di Matematica, Piazzale A. Moro 2, I-00185, Roma (Italy); Doronzo, M., E-mail: m.doronzo@uninsubria.it [Department of Science and High Technology, Università dell’Insubria, Via Valleggio 11, IT-22100 Como (Italy)

    2016-11-15

    We investigate the quantisation in the Heisenberg representation of a relativistically covariant version of the Hopfield model for dielectric media, which entails the interaction of the quantum electromagnetic field with the matter dipole fields, represented by a mesoscopic polarisation field. A full quantisation of the model is provided in a covariant gauge, with the aim of maintaining explicit relativistic covariance. Breaking of the Lorentz invariance due to the intrinsic presence in the model of a preferred reference frame is also taken into account. Relativistic covariance forces us to deal with the unphysical (scalar and longitudinal) components of the fields, furthermore it introduces, in a more tricky form, the well-known dipole ghost of standard QED in a covariant gauge. In order to correctly dispose of this contribution, we implement a generalised Lautrup trick. Furthermore, causality and the relation of the model with the Wightman axioms are also discussed.

  19. Duality and corrections to the van Royen-Weisskopf formula

    International Nuclear Information System (INIS)

    Durand, B.; Durand, L.

    1981-01-01

    We propose that duality can be used in conjunction with QCD calculations of the cross section for e + e - → qanti q - to evaluate relativistic and radiative corrections to the leptonic widths of the psi and UPSILON states. We use this method to discuss relativistic corrections to the van Royen-Weisskopf formula for leptonic widths. We also point out that this formula is in error by an important factor 4m 2 sub(q)/M 2 sub(n). (orig.)

  20. Leading relativistic corrections for atomic P states calculated with a finite-nuclear-mass approach and all-electron explicitly correlated Gaussian functions

    Science.gov (United States)

    Stanke, Monika; Bralin, Amir; Bubin, Sergiy; Adamowicz, Ludwik

    2018-01-01

    In this work we report progress in the development and implementation of quantum-mechanical methods for calculating bound ground and excited states of small atomic systems. The work concerns singlet states with the L =1 total orbital angular momentum (P states). The method is based on the finite-nuclear-mass (non-Born-Oppenheimer; non-BO) approach and the use of all-particle explicitly correlated Gaussian functions for expanding the nonrelativistic wave function of the system. The development presented here includes derivation and implementation of algorithms for calculating the leading relativistic corrections for singlet states. The corrections are determined in the framework of the perturbation theory as expectation values of the corresponding effective operators using the non-BO wave functions. The method is tested in the calculations of the ten lowest 1P states of the helium atom and the four lowest 1P states of the beryllium atom.

  1. Electromagnetic interactions in relativistic infinite component wave equations

    International Nuclear Information System (INIS)

    Gerry, C.C.

    1979-01-01

    The electromagnetic interactions of a composite system described by relativistic infinite-component wave equations are considered. The noncompact group SO(4,2) is taken as the dynamical group of the systems, and its unitary irreducible representations, which are infinite dimensional, are used to find the energy spectra and to specify the states of the systems. First the interaction mechanism is examined in the nonrelativistic SO(4,2) formulation of the hydrogen atom as a heuristic guide. A way of making a minimal relativistic generalization of the minimal ineractions in the nonrelativistic equation for the hydrogen atom is proposed. In order to calculate the effects of the relativistic minimal interactions, a covariant perturbation theory suitable for infinite-component wave equations, which is an algebraic and relativistic version of the Rayleigh-Schroedinger perturbation theory, is developed. The electric and magnetic polarizabilities for the ground state of the hydrogen atom are calculated. The results have the correct nonrelativistic limits. Next, the relativistic cross section of photon absorption by the atom is evaluated. A relativistic expression for the cross section of light scattering corresponding to the seagull diagram is derived. The Born amplitude is combusted and the role of spacelike solutions is discussed. Finally, internal electromagnetic interactions that give rise to the fine structure splittings, the Lamb shifts and the hyperfine splittings are considered. The spin effects are introduced by extending the dynamical group

  2. Relativistic and non-relativistic electronic molecular-structure calculations for dimers of 4p-, 5p-, and 6p-block elements.

    Science.gov (United States)

    Höfener, Sebastian; Ahlrichs, Reinhart; Knecht, Stefan; Visscher, Lucas

    2012-12-07

    We report results of non-relativistic and two-component relativistic single-reference coupled-cluster with single and double and perturbative triple excitations [CCSD(T)] treatments for the 4p-block dimers Ga(2) to Br(2) , the 5p-block dimers In(2) to I(2) , and their atoms. Extended basis sets up to pentuple zeta are employed and energies extrapolated to the complete basis-set limit. Relativistic and non-relativistic results for the dissociation energy D(e) are in close agreement with each other and previously published data, provided non-relativistic or scalar-relativistic results are corrected for spin-orbit contributions taken from the literature. An exception is Te(2) where theoretical results scatter by 0.085 eV. By virtue of this agreement it is unexpected that comparison with the experimental D(0) or D(e) dissociation energies (zero-point vibrational effects are negligible in this context) reveal errors larger than 0.1 eV for Ga(2), Ge(2), and Sb(2). Only relativistic treatments are presented for the 6p-block cases Tl(2) to At(2). Sufficient agreement with experimental data is found only for Pb(2) and Bi(2), the deviation of the computed and experimental D(0) values for Po(2) is again larger than 0.1 eV. Deviations of 0.1 eV between the computed and experimental D(0) values are a major reason for concern and call for additional investigations in both fields to clarify the situation. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Interview met professor Joan Wallach Scott

    NARCIS (Netherlands)

    Bijl, Greetje; Tijhoff, Esmeralda

    2012-01-01

    Joan Scott, professor at the School of Social Science in the Institute for Avanced Study in Princeton, New Jersey (USA), was the keynote speaker at the conference 'Uitsluitend emancipatie' in de Beurs van Berlage in Amsterdam in October 2012. An interview on gender, history, feminism and her book

  4. Generalization of the Moszkovski-Scott method

    International Nuclear Information System (INIS)

    Balbutsev, E.B.

    1976-01-01

    A constant separation parameter is proposed to be used in the Moszkovski-Scott method for solving the Bethe-Goldstone equation. After such a modification one can apply the method to odd states of relative motion, not only to even ones. Some essential inaccuracies of the original method are eliminated, as well

  5. General Relativistic Theory of the VLBI Time Delay in the Gravitational Field of Moving Bodies

    Science.gov (United States)

    Kopeikin, Sergei

    2003-01-01

    The general relativistic theory of the gravitational VLBI experiment conducted on September 8, 2002 by Fomalont and Kopeikin is explained. Equations of radio waves (light) propagating from the quasar to the observer are integrated in the time-dependent gravitational field of the solar system by making use of either retarded or advanced solutions of the Einstein field equations. This mathematical technique separates explicitly the effects associated with the propagation of gravity from those associated with light in the integral expression for the relativistic VLBI time delay of light. We prove that the relativistic correction to the Shapiro time delay, discovered by Kopeikin (ApJ, 556, L1, 2001), changes sign if one retains direction of the light propagation but replaces the retarded for the advanced solution of the Einstein equations. Hence, this correction is associated with the propagation of gravity. The VLBI observation measured its speed, and that the retarded solution is the correct one.

  6. W. Richard Scott, Institutions and Organizations: Ideas, Interests, and Identities

    DEFF Research Database (Denmark)

    Jakobsen, Michael

    2014-01-01

    Book review of: W. Richard Scott: Institutions and Organizations: Ideas, Interests, and Identities. 4th edition. Thousand Oaks, CA: SAGE Publications, 2014. xiii, 345 pp.......Book review of: W. Richard Scott: Institutions and Organizations: Ideas, Interests, and Identities. 4th edition. Thousand Oaks, CA: SAGE Publications, 2014. xiii, 345 pp....

  7. Charm mass corrections to the bottomonium mass spectrum

    International Nuclear Information System (INIS)

    Ebert, D.; Faustov, R. N.; Galkin, V. O.

    2002-01-01

    The one-loop corrections to the bottomonium mass spectrum due to the finite charm mass are evaluated in the framework of the relativistic quark model. The obtained corrections are compared with the results of perturbative QCD

  8. 78 FR 60929 - Notice of Public Meeting of the Fort Scott Council

    Science.gov (United States)

    2013-10-02

    .... Such requests must be stated prominently at the beginning of the comments. The Trust will make... PRESIDIO TRUST Notice of Public Meeting of the Fort Scott Council AGENCY: The Presidio Trust... Scott Council (Council) will be held from 10 a.m. to 12:30 p.m. on Thursday, October 17, 2013. The...

  9. Relativistic theory of stopping for heavy ions

    International Nuclear Information System (INIS)

    Lindhard, J.; So/rensen, A.H.

    1996-01-01

    We calculate the electronic stopping power and the corresponding straggling for ions of arbitrary charge number, penetrating matter at any relativistic energy. The stopping powers are calculated by a simple method. Its starting point is the deviation of the precise theory from first-order quantum perturbation. We show that this deviation can be expressed in terms of the transport cross section, σ tr , for scattering of a free electron by the ion. In the nonrelativistic case the deviation is precisely the Bloch correction to Bethe close-quote s formula; we look into the nonrelativistic case in order to clarify both some features of our method and a seeming paradox in Rutherford scattering. The corresponding relativistic correction is obtained from σ tr for scattering of a Dirac electron in the ion potential. Here, the major practical advantage of the method shows up; we need not find the scattering distribution, but merely a single quantity, σ tr , determined by differences of successive phase shifts. For a point nucleus our results improve and extend those of Ahlen. Our final results, however, are based on atomic nuclei with standard radii. Thereby, the stopping is changed substantially already for moderate values of γ=(1-v 2 /c 2 ) -1/2 . An asymptotic saturation in stopping is obtained. Because of finite nuclear size, recoil corrections remain negligible at all energies. The average square fluctuation in energy loss is calculated as a simple fluctuation cross section for a free electron. The fluctuation in the relativistic case is generally larger than that of the perturbation formula, by a factor of ∼2 endash 3 for heavy ions. But the finite nuclear radius leads to a strong reduction at high energies and the elimination of the factor γ 2 belonging to point nuclei. copyright 1996 The American Physical Society

  10. Under the Radar: The First Woman in Radio Astronomy, Ruby Payne-Scott

    Science.gov (United States)

    Miller Goss, W.

    2012-05-01

    Under the Radar, the First Woman in Radio Astronomy, Ruby Payne-Scott W. Miller Goss, NRAO Socorro NM Ruby Payne-Scott (1912-1981) was an eminent Australian scientist who made major contributions to the WWII radar effort (CSIR) from 1941 to 1945. In late 1945, she pioneered radio astronomy efforts at Dover Heights in Sydney, Australia at a beautiful cliff top overlooking the Tasman Sea. Again at Dover Heights, Payne-Scott carried out the first interferometry in radio astronomy using an Australian Army radar antenna as a radio telescope at sun-rise, 26 January 1946. She continued these ground breaking activities until 1951. Ruby Payne-Scott played a major role in discovering and elucidating the properties of Type III bursts from the sun, the most common of the five classes of transient phenomena from the solar corona. These bursts are one of the most intensively studied forms of radio emission in all of astronomy. She is also one of the inventors of aperture synthesis in radio astronomy. I examine her career at the University of Sydney and her conflicts with the CSIR hierarchy concerning the rights of women in the work place, specifically equal wages and the lack of permanent status for married women. I also explore her membership in the Communist Party of Australia as well as her partially released Australian Scientific Intelligence Organization file. Payne-Scott’s role as a major participant in the flourishing radio astronomy research of the post war era remains a remarkable story. She had a number of strong collaborations with the pioneers of early radio astronomy in Australia: Pawsey, Mills, Christiansen, Bolton and Little. I am currently working on a popular version of the Payne-Scott story; “Making Waves, The Story of Ruby Payne-Scott: Australian Pioneer Radio Astronomer” will be published in 2013 by Springer in the Astronomers’ Universe Series.

  11. Sir Charles Scott Sherrington (1857–1952)

    Indian Academy of Sciences (India)

    Twentieth century bore witness to remarkable scientists whohave advanced our understanding of the brain. Among them,Sir Charles Scott Sherrington's ideas about the way in whichthe central nervous system operates has continuing relevanceeven today. He received honorary doctorates from twentytwouniversities and ...

  12. Sir Charles Scott Sherrington (1857–1952)

    Indian Academy of Sciences (India)

    2016-08-26

    Aug 26, 2016 ... Twentieth century bore witness to remarkable scientists whohave advanced our understanding of the brain. Among them,Sir Charles Scott Sherrington's ideas about the way in whichthe central nervous system operates has continuing relevanceeven today. He received honorary doctorates from ...

  13. Relativistic Hydrogen-Like Atom on a Noncommutative Phase Space

    Science.gov (United States)

    Masum, Huseyin; Dulat, Sayipjamal; Tohti, Mutallip

    2017-09-01

    The energy levels of hydrogen-like atom on a noncommutative phase space were studied in the framework of relativistic quantum mechanics. The leading order corrections to energy levels 2 S 1/2, 2 P 1/2 and 2 P 3/2 were obtained by using the 𝜃 and the \\bar θ modified Dirac Hamiltonian of hydrogen-like atom on a noncommutative phase space. The degeneracy of the energy levels 2 P 1/2 and 2 P 3/2 were removed completely by 𝜃-correction. And the \\bar θ -correction shifts these energy levels.

  14. Relativistic and non-relativistic studies of nuclear matter

    NARCIS (Netherlands)

    Banerjee, MK; Tjon, JA

    2002-01-01

    We point out that the differences between the results of the non-relativistic lowest order Brueckner theory (LOBT) and the relativistic Dirac-Brueckner analysis predominantly arise from two sources. Besides effects from a nucleon mass modification M* in nuclear medium we have in a relativistic

  15. Relativistic corrections to the algebra of position variables and spin-orbital interaction

    Energy Technology Data Exchange (ETDEWEB)

    Deriglazov, Alexei A., E-mail: alexei.deriglazov@ufjf.edu.br [Departamento de Matemática, ICE, Universidade Federal de Juiz de Fora, MG (Brazil); Laboratory of Mathematical Physics, Tomsk Polytechnic University, 634050 Tomsk, Lenin Ave. 30 (Russian Federation); Pupasov-Maksimov, Andrey M., E-mail: pupasov.maksimov@ufjf.edu.br [Departamento de Matemática, ICE, Universidade Federal de Juiz de Fora, MG (Brazil)

    2016-10-10

    In the framework of vector model of spin, we discuss the problem of a covariant formalism [35] concerning the discrepancy between relativistic and Pauli Hamiltonians. We show how the spin-induced non-commutativity of a position accounts the discrepancy on the classical level, without appeal to the Dirac equation and Foldy–Wouthuysen transformation.

  16. Relativistic derivation of the ponderomotive force produced by two intense laser fields

    International Nuclear Information System (INIS)

    Stroscio, M.A.

    1985-01-01

    The ponderomotive force plays a fundamental role in the absorption of laser light on self-consistent plasma density profiles, in multiple-photon ionization, and in intense field electrodynamics. The relativistic corrections to the ponderomotive force of a transversely polarized electromagnetic wave lead to an approximately 20-percent reduction in the single particle ponderomotive force produced by a 10-γm 10 16 -W/cm 2 laser field. Recent experimental investigations are based on using two intense laser fields to produce desired lasermatter interactions. This paper presents the first derivation of the nonlinear relativistic ponderomotive force produced by two intense laser fields. The results demonstrate that relativistic ponderomotive forces are not additive

  17. La Jolie Fille de Perth de Bizet  ou comment trahir et honorer Walter Scott Bizet’s Jolie Fille de Perth or How to Betray and Honour Walter Scott

    Directory of Open Access Journals (Sweden)

    Gilles Couderc

    2011-11-01

    Full Text Available What remains of Walter Scott’s Fair Maid of Perth in Bizet’s 1867 Jolie Fille de Perth, an opera in 4acts on a libretto by Jules Adenis and Vernoy de Saint-Georges? Not much when compared to other Scott-inspired operas. Little historical context or local colour, even in Bizet’s music. Some characters remotely linked to Scott in a libretto that mostly abides by the rules of French opera or opéra-comique of the time and recycles the dramatic ingredients favoured by Saint-Georges, a purveyor of libretti for opera or the ballet second only to Scribe, who engendered such international successes as Flotow’s Martha and Balfe’s Bohemian Girl, whose gipsy, long before his Carmen, haunts Bizet’s “Scottish” opera. Yet the work pays indirect homage to Scott, whose historical novels contributed to the birth of the French “grand opera”, by rewriting scenes or situations drawn from Scott. In spite of borrowing freely from French grand opera and opéra-comique, Bizet here attempts to find his own musical expression and his opera reflects aspects of Second Empire French society and the roles it assigned to women, before the appearance of his revolutionary Carmen on the stage.Que reste t’il du roman de Walter Scott The Fair Maid of Perth dans la Jolie Fille de Perth de Bizet, opéra en 4 actes de 1867 sur un livret de Vernoy de Saint-Georges, vieux routier du théâtre lyrique, et Jules Adenis ? Pas grand-chose par rapport aux opéras inspirés par Scott. Peu d’Ecosse, une absence remarquable de couleur locale ou historique, des personnages vaguement inspirés de Scott pour un livret qui se plie surtout aux règles de l’opéra français et de l’opéra-comique à la manière de Scribe et recycle les ingrédients habituels des livrets de Saint-Georges, père de succès internationaux comme la Martha de Flotow et de la Bohemian Girl de Balfe, dont la figure exotique de la bohémienne, longtemps avant Carmen, hante l’opéra

  18. Astronaut Scott Parazynski during egress training

    Science.gov (United States)

    1994-01-01

    Astronaut Scott E. Parazynski looks at fellow STS-66 mission specialist Joseph R. Tanner, (foreground) during a rehearsal of procedures to be followed during the launch and entry phases of their scheduled November 1994 flight. This rehearsal, held in the crew compartment trainer (CCT) of JSC's Shuttle mockup and integration laboratory, was followed by a training session on emergency egress procedures.

  19. Alterations to the relativistic Love-Franey model and their application to inelastic scattering

    International Nuclear Information System (INIS)

    Zeile, J.R.

    1989-01-01

    The fictitious axial-vector and tensor mesons for the real part of the relativistic Love-Franey interaction are removed. In an attempt to make up for this loss, derivative couplings are used for the π and ρ mesons. Such derivative couplings require the introduction of axial-vector and tensor contact term corrections. Meson parameters are then fit to free nucleon-nucleon scattering data. The resulting fits are comparable to those of the relativistic Love-Franey model provided that the contact term corrections are included and the fits are weighted over the physically significant quantity of twice the tensor minus the axial-vector Lorentz invariants. Failure to include contact term corrections leads to poor fits at higher energies. The off-shell behavior of this model is then examined by looking at several applications from inelastic proton-nucleus scattering

  20. Thinking Visually: An Interview with Scott Bennett.

    Science.gov (United States)

    Gamble, Harriet

    2002-01-01

    Presents an interview with Scott Bennett, an artist of abstract art and traditional craft. Focuses on issues such as the role of art in his life, how his art has developed over time, and his process of creating his works of art. Includes directions for a glazing project. (CMK)

  1. Relativistic corrections to the algebra of position variables and spin-orbital interaction

    Directory of Open Access Journals (Sweden)

    Alexei A. Deriglazov

    2016-10-01

    Full Text Available In the framework of vector model of spin, we discuss the problem of a covariant formalism [35] concerning the discrepancy between relativistic and Pauli Hamiltonians. We show how the spin-induced non-commutativity of a position accounts the discrepancy on the classical level, without appeal to the Dirac equation and Foldy–Wouthuysen transformation.

  2. Radiative corrections in K→3π decays

    International Nuclear Information System (INIS)

    Bissegger, M.; Fuhrer, A.; Gasser, J.; Kubis, B.; Rusetsky, A.

    2009-01-01

    We investigate radiative corrections to K→3π decays. In particular, we extend the non-relativistic framework developed recently to include real and virtual photons and show that, in a well-defined power counting scheme, the results reproduce corrections obtained in the relativistic calculation. Real photons are included exactly, beyond the soft-photon approximation, and we compare the result with the latter. The singularities generated by pionium near threshold are investigated, and a region is identified where standard perturbation theory in the fine structure constant α may be applied. We expect that the formulae provided allow one to extract S-wave ππ scattering lengths from the cusp effect in these decays with high precision

  3. Relativistic effects in decay of S-wave quarkoniums

    International Nuclear Information System (INIS)

    Martynenko, A.P.; Saleev, V.A.

    1995-01-01

    The width of S-wave quarkonium decays η c ,η b → γγ and J/ψ, Y → e + e - are calculated using the quasipotential approach. The nontrivial dependence of decay amplitude on relative quark momentum is considered. It is shown that relativistic corrections reach values of 30-50% in the processes studied

  4. 78 FR 77791 - Dakota, Minnesota & Eastern Railroad Corporation-Abandonment Exemption-in Scott County, Iowa

    Science.gov (United States)

    2013-12-24

    ... DEPARTMENT OF TRANSPORTATION Surface Transportation Board [Docket No. AB 337 (Sub-No. 7X)] Dakota, Minnesota & Eastern Railroad Corporation--Abandonment Exemption--in Scott County, Iowa Dakota, Minnesota... as Blackhawk Spur, between milepost 0.33+/- and milepost 0.99 +/- in Scott County, Iowa (the Line...

  5. Reframing Michael Scott: Exploring Inappropriate Workplace Communication

    Science.gov (United States)

    Schaefer, Zachary A.

    2010-01-01

    Individuals who work in professional settings interact with others who may exhibit a variety of cultural beliefs and decision-making approaches. Page (2007) argues that cognitive diversity (i.e., how people approach and attempt to solve problems) is a vital asset in effective organizations. Michael Scott, who portrays the inept main character on…

  6. Relativistic many-body XMCD theory including core degenerate effects

    Science.gov (United States)

    Fujikawa, Takashi

    2009-11-01

    A many-body relativistic theory to analyze X-ray Magnetic Circular Dichroism (XMCD) spectra has been developed on the basis of relativistic quantum electrodynamic (QED) Keldysh Green's function approach. This theoretical framework enables us to handle relativistic many-body effects in terms of correlated nonrelativistic Green's function and relativistic correction operator Q, which naturally incorporates radiation field screening and other optical field effects in addition to electron-electron interactions. The former can describe the intensity ratio of L2/L3 which deviates from the statistical weight (branching ratio) 1/2. In addition to these effects, we consider the degenerate or nearly degenerate effects of core levels from which photoelectrons are excited. In XPS spectra, for example in Rh 3d sub level excitations, their peak shapes are quite different: This interesting behavior is explained by core-hole moving after the core excitation. We discuss similar problems in X-ray absorption spectra in particular excitation from deep 2p sub levels which are degenerate in each sub levels and nearly degenerate to each other in light elements: The hole left behind is not frozen there. We derive practical multiple scattering formulas which incorporate all those effects.

  7. Decay constants of heavy mesons in the relativistic potential model with velocity dependent corrections

    International Nuclear Information System (INIS)

    Avaliani, I.S.; Sisakyan, A.N.; Slepchenko, L.A.

    1992-01-01

    In the relativistic model with the velocity dependent potential the masses and leptonic decay constants of heavy pseudoscalar and vector mesons are computed. The possibility of using this potential is discussed. 11 refs.; 4 tabs

  8. Leading quantum gravitational corrections to scalar QED

    OpenAIRE

    Bjerrum-Bohr, N. E. J.

    2002-01-01

    We consider the leading post-Newtonian and quantum corrections to the non-relativistic scattering amplitude of charged scalars in the combined theory of general relativity and scalar QED. The combined theory is treated as an effective field theory. This allows for a consistent quantization of the gravitational field. The appropriate vertex rules are extracted from the action, and the non-analytic contributions to the 1-loop scattering matrix are calculated in the non-relativistic limit. The n...

  9. Relativistic equations

    International Nuclear Information System (INIS)

    Gross, F.

    1986-01-01

    Relativistic equations for two and three body scattering are discussed. Particular attention is paid to relativistic three body kinetics because of recent form factor measurements of the Helium 3 - Hydrogen 3 system recently completed at Saclay and Bates and the accompanying speculation that relativistic effects are important for understanding the three nucleon system. 16 refs., 4 figs

  10. Localization of relativistic particles

    International Nuclear Information System (INIS)

    Omnes, R.

    1997-01-01

    In order to discuss localization experiments and also to extend the consistent history interpretation of quantum mechanics to relativistic properties, the techniques introduced in a previous paper [J. Math. Phys. 38, 697 (1997)] are applied to the localization of a photon in a given region of space. An essential requirement is to exclude arbitrarily large wavelengths. The method is valid for a particle with any mass and spin. Though there is no proper position operator for a photon, one never needs one in practice. Causality is valid up to exponentially small corrections. copyright 1997 American Institute of Physics

  11. Radiative corrections in K{yields}3{pi} decays

    Energy Technology Data Exchange (ETDEWEB)

    Bissegger, M. [Institute for Theoretical Physics, University of Bern, Sidlerstr. 5, CH-3012 Bern (Switzerland); Fuhrer, A. [Institute for Theoretical Physics, University of Bern, Sidlerstr. 5, CH-3012 Bern (Switzerland); Physics Department, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0319 (United States); Gasser, J. [Institute for Theoretical Physics, University of Bern, Sidlerstr. 5, CH-3012 Bern (Switzerland); Kubis, B. [Helmholtz-Institut fuer Strahlen-und Kernphysik, Universitaet Bonn, Nussallee 14-16, D-53115 Bonn (Germany)], E-mail: kubis@itkp.uni-bonn.de; Rusetsky, A. [Helmholtz-Institut fuer Strahlen-und Kernphysik, Universitaet Bonn, Nussallee 14-16, D-53115 Bonn (Germany)

    2009-01-01

    We investigate radiative corrections to K{yields}3{pi} decays. In particular, we extend the non-relativistic framework developed recently to include real and virtual photons and show that, in a well-defined power counting scheme, the results reproduce corrections obtained in the relativistic calculation. Real photons are included exactly, beyond the soft-photon approximation, and we compare the result with the latter. The singularities generated by pionium near threshold are investigated, and a region is identified where standard perturbation theory in the fine structure constant {alpha} may be applied. We expect that the formulae provided allow one to extract S-wave {pi}{pi} scattering lengths from the cusp effect in these decays with high precision.

  12. Relativistic effects in iron-, ruthenium-, and osmium porphyrins

    International Nuclear Information System (INIS)

    Liao Mengsheng; Scheiner, Steve

    2002-01-01

    Nonrelativistic and relativistic DFT calculations are performed on four-coordinate metal porphyrins MP and their six-coordinate adducts MP(py) 2 and MP(py)(CO) (py=pyridine) with M=Fe, Ru, and Os. The electronic structures of the MPs are investigated by considering all possible low-lying states with different configurations of nd-electrons. FeP and OsP have a 3 A 2g ground state, while this state is nearly degenerate with 3 E g for RuP. Without relativistic corrections, the ground states of both RuP and OsP would be 3 E g . For the six-coordinate adducts with py and CO, the strong-field axial ligands raise the energy of the M d z 2 -orbital, thereby making the M II ion diamagnetic. The calculated redox properties of MP(py) 2 and MP(py)(CO) are in agreement with experiment. The difference between RuP(py)(CO) and OsP(py)(CO), in terms of site of oxidation, is due to relativistic effects

  13. Astronauts Scott and Armstrong undergoe water egress training

    Science.gov (United States)

    1966-01-01

    Astronauts Neil A. Armstrong (on left), command pilot, and David R. Scott, pilot of the Gemini 8 prime crew, use a boilerplate model of a Gemini spacecraft during water egress training in the Gulf of Mexico. Three Manned Spacecraft Center swimmers assist in the training exercise.

  14. The Einstein A-coefficient of spontaneous emission: A relativistic calculation in the Heisenberg representation

    International Nuclear Information System (INIS)

    Barut, A.O.; Salamin, Y.I.

    1989-07-01

    We present a simple approach to the relativistic calculation of the rates of spontaneous emission starting from the Heisenberg picture formula for the power radiated by a charged particle undergoing acceleration, and evaluate atomic decay rates using relativistic Dirac-Coulomb wavefunctions. The spin of the electron, embedded in its relativistic wavefunction, is shown to correctly provide the two polarization states of the emitted radiation. We discuss selection rules and calculate the Hydrogen 2 P → 1 S transition rate, among others, to be Γ = (6.2650 ± 0.0007)x10 8 s -1 in good agreement with the full field theory calculation as well as with experiment. (author). 14 refs

  15. Astronauts Armstrong and Scott arrive at Hickam Field, Hawaii

    Science.gov (United States)

    1966-01-01

    Astronauts Neil A. Armstrong (center), command pilot, and David R. Scott, pilot, arrive at Hickam Field, Hawaii on their way from Naha, Okinawa, to Cape Kennedy, Florida. Astronaut Walter M. Schirra Jr. is at extreme left.

  16. Consistent resolution of some relativistic quantum paradoxes

    International Nuclear Information System (INIS)

    Griffiths, Robert B.

    2002-01-01

    A relativistic version of the (consistent or decoherent) histories approach to quantum theory is developed on the basis of earlier work by Hartle, and used to discuss relativistic forms of the paradoxes of spherical wave packet collapse, Bohm's formulation of the Einstein-Podolsky-Rosen paradox, and Hardy's paradox. It is argued that wave function collapse is not needed for introducing probabilities into relativistic quantum mechanics, and in any case should never be thought of as a physical process. Alternative approaches to stochastic time dependence can be used to construct a physical picture of the measurement process that is less misleading than collapse models. In particular, one can employ a coarse-grained but fully quantum-mechanical description in which particles move along trajectories, with behavior under Lorentz transformations the same as in classical relativistic physics, and detectors are triggered by particles reaching them along such trajectories. States entangled between spacelike separate regions are also legitimate quantum descriptions, and can be consistently handled by the formalism presented here. The paradoxes in question arise because of using modes of reasoning which, while correct for classical physics, are inconsistent with the mathematical structure of quantum theory, and are resolved (or tamed) by using a proper quantum analysis. In particular, there is no need to invoke, nor any evidence for, mysterious long-range superluminal influences, and thus no incompatibility, at least from this source, between relativity theory and quantum mechanics

  17. The full-sky relativistic correlation function and power spectrum of galaxy number counts. Part I: theoretical aspects

    Science.gov (United States)

    Tansella, Vittorio; Bonvin, Camille; Durrer, Ruth; Ghosh, Basundhara; Sellentin, Elena

    2018-03-01

    We derive an exact expression for the correlation function in redshift shells including all the relativistic contributions. This expression, which does not rely on the distant-observer or flat-sky approximation, is valid at all scales and includes both local relativistic corrections and integrated contributions, like gravitational lensing. We present two methods to calculate this correlation function, one which makes use of the angular power spectrum Cl(z1,z2) and a second method which evades the costly calculations of the angular power spectra. The correlation function is then used to define the power spectrum as its Fourier transform. In this work theoretical aspects of this procedure are presented, together with quantitative examples. In particular, we show that gravitational lensing modifies the multipoles of the correlation function and of the power spectrum by a few percent at redshift z=1 and by up to 30% and more at z=2. We also point out that large-scale relativistic effects and wide-angle corrections generate contributions of the same order of magnitude and have consequently to be treated in conjunction. These corrections are particularly important at small redshift, z=0.1, where they can reach 10%. This means in particular that a flat-sky treatment of relativistic effects, using for example the power spectrum, is not consistent.

  18. Relativistic heavy-atom effects on heavy-atom nuclear shieldings

    Science.gov (United States)

    Lantto, Perttu; Romero, Rodolfo H.; Gómez, Sergio S.; Aucar, Gustavo A.; Vaara, Juha

    2006-11-01

    quantum number. The relative contributions converge to universal fractions for the core and subvalence ns shells. The valence shell contribution is negligible, which explains the HAHA characteristics of the FC/SZ-KE term. Although the nonrelativistic theory gives correct chemical shift trends in present systems, the third-order SO-I terms are necessary for more reliable predictions. All of the presently considered relativistic corrections provide significant HAHA contributions to absolute shielding in heavy atoms.

  19. Point form relativistic quantum mechanics and relativistic SU(6)

    Science.gov (United States)

    Klink, W. H.

    1993-01-01

    The point form is used as a framework for formulating a relativistic quantum mechanics, with the mass operator carrying the interactions of underlying constituents. A symplectic Lie algebra of mass operators is introduced from which a relativistic harmonic oscillator mass operator is formed. Mass splittings within the degenerate harmonic oscillator levels arise from relativistically invariant spin-spin, spin-orbit, and tensor mass operators. Internal flavor (and color) symmetries are introduced which make it possible to formulate a relativistic SU(6) model of baryons (and mesons). Careful attention is paid to the permutation symmetry properties of the hadronic wave functions, which are written as polynomials in Bargmann spaces.

  20. STS-100 Crew Interview: Scott Parazynski

    Science.gov (United States)

    2001-01-01

    STS-100 Mission Specialist Scott Parazynski is seen being interviewed. He answers questions about his inspiration to become an astronaut and his career path. He gives details on the mission's goals and significance, the rendezvous and docking of Endeavour with the International Space Station (ISS), the mission's spacewalks, and installation and capabilities of the Space Station robotic arm, UHF antenna, and Rafaello Logistics Module. Parazynski then discusses his views about space exploration as it becomes an international collaboration.

  1. Relativistic effects on earth satellites and their measurement

    International Nuclear Information System (INIS)

    Bertotti, B.

    1988-01-01

    There are three kinds of relativistic effects on earth satellites: those due post newtonian corrections in the field of the earth; the relativistic corrections in the field of the sun; and the precession of the local frames with respect to far away bodies. The authors point out that it is not possible to eliminate the second kind by decreasing the distance of the satellite and the earth; in other words, the effect of the sun is not entirely tidal and a generalized principle of equivalence does hold exactly. Concerning the third kind, the motion of the moon and the measurements of its distance from the earth by lunar laser ranging provides a way to establish experimentally the two connections between the three fundamental frames one should consider: the local frame, determined geometrically by parallel transport; the planetary dynamical frame; and the kinematical frame defined by extragalactic radio sources. According to general relativity the first two frames are related by de Sitter's precision; the last two coincide. It shown that the connections between the first two frames and the first and third frame are already hidden in the existing data

  2. Space-time picture of relativistic propagation of medium energy hadrons through nuclei

    International Nuclear Information System (INIS)

    Bleszynski, M.; Jaroszewicz, T.

    1985-01-01

    Relativistic virtual pair creation effects in hadron-nucleus scattering at medium energies are discussed. A close analogy is found between these effects (particle propagation backwards in time) and some of noneikonal correlations to the Glauber theory, arising from particle propagation backwards in space. In multiple scattering both effects appear only for configurations involving overlapping scatterers and lead to the non-additivity of phase shifts. The proper-time path-integral formalism is found to provide an intuitive geometrical picture of these phenomena. The relativistic corrections are estimated to be of the order k/(aE/sup 2/), k being the particle momentum, E its energy, and a the target size. At medium energies they are comparable to noneikonal corrections, of order 1/(ak). Both effects vanish at high energy, when particle propagation in space-time can be described by means of geometrical optics

  3. Total binding energy of heavy positive ions including density treatment of Darwin and Breit corrections

    International Nuclear Information System (INIS)

    Hill, S.H.; Grout, P.J.; March, N.H.

    1987-01-01

    Previous work on the relativistic Thomas-Fermi treatment of total energies of neutral atoms is first generalised to heavy positive ions. To facilitate quantitative contact with the numerical predictions of Dirac-Fock theory, Darwin and Breit corrections are expressed in terms of electron density, and computed using input again from relativistic Thomas-Fermi theory. These corrections significantly improve the agreement between the two seemingly very different theories. (author)

  4. Combined Quantification of the Global Proteome, Phosphoproteome, and Proteolytic Cleavage to Characterize Altered Platelet Functions in the Human Scott Syndrome.

    Science.gov (United States)

    Solari, Fiorella A; Mattheij, Nadine J A; Burkhart, Julia M; Swieringa, Frauke; Collins, Peter W; Cosemans, Judith M E M; Sickmann, Albert; Heemskerk, Johan W M; Zahedi, René P

    2016-10-01

    The Scott syndrome is a very rare and likely underdiagnosed bleeding disorder associated with mutations in the gene encoding anoctamin-6. Platelets from Scott patients are impaired in various Ca 2+ -dependent responses, including phosphatidylserine exposure, integrin closure, intracellular protein cleavage, and cytoskeleton-dependent morphological changes. Given the central role of anoctamin-6 in the platelet procoagulant response, we used quantitative proteomics to understand the underlying molecular mechanisms and the complex phenotypic changes in Scott platelets compared with control platelets. Therefore, we applied an iTRAQ-based multi-pronged strategy to quantify changes in (1) the global proteome, (2) the phosphoproteome, and (3) proteolytic events between resting and stimulated Scott and control platelets. Our data indicate a limited number of proteins with decreased (70) or increased (64) expression in Scott platelets, among those we confirmed the absence of anoctamin-6 and the strong up-regulation of aquaporin-1 by parallel reaction monitoring. The quantification of 1566 phosphopeptides revealed major differences between Scott and control platelets after stimulation with thrombin/convulxin or ionomycin. In Scott platelets, phosphorylation levels of proteins regulating cytoskeletal or signaling events were increased. Finally, we quantified 1596 N-terminal peptides in activated Scott and control platelets, 180 of which we identified as calpain-regulated, whereas a distinct set of 23 neo-N termini was caspase-regulated. In Scott platelets, calpain-induced cleavage of cytoskeleton-linked and signaling proteins was downregulated, in accordance with an increased phosphorylation state. Thus, multipronged proteomic profiling of Scott platelets provides detailed insight into their protection against detrimental Ca 2+ -dependent changes that are normally associated with phosphatidylserine exposure. © 2016 by The American Society for Biochemistry and Molecular

  5. A unified treatment of the non-relativistic and relativistic hydrogen atom: Pt. 2

    International Nuclear Information System (INIS)

    Swainson, R.A.; Drake, G.W.F.

    1991-01-01

    This is the second in a series of three papers in which it is shown how the radial part of non-relativistic and relativistic hydrogenic bound-state calculations involving the Green functions can be presented in a unified manner. In this paper the non-relativistic Green function is examined in detail; new functional forms are presented and a clear mathematical progression is show to link these and most other known forms. A linear transformation of the four radial parts of the relativistic Green function is given which allows for the presentation of this function as a simple generalization of the non-relativistic Green function. Thus, many properties of the non-relativistic Green function are shown to have simple relativistic generalizations. In particular, new recursion relations of the radial parts of both the non-relativistic and relativistic Green functions are presented, along with new expressions for the double Laplace transforms and recursion relations between the radial matrix elements. (author)

  6. Walter Dill Scott and the Student Personnel Movement

    Science.gov (United States)

    Biddix, J. Patrick; Schwartz, Robert A.

    2012-01-01

    Walter Dill Scott (1869-1955), tenth president of Northwestern University and pioneer of industrial psychology, is an essential architect of student personnel work. This study of his accomplishments, drawing on records from the Northwestern University archives, tells a story about the people he influenced and his involvement in codifying what was…

  7. Scott Fitzgerald: famous writer, alcoholism and probable epilepsy

    Directory of Open Access Journals (Sweden)

    Mariana M. Wolski

    Full Text Available ABSTRACT Scott Fitzgerald, a world-renowned American writer, suffered from various health problems, particularly alcohol dependence, and died suddenly at the age of 44. According to descriptions in A Moveable Feast, by Ernest Hemingway, Fitzgerald had episodes resembling complex partial seizures, raising the possibility of temporal lobe epilepsy.

  8. Astronauts Armstrong and Scott during photo session outside KSC

    Science.gov (United States)

    1966-01-01

    Astronauts Neil A. Armstrong (left), command pilot, and David R. Scott, pilot, the Gemini 8 prime crew, during a photo session outside the Kennedy Space Center (KSC) Mission Control Center. They are standing in front of a radar dish.

  9. Cerebrovascular disease associated with Aarskog-Scott syndrome

    International Nuclear Information System (INIS)

    DiLuna, Michael L.; Amankulor, Nduka M.; Gunel, Murat; Johnson, Michele H.

    2007-01-01

    Faciogenital dysplasia, also known as Aarskog-Scott syndrome (AAS), is an X-linked dominant congenital disorder characterized by multiple facial, musculoskeletal, dental, neurological and urogenital abnormalities, ocular manifestations, congenital heart defects, low IQ and behavioral problems. Here we describe an unusual presentation of dysplastic carotid artery, basilar artery malformation or occlusion and posterior circulation aneurysm in a 13-year-old male with AAS. (orig.)

  10. Cerebrovascular disease associated with Aarskog-Scott syndrome

    Energy Technology Data Exchange (ETDEWEB)

    DiLuna, Michael L.; Amankulor, Nduka M.; Gunel, Murat [Yale University School of Medicine, Department of Neurosurgery, New Haven, CT (United States); Johnson, Michele H. [Yale University School of Medicine, Department of Diagnostic Radiology, New Haven, CT (United States)

    2007-05-15

    Faciogenital dysplasia, also known as Aarskog-Scott syndrome (AAS), is an X-linked dominant congenital disorder characterized by multiple facial, musculoskeletal, dental, neurological and urogenital abnormalities, ocular manifestations, congenital heart defects, low IQ and behavioral problems. Here we describe an unusual presentation of dysplastic carotid artery, basilar artery malformation or occlusion and posterior circulation aneurysm in a 13-year-old male with AAS. (orig.)

  11. Relativistic astrophysics

    CERN Document Server

    Demianski, Marek

    2013-01-01

    Relativistic Astrophysics brings together important astronomical discoveries and the significant achievements, as well as the difficulties in the field of relativistic astrophysics. This book is divided into 10 chapters that tackle some aspects of the field, including the gravitational field, stellar equilibrium, black holes, and cosmology. The opening chapters introduce the theories to delineate gravitational field and the elements of relativistic thermodynamics and hydrodynamics. The succeeding chapters deal with the gravitational fields in matter; stellar equilibrium and general relativity

  12. On the relativistic quantum mechanics of two interacting spinless particles

    International Nuclear Information System (INIS)

    Rizov, V.A.; Sazdjian, H.; Todorov, I.T.

    1984-05-01

    The L 2 -scalar product ∫ PHI*(x)PSI(x) d 3 x is not appropriate for the space of states describing the center-of-mass relative motion of two relativistic particles whose interaction is given by an energy dependent quasipotential. The problem already appears in the relativistic quantum mechanics of a Klein-Gordon charged particle in an external field. We extend the methods developed for that case to study a two-particle system with an energy independent scalar interaction as well as the relativistic Coulomb problem. We write down a Poincare invariant inner product for which the eigenfunctions corresponding to different energy eigenvalues are orthogonal. We also construct a perturbative expansion for bound-state energy eigenvalues corresponding to an arbitrary energy dependent (quasipotential) correction to an unperturbed Hamiltonian with a known spectrum. The description of observables and transition probabilities for eigenvalue problems with a polynomial dependence on the spectral parameter is also discussed

  13. The influence of the Scott effect on the determination of q0

    International Nuclear Information System (INIS)

    Kruszewski, A.; Semeniuk, I.

    1975-01-01

    The statistical model for taking into account the Scott effect was constructed. The suggestion that clusters with exceptionally bright first-ranked cluster member possess fainter than average second and third-ranked galaxies is not substantiated by raw observational data. The first-ranked galaxies are brighter and less cluster richness dependent than expected from the statistical model. The bias due to the Scott effect may increase q 0 by up to 0.5 but with proper care it should be possible to take it into account even without employing complicated statistical models. (author)

  14. A relativistic extended Fermi-Thomas-like equation for a self-gravitating system of fermions

    International Nuclear Information System (INIS)

    Merloni, A.; Ruffini, R.; Torroni, V.

    1998-01-01

    The authors extend previous results of a Fermi-Thomas model, describing self-gravitating fermions in their ground state, to a relativistic gravitational theory in Minkowski space. In such a theory the source term of the gravitational potential depends both on the pressure and the density of the fluid. It is shown that, in correspondence of this relativistic treatment, still a Fermi-Thomas-like equation can be derived for the self-gravitating system, though the non-linearities are much more complex. No Fermi-Thomas-like equation can be obtained in the General Relativistic treatment. The canonical results for neutron stars and white dwarfs are recovered and also some erroneous statements in the scientific literature are corrected

  15. Spin-orbit ZORA and four-component Dirac-Coulomb estimation of relativistic corrections to isotropic nuclear shieldings and chemical shifts of noble gas dimers

    DEFF Research Database (Denmark)

    Jankowska, Marzena; Kupka, Teobald; Stobiński, Leszek

    2016-01-01

    Hartree-Fock and density functional theory with the hybrid B3LYP and general gradient KT2 exchange-correlation functionals were used for non-relativistic and relativistic nuclear magnetic shielding calculations of helium, neon, argon, krypton and xenon dimers and free atoms. Relativistic...

  16. Ron Scott d/b/a White Dog Painting Information Sheet

    Science.gov (United States)

    Ron Scott d/b/a White Dog Painting (the Company) is located in Kansas City, Missouri. The settlement involves renovation activities conducted at property constructed prior to 1978, located in Kansas City, Missouri.

  17. Relativistic quantum logic

    International Nuclear Information System (INIS)

    Mittelstaedt, P.

    1983-01-01

    on the basis of the well-known quantum logic and quantum probability a formal language of relativistic quantum physics is developed. This language incorporates quantum logical as well as relativistic restrictions. It is shown that relativity imposes serious restrictions on the validity regions of propositions in space-time. By an additional postulate this relativistic quantum logic can be made consistent. The results of this paper are derived exclusively within the formal quantum language; they are, however, in accordance with well-known facts of relativistic quantum physics in Hilbert space. (author)

  18. Relativistic quantum mechanics; Mecanique quantique relativiste

    Energy Technology Data Exchange (ETDEWEB)

    Ollitrault, J.Y. [CEA Saclay, 91 - Gif-sur-Yvette (France). Service de Physique Theorique]|[Universite Pierre et Marie Curie, 75 - Paris (France)

    1998-12-01

    These notes form an introduction to relativistic quantum mechanics. The mathematical formalism has been reduced to the minimum in order to enable the reader to calculate elementary physical processes. The second quantification and the field theory are the logical followings of this course. The reader is expected to know analytical mechanics (Lagrangian and Hamiltonian), non-relativistic quantum mechanics and some basis of restricted relativity. The purpose of the first 3 chapters is to define the quantum mechanics framework for already known notions about rotation transformations, wave propagation and restricted theory of relativity. The next 3 chapters are devoted to the application of relativistic quantum mechanics to a particle with 0,1/5 and 1 spin value. The last chapter deals with the processes involving several particles, these processes require field theory framework to be thoroughly described. (A.C.) 2 refs.

  19. Theorizing Steampunk in Scott Westerfeld's YA Series Leviathan

    Science.gov (United States)

    Mielke, Tammy L.; LaHaie, Jeanne M.

    2015-01-01

    In this article, we offer an explanation of steampunk and theorize the genre and its functions within Scott Westerfeld's YA series Leviathan. In order to do so, we examine the "cogs" of the genre machine and its use of nostalgic longing for a revised past/future to rebel against present day cultural norms. Critics note that steampunk…

  20. Reply to ‘Comment on Relativistic theory of the falling cube gravimeter’

    Science.gov (United States)

    Ashby, Neil

    2018-04-01

    The comment (Křen and Pálinkás 2017 Metrologia 55 314-5) claims that the paper Relativistic theory of the falling cube gravimeter (Ashby 2017 Metrologia 55 1-10) is incorrect. The authors of this comment assert that optical paths in the two interferometer arms of an absolute gravimeter shift only the absolute phase difference between interferometer arms and therefore cannot affect the measured value of g, and that the only needed relativistic correction is the commonly applied ‘speed of light correction’. Neither claim stands up to scrutiny. Work of the U.S. government, not subject to copyright.

  1. Dissipative relativistic hydrodynamics

    International Nuclear Information System (INIS)

    Imshennik, V.S.; Morozov, Yu.I.

    1989-01-01

    Using the comoving reference frame in the general non-inertial case, the relativistic hydrodynamics equations are derived with an account for dissipative effects in the matter. From the entropy production equation, the exact from for the dissipative tensor components is obtained. As a result, the closed system of equations of dissipative relativistic hydrodynamics is obtained in the comoving reference frame as a relativistic generalization of the known Navier-Stokes equations for Lagrange coordinates. Equations of relativistic hydrodynamics with account for dissipative effects in the matter are derived using the assocoated reference system in general non-inertial case. True form of the dissipative tensor components is obtained from entropy production equation. Closed system of equations for dissipative relativistic hydrodynamics is obtained as a result in the assocoated reference system (ARS) - relativistic generalization of well-known Navier-Stokes equations for Lagrange coordinates. Equation system, obtained in this paper for ARS, may be effectively used in numerical models of explosive processes with 10 51 erg energy releases which are characteristic for flashes of supernovae, if white dwarf type compact target suggested as presupernova

  2. Calculation of deuteron wave functions with relativistic interactions

    International Nuclear Information System (INIS)

    Buck, W.W. III.

    1976-01-01

    Deuteron wave functions with a repulsive core are obtained numerically from a fully relativistic wave equation introduced by Gross. The numerical technique enables analytic solutions for classes of interactions composed of the relativistic exchanges of a single pion and a single phenomenological meson, sigma. The pion is chosen to interact as a mixture of pseudoscalar and pseudovector. The amount of mixture is determined by a free mixing parameter, lambda, ranging between 1 (pure pseudoscalar) and (pure pseudovector). Each value of lambda corresponds, then, to a different interaction. Solutions are found for lambda = 1, .9, .8, .6, and 0. The wave functions for each interaction come in a group of four. Of the four wave functions, two are the usual S and D state wave functions, while the remaining two, arising out of the relativistic prescription, are identified as 3 P 1 and 1 P 1 wave functions (P state wave functions). For the interactions solved for, the D state probabilities ranged between 5.1 percent and 6.3 percent, while the total P state probabilities ranged between 0.7 percent and 2.7 percent. The method of obtaining solutions was to adjust the sigma meson parameters to give the correct binding energy and a good quadrupole moment. All wave functions obtained are applied to relativistic N-d scattering in the backward direction where the effect of the P states is quite measurable

  3. Classical Electron Model with QED Corrections

    OpenAIRE

    Lenk, Ron

    2010-01-01

    In this article we build a metric for a classical general relativistic electron model with QED corrections. We calculate the stress-energy tensor for the radiative corrections to the Coulomb potential in both the near-field and far-field approximations. We solve the three field equations in both cases by using a perturbative expansion to first order in alpha (the fine-structure constant) while insisting that the usual (+, +, -, -) structure of the stress-energy tensor is maintained. The resul...

  4. STS-105 Crew Interview: Scott Horowitz

    Science.gov (United States)

    2001-01-01

    STS-105 Commander Scott Horowitz is seen during a prelaunch interview. He answers questions about his inspiration to become an astronaut, his career path, training for the mission, and his role in the mission's activities. He gives details on the mission's goals, which include the transfer of supplies from the Discovery Orbiter to the International Space Station (ISS) and the change-over of the Expedition 2 and Expedition 3 crews (the resident crews of ISS). Horowitz discusses the importance of the ISS in the future of human spaceflight.

  5. Non-relativistic holography and singular black hole

    International Nuclear Information System (INIS)

    Lin Fengli; Wu Shangyu

    2009-01-01

    We provide a framework for non-relativistic holography so that a covariant action principle ensuring the Galilean symmetry for dual conformal field theory is given. This framework is based on the Bargmann lift of the Newton-Cartan gravity to the one-dimensional higher Einstein gravity, or reversely, the null-like Kaluza-Klein reduction. We reproduce the previous zero temperature results, and our framework provides a natural explanation about why the holography is co-dimension 2. We then construct the black hole solution dual to the thermal CFT, and find the horizon is curvature singular. However, we are able to derive the sensible thermodynamics for the dual non-relativistic CFT with correct thermodynamical relations. Besides, our construction admits a null Killing vector in the bulk such that the Galilean symmetry is preserved under the holographic RG flow. Finally, we evaluate the viscosity and find it zero if we neglect the back reaction of the singular horizon, otherwise, it could be non-zero.

  6. Nursery Pest Management of Phytolyma lata Walker (Scott) Attack ...

    African Journals Online (AJOL)

    The establishment of plantations of Milicia excelsa has been constrained by the gall-forming psyllid Phytolyma lata Walker (Scott) that causes extensive damage to young plants. We present findings of an experiment aimed at preventing Phytolyma attack on Milicia seedlings in the nursery using chemical control and ...

  7. Reliability and validity of the Salford-Scott Nursing Values Questionnaire in Turkish.

    Science.gov (United States)

    Ulusoy, Hatice; Güler, Güngör; Yıldırım, Gülay; Demir, Ecem

    2018-02-01

    Developing professional values among nursing students is important because values are a significant predictor of the quality care that will be provided, the clients' recognition, and consequently the nurses' job satisfaction. The literature analysis showed that there is only one validated tool available in Turkish that examines both the personal and the professional values of nursing students. The aim of this study was to assess the reliability and validity of the Salford-Scott Nursing Values Questionnaire in Turkish. This study was a Turkish linguistic and cultural adaptation of a research tool. Participants and research context: The sample of this study consisted of 627 undergraduate nursing students from different geographical areas of Turkey. Two questionnaires were used for data collection: a socio-demographic form and the Salford-Scott Nursing Values Questionnaire. For the Salford-Scott Nursing Values Questionnaire, construct validity was examined using factor analyses. Ethical considerations: The study was approved by the Cumhuriyet University Faculty of Medicine Research Ethics Board. Students were informed that participation in the study was entirely voluntary and anonymous. Item content validity index ranged from 0.66 to 1.0, and the total content validity index was 0.94. The Kaiser-Meyer-Olkin measure of sampling was 0.870, and Bartlett's test of sphericity was statistically significant (x 2 = 3108.714, p < 0.001). Construct validity was examined using factor analyses and the six factors were identified. Cronbach's alpha was used to assess the internal consistency reliability and the value of 0.834 was obtained. Our analyses showed that the Turkish version of Salford-Scott Nursing Values Questionnaire has high validity and reliability.

  8. Impact of relativistic effects on cosmological parameter estimation

    Science.gov (United States)

    Lorenz, Christiane S.; Alonso, David; Ferreira, Pedro G.

    2018-01-01

    Future surveys will access large volumes of space and hence very long wavelength fluctuations of the matter density and gravitational field. It has been argued that the set of secondary effects that affect the galaxy distribution, relativistic in nature, will bring new, complementary cosmological constraints. We study this claim in detail by focusing on a subset of wide-area future surveys: Stage-4 cosmic microwave background experiments and photometric redshift surveys. In particular, we look at the magnification lensing contribution to galaxy clustering and general-relativistic corrections to all observables. We quantify the amount of information encoded in these effects in terms of the tightening of the final cosmological constraints as well as the potential bias in inferred parameters associated with neglecting them. We do so for a wide range of cosmological parameters, covering neutrino masses, standard dark-energy parametrizations and scalar-tensor gravity theories. Our results show that, while the effect of lensing magnification to number counts does not contain a significant amount of information when galaxy clustering is combined with cosmic shear measurements, this contribution does play a significant role in biasing estimates on a host of parameter families if unaccounted for. Since the amplitude of the magnification term is controlled by the slope of the source number counts with apparent magnitude, s (z ), we also estimate the accuracy to which this quantity must be known to avoid systematic parameter biases, finding that future surveys will need to determine s (z ) to the ˜5 %- 10 % level. On the contrary, large-scale general-relativistic corrections are irrelevant both in terms of information content and parameter bias for most cosmological parameters but significant for the level of primordial non-Gaussianity.

  9. Radiatively driven relativistic spherical winds under relativistic radiative transfer

    Science.gov (United States)

    Fukue, J.

    2018-05-01

    We numerically investigate radiatively driven relativistic spherical winds from the central luminous object with mass M and luminosity L* under Newtonian gravity, special relativity, and relativistic radiative transfer. We solve both the relativistic radiative transfer equation and the relativistic hydrodynamical equations for spherically symmetric flows under the double-iteration processes, to obtain the intensity and velocity fields simultaneously. We found that the momentum-driven winds with scattering are quickly accelerated near the central object to reach the terminal speed. The results of numerical solutions are roughly fitted by a relation of \\dot{m}=0.7(Γ _*-1)\\tau _* β _* β _out^{-2.6}, where \\dot{m} is the mass-loss rate normalized by the critical one, Γ* the central luminosity normalized by the critical one, τ* the typical optical depth, β* the initial flow speed at the central core of radius R*, and βout the terminal speed normalized by the speed of light. This relation is close to the non-relativistic analytical solution, \\dot{m} = 2(Γ _*-1)\\tau _* β _* β _out^{-2}, which can be re-expressed as β _out^2/2 = (Γ _*-1)GM/c^2 R_*. That is, the present solution with small optical depth is similar to that of the radiatively driven free outflow. Furthermore, we found that the normalized luminosity (Eddington parameter) must be larger than unity for the relativistic spherical wind to blow off with intermediate or small optical depth, i.e. Γ _* ≳ \\sqrt{(1+β _out)^3/(1-β _out)}. We briefly investigate and discuss an isothermal wind.

  10. SCOTT: A time and amplitude digitizer ASIC for PMT signal processing

    Science.gov (United States)

    Ferry, S.; Guilloux, F.; Anvar, S.; Chateau, F.; Delagnes, E.; Gautard, V.; Louis, F.; Monmarthe, E.; Le Provost, H.; Russo, S.; Schuller, J.-P.; Stolarczyk, Th.; Vallage, B.; Zonca, E.; KM3NeT Consortium

    2013-10-01

    SCOTT is an ASIC designed for the readout electronics of photomultiplier tubes developed for KM3NeT, the cubic-kilometer scale neutrino telescope in Mediterranean Sea. To digitize the PMT signals, the multi-time-over-threshold technique is used with up to 16 adjustable thresholds. Digital outputs of discriminators feed a circular sampling memory and a “first in first out” digital memory. A specific study has shown that five specifically chosen thresholds are suited to reach the required timing accuracy. A dedicated method based on the duration of the signal over a given threshold allows an equivalent timing precision at any charge. To verify that the KM3NeT requirements are fulfilled, this method is applied on PMT signals digitized by SCOTT.

  11. 2015-2016 Travel and Hospitality Expense Reports for Scott Gilmore ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Ruxandra Staicu

    Purpose: Board meetings. Date(s):. 2015-07-13 to 2015-07-14. Destination(s):. Ottawa. Airfare: Other. Transportation: $31.46. Accommodation: Meals and. Incidentals: Other: Total: $31.46. Comments: 2015-2016 Travel and Hospitality Expense. Reports for Scott Gilmore, Governor.

  12. Handbook of relativistic quantum chemistry

    International Nuclear Information System (INIS)

    Liu, Wenjian

    2017-01-01

    This handbook focuses on the foundations of relativistic quantum mechanics and addresses a number of fundamental issues never covered before in a book. For instance: How can many-body theory be combined with quantum electrodynamics? How can quantum electrodynamics be interfaced with relativistic quantum chemistry? What is the most appropriate relativistic many-electron Hamiltonian? How can we achieve relativistic explicit correlation? How can we formulate relativistic properties? - just to name a few. Since relativistic quantum chemistry is an integral component of computational chemistry, this handbook also supplements the ''Handbook of Computational Chemistry''. Generally speaking, it aims to establish the 'big picture' of relativistic molecular quantum mechanics as the union of quantum electrodynamics and relativistic quantum chemistry. Accordingly, it provides an accessible introduction for readers new to the field, presents advanced methodologies for experts, and discusses possible future perspectives, helping readers understand when/how to apply/develop the methodologies.

  13. Relativistic many-body theory of atomic transitions. The relativistic equation-of-motion approach

    International Nuclear Information System (INIS)

    Huang, K.

    1982-01-01

    An equation-of-motion approach is used to develop the relativistic many-body theory of atomic transitions. The relativistic equations of motion for transition matrices are formulated with the use of techniques of quantum-field theory. To reduce the equations of motion to a tractable form which is appropriate for numerical calculations, a graphical method to resolve the complication arising from the antisymmetrization and angular-momentum coupling is employed. The relativistic equation-of-motion method allows an ab initio treatment of correlation and relativistic effects in both closed- and open-shell many-body systems. A special case of the present formulation reduces to the relativistic random-phase approximation

  14. Relativistic many-body theory of atomic transitions: the relativistic equation-of-motion approach

    International Nuclear Information System (INIS)

    Huang, K.N.

    1981-01-01

    An equation-of-motion approach is used to develop the relativistic many-body theory of atomic transitions. The relativistic equations of motion for transition matrices are formulated using techniques of quantum field theory. To reduce the equation of motion to a tractable form which is appropriate for numerical calculations, a graphical method is employed to resolve the complication arising from the antisymmetrization and angular momentum coupling. The relativistic equation-of-motion method allows an ab initio treatment of correlation and relativistic effects in both closed- and open-shell many-body systems. A special case of the present formulation reduces to the relativistic random-phase approximation

  15. Handbook of relativistic quantum chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wenjian (ed.) [Peking Univ., Beijing (China). Center for Computational Science and Engineering

    2017-03-01

    This handbook focuses on the foundations of relativistic quantum mechanics and addresses a number of fundamental issues never covered before in a book. For instance: How can many-body theory be combined with quantum electrodynamics? How can quantum electrodynamics be interfaced with relativistic quantum chemistry? What is the most appropriate relativistic many-electron Hamiltonian? How can we achieve relativistic explicit correlation? How can we formulate relativistic properties? - just to name a few. Since relativistic quantum chemistry is an integral component of computational chemistry, this handbook also supplements the ''Handbook of Computational Chemistry''. Generally speaking, it aims to establish the 'big picture' of relativistic molecular quantum mechanics as the union of quantum electrodynamics and relativistic quantum chemistry. Accordingly, it provides an accessible introduction for readers new to the field, presents advanced methodologies for experts, and discusses possible future perspectives, helping readers understand when/how to apply/develop the methodologies.

  16. Relativistic non-Hamiltonian mechanics

    International Nuclear Information System (INIS)

    Tarasov, Vasily E.

    2010-01-01

    Relativistic particle subjected to a general four-force is considered as a nonholonomic system. The nonholonomic constraint in four-dimensional space-time represents the relativistic invariance by the equation for four-velocity u μ u μ + c 2 = 0, where c is the speed of light in vacuum. In the general case, four-forces are non-potential, and the relativistic particle is a non-Hamiltonian system in four-dimensional pseudo-Euclidean space-time. We consider non-Hamiltonian and dissipative systems in relativistic mechanics. Covariant forms of the principle of stationary action and the Hamilton's principle for relativistic mechanics of non-Hamiltonian systems are discussed. The equivalence of these principles is considered for relativistic particles subjected to potential and non-potential forces. We note that the equations of motion which follow from the Hamilton's principle are not equivalent to the equations which follow from the variational principle of stationary action. The Hamilton's principle and the principle of stationary action are not compatible in the case of systems with nonholonomic constraint and the potential forces. The principle of stationary action for relativistic particle subjected to non-potential forces can be used if the Helmholtz conditions are satisfied. The Hamilton's principle and the principle of stationary action are equivalent only for a special class of relativistic non-Hamiltonian systems.

  17. Relativistic contributions to the bonding in Cu2

    International Nuclear Information System (INIS)

    Martin, R.L.

    1983-01-01

    The influence of relativity on the spectroscopic parameters of Cu 2 has been investigated by evaluating the mass-velocity and one electron Darwin terms of the Breit--Pauli Hamiltonian in the first order of perturbation theory. The relativistic corrections are of the order of 10% of the SCF and GVB results and result in a deeper (approx.1.5 kcal), stiffer (approx.15 cm - 1 ) well, with the bond length contracted by about 0.1a 0

  18. Proof of the Spin Statistics Connection 2: Relativistic Theory

    Science.gov (United States)

    Santamato, Enrico; De Martini, Francesco

    2017-12-01

    The traditional standard theory of quantum mechanics is unable to solve the spin-statistics problem, i.e. to justify the utterly important "Pauli Exclusion Principle" but by the adoption of the complex standard relativistic quantum field theory. In a recent paper (Santamato and De Martini in Found Phys 45(7):858-873, 2015) we presented a proof of the spin-statistics problem in the nonrelativistic approximation on the basis of the "Conformal Quantum Geometrodynamics". In the present paper, by the same theory the proof of the spin-statistics theorem is extended to the relativistic domain in the general scenario of curved spacetime. The relativistic approach allows to formulate a manifestly step-by-step Weyl gauge invariant theory and to emphasize some fundamental aspects of group theory in the demonstration. No relativistic quantum field operators are used and the particle exchange properties are drawn from the conservation of the intrinsic helicity of elementary particles. It is therefore this property, not considered in the standard quantum mechanics, which determines the correct spin-statistics connection observed in Nature (Santamato and De Martini in Found Phys 45(7):858-873, 2015). The present proof of the spin-statistics theorem is simpler than the one presented in Santamato and De Martini (Found Phys 45(7):858-873, 2015), because it is based on symmetry group considerations only, without having recourse to frames attached to the particles. Second quantization and anticommuting operators are not necessary.

  19. Marion duPont Scott Equine Medical Center uses innovative lameness treatment

    OpenAIRE

    Lee, Kate

    2009-01-01

    Virginia Tech's Marion duPont Scott Equine Medical Center is now offering an equine lameness therapy that prevents further degeneration of the affected joint and offers a longer-lasting benefit than traditional steroid treatment.

  20. Distinguishing different types of inhomogeneity in Neyman-Scott point processes

    Czech Academy of Sciences Publication Activity Database

    Mrkvička, Tomáš

    2014-01-01

    Roč. 16, č. 2 (2014), s. 385-395 ISSN 1387-5841 Institutional support: RVO:60077344 Keywords : clustering * growing clusters * inhomogeneous cluster centers * inhomogeneous point process * location dependent scaling * Neyman-Scott point process Subject RIV: BA - General Mathematics Impact factor: 0.913, year: 2014

  1. Coulomb corrections for interferometry analysis of expanding hadron systems

    Energy Technology Data Exchange (ETDEWEB)

    Sinyukov, Yu.M.; Lednicky, R.; Pluta, J.; Erazmus, B. [Centre National de la Recherche Scientifique, 44 - Nantes (France). Lab. de Physique Subatomique et des Technologies Associees; Akkelin, S.V. [ITP, Kiev (Ukraine)

    1997-09-01

    The problem of the Coulomb corrections to the two-boson correlation functions for the systems formed in ultra-relativistic heavy ion collisions is considered for large effective system volumes. The modification of the standard zero-distance correction (so called Gamow or Coulomb factor) has been proposed for such a kind of systems. For the {pi}{sup +}{pi}{sup +} and K{sup +}K{sup +} correlation functions the analytical calculations of the Coulomb correction are compared with the exact numerical results. (author). 20 refs.

  2. 2015-2016 Expense report for Scott Gilmore | IDRC - International ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2015-07-13

    2015-2016 Expense report for Scott Gilmore. Total travel expenses: CA$31.46. Download expense report. July 13, 2015 to July 14, 2015. CA$31.46. What we do · Funding · Resources · About IDRC. Knowledge. Innovation. Solutions. Careers · Contact Us · Site map. Sign up now for IDRC news and views sent directly to ...

  3. Recent development of relativistic molecular theory

    International Nuclear Information System (INIS)

    Takahito, Nakajima; Kimihiko, Hirao

    2005-01-01

    Today it is common knowledge that relativistic effects are important in the heavy-element chemistry. The continuing development of the relativistic molecular theory is opening up rows of the periodic table that are impossible to treat with the non-relativistic approach. The most straightforward way to treat relativistic effects on heavy-element systems is to use the four-component Dirac-Hartree-Fock approach and its electron-correlation methods based on the Dirac-Coulomb(-Breit) Hamiltonian. The Dirac-Hartree-Fock (DHF) or Dirac-Kohn-Sham (DKS) equation with the four-component spinors composed of the large- and small-components demands severe computational efforts to solve, and its applications to molecules including heavy elements have been limited to small- to medium-size systems. Recently, we have developed a very efficient algorithm for the four-component DHF and DKS approaches. As an alternative approach, several quasi-relativistic approximations have also been proposed instead of explicitly solving the four-component relativistic equation. We have developed the relativistic elimination of small components (RESC) and higher-order Douglas-Kroll (DK) Hamiltonians within the framework of the two-component quasi-relativistic approach. The developing four-component relativistic and approximate quasi-relativistic methods have been implemented into a program suite named REL4D. In this article, we will introduce the efficient relativistic molecular theories to treat heavy-atomic molecular systems accurately via the four-component relativistic and the two-component quasi-relativistic approaches. We will also show several chemical applications including heavy-element systems with our relativistic molecular approaches. (author)

  4. Relativistic energy loss in a dispersive medium

    DEFF Research Database (Denmark)

    Houlrik, Jens Madsen

    2002-01-01

    The electron energy loss in a dispersive medium is obtained using macroscopic electrodynamics taking advantage of a static frame of reference. Relativistic corrections are described in terms of a dispersive Lorentz factor obtained by replacing the vacuum velocity c by the characteristic phase...... velocity c/n, where n is the complex index of refraction. The angle-resolved energy-loss spectrum of a Drude conductor is analyzed in detail and it is shown that the low-energy peak due to Ohmic losses is enhanced compared to the classical approximation....

  5. Optimization of a relativistic quantum mechanical engine.

    Science.gov (United States)

    Peña, Francisco J; Ferré, Michel; Orellana, P A; Rojas, René G; Vargas, P

    2016-08-01

    We present an optimal analysis for a quantum mechanical engine working between two energy baths within the framework of relativistic quantum mechanics, adopting a first-order correction. This quantum mechanical engine, with the direct energy leakage between the energy baths, consists of two adiabatic and two isoenergetic processes and uses a three-level system of two noninteracting fermions as its working substance. Assuming that the potential wall moves at a finite speed, we derive the expression of power output and, in particular, reproduce the expression for the efficiency at maximum power.

  6. Eesti tervishoid on tõesti hea. Aitäh, USA! / Scott Abel

    Index Scriptorium Estoniae

    Abel, Scott

    2010-01-01

    Ameeriklane Scott Abel kirjutab, et president Barack Obama tervishoiureform mõjutab arstiabi ka Eestis. Vastukaja artiklile: Turay, Abdul. Kindla individualismi traditsioon // Postimees (2010) 30. märts, lk. 12

  7. Evaluating results from the Relativistic Heavy Ion Collider with perturbative QCD and hydrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Fries, R.J.; Nonaka, C.

    2011-07-01

    We review the basic concepts of perturbative quantum chromodynamics (QCD) and relativistic hydrodynamics, and their applications to hadron production in high energy nuclear collisions. We discuss results from the Relativistic Heavy Ion Collider (RHIC) in light of these theoretical approaches. Perturbative QCD and hydrodynamics together explain a large amount of experimental data gathered during the first decade of RHIC running, although some questions remain open. We focus primarily on practical aspects of the calculations, covering basic topics like perturbation theory, initial state nuclear effects, jet quenching models, ideal hydrodynamics, dissipative corrections, freeze-out and initial conditions. We conclude by comparing key results from RHIC to calculations.

  8. STS-103 Crew Interviews: Scott Kelly

    Science.gov (United States)

    1999-01-01

    Live footage of a preflight interview with Pilot Scott J. Kelly is seen. The interview addresses many different questions including why Kelly became an astronaut, the events that led to his interest, any role models that he had, and his inspiration. Other interesting information that this one-on-one interview discusses is an explanation of the why this required mission to service the Hubble Space Telescope must take place at such an early date, replacement of the gyroscopes, transistors, and computers. Also discussed are the Chandra X Ray Astrophysics Facility, and a brief touch on Kelly's responsibility during any of the given four space walks scheduled for this mission.

  9. STS-82 Pilot Scott Horowitz arrives for TCDT

    Science.gov (United States)

    1997-01-01

    STS-82 Pilot Scott J. 'Doc' Horowitz arrives at KSCs Shuttle Landing Facility in a T-38 jet from Houston, TX. Horowitz and the other six crew members are at KSC to participate in the Terminal Countdown Demonstration Test (TCDT), a dress rehearsal for launch. The crew aboard the Space Shuttle Discovery on STS-82 will conduct the second Hubble Space Telescope servicing mission. The 10-day flight is targeted for a Feb. 11 liftoff.

  10. John Scott Haldane: The father of oxygen therapy

    Directory of Open Access Journals (Sweden)

    K C Sekhar

    2014-01-01

    Full Text Available John Scott Haldane was a versatile genius who solved several problems of great practical significance. His ability to look beyond the laboratory and investigate theory added crucial findings in the field of respiratory physiology. His work on high altitude physiology, diving physiology, oxygen therapy, and carbon monoxide poisoning led to a sea change in clinical medicine and improved safety and reduced mortality and morbidity in many high risk situations.

  11. Relativistic Kinetic Theory

    Science.gov (United States)

    Vereshchagin, Gregory V.; Aksenov, Alexey G.

    2017-02-01

    Preface; Acknowledgements; Acronyms and definitions; Introduction; Part I. Theoretical Foundations: 1. Basic concepts; 2. Kinetic equation; 3. Averaging; 4. Conservation laws and equilibrium; 5. Relativistic BBGKY hierarchy; 6. Basic parameters in gases and plasmas; Part II. Numerical Methods: 7. The basics of computational physics; 8. Direct integration of Boltzmann equations; 9. Multidimensional hydrodynamics; Part III. Applications: 10. Wave dispersion in relativistic plasma; 11. Thermalization in relativistic plasma; 12. Kinetics of particles in strong fields; 13. Compton scattering in astrophysics and cosmology; 14. Self-gravitating systems; 15. Neutrinos, gravitational collapse and supernovae; Appendices; Bibliography; Index.

  12. Astronaut Scott Parazynski in hatch of CCT during training

    Science.gov (United States)

    1994-01-01

    Astronaut Scott E. Parazynski, STS-66 mission specialist, poses near the hatchway of the crew compartment trainer (CCT) (out of frame) in JSC's Shuttle mockup and integration laboratory. Crew members were about to begin a rehearsal of procedures to be followed during the launch and entry phases of their flight. That rehearsal was followed by a training session on emergency egress procedures.

  13. The correlation between the transverse polarization and transverse momentum of lambda produced in relativistic nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Ye Yunxiu; Zhou Xin; Ji Gang; Su Shufang; Zhu Guohuai

    1996-01-01

    The transverse polarization of lambda produced in relativistic nucleus-nucleus collisions is determined. The effect from the interaction between spin moment and magnetic field is corrected. The near zero transverse polarization and non-correlation between transverse polarization and transverse momentum are obtained and compared to ones obtained from the nucleus-nucleus interactions at lower energies. This comparison shows that the production mechanism of lambdas in the relativistic nucleus-nucleus collisions is different from one in the nucleus-nucleus reactions at lower energies

  14. Relativistic Linear Restoring Force

    Science.gov (United States)

    Clark, D.; Franklin, J.; Mann, N.

    2012-01-01

    We consider two different forms for a relativistic version of a linear restoring force. The pair comes from taking Hooke's law to be the force appearing on the right-hand side of the relativistic expressions: d"p"/d"t" or d"p"/d["tau"]. Either formulation recovers Hooke's law in the non-relativistic limit. In addition to these two forces, we…

  15. Relativistic decay widths of autoionization processes: The relativistic FanoADC-Stieltjes method

    Energy Technology Data Exchange (ETDEWEB)

    Fasshauer, Elke, E-mail: Elke.Fasshauer@uit.no [Centre for Theoretical and Computational Chemistry, Department of Chemistry, University of Tromsø–The Arctic University of Norway, N-9037 Tromsø (Norway); Theoretische Chemie, Universität Heidelberg, Im Neuenheimer Feld 229, D-69120 Heidelberg (Germany); Kolorenč, Přemysl [Institute of Theoretical Physics, Faculty of Mathematics and Physics, Charles University in Prague, V Holešovičkách 2, 180 00 Prague (Czech Republic); Pernpointner, Markus [Theoretische Chemie, Universität Heidelberg, Im Neuenheimer Feld 229, D-69120 Heidelberg (Germany)

    2015-04-14

    Electronic decay processes of ionized systems are, for example, the Auger decay or the Interatomic/ Intermolecular Coulombic Decay. In both processes, an energetically low lying vacancy is filled by an electron of an energetically higher lying orbital and a secondary electron is instantaneously emitted to the continuum. Whether or not such a process occurs depends both on the energetic accessibility and the corresponding lifetime compared to the lifetime of competing decay mechanisms. We present a realization of the non-relativistically established FanoADC-Stieltjes method for the description of autoionization decay widths including relativistic effects. This procedure, being based on the Algebraic Diagrammatic Construction (ADC), was adapted to the relativistic framework and implemented into the relativistic quantum chemistry program package Dirac. It is, in contrast to other existing relativistic atomic codes, not limited to the description of autoionization lifetimes in spherically symmetric systems, but is instead also applicable to molecules and clusters. We employ this method to the Auger processes following the Kr3d{sup −1}, Xe4d{sup −1}, and Rn5d{sup −1} ionization. Based on the results, we show a pronounced influence of mainly scalar-relativistic effects on the decay widths of autoionization processes.

  16. Relativistic positioning systems: perspectives and prospects

    Science.gov (United States)

    Coll Bartolomé

    2013-11-01

    Relativistic positioning systems are interesting technical objects for applications around the Earth and in the Solar system. But above all else, they are basic scientific objects allowing developing relativity from its own concepts. Some past and future features of relativistic positioning sys- tems, with special attention to the developments that they suggest for an epistemic relativity (relativistic experimental approach to physics), are analyzed. This includes relativistic stereometry, which, together with relativistic positioning systems, allows to introduce the general relativistic notion of (finite) laboratory (space-time region able to perform experiments of finite size).

  17. Electronic structure of FeTiSb using relativistic and scalar-relativistic approaches

    Energy Technology Data Exchange (ETDEWEB)

    Sahariya, Jagrati [Department of Physics, Manipal University Jaipur, Jaipur-303007, Rajasthan (India); Mund, H. S., E-mail: hmoond@gmail.com [Department of Physics, M. L. Sukhadia University, Udaipur-313001, Rajasthan (India)

    2016-05-06

    Electronic and magnetic properties of FeTiSb have been reported. The calculations are performed using spin polarized relativistic Korringa-Kohn-Rostoker scheme based on Green’s function method. Within SPR-KKR a fully relativistic and scalar-relativistic approaches have been used to investigate electronic structure of FeTiSb. Energy bands, total and partial density of states, atom specific magnetic moment along with total moment of FeTiSb alloys are presented.

  18. Experimental determination of the relativistic fine structure splitting in a pionic atom

    International Nuclear Information System (INIS)

    Wang, K.-C.; Boehm, F.; Hahn, A.A.; Henrikson, H.E.; Miller, J.P.; Powers, R.J.; Vogel, P.; Vuilleumier, J.-L.; Kunselman, R.

    1978-01-01

    Using a high-resolution crystal spectrometer, the authors have measured the energy splitting of the pionic 5g-4f and 5f-4d transitions in Ti. The observed fine structure splitting agrees, within the experimental error of 3%, with the splitting arising from the calculated relativistic term and other small corrections for spinless particles. (Auth.)

  19. Exploring cell apoptosis and senescence to understand and treat cancer: an interview with Scott Lowe

    Directory of Open Access Journals (Sweden)

    2015-11-01

    Full Text Available Scott W. Lowe is currently principal investigator at the Memorial Sloan-Kettering Cancer Center. After beginning his studies in chemical engineering, he decided to take another path and became fascinated by biochemistry, genetics and molecular biology, which ultimately led to an interest in human disease, particularly cancer. During his PhD at the Massachusetts Institute of Technology (MIT, Scott had the opportunity to benefit from the exceptional mentorship of Earl Ruley, David Housman and Tyler Jacks, and contributed to elucidating how the p53 (TP53 tumor suppressor gene limits oncogenic transformation and modulates the cytotoxic response to conventional chemotherapy. This important work earned him a fellowship from the Cold Spring Harbor Laboratory, which helped to launch his independent career. Scott is now a leading scientist in the cancer field and his work has helped to shed light on mechanisms of cell apoptosis and senescence to better understand and treat cancer. In this interview, he talks about this incredible scientific journey.

  20. Relativistic entanglement from relativistic quantum mechanics in the rest-frame instant form of dynamics

    International Nuclear Information System (INIS)

    Lusanna, Luca

    2011-01-01

    After a review of the problems induced by the Lorentz signature of Minkowski space-time, like the need of a clock synchronization convention for the definition of 3-space and the complexity of the notion of relativistic center of mass, there is the introduction of a new formulation of relativistic quantum mechanics compatible with the theory of relativistic bound states. In it the zeroth postulate of non-relativistic quantum mechanics is not valid and the physics is described in the rest frame by a Hilbert space containing only relative variables. The non-locality of the Poincare' generators imply a kinematical non-locality and non-separability influencing the theory of relativistic entanglement and not connected with the standard quantum non-locality.

  1. Beam-Based Nonlinear Optics Corrections in Colliders

    CERN Document Server

    Pilat, Fulvia Caterina; Malitsky, Nikolay; Ptitsyn, Vadim

    2005-01-01

    A method has been developed to measure and correct operationally the non-linear effects of the final focusing magnets in colliders, which gives access to the effects of multi-pole errors by applying closed orbit bumps, and analyzing the resulting tune and orbit shifts. This technique has been tested and used during 3 years of RHIC (the Relativistic Heavy Ion Collider at BNL) operations. I will discuss here the theoretical basis of the method, the experimental set-up, the correction results, the present understanding of the machine model, the potential and limitations of the method itself as compared with other non linear correction techniques.

  2. Discontinuous functions in correction procedure for x-ray microanalysis of light elements in inorganic materials

    International Nuclear Information System (INIS)

    Kaminska, M.; Missol, W.

    2002-01-01

    A formula for absorption correction was developed and verified when multiplying it by the Love, Cox, Scott atomic number expression using the program NEWKOR and by comparison of the product with experimental and literature data. A correction error was calculated in reference to measure intensity ratios for 409 analyses of light elements (beryllium, boron, carbon, nitrogen, oxygen, fluorine) as well as 193 analyses of heavy elements (from sodium to uranium). Another computer program (MARCON) has been developed for iterative determination of elemental concentrations in the materials. (author)

  3. An estimating function approach to inference for inhomogeneous Neyman-Scott processes

    DEFF Research Database (Denmark)

    Waagepetersen, Rasmus

    2007-01-01

    This article is concerned with inference for a certain class of inhomogeneous Neyman-Scott point processes depending on spatial covariates. Regression parameter estimates obtained from a simple estimating function are shown to be asymptotically normal when the "mother" intensity for the Neyman-Sc...

  4. Scott Morgan Johnson Middle School: Personalization Leads to Unlimited Success

    Science.gov (United States)

    Principal Leadership, 2013

    2013-01-01

    The well-known lyrics may be "The Eyes of Texas Are Upon You," but at Scott Morgan Johnson Middle School in McKinney, TX, it's definitely the "eye of the tiger" that sets the bar for Tiger PRIDE (perseverance, respect, integrity, determination, and excellence). This article describes how those ideals have been infused…

  5. On Gluonic Corrections to the Mass Spectrum in a Relativistic Charmonium Model

    OpenAIRE

    Hitoshi, ITO; Department of Physics, Faculty of Science and Technology Kinki University

    1984-01-01

    It is shown that the gluonic correction in the innermost region is abnormally large in the ^1S_0 State and a cutoff parameter which suppresses this correction. should be introduced. The retardation effect is estimated under this restriction on the gluonic correction. The correction due to the pair creation is shown to be small except for the ^1S_0 and ^3P_0 states.

  6. Relativistic effects in the intermolecular interaction-induced nuclear magnetic resonance parameters of xenon dimer

    DEFF Research Database (Denmark)

    Hanni, Matti; Lantto, Perttu; Ilias, Miroslav

    2007-01-01

    Relativistic effects on the 129Xe nuclear magnetic resonance shielding and 131Xe nuclear quadrupole coupling (NQC) tensors are examined in the weakly bound Xe2 system at different levels of theory including the relativistic four-component Dirac-Hartree-Fock (DHF) method. The intermolecular...... interaction-induced binary chemical shift d, the anisotropy of the shielding tensor ?s, and the NQC constant along the internuclear axis ?ll are calculated as a function of the internuclear distance. DHF shielding calculations are carried out using gauge-including atomic orbitals. For comparison, the full...... is obtained for d and ?s in Xe2. For these properties, the currently most complete theoretical description is obtained by a piecewise approximation where the uncorrelated relativistic DHF results obtained close to the basis-set limit are corrected, on the one hand, for NR correlation effects and, on the other...

  7. Relativistic Descriptions of Few-Body Systems

    International Nuclear Information System (INIS)

    Karmanov, V. A.

    2011-01-01

    A brief review of relativistic effects in few-body systems, of theoretical approaches, recent developments and applications is given. Manifestations of relativistic effects in the binding energies, in the electromagnetic form factors and in three-body observables are demonstrated. The three-body forces of relativistic origin are also discussed. We conclude that relativistic effects in nuclei can be important in spite of small binding energy. At high momenta they clearly manifest themselves and are necessary to describe the deuteron e.m. form factors. At the same time, there is still a discrepancy in three-body observables which might be a result of less clarity in understanding the corresponding relativistic effects, the relativistic NN kernel and the three-body forces. Relativistic few-body physics remains to be a field of very intensive and fruitful researches. (author)

  8. La Emulsión de Scott en la Cultura Hispanoamericana.

    Directory of Open Access Journals (Sweden)

    Alfredo Jácome Roca

    2005-06-01

    Varios de los empresarios que fueron pioneros en la industria farmacéutica contaron con algún aceite de hígado de bacalao entre sus primeros productos. En 1876, dos químicos que incursionaron en la industria, llamados Alfred B. Scott y Samuel W. Bowne, empezaron a comerciar en Nueva York la nueva Emulsión de Scott. La fórmula original incluía el aceite de hígado de bacalao –traído de Noruega en grandes cantidades– y los hipofosfitos de lima y soda. No obstante la buena fama que rodeaba sus ingredientes, la comercialización incluyó la propaganda masiva con afirmaciones ciertamente exageradas, que se aprovechaban de la credulidad del público y de la ausencia de mecanismos regulatorios. Se utilizaba tanto el humor como el temor de los parroquianos en postales, almanaques, avisos, que mostraban niños rosados y cachetones. Estos dibujos –y las botellas mismas– hacen actualmente las delicias de los coleccionistas y el negocio de los anticuarios. Una litografía aparecida en 1895 afirma que «la Emulsión de Scott genera vitalidad, carnes, fuerza y la promesa de salud para las personas de todas las edades». Otra estrategia –que aún en tiempos modernos se usa para productos populares– era la de los testimonios de personas que atestiguaban la bondad de la emulsión en su caso concreto. Un aviso que apareció en 1900 en el Greensburg Morning Tribune daba información detallada sobre la escrófula o enfermedad de las linfadenopatías y sobre la consunción, como a la sazón se llamaba a la tuberculosis. «La gente afectada con escrófula a menudo desarrolla consunción; los síntomas más prominentes de la escrófula son la anemia, la secreción de los oídos, las erupciones descamativas, el crecimiento y drenaje de las glándulas del cuello, que pronostican la pronta aparición de la consunción. Todo esto se puede interrumpir, prevenir la consunción y recuperar la salud con el uso precoz de… la Emulsión de Scott». Las niñas que declinaban

  9. On the binding energy of double Λ hypernuclei in the relativistic mean field theory

    International Nuclear Information System (INIS)

    Marcos, S.; Lombard, R.J.

    1997-01-01

    The binding energy of two Λ hyperons bound to a nuclear core is calculated within the relativistic mean field theory. The starting point is a two body relativistic equation of the Breit type suggested by the RMFT, and corrected for the two-particle interaction. The 2 Λ correlation energy is evaluated and the contribution of the δ and φ mesons, acting solely between hyperons, to the bond energy σB ΛΛ of ( ΛΛ ) 6 He, ( ΛΛ ) 10 Be and ( ΛΛ ) 13 B is calculated. Predictions of the ΔB ΛΛ A dependence are made for heavier Λ-hypernuclei. (K.A.)

  10. Relativistic effects in the intermolecular interaction-induced nuclear magnetic resonance parameters of xenon dimer.

    Science.gov (United States)

    Hanni, Matti; Lantto, Perttu; Ilias, Miroslav; Jensen, Hans Jorgen Aagaard; Vaara, Juha

    2007-10-28

    Relativistic effects on the (129)Xe nuclear magnetic resonance shielding and (131)Xe nuclear quadrupole coupling (NQC) tensors are examined in the weakly bound Xe(2) system at different levels of theory including the relativistic four-component Dirac-Hartree-Fock (DHF) method. The intermolecular interaction-induced binary chemical shift delta, the anisotropy of the shielding tensor Deltasigma, and the NQC constant along the internuclear axis chi( parallel) are calculated as a function of the internuclear distance. DHF shielding calculations are carried out using gauge-including atomic orbitals. For comparison, the full leading-order one-electron Breit-Pauli perturbation theory (BPPT) is applied using a common gauge origin. Electron correlation effects are studied at the nonrelativistic (NR) coupled-cluster singles and doubles with perturbational triples [CCSD(T)] level of theory. The fully relativistic second-order Moller-Plesset many-body perturbation (DMP2) theory is used to examine the cross coupling between correlation and relativity on NQC. The same is investigated for delta and Deltasigma by BPPT with a density functional theory model. A semiquantitative agreement between the BPPT and DHF binary property curves is obtained for delta and Deltasigma in Xe(2). For these properties, the currently most complete theoretical description is obtained by a piecewise approximation where the uncorrelated relativistic DHF results obtained close to the basis-set limit are corrected, on the one hand, for NR correlation effects and, on the other hand, for the BPPT-based cross coupling of relativity and correlation. For chi( parallel), the fully relativistic DMP2 results obtain a correction for NR correlation effects beyond MP2. The computed temperature dependence of the second virial coefficient of the (129)Xe nuclear shielding is compared to experiment in Xe gas. Our best results, obtained with the piecewise approximation for the binary chemical shift combined with the

  11. Relativistic theory of nuclear spin-rotation tensor with kinetically balanced rotational London orbitals

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Yunlong; Zhang, Yong; Liu, Wenjian, E-mail: liuwjbdf@gmail.com [Beijing National Laboratory for Molecular Sciences, Institute of Theoretical and Computational Chemistry, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, and Center for Computational Science and Engineering, Peking University, Beijing 100871 (China)

    2014-10-28

    Both kinetically balanced (KB) and kinetically unbalanced (KU) rotational London orbitals (RLO) are proposed to resolve the slow basis set convergence in relativistic calculations of nuclear spin-rotation (NSR) coupling tensors of molecules containing heavy elements [Y. Xiao and W. Liu, J. Chem. Phys. 138, 134104 (2013)]. While they perform rather similarly, the KB-RLO Ansatz is clearly preferred as it ensures the correct nonrelativistic limit even with a finite basis. Moreover, it gives rise to the same “direct relativistic mapping” between nuclear magnetic resonance shielding and NSR coupling tensors as that without using the London orbitals [Y. Xiao, Y. Zhang, and W. Liu, J. Chem. Theory Comput. 10, 600 (2014)].

  12. Non-geometrical optics investigation of mode conversion in weakly relativistic inhomogeneous plasmas

    International Nuclear Information System (INIS)

    Imre, K.

    1985-06-01

    Electron cyclotron resonance heating of plasmas by waves incident to the fundamental and second harmonic layer is investigated. When the wave propagation is nearly perpendicular to the equilibrium field in a weakly inhomogeneous plasma the standard geometrical optics breaks down and the relativistic corrections become significant at the resonance layer. Unlike the previous studies of this problem, the governing equations are derived from the linearized relativistic Vlasov equation coupled with Maxwell's equations, rather than using the uniform field dispersion relation to construct equations by replacing the refractive index by some spatial differential operations. We employ a boundary layer analysis at the resonance region and match the inner and outer solutions in the usual manner. We obtain not only the full wave solution of the problem, but also the set of physical parameters and their ranges in which the analysis is valid. Although we obtain analytic results for the asymptotic solutions, our analysis usually requires a numerical procedure when the relativistic and/or nonzero parallel refractive index are included

  13. Sensitivity of relativistic impulse approximation proton-nucleus elastic scattering calculations on relativistic mean-field parameterizations

    International Nuclear Information System (INIS)

    Hojsik, M.; Gmuca, S.

    1998-01-01

    Relativistic microscopic calculations are presented for proton elastic scattering from 40 Ca at 500 MeV. The underlying target densities are calculated within the framework of the relativistic mean-field theory with several parameter sets commonly in use. The self consistency of the scalar and vector densities (and thus to relativistic mean-field parameters) is investigated. Recently, the relativistic impulse approximation (RIA) has been widely and repeatedly used for the calculations of proton-nucleus scattering at intermediate energies. These calculations have exhibited significant improvements over the nonrelativistic approaches. The relativistic impulse approximation calculations. in particular, provide a dramatically better description of the spin observables, namely the analyzing power, A y , and the spin-rotation function, Q, at least for energies higher than 400 MeV. In the relativistic impulse approximation, the Dirac optical potential is obtained by folding of the local Lorentz-invariant amplitudes with the corresponding nuclear densities. For the spin zero targets the scalar and vector terms give the dominant contributions. Thus the scalar and vector nuclear densities (both, proton and neutron ones) play the dominant role in the relativistic impulse approximation. While the proton vector densities can be obtained by unfolding from the empirically known charge densities, all other densities used rely to a great extent on theoretical models. The various recipes are used to construct the neutron vector densities and the scalar densities for both, neutrons and protons. In this paper we will study the sensitivity of the relativistic impulse approximation results on the various sets of relativistic mean-field parameters currently in use

  14. Aldred scott warthin: Pathologist and teacher par excellence

    Directory of Open Access Journals (Sweden)

    Vineeth G Nair

    2017-01-01

    Full Text Available Born in 1866, Aldred Scott Warthin was a pathologist and teacher of great repute. Even though many know him from his eponyms, the true value of his achievements, and how far he was ahead of his peers, is known to but a few modern day medical students. It was in fact, based on his work, that Henry Lynch came up with his theories on the genetic nature of cancer. He died in 1931 leaving a lot of work unfinished.

  15. STS-106 Crew Interviews: Scott D. Altman

    Science.gov (United States)

    2000-01-01

    Live footage of a preflight interview with Pilot Scott D. Altman is seen. The interview addresses many different questions including why Altman became a pilot, the events that led to his interest, his career path through the Navy, and then finally, his selection by NASA as an astronaut. Other interesting information discussed in this one-on-one interview was his work on the movie set of "Top Gun," the highlights of his Navy career, and possible shorter time frame turnarounds for missions. Altman also mentions the scheduled docking with the new International Space Station (ISS) after the arrival of the Zvezda Service Module.

  16. STS-82 Pilot Scott Horowitz at SLF

    Science.gov (United States)

    1997-01-01

    STS-82 Pilot Scott J. 'Doc' Horowitz flashes a wide grin for photographers after he lands his T-38 jet at KSCs Shuttle Landing Facility. Horowitz and the other six members of the STS-82 crew came from their home base at Johnson Space Center in Houston, TX, to spend the last few days before launch at KSC. STS-82 is scheduled for liftoff on Feb. 11 during a 65-minute launch window which opens at 3:56 a.m. EST. The 10-day flight aboard the Space Shuttle Discovery will be the second Hubble Space Telescope servicing mission.

  17. Relativistic kinetics of baryon production in hot Universe

    International Nuclear Information System (INIS)

    Ignat'ev, Yu.G.

    1985-01-01

    The process of baryon production in the hot Universe is investigated in the framework of the relativistic kinetic theory. The exact solution of kinetic equations for supermassive bosons is obtained, thus giving the possibility to correct the results of previous papers: the known optimum domain of baryon production m sub(X) > α sub(X)msub(PI)√N js complemented by the small-mass boson domain, m sub(X) << α sub(X) m sub(PI)√N; as a result, the cosmological lower-limit restriction on the superheavy bosons masses js removed

  18. Parton distribution in relativistic hadrons

    International Nuclear Information System (INIS)

    Kopeliovich, B.Z.; Lapidus, L.I.; Zamolodchikov, Al.B.

    1979-01-01

    The distribution in the slow-parton number in the relativistic hadron is considered as a function of its rapidity (y). Neglecting corrections due to the tarton chain recombination the equation is derived and its explicit solution is found. It describes this distribution depending on the initial distribution at y approximately 1. Comparison with the reggeon diagrams results in relations between the parton model and the regaeon field theory parameters. The interpretation of the cutting rules in the framework of the parton model is presented. The numerical estimation of the parton model parameters is performed. It is shown that the slow-parton density corresponding to accessible energies seems to be close to the saturated density. Therefore, the enhanced graphs contributions turn out to be of considerable importance

  19. Relativistic and QED corrections to the g factor of Li-like ions

    International Nuclear Information System (INIS)

    Glazov, D.A.; Shabaev, V.M.; Volotka, A.V.; Tupitsyn, I.I.; Yerokhin, V.A.; Plunien, G.; Soff, G.

    2004-01-01

    Calculations of various corrections to the g factor of Li-like ions are presented, which result in a significant improvement of the theoretical accuracy in the region Z=6-92. The configuration-interaction Dirac-Fock method is employed for the evaluation of the interelectronic-interaction correction of order 1/Z 2 and higher. This correction is combined with the 1/Z interelectronic-interaction term derived within a rigorous QED approach. The one-electron QED correction of first order in α is obtained by employing our recent results for the self-energy term and by evaluating the vacuum-polarization contribution. The screening of QED corrections is taken into account to the leading orders in αZ and 1/Z

  20. Relativistic theory of spontaneous emission

    International Nuclear Information System (INIS)

    Barut, A.O.; Salamin, Y.I.

    1987-06-01

    We derive a formula for the relativistic decay rates in atoms in a formulation of Quantum Electrodynamics based upon the electron's self energy. Relativistic Coulomb wavefunctions are used, the full spin calculation is carried out and the dipole approximation is not employed. The formula has the correct nonrelativistic limit and is used here for calculating the decay rates in Hydrogen and Muonium for the transitions 2P → 1S 1/2 and 2S 1/2 → 1S 1/2 . The results for Hydrogen are: Γ(2P → 1S 1/2 )=6.2649x10 8 s -1 and Γ(2S 1/2 → 1S 1/2 )=2.4946x10 -6 s -1 . Our result for the 2P → 1S 1/2 transition rate is in perfect agreement with the best nonrelativistic calculations as well as with the results obtained from the best known radiative decay lifetime measurements. As for the Hydrogen 2S 1/2 → 1S 1/2 decay rate, the result obtained here is also in good agreement with the best known magnetic dipole calculations. For Muonium we get: Γ(2P → 1S 1/2 )=6.2382x10 8 s -1 and Γ(2S 1/2 → 1S 1/2 )=2.3997x10 -6 s -1 . (author). 23 refs, 4 tabs

  1. The relativistic virial theorem

    International Nuclear Information System (INIS)

    Lucha, W.; Schoeberl, F.F.

    1989-11-01

    The relativistic generalization of the quantum-mechanical virial theorem is derived and used to clarify the connection between the nonrelativistic and (semi-)relativistic treatment of bound states. 12 refs. (Authors)

  2. Multiple electromagnetic electron-positron pair production in relativistic heavy-ion collisions

    International Nuclear Information System (INIS)

    Alscher, A.; Hencken, K.; Trautmann, D.; Baur, G.

    1997-01-01

    We calculate the cross sections for the production of one and more electron-positron pairs due to the strong electromagnetic fields in relativistic heavy-ion collisions. We derive the N-pair amplitude using the generating functional of fermions in an external field and the path-integral formalism. The N-pair production probability is found to be an approximate Poisson distribution. We calculate total cross sections for the production of one pair in lowest order, including corrections from the Poisson distribution up to third order. Furthermore, we calculate cross sections for the production of up to five pairs including corrections from the Poisson distribution. copyright 1997 The American Physical Society

  3. Photon-Photon Luminosities in Relativistic Heavy Ion Collisions at LHC Energies

    OpenAIRE

    Hencken, Kai; Trautmann, Dirk; Baur, Gerhard

    1994-01-01

    Effective photon-photon luminosities are calculated for various realistic hadron collider scenarios. The main characteristics of photon-photon processes at relativistic heavy-ion colliders are established and compared to the corresponding photon-photon luminosities at electron-positron and future Photon Linear Colliders (PLC). Higher order corrections as well as inelastic processes are discussed. It is concluded that feasible high luminosity Ca-Ca collisions at the Large Hadron Collider (LHC)...

  4. Exploring cell apoptosis and senescence to understand and treat cancer: an interview with Scott Lowe.

    Science.gov (United States)

    Lowe, Scott; Cifra, Alessandra

    2015-11-01

    Scott W. Lowe is currently principal investigator at the Memorial Sloan-Kettering Cancer Center. After beginning his studies in chemical engineering, he decided to take another path and became fascinated by biochemistry, genetics and molecular biology, which ultimately led to an interest in human disease, particularly cancer. During his PhD at the Massachusetts Institute of Technology (MIT), Scott had the opportunity to benefit from the exceptional mentorship of Earl Ruley, David Housman and Tyler Jacks, and contributed to elucidating how the p53 (TP53) tumor suppressor gene limits oncogenic transformation and modulates the cytotoxic response to conventional chemotherapy. This important work earned him a fellowship from the Cold Spring Harbor Laboratory, which helped to launch his independent career. Scott is now a leading scientist in the cancer field and his work has helped to shed light on mechanisms of cell apoptosis and senescence to better understand and treat cancer. In this interview, he talks about this incredible scientific journey. © 2015. Published by The Company of Biologists Ltd.

  5. Contraint's theory and relativistic dynamics

    International Nuclear Information System (INIS)

    Longhi, G.; Lusanna, L.

    1987-01-01

    The purpose of this Workshop was to examine the current situation of relativistic dynamics. In particular, Dirac-Bergmann's theory of constraints, which lies at the heart of gauge theories, general relativity, relativistic mechanics and string theories, was chosen as the unifying theoretical framework best suited to investigate such a field. The papers discussed were on general relativity; relativistic mechanics; particle physics and mathematical physics. Also discussed were the problems of classical and quantum level, namely the identification of the classical observables of constrained systems, the equivalence of the nonequivalence of the various ways to quantize such systems; the problem of the anomalies; the best geometrical approach to the theory of constraints; the possibility of unifying all the treatments of relativistic mechanics. This book compiles the papers presented at proceedings of relativistic dynamics and constraints theory

  6. Universos ficcionais: o romanesco em Walter Scott e José de Alencar

    Directory of Open Access Journals (Sweden)

    Marcos Roberto Flamínio Peres

    2016-10-01

    Full Text Available Tamanha é a força do romanesco em Walter Scott que ele foi capaz de dar origem a duas linhas de força críticas antagônicas: uma tendendo a situá-lo dentro do conjunto da literatura ocidental, reatualizando arquétipos ancestrais (Frye; outra considerando-o a quintessência do romance histórico por representar momentos cruciais por que passava a sociedade capitalista entre os séculos XVIII e XIX (Lukács. À luz desse pano de fundo teórico contrastivo, este artigo busca analisar Waverley (1814, obra mais influente de Scott, em comparação com As minas de prata (1865-1866, romance mais ambicioso de José de Alencar e que lança mão de estratégias narrativas similares.

  7. Electron trapping in the electrosound solitary wave for propagation of high intensity laser in a relativistic plasma

    International Nuclear Information System (INIS)

    Heidari, E; Aslaninejad, M; Eshraghi, H

    2010-01-01

    Using a set of relativistic equations for plasmas with warm electrons and cold ions, we have investigated the effects of trapped electrons in the propagation of an electrosound wave and discussed the possibility of the formation of electromagnetic solitons in a plasma. The effective potential energy and deviations of the electron and ion number densities in this relativistic model have been found. We have obtained the governing equations for the amplitude of the HF field with relativistic corrections. In order to show the destructive impact of the trapped electrons on the solitary wave, a relativistic effective potential and the governing equation have been found. It is shown that for certain values of the parameters the condition of localization of the HF amplitude is violated. In addition, it is shown that as the flow velocity of the plasma changes, the shape of the solitary wave shows two opposing behaviours, depending on whether the solitary wave velocity is larger than the flow velocity or smaller. Also, the existence of stationary solitary waves which are prohibited for nonrelativistic plasma has been predicted. Finally, we have obtained the Korteweg-de Vries equation showing the relativistic, trapping and nonlinearity effects.

  8. Multiwavelength Observations of Relativistic Jets from General Relativistic Magnetohydrodynamic Simulations

    Directory of Open Access Journals (Sweden)

    Richard Anantua

    2018-03-01

    Full Text Available This work summarizes a program intended to unify three burgeoning branches of the high-energy astrophysics of relativistic jets: general relativistic magnetohydrodynamic (GRMHD simulations of ever-increasing dynamical range, the microphysical theory of particle acceleration under relativistic conditions, and multiwavelength observations resolving ever-decreasing spatiotemporal scales. The process, which involves converting simulation output into time series of images and polarization maps that can be directly compared to observations, is performed by (1 self-consistently prescribing models for emission, absorption, and particle acceleration and (2 performing time-dependent polarized radiative transfer. M87 serves as an exemplary prototype for this investigation due to its prominent and well-studied jet and the imminent prospect of learning much more from Event Horizon Telescope (EHT observations this year. Synthetic observations can be directly compared with real observations for observational signatures such as jet instabilities, collimation, relativistic beaming, and polarization. The simplest models described adopt the standard equipartition hypothesis; other models calculate emission by relating it to current density or shear. These models are intended for application to the radio jet instead of the higher frequency emission, the disk and the wind, which will be subjects of future investigations.

  9. 78 FR 3479 - Notice of Public Meeting of Fort Scott Council

    Science.gov (United States)

    2013-01-16

    ... submitted on cards that will be provided at the meeting, via mail to Laurie Fox, Presidio Trust, 103... stated prominently at the beginning of the comments. The Trust will make available for public inspection... PRESIDIO TRUST Notice of Public Meeting of Fort Scott Council AGENCY: The Presidio Trust. ACTION...

  10. Meson exchange current corrections to magnetic moments in quantum hadro-dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Morse, T M; Price, C E; Shepard, J R [Colorado Univ., Boulder (USA). Dept. of Physics

    1990-11-15

    We have calculated pion exchange current corrections to the magnetic moments of closed shell {plus minus}1 particle nuclei near A=16 and 40 within the framework of quantum hadro-dynamics (QHD). We find that the correction is significant and that, in general, the agreement of the QHD isovector moments with experiment is worsened. Comparisons to previous non-relativistic calculations are also made. (orig.).

  11. Centre-of-mass corrections for the harmonic S+V potential model

    International Nuclear Information System (INIS)

    Palladino, B.E.; Ferreira, P.L.

    1986-01-01

    Center-of-Mass corrections to the mass spectrum and static properties of low-lying S-wave baryoins are discussed in the context of a relativistic, independent quark model, based on a Dirac equation, with equally mixed scalar and vector confining potential of harmomic type. A more stisfactory fitting of the parameters involved is obtained, as compared with previous treatments which CM corrections were neglected. (Author) [pt

  12. An introduction to relativistic hydrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Font, Jose A [Departamento de AstronomIa y AstrofIsica, Universidad de Valencia, Dr. Moliner 50, 46100 Burjassot (Valencia) (Spain)

    2007-11-15

    We review formulations of the equations of (inviscid) general relativistic hydrodynamics and (ideal) magnetohydrodynamics, along with methods for their numerical solution. Both systems can be cast as first-order, hyperbolic systems of conservation laws, following the explicit choice of an Eulerian observer and suitable fluid and magnetic field variables. During the last fifteen years, the so-called (upwind) high-resolution shock-capturing schemes based on Riemann solvers have been successfully extended from classical to relativistic fluid dynamics, both special and general. Nowadays, general relativistic hydrodynamical simulations in relativistic astrophysics are routinely performed, particularly within the test-fluid approximation but also for dynamical spacetimes. While such advances also hold true in the case of the MHD equations, the astrophysical applications investigated so far are still limited, yet the field is bound to witness major developments in the near future. The article also presents a brief overview of numerical techniques, providing state-of-the-art examples of their applicability to general relativistic fluids and magneto-fluids in characteristic scenarios of relativistic astrophysics.

  13. Plasma relativistic microwave electronics

    International Nuclear Information System (INIS)

    Kuzelev, M.V.; Loza, O.T.; Rukhadze, A.A.; Strelkov, P.S.; Shkvarunets, A.G.

    2001-01-01

    One formulated the principles of plasma relativistic microwave electronics based on the induced Cherenkov radiation of electromagnetic waves at interaction of a relativistic electron beam with plasma. One developed the theory of plasma relativistic generators and accelerators of microwave radiation, designed and studied the prototypes of such devices. One studied theoretically the mechanisms of radiation, calculated the efficiencies and the frequency spectra of plasma relativistic microwave generators and accelerators. The theory findings are proved by the experiment: intensity of the designed sources of microwave radiation is equal to 500 μW, the frequency of microwave radiation is increased by 7 times (from 4 up to 28 GHz), the width of radiation frequency band may vary from several up to 100%. The designed sources of microwave radiation are no else compared in the electronics [ru

  14. Relativistic particle in a box

    OpenAIRE

    Alberto, P.; Fiolhais, Carlos; Gil, Victor

    1996-01-01

    The problem of a relativistic spin 1/2 particle confined to a one-dimensional box is solved in a way that resembles closely the solution of the well known quantum-mechanical textbook problem of a non-relativistic particle in a box. The energy levels and probability density are computed and compared with the non-relativistic case

  15. Relativistic hydrodynamics

    CERN Document Server

    Luciano, Rezzolla

    2013-01-01

    Relativistic hydrodynamics is a very successful theoretical framework to describe the dynamics of matter from scales as small as those of colliding elementary particles, up to the largest scales in the universe. This book provides an up-to-date, lively, and approachable introduction to the mathematical formalism, numerical techniques, and applications of relativistic hydrodynamics. The topic is typically covered either by very formal or by very phenomenological books, but is instead presented here in a form that will be appreciated both by students and researchers in the field. The topics covered in the book are the results of work carried out over the last 40 years, which can be found in rather technical research articles with dissimilar notations and styles. The book is not just a collection of scattered information, but a well-organized description of relativistic hydrodynamics, from the basic principles of statistical kinetic theory, down to the technical aspects of numerical methods devised for the solut...

  16. PEOPLE IN PHYSICS: Interview with Scott Durow, Software Engineer, Oxford

    Science.gov (United States)

    Burton, Conducted by Paul

    1998-05-01

    Scott Durow was educated at Bootham School, York. He studied Physics, Mathematics and Chemistry to A-level and went on to Nottingham University to read Medical Physics. After graduating from Nottingham he embarked on his present career as a Software Engineer based in Oxford. He is a musician in his spare time, as a member of a band and playing the French horn.

  17. Study of quantum spin correlations of relativistic electron pairs - Testing nonlocality of relativistic quantum mechanics

    International Nuclear Information System (INIS)

    Bodek, K.; Rozpędzik, D.; Zejma, J.; Caban, P.; Rembieliński, J.; Włodarczyk, M.; Ciborowski, J.; Enders, J.; Köhler, A.; Kozela, A.

    2013-01-01

    The Polish-German project QUEST aims at studying relativistic quantum spin correlations of the Einstein-Rosen-Podolsky-Bohm type, through measurement of the correlation function and the corresponding probabilities for relativistic electron pairs. The results will be compared to theoretical predictions obtained by us within the framework of relativistic quantum mechanics, based on assumptions regarding the form of the relativistic spin operator. Agreement or divergence will be interpreted in the context of non-uniqueness of the relativistic spin operator in quantum mechanics as well as dependence of the correlation function on the choice of observables representing the spin. Pairs of correlated electrons will originate from the Mo/ller scattering of polarized 15 MeV electrons provided by the superconducting Darmstadt electron linear accelerator S-DALINAC, TU Darmstadt, incident on a Be target. Spin projections will be determined using the Mott polarimetry technique. Measurements (starting 2013) are planned for longitudinal and transverse beam polarizations and different orientations of the beam polarization vector w.r.t. the Mo/ller scattering plane. This is the first project to study relativistic spin correlations for particles with mass

  18. O(α2) corrections to the orthopositronium decay rate

    International Nuclear Information System (INIS)

    Faustov, R.N.; Martynenko, A.P.; Saleev, V.A.

    1995-01-01

    Relativistic O(α 2 ) corrections to the orthopositronium decay rate are calculated on the basis of a local quasipotential equation. We take into account the necessary contributions resulting from the amplitude of three-photon decay, the normalization condition of the wave function, and the second-order perturbation theory

  19. Gamma-Ray Burst Dynamics and Afterglow Radiation from Adaptive Mesh Refinement, Special Relativistic Hydrodynamic Simulations

    Science.gov (United States)

    De Colle, Fabio; Granot, Jonathan; López-Cámara, Diego; Ramirez-Ruiz, Enrico

    2012-02-01

    We report on the development of Mezcal-SRHD, a new adaptive mesh refinement, special relativistic hydrodynamics (SRHD) code, developed with the aim of studying the highly relativistic flows in gamma-ray burst sources. The SRHD equations are solved using finite-volume conservative solvers, with second-order interpolation in space and time. The correct implementation of the algorithms is verified by one-dimensional (1D) and multi-dimensional tests. The code is then applied to study the propagation of 1D spherical impulsive blast waves expanding in a stratified medium with ρvpropr -k , bridging between the relativistic and Newtonian phases (which are described by the Blandford-McKee and Sedov-Taylor self-similar solutions, respectively), as well as to a two-dimensional (2D) cylindrically symmetric impulsive jet propagating in a constant density medium. It is shown that the deceleration to nonrelativistic speeds in one dimension occurs on scales significantly larger than the Sedov length. This transition is further delayed with respect to the Sedov length as the degree of stratification of the ambient medium is increased. This result, together with the scaling of position, Lorentz factor, and the shock velocity as a function of time and shock radius, is explained here using a simple analytical model based on energy conservation. The method used for calculating the afterglow radiation by post-processing the results of the simulations is described in detail. The light curves computed using the results of 1D numerical simulations during the relativistic stage correctly reproduce those calculated assuming the self-similar Blandford-McKee solution for the evolution of the flow. The jet dynamics from our 2D simulations and the resulting afterglow light curves, including the jet break, are in good agreement with those presented in previous works. Finally, we show how the details of the dynamics critically depend on properly resolving the structure of the relativistic flow.

  20. GAMMA-RAY BURST DYNAMICS AND AFTERGLOW RADIATION FROM ADAPTIVE MESH REFINEMENT, SPECIAL RELATIVISTIC HYDRODYNAMIC SIMULATIONS

    International Nuclear Information System (INIS)

    De Colle, Fabio; Ramirez-Ruiz, Enrico; Granot, Jonathan; López-Cámara, Diego

    2012-01-01

    We report on the development of Mezcal-SRHD, a new adaptive mesh refinement, special relativistic hydrodynamics (SRHD) code, developed with the aim of studying the highly relativistic flows in gamma-ray burst sources. The SRHD equations are solved using finite-volume conservative solvers, with second-order interpolation in space and time. The correct implementation of the algorithms is verified by one-dimensional (1D) and multi-dimensional tests. The code is then applied to study the propagation of 1D spherical impulsive blast waves expanding in a stratified medium with ρ∝r –k , bridging between the relativistic and Newtonian phases (which are described by the Blandford-McKee and Sedov-Taylor self-similar solutions, respectively), as well as to a two-dimensional (2D) cylindrically symmetric impulsive jet propagating in a constant density medium. It is shown that the deceleration to nonrelativistic speeds in one dimension occurs on scales significantly larger than the Sedov length. This transition is further delayed with respect to the Sedov length as the degree of stratification of the ambient medium is increased. This result, together with the scaling of position, Lorentz factor, and the shock velocity as a function of time and shock radius, is explained here using a simple analytical model based on energy conservation. The method used for calculating the afterglow radiation by post-processing the results of the simulations is described in detail. The light curves computed using the results of 1D numerical simulations during the relativistic stage correctly reproduce those calculated assuming the self-similar Blandford-McKee solution for the evolution of the flow. The jet dynamics from our 2D simulations and the resulting afterglow light curves, including the jet break, are in good agreement with those presented in previous works. Finally, we show how the details of the dynamics critically depend on properly resolving the structure of the relativistic flow.

  1. GAMMA-RAY BURST DYNAMICS AND AFTERGLOW RADIATION FROM ADAPTIVE MESH REFINEMENT, SPECIAL RELATIVISTIC HYDRODYNAMIC SIMULATIONS

    Energy Technology Data Exchange (ETDEWEB)

    De Colle, Fabio; Ramirez-Ruiz, Enrico [Astronomy and Astrophysics Department, University of California, Santa Cruz, CA 95064 (United States); Granot, Jonathan [Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel); Lopez-Camara, Diego [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, Ap. 70-543, 04510 D.F. (Mexico)

    2012-02-20

    We report on the development of Mezcal-SRHD, a new adaptive mesh refinement, special relativistic hydrodynamics (SRHD) code, developed with the aim of studying the highly relativistic flows in gamma-ray burst sources. The SRHD equations are solved using finite-volume conservative solvers, with second-order interpolation in space and time. The correct implementation of the algorithms is verified by one-dimensional (1D) and multi-dimensional tests. The code is then applied to study the propagation of 1D spherical impulsive blast waves expanding in a stratified medium with {rho}{proportional_to}r{sup -k}, bridging between the relativistic and Newtonian phases (which are described by the Blandford-McKee and Sedov-Taylor self-similar solutions, respectively), as well as to a two-dimensional (2D) cylindrically symmetric impulsive jet propagating in a constant density medium. It is shown that the deceleration to nonrelativistic speeds in one dimension occurs on scales significantly larger than the Sedov length. This transition is further delayed with respect to the Sedov length as the degree of stratification of the ambient medium is increased. This result, together with the scaling of position, Lorentz factor, and the shock velocity as a function of time and shock radius, is explained here using a simple analytical model based on energy conservation. The method used for calculating the afterglow radiation by post-processing the results of the simulations is described in detail. The light curves computed using the results of 1D numerical simulations during the relativistic stage correctly reproduce those calculated assuming the self-similar Blandford-McKee solution for the evolution of the flow. The jet dynamics from our 2D simulations and the resulting afterglow light curves, including the jet break, are in good agreement with those presented in previous works. Finally, we show how the details of the dynamics critically depend on properly resolving the structure of the

  2. Finality regained: A co-algebraic study of Scott-sets and Multisets

    NARCIS (Netherlands)

    D'Agostino, G.; Visser, A.

    1999-01-01

    In this paper we study iterated circular multisets in a coalgebraic frame- work. We will produce two essentially different universes of such sets. The unisets of the first universe will be shown to be precisely the sets of the Scott universe. The unisets of the second universe will be precisely

  3. Scott Foresman-Addison Wesley Elementary Mathematics. What Works Clearinghouse Intervention Report

    Science.gov (United States)

    What Works Clearinghouse, 2010

    2010-01-01

    "Scott Foresman-Addison Wesley Elementary Mathematics" is a core curriculum for students at all ability levels in prekindergarten through grade 6. The program supports students' understanding of key math concepts and skills and covers a range of mathematical content across grades. The What Works Clearinghouse (WWC) reviewed 12 studies on…

  4. Relativistic viscoelastic fluid mechanics

    International Nuclear Information System (INIS)

    Fukuma, Masafumi; Sakatani, Yuho

    2011-01-01

    A detailed study is carried out for the relativistic theory of viscoelasticity which was recently constructed on the basis of Onsager's linear nonequilibrium thermodynamics. After rederiving the theory using a local argument with the entropy current, we show that this theory universally reduces to the standard relativistic Navier-Stokes fluid mechanics in the long time limit. Since effects of elasticity are taken into account, the dynamics at short time scales is modified from that given by the Navier-Stokes equations, so that acausal problems intrinsic to relativistic Navier-Stokes fluids are significantly remedied. We in particular show that the wave equations for the propagation of disturbance around a hydrostatic equilibrium in Minkowski space-time become symmetric hyperbolic for some range of parameters, so that the model is free of acausality problems. This observation suggests that the relativistic viscoelastic model with such parameters can be regarded as a causal completion of relativistic Navier-Stokes fluid mechanics. By adjusting parameters to various values, this theory can treat a wide variety of materials including elastic materials, Maxwell materials, Kelvin-Voigt materials, and (a nonlinearly generalized version of) simplified Israel-Stewart fluids, and thus we expect the theory to be the most universal description of single-component relativistic continuum materials. We also show that the presence of strains and the corresponding change in temperature are naturally unified through the Tolman law in a generally covariant description of continuum mechanics.

  5. Relativistic viscoelastic fluid mechanics.

    Science.gov (United States)

    Fukuma, Masafumi; Sakatani, Yuho

    2011-08-01

    A detailed study is carried out for the relativistic theory of viscoelasticity which was recently constructed on the basis of Onsager's linear nonequilibrium thermodynamics. After rederiving the theory using a local argument with the entropy current, we show that this theory universally reduces to the standard relativistic Navier-Stokes fluid mechanics in the long time limit. Since effects of elasticity are taken into account, the dynamics at short time scales is modified from that given by the Navier-Stokes equations, so that acausal problems intrinsic to relativistic Navier-Stokes fluids are significantly remedied. We in particular show that the wave equations for the propagation of disturbance around a hydrostatic equilibrium in Minkowski space-time become symmetric hyperbolic for some range of parameters, so that the model is free of acausality problems. This observation suggests that the relativistic viscoelastic model with such parameters can be regarded as a causal completion of relativistic Navier-Stokes fluid mechanics. By adjusting parameters to various values, this theory can treat a wide variety of materials including elastic materials, Maxwell materials, Kelvin-Voigt materials, and (a nonlinearly generalized version of) simplified Israel-Stewart fluids, and thus we expect the theory to be the most universal description of single-component relativistic continuum materials. We also show that the presence of strains and the corresponding change in temperature are naturally unified through the Tolman law in a generally covariant description of continuum mechanics.

  6. Relativistic Coulomb Fission

    Science.gov (United States)

    Norbury, John W.

    1992-01-01

    Nuclear fission reactions induced by the electromagnetic field of relativistic nuclei are studied for energies relevant to present and future relativistic heavy ion accelerators. Cross sections are calculated for U-238 and Pu-239 fission induced by C-12, Si-28, Au-197, and U-238 projectiles. It is found that some of the cross sections can exceed 10 b.

  7. Relativistic Shock Acceleration

    International Nuclear Information System (INIS)

    Duffy, P.; Downes, T.P.; Gallant, Y.A.; Kirk, J.G.

    1999-01-01

    In this paper we briefly review the basic theory of shock waves in relativistic hydrodynamics and magneto-hydrodynamics, emphasising some astrophysically interesting cases. We then present an overview of the theory of particle acceleration at such shocks describing the methods used to calculate the spectral indices of energetic particles. Recent results on acceleration at ultra-relativistic shocks are discussed. (author)

  8. Marion duPont Scott Equine Medical Center offers new treatment for lameness

    OpenAIRE

    Musick, Marjorie

    2006-01-01

    The Virginia-Maryland Regional College of Veterinary Medicine's Marion duPont Scott Equine Medical Center has begun offering a new therapy for treating lameness associated with osteoarthritis and cartilage damage in horses, a problem that affects all segments of the equine industry.

  9. 100 years since Scott reached the pole: a century of learning about the physiological demands of Antarctica.

    Science.gov (United States)

    Halsey, Lewis G; Stroud, Mike A

    2012-04-01

    The 1910-1913 Terra Nova Expedition to the Antarctic, led by Captain Robert Falcon Scott, was a venture of science and discovery. It is also a well-known story of heroism and tragedy since his quest to reach the South Pole and conduct research en route, while successful was also fateful. Although Scott and his four companions hauled their sledges to the Pole, they died on their return journey either directly or indirectly from the extreme physiological stresses they experienced. One hundred years on, our understanding of such stresses caused by Antarctic extremes and how the body reacts to severe exercise, malnutrition, hypothermia, high altitude, and sleep deprivation has greatly advanced. On the centenary of Scott's expedition to the bottom of the Earth, there is still controversy surrounding whether the deaths of those five men could have, or should have, been avoided. This paper reviews present-day knowledge related to the physiology of sustained man-hauling in Antarctica and contrasts this with the comparative ignorance about these issues around the turn of the 20th century. It closes by considering whether, with modern understanding about the effects of such a scenario on the human condition, Scott could have prepared and managed his team differently and so survived the epic 1,600-mile journey. The conclusion is that by carrying rations with a different composition of macromolecules, enabling greater calorific intake at similar overall weight, Scott might have secured the lives of some of the party, and it is also possible that enhanced levels of vitamin C in his rations, albeit difficult to achieve in 1911, could have significantly improved their survival chances. Nevertheless, even with today's knowledge, a repeat attempt at his expedition would by no means be bound to succeed.

  10. Logarithmic corrections of the two-body QED problem

    International Nuclear Information System (INIS)

    Khriplovich, I.B.; Mil'shtejn, A.I.; Elkhovskij, A.S.

    1992-01-01

    The logarithmic part of the Lamb shift, the contribution of the relative order α 3 log(1/α) to the atomic state energy, is related to the usual infrared divergence. For positronium, the calculated logarithmic correction does not vanish only in n 3 S 1 states and constitutes 5/24mα 6 log(1/α)/m 3 . Logarithmic corrections of the relative order α 2 log(1/α) to the positronium decay rate are also of the relativistic origin and can be easily computed within the same approach. 31 refs.; 11 figs

  11. Relativistic impulse dynamics.

    Science.gov (United States)

    Swanson, Stanley M

    2011-08-01

    Classical electrodynamics has some annoying rough edges. The self-energy of charges is infinite without a cutoff. The calculation of relativistic trajectories is difficult because of retardation and an average radiation reaction term. By reconceptuallizing electrodynamics in terms of exchanges of impulses rather than describing it by forces and potentials, we eliminate these problems. A fully relativistic theory using photonlike null impulses is developed. Numerical calculations for a two-body, one-impulse-in-transit model are discussed. A simple relationship between center-of-mass scattering angle and angular momentum was found. It reproduces the Rutherford cross section at low velocities and agrees with the leading term of relativistic distinguishable-particle quantum cross sections (Møller, Mott) when the distance of closest approach is larger than the Compton wavelength of the particle. Magnetism emerges as a consequence of viewing retarded and advanced interactions from the vantage point of an instantaneous radius vector. Radiation reaction becomes the local conservation of energy-momentum between the radiating particle and the emitted impulse. A net action is defined that could be used in developing quantum dynamics without potentials. A reinterpretation of Newton's laws extends them to relativistic motion.

  12. Third-order non-Coulomb correction to the S-wave quarkonium wave functions at the origin

    International Nuclear Information System (INIS)

    Beneke, M.; Kiyo, Y.; Schuller, K.

    2008-01-01

    We compute the third-order correction to the S-wave quarkonium wave functions |ψ n (0)| 2 at the origin from non-Coulomb potentials in the effective non-relativistic Lagrangian. Together with previous results on the Coulomb correction and the ultrasoft correction computed in a companion paper, this completes the third-order calculation up to a few unknown matching coefficients. Numerical estimates of the new correction for bottomonium and toponium are given

  13. Center-of-mass corrections in the S+V potential model

    International Nuclear Information System (INIS)

    Palladino, B.E.

    1987-02-01

    Center-of-mass corrections to the mass spectrum and static properties of low-lying S-wave baryons and mesons are discussed in the context of a relativistic, independent quark model, based on a Dirac equation, with equally mixed scalar (S) and vector (V) confining potential. (author) [pt

  14. Scattering in relativistic particle mechanics

    International Nuclear Information System (INIS)

    De Bievre, S.

    1986-01-01

    The problem of direct interaction in relativistic particle mechanics has been extensively studied and a variety of models has been proposed avoiding the conclusions of the so-called no-interaction theorems. In this thesis the authors studied scattering in the relativistic two-body problem. He uses the results to analyze gauge invariance in Hamiltonian constraint models and the uniqueness of the symplectic structure in manifestly covariant relativistic particle mechanics. A general geometric framework that underlies approaches to relativistic particle mechanics is presented and the kinematic properties of the scattering transformation, i.e., those properties that arise solely from the invariance of the theory under the Poincare group are studied. The second part of the analysis of the relativistic two-body scattering problem is devoted to the dynamical properties of the scattering process. Using general geometric arguments, gauge invariance of the scattering transformation in the Todorov-Komar Hamiltonian constraint model is proved. Finally, quantization of the models is discussed

  15. Relativistic finite-temperature Thomas-Fermi model

    Science.gov (United States)

    Faussurier, Gérald

    2017-11-01

    We investigate the relativistic finite-temperature Thomas-Fermi model, which has been proposed recently in an astrophysical context. Assuming a constant distribution of protons inside the nucleus of finite size avoids severe divergence of the electron density with respect to a point-like nucleus. A formula for the nuclear radius is chosen to treat any element. The relativistic finite-temperature Thomas-Fermi model matches the two asymptotic regimes, i.e., the non-relativistic and the ultra-relativistic finite-temperature Thomas-Fermi models. The equation of state is considered in detail. For each version of the finite-temperature Thomas-Fermi model, the pressure, the kinetic energy, and the entropy are calculated. The internal energy and free energy are also considered. The thermodynamic consistency of the three models is considered by working from the free energy. The virial question is also studied in the three cases as well as the relationship with the density functional theory. The relativistic finite-temperature Thomas-Fermi model is far more involved than the non-relativistic and ultra-relativistic finite-temperature Thomas-Fermi models that are very close to each other from a mathematical point of view.

  16. Susceptibilities of conserved quantities in relativistic heavy-ion collisions at RHIC

    International Nuclear Information System (INIS)

    Chatterjee, A.; Nayak, T.K.; Chatterjee, S.; Sahoo, N.R.

    2016-01-01

    The major motivations of heavy-ion collisions at ultra-relativistic energies is to study the formation of new form of matter, called quark-gluon plasma (QGP) and study its basic properties. Susceptibilities of conserved quantities, such as electric charge, baryon number and strangeness are sensitive to the onset of quantum chromodynamics (QCD) phase transition, and provide information on the mater produce in heavy ion collisions. In this work, we have used the Ultra-relativistic Quantum Molecular Dynamics (UrQMD) and the hadron resonance gas (HRG) models to analyzes the 2"n"d order susceptibilities of conserved charges. In experiments, one needs to understand and correct for detector acceptance, efficiency and limited particle identification in order to interpret the results and compare with theoretical calculations. The transverse momentum cutoff dependence of suitably normalized susceptibilities are proposed as useful observables to probe the properties of the medium at freezout

  17. Relativistic description of atomic nuclei

    International Nuclear Information System (INIS)

    Krutov, V.A.

    1985-01-01

    Papers on the relativistic description of nuclei are reviewed. The Brown and Rho ''small'' bag'' model is accepted for hardrons. Meson exchange potentials of the nucleon-nucleon interaction have been considered. Then the transition from a system of two interacting nucleons has been performed to the relativistic nucleus description as a multinucleon system on the basis of OBEP (one-boson exchange potential). The proboem of OPEP (one-pion-exchange potential) inclusion to a relativistic scheme is discussed. Simplicity of calculations and attractiveness of the Walecka model for specific computations and calculations was noted. The relativistic model of nucleons interacting through ''effective'' scalar and vector boson fields was used in the Walacka model for describing neutronaand nuclear mater matters

  18. Relativistic Jahn-Teller effect in tetrahedral systems

    International Nuclear Information System (INIS)

    Opalka, Daniel; Domcke, Wolfgang; Segado, Mireia; Poluyanov, Leonid V.

    2010-01-01

    It is shown that orbitally degenerate states in highly symmetric systems are split by Jahn-Teller forces which are of relativistic origin (that is, they arise from the spin-orbit coupling operator). For the example of tetrahedral systems, the relativistic Jahn-Teller Hamiltonians of orbitally degenerate electronic states with spin 1/2 are derived. While both electrostatic and relativistic forces contribute to the Jahn-Teller activity of vibrational modes of E and T 2 symmetry in 2 T 2 states of tetrahedral systems, the electrostatic and relativistic Jahn-Teller couplings are complementary for 2 E states: The E mode is Jahn-Teller active through electrostatic forces, while the T 2 mode is Jahn-Teller active through the relativistic forces. The relativistic Jahn-Teller parameters have been computed with ab initio relativistic electronic-structure methods. It is shown for the example of the tetrahedral cluster cations of the group V elements that the relativistic Jahn-Teller couplings can be of the same order of magnitude as the familiar electrostatic Jahn-Teller couplings for the heavier elements.

  19. Scott Foresman-Addison Wesley Elementary Mathematics. What Works Clearinghouse Intervention Report. Updated

    Science.gov (United States)

    What Works Clearinghouse, 2013

    2013-01-01

    "Scott Foresman-Addison Wesley Elementary Mathematics" is a core mathematics curriculum for students in prekindergarten through grade 6. The program aims to improve students' understanding of key math concepts through problem-solving instruction, hands-on activities, and math problems that involve reading and writing. The curriculum…

  20. The relativistic rocket

    Energy Technology Data Exchange (ETDEWEB)

    Antippa, Adel F [Departement de Physique, Universite du Quebec a Trois-Rivieres, Trois-Rivieres, Quebec G9A 5H7 (Canada)

    2009-05-15

    We solve the problem of the relativistic rocket by making use of the relation between Lorentzian and Galilean velocities, as well as the laws of superposition of successive collinear Lorentz boosts in the limit of infinitesimal boosts. The solution is conceptually simple, and technically straightforward, and provides an example of a powerful method that can be applied to a wide range of special relativistic problems of linear acceleration.

  1. Relativistic length agony continued

    Directory of Open Access Journals (Sweden)

    Redžić D.V.

    2014-01-01

    Full Text Available We made an attempt to remedy recent confusing treatments of some basic relativistic concepts and results. Following the argument presented in an earlier paper (Redžić 2008b, we discussed the misconceptions that are recurrent points in the literature devoted to teaching relativity such as: there is no change in the object in Special Relativity, illusory character of relativistic length contraction, stresses and strains induced by Lorentz contraction, and related issues. We gave several examples of the traps of everyday language that lurk in Special Relativity. To remove a possible conceptual and terminological muddle, we made a distinction between the relativistic length reduction and relativistic FitzGerald-Lorentz contraction, corresponding to a passive and an active aspect of length contraction, respectively; we pointed out that both aspects have fundamental dynamical contents. As an illustration of our considerations, we discussed briefly the Dewan-Beran-Bell spaceship paradox and the ‘pole in a barn’ paradox. [Projekat Ministarstva nauke Republike Srbije, br. 171028

  2. Making waves the story of Ruby Payne-Scott : Australian pioneer radio astronomer

    CERN Document Server

    Goss, M

    2013-01-01

    This book is an abbreviated, partly re-written version of "Under the Radar - The First Woman in Radio Astronomy: Ruby Payne-Scott." It addresses a general readership interested in historical and sociological aspects of astronomy and presents the biography of Ruby Payne-Scott (1912 – 1981). As the first female radio astronomer (and one of the first people in the world to consider radio astronomy), she made classic contributions to solar radio physics. She also played a major role in the design of the Australian government's Council for Scientific and Industrial Research radars, which were in turn of vital importance in the Southwest Pacific Theatre in World War II. These radars were used by military personnel from Australia, the United States and New Zealand. From a sociological perspective, her career offers many examples of the perils of being a female academic in the first half of the 20th century. Written in an engaging style and complemented by many historical photographs, this book offers fascinating...

  3. An investigation of relativistic microscopic optical potential in terms of relativistic Brueckner-Bethe-Goldstone equation

    International Nuclear Information System (INIS)

    Chen Baoqiu; Ma Zhongyu

    1992-01-01

    Relativistic microscopic optical potential of nucleon-nucleus is derived from the relativistic Brueckner-Bethe-Goldstone (RBBG) equation. The complex effective mass of a nucleon is determined by a fit to 200 MeV p- 40 Ca scattering data. The relativistic microscopic optical potentials with this effective mass are obtained from RBBG for p- 16O , 40 Ca, 90 Zr and 208 Pb scattering in energy range from 160 to 800 MeV. The microscopic optical potential is used to study the proton- 40 Ca scattering problem at 200 MeV. The results, such as differential cross section, analyzing power and spin rotation function are compared with those calculated from phenomenological relativistic optical potential

  4. Picosecond resolution on relativistic heavy ions' time-of-flight measurement

    International Nuclear Information System (INIS)

    Ebran, A.; Taieb, J.; Belier, G.; Chatillon, A.; Laurent, B.; Martin, J.-F.; Pellereau, E.

    2013-01-01

    We developed a time-of-flight measurement system for relativistic heavy ions with a requested resolution of 40 ps Full Width Half Maximum. Such a resolution is mandatory to assign the correct mass number to every fission fragment, identified using the Bρ-ToF-ΔE method with the recoil spectrometer designed for the SOFIA experiment—which hold very recently at GSI. To achieve such a performance, fast plastic scintillators read-out by dedicated photomultiplier tubes were chosen among other possible options. We have led several test-measurements from 2009 to 2011, in order to investigate: the effect of the addition of a quenching molecule in the scintillator's matrix, the influence of the detector's size and the impact of the photomultiplier tube. The contribution of the dedicated electronics is also characterized. Time-of-flight measurements were performed realized with electron pulses and relativistic heavy ions, respectively provided by the LASER driven electron–accelerator (ELSA) at CEA–DAM Ile-de-France and by the SIS18/FRS facility at GSI. The reported results exhibit a time resolution better than 20 ps Full Width Half Maximum reached with the last prototype at GSI with an Uranium beam. These results confirm that the SOFIA experiment should enable the measurement of the relativistic fission fragments' time-of-flight with the requested resolution

  5. Leading order relativistic chiral nucleon-nucleon interaction

    Science.gov (United States)

    Ren, Xiu-Lei; Li, Kai-Wen; Geng, Li-Sheng; Long, Bingwei; Ring, Peter; Meng, Jie

    2018-01-01

    Motivated by the successes of relativistic theories in studies of atomic/molecular and nuclear systems and the need for a relativistic chiral force in relativistic nuclear structure studies, we explore a new relativistic scheme to construct the nucleon-nucleon interaction in the framework of covariant chiral effective field theory. The chiral interaction is formulated up to leading order with covariant power counting and a Lorentz invariant chiral Lagrangian. We find that the relativistic scheme induces all six spin operators needed to describe the nuclear force. A detailed investigation of the partial wave potentials shows a better description of the {}1S0 and {}3P0 phase shifts than the leading order Weinberg approach, and similar to that of the next-to-leading order Weinberg approach. For the other partial waves with angular momenta J≥slant 1, the relativistic results are almost the same as their leading order non-relativistic counterparts. )

  6. RANKINE-HUGONIOT RELATIONS IN RELATIVISTIC COMBUSTION WAVES

    International Nuclear Information System (INIS)

    Gao Yang; Law, Chung K.

    2012-01-01

    As a foundational element describing relativistic reacting waves of relevance to astrophysical phenomena, the Rankine-Hugoniot relations classifying the various propagation modes of detonation and deflagration are analyzed in the relativistic regime, with the results properly degenerating to the non-relativistic and highly relativistic limits. The existence of negative-pressure downstream flows is noted for relativistic shocks, which could be of interest in the understanding of the nature of dark energy. Entropy analysis for relativistic shock waves is also performed for relativistic fluids with different equations of state (EoS), denoting the existence of rarefaction shocks in fluids with adiabatic index Γ < 1 in their EoS. The analysis further shows that weak detonations and strong deflagrations, which are rare phenomena in terrestrial environments, are expected to exist more commonly in astrophysical systems because of the various endothermic reactions present therein. Additional topics of relevance to astrophysical phenomena are also discussed.

  7. Magnetohydrodynamic waves with relativistic electrons and positrons in degenerate spin-1/2 astrophysical plasmas

    Science.gov (United States)

    Maroof, R.; Ali, S.; Mushtaq, A.; Qamar, A.

    2015-11-01

    Linear properties of high and low frequency waves are studied in an electron-positron-ion (e-p-i) dense plasma with spin and relativity effects. In a low frequency regime, the magnetohydrodynamic (MHD) waves, namely, the magnetoacoustic and Alfven waves are presented in a magnetized plasma, in which the inertial ions are taken as spinless and non-degenerate, whereas the electrons and positrons are treated quantum mechanically due to their smaller mass. Quantum corrections associated with the spin magnetization and density correlations for electrons and positrons are re-considered and a generalized dispersion relation for the low frequency MHD waves is derived to account for relativistic degeneracy effects. On the basis of angles of propagation, the dispersion relations of different modes are discussed analytically in a degenerate relativistic plasma. Numerical results reveal that electron and positron relativistic degeneracy effects significantly modify the dispersive properties of MHD waves. Our present analysis should be useful for understanding the collective interactions in dense astrophysical compact objects, like, the white dwarfs and in atmosphere of neutron stars.

  8. Magnetohydrodynamic waves with relativistic electrons and positrons in degenerate spin-1/2 astrophysical plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Maroof, R. [Department of Physics, Abdul Wali Khan University, Mardan 23200 (Pakistan); Department of Physics, University of Peshawar, Peshawar 25000 (Pakistan); National Center for Physics (NCP) at QAU Campus, Shahdra Valley Road, Islamabad 44000 (Pakistan); Ali, S. [National Center for Physics (NCP) at QAU Campus, Shahdra Valley Road, Islamabad 44000 (Pakistan); Mushtaq, A. [Department of Physics, Abdul Wali Khan University, Mardan 23200 (Pakistan); National Center for Physics (NCP) at QAU Campus, Shahdra Valley Road, Islamabad 44000 (Pakistan); Qamar, A. [Department of Physics, University of Peshawar, Peshawar 25000 (Pakistan)

    2015-11-15

    Linear properties of high and low frequency waves are studied in an electron-positron-ion (e-p-i) dense plasma with spin and relativity effects. In a low frequency regime, the magnetohydrodynamic (MHD) waves, namely, the magnetoacoustic and Alfven waves are presented in a magnetized plasma, in which the inertial ions are taken as spinless and non-degenerate, whereas the electrons and positrons are treated quantum mechanically due to their smaller mass. Quantum corrections associated with the spin magnetization and density correlations for electrons and positrons are re-considered and a generalized dispersion relation for the low frequency MHD waves is derived to account for relativistic degeneracy effects. On the basis of angles of propagation, the dispersion relations of different modes are discussed analytically in a degenerate relativistic plasma. Numerical results reveal that electron and positron relativistic degeneracy effects significantly modify the dispersive properties of MHD waves. Our present analysis should be useful for understanding the collective interactions in dense astrophysical compact objects, like, the white dwarfs and in atmosphere of neutron stars.

  9. Relativistic quantum mechanics

    International Nuclear Information System (INIS)

    Ollitrault, J.Y.

    1998-12-01

    These notes form an introduction to relativistic quantum mechanics. The mathematical formalism has been reduced to the minimum in order to enable the reader to calculate elementary physical processes. The second quantification and the field theory are the logical followings of this course. The reader is expected to know analytical mechanics (Lagrangian and Hamiltonian), non-relativistic quantum mechanics and some basis of restricted relativity. The purpose of the first 3 chapters is to define the quantum mechanics framework for already known notions about rotation transformations, wave propagation and restricted theory of relativity. The next 3 chapters are devoted to the application of relativistic quantum mechanics to a particle with 0,1/5 and 1 spin value. The last chapter deals with the processes involving several particles, these processes require field theory framework to be thoroughly described. (A.C.)

  10. Higher order corrections to energy levels of muonic atoms

    International Nuclear Information System (INIS)

    Rinker, G.A. Jr.; Steffen, R.M.

    1975-08-01

    In order to facilitate the analysis of muonic x-ray spectra, the results of numerical computations of all higher order quantum electrodynamical corrections to the energy levels of muonic atoms are presented in tabular and graphical form. These corrections include the vacuum polarization corrections caused by emission and reabsorption of virtual electron pairs to all orders, including ''double-bubble'' and ''cracked-egg'' diagrams. An estimate of the Delbruecke scattering-type correction is presented. The Lamb-shift (second- and fourth-order vertex) corrections have been calculated including the correction for the anomalous magnetic moment of the muon. The relativistic nuclear motion (or recoil) correction as well as the correction caused by the screening of the atomic electrons is presented in graphs. For the sake of completeness a graph of the nuclear polarization as computed on the basis of Chen's approach has been included. All calculations were made with a two-parameter Fermi distribution of the nuclear charge density. 7 figures, 23 references

  11. Relativistic Quantum Revivals

    International Nuclear Information System (INIS)

    Strange, P.

    2010-01-01

    Quantum revivals are now a well-known phenomena within nonrelativistic quantum theory. In this Letter we display the effects of relativity on revivals and quantum carpets. It is generally believed that revivals do not occur within a relativistic regime. Here we show that while this is generally true, it is possible, in principle, to set up wave packets with specific mathematical properties that do exhibit exact revivals within a fully relativistic theory.

  12. Towards relativistic quantum geometry

    Energy Technology Data Exchange (ETDEWEB)

    Ridao, Luis Santiago [Instituto de Investigaciones Físicas de Mar del Plata (IFIMAR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mar del Plata (Argentina); Bellini, Mauricio, E-mail: mbellini@mdp.edu.ar [Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Funes 3350, C.P. 7600, Mar del Plata (Argentina); Instituto de Investigaciones Físicas de Mar del Plata (IFIMAR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mar del Plata (Argentina)

    2015-12-17

    We obtain a gauge-invariant relativistic quantum geometry by using a Weylian-like manifold with a geometric scalar field which provides a gauge-invariant relativistic quantum theory in which the algebra of the Weylian-like field depends on observers. An example for a Reissner–Nordström black-hole is studied.

  13. STS-101 Crew Interview / Scott Horowitz

    Science.gov (United States)

    2000-01-01

    Live footage of a preflight interview with Pilot Scott J. Horowitz is seen. The interview addresses many different questions including why Horowitz became an astronaut, the events that led to his interest, any role models that he had, and his inspiration. Other interesting information that this one-on-one interview discusses is the reaction and reasons for the splitting-up of the objectives for STS-101 with STS-106. Horowitz also mentions the scheduled space-walk, docking with the International Space Station (ISS), the new glass cockpit of Atlantis, the repairs of equipment and change of the batteries. Horowitz also discusses his responsibilities during the space-walk, and docking of the spacecraft. He stresses that he will have an added challenge during the space-walk, his inability to see where he needs to place the Extravehicular Activities (EVA) crew.

  14. Radiation dominated relativistic current sheets

    International Nuclear Information System (INIS)

    Jaroschek, C.H.

    2008-01-01

    Relativistic Current Sheets (RCS) feature plasma instabilities considered as potential key to magnetic energy dissipation and non-thermal particle generation in Poynting flux dominated plasma flows. We show in a series of kinetic plasma simulations that the physical nature of non-linear RCS evolution changes in the presence of incoherent radiation losses: In the ultra-relativistic regime (i.e. magnetization parameter sigma = 104 defined as the ratio of magnetic to plasma rest frame energy density) the combination of non-linear RCS dynamics and synchrotron emission introduces a temperature anisotropy triggering the growth of the Relativistic Tearing Mode (RTM). As direct consequence the RTM prevails over the Relativistic Drift Kink (RDK) Mode as competitive RCS instability. This is in contrast to the previously studied situation of weakly relativistic RCS (sigma ∼ 1) where the RDK is dominant and most of the plasma is thermalized. The simulations witness the typical life cycle of ultra-relativistic RCS evolving from a violent radiation induced collapse towards a radiation quiescent state in rather classical Sweet-Parker topology. Such a transition towards Sweet-Parker configuration in the late non-linear evolution has immediate consequences for the efficiency of magnetic energy dissipation and non-thermal particle generation. Ceasing dissipation rates directly affect our present understanding of non-linear RCS evolution in conventional striped wind scenarios. (author)

  15. On the gluonic correction to lepton-pair decays in a relativistic quarkonium model

    International Nuclear Information System (INIS)

    Ito, Hitoshi

    1987-01-01

    The gluonic correction to the leptonic decay of the heavy vector meson is investigated by using the perturbation theory to the order α s . The on-mass-shell approximation is assumed for the constituent quarks so that we assure the gauge independence of the correction. The decay rates in the model based on the Bethe-Salpeter equation are also shown, in which the gluonic correction with a high-momentum cutoff is calculated for the off-shell quarks. It is shown that the static approximation to the correction factor (1 - 16α s /3π) is not adequate and the gluonic correction does not suppress but enhance the decay rates of the ground states for the c anti c and b anti b systems. (author)

  16. Relativistic gas in a Schwarzschild metric

    International Nuclear Information System (INIS)

    Kremer, Gilberto M

    2013-01-01

    A relativistic gas in a Schwarzschild metric is studied within the framework of a relativistic Boltzmann equation in the presence of gravitational fields, where Marle’s model for the collision operator of the Boltzmann equation is employed. The transport coefficients of the bulk and shear viscosities and thermal conductivity are determined from the Chapman–Enskog method. It is shown that the transport coefficients depend on the gravitational potential. Expressions for the transport coefficients in the presence of weak gravitational fields in the non-relativistic (low temperature) and ultra-relativistic (high temperature) limiting cases are given. Apart from the temperature gradient the heat flux has two relativistic terms. The first one, proposed by Eckart, is due to the inertia of energy and represents an isothermal heat flux when matter is accelerated. The other, suggested by Tolman, is proportional to the gravitational potential gradient and indicates that—in the absence of an acceleration field—a state of equilibrium of a relativistic gas in a gravitational field can be attained only if the temperature gradient is counterbalanced by a gravitational potential gradient. (paper)

  17. STS-82 Pilot Scott J. 'Doc' Horowitz Suit Up

    Science.gov (United States)

    1997-01-01

    STS-82 Pilot Scott J. 'Doc' Horowitz puts on a glove of his launch and entry suit with assistance from a suit technician in the Operations and Checkout Building. This is Horowitz''';s second space flight. He and the six other crew members will depart shortly for Launch Pad 39A, where the Space Shuttle Discovery awaits liftoff on a 10-day mission to service the orbiting Hubble Space Telescope (HST). This will be the second HST servicing mission. Four back-to-back spacewalks are planned.

  18. Extended Galilean symmetries of non-relativistic strings

    Energy Technology Data Exchange (ETDEWEB)

    Batlle, Carles [Departament de Matemàtiques and IOC, Universitat Politècnica de Catalunya, EPSEVG,Av. V. Balaguer 1, E-08808 Vilanova i la Geltrú (Spain); Gomis, Joaquim; Not, Daniel [Departament de Física Quàntica i Astrofísica and Institut de Ciències del Cosmos (ICCUB),Universitat de Barcelona,Martí i Franquès 1, E-08028 Barcelona (Spain)

    2017-02-09

    We consider two non-relativistic strings and their Galilean symmetries. These strings are obtained as the two possible non-relativistic (NR) limits of a relativistic string. One of them is non-vibrating and represents a continuum of non-relativistic massless particles, and the other one is a non-relativistic vibrating string. For both cases we write the generator of the most general point transformation and impose the condition of Noether symmetry. As a result we obtain two sets of non-relativistic Killing equations for the vector fields that generate the symmetry transformations. Solving these equations shows that NR strings exhibit two extended, infinite dimensional space-time symmetries which contain, as a subset, the Galilean symmetries. For each case, we compute the associated conserved charges and discuss the existence of non-central extensions.

  19. The Paradoxical World of The Great Gatsby by F. Scott Fitzgerald

    OpenAIRE

    ŠANDEROVÁ, Milada

    2015-01-01

    In The Great Gatsby F. Scott Fitzgerald created a world of fundamental contradictions. Whether talking about the way the whole society works, the immense differences among social classes, the characters, or the tension between attributes of a particular character. Therefore, the goal of this bachelor thesis is to analyse the world of this novel as the world built on paradoxes.

  20. Relativistic generalization of strong plasma turbulence

    International Nuclear Information System (INIS)

    Chian, A.C.-L.

    1982-01-01

    Two fundamental electrostatic modes of an unmagnetized plasma, namely, ion acoustic mode and Langumir mode are studied. Previous theories are generalized to include the effect of relativistic mass variations. The existence of relativistic ion acoustic solitons is demonstrated. In addition, it is shown that simple, relativistic Langumir solitons do not exist in a infinite plasma. (L.C.) [pt

  1. The Wigner function in the relativistic quantum mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Kowalski, K., E-mail: kowalski@uni.lodz.pl; Rembieliński, J.

    2016-12-15

    A detailed study is presented of the relativistic Wigner function for a quantum spinless particle evolving in time according to the Salpeter equation. - Highlights: • We study the Wigner function for a quantum spinless relativistic particle. • We discuss the relativistic Wigner function introduced by Zavialov and Malokostov. • We introduce relativistic Wigner function based on the standard definition. • We find analytic expressions for relativistic Wigner functions.

  2. New relativistic generalization of the Heisenberg commutation relations

    International Nuclear Information System (INIS)

    Bohm, A.; Loewe, M.; Magnollay, P.; Tarlini, M.; Aldinger, R.R.; Kielanowski, P.

    1984-01-01

    A relativistic generalization of the Heisenberg commutation relations is suggested which is different from the conventional ones used for the intrinsic coordinates and momenta in the relativistic oscillator model and the relativistic string. This new quantum relativistic oscillator model is determined by the requirement that it gives a unified description of relativistic vibrations and rotations and contracts in the nonrelativistic limit c -1 →0 into the usual nonrelativistic harmonic oscillator

  3. 76 FR 71611 - Notice of Establishment of the Fort Winfield Scott Advisory Committee

    Science.gov (United States)

    2011-11-18

    ... (``Committee''). The Committee will advise the Executive Director of the Presidio Trust on matters pertaining... of once every three months. Nominations: The Presidio Trust will consider nominations of all... PRESIDIO TRUST Notice of Establishment of the Fort Winfield Scott Advisory Committee AGENCY: The...

  4. Random phase approximation in relativistic approach

    International Nuclear Information System (INIS)

    Ma Zhongyu; Yang Ding; Tian Yuan; Cao Ligang

    2009-01-01

    Some special issues of the random phase approximation(RPA) in the relativistic approach are reviewed. A full consistency and proper treatment of coupling to the continuum are responsible for the successful application of the RPA in the description of dynamical properties of finite nuclei. The fully consistent relativistic RPA(RRPA) requires that the relativistic mean filed (RMF) wave function of the nucleus and the RRPA correlations are calculated in a same effective Lagrangian and the consistent treatment of the Dirac sea of negative energy states. The proper treatment of the single particle continuum with scattering asymptotic conditions in the RMF and RRPA is discussed. The full continuum spectrum can be described by the single particle Green's function and the relativistic continuum RPA is established. A separable form of the paring force is introduced in the relativistic quasi-particle RPA. (authors)

  5. Leading quantum gravitational corrections to QED

    OpenAIRE

    Butt, M. S.

    2006-01-01

    We consider the leading post-Newtonian and quantum corrections to the non-relativistic scattering amplitude of charged spin-1/2 fermions in the combined theory of general relativity and QED. The coupled Dirac-Einstein system is treated as an effective field theory. This allows for a consistent quantization of the gravitational field. The appropriate vertex rules are extracted from the action, and the non-analytic contributions to the 1-loop scattering matrix are calculated in the non-relativi...

  6. Relativistic Killingbeck energy states under external magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Eshghi, M. [Islamic Azad University, Researchers and Elite Club, Central Tehran Branch, Tehran (Iran, Islamic Republic of); Mehraban, H. [Semnan University, Faculty of Physics, Semnan (Iran, Islamic Republic of); Ikhdair, S.M. [An-Najah National University, Department of Physics, Faculty of Science, Nablus, West Bank, Palestine (Country Unknown); Near East University, Department of Electrical Engineering, Nicosia, Northern Cyprus (Turkey)

    2016-07-15

    We address the behavior of the Dirac equation with the Killingbeck radial potential including the external magnetic and Aharonov-Bohm (AB) flux fields. The spin and pseudo-spin symmetries are considered. The correct bound state spectra and their corresponding wave functions are obtained. We seek such a solution using the biconfluent Heun's differential equation method. Further, we give some of our results at the end of this study. Our final results can be reduced to their non-relativistic forms by simply using some appropriate transformations. The spectra, in the spin and pseudo-spin symmetries, are very similar with a slight difference in energy spacing between different states. (orig.)

  7. Relativistic Killingbeck energy states under external magnetic fields

    International Nuclear Information System (INIS)

    Eshghi, M.; Mehraban, H.; Ikhdair, S.M.

    2016-01-01

    We address the behavior of the Dirac equation with the Killingbeck radial potential including the external magnetic and Aharonov-Bohm (AB) flux fields. The spin and pseudo-spin symmetries are considered. The correct bound state spectra and their corresponding wave functions are obtained. We seek such a solution using the biconfluent Heun's differential equation method. Further, we give some of our results at the end of this study. Our final results can be reduced to their non-relativistic forms by simply using some appropriate transformations. The spectra, in the spin and pseudo-spin symmetries, are very similar with a slight difference in energy spacing between different states. (orig.)

  8. Solvable light-front model of the electromagnetic form factor of the relativistic two-body bound state in 1+1 dimensions

    International Nuclear Information System (INIS)

    Mankiewicz, L.; Sawicki, M.

    1989-01-01

    Within a relativistically correct yet analytically solvable model of light-front quantum mechanics we construct the electromagnetic form factor of the two-body bound state and we study the validity of the static approximation to the full form factor. Upon comparison of full form factors calculated for different values of binding energy we observe an unexpected effect that for very strongly bound states further increase in binding leads to an increase in the size of the bound system. A similar effect is found for another quantum-mechanical model of relativistic dynamics

  9. Quark mass correction to the string potential

    International Nuclear Information System (INIS)

    Lambiase, G.; Nesterenko, V.V.

    1995-01-01

    A consistent method for calculating the interquark potential generated by the relativistic string with massive ends is proposed. In this approach the interquark potential in the model of the Nambu-Goto string with point-like masses at its ends is calculated. At first the calculation is done in the one-loop approximation and then the variational estimation is performed. The quark mass correction results in decreasing the critical distance (deconfinement radius). When quark mass decreases the critical distance also decreases. For obtaining a finite result under summation over eigenfrequencies of the Nambu-Goto string with massive ends a suitable mode-by-mode subtraction is proposed. This renormalization procedure proves to be completely unique. In the framework of the developed approach the one-loop interquark potential in the model of the relativistic string with rigidity is also calculated. 34 refs., 2 figs

  10. Relativistic mean field model for entrainment in general relativistic superfluid neutron stars

    International Nuclear Information System (INIS)

    Comer, G.L.; Joynt, R.

    2003-01-01

    General relativistic superfluid neutron stars have a significantly more intricate dynamics than their ordinary fluid counterparts. Superfluidity allows different superfluid (and superconducting) species of particles to have independent fluid flows, a consequence of which is that the fluid equations of motion contain as many fluid element velocities as superfluid species. Whenever the particles of one superfluid interact with those of another, the momentum of each superfluid will be a linear combination of both superfluid velocities. This leads to the so-called entrainment effect whereby the motion of one superfluid will induce a momentum in the other superfluid. We have constructed a fully relativistic model for entrainment between superfluid neutrons and superconducting protons using a relativistic σ-ω mean field model for the nucleons and their interactions. In this context there are two notions of 'relativistic': relativistic motion of the individual nucleons with respect to a local region of the star (i.e. a fluid element containing, say, an Avogadro's number of particles), and the motion of fluid elements with respect to the rest of the star. While it is the case that the fluid elements will typically maintain average speeds at a fraction of that of light, the supranuclear densities in the core of a neutron star can make the nucleons themselves have quite high average speeds within each fluid element. The formalism is applied to the problem of slowly rotating superfluid neutron star configurations, a distinguishing characteristic being that the neutrons can rotate at a rate different from that of the protons

  11. Quantum gates via relativistic remote control

    Energy Technology Data Exchange (ETDEWEB)

    Martín-Martínez, Eduardo, E-mail: emartinm@uwaterloo.ca [Institute for Quantum Computing, University of Waterloo, Waterloo, Ontario, N2L 3G1 (Canada); Dept. Applied Math., University of Waterloo, Ontario, N2L 3G1 (Canada); Perimeter Institute for Theoretical Physics, Waterloo, Ontario N2L 2Y5 (Canada); Sutherland, Chris [Institute for Quantum Computing, University of Waterloo, Waterloo, Ontario, N2L 3G1 (Canada)

    2014-12-12

    We harness relativistic effects to gain quantum control on a stationary qubit in an optical cavity by controlling the non-inertial motion of a different probe atom. Furthermore, we show that by considering relativistic trajectories of the probe, we enhance the efficiency of the quantum control. We explore the possible use of these relativistic techniques to build 1-qubit quantum gates.

  12. Relativistic BCS-BEC Crossover at Quark Level

    Directory of Open Access Journals (Sweden)

    Zhuang P.

    2010-10-01

    Full Text Available The non-relativistic G0G formalism of BCS-BEC crossover at finite temperature is extended to relativistic fermion systems. The theory recovers the BCS mean field approximation at zero temperature and the non-relativistic results in a proper limit. For massive fermions, when the coupling strength increases, there exist two crossovers from the weak coupling BCS superfluid to the non-relativistic BEC state and then to the relativistic BEC state. For color superconductivity at moderate baryon density, the matter is in the BCS-BEC crossover region, and the behavior of the pseudogap is quite similar to that found in high temperature superconductors.

  13. Non-Gaussian initial conditions in ΛCDM: Newtonian, relativistic, and primordial contributions

    International Nuclear Information System (INIS)

    Bruni, Marco; Hidalgo, Juan Carlos; Meures, Nikolai; Wands, David

    2014-01-01

    The goal of the present paper is to set initial conditions for structure formation at nonlinear order, consistent with general relativity, while also allowing for primordial non-Gaussianity. We use the nonlinear continuity and Raychaudhuri equations, which together with the nonlinear energy constraint, determine the evolution of the matter density fluctuation in general relativity. We solve this equations at first and second order in a perturbative expansion, recovering and extending previous results derived in the matter-dominated limit and in the Newtonian regime. We present a second-order solution for the comoving density contrast in a ΛCDM universe, identifying nonlinear contributions coming from the Newtonian growing mode, primordial non-Gaussianity and intrinsic non-Gaussianity, due to the essential nonlinearity of the relativistic constraint equations. We discuss the application of these results to initial conditions in N-body simulations, showing that relativistic corrections mimic a non-zero nonlinear parameter f NL

  14. RELATIVISTIC CYCLOTRON INSTABILITY IN ANISOTROPIC PLASMAS

    Energy Technology Data Exchange (ETDEWEB)

    López, Rodrigo A.; Moya, Pablo S.; Muñoz, Víctor; Valdivia, J. Alejandro [Departamento de Física, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago (Chile); Navarro, Roberto E.; Araneda, Jaime A. [Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Concepción, Casilla 160-C, Concepción (Chile); Viñas, Adolfo F., E-mail: rlopez186@gmail.com [NASA Goddard Space Flight Center, Heliophysics Science Division, Geospace Physics Laboratory, Mail Code 673, Greenbelt, MD 20771 (United States)

    2016-11-20

    A sufficiently large temperature anisotropy can sometimes drive various types of electromagnetic plasma micro-instabilities, which can play an important role in the dynamics of relativistic pair plasmas in space, astrophysics, and laboratory environments. Here, we provide a detailed description of the cyclotron instability of parallel propagating electromagnetic waves in relativistic pair plasmas on the basis of a relativistic anisotropic distribution function. Using plasma kinetic theory and particle-in-cell simulations, we study the influence of the relativistic temperature and the temperature anisotropy on the collective and noncollective modes of these plasmas. Growth rates and dispersion curves from the linear theory show a good agreement with simulations results.

  15. Relativistic algorithm for time transfer in Mars missions under IAU Resolutions: an analytic approach

    International Nuclear Information System (INIS)

    Pan Jun-Yang; Xie Yi

    2015-01-01

    With tremendous advances in modern techniques, Einstein's general relativity has become an inevitable part of deep space missions. We investigate the relativistic algorithm for time transfer between the proper time τ of the onboard clock and the Geocentric Coordinate Time, which extends some previous works by including the effects of propagation of electromagnetic signals. In order to evaluate the implicit algebraic equations and integrals in the model, we take an analytic approach to work out their approximate values. This analytic model might be used in an onboard computer because of its limited capability to perform calculations. Taking an orbiter like Yinghuo-1 as an example, we find that the contributions of the Sun, the ground station and the spacecraft dominate the outcomes of the relativistic corrections to the model. (research papers)

  16. Relativistic quantum mechanics

    CERN Document Server

    Horwitz, Lawrence P

    2015-01-01

    This book describes a relativistic quantum theory developed by the author starting from the E.C.G. Stueckelberg approach proposed in the early 40s. In this framework a universal invariant evolution parameter (corresponding to the time originally postulated by Newton) is introduced to describe dynamical evolution. This theory is able to provide solutions for some of the fundamental problems encountered in early attempts to construct a relativistic quantum theory. A relativistically covariant construction is given for which particle spins and angular momenta can be combined through the usual rotation group Clebsch-Gordan coefficients. Solutions are defined for both the classical and quantum two body bound state and scattering problems. The recently developed quantum Lax-Phillips theory of semigroup evolution of resonant states is described. The experiment of Lindner and coworkers on interference in time is discussed showing how the property of coherence in time provides a simple understanding of the results. Th...

  17. Rapport de frais de 2015-2016 pour Scott Gilmore | CRDI - Centre ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Accueil · À propos du CRDI · Obligation de rendre compte · Transparence · Déplacements et accueil. Rapport de frais de 2015-2016 pour Scott Gilmore. Total des frais de déplacement : CAD$31.46. Télécharger la version PDF de ce rapport. 13 juillet 2015 au 14 juillet 2015. CAD$31.46. Ce que nous faisons · Financement ...

  18. Apparent unambiguousness of relativistic time dilation

    International Nuclear Information System (INIS)

    Strel'tsov, V.N.

    1992-01-01

    It is indicated on the definite analogy between the dependence of visible sizes of relativistic objects and period of the wave, emitted by the moving source from the observation conditions ('retradition factor'). It is noted that the definition of time for moving extended objects, led to relativistic dilation, corresponds to the definition of the relativistic (radar) length led to the 'elongation formula'. 10 refs

  19. Analytical study of the relativistic dispersion: Application to the generation of the auroral kilometric radiation

    International Nuclear Information System (INIS)

    Le Queau, D.; Louarn, P.

    1989-01-01

    The measurements recently performed by the Viking spacecraft have shown that, in addition to being cold plasma depleted, the source regions of the Auroral Kilometric Radiation (A.K.R.) are characterized by a relatively denser, more energetic electron component. In order to properly study the Cyclotron Maser Instability (C.M.I.) which is thought to be responsible for the A.K.R. generation, it is thus necessary to include relativistic corrections in both the hermitian and the antihermitian parts of the dielectric tensor characterizing the linear properties of the plasma. Here one presents an analytical study of the corresponding dispersion equation which aims to describe stable and unstable waves having frequencies lying very close to the electronic gyrofrequency and propagating across the geomagnetic field with a perpendicular refractive index less than a few units (n perpendicular 1 and χ small), the growth rate could maximize at the cut-off frequency of the relativistic X mode. Moreover, for small χ, the relativistic X mode is connected to freely propagating modes which guarantees an easy access of the electromagnetic energy to free space

  20. The Pleasures and Lessons of Academic Mythbusting: An Interview with Scott Lilienfeld

    Science.gov (United States)

    Zinn, Tracy E.

    2010-01-01

    Scott O. Lilienfeld is a professor of psychology at Emory University, in Atlanta, Georgia. Dr. Lilienfeld is founder and editor of the journal, "Scientific Review of Mental Health Practice," and is past president of the Society for a Science of Clinical Psychology. He has been a member of 11 journal editorial boards, including the…

  1. STS-90 Pilot Scott Altman in white room before launch

    Science.gov (United States)

    1998-01-01

    STS-90 Pilot Scott Altman is assisted by NASA and USA closeout crew members immediately preceding launch for the nearly 17-day Neurolab mission. Investigations during the Neurolab mission will focus on the effects of microgravity on the nervous system. Linnehan and six fellow crew members will shortly enter the orbiter at KSC's Launch Pad 39B, where the Space Shuttle Columbia will lift off during a launch window that opens at 2:19 p.m. EDT, April 17.

  2. Pair production with electron capture in peripheral collisions of relativistic heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    Bertulani, C.A.C.A. E-mail: bertu@if.ufrj.br; Dolci, D.D. E-mail: dolci@if.ufrj.br

    2001-02-26

    The production of electron-positron pairs with the capture of the electron in an atomic orbital is investigated for the conditions of the Relativistic Heavy Ion Collider (RHIC) and the Large Hadron Collider (LHC). Dirac wave functions for the leptons are used, taking corrections to orders of Z{alpha} into account. The dependence on the transverse momentum transfer is studied and the accuracy of the equivalent photon approximation is discussed as a function of the nuclear charge.

  3. Slowly rotating general relativistic superfluid neutron stars with relativistic entrainment

    International Nuclear Information System (INIS)

    Comer, G.L.

    2004-01-01

    Neutron stars that are cold enough should have two or more superfluids or supercondutors in their inner crusts and cores. The implication of superfluidity or superconductivity for equilibrium and dynamical neutron star states is that each individual particle species that forms a condensate must have its own, independent number density current and equation of motion that determines that current. An important consequence of the quasiparticle nature of each condensate is the so-called entrainment effect; i.e., the momentum of a condensate is a linear combination of its own current and those of the other condensates. We present here the first fully relativistic modeling of slowly rotating superfluid neutron stars with entrainment that is accurate to the second-order in the rotation rates. The stars consist of superfluid neutrons, superconducting protons, and a highly degenerate, relativistic gas of electrons. We use a relativistic σ-ω mean field model for the equation of state of the matter and the entrainment. We determine the effect of a relative rotation between the neutrons and protons on a star's total mass, shape, and Kepler, mass-shedding limit

  4. Balance equations for a relativistic plasma. Pt. 1

    International Nuclear Information System (INIS)

    Hebenstreit, H.

    1983-01-01

    Relativistic power moments of the four-momentum are decomposed according to a macroscopic four-velocity. The thus obtained quantities are identified as relativistic generalization of the nonrelativistic orthogonal moments, e.g. diffusion flow, heat flow, pressure, etc. From the relativistic Boltzmann equation we then derive balance equations for these quantities. Explicit expressions for the relativistic mass conservation, energy balance, pressure balance, heat flow balance are presented. The weak relativistic limit is discussed. The derivation of higher order balance equations is sketched. (orig.)

  5. Picosecond resolution on relativistic heavy ions' time-of-flight measurement

    Energy Technology Data Exchange (ETDEWEB)

    Ebran, A., E-mail: adeline.ebran@cea.fr; Taieb, J., E-mail: julien.taieb@cea.fr; Belier, G.; Chatillon, A.; Laurent, B.; Martin, J.-F.; Pellereau, E.

    2013-11-11

    We developed a time-of-flight measurement system for relativistic heavy ions with a requested resolution of 40 ps Full Width Half Maximum. Such a resolution is mandatory to assign the correct mass number to every fission fragment, identified using the Bρ-ToF-ΔE method with the recoil spectrometer designed for the SOFIA experiment—which hold very recently at GSI. To achieve such a performance, fast plastic scintillators read-out by dedicated photomultiplier tubes were chosen among other possible options. We have led several test-measurements from 2009 to 2011, in order to investigate: the effect of the addition of a quenching molecule in the scintillator's matrix, the influence of the detector's size and the impact of the photomultiplier tube. The contribution of the dedicated electronics is also characterized. Time-of-flight measurements were performed realized with electron pulses and relativistic heavy ions, respectively provided by the LASER driven electron–accelerator (ELSA) at CEA–DAM Ile-de-France and by the SIS18/FRS facility at GSI. The reported results exhibit a time resolution better than 20 ps Full Width Half Maximum reached with the last prototype at GSI with an Uranium beam. These results confirm that the SOFIA experiment should enable the measurement of the relativistic fission fragments' time-of-flight with the requested resolution.

  6. Loading relativistic Maxwell distributions in particle simulations

    Science.gov (United States)

    Zenitani, S.

    2015-12-01

    In order to study energetic plasma phenomena by using particle-in-cell (PIC) and Monte-Carlo simulations, we need to deal with relativistic velocity distributions in these simulations. However, numerical algorithms to deal with relativistic distributions are not well known. In this contribution, we overview basic algorithms to load relativistic Maxwell distributions in PIC and Monte-Carlo simulations. For stationary relativistic Maxwellian, the inverse transform method and the Sobol algorithm are reviewed. To boost particles to obtain relativistic shifted-Maxwellian, two rejection methods are newly proposed in a physically transparent manner. Their acceptance efficiencies are 􏰅50% for generic cases and 100% for symmetric distributions. They can be combined with arbitrary base algorithms.

  7. Non-relativistic Limit of a Dirac Polaron in Relativistic Quantum Electrodynamics

    CERN Document Server

    Arai, A

    2006-01-01

    A quantum system of a Dirac particle interacting with the quantum radiation field is considered in the case where no external potentials exist. Then the total momentum of the system is conserved and the total Hamiltonian is unitarily equivalent to the direct integral $\\int_{{\\bf R}^3}^\\oplus\\overline{H({\\bf p})}d{\\bf p}$ of a family of self-adjoint operators $\\overline{H({\\bf p})}$ acting in the Hilbert space $\\oplus^4{\\cal F}_{\\rm rad}$, where ${\\cal F}_{\\rm rad}$ is the Hilbert space of the quantum radiation field. The fibre operator $\\overline{H({\\bf p})}$ is called the Hamiltonian of the Dirac polaron with total momentum ${\\bf p} \\in {\\bf R}^3$. The main result of this paper is concerned with the non-relativistic (scaling) limit of $\\overline{H({\\bf p})}$. It is proven that the non-relativistic limit of $\\overline{H({\\bf p})}$ yields a self-adjoint extension of a Hamiltonian of a polaron with spin $1/2$ in non-relativistic quantum electrodynamics.

  8. Nonlinear dynamics of the relativistic standard map

    International Nuclear Information System (INIS)

    Nomura, Y.; Ichikawa, Y.H.; Horton, W.

    1991-04-01

    Heating and acceleration of charged particles by RF fields have been extensively investigated by the standard map. The question arises as to how the relativistic effects change the nonlinear dynamical behavior described by the classical standard map. The relativistic standard map is a two parameter (K, Β = ω/kc) family of dynamical systems reducing to the standard map when Β → 0. For Β ≠ 0 the relativistic mass increase suppresses the onset of stochasticity. It shown that the speed of light limits the rate of advance of the phase in the relativistic standard map and introduces KAM surfaces persisting in the high momentum region. An intricate structure of mixing in the higher order periodic orbits and chaotic orbits is analyzed using the symmetry properties of the relativistic standard map. The interchange of the stability of the periodic orbits in the relativistic standard map is also observed and is explained by the local linear stability of the orbits. 12 refs., 16 figs

  9. Random attractors for stochastic lattice reversible Gray-Scott systems with additive noise

    Directory of Open Access Journals (Sweden)

    Hongyan Li

    2015-10-01

    Full Text Available In this article, we prove the existence of a random attractor of the stochastic three-component reversible Gray-Scott system on infinite lattice with additive noise. We use a transformation of addition involved with Ornstein-Uhlenbeck process, for proving the pullback absorbing property and the pullback asymptotic compactness of the reaction diffusion system with cubic nonlinearity.

  10. Coretta Scott King Award Winner Javaka Steptoe Stands Tall "In Daddy's Arms."

    Science.gov (United States)

    Peck, Jackie; Hendershot, Judy

    1999-01-01

    Offers an interview with artist and author Javaka Steptoe, winner of the Coretta Scott King award for his book "In Daddy's Arms I Am Tall: African Americans Celebrating Fathers." Discusses his background in the arts, the variety of media he uses, how he begins thinking about his illustrations, his work with children's art, and aspects of his work.…

  11. How one can construct a consistent relativistic quantum mechanics on the base of a relativistic wave equation

    Energy Technology Data Exchange (ETDEWEB)

    Gavrilov, S.P. [Universidade Federal de Sergipe (UFS), Aracaju, SE (Brazil); Gitman, D.M. [Sao Paulo Univ. (USP), SP (Brazil). Inst. de Fisica

    2000-07-01

    Full text follows: There is a common opinion that the construction of a consistent relativistic quantum mechanics on the base of a relativistic wave equation meets well-known difficulties related to the existence of infinite number of negative energy levels, to the existence of negative vector norms, and so on, which may be only solved in a second-quantized theory, see, for example, two basic papers devoted to the problem L.Foldy, S.Wouthuysen, Phys. Rep.78 (1950) 29; H.Feshbach, F.Villars, Rev. Mod. Phys. 30 (1958) 24, whose arguments are repeated in all handbooks in relativistic quantum theory. Even Dirac trying to solve the problem had turned last years to infinite-component relativistic wave equations, see P.A.M. Dirac, Proc. R. Soc. London, A328 (1972) 1. We believe that a consistent relativistic quantum mechanics may be constructed on the base of an extended (charge symmetric) equation, which unite both a relativistic wave equation for a particle and for an antiparticle. We present explicitly the corresponding construction, see for details hep-th/0003112. We support such a construction by two demonstrations: first, in course of a careful canonical quantization of the corresponding classical action of a relativistic particle we arrive just to such a consistent quantum mechanics; second, we demonstrate that a reduction of the QFT of a corresponding field (scalar, spinor, etc.) to one-particle sector, if such a reduction may be done, present namely this quantum mechanics. (author)

  12. Relativistic quarkonium model with retardation effect, 1

    International Nuclear Information System (INIS)

    Ito, Hitoshi

    1990-01-01

    A new relativistic two-body equation is proposed which has the charge-conjugation symmetry. The renormalization of the wave function at the origin (WFO) is done by incorporating the corresponding vertex equation. By using this model, the heavy-quarkonium phenomenology is developed putting emphasis on the short-distance interaction. The typical scale of the distance restricting the applicability of the ladder model for the mass spectra is found to be 0.13 fm: By assuming the equivalent high-momentum cutoff for the gluonic correction, good results are obtained for the charmonium masses. The improved fine-splittings of the bb-bar states are obtained by inclusion of the retardation. Leptonic decay rates are predicted by assuming the renormalized WFO reduced by another high-momentum cutoff. (author)

  13. Some problems in relativistic thermodynamics

    International Nuclear Information System (INIS)

    Veitsman, E. V.

    2007-01-01

    The relativistic equations of state for ideal and real gases, as well as for various interface regions, have been derived. These dependences help to eliminate some controversies in the relativistic thermodynamics based on the special theory of relativity. It is shown, in particular, that the temperature of system whose velocity tends to the velocity of light in vacuum varies in accordance with the Ott law T = T 0 /√1 - v 2 /c 2 . Relativistic dependences for heat and mass transfer, for Ohm's law, and for a viscous flow of a liquid have also been derived

  14. In-medium effects in K+ scattering versus Glauber model with noneikonal corrections

    International Nuclear Information System (INIS)

    Eliseev, S.M.; Rihan, T.H.

    1996-01-01

    The discrepancy between the experimental and the theoretical ratio R of the total cross sections, R=σ(K + - 12 C)/6σ(K + - d), at momenta up to 800 MeV/c is discussed in the framework of the Glauber multiple scattering approach. It is shown that various corrections such as adopting relativistic K + -N amplitudes as well as noneikonal corrections seem to fail in reproducing the experimental data especially at higher momenta. 17 refs., 1 fig

  15. Towards next-to-leading order corrections to the heavy quark potential in the effective string theory

    Directory of Open Access Journals (Sweden)

    Hwang Sungmin

    2017-01-01

    Full Text Available We present our calculation of the non-relativistic corrections to the heavy quark-antiquark potential up to leading and next-to-leading order (NLO via the effective string theory (EST. Full systematics of effective field theory (EFT are discussed in order for including the NLO contribution that arises in the EST. We also show how the number of dimensionful parameters arising from the EST are reduced by the constraints between the Wilson coeffcients from non-relativistic EFTs for QCD.

  16. Relativistic theory of tunnel and multiphoton ionization of atoms in a strong laser field

    International Nuclear Information System (INIS)

    Popov, V. S.; Karnakov, B. M.; Mur, V. D.; Pozdnyakov, S. G.

    2006-01-01

    Relativistic generalization is developed for the semiclassical theory of tunnel and multiphoton ionization of atoms and ions in the field of an intense electromagnetic wave (Keldysh theory). The cases of linear, circular, and elliptic polarizations of radiation are considered. For arbitrary values of the adiabaticity parameter γ, the exponential factor in the ionization rate for a relativistic bound state is calculated. For low-frequency laser radiation , an asymptotically exact formula for the tunnel ionization rate for the atomic s level is obtained including the Coulomb, spin, and adiabatic corrections and the preexponential factor. The ionization rate for the ground level of a hydrogen-like atom (ion) with Z ≤ 100 is calculated as a function of the laser radiation intensity. The range of applicability is determined for nonrelativistic ionization theory. The imaginary time method is used in the calculations

  17. STS-87 Mission Specialists Scott and Doi with EVA coordinator Laws participate in the CEIT for their

    Science.gov (United States)

    1997-01-01

    Participating in the Crew Equipment Integration Test (CEIT) at Kennedy Space Center are STS-87 crew members, assisted by Glenda Laws, extravehicular activity (EVA) coordinator, Johnson Space Center, at left. Next to Laws is Mission Specialist Takao Doi, Ph.D., of the National Space Development Agency of Japan, who is looking on as Mission Specialist Winston Scott gets a hands-on look at some of the equipment. The STS-87 mission will be the fourth United States Microgravity Payload and flight of the Spartan-201 deployable satellite. During the mission, scheduled for a Nov. 19 liftoff from KSC, Dr. Doi and Scott will both perform spacewalks.

  18. On the H particle stability in the non relativistic quark model

    International Nuclear Information System (INIS)

    Silvestre-Brac, B.; Carbonell, J.; Gignoux, C.

    1987-05-01

    The H particle with quark content (uuddss) is presented as a good candidate to be stable with respect to strong interactions. In the framework of a non relativistic potential model, the binding energy is calculated by a full dynamical approach using a resonating group trial wave function. The center of mass motion and the Pauli principle are correctly treated. Sophisticated baryon wave functions are employed and the equation of motion is solved with six coupled channels including radial excited baryon states. The effect of breaking SU(3) flavour symmetry is discussed in detail

  19. Relativistic ion acceleration by ultraintense laser interactions

    International Nuclear Information System (INIS)

    Nakajima, K.; Koga, J.K.; Nakagawa, K.

    2001-01-01

    There has been a great interest in relativistic particle generation by ultraintense laser interactions with matter. We propose the use of relativistically self-focused laser pulses for the acceleration of ions. Two dimensional PIC simulations are performed, which show the formation of a large positive electrostatic field near the front of a relativistically self-focused laser pulse. Several factors contribute to the acceleration including self-focusing distance, pulse depletion, and plasma density. Ultraintense laser-plasma interactions are capable of generating enormous electrostatic fields of ∼3 TV/m for acceleration of protons with relativistic energies exceeding 1 GeV

  20. Modernity in Two Great American Writers' Vision: Ernest Miller Hemingway and Scott Fitzgerald

    Science.gov (United States)

    Keshmiri, Fahimeh; Darzikola, Shahla Sorkhabi

    2016-01-01

    Scott Fitzgerald and Ernest Hemingway, American memorable novelists have had philosophic ideas about modernity. In fact their idea about existential interests of American, and the effects of American system on society, is mirrored in their creative works. All through his early works, Fitzgerald echoes the existential center of his era. Obviously,…

  1. Non-perturbative treatment of relativistic quantum corrections in large Z atoms

    International Nuclear Information System (INIS)

    Dietz, K.; Weymans, G.

    1983-09-01

    Renormalised g-Hartree-Dirac equations incorporating Dirac sea contributions are derived. Their implications for the non-perturbative, selfconsistent calculation of quantum corrections in large Z atoms are discussed. (orig.)

  2. Relativistic collective diffusion in one-dimensional systems

    Science.gov (United States)

    Lin, Gui-Wu; Lam, Yu-Yiu; Zheng, Dong-Qin; Zhong, Wei-Rong

    2018-05-01

    The relativistic collective diffusion in one-dimensional molecular system is investigated through nonequilibrium molecular dynamics with Monte Carlo methods. We have proposed the relationship among the speed, the temperature, the density distribution and the collective diffusion coefficient of particles in a relativistic moving system. It is found that the relativistic speed of the system has no effect on the temperature, but the collective diffusion coefficient decreases to zero as the velocity of the system approaches to the speed of light. The collective diffusion coefficient is modified as D‧ = D(1 ‑w2 c2 )3 2 for satisfying the relativistic circumstances. The present results may contribute to the understanding of the behavior of the particles transport diffusion in a high speed system, as well as enlighten the study of biological metabolism at relativistic high speed situation.

  3. Exact Relativistic `Antigravity' Propulsion

    Science.gov (United States)

    Felber, Franklin S.

    2006-01-01

    The Schwarzschild solution is used to find the exact relativistic motion of a payload in the gravitational field of a mass moving with constant velocity. At radial approach or recession speeds faster than 3-1/2 times the speed of light, even a small mass gravitationally repels a payload. At relativistic speeds, a suitable mass can quickly propel a heavy payload from rest nearly to the speed of light with negligible stresses on the payload.

  4. Relativistic Boltzmann theory for a plasma

    International Nuclear Information System (INIS)

    Erkelens, H. van.

    1984-01-01

    This thesis gives a self-contained treatment of the relativistic Boltzmann theory for a plasma. Here plasma means any mixture containing electrically charged particles. The relativistic Boltzmann equation is linearized for the case of a plasma. The Chapman-Enskog method is elaborated further for transport phenomena. Linear laws for viscous phenomena are derived. Then the collision term in the Boltzmann theory is dealt with. Using the transport equation, a kinetic theory of wave phenomena is developed and the dissipation of hydromagnetic waves in a relativistic plasma is investigated. In the final chapter, it is demonstrated how the relativistic Boltzmann theory can be applied in cosmology. In doing so, expressions are derived for the electric conductivity of the cosmological plasma in the lepton era, the plasma era and the annihilation era. (Auth.)

  5. grim: A Flexible, Conservative Scheme for Relativistic Fluid Theories

    Energy Technology Data Exchange (ETDEWEB)

    Chandra, Mani; Gammie, Charles F. [Department of Astronomy, University of Illinois, 1110 West Green Street, Urbana, IL, 61801 (United States); Foucart, Francois, E-mail: manic@illinois.edu, E-mail: gammie@illinois.edu, E-mail: fvfoucart@lbl.gov [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States)

    2017-03-01

    Hot, diffuse, relativistic plasmas such as sub-Eddington black-hole accretion flows are expected to be collisionless, yet are commonly modeled as a fluid using ideal general relativistic magnetohydrodynamics (GRMHD). Dissipative effects such as heat conduction and viscosity can be important in a collisionless plasma and will potentially alter the dynamics and radiative properties of the flow from that in ideal fluid models; we refer to models that include these processes as Extended GRMHD. Here we describe a new conservative code, grim, that enables all of the above and additional physics to be efficiently incorporated. grim combines time evolution and primitive variable inversion needed for conservative schemes into a single step using an algorithm that only requires the residuals of the governing equations as inputs. This algorithm enables the code to be physics agnostic as well as flexibility regarding time-stepping schemes. grim runs on CPUs, as well as on GPUs, using the same code. We formulate a performance model and use it to show that our implementation runs optimally on both architectures. grim correctly captures classical GRMHD test problems as well as a new suite of linear and nonlinear test problems with anisotropic conduction and viscosity in special and general relativity. As tests and example applications, we resolve the shock substructure due to the presence of dissipation, and report on relativistic versions of the magneto-thermal instability and heat flux driven buoyancy instability, which arise due to anisotropic heat conduction, and of the firehose instability, which occurs due to anisotropic pressure (i.e., viscosity). Finally, we show an example integration of an accretion flow around a Kerr black hole, using Extended GRMHD.

  6. Co-C Dissociation of Adenosylcobalamin (Coenzyme B-12): Role of Dispersion, Induction Effects, Solvent Polarity, and Relativistic and Thermal Corrections

    DEFF Research Database (Denmark)

    Kepp, Kasper Planeta

    2014-01-01

    for dispersion, relativistic effects, solvent polarity, basis set superposition error, and thermal and vibrational effects were investigated, totaling more than SSO single-point energies for the large model. The results show immense variability depending on method, including solvation, functional type...

  7. The fully relativistic implementation of the convergent close-coupling method

    International Nuclear Information System (INIS)

    Bostock, Christopher James

    2011-01-01

    The calculation of accurate excitation and ionization cross sections for electron collisions with atoms and ions plays a fundamental role in atomic and molecular physics, laser physics, x-ray spectroscopy, plasma physics and chemistry. Within the veil of plasma physics lie important research areas affiliated with the lighting industry, nuclear fusion and astrophysics. For high energy projectiles or targets with a large atomic number it is presently understood that a scattering formalism based on the Dirac equation is required to incorporate relativistic effects. This tutorial outlines the development of the relativistic convergent close-coupling (RCCC) method and highlights the following three main accomplishments. (i) The inclusion of the Breit interaction, a relativistic correction to the Coulomb potential, in the RCCC method. This led to calculations that resolved a discrepancy between theory and experiment for the polarization of x-rays emitted by highly charged hydrogen-like ions excited by electron impact (Bostock et al 2009 Phys. Rev. A 80 052708). (ii) The extension of the RCCC method to accommodate two-electron and quasi-two-electron targets. The method was applied to electron scattering from mercury. Accurate plasma physics modelling of mercury-based fluorescent lamps requires detailed information on a large number of electron impact excitation cross sections involving transitions between various states (Bostock et al 2010 Phys. Rev. A 82 022713). (iii) The third accomplishment outlined in this tutorial is the restructuring of the RCCC computer code to utilize a hybrid OpenMP-MPI parallelization scheme which now enables the RCCC code to run on the latest high performance supercomputer architectures. (tutorial)

  8. Relativistic klystron research for linear colliders

    International Nuclear Information System (INIS)

    Allen, M.A.; Callin, R.S.; Deruyter, H.; Eppley, K.R.; Fant, K.S.; Fowkes, W.R.; Herrmannsfeldt, W.B.; Hoag, H.A.; Koontz, R.F.; Lavine, T.L.; Lee, T.G.; Loew, G.A.; Miller, R.H.; Morton, P.L.; Palmer, R.B.; Paterson, J.M.; Ruth, R.D.; Schwarz, H.D.; Vlieks, A.E.; Wilson, P.B.

    1989-01-01

    Relativistic klystrons are being developed as a power source for high gradient accelerator applications which include large linear electron-positron colliders, compact accelerators, and FEL sources. The authors have attained 200 MW peak power at 11.4 GHz from a relativistic klystron, and 140 MV/m longitudinal gradient in a short 11.4 GHz accelerator section. In this paper the authors report on the design of our relativistic klystrons, the results of our experiments so far, and some of our plans for the near future

  9. Relativistic klystron research for linear colliders

    International Nuclear Information System (INIS)

    Allen, M.A.; Callin, R.S.; Deruyter, H.

    1988-09-01

    Relativistic klystrons are being developed as a power source for high gradient accelerator applications which include large linear electron-positron colliders, compact accelerators, and FEL sources. We have attained 200 MW peak power at 11.4 GHz from a relativistic klystron, and 140 MV/m longitudinal gradient in a short 11.4 GHz accelerator section. We report here on the design of our relativistic klystrons, the results of our experiments so far, and some of our plans for the near future. 5 refs., 9 figs., 1 tab

  10. Relativistic approach to nuclear structure

    International Nuclear Information System (INIS)

    Nguyen Van Giai; Bouyssy, A.

    1987-03-01

    Some recent works related with relativistic models of nuclear structure are briefly reviewed. The Dirac-Hartree-Fock and Dirac-Brueckner-Hartree-Fock are recalled and illustrated by some examples. The problem of isoscalar current and magnetic moments of odd nuclei is discussed. The application of the relativistic model to the nuclear response function is examined

  11. Weakly relativistic modeling of refraction and absorption for waves with small Nparallel

    International Nuclear Information System (INIS)

    Smith, G.R.; Pearlstein, L.D.; Kritz, A.H.

    1995-01-01

    Transmission measurements for waves near the fundamental and harmonics of the electron-cyclotron frequency indicate that propagation and absorption is not always correctly described when ray trajectories are obtained using cold-plasma analysis. Improved methods have been developed for evaluating the Shkarofsky functions, which appear in the weakly relativistic approximation of the dielectric tensor, for small parallel index of refraction. Computational results for vertical third-harmonic X-mode propagation in Tore Supra show strong, warm-plasma refraction effects that qualitatively agree with experimental observations

  12. A Comprehensive Comparison of Relativistic Particle Integrators

    Science.gov (United States)

    Ripperda, B.; Bacchini, F.; Teunissen, J.; Xia, C.; Porth, O.; Sironi, L.; Lapenta, G.; Keppens, R.

    2018-03-01

    We compare relativistic particle integrators commonly used in plasma physics, showing several test cases relevant for astrophysics. Three explicit particle pushers are considered, namely, the Boris, Vay, and Higuera–Cary schemes. We also present a new relativistic fully implicit particle integrator that is energy conserving. Furthermore, a method based on the relativistic guiding center approximation is included. The algorithms are described such that they can be readily implemented in magnetohydrodynamics codes or Particle-in-Cell codes. Our comparison focuses on the strengths and key features of the particle integrators. We test the conservation of invariants of motion and the accuracy of particle drift dynamics in highly relativistic, mildly relativistic, and non-relativistic settings. The methods are compared in idealized test cases, i.e., without considering feedback onto the electrodynamic fields, collisions, pair creation, or radiation. The test cases include uniform electric and magnetic fields, {\\boldsymbol{E}}× {\\boldsymbol{B}} fields, force-free fields, and setups relevant for high-energy astrophysics, e.g., a magnetic mirror, a magnetic dipole, and a magnetic null. These tests have direct relevance for particle acceleration in shocks and in magnetic reconnection.

  13. Relativistic heavy-ion physics

    CERN Document Server

    Herrera Corral, G

    2010-01-01

    The study of relativistic heavy-ion collisions is an important part of the LHC research programme at CERN. This emerging field of research focuses on the study of matter under extreme conditions of temperature, density, and pressure. Here we present an introduction to the general aspects of relativistic heavy-ion physics. Afterwards we give an overview of the accelerator facility at CERN and then a quick look at the ALICE project as a dedicated experiment for heavy-ion collisions.

  14. Relativistic theories of materials

    CERN Document Server

    Bressan, Aldo

    1978-01-01

    The theory of relativity was created in 1905 to solve a problem concerning electromagnetic fields. That solution was reached by means of profound changes in fundamental concepts and ideas that considerably affected the whole of physics. Moreover, when Einstein took gravitation into account, he was forced to develop radical changes also in our space-time concepts (1916). Relativistic works on heat, thermodynamics, and elasticity appeared as early as 1911. However, general theories having a thermodynamic basis, including heat conduction and constitutive equations, did not appear in general relativity until about 1955 for fluids and appeared only after 1960 for elastic or more general finitely deformed materials. These theories dealt with materials with memory, and in this connection some relativistic versions of the principle of material indifference were considered. Even more recently, relativistic theories incorporating finite deformations for polarizable and magnetizable materials and those in which couple s...

  15. Determination of electric dipole transitions in heavy quarkonia using potential non-relativistic QCD

    Science.gov (United States)

    Segovia, Jorge; Steinbeißer, Sebastian

    2018-05-01

    The electric dipole transitions {χ }bJ(1P)\\to γ \\Upsilon (1S) with J = 0, 1, 2 and {h}b(1P)\\to γ {η }b(1S) are computed using the weak-coupling version of a low-energy effective field theory named potential non-relativistic QCD (pNRQCD). In order to improve convergence and thus give firm predictions for the studied reactions, the full static potential is incorporated into the leading order Hamiltonian; moreover, we must handle properly renormalon effects and re-summation of large logarithms. The precision we reach is {k}γ 3/{(mv)}2× O({v}2), where kγ is the photon energy, m is the mass of the heavy quark and v its velocity. Our analysis separates those relativistic contributions that account for the electromagnetic interaction terms in the pNRQCD Lagrangian which are v 2 suppressed and those that account for wave function corrections of relative order v 2. Among the last ones, corrections from 1/m and 1/m2 potentials are computed, but not those coming from higher Fock states since they demand non-perturbative input and are {{{Λ }}}{{QCD}}2/{(mv)}2 or {{{Λ }}}{{QCD}}3/({m}3{v}4) suppressed, at least, in the strict weak coupling regime. These proceedings are based on the forthcoming publication [1].

  16. Relativistic dynamics without conservation laws

    OpenAIRE

    Rothenstein, Bernhard; Popescu, Stefan

    2006-01-01

    We show that relativistic dynamics can be approached without using conservation laws (conservation of momentum, of energy and of the centre of mass). Our approach avoids collisions that are not easy to teach without mnemonic aids. The derivations are based on the principle of relativity and on its direct consequence, the addition law of relativistic velocities.

  17. Time Operator in Relativistic Quantum Mechanics

    Science.gov (United States)

    Khorasani, Sina

    2017-07-01

    It is first shown that the Dirac’s equation in a relativistic frame could be modified to allow discrete time, in agreement to a recently published upper bound. Next, an exact self-adjoint 4 × 4 relativistic time operator for spin-1/2 particles is found and the time eigenstates for the non-relativistic case are obtained and discussed. Results confirm the quantum mechanical speculation that particles can indeed occupy negative energy levels with vanishingly small but non-zero probablity, contrary to the general expectation from classical physics. Hence, Wolfgang Pauli’s objection regarding the existence of a self-adjoint time operator is fully resolved. It is shown that using the time operator, a bosonic field referred here to as energons may be created, whose number state representations in non-relativistic momentum space can be explicitly found.

  18. Magic neutrino mass matrix and the Bjorken-Harrison-Scott parameterization

    International Nuclear Information System (INIS)

    Lam, C.S.

    2006-01-01

    Observed neutrino mixing can be described by a tribimaximal MNS matrix. The resulting neutrino mass matrix in the basis of a diagonal charged lepton mass matrix is both 2-3 symmetric and magic. By a magic matrix, I mean one whose row sums and column sums are all identical. I study what happens if 2-3 symmetry is broken but the magic symmetry is kept intact. In that case, the mixing matrix is parameterized by a single complex parameter U e3 , in a form discussed recently by Bjorken, Harrison, and Scott

  19. Relativistic klystron research for linear colliders

    International Nuclear Information System (INIS)

    Allen, M.A.; Callin, R.S.; Deruyter, H.; Eppley, K.R.; Fant, K.S.; Fowkes, W.R.; Herrmannesfeldt, W.B.; Higo, T.; Hoag, H.A.; Koontz, R.F.; Lavine, T.L.; Lee, T.G.; Loew, G.A.; Miller, R.H.; Morton, P.L.; Palmer, R.B.; Paterson, J.M.; Ruth, R.D.; Schwarz, H.D.; Takeuchi, Y.; Vlieks, A.E.; Wang, J.W.; Wilson, P.B.; Hopkins, D.B.; Sessler, A.M.; Ryne, R.D.; Westenskow, G.A.; Yu, S.S.

    1989-01-01

    Relativistic klystrons are being developed as a power source for high gradient accelerator applications which include large linear electron-positron colliders, compact accelerators, and FEL sources. The authors have attained 200MW peak power at 11.4 GHz from a relativistic klystron, and 140 MV/m longitudinal gradient in a short 11.4 GHz accelerator section. They report here on the design of our relativistic klystrons, the results of our experiments so far, and some of our plans for the near future. 5 refs., 9 figs., 1 tab

  20. Relativistic Theory of Few Body Systems

    Energy Technology Data Exchange (ETDEWEB)

    Franz Gross

    2002-11-01

    Very significant advances have been made in the relativistic theory of few body systems since I visited Peter Sauer and his group in Hannover in 1983. This talk provides an opportunity to review the progress in this field since then. Different methods for the relativistic calculation of few nucleon systems are briefly described. As an example, seven relativistic calculations of the deuteron elastic structure functions, A, B, and T{sub 20}, are compared. The covariant SPECTATOR {copyright} theory, among the more successful and complete of these methods, is described in more detail.

  1. Ab initio and relativistic DFT study of spin–rotation and NMR shielding constants in XF{sub 6} molecules, X = S, Se, Te, Mo, and W

    Energy Technology Data Exchange (ETDEWEB)

    Ruud, Kenneth [Centre for Theoretical and Computational Chemistry, Department of Chemistry, University of Tromsø—The Arctic University of Norway, N-9037 Tromsø (Norway); Demissie, Taye B. [Centre for Theoretical and Computational Chemistry, Department of Chemistry, University of Tromsø—The Arctic University of Norway, N-9037 Tromsø (Norway); Institute of Physical Chemistry, Polish Academy of Sciences, 01-224 Warszawa, Kasprzaka 44 (Poland); Jaszuński, Michał, E-mail: michal.jaszunski@icho.edu.pl [Institute of Organic Chemistry, Polish Academy of Sciences, 01-224 Warszawa, Kasprzaka 44 (Poland)

    2014-05-21

    We present an analysis of the spin–rotation and absolute shielding constants of XF{sub 6} molecules (X = S, Se, Te, Mo, W) based on ab initio coupled cluster and four-component relativistic density-functional theory (DFT) calculations. The results show that the relativistic contributions to the spin–rotation and shielding constants are large both for the heavy elements as well as for the fluorine nuclei. In most cases, incorporating the computed relativistic corrections significantly improves the agreement between our results and the well-established experimental values for the isotropic spin–rotation constants and their anisotropic components. This suggests that also for the other molecules, for which accurate and reliable experimental data are not available, reliable values of spin–rotation and absolute shielding constants were determined combining ab initio and relativistic DFT calculations. For the heavy nuclei, the breakdown of the relationship between the spin–rotation constant and the paramagnetic contribution to the shielding constant, due to relativistic effects, causes a significant error in the total absolute shielding constants.

  2. Mission Specialist Scott Parazynski checks his flight suit

    Science.gov (United States)

    1998-01-01

    STS-95 Mission Specialist Scott E. Parazynski gets help with his flight suit in the Operations and Checkout Building from a suit technician George Brittingham. The final fitting takes place prior to the crew walkout and transport to Launch Pad 39B. Targeted for launch at 2 p.m. EST on Oct. 29, the mission is expected to last 8 days, 21 hours and 49 minutes, and return to KSC at 11:49 a.m. EST on Nov. 7. The STS-95 mission includes research payloads such as the Spartan solar-observing deployable spacecraft, the Hubble Space Telescope Orbital Systems Test Platform, the International Extreme Ultraviolet Hitchhiker, as well as the SPACEHAB single module with experiments on space flight and the aging process.

  3. 2015-2016 Rapports sur les frais de voyage et d'accueil pour Scott ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Ruxandra Staicu

    Réunion du Conseil des gouverneurs. Date(s):. 2015-07-13 à 2015-07-14. Destination(s):. Ottawa. Billet d'avion: Frais de transport au sol ou autrement: 31.46 $. Frais de logement: Repas et frais divers: Autre frais: Total: 31.46 $. Commentaires: 2015-2016 Rapports sur les frais de voyage et d'accueil pour Scott Gilmore, ...

  4. Relativistic few body calculations

    International Nuclear Information System (INIS)

    Gross, F.

    1988-01-01

    A modern treatment of the nuclear few-body problem must take into account both the quark structure of baryons and mesons, which should be important at short range, and the relativistic exchange of mesons, which describes the long range, peripheral interactions. A way to model both of these aspects is described. The long range, peripheral interactions are calculated using the spectator model, a general approach in which the spectators to nucleon interactions are put on their mass-shell. Recent numerical results for a relativistic OBE model of the NN interaction, obtained by solving a relativistic equation with one-particle on mass-shell, will be presented and discussed. Two meson exchange models, one with only four mesons (π,σ,/rho/,ω) but with a 25% admixture of γ 5 coupling for the pion, and a second with six mesons (π,σ,/rho/,ω,δ,/eta/) but pure γ 5 γ/sup μ/ pion coupling, are shown to give very good quantitative fits to the NN scattering phase shifts below 400 MeV, and also a good description of the /rvec p/ 40 Ca elastic scattering observables. Applications of this model to electromagnetic interactions of the two body system, with emphasis on the determination of relativistic current operators consistent with the dynamics and the exact treatment of current conservation in the presence of phenomenological form factors, will be described. 18 refs., 8 figs

  5. Some Mathematical Structures Including Simplified Non-Relativistic Quantum Teleportation Equations and Special Relativity

    International Nuclear Information System (INIS)

    Woesler, Richard

    2007-01-01

    The computations of the present text with non-relativistic quantum teleportation equations and special relativity are totally speculative, physically correct computations can be done using quantum field theory, which remain to be done in future. Proposals for what might be called statistical time loop experiments with, e.g., photon polarization states are described when assuming the simplified non-relativistic quantum teleportation equations and special relativity. However, a closed time loop would usually not occur due to phase incompatibilities of the quantum states. Histories with such phase incompatibilities are called inconsistent ones in the present text, and it is assumed that only consistent histories would occur. This is called an exclusion principle for inconsistent histories, and it would yield that probabilities for certain measurement results change. Extended multiple parallel experiments are proposed to use this statistically for transmission of classical information over distances, and regarding time. Experiments might be testable in near future. However, first a deeper analysis, including quantum field theory, remains to be done in future

  6. Stability, causality, and hyperbolicity in Carter's ''regular'' theory of relativistic heat-conducting fluids

    International Nuclear Information System (INIS)

    Olson, T.S.; Hiscock, W.A.

    1990-01-01

    Stability and causality are studied for linear perturbations about equilibrium in Carter's ''regular'' theory of relativistic heat-conducting fluids. The ''regular'' theory, when linearized around an equilibrium state having vanishing expansion and shear, is shown to be equivalent to the inviscid limit of the linearized Israel-Stewart theory of relativistic dissipative fluids for a particular choice of the second-order coefficients β 1 and γ 2 . A set of stability conditions is determined for linear perturbations of a general inviscid Israel-Stewart fluid using a monotonically decreasing energy functional. It is shown that, as in the viscous case, stability implies that the characteristic velocities are subluminal and that perturbations obey hyperbolic equations. The converse theorem is also true. We then apply this analysis to a nonrelativistic Boltzmann gas and to a strongly degenerate free Fermi gas in the ''regular'' theory. Carter's ''regular'' theory is shown to be incapable of correctly describing the nonrelativistic Boltzmann gas and the degenerate Fermi gas (at all temperatures)

  7. Coulomb corrections for interferometry analysis of expanding hadron systems

    Energy Technology Data Exchange (ETDEWEB)

    Sinyukov, Yu.M. [Centre National de la Recherche Scientifique, 44 - Nantes (France). Lab. de Physique Subatomique et des Technologies Associees]|[Institute for Theoretical Physics of National Acad. Sci., Kiev (Ukraine); Lednicky, R. [Centre National de la Recherche Scientifique, 44 - Nantes (France). Lab. de Physique Subatomique et des Technologies Associees]|[Institute of Physics, Prague (Czech Republic); Akkelin, S.V. [AN Ukrainskoj SSR, Kiev (Ukraine). Inst. Teoreticheskoj Fiziki; Pluta, J. [Centre National de la Recherche Scientifique, 44 - Nantes (France). Lab. de Physique Subatomique et des Technologies Associees]|[Warsaw Univ. (Poland). Inst. of Physics; Erazmus, B. [Centre National de la Recherche Scientifique, 44 - Nantes (France). Lab. de Physique Subatomique et des Technologies Associees

    1998-10-01

    The problem of the Coulomb corrections to the two-boson correlation functions for the systems formed in ultra-relativistic heavy ion collisions is considered for large effective volumes predicted in the realistic evolution scenarios taking into account the collective flows. A simple modification of the standard zero-distance correction (so called Gamow or Coulomb factor) has been proposed for such a kind of systems. For {pi}{sup +}{pi}{sup +} and K{sup +}K{sup +} correlation functions this approximate analytical approach is compared with the exact numerical results and a good agreement is found for typical conditions at SPS, RHIC and even LHC energies. (author) 21 refs.

  8. Relativistic Gas Drag on Dust Grains and Implications

    Energy Technology Data Exchange (ETDEWEB)

    Hoang, Thiem, E-mail: thiemhoang@kasi.re.kr [Korea Astronomy and Space Science Institute, Daejeon 34055 (Korea, Republic of); Korea University of Science and Technology, Daejeon, 34113 (Korea, Republic of)

    2017-09-20

    We study the drag force on grains moving at relativistic velocities through interstellar gas and explore its application. First, we derive a new analytical formula of the drag force at high energies and find that it is significantly reduced compared to the classical model. Second, we apply the obtained drag force to calculate the terminal velocities of interstellar grains by strong radiation sources such as supernovae and active galactic nuclei (AGNs). We find that grains can be accelerated to relativistic velocities by very luminous AGNs. We then quantify the deceleration of relativistic spacecraft proposed by the Breakthrough Starshot initiative due to gas drag on a relativistic lightsail. We find that the spacecraft’s decrease in speed is negligible because of the suppression of gas drag at relativistic velocities, suggesting that the lightsail may be open for communication during its journey to α Centauri without causing a considerable delay. Finally, we show that the damage to relativistic thin lightsails by interstellar dust is a minor effect.

  9. Properties of nuclear and neutron matter in a relativistic Hartree-Fock theory

    International Nuclear Information System (INIS)

    Horowitz, C.J.; Serot, B.D.

    1983-01-01

    Relativistic-Hartree-Fock (HF) equations are derived for an infinite system of mesons and baryons in the framework of a renormalizable relativistic quantum field theory. The derivation is based on a diagrammatic approach and Dyson's equation for the baryon propagator. The result is a set of coupled, nonlinear integral equations for the baryon self-energy with a self-consistency condition on the single-particle spectrum. The HF equations are solved for nuclear and neutron matter in the Walecka model, which contains neutral scalar and vector mesons. After renormalizing model parameters to reproduce nuclear matter saturation properties, HF results at low to moderate densities are similar to those in the mean-field (Hartree) approximation. Self-consistent exchange corrections to the Hartree equation of state become negligible at high densities. Rho- and pi-meson exchanges are incorporated using a renormalizable gauge-theory model. A chiral transformation of the lagrangian is used to replace the pseudoscalar πN coupling with a pseudovector coupling, for which one-pion exchange is a reasonable first approximation. This transformation maintains the model's renormalizability so that corrections may be evaluated. Pion exchange has a small effect on the HF results of the Walecka model and brings HF results in closer in closer agreement with the mean-field theory. The diagrammatic techniques used here retain the mesonic degrees of freedom and are simple enough to be extended to more refined self-consistent approximations. (orig.)

  10. Relativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Barz, H.W.; Kaempfer, B.; Schulz, H.

    1984-12-01

    An elementary introduction is given into the scenario of relativistic heavy ion collisions. It deals with relativistic kinematics and estimates of energy densities, extrapolations of the present knowledge of hadron-hadron and hadron-nuleus to nucleus-nucleus collisions, the properties of the quark-gluon plasma and the formation of the plasma and possible experimental signatures. Comments are made on a cosmic ray experiment which could be interpreted as a first indication of the quark-gluon phase of the matter. (author)

  11. Thermodynamic laws and equipartition theorem in relativistic Brownian motion.

    Science.gov (United States)

    Koide, T; Kodama, T

    2011-06-01

    We extend the stochastic energetics to a relativistic system. The thermodynamic laws and equipartition theorem are discussed for a relativistic Brownian particle and the first and the second law of thermodynamics in this formalism are derived. The relation between the relativistic equipartition relation and the rate of heat transfer is discussed in the relativistic case together with the nature of the noise term.

  12. Relativistic quantum similarities in atoms in position and momentum spaces

    International Nuclear Information System (INIS)

    Maldonado, P.; Sarsa, A.; Buendia, E.; Galvez, F.J.

    2011-01-01

    A study of different quantum similarity measures and their corresponding quantum similarity indices is carried out for the atoms from H to Lr (Z=1-103). Relativistic effects in both position and momentum spaces have been studied by comparing the relativistic values to the non-relativistic ones. We have used the atomic electron density in both position and momentum spaces obtained within relativistic and non-relativistic numerical-parameterized optimized effective potential approximations. -- Highlights: → Quantum similarity measures and indices in electronic structure of atoms. → Position and momentum electronic densities. → Similarity of relativistic and non-relativistic densities. → Similarity of core and valence regions of different atoms. → Dependence with Z along the Periodic Table.

  13. Relativistic many-body theory of high density matter

    International Nuclear Information System (INIS)

    Chin, S.A.

    1977-01-01

    A fully relativistic quantum many-body theory is applied to the study of high-density matter. The latter is identified with the zero-temperature ground state of a system of interacting baryons. In accordance with the observed short-range repulsive and long-range attractive character of the nucleon--nucleon force, baryons are described as interacting with each other via a massive scalar and a massive vector meson exchange. In the Hartree approximation, the theory yields the same result as the mean-field theory, but with additional vacuum fluctuation corrections. The resultant equation of state for neutron matter is used to determine properties of neutron stars. The relativistic exchange energy, its corresponding single-particle excitation spectrum, and its effect on the neutron matter equation of state, are calculated. The correlation energy from summing the set of ring diagrams is derived directly from the energy-momentum tensor, with renormalization carried out by adding counterterms to the original Lagrangian and subtracting purely vacuum expectation values. Terms of order g 4 lng 2 are explicitly given. Effects of scalar-vector mixing are discussed. Collective modes corresponding to macroscopic density fluctuation are investigated. Two basic modes are found, a plasma-like mode and zero sound, with the latter dominant at high density. The stability and damping of these modes are studied. Last, the effect of vacuum polarization in high-density matter is examined

  14. A relativistic model of the topological acceleration effect

    International Nuclear Information System (INIS)

    Ostrowski, Jan J; Roukema, Boudewijn F; Buliński, Zbigniew P

    2012-01-01

    It has previously been shown heuristically that the topology of the Universe affects gravity, in the sense that a test particle near a massive object in a multiply connected universe is subject to a topologically induced acceleration that opposes the local attraction to the massive object. It is necessary to check if this effect occurs in a fully relativistic solution of the Einstein equations that has a multiply connected spatial section. A Schwarzschild-like exact solution that is multiply connected in one spatial direction is checked for analytical and numerical consistency with the heuristic result. The T 1 (slab-space) heuristic result is found to be relativistically correct. For a fundamental domain size of L, a slow-moving, negligible-mass test particle lying at distance x along the axis from the object of mass M to its nearest multiple image, where GM/c 2 3 )x, where ζ(3) is Apery's constant. For M ∼ 10 14 M sun and L ∼ 10-20h -1 Gpc, this linear expression is accurate to ±10% over h -1 Mpc/h -1 Gpc. Thus, at least in a simple example of a multiply connected universe, the topological acceleration effect is not an artefact of Newtonian-like reasoning, and its linear derivation is accurate over about three orders of magnitude in x. (paper)

  15. Kinetic analysis of thermally relativistic flow with dissipation

    International Nuclear Information System (INIS)

    Yano, Ryosuke; Suzuki, Kojiro

    2011-01-01

    Nonequilibrium flow of thermally relativistic matter with dissipation is considered in the framework of the relativistic kinetic theory. As an object of the analysis, the supersonic rarefied flow of thermally relativistic matter around the triangle prism is analyzed using the Anderson-Witting model. Obtained numerical results indicate that the flow field changes in accordance with the flow velocity and temperature of the uniform flow owing to both effects derived from the Lorentz contraction and thermally relativistic effects, even when the Mach number of the uniform flow is fixed. The profiles of the heat flux along the stagnation streamline can be approximated on the basis of the relativistic Navier-Stokes-Fourier (NSF) law except for a strong nonequilibrium regime such as the middle of the shock wave and the vicinity of the wall, whereas the profile of the heat flux behind the triangle prism cannot be approximated on the basis of the relativistic NSF law owing to rarefied effects via the expansion behind the triangle prism. Additionally, the heat flux via the gradient of the static pressure is non-negligible owing to thermally relativistic effects. The profile of the dynamic pressure is different from that approximated on the basis of the NSF law, which is obtained by the Eckart decomposition. Finally, variations of convections of the mass and momentum owing to the effects derived from the Lorentz contraction and thermally relativistic effects are numerically confirmed.

  16. Mission Specialist Scott Parazynski arrives at KSC

    Science.gov (United States)

    1998-01-01

    STS-95 Mission Specialist Scott E. Parazynski notes the time on his watch upon his late arrival aboard a T-38 jet at the Shuttle Landing Facility. Parazynski's first plane experienced problems at the stop at Tyndall AFB and he had to wait for another jet and pilot to finish the flight to KSC. He joined other crewmembers Mission Commander Curtis L. Brown Jr., Pilot Steven W. Lindsey, Mission Specialist Stephen K. Robinson, Payload Specialist John H. Glenn Jr., senator from Ohio, Mission Specialist Pedro Duque, with the European Space Agency (ESA), and Payload Specialist Chiaki Mukai, with the National Space Development Agency of Japan (NASDA), for final pre-launch preparations. STS-95 is expected to launch at 2 p.m. EST on Oct. 29, last 8 days, 21 hours and 49 minutes, and land at 11:49 a.m. EST on Nov. 7.

  17. Relativistic effects in the calibration of electrostatic electron analyzers. I. Toroidal analyzers

    Energy Technology Data Exchange (ETDEWEB)

    Keski Rahkonen, O [Helsinki University of Technology, Espoo (Finland). Laboratory of Physics; Krause, M O [Oak Ridge National Lab., Tenn. (USA)

    1978-02-01

    Relativistic correction terms up to the second order are derived for the kinetic energy of an electron travelling along the circular central trajectory of a toroidal analyzer. Furthermore, a practical energy calibration equation of the spherical sector plate analyzer is written for the variable-plate-voltage recording mode. Accurate measurements with a spherical analyzer performed using kinetic energies from 600 to 2100 eV are in good agreement with this theory showing our approximation (neglect of fringing fields, and source and detector geometry) is realistic enough for actual calibration purposes.

  18. Nuclear fragmentation energy and momentum transfer distributions in relativistic heavy-ion collisions

    Science.gov (United States)

    Khandelwal, Govind S.; Khan, Ferdous

    1989-01-01

    An optical model description of energy and momentum transfer in relativistic heavy-ion collisions, based upon composite particle multiple scattering theory, is presented. Transverse and longitudinal momentum transfers to the projectile are shown to arise from the real and absorptive part of the optical potential, respectively. Comparisons of fragment momentum distribution observables with experiments are made and trends outlined based on our knowledge of the underlying nucleon-nucleon interaction. Corrections to the above calculations are discussed. Finally, use of the model as a tool for estimating collision impact parameters is indicated.

  19. Theoretical study of the relativistic molecular rotational g-tensor

    International Nuclear Information System (INIS)

    Aucar, I. Agustín; Gomez, Sergio S.; Giribet, Claudia G.; Ruiz de Azúa, Martín C.

    2014-01-01

    An original formulation of the relativistic molecular rotational g-tensor valid for heavy atom containing compounds is presented. In such formulation, the relevant terms of a molecular Hamiltonian for non-relativistic nuclei and relativistic electrons in the laboratory system are considered. Terms linear and bilinear in the nuclear rotation angular momentum and an external uniform magnetic field are considered within first and second order (relativistic) perturbation theory to obtain the rotational g-tensor. Relativistic effects are further analyzed by carrying out the linear response within the elimination of the small component expansion. Quantitative results for model systems HX (X=F, Cl, Br, I), XF (X=Cl, Br, I), and YH + (Y=Ne, Ar, Kr, Xe, Rn) are obtained both at the RPA and density functional theory levels of approximation. Relativistic effects are shown to be small for this molecular property. The relation between the rotational g-tensor and susceptibility tensor which is valid in the non-relativistic theory does not hold within the relativistic framework, and differences between both molecular parameters are analyzed for the model systems under study. It is found that the non-relativistic relation remains valid within 2% even for the heavy HI, IF, and XeH + systems. Only for the sixth-row Rn atom a significant deviation of this relation is found

  20. Theoretical study of the relativistic molecular rotational g-tensor

    Energy Technology Data Exchange (ETDEWEB)

    Aucar, I. Agustín, E-mail: agustin.aucar@conicet.gov.ar; Gomez, Sergio S., E-mail: ssgomez@exa.unne.edu.ar [Institute for Modeling and Technological Innovation, IMIT (CONICET-UNNE) and Faculty of Exact and Natural Sciences, Northeastern University of Argentina, Avenida Libertad 5400, W3404AAS Corrientes (Argentina); Giribet, Claudia G.; Ruiz de Azúa, Martín C. [Physics Department, Faculty of Exact and Natural Sciences, University of Buenos Aires and IFIBA CONICET, Ciudad Universitaria, Pab. I, 1428 Buenos Aires (Argentina)

    2014-11-21

    An original formulation of the relativistic molecular rotational g-tensor valid for heavy atom containing compounds is presented. In such formulation, the relevant terms of a molecular Hamiltonian for non-relativistic nuclei and relativistic electrons in the laboratory system are considered. Terms linear and bilinear in the nuclear rotation angular momentum and an external uniform magnetic field are considered within first and second order (relativistic) perturbation theory to obtain the rotational g-tensor. Relativistic effects are further analyzed by carrying out the linear response within the elimination of the small component expansion. Quantitative results for model systems HX (X=F, Cl, Br, I), XF (X=Cl, Br, I), and YH{sup +} (Y=Ne, Ar, Kr, Xe, Rn) are obtained both at the RPA and density functional theory levels of approximation. Relativistic effects are shown to be small for this molecular property. The relation between the rotational g-tensor and susceptibility tensor which is valid in the non-relativistic theory does not hold within the relativistic framework, and differences between both molecular parameters are analyzed for the model systems under study. It is found that the non-relativistic relation remains valid within 2% even for the heavy HI, IF, and XeH{sup +} systems. Only for the sixth-row Rn atom a significant deviation of this relation is found.

  1. Loading relativistic Maxwell distributions in particle simulations

    Energy Technology Data Exchange (ETDEWEB)

    Zenitani, Seiji, E-mail: seiji.zenitani@nao.ac.jp [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan)

    2015-04-15

    Numerical algorithms to load relativistic Maxwell distributions in particle-in-cell (PIC) and Monte-Carlo simulations are presented. For stationary relativistic Maxwellian, the inverse transform method and the Sobol algorithm are reviewed. To boost particles to obtain relativistic shifted-Maxwellian, two rejection methods are proposed in a physically transparent manner. Their acceptance efficiencies are ≈50% for generic cases and 100% for symmetric distributions. They can be combined with arbitrary base algorithms.

  2. Loading relativistic Maxwell distributions in particle simulations

    International Nuclear Information System (INIS)

    Zenitani, Seiji

    2015-01-01

    Numerical algorithms to load relativistic Maxwell distributions in particle-in-cell (PIC) and Monte-Carlo simulations are presented. For stationary relativistic Maxwellian, the inverse transform method and the Sobol algorithm are reviewed. To boost particles to obtain relativistic shifted-Maxwellian, two rejection methods are proposed in a physically transparent manner. Their acceptance efficiencies are ≈50% for generic cases and 100% for symmetric distributions. They can be combined with arbitrary base algorithms

  3. The de Sitter relativistic top theory

    International Nuclear Information System (INIS)

    Armenta, J.; Nieto, J.A.

    2005-01-01

    We discuss the relativistic top theory from the point of view of the de Sitter (or anti-de Sitter) group. Our treatment rests on the Hanson-Regge spherical relativistic top Lagrangian formulation. We propose an alternative method for studying spinning objects via Kaluza-Klein theory. In particular, we derive the relativistic top equations of motion starting with the geodesic equation for a point particle in 4+N dimensions. We compare our approach with Fukuyama's formulation of spinning objects, which is also based on Kaluza-Klein theory. We also report a generalization of our approach to a 4+N+D dimensional theory

  4. Biquaternions and relativistic kinematics

    International Nuclear Information System (INIS)

    Bogush, A.A.; Kurochkin, Yu.A.; Fedorov, F.I.

    1979-01-01

    The problems concerning the use of quaternion interpretation of the Lorentz group vector parametrization are considered for solving relativistic kinematics problems. A vector theory convenient for describing the characteristic features of the Lobachevsky space is suggested. The kinematics of elementary particle scattering is investigated on the basis of this theory. A synthesis of vector parametrization and of quaternion calculation has been shown to lead to natural formulation of the theory of vectors in the three-dimensional Lobachevsky space, realized on mass hyperboloids of relativistic particles

  5. Liouville equation of relativistic charged fermion

    International Nuclear Information System (INIS)

    Wang Renchuan; Zhu Dongpei; Huang Zhuoran; Ko Che-ming

    1991-01-01

    As a form of density martrix, the Wigner function is the distribution in quantum phase space. It is a 2 X 2 matrix function when one uses it to describe the non-relativistic fermion. While describing the relativistic fermion, it is usually represented by 4 x 4 matrix function. In this paper authors obtain a Wigner function for the relativistic fermion in the form of 2 x 2 matrix, and the Liouville equation satisfied by the Wigner function. this equivalent to the Dirac equation of changed fermion in QED. The equation is also equivalent to the Dirac equation in the Walecka model applied to the intermediate energy nuclear collision while the nucleon is coupled to the vector meson only (or taking mean field approximation for the scalar meson). Authors prove that the 2 x 2 Wigner function completely describes the quantum system just the same as the relativistic fermion wave function. All the information about the observables can be obtained with above Wigner function

  6. An energy principle for two-dimensional collisionless relativistic plasmas

    International Nuclear Information System (INIS)

    Otto, A.; Schindler, K.

    1984-01-01

    Using relativistic Vlasov theory an energy principle for two-dimensional plasmas is derived, which provides a sufficient and necessary criterion for the stability of relativistic plasma equilibria. This energy principle includes charge separating effects since the exact Poisson equation was taken into consideration. Applying the variational principle to the case of the relativistic plane plasma sheet, the same marginal wave length is found as in the non-relativistic case. (author)

  7. On Fine Structure of Strings: The Universal Correction to the Veneziano Amplitude

    CERN Multimedia

    CERN. Geneva

    2017-01-01

    We consider theories of weakly interacting higher spin particles in flat spacetime. We focus on the four-point scattering amplitude at high energies and imaginary scattering angles. The leading asymptotic of the amplitude in this regime is universal and equal to the corresponding limit of the Veneziano amplitude. In this paper, we find that the first sub-leading correction to this asymptotic is universal as well. We compute the correction using a model of relativistic strings with massive endpoints. We argue that it is unique using holography, effective theory of long strings and bootstrap techniques.

  8. Penetration of relativistic heavy ions through matter

    International Nuclear Information System (INIS)

    Scheidenberger, C.; Geissel, H.

    1997-07-01

    New heavy-ion accelerators covering the relativistic and ultra-relativistic energy regime allow to study atomic collisions with bare and few-electron projectiles. High-resolution magnetic spectrometers are used for precise stopping-power and energy-loss straggling measurements. Refined theories beyond the Born approximation have been developed and are confirmed by experiments. This paper summarizes the large progress in the understanding of relativistic heavy-ion penetration through matter, which has been achieved in the last few years. (orig.)

  9. Relativistic Kinematics

    OpenAIRE

    Sahoo, Raghunath

    2016-01-01

    This lecture note covers Relativistic Kinematics, which is very useful for the beginners in the field of high-energy physics. A very practical approach has been taken, which answers "why and how" of the kinematics useful for students working in the related areas.

  10. Studies on the presence and spatial distribution of anthropogenic pollutants in the glacial basin of Scott Glacier in the face of climate change (Fiord Bellsund, Spitsbergen)

    Science.gov (United States)

    Lehmann, Sara; Kociuba, Waldemar; Franczak, Łukasz; Gajek, Grzegorz; Łeczyński, Leszek; Kozak, Katarzyna; Szopińska, Małgorzata; Ruman, Marek; Polkowska, Żaneta

    2014-10-01

    The study area covered the NW part of the Wedel Jarlsberg Land (SW part of the Svalbard Archipelago). The primary study object was the catchment of the Scott Glacier in the vicinity of the Research Station of of Maria Curie-Skłodowska University in Lublin - Calypsobyen. The Scott River catchment (of glacial hydrological regime) has an area of approximately 10 km2, 40% of which is occupied by the valley Scott Glacier in the phase of strong recession. The present study concerns the determination of physical and chemical parameters (pH, conductivity, TOC) and concentrations of pollutants (phenols, aldehydes).

  11. General relativistic radiative transfer code in rotating black hole space-time: ARTIST

    Science.gov (United States)

    Takahashi, Rohta; Umemura, Masayuki

    2017-02-01

    We present a general relativistic radiative transfer code, ARTIST (Authentic Radiative Transfer In Space-Time), that is a perfectly causal scheme to pursue the propagation of radiation with absorption and scattering around a Kerr black hole. The code explicitly solves the invariant radiation intensity along null geodesics in the Kerr-Schild coordinates, and therefore properly includes light bending, Doppler boosting, frame dragging, and gravitational redshifts. The notable aspect of ARTIST is that it conserves the radiative energy with high accuracy, and is not subject to the numerical diffusion, since the transfer is solved on long characteristics along null geodesics. We first solve the wavefront propagation around a Kerr black hole that was originally explored by Hanni. This demonstrates repeated wavefront collisions, light bending, and causal propagation of radiation with the speed of light. We show that the decay rate of the total energy of wavefronts near a black hole is determined solely by the black hole spin in late phases, in agreement with analytic expectations. As a result, the ARTIST turns out to correctly solve the general relativistic radiation fields until late phases as t ˜ 90 M. We also explore the effects of absorption and scattering, and apply this code for a photon wall problem and an orbiting hotspot problem. All the simulations in this study are performed in the equatorial plane around a Kerr black hole. The ARTIST is the first step to realize the general relativistic radiation hydrodynamics.

  12. Relativistic klystrons

    International Nuclear Information System (INIS)

    Allen, M.A.; Azuma, O.; Callin, R.S.

    1989-03-01

    Experimental work is underway by a SLAC-LLNL-LBL collaboration to investigate the feasibility of using relativistic klystrons as a power source for future high gradient accelerators. Two different relativistic klystron configurations have been built and tested to date: a high grain multicavity klystron at 11.4 GHz and a low gain two cavity subharmonic buncher driven at 5.7 GHz. In both configurations power is extracted at 11.4 GHz. In order to understand the basic physics issues involved in extracting RF from a high power beam, we have used both a single resonant cavity and a multi-cell traveling wave structure for energy extraction. We have learned how to overcome our previously reported problem of high power RF pulse shortening, and have achieved peak RF power levels of 170 MW with the RF pulse of the same duration as the beam current pulse. 6 refs., 3 figs., 3 tabs

  13. Chaos and maps in relativistic rynamical systems

    Directory of Open Access Journals (Sweden)

    L. P. Horwitz

    2000-01-01

    Full Text Available The basic work of Zaslavskii et al showed that the classical non-relativistic electromagnetically kicked oscillator can be cast into the form of an iterative map on the phase space; the resulting evolution contains a stochastic flow to unbounded energy. Subsequent studies have formulated the problem in terms of a relativistic charged particle in interaction with the electromagnetic field. We review the structure of the covariant Lorentz force used to study this problem. We show that the Lorentz force equation can be derived as well from the manifestly covariant mechanics of Stueckelberg in the presence of a standard Maxwell field, establishing a connection between these equations and mass shell constraints. We argue that these relativistic generalizations of the problem are intrinsically inaccurate due to an inconsistency in the structure of the relativistic Lorentz force, and show that a reformulation of the relativistic problem, permitting variations (classically in both the particle mass and the effective “mass” of the interacting electromagnetic field, provides a consistent system of classical equations for describing such processes.

  14. A Primer to Relativistic MOND Theory

    NARCIS (Netherlands)

    Bekenstein, J.D..; Sanders, R.H.

    2005-01-01

    Abstract: We first review the nonrelativistic lagrangian theory as a framework for the MOND equation. Obstructions to a relativistic version of it are discussed leading up to TeVeS, a relativistic tensor-vector-scalar field theory which displays both MOND and Newtonian limits. The whys for its

  15. Relativistic Quantum Transport in Graphene Systems

    Science.gov (United States)

    2015-07-09

    dimensional Dirac material systems. 2 List of Publications 1. X. Ni, L. Huang, Y.-C. Lai, and L. M. Pecora, “Effect of chaos on relativistic quantum...development of relativistic quantum devices based on graphene or alternative two-dimensional Dirac material systems. In the project period, we studied

  16. Relativistic astrophysics and theory of gravity

    International Nuclear Information System (INIS)

    Zel'dovich, Ya.B.

    1982-01-01

    A brief historical review of the development of astrophysical science in the State Astrophysical Institute named after Shternberg (SAISh) has been given in a popular form. The main directions of the SAISh astrophysical investigations have been presented: relativistic theory of gravity, relativistic astrophysics of interplanetary medium and cosmology

  17. STS-90 Pilot Scott Altman arrives at KSC for TCDT

    Science.gov (United States)

    1998-01-01

    STS-90 Pilot Scott Altman poses in the cockpit of his T-38 jet trainer aircraft after arriving at the KSC Shuttle Landing Facility along with other members of the crew from NASAs Johnson Space Center to begin Terminal Countdown Demonstration Test (TCDT) activities. The TCDT is held at KSC prior to each Space Shuttle flight to provide crews with the opportunity to participate in simulated countdown activities. Columbia is targeted for launch of STS-90 on April 16 at 2:19 p.m. EST and will be the second mission of 1998. The mission is scheduled to last nearly 17 days.

  18. Non-relativistic Bondi-Metzner-Sachs algebra

    Science.gov (United States)

    Batlle, Carles; Delmastro, Diego; Gomis, Joaquim

    2017-09-01

    We construct two possible candidates for non-relativistic bms4 algebra in four space-time dimensions by contracting the original relativistic bms4 algebra. bms4 algebra is infinite-dimensional and it contains the generators of the Poincaré algebra, together with the so-called super-translations. Similarly, the proposed nrbms4 algebras can be regarded as two infinite-dimensional extensions of the Bargmann algebra. We also study a canonical realization of one of these algebras in terms of the Fourier modes of a free Schrödinger field, mimicking the canonical realization of relativistic bms4 algebra using a free Klein-Gordon field.

  19. Whispering gallery effect in relativistic optics

    Science.gov (United States)

    Abe, Y.; Law, K. F. F.; Korneev, Ph.; Fujioka, S.; Kojima, S.; Lee, S.-H.; Sakata, S.; Matsuo, K.; Oshima, A.; Morace, A.; Arikawa, Y.; Yogo, A.; Nakai, M.; Norimatsu, T.; d'Humières, E.; Santos, J. J.; Kondo, K.; Sunahara, A.; Gus'kov, S.; Tikhonchuk, V.

    2018-03-01

    relativistic laser pulse, confined in a cylindrical-like target, under specific conditions may perform multiple scattering along the internal target surface. This results in the confinement of the laser light, leading to a very efficient interaction. The demonstrated propagation of the laser pulse along the curved surface is just yet another example of the "whispering gallery" effect, although nonideal due to laser-plasma coupling. In the relativistic domain its important feature is a gradual intensity decrease, leading to changes in the interaction conditions. The proccess may pronounce itself in plenty of physical phenomena, including very efficient electron acceleration and generation of relativistic magnetized plasma structures.

  20. Relativistic quantum mechanics and introduction to field theory

    Energy Technology Data Exchange (ETDEWEB)

    Yndurain, F.J. [Universidad Autonoma de Madrid (Spain). Dept. de Fisica Teorica

    1996-12-01

    The following topics were dealt with: relativistic transformations, the Lorentz group, Klein-Gordon equation, spinless particles, spin 1/2 particles, Dirac particle in a potential, massive spin 1 particles, massless spin 1 particles, relativistic collisions, S matrix, cross sections, decay rates, partial wave analysis, electromagnetic field quantization, interaction of radiation with matter, interactions in quantum field theory and relativistic interactions with classical sources.

  1. Relativistic quantum mechanics and introduction to field theory

    International Nuclear Information System (INIS)

    Yndurain, F.J.

    1996-01-01

    The following topics were dealt with: relativistic transformations, the Lorentz group, Klein-Gordon equation, spinless particles, spin 1/2 particles, Dirac particle in a potential, massive spin 1 particles, massless spin 1 particles, relativistic collisions, S matrix, cross sections, decay rates, partial wave analysis, electromagnetic field quantization, interaction of radiation with matter, interactions in quantum field theory and relativistic interactions with classical sources

  2. A note on Fujikawa's method of determining the critical dimension of the relativistic string

    International Nuclear Information System (INIS)

    Petcher, D.N.; Holten, J.W. van.

    1987-04-01

    Fujikawa's derivation of the critical dimension of the relativistic string in the path integral formulation is reconsidered. It is shown that the correct prescription for choosing the functional measure is obtained by requiring standard BRST-invariance without modifications and that Fujikawa's choice of measure is not unique. We find a one-parameter family of BRST-invariant measures even after fixing a gauge for local Weyl rescalings. Gauge independence of the resulting theory is demonstrated in the critical number of dimensions. 13 refs

  3. Material motion corrections for implicit Monte Carlo radiation transport

    International Nuclear Information System (INIS)

    Gentile, N.A.; Morel, Jim E.

    2011-01-01

    We describe changes to the Implicit Monte Carlo (IMC) algorithm to include the effects of material motion. These changes assume that the problem can be embedded in a global Lorentz frame. We also assume that the material in each zone can be characterized by a single velocity. With this approximation, we show how to make IMC Lorentz invariant, so that the material motion corrections are correct to all orders of v/c. We develop thermal emission and face sources in moving material and discuss the coupling of IMC to the non- relativistic hydrodynamics equations via operator splitting. We discuss the effect of this coupling on the value of the 'Fleck factor' in IMC. (author)

  4. Effects of relativistic small radial component on atomic photoionization cross sections

    International Nuclear Information System (INIS)

    Liu Xiaobin; Xing Yongzhong; Sun Xiaowei

    2008-01-01

    The effects of relativistic small radial component on atomic photoionization cross sections have been studied within relativistic average self-consistent field theory. Relativistic effects are relatively unimportant for low photon energy, along with a review of high-energy photoionization the relativistic effects are quite important. The effects of relativistic small radial component on photoionization process should show breakdown when the nuclear finite-size effects is taken into account. The compression of wavefunction into the space near nucleus is so strong in highly charged ions that the electronic radius greatly decreases, and the effects of relativistic small radial component on photoionization cross sections turn to stronger than ordinary atoms. Since relativistic effects are extremely sensitive to the behavior of small radial component, the results are in good agreement with relativistic effects on photoionization cross section. (authors)

  5. The ionisation equation in a relativistic gas

    International Nuclear Information System (INIS)

    Kichenassamy, S.; Krikorian, R.A.

    1983-01-01

    By deriving the relativistic form of the ionisation equation for a perfect gas it is shown that the usual Saha equation is valid to 3% for temperatures below one hundred million Kelvin. Beyond 10 9 K, the regular Saha equation is seriously incorrect and a relativistic distribution function for electrons must be taken into account. Approximate forms are derived when only the electrons are relativistic (appropriate up to 10 12 K) and also for the ultrarelativistic case (temperatures greater than 10 15 K). (author)

  6. Effectively semi-relativistic Hamiltonians of nonrelativistic form

    International Nuclear Information System (INIS)

    Lucha, W.; Schoeberl, F.F.; Moser, M.

    1993-12-01

    We construct effective Hamiltonians which despite their apparently nonrelativistic form incorporate relativistic effects by involving parameters which depend on the relevant momentum. For some potentials the corresponding energy eigenvalues may be determined analytically. Applied to two-particle bound states, it turns out that in this way a nonrelativistic treatment may indeed be able to simulate relativistic effects. Within the framework of hadron spectroscopy, this lucky circumstance may be an explanation for the sometimes extremely good predictions of nonrelativistic potential models even in relativistic regions. (authors)

  7. Relativistic Astrophysics

    International Nuclear Information System (INIS)

    Font, J. A.

    2015-01-01

    The relativistic astrophysics is the field of astrophysics employing the theory of relativity Einstein as physical-mathematical model is to study the universe. This discipline analyzes astronomical contexts in which the laws of classical mechanics of Newton's law of gravitation are not valid. (Author)

  8. Conservation assessment for the Siskiyou Mountains salamander and Scott Bar salamander in northern California.

    Energy Technology Data Exchange (ETDEWEB)

    Vinikour, W. S.; LaGory, K. E.; Adduci, J. J.; Environmental Science Division

    2006-10-20

    The purpose of this conservation assessment is to summarize existing knowledge regarding the biology and ecology of the Siskiyou Mountains salamander and Scott Bar salamander, identify threats to the two species, and identify conservation considerations to aid federal management for persistence of the species. The conservation assessment will serve as the basis for a conservation strategy for the species.

  9. Relativistic ''potential model'' for N-particle systems

    International Nuclear Information System (INIS)

    Noyes, H.P.

    1986-08-01

    Neither quantum field theory nor S-Matrix theory have a well defined procedure for going over to an approximation that can be reliably used in non-relativistic models for nuclear physics. We meet the problem here by constructing a finite particle number relativistic scattering theory for (scalar) particles and mesons using integral equations of the Faddeev-Yakubovsky type. Restricted to N particles and one meson, we can go from the relativistic theory to a ''potential theory'' in the integral equation formulation by using boundary states which do not contain the meson asymptotically. The meson-particle input amplitudes contain a pole at the particle mass, and the particle-particle input amplitudes are null. This gives unique definition (numerically calculable) to the particle-particle off-shell amplitude, and hence to the covariant ''scattering potential'' (but not to the noninvariant concept of ''potential energy''). As we have commented before, if we take these scattering amplitudes as iput for relativistic Faddeev equations, the results are identical to those obtained from the same model starting from three particles and one meson. In this paper we explore how far we can extend this relativistic ''potential model'' to higher numbers of particles and mesons. 10 refs

  10. On completeness and orthogonality of solutions of relativistic wave equations on zero plane

    International Nuclear Information System (INIS)

    Gitman, D.M.; Shakhmatov, V.M.; Shvartsman, Sh.M.

    1975-01-01

    The work considers the possible redeterminations of the scalar product for the relativistic wave fields, such as the Klein-Gordon and Dirac ones. It has been shown that a whole class of new exact solutions, for which the usual scalar product on the plane x 0 =const. could not be previously determinated, allows a correct scalar product on the zero plane x 0 -x 3 =const. The relations of orthogonality and completeness with respect to the above scalar product have been proved. Possible applications of the obtained results are discussed

  11. Runoff Variability in the Scott River (SW Spitsbergen in Summer Seasons 2012–2013 in Comparison with the Period 1986–2009

    Directory of Open Access Journals (Sweden)

    Franczak Łukasz

    2016-09-01

    Full Text Available River runoff variability in the Scott River catchment in the summer seasons 2012 and 2013 has been presented in comparison to the multiannual river runoff in 1986–2009. Both in particular seasons and in the analysed multiannual, high variability of discharge rate was recorded. In the research periods 2012–2013, a total of 11 952 water stages and 20 flow rates were measured in the analysed cross-section for the determination of 83 daylong discharges. The mean multiannual discharge of the Scott River amounted to 0.96 m3·s−1. The value corresponds to a specific runoff of 94.6 dm3·s−1·km2, and the runoff layer 937 mm. The maximum values of daily discharge amounted to 5.07 m3·s−1, and the minimum values to 0.002 m3·s−1. The highest runoff occurs in the second and third decade of July, and in the first and second decade of August. The regime of the river is determined by a group of factors, and particularly meteorological conditions affecting the intensity of ablation, and consequently river runoff volume. We found a significant correlation (0.60 in 2012 and 0.67 in 2013 between the air temperature and the Scott River discharge related to the Scott Glacier ice melt.

  12. Relativistic quantum chaos-An emergent interdisciplinary field.

    Science.gov (United States)

    Lai, Ying-Cheng; Xu, Hong-Ya; Huang, Liang; Grebogi, Celso

    2018-05-01

    Quantum chaos is referred to as the study of quantum manifestations or fingerprints of classical chaos. A vast majority of the studies were for nonrelativistic quantum systems described by the Schrödinger equation. Recent years have witnessed a rapid development of Dirac materials such as graphene and topological insulators, which are described by the Dirac equation in relativistic quantum mechanics. A new field has thus emerged: relativistic quantum chaos. This Tutorial aims to introduce this field to the scientific community. Topics covered include scarring, chaotic scattering and transport, chaos regularized resonant tunneling, superpersistent currents, and energy level statistics-all in the relativistic quantum regime. As Dirac materials have the potential to revolutionize solid-state electronic and spintronic devices, a good understanding of the interplay between chaos and relativistic quantum mechanics may lead to novel design principles and methodologies to enhance device performance.

  13. Relativistic quantum chaos—An emergent interdisciplinary field

    Science.gov (United States)

    Lai, Ying-Cheng; Xu, Hong-Ya; Huang, Liang; Grebogi, Celso

    2018-05-01

    Quantum chaos is referred to as the study of quantum manifestations or fingerprints of classical chaos. A vast majority of the studies were for nonrelativistic quantum systems described by the Schrödinger equation. Recent years have witnessed a rapid development of Dirac materials such as graphene and topological insulators, which are described by the Dirac equation in relativistic quantum mechanics. A new field has thus emerged: relativistic quantum chaos. This Tutorial aims to introduce this field to the scientific community. Topics covered include scarring, chaotic scattering and transport, chaos regularized resonant tunneling, superpersistent currents, and energy level statistics—all in the relativistic quantum regime. As Dirac materials have the potential to revolutionize solid-state electronic and spintronic devices, a good understanding of the interplay between chaos and relativistic quantum mechanics may lead to novel design principles and methodologies to enhance device performance.

  14. Relativistic Spacecraft Propelled by Directed Energy

    Science.gov (United States)

    Kulkarni, Neeraj; Lubin, Philip; Zhang, Qicheng

    2018-04-01

    Achieving relativistic flight to enable extrasolar exploration is one of the dreams of humanity and the long-term goal of our NASA Starlight program. We derive a relativistic solution for the motion of a spacecraft propelled by radiation pressure from a directed energy (DE) system. Depending on the system parameters, low-mass spacecraft can achieve relativistic speeds, thus enabling interstellar exploration. The diffraction of the DE system plays an important role and limits the maximum speed of the spacecraft. We consider “photon recycling” as a possible method to achieving higher speeds. We also discuss recent claims that our previous work on this topic is incorrect and show that these claims arise from an improper treatment of causality.

  15. Spinning relativistic particles in external fields

    International Nuclear Information System (INIS)

    Pomeranskii, Andrei A; Sen'kov, Roman A; Khriplovich, Iosif B

    2000-01-01

    The motion of spinning relativistic particles in external electromagnetic and gravitational fields is considered. The self-consistent equations of motion are built with the noncovariant description of spin and with the usual, 'naive' definition of the coordinate of a relativistic particle. A simple derivation of the gravitational interaction of first order in spin is presented for a relativistic particle. The approach developed allows one to consider effects of higher order in spin. Concrete calculations are performed for the second order. The gravimagnetic moment is discussed, a special spin effect in general relativity. We also consider the contributions of the spin interactions of first and second order to the gravitational radiation of compact binary stars. (from the current literature)

  16. An assessment of the complications of the Brantley Scott artificial sphincter.

    Science.gov (United States)

    Heathcote, P S; Galloway, N T; Lewis, D C; Stephenson, T P

    1987-08-01

    A Brantley Scott artificial sphincter has been inserted into 95 patients since 1981; more than half of the patients had lower urinary tract neuropathy and most of the others post-TUR incontinence. The main problem with the device has been cuff failure (12), which should be resolved by the new "dipped" cuffs. The major surgical complication has been erosion (10), usually associated with infection. Twenty-four patients had variable degrees of incontinence but the artificial sphincter remains the cornerstone of continence control when other methods have failed or are inappropriate.

  17. Relativistic current sheets in electron-positron plasmas

    International Nuclear Information System (INIS)

    Zenitani, S.

    2008-01-01

    The current sheet structure with magnetic field reversal is one of the fundamental structure in space and astrophysical plasmas. It draws recent attention in high-energy astrophysical settings, where relativistic electron-positron plasmas are considered. In this talk we will review the recent progress of the physical processes in the relativistic current sheet. The kinetic stability of a single current sheet, the nonlinear behavior of these instabilities, and recent challenges on the multi current sheet systems are introduced. We will also introduce some problems of magnetic reconnection in these relativistic environments. (author)

  18. Relativistic astrophysics

    CERN Document Server

    Price, R H

    1993-01-01

    Work reported in the workshop on relativistic astrophysics spanned a wide varicy of topics. Two specific areas seemed of particular interest. Much attention was focussed on gravitational wave sources, especially on the waveforms they produce, and progress was reported in theoretical and observational aspects of accretion disks.

  19. Loop corrections and other many-body effects in relativistic field theories

    International Nuclear Information System (INIS)

    Ainsworth, T.L.; Brown, G.E.; Prakash, M.; Weise, W.

    1988-01-01

    Incorporation of effective masses into negative energy states (nucleon loop corrections) gives rise to repulsive many-body forces, as has been known for some time. Rather than renormalizing away the three- and four-body terms, we introduce medium corrections into the effective σ-exchange, which roughly cancel the nucleon loop terms for densities ρ ≅ ρ nm , where ρ nm is nuclear matter density. Going to higher densities, the repulsive contributions tend to saturate whereas the attractive ones keep on growing in magnitude. The latter is achieved through use of a density-dependent effective mass for the σ-particle, m σ = m σ (ρ), such that m σ (ρ) decreases with increasing density. Such a behavior is seen e.g. in the Nambu-Jona-Lasinio model. It is argued that a smooth transition to chiral restoration implies a similar behavior. The resulting nuclear equation of state is, because of the self-consistency in the problem, immensely insensitive to changes in the mass or coupling constant of the σ-particle. (orig.)

  20. Einstein Never Approved of Relativistic Mass

    Science.gov (United States)

    Hecht, Eugene

    2009-01-01

    During much of the 20th century it was widely believed that one of the significant insights of special relativity was "relativistic mass." Today there are two schools on that issue: the traditional view that embraces speed-dependent "relativistic mass," and the more modern position that rejects it, maintaining that there is only one mass and it's…

  1. Lectures on relativistic quantum mechanics and path integration

    International Nuclear Information System (INIS)

    Gunn, J.M.F.

    1989-02-01

    The question posed is why bother with relativistic quantum mechanics? Three reasons are given: First that there are many experimental phenomena which cannot be explained in non-relativistic terms. Secondly it would be unsatisfactory if relativity and quantum mechanics could not be united. Thirdly, there are theoretical reasons why new effects can be expected at relativistic velocities. The objectives of the course are to set up relativistic analogues of the Schroedinger equation and to understand their consequences. In doing so there are some questions which are raised and discussed such as can a first order equation be used to describe spin 0 particles and a second order equation be used to describe spin 1/ 2 (author)

  2. Relativistic and Non-Relativistic Electronic Molecular-Structure Calculations for Dimers of 4p-, 5p-, and 6p-Block Elements

    NARCIS (Netherlands)

    Hoefener, S.; Ahlrichs, R.; Knecht, S.; Visscher, L.

    2012-01-01

    We report results of non-relativistic and two-component relativistic single-reference coupled-cluster with single and double and perturbative triple excitations [CCSD(T)] treatments for the 4p-block dimers Ga

  3. Momentum projection and relativistic boost of solitons: Coherent states and projection

    International Nuclear Information System (INIS)

    Luebeck, E.G.; Birse, M.C.; Henley, E.M.; Wilets, L.

    1986-01-01

    We present a method for calculating center-of-mass corrections to hadron properties in soliton models and we apply the method to the soliton bag model. A coherent state is used to provide a quantum wave function corresponding to the mean-field approximation. This state is projected onto a zero-momentum eigenstate. States of nonzero momentum can be constructed from this with a Lorentz boost operator. Hence center-of-mass corrections can be made in a properly relativistic way. The energy of the projected zero-momentum state is the hadron mass with spurious center-of-mass energy removed. We apply a variational principle to our projected state and use three ''virial theorems'' to test our approximate solution. We also study projection of general one-mode states. Projection reduces the nucleon energy by up to 25%. Variation after projection gives a further reduction of less than 20%. Somewhat larger reductions in the energy are found for meson states

  4. Symmetric low-voltage powering system for relativistic electronic devices

    International Nuclear Information System (INIS)

    Agafonov, A.V.; Lebedev, A.N.; Krastelev, E.G.

    2005-01-01

    A special driver for double-sided powering of relativistic magnetrons and several methods of localized electron flow forming in the interaction region of relativistic magnetrons are proposed and discussed. Two experimental installations are presented and discussed. One of them is designed for laboratory research and demonstration experiments at a rather low voltage. The other one is a prototype of a full-scale installation for an experimental research at relativistic levels of voltages on the microwave generation in the new integrated system consisting of a relativistic magnetron and symmetrical induction driver

  5. Lagrangian formulation of a consistent relativistic guiding center theory

    International Nuclear Information System (INIS)

    Wimmel, H.K.

    1983-02-01

    A new relativistic guiding center mechanics is presented that conserves energy (in time-independent fields) and satisfies a Liouville's theorem. The theory reduces to Littlejohn's theory in the non-relativistic limit and agrees to leading orders in epsilon identical rsub(g)/L with the relativistic theory by Morozov and Solov'ev (which generally lacks a Liouville's theorem). The new theory is developed from an appropriate Lagrangian and is supplemented by a collisionless relativistic kinetic equation for the guiding centers. Moment equations for guiding center density and energy density are also derived. (orig.)

  6. Relativistic gravitational instabilities

    International Nuclear Information System (INIS)

    Schutz, B.F.

    1987-01-01

    The purpose of these lectures is to review and explain what is known about the stability of relativistic stars and black holes, with particular emphases on two instabilities which are due entirely to relativistic effects. The first of these is the post-Newtonian pulsational instability discovered independently by Chandrasekhar (1964) and Fowler (1964). This effectively ruled out the then-popular supermassive star model for quasars, and it sets a limit to the central density of white dwarfs. The second instability was also discovered by Chandrasekhar (1970): the gravitational wave induced instability. This sets an upper bound on the rotation rate of neutron stars, which is near that of the millisecond pulsar PSR 1937+214, and which is beginning to constrain the equation of state of neutron matter. 111 references, 5 figures

  7. The projective geometry of the spacetime yielded by relativistic positioning systems and relativistic location systems

    OpenAIRE

    Rubin , Jacques ,

    2014-01-01

    Version de travail de thèse d'habilitation à diriger des recherches; Preprint; Current positioning systems are not primary, relativistic systems. Nevertheless, genuine, relativistic and primary positioning systems have been proposed recently by Bahder, Coll et al. and Rovelli to remedy such prior defects. These new designs all have in common an equivariant conformal geometry featuring, as the most basic ingredient, the spacetime geometry. We show how this conformal aspect can be the four-dime...

  8. Relativistic transport theory for cosmic-rays

    International Nuclear Information System (INIS)

    Webb, G.M.

    1985-01-01

    Various aspects of the transport of cosmic-rays in a relativistically moving magnetized plasma supporting a spectrum of hydromagnetic waves that scatter the cosmic-rays are presented. A local Lorentz frame moving with the waves or turbulence scattering the cosmic-rays is used to specify the individual particle momentum. The comoving frame is in general a noninertial frame in which the observer's volume element is expanding and shearing, geometric energy change terms appear in the cosmic-ray transport equation which consist of the relativistic generalization of the adiabatic deceleration term and a further term involving the acceleration vector of the scatterers. A relativistic version of the pitch angle evolution equation, including the effects of adiabatic focussing, pitch angle scattering, and energy changes is presented

  9. Consideration of relativistic effects in band structure calculations based on the empirical tight-binding method

    International Nuclear Information System (INIS)

    Hanke, M.; Hennig, D.; Kaschte, A.; Koeppen, M.

    1988-01-01

    The energy band structure of cadmium telluride and mercury telluride materials is investigated by means of the tight-binding (TB) method considering relativistic effects and the spin-orbit interaction. Taking into account relativistic effects in the method is rather simple though the size of the Hamilton matrix doubles. Such considerations are necessary for the interesting small-interstice semiconductors, and the experimental results are reflected correctly in the band structures. The transformation behaviour of the eigenvectors within the Brillouin zone gets more complicated, but is, nevertheless, theoretically controllable. If, however, the matrix elements of the Green operator are to be calculated, one has to use formula manipulation programmes in particular for non-diagonal elements. For defect calculations by the Koster-Slater theory of scattering it is necessary to know these matrix elements. Knowledge of the transformation behaviour of eigenfunctions saves frequent diagonalization of the Hamilton matrix and thus permits a numerical solution of the problem. Corresponding results for the sp 3 basis are available

  10. Gravitationally confined relativistic neutrinos

    Science.gov (United States)

    Vayenas, C. G.; Fokas, A. S.; Grigoriou, D.

    2017-09-01

    Combining special relativity, the equivalence principle, and Newton’s universal gravitational law with gravitational rather than rest masses, one finds that gravitational interactions between relativistic neutrinos with kinetic energies above 50 MeV are very strong and can lead to the formation of gravitationally confined composite structures with the mass and other properties of hadrons. One may model such structures by considering three neutrinos moving symmetrically on a circular orbit under the influence of their gravitational attraction, and by assuming quantization of their angular momentum, as in the Bohr model of the H atom. The model contains no adjustable parameters and its solution, using a neutrino rest mass of 0.05 eV/c2, leads to composite state radii close to 1 fm and composite state masses close to 1 GeV/c2. Similar models of relativistic rotating electron - neutrino pairs give a mass of 81 GeV/c2, close to that of W bosons. This novel mechanism of generating mass suggests that the Higgs mass generation mechanism can be modeled as a latent gravitational field which gets activated by relativistic neutrinos.

  11. Scalar Relativistic Study of the Structure of Rhodium Acetate

    Directory of Open Access Journals (Sweden)

    Emily E. Edwards

    2004-01-01

    Full Text Available Abstract: Rhodium acetate, related rhodium carboxylates, and rhodium amide complexes are powerful catalysts for carbene chemistry. They readily promote the decomposition of diazo compounds and transfer the resulting carbene to a variety of substrates. There have been several quantum chemistry studies of these compounds, particularly of the acetate. These have all used non-relativistic methods, and all have shown optimized Rh-Rh bond lengths significantly longer than the experimental value. In this study we have surveyed several scalar relativistic DFT methods using Gaussian, Slater, and numerical basis functions (in DGAUSS, ADF, and DMOL3. Several combinations of exchange-correlation functionals with relativistic and non-relativistic effective core potentials (ECP were investigated, as were non-relativistic and all electron scalar relativistic methods. The combination of the PW91 exchange and PW91 correlation functional with the Christiansen-Ermler ECP gave the best results: 2.3918 Å compared to the experimental value of 2.3855±0.0005 Å.

  12. Holographic Aspects of a Relativistic Nonconformal Theory

    Directory of Open Access Journals (Sweden)

    Chanyong Park

    2013-01-01

    Full Text Available We study a general D-dimensional Schwarzschild-type black brane solution of the Einstein-dilaton theory and derive, by using the holographic renormalization, its thermodynamics consistent with the geometric results. Using the membrane paradigm, we calculate the several hydrodynamic transport coefficients and compare them with the results obtained by the Kubo formula, which shows the self-consistency of the gauge/gravity duality in the relativistic nonconformal theory. In order to understand more about the relativistic non-conformal theory, we further investigate the binding energy, drag force, and holographic entanglement entropy of the relativistic non-conformal theory.

  13. On the physics of relativistic double layers

    International Nuclear Information System (INIS)

    Carlqvist, P.

    1982-06-01

    A model of a strong, time-independent, and relativistic double layer is studied. Besides double layers having the electric field parallel to the current the model also describes a certain type of oblique double layers. The 'Langmuir condition' (ratio of ion current density to electron current density) as well as an expression for the potential drop of the double layer are derived. Furthermore, the distribution of charged particles, electric field, and potential within the double layer are clarified and discussed. It is found that the properties of relativistic double layers differ substantially from the properties of corresponding non-relativistic double layers. (Author)

  14. Two-dimensional approach to relativistic positioning systems

    International Nuclear Information System (INIS)

    Coll, Bartolome; Ferrando, Joan Josep; Morales, Juan Antonio

    2006-01-01

    A relativistic positioning system is a physical realization of a coordinate system consisting in four clocks in arbitrary motion broadcasting their proper times. The basic elements of the relativistic positioning systems are presented in the two-dimensional case. This simplified approach allows to explain and to analyze the properties and interest of these new systems. The positioning system defined by geodesic emitters in flat metric is developed in detail. The information that the data generated by a relativistic positioning system give on the space-time metric interval is analyzed, and the interest of these results in gravimetry is pointed out

  15. Relativistic calculations of coalescing binary neutron stars

    Indian Academy of Sciences (India)

    We have designed and tested a new relativistic Lagrangian hydrodynamics code, which treats gravity in the conformally flat approximation to general relativity. We have tested the resulting code extensively, finding that it performs well for calculations of equilibrium single-star models, collapsing relativistic dust clouds, and ...

  16. Deep processes in non-relativistic confining potentials

    International Nuclear Information System (INIS)

    Fishbane, P.M.; Grisaru, M.T.

    1978-01-01

    The authors study deep inelastic and hard scattering processes for non-relativistic particles confined in deep potentials. The mechanisms by which the effects of confinement disappear and the particles scatter as if free are useful in understanding the analogous results for a relativistic field theory. (Auth.)

  17. Isolating relativistic effects in large-scale structure

    Science.gov (United States)

    Bonvin, Camille

    2014-12-01

    We present a fully relativistic calculation of the observed galaxy number counts in the linear regime. We show that besides the density fluctuations and redshift-space distortions, various relativistic effects contribute to observations at large scales. These effects all have the same physical origin: they result from the fact that our coordinate system, namely the galaxy redshift and the incoming photons’ direction, is distorted by inhomogeneities in our Universe. We then discuss the impact of the relativistic effects on the angular power spectrum and on the two-point correlation function in configuration space. We show that the latter is very well adapted to isolate the relativistic effects since it naturally makes use of the symmetries of the different contributions. In particular, we discuss how the Doppler effect and the gravitational redshift distortions can be isolated by looking for a dipole in the cross-correlation function between a bright and a faint population of galaxies.

  18. "I Have a Dream, Too!": The American Dream in Coretta Scott King Award-Winning Books

    Science.gov (United States)

    Parsons, Linda T.; Castleman, Michele

    2011-01-01

    The Coretta Scott King (CSK) Award, instituted in 1969 and recognized as an official award by the American Library Association (ALA) in 1982, is conferred annually to an African American author and an illustrator for their outstanding contributions to literature about the Black experience for children and young adults. A partial impetus for the…

  19. Roles of antinucleon degrees of freedom in the relativistic random phase approximation

    Science.gov (United States)

    Kurasawa, Haruki; Suzuki, Toshio

    2015-11-01

    The roles of antinucleon degrees of freedom in the relativistic random phase approximation (RPA) are investigated. The energy-weighted sum of the RPA transition strengths is expressed in terms of the double commutator between the excitation operator and the Hamiltonian, as in nonrelativistic models. The commutator, however, should not be calculated in the usual way in the local field theory, because, otherwise, the sum vanishes. The sum value obtained correctly from the commutator is infinite, owing to the Dirac sea. Most of the previous calculations take into account only some of the nucleon-antinucleon states, in order to avoid divergence problems. As a result, RPA states with negative excitation energy appear, which make the sum value vanish. Moreover, disregarding the divergence changes the sign of nuclear interactions in the RPA equation that describes the coupling of the nucleon particle-hole states with the nucleon-antinucleon states. Indeed, the excitation energies of the spurious state and giant monopole states in the no-sea approximation are dominated by these unphysical changes. The baryon current conservation can be described without touching the divergence problems. A schematic model with separable interactions is presented, which makes the structure of the relativistic RPA transparent.

  20. Mission Specialist Scott Parazynski arrives late at KSC

    Science.gov (United States)

    1998-01-01

    The T-38 jet aircraft arrives at the Shuttle Landing Facility carrying STS-95 Mission Specialist Scott E. Parazynski (second seat). The pilot is astronaut Kent Rominger. Parazynski's first plane experienced problems at the stop at Tyndall AFB and he had to wait for another jet and pilot to finish the flight to KSC. He joined other crewmembers Mission Commander Curtis L. Brown Jr., Pilot Steven W. Lindsey, Mission Specialist Stephen K. Robinson, Payload Specialist John H. Glenn Jr., senator from Ohio, Mission Specialist Pedro Duque, with the European Space Agency (ESA), and Payload Specialist Chiaki Mukai, with the National Space Development Agency of Japan (NASDA), for final pre-launch preparations. STS-95 is expected to launch at 2 p.m. EST on Oct. 29, last 8 days, 21 hours and 49 minutes, and land at 11:49 a.m. EST on Nov. 7.

  1. Report of seminar on relativistic approach to nuclear reaction and nuclear structure

    International Nuclear Information System (INIS)

    1986-05-01

    A seminar on 'Relativistic Approach to Nuclear Reaction and Nuclear Structure' was held in 1985 at Osaka University. This booklet includes twenty-four reports given at the seminar, which deal with: Conventional Nonrelativistic Description of Nuclear Matter and Nuclear Spin-Orbit Interactions; Relativistic Approach to Nuclear Structure; Atomic and Molecular Structure Calculations; Electromagnetic Interaction in Nucleus and Relativistic Effect; Nuclear Magnetic Moment in the Relativistic Mean Field Theory, Effective Mass and Particle-Vibration Coupling in the Relativistic σ-ω Model; Gauge Invariance in Relativistic Many-Body Theory; Relativistic Description of Nucleon-Nucleon Interaction in Review; σ-Particle in NN Interaction; Nuclear Optical Potentials Based on the Brueckner-Hartree-Fock Approach; Elastic Backscattering and Optical Potential; Description of Intermediate-Energy Nuclear Reactions; Dirac Phenomenology at E(p) = 65 MeV; Relativistic Impulse Approximation; Reaction Studies with Intermediate Energy Deuterons at SATURNE; Folding Model for Intermediate-Energy Deutron Scattering; Folding Model for Polarized Deutron Scattering at 700 MeV; Dirac Approach Problems and a Different Viewpoint; Relativistic Approach and EMC Effect; Quasielastic Electron Scattering; Response Function of Quasielastic Electron Scattering; Relativistic Hartree Response Function for Quasielastic Electron Scattering on 12 C and 40 Ca; Backflow-, Retardation- and Relativistic Effects on the Longitudinal Response Function of Nuclear Matter; Pion-Photoproduction in the σ-ω Model. (Nogami, K.)

  2. Is a Relativistic Thermodynamics possible?; Es posible una Termodinamica Relativista?

    Energy Technology Data Exchange (ETDEWEB)

    Guemez, J.

    2010-07-01

    A brief historical review the literature on developing the concept of Thermodynamics Relativistic. We analyze two examples of application of the Galilean and Relativistic Thermodynamics discussed under what circumstances could build a relativistic Thermodynamics Lorentz covariant with physical sense. (Author) 19 refs.

  3. Study of the O-mode in a relativistic degenerate electron plasma

    Science.gov (United States)

    Azra, Kalsoom; Ali, Muddasir; Hussain, Azhar

    2017-03-01

    Using the linearized relativistic Vlasov-Maxwell equations, a generalized expression for the plasma conductivity tensor is derived. The dispersion relation for the O-mode in a relativistic degenerate electron plasma is investigated by employing the Fermi-Dirac distribution function. The propagation characteristics of the O-mode (cut offs, resonances, propagation regimes, harmonic structure) are examined by using specific values of the density and the magnetic field that correspond to different relativistic dense environments. Further, it is observed that due to the relativistic effects the cut off and the resonance points are shifted to low frequency values, as a result the propagation regime is reduced. The dispersion relations for the non-relativistic and the ultra-relativistic limits are also presented.

  4. STS-87 Mission Specialist Scott poses in his launch and entry spacesuit at LC 39B during TCDT

    Science.gov (United States)

    1997-01-01

    STS-87 Mission Specialist Winston Scott poses in his orange launch and entry spacesuit with NASA suit technicians at Launch Pad 39B during Terminal Countdown Demonstration Test (TCDT) activities. The crew of the STS-87 mission is scheduled for launch Nov. 19 aboard the Space Shuttle Columbia. Scott will be performing an extravehicular activity (EVA) spacewalk during the mission. The TCDT is held at KSC prior to each Space Shuttle flight providing the crew of each mission opportunities to participate in simulated countdown activities. The TCDT ends with a mock launch countdown culminating in a simulated main engine cut-off. The crew also spends time undergoing emergency egress training exercises at the pad and has an opportunity to view and inspect the payloads in the orbiter's payload bay.

  5. Relativistic Calculations for Be-like Iron

    International Nuclear Information System (INIS)

    Yang Jianhui; Zhang Jianping; Li Ping; Li Huili

    2008-01-01

    Relativistic configuration interaction calculations for the states of 1s 2 2s 2 , 1s 2 2s3l (l = s,p,d) and 1s 2 2p3l (l = s,p,d) configurations of iron are carried out using relativistic configuration interaction (RCI) and multi-configuration Dirac-Fock (MCDF) method in the active interaction approach. In the present calculation, a large-scale configuration expansion was used in describing the target states. These results are extensively compared with other available calculative and experimental and observed values, the corresponding present results are in good agreement with experimental and observed values, and some differences are found with other available calculative values. Because more relativistic effects are considered than before, the present results should be more accurate and reliable

  6. Relativistic dynamical reduction models and nonlocality

    International Nuclear Information System (INIS)

    Ghirardi, G.C.; Grassi, R.

    1990-09-01

    We discuss some features of continuous dynamical models yielding state vector reduction and we briefly sketch some recent attempts to get a relativistic generalization of them. Within the relativistic context we analyze in detail the local an nonlocal features of the reduction mechanism and we investigate critically the possibility of attributing objective properties to individual systems in the micro and macroscopic cases. At the nonrelativistic level, two physically equivalent versions of continuous reduction mechanisms have been presented. However, only one of them can be taken as a starting point for the above considered relativistic generalization. By resorting to counterfactual arguments we show that the reason for this lies in the fact that the stochasticity involved in the two approaches has different conceptual implications. (author). 7 refs, 4 figs

  7. Experimental determination of the relativistic fine-structure splitting in pionic Ti and Fe atoms

    International Nuclear Information System (INIS)

    Wang, K.; Boehm, F.; Bovet, E.; Hahn, A.A.; Henrikson, H.E.; Miller, J.P.; Powers, R.J.; Vogel, P.; Vuilleumier, J.; Kunselman, A.R.

    1980-01-01

    Using a high-resolution crystal spectrometer we have measured the relativistic angular-momentum splittings of the 5g-4f and 5f-4d transitions in pionic Ti and Fe atoms. The observed fine-structure splittings of 85.3 +- 3.0 eV in π - Ti and 158.5 +- 7.8 eV in π - Fe agree with the calculated splittings of 88.5 and 167.6 eV, respectively, arising from the Klein-Gordon equation and from small corrections due to vacuum polarization, strong interaction, and electron screening

  8. Anisotropic flow fluctuations in hydro-inspired freeze-out model for relativistic heavy ion collisions

    CERN Document Server

    Bravina, L V; Korotkikh, V L; Lokhtin, I P; Malinina, L V; Nazarova, E N; Petrushanko, S V; Snigirev, A M; Zabrodin, E E

    2015-01-01

    The possible mechanisms contributing to anisotropic flow fluctuations in relativistic heavy ion collisions are discussed. The LHC data on event-by-event harmonic flow coefficients measured in PbPb collisions at center-of-mass energy 2.76 TeV per nucleon pair are analyzed and interpreted within the HYDJET++ model. To compare the model results with the experimental data the unfolding procedure is employed. It is shown that HYDJET++ correctly reproduces dynamical fluctuations of elliptic and triangular flows and related to it eccentricity fluctuations of the initial state.

  9. Recent progresses in relativistic beam-plasma instability theory

    Directory of Open Access Journals (Sweden)

    A. Bret

    2010-11-01

    Full Text Available Beam-plasma instabilities are a key physical process in many astrophysical phenomena. Within the fireball model of Gamma ray bursts, they first mediate a relativistic collisionless shock before they produce upstream the turbulence needed for the Fermi acceleration process. While non-relativistic systems are usually governed by flow-aligned unstable modes, relativistic ones are likely to be dominated by normally or even obliquely propagating waves. After reviewing the basis of the theory, results related to the relativistic kinetic regime of the poorly-known oblique unstable modes will be presented. Relevant systems besides the well-known electron beam-plasma interaction are presented, and it is shown how the concept of modes hierarchy yields a criterion to assess the proton to electron mass ratio in Particle in cell simulations.

  10. Rayleigh-Brillouin spectrum in special relativistic hydrodynamics

    International Nuclear Information System (INIS)

    Garcia-Perciante, A. L.; Garcia-Colin, L. S.; Sandoval-Villalbazo, A.

    2009-01-01

    In this paper we calculate the Rayleigh-Brillouin spectrum for a relativistic simple fluid according to three different versions available for a relativistic approach to nonequilibrium thermodynamics. An outcome of these calculations is that Eckart's version predicts that such spectrum does not exist. This provides an argument to question its validity. The remaining two results, which differ one from another, do provide a finite form for such spectrum. This raises the rather intriguing question as to which of the two theories is a better candidate to be taken as a possible version of relativistic nonequilibrium thermodynamics. The answer will clearly require deeper examination of this problem.

  11. James Edward Scott: The Leadership Journey of a Senior-Level African American Student Affairs Officer

    Science.gov (United States)

    Willis, Salatha T.

    2013-01-01

    The purpose of this study was to examine, understand, and describe the life, leadership, and influence of Dr. James Edward Scott on higher education and more specifically student affairs; as one of the most well-known and respected African American male chief student affairs officers in the late 20th and early 21st centuries. Using a qualitative…

  12. Frontiers in relativistic celestial mechanics

    CERN Document Server

    2014-01-01

    Relativistic celestial mechanics – investigating the motion celestial bodies under the influence of general relativity – is a major tool of modern experimental gravitational physics. With a wide range of prominent authors from the field, this two-volume series consists of reviews on a multitude of advanced topics in the area of relativistic celestial mechanics – starting from more classical topics such as the regime of asymptotically-flat spacetime, light propagation and celestial ephemerides, but also including its role in cosmology and alternative theories of gravity as well as modern experiments in this area.

  13. STS-90 Pilot Scott Altman is suited up for launch

    Science.gov (United States)

    1998-01-01

    STS-90 Pilot Scott Altman is assisted during suit-up activities by Lockheed Suit Technician Valerie McNeil from Johnson Space Center in KSC's Operations and Checkout Building. Altman and the rest of the STS-90 crew will shortly depart for Launch Pad 39B, where the Space Shuttle Columbia awaits a second liftoff attempt at 2:19 p.m. EDT. His first trip into space, Altman is participating in a life sciences research flight that will focus on the most complex and least understood part of the human body - - the nervous system. Neurolab will examine the effects of spaceflight on the brain, spinal cord, peripheral nerves and sensory organs in the human body.

  14. Chiral quark model with relativistic kinematics

    International Nuclear Information System (INIS)

    Garcilazo, H.; Valcarce, A.

    2003-01-01

    The nonstrange baryon spectrum is studied within a three-body model that incorporates relativistic kinematics. We found that the combined effect of relativistic kinematics together with the pion exchange between quarks is able to reverse the order of the first positive- and negative-parity nucleon excited states as observed experimentally. Including the chiral partner of the pion (the σ meson) leads to an overall good description of the spectrum

  15. Chiral quark model with relativistic kinematics

    OpenAIRE

    Garcilazo, H.; Valcarce, A.

    2003-01-01

    The non-strange baryon spectrum is studied within a three-body model that incorporates relativistic kinematics. We found that the combined effect of relativistic kinematics together with the pion exchange between quarks is able to reverse the order of the first positive- and negative-parity nucleon excited states as observed experimentally. Including the chiral partner of the pion (the $\\sigma$ meson) leads to an overall good description of the spectrum.

  16. Acoustic geometry for general relativistic barotropic irrotational fluid flow

    International Nuclear Information System (INIS)

    Visser, Matt; Molina-ParIs, Carmen

    2010-01-01

    'Acoustic spacetimes', in which techniques of differential geometry are used to investigate sound propagation in moving fluids, have attracted considerable attention over the last few decades. Most of the models currently considered in the literature are based on non-relativistic barotropic irrotational fluids, defined in a flat Newtonian background. The extension, first to special relativistic barotropic fluid flow and then to general relativistic barotropic fluid flow in an arbitrary background, is less straightforward than it might at first appear. In this paper, we provide a pedagogical and simple derivation of the general relativistic 'acoustic spacetime' in an arbitrary (d+1)-dimensional curved-space background.

  17. Non-relativistic spinning particle in a Newton-Cartan background

    Science.gov (United States)

    Barducci, Andrea; Casalbuoni, Roberto; Gomis, Joaquim

    2018-01-01

    We construct the action of a non-relativistic spinning particle moving in a general torsionless Newton-Cartan background. The particle does not follow the geodesic equations, instead the motion is governed by the non-relativistic analog of Papapetrou equation. The spinning particle is described in terms of Grassmann variables. In the flat case the action is invariant under the non-relativistic analog of space-time vector supersymmetry.

  18. General relativistic dynamics of an extreme mass-ratio binary interacting with an external body

    Science.gov (United States)

    Yang, Huan; Casals, Marc

    2017-10-01

    We study the dynamics of a hierarchical three-body system in the general relativistic regime: an extreme mass-ratio inner binary under the tidal influence of an external body. The inner binary consists of a central Schwarzschild black hole and a test body moving around it. We discuss three types of tidal effects on the orbit of the test body. First, the angular momentum of the inner binary precesses around the angular momentum of the outer binary. Second, the tidal field drives a "transient resonance" when the radial and azimuthal frequencies are commensurable. In contrast with resonances driven by the gravitational self-force, this tidal-driven resonance may boost the orbital angular momentum and eccentricity (a relativistic version of the Kozai-Lidov effect). Finally, for an orbit-dynamical effect during the nonresonant phase, we calculate the correction to the innermost stable circular (mean) orbit due to the tidal interaction. Hierarchical three-body systems are potential sources for future space-based gravitational wave missions, and the tidal effects that we find could contribute significantly to their waveform.

  19. Fully relativistic free-electron laser in a completely filled waveguide

    International Nuclear Information System (INIS)

    Farokhi, B.; Abdykian, A.

    2005-01-01

    An analysis of the azimuthally symmetrical, high frequency eigenmodes of a cylindrical metallic waveguide completely filled with a relativistic magnetized plasma is presented. A relativistic nonlinear wave equation is derived in a form which includes the coupling of EH and HE modes due to the finite axial magnetic field. Relativistic equations that permit calculation of the dispersion curves for four families of electromagnetic and electrostatic modes are derived. Numerical analysis is conducted to study the relativistic dispersion curves of various modes as a function of axial magnetic field B 0 . This treatment is shown that the dispersion curves dependent to γ in low frequency which is ignored in previous work. It is found that in drawn figures shown difference between relativistic and non-relativistic cases. The former each figure is treated for two orbit groups. This study is benefiting to facilities the development of devices for generation of high-power electromagnetic radiation, charged particle acceleration, and other applications of plasma waveguide. (author)

  20. Relativistic modeling capabilities in PERSEUS extended MHD simulation code for HED plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Hamlin, Nathaniel D., E-mail: nh322@cornell.edu [438 Rhodes Hall, Cornell University, Ithaca, NY, 14853 (United States); Seyler, Charles E., E-mail: ces7@cornell.edu [Cornell University, Ithaca, NY, 14853 (United States)

    2014-12-15

    We discuss the incorporation of relativistic modeling capabilities into the PERSEUS extended MHD simulation code for high-energy-density (HED) plasmas, and present the latest hybrid X-pinch simulation results. The use of fully relativistic equations enables the model to remain self-consistent in simulations of such relativistic phenomena as X-pinches and laser-plasma interactions. By suitable formulation of the relativistic generalized Ohm’s law as an evolution equation, we have reduced the recovery of primitive variables, a major technical challenge in relativistic codes, to a straightforward algebraic computation. Our code recovers expected results in the non-relativistic limit, and reveals new physics in the modeling of electron beam acceleration following an X-pinch. Through the use of a relaxation scheme, relativistic PERSEUS is able to handle nine orders of magnitude in density variation, making it the first fluid code, to our knowledge, that can simulate relativistic HED plasmas.

  1. Aging in a Relativistic Biological Space-Time

    Directory of Open Access Journals (Sweden)

    Davide Maestrini

    2018-05-01

    Full Text Available Here we present a theoretical and mathematical perspective on the process of aging. We extend the concepts of physical space and time to an abstract, mathematically-defined space, which we associate with a concept of “biological space-time” in which biological dynamics may be represented. We hypothesize that biological dynamics, represented as trajectories in biological space-time, may be used to model and study different rates of biological aging. As a consequence of this hypothesis, we show how dilation or contraction of time analogous to relativistic corrections of physical time resulting from accelerated or decelerated biological dynamics may be used to study precipitous or protracted aging. We show specific examples of how these principles may be used to model different rates of aging, with an emphasis on cancer in aging. We discuss how this theory may be tested or falsified, as well as novel concepts and implications of this theory that may improve our interpretation of biological aging.

  2. RELATIVISTIC DOPPLER BEAMING AND MISALIGNMENTS IN AGN JETS

    International Nuclear Information System (INIS)

    Singal, Ashok K.

    2016-01-01

    Radio maps of active galactic nuclei often show linear features, called jets, on both parsec and kiloparsec scales. These jets supposedly possess relativistic motion and are oriented close to the line of sight of the observer, and accordingly the relativistic Doppler beaming makes them look much brighter than they really are in their respective rest frames. The flux boosting due to the relativistic beaming is a very sensitive function of the jet orientation angle, as seen by the observer. Sometimes, large bends are seen in these jets, with misalignments being 90° or more, which might imply a change in the orientation angle that should cause a large change in the relativistic beaming factor. Hence, if relativistic beaming does play an important role in these jets such large bends should usually show high contrast in the brightness of the jets before and after the bend. It needs to be kept in mind that sometimes a small intrinsic change in the jet angle might appear as a much larger misalignment due to the effects of geometrical projection, especially when seen close to the line of sight. What really matters are the initial and final orientation angles of the jet with respect to the observer’s line of sight. Taking the geometrical projection effects properly into account, we calculate the consequences of the presumed relativistic beaming and demonstrate that there ought to be large brightness ratios in jets before and after the observed misalignments.

  3. Relativistic Doppler Beaming and Misalignments in AGN Jets

    Science.gov (United States)

    Singal, Ashok K.

    2016-08-01

    Radio maps of active galactic nuclei often show linear features, called jets, on both parsec and kiloparsec scales. These jets supposedly possess relativistic motion and are oriented close to the line of sight of the observer, and accordingly the relativistic Doppler beaming makes them look much brighter than they really are in their respective rest frames. The flux boosting due to the relativistic beaming is a very sensitive function of the jet orientation angle, as seen by the observer. Sometimes, large bends are seen in these jets, with misalignments being 90° or more, which might imply a change in the orientation angle that should cause a large change in the relativistic beaming factor. Hence, if relativistic beaming does play an important role in these jets such large bends should usually show high contrast in the brightness of the jets before and after the bend. It needs to be kept in mind that sometimes a small intrinsic change in the jet angle might appear as a much larger misalignment due to the effects of geometrical projection, especially when seen close to the line of sight. What really matters are the initial and final orientation angles of the jet with respect to the observer’s line of sight. Taking the geometrical projection effects properly into account, we calculate the consequences of the presumed relativistic beaming and demonstrate that there ought to be large brightness ratios in jets before and after the observed misalignments.

  4. Relativistic Polarizable Embedding

    DEFF Research Database (Denmark)

    Hedegård, Erik Donovan; Bast, Radovan; Kongsted, Jacob

    2017-01-01

    Most chemistry, including chemistry where relativistic effects are important, occurs in an environment, and in many cases, this environment has a significant effect on the chemistry. In nonrelativistic quantum chemistry, a lot of progress has been achieved with respect to including environments s...

  5. A new perspective on relativistic transformation for Maxwell's equations of electrodynamics

    International Nuclear Information System (INIS)

    Huang, Y.-S.

    2009-01-01

    A new scheme for relativistic transformation of the electromagnetic fields is formulated through relativistic transformation in the wavevector space, instead of the space-time space. Maxwell's equations of electrodynamics are shown to be form-invariant among inertial frames in accordance with this new scheme of relativistic transformation. This new perspective on relativistic transformation not only fulfills the principle of relativity, but is also compatible with quantum theory.

  6. Relativistic laser channeling in plasmas for fast ignition

    Science.gov (United States)

    Lei, A. L.; Pukhov, A.; Kodama, R.; Yabuuchi, T.; Adumi, K.; Endo, K.; Freeman, R. R.; Habara, H.; Kitagawa, Y.; Kondo, K.; Kumar, G. R.; Matsuoka, T.; Mima, K.; Nagatomo, H.; Norimatsu, T.; Shorokhov, O.; Snavely, R.; Yang, X. Q.; Zheng, J.; Tanaka, K. A.

    2007-12-01

    We report an experimental observation suggesting plasma channel formation by focusing a relativistic laser pulse into a long-scale-length preformed plasma. The channel direction coincides with the laser axis. Laser light transmittance measurement indicates laser channeling into the high-density plasma with relativistic self-focusing. A three-dimensional particle-in-cell simulation reproduces the plasma channel and reveals that the collimated hot-electron beam is generated along the laser axis in the laser channeling. These findings hold the promising possibility of fast heating a dense fuel plasma with a relativistic laser pulse.

  7. On the convexity of relativistic hydrodynamics

    International Nuclear Information System (INIS)

    Ibáñez, José M; Martí, José M; Cordero-Carrión, Isabel; Miralles, Juan A

    2013-01-01

    The relativistic hydrodynamic system of equations for a perfect fluid obeying a causal equation of state is hyperbolic (Anile 1989 Relativistic Fluids and Magneto-Fluids (Cambridge: Cambridge University Press)). In this report, we derive the conditions for this system to be convex in terms of the fundamental derivative of the equation of state (Menikoff and Plohr1989 Rev. Mod. Phys. 61 75). The classical limit is recovered. Communicated by L Rezzolla (note)

  8. Limits and signatures of relativistic spaceflight

    Science.gov (United States)

    Yurtsever, Ulvi; Wilkinson, Steven

    2018-01-01

    While special relativity imposes an absolute speed limit at the speed of light, our Universe is not empty Minkowski spacetime. The constituents that fill the interstellar/intergalactic vacuum, including the cosmic microwave background photons, impose a lower speed limit on any object travelling at relativistic velocities. Scattering of cosmic microwave photons from an ultra-relativistic object may create radiation with a characteristic signature allowing the detection of such objects at large distances.

  9. First record of the Calanoid Copepod Pseudodiaptomus serricaudatus (Scott, T. 1894), (Copepoda: Calanoida: Pseudodiaptomidae) in the equatorial Indian ocean.

    Digital Repository Service at National Institute of Oceanography (India)

    Rebello, V.; Narvekar, J.; Gadi, P.; Venenkar, A.; Gauns, M.; PrasannaKumar, S.

    , Pondicherry University, Port Blair, Andaman 3Happy Home Apartment, Near Canara Bank, Fatorda, Margao, Goa-403602 Abstract Pseudodiaptomus serricaudatus (Scott, T. 1894), a planktonic copepod belonging to the family Pseudodiaptomidae, though has...

  10. Angular analyses in relativistic quantum mechanics; Analyses angulaires en mecanique quantique relativiste

    Energy Technology Data Exchange (ETDEWEB)

    Moussa, P [Commissariat a l' Energie Atomique, 91 - Saclay (France). Centre d' Etudes Nucleaires

    1968-06-01

    This work describes the angular analysis of reactions between particles with spin in a fully relativistic fashion. One particle states are introduced, following Wigner's method, as representations of the inhomogeneous Lorentz group. In order to perform the angular analyses, the reduction of the product of two representations of the inhomogeneous Lorentz group is studied. Clebsch-Gordan coefficients are computed for the following couplings: l-s coupling, helicity coupling, multipolar coupling, and symmetric coupling for more than two particles. Massless and massive particles are handled simultaneously. On the way we construct spinorial amplitudes and free fields; we recall how to establish convergence theorems for angular expansions from analyticity hypothesis. Finally we substitute these hypotheses to the idea of 'potential radius', which gives at low energy the usual 'centrifugal barrier' factors. The presence of such factors had never been deduced from hypotheses compatible with relativistic invariance. (author) [French] On decrit un formalisme permettant de tenir compte de l'invariance relativiste, dans l'analyse angulaire des amplitudes de reaction entre particules de spin quelconque. Suivant Wigner, les etats a une particule sont introduits a l'aide des representations du groupe de Lorentz inhomogene. Pour effectuer les analyses angulaires, on etudie la reduction du produit de deux representations du groupe de Lorentz inhomogene. Les coefficients de Clebsch-Gordan correspondants sont calcules dans les couplages suivants: couplage l-s couplage d'helicite, couplage multipolaire, couplage symetrique pour plus de deux particules. Les particules de masse nulle et de masse non nulle sont traitees simultanement. Au passage, on introduit les amplitudes spinorielles et on construit les champs libres, on rappelle comment des hypotheses d'analyticite permettent d'etablir des theoremes de convergence pour les developpements angulaires. Enfin on fournit un substitut a la

  11. Relativistic klystron

    International Nuclear Information System (INIS)

    Marks, R.

    1985-09-01

    Theoretical analysis is presented of a relativisic klystron; i.e. a high-relativistic bunched electron beam which is sent through a succession of tuned cavities and has its energy replenished by periodic induction accelerator units. Parameters are given for a full-size device and for an experimental device using the FEL at the ETA; namely the ELF Facility. 6 refs., 2 figs

  12. The Great Kanto earthquake and F. Scott Fitzgerald

    Science.gov (United States)

    Kawakatsu, Hitoshi; Bina, Craig R.

    How many recall the following striking sentence from The Great Gatsby by F. Scott Fitzgerald, which appears on the second page of the novel, where Fitzgerald first introduces Gatsby? “If personality is an unbroken series of successful gestures, then there was something gorgeous about him, some heightened sensitivity to the promises of life, as if he were related to one of those intricate machines that register earthquakes ten thousand miles away.”This line may have failed to focus our attention when we first read the book in our younger days. Now, however, as a Japanese seismologist and an American geophysicist (and student of Japanese culture), we would be greatly remiss for failing to take greater note of this statement. Indeed, as The Great Gatsby was published in 1925, it occurred to us that the earthquake Fitzgerald might have been thinking of was the Great Kanto earthquake, which occurred on September 1, 1923 and devastated the Tokyo metropolitan area.

  13. Viscous photons in relativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Dion, Maxime; Paquet, Jean-Francois; Young, Clint; Jeon, Sangyong; Gale, Charles; Schenke, Bjoern

    2011-01-01

    Theoretical studies of the production of real thermal photons in relativistic heavy ion collisions at the Relativistic Heavy Ion Collider (RHIC) are performed. The space-time evolution of the colliding system is modelled using music, a 3+1D relativistic hydrodynamic simulation, using both its ideal and viscous versions. The inclusive spectrum and its azimuthal angular anisotropy are studied separately, and the relative contributions of the different photon sources are highlighted. It is shown that the photon v 2 coefficient is especially sensitive to the details of the microscopic dynamics like the equation of state, the ratio of shear viscosity over entropy density, η/s, and to the morphology of the initial state.

  14. Quasi-relativistic fermions and dynamical flavour oscillations

    CERN Document Server

    Alexandre, Jean; Mavromatos, Nick E.

    2014-01-01

    We introduce new Lorentz-symmetry violating kinematics for a four-fermion interaction model, where dynamical mass generation is allowed, irrespectively of the strength of the coupling. In addition, these kinematics lead to a quasi-relativistic dispersion relation, in the sense that it is relativistic in both the infrared and the ultraviolet, but not in an intermediate regime, characterized by the mass $M$. For two fermions, we show that a flavour-mixing mass matrix is generated dynamically, and the Lorentz symmetric limit $M\\to\\infty$ leads to two free relativistic fermions, with flavour oscillations. This model, valid for either Dirac or Majorana fermions, can describe any set of phenomenological values for the eigen masses and the mixing angle.

  15. Hedonism And Materialism As Negative Effects Of Social Changes In American Society Potrayed In The Novel This Side Of Paradise Written By F. Scott Fitzgerald

    OpenAIRE

    Elysia, Irene Nyssa

    2015-01-01

    Judul skripsi ini adalah ‘HEDONISM AND MATERIALISM AS NEGATIVE EFFECTS OF SOCIAL CHANGES IN AMERICAN SOCIETY POTRAYED IN THE NOVEL THIS SIDE OF PARADISE WRITTEN BY F. SCOTT FITZGERALD’. Sesuai dengan judulnya, skripsi ini membahas tentang fenomena hedonisme dan materialisme yang terjadi di Amerika pada awal tahun 1920an, sebagai dampak negatif dari Perang Dunia I. Fenomena ini dapat dibuktikan dari gambaran yang dipaparkan oleh Scott melalui novel ini, yaitu tentang kondisi masyarakat terutam...

  16. Low-momentum-transfer nonrelativistic limit of the relativistic impulse approximation expression for Compton-scattering doubly differential cross sections and characterization of their relativistic contributions

    International Nuclear Information System (INIS)

    LaJohn, L. A.

    2010-01-01

    The nonrelativistic (nr) impulse approximation (NRIA) expression for Compton-scattering doubly differential cross sections (DDCS) for inelastic photon scattering is recovered from the corresponding relativistic expression (RIA) of Ribberfors [Phys. Rev. B 12, 2067 (1975)] in the limit of low momentum transfer (q→0), valid even at relativistic incident photon energies ω 1 >m provided that the average initial momentum of the ejected electron i > is not too high, that is, i > b 1 >m using nr expressions when θ is small. For example, a 1% accuracy can be obtained when ω 1 =1 MeV if θ 1 increases into the MeV range, the maximum θ at which an accurate Compton peak can be obtained from nr expressions approaches closer to zero, because the θ at which the relativistic shift of CP to higher energy is greatest, which starts at 180 deg. when ω 1 min ,ρ rel ) (where p min is the relativistic version of the z component of the momentum of the initial electron and ρ rel is the relativistic charge density) and K(p min ) on p min . This characterization approach was used as a guide for making the nr QED S-matrix expression for the Compton peak kinematically relativistic. Such modified nr expressions can be more readily applied to large systems than the fully relativistic version.

  17. Radiative electron capture studied in relativistic heavy-ion atom collisions

    International Nuclear Information System (INIS)

    Stoehlker, T.; Kozhuharov, C.; Mokler, P.H.; Warczak, A.; Bosch, F.; Geissel, H.; Moshammer, R.; Scheidenberger, C.; Eichler, J.; Shirai, T.; Stachura, Z.; Rymuza, P.

    1994-08-01

    The process of Radiative Electron Capture (REC) in relativistic collisions of high-Z ions with low-Z gaseous and solid targets is studied experimentally and theoretically. The observed X-ray spectra are analysed with respect to photon angular distributions as well as to total K-REC cross sections. The experimental results for angle-differential cross sections are well-reproduced by exact relativistic calculations which yield significant deviations from standard sin 2 θ distributions. Total cross sections for K-REC are shown to follow a simple scaling rule obtained from exact relativistic calculations as well as from a non-relativistic dipole approximation. The agreement between these different theoretical approaches must be regarded as fortuitous, but it lends support to the use of the non-relativistic approach for practical purposes. (orig.)

  18. Canonical analysis of non-relativistic particle and superparticle

    Energy Technology Data Exchange (ETDEWEB)

    Kluson, Josef [Masaryk University, Department of Theoretical Physics and Astrophysics, Faculty of Science, Brno (Czech Republic)

    2018-02-15

    We perform canonical analysis of non-relativistic particle in Newton-Cartan Background. Then we extend this analysis to the case of non-relativistic superparticle in the same background. We determine constraints structure of this theory and find generator of κ-symmetry. (orig.)

  19. Methods in relativistic nuclear physics

    International Nuclear Information System (INIS)

    Danos, M.; Gillet, V.; Cauvin, M.

    1984-01-01

    This book is intended to provide the methods and tools for performing actual calculations for finite many-body systems of bound relativistic constituent particles. The aim is to cover thoroughly the methodological aspects of the relativistic many-body problem for bound states while avoiding the presentation of specific models. The many examples contained in the later part of the work are meant to give concrete illustrations of how to actually apply the methods which are given in the first part. The basic framework of the approach is the lagrangian field theory solved in the time-independent Schroedinger picture. (Auth.)

  20. Fundamental problem in the relativistic approach to atomic structure theory

    International Nuclear Information System (INIS)

    Kagawa, Takashi

    1987-01-01

    It is known that the relativistic atomic structure theory contains a serious fundamental problem, so-called the Brown-Ravenhall (BR) problem or variational collapse. This problem arises from the fact that the energy spectrum of the relativistic Hamiltonian for many-electron systems is not bounded from below because the negative-energy solutions as well as the positive-energy ones are obtained from the relativistic equation. This report outlines two methods to avoid the BR problem in the relativistic calculation, that is, the projection operator method and the general variation method. The former method is described first. The use of a modified Hamiltonian containing a projection operator which projects the positive-energy solutions in the relativistic wave equation has been proposed to remove the BR difficulty. The problem in the use of the projection operator method is that the projection operator for the system cannot be determined uniquely. The final part of this report outlines the general variation method. This method can be applied to any system, such as relativistic ones whose Hamiltonian is not bounded from below. (Nogami, K.)

  1. Relativistic particle in a box: Klein-Gordon versus Dirac equations

    Science.gov (United States)

    Alberto, Pedro; Das, Saurya; Vagenas, Elias C.

    2018-03-01

    The problem of a particle in a box is probably the simplest problem in quantum mechanics which allows for significant insight into the nature of quantum systems and thus is a cornerstone in the teaching of quantum mechanics. In relativistic quantum mechanics this problem allows also to highlight the implications of special relativity for quantum physics, namely the effect that spin has on the quantised energy spectra. To illustrate this point, we solve the problem of a spin zero relativistic particle in a one- and three-dimensional box using the Klein-Gordon equation in the Feshbach-Villars formalism. We compare the solutions and the energy spectra obtained with the corresponding ones from the Dirac equation for a spin one-half relativistic particle. We note the similarities and differences, in particular the spin effects in the relativistic energy spectrum. As expected, the non-relativistic limit is the same for both kinds of particles, since, for a particle in a box, the spin contribution to the energy is a relativistic effect.

  2. Relativistic simulation of the Vlasov equation for plasma expansion into vacuum

    Directory of Open Access Journals (Sweden)

    H Abbasi

    2012-12-01

    Full Text Available   In this study, relativistic Vlasov simulation of plasma for expansion of collisionless plasma for into vacuum is presented. The model is based on 1+1 dimensional phase space and electrostatic approximation. For this purpose, the electron dynamics is studied by the relativistic Vlasov equation. Regardless of the ions temperature, fluid equations are used for their dynamics. The initial electrons distribution function is the relativistic Maxwellian. The results show that due to the electrons relativistic temperature, the process of the plasma expansion takes place faster, the resulting electric field is stronger and the ions are accelerated to higher velocities, in comparison to the non-relativistic case.

  3. Relativistic thermodynamics and kinetic theory, with applications to cosmology

    International Nuclear Information System (INIS)

    Stewart, J.M.

    1973-01-01

    The discussion of relativistic thermodynamics and kinetic theory with applications to cosmology also covers the fundamentals and nonequilibrium relativistic kinetic theory and applications to cosmology and astrophysics. (U.S.)

  4. Observational and theoretical aspects of relativistic astrophysics and cosmology

    International Nuclear Information System (INIS)

    Sanz, J.L.; Goicoechea, L.J.

    1985-01-01

    The studies of relativistic astrophysics and cosmology in these proceedings include primordial nucleosynthesis, nonluminous matter, star and galaxy evolution, cosmic microwave background, and general relativistic models of the universe

  5. Mafic Materials in Scott Crater? A Test for Lunar Reconnaissance Orbiter

    Science.gov (United States)

    Cooper, Bonnie L.

    2007-01-01

    Clementine 750 nm and multispectral ratio data, along with Lunar Orbiter and radar data, were used to study the crater Scott in the lunar south polar region. The multispectral data provide evidence for mafic materials, impact melts, anorthositic materials, and a small pyroclastic deposit. High-resolution radar data and Lunar Orbiter photography for this area show differences in color and surface texture that correspond with the locations of the hypothesized mafic and anorthositic areas on the crater floor. This region provides a test case for the upcoming Lunar Reconnaissance Orbiter. Verification of the existence of a mafic deposit at this location is relevant to future lunar resource utilization planning.

  6. Relativistic stars in vector-tensor theories

    Science.gov (United States)

    Kase, Ryotaro; Minamitsuji, Masato; Tsujikawa, Shinji

    2018-04-01

    We study relativistic star solutions in second-order generalized Proca theories characterized by a U (1 )-breaking vector field with derivative couplings. In the models with cubic and quartic derivative coupling, the mass and radius of stars become larger than those in general relativity for negative derivative coupling constants. This phenomenon is mostly attributed to the increase of star radius induced by a slower decrease of the matter pressure compared to general relativity. There is a tendency that the relativistic star with a smaller mass is not gravitationally bound for a low central density and hence is dynamically unstable, but that with a larger mass is gravitationally bound. On the other hand, we show that the intrinsic vector-mode couplings give rise to general relativistic solutions with a trivial field profile, so the mass and radius are not modified from those in general relativity.

  7. Relativistic Wigner functions

    Directory of Open Access Journals (Sweden)

    Bialynicki-Birula Iwo

    2014-01-01

    Full Text Available Original definition of the Wigner function can be extended in a natural manner to relativistic domain in the framework of quantum field theory. Three such generalizations are described. They cover the cases of the Dirac particles, the photon, and the full electromagnetic field.

  8. Relativistic centrifugal instability

    Science.gov (United States)

    Gourgouliatos, Konstantinos N.; Komissarov, Serguei S.

    2018-03-01

    Near the central engine, many astrophysical jets are expected to rotate about their axis. Further out they are expected to go through the processes of reconfinement and recollimation. In both these cases, the flow streams along a concave surface and hence, it is subject to the centrifugal force. It is well known that such flows may experience the centrifugal instability (CFI), to which there are many laboratory examples. The recent computer simulations of relativistic jets from active galactic nuclei undergoing the process of reconfinement show that in such jets CFI may dominate over the Kelvin-Helmholtz instability associated with velocity shear (Gourgouliatos & Komissarov). In this letter, we generalize the Rayleigh criterion for CFI in rotating fluids to relativistic flows using a heuristic analysis. We also present the results of computer simulations which support our analytic criterion for the case of an interface separating two uniformly rotating cylindrical flows. We discuss the difference between CFI and the Rayleigh-Taylor instability in flows with curved streamlines.

  9. Adapting Scott and Bruce's General Decision-Making Style Inventory to Patient Decision Making in Provider Choice.

    Science.gov (United States)

    Fischer, Sophia; Soyez, Katja; Gurtner, Sebastian

    2015-05-01

    Research testing the concept of decision-making styles in specific contexts such as health care-related choices is missing. Therefore, we examine the contextuality of Scott and Bruce's (1995) General Decision-Making Style Inventory with respect to patient choice situations. Scott and Bruce's scale was adapted for use as a patient decision-making style inventory. In total, 388 German patients who underwent elective joint surgery responded to a questionnaire about their provider choice. Confirmatory factor analyses within 2 independent samples assessed factorial structure, reliability, and validity of the scale. The final 4-dimensional, 13-item patient decision-making style inventory showed satisfactory psychometric properties. Data analyses supported reliability and construct validity. Besides the intuitive, dependent, and avoidant style, a new subdimension, called "comparative" decision-making style, emerged that originated from the rational dimension of the general model. This research provides evidence for the contextuality of decision-making style to specific choice situations. Using a limited set of indicators, this report proposes the patient decision-making style inventory as valid and feasible tool to assess patients' decision propensities. © The Author(s) 2015.

  10. Scott Redford: A New Approach to the Permeability of Political Symbolism in Rum Seljuk Turkey

    Directory of Open Access Journals (Sweden)

    Philip Bockholt

    2017-05-01

    Full Text Available As his work transcends what is seen as iconography, from a strictly art history perspective, the choice of Scott Redford for portrayal in this rubric may seem surprising. However, regarding the applicability of iconographical approaches to the wider domain of cultural studies, precisely his adaptation of art history methods, which integrate disparate source material in a quest for meaning, sparked the interest of this issue of META. For most scholars in the field of Islamic history, researching premodern times normally involves reading narrative sources, that is, chronicles. Despite the so-called "documentary turn" taking place in Mamluk and Ottoman Syria, scholars of the Middle East lack the vast array of archival material that is available to their colleagues working on Medieval Europe. Thus, taking into account other types of material generally neglected by historians might be useful (more in the tradition of archaeologists and art historians who do include material culture in general. This article discusses Scott Redford's approach to combining written sources, epigraphy, and archaeological findings of the Seljuks of Rum in 13th century Anatolia in order to gain more insight into the iconography of power in a remote Islamic past.

  11. Studying extremely peripheral collisions of relativistic heavy ions

    International Nuclear Information System (INIS)

    Fatyga, M.

    1990-01-01

    Relativistic heavy ion facilities have been proposed (and in some cases constructed) with an intent to search for a new state of matter, a quark gluon plasma. As with all tools in the experimental physics, one should always search for ways in which relativistic heavy ions can be used to study physical phenomena beyond this original goal. New possibilities for a study of higher order photonuclear excitations in extremely peripheral collisions of relativistic heavy ions are discussed in this contribution. Data on the electromagnetic and nuclear fragmentation of a 14.6Gev/nucleon 28 Si projectile are presented

  12. Neutron relativistic phenomenological and microscopic optical potential

    International Nuclear Information System (INIS)

    Shen Qing-biao; Feng Da-chun; Zhuo Yi-zhong

    1991-01-01

    In this paper, both the phenomenological and microscopic neutron relativistic optical potentials are presented. The global neutron relativistic phenomenological optical potential (RPOP) based on the available experimental data for various nuclei ranging from C to U with incident energies E n =20--1000 MeV has been obtained through an automatic search of the best parameters by computer. Then the nucleon relativistic microscopic optical potential (RMOP) is studied by utilizing the effective Lagrangian based on the popular Walecka model. Through comparison between the theoretical results and experimental data we shed some insight into both the RMOP and RPOP. Further improvement concerning how to combine the phenomenological potential with the microscopic one in order to reduce the number of free parameters appearing in the RPOP is suggested

  13. A relativistic, meson exchange model of pion-nucleon scattering

    International Nuclear Information System (INIS)

    Pearces, B.C.; Jennings, B.K.

    1990-06-01

    A relativistic meson exchange approach to the pion-nucleon interaction is developed using a three-dimensional relativistic two-body propagator, and the results using different propagators are compared. The relativistic approach is able to describe low energy scattering up to 400 MeV above threshold, while preserving the soft pion theorems. The different propagators give similar results, as the form factors necessary to get a fit suppress much of the multiple scattering. (Author) (24 refs., 4 tabs., 6 figs.)

  14. On the dispersion characteristics of extraordinary mode in a relativistic fully degenerate electron plasma

    Science.gov (United States)

    Noureen, S.; Abbas, G.; Sarfraz, M.

    2018-01-01

    The study of relativistic degenerate plasmas is important in many astrophysical and laboratory environments. Using linearized relativistic Vlasov-Maxwell equations, a generalized expression for the plasma conductivity tensor is derived. Employing Fermi-Dirac distribution at zero temperature, the dispersion relation of the extraordinary mode in a relativistic degenerate electron plasma is investigated. The propagation characteristics are examined in different relativistic density ranges. The shifting of cutoff points due to relativistic effects is observed analytically and graphically. Non-relativistic and ultra-relativistic limiting cases are also presented.

  15. Analytic study of 1D diffusive relativistic shock acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Keshet, Uri, E-mail: ukeshet@bgu.ac.il [Physics Department, Ben-Gurion University of the Negev, POB 653, Be' er-Sheva 84105 (Israel)

    2017-10-01

    Diffusive shock acceleration (DSA) by relativistic shocks is thought to generate the dN / dE ∝ E{sup −p} spectra of charged particles in various astronomical relativistic flows. We show that for test particles in one dimension (1D), p {sup −1}=1−ln[γ{sub d}(1+β{sub d})]/ln[γ{sub u}(1+β{sub u})], where β{sub u}(β{sub d}) is the upstream (downstream) normalized velocity, and γ is the respective Lorentz factor. This analytically captures the main properties of relativistic DSA in higher dimensions, with no assumptions on the diffusion mechanism. Unlike 2D and 3D, here the spectrum is sensitive to the equation of state even in the ultra-relativistic limit, and (for a J(üttner-Synge equation of state) noticeably hardens with increasing 1<γ{sub u}<57, before logarithmically converging back to p (γ{sub u→∞})=2. The 1D spectrum is sensitive to drifts, but only in the downstream, and not in the ultra-relativistic limit.

  16. Correlation and relativistic effects for the 4f-nl and 5p-nl multipole transitions in Er-like tungsten

    International Nuclear Information System (INIS)

    Safronova, U. I.; Safronova, A. S.

    2011-01-01

    Wavelengths, transition rates, and line strengths are calculated for the multipole (E1, M1, E2, M2, E3, and M3) transitions between the excited [Cd]4f 13 5p 6 nl, [Cd]4f 14 5p 5 nl configurations and the ground [Cd]4f 14 5p 6 state in Er-like W 6+ ion ([Cd]=[Kr]4d 10 5s 2 ). In particular, the relativistic many-body perturbation theory (RMBPT), including the Breit interaction, is used to evaluate energies and transition rates for multipole transitions in this hole-particle system. This method is based on the relativistic many-body perturbation theory that agrees with multiconfiguration Dirac-Fock (MCDF) calculations in lowest order, and includes all second-order correlation corrections and corrections from negative-energy states. The calculations start from a [Cd]4f 14 5p 6 Dirac-Fock (DF) potential. First-order perturbation theory is used to obtain intermediate-coupling coefficients, and second-order RMBPT is used to determine the multipole matrix elements needed for calculations of other atomic properties such as line strengths and transition rates. In addition, core multipole polarizability is evaluated in random-phase and DF approximations. The comparison with available data is demonstrated.

  17. Relativistic classical limit of quantum theory

    International Nuclear Information System (INIS)

    Shin, G.R.; Rafelski, J.

    1993-01-01

    We study the classical limit of the equal-time relativistic quantum transport theory. We discuss in qualitative terms the need to fold first the Wigner function with a coarse-graining function. Only then does the singularity at ℎ→0 seem to be manageable. In the limit ℎ→0, we obtain the relativistic Vlasov equations for the particle and the antiparticle sector of the Fock space. Similarly, we address the evolution equations of the spin and the magnetic-moment density

  18. A NUMERICAL SCHEME FOR SPECIAL RELATIVISTIC RADIATION MAGNETOHYDRODYNAMICS BASED ON SOLVING THE TIME-DEPENDENT RADIATIVE TRANSFER EQUATION

    Energy Technology Data Exchange (ETDEWEB)

    Ohsuga, Ken; Takahashi, Hiroyuki R. [National Astronomical Observatory of Japan, Osawa, Mitaka, Tokyo 181-8588 (Japan)

    2016-02-20

    We develop a numerical scheme for solving the equations of fully special relativistic, radiation magnetohydrodynamics (MHDs), in which the frequency-integrated, time-dependent radiation transfer equation is solved to calculate the specific intensity. The radiation energy density, the radiation flux, and the radiation stress tensor are obtained by the angular quadrature of the intensity. In the present method, conservation of total mass, momentum, and energy of the radiation magnetofluids is guaranteed. We treat not only the isotropic scattering but also the Thomson scattering. The numerical method of MHDs is the same as that of our previous work. The advection terms are explicitly solved, and the source terms, which describe the gas–radiation interaction, are implicitly integrated. Our code is suitable for massive parallel computing. We present that our code shows reasonable results in some numerical tests for propagating radiation and radiation hydrodynamics. Particularly, the correct solution is given even in the optically very thin or moderately thin regimes, and the special relativistic effects are nicely reproduced.

  19. Relativistic and Non-Relativistic Electronic Molecular-Structure Calculations for Dimers of 4p-, 5p-, and 6p-Block Elements

    DEFF Research Database (Denmark)

    Hofener, S.; Ahlrichs, R.; Knecht, S.

    2012-01-01

    We report results of non-relativistic and two-component relativistic single-reference coupled-cluster with single and double and perturbative triple excitations [CCSD(T)] treatments for the 4p-block dimers Ga2 to Br2, the 5p-block dimers In2 to I2, and their atoms. Extended basis sets up...

  20. Pion production in relativistic collisions of nuclear drops

    International Nuclear Information System (INIS)

    Alonso, C.T.; Wilson, J.R.; McAbee, T.L.; Zingman, J.A.

    1988-09-01

    In a continuation of the long-standing effort of the nuclear physics community to model atomic nuclei as droplets of a specialized nuclear fluid, we have developed a hydrodynamic model for simulating the collisions of heavy nuclei at relativistic speeds. Our model couples ideal relativistic hydrodynamics with a new Monte Carlo treatment of dynamic pion production and tracking. The collective flow for low-energy (200 MeV/N) collisions predicted by this model compares favorably with results from earlier hydrodynamic calculations which used quite different numerical techniques. Our pion predictions at these lower energies appear to differ, however, from the experimental data on pion multiplicities. In this case of ultra-relativistic (200 GeV/N) collisions, our hydrodynamic model has produced baryonic matter distributions which are in reasonable agreement with recent experimental data. These results may shed some light on the sensitivity of relativistic collision data to the nuclear equation of state. 20 refs., 12 figs

  1. Covariant spectator theory of $np$ scattering:\\\\ Effective range expansions and relativistic deuteron wave functions

    Energy Technology Data Exchange (ETDEWEB)

    Franz Gross, Alfred Stadler

    2010-09-01

    We present the effective range expansions for the 1S0 and 3S1 scattering phase shifts, and the relativistic deuteron wave functions that accompany our recent high precision fits (with \\chi^2/N{data} \\simeq 1) to the 2007 world np data below 350 MeV. The wave functions are expanded in a series of analytical functions (with the correct asymptotic behavior at both large and small arguments) that can be Fourier-transformed from momentum to coordinate space and are convenient to use in any application. A fortran subroutine to compute these wave functions can be obtained from the authors.

  2. Relativistic theory for syntonization of clocks in the vicinity of the Earth

    Science.gov (United States)

    Wolf, Peter; Petit, G.

    1995-01-01

    A well known prediction of Einstein's general theory of relativity states that two ideal clocks that move with a relative velocity, and are submitted to different gravitational fields will, in general, be observed to run at different rates. Similarly the rate of a clock with respect to the coordinate time of some spacetime reference system is dependent on the velocity of the clock in that reference system and on the gravitational fields it is submitted to. For the syntonization of clocks and the realization of coordinate times (like TAI) this rate shift has to be taken into account at an accuracy level which should be below the frequency stability of the clocks in question, i.e. all terms that are larger than the instability of the clocks should be corrected for. We present a theory for the calculation of the relativistic rate shift for clocks in the vicinity of the Earth, including all terms larger than one part in 10(exp 18). This, together with previous work on clock synchronization (Petit & Wolf 1993, 1994), amounts to a complete relativistic theory for the realization of coordinate time scales at picosecond synchronization and 10(exp -18) syntonization accuracy, which should be sufficient to accommodate future developments in time transfer and clock technology.

  3. Relativistic beaming and quasar statistics

    International Nuclear Information System (INIS)

    Orr, M.J.L.; Browne, I.W.A.

    1982-01-01

    The statistical predictions of a unified scheme for the radio emission from quasars are explored. This scheme attributes the observed differences between flat- and steep-spectrum quasars to projection and the effects of relativistic beaming of the emission from the nuclear components. We use a simple quasar model consisting of a compact relativistically beamed core with spectral index zero and unbeamed lobes, spectral index - 1, to predict the proportion of flat-spectrum sources in flux-limited samples selected at different frequencies. In our model this fraction depends on the core Lorentz factor, γ and we find that a value of approximately 5 gives satisfactory agreement with observation. In a similar way the model is used to construct the expected number/flux density counts for flat-spectrum quasars from the observed steep-spectrum counts. Again, good agreement with the observations is obtained if the average core Lorentz factor is about 5. Independent estimates of γ from observations of superluminal motion in quasars are of the same order of magnitude. We conclude that the statistical properties of quasars are entirely consistent with the predictions of simple relativistic-beam models. (author)

  4. Relativistic studies in actinides

    International Nuclear Information System (INIS)

    Weinberger, P.; Gonis, A.

    1987-01-01

    In this review the theoretical background is given for a relativistic description for actinide systems. A short introduction is given of the density functional theory which forms the basis for a fully relativistic single-particle theory. A section on the Dirac Hamiltonian is followed by a brief summary on group theoretical concepts. Single site scattering is presented such that formal extensions to the case of the presence of an internal (external) magnetic field and/or anisotropic scattering are evident. Multiple scattering is discussed such that it can readily be applied also to the problem of dislocations. In connection with the problem of selfconsistency particular attention is drawn to the use of complex energies. Finally the various theoretical aspects discussed are illustrated through the results of numerical calculations. 101 refs.; 37 figs.; 5 tabs

  5. Relativistic supersymmetric quantum mechanics based on Klein-Gordon equation

    International Nuclear Information System (INIS)

    Znojil, Miloslav

    2004-01-01

    Witten's the non-relativistic formalism of supersymmetric quantum mechanics was based on a factorization and partnership between Schroedinger equations. We show how it accommodates a transition to the partnership between relativistic Klein-Gordon equations

  6. Ionization of hydrogen by a relativistic heavy projectile

    International Nuclear Information System (INIS)

    Hofstetter, S.; Hofmann, C.; Soff, G.

    1991-10-01

    Using a relativistic analogue of the classical trajectory Monte-Carlo method we investigate the influence of the magnetic field of a relativistic heavy projectile on the ionization cross section of hydrogen. In particular we focus our attention on the angular and energy distribution of the emitted delta electrons. (orig.)

  7. Particle Acceleration and Radiative Losses at Relativistic Shocks

    Science.gov (United States)

    Dempsey, P.; Duffy, P.

    A semi-analytic approach to the relativistic transport equation with isotropic diffusion and consistent radiative losses is presented. It is based on the eigenvalue method first introduced in Kirk & Schneider [5]and Heavens & Drury [3]. We demonstrate the pitch-angle dependence of the cut-off in relativistic shocks.

  8. Causal dissipation for the relativistic dynamics of ideal gases.

    Science.gov (United States)

    Freistühler, Heinrich; Temple, Blake

    2017-05-01

    We derive a general class of relativistic dissipation tensors by requiring that, combined with the relativistic Euler equations, they form a second-order system of partial differential equations which is symmetric hyperbolic in a second-order sense when written in the natural Godunov variables that make the Euler equations symmetric hyperbolic in the first-order sense. We show that this class contains a unique element representing a causal formulation of relativistic dissipative fluid dynamics which (i) is equivalent to the classical descriptions by Eckart and Landau to first order in the coefficients of viscosity and heat conduction and (ii) has its signal speeds bounded sharply by the speed of light. Based on these properties, we propose this system as a natural candidate for the relativistic counterpart of the classical Navier-Stokes equations.

  9. SPECIAL RELATIVISTIC HYDRODYNAMICS WITH GRAVITATION

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Jai-chan [Department of Astronomy and Atmospheric Sciences, Kyungpook National University, Daegu (Korea, Republic of); Noh, Hyerim [Korea Astronomy and Space Science Institute, Daejon (Korea, Republic of)

    2016-12-20

    Special relativistic hydrodynamics with weak gravity has hitherto been unknown in the literature. Whether such an asymmetric combination is possible has been unclear. Here, the hydrodynamic equations with Poisson-type gravity, considering fully relativistic velocity and pressure under the weak gravity and the action-at-a-distance limit, are consistently derived from Einstein’s theory of general relativity. An analysis is made in the maximal slicing, where the Poisson’s equation becomes much simpler than our previous study in the zero-shear gauge. Also presented is the hydrodynamic equations in the first post-Newtonian approximation, now under the general hypersurface condition. Our formulation includes the anisotropic stress.

  10. Pivotal issues on relativistic electrons in ITER

    Science.gov (United States)

    Boozer, Allen H.

    2018-03-01

    The transfer of the plasma current from thermal to relativistic electrons is a threat to ITER achieving its mission. This danger is significantly greater in the nuclear than in the non-nuclear phase of ITER operations. Two issues are pivotal. The first is the extent and duration of magnetic surface breaking in conjunction with the thermal quenches. The second is the exponential sensitivity of the current transfer to three quantities: (1) the poloidal flux change required to e-fold the number of relativistic electrons, (2) the time τa after the beginning of the thermal quench before the accelerating electric field exceeds the Connor-Hastie field for runaway, and (3) the duration of the period τ_op in which magnetic surfaces remain open. Adequate knowledge does not exist to devise a reliable strategy for the protection of ITER. Uncertainties are sufficiently large that a transfer of neither a negligible nor the full plasma current to relativistic electrons can be ruled out during the non-nuclear phase of ITER. Tritium decay can provide a sufficiently strong seed for a dangerous relativistic-electron current even if τa and τ_op are sufficiently long to avoid relativistic electrons during non-nuclear operations. The breakup of magnetic surfaces that is associated with thermal quenches occurs on a time scale associated with fast magnetic reconnection, which means reconnection at an Alfvénic rather than a resistive rate. Alfvénic reconnection is well beyond the capabilities of existing computational tools for tokamaks, but its effects can be studied using its property of conserving magnetic helicity. Although the dangers to ITER from relativistic electrons have been known for twenty years, the critical issues have not been defined with sufficient precision to formulate an effective research program. Studies are particularly needed on plasma behavior in existing tokamaks during thermal quenches, behavior which could be clarified using methods developed here.

  11. The effect of quantum correction on plasma electron heating in ultraviolet laser interaction

    Energy Technology Data Exchange (ETDEWEB)

    Zare, S.; Sadighi-Bonabi, R., E-mail: Sadighi@sharif.ir; Anvari, A. [Department of Physics, Sharif University of Technology, P.O. Box 11365-9567, Tehran (Iran, Islamic Republic of); Yazdani, E. [Department of Energy Engineering and Physics, Amirkabir University of Technology, P.O. Box 15875-4413, Tehran (Iran, Islamic Republic of); Hora, H. [Department of Theoretical Physics, University of New South Wales, Sydney 2052 (Australia)

    2015-04-14

    The interaction of the sub-picosecond UV laser in sub-relativistic intensities with deuterium is investigated. At high plasma temperatures, based on the quantum correction in the collision frequency, the electron heating and the ion block generation in plasma are studied. It is found that due to the quantum correction, the electron heating increases considerably and the electron temperature uniformly reaches up to the maximum value of 4.91 × 10{sup 7 }K. Considering the quantum correction, the electron temperature at the laser initial coupling stage is improved more than 66.55% of the amount achieved in the classical model. As a consequence, by the modified collision frequency, the ion block is accelerated quicker with higher maximum velocity in comparison with the one by the classical collision frequency. This study proves the necessity of considering a quantum mechanical correction in the collision frequency at high plasma temperatures.

  12. Nuclear and atomic physics governing changes in the composition of relativistic cosmic rays

    International Nuclear Information System (INIS)

    Wilson, L.W.

    1978-05-01

    Many quantitative studies of relativistic cosmic ray propagation exist in which ''standard'' values for the input quantities are adopted in an uncritical manner. In contrast, the major emphasis of this study is on developing the proper set of formulae and error estimates for each of the atomic and nuclear processes that govern the composition of the cosmic rays between lithium and nickel. In particular, it is shown that errors of approximately a factor of two exist in the standard (Bohr) cross sections for stripping, that the correction function from high energy photoionization needs to be introduced into the standard cross section for radiative attachment, and that because the half-life of a fast nucleus with at most one K-shell electron can differ from the half-life of a neutral atom, several laboratory-based values need correction. The framework used to assemble and correct these quantities is a matrix formalism for the leaky box model similar to that used by Cowsik and Wilson in their ''nested leaky box'' model. It is shown that once the assumption of species-independent leakage is introduced, the matrix formalism becomes virtually identical with the standard exponential path length formalism. 87 references

  13. Connection of relativistic and nonrelativistic wave functions in the calculation of leptonic widths

    International Nuclear Information System (INIS)

    Durand, B.; Durand, L.

    1984-01-01

    We generalize our previous JWKB relations between the relativistic qq-bar wave function at the origin and (a) the inverse density of states of the qq-bar system and (b) the nonrelativistic qq-bar wave function at the origin, to the case of potentials with a Coulomb singularity. We show that the square of the Bethe-Salpeter wave function at the the origin is given approximately for 1 - states by for M/sub n/>2m/sub q/, where F(v) = (4πα/sub s//3v)[1-exp(-4πα /sub s//3v)] -1 is the usual Coulomb factor and g(v)approx. =1 is associated with the lowest-order gluonic radiative corrections. We present numerical evidence for the remarkable accuracy of these relations, which have important implications for the use of nonrelativistic potential models to describe quarkonium systems. We also discuss some subtleties in the v and α/sub s/ dependence of corrections to leptonic widths

  14. Selectivity of the nucleon-induced deuteron breakup and relativistic effects

    OpenAIRE

    Witała, H.; Golak, J.; Skibiński, R.

    2006-01-01

    Theoretical predictions for the nucleon induced deuteron breakup process based on solutions of the three-nucleon Faddeev equation including such relativistic features as the relativistic kinematics and boost effects are presented. Large changes of the breakup cross section in some complete configurations are found at higher energies. The predicted relativistic effects, which are mostly of dynamical origin, seem to be supported by existing data.

  15. On the time delay between ultra-relativistic particles

    Energy Technology Data Exchange (ETDEWEB)

    Fleury, Pierre, E-mail: pierre.fleury@uct.ac.za [Department of Mathematics and Applied Mathematics, University of Cape Town, Rondebosch 7701, Cape Town (South Africa); Department of Physics, University of the Western Cape, Robert Sobukwe Road, Bellville 7535 (South Africa)

    2016-09-10

    The time delay between the receptions of ultra-relativistic particles emitted simultaneously is a useful observable for both fundamental physics and cosmology. The expression of the delay when the particles travel through an arbitrary spacetime has been derived recently by Fanizza et al., using a particular coordinate system and self-consistent assumptions. The present article shows that this formula enjoys a simple physical interpretation: the relative velocity between two ultra-relativistic particles is constant. This result reveals an interesting kinematical property of general relativity, namely that the tidal forces experienced by ultra-relativistic particles in the direction of their motion are much smaller than those experienced orthogonally to their motion.

  16. On the time delay between ultra-relativistic particles

    International Nuclear Information System (INIS)

    Fleury, Pierre

    2016-01-01

    The time delay between the receptions of ultra-relativistic particles emitted simultaneously is a useful observable for both fundamental physics and cosmology. The expression of the delay when the particles travel through an arbitrary spacetime has been derived recently by Fanizza et al., using a particular coordinate system and self-consistent assumptions. The present article shows that this formula enjoys a simple physical interpretation: the relative velocity between two ultra-relativistic particles is constant. This result reveals an interesting kinematical property of general relativity, namely that the tidal forces experienced by ultra-relativistic particles in the direction of their motion are much smaller than those experienced orthogonally to their motion.

  17. Relativistic spin precession in the double pulsar.

    Science.gov (United States)

    Breton, Rene P; Kaspi, Victoria M; Kramer, Michael; McLaughlin, Maura A; Lyutikov, Maxim; Ransom, Scott M; Stairs, Ingrid H; Ferdman, Robert D; Camilo, Fernando; Possenti, Andrea

    2008-07-04

    The double pulsar PSR J0737-3039A/B consists of two neutron stars in a highly relativistic orbit that displays a roughly 30-second eclipse when pulsar A passes behind pulsar B. Describing this eclipse of pulsar A as due to absorption occurring in the magnetosphere of pulsar B, we successfully used a simple geometric model to characterize the observed changing eclipse morphology and to measure the relativistic precession of pulsar B's spin axis around the total orbital angular momentum. This provides a test of general relativity and alternative theories of gravity in the strong-field regime. Our measured relativistic spin precession rate of 4.77 degrees (-0 degrees .65)(+0 degrees .66) per year (68% confidence level) is consistent with that predicted by general relativity within an uncertainty of 13%.

  18. Development of a relativistic Particle In Cell code PARTDYN for linear accelerator beam transport

    Energy Technology Data Exchange (ETDEWEB)

    Phadte, D., E-mail: deepraj@rrcat.gov.in [LPD, Raja Ramanna Centre for Advanced Technology, Indore 452013 (India); Patidar, C.B.; Pal, M.K. [MAASD, Raja Ramanna Centre for Advanced Technology, Indore (India)

    2017-04-11

    A relativistic Particle In Cell (PIC) code PARTDYN is developed for the beam dynamics simulation of z-continuous and bunched beams. The code is implemented in MATLAB using its MEX functionality which allows both ease of development as well higher performance similar to a compiled language like C. The beam dynamics calculations carried out by the code are compared with analytical results and with other well developed codes like PARMELA and BEAMPATH. The effect of finite number of simulation particles on the emittance growth of intense beams has been studied. Corrections to the RF cavity field expressions were incorporated in the code so that the fields could be calculated correctly. The deviations of the beam dynamics results between PARTDYN and BEAMPATH for a cavity driven in zero-mode have been discussed. The beam dynamics studies of the Low Energy Beam Transport (LEBT) using PARTDYN have been presented.

  19. Modeling terrestrial gamma ray flashes produced by relativistic feedback discharges

    Science.gov (United States)

    Liu, Ningyu; Dwyer, Joseph R.

    2013-05-01

    This paper reports a modeling study of terrestrial gamma ray flashes (TGFs) produced by relativistic feedback discharges. Terrestrial gamma ray flashes are intense energetic radiation originating from the Earth's atmosphere that has been observed by spacecraft. They are produced by bremsstrahlung interactions of energetic electrons, known as runaway electrons, with air atoms. An efficient physical mechanism for producing large fluxes of the runaway electrons to make the TGFs is the relativistic feedback discharge, where seed runaway electrons are generated by positrons and X-rays, products of the discharge itself. Once the relativistic feedback discharge becomes self-sustaining, an exponentially increasing number of relativistic electron avalanches propagate through the same high-field region inside the thundercloud until the electric field is partially discharged by the ionization created by the discharge. The modeling results indicate that the durations of the TGF pulses produced by the relativistic feedback discharge vary from tens of microseconds to several milliseconds, encompassing all durations of the TGFs observed so far. In addition, when a sufficiently large potential difference is available in thunderclouds, a self-propagating discharge known as the relativistic feedback streamer can be formed, which propagates like a conventional positive streamer. For the relativistic feedback streamer, the positive feedback mechanism of runaway electron production by the positrons and X-rays plays a similar role as the photoionization for the conventional positive streamer. The simulation results of the relativistic feedback streamer show that a sequence of TGF pulses with varying durations can be produced by the streamer. The relativistic streamer may initially propagate with a pulsed manner and turn into a continuous propagation mode at a later stage. Milliseconds long TGF pulses can be produced by the feedback streamer during its continuous propagation. However

  20. Non-relativistic supersymmetry

    International Nuclear Information System (INIS)

    Clark, T.E.; Love, S.T.

    1984-01-01

    The most general one- and two-body hamiltonian invariant under galilean supersymmetry is constructed in superspace. The corresponding Feynman rules are given for the superfield Green functions. As demonstrated by a simple example, it is straightforward to construct models in which the supersymmetry is spontaneously broken by the non-relativistic vacuum. (orig.)