WorldWideScience

Sample records for relativistic runaway electron

  1. Relativistic runaway electrons in tokamak plasmas

    International Nuclear Information System (INIS)

    Jaspers, R.E.

    1995-01-01

    Runaway electrons are inherently present in a tokamak, in which an electric field is applied to drive a toroidal current. The experimental work is performed in the tokamak TEXTOR. Here runaway electrons can acquire energies of up to 30 MeV. The runaway electrons are studied by measuring their synchrotron radiation, which is emitted in the infrared wavelength range. The studies presented are unique in the sense that they are the first ones in tokamak research to employ this radiation. Hitherto, studies of runaway electrons revealed information about their loss in the edge of the discharge. The behaviour of confined runaways was still a terra incognita. The measurement of the synchrotron radiation allows a direct observation of the behaviour of runaway electrons in the hot core of the plasma. Information on the energy, the number and the momentum distribution of the runaway electrons is obtained. The production rate of the runaway electrons, their transport and the runaway interaction with plasma waves are studied. (orig./HP)

  2. Runaway relativistic electron scattering on the plazma oscillations in tokamak

    International Nuclear Information System (INIS)

    Krasovitskij, V.B.; Razdorski, V.G.

    1980-01-01

    The dynamics of fast electrons in a tolamak plasma with the presence of the constant external electric field have been inveatigated. It is shown that the occurrence of the relativistic electrons ''tail'' of the distribution function is followed by an intensive plasma oscillation swinging under conditions of the anomalous Doppler effect and their large angle scattering in the momentum space. A part of scattered electrons is captured by tokamak inhomogeneous magnetic field and causes the occurrence of a new low frequency alfven instability under conditions of magnetic drift resonance followed by quasilinear diffusion of relativistic electrons along the small radius of the torus. The flux of runaway electrons scattered on plasma oscillations has been found. A nonlinear diffusion equation has been derived for the flux of captured electrons. The equation defines the carrying out of fast particles from the plasma filament center to its periphery depending on the external magnetic field and plasma parameters

  3. Run-away electrons in relativistic spin (1) /(2) quantum electrodynamics

    International Nuclear Information System (INIS)

    Low, F.E.

    1998-01-01

    The existence of run-away solutions in classical and non-relativistic quantum electrodynamics is reviewed. It is shown that the less singular high energy behavior of relativistic spin (1) /(2) quantum electrodynamics precludes an analogous behavior in that theory. However, a Landau-like anomalous pole in the photon propagation function or in the electron-massive photon forward scattering amplitude would generate a new run-away, characterized by an energy scale ω∼m e thinspexp(1/α). This contrasts with the energy scale ω∼m e /α associated with the classical and non-relativistic quantum run-aways. copyright 1998 Academic Press, Inc

  4. On the relativistic large-angle electron collision operator for runaway avalanches in plasmas

    Science.gov (United States)

    Embréus, O.; Stahl, A.; Fülöp, T.

    2018-02-01

    Large-angle Coulomb collisions lead to an avalanching generation of runaway electrons in a plasma. We present the first fully conservative large-angle collision operator, derived from the relativistic Boltzmann operator. The relation to previous models for large-angle collisions is investigated, and their validity assessed. We present a form of the generalized collision operator which is suitable for implementation in a numerical kinetic equation solver, and demonstrate the effect on the runaway-electron growth rate. Finally we consider the reverse avalanche effect, where runaways are slowed down by large-angle collisions, and show that the choice of operator is important if the electric field is close to the avalanche threshold.

  5. Fluorescence excited in a thunderstorm atmosphere by relativistic runaway electron avalanches

    Science.gov (United States)

    Babich, L. P.; Bochkov, E. I.

    2017-05-01

    The spectrum and spatiotemporal evolution of the fluorescence of an atmospheric discharge developing in the regime of relativistic runaway electron avalanche (RREA) generation have been calculated without involving the relativistic feedback. The discharges generating narrow bipolar pulses, along with the discharges responsible for terrestrial gamma-ray flashes, are shown to be relatively dark. Nevertheless, the fluorescence excited by a discharge involving RREAs can be recorded with cameras used to record high-altitude optical phenomena. A possible connection between a certain class of optical phenomena observed at the tops of thunderclouds and RREA emission is pointed out.

  6. Runaway electrons during tokamak startup

    International Nuclear Information System (INIS)

    Sharma, A.S.; Jayakumar, R.

    1988-01-01

    Runaway electrons significantly affect the plasma and impurity evolution during tokamak startup. During its rise, a runaway pulse stores magnetic flux inductively; this is then released during the decay phase of the runaway pulse. This process affects plasma formation, current initiation and current buildup. Because of their relativistic velocities the runaway electrons have higher ionization and excitation rates than the plasma electrons. This leads to a significant modification of the impurity behaviour and consequently the plasma evolution. (author). 20 refs, 8 figs

  7. Lightning initiation mechanism based on the development of relativistic runaway electron avalanches triggered by background cosmic radiation: Numerical simulation

    International Nuclear Information System (INIS)

    Babich, L. P.; Bochkov, E. I.; Kutsyk, I. M.

    2011-01-01

    The mechanism of lightning initiation due to electric field enhancement by the polarization of a conducting channel produced by relativistic runaway electron avalanches triggered by background cosmic radiation has been simulated numerically. It is shown that the fields at which the start of a lightning leader is possible even in the absence of precipitations are locally realized for realistic thundercloud configurations and charges. The computational results agree with the in-situ observations of penetrating radiation enhancement in thunderclouds.

  8. Lightning initiation mechanism based on the development of relativistic runaway electron avalanches triggered by background cosmic radiation: Numerical simulation

    Energy Technology Data Exchange (ETDEWEB)

    Babich, L. P., E-mail: babich@elph.vniief.ru; Bochkov, E. I.; Kutsyk, I. M. [All-Russian Research Institute of Experimental Physics, Russian Federal Nuclear Center (Russian Federation)

    2011-05-15

    The mechanism of lightning initiation due to electric field enhancement by the polarization of a conducting channel produced by relativistic runaway electron avalanches triggered by background cosmic radiation has been simulated numerically. It is shown that the fields at which the start of a lightning leader is possible even in the absence of precipitations are locally realized for realistic thundercloud configurations and charges. The computational results agree with the in-situ observations of penetrating radiation enhancement in thunderclouds.

  9. Electron run-away

    International Nuclear Information System (INIS)

    Levinson, I.B.

    1975-01-01

    The run-away effect of electrons for the Coulomb scattering has been studied by Dricer, but the question for other scattering mechanisms is not yet studied. Meanwhile, if the scattering is quasielastic, a general criterion for the run-away may be formulated; in this case the run-away influence on the distribution function may also be studied in somewhat general and qualitative manner. (Auth.)

  10. Numerical simulations of compact intracloud discharges as the Relativistic Runaway Electron Avalanche-Extensive Air Shower process

    Science.gov (United States)

    Arabshahi, S.; Dwyer, J. R.; Nag, A.; Rakov, V. A.; Rassoul, H. K.

    2014-01-01

    Compact intracloud discharges (CIDs) are sources of the powerful, often isolated radio pulses emitted by thunderstorms. The VLF-LF radio pulses are called narrow bipolar pulses (NBPs). It is still not clear how CIDs are produced, but two categories of theoretical models that have previously been considered are the Transmission Line (TL) model and the Relativistic Runaway Electron Avalanche-Extensive Air Showers (RREA-EAS) model. In this paper, we perform numerical calculations of RREA-EASs for various electric field configurations inside thunderstorms. The results of these calculations are compared to results from the other models and to the experimental data. Our analysis shows that different theoretical models predict different fundamental characteristics for CIDs. Therefore, many previously published properties of CIDs are highly model dependent. This is because of the fact that measurements of the radiation field usually provide information about the current moment of the source, and different physical models with different discharge currents could have the same current moment. We have also found that although the RREA-EAS model could explain the current moments of CIDs, the required electric fields in the thundercloud are rather large and may not be realistic. Furthermore, the production of NBPs from RREA-EAS requires very energetic primary cosmic ray particles, not observed in nature. If such ultrahigh-energy particles were responsible for NBPs, then they should be far less frequent than is actually observed.

  11. Runaway electrons in toroidal discharges

    International Nuclear Information System (INIS)

    Knoepfel, H.

    1979-01-01

    Experimental and theoretical studies of runaway electrons in toroidal devices are reviewed here, with particular reference to tokamaks. The complex phenomenology of runaway effects, which have been the subject of research for the past twenty years, is organized within the framework of a number of physical models. The mechanisms and rates for runaway production are discussed first, followed by sections on runaway-driven kinetic relaxation processes and runaway orbit confinement. Next, the equilibrium and stability of runaway-dominated discharges are reviewed. Models for runaway production at early times in the discharge and the scaling of runaway phenomena to larger devices are also discussed. Finally, detection techniques and possible applications of runaways are mentioned. (author)

  12. Relativistic runaway breakdown in low-frequency radio

    DEFF Research Database (Denmark)

    Fullekrug, M.; Roussel-Dupre, R.; Symbalisty, E.M.D.

    2011-01-01

    at a distance of similar to 550 km. The measured broadband pulses occur similar to 4-9 ms after the sprite-producing lightning discharge, they exhibit electromagnetic radiation which mainly spans the frequency range from similar to 50 to 350 kHz, and they exhibit complex waveforms without the typical...... electromagnetic pulses and possibly generates sprites. The source location of the broadband pulses can be determined with an interferometric network of wideband low-frequency radio receivers to lend further experimental support to the relativistic runaway breakdown theory.......The electromagnetic radiation emitted by an electron avalanche beam resulting from relativistic runaway breakdown within the Earth's atmosphere is investigated. It is found from theoretical modeling with a computer simulation that the electron beam emits electromagnetic radiation which...

  13. Experimental Investigation of Runaway Electron Generation in Textor

    NARCIS (Netherlands)

    R. Jaspers,; Finken, K.H.; Mank, G.; Hoenen, F.; Boedo, J. A.; Cardozo, N. J. L.; Schüller, F. C.

    1993-01-01

    An experimental study of the generation of runaway electrons in TEXTOR has been performed. From the infrared synchrotron radiation emitted by relativistic electrons, the number of runaway electrons can be obtained as a function of time. In low density discharges (n(e)BAR < 1 X 10(19) m-3)

  14. Notes on the relativistic movement of runaway electrons in parallel electric and magnetic fields

    Czech Academy of Sciences Publication Activity Database

    Delong, Vojtěch A.; Beňo, R.; Břeň, D.; Kulhánek, P.

    2016-01-01

    Roč. 23, č. 9 (2016), s. 1-4, č. článku 094504. ISSN 1070-664X R&D Projects: GA ČR(CZ) GBP108/12/G108 Institutional support: RVO:68378271 Keywords : electrons * plasma * velociti * Larmor radius Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.115, year: 2016

  15. Relativistic runaway breakdown in low-frequency radio

    Science.gov (United States)

    Füllekrug, Martin; Roussel-Dupré, Robert; Symbalisty, Eugene M. D.; Chanrion, Olivier; Odzimek, Anna; van der Velde, Oscar; Neubert, Torsten

    2010-01-01

    The electromagnetic radiation emitted by an electron avalanche beam resulting from relativistic runaway breakdown within the Earth's atmosphere is investigated. It is found from theoretical modeling with a computer simulation that the electron beam emits electromagnetic radiation which is characterized by consecutive broadband pulses in the low-frequency radio range from ˜10 to 300 kHz at a distance of ˜800 km. Experimental evidence for the existence of consecutive broadband pulses is provided by low-frequency radio observations of sprite-producing lightning discharges at a distance of ˜550 km. The measured broadband pulses occur ˜4-9 ms after the sprite-producing lightning discharge, they exhibit electromagnetic radiation which mainly spans the frequency range from ˜50 to 350 kHz, and they exhibit complex waveforms without the typical ionospheric reflection of the first hop sky wave. Two consecutive pulses occur ˜4.5 ms and ˜3 ms after the causative lightning discharge and coincide with the sprite luminosity. It is concluded that relativistic runaway breakdown within the Earth's atmosphere can emit broadband electromagnetic pulses and possibly generates sprites. The source location of the broadband pulses can be determined with an interferometric network of wideband low-frequency radio receivers to lend further experimental support to the relativistic runaway breakdown theory.

  16. Simulation of long-term dynamic behavior of runaway electrons

    International Nuclear Information System (INIS)

    Wang Yulei; Liu Jian; Zhang Ruili; He Yang

    2015-01-01

    The secular dynamics of runaway electrons in Tokamak electromagnetic field is studied. The radiation effect is added into a relativistic volume-preserving algorithm to gain long-term stability of calculation. The results shows that the method we used is able to reveal the behavior of a runaway electron in configuration space. (author)

  17. Simulation study on avoiding runaway electron generation by magnetic perturbations

    International Nuclear Information System (INIS)

    Tokuda, S.; Yoshino, R.; Matsumoto, T.; Hudson, S.R.; Kawano, Y.; Takizuka, T.

    2001-01-01

    Simulations have demonstrated that magnetic islands having the widths expected on the major disruption cause the collisionless loss of the relativistic electrons, and that the resultant loss rate is high enough to avoid or to suppress the runaway generation. It is because, for the magnetic fluctuations in the disruption, the loss of the electron confinement due to the breakdown of the toroidal momentum conservation overwhelms the runaway electron confinement due to the phase-averaging effect of relativistic electrons. Simulation results agree closely with recent experiments on fast plasma shutdown, showing that it is possible to prevent the generation of runaway electrons. (author)

  18. Runaway electrons and magnetic island confinement

    International Nuclear Information System (INIS)

    Boozer, Allen H.

    2016-01-01

    The breakup of magnetic surfaces is a central feature of ITER planning for the avoidance of damage due to runaway electrons. Rapid thermal quenches, which lead to large accelerating voltages, are thought to be due to magnetic surface breakup. Impurity injection to avoid and to mitigate both halo and runaway electron currents utilizes massive gas injection or shattered pellets. The actual deposition is away from the plasma center, and the breakup of magnetic surfaces is thought to spread the effects of the impurities across the plasma cross section. The breakup of magnetic surfaces would prevent runaway electrons from reaching relativistic energies were it not for the persistence of non-intercepting flux tubes. These are tubes of magnetic field lines that do not intercept the walls. In simulations and in magnetic field models, non-intercepting flux tubes are found to persist near the magnetic axis and in the cores of magnetic islands even when a large scale magnetic surface breakup occurs. As long as a few magnetic surfaces reform before all of the non-intercepting flux tubes dissipate, energetic electrons confined and accelerated in these flux tubes can serve as the seed electrons for a transfer of the overall plasma current from thermal to relativistic carriers. The acceleration of electrons is particularly strong because of the sudden changes in the poloidal flux that naturally occur in a rapid magnetic relaxation. The physics of magnetic islands as non-intercepting flux tubes is studied. Expressions are derived for (1) the size of islands required to confine energetic runaway electrons, (2) the accelerating electric field in an island, (3) the increase or reduction in the size of an island by the runaway electron current, (4) the approximate magnitude of the runaway current in an island, and (5) the time scale for the evolution of an island.

  19. Runaway electrons and magnetic island confinement

    Energy Technology Data Exchange (ETDEWEB)

    Boozer, Allen H., E-mail: ahb17@columbia.edu [Columbia University, New York, New York 10027 (United States)

    2016-08-15

    The breakup of magnetic surfaces is a central feature of ITER planning for the avoidance of damage due to runaway electrons. Rapid thermal quenches, which lead to large accelerating voltages, are thought to be due to magnetic surface breakup. Impurity injection to avoid and to mitigate both halo and runaway electron currents utilizes massive gas injection or shattered pellets. The actual deposition is away from the plasma center, and the breakup of magnetic surfaces is thought to spread the effects of the impurities across the plasma cross section. The breakup of magnetic surfaces would prevent runaway electrons from reaching relativistic energies were it not for the persistence of non-intercepting flux tubes. These are tubes of magnetic field lines that do not intercept the walls. In simulations and in magnetic field models, non-intercepting flux tubes are found to persist near the magnetic axis and in the cores of magnetic islands even when a large scale magnetic surface breakup occurs. As long as a few magnetic surfaces reform before all of the non-intercepting flux tubes dissipate, energetic electrons confined and accelerated in these flux tubes can serve as the seed electrons for a transfer of the overall plasma current from thermal to relativistic carriers. The acceleration of electrons is particularly strong because of the sudden changes in the poloidal flux that naturally occur in a rapid magnetic relaxation. The physics of magnetic islands as non-intercepting flux tubes is studied. Expressions are derived for (1) the size of islands required to confine energetic runaway electrons, (2) the accelerating electric field in an island, (3) the increase or reduction in the size of an island by the runaway electron current, (4) the approximate magnitude of the runaway current in an island, and (5) the time scale for the evolution of an island.

  20. Theory of runaway electrons

    Energy Technology Data Exchange (ETDEWEB)

    Dreicer, H [Los Alamos Scientific Laboratory, University of California, Los Alamos, NM (United States)

    1958-07-01

    This paper treats the problem of electrons moving through an infinite gas of positive ions under the influence of a static uniform electric field of arbitrary strength. In evaluating the electrical conductivity of such a gas the conventional treatment involves a perturbation solution of the time-independent Boltzmann equation, and results in the well-known (temperature){sup 3/2} law. Two assumptions are basic to these treatments: 1) that a steady state electron velocity distribution is attained several mean-free collision times after the electric field is applied, and 2) that the terminal electron drift velocity is small compared to the average random electron speed. Both assumptions are avoided in this paper. In the next section the problem is formulated starting with the Boltzmann equation and a review of approximate analytic solutions appropriate to the weak and strong electric field cases is presented. We then describe a time-dependent numerical solution to the Boltzmann equation and compare these results with the approximate solutions. All of these treatments lead to the conclusion that this problem does not admit a time-independent solution. Because of the strong energy dependence of the Rutherford scattering law, the electron drift velocity is not bounded by a terminal value, rather it grows monotonically with time. This is the so-called runaway effect predicted by Giovanelli. Collective effects, or plasma oscillations, are ignored in this work, although these undoubtedly play an important role in the conduction of electricity through the plasma.

  1. Acceleration of runaway electrons in solar flares

    Science.gov (United States)

    Moghaddam-Taaheri, E.; Goertz, C. K.

    1990-01-01

    The dc electric field acceleration of electrons out of a thermal plasma and the evolution of the runaway tail are studied numerically, using a relativistic quasi-linear code based on the Ritz-Galerkin method and finite elements. A small field-aligned electric field is turned on at a certain time. The resulting distribution function from the runaway process is used to calculate the synchrotron emission during the evolution of the runaway tail. It is found that, during the runaway tail formation, which lasts a few tens of seconds for typical solar flare conditions, the synchrotron emission level is low, almost ot the same order as the emission from the thermal plasma, at the high-frequency end of the spectrum. However, the emission is enhanced explosively in a few microseconds by several orders of magnitude at the time the runaway tail stops growing along the magnetic field and tends toward isotropy due to the pitch-angle scattering of the fast particles. Results indicate that, in order to account for the observed synchrotron emission spectrum of a typical solar flare, the electric field acceleration phase must be accompanied or preceded by a heating phase which yields an enhanced electron temperature of about 2-15 keV in the flare region if the electric field is 0.1-0.2 times the Dreicer field and cyclotron-to-plasma frequency ratios are of order 1-2.

  2. Control of runaway electron energy using externally injected whistler waves

    Science.gov (United States)

    Guo, Zehua; McDevitt, Christopher J.; Tang, Xian-Zhu

    2018-03-01

    One way of mitigating runaway damage of the plasma-facing components in a tokamak fusion reactor is by limiting the runaway electron energy under a few MeV, while not necessarily reducing the runaway current appreciably. Here, we describe a physics mechanism by which such momentum space engineering of the runaway distribution can be facilitated by externally injected high-frequency electromagnetic waves such as whistler waves. The drastic impact that wave-induced scattering can have on the runaway energy distribution is fundamentally the result of its ability to control the runaway vortex in the momentum space. The runaway vortex, which is a local circulation of runaways in momentum space, is the outcome of the competition between Coulomb collisions, synchrotron radiation damping, and runaway acceleration by the parallel electric field. By introducing a wave that resonantly interacts with runaways in a particular range of energies which is mildly relativistic, the enhanced scattering would reshape the vortex by cutting off the part that is highly relativistic. The efficiency of resonant scattering accentuates the requirement that the wave amplitude can be small so the power requirement from external wave injection is practical for the mitigation scheme.

  3. Electron runaway in rf discharges

    International Nuclear Information System (INIS)

    Chen, F.F.

    1992-10-01

    The critical electric field is computed as a function of pressure and starting energy for electrons to run away to high energies in moderate pressure discharges. The runaway conditions depend critically on the shape of the elastic cross section vs. energy curve. Computations are made for H, H 2 , and He gases, and it is shown that runaway occurs much more readily in atomic hydrogen than in the other gases. The values of the runaway fields are larger than would normally occur in dc discharges, where large voltages would lead to arc formation. However, in rf discharges such electric fields can be sustained over times long compared to electron transit times but short compared to ion transit times. (author)

  4. Characteristics of post-disruption runaway electrons with impurity pellet injection

    International Nuclear Information System (INIS)

    Kawano, Yasunori; Nakano, Tomohide; Isayama, Akihiko; Asakura, Nobuyuki; Tamai, Hiroshi; Kubo, Hirotaka; Takenaga, Hidenobu; Bakhtiari, Mohammad; Ide, Shunsuke; Kondoh, Takashi; Hatae, Takaki

    2005-01-01

    Characteristics of post-disruption runaway electrons with impurity pellet injection were investigated for the first time using the JT-60U tokamak device. A clear deposition of impurity neon ice pellets was observed in a post-disruption runaway plasma. The pellet ablation was attributed to the energy deposition of relativistic runaway electrons in the pellet. A high normalized electron density was stably obtained with n e bar /n GW ∼2.2. Effects of prompt exhaust of runaway electrons and reduction of runaway plasma current without large amplitude MHD activities were found. One possible explanation for the basic behavior of runaway plasma current is that it follows the balance of avalanche generation of runaway electrons and slowing down predicted by the Andersson-Helander model, including the combined effect of collisional pitch angle scattering and synchrotron radiation. Our results suggested that the impurity pellet injection reduced the energy of runaway electrons in a stepwise manner. (author)

  5. Kinetic modelling of runaway electron avalanches in tokamak plasmas

    International Nuclear Information System (INIS)

    Nilsson, E; Peysson, Y; Saint-Laurent, F; Decker, J; Granetz, R S; Vlainic, M

    2015-01-01

    Runaway electrons can be generated in tokamak plasmas if the accelerating force from the toroidal electric field exceeds the collisional drag force owing to Coulomb collisions with the background plasma. In ITER, disruptions are expected to generate runaway electrons mainly through knock-on collisions (Hender et al 2007 Nucl. Fusion 47 S128–202), where enough momentum can be transferred from existing runaways to slow electrons to transport the latter beyond a critical momentum, setting off an avalanche of runaway electrons. Since knock-on runaways are usually scattered off with a significant perpendicular component of the momentum with respect to the local magnetic field direction, these particles are highly magnetized. Consequently, the momentum dynamics require a full 3D kinetic description, since these electrons are highly sensitive to the magnetic non-uniformity of a toroidal configuration. For this purpose, a bounce-averaged knock-on source term is derived. The generation of runaway electrons from the combined effect of Dreicer mechanism and knock-on collision process is studied with the code LUKE, a solver of the 3D linearized bounce-averaged relativistic electron Fokker–Planck equation (Decker and Peysson 2004 DKE: a fast numerical solver for the 3D drift kinetic equation Report EUR-CEA-FC-1736, Euratom-CEA), through the calculation of the response of the electron distribution function to a constant parallel electric field. The model, which has been successfully benchmarked against the standard Dreicer runaway theory now describes the runaway generation by knock-on collisions as proposed by Rosenbluth (Rosenbluth and Putvinski 1997 Nucl. Fusion 37 1355–62). This paper shows that the avalanche effect can be important even in non-disruptive scenarios. Runaway formation through knock-on collisions is found to be strongly reduced when taking place off the magnetic axis, since trapped electrons can not contribute to the runaway electron population. Finally

  6. Quasi-linear analysis of the extraordinary electron wave destabilized by runaway electrons

    Energy Technology Data Exchange (ETDEWEB)

    Pokol, G. I.; Kómár, A.; Budai, A. [Department of Nuclear Techniques, Budapest University of Technology and Economics, Budapest (Hungary); Stahl, A.; Fülöp, T. [Department of Applied Physics, Chalmers University of Technology, Göteborg (Sweden)

    2014-10-15

    Runaway electrons with strongly anisotropic distributions present in post-disruption tokamak plasmas can destabilize the extraordinary electron (EXEL) wave. The present work investigates the dynamics of the quasi-linear evolution of the EXEL instability for a range of different plasma parameters using a model runaway distribution function valid for highly relativistic runaway electron beams produced primarily by the avalanche process. Simulations show a rapid pitch-angle scattering of the runaway electrons in the high energy tail on the 100–1000 μs time scale. Due to the wave-particle interaction, a modification to the synchrotron radiation spectrum emitted by the runaway electron population is foreseen, exposing a possible experimental detection method for such an interaction.

  7. Runaway electron generation in tokamak disruptions

    International Nuclear Information System (INIS)

    Helander, P.; Andersson, F.; Fueloep, T.; Smith, H.; Anderson, D.; Lisak, M.; Eriksson, L.-G.

    2005-01-01

    The time evolution of the plasma current during a tokamak disruption is calculated by solving the equations for runaway electron production simultaneously with the induction equation for the toroidal electric field. The resistive diffusion time in a post-disruption plasma is typically comparable to the runaway avalanche growth time. Accordingly, the toroidal electric field induced after the thermal quench of a disruption diffuses radially through the plasma at the same time as it accelerates runaway electrons, which in turn back-react on the electric field. When these processes are accounted for in a self-consistent way, it is found that (1) the efficiency and time scale of runaway generation agrees with JET experiments; (2) the runaway current profile typically becomes more peaked than the pre-disruption current profile; and (3) can easily become radially filamented. It is also shown that higher runaway electron generation is expected if the thermal quench is sufficiently fast. (author)

  8. A model for disruption generated runaway electrons

    International Nuclear Information System (INIS)

    Russo, A.J.; Campbell, R.B.

    1993-01-01

    One of the possible consequences of disruptions in tokamaks is the generation of runaway electrons which can impact plasma facing components and cause damage, owing to high local energy deposition. This problem becomes more serious as the machine size and plasma current increase. Since large size and high currents are characteristics of proposed future machines, control of runaway generation is an important design consideration. A lumped circuit model for disruption runaway electron generation indicates that impurity concentration and type, as well as plasma motion, can strongly influence runaway behaviour. A comparison of disruption data from several runs on JET and DIII-D with model results demonstrate the effects of impurities, and plasma motion, on runaway number density and energy. The model is also applied to the calculation of runaway currents for ITER. (author). 16 refs, 13 figs

  9. Runaway electrons in the SINP tokamak

    Indian Academy of Sciences (India)

    The runaway electrons have been studied in the start-up phase [12–14], as well as in the steady phase [15–17]. We have confined ourselves here to the initial rise phase of the discharge mainly because the runaway electrons find the initial low density (Т ) and large applied toroidal electric field ( М = Оloop 2 К), where К is ...

  10. Runaway electrons in TEXT-U

    International Nuclear Information System (INIS)

    Freeman, M.R.

    1994-01-01

    Runaway electrons have long been studied in tokamak plasmas. The previous results regarding runaway electrons and the detection of hard x-rays are reviewed. The hard x-ray energy on TEXT-U is measured and the scaling of energy with electron density, n e , is noted. This scaling suggests a runaway source term that scales roughly as n e / 1 . The results indicate that runaways are created throughout the discharges. An upper bound for X e due to magnetic fluctuations was found to be .0343 m 2 /s. This is an order of magnitude too low to explain the thermal transport in TEXT, implying that electrostatic fluctuations are important in thermal transport in TEXT

  11. Runaway electrons beams in ITER disruptions

    International Nuclear Information System (INIS)

    Fleischmann, H.H.

    1993-01-01

    In agreement with the initial projections, the potential generation of runaway beams in disruptions of ITER discharges was performed. This analysis was based on the best-available present projections of plasma parameters existing in large-tokamak disruptions. Using these parameters, the potential contributions from various basic mechanisms for the generation of runway electrons were estimated. The envisioned mechanisms included (i) the well-known Dreicer process (assuming an evaporation of the runways from the thermal distribution), (ii) the seeding of runaway beams resulting from the potential presence of trapped high-temperature electrons from the original discharge still remaining in the disruption plasma at time of reclosure of the magnetic surfaces, and (iii) the generation of runaway beams through avalanche exponentiation of low-level seed runaways resulting via close collisions of existing runaways with cold plasma electrons. Finally, the prospective behavior of the any generated runaway beams -- in particular during their decay -- as well as their potential avoidance and/or damage controlled extraction through the use of magnetic perturbation fields also was considered in some detail

  12. Simulation of tokamak runaway-electron events

    International Nuclear Information System (INIS)

    Bolt, H.; Miyahara, A.; Miyake, M.; Yamamoto, T.

    1987-08-01

    High energy runaway-electron events which can occur in tokamaks when the plasma hits the first wall are a critical issue for the materials selection of future devices. Runaway-electron events are simulated with an electron linear accelerator to better understand the observed runaway-electron damage to tokamak first wall materials and to consider the runaway-electron issue in further materials development and selection. The electron linear accelerator produces beam energies of 20 to 30 MeV at an integrated power input of up to 1.3 kW. Graphite, SiC + 2 % AlN, stainless steel, molybdenum and tungsten have been tested as bulk materials. To test the reliability of actively cooled systems under runaway-electron impact layer systems of graphite fixed to metal substrates have been tested. The irradiation resulted in damage to the metal compounds but left graphite and SiC + 2 % AlN without damage. Metal substrates of graphite - metal systems for actively cooled structures suffer severe damage unless thick graphite shielding is provided. (author)

  13. Runaway electrons in the TRIAM-1 tokamak

    International Nuclear Information System (INIS)

    Satoh, Takemichi; Nakamura, Kazuo; Toi, Kazuo; Nakamura, Yukio; Hiraki, Naoji

    1981-01-01

    Pulse height analysis of soft X-rays is carried out in the TRIAM-1 tokamak. The electron temperatures determined from the soft X-ray spectrum agree well with those from Thomson scattering. It is observed that low-energy runaway (slideaway) electrons appear in the high-current-density discharges. (author)

  14. Runaway electrons in the TRIAM-1 tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Satoh, T; Nakamura, K; Toi, K; Nakamura, Y; Hiraki, N [Kyushu Univ., Fukuoka (Japan). Research Inst. for Applied Mechanics

    1981-09-01

    Pulse height analysis of soft X-rays is carried out in the TRIAM-1 tokamak. The electron temperatures determined from the soft X-ray spectrum agree well with those from Thomson scattering. It is observed that low-energy runaway (slideaway) electrons appear in the high-current-density discharges.

  15. Runaway electron transport studies in the HL-1M tokamak

    International Nuclear Information System (INIS)

    Zheng Yongzhen; Qi Changwei; Ding Xuantong; Li Wenzhong

    2002-01-01

    The transport of runaway electrons in a hot plasma has been studied in four experiments, which provide the runaway diffusivity D r The first experiment obtained runaway electrons using a steady state approach for values of the runaway confinement time τ r , deduced from hard X-ray bremsstrahlung spectra. In the second experiment, diffusion has been interpreted in terms of the magnetic fluctuation, from which a electron thermal diffusivity can be deduced. Runaway electro diffusion coefficient is determined by intrinsic magnetic fluctuations, rather than electrostatic fluctuations because of the high energy involved. The results presented here demonstrate the efficiency of using runaway transport techniques for determining intrinsic magnetic fluctuations

  16. Transport of runaway and thermal electrons due to magnetic microturbulence

    International Nuclear Information System (INIS)

    Mynick, H.E.; Strachan, J.D.

    1981-01-01

    The ratio of the runaway electron confinement to thermal electron energy confinement is derived for tokamaks where both processes are determined by free streaming along stochastic magnetic field lines. The runaway electron confinement is enhanced at high runaway electron energies due to phase averaging over the magnetic perturbations when the runaway electron drift surfaces are displaced from the magnetic surfaces. Comparison with experimental data from LT-3, Ormak, PLT, ST, and TM-3 indicates that magnetic stochasticity may explain the relative transport rates of runaways and thermal electron energy

  17. Runaway electron beam in atmospheric pressure discharges

    International Nuclear Information System (INIS)

    Oreshkin, E V; Barengolts, S A; Chaikovsky, S A; Oreshkin, V I

    2015-01-01

    A numerical simulation was performed to study the formation of a runaway electron (RAE) beam from an individual emission zone in atmospheric pressure air discharges with a highly overvolted interelectrode gap. It is shown that the formation of a RAE beam in discharges at high overvoltages is much contributed by avalanche processes. (paper)

  18. Plasma relativistic microwave electronics

    International Nuclear Information System (INIS)

    Kuzelev, M.V.; Loza, O.T.; Rukhadze, A.A.; Strelkov, P.S.; Shkvarunets, A.G.

    2001-01-01

    One formulated the principles of plasma relativistic microwave electronics based on the induced Cherenkov radiation of electromagnetic waves at interaction of a relativistic electron beam with plasma. One developed the theory of plasma relativistic generators and accelerators of microwave radiation, designed and studied the prototypes of such devices. One studied theoretically the mechanisms of radiation, calculated the efficiencies and the frequency spectra of plasma relativistic microwave generators and accelerators. The theory findings are proved by the experiment: intensity of the designed sources of microwave radiation is equal to 500 μW, the frequency of microwave radiation is increased by 7 times (from 4 up to 28 GHz), the width of radiation frequency band may vary from several up to 100%. The designed sources of microwave radiation are no else compared in the electronics [ru

  19. Destabilization of the electron Bernstein modes by runaway electrons

    International Nuclear Information System (INIS)

    Hitchcock, D.A.; Mahajan, S.M.

    1982-01-01

    It is shown that the electromagnetic finite k/sub parallel/ electron Bernstein mode can be destabilized by the runaway electron distribution which results from the quasilinear action of the magnetized plasma oscillation. This mechanism is shown to yield growth rates of the order of 10 8 sec -1 and is suggested as a mechanism for the enchanced cyclotron harmonic emission in the presence of runaway electrons

  20. Fokker-Planck simulation of runaway electron generation in disruptions with the hot-tail effect

    Energy Technology Data Exchange (ETDEWEB)

    Nuga, H., E-mail: nuga@p-grp.nucleng.kyoto-u.ac.jp; Fukuyama, A. [Department of Engineering, Kyoto University, Kyoto 615-8540 (Japan); Yagi, M. [National Institutes for Quantum and Radiological Science and Technology, Aomori 039-3212 (Japan)

    2016-06-15

    To study runaway electron generation in disruptions, we have extended the three-dimensional (two-dimensional in momentum space; one-dimensional in the radial direction) Fokker-Planck code, which describes the evolution of the relativistic momentum distribution function of electrons and the induced toroidal electric field in a self-consistent manner. A particular focus is placed on the hot-tail effect in two-dimensional momentum space. The effect appears if the drop of the background plasma temperature is sufficiently rapid compared with the electron-electron slowing down time for a few times of the pre-quench thermal velocity. It contributes to not only the enhancement of the primary runaway electron generation but also the broadening of the runaway electron distribution in the pitch angle direction. If the thermal energy loss during the major disruption is assumed to be isotropic, there are hot-tail electrons that have sufficiently large perpendicular momentum, and the runaway electron distribution becomes broader in the pitch angle direction. In addition, the pitch angle scattering also yields the broadening. Since the electric field is reduced due to the burst of runaway electron generation, the time required for accelerating electrons to the runaway region becomes longer. The longer acceleration period makes the pitch-angle scattering more effective.

  1. Equilibrium, confinement and stability of runaway electrons in tokamaks

    International Nuclear Information System (INIS)

    Spong, D.A.

    1976-03-01

    Some of the ramifications of the runaway population in tokamak experiments are investigated. Consideration is given both to the normal operating regime of tokamaks where only a small fraction of high energy runaways are present and to the strong runaway regime where runaways are thought to carry a significant portion of the toroidal current. In particular, the areas to be examined are the modeling of strong runaway discharges, single particle orbit characteristics of runaways, macroscopic beam-plasma equilibria, and stability against kink modes. A simple one-dimensional, time-dependent model has been constructed in relation to strong runaway discharges. Single particle orbits are analyzed in relation to both the strong runaway regime and the weak regime. The effects of vector E x vector B drifts are first considered in strong runaway discharges and are found to lead to a slow inward shrinkage of the beam. Macroscopic beam-plasma equilibria are treated assuming a pressureless relativistic beam with inertia and using an ideal MHD approximation for the plasma. The stability of a toroidal relativistic beam against kink perturbations is examined using several models

  2. Runaway-electron-materials interaction studies

    International Nuclear Information System (INIS)

    Bolt, H.; Miyahara, A.

    1990-03-01

    During the operation of magnetic fusion devices it has been frequently observed that runaway electrons can cause severe damage to plasma facing components. The energy of the runaway electrons could possibly reach several 100 MeV in a next generation device with an energy content in the plasma in the order of 100 MJ. In this study effects of high energy electron - materials interaction were determined by laboratory experiments using particle beam facilities, i.e. the Electron Linear Accelerator of the Institute of Scientific and Industrial Research of Osaka University and the 10 MW Neutral Beam Injection Test Stand of the National Institute for Fusion Science. The experiments and further analyses lead to a first assessment of the damage thresholds of plasma facing materials and components under runaway electron impact. It was found that metals (stainless steel, molybdenum, tungsten) showed grain growth, crack formation and/or melting already below the threshold for crack initiation on graphite (14-33 MJ/m 2 ). Strong erosion of carbon materials would occur above 100 MJ/m 2 . Damage to metal coolant channels can occur already below an energy deposition of 100 MJ/m 2 . The energy deposited in the metal coolant channels depends on the thickness of the plasma facing carbon material D, with the shielding efficiency S of carbon approximately as S∼D 1.15 . (author) 304 refs. 12 tabs. 59 figs

  3. Runaway electrons in disruptions and perturbed magnetic topologies of tokamak plasmas

    International Nuclear Information System (INIS)

    Forster, Michael

    2012-01-01

    Nuclear fusion represents a valuable perspective for a safe and reliable energy supply from the middle of the 21st century on. Currently, the tokamak is the most advanced principle of confining a man-made fusion plasma. The operation of future, reactor sized tokamaks like ITER faces a crucial difficulty in the generation of runaway electrons. The runaway of electrons is a free fall acceleration into the relativistic regime which is known in various kinds of plasmas including astrophysical ones, thunderbolts and fusion plasmas. The tokamak disruption instability can include the conversion of a substantial part of the plasma current into a runaway electron current. When the high energetic runaways are lost, they can strike the plasma facing components at localised spots. Due to their high energies up to a few tens of MeV, the runaways carry the potential to reduce the lifetimes of wall components and even to destroy sensitive, i.e. actively cooled parts. The research for effective ways to suppress the generation of runaway electrons is hampered by the lack of a complete understanding of the physics of the runaways in disruptions. As it is practically impossible to use standard electron detectors in the challenging environment of a tokamak, the experimental knowledge about runaways is limited and it relies on rather indirect techniques of measurement. The main diagnostics used for this PhD work are three reciprocating probes which measure the runaway electrons directly at the plasma edge of the tokamak TEXTOR. A calorimetric probe and a material probe which exploits the signature that a runaway beam impact leaves in the probe were developed in the course of the PhD work. Novel observations of the burst-like runaway electron losses in tokamak disruptions are reported. The runaway bursts are temporally resolved and first-time measurements of the corresponding runaway energy spectra are presented. A characteristic shape and typical burst to burst variations of the

  4. The influence of plasma motion on disruption generated runaway electrons

    International Nuclear Information System (INIS)

    Russo, A.J.

    1991-01-01

    One of the possible consequences of disruptions is the generation of runaway electrons which can impact plasma facing components and cause damage due to high local energy deposition. This problem becomes more serious as the machine size and plasma current increases. Since large size and high currents are characteristics of proposed future machines, control of runaway generation is an important design consideration. A lumped circuit model for disruption runaway electron generation indicates that control circuitry on strongly influence runaway behavior. A comparison of disruption data from several shots on JET and D3-D with model results, demonstrate the effects of plasma motion on runaway number density and energy. 6 refs., 12 figs

  5. On the inward drift of runaway electrons during the plateau phase of runaway current

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Di, E-mail: hudi-2@pku.edu.cn [School of Physics, Peking University, Beijing 100871 (China); Qin, Hong [Princeton Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08540 (United States); School of Nuclear Science and Technology and Department of Modern Physics, University of Science and Technology of China, Hefei 230026 (China)

    2016-03-15

    The well observed inward drift of current carrying runaway electrons during runaway plateau phase after disruption is studied by considering the phase space dynamic of runaways in a large aspect ratio toroidal system. We consider the case where the toroidal field is unperturbed and the toroidal symmetry of the system is preserved. The balance between the change in canonical angular momentum and the input of mechanical angular momentum in such a system requires runaways to drift horizontally in configuration space for any given change in momentum space. The dynamic of this drift can be obtained by integrating the modified Euler-Lagrange equation over one bounce time. It is then found that runaway electrons will always drift inward as long as they are decelerating. This drift motion is essentially non-linear, since the current is carried by runaways themselves, and any runaway drift relative to the magnetic axis will cause further displacement of the axis itself. A simplified analytical model is constructed to describe such inward drift both in the ideal wall case and no wall case, and the runaway current center displacement as a function of parallel momentum variation is obtained. The time scale of such displacement is estimated by considering effective radiation drag, which shows reasonable agreement with the observed displacement time scale. This indicates that the phase space dynamic studied here plays a major role in the horizontal displacement of runaway electrons during plateau phase.

  6. SOFT: a synthetic synchrotron diagnostic for runaway electrons

    Science.gov (United States)

    Hoppe, M.; Embréus, O.; Tinguely, R. A.; Granetz, R. S.; Stahl, A.; Fülöp, T.

    2018-02-01

    Improved understanding of the dynamics of runaway electrons can be obtained by measurement and interpretation of their synchrotron radiation emission. Models for synchrotron radiation emitted by relativistic electrons are well established, but the question of how various geometric effects—such as magnetic field inhomogeneity and camera placement—influence the synchrotron measurements and their interpretation remains open. In this paper we address this issue by simulating synchrotron images and spectra using the new synthetic synchrotron diagnostic tool SOFT (Synchrotron-detecting Orbit Following Toolkit). We identify the key parameters influencing the synchrotron radiation spot and present scans in those parameters. Using a runaway electron distribution function obtained by Fokker-Planck simulations for parameters from an Alcator C-Mod discharge, we demonstrate that the corresponding synchrotron image is well-reproduced by SOFT simulations, and we explain how it can be understood in terms of the parameter scans. Geometric effects are shown to significantly influence the synchrotron spectrum, and we show that inherent inconsistencies in a simple emission model (i.e. not modeling detection) can lead to incorrect interpretation of the images.

  7. The energy spectrum of the 'runaway' electrons from a high voltage pulsed discharge

    International Nuclear Information System (INIS)

    Ruset, C.

    1985-01-01

    Some experimental results are presented on the influence of the pressure upon the energy spectrum of the runaway electrons generated into a pulsed high voltage argon discharge. These electrons enter a state of continuous acceleration between two collisions with rapidly increasing free path. The applied discharge current varies from 10 to 300 A, the pulse time is about 800 ns. Relativistic effects are taken into consideration. Theoretical explanation is based on the pnenomenon of electron spreading on plasma oscillations. (D.Gy.)

  8. Disruption generated secondary runaway electrons in present day tokamaks

    International Nuclear Information System (INIS)

    Pankratov, I.M.; Jaspers, R.

    2000-01-01

    An analysis of the runaway electron secondary generation during disruptions in present day tokamaks (JET, JT-60U, TEXTOR) was made. It was shown that even for tokamaks with the plasma current I approx 100 kA the secondary generation may dominate the runaway production during disruptions. In the same time in tokamaks with I approx 1 MA the runaway electron secondary generation during disruptions may be suppressed

  9. Collisional avalanche exponentiation of runaway electrons in electrified plasmas

    International Nuclear Information System (INIS)

    Jayakumar, R.; Fleischmann, H.H.; Zweben, S.J.

    1993-01-01

    In contrast to earlier expectations, it is estimated that generation of runaway electrons from close collisions of existing runaways with cold plasma electrons can be significant even for small electric fields, whenever runaways can gain energies of about 20 MeV or more. In that case, the runaway population will grow exponentially with the energy spectrum showing an exponential decrease towards higher energies. Energy gains of the required magnitude may occur in large tokamak devices as well as in cosmic-ray generation. (orig.)

  10. Thermal effects of runaway electrons in an armoured divertor

    International Nuclear Information System (INIS)

    Stad, R.C.L. van der.

    1993-12-01

    This report describes the results of a numerical thermal analysis of the heat deposition of runaway electrons accompanying plasma disruptions in a armoured divertor. The divertor concepts studied are carbon on molybdenum and beryllium on copper. The conclusion is that the runaway electrons can cause melting of the armour as well as melting of the structure and can damage the divertor severely. (orig.)

  11. Pivotal issues on relativistic electrons in ITER

    Science.gov (United States)

    Boozer, Allen H.

    2018-03-01

    The transfer of the plasma current from thermal to relativistic electrons is a threat to ITER achieving its mission. This danger is significantly greater in the nuclear than in the non-nuclear phase of ITER operations. Two issues are pivotal. The first is the extent and duration of magnetic surface breaking in conjunction with the thermal quenches. The second is the exponential sensitivity of the current transfer to three quantities: (1) the poloidal flux change required to e-fold the number of relativistic electrons, (2) the time τa after the beginning of the thermal quench before the accelerating electric field exceeds the Connor-Hastie field for runaway, and (3) the duration of the period τ_op in which magnetic surfaces remain open. Adequate knowledge does not exist to devise a reliable strategy for the protection of ITER. Uncertainties are sufficiently large that a transfer of neither a negligible nor the full plasma current to relativistic electrons can be ruled out during the non-nuclear phase of ITER. Tritium decay can provide a sufficiently strong seed for a dangerous relativistic-electron current even if τa and τ_op are sufficiently long to avoid relativistic electrons during non-nuclear operations. The breakup of magnetic surfaces that is associated with thermal quenches occurs on a time scale associated with fast magnetic reconnection, which means reconnection at an Alfvénic rather than a resistive rate. Alfvénic reconnection is well beyond the capabilities of existing computational tools for tokamaks, but its effects can be studied using its property of conserving magnetic helicity. Although the dangers to ITER from relativistic electrons have been known for twenty years, the critical issues have not been defined with sufficient precision to formulate an effective research program. Studies are particularly needed on plasma behavior in existing tokamaks during thermal quenches, behavior which could be clarified using methods developed here.

  12. Theoretical and experimental studies of runaway electrons in the TEXTOR tokamak

    International Nuclear Information System (INIS)

    Abdullaev, S.S.; Finken, K.H.; Wongrach, K.; Willi, O.

    2016-01-01

    Theoretical and experimental studies of runaway electrons in tokamaks and their mitigations, particularly the recent studies performed by a group of the Heinrich-Heine University Duesseldorf in collaboration with the Institute of Energy and Climate Research of the Research Centre (Forschungszentrum) of Juelich are reviewed. The main topics focus on (i) runaway generation mechanisms, (ii) runaway orbits in equilibrium plasma, (iii) transport in stochastic magnetic fields, (iv) diagnostics and investigations of transport of runaway electron and their losses in low density discharges (v) runaway electrons during plasma disruptions, and (vi) runaway mitigation methods. The development of runaway diagnostics enables the measurement of runaway electrons in both the centre and edge of the plasma. The diagnostics provide an absolute runaway energy resolved measurement, the radial decay length of runaway electrons and, the structure and dynamics of runaway electron beams. The new mechanism of runaway electron formation during plasma disruptions is discussed.

  13. Theoretical and experimental studies of runaway electrons in the TEXTOR tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Abdullaev, S.S.; Finken, K.H.; Wongrach, K.; Willi, O.

    2016-07-01

    Theoretical and experimental studies of runaway electrons in tokamaks and their mitigations, particularly the recent studies performed by a group of the Heinrich-Heine University Duesseldorf in collaboration with the Institute of Energy and Climate Research of the Research Centre (Forschungszentrum) of Juelich are reviewed. The main topics focus on (i) runaway generation mechanisms, (ii) runaway orbits in equilibrium plasma, (iii) transport in stochastic magnetic fields, (iv) diagnostics and investigations of transport of runaway electron and their losses in low density discharges (v) runaway electrons during plasma disruptions, and (vi) runaway mitigation methods. The development of runaway diagnostics enables the measurement of runaway electrons in both the centre and edge of the plasma. The diagnostics provide an absolute runaway energy resolved measurement, the radial decay length of runaway electrons and, the structure and dynamics of runaway electron beams. The new mechanism of runaway electron formation during plasma disruptions is discussed.

  14. Radial transport of high-energy runaway electrons in ORMAK

    International Nuclear Information System (INIS)

    Zweben, S.J.; Swain, D.W.; Fleischmann, H.H.

    1978-01-01

    The transport of high-energy runaway electrons near the outside of a low-density ORMAK discharge is investigated by measuring the flux of runaways to the outer limiter during and after an inward shift of the plasma column. The experimental results are interpreted through a runaway confinement model which includes both the classical outward displacement of the runaway orbit with increasing energy and an additional runaway spatial diffusion coefficient which simulates an unspecified source of anomalous transport. Diffusion coefficients in the range D approximately equal to 10 2 -10 4 cms -1 are found under various discharge conditions indicating a significant non-collisional runaway transport near the outside of the discharge, particularly in the presence of MHD instability. (author)

  15. On the generation of runaway electrons and their impact to plasma facing components

    International Nuclear Information System (INIS)

    Kawamura, Takaichi; Obayashi, Haruo; Miyahara, Akira.

    1988-06-01

    Runaway electrons accompanied by inductive or non-inductive plasma currents in a tokamak have severe interactions with plasma facing materials of a first wall, and influence the first wall structure due to activation and damage. In this paper, modelling of runaway electron generation near the wall in a tokamak is carried out. This includes the evaluation of acceleration along magnetic surfaces for relativistic electrons with energies larger than the runaway threshold. Penetration of runaway electrons of energy ranges from a few MeV to several ten MeV leads to gamma ray photon production by bremsstrahlung. One of the specific features of the impact on the first wall technology is that they give rise to activation due to giant resonance of the (γ,n) nuclear reaction and, as a consequence, cause a requirement of remote maintenance. The other is that they bring energy deposition at brazing areas between low Z material and metal, or at a metal itself, and they result in melting, cracking and grain growth. The methods to estimate these effects using nuclear data and material data on the basis of runaway flux modelling are introduced and examples of estimation are given. (author)

  16. Runaway electrons dynamics and confinement in Tore-Supra

    International Nuclear Information System (INIS)

    Chatelier, M.; Geraud, A.; Joyer, P.; Martin, G.; Rax, J.M.

    1989-01-01

    The lack of energy of runaway electrons, confined in Tore Supra tokamak, is studied. Ohmic discharges, obtained with helium gas, exhibit a small amount of runaway electrons on both hard X-ray monitors and neutron sensors. The observations show an important lack of energy for runaway electrons confined in Tore Supra. It is assumed to be dued to a small pitch-angle scattering (a few degrees), and many candidates for this are compared: the strongest known one collisions seems not to be enough by an order of magnitude. Density and magnetic scans on Tore Supra are needed to discriminate between enhanced collisional scattering processes and purely magnetic phenomena

  17. Study of runaway electron generation during major disruptions in JET

    International Nuclear Information System (INIS)

    Plyusnin, V.V.; Riccardo, V.; Jaspers, R.; Alper, B.; Kiptily, V.G.; Mlynar, J.; Popovichev, S.; Luna, E. de La; Andersson, F.

    2006-01-01

    Extensive analysis of disruptions in JET has helped advance the understanding of trends of disruption-generated runaway electrons. Tomographic reconstruction of the soft x-ray emission has made possible a detailed observation of the magnetic flux geometry evolution during disruptions. With the aid of soft and hard x-ray diagnostics runaway electrons have been detected at the very beginning of disruptions. A study of runaway electron parameters has shown that an approximate upper bound for the conversion efficiency of pre-disruptive plasma currents into runaways is about 60% over a wide range of plasma currents in JET. Runaway generation has been simulated with a test particle model in order to verify the results of experimental data analysis and to obtain the background for extrapolation of the existing results onto larger devices such as ITER. It was found that close agreement between the modelling results and experimental data could be achieved if in the calculations the post-disruption plasma electron temperature was assumed equal to 10 eV and if the plasma column geometry evolution is taken into account in calculations. The experimental trends and numerical simulations show that runaway electrons are a critical issue for ITER and, therefore, the development of mitigation methods, which suppress runaway generation, is an essential task

  18. Numerical simulation of runaway electron effect on Plasma Facing Components

    International Nuclear Information System (INIS)

    Ezato, Koichiro; Suzuki, Satoshi; Akiba, Masato; Kunugi, Tomoaki

    1998-07-01

    The runaway electron effects on Plasma Facing Components (PFCs) are studied by the numerical analyses. The present study is the first investigation of time-dependent thermal response of PFCs caused by runaway electron impact. For this purpose, we developed a new integrated numerical code, which consists of the Monte Carlo code for the coupled electrons and photons transport analysis and the finite element code for the thermo-mechanical analysis. In this code, we apply the practical incident parameters and distribution of runaway electrons recently proposed by S. Putvinski, which can express the time-dependent behavior of runaway electrons impact. The incident parameters of electrons in this study are the energy density ranging from 10 to 75 MJ/m 2 , the average electrons' energy of 12.5 MeV, the incident angle of 0.01deg and the characteristic time constant for decay of runaway electrons event of 0.15sec. The numerical results showed that the divertor with CFC (Carbon-Fiber-Composite) armor did not suffer serious damage. On the other hand, maximum temperatures at the surface of the divertor with tungsten armor and the first wall with beryllium armor exceed the melting point in case of the incident energy density of 20 and 50 MJ/m 2 . Within the range of the incident condition of runaway electrons, the cooling pipe of each PFCs can be prevented from the melting or burn-out caused by runaway electrons impact, which is one of the possible consequences of runaway electrons event so far. (author)

  19. Runaway electrons and rational q-surfaces in a tokamak

    International Nuclear Information System (INIS)

    Cheetham, A.D.; Hogg, G.R.; Kuwahara, H.; Morton, A.H.

    1983-01-01

    Results of measurements with LT-4 of runaway electron behaviour during the current rise stage of discharges when q = rBsub(T)/RBsub(p) (where r and R are minor and major radii, Bsub(T) and Bsub(p) are toroidal and poloidal magnetic fields) is changing continuously are reported. The results establish a role for outward moving rational q regions in removing runaway electrons from a tokamak plasma. The model indicates that as well as carrying a proportion of low energy runaways with them the rational q regions also scatter high energy electrons from the discharge. This leads to an upper limit for the energy of fully confined electrons. The size of the runaway population might be minimised by controlling the rate of movement of rational surfaces. This would be achieved by programming the rate of rise of the plasma current

  20. Sawtooth-induced loss of runaway electrons in tokamaks

    International Nuclear Information System (INIS)

    Yan Longwen; Shi Bingren; Jiao Yiming

    2001-01-01

    A model based on banana orbit loss has been proposed to explain the sawtooth effect on the loss of the runaway electrons in tokamaks. Circulating runaway electrons can be transferred into the trapped ones due to magnetic perturbation during sawtooth crashes, then they are repelled to the limiter via toroidal precession drift with a time delay. This model may also clarify the hard X-ray oscillations correlated with the m = 2 mode and the hard X-ray bursts during outer disruptions

  1. Kinetic modelling of runaway electron avalanches in tokamak plasmas.

    Czech Academy of Sciences Publication Activity Database

    Nilsson, E.; Decker, J.; Peysson, Y.; Granetz, R.S.; Saint-Laurent, F.; Vlainic, Milos

    2015-01-01

    Roč. 57, č. 9 (2015), č. článku 095006. ISSN 0741-3335 EU Projects: European Commission(XE) 633053 - EUROfusion Institutional support: RVO:61389021 Keywords : plasma physics * runaway electrons * knock-on collisions * tokamak * Fokker-Planck * runaway avalanches Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 2.404, year: 2015

  2. Generation of runaway electron beams in high-pressure nitrogen

    Science.gov (United States)

    Tarasenko, V. F.; Burachenko, A. G.; Baksht, E. Kh

    2017-07-01

    In this paper the results of experimental studies of the amplitude-temporal characteristics of a runaway electron beam, as well as breakdown voltage in nitrogen are presented. The voltage pulses with the amplitude in incident wave ≈120 kV and the rise time of ≈0.3 ns was used. The supershort avalanche electron beam (SAEB) was detected by a collector behind the flat anode. The amplitude-time characteristics of the voltage and SAEB current were studied with subnanosecond time resolution. The maximum pressure at which a SAEB is detectable by collector was ∼1 MPa. This pressure increases with decreasing the voltage rise time. The waveforms of the discharge and runaway electron beam currents was synchronized with the voltage pulses. The mechanism of the runaway electron generation in atmospheric-pressure gases is analyzed on the basis of the obtained experimental data.

  3. The resonance between runaway electrons and magnetic ripple in HT-7 Tokamak

    International Nuclear Information System (INIS)

    Zhou Ruijie; Hu Liqun; Lu Hongwei; Lin Shiyao; Zhong Guoqiang; Xu Ping; Zhang Jizong

    2011-01-01

    For suppressing the energy of runaway electrons in tokamak plasma, we analyzed the X-ray energy spectra by runaway electrons in different discharges of the HT-7 tokamak experiment performed in the autumn of 2009. The resonant phenomenon between runaway electrons and magnetic ripple was found. Although, the energy of runaway electrons in the plasma core can be as high as several tens of MeV, but when they are transported to the edge, the electron energy are limited to a certain range by resonance with the magnetic ripple of different harmonic numbers. The runaway electrons under high loop voltage resonate with low step magnetic perturbations, with high energy gain; whereas the runaway electrons under low loop voltage resonate with high level magnetic perturbations, with low energy gain. Using this mechanism, the energy of runaway electrons can be restricted to a low level, and this will significantly mitigate the damage effect on the equipment caused by runaway electrons. (authors)

  4. Effects of Spatial Gradients on Electron Runaway Acceleration

    Science.gov (United States)

    MacNeice, Peter; Ljepojevic, N. N.

    1996-01-01

    The runaway process is known to accelerate electrons in many laboratory plasmas and has been suggested as an acceleration mechanism in some astrophysical plasmas, including solar flares. Current calculations of the electron velocity distributions resulting from the runaway process are greatly restricted because they impose spatial homogeneity on the distribution. We have computed runaway distributions which include consistent development of spatial gradients in the energetic tail. Our solution for the electron velocity distribution is presented as a function of distance along a finite length acceleration region, and is compared with the equivalent distribution for the infinitely long homogenous system (i.e., no spatial gradients), as considered in the existing literature. All these results are for the weak field regime. We also discuss the severe restrictiveness of this weak field assumption.

  5. Measurements of the runaway electron energy during disruptions in the tokamak TEXTOR

    International Nuclear Information System (INIS)

    Forster, M.; Finken, K. H.; Willi, O.; Lehnen, M.; Xu, Y.

    2012-01-01

    Calorimetric measurements of the total runaway electron energy are carried out using a reciprocating probe during induced TEXTOR disruptions. A comparison with the energy inferred from runaway energy spectra, which are measured with a scintillator probe, is used as an independent check of the results. A typical runaway current of 100 kA at TEXTOR contains 30 to 35 kJ of runaway energy. The dependencies of the runaway energy on the runaway current, the radial probe position, the toroidal magnetic field and the predisruptive plasma current are studied. The conversion efficiency of the magnetic plasma energy into runaway energy is calculated to be up to 26%.

  6. Conditions for electron runaway under leader breakdown of long gaps

    International Nuclear Information System (INIS)

    Ul'yanov, K. N.

    2008-01-01

    An original hydrodynamic model in which inelastic collisions in the equations of motion and energy balance play a decisive role is developed and applied to simulate electron avalanches in strong electric fields. The mean energy and drift velocity of electrons, as well as the ionization coefficient and electric field in a wide range of mean electron energies, are determined for helium and xenon. A criterion is derived for the runaway of the average electron in discharges with ionization multiplication. It is shown that runaway can take place at any value of E/p, provided that the momentum mean free path exceeds the gap length. The voltage corresponding to electron runaway is found for helium, xenon, and air as a function of the electric field, the electron mean energy, and the parameter pd. Conditions for the formation of a precursor in electronegative gases are analyzed. It is shown that the presence of a precursor with a high electric conductance is necessary for the formation of a new leader step. The voltage and time ranges corresponding to efficient electron runaway and X-ray generation during leader breakdown in air are determined

  7. On the synchrotron emission in kinetic simulations of runaway electrons in magnetic confinement fusion plasmas

    Science.gov (United States)

    Carbajal, L.; del-Castillo-Negrete, D.

    2017-12-01

    Developing avoidance or mitigation strategies of runaway electrons (REs) in magnetic confinement fusion (MCF) plasmas is of crucial importance for the safe operation of ITER. In order to develop these strategies, an accurate diagnostic capability that allows good estimates of the RE distribution function in these plasmas is needed. Synchrotron radiation (SR) of RE in MCF, besides of being one of the main damping mechanisms for RE in the high energy relativistic regime, is routinely used in current MCF experiments to infer the parameters of RE energy and pitch angle distribution functions. In the present paper we address the long standing question about what are the relationships between different REs distribution functions and their corresponding synchrotron emission simultaneously including: full-orbit effects, information of the spectral and angular distribution of SR of each electron, and basic geometric optics of a camera. We study the spatial distribution of the SR on the poloidal plane, and the statistical properties of the expected value of the synchrotron spectra of REs. We observe a strong dependence of the synchrotron emission measured by the camera on the pitch angle distribution of runaways, namely we find that crescent shapes of the spatial distribution of the SR as measured by the camera relate to RE distributions with small pitch angles, while ellipse shapes relate to distributions of runaways with larger the pitch angles. A weak dependence of the synchrotron emission measured by the camera with the RE energy, value of the q-profile at the edge, and the chosen range of wavelengths is observed. Furthermore, we find that oversimplifying the angular dependence of the SR changes the shape of the synchrotron spectra, and overestimates its amplitude by approximately 20 times for avalanching runaways and by approximately 60 times for mono-energetic distributions of runaways1.

  8. Relativistic electron beams above thunderclouds

    DEFF Research Database (Denmark)

    Füellekrug, M.; Roussel-Dupre, R.; Symbalisty, E. M. D.

    2011-01-01

    Non-luminous relativistic electron beams above thunderclouds have been detected by the radio signals of low frequency similar to 40-400 kHz which they radiate. The electron beams occur similar to 2-9 ms after positive cloud-to-ground lightning discharges at heights between similar to 22-72 km above...... thunderclouds. Intense positive lightning discharges can also cause sprites which occur either above or prior to the electron beam. One electron beam was detected without any luminous sprite which suggests that electron beams may also occur independently of sprites. Numerical simulations show that beams...... of electrons partially discharge the lightning electric field above thunderclouds and thereby gain a mean energy of similar to 7MeV to transport a total charge of similar to-10mC upwards. The impulsive current similar to 3 x 10(-3) Am-2 associated with relativistic electron beams above thunderclouds...

  9. Runaway electron generation as possible trigger for enhancement of magnetohydrodynamic plasma activity and fast changes in runaway beam behavior

    International Nuclear Information System (INIS)

    Pankratov, I. M.; Zhou, R. J.; Hu, L. Q.

    2015-01-01

    Peculiar phenomena were observed during experiments with runaway electrons: rapid changes in the synchrotron spot and its intensity that coincided with stepwise increases in the electron cyclotron emission (ECE) signal (cyclotron radiation of suprathermal electrons). These phenomena were initially observed in TEXTOR (Tokamak Experiment for Technology Oriented Research), where these events only occurred in the current decay phase or in discharges with thin stable runaway beams at a q = 1 drift surface. These rapid changes in the synchrotron spot were interpreted by the TEXTOR team as a fast pitch angle scattering event. Recently, similar rapid changes in the synchrotron spot and its intensity that coincided with stepwise increases in the non-thermal ECE signal were observed in the EAST (Experimental Advanced Superconducting Tokamak) runaway discharge. Runaway electrons were located around the q = 2 rational magnetic surface (ring-like runaway electron beam). During the EAST runaway discharge, stepwise ECE signal increases coincided with enhanced magnetohydrodynamic (MHD) activity. This behavior was peculiar to this shot. In this paper, we show that these non-thermal ECE step-like jumps were related to the abrupt growth of suprathermal electrons induced by bursting electric fields at reconnection events during this MHD plasma activity. Enhancement of the secondary runaway electron generation also occurred simultaneously. Local changes in the current-density gradient appeared because of local enhancement of the runaway electron generation process. These current-density gradient changes are considered to be a possible trigger for enhancement of the MHD plasma activity and the rapid changes in runaway beam behavior

  10. Runaway electron generation as possible trigger for enhancement of magnetohydrodynamic plasma activity and fast changes in runaway beam behavior

    Energy Technology Data Exchange (ETDEWEB)

    Pankratov, I. M., E-mail: pankratov@kipt.kharkov.ua, E-mail: rjzhou@ipp.ac.cn [Institute of Plasma Physics, NSC Kharkov Institute of Physics and Technology, Academicheskaya Str. 1, 61108 Kharkov (Ukraine); Zhou, R. J., E-mail: pankratov@kipt.kharkov.ua, E-mail: rjzhou@ipp.ac.cn; Hu, L. Q. [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China)

    2015-07-15

    Peculiar phenomena were observed during experiments with runaway electrons: rapid changes in the synchrotron spot and its intensity that coincided with stepwise increases in the electron cyclotron emission (ECE) signal (cyclotron radiation of suprathermal electrons). These phenomena were initially observed in TEXTOR (Tokamak Experiment for Technology Oriented Research), where these events only occurred in the current decay phase or in discharges with thin stable runaway beams at a q = 1 drift surface. These rapid changes in the synchrotron spot were interpreted by the TEXTOR team as a fast pitch angle scattering event. Recently, similar rapid changes in the synchrotron spot and its intensity that coincided with stepwise increases in the non-thermal ECE signal were observed in the EAST (Experimental Advanced Superconducting Tokamak) runaway discharge. Runaway electrons were located around the q = 2 rational magnetic surface (ring-like runaway electron beam). During the EAST runaway discharge, stepwise ECE signal increases coincided with enhanced magnetohydrodynamic (MHD) activity. This behavior was peculiar to this shot. In this paper, we show that these non-thermal ECE step-like jumps were related to the abrupt growth of suprathermal electrons induced by bursting electric fields at reconnection events during this MHD plasma activity. Enhancement of the secondary runaway electron generation also occurred simultaneously. Local changes in the current-density gradient appeared because of local enhancement of the runaway electron generation process. These current-density gradient changes are considered to be a possible trigger for enhancement of the MHD plasma activity and the rapid changes in runaway beam behavior.

  11. Runaway electron generation as possible trigger for enhancement of magnetohydrodynamic plasma activity and fast changes in runaway beam behavior

    Science.gov (United States)

    Pankratov, I. M.; Zhou, R. J.; Hu, L. Q.

    2015-07-01

    Peculiar phenomena were observed during experiments with runaway electrons: rapid changes in the synchrotron spot and its intensity that coincided with stepwise increases in the electron cyclotron emission (ECE) signal (cyclotron radiation of suprathermal electrons). These phenomena were initially observed in TEXTOR (Tokamak Experiment for Technology Oriented Research), where these events only occurred in the current decay phase or in discharges with thin stable runaway beams at a q = 1 drift surface. These rapid changes in the synchrotron spot were interpreted by the TEXTOR team as a fast pitch angle scattering event. Recently, similar rapid changes in the synchrotron spot and its intensity that coincided with stepwise increases in the non-thermal ECE signal were observed in the EAST (Experimental Advanced Superconducting Tokamak) runaway discharge. Runaway electrons were located around the q = 2 rational magnetic surface (ring-like runaway electron beam). During the EAST runaway discharge, stepwise ECE signal increases coincided with enhanced magnetohydrodynamic (MHD) activity. This behavior was peculiar to this shot. In this paper, we show that these non-thermal ECE step-like jumps were related to the abrupt growth of suprathermal electrons induced by bursting electric fields at reconnection events during this MHD plasma activity. Enhancement of the secondary runaway electron generation also occurred simultaneously. Local changes in the current-density gradient appeared because of local enhancement of the runaway electron generation process. These current-density gradient changes are considered to be a possible trigger for enhancement of the MHD plasma activity and the rapid changes in runaway beam behavior.

  12. Runaway electron generation during plasma shutdown by killer pellet injection

    International Nuclear Information System (INIS)

    Gal, K; Feher, T; Smith, H; Fueloep, T; Helander, P

    2008-01-01

    Tokamak discharges are sometimes terminated by disruptions that may cause large mechanical and thermal loads on the vessel. To mitigate disruption-induced problems it has been proposed that 'killer' pellets could be injected into the plasma in order to safely terminate the discharge. Killer pellets enhance radiative energy loss and thereby lead to rapid cooling and shutdown of the discharge. But pellets may also cause runaway electron generation, as has been observed in experiments in several tokamaks. In this work, runaway dynamics in connection with deuterium or carbon pellet-induced fast plasma shutdown is considered. A pellet code, which calculates the material deposition and initial cooling caused by the pellet is coupled to a runaway code, which determines the subsequent temperature evolution and runaway generation. In this way, a tool has been created to test the suitability of different pellet injection scenarios for disruption mitigation. If runaway generation is avoided, the resulting current quench times are too long to safely avoid large forces on the vessel due to halo currents

  13. Scaling law of runaway electrons in the HL-1M tokamak

    International Nuclear Information System (INIS)

    Zheng Yongzhen

    2005-01-01

    Runaway confinement time in ohmic and additionally heated tokamak plasmas presents an anomalous behavior in comparison with theoretical predictions based on neoclassical models. A one-dimensional numerical including generation and loss effects for runaway electrons is used to deduce the dependence of runaway energy ε τ on runaway confinement time. The simulation results are presented in the form of a scaling law for ε τ on plasma parameters. The scaling of ε τ and therefore the runaway confinement time and runaway electron diffusivity has been studied in the HL-1M tokamak, by measuring hard X-ray spectra under different experimental conditions. (authors)

  14. Study of runaway electron generation during major disruptions in JET

    Czech Academy of Sciences Publication Activity Database

    Plyusnin, V.V.; Riccardo, V.; Jaspers, R.; Alper, B.; Kiptily, V.G.; Mlynář, Jan; Popovichev, S.; de La Luna, E.; Andersson, F.

    2006-01-01

    Roč. 46, č. 2 (2006), s. 277-284 ISSN 0029-5515 Institutional research plan: CEZ:AV0Z2043910 Keywords : JET * tokamak * fusion * dicsruption * runaway electrons * tomography Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.839, year: 2006

  15. Double Relativistic Electron Accelerating Mirror

    Directory of Open Access Journals (Sweden)

    Saltanat Sadykova

    2013-02-01

    Full Text Available In the present paper, the possibility of generation of thin dense relativistic electron layers is shown using the analytical and numerical modeling of laser pulse interaction with ultra-thin layers. It was shown that the maximum electron energy can be gained by optimal tuning between the target width, intensity and laser pulse duration. The optimal parameters were obtained from a self-consistent system of Maxwell equations and the equation of motion of electron layer. For thin relativistic electron layers, the gaining of maximum electron energies requires a second additional overdense plasma layer, thus cutting the laser radiation off the plasma screen at the instant of gaining the maximum energy (DREAM-schema.

  16. Mitigation of current quench by runaway electrons in LHCD discharges in the HT-7 tokamak

    International Nuclear Information System (INIS)

    Lu, H.W.; Hu, L.Q.; Lin, S.Y.; Zhong, G.Q.

    2009-01-01

    Production of runaway electrons during a major disruption has been observed in HT-7 Tokamak. The runaway current plateaus, which can carry part of the pre-disruptive current, are observed in lower-hybrid current drive (LHCD) limiter discharges. It is found that the runaway current can mitigate the disruptions effectively. Detailed observations are presented on the runaway electrons generated following disruptions in the HT-7 tokamak with carbon limited discharges. The results indicate that the magnetic oscillations play an important role in the activity of runaway electrons in disruption. (author)

  17. The relativistic electron wave equation

    International Nuclear Information System (INIS)

    Dirac, P.A.M.

    1977-08-01

    The paper was presented at the European Conference on Particle Physics held in Budapest between the 4th and 9th July of 1977. A short review is given on the birth of the relativistic electron wave equation. After Schroedinger has shown the equivalence of his wave mechanics and the matrix mechanics of Heisenberg, a general transformation theory was developed by the author. This theory required a relativistic wave equation linear in delta/delta t. As the Klein--Gordon equation available at this time did not satisfy this condition the development of a new equation became necessary. The equation which was found gave the value of the electron spin and magnetic moment automatically. (D.P.)

  18. Production of runaway electrons by negative streamer discharges

    DEFF Research Database (Denmark)

    Chanrion, Olivier Arnaud; Neubert, Torsten

    2010-01-01

    thunderstorms, the so-called Terrestrial Gamma-Ray Flashes. The radiation is thought to be bremsstrahlung from energetic (MeV) electrons accelerated in a thunderstorm discharge. The observation goes against conventional wisdom that discharges in air are carried by electrons with energies below a few tens of e...... and the conditions on the electric field for the acceleration of electrons into the runaway regime. We use particle codes to describe the process of stochastic acceleration and introduce a novel technique that improves the statistics of the relatively few electrons that reach high energies. The calculation...

  19. Effect of runaway electrons and VDE's on ITER first wall

    International Nuclear Information System (INIS)

    Raffray, A.R.; Cardella, A.; Federici, G.; Ioki, K.; Parker, R.; Akiba, M.; Ezato, K.

    1998-01-01

    Runaway electron and VDE energy deposition transients pose a major Be and W armour lifetime issue depending on their frequencies. The impact is more severe in the case of W because of the high minimum armour thickness required to prevent Cu from melting. Use of W armour should be limited to regions where such 'slow' high energy deposition transients are highly unlikely. Future effort is required to better understand and characterise these events and to develop design measures to address the issue. (author)

  20. Investigation of runaway electrons in the PRETEXT Tokamak

    International Nuclear Information System (INIS)

    Eckstrand, S.A.

    1981-01-01

    High energy (0.2 to 0.4 MeV) runaway electrons have been studied in PRETEXT discharges by detecting the hard x-ray bremsstrahlung radiation produced when they escape from the discharge and strike the limiter. A pulse height analysis system, which included pileup rejection circuitry because of the high count rate, recorded both the amplitude and arrival time of each pulse

  1. Models of primary runaway electron distribution in the runaway vortex regime

    International Nuclear Information System (INIS)

    Guo, Zehua; Tang, Xian-Zhu; McDevitt, Christopher J.

    2017-01-01

    Generation of runaway electrons (RE) beams can possibly induce the most deleterious effect of tokamak disruptions. A number of recent numerical calculations have confirmed the formation of a RE bump in their energy distribution by taking into account Synchrontron radiational damping force due to RE’s gyromotions. Here, we present a detailed examination on how the bump location changes at different pitch-angle and the characteristics of the RE pitch-angle distribution. Although REs moving along the magnetic field are preferably accelerated and then populate the phase-space of larger pitch-angle mainly through diffusions, an off-axis peak can still form due to the presence of the vortex structure which causes accumulation of REs at low pitch-angle. A simplified Fokker- Planck model and its semi-analytical solutions based on local expansions around the O point is used to illustrate the characteristics of RE distribution around the O point of the runaway vortex in phase-space. The calculated energy location of the O point together with the local energy and pitch-angle distributions agree with the full numerical solution.

  2. Observation of runaway electrons by infrared camera in J-TEXT

    Energy Technology Data Exchange (ETDEWEB)

    Tong, R. H.; Chen, Z. Y., E-mail: zychen@hust.edu.cn; Zhang, M.; Huang, D. W.; Yan, W.; Zhuang, G. [State Key Laboratory of Advanced Electromagnetic Engineering and Technology, School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2016-11-15

    When the energy of confined runaway electrons approaches several tens of MeV, the runaway electrons can emit synchrotron radiation in the range of infrared wavelength. An infrared camera working in the wavelength of 3-5 μm has been developed to study the runaway electrons in the Joint Texas Experimental Tokamak (J-TEXT). The camera is located in the equatorial plane looking tangentially into the direction of electron approach. The runaway electron beam inside the plasma has been observed at the flattop phase. With a fast acquisition of the camera, the behavior of runaway electron beam has been observed directly during the runaway current plateau following the massive gas injection triggered disruptions.

  3. Suppression of Runaway Electrons by Resonant Magnetic Perturbations in TEXTOR Disruptions

    International Nuclear Information System (INIS)

    Lehnen, M.; Bozhenkov, S. A.; Abdullaev, S. S.; TEXTOR Team,; Jakubowski, M. W.

    2008-01-01

    The generation of runaway electrons in the international fusion experiment ITER disruptions can lead to severe damage at plasma facing components. Massive gas injection might inhibit the generation process, but the amount of gas needed can affect, e.g., vacuum systems. Alternatively, magnetic perturbations can suppress runaway generation by increasing the loss rate. In TEXTOR disruptions runaway losses were enhanced by the application of resonant magnetic perturbations with toroidal mode number n=1 and n=2. The disruptions are initiated by fast injection of about 3x10 21 argon atoms, which leads to a reliable generation of runaway electrons. At sufficiently high perturbation levels a reduction of the runaway current, a shortening of the current plateau, and the suppression of high energetic runaways are observed. These findings indicate the suppression of the runaway avalanche during disruptions

  4. Numerical simulation of runaway electrons: 3-D effects on synchrotron radiation and impurity-based runaway current dissipation

    Science.gov (United States)

    del-Castillo-Negrete, D.; Carbajal, L.; Spong, D.; Izzo, V.

    2018-05-01

    Numerical simulations of runaway electrons (REs) with a particular emphasis on orbit dependent effects in 3-D magnetic fields are presented. The simulations were performed using the recently developed Kinetic Orbit Runaway electron Code (KORC) that computes the full-orbit relativistic dynamics in prescribed electric and magnetic fields including radiation damping and collisions. The two main problems of interest are synchrotron radiation and impurity-based RE dissipation. Synchrotron radiation is studied in axisymmetric fields and in 3-D magnetic configurations exhibiting magnetic islands and stochasticity. For passing particles in axisymmetric fields, neglecting orbit effects might underestimate or overestimate the total radiation power depending on the direction of the radial shift of the drift orbits. For trapped particles, the spatial distribution of synchrotron radiation exhibits localized "hot" spots at the tips of the banana orbits. In general, the radiation power per particle for trapped particles is higher than the power emitted by passing particles. The spatial distribution of synchrotron radiation in stochastic magnetic fields, obtained using the MHD code NIMROD, is strongly influenced by the presence of magnetic islands. 3-D magnetic fields also introduce a toroidal dependence on the synchrotron spectra, and neglecting orbit effects underestimates the total radiation power. In the presence of magnetic islands, the radiation damping of trapped particles is larger than the radiation damping of passing particles. Results modeling synchrotron emission by RE in DIII-D quiescent plasmas are also presented. The computation uses EFIT reconstructed magnetic fields and RE energy distributions fitted to the experimental measurements. Qualitative agreement is observed between the numerical simulations and the experiments for simplified RE pitch angle distributions. However, it is noted that to achieve quantitative agreement, it is necessary to use pitch angle

  5. Runaway electron beam control for longitudinally pumped metal vapor lasers

    Science.gov (United States)

    Kolbychev, G. V.; Kolbycheva, P. D.

    1995-08-01

    Physics and techniques for producing of the pulsed runaway electron beams are considered. The main obstacle for increasing electron energies in the beams is revealed to be a self- breakdown of the e-gun's gas-filled diode. Two methods to suppress the self-breakdown and enhance the volumetric discharge producing the e-beam are offered and examined. Each of them provides 1.5 fold increase of the ceiling potential on the gun. The methods also give the ways to control several guns simultaneously. Resulting in the possibility of realizing the powerful longitudinal pumping of metal-vapor lasers on self-terminated transitions of atoms or ions.

  6. Note: Measurement of the runaway electrons in the J-TEXT tokamak

    International Nuclear Information System (INIS)

    Chen, Z. Y.; Zhang, Y.; Zhang, X. Q.; Luo, Y. H.; Jin, W.; Li, J. C.; Chen, Z. P.; Wang, Z. J.; Yang, Z. J.; Zhuang, G.

    2012-01-01

    The runaway electrons have been measured by hard x-ray detectors and soft x-ray array in the J-TEXT tokamak. The hard x-ray radiations in the energy ranges of 0.5-5 MeV are measured by two NaI detectors. The flux of lost runaway electrons can be obtained routinely. The soft x-ray array diagnostics are used to monitor the runaway beam generated in disruptions since the soft x-ray is dominated by the interaction between runaway electrons and metallic impurities inside the plasma. With the aid of soft x-ray array, runaway electron beam has been detected directly during the formation of runaway current plateau following the disruptions.

  7. Fokker-Planck simulations of knock-on electron runaway avalanche and bursts in tokamaks

    International Nuclear Information System (INIS)

    Chiu, S.C.; Rosenbluth, M.N.; Harvey, R.W.; Chan, V.S.

    1998-01-01

    The avalanche of runaway electrons in an ohmic tokamak plasma triggered by knock-on collisions of traces of energetic electrons with the bulk electrons is simulated by the bounce averaged Fokker-Planck code, CQL3D. It is shown that even when the electric field is small for the production of Dreicer runaways, the knock-on collisions can produce significant runaway electrons in a fraction of a second at typical reactor parameters. The energy spectrum of these knock-on runaways has a characteristic temperature. The growth rate and temperature of the runaway distribution are determined and compared with theory. In simulations of pellet injection into high temperature plasmas, it is shown that a burst of Dreicer runaways may also occur depending on the cooling rate due to the pellet injection. Implications of these phenomena on disruption control in reactor plasmas are discussed. (author)

  8. Influence of the angular scattering of electrons on the runaway threshold in air

    DEFF Research Database (Denmark)

    Chanrion, O.; Bonaventura, Z.; Bourdon, A.

    2016-01-01

    The runaway electron mechanism is of great importance for the understanding of the generation of x- and gamma rays in atmospheric discharges. In 1991, terrestrial gamma-ray flashes (TGFs) were discovered by the Compton Gamma-Ray Observatory. Those emissions are bremsstrahlung from high energy...... electrons that run away in electric fields associated with thunderstorms. In this paper, we discuss the runaway threshold definition with a particular interest in the influence of the angular scattering for electron energy close to the threshold. In order to understand the mechanism of runaway, we compare...... scattering is not valid below 1 MeV where the runaway threshold usually is defined. These results are important for the thermal runaway and the runaway electron avalanche discharge mechanisms suggested to participate in the TGF generation....

  9. Multi-scale full-orbit analysis on phase-space behavior of runaway electrons in tokamak fields with synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yulei; Liu, Jian, E-mail: jliuphy@ustc.edu.cn [School of Nuclear Science and Technology and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Key Laboratory of Geospace Environment, CAS, Hefei, Anhui 230026 (China); Qin, Hong [School of Nuclear Science and Technology and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Plasma Physics Laboratory, Princeton University, Princeton, New Jersey 08543 (United States)

    2016-06-15

    In this paper, the secular full-orbit simulations of runaway electrons with synchrotron radiation in tokamak fields are carried out using a relativistic volume-preserving algorithm. Detailed phase-space behaviors of runaway electrons are investigated in different dynamical timescales spanning 11 orders. In the small timescale, i.e., the characteristic timescale imposed by Lorentz force, the severely deformed helical trajectory of energetic runaway electron is witnessed. A qualitative analysis of the neoclassical scattering, a kind of collisionless pitch-angle scattering phenomena, is provided when considering the coupling between the rotation of momentum vector and the background magnetic field. In large timescale up to 1 s, it is found that the initial condition of runaway electrons in phase space globally influences the pitch-angle scattering, the momentum evolution, and the loss-gain ratio of runaway energy evidently. However, the initial value has little impact on the synchrotron energy limit. It is also discovered that the parameters of tokamak device, such as the toroidal magnetic field, the loop voltage, the safety factor profile, and the major radius, can modify the synchrotron energy limit and the strength of neoclassical scattering. The maximum runaway energy is also proved to be lower than the synchrotron limit when the magnetic field ripple is considered.

  10. Dissipation of post-disruption runaway electron plateaus by shattered pellet injection in DIII-D

    Science.gov (United States)

    Shiraki, D.; Commaux, N.; Baylor, L. R.; Cooper, C. M.; Eidietis, N. W.; Hollmann, E. M.; Paz-Soldan, C.; Combs, S. K.; Meitner, S. J.

    2018-05-01

    We report on the first demonstration of dissipation of fully avalanched post-disruption runaway electron (RE) beams by shattered pellet injection in the DIII-D tokamak. Variation of the injected species shows that dissipation depends strongly on the species mixture, while comparisons with massive gas injection do not show a significant difference between dissipation by pellets or by gas, suggesting that the shattered pellet is rapidly ablated by the relativistic electrons before significant radial penetration into the runaway beam can occur. Pure or dominantly neon injection increases the RE current dissipation through pitch-angle scattering due to collisions with impurity ions. Deuterium injection is observed to have the opposite effect from neon, reducing the high-Z impurity content and thus decreasing the dissipation, and causing the background thermal plasma to completely recombine. When injecting mixtures of the two species, deuterium levels as low as  ∼10% of the total injected atoms are observed to adversely affect the resulting dissipation, suggesting that complete elimination of deuterium from the injection may be important for optimizing RE mitigation schemes.

  11. Observation of the Avalanche of Runaway Electrons in Air in a Strong Electric Field

    Science.gov (United States)

    Gurevich, A. V.; Mesyats, G. A.; Zybin, K. P.; Yalandin, M. I.; Reutova, A. G.; Shpak, V. G.; Shunailov, S. A.

    2012-08-01

    The generation of an avalanche of runaway electrons is demonstrated for the first time in a laboratory experiment. Two flows of runaway electrons are formed sequentially in an extended air discharge gap at the stage of delay of a pulsed breakdown. The first, picosecond, runaway electron flow is emitted in the cathode region where the field is enhanced. Being accelerated in the gap, this beam generates electrons due to impact ionization. These secondary electrons form a delayed avalanche of runaway electrons if the field is strong enough. The properties of the avalanche correspond to the existing notions about the runaway breakdown in air. The measured current of the avalanche exceeds up to an order the current of the initiating electron beam.

  12. Investigation of ring-like runaway electron beams in the EAST tokamak

    International Nuclear Information System (INIS)

    Zhou, R J; Hu, L Q; Li, E Z; Xu, M; Zhong, G Q; Xu, L Q; Lin, S Y; Zhang, J Z

    2013-01-01

    In the EAST tokamak, asymmetrical ring-like runaway electron beams with energy more than 30 MeV and pitch angle about 0.1 were investigated. Those runaway beams carried about 46% of the plasma current and located around the q = 2 rational surface when m/n = 1/1 and m/n = 2/1 MHD modes existed in the plasma. Those runaway beams changed from a hollow to a filled structure during the slow oscillations in the discharge about every 0.2 s, which correlated with a large step-like jump in electron cyclotron emission (ECE) signals, a big spike-like perturbation in Mirnov signals and a large decrease in runaway energy. Between those slow oscillations with large magnitude, fast oscillations with small magnitude also existed about every 0.02 s, which correlated with a small step-like jump in ECE signals, a small spike-like perturbation in Mirnov signals, but no clear decrease in runaway energy and changes in the runaway beam structure. Resonant interactions occurred between runaway electrons and magnetohydrodynamic instabilities, which gave rise to fast pitch angle scattering processes of those resonant runaway electrons, and hence increased the synchrotron radiation. Theoretical calculations of the resonant interaction were given based on a test particle description. Synchrotron radiation of those resonant runaway electrons was increased by about 60% until the end of the resonant interaction. (paper)

  13. Collisional avalanche exponentiation of run-away electrons in electrified plasmas

    International Nuclear Information System (INIS)

    Jayakumar, R.; Fleischmann, H.H.; Zweben, S.J.; Cornell Univ., Ithaca, NY

    1992-07-01

    In contrast to earlier expectations, it is estimated that generation of runaway electrons from close collisions of existing runaways with cold plasma electrons can be significant even for small electric fields, whenever runaways can gain energies of about 20 MeV or more. In that case, the runaway population will grow exponentially with the energy spectrum showing an exponential decrease towards higher energies.Energy gains of the required magnitude may occur in large Tokamak devices as well as in cosmic-ray generation

  14. Disruption generated runaway electrons in TEXTOR and ITER

    NARCIS (Netherlands)

    R. Jaspers,; Cardozo, N. J. L.; Schüller, F. C.; Finken, K.H.; Grewe, T.; Mank, G.

    1996-01-01

    Runaway generation during a major disruption has been observed in TEXTOR. Measurements of the synchrotron radiation yielded number, energy and pitch angle of the runaways. A simple model, which assumes that the runaways take over the current density in the centre of the discharge, successfully

  15. Runaway acceleration during magnetic reconnection in tokamaks

    International Nuclear Information System (INIS)

    Helander, P; Eriksson, L-G; Andersson, F

    2002-01-01

    In this paper, the basic theory of runaway electron production is reviewed and recent progress is discussed. The mechanisms of primary and secondary generation of runaway electrons are described and their dynamics during a tokamak disruption is analysed, both in a simple analytical model and through numerical Monte Carlo simulation. A simple criterion for when these mechanisms generate a significant runaway current is derived, and the first self-consistent simulations of the electron kinetics in a tokamak disruption are presented. Radial cross-field diffusion is shown to inhibit runaway avalanches, as indicated in recent experiments on JET and JT-60U. Finally, the physics of relativistic post-disruption runaway electrons is discussed, in particular their slowing down due to emission of synchrotron radiation, and their ability to produce electron-positron pairs in collisions with bulk plasma ions and electrons

  16. Comparative study of runaway electron diffusion in the rise phase of ...

    Indian Academy of Sciences (India)

    The behaviour of runaway electrons in the SINP tokamak, which can be operated in a normal edge safety factor () (NQ) discharge configuration as well as in a low (LQ) configuration, was experimentally investigated, during the initial plasma generation phase. An energy analysis of the runaway electron dynamics in ...

  17. Comparative study of runaway electron diffusion in the rise phase of ...

    Indian Academy of Sciences (India)

    Abstract. The behaviour of runaway electrons in the SINP tokamak, which can be operated in a normal edge safety factor (qa) (NQ) discharge configuration as well as in a low qa (LQ) configuration, was experimentally investigated, during the initial plasma generation phase. An energy analysis of the runaway electron ...

  18. Resolving runaway electron distributions in space, time, and energy

    Science.gov (United States)

    Paz-Soldan, C.; Cooper, C. M.; Aleynikov, P.; Eidietis, N. W.; Lvovskiy, A.; Pace, D. C.; Brennan, D. P.; Hollmann, E. M.; Liu, C.; Moyer, R. A.; Shiraki, D.

    2018-05-01

    Areas of agreement and disagreement with present-day models of runaway electron (RE) evolution are revealed by measuring MeV-level bremsstrahlung radiation from runaway electrons (REs) with a pinhole camera. Spatially resolved measurements localize the RE beam, reveal energy-dependent RE transport, and can be used to perform full two-dimensional (energy and pitch-angle) inversions of the RE phase-space distribution. Energy-resolved measurements find qualitative agreement with modeling on the role of collisional and synchrotron damping in modifying the RE distribution shape. Measurements are consistent with predictions of phase-space attractors that accumulate REs, with non-monotonic features observed in the distribution. Temporally resolved measurements find qualitative agreement with modeling on the impact of collisional and synchrotron damping in varying the RE growth and decay rate. Anomalous RE loss is observed and found to be largest at low energy. Possible roles for kinetic instability or spatial transport to resolve these anomalies are discussed.

  19. Emission from Crystals Irradiated with a Beam of Runaway Electrons

    Science.gov (United States)

    Buranchenko, A. G.; Tarasenko, V. F.; Beloplotov, D. V.; Baksht, E. Kh.

    2018-01-01

    An investigation of the spectral and amplitude-temporal characteristics of emission from different crystals, promising in terms of their application as detectors of runaway electrons, is performed. This emission is excited by subnanosecond electron beams generated in a gas diode. It is found out that at the electron energies of tens-hundreds of kiloelectronvolts, the main contribution into the emission from CsI, ZnS, type IIa artificial and natural diamonds, sapphire, CaF2, ZrO2, Ga2O3, CaCO3, CdS, and ZnSe crystals comes from the cathodoluminescence; the radiation pulse duration depends on the crystal used and sufficiently exceeds the Cherenkov radiation pulse duration. It is demonstrated that the latter radiation exhibits low intensity and can be detected in the short-wave region of the spectrum in the cases where a monochromator and a high-sensitivity photomultiplier tube (PMT) are used.

  20. On the avalanche generation of runaway electrons during tokamak disruptions

    International Nuclear Information System (INIS)

    Martín-Solís, J. R.; Loarte, A.; Lehnen, M.

    2015-01-01

    A simple zero dimensional model for a tokamak disruption is developed to evaluate the avalanche multiplication of a runaway primary seed during the current quench phase of a fast disruptive event. Analytical expressions for the plateau runaway current, the energy of the runaway beam, and the runaway energy distribution function are obtained allowing the identification of the parameters dominating the formation of the runaway current during disruptions. The effect of the electromagnetic coupling to the vessel and the penetration of the external magnetic energy during the disruption current quench as well as of the collisional dissipation of the runaway current at high densities are investigated. Current profile shape effects during the formation of the runaway beam are also addressed by means of an upgraded one-dimensional model

  1. First Direct Observation of Runaway-Electron-Driven Whistler Waves in Tokamaks

    Science.gov (United States)

    Spong, D. A.; Heidbrink, W. W.; Paz-Soldan, C.; Du, X. D.; Thome, K. E.; Van Zeeland, M. A.; Collins, C.; Lvovskiy, A.; Moyer, R. A.; Austin, M. E.; Brennan, D. P.; Liu, C.; Jaeger, E. F.; Lau, C.

    2018-04-01

    DIII-D experiments at low density (ne˜1019 m-3 ) have directly measured whistler waves in the 100-200 MHz range excited by multi-MeV runaway electrons. Whistler activity is correlated with runaway intensity (hard x-ray emission level), occurs in novel discrete frequency bands, and exhibits nonlinear limit-cycle-like behavior. The measured frequencies scale with the magnetic field strength and electron density as expected from the whistler dispersion relation. The modes are stabilized with increasing magnetic field, which is consistent with wave-particle resonance mechanisms. The mode amplitudes show intermittent time variations correlated with changes in the electron cyclotron emission that follow predator-prey cycles. These can be interpreted as wave-induced pitch angle scattering of moderate energy runaways. The tokamak runaway-whistler mechanisms have parallels to whistler phenomena in ionospheric plasmas. The observations also open new directions for the modeling and active control of runaway electrons in tokamaks.

  2. Observation of thermal quench induced by runaway electrons in magnetic perturbation

    Science.gov (United States)

    Cheon, MunSeong; Seo, Dongcheol; Kim, Junghee

    2018-04-01

    Experimental observations in Korea Superconducting Tokamak Advanced Research (KSTAR) plasmas show that a loss of pre-disruptive runaway electrons can induce a rapid radiative cooling of the plasma, by generating impurity clouds from the first wall. The synchrotron radiation image shows that the loss of runaway electrons occurs from the edge region when the resonant magnetic perturbation is applied on the plasma. When the impact of the runaway electrons on the wall is strong enough, a sudden drop of the electron cyclotron emission (ECE) signal occurs with the characteristic plasma behaviors such as the positive spike and following decay of the plasma current, Dα spike, big magnetic fluctuation, etc. The visible images at this runaway loss show an evidence of the generation of impurity cloud and the following radiative cooling. When the runaway beam is located on the plasma edge, thermal quenches are expected to occur without global destruction of the magnetic structure up to the core.

  3. Electromagnetic waves destabilized by runaway electrons in near-critical electric fields

    Energy Technology Data Exchange (ETDEWEB)

    Komar, A.; Pokol, G. I. [Department of Nuclear Techniques, Budapest University of Technology and Economics, Association EURATOM, H-1111 Budapest (Hungary); Fueloep, T. [Department of Applied Physics, Nuclear Engineering, Chalmers University of Technology and Euratom-VR Association, Goeteborg (Sweden)

    2013-01-15

    Runaway electron distributions are strongly anisotropic in velocity space. This anisotropy is a source of free energy that may destabilize electromagnetic waves through a resonant interaction between the waves and the energetic electrons. In this work, we investigate the high-frequency electromagnetic waves that are destabilized by runaway electron beams when the electric field is close to the critical field for runaway acceleration. Using a runaway electron distribution appropriate for the near-critical case, we calculate the linear instability growth rate of these waves and conclude that the obliquely propagating whistler waves are most unstable. We show that the frequencies, wave numbers, and propagation angles of the most unstable waves depend strongly on the magnetic field. Taking into account collisional and convective damping of the waves, we determine the number density of runaways that is required to destabilize the waves and show its parametric dependences.

  4. A kinetic model for runaway electrons in the ionosphere

    Directory of Open Access Journals (Sweden)

    G. Garcia

    2006-09-01

    Full Text Available Electrodynamic models and measurements with satellites and incoherent scatter radars predict large field aligned current densities on one side of the auroral arcs. Different authors and different kinds of studies (experimental or modeling agree that the current density can reach up to hundreds of µA/m2. This large current density could be the cause of many phenomena such as tall red rays or triggering of unstable ion acoustic waves. In the present paper, we consider the issue of electrons moving through an ionospheric gas of positive ions and neutrals under the influence of a static electric field. We develop a kinetic model of collisions including electrons/electrons, electrons/ions and electrons/neutrals collisions. We use a Fokker-Planck approach to describe binary collisions between charged particles with a long-range interaction. We present the essential elements of this collision operator: the Langevin equation for electrons/ions and electrons/electrons collisions and the Monte-Carlo and null collision methods for electrons/neutrals collisions. A computational example is given illustrating the approach to equilibrium and the impact of the different terms (electrons/electrons and electrons/ions collisions on the one hand and electrons/neutrals collisions on the other hand. Then, a parallel electric field is applied in a new sample run. In this run, the electrons move in the z direction parallel to the electric field. The first results show that all the electron distribution functions are non-Maxwellian. Furthermore, runaway electrons can carry a significant part of the total current density, up to 20% of the total current density.

  5. A kinetic model for runaway electrons in the ionosphere

    Directory of Open Access Journals (Sweden)

    G. Garcia

    2006-09-01

    Full Text Available Electrodynamic models and measurements with satellites and incoherent scatter radars predict large field aligned current densities on one side of the auroral arcs. Different authors and different kinds of studies (experimental or modeling agree that the current density can reach up to hundreds of µA/m2. This large current density could be the cause of many phenomena such as tall red rays or triggering of unstable ion acoustic waves. In the present paper, we consider the issue of electrons moving through an ionospheric gas of positive ions and neutrals under the influence of a static electric field. We develop a kinetic model of collisions including electrons/electrons, electrons/ions and electrons/neutrals collisions. We use a Fokker-Planck approach to describe binary collisions between charged particles with a long-range interaction. We present the essential elements of this collision operator: the Langevin equation for electrons/ions and electrons/electrons collisions and the Monte-Carlo and null collision methods for electrons/neutrals collisions. A computational example is given illustrating the approach to equilibrium and the impact of the different terms (electrons/electrons and electrons/ions collisions on the one hand and electrons/neutrals collisions on the other hand. Then, a parallel electric field is applied in a new sample run. In this run, the electrons move in the z direction parallel to the electric field. The first results show that all the electron distribution functions are non-Maxwellian. Furthermore, runaway electrons can carry a significant part of the total current density, up to 20% of the total current density.

  6. The production and confinement of runaway electrons with impurity ''killer'' pellets in DIII-D

    International Nuclear Information System (INIS)

    Evans, T.E.; Taylor, P.L.; Whyte, D.G.

    1998-12-01

    Prompt runaway electron bursts, generated by rapidly cooling DIII-D plasmas with argon killer pellets, are used to test a recent knock-on avalanche theory describing the growth of multi-MeV runaway electron currents during disruptions in tokamaks. Runaway current amplitudes, observed during some but not all DIII-D current quenches, are consistent with growth rates predicted by the theory assuming a pre-current quench runaway electron density of approximately 10 15 m -3 . Argon killer pellet modeling yields runaway densities of between 10 15 --10 16 m -3 in these discharges. Although knock-on avalanching appears to agree rather well with the measurements, relatively small avalanche amplification factors combined with uncertainties in the spatial distribution of pellet mass and cooling rates make it difficult to unambiguously confirm the proposed theory with existing data

  7. Runaway electron beam generation and mitigation during disruptions at JET-ILW

    Czech Academy of Sciences Publication Activity Database

    Reux, C.; Plyusnin, V.; Alper, B.; Alves, D.; Bazylev, B.; Belonohy, E.; Boboc, A.; Brezinsek, S.; Coffey, I.; Decker, J.; Drewelow, P.; Devaux, S.; de Vries, P.C.; Fil, A.; Gerasimov, S.; Giacomelli, L.; Jachmich, S.; Khilkevitch, E.M.; Kiptily, V.; Koslowski, R.; Kruezi, U.; Lehnen, M.; Lupelli, I.; Lomas, P. J.; Manzanares, A.; Martin De Aguilera, A.; Matthews, G.F.; Mlynář, Jan; Nardon, E.; Nilsson, E.; Perez von Thun, C.; Riccardo, V.; Saint-Laurent, F.; Shevelev, A.E.; Sips, G.; Sozzi, C.

    2015-01-01

    Roč. 55, č. 9 (2015), 093013-093013 ISSN 0029-5515 Institutional support: RVO:61389021 Keywords : runaway electrons * disruptions * tokamak * JET * massive gas injection * disruption mitigation * runaway background plasma Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 4.040, year: 2015 http://iopscience.iop.org/article/10.1088/0029-5515/55/9/093013

  8. Instability connected with a beam of run-away electrons in the Tokamak TM-3

    International Nuclear Information System (INIS)

    Alikaev, V.V.; Razumova, K.A.; Sokolov, Yu.A.

    The study of the instability of runaway electrons on the Tokamak TM-3 is continued. The longitudinal energy of runaway electrons that have undergone deceleration during instability is estimated from measurements of superhigh frequency radiation of plasma. A connection was found between the effect of a small fraction of energy protons (observed previously with a low plasma concentration) and the instability being studied. As instability develops, the longitudinal energy of runaway electrons is partially transformed to the transverse degree of freedom of these electrons and is partially transmitted to the basic plasma component

  9. A first approach to runaway electron control in FTU

    International Nuclear Information System (INIS)

    Boncagni, L.; Carnevale, D.; Cianfarani, C.; Esposito, B.; Granucci, G.; Maddaluno, G.; Marocco, D.; Martin-Solis, J.R.; Pucella, G.; Sozzi, C.; Varano, G.; Vitale, V.; Zaccarian, L.

    2013-01-01

    The Plasma Control System (PCS) of the Frascati Tokamak Upgrade (FTU) is not equipped with any runaway electron (RE) beam control or suppression tool. In this paper we propose an upgraded PCS including an architecture for the control of disruption-generated REs that, making use of filtering techniques to estimate the onsets of the current quench (CQ) and of the RE beam current plateau, provides a controlled plasma current shut-down and a simultaneous RE position control. The control strategy is based on a nonlinear technique, called Input Allocation, that allows to re-configure the current in the poloidal field (PF) coils and improve the PCS responsiveness needed for RE position control. Preliminary results on the implementation of the Input Allocation and an experimental proposal to test the control scheme architecture are discussed

  10. A first approach to runaway electron control in FTU

    Energy Technology Data Exchange (ETDEWEB)

    Boncagni, L. [Associazione Euratom/ENEA sulla Fusione, Centro Ricerche Frascati, CP 65, 00044 Frascati, Roma (Italy); Carnevale, D., E-mail: carnevaledaniele@gmail.com [Dipartimento Ing. Civile ed Ing. Informatica Università di Roma, Tor Vergata, Via del Politecnico 1, 00133 Roma (Italy); Cianfarani, C.; Esposito, B. [Associazione Euratom/ENEA sulla Fusione, Centro Ricerche Frascati, CP 65, 00044 Frascati, Roma (Italy); Granucci, G. [Associazione Euratom-CNR sulla Fusione, IFP-CNR, Via R. Cozzi 53, 20125 Milano (Italy); Maddaluno, G.; Marocco, D. [Associazione Euratom/ENEA sulla Fusione, Centro Ricerche Frascati, CP 65, 00044 Frascati, Roma (Italy); Martin-Solis, J.R. [Universidad Carlos III de Madrid, Avda. de la Universidad 30, 28911 Leganes-Madrid (Spain); Pucella, G. [Associazione Euratom/ENEA sulla Fusione, Centro Ricerche Frascati, CP 65, 00044 Frascati, Roma (Italy); Sozzi, C. [Associazione Euratom-CNR sulla Fusione, IFP-CNR, Via R. Cozzi 53, 20125 Milano (Italy); Varano, G. [Dipartimento Ing. Civile ed Ing. Informatica Università di Roma, Tor Vergata, Via del Politecnico 1, 00133 Roma (Italy); Vitale, V. [Associazione Euratom/ENEA sulla Fusione, Centro Ricerche Frascati, CP 65, 00044 Frascati, Roma (Italy); Zaccarian, L. [CNRS, LAAS, 7 av. du colonel Roche, F-31400 Toulouse (France); Univ. de Toulouse, LAAS, F-31400 Toulouse (France)

    2013-10-15

    The Plasma Control System (PCS) of the Frascati Tokamak Upgrade (FTU) is not equipped with any runaway electron (RE) beam control or suppression tool. In this paper we propose an upgraded PCS including an architecture for the control of disruption-generated REs that, making use of filtering techniques to estimate the onsets of the current quench (CQ) and of the RE beam current plateau, provides a controlled plasma current shut-down and a simultaneous RE position control. The control strategy is based on a nonlinear technique, called Input Allocation, that allows to re-configure the current in the poloidal field (PF) coils and improve the PCS responsiveness needed for RE position control. Preliminary results on the implementation of the Input Allocation and an experimental proposal to test the control scheme architecture are discussed.

  11. MHD stability of runaway electron discharge in tokamaks

    International Nuclear Information System (INIS)

    Wakatani, M.

    1978-04-01

    A runaway current concentrating in the central region has stabilizing effects on kink and tearing instabilities on the basis of a model in which the runaway current is assumed rigid. The Kruskal-Shafranov limit (iota(a) = iota sub(σ(a) + iota sub( b)(a) <= 1) disappears for iota sub(σ(a) <= 0.2 in the case of parabolic profiles of both the runaway current and the conduction current. Here iota sub(σ)(a) is a rotational transform due to the conduction current and iota sub( b)(a) is a rotational transform due to the runaway current. (auth.)

  12. Studies of runaway electrons via Cherenkov effect in tokamaks

    Science.gov (United States)

    Zebrowski, J.; Jakubowski, L.; Rabinski, M.; Sadowski, M. J.; Jakubowski, M. J.; Kwiatkowski, R.; Malinowski, K.; Mirowski, R.; Mlynar, J.; Ficker, O.; Weinzettl, V.; Causa, F.; COMPASS; FTU Teams

    2018-01-01

    The paper concerns measurements of runaway electrons (REs) which are generated during discharges in tokamaks. The control of REs is an important task in experimental studies within the ITER-physics program. The NCBJ team proposed to study REs by means of Cherenkov-type detectors several years ago. The Cherenkov radiation, induced by REs in appropriate radiators, makes it possible to identify fast electron beams and to determine their spatial- and temporal-characteristics. The results of recent experimental studies of REs, performed in two tokamaks - COMPASS in Prague and FTU in Frascati, are summarized and discussed in this paper. Examples of the electron-induced signals, as recorded at different experimental conditions and scenarios, are presented. Measurements performed with a three-channel Cherenkov-probe in COMPASS showed that the first fast electron peaks can be observed already during the current ramp-up phase. A strong dependence of RE-signals on the radial position of the Cherenkov probe was observed. The most distinct electron peaks were recorded during the plasma disruption. The Cherenkov signals confirmed the appearance of post-disruptive RE beams in circular-plasma discharges with massive Ar-puffing. During experiments at FTU a clear correlation between the Cherenkov detector signals and the rotation of magnetic islands was identified.

  13. Dechanneling function for relativistic axially channeled electrons

    International Nuclear Information System (INIS)

    Muralev, V.A.; Telegin, V.I.

    1981-01-01

    Behaviour of the x(t) dechanneling function depending on the depth is theoretically studied. Theoretical consideration of x(t) for axial channeled relativistic electrons in anisotropic medium results in two-dimensional kinetic equation with mixed derivatives of the parabolic type. The kinetic equation in the approximation of the continuous Lindchard model for relativistic axial channeled electrons is numerically solved. The depth dependence of the x(t) dechanneling function is obtained [ru

  14. A backward Monte Carlo method for efficient computation of runaway probabilities in runaway electron simulation

    Science.gov (United States)

    Zhang, Guannan; Del-Castillo-Negrete, Diego

    2017-10-01

    Kinetic descriptions of RE are usually based on the bounced-averaged Fokker-Planck model that determines the PDFs of RE. Despite of the simplification involved, the Fokker-Planck equation can rarely be solved analytically and direct numerical approaches (e.g., continuum and particle-based Monte Carlo (MC)) can be time consuming specially in the computation of asymptotic-type observable including the runaway probability, the slowing-down and runaway mean times, and the energy limit probability. Here we present a novel backward MC approach to these problems based on backward stochastic differential equations (BSDEs). The BSDE model can simultaneously describe the PDF of RE and the runaway probabilities by means of the well-known Feynman-Kac theory. The key ingredient of the backward MC algorithm is to place all the particles in a runaway state and simulate them backward from the terminal time to the initial time. As such, our approach can provide much faster convergence than the brute-force MC methods, which can significantly reduce the number of particles required to achieve a prescribed accuracy. Moreover, our algorithm can be parallelized as easy as the direct MC code, which paves the way for conducting large-scale RE simulation. This work is supported by DOE FES and ASCR under the Contract Numbers ERKJ320 and ERAT377.

  15. On the effect of electron's runaway in partially ionized hydrogen semiclassical nonideal plasma

    International Nuclear Information System (INIS)

    Turekhanova, K.M.

    2011-01-01

    Complete text of publication follows. The effect of runaway electrons occurs frequently in tokamak plasmas. The majority of experiments in tokamak research have been devoted to the study of confinement properties of runaway electrons. Runaway electrons are reason of various destroying untolarance in tokamak plasmas. At high plasma density, when the critical energy is comparable with the rest energy the multiplication of runaway electrons accelerate at the sacrifice of increase of plasma density. The plasma conductivity is determined by electrons with energy several times higher than the thermal one and does not practically depend on slower electrons distribution. It is important to analyze the probability of runaway electrons at investigation of physical properties of nonideal plasmas under external electric field and running numerical simulations of their. The present paper is devoted to the investigation of effect of runaway electrons in partially ionized hydrogen dense plasma using the effective potentials of particle's interaction. At the investigation of composition of plasma we used the Saha equation with corrections to nonideality (lowering of ionization potentials). The Saha equation was solved for obtaining of plasma ionization stages at the different number density and temperature. As well, when take into account quantum-mechanical diffraction and screening effects, whereas free path of electrons increases with increase of plasma coupling parameter. The condition for appearance of runaway electrons in semiclassical partially ionized plasma is more favorable in regime of dense plasma. In summary it means that the probability of runaway electron in dense plasma is more than the same in rarified plasma that is possibly connected with formation of some ordered structures in dense plasma.

  16. Study of runaway electron generation process during major disruptions in JET

    International Nuclear Information System (INIS)

    Plyusnin, V.V.; Riccardo, V.; Alper, B.; Kiptily, V.G.; Popovichev, S.; Helander, P.; Jaspers, R.; Mlynar, J.; Luna, E. de La; Andersson, F.

    2005-01-01

    The analysis of a large number of JET disruptions has provided further data on the trends of the disruption induced runaway process in large tokamaks. The role of primary runaway electrons generated at the thermal quench has been examined to assess their influence on secondary avalanching, which is recognized as a main source of large runaway currents created during disruptions. The tomographic reconstruction of the soft X-ray emission during the thermal quench has made possible the observation of the magnetic flux geometry evolution and the locating of the most probable zones for generation and confinement of the primary runaway electrons. Runaway currents have been found to increase with toroidal magnetic field and pre-disruption plasma current values. The average conversion efficiency is approximately 40-45% at a wide range of plasma currents. This agrees well with results of numerical simulations, which predict similar conversion rates at an assumed post-disruption plasma electron temperature of 10 eV. The experimental trends and numerical simulations show that runaway electrons might be an issue for ITER and therefore it remains prudent to develop mitigation methods, which suppress runaway generation. (author)

  17. Joule heating and runaway electron acceleration in a solar flare

    Science.gov (United States)

    Holman, Gordon D.; Kundu, Mukul R.; Kane, Sharad R.

    1989-01-01

    The hard and soft x ray and microwave emissions from a solar flare (May 14, 1980) were analyzed and interpreted in terms of Joule heating and runaway electron acceleration in one or more current sheets. It is found that all three emissions can be generated with sub-Dreicer electric fields. The soft x ray emitting plasma can only be heated by a single current sheet if the resistivity in the sheet is well above the classical, collisional resistivity of 10(exp 7) K, 10(exp 11)/cu cm plasma. If the hard x ray emission is from thermal electrons, anomalous resistivity or densities exceeding 3 x 10(exp 12)/cu cm are required. If the hard x ray emission is from nonthermal electrons, the emissions can be produced with classical resistivity in the current sheets if the heating rate is approximately 4 times greater than that deduced from the soft x ray data (with a density of 10(exp 10)/cu cm in the soft x ray emitting region), if there are at least 10(exp 4) current sheets, and if the plasma properties in the sheets are characteristic of the superhot plasma observed in some flares by Lin et al., and with Hinotori. Most of the released energy goes directly into bulk heating, rather than accelerated particles.

  18. Generación y dinámica de electrones runaway en plasmas tokamak

    OpenAIRE

    Fernández Gómez, Isabel

    2016-01-01

    La dinámica y generación de electrones runaway en plasmas tokamak constituye el tema central de esta tesis. En un tokamak, el fenómeno runaway es el resultado de la existencia de un campo eléctrico en dirección toroidal. Aquellos electrones cuya velocidad excede un cierto valor crítico se aceleran de forma continua, ya que la e ciencia de las colisiones para disipar la energía ganada en el campo disminuye con la velocidad (∼ ⁻¹) . Se tiene entonces lo que se conoce como un electrón runaway. ...

  19. Effects of discharge cleaning on the production of runaway electrons in TORTUS tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Cross, R C; Liu, J R; Giannone, L. (Sydney Univ. (Australia). School of Physics)

    1983-06-01

    Experimental results are presented on the production of runaway electrons as a function of wall cleanliness in the TORTUS tokamak. When the walls are clean, the production rate decreases as the filling pressure increases. When the walls are contaminated by oxygen, the production rate can increase when the filling pressure is increased, owing to the production of water vapour during tokamak discharges. These results resolve the differences reported in the literature on the production of runaways as a function of filling pressure. It is also observed that the runaway electron instability seen in other devices is suppressed when the walls are discharge-cleaned.

  20. Effects of discharge cleaning on the production of runaway electrons in TORTUS tokamak

    International Nuclear Information System (INIS)

    Cross, R.C.; Liu, J.R.; Giannone, L.

    1983-01-01

    Experimental results are presented on the production of runaway electrons as a function of wall cleanliness in the TORTUS tokamak. When the walls are clean, the production rate decreases as the filling pressure increases. When the walls are contaminated by oxygen, the production rate can increase when the filling pressure is increased, owing to the production of water vapour during tokamak discharges. These results resolve the differences reported in the literature on the production of runaways as a function of filling pressure. It is also observed that the runaway electron instability seen in other devices is suppressed when the walls are discharge-cleaned. (author)

  1. 2d axisymmetric "beam-bulk" modelling of the generation of runaway electrons by streamers.

    Science.gov (United States)

    Chanrion, Olivier; Bonaventura, Zdenek; Bourdon, Anne; Neubert, Torsten

    2017-04-01

    We present results from a 2d axisymmetric numerical model of streamers based on a "beam-bulk" approach which describes cold electrons with a fluid model and high energy electrons with a particle model. The interest is motivated by the generation of runaway electrons by streamers which may participate in the recently observed TGFs and which challenge the modelling. Runaway electrons are known to be generated from streamers when the electric field in its negative tip is of sufficient magnitude. After overtaking the streamer tip, runaways can affect the streamer propagation ahead and may produce high energy photons through the bremsstrahlung process. In conventional model of streamers, the evolution of the streamer discharge is mostly governed by cold electrons. By including runaway electrons, we model their production, their impact on the discharge propagation and can address their role in TGFs. Results of streamer propagation in leader electric field show that the runaway electrons accelerate the streamers, reduce the electric field in its tip and enlarge its radius by pre-ionizing the gas ahead. We observed that if we increase the electric field, the discharge is getting more diffuse, with a pattern driven by the increase in runaway induced ionisation.

  2. Parameters of an avalanche of runaway electrons in air under atmospheric pressure

    Science.gov (United States)

    Oreshkin, E. V.

    2018-01-01

    The features of runaway-electron avalanches developing in air under atmospheric pressures are investigated in the framework of a three-dimensional numerical simulation. The simulation results indicate that an avalanche of this type can be characterized, besides the time and length of its exponential growth, by the propagation velocity and by the average kinetic energy of the runaway electrons. It is shown that these parameters obey the similarity laws applied to gas discharges.

  3. Temporal and spatial evolution of runaway electrons at the instability moments in Damavand tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Pourshahab, B. [Department of Nuclear Engineering, Faculty of Advance Sciences and Technologies, University of Isfahan, P.O. Box 81747-73441, Isfahan (Iran, Islamic Republic of); Abdi, M. R. [Department of Physics, Faculty of Science, University of Isfahan, P.O. Box 81747-73441, Isfahan (Iran, Islamic Republic of); Sadighzadeh, A.; Rasouli, C. [Plasma Physics and Nuclear Fusion Research School, Nuclear Science and Technology Research Institute, AEOI, P.O. Box 14155-1339, Tehran (Iran, Islamic Republic of)

    2016-07-15

    The time and position behavior of runaway electrons at the Parail–Pogutse instability moments has been investigated using experimental observations in plasma current, loop voltage, the Hard X-ray (HXR) radiations, and 18 poloidal pickup coils signals received by data acquisition system simultaneously. The conditional average sampling (CAS) method was used to analyze the output data. Moreover, a filament current code was modified to study the runaway electrons beam movement in the event of instabilities. The results display a rapid drift of runaway beam toward the inner wall of the vacuum vessel and the collision with the wall components at the instability moments. The existence of the collisions in these experiments is evident in the HXR bursts which are considered as the main trigger for CAS Analysis. Also, the variation of HXR bursts with the toroidal magnetic field shows that the hard X-ray bursts drop with increase in the toroidal magnetic field and runaway electrons confinement quality.

  4. Run-away electrons and plasma pinching in a high-current diode

    International Nuclear Information System (INIS)

    Ivanenkov, G.V.

    1984-01-01

    The electrons run-away process in space-confined plasma with current is considered. It has been found that the effect of the proper magnetic field of a current leads to appearance, in add tion to the Dreicer mechanism, of other run-away mechanism in the process of radial oscillations of electrons accelerating near the axis. The appearance of run-away electrons from a thermal velocities region occurs in the course of collisions as well as radial drift. The thresholds of Dreicer run-away and drift are determined. The conditions of formation of Z-pinch current envelope and its collisionless compression by the ''snow plough'' type for the 10-100 ns of high-current accelerator pulse duration are elucidated

  5. Runaway electrons dynamics and confinement in TORE-SUPRA

    International Nuclear Information System (INIS)

    Chatelier, M.; Geraud, A.; Joyer, P.; Martin, G.; Rax, J.M.

    1989-01-01

    Ohmic discharges in TORE-SUPRA are sufficiently long (∼ 6 s) for runaway electrons (R.E.) to reach a steady energy state: their energy limit is determined by the balance between parallel electric field acceleration (20 MeV/V.s in TORE-SUPRA) and radiation losses due to the curvature of the trajectories. When R.E. energy is supposed to be only parallel, this provides estimate of order of 70 MeV (value usually called 'synchrotron limit') reached in less than 2 seconds. Experimental observations on TORE-SUPRA of photoneutron emission together with residual induced radioactivity in the first wall components tend to prove that the actual value is much lower than 70 MeV (i.e. 15-35 MeV). Earlier observations in ORMAK, PLT and TFR already showed R.E. energy a slightly less than expected from standard loop voltage acceleration calculations. Explanations given for this lack of energy (as skin-effect lowering the electric field during the ramp-up phase or balance between continuous creation and losses) seems not to hold on TORE-SUPRA and therefore another mechanism must be considered to explain the R.E. energy limitation. 4 refs., 2 figs

  6. Influence of the angular scattering of electrons on the runaway threshold in air

    Science.gov (United States)

    Chanrion, O.; Bonaventura, Z.; Bourdon, A.; Neubert, T.

    2016-04-01

    The runaway electron mechanism is of great importance for the understanding of the generation of x- and gamma rays in atmospheric discharges. In 1991, terrestrial gamma-ray flashes (TGFs) were discovered by the Compton Gamma-Ray Observatory. Those emissions are bremsstrahlung from high energy electrons that run away in electric fields associated with thunderstorms. In this paper, we discuss the runaway threshold definition with a particular interest in the influence of the angular scattering for electron energy close to the threshold. In order to understand the mechanism of runaway, we compare the outcome of different Fokker-Planck and Monte Carlo models with increasing complexity in the description of the scattering. The results show that the inclusion of the stochastic nature of collisions smooths the probability to run away around the threshold. Furthermore, we observe that a significant number of electrons diffuse out of the runaway regime when we take into account the diffusion in angle due to the scattering. Those results suggest using a runaway threshold energy based on the Fokker-Planck model assuming the angular equilibrium that is 1.6 to 1.8 times higher than the one proposed by [1, 2], depending on the magnitude of the ambient electric field. The threshold also is found to be 5 to 26 times higher than the one assuming forward scattering. We give a fitted formula for the threshold field valid over a large range of electric fields. Furthermore, we have shown that the assumption of forward scattering is not valid below 1 MeV where the runaway threshold usually is defined. These results are important for the thermal runaway and the runaway electron avalanche discharge mechanisms suggested to participate in the TGF generation.

  7. Runaway electron damage to the Tore Supra Phase III outboard pump limiter

    International Nuclear Information System (INIS)

    Nygren, R.; Lutz, T.; Walsh, D.; Martin, G.; Chatelier, M.; Loarer, T.; Guilhem, D.

    1996-01-01

    Operation of the Phase III outboard pump limiter (OPL) in Tore Supra in 1994 was terminated prematurely when runaway electrons during the current decay following a disruption pierced leading edge tube on the electron side and caused a water leak. The location, about 20 mm outside the last closed flux surface during normal operation, and the infrared (IR) images of the limiter indicate that the runaways moved in large outward steps, i.e. tens of millimeters, in one toroidal revolution. For plasma (runaway) currents in the range of 155 to 250 kA, the drift orbits open to the outside. Basic trajectory computations suggest that such motion is possible under the conditions present for this experiment. Activation measurements made on sections of the tube to indicate the area of local damage are presented here. An understanding of this event may provide important guidance regarding the potential damage from runaways in future tokamaks

  8. Relativistic electron precipitation in the auroral zone

    International Nuclear Information System (INIS)

    Simons, D.J.

    1975-01-01

    The energy spectra and pitch angle distributions of electrons in the energy range 50 keV to 2 MeV have been determined by a solid state electron energy spectrometer during the Relativistic Electron Precipitation (REP) event of 31 May 1972. The experiment was carried aboard a Nike-Cajun sounding rocket as the University of Maryland component of a joint American-Norwegian (NASA-NDRE) ionospheric investigation. The difficulty of determining the expected electron flux prior to the experiment required an instrument with a large dynamic range. The design and theoretical modeling of this instrument is described in great detail. The electron pitch angle distributions are determined from a knowledge of the rocket aspect and the direction in space of the Earth's magnetic field. The electron fluxes during the REP event were highly variable demonstrating correlated energy, flux and pitch angle pulsations with time periods less than one second. Increases in flux were accompanied by marked filling of the loss cone at lower energies (near 50 keV). Drawing upon the quasilinear equations of plasma wave-electron interactions, a theoretical model for the production of relativistic electrons is proposed. A self consistent set of fully relativistic equations for the evolution of the electron distribution function due to the interaction of the electrons with parallel propagating whistler waves is derived in the Appendix. An examination of these equations leads to the conclusion that at comparatively low background electron densities, the anomalous Doppler resonance leads to the acceleration of near relativistic particles. The results of a computer solution of the five coupled integrodifferential quasilinear equations confirms this conclusion

  9. Evaluation of runaway-electron effects on plasma-facing components for NET

    Science.gov (United States)

    Bolt, H.; Calén, H.

    1991-03-01

    Runaway electrons which are generated during disruptions can cause serious damage to plasma facing components in a next generation device like NET. A study was performed to quantify the response of NET plasma facing components to runaway-electron impact. For the determination of the energy deposition in the component materials Monte Carlo computations were performed. Since the subsurface metal structures can be strongly heated under runaway-electron impact from the computed results damage threshold values for the thermal excursions were derived. These damage thresholds are strongly dependent on the materials selection and the component design. For a carbonmolybdenum divertor with 10 and 20 mm carbon armour thickness and 1 degree electron incidence the damage thresholds are 100 MJ/m 2 and 220 MJ/m 2. The thresholds for a carbon-copper divertor under the same conditions are about 50% lower. On the first wall damage is anticipated for energy depositions above 180 MJ/m 2.

  10. Measurement of runaway electron energy distribution function during high-Z gas injection into runaway electron plateaus in DIII-Da)

    Energy Technology Data Exchange (ETDEWEB)

    Hollmann, E. M. [University of California—San Diego, 9500 Gilman Dr., La Jolla, California 92093, USA; Parks, P. B. [General Atomics, PO Box 85608, San Diego, California 92186, USA; Commaux, N. [Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, Tennessee 37831, USA; Eidietis, N. W. [General Atomics, PO Box 85608, San Diego, California 92186, USA; Moyer, R. A. [University of California—San Diego, 9500 Gilman Dr., La Jolla, California 92093, USA; Shiraki, D. [Oak Ridge National Laboratory, PO Box 2008, Oak Ridge, Tennessee 37831, USA; Austin, M. E. [Institute for Fusion Studies, University of Texas—Austin, 2100 San Jacinto Blvd, Austin, Texas 78712, USA; Lasnier, C. J. [Lawrence Livermore National Laboratory, 7000 East Ave, Livermore, California 94550, USA; Paz-Soldan, C. [General Atomics, PO Box 85608, San Diego, California 92186, USA; Rudakov, D. L. [University of California—San Diego, 9500 Gilman Dr., La Jolla, California 92093, USA

    2015-05-01

    The evolution of the runaway electron (RE) energy distribution function fεfε during massive gas injection into centered post-disruption runaway electron plateaus has been reconstructed. Overall, fεfε is found to be much more skewed toward low energy than predicted by avalanche theory. The reconstructions also indicate that the RE pitch angle θ is not uniform, but tends to be large at low energies and small θ ~0.1–0.2 at high energies. Overall power loss from the RE plateau appears to be dominated by collisions with background free and bound electrons, leading to line radiation. However, the drag on the plasma current appears to be dominated by collisions with impurity ions in most cases. Synchrotron emission appears not to be significant for overall RE energy dissipation but may be important for limiting the peak RE energy.

  11. Measurement of runaway electron energy distribution function during high-Z gas injection into runaway electron plateaus in DIII-D

    International Nuclear Information System (INIS)

    Hollmann, E. M.; Moyer, R. A.; Rudakov, D. L.; Parks, P. B.; Eidietis, N. W.; Paz-Soldan, C.; Commaux, N.; Shiraki, D.; Austin, M. E.; Lasnier, C. J.

    2015-01-01

    The evolution of the runaway electron (RE) energy distribution function f ε during massive gas injection into centered post-disruption runaway electron plateaus has been reconstructed. Overall, f ε is found to be much more skewed toward low energy than predicted by avalanche theory. The reconstructions also indicate that the RE pitch angle θ is not uniform, but tends to be large at low energies and small θ ∼ 0.1–0.2 at high energies. Overall power loss from the RE plateau appears to be dominated by collisions with background free and bound electrons, leading to line radiation. However, the drag on the plasma current appears to be dominated by collisions with impurity ions in most cases. Synchrotron emission appears not to be significant for overall RE energy dissipation but may be important for limiting the peak RE energy

  12. Numerical study of the generation of runaway electrons in a gas diode with a hot channel

    Energy Technology Data Exchange (ETDEWEB)

    Lisenkov, V. V., E-mail: lisenkov@iep.uran.ru [Institute of Electrophysics UrB RAS, 106 Amundsena St., Ekaterinburg 620012 (Russian Federation); Ural Federal University, 19 Mira St., Ekaterinburg 620002 (Russian Federation); Shklyaev, V. A., E-mail: shklyaev@to.hcei.tsc.ru [Institute of High Current Electronics SD RAS, 2/3 Akademichesky Avenue, 634055 Tomsk (Russian Federation); National Research Tomsk Polytechnic University, 30 Lenin Avenue, 634050 Tomsk (Russian Federation)

    2015-11-15

    A new method for increasing the efficiency of runaway electron beam generation in atmospheric pressure gas media has been suggested and theoretically proved. The method consists of creating a hot region (e.g., a spark channel or a laser plume) with a decreased numerical density of gas molecules (N) near the cathode. In this method, the ratio E/N (E—electric field strength) is increased by decreasing N instead of increasing E, as has been done in the past. The numerical model that is used allows the simultaneous calculation of the formation of a subnanosecond gas discharge and the generation of runaway electrons in gas media. The calculations have demonstrated the possibility of obtaining current pulses of runaway electrons with amplitudes of hundred of amperes and durations of more than 100 ps. The influence of the hot channel geometry on the parameters of the generated beam has been investigated.

  13. Relativistic theory of electron-impact ionization

    International Nuclear Information System (INIS)

    Rosenberg, Leonard

    2010-01-01

    A relativistic version of an earlier, non-relativistic, formulation of the theory of ionization of an atomic system by electron impact is presented. With a time-independent resolvent operator taken as the basis for the dynamics, a wave equation is derived for a system with open channels consisting of two positive-energy electrons in an external field generated by the residual ion. Virtual intermediate states can be accounted for by the effective Hamiltonian that appears in the wave equation and which in principle may be constructed perturbatively. The asymptotic form of the wavefunction, modified by the effects of the long-range Coulomb interactions of the two electrons in the external field, is derived. These electrons are constrained, by projection operators which appear naturally in the theory, to propagate in positive-energy states only. The long-range Coulomb effects take the form of phase factors similar to those that are found in the non-relativistic version of the theory. With the boundary conditions established, an integral identity for the ionization amplitude is derived, and used to set up a distorted-wave Born expansion for the transition amplitude involving Coulomb-modified propagating waves.

  14. On non-relativistic electron theory

    Energy Technology Data Exchange (ETDEWEB)

    Woolley, R G

    1975-01-01

    A discussion of non-relativistic electron theory, which makes use of the electromagnetic field potentials only as useful working variables in the intermediate stages, is presented. The separation of the (transverse) radiation field from the longitudinal electric field due to the sources is automatic, and as a result, this formalism is often more convenient than the usual Coulomb gauge theory used in molecular physics.

  15. L-shell ionization by relativistic electrons

    International Nuclear Information System (INIS)

    Johnston, P.N.; Spicer, B.M.; Helstroom, R.

    1980-01-01

    Measurements of the relative x-ray production cross-sections Lsub(α)/Lsub(l), Lsub(β)/Lsub(α) and Lsub (γ)/Lsub(α) by relativistic electrons for the heavy elements Gd, Tm, Ta, Au, Pb, Bi and Th have been carried out. The ratios Lsub(β)/Lsub(α) and Lsub(α)/Lsub (l), are compared with previous experimental and theoretical work

  16. Relativistic Electrons in Electric Discharges

    DEFF Research Database (Denmark)

    Cinar, Deniz

    at the time when also gigantic electric discharges were observed at 10-90 km altitude in the stratosphere and mesosphere, the so called “jets” and “sprites”, commonly referred to as “Transient Luminous Events” (TLEs). TGFs were _rst thought connected to TLEs, but later research has pointed to lightning......Thunderstorms generate bursts of X- and Gamma radiation. When observed from spacecraft, the bursts are referred to as “Terrestrial Gamma-ray Flashes” (TGFs). They are bremsstrahlung from energetic electrons accelerated in thunderstorm electric _elds. The TGFs were _rst observed in the 90ties...... discharges as the source. The “Atmosphere-Space Interactions Monitor” (ASIM) for the International Space Station in 2016, led by DTU Space, and the French microsatellite TARANIS, also with launch in 2016, will identify with certainty the source of TGFs. In preparation for the missions, the Ph.D. project has...

  17. Analyses of electron runaway in front of the negative streamer channel

    DEFF Research Database (Denmark)

    Babich, L. P.; Bochkov, E. I.; Kutsyk, I. M.

    2017-01-01

    X-and γ-ray emissions, observed in correlation with negative leaders of lightning and long sparks of high-voltage laboratory experiments, are conventionally connected with the bremsstrahlung of high-energy runaway electrons (REs). Here we extend a focusing mechanism, analyzed in our previous paper...

  18. Coulomb-Driven Relativistic Electron Beam Compression

    Science.gov (United States)

    Lu, Chao; Jiang, Tao; Liu, Shengguang; Wang, Rui; Zhao, Lingrong; Zhu, Pengfei; Xiang, Dao; Zhang, Jie

    2018-01-01

    Coulomb interaction between charged particles is a well-known phenomenon in many areas of research. In general, the Coulomb repulsion force broadens the pulse width of an electron bunch and limits the temporal resolution of many scientific facilities such as ultrafast electron diffraction and x-ray free-electron lasers. Here we demonstrate a scheme that actually makes use of the Coulomb force to compress a relativistic electron beam. Furthermore, we show that the Coulomb-driven bunch compression process does not introduce additional timing jitter, which is in sharp contrast to the conventional radio-frequency buncher technique. Our work not only leads to enhanced temporal resolution in electron-beam-based ultrafast instruments that may provide new opportunities in probing material systems far from equilibrium, but also opens a promising direction for advanced beam manipulation through self-field interactions.

  19. Coulomb-Driven Relativistic Electron Beam Compression.

    Science.gov (United States)

    Lu, Chao; Jiang, Tao; Liu, Shengguang; Wang, Rui; Zhao, Lingrong; Zhu, Pengfei; Xiang, Dao; Zhang, Jie

    2018-01-26

    Coulomb interaction between charged particles is a well-known phenomenon in many areas of research. In general, the Coulomb repulsion force broadens the pulse width of an electron bunch and limits the temporal resolution of many scientific facilities such as ultrafast electron diffraction and x-ray free-electron lasers. Here we demonstrate a scheme that actually makes use of the Coulomb force to compress a relativistic electron beam. Furthermore, we show that the Coulomb-driven bunch compression process does not introduce additional timing jitter, which is in sharp contrast to the conventional radio-frequency buncher technique. Our work not only leads to enhanced temporal resolution in electron-beam-based ultrafast instruments that may provide new opportunities in probing material systems far from equilibrium, but also opens a promising direction for advanced beam manipulation through self-field interactions.

  20. Electronic structure of FeTiSb using relativistic and scalar-relativistic approaches

    Energy Technology Data Exchange (ETDEWEB)

    Sahariya, Jagrati [Department of Physics, Manipal University Jaipur, Jaipur-303007, Rajasthan (India); Mund, H. S., E-mail: hmoond@gmail.com [Department of Physics, M. L. Sukhadia University, Udaipur-313001, Rajasthan (India)

    2016-05-06

    Electronic and magnetic properties of FeTiSb have been reported. The calculations are performed using spin polarized relativistic Korringa-Kohn-Rostoker scheme based on Green’s function method. Within SPR-KKR a fully relativistic and scalar-relativistic approaches have been used to investigate electronic structure of FeTiSb. Energy bands, total and partial density of states, atom specific magnetic moment along with total moment of FeTiSb alloys are presented.

  1. Foil focusing of relativistic electron beams

    Energy Technology Data Exchange (ETDEWEB)

    Ekdahl, Jr., Carl August [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-10-26

    When an intense relativistic electron beams (IREB) passes through a grounded metal foil, the transverse electric field due to the beam space charge is locally shorted out, and the beam is focused by the magnetic field of its current. The effect can be treated as focusing by a thin lens with first order aberration. Expressions for the focal length and aberration coefficient of the equivalent thin lens are developed in this note. These are then applied to practical examples representative of IREB research at Los Alamos National Laboratory.

  2. Ecton processes in the generation of pulsed runaway electron beams in a gas discharge

    Science.gov (United States)

    Mesyats, G. A.

    2017-09-01

    As was shown earlier for pulsed discharges that occur in electric fields rising with extremely high rates (1018 V/(cm s)) during the pulse rise time, the electron current in a vacuum discharge is lower than the current of runaway electrons in an atmospheric air discharge in a 1-cm-long gap. In this paper, this is explained by that the field emission current from cathode microprotrusions in a gas discharge is enhanced due to gas ionization. This hastens the initiation of explosive electron emission, which occurs within 10-11 s at a current density of up to 1010 A/cm2. Thereafter, a first-type cathode spot starts forming. The temperature of the cathode spot decreases due to heat conduction, and the explosive emission current ceases. Thus, the runaway electron current pulse is similar in nature to the ecton phenomenon in a vacuum discharge.

  3. Magnetic field effects on runaway electron energy deposition in plasma facing materials and components

    International Nuclear Information System (INIS)

    Niemer, K.A.; Gilligan, J.G.

    1992-01-01

    This paper reports magnetic field effects on runaway electron energy deposition in plasma facing materials and components is investigated using the Integrated TIGER Series. The Integrated TIGER Series is a set of time-independent coupled electron/photon Monte Carlo transport codes which perform photon and electron transport, with or without macroscopic electric and magnetic fields. A three-dimensional computational model of 100 MeV electrons incident on a graphite block was used to simulate runawayelectrons striking a plasma facing component at the edge of a tokamak. Results show that more energy from runaway electrons will be deposited in a material that is in the presence of a magnetic field than in a material that is in the presence of no field. For low angle incident runaway electrons in a strong magnetic field, the majority of the increased energy deposition is near the material surface with a higher energy density. Electrons which would have been reflected with no field, orbit the magnetic field lines and are redeposited in the material surface, resulting in a substantial increase in surface energy deposition. Based on previous studies, the higher energy deposition and energy density will result in higher temperatures which are expected to cause more damage to a plasma facing component

  4. Laser-pulsed relativistic electron gun

    International Nuclear Information System (INIS)

    Sherman, N.K.

    1986-01-01

    A relativistic (β ≅ 0.8) electron gun with good emittance and subnanosecond pulse duration which can be synchronized to picosecond laser pulses is being developed at NRC for use in studies of particle acceleration by lasers. Bursts of electron pulses exceeding 280 keV in energy have been extracted into air form a laser-driven vacuum photodiode. Trains of 5 ps pulses of ultraviolet UV light illuminate a magnesium cathode. Photoelectrons emitted from the cathode are accelerated in a graded electrostatic potential set up by a 360 kV Marx-generator. The UV pulses are obtained by doubling the frequency of a 606 nm dye laser modelocked at 160 MHz. Electron energies were measured by residual range in an echelon of Al foils. Total charge per burst was measured by picoammeter. Time structure of the bursts has been examined with plastic scintillator and a fast photomultiplier. Tests on a low voltage photodiode achieved a current density of 180 A/cm/sup 2/ from an Mg cathode, with quantum efficiency of 2.4 x 10/sup -6/ electron per UV photon. The brevity and intensity of the laser pulses cause the electric charge collected per pulse to increase linearly with bias voltage rather than according to the Langmuir-Child law. Gun emittance is about 150 mm-msr and beam brightness is about 1A/cm/sup 2/-sr. Estimated duration of individual electron pulses of a burst is about 400 ps with instantaneous current of about 0.1 mA. Energy spread within one pulse is expected to be about 15%. This gun has the potential to be a useful source of relativistic electrons for laser acceleration studies

  5. Controlling runaway vortex via externally injected high-frequency electromagnetic waves

    Science.gov (United States)

    Guo, Zehua; McDevitt, Chris; Tang, Xianzhu

    2017-10-01

    One way of mitigating runaway damage of the plasma-facing components in a tokamak fusion reactor is by limiting the runaway electron energy under a few MeV, while not necessarily reducing the runaway current appreciably. Here we describe a physics mechanism by which such momentum space engineering of the runaway distribution can be facilitated by externally injected high-frequency electromagnetic waves such as the whistler waves. The drastic impact that wave-induced scattering can have on the runaway energy distribution is fundamentally the result of its ability to control the runaway vortex in the momentum space. The runaway vortex, which is a local circulation of runaways in momentum space, is the outcome of the competition between Coulomb collisions, synchrotron radiation damping, and runaway acceleration by parallel electric field. By introducing a wave that resonantly interacts with runaways at a particular range of energy that is mildly relativistic, the enhanced scattering would reshape the vortex by cutting off the part that is highly relativistic. The efficiency of resonant scattering accentuates the requirement that the wave amplitude can be small so the power requirement from external wave injection is practical for the mitigation scheme.

  6. Plasma heating by a relativistic electron beam

    International Nuclear Information System (INIS)

    Janssen, G.C.A.M.

    1983-01-01

    This thesis is devoted to the interaction of a Relativistic Electron Beam (REB) with a plasma. The goal of the experiment described herein is to study in detail the mechanism of energy transfer from the beam to the plasma. The beam particles have an energy of 800 keV, a current of 6 kA, a diameter of 3 cm and an adjustable pulse length of 50-150 ns. This beam is injected into cold hydrogen and helium plasmas with densities ranging from 10 18 to 10 20 m -3 . First, the technical aspects of the experiment are described. Then measurements on the hf fields excited by the REB-plasma are presented (optical line profiles and spectra of beam electrons). The final section is devoted to plasma heating. (Auth.)

  7. Measurements of fluctuations in the flux of runaway electrons to the PLT limiter

    International Nuclear Information System (INIS)

    Barnes, C.W.; Strachan, J.D.

    1982-07-01

    Fluctuations in the flux of runaway electrons to the limiter have been measured during many PLT discharges. Oscillations at 60, 120, and 720 Hz are driven by variations in the vertical magnetic field which moves the plasma major radius. Fluctuations are seen in the range of 2 → 20 kHz due to MHD magnetic islands which extend to the plasma surface. A continuous spectrum of fluctuations is observed up to 200 kHz which correlates with drift-wave turbulence. The magnitude of the driven fluctuations can be used to measure transport properties of the runaway electrons. The amplitude of electron motion due to the MHD and drift-wave oscillations, and hence a measure of the radial size of the instability, can be determined as a function of frequency. The slope of the frequency power spectrum of the drift-wave-induced fluctuations steepens with increasing runaway electron drift orbit displacement during the current drop at the end of the discharge, and as the power in the MHD oscillations increases. A magnetic probe was used to confirm the presence of oscillating magnetic fields capable of perturbing the electron orbits

  8. Effect of magnetic fluctuations on the confinement and dynamics of runaway electrons in the HT-7 tokamak

    International Nuclear Information System (INIS)

    Zhou, R.J.; Hu, L.Q.; Li, E.Z.; Xu, M.; Zhong, G.Q.; Xu, L.Q.; Lin, S.Y.

    2013-01-01

    Experimental results in the HT-7 tokamak indicated significant losses of runaway electrons due to magnetic fluctuations, but the loss processes did not only rely on the fluctuation amplitude. Efficient radial runaway transport required that there were no more than small regions of the plasma volume in which there was very low transport of runaways. A radial runaway diffusion coefficient of D_r ≈ 10 m"2s"-"1 was derived for the loss processes, and diffusion coefficient near the resonant magnetic surfaces and shielding factor ϒ = 0.8 were deduced. Test particle equations were used to analyze the effect of magnetic fluctuations on runaway dynamics. It was found that the maximum energy that runaways can gain is very sensitive to the value of a_s. a_s = (0.28 - 0.33) was found for the loss processes in the experiment, and maximum runaway energy could be controlled in the range of E = (4 MeV - 6 MeV) in this case. Additionally, to control the maximum runaway energy below 5 MeV, the normalized electric field needed to be under a critical value D_a = 6.8, and the amplitude normalized magnetic fluctuations b tilde needed to be at least of the order of b tilde ≈ 3 x 10"-"5. (author)

  9. Conceptual design of the Radial Gamma Ray Spectrometers system for α particle and runaway electron measurements at ITER

    DEFF Research Database (Denmark)

    Nocente, Massimo; Tardocchi, Marco; Barnsley, Robin

    2017-01-01

    We here present the principles and main physics capabilities behind the design of the radial gamma ray spectrometers (RGRS) system for alpha particle and runaway electron measurements at ITER. The diagnostic benefits from recent advances in gamma-ray spectrometry for tokamak plasmas and combines...... the measurements sensitive to α particles at characteristic resonant energies and to possible anisotropies of their slowing down distribution function. An independent assessment of the neutron rate by gamma-ray emission is also feasible. In case of runaway electrons born in disruptions with a typical duration...... of 100ms, a time resolution of at least 10ms for runaway electron studies can be achieved depending on the scenario and down to a current of 40 kA by use of external gas injection. We find that the bremsstrahlung spectrum in the MeV range from confined runaways is sensitive to the electron velocity space...

  10. Anomalous resistivity due to low-frequency turbulence. [of collisionless plasma with limited acceleration of high velocity runaway electrons

    Science.gov (United States)

    Rowland, H. L.; Palmadesso, P. J.

    1983-01-01

    Large amplitude ion cyclotron waves have been observed on auroral field lines. In the presence of an electric field parallel to the ambient magnetic field these waves prevent the acceleration of the bulk of the plasma electrons leading to the formation of a runaway tail. It is shown that low-frequency turbulence can also limit the acceleration of high-velocity runaway electrons via pitch angle scattering at the anomalous Doppler resonance.

  11. Erosion simulation of first wall beryllium armour after ITER transient heat loads and runaway electrons action

    Energy Technology Data Exchange (ETDEWEB)

    Bazylev, B., E-mail: boris.bazylev@kit.edu [Karlsruhe Institute of Technology, IHM, P.O. Box 3640, D-76021 Karlsruhe (Germany); Igitkhanov, Yu.; Landman, I.; Pestchanyi, S. [Karlsruhe Institute of Technology, IHM, P.O. Box 3640, D-76021 Karlsruhe (Germany); Loarte, A. [ITER Organisation, Cadarache, 13108 Saint Paul Lez Durance Cedex (France)

    2011-10-01

    Beryllium is foreseen as plasma facing armour for the first wall (FW) in ITER in form of Be-clad blanket modules in macrobrush design with brush size about 8-10 cm. In ITER significant heat loads during transient events (TE) and runaway electrons impact are expected at the main chamber wall that may leads to the essential damage of the Be armour. The main mechanisms of metallic target damage remain surface melting, evaporation, and melt motion, which determine the life-time of the plasma facing components. The melt motion damages of Be macrobrush armour caused by the tangential friction force and the J x B forces are analyzed for bulk Be and different sizes of Be-brushes. The damage of the FW due to heat loads caused by runaway electrons is numerically simulated.

  12. Erosion simulation of first wall beryllium armour after ITER transient heat loads and runaway electrons action

    International Nuclear Information System (INIS)

    Bazylev, B.; Igitkhanov, Yu.; Landman, I.; Pestchanyi, S.; Loarte, A.

    2011-01-01

    Beryllium is foreseen as plasma facing armour for the first wall (FW) in ITER in form of Be-clad blanket modules in macrobrush design with brush size about 8-10 cm. In ITER significant heat loads during transient events (TE) and runaway electrons impact are expected at the main chamber wall that may leads to the essential damage of the Be armour. The main mechanisms of metallic target damage remain surface melting, evaporation, and melt motion, which determine the life-time of the plasma facing components. The melt motion damages of Be macrobrush armour caused by the tangential friction force and the J x B forces are analyzed for bulk Be and different sizes of Be-brushes. The damage of the FW due to heat loads caused by runaway electrons is numerically simulated.

  13. Study of runaway electrons using dosimetry of hard x-ray radiations in Damavand tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Rasouli, C.; Pourshahab, B.; Rasouli, H. [Plasma Physics and Nuclear Fusion Research School, Nuclear Science and Technology Research Institute, AEOI, PO Box 14155-1339, Tehran (Iran, Islamic Republic of); Hosseini Pooya, S. M.; Orouji, T. [Radiation Application Research School, Nuclear Science and Technology Research Institute, AEOI, PO Box 14155-1339, Tehran (Iran, Islamic Republic of)

    2014-05-15

    In this work several studies have been conducted on hard x-ray emissions of Damavand tokamak based on radiation dosimetry using the Thermoluminescence method. The goal was to understand interactions of runaway electrons with plasma particles, vessel wall, and plasma facing components. Total of 354 GR-200 (LiF:Mg,Cu,P) thermoluminescence dosimeter (TLD) crystals have been placed on 118 points – three TLDs per point – to map hard x-ray radiation doses on the exterior of the vacuum vessel. Results show two distinctive levels of x-ray radiations doses on the exterior of the vessel. The low-dose area on which measured dose is about 0.5 mSv/shot. In the low-dose area there is no particular component inside the vessel. On the contrary, on high-dose area of the vessel, x-ray radiations dose exceeds 30 mSv/shot. The high-dose area coincides with the position of limiters, magnetic probe ducts, and vacuum vessel intersections. Among the high-dose areas, the highest level of dose is measured in the position of the limiter, which could be due to its direct contact with the plasma column and with runaway electrons. Direct collisions of runaway electrons with the vessel wall and plasma facing components make a major contribution for production of hard x-ray photons in Damavand tokamak.

  14. Magnetized relativistic electron-ion plasma expansion

    Science.gov (United States)

    Benkhelifa, El-Amine; Djebli, Mourad

    2016-03-01

    The dynamics of relativistic laser-produced plasma expansion across a transverse magnetic field is investigated. Based on a one dimensional two-fluid model that includes pressure, enthalpy, and rest mass energy, the expansion is studied in the limit of λD (Debye length) ≤RL (Larmor radius) for magnetized electrons and ions. Numerical investigation conducted for a quasi-neutral plasma showed that the σ parameter describing the initial plasma magnetization, and the plasma β parameter, which is the ratio of kinetic to magnetic pressure are the key parameters governing the expansion dynamics. For σ ≪ 1, ion's front shows oscillations associated to the break-down of quasi-neutrality. This is due to the strong constraining effect and confinement of the magnetic field, which acts as a retarding medium slowing the plasma expansion.

  15. Intense relativistic electron beam: generation and propagation

    International Nuclear Information System (INIS)

    Mittal, K.C.; Mondal, J.

    2010-01-01

    A general review of relativistic electron beam extracted from explosive field emission diode has been presented here. The beam current in the diode gap taking into account cathode and anode plasma expansion velocity and excluding the self magnetic field effect is directly proportional to gap voltage V 3/2 and inversely proportional to the square of the effective diode gap (d-vt). In the limit of high current, self magnetic field focusing effect comes into play and results in a critical current at which pinching will take place. When the diode current exceeds the critical current, the electron flow is in the para-potential regime. Different diode geometries such as planner, coaxial, rod-pinched, reflex triode are discussed qualitatively. When the beam is injected into a vacuum drift tube the propagation of the beam is only possible in presence of a strong axial magnetic field which prevents the beam expansion in the radial direction. If the beam is injected in the drift tube filled with dense plasma, then the redistribution of the plasma electrons effectively neutralizes the beam space charge, resulting subsequent propagation of the beam along the drift tube. The beam propagation through neutral gas is similar to the plasma filled drift tube. In this case both the neutral gas pressure and the beam current regulate the transmission of the REB. (author)

  16. High performance gamma-ray spectrometer for runaway electron studies on the FT-2 tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Shevelev, A.E., E-mail: Shevelev@cycla.ioffe.ru [Ioffe Institute, Politekhnicheskaya 26, St. Petersburg 194021 (Russian Federation); Khilkevitch, E.M.; Lashkul, S.I.; Rozhdestvensky, V.V.; Altukhov, A.B.; Chugunov, I.N.; Doinikov, D.N.; Esipov, L.A.; Gin, D.B.; Iliasova, M.V.; Naidenov, V.O.; Nersesyan, N.S.; Polunovsky, I.A.; Sidorov, A.V. [Ioffe Institute, Politekhnicheskaya 26, St. Petersburg 194021 (Russian Federation); Kiptily, V.G. [CCFE, Culham Science Centre, Abingdon, Oxon X14 3DB (United Kingdom)

    2016-09-11

    A gamma-ray spectrometer based on LaBr{sub 3}(Ce) scintillator has been used for measurements of hard X-ray emission generated by runaway electrons in the FT-2 tokamak plasmas. Using of the fast LaBr{sub 3}(Ce) has allowed extending count rate range of the spectrometer by a factor of 10. A developed digital processing algorithm of the detector signal recorded with a digitizer sampling rate of 250 MHz has provided a pulse height analysis at count rates up to 10{sup 7} s{sup −1}. A spectrum deconvolution code DeGaSum has been applied for inferring the energy distribution of runaway electrons escaping from the plasma and interacting with materials of the FT-2 limiter in the vacuum chamber. The developed digital signal processing technique for LaBr{sub 3}(Ce) spectrometer has allowed studying the evolution of runaways energy distribution in the FT-2 plasma discharges with time resolution of 1–5 ms.

  17. Symmetric low-voltage powering system for relativistic electronic devices

    International Nuclear Information System (INIS)

    Agafonov, A.V.; Lebedev, A.N.; Krastelev, E.G.

    2005-01-01

    A special driver for double-sided powering of relativistic magnetrons and several methods of localized electron flow forming in the interaction region of relativistic magnetrons are proposed and discussed. Two experimental installations are presented and discussed. One of them is designed for laboratory research and demonstration experiments at a rather low voltage. The other one is a prototype of a full-scale installation for an experimental research at relativistic levels of voltages on the microwave generation in the new integrated system consisting of a relativistic magnetron and symmetrical induction driver

  18. WDM production with intense relativistic electrons

    Science.gov (United States)

    Coleman, Josh; Andrews, Heather; Klasky, Mark; Colgan, James; Burris-Mog, Trevor; Creveling, Dan; Miller, Craig; Welch, Dale; Berninger, Mike

    2016-10-01

    The production of warm dense matter (WDM) through collisional heating with intense relativistic electrons is underway. A 100-ns-long monochromatic bunch of electrons with energies of 19.1-19.8 MeV and currents of 0.2-1.7 kA is used to heat 100- μm-thick foils with Z measuring the equation of state with particle beams and benchmark numerical models. Measurements indicate the formation of a warm dense plasma near the end of the pulse, which is on the order of the beam size. These plasmas expand 5 mm in the first microsecond and slow down to 1018 cm-3. At these densities our plasma is collisionally dominated making it possible to spectrally model the density and temperature in LTE. Preliminary density gradient measurements will also be presented indicating the spatial extent of the solid density cutoff. This work was supported by the National Nuclear Se- curity Administration of the U.S. Department of Energy under Contract No. DE-AC52-06NA25396.

  19. The relativistic feedback discharge model of terrestrial gamma ray flashes

    Science.gov (United States)

    Dwyer, Joseph R.

    2012-02-01

    As thunderclouds charge, the large-scale fields may approach the relativistic feedback threshold, above which the production of relativistic runaway electron avalanches becomes self-sustaining through the generation of backward propagating runaway positrons and backscattered X-rays. Positive intracloud (IC) lightning may force the large-scale electric fields inside thunderclouds above the relativistic feedback threshold, causing the number of runaway electrons, and the resulting X-ray and gamma ray emission, to grow exponentially, producing very large fluxes of energetic radiation. As the flux of runaway electrons increases, ionization eventually causes the electric field to discharge, bringing the field below the relativistic feedback threshold again and reducing the flux of runaway electrons. These processes are investigated with a new model that includes the production, propagation, diffusion, and avalanche multiplication of runaway electrons; the production and propagation of X-rays and gamma rays; and the production, propagation, and annihilation of runaway positrons. In this model, referred to as the relativistic feedback discharge model, the large-scale electric fields are calculated self-consistently from the charge motion of the drifting low-energy electrons and ions, produced from the ionization of air by the runaway electrons, including two- and three-body attachment and recombination. Simulation results show that when relativistic feedback is considered, bright gamma ray flashes are a natural consequence of upward +IC lightning propagating in large-scale thundercloud fields. Furthermore, these flashes have the same time structures, including both single and multiple pulses, intensities, angular distributions, current moments, and energy spectra as terrestrial gamma ray flashes, and produce large current moments that should be observable in radio waves.

  20. Acceleration of runaway electrons and Joule heating in solar flares

    Science.gov (United States)

    Holman, G. D.

    1985-01-01

    The electric field acceleration of electrons out of a thermal plasma and the simultaneous Joule heating of the plasma are studied. Acceleration and heating timescales are derived and compared, and upper limits are obtained on the acceleration volume and the rate at which electrons can be accelerated. These upper limits, determined by the maximum magnetic field strength observed in flaring regions, place stringent restrictions upon the acceleration process. The role of the plasma resistivity in these processes is examined, and possible sources of anomalous resistivity are summarized. The implications of these results for the microwave and hard X-ray emission from solar flares are examined.

  1. Study of quantum spin correlations of relativistic electron pairs - Testing nonlocality of relativistic quantum mechanics

    International Nuclear Information System (INIS)

    Bodek, K.; Rozpędzik, D.; Zejma, J.; Caban, P.; Rembieliński, J.; Włodarczyk, M.; Ciborowski, J.; Enders, J.; Köhler, A.; Kozela, A.

    2013-01-01

    The Polish-German project QUEST aims at studying relativistic quantum spin correlations of the Einstein-Rosen-Podolsky-Bohm type, through measurement of the correlation function and the corresponding probabilities for relativistic electron pairs. The results will be compared to theoretical predictions obtained by us within the framework of relativistic quantum mechanics, based on assumptions regarding the form of the relativistic spin operator. Agreement or divergence will be interpreted in the context of non-uniqueness of the relativistic spin operator in quantum mechanics as well as dependence of the correlation function on the choice of observables representing the spin. Pairs of correlated electrons will originate from the Mo/ller scattering of polarized 15 MeV electrons provided by the superconducting Darmstadt electron linear accelerator S-DALINAC, TU Darmstadt, incident on a Be target. Spin projections will be determined using the Mott polarimetry technique. Measurements (starting 2013) are planned for longitudinal and transverse beam polarizations and different orientations of the beam polarization vector w.r.t. the Mo/ller scattering plane. This is the first project to study relativistic spin correlations for particles with mass

  2. Relativistic effects in elastic scattering of electrons in TEM

    International Nuclear Information System (INIS)

    Rother, Axel; Scheerschmidt, Kurt

    2009-01-01

    Transmission electron microscopy typically works with highly accelerated thus relativistic electrons. Consequently the scattering process is described within a relativistic formalism. In the following, we will examine three different relativistic formalisms for elastic electron scattering: Dirac, Klein-Gordon and approximated Klein-Gordon, the standard approach. This corresponds to a different consideration of spin effects and a different coupling to electromagnetic potentials. A detailed comparison is conducted by means of explicit numerical calculations. For this purpose two different formalisms have been applied to the approaches above: a numerical integration with predefined boundary conditions and the multislice algorithm, a standard procedure for such simulations. The results show a negligibly small difference between the different relativistic equations in the vicinity of electromagnetic potentials, prevailing in the electron microscope. The differences between the two numeric approaches are found to be small for small-angle scattering but eventually grow large for large-angle scattering, recorded for instance in high-angle annular dark field.

  3. Relativistic degenerate electron plasma in an intense magnetic field

    International Nuclear Information System (INIS)

    Delsante, A.E.; Frankel, N.E.

    1978-01-01

    The dielectric response function for a dense, ultra-degenerate relativistic electron plasma in an intense uniform magnetic field is presented. Dispersion relations for plasma oscillations parallel and perpendicular to the magnetic field are obtained

  4. Conceptual design of the radial gamma ray spectrometers system for α particle and runaway electron measurements at ITER

    Science.gov (United States)

    Nocente, M.; Tardocchi, M.; Barnsley, R.; Bertalot, L.; Brichard, B.; Croci, G.; Brolatti, G.; Di Pace, L.; Fernandes, A.; Giacomelli, L.; Lengar, I.; Moszynski, M.; Krasilnikov, V.; Muraro, A.; Pereira, R. C.; Perelli Cippo, E.; Rigamonti, D.; Rebai, M.; Rzadkiewicz, J.; Salewski, M.; Santosh, P.; Sousa, J.; Zychor, I.; Gorini, G.

    2017-07-01

    We here present the principles and main physics capabilities behind the design of the radial gamma ray spectrometers (RGRS) system for alpha particle and runaway electron measurements at ITER. The diagnostic benefits from recent advances in gamma-ray spectrometry for tokamak plasmas and combines space and high energy resolution in a single device. The RGRS system as designed can provide information on α ~ particles on a time scale of 1/10 of the slowing down time for the ITER 500 MW full power DT scenario. Spectral observations of the 3.21 and 4.44 MeV peaks from the 9\\text{Be}≤ft(α,nγ \\right){{}12}\\text{C} reaction make the measurements sensitive to α ~ particles at characteristic resonant energies and to possible anisotropies of their slowing down distribution function. An independent assessment of the neutron rate by gamma-ray emission is also feasible. In case of runaway electrons born in disruptions with a typical duration of 100 ms, a time resolution of at least 10 ms for runaway electron studies can be achieved depending on the scenario and down to a current of 40 kA by use of external gas injection. We find that the bremsstrahlung spectrum in the MeV range from confined runaways is sensitive to the electron velocity space up to E≈ 30 -40 MeV, which allows for measurements of the energy distribution of the runaway electrons at ITER.

  5. Thermal runaway of metal nano-tips during intense electron emission

    Science.gov (United States)

    Kyritsakis, A.; Veske, M.; Eimre, K.; Zadin, V.; Djurabekova, F.

    2018-06-01

    When an electron emitting tip is subjected to very high electric fields, plasma forms even under ultra high vacuum conditions. This phenomenon, known as vacuum arc, causes catastrophic surface modifications and constitutes a major limiting factor not only for modern electron sources, but also for many large-scale applications such as particle accelerators, fusion reactors etc. Although vacuum arcs have been studied thoroughly, the physical mechanisms that lead from intense electron emission to plasma ignition are still unclear. In this article, we give insights to the atomic scale processes taking place in metal nanotips under intense field emission conditions. We use multi-scale atomistic simulations that concurrently include field-induced forces, electron emission with finite-size and space-charge effects, Nottingham and Joule heating. We find that when a sufficiently high electric field is applied to the tip, the emission-generated heat partially melts it and the field-induced force elongates and sharpens it. This initiates a positive feedback thermal runaway process, which eventually causes evaporation of large fractions of the tip. The reported mechanism can explain the origin of neutral atoms necessary to initiate plasma, a missing key process required to explain the ignition of a vacuum arc. Our simulations provide a quantitative description of in the conditions leading to runaway, which shall be valuable for both field emission applications and vacuum arc studies.

  6. Losses of runaway electrons in MHD-active plasmas of the COMPASS tokamak.

    Czech Academy of Sciences Publication Activity Database

    Ficker, Ondřej; Mlynář, Jan; Vlainic, Milos; Čeřovský, Jaroslav; Urban, Jakub; Vondráček, Petr; Weinzettl, Vladimír; Macúšová, Eva; Decker, J.; Gospodarczyk, M.; Martin, P.; Nardon, E.; Papp, G.; Plyusnin, V.V.; Reux, C.; Saint-Laurent, F.; Sommariva, C.; Cavalier, Jordan; Havlíček, Josef; Havránek, Aleš; Hronová-Bilyková, Olena; Imríšek, Martin; Markovič, Tomáš; Varju, Jozef; Papřok, Richard; Pánek, Radomír; Hron, Martin

    2017-01-01

    Roč. 57, č. 7 (2017), č. článku 076002. ISSN 0029-5515 R&D Projects: GA MŠk LG14002; GA MŠk(CZ) LM2015045; GA MŠk(CZ) 8D15001 EU Projects: European Commission(XE) 633053 - EUROfusion Institutional support: RVO:61389021 Keywords : tokamaks * runaway electrons * MHD instabilities * disruptions Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 3.307, year: 2016

  7. Focusing of relativistic electron bunch, moving in cylindrical plasma waveguide

    International Nuclear Information System (INIS)

    Amatuni, A.Ts.; Ehlbakyan, S.S.; Sekhpossyan, E.V.

    1994-01-01

    The problem on the focusing of electron bunches moving with the relativistic velocity along the axis of cylindrical overdense plasma waveguide with the conducting internal surface is considered. The existence of periodic and nonperiodic components of the fields, generated in the plasma is shown. The conditions of electron bunch self-focusing by transverse electrical field and azimuthal magnetic field are derived. The possibility of the acceleration and focusing of electron or positron bunches by driving electron bunch wake field is discussed. The conditions, when the bunch in plasma waveguide moves without wake fields generating are obtained, which could be of the interest for the transport of relativistic electron (positron) bunches. 5 refs

  8. Effective regimes of runaway electron beam generation in helium, hydrogen, and nitrogen

    Science.gov (United States)

    Tarasenko, V. F.; Baksht, E. Kh.; Burachenko, A. G.; Lomaev, M. I.; Sorokin, D. A.; Shut'ko, Yu. V.

    2010-04-01

    Runaway electron beam parameters and current-voltage characteristics of discharge in helium, hydrogen, and nitrogen at pressures in the range of several Torr to several hundred Torr have been studied. It is found that the maximum amplitudes of supershort avalanche electron beams (SAEBs) with a pulse full width at half maximum (FWHM) of ˜100 ps are achieved in helium, hydrogen, and nitrogen at a pressure of ˜60, ˜30, and ˜10 Torr, respectively. It is shown that, as the gas pressure is increased in the indicated range, the breakdown voltage of the gas-filled gap decreases, which leads to a decrease in the SAEB current amplitude. At pressures of helium within 20-60 Torr, hydrogen within 10-30 Torr, and nitrogen within 3-10 Torr, the regime of the runaway electron beam generation changes and, by varying the pressure in the gas-filled diode in the indicated intervals, it is possible to smoothly control the current pulse duration (FWHM) from ˜100 to ˜500 ps, while the beam current amplitude increases by a factor of 1.5-3.

  9. Relativistic current sheets in electron-positron plasmas

    International Nuclear Information System (INIS)

    Zenitani, S.

    2008-01-01

    The current sheet structure with magnetic field reversal is one of the fundamental structure in space and astrophysical plasmas. It draws recent attention in high-energy astrophysical settings, where relativistic electron-positron plasmas are considered. In this talk we will review the recent progress of the physical processes in the relativistic current sheet. The kinetic stability of a single current sheet, the nonlinear behavior of these instabilities, and recent challenges on the multi current sheet systems are introduced. We will also introduce some problems of magnetic reconnection in these relativistic environments. (author)

  10. Stopping power of K electrons at extreme relativistic energies

    International Nuclear Information System (INIS)

    Leung, P.T.; Rustgi, M.L.

    1983-01-01

    The recent work of Anholt on K-vacancy production by relativistic projectiles has been applied to calculate the stopping power of the K electrons. The results show that for protons of energy approx.10 3 GeV and heavy target elements, the relativistic contributions to the stopping power amount to several times the resuls due to the longitudinal terms obtained from Walske's work

  11. Electronic structure of molecules using relativistic effective core potentials

    International Nuclear Information System (INIS)

    Hay, P.J.

    1983-01-01

    In this review an approach is outlined for studying molecules containing heavy atoms with the use of relativistic effective core potentials (RECP's). These potentials play the dual roles of (1) replacing the chemically-inert core electrons and (2) incorporating the mass velocity and Darwin term into a one-electron effective potential. This reduces the problem to a valence-electron problem and avoids computation of additional matrix elements involving relativistic operators. The spin-orbit effects are subsequently included using the molecular orbitals derived from the RECP calculation as a basis

  12. Study of runaway electrons using the conditional average sampling method in the Damavand tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Pourshahab, B., E-mail: bpourshahab@gmail.com [University of Isfahan, Department of Nuclear Engineering, Faculty of Advance Sciences and Technologies (Iran, Islamic Republic of); Sadighzadeh, A. [Nuclear Science and Technology Research Institute, Plasma Physics and Nuclear Fusion Research School (Iran, Islamic Republic of); Abdi, M. R., E-mail: r.abdi@phys.ui.ac.ir [University of Isfahan, Department of Physics, Faculty of Science (Iran, Islamic Republic of); Rasouli, C. [Nuclear Science and Technology Research Institute, Plasma Physics and Nuclear Fusion Research School (Iran, Islamic Republic of)

    2017-03-15

    Some experiments for studying the runaway electron (RE) effects have been performed using the poloidal magnetic probes system installed around the plasma column in the Damavand tokamak. In these experiments, the so-called runaway-dominated discharges were considered in which the main part of the plasma current is carried by REs. The induced magnetic effects on the poloidal pickup coils signals are observed simultaneously with the Parail–Pogutse instability moments for REs and hard X-ray bursts. The output signals of all diagnostic systems enter the data acquisition system with 2 Msample/(s channel) sampling rate. The temporal evolution of the diagnostic signals is analyzed by the conditional average sampling (CAS) technique. The CASed profiles indicate RE collisions with the high-field-side plasma facing components at the instability moments. The investigation has been carried out for two discharge modes—low-toroidal-field (LTF) and high-toroidal-field (HTF) ones—related to both up and down limits of the toroidal magnetic field in the Damavand tokamak and their comparison has shown that the RE confinement is better in HTF discharges.

  13. Runaway electron studies with hard x-ray and microwave diagnostics in the FT-2 lower hybrid current drive discharges

    Science.gov (United States)

    Shevelev, A. E.; Khilkevitch, E. M.; Lashkul, S. I.; Rozhdestvensky, V. V.; Pandya, S. P.; Plyusnin, V. V.; Altukhov, A. B.; Kouprienko, D. V.; Chugunov, I. N.; Doinikov, D. N.; Esipov, L. A.; Gin, D. B.; Iliasova, M. V.; Naidenov, V. O.; Polunovsky, I. A.; Sidorov, A. V.; Kiptily, V. G.

    2018-01-01

    Studies of the super-thermal and runaway electron behavior in ohmic and lower hybrid current drive FT-2 tokamak plasmas have been carried out using information obtained from measurements of hard x-ray spectra and non-thermal microwave radiation intensity at the frequency of 10 GHz and in the range of (53 ÷ 78) GHz. A gamma-ray spectrometer based on a scintillation detector with a LaBr3(Ce) crystal was used, which provides measurements at counting rates up to 107 s-1. Reconstruction of the energy distribution of RE interacting with the poloidal limiter of the tokamak chamber was made with application of the DeGaSum code. Super-thermal electrons accelerated up to 2 MeV by the LH waves at the high-frequency pumping of the plasma with low density ≤ft ~ 2  ×  1013 cm-3 and then up to 7 MeV by vortex electric field have been found. Experimental analysis of the runaway electron beam generation and evolution of their energy distribution in the FT-2 plasmas is presented in the article and compared with the numerical calculation of the maximum energy gained by runaway electrons for given plasma parameters. In addition, possible mechanisms for limiting the maximum energy gained by the runaway electrons are also calculated and described for a FT-2 plasma discharge.

  14. Present status of the theoretical relativistic plasma SHF electronics

    International Nuclear Information System (INIS)

    Kuzelev, M.V.; Rukhadze, A.A.

    2000-01-01

    Paper presents a review of theoretical investigations into powerful sources of SHF waves grounded on the forced emission of relativistic electron beams in plasma wave guides and resonator. Emission sources operating under amplification of a certain inlet signal and under generation mode were studied. Two mechanisms of forced emission: resonance Cherenkov radiation of relativistic electron beams in plasma and nonresonance Pierce emission resulting from evolution of high-frequency Pierce instability, were studied. Paper discusses theoretical problems only, all evaluations and calculations are made for the parameters of the exact experiments, the theoretical results are compared with the available experimental data. Factors affecting formation of spectrum of waves excited by relativistic electron beam in plasma systems are discussed [ru

  15. Acceleration and loss of relativistic electrons during small geomagnetic storms.

    Science.gov (United States)

    Anderson, B R; Millan, R M; Reeves, G D; Friedel, R H W

    2015-12-16

    Past studies of radiation belt relativistic electrons have favored active storm time periods, while the effects of small geomagnetic storms ( D s t  > -50 nT) have not been statistically characterized. In this timely study, given the current weak solar cycle, we identify 342 small storms from 1989 through 2000 and quantify the corresponding change in relativistic electron flux at geosynchronous orbit. Surprisingly, small storms can be equally as effective as large storms at enhancing and depleting fluxes. Slight differences exist, as small storms are 10% less likely to result in flux enhancement and 10% more likely to result in flux depletion than large storms. Nevertheless, it is clear that neither acceleration nor loss mechanisms scale with storm drivers as would be expected. Small geomagnetic storms play a significant role in radiation belt relativistic electron dynamics and provide opportunities to gain new insights into the complex balance of acceleration and loss processes.

  16. Correlation function and electronic spectral line broadening in relativistic plasmas

    Directory of Open Access Journals (Sweden)

    Douis S.

    2013-01-01

    Full Text Available The electrons dynamics and the time autocorrelation function Cee(t for the total electric microfield of the electrons on positive charge impurity embedded in a plasma are considered when the relativistic dynamic of the electrons is taken into account. We have, at first, built the effective potential governing the electrons dynamics. This potential obeys a nonlinear integral equation that we have solved numerically. Regarding the electron broadening of the line in plasma, we have found that when the plasma parameters change, the amplitude of the collision operator changes in the same way as the time integral of Cee(t. The electron-impurity interaction is taken at first time as screened Deutsh interaction and at the second time as Kelbg interaction. Comparisons of all interesting quantities are made with respect to the previous interactions as well as between classical and relativistic dynamics of electrons.

  17. Wave functions for a relativistic electron in superstrong magnetic fields

    International Nuclear Information System (INIS)

    Dumitrescu, Gh.

    2003-01-01

    In the past decade few authors attempted to search interesting features of the radiation of a specific neutron star, the magnetar. In this paper we investigate some features of the motion of an electron in a strong magnetic field as it occurs in a magnetar atmosphere. We have applied the conditions of the super relativistic electrons in super-strong magnetic fields proposed by Gonthier et al. to express two specific spin operators and their eigenfunctions. We have done this in order to investigate into a further paper an estimation of the cross section in Compton process in strong and superstrong magnetic fields in relativistic regime. (author)

  18. Losses of runaway electrons in MHD-active plasmas of the COMPASS tokamak

    Science.gov (United States)

    Ficker, O.; Mlynar, J.; Vlainic, M.; Cerovsky, J.; Urban, J.; Vondracek, P.; Weinzettl, V.; Macusova, E.; Decker, J.; Gospodarczyk, M.; Martin, P.; Nardon, E.; Papp, G.; Plyusnin, V. V.; Reux, C.; Saint-Laurent, F.; Sommariva, C.; Cavalier, J.; Havlicek, J.; Havranek, A.; Hronova, O.; Imrisek, M.; Markovic, T.; Varju, J.; Paprok, R.; Panek, R.; Hron, M.; The COMPASS Team

    2017-07-01

    The significant role of magnetic perturbations in mitigation and losses of runaway electrons (REs) was documented in dedicated experimental studies of RE at the COMPASS tokamak. REs in COMPASS are produced both in low density quiescent discharges and in disruptions triggered by massive gas injection (MGI). The role of the RE seed produced in the beginning of the discharge on the subsequent RE population proved significant. Modulation of the RE losses by MHD instabilities was observed at several characteristic frequencies, as well as by magnetic field oscillations related to power supplies. Magnetic islands seem to suppress the losses as the HXR signal is low and coherent with the island rotation frequency. Moreover, periods of increased losses of REs observed in the current quench (CQ) and early RE beam plateau phase of the MGI disruptions seem to be linked to the bursts of magnetic perturbation, and to the observation of filaments in the fast visible camera images.

  19. Growth and decay of runaway electrons above the critical electric field under quiescent conditions

    International Nuclear Information System (INIS)

    Paz-Soldan, C.; Eidietis, N. W.; Wesley, J. C.; Granetz, R.; Hollmann, E. M.; Moyer, R. A.; Zhang, J.; Crocker, N. A.; Austin, M. E.; Wingen, A.; Zhu, Y.

    2014-01-01

    Extremely low density operation free of error field penetration supports the excitation of trace-level quiescent runaway electron (RE) populations during the flat-top of DIII-D Ohmic discharges. Operation in the quiescent regime allows accurate measurement of all key parameters important to RE excitation, including the internal broadband magnetic fluctuation level. RE onset is characterized and found to be consistent with primary (Dreicer) generation rates. Impurity-free collisional suppression of the RE population is investigated by stepping the late-time main-ion density, until RE decay is observed. The transition from growth to decay is found to occur 3–5 times above the theoretical critical electric field for avalanche growth and is thus indicative of anomalous RE loss. This suggests that suppression of tokamak RE avalanches can be achieved at lower density than previously expected, though extrapolation requires predictive understanding of the RE loss mechanism and magnitude

  20. Luminescence of Ga2O3 Crystals Excited with a Runaway Electron Beam

    Science.gov (United States)

    Burachenko, A. G.; Beloplotov, D. V.; Prudaev, I. A.; Sorokin, D. A.; Tarasenko, V. F.; Tolbanov, O. P.

    2017-12-01

    The spectra and amplitude-time characteristics of the radiation of studied Sn and Fe-doped Ga2O3 crystals excited with a runaway electron beam and an excilamp with a wavelength of 222 nm were investigated. The main contribution to the luminescence of samples in the region of 280-900 nm under excitation with a beam was shown to be made by cathodoluminescence. In the Fe-doped crystal, a new cathodeand photoluminescence band was detected within a wavelength range of 650-850 nm. In the Sn-doped crystal, Vavilov-Cherenkov radiation was detected in the region of 280-300 nm using a monochromator and a photomultiplier.

  1. Characteristics of four-channel Cherenkov-type detector for measurements of runaway electrons in the ISTTOK tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Plyusnin, V. V.; Duarte, P.; Fernandes, H.; Silva, C. [Instituto de Plasmas e FuSao Nuclear - Laboratorio Associado, Association Euratom/IST, Instituto Superior Tecnico, Av. Rovisco Pais, 1049-001 Lisboa (Portugal); Jakubowski, L.; Zebrowski, J.; Malinowski, K.; Rabinski, M.; Sadowski, M. J. [The Andrzej Soltan Institute for Nuclear Studies (IPJ), 05-400 Otwock-Swierk (Poland)

    2010-10-15

    A diagnostics capable of characterizing the runaway and superthermal electrons has been developing on the ISTTOK tokamak. In previous paper, a use of single-channel Cherenkov-type detector with titanium filter for runaway electron studies in ISTTOK was reported. To measure fast electron populations with different energies, a prototype of a four-channel detector with molybdenum filters was designed. Test-stand studies of filters with different thicknesses (1, 3, 7, 10, 20, 50, and 100 {mu}m) have shown that they should allow the detection of electrons with energies higher than 69, 75, 87, 95, 120, 181, and 260 keV, respectively. First results of measurements with the four-channel detector revealed the possibility to measure reliably different fast electrons populations simultaneously.

  2. Electronic structure of molecules using relativistic effective core potentials

    International Nuclear Information System (INIS)

    Hay, P.J.

    1981-01-01

    Starting with one-component Cowan-Griffin relativistic Hartree-Fock orbitals, which successfully incorporate the mass-velocity and Darwin terms present in more complicated wavefunctions such as Dirac-Hartree-Fock, one can derive relativistic effective core potentials (RECP's) to carry out molecular calculations. These potentials implicitly include the dominant relativistic terms for molecules while allowing one to use the traditional quantum chemical techniques for studying the electronic structure of molecules. The effects of spin-orbit coupling can then be included using orbitals from such calculations using an effective 1-electron, 1-center spin-orbit operator. Applications to molecular systems involving heavy atoms, show good agreement with available spectroscopic data on molecular geometries and excitation energies

  3. Laser vacuum acceleration of a relativistic electron bunch

    Energy Technology Data Exchange (ETDEWEB)

    Glazyrin, I V; Karpeev, A V; Kotova, O G; Nazarov, K S [E.I. Zababakhin All-Russian Scientific-Research Institute of Technical Physics, Russian Federal Nuclear Centre, Snezhinsk, Chelyabinsk region (Russian Federation); Bychenkov, V Yu [P N Lebedev Physics Institute, Russian Academy of Sciences, Moscow (Russian Federation)

    2015-06-30

    With regard to the problem of laser acceleration of a relativistic electron bunch we present a scheme of its vacuum acceleration directly by a relativistic intensity laser pulse. The energy of the electron bunch injected into the laser pulse leading edge increases during its coaxial movement to a thin, pulse-reflecting target. The laser-accelerated electrons continue to move free forward, passing through the target. The study of this acceleration scheme in the three-dimensional geometry is verified in a numerical simulation by the particle-in-cell method, which showed that the energy of a part of the electrons can increase significantly compared to the initial one. Restrictions are discussed, which impose limiting values of energy and total charge of accelerated electrons. (superstrong light fields)

  4. Electromagnetic surface waves at the interface of a relativistic electron beam with vacuum

    International Nuclear Information System (INIS)

    Shoucri, M.M.; Gagne, R.R.J.

    1977-01-01

    The dispersion relation for electromagnetic surface waves propagating at the interface between a relativistic electron beam and vacuum is derived. The excitation of surface modes in a plasma at rest by a relativistic electron beam is discussed

  5. A relativistic solitary wave in electron positron plasma

    International Nuclear Information System (INIS)

    Berezhiani, V.I.; Skarka, V.; Mahajan, S.

    1993-09-01

    The relativistic solitary wave propagation is studied in cold electron-positron plasma embedded in an external arbitrary strong magnetic field. The exact, analytical soliton-like solution corresponding to a localized, purely electromagnetic pulse with arbitrary big amplitude is found. (author). 7 refs, 1 fig

  6. Decontamination of drug vegetative raw material by relativistic electron beam

    International Nuclear Information System (INIS)

    Gorbanyuk, A.G.; Dikiy, I.L.; Yegorov, A.M.; Linnik, A.F.; Uskov, V.V.

    2004-01-01

    The new technology of decontamination of drug vegetative raw material and medical products is proposed. Advantages of use of relativistic beams in a range of electron energies from 0.5 MeV to 5 MeV for these purposes are shown in comparison with X-radiation of energy from 80 keV to 1 MeV

  7. Control of runaway electron secondary generation by changing Z(eff)

    NARCIS (Netherlands)

    Pankratov, I. M.; R. Jaspers,; Finken, K.H.; Entrop, I.; Mank, G.

    1998-01-01

    The effect of Z(eff) on the runaway generation process by close collisions has been studied experimentally in the TEXTOR-94 tokamak in ohmic low density discharges. It is shown that the effective avalanching time increases with increasing Z(eff). This opens the possibility of controlling the runaway

  8. Physics of the interaction between runaway electrons and the background plasma of the current quench in tokamak disruptions

    Science.gov (United States)

    Reux, Cedric

    2017-10-01

    Runaway electrons are created during disruptions of tokamak plasmas. They can be accelerated in the form of a multi-MA beam at energies up to several 10's of MeV. Prevention or suppression of runaway electrons during disruptions will be essential to ensure a reliable operation of future tokamaks such as ITER. Recent experiments showed that the suppression of an already accelerated beam with massive gas injection was unsuccessful at JET, conversely to smaller tokamaks. This was attributed to a dense, cold background plasma (up to several 1020 m-3 accompanying the runaway beam. The present contribution reports on the latest experimental results obtained at JET showing that some mitigation efficiency can be restored by changing the features of the background plasma. The density, temperature, position of the plasma and the energy of runaways were characterized using a combined analysis of interferometry, soft X-rays, bolometry, magnetics and hard X-rays. It showed that lower density background plasmas were obtained using smaller amounts of gas to trigger the disruption, leading to an improved penetration of the mitigation gas. Based on the observations, a physical model of the creation of the background plasma and its subsequent evolution is proposed. The plasma characteristics during later stages of the disruption are indeed dependent on the way it was initially created. The sustainment of the plasma during the runaway beam phase is then addressed by making a power balance between ohmic heating, power transfer from runaway electrons, radiation and atomic processes. Finally, a model of the interaction of the plasma with the mitigation gas is proposed to explain why massive gas injection of runaway beams works only in specific situations. This aims at pointing out which parameters bear the most importance if this mitigation scheme is to be used on larger devices like ITER. Acknowledgement: This work has been carried out within the framework of the EUROfusion Consortium

  9. Mechanism of Runaway Electron Generation at Gas Pressures from a Few Atmospheres to Several Tens of Atmospheres

    Science.gov (United States)

    Zubarev, N. M.; Ivanov, S. N.

    2018-04-01

    The mechanism of runaway electron generation at gas pressures from a few atmospheres to several tens of atmospheres is proposed. According to this mechanism, the electrons pass into the runaway mode in the enhanced field zone that arises between a cathode micropoint—a source of field-emission electrons—and the region of the positive ion space charge accumulated near the cathode in the tails of the developing electron avalanches. As a result, volume gas ionization by runaway electrons begins with a time delay required for the formation of the enhanced field zone. This process determines the delay time of breakdown. The influence of the gas pressure on the formation dynamics of the space charge region is analyzed. At gas pressures of a few atmospheres, the space charge arises due to the avalanche multiplication of the very first field-emission electron, whereas at pressures of several tens of atmospheres, the space charge forms as a result of superposition of many electron avalanches with a relatively small number of charge carriers in each.

  10. Relativistic electron dropout echoes induced by interplanetary shocks

    Science.gov (United States)

    Schiller, Q.; Kanekal, S. G.; Boyd, A. J.; Baker, D. N.; Blake, J. B.; Spence, H. E.

    2017-12-01

    Interplanetary shocks that impact Earth's magnetosphere can produce immediate and dramatic responses in the trapped relativistic electron population. One well-studied response is a prompt injection capable of transporting relativistic electrons deep into the magnetosphere and accelerating them to multi-MeV energies. The converse effect, electron dropout echoes, are observations of a sudden dropout of electron fluxes observed after the interplanetary shock arrival. Like the injection echo signatures, dropout echoes can also show clear energy dispersion signals. They are of particular interest because they have only recently been observed and their causal mechanism is not well understood. In the analysis presented here, we show observations of electron drift echo signatures from the Relativistic Electron-Proton Telescope (REPT) and Magnetic Electron and Ion Sensors (MagEIS) onboard NASA's Van Allen Probes mission, which show simultaneous prompt enhancements and dropouts within minutes of the associated with shock impact. We show that the observations associated with both enhancements and dropouts are explained by the inward motion caused by the electric field impulse induced by the interplanetary shock, and either energization to cause the enhancement, or lack of a seed population to cause the dropout.

  11. Electron-deuteron scattering in a relativistic theory of hadrons

    International Nuclear Information System (INIS)

    Phillips, D.

    1998-11-01

    The author reviews a three-dimensional formalism that provides a systematic way to include relativistic effects including relativistic kinematics, the effects of negative-energy states, and the boosts of the two-body system in calculations of two-body bound-states. He then explains how to construct a conserved current within this relativistic three-dimensional approach. This general theoretical framework is specifically applied to electron-deuteron scattering both in impulse approximation and when the ρπγ meson-exchange current is included. The experimentally-measured quantities A, B, and T 20 are calculated over the kinematic range that is probed in Jefferson Lab experiments. The role of both negative-energy states and meson retardation appears to be small in the region of interest

  12. Self-focusing relativistic electron streams in plasmas

    International Nuclear Information System (INIS)

    Cox, J.L. Jr.

    1975-01-01

    A relativistic electron stream propagating through a dense plasma induces current and charge densities which determine how the stream can self-focus. Magnetic self-focusing is possible because stream-current neutralization, although extensive, is not complete. Electric self-focusing can occur because the stream charge becomes overneutralized when the net current is smaller than a critical value. Under some circumstances, the latter process can cause the stream to focus into a series of electron bunches

  13. Determination of the parametric region in which runaway electron energy losses are dominated by bremsstrahlung radiation in tokamaks

    International Nuclear Information System (INIS)

    Fernandez-Gomez, I.; Martin-Solis, J. R.; Sanchez, R.

    2007-01-01

    It has been recently argued that, at sufficiently large parallel electric fields, bremsstrahlung radiation can greatly reduce the maximum energy that runaway electrons can gain in tokamaks [M. Bakhtiari et al., Phys. Plasmas 12, 102503 (2005)]. In this contribution, the work of these authors is extended to show that the region where bremsstrahlung radiation dominate runaway energy losses is however more restricted than reported by them. Expressions will be provided for the limits of this region within the parameter space spanned by the background density and parallel electric field, as a function of the rest of the plasma parameters. It will be shown that the background density has to be above a certain critical value and that the parallel electric field must lie within a range of values, below and above which synchrotron radiation dominate the runaway energy losses. Finally, it will be demonstrated that typical disruption parameters lie within this region and, as a result, bremsstrahlung losses still play an important role in controlling the runaway energy

  14. A comparison between spectra of runaway electron beams in SF6 and air

    International Nuclear Information System (INIS)

    Zhang, Cheng; Wang, Ruexue; Yan, Ping; Shao, Tao; Tarasenko, Victor; Gu, Jianwei; Baksht, Evgenii

    2015-01-01

    Runaway electron (RAE) with extremely high-energy plays important role on the avalanche propagation, streamer formation, and ionization waves in nanosecond-pulse discharges. In this paper, the generation of a supershort avalanche electron beam (SAEB) in SF 6 and air in an inhomogeneous electric field is investigated. A VPG-30-200 generator with a pulse rise time of ∼1.6 ns and a full width at half maximum of 3–5 ns is used to produce RAE beams. The SAEBs in SF 6 and air are measured by using aluminum foils with different thicknesses. Furthermore, the SAEB spectra in SF 6 and air at pressures of 7.5 Torr, 75 Torr, and 750 Torr are compared. The results showed that amplitude of RAE beam current generated at the breakdown in SF 6 was approximately an order of magnitude less than that in air. The energy of SAEB in air was not smaller than that in SF 6 in nanosecond-pulse discharges under otherwise equal conditions. Moreover, the difference between the maximum energy of the electron distributions in air and SF 6 decreased when the rise time of the voltage pulse increased. It was because the difference between the breakdown voltages in air and SF 6 decreased when the rise time of the voltage pulse increased

  15. A comparison between spectra of runaway electron beams in SF6 and air

    Science.gov (United States)

    Zhang, Cheng; Tarasenko, Victor; Gu, Jianwei; Baksht, Evgenii; Wang, Ruexue; Yan, Ping; Shao, Tao

    2015-12-01

    Runaway electron (RAE) with extremely high-energy plays important role on the avalanche propagation, streamer formation, and ionization waves in nanosecond-pulse discharges. In this paper, the generation of a supershort avalanche electron beam (SAEB) in SF6 and air in an inhomogeneous electric field is investigated. A VPG-30-200 generator with a pulse rise time of ˜1.6 ns and a full width at half maximum of 3-5 ns is used to produce RAE beams. The SAEBs in SF6 and air are measured by using aluminum foils with different thicknesses. Furthermore, the SAEB spectra in SF6 and air at pressures of 7.5 Torr, 75 Torr, and 750 Torr are compared. The results showed that amplitude of RAE beam current generated at the breakdown in SF6 was approximately an order of magnitude less than that in air. The energy of SAEB in air was not smaller than that in SF6 in nanosecond-pulse discharges under otherwise equal conditions. Moreover, the difference between the maximum energy of the electron distributions in air and SF6 decreased when the rise time of the voltage pulse increased. It was because the difference between the breakdown voltages in air and SF6 decreased when the rise time of the voltage pulse increased.

  16. A comparison between spectra of runaway electron beams in SF{sub 6} and air

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Cheng; Wang, Ruexue; Yan, Ping; Shao, Tao, E-mail: st@mail.iee.ac.cn [Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190 (China); Key Laboratory of Power Electronics and Electric Drive, Chinese Academy of Sciences, Beijing 100190 (China); Tarasenko, Victor [Institute of High Current Electronics, 2/3 Akademichesky Ave., Tomsk 634055 (Russian Federation); National Research Tomsk State University, 36 Lenin Ave., Tomsk 634050 (Russian Federation); Gu, Jianwei [Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190 (China); Baksht, Evgenii [Institute of High Current Electronics, 2/3 Akademichesky Ave., Tomsk 634055 (Russian Federation)

    2015-12-15

    Runaway electron (RAE) with extremely high-energy plays important role on the avalanche propagation, streamer formation, and ionization waves in nanosecond-pulse discharges. In this paper, the generation of a supershort avalanche electron beam (SAEB) in SF{sub 6} and air in an inhomogeneous electric field is investigated. A VPG-30-200 generator with a pulse rise time of ∼1.6 ns and a full width at half maximum of 3–5 ns is used to produce RAE beams. The SAEBs in SF{sub 6} and air are measured by using aluminum foils with different thicknesses. Furthermore, the SAEB spectra in SF{sub 6} and air at pressures of 7.5 Torr, 75 Torr, and 750 Torr are compared. The results showed that amplitude of RAE beam current generated at the breakdown in SF{sub 6} was approximately an order of magnitude less than that in air. The energy of SAEB in air was not smaller than that in SF{sub 6} in nanosecond-pulse discharges under otherwise equal conditions. Moreover, the difference between the maximum energy of the electron distributions in air and SF{sub 6} decreased when the rise time of the voltage pulse increased. It was because the difference between the breakdown voltages in air and SF{sub 6} decreased when the rise time of the voltage pulse increased.

  17. Consideration of Relativistic Dynamics in High-Energy Electron Coolers

    CERN Document Server

    Bruhwiler, David L

    2005-01-01

    A proposed electron cooler for RHIC would use ~55 MeV electrons to cool fully-ionized 100 GeV/nucleon gold ions.* At two locations in the collider ring, the electrons and ions will co-propagate for ~13 m, with velocities close to c and gamma>100. To lowest-order, one can Lorentz transform all physical quantities into the beam frame and calculate the dynamical friction forces assuming a nonrelativisitc, electrostatic plasma. However, we show that nonlinear space charge forces of the bunched electron beam on the ions must be calculated relativistically, because an electrostatic beam-frame calculation is not valid for such short interaction times. The validity of nonrelativistic friction force calculations must also be considered. Further, the transverse thermal velocities of the high-charge (~20 nC) electron bunch are large enough that some electrons have marginally relativistic velocities, even in the beam frame. Hence, we consider relativistic binary collisions – treating the model problem of ...

  18. Relativistic electron kinetic effects on laser diagnostics in burning plasmas

    Science.gov (United States)

    Mirnov, V. V.; Den Hartog, D. J.

    2018-02-01

    Toroidal interferometry/polarimetry (TIP), poloidal polarimetry (PoPola), and Thomson scattering systems (TS) are major optical diagnostics being designed and developed for ITER. Each of them relies upon a sophisticated quantitative understanding of the electron response to laser light propagating through a burning plasma. Review of the theoretical results for two different applications is presented: interferometry/polarimetry (I/P) and polarization of Thomson scattered light, unified by the importance of relativistic (quadratic in vTe/c) electron kinetic effects. For I/P applications, rigorous analytical results are obtained perturbatively by expansion in powers of the small parameter τ = Te/me c2, where Te is electron temperature and me is electron rest mass. Experimental validation of the analytical models has been made by analyzing data of more than 1200 pulses collected from high-Te JET discharges. Based on this validation the relativistic analytical expressions are included in the error analysis and design projects of the ITER TIP and PoPola systems. The polarization properties of incoherent Thomson scattered light are being examined as a method of Te measurement relevant to ITER operational regimes. The theory is based on Stokes vector transformation and Mueller matrices formalism. The general approach is subdivided into frequency-integrated and frequency-resolved cases. For each of them, the exact analytical relativistic solutions are presented in the form of Mueller matrix elements averaged over the relativistic Maxwellian distribution function. New results related to the detailed verification of the frequency-resolved solutions are reported. The precise analytic expressions provide output much more rapidly than relativistic kinetic numerical codes allowing for direct real-time feedback control of ITER device operation.

  19. Relativistic electromagnetic waves in an electron-ion plasma

    Science.gov (United States)

    Chian, Abraham C.-L.; Kennel, Charles F.

    1987-01-01

    High power laser beams can drive plasma particles to relativistic energies. An accurate description of strong waves requires the inclusion of ion dynamics in the analysis. The equations governing the propagation of relativistic electromagnetic waves in a cold electron-ion plasma can be reduced to two equations expressing conservation of energy-momentum of the system. The two conservation constants are functions of the plasma stream velocity, the wave velocity, the wave amplitude, and the electron-ion mass ratio. The dynamic parameter, expressing electron-ion momentum conversation in the laboratory frame, can be regarded as an adjustable quantity, a suitable choice of which will yield self-consistent solutions when other plasma parameters were specified. Circularly polarized electromagnetic waves and electrostatic plasma waves are used as illustrations.

  20. Electric field of thunderclouds and cosmic rays: evidence for acceleration of particles (runaway electrons)

    CERN Document Server

    Khaerdinov, N S; Petkov, V B; 12th International Conference on Atmospheric Electricity

    2004-01-01

    We present the data on correlations of the intensity of the soft component of cosmic rays with the local electric field of the near-earth atmosphere during thunderstorm periods at the Baksan Valley (North Caucasus, 1700 m a. s. l.). The large-area array for studying the extensive air showers of cosmic rays is used as a particle detector. An electric field meter of the "electric mill" type (rain-protected) is mounted on the roof of the building in the center of this array. The data were obtained in the summer seasons of 2000-2002. We observe strong enhancements of the soft component intensity before some lightning strokes. At the same time, the analysis of the regression curve "intensity versus field" discovers a bump at the field sign that is opposite to the field sign corresponding to acceleration of electrons. It is interpreted as a signature of runaway electrons from the region of the strong field (with opposite sign) overhead.

  1. Runaway electron mitigation by 3D fields in the ASDEX-Upgrade experiment

    Science.gov (United States)

    Gobbin, M.; Li, L.; Liu, Y. Q.; Marrelli, L.; Nocente, M.; Papp, G.; Pautasso, G.; Piovesan, P.; Valisa, M.; Carnevale, D.; Esposito, B.; Giacomelli, L.; Gospodarczyk, M.; McCarthy, P. J.; Martin, P.; Suttrop, W.; Tardocchi, M.; Teschke, M.; the ASDEX Upgrade Team; the EUROfusion MST1 Team

    2018-01-01

    Disruption-generated runaway electron (RE) beams represent a severe threat for tokamak plasma-facing components in high current devices like ITER, thus motivating the search of mitigation techniques. The application of 3D fields might aid this purpose and recently was investigated also in the ASDEX Upgrade experiment by using the internal active saddle coils (termed B-coils). Resonant magnetic perturbations (RMPs) with dominant toroidal mode number n = 1 have been applied by the B-coils, in a RE specific scenario, before and during disruptions, which are deliberately created via massive gas injection. The application of RMPs affects the electron temperature profile and seemingly changes the dynamics of the disruption; this results in a significantly reduced current and lifetime of the generated RE beam. A similar effect is observed also in the hard-x-ray (HXR) spectrum, associated to RE emission, characterized by a partial decrease of the energy content below 1 MeV when RMPs are applied. The strength of the observed effects strongly depends on the upper-to-lower B-coil phasing, i.e. on the poloidal spectrum of the applied RMPs, which has been reconstructed including the plasma response by the code MARS-F. A crude vacuum approximation fails in the interpretation of the experimental findings: despite the relatively low β (< 0.5 % ) of these discharges, a modest amplification (factor of 2) of the edge kink response occurs, which has to be considered to explain the observed suppression effects.

  2. Analyses of electron runaway in front of the negative streamer channel

    Science.gov (United States)

    Babich, L. P.; Bochkov, E. I.; Kutsyk, I. M.; Neubert, T.; Chanrion, O.

    2017-08-01

    X-ray and γ-ray emissions, observed in correlation with negative leaders of lightning and long sparks of high-voltage laboratory experiments, are conventionally connected with the bremsstrahlung of high-energy runaway electrons (REs). Here we extend a focusing mechanism, analyzed in our previous paper, which allows the electric field to reach magnitudes, required for a generation of significant RE fluxes and associated bremsstrahlung, when the ionization wave propagates in a narrow, ionized channel created by a previous streamer. Under such conditions we compute the production rate of REs per unit streamer length as a function of the streamer velocity and predict that, once a streamer is formed with the electric field capable of producing REs ahead of the streamer front, the ionization induced by the REs is capable of creating an ionized channel that allows for self-sustained propagation of the RE-emitting ionization wave independent of the initial electron concentration. Thus, the streamer coronas of the leaders are probable sources of REs producing the observed high-energy radiation. To prove these predictions, new simulations are planned, which would show explicitly that the preionization in front of the channel via REs will lead to the ionization wave propagation self-consistent with RE generation.

  3. A new gamma ray imaging diagnostic for runaway electron studies at DIII-D

    Science.gov (United States)

    Cooper, C. M.; Pace, D. C.; Eidietis, N. W.; Paz-Soldan, C.; Commaux, N.; Shiraki, D.; Hollmann, E. M.; Moyer, R. A.; Risov, V.

    2015-11-01

    A new Gamma Ray Imager (GRI) is developed to probe the electron distribution function with 2D spatial resolution during runaway electron (RE) experiments at DIII-D. The diagnostic is sensitive to 0.5 - 50 MeV gamma rays, allowing characterization of the RE distribution function evolution during RE dissipation from pellet injection. The GRI consists of a lead ``pinhole camera'' mounted on the midplane with 11x11 counter-current tangential chords 20 cm wide that span the vessel. Up to 30 bismuth germanate (BGO) scintillation detectors capture RE Bremsstrahlung radiation. Detectors operate in current saturation mode at 10 MHz, or the flux is attenuated for Pulse Height Analysis (PHA) capable of discriminating up to ~10k pulses per second. Digital signal processing routines combining shaping filters are performed during PHA to reject noise and record gamma ray energy. The GRI setup and PHA algorithms will be described and initial data from experiments will be presented. Work supported by the US DOE under DE-AC05-00OR22725, DE-FG02-07ER54917 & DE-FC02-04ER54698.

  4. Synchrotron emission diagnostic of full-orbit kinetic simulations of runaway electrons in tokamaks plasmas

    Science.gov (United States)

    Carbajal Gomez, Leopoldo; Del-Castillo-Negrete, Diego

    2017-10-01

    Developing avoidance or mitigation strategies of runaway electrons (RE) for the safe operation of ITER is imperative. Synchrotron radiation (SR) of RE is routinely used in current tokamak experiments to diagnose RE. We present the results of a newly developed camera diagnostic of SR for full-orbit kinetic simulations of RE in DIII-D-like plasmas that simultaneously includes: full-orbit effects, information of the spectral and angular distribution of SR of each electron, and basic geometric optics of a camera. We observe a strong dependence of the SR measured by the camera on the pitch angle distribution of RE, namely we find that crescent shapes of the SR on the camera pictures relate to RE distributions with small pitch angles, while ellipse shapes relate to distributions of RE with larger pitch angles. A weak dependence of the SR measured by the camera with the RE energy, value of the q-profile at the edge, and the chosen range of wavelengths is found. Furthermore, we observe that oversimplifying the angular distribution of the SR changes the synchrotron spectra and overestimates its amplitude. Research sponsored by the LDRD Program of ORNL, managed by UT-Battelle, LLC, for the U. S. DoE.

  5. On the dispersion characteristics of extraordinary mode in a relativistic fully degenerate electron plasma

    Science.gov (United States)

    Noureen, S.; Abbas, G.; Sarfraz, M.

    2018-01-01

    The study of relativistic degenerate plasmas is important in many astrophysical and laboratory environments. Using linearized relativistic Vlasov-Maxwell equations, a generalized expression for the plasma conductivity tensor is derived. Employing Fermi-Dirac distribution at zero temperature, the dispersion relation of the extraordinary mode in a relativistic degenerate electron plasma is investigated. The propagation characteristics are examined in different relativistic density ranges. The shifting of cutoff points due to relativistic effects is observed analytically and graphically. Non-relativistic and ultra-relativistic limiting cases are also presented.

  6. Plasma lenses for focusing relativistic electron beams

    International Nuclear Information System (INIS)

    Govil, R.; Wheeler, S.; Leemans, W.

    1997-01-01

    The next generation of colliders require tightly focused beams with high luminosity. To focus charged particle beams for such applications, a plasma focusing scheme has been proposed. Plasma lenses can be overdense (plasma density, n p much greater than electron beam density, n b ) or underdense (n p less than 2 n b ). In overdense lenses the space-charge force of the electron beam is canceled by the plasma and the remaining magnetic force causes the electron beam to self-pinch. The focusing gradient is nonlinear, resulting in spherical aberrations. In underdense lenses, the self-forces of the electron beam cancel, allowing the plasma ions to focus the beam. Although for a given beam density, a uniform underdense lens produces smaller focusing gradients than an overdense lens, it produces better beam quality since the focusing is done by plasma ions. The underdense lens can be improved by tapering the density of the plasma for optimal focusing. The underdense lens performance can be enhanced further by producing adiabatic plasma lenses to avoid the Oide limit on spot size due to synchrotron radiation by the electron beam. The plasma lens experiment at the Beam Test Facility (BTF) is designed to study the properties of plasma lenses in both overdense and underdense regimes. In particular, important issues such as electron beam matching, time response of the lens, lens aberrations and shot-to-shot reproducibility are being investigated

  7. Radiation from systems with relativistic electrons

    International Nuclear Information System (INIS)

    Ternov, I.M.; Khalilov, V.R.; Bagrov, V.G.; Nikitin, M.M.

    1980-01-01

    Different methods of generation of electromagnetic radiation in the course of electron motion in external electromagnetic fields are considered. Singularities of ''free electron lasers'' (FEL), synchrotronous, ondulator and Compton radiation sources are discussed. The effect of induced radiation of electrons moving in a magnetic field is studied on the basis of the quantum theory methods. The results obtained are compared with the results of the classical theory. The theoretical and experimental results of the main singularities of the ondulator radiation (OR) are presented. It is shown that when the recoil effects are negligible and nonequidistancy of the energy spectrum of an electron in a magnetic field is of an error character, the results for the dose rate calculated by the quantum and classical theory methods completely coincide in the range of great filling numbers. Both in the quantum and classical theories the effects of the induced radiation of electrons moving in external electromagnetic fields (nonstationary in a general case) of a rather general type depend on two main mechanisms, which are nonequidistancy of the energy spectrum and the recoil effect (the quantum theory); appearance of phase and longitudinal electron bunching under the effect of an alternating radiation field (the classical theory). On the basis of the investigations the conclusion is made that OR can be successfully used for measuring the charged particle beam parameters (dispersion of angular spread and the absolute energy), as well as for measuring the amplitude of the magnetic field intensity in a space-periodic system

  8. Radiative cooling of relativistic electron beams

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Zhirong [Stanford Univ., CA (United States)

    1998-05-01

    Modern high-energy particle accelerators and synchrotron light sources demand smaller and smaller beam emittances in order to achieve higher luminosity or better brightness. For light particles such as electrons and positrons, radiation damping is a natural and effective way to obtain low emittance beams. However, the quantum aspect of radiation introduces random noise into the damped beams, yielding equilibrium emittances which depend upon the design of a specific machine. In this dissertation, the author attempts to make a complete analysis of the process of radiation damping and quantum excitation in various accelerator systems, such as bending magnets, focusing channels and laser fields. Because radiation is formed over a finite time and emitted in quanta of discrete energies, he invokes the quantum mechanical approach whenever the quasiclassical picture of radiation is insufficient. He shows that radiation damping in a focusing system is fundamentally different from that in a bending system. Quantum excitation to the transverse dimensions is absent in a straight, continuous focusing channel, and is exponentially suppressed in a focusing-dominated ring. Thus, the transverse normalized emittances in such systems can in principle be damped to the Compton wavelength of the electron, limited only by the Heisenberg uncertainty principle. In addition, he investigates methods of rapid damping such as radiative laser cooling. He proposes a laser-electron storage ring (LESR) where the electron beam in a compact storage ring repetitively interacts with an intense laser pulse stored in an optical resonator. The laser-electron interaction gives rise to rapid cooling of electron beams and can be used to overcome the space charge effects encountered in a medium energy circular machine. Applications to the designs of low emittance damping rings and compact x-ray sources are also explored.

  9. Radiative cooling of relativistic electron beams

    International Nuclear Information System (INIS)

    Huang, Z.

    1998-05-01

    Modern high-energy particle accelerators and synchrotron light sources demand smaller and smaller beam emittances in order to achieve higher luminosity or better brightness. For light particles such as electrons and positrons, radiation damping is a natural and effective way to obtain low emittance beams. However, the quantum aspect of radiation introduces random noise into the damped beams, yielding equilibrium emittances which depend upon the design of a specific machine. In this dissertation, the author attempts to make a complete analysis of the process of radiation damping and quantum excitation in various accelerator systems, such as bending magnets, focusing channels and laser fields. Because radiation is formed over a finite time and emitted in quanta of discrete energies, he invokes the quantum mechanical approach whenever the quasiclassical picture of radiation is insufficient. He shows that radiation damping in a focusing system is fundamentally different from that in a bending system. Quantum excitation to the transverse dimensions is absent in a straight, continuous focusing channel, and is exponentially suppressed in a focusing-dominated ring. Thus, the transverse normalized emittances in such systems can in principle be damped to the Compton wavelength of the electron, limited only by the Heisenberg uncertainty principle. In addition, he investigates methods of rapid damping such as radiative laser cooling. He proposes a laser-electron storage ring (LESR) where the electron beam in a compact storage ring repetitively interacts with an intense laser pulse stored in an optical resonator. The laser-electron interaction gives rise to rapid cooling of electron beams and can be used to overcome the space charge effects encountered in a medium energy circular machine. Applications to the designs of low emittance damping rings and compact x-ray sources are also explored

  10. Relativistic electron diffraction at the UCLA Pegasus photoinjector laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Musumeci, P. [UCLA Department of Physics and Astronomy, 475 Portola Plaza, Los Angeles, CA 90095-1547 (United States)], E-mail: musumeci@physics.ucla.edu; Moody, J.T.; Scoby, C.M. [UCLA Department of Physics and Astronomy, 475 Portola Plaza, Los Angeles, CA 90095-1547 (United States)

    2008-10-15

    Electron diffraction holds the promise to yield real-time resolution of atomic motion in an easily accessible environment like a university laboratory at a fraction of the cost of fourth-generation X-ray sources. Currently the limit in time-resolution for conventional electron diffraction is set by how short an electron pulse can be made. A very promising solution to maintain the highest possible beam intensity without excessive pulse broadening from space charge effects is to increase the electron energy to the MeV level where relativistic effects significantly reduce the space charge forces. Rf photoinjectors can in principle deliver up to 10{sup 7}-10{sup 8} electrons packed in bunches of {approx}100-fs length, allowing an unprecedented time resolution and enabling the study of irreversible phenomena by single-shot diffraction patterns. The use of rf photoinjectors as sources for ultrafast electron diffraction has been recently at the center of various theoretical and experimental studies. The UCLA Pegasus laboratory, commissioned in early 2007 as an advanced photoinjector facility, is the only operating system in the country, which has recently demonstrated electron diffraction using a relativistic beam from an rf photoinjector. Due to the use of a state-of-the-art ultrashort photoinjector driver laser system, the beam has been measured to be sub-100-fs long, at least a factor of 5 better than what measured in previous relativistic electron diffraction setups. Moreover, diffraction patterns from various metal targets (titanium and aluminum) have been obtained using the Pegasus beam. One of the main laboratory goals in the near future is to fully develop the rf photoinjector-based ultrafast electron diffraction technique with particular attention to the optimization of the working point of the photoinjector in a low-charge ultrashort pulse regime, and to the development of suitable beam diagnostics.

  11. Relativistic electron diffraction at the UCLA Pegasus photoinjector laboratory

    International Nuclear Information System (INIS)

    Musumeci, P.; Moody, J.T.; Scoby, C.M.

    2008-01-01

    Electron diffraction holds the promise to yield real-time resolution of atomic motion in an easily accessible environment like a university laboratory at a fraction of the cost of fourth-generation X-ray sources. Currently the limit in time-resolution for conventional electron diffraction is set by how short an electron pulse can be made. A very promising solution to maintain the highest possible beam intensity without excessive pulse broadening from space charge effects is to increase the electron energy to the MeV level where relativistic effects significantly reduce the space charge forces. Rf photoinjectors can in principle deliver up to 10 7 -10 8 electrons packed in bunches of ∼100-fs length, allowing an unprecedented time resolution and enabling the study of irreversible phenomena by single-shot diffraction patterns. The use of rf photoinjectors as sources for ultrafast electron diffraction has been recently at the center of various theoretical and experimental studies. The UCLA Pegasus laboratory, commissioned in early 2007 as an advanced photoinjector facility, is the only operating system in the country, which has recently demonstrated electron diffraction using a relativistic beam from an rf photoinjector. Due to the use of a state-of-the-art ultrashort photoinjector driver laser system, the beam has been measured to be sub-100-fs long, at least a factor of 5 better than what measured in previous relativistic electron diffraction setups. Moreover, diffraction patterns from various metal targets (titanium and aluminum) have been obtained using the Pegasus beam. One of the main laboratory goals in the near future is to fully develop the rf photoinjector-based ultrafast electron diffraction technique with particular attention to the optimization of the working point of the photoinjector in a low-charge ultrashort pulse regime, and to the development of suitable beam diagnostics

  12. Relativistic electron diffraction at the UCLA Pegasus photoinjector laboratory.

    Science.gov (United States)

    Musumeci, P; Moody, J T; Scoby, C M

    2008-10-01

    Electron diffraction holds the promise to yield real-time resolution of atomic motion in an easily accessible environment like a university laboratory at a fraction of the cost of fourth-generation X-ray sources. Currently the limit in time-resolution for conventional electron diffraction is set by how short an electron pulse can be made. A very promising solution to maintain the highest possible beam intensity without excessive pulse broadening from space charge effects is to increase the electron energy to the MeV level where relativistic effects significantly reduce the space charge forces. Rf photoinjectors can in principle deliver up to 10(7)-10(8) electrons packed in bunches of approximately 100-fs length, allowing an unprecedented time resolution and enabling the study of irreversible phenomena by single-shot diffraction patterns. The use of rf photoinjectors as sources for ultrafast electron diffraction has been recently at the center of various theoretical and experimental studies. The UCLA Pegasus laboratory, commissioned in early 2007 as an advanced photoinjector facility, is the only operating system in the country, which has recently demonstrated electron diffraction using a relativistic beam from an rf photoinjector. Due to the use of a state-of-the-art ultrashort photoinjector driver laser system, the beam has been measured to be sub-100-fs long, at least a factor of 5 better than what measured in previous relativistic electron diffraction setups. Moreover, diffraction patterns from various metal targets (titanium and aluminum) have been obtained using the Pegasus beam. One of the main laboratory goals in the near future is to fully develop the rf photoinjector-based ultrafast electron diffraction technique with particular attention to the optimization of the working point of the photoinjector in a low-charge ultrashort pulse regime, and to the development of suitable beam diagnostics.

  13. Relativistic electron Wigner crystal formation in a cavity for electron acceleration

    CERN Document Server

    Thomas, Johannes; Pukhov, Alexander

    2014-01-01

    It is known that a gas of electrons in a uniform neutralizing background can crystallize and form a lattice if the electron density is less than a critical value. This crystallization may have two- or three-dimensional structure. Since the wake field potential in the highly-nonlinear-broken-wave regime (bubble regime) has the form of a cavity where the background electrons are evacuated from and only the positively charged ions remain, it is suited for crystallization of trapped and accelerated electron bunch. However, in this case, the crystal is moving relativistically and shows new three-dimensional structures that we call relativistic Wigner crystals. We analyze these structures using a relativistic Hamiltonian approach. We also check for stability and phase transitions of the relativistic Wigner crystals.

  14. Calculations of electronic structure of UF6 molecule and crystal UO2 with relativistic pseudopotential

    International Nuclear Information System (INIS)

    Ehvarestov, R.A.; Panin, A.I.; Bandura, A.V.

    2008-01-01

    Account of relativistic effects on the properties of uranium hexafluoride is testified. Detailed comparison of single electron energies spectrum revealed in nonrelativistic (by Hartree-Fock method), relativistic (by Dirac-Fock method), and scalar-relativistic (using relativistic potential of atomic uranium frame) has been conducted. Optimization procedures of atomic basis in LCAO calculations of molecules and crystals permissive taking into account distortion of atomic orbitals when chemical bonding are discussed, and optimization effect of atomic basis on the results of scalar-relativistic calculations of UF 6 molecule properties is analyzed. Calculations of electronic structure and properties of UO 2 crystal having relativistic and nonrelativistic pseudopotentials have been realized [ru

  15. Matrix elements of the relativistic electron-transition operators

    International Nuclear Information System (INIS)

    Rudzikas, Z.B.; Slepcov, A.A.; Kickin, I.S.

    1976-01-01

    The formulas, which enable us to calculate the electric and magnetic multipole transition probabilities in relativistic approximation under various gauge conditions of the electromagnetic potential, are presented. The numerical values of the coefficients of the one-electron reduced matrix elements of the relativistic operators of the electric and magnetic dipole transitions between the configurations K 0 n 2 l 2 j 2 α 0 J 0 j 2 J--K 0 n 1 l 1 j 1 α 0 'J 0 'j 1 J', where K 0 represents any electronic configuration, having the quantum number of the total angular momentum 0 less than or equal to J 0 less than or equal to 8 (the step is 1 / 2 ), and 1 / 2 less than or equal to j 2 , j 1 less than or equal to 7 / 2 , are given

  16. Molecular type channeling of relativistic electrons in crystals

    International Nuclear Information System (INIS)

    Vyatkin, E.G.; Filimonov, Yu.M.; Taratin, A.M.; Vorobiev, S.A.

    1983-01-01

    Channeling of relativistic electrons in direction in a diamond crystal and the channeling radiation spectra are investigated using computer simulation by the binary collision model and using the model of a continuum potential of the atomic rows. In a computer experiment the atomic- and molecular-type states of channeled elcetrons are revealed, and the orientational dependence of the electron trapping probability in these states is obtained. The peculiarities revealed of the angular distributions and radiation spectra of electrons in the molecular-type states allow to discover these states in the experiment. (author)

  17. Relativistic effects on inner-shell electron properties

    International Nuclear Information System (INIS)

    Desclaux, J.P.

    1976-01-01

    The influence of relativistic effects on hydrogen-like systems is first reviewed. After having considered one-electron systems, the influence of the other electrons is to be taken into account when considering inner ionization energy and ionization cross sections. Two-hole states in inner shells being then dealt with, the problem of angular momentum coupling among electrons can no longer be neglected. In an other way, this implies that wave functions are to be built on a jj basis instead of a ls one. Ksub(α)sup(h) hypersatellite spectra and KLL Auger transition energies are successively discussed

  18. Formation of 1.4 MeV runaway electron flows in air using a solid-state generator with 10 MV/ns voltage rise rate

    Science.gov (United States)

    Mesyats, G. A.; Pedos, M. S.; Rukin, S. N.; Rostov, V. V.; Romanchenko, I. V.; Sadykova, A. G.; Sharypov, K. A.; Shpak, V. G.; Shunailov, S. A.; Ul'masculov, M. R.; Yalandin, M. I.

    2018-04-01

    Fulfillment of the condition that the voltage rise time across an air gap is comparable with the time of electron acceleration from a cathode to an anode allows a flow of runaway electrons (REs) to be formed with relativistic energies approaching that determined by the amplitude of the voltage pulse. In the experiment described here, an RE energy of 1.4 MeV was observed by applying a negative travelling voltage pulse of 860-kV with a maximum rise rate of 10 MV/ns and a rise time of 100-ps. The voltage pulse amplitude was doubled at the cathode of the 2-cm-long air gap due to the delay of conventional pulsed breakdown. The above-mentioned record-breaking voltage pulse of ˜120 ps duration with a peak power of 15 GW was produced by an all-solid-state pulsed power source utilising pulse compression/sharpening in a multistage gyromagnetic nonlinear transmission line.

  19. Relativistic photon-Maxwellian electron cross sections

    International Nuclear Information System (INIS)

    Wienke, B.R.; Lathrop, B.L.; Devaney, J.J.

    1986-01-01

    Temperature corrected cross sections, complementing the Klein-Nishina set, are developed for astrophysical, plasma, and transport applications. The set is obtained from a nonlinear least squares fit to the exact photon-Maxwellian electron cross sections, using the static formula as the asymptotic basis. Two parameters are sufficient (two decimal places) to fit the exact cross sections over a range of 0-100 keV in electron temperature, and 0-1 MeV in incident photon energy. The fit is made to the total cross sections, yet the parameters predict both total and differential scattering cross sections well. Corresponding differential energy cross sections are less accurate. An extended fit to (just) the total cross sections, over the temperature and energy range 0-5 MeV, is also described. (author)

  20. Spatially distributed scintillator arrays for diagnosing runaway electron transport and energy behavior in tokamaks

    Energy Technology Data Exchange (ETDEWEB)

    James, A. N.; Hollmann, E. M.; Tynan, G. R. [UC San Diego Center for Energy Research, La Jolla, California 92093-0417 (United States)

    2010-10-15

    We present details of a new bismuth germanate [Bi{sub 4}Ge{sub 3}O{sub 12} (BGO)] scintillator array used to diagnose the transport and energy behavior of runaway electrons (REs) in DIII-D. BGO exhibits important properties for these compact detectors including high light yield which sufficiently excites photodiode detectors (8500 photons/MeV), high density and atomic numbers of constituent materials which maximizes sensitivity, and relative neutron blindness which minimizes complications in data interpretation. The detectors observe primarily hard x-ray radiation emitted in a forward beamed pattern by RE when they strike first wall materials or bulk ions and neutrals in the plasma, although we also address photoneutron signals. The arrangement of the array enables time resolved location of x-ray emission and associated asymmetries which help identify instabilities and confinement properties of RE. By shielding a subset of detectors with different thicknesses of lead, and with interpretative support of the code EGSNRC, we also measure RE energy, although due to the often distributed nature of RE strike points and the forward beamed character of emitted hard x-rays, we restrict interpretation as a lower bound for RE energy.

  1. Nanoparticle Plasma Jet as Fast Probe for Runaway Electrons in Tokamak Disruptions

    Science.gov (United States)

    Bogatu, I. N.; Galkin, S. A.

    2017-10-01

    Successful probing of runaway electrons (REs) requires fast (1 - 2 ms) high-speed injection of enough mass able to penetrate through tokamak toroidal B-field (2 - 5 T) over 1 - 2 m distance with large assimilation fraction in core plasma. A nanoparticle plasma jet (NPPJ) from a plasma gun is a unique combination of millisecond trigger-to-delivery response and mass-velocity of 100 mg at several km/s for deep direct injection into current channel of rapidly ( 1 ms) cooling post-TQ core plasma. After C60 NPPJ test bed demonstration we started to work on ITER-compatible boron nitride (BN) NPPJ. Once injected into plasma, BN NP undergoes ablative sublimation, thermally decomposes into B and N, and releases abundant B and N high-charge ions along plasma-traversing path and into the core. We present basic characteristics of our BN NPPJ concept and first results from B and N ions on Zeff > 1 effect on REs dynamics by using a self-consistent model for RE current density. Simulation results of BNQ+ NPPJ penetration through tokamak B-field to RE beam location performed with Hybrid Electro-Magnetic code (HEM-2D) are also presented. Work supported by U.S. DOE SBIR Grant.

  2. Spark discharge formation in an inhomogeneous electric field under conditions of runaway electron generation

    Energy Technology Data Exchange (ETDEWEB)

    Shao Tao; Zhang Cheng; Yan Ping [Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190 (China); Key Laboratory of Power Electronics and Electric Drive, Chinese Academy of Sciences, Beijing 100190 (China); Tarasenko, Victor F.; Lomaev, Mikhail I.; Sorokin, Dmitrii A.; Kozyrev, Andrei V.; Baksht, Evgeni Kh. [Institute of High Current Electronics, Russian Academy of Sciences, Tomsk 634055 (Russian Federation)

    2012-01-15

    In this article we report on work where the formation of a spark in nanosecond high-voltage discharges was studied in nitrogen, nitrogen-methane mixtures, and air at increased pressures under the conditions of runaway electron generation. Voltage pulses of amplitude {approx}90 and {approx}250 kV were applied to a point-to-plane gap with a planar anode and a cathode of small curvature radius. Cathode spots appeared early in the discharge, within {approx}200 ps of a corona discharge at high rate of rise of the voltage ({approx}5 x 10{sup 14} V/s) across centimeter point-to-plane gap spacing. The spark leader that bridged the point-to-plane gap propagated from the planar anode with cathode spots and a voltage pulse rise time of less than 1 ns. The discharge from diffuse clouds took the form of diffuse jets with increasing pulse repetition rate, thus achieving the accumulation effect in a repetitively pulsed discharge. Characteristic emission spectra are presented for spark diffuse and corona discharges.

  3. Spatially distributed scintillator arrays for diagnosing runaway electron transport and energy behavior in tokamaks

    International Nuclear Information System (INIS)

    James, A. N.; Hollmann, E. M.; Tynan, G. R.

    2010-01-01

    We present details of a new bismuth germanate [Bi 4 Ge 3 O 12 (BGO)] scintillator array used to diagnose the transport and energy behavior of runaway electrons (REs) in DIII-D. BGO exhibits important properties for these compact detectors including high light yield which sufficiently excites photodiode detectors (8500 photons/MeV), high density and atomic numbers of constituent materials which maximizes sensitivity, and relative neutron blindness which minimizes complications in data interpretation. The detectors observe primarily hard x-ray radiation emitted in a forward beamed pattern by RE when they strike first wall materials or bulk ions and neutrals in the plasma, although we also address photoneutron signals. The arrangement of the array enables time resolved location of x-ray emission and associated asymmetries which help identify instabilities and confinement properties of RE. By shielding a subset of detectors with different thicknesses of lead, and with interpretative support of the code EGSNRC, we also measure RE energy, although due to the often distributed nature of RE strike points and the forward beamed character of emitted hard x-rays, we restrict interpretation as a lower bound for RE energy.

  4. Investigation of runaway electron dissipation in DIII-D using a gamma ray imager

    Science.gov (United States)

    Lvovskiy, A.; Paz-Soldan, C.; Eidietis, N.; Pace, D.; Taussig, D.

    2017-10-01

    We report the findings of a novel gamma ray imager (GRI) to study runaway electron (RE) dissipation in the quiescent regime on the DIII-D tokamak. The GRI measures the bremsstrahlung emission by RE providing information on RE energy spectrum and distribution across a poloidal cross-section. It consists of a lead pinhole camera illuminating a matrix of BGO detectors placed in the DIII-D mid-plane. The number of detectors was recently doubled to provide better spatial resolution and additional detector shielding was implemented to reduce un-collimated gamma flux and increase single-to-noise ratio. Under varying loop voltage, toroidal magnetic field and plasma density, a non-monotonic RE distribution function has been revealed as a result of the interplay between electric field, synchrotron radiation and collisional damping. A fraction of the high-energy RE population grows forming a bump at the RE distribution function while synchrotron radiation decreases. A possible destabilizing effect of Parail-Pogutse instability on the RE population will be also discussed. Work supported by the US DOE under DE-FC02-04ER54698.

  5. Spark discharge formation in an inhomogeneous electric field under conditions of runaway electron generation

    International Nuclear Information System (INIS)

    Shao Tao; Zhang Cheng; Yan Ping; Tarasenko, Victor F.; Lomaev, Mikhail I.; Sorokin, Dmitrii A.; Kozyrev, Andrei V.; Baksht, Evgeni Kh.

    2012-01-01

    In this article we report on work where the formation of a spark in nanosecond high-voltage discharges was studied in nitrogen, nitrogen-methane mixtures, and air at increased pressures under the conditions of runaway electron generation. Voltage pulses of amplitude ∼90 and ∼250 kV were applied to a point-to-plane gap with a planar anode and a cathode of small curvature radius. Cathode spots appeared early in the discharge, within ∼200 ps of a corona discharge at high rate of rise of the voltage (∼5 x 10 14 V/s) across centimeter point-to-plane gap spacing. The spark leader that bridged the point-to-plane gap propagated from the planar anode with cathode spots and a voltage pulse rise time of less than 1 ns. The discharge from diffuse clouds took the form of diffuse jets with increasing pulse repetition rate, thus achieving the accumulation effect in a repetitively pulsed discharge. Characteristic emission spectra are presented for spark diffuse and corona discharges.

  6. Energy deposition and thermal effects of runaway electrons in ITER-FEAT plasma facing components

    International Nuclear Information System (INIS)

    Maddaluno, G.; Maruccia, G.; Merola, M.; Rollet, S.

    2003-01-01

    The profile of energy deposited by runaway electrons (RAEs) of 10 or 50 MeV in International Thermonuclear Experimental Reactor-Fusion Energy Advanced Tokamak (ITER-FEAT) plasma facing components (PFCs) and the subsequent temperature pattern have been calculated by using the Monte Carlo code FLUKA and the finite element heat conduction code ANSYS. The RAE energy deposition density was assumed to be 50 MJ/m 2 and both 10 and 100 ms deposition times were considered. Five different configurations of PFCs were investigated: primary first wall armoured with Be, with and without protecting CFC poloidal limiters, both port limiter first wall options (Be flat tile and CFC monoblock), divertor baffle first wall, armoured with W. The analysis has outlined that for all the configurations but one (port limiter with Be flat tile) the heat sink and the cooling tube beneath the armour are well protected for both RAE energies and for both energy deposition times. On the other hand large melting (W, Be) or sublimation (C) of the surface layer occurs, eventually affecting the PFCs lifetime

  7. Energy deposition and thermal effects of runaway electrons in ITER-FEAT plasma facing components

    Science.gov (United States)

    Maddaluno, G.; Maruccia, G.; Merola, M.; Rollet, S.

    2003-03-01

    The profile of energy deposited by runaway electrons (RAEs) of 10 or 50 MeV in International Thermonuclear Experimental Reactor-Fusion Energy Advanced Tokamak (ITER-FEAT) plasma facing components (PFCs) and the subsequent temperature pattern have been calculated by using the Monte Carlo code FLUKA and the finite element heat conduction code ANSYS. The RAE energy deposition density was assumed to be 50 MJ/m 2 and both 10 and 100 ms deposition times were considered. Five different configurations of PFCs were investigated: primary first wall armoured with Be, with and without protecting CFC poloidal limiters, both port limiter first wall options (Be flat tile and CFC monoblock), divertor baffle first wall, armoured with W. The analysis has outlined that for all the configurations but one (port limiter with Be flat tile) the heat sink and the cooling tube beneath the armour are well protected for both RAE energies and for both energy deposition times. On the other hand large melting (W, Be) or sublimation (C) of the surface layer occurs, eventually affecting the PFCs lifetime.

  8. Simulation of runaway electron generation and diffusion during major disruptions in the HL-2A tokamak

    International Nuclear Information System (INIS)

    Li, Yanli; Sun, Jizhong; Zhang, Yipo; Sang, Chaofeng; Wu, Na; Wang, Dezhen

    2014-01-01

    Highlights: • The strong and long duration magnetic perturbation (δB/B ∼ 1.0 × 10 −3 ) can restrain the RE generation effectively. • The REs are generated initially in the plasma core during disruptions. • The toroidal electric field does not exhibit a centrally hollow phenomenon. • The toroidal effects have little impact on the generation of RE and the evolution of toroidal electric field. - Abstract: The generation and diffusion of runaway electrons (REs) during major disruptions in the HL-2A tokamak has been studied numerically. The diffusion caused by the magnetic perturbation is especially addressed. The simulation results show that the strong magnetic perturbation (δB/B ∼ 1.0 × 10 −3 ) can cause a significant loss of REs due to the radial diffusion and restrain the RE avalanche effectively. The results also indicate that the REs are generated initially in the plasma core during disruptions, and that the toroidal electric field does not exhibit a centrally hollow phenomenon. In addition, it is found that the toroidal effects have little impact on the generation of RE and the evolution of toroidal electric field

  9. Relativistic spin-orbit interactions of photons and electrons

    Science.gov (United States)

    Smirnova, D. A.; Travin, V. M.; Bliokh, K. Y.; Nori, F.

    2018-04-01

    Laboratory optics, typically dealing with monochromatic light beams in a single reference frame, exhibits numerous spin-orbit interaction phenomena due to the coupling between the spin and orbital degrees of freedom of light. Similar phenomena appear for electrons and other spinning particles. Here we examine transformations of paraxial photon and relativistic-electron states carrying the spin and orbital angular momenta (AM) under the Lorentz boosts between different reference frames. We show that transverse boosts inevitably produce a rather nontrivial conversion from spin to orbital AM. The converted part is then separated between the intrinsic (vortex) and extrinsic (transverse shift or Hall effect) contributions. Although the spin, intrinsic-orbital, and extrinsic-orbital parts all point in different directions, such complex behavior is necessary for the proper Lorentz transformation of the total AM of the particle. Relativistic spin-orbit interactions can be important in scattering processes involving photons, electrons, and other relativistic spinning particles, as well as when studying light emitted by fast-moving bodies.

  10. Analysis of core plasma heating and ignition by relativistic electrons

    International Nuclear Information System (INIS)

    Nakao, Y.

    2002-01-01

    Clarification of the pre-compressed plasma heating by fast electrons produced by relativistic laser-plasma interaction is one of the most important issues of the fast ignition scheme in ICF. On the basis of overall calculations including the heating process, both by relativistic hot electrons and alpha-particles, and the hydrodynamic evolution of bulk plasma, we examine the feature of core plasma heating and the possibility of ignition. The deposition of the electron energy via long-range collective mode, i.e. Langmuir wave excitation, is shown to be comparable to that through binary electron-electron collisions; the calculation neglecting the wave excitation considerably underestimates the core plasma heating. The ignition condition is also shown in terms of the intensity I(h) and temperature T(h) of hot electrons. It is found that I(h) required for ignition increases in proportion to T(h). For efficiently achieving the fast ignition, electron beams with relatively 'low' energy (e.g.T(h) below 1 MeV) are desirable. (author)

  11. Generation and study of relativistic electron beam

    International Nuclear Information System (INIS)

    Iyyengar, S.K.; Ron, P.H.; Mittal, K.C.; Goel, A.K.; Ramaswamy, V.; Rohatgi, V.K.

    1977-01-01

    Pulsed Electron Beam (REB) technology has progressed rapidly in recent years because of applications in various fields like radiation sources, high power laser development, plasma heating and fusion research. The REB development programme at the Plasma Physics Section of Bhabha Atomic Research Centre, Bombay, has been described. The design features of the 375 KV, 3500 A, 75 Joule REB generator are discussed. The diagnostic equipment developed for the studies is described. The present experimental studies and some preliminary results on beam characterisation are presented. (author)

  12. Relativistic electron mirrors from high intensity laser nanofoil interactions

    International Nuclear Information System (INIS)

    Kiefer, Daniel

    2012-01-01

    The reflection of a laser pulse from a mirror moving close to the speed of light could in principle create an X-ray pulse with unprecedented high brightness owing to the increase in photon energy and accompanying temporal compression by a factor of 4γ 2 , where γ is the Lorentz factor of the mirror. While this scheme is theoretically intriguingly simple and was first discussed by A. Einstein more than a century ago, the generation of a relativistic structure which acts as a mirror is demanding in many different aspects. Recently, the interaction of a high intensity laser pulse with a nanometer thin foil has raised great interest as it promises the creation of a dense, attosecond short, relativistic electron bunch capable of forming a mirror structure that scatters counter-propagating light coherently and shifts its frequency to higher photon energies. However, so far, this novel concept has been discussed only in theoretical studies using highly idealized interaction parameters. This thesis investigates the generation of a relativistic electron mirror from a nanometer foil with current state-of-the-art high intensity laser pulses and demonstrates for the first time the reflection from those structures in an experiment. To achieve this result, the electron acceleration from high intensity laser nanometer foil interactions was studied in a series of experiments using three inherently different high power laser systems and free-standing foils as thin as 3nm. A drastic increase in the electron energies was observed when reducing the target thickness from the micrometer to the nanometer scale. Quasi-monoenergetic electron beams were measured for the first time from ultrathin (≤5nm) foils, reaching energies up to ∝35MeV. The acceleration process was studied in simulations well-adapted to the experiments, indicating the transition from plasma to free electron dynamics as the target thickness is reduced to the few nanometer range. The experience gained from those

  13. Relativistic electron mirrors from high intensity laser nanofoil interactions

    Energy Technology Data Exchange (ETDEWEB)

    Kiefer, Daniel

    2012-12-21

    The reflection of a laser pulse from a mirror moving close to the speed of light could in principle create an X-ray pulse with unprecedented high brightness owing to the increase in photon energy and accompanying temporal compression by a factor of 4γ{sup 2}, where γ is the Lorentz factor of the mirror. While this scheme is theoretically intriguingly simple and was first discussed by A. Einstein more than a century ago, the generation of a relativistic structure which acts as a mirror is demanding in many different aspects. Recently, the interaction of a high intensity laser pulse with a nanometer thin foil has raised great interest as it promises the creation of a dense, attosecond short, relativistic electron bunch capable of forming a mirror structure that scatters counter-propagating light coherently and shifts its frequency to higher photon energies. However, so far, this novel concept has been discussed only in theoretical studies using highly idealized interaction parameters. This thesis investigates the generation of a relativistic electron mirror from a nanometer foil with current state-of-the-art high intensity laser pulses and demonstrates for the first time the reflection from those structures in an experiment. To achieve this result, the electron acceleration from high intensity laser nanometer foil interactions was studied in a series of experiments using three inherently different high power laser systems and free-standing foils as thin as 3nm. A drastic increase in the electron energies was observed when reducing the target thickness from the micrometer to the nanometer scale. Quasi-monoenergetic electron beams were measured for the first time from ultrathin (≤5nm) foils, reaching energies up to ∝35MeV. The acceleration process was studied in simulations well-adapted to the experiments, indicating the transition from plasma to free electron dynamics as the target thickness is reduced to the few nanometer range. The experience gained from those

  14. Prediction Model for Relativistic Electrons at Geostationary Orbit

    Science.gov (United States)

    Khazanov, George V.; Lyatsky, Wladislaw

    2008-01-01

    We developed a new prediction model for forecasting relativistic (greater than 2MeV) electrons, which provides a VERY HIGH correlation between predicted and actually measured electron fluxes at geostationary orbit. This model implies the multi-step particle acceleration and is based on numerical integrating two linked continuity equations for primarily accelerated particles and relativistic electrons. The model includes a source and losses, and used solar wind data as only input parameters. We used the coupling function which is a best-fit combination of solar wind/interplanetary magnetic field parameters, responsible for the generation of geomagnetic activity, as a source. The loss function was derived from experimental data. We tested the model for four year period 2004-2007. The correlation coefficient between predicted and actual values of the electron fluxes for whole four year period as well as for each of these years is stable and incredibly high (about 0.9). The high and stable correlation between the computed and actual electron fluxes shows that the reliable forecasting these electrons at geostationary orbit is possible.

  15. Formation of stable, high-beta, relativistic-electron plasmas using electron cyclotron heating

    International Nuclear Information System (INIS)

    Guest, G.E.; Miller, R.L.

    1988-01-01

    A one-dimensional, steady-state, relativistic Fokker-Planck model of electron cyclotron heating (ECH) is used to analyse the heating kinetics underlying the formation of the two-component hot-electron plasmas characteristic of ECH in magnetic mirror configurations. The model is first applied to the well diagnosed plasmas obtained in SM-1 and is then used to simulate the effective generation of relativistic electrons by upper off-resonant heating (UORH), as demonstrated empirically in ELMO. The characteristics of unstable whistler modes and cyclotron maser modes are then determined for two-component hot-electron plasmas sustained by UORH. Cyclotron maser modes are shown to be strongly suppressed by the colder background electron species, while the growth rates of whistler modes are reduced by relativistic effects to levels that may render them unobservable, provided the hot-electron pressure anisotropy is below an energy dependent threshold. (author). 29 refs, 10 figs, 1 tab

  16. Relativistic electron beam interaction with a thin target

    International Nuclear Information System (INIS)

    Gazaix, M.

    1981-03-01

    This study is concerned with the increasing possibilities of electron energy deposition in thin targets. The thesis theoretical part studies the relativistic electron beam-plasma instability; the Buneman-Pierce instability in limited medium is also studied. In the experimental part, several questions are tentatively answered: - what is the spatial and temporal evolution of the anode material, in temperature and in density. - What sort of interaction is the beam-target interaction; more particularly questions about focusing and energy deposition are studied [fr

  17. Relativistic electron planar channeling and diffraction in thin monocrystals

    International Nuclear Information System (INIS)

    Vorob'ev, S.A.; Nurmagambetov, S.B.; Kaplin, V.V.; Rozum, E.I.

    1985-01-01

    The interaction of relativistic electrons with thin monocrystals was investigated in approximation of continuous potential of crystal plane system. Numerical technique for solution of one-dimensional Schroedinger equation with a periodic potential was developed. Numerical solutions conducted according to the technique were used to determine the forms of ngular distributions of electrons located in various zones of lteral motion. Calculation results were applied for analyzing experimentally obtained data on agular distribution of 5.1 MeV electrons projected at small angles onto the (110) planar system of a Si monocrystal. The conducted complex experimental and theoretical: investigations demonstrated the possibility of prevalen occupation of certain states of lateral motion and enabled to determine angular reg in directions of the electron beam projection on a crystal where either channeling effects or those of electron diffraction are important

  18. Examining Relativistic Electron Loss in the Outer Radiation Belt

    Science.gov (United States)

    Green, J. C.; Onsager, T. G.; O'Brien, P.

    2003-12-01

    Since the discovery of earth's radiation belts researchers have sought to identify the mechanisms that dictate the seemingly erratic relativistic electron flux levels in the outer belt. Contrary to intuition, relativistic electron flux levels do not always increase during geomagnetic storms even though these storms signify enhanced energy input from the solar wind to the magnetosphere [Reeves et al., 2003; O'Brien et al., 2001]. The fickle response of the radiation belt electrons to geomagnetic activity suggests that flux levels are determined by the outcome of a continuous competition between acceleration and loss. Some progress has been made developing and testing acceleration mechanisms but little is known about how relativistic electrons are lost. We examine relativistic electron losses in the outer belt focusing our attention on flux decrease events of the type first described by Onsager et al. [2002]. The study showed a sudden decrease of geosynchronous >2MeV electron flux occurring simultaneously with local stretching of the magnetic field. The decrease was first observed near 15:00 MLT and progressed to all local times after a period of ˜10 hours. Expanding on the work of Onsager et al. [2002], we have identified ˜ 51 such flux decrease events in the GOES and LANL data and present the results of a superposed epoch analysis of solar wind data, geomagnetic activity indicators, and locally measured magnetic field and plasma data. The analysis shows that flux decreases occur after 1-2 days of quiet condition. They begin when either the solar wind dynamic pressure increases or Bz turns southward pushing hot dense plasma earthward to form a partial ring current and stretched magnetic field at dusk. Adiabatic electron motion in response to the stretched magnetic field may explain the initial flux reduction; however, often the flux does not recover with the magnetic field recovery, indicating that true loss from the magnetosphere is occurring. Using Polar and

  19. rf streak camera based ultrafast relativistic electron diffraction.

    Science.gov (United States)

    Musumeci, P; Moody, J T; Scoby, C M; Gutierrez, M S; Tran, T

    2009-01-01

    We theoretically and experimentally investigate the possibility of using a rf streak camera to time resolve in a single shot structural changes at the sub-100 fs time scale via relativistic electron diffraction. We experimentally tested this novel concept at the UCLA Pegasus rf photoinjector. Time-resolved diffraction patterns from thin Al foil are recorded. Averaging over 50 shots is required in order to get statistics sufficient to uncover a variation in time of the diffraction patterns. In the absence of an external pump laser, this is explained as due to the energy chirp on the beam out of the electron gun. With further improvements to the electron source, rf streak camera based ultrafast electron diffraction has the potential to yield truly single shot measurements of ultrafast processes.

  20. Bent paths of a positive streamer and a cathode-directed spark leader in diffuse discharges preionized by runaway electrons

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Cheng; Shao, Tao, E-mail: st@mail.iee.ac.cn; Wang, Ruixue; Yan, Ping [Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190 (China); Key Laboratory of Power Electronics and Electric Drive, Chinese Academy of Sciences, Beijing 100190 (China); Tarasenko, Viktor F.; Beloplotov, Dmitry V.; Lomaev, Mikhail I.; Sorokin, Dmitry A. [Institute of High Current Electronics, Russian Academy of Science, Tomsk 634055 (Russian Federation); National Research Tomsk State University, 36 Lenin Ave., Tomsk 634050 (Russian Federation)

    2015-03-15

    Diffuse discharges preionized by runaway electrons can produce large-area homogeneous discharges at elevated pressures, which is an intriguing phenomenon in the physics of pulsed discharges. In this paper, runaway-electron-preionized diffuse discharge (REP DD) was obtained in a wide pressure range (0.05–0.25 MPa), and under certain conditions a positive streamer and a cathode-directed spark leader could be observed to propagate at some angles to the applied (background) electric field lines. For a 16-mm gap at an air pressure of 0.08–0.1 MPa, the percentage of pulses in which such propagation is observed is about 5%–50% of their total number, and in the other pulses such bent paths could not be observed because there is even no streamer or cathode-directed spark leader in diffuse discharges. In our opinion, such propagation of the positive streamer and the cathode-directed spark leader at some angle to the background electric field lines owes to different increase rates of the electron density in different regions of the discharge volume under REP DD conditions. Therefore, during the formation of a REP DD, the increase of the electron density is inhomogeneous and nonsimultaneous, resulting in an electron density gradient at the ionization wave front.

  1. Bent paths of a positive streamer and a cathode-directed spark leader in diffuse discharges preionized by runaway electrons

    International Nuclear Information System (INIS)

    Zhang, Cheng; Shao, Tao; Wang, Ruixue; Yan, Ping; Tarasenko, Viktor F.; Beloplotov, Dmitry V.; Lomaev, Mikhail I.; Sorokin, Dmitry A.

    2015-01-01

    Diffuse discharges preionized by runaway electrons can produce large-area homogeneous discharges at elevated pressures, which is an intriguing phenomenon in the physics of pulsed discharges. In this paper, runaway-electron-preionized diffuse discharge (REP DD) was obtained in a wide pressure range (0.05–0.25 MPa), and under certain conditions a positive streamer and a cathode-directed spark leader could be observed to propagate at some angles to the applied (background) electric field lines. For a 16-mm gap at an air pressure of 0.08–0.1 MPa, the percentage of pulses in which such propagation is observed is about 5%–50% of their total number, and in the other pulses such bent paths could not be observed because there is even no streamer or cathode-directed spark leader in diffuse discharges. In our opinion, such propagation of the positive streamer and the cathode-directed spark leader at some angle to the background electric field lines owes to different increase rates of the electron density in different regions of the discharge volume under REP DD conditions. Therefore, during the formation of a REP DD, the increase of the electron density is inhomogeneous and nonsimultaneous, resulting in an electron density gradient at the ionization wave front

  2. Extended quasiparticle approximation for relativistic electrons in plasmas

    Directory of Open Access Journals (Sweden)

    V.G.Morozov

    2006-01-01

    Full Text Available Starting with Dyson equations for the path-ordered Green's function, it is shown that the correlation functions for relativistic electrons (positrons in a weakly coupled non-equilibrium plasmas can be decomposed into sharply peaked quasiparticle parts and off-shell parts in a rather general form. To leading order in the electromagnetic coupling constant, this decomposition yields the extended quasiparticle approximation for the correlation functions, which can be used for the first principle calculation of the radiation scattering rates in QED plasmas.

  3. Microwave generation and frequency conversion using intense relativistic electron beams

    International Nuclear Information System (INIS)

    Buzzi, J.M.; Doucet, H.J.; Etlicher, B.

    1977-01-01

    Some aspects of the microwave generation and frequency conversion by relativistic electron beams are studied. Using an electron synchrotron maser, the excitation of microwaves by an annular relativistic electron beam propagating through a circular wave guide immersed in a longitudinal magnetic field is analyzed. This theoretical model is somewhat more realistic than the previous one because the guiding centers are not on the wave guide axis. Microwave reflection is observed on a R.E.B. front propagating into a gas filled waveguide. The frequency conversion from the incident X-band e.m. waves and the reflected Ka band observed signal is consistent with the Doppler model for β = 0.7. This value agrees with the average beam front velocity as measured from time-of-flight using two B/sub theta/ probes. The reflection is found to occur during the current rise time. With a low impedance device (2 Ω, 400 keV) a GW X-band emission has been observed using thin anodes and a gas filled waveguide. This emission is probably due to the self-fields of the beam and could be used as a diagnostic

  4. Generation of runaway electrons during deterioration of lower hybrid power coupling in lower hybrid current drive plasmas in the HT-7 tokamak

    International Nuclear Information System (INIS)

    Chen, Z Y; Ju, H J; Zhu, J X; Li, M; Cai, W D; Liang, H F; Wan, B N; Shi, Y J; Xu, H D

    2009-01-01

    Efficient coupling of lower hybrid (LH) power from the wave launcher to the plasma is a very important issue in lower hybrid current drive (LHCD) experiments. The large unbalanced reflections in the grill trigger the LH protection system, which will trip the power, resulting in the reduction of the coupled LH power. The generation of runaway electrons has been investigated in LHCD plasmas with deterioration of LH coupling in the HT-7 tokamak. The deterioration of LH coupling results in an increase of the loop voltage and a more energetic fast electron population. These two effects favor the generation of a runaway population. It is found that most of the fast electrons generated by LH waves through parallel electron Landau damping were converted into a runaway population through the acceleration from the toroidal electric field when significant deterioration of LH coupling occurs.

  5. Status report on the relativistic electron beam technology

    International Nuclear Information System (INIS)

    Iyyengar, S.K.; Ron, P.H.; Rohatgi, V.K.

    1974-01-01

    The status of technology of the pulsed relativistic electron beam (REB) has been examined and summarised in this report. With the present technology the beam generator can be used either as a source of intense electron burst or to produce bursts of positive ions x and γ-rays, and neutrons by suitable secondary reactions. A large number of applications have been identified where this technology can play an important role. Typical applications of the technology include : (a) generation and heating of fusion plasma (b) development of high power laser and (c) sterilisation and radiation sources. The present day cost of radiation produced by REB is competitive with the cost of radiation produced from Co 60 source. At the same time there are indications that the cost of radiation from REB source can be significantly reduced with advanced technology. The type of equipment developed by various laboratories to study realitivistic electron beams is also included in this report. (author)

  6. Intense relativistic electron beam generation from KALI-5000 pulse accelerator

    International Nuclear Information System (INIS)

    Roy, A.; Mondal, J.; Mitra, S.; Durga Praveen Kumar, D.; Sharma, Archana; Nagesh, K.V.; Chakravarthy, D.P.

    2006-01-01

    Intense Relativistic Electron Beam (IREB) with parameters 420 keV, 22 kA, 100 ns has been generated from indigenously developed pulse power system KALI- 5000. High current electron beam is generated from explosive field emission graphite cathodes. Studies have been conducted by changing the diameter of graphite cathode and also the anode cathode gap. In order to avoid prepulse effect it was concluded that anode cathode (AK) gap should be kept larger than estimated by the Child Langmuir relation. Beam voltage has been measured by a copper sulphate voltage divider, beam current by a self integrating Rogowski coil and B-dot probe. Electron beam diode Impedance and Perveance were obtained from the experimentally measured beam voltage and current. (author)

  7. Electron correlation within the relativistic no-pair approximation

    Energy Technology Data Exchange (ETDEWEB)

    Almoukhalalati, Adel; Saue, Trond, E-mail: trond.saue@irsamc.ups-tlse.fr [Laboratoire de Chimie et Physique Quantique, UMR 5626 CNRS — Université Toulouse III-Paul Sabatier, 118 route de Narbonne, F-31062 Toulouse (France); Knecht, Stefan [ETH Zürich, Laboratorium für Physikalische Chemie, Vladimir-Prelog-Weg 2, 8093 Zürich (Switzerland); Jensen, Hans Jørgen Aa. [Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense M (Denmark); Dyall, Kenneth G. [Dirac Solutions, 10527 NW Lost Park Drive, Portland, Oregon 97229 (United States)

    2016-08-21

    This paper addresses the definition of correlation energy within 4-component relativistic atomic and molecular calculations. In the nonrelativistic domain the correlation energy is defined as the difference between the exact eigenvalue of the electronic Hamiltonian and the Hartree-Fock energy. In practice, what is reported is the basis set correlation energy, where the “exact” value is provided by a full Configuration Interaction (CI) calculation with some specified one-particle basis. The extension of this definition to the relativistic domain is not straightforward since the corresponding electronic Hamiltonian, the Dirac-Coulomb Hamiltonian, has no bound solutions. Present-day relativistic calculations are carried out within the no-pair approximation, where the Dirac-Coulomb Hamiltonian is embedded by projectors eliminating the troublesome negative-energy solutions. Hartree-Fock calculations are carried out with the implicit use of such projectors and only positive-energy orbitals are retained at the correlated level, meaning that the Hartree-Fock projectors are frozen at the correlated level. We argue that the projection operators should be optimized also at the correlated level and that this is possible by full Multiconfigurational Self-Consistent Field (MCSCF) calculations, that is, MCSCF calculations using a no-pair full CI expansion, but including orbital relaxation from the negative-energy orbitals. We show by variational perturbation theory that the MCSCF correlation energy is a pure MP2-like correlation expression, whereas the corresponding CI correlation energy contains an additional relaxation term. We explore numerically our theoretical analysis by carrying out variational and perturbative calculations on the two-electron rare gas atoms with specially tailored basis sets. In particular, we show that the correlation energy obtained by the suggested MCSCF procedure is smaller than the no-pair full CI correlation energy, in accordance with the

  8. Self-sputtering runaway in high power impulse magnetron sputtering: The role of secondary electrons and multiply charged metal ions

    International Nuclear Information System (INIS)

    Anders, Andre

    2008-01-01

    Self-sputtering runaway in high power impulse magnetron sputtering is closely related to the appearance of multiply charged ions. This conclusion is based on the properties of potential emission of secondary electrons and energy balance considerations. The effect is especially strong for materials whose sputtering yield is marginally greater than unity. The absolute deposition rate increases ∼Q 1/2 , whereas the rate normalized to the average power decreases ∼Q -1/2 , with Q being the mean ion charge state number

  9. Optimization and application of electron acceleration in relativistic laser plasmas

    International Nuclear Information System (INIS)

    Koenigstein, Thomas

    2013-01-01

    This thesis describes experiments and simulations of the acceleration of electrons to relativistic energies (toward γ e ∼ 10 3 ) by structures in plasmas which are generated by ultrashort (pulse length < 10 -14 s) laser pulses. The first part of this work discusses experiments in a parameter space where quasimonoenergetic electron bunches are generated in subcritical (gaseous) plasmas and compares them to analytical scalings. A primary concern in this work is to optimize the stability of the energy and the pointing of the electrons. The second part deals with acceleration of electrons along the surface of solid substrates by laser-plasma interaction. The measurements show good agreement with existing analytical scalings and dedicated numerical simulations. In the third part, two new concepts for multi-stage acceleration will be presented and parameterised by analytical considerations and numerical simulations. The first method uses electron pairs, as produced in the first part, to transfer energy from the first bunch to the second by means of a plasma wave. The second method utilizes a low intensity laser pulse in order to inject electrons from a neutral gas into the accelerating phase of a plasma wave. The final chapter proposes and demonstrates a first application that has been developed in collaboration with ESA. The use of electron beams with exponential energy distribution, as in the second part of this work, offers the potential to investigate the resistance of electronic components against space radiation exposure.

  10. Relativistic electronic dressing in laser-assisted ionization of atomic hydrogen by electron impact

    International Nuclear Information System (INIS)

    Attaourti, Y.; Taj, S.

    2004-01-01

    Within the framework of the coplanar binary geometry where it is justified to use plane wave solutions for the study of the (e,2e) reaction and in the presence of a circularly polarized laser field, we introduce as a first step the Dirac-Volkov plane wave Born approximation 1 where we take into account only the relativistic dressing of the incident and scattered electrons. Then, we introduce the Dirac-Volkov plane wave Born approximation 2 where we take totally into account the relativistic dressing of the incident, scattered, and ejected electrons. We then compare the corresponding triple differential cross sections for laser-assisted ionization of atomic hydrogen by electron impact both for the nonrelativistic and the relativistic regime

  11. Current-Voltage Characteristic of Nanosecond - Duration Relativistic Electron Beam

    Science.gov (United States)

    Andreev, Andrey

    2005-10-01

    The pulsed electron-beam accelerator SINUS-6 was used to measure current-voltage characteristic of nanosecond-duration thin annular relativistic electron beam accelerated in vacuum along axis of a smooth uniform metal tube immersed into strong axial magnetic field. Results of these measurements as well as results of computer simulations performed using 3D MAGIC code show that the electron-beam current dependence on the accelerating voltage at the front of the nanosecond-duration pulse is different from the analogical dependence at the flat part of the pulse. In the steady-state (flat) part of the pulse), the measured electron-beam current is close to Fedosov current [1], which is governed by the conservation law of an electron moment flow for any constant voltage. In the non steady-state part (front) of the pulse, the electron-beam current is higher that the appropriate, for a giving voltage, steady-state (Fedosov) current. [1] A. I. Fedosov, E. A. Litvinov, S. Ya. Belomytsev, and S. P. Bugaev, ``Characteristics of electron beam formed in diodes with magnetic insulation,'' Soviet Physics Journal (A translation of Izvestiya VUZ. Fizika), vol. 20, no. 10, October 1977 (April 20, 1978), pp.1367-1368.

  12. Relativistic properties of spherical diodes with a radial electron flux

    International Nuclear Information System (INIS)

    Chetvertkov, V.I.

    1987-01-01

    Forward and backward electron diodes with concentric spherical electrodes (inner cathode, outer anode or vice versa) are considered under the assumption that the emission is limited by the space charge and the guiding magnetic field is predominantly radial within a region of solid angle α f < 4π bounding the electron flux. The Poisson equations for the relativistic factor γ are solved for generalized model dependences. Ultrarelativistic and new nonrelativistic solutions are found, and analytic approximations to the solution near the cathode are used to carry out numerical calculations. The characteristics of forward and backward diodes turn out to be related to the exact solutions for a planar diode. Accurate approximations are found for calculating the diode parameters in a wide range of voltages; they can also be used to check the validity of the 3/2 laws and the ultrarelativistic solutions

  13. Response of a relativistic quantum magnetized electron gas

    International Nuclear Information System (INIS)

    Melrose, Donald B; Weise, Jeanette I

    2009-01-01

    The response 4-tensor is derived for a spin-independent, relativistic magnetized quantum electron gas. The sum over spins is carried out both directly and using a procedure due to Ritus. The 4-tensor components are written in terms of a sum over the two solutions of the resonance condition for the particle 4-momentum. It is shown that the dispersive properties may be described in terms of a single plasma dispersion function, for arbitrary occupation numbers for electrons and positrons in each Landau level. The plasma dispersion function is evaluated explicitly in the completely degenerate and nondegenerate thermal limits. The perpendicular wave number appears in the arguments of J-functions, which are proportional to generalized Laguerre polynomials, but not in the plasma dispersion function. The result generalizes a known form for the response tensor for parallel propagation (in the completely degenerate case), when the J-functions are either zero or unity, to arbitrary angles of propagation.

  14. Intense synchrotron radiation from a magnetically compressed relativistic electron layer

    International Nuclear Information System (INIS)

    Shearer, J.W.; Nowak, D.A.; Garelis, E.; Condit, W.C.

    1975-10-01

    Using a simple model of a relativistic electron layer rotating in an axial magnetic field, energy gain by an increasing magnetic field and energy loss by synchrotron radiation were considered. For a typical example, initial conditions were approximately 8 MeV electron in approximately 14 kG magnetic field, at a layer radius of approximately 20 mm, and final conditions were approximately 4 MG magnetic field approximately 100 MeV electron layer energy at a layer radius of approximately 1.0 mm. In the final state, the intense 1-10 keV synchrotron radiation imposes an electron energy loss time constant of approximately 100 nanoseconds. In order to achieve these conditions in practice, the magnetic field must be compressed by an imploding conducting liner; preferably two flying rings in order to allow the synchrotron radiation to escape through the midplane. The synchrotron radiation loss rate imposes a lower limit to the liner implosion velocity required to achieve a given final electron energy (approximately 1 cm/μsec in the above example). In addition, if the electron ring can be made sufficiently strong (field reversed), the synchrotron radiation would be a unique source of high intensity soft x-radiation

  15. Quasistationary model of high current relativistic electron beam. 2. The own magnetic field of relativistic electron beam in cylindrical Drift space

    International Nuclear Information System (INIS)

    Brenner, S.E.; Gandul', E.M.; Podkopaev, A.P.

    1995-01-01

    This paper is devoted to obtaining the components of own magnetic field of high current relativistic electron beam passing through the cylindrical drift space superconducting walls: the peculiarities of applied numerical scheme have been also described briefly. (author). 6 refs

  16. Relativistic electron beam acceleration by cascading nonlinear Landau damping of electromagnetic waves in a plasma

    International Nuclear Information System (INIS)

    Sugaya, R.; Ue, A.; Maehara, T.; Sugawa, M.

    1996-01-01

    Acceleration and heating of a relativistic electron beam by cascading nonlinear Landau damping involving three or four intense electromagnetic waves in a plasma are studied theoretically based on kinetic wave equations and transport equations derived from relativistic Vlasov endash Maxwell equations. Three or four electromagnetic waves excite successively two or three nonresonant beat-wave-driven relativistic electron plasma waves with a phase velocity near the speed of light [v p =c(1-γ -2 p ) 1/2 , γ p =ω/ω pe ]. Three beat waves interact nonlinearly with the electron beam and accelerate it to a highly relativistic energy γ p m e c 2 more effectively than by the usual nonlinear Landau damping of two electromagnetic waves. It is proved that the electron beam can be accelerated to more highly relativistic energy in the plasma whose electron density decreases temporally with an appropriate rate because of the temporal increase of γ p . copyright 1996 American Institute of Physics

  17. Atmospheric nitrous oxide produced by solar protons and relativistic electrons

    International Nuclear Information System (INIS)

    Prasad, S.S.; Zipf, E.C.

    1981-01-01

    An alternative means of nitric oxide production in the stratosphere to that of direct formation in the upper atmosphere by solar proton (SP) events and by relativistic electron precipitation (REP) events from the Earth's radiation belt, is described. It is suggested that nitrous oxide is produced in the mesosphere and then migrates downward and is converted in the stratosphere to NO by the reaction N 2 O + O( 1 D) → 2 NO. Such a process could amplify the direct NO production by >10%. Mesospheric nitrous oxide mixing ratios increase to values as high as 6 x 10 -7 due to REP- and SP- related production. Lateral transport will reduce these high values but mesospheric mixing ratios of N 2 O in the high latitudes would approach 10 -7 , considerably greater than those expected on the basis of theories which neglect REP- and SP-related production of this species. (U.K.)

  18. Relativistic electron-beam transport in curved channels

    International Nuclear Information System (INIS)

    Vittitoe, C.N.; Morel, J.E.; Wright, T.P.

    1982-01-01

    Collisionless single particle trajectories are modeled for a single plasma channel having one section curved in a circular arc. The magnetic field is developed by superposition of straight and curved channel segments. The plasma density gives charge and beam-current neutralization. High transport efficiencies are found for turning a relativistic electron beam 90 0 under reasonable conditions of plasma current, beam energy, arc radius, channel radius, and injection distributions in velocity and in position at the channel entrance. Channel exit distributions in velocity and position are found consistent with those for a straight plasma channel of equivalent length. Such transport problems are important in any charged particle-beam application constrained by large diode-to-target distance or by requirements of maximum power deposition in a confined area

  19. Injection of a relativistic electron beam into neutral hydrogen gas

    International Nuclear Information System (INIS)

    de Haan, P.H.; Janssen, G.C.A.M.; Hopman, H.J.; Granneman, E.H.A.

    1982-01-01

    The injection of a relativistic electron beam (0.8 MeV, 6 kA, 150 nsec) into hydrogen gas of 190 Pa pressure results in a plasma with density n/sub e/approx. =10 20 m -3 and temperature kT/sub e/< or approx. =kT/sub i/approx. =3.5 eV. The results of the measurements show good agreement with computations based on a model combining gas ionization and turbulent plasma heating. It is found that a quasistationary state exists in which the energy lost by the beam (about 6% of the total kinetic energy of the beam) is partly used to further ionize and dissociate the gas and for the other part is lost as line radiation

  20. Higher harmonics generation in relativistic electron beam with virtual cathode

    Energy Technology Data Exchange (ETDEWEB)

    Kurkin, S. A., E-mail: KurkinSA@gmail.com; Badarin, A. A.; Koronovskii, A. A.; Hramov, A. E. [Saratov State Technical University, Politechnicheskaja 77, Saratov 410028, Russia and Saratov State University, Astrakhanskaja 83, Saratov 410012 (Russian Federation)

    2014-09-15

    The study of the microwave generation regimes with intense higher harmonics taking place in a high-power vircator consisting of a relativistic electron beam with a virtual cathode has been made. The characteristics of these regimes, in particular, the typical spectra and their variations with the change of the system parameters (beam current, the induction of external magnetic field) as well as physical processes occurring in the system have been analyzed by means of 3D electromagnetic simulation. It has been shown that the system under study demonstrates the tendency to the sufficient growth of the amplitudes of higher harmonics in the spectrum of current oscillations in the VC region with the increase of beam current. The obtained results allow us to consider virtual cathode oscillators as promising high power mmw-to-THz sources.

  1. Collective ion acceleration by relativistic electron beams in plasmas

    International Nuclear Information System (INIS)

    Galvez, M.; Gisler, G.

    1991-01-01

    A two-dimensional fully electromagnetic particle-in-cell code is used to simulate the interaction of a relativistic electron beam injected into a finite-size background neutral plasma. The simulations show that the background electrons are pushed away from the beam path, forming a neutralizing ion channel. Soon after the beam head leaves the plasma, a virtual cathode forms which travels away with the beam. However, at later times a second, quasi-stationary, virtual cathode forms. Its position and strength depends critically on the parameters of the system which critically determines the efficiency of the ion acceleration process. The background ions trapped in the electrostatic well of the virtual cathode are accelerated and at later times, the ions as well as the virtual cathode drift away from the plasma region. The surfing of the ions in the electrostatic well produces an ion population with energies several times the initial electron beam energy. It is found that optimum ion acceleration occurs when the beam-to-plasma density ratio is near unity. When the plasma is dense, the beam is a weak perturbation and accelerates few ions, while when the plasma is tenuous, the beam is not effectively neutralized, and a virtual cathode occurs right at the injection plane. The simulations also show that, at the virtual cathode position, the electron beam is pinched producing a self-focusing phenomena

  2. DKE: a fast numerical solver for the 3-D relativistic bounce-averaged electron drift kinetic equation

    Energy Technology Data Exchange (ETDEWEB)

    Decker, J.; Peysson, Y

    2004-12-01

    A new original code for solving the 3-D relativistic and bounce-averaged electron drift kinetic equation is presented. It designed for the current drive problem in tokamak with an arbitrary magnetic equilibrium. This tool allows self-consistent calculations of the bootstrap current in presence of other external current sources. RF current drive for arbitrary type of waves may be used. Several moments of the electron distribution function are determined, like the exact and effective fractions of trapped electrons, the plasma current, absorbed RF power, runaway and magnetic ripple loss rates and non-thermal Bremsstrahlung. Advanced numerical techniques have been used to make it the first fully implicit (reverse time) 3-D solver, particularly well designed for implementation in a chain of code for realistic current drive calculations in high {beta}{sub p} plasmas. All the details of the physics background and the numerical scheme are presented, as well a some examples to illustrate main code capabilities. Several important numerical points are addressed concerning code stability and potential numerical and physical limitations. (authors)

  3. DKE: a fast numerical solver for the 3-D relativistic bounce-averaged electron drift kinetic equation

    International Nuclear Information System (INIS)

    Decker, J.; Peysson, Y.

    2004-12-01

    A new original code for solving the 3-D relativistic and bounce-averaged electron drift kinetic equation is presented. It designed for the current drive problem in tokamak with an arbitrary magnetic equilibrium. This tool allows self-consistent calculations of the bootstrap current in presence of other external current sources. RF current drive for arbitrary type of waves may be used. Several moments of the electron distribution function are determined, like the exact and effective fractions of trapped electrons, the plasma current, absorbed RF power, runaway and magnetic ripple loss rates and non-thermal Bremsstrahlung. Advanced numerical techniques have been used to make it the first fully implicit (reverse time) 3-D solver, particularly well designed for implementation in a chain of code for realistic current drive calculations in high β p plasmas. All the details of the physics background and the numerical scheme are presented, as well a some examples to illustrate main code capabilities. Several important numerical points are addressed concerning code stability and potential numerical and physical limitations. (authors)

  4. On the relativistic and nonrelativistic electron descriptions in high-energy atomic collisions

    International Nuclear Information System (INIS)

    Voitkiv, A.B

    2007-01-01

    We consider the relativistic and nonrelativistic descriptions of an atomic electron in collisions with point-like charged projectiles moving at relativistic velocities. We discuss three different forms of the fully relativistic first-order transition amplitude. Using the Schroedinger-Pauli equation to describe the atomic electron we establish the correct form of the nonrelativistic first-order transition amplitude. We also show that the so-called semi-relativistic treatment, in which the Darwin states are used to describe the atomic electron, is in fact fully equivalent to the nonrelativistic consideration. The comparison of results obtained with the relativistic and nonrelativistic electron descriptions shows that the latter is accurate within 20-30% up to Z a ∼ a is the atomic nuclear charge

  5. Thermal relaxation time of a mixture of relativistic electrons and neutrinos

    International Nuclear Information System (INIS)

    Herrera, M.A.; Hacyan, S.

    1987-01-01

    The interaction between the components of a relativistic binary mixture is studied by means of a fully covariant formalism. Assuming both components to differ slightly in temperature, an application of the relativistic Boltzmann equation yields general expressions for the energy transfer rate and for the relaxation time of the system. The resulting relation is then applied to a mixture of relativistic electrons and neutrinos to obtain numerical values of its relaxation time. (author)

  6. Relativistic electron beam - plasma interaction with intense self-fields

    International Nuclear Information System (INIS)

    Davidson, R.C.

    1984-01-01

    The major interest in the equilibrium, stability and radiation properties of relativistic electron beams and in beam-plasma interactions originates from several diverse research areas. It is well known that a many-body collection of charged particles in which there is not overall charge neutrality and/or current neutrality can be characterized by intense self-electric fields and/or self-magnetic fields. Moreover, the intense equilibrium self-fields associated with the lack of charge neutrality and/or current neutrality can have a large effect on particle trajectories and on detailed equilibrium and stability behavior. The main emphasis in Sections 9.1.2-9.1.5 of this chapter is placed on investigations of the important influence of self-fields on the equilibrium and stability properties of magnetically confined electron beam-plasma systems. Atomic processes and discrete particle interactions (binary collisions) are omitted from the analysis, and collective processes are assumed to dominate on the time and length scales of interest. Moreover, both macroscopic (Section 9.1.2) and kinetic (Sections 9.1.3-9.1.5) theoretical models are developed and used to investigate equilibrium and stability properties in straight cylindrical geometry. Several of the classical waves and instabilities characteristic of nonneutral plasmas and beam-plasma systems are analyzed in Sections 9.1.2-9.1.5, including stable surface oscillation on a nonneutral electron beam, the ion resonance instability, the diocotron instability, two-stream instabilities between beam electrons and plasma electrons and between beam electrons and plasma ions, the filamentation instability, the modified two-stream instability, etc

  7. Superdiffusion of relativistic electrons at supernova remnant shocks

    Science.gov (United States)

    Perri, Silvia

    2018-01-01

    Anomalous transport has been observed in various systems as nonlinear systems, numerical simulations of plasma turbulence, in laboratory plasmas, and recently in the propagation of energetic particles in the interplanetary space. Thanks to in situ observations it has been possible to deduce transport properties directly from spacecraft data. This technique has further found applicability to remote observations of relativistic electrons accelerated at supernova remnants (SNRs) shocks, pointing out that far upstream of the blast waves, the x-ray synchrotron emission, as captured by the Chandra spacecraft, is consistent with models of superdiffusive transport (i.e., transport faster than normal diffusive). Here we present and summarize evidences of superdiffusion both in the interplanetary space and upstream of SNRs shock fronts, in particular by analyzing, for the first time in the framework of superdiffusion, the transport properties of electrons accelerated at the young G1.9+0.3 SNR. We also briefly describe how this new model can be used to interpret radio emissions from electrons accelerated at shocks forming during galaxy cluster mergers.

  8. On the limiting stationary currents of relativistic electron beams

    International Nuclear Information System (INIS)

    Kavchuk, V.N.; Kondratenko, A.N.

    1987-01-01

    The problem on electron beam transport in the system of different configurations both vacuum and filled with gas or plasma is connected with the problem of the limiting current, which can conduct such systems. Two models of a vacuum relativistic electron beam (REB) are considered. It is shown that there is upper limit for the value of the external magnetic field, H 0 , in the model of isovelocity REB with the constant longitudinal beam particle rate, β z =const. Estimation of the limiting current of REB as a series of inverse power H 0 is obtained. Estimations of the limiting current of magnetized hallow REB with thin walls are obtained in another model with β z ≠ const. Determination used in this case of the limiting current is directly connected with ''trapping'' of the beam central part due to formation of a virtual cathode and based on consideration of uniflux electron motion in the beam. Such an approach allows to obtain estimations of the limiting current of the thin-wall hallow beam. In this case an upper limit for the thickness of the beam wall is connected with the bottom limit for the value of the external magnetic field providing radial beam equilibrium

  9. Precipitation of relativistic electrons of the Van Allen belts into the proton aurora

    International Nuclear Information System (INIS)

    Jordanova, Vania K.; Miyoshi, Y.; Sakaguchi, K.; Shiokawa, K.; Evans, D.S.; Albert, Jay; Connors, M

    2008-01-01

    The Van Allen electron belts consist of two regions encircling the earth in which relativistic electrons are trapped in the earth's magnetic field. Populations of relativistic electrons in the Van Allen belts vary greatly with geomagnetic disturbance and they are a major source of damage to space vehicles. In order to know when and by how much these populations of relativistic electrons increase, it is important to elucidate not only the cause of acceleration of relativistic electrons but also the cause of their loss from the Van Allen belts. Here we show the first evidence that left-hand polarized electromagnetic ion cyclotron (EMIC) plasma waves can cause the loss of relativistic electrons into the atmosphere, on the basis of results of an excellent set of ground and satellite observations showing coincident precipitation of ions with energies of tens of keV and of relativistic electrons into an isolated proton aurora. The proton aurora was produced by precipitation of ions with energies of tens of keV due to EMIC waves near the plasma pause, which is a manifestation of wave-particle interactions. These observations clarify that ions with energies of tens of keV affect the evolution of relativistic electrons in the Van Allen belts via parasitic resonance with EMIC waves, an effect that was first theoretically predicted in the early 1970's

  10. Ion-acoustic envelope modes in a degenerate relativistic electron-ion plasma

    Energy Technology Data Exchange (ETDEWEB)

    McKerr, M.; Kourakis, I. [Centre for Plasma Physics, School of Mathematics and Physics, Queen' s University Belfast, BT7 1NN Belfast, Northern Ireland (United Kingdom); Haas, F. [Instituto de Física, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, Porto Alegre, RS (Brazil)

    2016-05-15

    A self-consistent relativistic two-fluid model is proposed for one-dimensional electron-ion plasma dynamics. A multiple scales perturbation technique is employed, leading to an evolution equation for the wave envelope, in the form of a nonlinear Schrödinger type equation (NLSE). The inclusion of relativistic effects is shown to introduce density-dependent factors, not present in the non-relativistic case—in the conditions for modulational instability. The role of relativistic effects on the linear dispersion laws and on envelope soliton solutions of the NLSE is discussed.

  11. Spectral measurements of runway electrons in the TEXTOR tokamak

    International Nuclear Information System (INIS)

    Kudyakov, Timur

    2009-01-01

    ergodic divertor (DED) runaway electrons with different energies demonstrate a different sensitivity to the DED. Again, highly relativistic electrons are less sensitive to the stochastic magnetic field than the low energy ones. Measurements of runaway electrons during the plasma disruptions have been carried out by the new probe. The probe has shown two distinct losses of runaways during the thermal quench (runaways were produced at the start up of the discharge) and during the current quench (runaways were produced due to the dissipation of the magnetic field). Important parameters, such as the runaway flux, the energy distribution, the temporal evolution and the thermal load in materials have been studied. The obtained results allow to estimate the thermal load due to runaway electrons in the ITER tokamak. (orig.)

  12. Spectral measurements of runway electrons in the TEXTOR tokamak

    Energy Technology Data Exchange (ETDEWEB)

    Kudyakov, Timur

    2009-07-22

    ergodic divertor (DED) runaway electrons with different energies demonstrate a different sensitivity to the DED. Again, highly relativistic electrons are less sensitive to the stochastic magnetic field than the low energy ones. Measurements of runaway electrons during the plasma disruptions have been carried out by the new probe. The probe has shown two distinct losses of runaways during the thermal quench (runaways were produced at the start up of the discharge) and during the current quench (runaways were produced due to the dissipation of the magnetic field). Important parameters, such as the runaway flux, the energy distribution, the temporal evolution and the thermal load in materials have been studied. The obtained results allow to estimate the thermal load due to runaway electrons in the ITER tokamak. (orig.)

  13. Silicon nanowire based high brightness, pulsed relativistic electron source

    Directory of Open Access Journals (Sweden)

    Deep Sarkar

    2017-06-01

    Full Text Available We demonstrate that silicon nanowire arrays efficiently emit relativistic electron pulses under irradiation by a high-intensity, femtosecond, and near-infrared laser (∼1018 W/cm2, 25 fs, 800 nm. The nanowire array yields fluxes and charge per bunch that are 40 times higher than those emitted by an optically flat surface, in the energy range of 0.2–0.5 MeV. The flux and charge yields for the nanowires are observed to be directional in nature unlike that for planar silicon. Particle-in-cell simulations establish that such large emission is caused by the enhancement of the local electric fields around a nanowire, which consequently leads to an enhanced absorption of laser energy. We show that the high-intensity contrast (ratio of picosecond pedestal to femtosecond peak of the laser pulse (10−9 is crucial to this large yield. We extend the notion of surface local-field enhancement, normally invoked in low-order nonlinear optical processes like second harmonic generation, optical limiting, etc., to ultrahigh laser intensities. These electron pulses, expectedly femtosecond in duration, have potential application in imaging, material modification, ultrafast dynamics, terahertz generation, and fast ion sources.

  14. Thermal equilibrium properties of an intense relativistic electron beam

    International Nuclear Information System (INIS)

    Davidson, R.C.; Uhm, H.S.

    1979-01-01

    The thermal equilibrium properties of an intense relativistic electron beam with distribution function f 0 /sub b/=Z -1 /sub b/exp[-(H-β/sub b/cP/sub z/-ω/sub b/P/sub theta/) /T] are investigated. This choice of f 0 /sub b/ allows for a mean azimuthal rotation of the beam electrons (when ω/sub b/not =0), and corresponds to an important generalization of the distribution function first analyzed by Bennett. Beam equilibrium properties, including axial velocity profile V 0 /sub z/b(r), azimuthal velocity profile V 0 /sub thetab/(r), beam temperature profile T 0 /sub b/(r), beam density profile n 0 /sub b/(r), and equilibrium self-field profiles, are calculated for a broad range of system parameters. For appropriate choice of beam rotation velocity ω/sub b/, it is found that radially confined equilibrium solutions [with n 0 /sub b/(r→infinity) =0] exist even in the absence of a partially neutralizing ion background that weakens the repulsive space-charge force. The necessary and sufficient conditions for radially confined equilibria are ω - /sub b/ + /sub b/ for 0 2 /sub b/p /ω 2 /sub b/c) (1-f-β 2 /sub b/) 2 /sub b/p/ω 2 /sub b/c) (1-f-β 2 /sub b/) <0

  15. The fully relativistic foundation of linear transfer theory in electron optics based on the Dirac equation

    NARCIS (Netherlands)

    Ferwerda, H.A.; Hoenders, B.J.; Slump, C.H.

    The fully relativistic quantum mechanical treatment of paraxial electron-optical image formation initiated in the previous paper (this issue) is worked out and leads to a rigorous foundation of the linear transfer theory. Moreover, the status of the relativistic scaling laws for mass and wavelength,

  16. Study of the O-mode in a relativistic degenerate electron plasma

    Science.gov (United States)

    Azra, Kalsoom; Ali, Muddasir; Hussain, Azhar

    2017-03-01

    Using the linearized relativistic Vlasov-Maxwell equations, a generalized expression for the plasma conductivity tensor is derived. The dispersion relation for the O-mode in a relativistic degenerate electron plasma is investigated by employing the Fermi-Dirac distribution function. The propagation characteristics of the O-mode (cut offs, resonances, propagation regimes, harmonic structure) are examined by using specific values of the density and the magnetic field that correspond to different relativistic dense environments. Further, it is observed that due to the relativistic effects the cut off and the resonance points are shifted to low frequency values, as a result the propagation regime is reduced. The dispersion relations for the non-relativistic and the ultra-relativistic limits are also presented.

  17. Merger and reconnection of Weibel separated relativistic electron beam

    Science.gov (United States)

    Shukla, Chandrasekhar; Kumar, Atul; Das, Amita; Patel, Bhavesh G.

    2018-02-01

    The relativistic electron beam (REB) propagation in a plasma is fraught with beam plasma instabilities. The prominent amongst them is the collisionless Weibel destabilization which spatially separates the forward propagating REB and the return shielding currents. This results in the formation of REB current filaments which are typically of the size of electron skin depth during the linear stage of the instability. It has been observed that in the nonlinear stage, the size of filaments increases as they merge with each other. With the help of 2-D particle-in-cell simulations in the plane perpendicular to the REB propagation, it is shown that these mergers occur in two distinct nonlinear phases. In the first phase, the total magnetic energy increases. Subsequently, however, during the second phase, one observes a reduction in magnetic energy. It is shown that the transition from one nonlinear regime to another occurs when the typical current associated with individual filaments hits the Alfvén threshold. In the second nonlinear regime, therefore, the filaments can no longer permit any increase in current. Magnetic reconnection events then dissipate the excess current (and its associated magnetic energy) that would result from a merger process leading to the generation of energetic electron jets in the perpendicular plane. At later times when there are only few filaments left, the individual reconnection events can be clearly identified. It is observed that in between such events, the magnetic energy remains constant and shows a sudden drop as and when two filaments merge. The electron jets released in these reconnection events are thus responsible for the transverse heating which has been mentioned in some previous studies [Honda et al., Phys. Plasmas 7, 1302 (2000)].

  18. Simulation study on dynamics of runaways in tokamaks

    International Nuclear Information System (INIS)

    Liu Jian; Qin Hong; Fisch, Nathaniel J.

    2014-01-01

    Electrons with high velocities can be accelerated to very high energies by a strong electric field to form runaway electrons. In tokamak, runaway electrons are produced in many different processes, including the acceleration from the high-energy tail of thermal distribution, through the runaway avalanche, during the rf wave heating and other non-Ohmic current drive, and even in the magnetic reconnection. This proceeding focus on different dynamical problems of runaway electrons in tokamaks. (author)

  19. Impact of Relativistic Electron Beam on Hole Acoustic Instability in Quantum Semiconductor Plasmas

    Science.gov (United States)

    Siddique, M.; Jamil, M.; Rasheed, A.; Areeb, F.; Javed, Asif; Sumera, P.

    2018-01-01

    We studied the influence of the classical relativistic beam of electrons on the hole acoustic wave (HAW) instability exciting in the semiconductor quantum plasmas. We conducted this study by using the quantum-hydrodynamic model of dense plasmas, incorporating the quantum effects of semiconductor plasma species which include degeneracy pressure, exchange-correlation potential and Bohm potential. Analysis of the quantum characteristics of semiconductor plasma species along with relativistic effect of beam electrons on the dispersion relation of the HAW is given in detail qualitatively and quantitatively by plotting them numerically. It is worth mentioning that the relativistic electron beam (REB) stabilises the HAWs exciting in semiconductor (GaAs) degenerate plasma.

  20. Combining lightning leader and relativistic feedback discharge models of terrestrial gamma-ray flashes

    Science.gov (United States)

    Dwyer, J. R.

    2016-12-01

    Lightning leader models of terrestrial gamma-ray flashes (TGFs) are based on the observations that leaders emit bursts of hard x-rays. These x-rays are thought to be generated by runaway electrons created in the high-field regions associated with the leader tips and/or streamers heads. Inside a thunderstorm, it has been proposed that these runaway electrons may experience additional relativistic runaway electron avalanche (RREA) multiplication, increasing the number and the average energy of the electrons, and possibly resulting in a TGF. When modeling TGFs it is important to include the discharge currents resulting from the ionization produced by the runaway electrons, since these currents may alter the electric fields and affect the TGF. In addition, relativistic feedback effects, caused by backward propagating positrons and backscattered x-rays, need to be included, since relativistic feedback limits the size of the electric field and the amount of a RREA multiplication that may occur. In this presentation, a lightning leader model of terrestrial gamma-ray flashes that includes the effects of the discharge currents and relativistic feedback will be described and compared with observations.

  1. Relativistic corrections to the elastic electron scattering from 208Pb

    International Nuclear Information System (INIS)

    Chandra, H.; Sauer, G.

    1976-01-01

    In the present work we have calculated the differential cross sections for the elastic electron scattering from 208 Pb using the charge distributions resulting from various corrections. The point proton and neutron mass distributions have been calculated from the spherical wave functions for 208 Pb obtained by Kolb et al. The relativistic correction to the nuclear charge distribution coming from the electromagnetic structure of the nucleon has been accomplished by assuming a linear superposition of Gaussian shapes for the proton and the neutron charge form factor. Results of this calculation are quite similar to an earlier calculation by Bertozzi et al., who have used a different wave function for 208 Pb and have assumed exponential smearing for the proton corresponding to the dipole fit for the form factor. Also in the present work, reason for the small spin orbit contribution to the effective charge distribution is discussed in some detail. It is also shown that the use of a single Gaussian shape for the proton smearing usually underestimates the actual theoretical cross section

  2. Intense relativistic electron beam injector system for tokamak current drive

    International Nuclear Information System (INIS)

    Bailey, V.L.; Creedon, J.M.; Ecker, B.M.; Helava, H.I.

    1983-01-01

    We report experimental and theoretical studies of an intense relativistic electron beam (REB) injection system designed for tokamak current drive experiments. The injection system uses a standard high-voltage pulsed REB generator and a magnetically insulated transmission line (MITL) to drive an REB-accelerating diode in plasma. A series of preliminary experiments has been carried out to test the system by injecting REBs into a test chamber with preformed plasma and applied magnetic field. REBs were accelerated from two types of diodes: a conventional vacuum diode with foil anode, and a plasma diode, i.e., an REB cathode immersed in the plasma. REB current was in the range of 50 to 100 kA and REB particle energy ranged from 0.1 to 1.0 MeV. MITL power density exceeded 10 GW/cm 2 . Performance of the injection system and REB transport properties is documented for plasma densities from 5 x 10 12 to 2 x 10 14 cm -3 . Injection system data are compared with numerical calculations of the performance of the coupled system consisting of the generator, MITL, and diode

  3. Applications of pulsed intense relativistic electron beam to aquatic conservation

    International Nuclear Information System (INIS)

    Kikuchi, Takashi; Kondo, Hironobu; Sasaki, Toru; Harada, Nob.; Moriwaki, Hiroshi; Imada, Go

    2012-01-01

    In this study, we propose aquatic conservations by using a pulsed intense relativistic electron beam (PIREB). Treatments of introduced species and toxics azo dyes by irradiating PIREB are investigated in this report. Zooplankton contained in water have been inactivated by irradiation of PIREB. A treatment chamber is filled with a solution of 3-wt% salt in water containing Artemia larvae as zooplankton samples, and is irradiated using the PIREB (2 MeV, 0.4 kA, 140 ns). We found that up to 24% of the Artemia are inactivated by firing 10 shots of PIREB irradiation. It is found that pH changes did not affect to inactivate the Artemia larvae during the time scale of PIREB irradiation. The reaction of congo red, a well-known toxic azo dye, occurred after irradiation by PIREB. An aquation of congo red was irradiated by PIREB (2 MeV, 0.36 kA, 140 ns). After PIREB irradiation, the solution was measured by electrospray ionization-mass spectrometry and liquid chromatography/mass spectrometry. It was found that congo red underwent a reaction (77% conversion after five shots of PIREB irradiation) and the hydroxylated compounds of the dye were observed as reaction products. (author)

  4. Proposal for the study of laminar relativistic electron beam generation by a foilless diode

    International Nuclear Information System (INIS)

    Jones, M.E.; Thode, L.E.

    1979-02-01

    The continuation of an analytical and numerical study of intense relativistic electron beam generation by foilless diodes is proposed. The investigation is aimed at optimizing the diode design to produce a laminar flow

  5. Simulating satellite observations of 100 kHz radio waves from relativistic electron beams above thunderclouds

    OpenAIRE

    M. Füllekrug; C. Hanuise; M. Parrot

    2010-01-01

    Relativistic electron beams above thunderclouds emit 100 kHz radio waves which illuminate the Earth's atmosphere and near-Earth space. This contribution aims to clarify the physical processes which are relevant for the spatial spreading of the radio wave energy below and above the ionosphere and thereby enables simulating satellite observations of 100 kHz radio waves from relativistic electron beams above thunderclouds. The simulation uses the DEMETER satellite which observes 100 kHz ...

  6. Collective acceleration of electrons and ions in a high current relativistic electron beam. Final report

    International Nuclear Information System (INIS)

    Nation, J.A.

    1996-01-01

    The original purpose of this research was an investigation into the use of slow space charge waves on weakly relativistic electron beams for ion acceleration. The work had three main objectives namely, the development of a suitable ion injector, the growth and study of the properties of slow space charge waves on an electron beam, and a combination of the two components parts into a suitable proof of principle demonstration of the wave accelerator. This work focusses on the first two of these objectives

  7. Repetitively pulsed UV radiation source based on a run-away electron preionised diffuse discharge in nitrogen

    Energy Technology Data Exchange (ETDEWEB)

    Baksht, E Kh; Burachenko, A G; Lomaev, M I; Panchenko, A N; Tarasenko, V F [Institute of High Current Electronics, Siberian Branch, Russian Academy of Sciences, Tomsk (Russian Federation)

    2015-04-30

    An extended repetitively pulsed source of spontaneous UV radiation is fabricated, which may also be used for producing laser radiation. Voltage pulses with an incident wave amplitude of up to 30 kV, a half-amplitude duration of ∼4 ns and a rise time of ∼2.5 ns are applied to a gap with a nonuniform electric field. For an excitation region length of 35 cm and a nitrogen pressure of 30 – 760 Torr, a diffusive discharge up to a pulse repetition rate of 2 kHz is produced without using an additional system for gap preionisation. An investigation is made of the plasma of the run-away electron preionised diffuse discharge. Using a CCD camera it is found that the dense diffused plasma fills the gap in a time shorter than 1 ns. X-ray radiation is recorded from behind the foil anode throughout the pressure range under study; a supershort avalanche electron beam is recorded by the collector electrode at pressures below 100 Torr. (laser applications and other topics in quantum electronics)

  8. Importance of Relativistic Effects and Electron Correlation in Structure Factors and Electron Density of Diphenyl Mercury and Triphenyl Bismuth.

    Science.gov (United States)

    Bučinský, Lukáš; Jayatilaka, Dylan; Grabowsky, Simon

    2016-08-25

    This study investigates the possibility of detecting relativistic effects and electron correlation in single-crystal X-ray diffraction experiments using the examples of diphenyl mercury (HgPh2) and triphenyl bismuth (BiPh3). In detail, the importance of electron correlation (ECORR), relativistic effects (REL) [distinguishing between total, scalar and spin-orbit (SO) coupling relativistic effects] and picture change error (PCE) on the theoretical electron density, its topology and its Laplacian using infinite order two component (IOTC) wave functions is discussed. This is to develop an understanding of the order of magnitude and shape of these different effects as they manifest in the electron density. Subsequently, the same effects are considered for the theoretical structure factors. It becomes clear that SO and PCE are negligible, but ECORR and scalar REL are important in low- and medium-order reflections on absolute and relative scales-not in the high-order region. As a further step, Hirshfeld atom refinement (HAR) and subsequent X-ray constrained wavefunction (XCW) fitting have been performed for the compound HgPh2 with various relativistic and nonrelativistic wave functions against the experimental structure factors. IOTC calculations of theoretical structure factors and relativistic HAR as well as relativistic XCW fitting are presented for the first time, accounting for both scalar and spin-orbit relativistic effects.

  9. Radiative electron capture studied in relativistic heavy-ion atom collisions

    International Nuclear Information System (INIS)

    Stoehlker, T.; Kozhuharov, C.; Mokler, P.H.; Warczak, A.; Bosch, F.; Geissel, H.; Moshammer, R.; Scheidenberger, C.; Eichler, J.; Shirai, T.; Stachura, Z.; Rymuza, P.

    1994-08-01

    The process of Radiative Electron Capture (REC) in relativistic collisions of high-Z ions with low-Z gaseous and solid targets is studied experimentally and theoretically. The observed X-ray spectra are analysed with respect to photon angular distributions as well as to total K-REC cross sections. The experimental results for angle-differential cross sections are well-reproduced by exact relativistic calculations which yield significant deviations from standard sin 2 θ distributions. Total cross sections for K-REC are shown to follow a simple scaling rule obtained from exact relativistic calculations as well as from a non-relativistic dipole approximation. The agreement between these different theoretical approaches must be regarded as fortuitous, but it lends support to the use of the non-relativistic approach for practical purposes. (orig.)

  10. Theoretical study of relativistic effects in the electronic structure and chemical bonding of UF6

    International Nuclear Information System (INIS)

    Onoe, Jun; Takeuchi, Kazuo; Sekine, Rika; Nakamatsu, Hirohide; Mukoyama, Takeshi; Adachi, Hirohiko.

    1992-01-01

    We have performed the relativistic molecular orbital calculation for the ground state of UF 6 , using the discrete-variational Dirac-Slater method (DV-DS), in order to elucidate the relativistic effects in the electronic structure and chemical bonding. Compared with the electronic structure calculated by the non-relativistic Hartree-Fock-Slater (DV-X α )MO method, not only the direct relativistic effects (spin-orbit splitting etc), but also the indirect effect due to the change in screening core potential charge are shown to be important in the MO level structure. From the U-F bond overlap population analysis, we found that the U-F bond formation can be explained only by the DV-DS, not by the DV-X α . The calculated electronic structure in valence energy region (-20-OeV) and excitation energies in UV region are in agreement with experiments. (author)

  11. Repetitively pulsed UV radiation source based on a run-away electron preionised diffuse discharge in nitrogen

    Science.gov (United States)

    Baksht, E. Kh; Burachenko, A. G.; Lomaev, M. I.; Panchenko, A. N.; Tarasenko, V. F.

    2015-04-01

    An extended repetitively pulsed source of spontaneous UV radiation is fabricated, which may also be used for producing laser radiation. Voltage pulses with an incident wave amplitude of up to 30 kV, a half-amplitude duration of ~4 ns and a rise time of ~2.5 ns are applied to a gap with a nonuniform electric field. For an excitation region length of 35 cm and a nitrogen pressure of 30 - 760 Torr, a diffusive discharge up to a pulse repetition rate of 2 kHz is produced without using an additional system for gap preionisation. An investigation is made of the plasma of the run-away electron preionised diffuse discharge. Using a CCD camera it is found that the dense diffused plasma fills the gap in a time shorter than 1 ns. X-ray radiation is recorded from behind the foil anode throughout the pressure range under study; a supershort avalanche electron beam is recorded by the collector electrode at pressures below 100 Torr.

  12. Diagnosis of mildly relativistic electron velocity distributions by electron cyclotron emission in the Alcator C tokamak

    International Nuclear Information System (INIS)

    Kato, K.

    1986-09-01

    Mildly relativistic electron velocity distributions are diagnosed from measurements of the first few electron cyclotron emission harmonics in the Alcator C tokamak. The approach employs a vertical viewing chord through the center of the tokamak plasma terminating at a compact, high-performance viewing dump. The cyclotron emission spectra obtained in this way are dominated by frequency downshifts due to the relativistic mass increase, which discriminates the electrons by their total energy. In this way a one-to-one correspondence between the energy and the emission frequency is accomplished in the absence of harmonic superpositions. The distribution, described by f/sub p/, the line-averaged phase space density, and Λ, the anisotropy factor, is determined from the ratio of the optically thin harmonics or polarizations. Diagnosis of spectra in the second and the third harmonic range of frequencies obtained during lower hybrid heating, current drive, and low density ohmic discharges are carried out, using different methods depending on the degree of harmonic superposition present in the spectrum and the availability of more than one ratio measurement. Discussions of transient phenomena, the radiation temperature measurement from the optically thick first harmonic, and the measurements compared to the angular hard x-ray diagnostic results illuminate the capabilities of the vertically viewing electron cyclotron emission diagnostic

  13. On the physics of runaway particles in JET and MAST

    International Nuclear Information System (INIS)

    Helander, P.; Akers, R.J.; Gimblett, C.G.; Tournianski, M.R.; Byrom, C.; Eriksson, L.-G.; Andersson, F.

    2003-01-01

    This paper explores the physics of runaway particles observed in MAST and JET. During internal reconnection events in MAST, it is observed that the ion distribution function, as measured by a neutral-particle analyser, develops a high-energy tail, which subsequently decays on the time scale of collisional slowing down. These observations are explained in terms of runaway ion acceleration in the electric field induced by the reconnection - a phenomenon predicted theoretically by Furth and Rutherford in 1972 but not commonly noted in tokamaks. In JET, long-lived post-disruption currents carried by runaway electrons have been observed to decay on a time scale of 1-2 s. A relativistic kinetic theory is developed to explain this decay as a consequence of the combined action of Coulomb collisions and synchrotron radiation emission. It is also pointed out that substantial electron-positron pair production should occur in such discharges, which have also been made more recently on JT-60U. In fact, tokamaks may be the largest positron repositories made by man. (author)

  14. Relativistic electron drift in overdense plasma produced by a superintense femtosecond laser pulse

    International Nuclear Information System (INIS)

    Rastunkov, V.S.; Krainov, V.P.

    2004-01-01

    The general peculiarities of electron motion in the skin layer at the irradiation of overdense plasma by a superintense linearly polarized laser pulse of femtosecond duration are considered. The quiver electron energy is assumed to be a relativistic quantity. Relativistic electron drift along the propagation of laser radiation produced by a magnetic part of a laser field remains after the end of the laser pulse, unlike the relativistic drift of a free electron in underdense plasma. As a result, the penetration depth is much larger than the classical skin depth. The conclusion has been made that the drift velocity is a nonrelativistic quantity even at the peak laser intensity of 10 21 W/cm 2 . The time at which an electron penetrates into field-free matter from the skin layer is much less than the pulse duration

  15. Dielectric response of a relativistic degenerate electron plasma in a strong magnetic field

    International Nuclear Information System (INIS)

    Delsante, A.E.; Frankel, N.E.

    1979-01-01

    The longitudinal dielectric response of a relativistic ultradegenerate electron plasma in a strong magnetic field is obtained via a relativistic generalization of the Hartree self-consistent field method. Dispersion relations and damping conditions for plasma oscillations both parallel and perpendicular to the magnetic field are obtained. Detailed results for the zero-field case, and applications to white dwarf stars and pulsars are given

  16. Quantum Geometry: Relativistic energy approach to cooperative electron-nucleary-transition spectrum

    Directory of Open Access Journals (Sweden)

    Ольга Юрьевна Хецелиус

    2014-11-01

    Full Text Available An advanced relativistic energy approach is presented and applied to calculating parameters of electron-nuclear 7-transition spectra of nucleus in the atom. The intensities of the spectral satellites are defined in the relativistic version of the energy approach (S-matrix formalism, and gauge-invariant quantum-electrodynamical perturbation theory with the Dirac-Kohn-Sham density-functional zeroth approximation.

  17. Calculation of fusion gain in fast ignition with magnetic target by relativistic electrons and protons

    International Nuclear Information System (INIS)

    Parvazian, A.; Javani, A.

    2010-01-01

    Fast ignition is a new method for inertial confinement fusion in which the compression and ignition steps are separated. In the first stage, fuel is compressed by laser or ion beams. In the second phase, relativistic electrons are generated by pettawat laser in the fuel. Also, in the second phase 5-35 MeV protons can be generated in the fuel. Electrons or protons can penetrate in to the ultra-dense fuel and deposit their energy in the fuel. More recently, cylindrical rather than spherical fuel chambers with magnetic control in the plasma domain have been also considered. This is called magnetized target fusion. Magnetic field has effects on relativistic electrons energy deposition rate in fuel. In this work, fast ignition method in cylindrical fuel chambers is investigated and transportation of the relativistic electrons and protons is calculated using MCNPX and FLUKA codes with 0.25 and 0.5 tesla magnetic field in single and dual hot spot. Furthermore, the transfer rate of relativistic electrons and high energy protons to the fuel and fusion gain are calculated. The results show that the presence of external magnetic field guarantees higher fusion gain, and relativistic electrons are much more appropriate objects for ignition. Magnetized target fusion in dual hot spot can be considered as an appropriate substitution for the current inertial confinement fusion techniques.

  18. Resonant Scattering of Relativistic Outer Zone Electrons by Plasmaspheric Plume Electromagnetic Ion Cyclotron Waves

    International Nuclear Information System (INIS)

    Zhen-Peng, Su; Hui-Nan, Zheng

    2009-01-01

    The bounce-averaged Fokker–Planck equation is solved to study the relativistic electron phase space density (PSD) evolution in the outer radiation belt due to resonant interactions with plasmaspheric plume electromagnetic ion cyclotron (EMIC) waves. It is found that the PSDs of relativistic electrons can be depleted by 1–3 orders of magnitude in 5h, supporting the previous finding that resonant interactions with EMIC waves may account for the frequently observed relativistic electron flux dropouts in the outer radiation belt during the main phase of a storm. The significant precipitation loss of ∼MeV electrons is primarily induced by the EMIC waves in H + and He + bands. The rapid remove of highly relativistic electrons (> 5 MeV) is mainly driven by the EMIC waves in O + band at lower pitch-angles, as well as the EMIC waves in H + and He + bands at larger pitch-angles. Moreover, a stronger depletion of relativistic electrons is found to occur over a wider pitch angle range when EMIC waves are centering relatively higher in the band

  19. Calculation of fusion gain in fast ignition with magnetic target by relativistic electrons and protons

    Directory of Open Access Journals (Sweden)

    A Parvazian

    2010-12-01

    Full Text Available Fast ignition is a new method for inertial confinement fusion (ICF in which the compression and ignition steps are separated. In the first stage, fuel is compressed by laser or ion beams. In the second phase, relativistic electrons are generated by pettawat laser in the fuel. Also, in the second phase 5-35 MeV protons can be generated in the fuel. Electrons or protons can penetrate in to the ultra-dense fuel and deposit their energy in the fuel . More recently, cylindrical rather than spherical fuel chambers with magnetic control in the plasma domain have been also considered. This is called magnetized target fusion (MTF. Magnetic field has effects on relativistic electrons energy deposition rate in fuel. In this work, fast ignition method in cylindrical fuel chambers is investigated and transportation of the relativistic electrons and protons is calculated using MCNPX and FLUKA codes with 0. 25 and 0. 5 tesla magnetic field in single and dual hot spot. Furthermore, the transfer rate of relativistic electrons and high energy protons to the fuel and fusion gain are calculated. The results show that the presence of external magnetic field guarantees higher fusion gain, and relativistic electrons are much more appropriate objects for ignition. MTF in dual hot spot can be considered as an appropriate substitution for the current ICF techniques.

  20. Alfvénic instabilities driven by runaways in fusion plasmas

    International Nuclear Information System (INIS)

    Fülöp, T.; Newton, S.

    2014-01-01

    Runaway particles can be produced in plasmas with large electric fields. Here, we address the possibility that such runaway ions and electrons excite Alfvénic instabilities. The magnetic perturbation induced by these modes can enhance the loss of runaways. This may have important implications for the runaway electron beam formation in tokamak disruptions

  1. Coherent polarization radiation of relativistic electrons in crystals

    International Nuclear Information System (INIS)

    Morokhovskii, V.L.

    2014-01-01

    A brief narration about the history of those heated arguments and discussions around the nature of so-called parametric X-radiation, which were concluded by the recognition of the discovery the phenomenon of coherent polarization bremsstrahlung of relativistic charged particles in crystals. Some important information and comments, which stay over of notice of specialists till now are reported.

  2. Efficient electron heating in relativistic shocks and gamma-ray-burst afterglow.

    Science.gov (United States)

    Gedalin, M; Balikhin, M A; Eichler, D

    2008-02-01

    Electrons in shocks are efficiently energized due to the cross-shock potential, which develops because of differential deflection of electrons and ions by the magnetic field in the shock front. The electron energization is necessarily accompanied by scattering and thermalization. The mechanism is efficient in both magnetized and nonmagnetized relativistic electron-ion shocks. It is proposed that the synchrotron emission from the heated electrons in a layer of strongly enhanced magnetic field is responsible for gamma-ray-burst afterglows.

  3. Analysis of shot-to-shot variability in post-disruption runaway electron currents for diverted DIII-D discharges

    International Nuclear Information System (INIS)

    Izzo, V A; Humphreys, D A; Kornbluth, M

    2012-01-01

    In DIII-D experiments, rapid termination by Ar-pellet injection sometimes produces a post-termination runaway electron (RE) current plateau, but this effect is highly non-reproducible on a shot-to-shot basis, particularly for diverted target plasmas. A set of DIII-D discharges is analyzed with two MHD codes to understand the relationship between the current profile of the target plasma and the amplitude of the RE current plateau. Using the linear stability code GATO, a correlation between the radial profile of the unstable n = 1 mode just after Ar-pellet injection and the observed appearance of an RE plateau is identified. Nonlinear NIMROD simulations with RE test-particle calculations directly predict RE confinement times during the disruption. With one exception, NIMROD predicts better RE confinement for shots in which higher RE currents were observed in DIII-D. But, the variation in confinement is primarily connected to the saturated n = 1 mode amplitude and not its radial profile. Still, both sets of analyses support the hypothesis that RE deconfinement by MHD fluctuations is a major factor in the shot-to-shot variability of RE plateaus, though additional factors such as seed current amplitude cannot be ruled out. (paper)

  4. Non-thermal particle acceleration in collisionless relativistic electron-proton reconnection

    Science.gov (United States)

    Werner, G. R.; Uzdensky, D. A.; Begelman, M. C.; Cerutti, B.; Nalewajko, K.

    2018-02-01

    Magnetic reconnection in relativistic collisionless plasmas can accelerate particles and power high-energy emission in various astrophysical systems. Whereas most previous studies focused on relativistic reconnection in pair plasmas, less attention has been paid to electron-ion plasma reconnection, expected in black hole accretion flows and relativistic jets. We report a comprehensive particle-in-cell numerical investigation of reconnection in an electron-ion plasma, spanning a wide range of ambient ion magnetizations σi, from the semirelativistic regime (ultrarelativistic electrons but non-relativistic ions, 10-3 ≪ σi ≪ 1) to the fully relativistic regime (both species are ultrarelativistic, σi ≫ 1). We investigate how the reconnection rate, electron and ion plasma flows, electric and magnetic field structures, electron/ion energy partitioning, and non-thermal particle acceleration depend on σi. Our key findings are: (1) the reconnection rate is about 0.1 of the Alfvénic rate across all regimes; (2) electrons can form concentrated moderately relativistic outflows even in the semirelativistic, small-σi regime; (3) while the released magnetic energy is partitioned equally between electrons and ions in the ultrarelativistic limit, the electron energy fraction declines gradually with decreased σi and asymptotes to about 0.25 in the semirelativistic regime; and (4) reconnection leads to efficient non-thermal electron acceleration with a σi-dependent power-law index, p(σ _i)˜eq const+0.7σ _i^{-1/2}. These findings are important for understanding black hole systems and lend support to semirelativistic reconnection models for powering non-thermal emission in blazar jets, offering a natural explanation for the spectral indices observed in these systems.

  5. Self-focusing of laser beams in magnetized relativistic electron beams

    International Nuclear Information System (INIS)

    Whang, M.H.; Ho, A.Y.; Kuo, S.P.

    1989-01-01

    Recently, there is considerable interest in radiation focusing and optical guiding using the resonant interaction between the radiation field and electron beam. The result of radiation focusing has been shown to play a central role in the practical utilization of the FEL. This result allows the device to use longer interaction length for achieving higher output power. Likewise, the possibility of self-focusing of the laser beam in cyclotron resonance with a relativistic electron beam is also an important issue in the laser acceleration concepts for achieving high-gradient electron acceleration. The effectiveness of the acceleration process relies strongly on whether the laser intensity can be maintained at the desired level throughout the interaction. In this work, the authors study the problem concerning the self-focusing of laser beam in the relativistic electron beams under the cyclotron auto-resonance interaction. They assume that there is no electron density perturbation prohibited from the background magnetic field for the time scale of interest. The nonlinearity responsible for self-focusing process is introduced by the energy dependence of the relativistic mass of electrons. The plasma frequency varies with the electron energy which is proportional to the radiation amplitude. They then examine such a relativistic nonlinear effect on the propagation of a Gaussian beam in the electron beam. A parametric study of the dependence of the laser beam width on the axial position for various electron beam density has been performed

  6. Effect of EMIC Wave Normal Angle Distribution on Relativistic Electron Scattering

    Science.gov (United States)

    Gamayunov, K. V.; Khazanov, G. V.

    2006-01-01

    The flux level of outer-zone relativistic electrons (above 1 MeV) is extremely variable during geomagnetic storms, and controlled by a competition between acceleration and loss. Precipitation of these electrons due to resonant pitch-angle scattering by electromagnetic ion cyclotron (EMIC) waves is considered one of the major loss mechanisms. This mechanism was suggested in early theoretical studies more than three decades ago. However, direct experimental evidence of the wave role in relativistic electrons precipitation is difficult to obtain because of lack of concurrent measurements of precipitating electrons at low altitudes and the waves in a magnetically conjugate equatorial region. Recently, the data from balloon-borne X-ray instruments provided indirect but strong evidence on an efficiency of the EMIC wave induced loss for the outer-zone relativistic electrons. These observations stimulated theoretical studies that, particularly, demonstrated that EMIC wave induced pitch-angle diffusion of MeV electrons can operate in the strong diffusion limit and this mechanism can compete with relativistic electron depletion caused by the Dst effect during the initial and main phases of storm. Although an effectiveness of relativistic electron scattering by EMIC waves depends strongly on the wave spectral properties, the most favorable assumptions regarding wave characteristics has been made in all previous theoretical studies. Particularly, only quasi field-aligned EMIC waves have been considered as a driver for relativistic electron loss. At the same time, there is growing experimental and theoretical evidence that these waves can be highly oblique; EMIC wave energy can occupy not only the region of generation, i.e. the region of small wave normal angles, but also the entire wave normal angle region, and even only the region near 90 degrees. The latter can dramatically change he effectiveness of relativistic electron scattering by EMIC waves. In the present study, we

  7. Investigation of focusing of relativistic electron and positron bunches moving in cold plasma. Final report

    International Nuclear Information System (INIS)

    Amatuni, A.Ts.; Elbakian, S.S.; Khachatryan, A.G.; Sekhpossian, E.V.

    1995-03-01

    This document is the final report on a project to study focusing effects of relativistic beams of electrons and positrons interacting with a cold plasma. The authors consider three different models for the overdense cold plasma - electron bunch interaction. They look at coulomb effects, wakefield effects, bunch parameters, and the effects of trains of pulses on focusing properties

  8. Compression-amplified EMIC waves and their effects on relativistic electrons

    International Nuclear Information System (INIS)

    Li, L. Y.; Yu, J.; Cao, J. B.; Yuan, Z. G.

    2016-01-01

    During enhancement of solar wind dynamic pressure, we observe the periodic emissions of electromagnetic ion cyclotron (EMIC) waves near the nightside geosynchronous orbit (6.6R E ). In the hydrogen and helium bands, the different polarized EMIC waves have different influences on relativistic electrons (>0.8 MeV). The flux of relativistic electrons is relatively stable if there are only the linearly polarized EMIC waves, but their flux decreases if the left-hand polarized (L-mode) EMIC waves are sufficiently amplified (power spectral density (PSD) ≥ 1 nT 2 /Hz). The larger-amplitude L-mode waves can cause more electron losses. In contrast, the R-mode EMIC waves are very weak (PSD < 1 nT 2 /Hz) during the electron flux dropouts; thus, their influence may be ignored here. During the electron flux dropouts, the relativistic electron precipitation is observed by POES satellite near the foot point (∼850 km) of the wave emission region. The quasi-linear simulation of wave-particle interactions indicates that the L-mode EMIC waves can cause the rapid precipitation loss of relativistic electrons, especially when the initial resonant electrons have a butterfly-like pitch angle distribution.

  9. Compression-amplified EMIC waves and their effects on relativistic electrons

    Energy Technology Data Exchange (ETDEWEB)

    Li, L. Y., E-mail: lyli-ssri@buaa.edu.cn; Yu, J.; Cao, J. B. [School of Space and Environment, Beihang University, Beijing (China); Yuan, Z. G. [School of Electronic Information, Wuhan University, Wuhan (China)

    2016-06-15

    During enhancement of solar wind dynamic pressure, we observe the periodic emissions of electromagnetic ion cyclotron (EMIC) waves near the nightside geosynchronous orbit (6.6R{sub E}). In the hydrogen and helium bands, the different polarized EMIC waves have different influences on relativistic electrons (>0.8 MeV). The flux of relativistic electrons is relatively stable if there are only the linearly polarized EMIC waves, but their flux decreases if the left-hand polarized (L-mode) EMIC waves are sufficiently amplified (power spectral density (PSD) ≥ 1 nT{sup 2}/Hz). The larger-amplitude L-mode waves can cause more electron losses. In contrast, the R-mode EMIC waves are very weak (PSD < 1 nT{sup 2}/Hz) during the electron flux dropouts; thus, their influence may be ignored here. During the electron flux dropouts, the relativistic electron precipitation is observed by POES satellite near the foot point (∼850 km) of the wave emission region. The quasi-linear simulation of wave-particle interactions indicates that the L-mode EMIC waves can cause the rapid precipitation loss of relativistic electrons, especially when the initial resonant electrons have a butterfly-like pitch angle distribution.

  10. Persistent current of relativistic electrons on a Dirac ring in presence of impurities

    KAUST Repository

    Ghosh, Sumit; Saha, Arijit

    2014-01-01

    We study the behaviour of persistent current of relativistic electrons on a one dimensional ring in presence of attractive/repulsive scattering potentials. In particular, we investigate the persistent current in accordance with the strength as well as the number of the scattering potential. We find that in presence of single scatterer the persistent current becomes smaller in magnitude than the scattering free scenario. This behaviour is similar to the non-relativistic case. Even for a very strong scattering potential, finite amount of persistent current remains for a relativistic ring. In presence of multiple scatterer we observe that the persistent current is maximum when the scatterers are placed uniformly compared to the current averaged over random configurations. However if we increase the number of scatterers, we find that the random averaged current increases with the number of scatterers. The latter behaviour is in contrast to the non-relativistic case. © 2014 EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg.

  11. Persistent current of relativistic electrons on a Dirac ring in presence of impurities

    KAUST Repository

    Ghosh, Sumit

    2014-08-01

    We study the behaviour of persistent current of relativistic electrons on a one dimensional ring in presence of attractive/repulsive scattering potentials. In particular, we investigate the persistent current in accordance with the strength as well as the number of the scattering potential. We find that in presence of single scatterer the persistent current becomes smaller in magnitude than the scattering free scenario. This behaviour is similar to the non-relativistic case. Even for a very strong scattering potential, finite amount of persistent current remains for a relativistic ring. In presence of multiple scatterer we observe that the persistent current is maximum when the scatterers are placed uniformly compared to the current averaged over random configurations. However if we increase the number of scatterers, we find that the random averaged current increases with the number of scatterers. The latter behaviour is in contrast to the non-relativistic case. © 2014 EDP Sciences, SIF, Springer-Verlag Berlin Heidelberg.

  12. Electron correlation within the relativistic no-pair approximation

    DEFF Research Database (Denmark)

    Almoukhalalati, Adel; Knecht, Stefan; Jensen, Hans Jørgen Aa

    2016-01-01

    and that this is possible by full Multiconfigurational Self-Consistent Field (MCSCF) calculations, that is, MCSCF calculations using a no-pair full CI expansion, but including orbital relaxation from the negative-energy orbitals. We show by variational perturbation theory that the MCSCF correlation energy is a pure MP2....... The well-known 1/Z- expansion in nonrelativistic atomic theory follows from coordinate scaling. We point out that coordinate scaling for consistency should be accompanied by velocity scaling. In the nonrelativistic domain this comes about automatically, whereas in the relativistic domain an explicit...... scaling of the speed of light is required. This in turn explains why the relativistic correlation energy to the lowest order is not independent of nuclear charge, in contrast to nonrelativistic theory....

  13. Runaway electrons from a ‘beam-bulk’ model of streamer: application to TGFs

    DEFF Research Database (Denmark)

    Chanrion, Olivier Arnaud; Bonaventura, Z.; Cinar, Deniz

    2014-01-01

    -energy electrons and ions. For a negative streamer discharge, we show how electrons are accelerated in the large electric field in the tip of the streamer and travel ahead of the streamer where they ionize the gas. In comparison to the results obtained with a classical fluid model for a negative streamer, the beam...

  14. Remote Shutoff Stops Runaway Lawnmower

    Science.gov (United States)

    Grambo, Alan A.

    2007-01-01

    In this article, the author describes how electronics students at Central Nine Career Center designed a kill switch circuit to stop a runaway lawnmower. This project is ideal for a career center since the electronics/robotics, small engines and horticulture classes can all work together on their respective parts of the modification, installation…

  15. Contribution of Higher-Order Dispersion to Nonlinear Electron-Acoustic Solitary Waves in a Relativistic Electron Beam Plasma System

    International Nuclear Information System (INIS)

    Zahran, M.A.; El-Shewy, E.K.

    2008-01-01

    The nonlinear properties of solitary wave structures are reported in an unmagnetized collisionless plasma comprising of cold relativistic electron fluid, Maxwellian hot electrons, relativistic electron beam, and stationary ions. The Korteweg--de Vries (KdV) equation has been derived using a reductive perturbation theory. As the wave amplitude increases, the width and velocity of the soliton deviate from the prediction of the KdV equation i.e. the breakdown of the KdV approximation. On the other hand, to overcome this weakness we extend our analysis to obtain the KdV equation with fifth-order dispersion term. The solution of the resulting equation has been obtained

  16. Degenerate Perturbation Theory for Electronic g Tensors: Leading-Order Relativistic Effects.

    Science.gov (United States)

    Rinkevicius, Zilvinas; de Almeida, Katia Julia; Oprea, Cornel I; Vahtras, Olav; Ågren, Hans; Ruud, Kenneth

    2008-11-11

    A new approach for the evaluation of the leading-order relativistic corrections to the electronic g tensors of molecules with a doublet ground state is presented. The methodology is based on degenerate perturbation theory and includes all relevant contributions to the g tensor shift up to order O(α(4)) originating from the one-electron part of the Breit-Pauli Hamiltonian-that is, it allows for the treatment of scalar relativistic, spin-orbit, and mixed corrections to the spin and orbital Zeeman effects. This approach has been implemented in the framework of spin-restricted density functional theory and is in the present paper, as a first illustration of the theory, applied to study relativistic effects on electronic g tensors of dihalogen anion radicals X2(-) (X = F, Cl, Br, I). The results indicate that the spin-orbit interaction is responsible for the large parallel component of the g tensor shift of Br2(-) and I2(-), and furthermore that both the leading-order scalar relativistic and spin-orbit corrections are of minor importance for the perpendicular component of the g tensor in these molecules since they effectively cancel each other. In addition to investigating the g tensors of dihalogen anion radicals, we also critically examine the importance of various relativistic corrections to the electronic g tensor of linear molecules with Σ-type ground states and present a two-state model suitable for an approximate estimation of the g tensor in such molecules.

  17. Runaway modeling in ORMAK and TNS

    International Nuclear Information System (INIS)

    Cooper, A.; Swain, D.W.; Marcus, F.B.; Kammash, T.

    1977-07-01

    A zero-dimensional tokamak start-up code is used to investigate the generation of runaway electrons in the Oak Ridge Tokamak (ORMAK) and The Next Step (TNS) and the effect of the runaways on the plasma breakdown, current, and energy balance, The runaways, which are considered collisionless, are treated self-consistently in the circuit equation by including a runaway current component (determined from a runaway rate equation). During the earliest stages of a discharge, the total current in the plasma is so low that closed flux surfaces do not exist. Runaways produced are lost almost instantly because they follow magnetic field lines that intersect the limiter. Once the current in the tokamak builds up sufficiently, closed flux surfaces start forming which improves runaway containment. The time tau when this occurs is uncertain. Results on ORMAK and TNS are displayed for different values of tau (before which any runaway created is assumed to be lost instantaneously). The assumption of flux surface closure after some arbitrary time tau is then justified by modeling an ORMAK discharge which includes the effects on runaway confinement of error fields generated by currents flowing in the leads to the toroidal field coils. Also shown are ORMAK simulations in different density regimes and TNS results for different loop voltage pulses

  18. Relativistic Electrons Produced by Foreshock Disturbances Observed Upstream of Earth's Bow Shock

    Science.gov (United States)

    Wilson, L. B., III; Sibeck, D. G.; Turner, D. L.; Osmane, A.; Caprioli, D.; Angelopoulos, V.

    2016-01-01

    Charged particles can be reflected and accelerated by strong (i.e., high Mach number) astrophysical collisionless shock waves, streaming away to form a foreshock region in communication with the shock. Foreshocks are primarily populated by suprathermal ions that can generate foreshock disturbances-largescale (i.e., tens to thousands of thermal ion Larmor radii), transient (approximately 5-10 per day) structures. They have recently been found to accelerate ions to energies of several keV. Although electrons in Saturn's high Mach number (M > 40) bow shock can be accelerated to relativistic energies (nearly 1000 keV), it has hitherto been thought impossible to accelerate electrons beyond a few tens of keV at Earth's low Mach number (1 =M foreshock disturbances to energies up to at least approximately 300 keV. Although such energetic electrons have been previously observed, their presence has been attributed to escaping magnetospheric particles or solar events. These relativistic electrons are not associated with any solar or magnetospheric activity. Further, due to their relatively small Larmor radii (compared to magnetic gradient scale lengths) and large thermal speeds (compared to shock speeds), no known shock acceleration mechanism can energize thermal electrons up to relativistic energies. The discovery of relativistic electrons associated with foreshock structures commonly generated in astrophysical shocks could provide a new paradigm for electron injections and acceleration in collisionless plasmas.

  19. Anomalous property of coherent bremsstrahlung linear polarization of relativistic electrons in a crystal

    International Nuclear Information System (INIS)

    Lapko, V.P.; Nasonov, N.N.; Truten', V.I.

    1993-01-01

    Polarization and spectral-and-angular properties of γ-radiation of the relativistic electron flux moving in a crystal under uncorrelated collisions with crystal atomic chains, are studied theoretically. Direction of linear polarization of radiation is shown to vary with energy of emitted photon. Reasons of occurrence of this effect are discussed. The results of numerical calculations demonstrating the possibility to form an intensive source of polarized γ-quanta on the basis of coherent radiation of relativistic electrons during low-angular scattering at crystal atom chains, are given

  20. Single electron attachment and stripping cross sections for relativistic heavy ions

    International Nuclear Information System (INIS)

    Crawford, H.J.

    1979-06-01

    The results of a Bevalac experiment to measure the single electron attachment and stripping cross sections for relativistic (0.5 1 , and fully stripped, N 0 , ion beams emerging from the targets. Separate counters measured the number of ions in each charge state. The ratios N 1 /N 0 for different target thicknesses were fit to a simple growth curve to yield electron attachment and stripping cross sections. The data are compared to relativistic extrapolations of available theories. Clear evidence for two separate attachment processes, radiative and non-radiative, is found. Data are compared to a recently improved formulation for the stripping cross sections

  1. On the influence of electromagnetic wave and relativistic electron beam on a plasma

    International Nuclear Information System (INIS)

    El Ashry, M.Y.; Berezhiani, V.I.; Javakhishvili, J.L.

    1993-08-01

    The dynamics of nonlinear wave in plasma under the influence of high-frequency electromagnetic pump and relativistic electron beam is considered. It is shown that the electrons of the beam play the role of the heavy plasma component, the matter which creates a possibility of formation of wave of a soliton type in a pure electron plasma. The wave structure is investigated and the characteristic parameters of the soliton are obtained. (author). 8 refs

  2. Rapid plasma heating by collective interactions, using strong turbulence and relativistic electron beams

    International Nuclear Information System (INIS)

    Wharton, C.B.

    1977-01-01

    A multi-kilovolt, moderate density plasma was generated in a magnetic mirror confinement system by two methods: turbulent heating and relativistic electron beam. Extensive diagnostic development permitted the measurement of important plasma characteristics, leading to interesting and novel conclusions regarding heating and loss mechanisms. Electron and ion heating mechanisms were categorized, and parameter studies made to establish ranges of importance. Nonthermal ion and electron energy distributions were measured. Beam propagation and energy deposition studies yielded the spatial dependence of plasma heating

  3. Relativistic effects in ab initio electron-nucleus scattering

    Science.gov (United States)

    Rocco, Noemi; Leidemann, Winfried; Lovato, Alessandro; Orlandini, Giuseppina

    2018-05-01

    The electromagnetic responses obtained from Green's function Monte Carlo (GFMC) calculations are based on realistic treatments of nuclear interactions and currents. The main limitations of this method comes from its nonrelativistic nature and its computational cost, the latter hampering the direct evaluation of the inclusive cross sections as measured by experiments. We extend the applicability of GFMC in the quasielastic region to intermediate momentum transfers by performing the calculations in a reference frame that minimizes nucleon momenta. Additional relativistic effects in the kinematics are accounted for employing the two-fragment model. In addition, we developed a novel algorithm, based on the concept of first-kind scaling, to compute the inclusive electromagnetic cross section of 4He through an accurate and reliable interpolation of the response functions. A very good agreement is obtained between theoretical and experimental cross sections for a variety of kinematical setups. This offers a promising prospect for the data analysis of neutrino-oscillation experiments that requires an accurate description of nuclear dynamics in which relativistic effects are fully accounted for.

  4. Statistical investigation of the efficiency of EMIC waves in precipitating relativistic electrons

    Science.gov (United States)

    Hudson, M. K.; Qin, M.; Millan, R. M.; Woodger, L. A.; Shekhar, S.

    2017-12-01

    Electromagnetic ion cyclotron (EMIC) waves have been proposed as an effective way to scatter relativistic electrons into the atmospheric loss cone. In our study, however, among the total 399 coincidence events when NOAA satellites goes through the region of EMIC wave activity, only 103 are associated with Relativistic Electron Precipitation (REP) events, which indicates that the link between EMIC waves and relativistic electrons is much weaker than expected. Most of the studies so far have been focused on the He+ band EMIC waves, and H+ band EMIC waves have been regarded as less important to the precipitation of electrons. In our study, we demonstrate that among the 103 EMIC wave events detected by Van Allen Probes that are in close conjunction with relativistic electron precipitation observed by POES satellites, the occurrence rate of H+ and He+ band EMIC waves coincident with REP is comparable, suggesting closer examination of the range of ΔL and ΔMLT used to determine coincidence between Van Allen Probes EMIC waves and POES precipitation observation.

  5. Instrumental development of a quasi-relativistic ultrashort electron beam source for electron diffractions and spectroscopies.

    Science.gov (United States)

    Shin, Young-Min; Figora, Michael

    2017-10-01

    A stable femtosecond electron beam system has been configured for time-resolved pump-probe experiments. The ultrafast electron diffraction (UED) system is designed with a sub-MeV photoelectron beam source pulsed by a femtosecond UV laser and nondispersive beamline components, including a bunch compressor-a pulsed S-band klystron is installed and fully commissioned with 5.5 MW peak power in a 2.5 μs pulse length. A single-cell RF photo-gun is designed to produce 1.6-16 pC electron bunches in a photoemission mode with 150 fs pulse duration at 0.5-1 MeV. The measured RF system jitters are within 1% in magnitude and 0.2° in phase, which would induce 3.4 keV and 0.25 keV of ΔE, corresponding to 80 fs and 5 fs of Δt, respectively. Our particle-in-cell simulations indicate that the designed bunch compressor reduces the time-of-arrival jitter by about an order of magnitude. The transport and focusing optics of the designed beamline with the bunch compressor enables an energy spread within 10 -4 and a bunch length (electron probe) within quasi-relativistic UED system.

  6. Acceleration of electrons at wakefield excitation by a sequence of relativistic electron bunches in dielectric resonator

    International Nuclear Information System (INIS)

    Kiselev, V.A.; Linnik, A.F.; Mirnyj, V.I.; Onishchenko, I.N.; Uskov, V.V.

    2009-01-01

    Method is proposed to divide a regular sequence of electron bunches into parts of bunches driving wakefield and witness bunches, which should be accelerated. It allows to avoid the necessity of additional electron accelerator for witness bunches producing and the necessity of precision short time techniques of injection phase adjusting. The idea concludes to the frequency detuning between bunches repetition frequency and the frequency of the fundamental mode of excited wakefield. Experiments were carried out on the linear resonant accelerator 'Almaz-2', which injected in the dielectric resonator a sequence of 6000 short bunches of relativistic electrons with energy 4.5 MeV, charge 0.16 nC and duration 60 psec each, the repetition interval 360 ps. Frequency detuning was entered by change of frequency of the master generator of the klystron within the limits of one percent so that the phase taper on the length of bunches sequence achieved 2π. Energy spectra of electrons of bunches sequence, which have been propagated through the dielectric resonator are measured and analyzed

  7. Compact toroidal energy storage device with relativistically densified electrons through the use of travelling magnetic waves

    International Nuclear Information System (INIS)

    Peter, W.; Faehl, R.J.

    1983-01-01

    A new concept for a small compact multimegajoule energy storage device utilizing relativistically densified electron beam circulating in a torus is presented. The electron cloud is produced through inductive charge injection by a travelling magnetic wave circulating the torus. Parameters are given for two representative toroidal energy storage devices, consisting of 1 m and 32 m in radius respectively, which could store more than 4 x 10 17 electrons and 30' MJ in energy. The concept utilizes the idea that large electric and magnetic fields can be produced by a partially space-charge neutralized intense relativistic electron beam which could become many orders of magnitude greater than the externally applied field confining the beam. In the present approach, the electron cloud densification can be achieved gradually by permitting multiple traversals of the magnetic wave around the torus. The magnetic mirror force acts on the orbital magnetic electron dipole moment and completely penetrates the entire electron cloud. As the electrons gain relativistic energies, the beam can be continuously densified at the front of the travelling wave, where the magnetic field is rising with time. The use of travelling magnetic wave to accelerate an electron cloud and the use of large electric field at the thusly accelerated cloud form the basis for a high beam intensity and hence high energy storage. Technical considerations and several potential applications, which include the driving of a powerful gyrotron, are discussed

  8. The electromagnetic radiation fields of a relativistic electron avalanche with special attention to the origin of narrow bipolar pulses

    Science.gov (United States)

    Cooray, G. V.; Cooray, G. K.

    2011-12-01

    Gurevich et al. [1] postulated that the source of narrow bipolar pulses, a class of high energy pulses that occur during thunderstorms, could be a runaway electron avalanche driven by the intense electric fields of a thunderstorm. Recently, Watson and Marshall [2] used the modified transmission line model to test the mechanism of the source of narrow bipolar pulses. In a recent paper, Cooray and Cooray [3] demonstrated that the electromagnetic fields of accelerating charges could be used to evaluate the electromagnetic fields from electrical discharges if the temporal and spatial variation of the charges in the discharge is known. In the present study, those equations were utilized to evaluate the electromagnetic fields generated by a relativistic electron avalanche. In the analysis it is assumed that all the electrons in the avalanche are moving with the same speed. In other words, the growth or the decay of the number of electrons takes place only at the head of the avalanche. It is shown that the radiation is emanating only from the head of the avalanche where electrons are being accelerated. It is also shown that an analytical expression for the radiation field of the avalanche at any distance can be written directly in terms of the e-folding length of the avalanche. This makes it possible to extract directly the spatial variation of the e-folding length of the avalanche from the measured radiation fields. In the study this model avalanche was used to investigate whether it can be used to describe the measured electromagnetic fields of narrow bipolar pulses. The results obtained are in reasonable agreement with the two station data of Eack [4] for speeds of propagation around (2 - 2.5) x 10^8 m/s and when the propagation effects on the electric fields measured at the distant station is taken into account. [1] Gurevich et al. (2004), Phys. Lett. A., 329, pp. 348 -361. [2] Watson, S. S. and T. C. Marshall (2007), Geophys. Res. Lett., Vol. 34, L04816, doi: 10

  9. Generation of ultra-short relativistic-electron-bunch by a laser wakefield

    NARCIS (Netherlands)

    Khachatryan, A.G.; Boller, Klaus J.; van Goor, F.A.

    2003-01-01

    The possibility of the generation of an ultra-short (about one micron long) relativistic (up to a few GeVs) electron-bunch in a moderately nonlinear laser wakefield excited in an underdense plasma by an intense laser pulse is investigated. The ultra-short bunch is formed by trapping, effective

  10. Relativistic electron acceleration during HILDCAA events: are precursor CIR magnetic storms important?

    Czech Academy of Sciences Publication Activity Database

    Hajra, R.; Tsurutani, B. T.; Echer, E.; Gonzalez, W. D.; Brum, Ch. G. M.; Antunes Vieira, L. E.; Santolík, Ondřej

    2015-01-01

    Roč. 67, Article Number 109 (2015), 109/1-109/11 ISSN 1880-5981 R&D Projects: GA MŠk LH12231 Institutional support: RVO:68378289 Keywords : HILDCAAs * high-speed streams * CIRs * chorus plasma waves * radiation belt * magnetospheric relativistic electrons * solar wind * geomagnetic storms Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 1.871, year: 2015

  11. Radial focusing of a relativistic electron beam in a bipotential electrostatic lens

    International Nuclear Information System (INIS)

    Genoni, T.C.

    1994-01-01

    The focusing of a relativistic electron beam in a bipotential electrostatic lens is discussed. An iterative scheme for the solution of the paraxial ray equation is used to derive approximate analytic formulas for the lens parameters and lens transfer matrix elements. The formulas are compared to results of direct numerical integration of the paraxial ray equation

  12. Time-dependent field equations for paraxial relativistic electron beams: Beam Research Program

    International Nuclear Information System (INIS)

    Sharp, W.M.; Yu, S.S.; Lee, E.P.

    1987-01-01

    A simplified set of field equations for a paraxial relativistic electron beam is presented. These equations for the beam electrostatic potential phi and pinch potential Phi identical to A/sub z/ - phi retain previously neglected time-dependent terms and for axisymmetric beams reduce exactly to Maxwell's equations

  13. The dispersion relation of charge and current compensated relativistic electron beam-plasma system

    International Nuclear Information System (INIS)

    Vrba, P.; Schroetter, J.; Jarosova, P.; Koerbel, S.

    1978-01-01

    The unstable regions of relativistic electron beam-plasma system were determined by analysing the general dispersion relation numerically. The external parameters were varied to ensure more effective instability excitations. The full charge- and current compensation presumptions lead to the new synchronism predictions. The slow space charge wave and slow cyclotron wave of the return current are synchronous with the plasma ion wave. (author)

  14. The EMP excitation of radiation by the pulsed relativistic electron beam

    International Nuclear Information System (INIS)

    Balakirev, V.A.; Sidelnikov, G.L.

    1996-01-01

    The mechanisms of excitation of ultra-wideband electromagnetic pulses (EMP) by short pulses of high-current relativistic electron beams were proposed and investigated. It is shown that the transformation efficiency of the bunch kinetic energy to the excited energy of the EMP can be very significant. (author). 2 figs., 4 refs

  15. Relativistic electron beam source with an air-core step-up transformer

    International Nuclear Information System (INIS)

    Mohri, Akihiro; Ikuta, Kazunari; Masuzaki, Masaru; Tsuzuki, Tetsuya; Fujiwaka, Setsuya.

    1975-04-01

    An air-core step-up transformer with a high coupling factor has been developed to generate a high voltage pulse for charging the pulse forming line of a relativistic electron beam source. A beam source using the transformer was constructed and well operated for the beam injection into a toroidal system. (auth.)

  16. The EMP excitation of radiation by the pulsed relativistic electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Balakirev, V A; Sidelnikov, G L [Kharkov Inst. of Physics and Technology (Russian Federation)

    1997-12-31

    The mechanisms of excitation of ultra-wideband electromagnetic pulses (EMP) by short pulses of high-current relativistic electron beams were proposed and investigated. It is shown that the transformation efficiency of the bunch kinetic energy to the excited energy of the EMP can be very significant. (author). 2 figs., 4 refs.

  17. Plasma heating in a long solenoid by a laser or a relativistic electron beam

    International Nuclear Information System (INIS)

    Tajima, T.

    1975-01-01

    Advances in the technology of a large energy laser and/or relativistic electron beam (REB) generator have made it possible to seriously consider a long solenoid reactor concept. This concept has been reviewed. The physical problems in the plasma heating of the long solenoid by a laser or a REB are studied

  18. Effect of Vavilov–Cherenkov radiation cone transformation upon entry of a relativistic electron into a substance layer

    Energy Technology Data Exchange (ETDEWEB)

    Kishchin, I. A.; Kubankin, A. S., E-mail: kubankin@bsu.edu.ru; Nikulicheva, T. B.; Al-Omari; Sotnikov, A. V.; Starovoitov, A. S. [Belgorod National Research University (Russian Federation)

    2016-12-15

    Transformation of the Vavilov–Cherenkov radiation cone under grazing interaction of a relativistic electron with a layer of substance is theoretically studied. It is shown that this effect can occur when the electron enters the substance layer.

  19. Comparison of runaway electron generation parameters in small, medium-sized and large tokamaks—A survey of experiments in COMPASS, TCV, ASDEX-Upgrade and JET

    Czech Academy of Sciences Publication Activity Database

    Plyusnin, V.V.; Reux, C.; Kiptily, V.G.; Pautasso, G.; Decker, J.; Papp, G.; Kallenbach, A.; Weinzettl, Vladimír; Mlynář, Jan; Coda, S.; Riccardo, V.; Lomas, P.; Jachmich, S.; Shevelev, A.E.; Alper, B.; Khilkevitch, E.; Martin, Y.; Dux, R.; Fuchs, C.; Duval, B.; Brix, M.; Tardini, G.; Maraschek, M.; Treutterer, W.; Giannone, L.; Mlynek, A.; Ficker, Ondřej; Martin, P.; Gerasimov, S.; Potzel, S.; Papřok, Richard; McCarthy, P.J.; Imríšek, Martin; Boboc, A.; Lackner, K.; Fernandes, A.; Havlíček, Josef; Giacomelli, L.; Vlainić, M.; Nocente, M.; Kruezi, U.

    2018-01-01

    Roč. 58, č. 1 (2018), č. článku 016014. ISSN 0029-5515 R&D Projects: GA MŠk(CZ) LM2015045 EU Projects: European Commission(XE) 633053 - EUROfusion Institutional support: RVO:61389021 Keywords : Tokamak * disruptions * runaway electrons * hard x rays Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 3.307, year: 2016 http://iopscience.iop.org/article/10.1088/1741-4326/aa8f05/meta

  20. Three dimensional electrostatic solitary waves in a dense magnetoplasma with relativistically degenerate electrons

    Energy Technology Data Exchange (ETDEWEB)

    Ata-ur-Rahman,; Qamar, A. [Institute of Physics and Electronics, University of Peshawar, Peshawar 25000 (Pakistan); National Centre for Physics, QAU Campus, Shahdrah Valley Road, Islamabad 44000 (Pakistan); Masood, W. [National Centre for Physics, QAU Campus, Shahdrah Valley Road, Islamabad 44000 (Pakistan); COMSATS, Institute of Information Technology, Park Road, Chak Shahzad, Islamabad 44000 (Pakistan); Eliasson, B. [Physics Department, University of Strathclyde, Glasgow G4 0NG, Scotland (United Kingdom)

    2013-09-15

    In this paper, small but finite amplitude electrostatic solitary waves in a relativistic degenerate magnetoplasma, consisting of relativistically degenerate electrons and non-degenerate cold ions, are investigated. The Zakharov-Kuznetsov equation is derived employing the reductive perturbation technique and its solitary wave solution is analyzed. It is shown that only compressive electrostatic solitary structures can propagate in such a degenerate plasma system. The effects of plasma number density, ion cyclotron frequency, and direction cosines on the profiles of ion acoustic solitary waves are investigated and discussed at length. The relevance of the present investigation vis-a-vis pulsating white dwarfs is also pointed out.

  1. Novel radio-frequency gun structures for ultrafast relativistic electron diffraction.

    Science.gov (United States)

    Musumeci, P; Faillace, L; Fukasawa, A; Moody, J T; O'Shea, B; Rosenzweig, J B; Scoby, C M

    2009-08-01

    Radio-frequency (RF) photoinjector-based relativistic ultrafast electron diffraction (UED) is a promising new technique that has the potential to probe structural changes at the atomic scale with sub-100 fs temporal resolution in a single shot. We analyze the limitations on the temporal and spatial resolution of this technique considering the operating parameters of a standard 1.6 cell RF gun (which is the RF photoinjector used for the first experimental tests of relativistic UED at Stanford Linear Accelerator Center; University of California, Los Angeles; Brookhaven National Laboratory), and study the possibility of employing novel RF structures to circumvent some of these limits.

  2. Energy spectrum of Compton scattering of laser photons on relativistic electrons

    International Nuclear Information System (INIS)

    Ando, Hiroaki; Yoneda, Yasuharu

    1976-01-01

    The high energy photons in gamma-ray region are obtainable by the Compton scattering of laser photons on relativistic electrons. But the motion of the electrons in the storage ring is not necessarily uniform. In the study of the uneven effect, the energy distribution of scattered photons is derived from the assumed momentum distribution of incident electrons. It is generally impossible to derive the momentum distribution of incident electrons from the energy spectrum of scattered photons. The additional conditions which make this possible in a special case are considered. A calculational method is examined for deriving the energy spectrum of scattered photons from the assumed momentum distribution of incident electrons. (Mori, K.)

  3. Application of high power modulated intense relativistic electron beams for development of Wake Field Accelerator

    International Nuclear Information System (INIS)

    Friedman, M.

    1989-01-01

    This final Progress Report addresses DOE-sponsored research on the development of future high-gradient particle accelerators. The experimental and the theoretical research, which lasted three years, investigated the Two Beam Accelerator (TBA). This high-voltage-gradient accelerator was powered by a modulated intense relativistic electron beam (MIREB) of power >10 10 watts. This research was conceived after a series of successful experiments performed at NRL generating and using MIREBs. This work showed that an RF structure could be built which was directly powered by a modulated intense relativistic electron beam. This structure was then used to accelerate a second electron beam. At the end of the three year project the proof-of-principle accelerator demonstrated the generation of a high current beam of electrons with energy >60 MeV. Scaling laws needed to design practical devices for future applications were also derived

  4. Relativistic electrons of the outer radiation belt and methods of their forecast (review

    Directory of Open Access Journals (Sweden)

    Potapov A.S.

    2017-03-01

    Full Text Available The paper reviews studies of the dynamics of relativistic electrons in the geosynchronous region. It lists the physical processes that lead to the acceleration of electrons filling the outer radiation belt. As one of the space weather factors, high-energy electron fluxes pose a serious threat to the operation of satellite equipment in one of the most populated orbital regions. Necessity is emphasized for efforts to develop methods for forecasting the situation in this part of the magnetosphere, possible predictors are listed, and their classification is given. An example of a predictive model for forecasting relativistic electron flux with a 1–2-day lead time is proposed. Some questions of practical organization of prediction are discussed; the main objectives of short-term, medium-term, and long-term forecasts are listed.

  5. Gamma rays from relativistic electrons undergoing Compton losses in isotropic photon fields

    International Nuclear Information System (INIS)

    Zdziarski, A.A.

    1989-01-01

    The kinetic equation describing Compton losses of relativistic electrons in an isotropic field of soft background photons is solved exactly including both continuous energy losses in the classical Thomson regime and catastrophic losses in the quantum Klein-Nishina regime. This extends the previous treatments of this problem, which assumed the validity of either one of these regimes alone. The problem is relevant to astrophysical sources containing relativistic electrons. Analytical solutions for the steady state electron and gamma-ray spectra in the case of power-law soft photons and monoenergetic and power-law electron injections are obtained. Numerical solutions are presented for monoenergetic, blackbody, and power-law soft photons. A comparison between the numerical and the available analytic solutions is made. 15 refs

  6. Study on the intense relativistic electron beam propagation in a collisionless plasma of small density

    International Nuclear Information System (INIS)

    Korenev, S.A.; Rubin, N.B.; Khodataev, K.V.

    1982-01-01

    The results of the experimental studies of the intense relativistic electron beam (IREB) propagation with ν/γ approximately 0.1, and γ approximately 1.6 (γ is an electron beam relativistic factor) in a collisionless plasma of small density over the 180 cm length are presented. Plasma is generated with the incomplete discharge over dielectric surface at the residual gas pressure of P approximately 10 -5 Torr. It is shown that the transportation efficiency may be essentially high, if the electron concentration in plasma satisfies the equilibrium conditions and if it is less or equal to the electron concentration in a beam. At concentration less than optimum one, the transportation efficiency decreases due to violations of equilibrium conditions. At high concentration the transportation efficiency also decreased due to the scattering and breaking on excited small-scale and plasma oscillations. The IREB propagation occurs without essential time delay under optimum conditions

  7. Investigation of runaway electrons in the current ramp-up by a fully non-inductive lower hybrid current drive on the EAST tokamak

    International Nuclear Information System (INIS)

    Lu, H W; Zha, X J; Zhong, F C; Hu, L Q; Zhou, R J

    2013-01-01

    The possibility of using a lower hybrid wave (LHW) to ramp up the plasma current (I p ) from a low level to a high enough level required for fusion burn in the EAST (experimental advanced superconducting tokamak) tokamak is examined experimentally. The focus in this paper is on investigating how the relevant plasma parameters evolve during the current ramp-up (CRU) phase driving by a lower hybrid current drive (LHCD) with poloidal field (PF) coil cut-off, especially the behaviors of runaway electrons generated during the CRU phase. It is found that the intensity of runaway electron emission increases first, and then decreases gradually as the discharge goes on under conditions of PF coil cut-off before LHW was launched into plasma, PF coil cut-off at the same time as LHW was launched into plasma, as well as PF coil cut-off after LHW was launched into plasma. The relevant plasma parameters, including H α line emission (Ha), impurity line emission (UV), soft x-ray emission and electron density n e , increase to a high level. The loop voltage decreases from positive to negative, and then becomes zero because of the cut-off of PF coils. Also, the magnetohydrodynamic activity takes place during the CRU driving by LHCD. (paper)

  8. Radiative electron capture studied in relativistic heavy-ion--atom collisions

    International Nuclear Information System (INIS)

    Stoehlker, T.; Kozhuharov, C.; Mokler, P.H.; Warczak, A.; Bosch, F.; Geissel, H.; Moshammer, R.; Scheidenberger, C.; Eichler, J.; Ichihara, A.; Shirai, T.; Stachura, Z.; Rymuza, P.

    1995-01-01

    The process of radiative electron capture (REC) in relativistic collisions of high-Z ions with low-Z gaseous and solid targets is studied experimentally and theoretically. The observed x-ray spectra are analyzed with respect to photon angular distributions as well as to total K-REC cross sections. The experimental results for angle-differential cross sections are well reproduced by exact relativistic calculations which yield significant deviations from standard sin 2 θ distributions. Total cross sections for K-REC are shown to follow a simple scaling rule obtained from exact relativistic calculations as well as from a nonrelativistic dipole approximation. The agreement between these different theoretical approaches must be regarded as fortuitous, but it lends support to the use of the nonrelativistic approach for practical purposes

  9. Solitary waves in dusty plasmas with weak relativistic effects in electrons and ions

    Energy Technology Data Exchange (ETDEWEB)

    Kalita, B. C., E-mail: bckalita123@gmail.com [Gauhati University, Department of Mathematics (India); Choudhury, M., E-mail: choudhurymamani@gmail.com [Handique Girls’ College, Department of Mathematics (India)

    2016-10-15

    Two distinct classes of dust ion acoustic (DIA) solitary waves based on relativistic ions and electrons, dust charge Z{sub d} and ion-to-dust mass ratio Q’ = m{sub i}/m{sub d} are established in this model of multicomponent plasmas. At the increase of mass ratio Q’ due to increase of relativistic ion mass and accumulation of more negative dust charges into the plasma causing decrease of dust mass, relativistic DIA solitons of negative potentials are abundantly observed. Of course, relativistic compressive DIA solitons are also found to exist simultaneously. Further, the decrease of temperature inherent in the speed of light c causes the nonlinear term to be more active that increases the amplitude of the rarefactive solitons and dampens the growth of compressive solitons for relatively low and high mass ratio Q’, respectively. The impact of higher initial streaming of the massive ions is observed to identify the point of maximum dust density N{sub d} to yield rarefactive relativistic solitons of maximum amplitude.

  10. Device and method for relativistic electron beam heating of a high-density plasma to drive fast liners

    International Nuclear Information System (INIS)

    Thode, L.E.

    1981-01-01

    A device and method for relativistic electron beam heating of a high-density plasma in a small localized region are described. A relativistic electron beam generator or accelerator produces a high-voltage electron beam which propagates along a vacuum drift tube and is modulated to initiate electron bunching within the beam. The beam is then directed through a low-density gas chamber which provides isolation between the vacuum modulator and the relativistic electron beam target. The relativistic beam is then applied to a high-density target plasma which typically comprises dt, dd, hydrogen boron or similar thermonuclear gas at a density of 1017 to 1020 electrons per cubic centimeter. The target gas is ionized prior to application of the electron beam by means of a laser or other preionization source to form a plasma. Utilizing a relativistic electron beam with an individual particle energy exceeding 3 mev, classical scattering by relativistic electrons passing through isolation foils is negligible. As a result, relativistic streaming instabilities are initiated within the high-density target plasma causing the relativistic electron beam to efficiently deposit its energy and momentum into a small localized region of the high-density plasma target. Fast liners disposed in the high-density target plasma are explosively or ablatively driven to implosion by a heated annular plasma surrounding the fast liner which is generated by an annular relativistic electron beam. An azimuthal magnetic field produced by axial current flow in the annular plasma, causes the energy in the heated annular plasma to converge on the fast liner

  11. Formation of virtual cathodes and microwave generation in relativistic electron beams

    International Nuclear Information System (INIS)

    Kwan, T.J.T.; Thode, L.E.

    1984-01-01

    Simulation of the generation of a relativistic electron beam in a foil diode configuration and the subsequent intense microwave generation resulting from the formation of the virtual cathode is presented. The oscillating virtual cathode and the trapped beam electrons between the real and the virtual cathodes were found to generate microwaves at two distinct frequencies. Generation of high-power microwaves with about 10% efficiency might reasonably be expected from such a virtual-cathode configuration

  12. Evidence of interaction between a relativistic electron beam and solid target

    International Nuclear Information System (INIS)

    Scarlat, Fl.; Scarlat, F.S.; Mitru, E.

    2002-01-01

    The investigation of the X ray production mechanism by the relativistic electron beams (REB) is an important keypoint for increasing the output of electron X ray conversion. This paper presents the image of a platinum target optically observed by its radiography (after irradiation by a REB of 31 MeV). The image is processed by means of a scanner and computer. The paper presents the distributions of the absorbed dose in a target volume

  13. Quasistationary model of high-current relativistic electron beam. 1. Exact solution of Poisson equations

    International Nuclear Information System (INIS)

    Brenner, S.E.; Gandyl', E.M.; Podkopaev, A.P.

    1995-01-01

    The dynamics of high-current relativistic electron beam moving trough the cylindrical drift space has been modelled by the large particles, the shape of which allows to solve the Poisson equations exactly, and in such a way to avoid the linearization being usually used in those problems. The expressions for the components of own electric field of electron beam passing through the cylindrical drift space have been obtained. (author). 11 refs., 1 fig

  14. Pair production with electron capture in peripheral collisions of relativistic heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    Bertulani, C.A.C.A. E-mail: bertu@if.ufrj.br; Dolci, D.D. E-mail: dolci@if.ufrj.br

    2001-02-26

    The production of electron-positron pairs with the capture of the electron in an atomic orbital is investigated for the conditions of the Relativistic Heavy Ion Collider (RHIC) and the Large Hadron Collider (LHC). Dirac wave functions for the leptons are used, taking corrections to orders of Z{alpha} into account. The dependence on the transverse momentum transfer is studied and the accuracy of the equivalent photon approximation is discussed as a function of the nuclear charge.

  15. Collective acceleration of electrons and ions in a high current relativistic electron beam. Final report

    International Nuclear Information System (INIS)

    Nation, J.A.

    1992-01-01

    This report describes work carried out on DOE contract number DE-AC02-80ER10569 during the period December 15, 1979 to May 31, 1992. The original purpose of this research was to investigate the use of slow space charge waves on weakly relativistic electron beams for ion acceleration. The work had three major objectives: development of a suitable ion injector, growth and study of the properties of slow space charge waves on an electron beam, and a combination of the two components into a suitable proof-of-principle demonstration of the wave accelerator. Work focused on the first two of these objectives. Control of the space charge waves' phase velocity was not obtained to the degree required for a working accelerator, so the project was duly terminated in favor of a program which focused on generating ultra high power microwave signals suitable for use in the next linear collider. Work done to develop suitable efficient, inexpensive, phase-stable microwave sources, with peak powers of up to 1 GW in the X band in pulses shorter than 1 ns, is described. Included are lists of the journal and conference papers resulting from this work, as well as a list of graduate students who completed their Ph.D. studies on the projects described in this report

  16. Novel aspects of direct laser acceleration of relativistic electrons

    Science.gov (United States)

    Arefiev, Alexey

    2015-11-01

    Production of energetic electrons is a keystone aspect of ultraintense laser-plasma interactions that underpins a variety of topics and applications, including fast ignition inertial confinement fusion and compact particle and radiation sources. There is a wide range of electron acceleration regimes that depend on the duration of the laser pulse and the plasma density. This talk focuses on the regime in which the plasma is significantly underdense and the laser pulse duration is longer than the electron response time, so that, in contrast to the wakefield acceleration regime, the pulse creates a quasi-static channel in the electron density. Such a regime is of particular interest, since it can naturally arise in experiments with solid density targets where the pre-pulse of an ultraintense laser produces an extended sub-critical pre-plasma. This talk examines the impact of several key factors on electron acceleration by the laser pulse and the resulting electron energy gain. A detailed consideration is given to the role played by: (1) the static longitudinal electric field, (2) the static transverse electric field, (3) the electron injection into the laser pulse, (4) the electromagnetic dispersion, and (5) the static longitudinal magnetic field. It is shown that all of these factors lead, under conditions outlined in the talk, to a considerable electron energy gain that greatly exceeds the ponderomotive limit. The static fields do not directly transfer substantial energy to electrons. Instead, they alter the longitudinal dephasing between the electrons and the laser pulse, which then allows the electrons to gain extra energy from the pulse. The talk will also outline a time-resolution criterion that must be satisfied in order to correctly reproduce these effects in particle-in-cell simulations. Supported by AFOSR Contract No. FA9550-14-1-0045, National Nuclear Security Administration Contract No. DE-FC52-08NA28512, and US Department of Energy Contract No. DE-FG02

  17. The Work Function Associated with Ultra-relativistic Electron ...

    Indian Academy of Sciences (India)

    The energy required to liberate an electron in the Fermi level is the work function and is ... potential difference will be developed across a thin gap, called the polar gap. This ... The emission of electrons from the polar region of neutron stars is.

  18. Radiation at planar channeling of relativistic electrons in thick crystals

    International Nuclear Information System (INIS)

    Baier, V.N.; Katkov, V.M.; Strakhovenko, V.M.

    1983-01-01

    The distribution kinetics with respect to the transverse energy at electron channeling is discussed. The asymptotic expressions for the radiation intensity into a given collimator at electron channeling in thick crystals are derived. An optimal thickness at which the radiation output is maximal is found. The spectral distribution of the radiation intensity is analysed for the case of a single diamond crystal. (author)

  19. Far-field interaction of focused relativistic electron beams in electron energy loss spectroscopy of nanoscopic platelets

    OpenAIRE

    Itskovsky, M. A.; Cohen, H.; Maniv, T.

    2008-01-01

    A quantum mechanical scattering theory for relativistic, highly focused electron beams near nanoscopic platelets is presented, revealing a new excitation mechanism due to the electron wave scattering from the platelet edges. Radiative electromagnetic excitations within the light cone are shown to arise, allowed by the breakdown of momentum conservation along the beam axis in the inelastic scattering process. Calculated for metallic (silver and gold) and insulating (SiO2 and MgO) nanoplatelets...

  20. Relativistic quantum dynamics in strong fields: Photon emission from heavy, few-electron ions

    International Nuclear Information System (INIS)

    Fritzsche, S.; Stoehlker, T.

    2005-03-01

    Recent progress in the study of the photon emission from highly-charged heavy ions is reviewed. These investigations show that high-Z ions provide a unique tool for improving the understanding of the electron-electron and electron-photon interaction in the presence of strong fields. Apart from the bound-state transitions, which are accurately described in the framework of quantum electrodynamics, much information has been obtained also from the radiative capture of (quasi-) free electrons by high-Z ions. Many features in the observed spectra hereby confirm the inherently relativistic behavior of even the simplest compound quantum systems in nature. (orig.)

  1. Fast-electron-relaxation measurement for laser-solid interaction at relativistic laser intensities

    International Nuclear Information System (INIS)

    Chen, H.; Shepherd, R.; Chung, H. K.; Kemp, A.; Hansen, S. B.; Wilks, S. C.; Ping, Y.; Widmann, K.; Fournier, K. B.; Beiersdorfer, P.; Dyer, G.; Faenov, A.; Pikuz, T.

    2007-01-01

    We present measurements of the fast-electron-relaxation time in short-pulse (0.5 ps) laser-solid interactions for laser intensities of 10 17 , 10 18 , and 10 19 W/cm 2 , using a picosecond time-resolved x-ray spectrometer and a time-integrated electron spectrometer. We find that the laser coupling to hot electrons increases as the laser intensity becomes relativistic, and that the thermalization of fast electrons occurs over time scales on the order of 10 ps at all laser intensities. The experimental data are analyzed using a combination of models that include Kα generation, collisional coupling, and plasma expansion

  2. Quasilinear analysis of loss-cone driven weakly relativistic electron cyclotron maser instability

    International Nuclear Information System (INIS)

    Ziebell, L.F.; Yoon, P.H.

    1995-01-01

    This paper presents a quasilinear analysis of the relativistic electron cyclotron maser instability. Two electron populations are assumed: a low-temperature background component and a more energetic loss-cone population. The dispersion relation is valid for any ratio of the energetic to cold populations, and includes thermal and relativistic effects. The quasilinear analysis is based upon an efficient kinetic moment method, in which various moment equations are derived from the particle kinetic equation. A model time-dependent loss-cone electron distribution function is assumed, which allows one to evaluate the instantaneous linear growth rate as well as the moment kinetic equations. These moment equations along with the wave kinetic equation form a fully self-consistent set of equations which governs the evolution of the particles as well as unstable waves. This set of equations is solved with physical parameters typical of the earth's auroral zone plasma. copyright 1995 American Institute of Physics

  3. Relativistic convergent close-coupling method applied to electron scattering from mercury

    International Nuclear Information System (INIS)

    Bostock, Christopher J.; Fursa, Dmitry V.; Bray, Igor

    2010-01-01

    We report on the extension of the recently formulated relativistic convergent close-coupling (RCCC) method to accommodate two-electron and quasi-two-electron targets. We apply the theory to electron scattering from mercury and obtain differential and integrated cross sections for elastic and inelastic scattering. We compared with previous nonrelativistic convergent close-coupling (CCC) calculations and for a number of transitions obtained significantly better agreement with the experiment. The RCCC method is able to resolve structure in the integrated cross sections for the energy regime in the vicinity of the excitation thresholds for the (6s6p) 3 P 0,1,2 states. These cross sections are associated with the formation of negative ion (Hg - ) resonances that could not be resolved with the nonrelativistic CCC method. The RCCC results are compared with the experiment and other relativistic theories.

  4. Second harmonic generation by a relativistic annular electron beam propagating through a cylindrical waveguide

    International Nuclear Information System (INIS)

    Yasumoto, Kiyotoshi; Abe, Hiroshi

    1983-01-01

    The second harmonic generated by a relativistic annular electron beam propagating through a cylindrical waveguide immersed in a strong axial magnetic field is investigated on the basis of the relativistic hydrodynamic equations for cold electrons. The efficiency of second harmonic generation is calculated separately for the pump by the TM electromagnetic wave and for the pump by the slow space-charge wave, by assuming that the electron beam is thin and of low density and the pump wave is azimuthally symmetric. It is shown that, in the case of slow space-charge wave pump, an appreciably large efficiency of second harmonic generation is achieved in the high frequency region, whereas the efficiency by the TM electromagnetic wave pump is relatively small over the whole frequency range.(author)

  5. A relativistic model of electron cyclotron current drive efficiency in tokamak plasmas

    Directory of Open Access Journals (Sweden)

    Lin-Liu Y.R.

    2012-09-01

    Full Text Available A fully relativistic model of electron cyclotron current drive (ECCD efficiency based on the adjoint function techniques is considered. Numerical calculations of the current drive efficiency in a tokamak by using the variational approach are performed. A fully relativistic extension of the variational principle with the modified basis functions for the Spitzer function with momentum conservation in the electron-electron collision is described in general tokamak geometry. The model developed has generalized that of Marushchenko’s (N.B . Marushchenko, et al. Fusion Sci. & Tech., 2009, which is extended for arbitrary temperatures and covers exactly the asymptotic for u ≫ 1 when Z → ∞, and suitable for ray-tracing calculations.

  6. Comparison of runaway electron generation parameters in small, medium-sized and large tokamaks—A survey of experiments in COMPASS, TCV, ASDEX-Upgrade and JET

    Science.gov (United States)

    Plyusnin, V. V.; Reux, C.; Kiptily, V. G.; Pautasso, G.; Decker, J.; Papp, G.; Kallenbach, A.; Weinzettl, V.; Mlynar, J.; Coda, S.; Riccardo, V.; Lomas, P.; Jachmich, S.; Shevelev, A. E.; Alper, B.; Khilkevitch, E.; Martin, Y.; Dux, R.; Fuchs, C.; Duval, B.; Brix, M.; Tardini, G.; Maraschek, M.; Treutterer, W.; Giannone, L.; Mlynek, A.; Ficker, O.; Martin, P.; Gerasimov, S.; Potzel, S.; Paprok, R.; McCarthy, P. J.; Imrisek, M.; Boboc, A.; Lackner, K.; Fernandes, A.; Havlicek, J.; Giacomelli, L.; Vlainic, M.; Nocente, M.; Kruezi, U.; COMPASS Team; TCV Team; ASDEX-Upgrade Team; EUROFusion MST1 Team; contributors, JET

    2018-01-01

    This paper presents a survey of the experiments on runaway electrons (RE) carried out recently in frames of EUROFusion Consortium in different tokamaks: COMPASS, ASDEX-Upgrade, TCV and JET. Massive gas injection (MGI) has been used in different scenarios for RE generation in small and medium-sized tokamaks to elaborate the most efficient and reliable ones for future RE experiments. New data on RE generated at disruptions in COMPASS and ASDEX-Upgrade was collected and added to the JET database. Different accessible parameters of disruptions, such as current quench rate, conversion rate of plasma current into runaways, etc have been analysed for each tokamak and compared to JET data. It was shown, that tokamaks with larger geometrical sizes provide the wider limits for spatial and temporal variation of plasma parameters during disruptions, thus extending the parameter space for RE generation. The second part of experiments was dedicated to study of RE generation in stationary discharges in COMPASS, TCV and JET. Injection of Ne/Ar have been used to mock-up the JET MGI runaway suppression experiments. Secondary RE avalanching was identified and quantified for the first time in the TCV tokamak in RE generating discharges after massive Ne injection. Simulations of the primary RE generation and secondary avalanching dynamics in stationary discharges has demonstrated that RE current fraction created via avalanching could achieve up to 70-75% of the total plasma current in TCV. Relaxations which are reminiscent the phenomena associated to the kinetic instability driven by RE have been detected in RE discharges in TCV. Macroscopic parameters of RE dominating discharges in TCV before and after onset of the instability fit well to the empirical instability criterion, which was established in the early tokamaks and examined by results of recent numerical simulations.

  7. Transient pulse analysis of ionized electronics exposed to γ-radiation generated from a relativistic electron beam

    Science.gov (United States)

    Min, Sun-Hong; Kwon, Ohjoon; Sattorov, Matlabjon; Baek, In-Keun; Kim, Seontae; Hong, Dongpyo; Jeong, Jin-Young; Jang, Jungmin; Bera, Anirban; Barik, Ranjan Kumar; Bhattacharya, Ranajoy; Cho, Ilsung; Kim, Byungsu; Park, Chawon; Jung, Wongyun; Park, Seunghyuk; Park, Gun-Sik

    2018-02-01

    When a semiconductor element is irradiated with radiation in the form of a transient pulse emitted from a nuclear explosion, a large amount of charge is generated in a short time in the device. A photocurrent amplified in a certain direction by these types of charges cause the device to break down and malfunction or in extreme cases causes them to burn out. In this study, a pulse-type γ-ray generator based on a relativistic electron beam accelerator (γ=2.2, β=0.89) which functions by means of tungsten impingement was constructed and tested in an effort to investigate the process and effects of the photocurrent formed by electron hole pairs (EHP) generated in a pMOSFET device when a transient radiation pulse is incident in the device. The pulse-type γ-ray irradiating device used here to generate the electron beam current in a short time was devised to allow an increase in the irradiation dose. A precise signal processing circuit was constructed to measure the photocurrent of the small signal generated by the pMOSFET due to the electron beam accelerator pulse signal from the large noise stemming from the electromagnetic field around the relativistic electron beam accelerator. The pulse-type γ-ray generator was installed to meet the requirements of relativistic electron beam accelerators, and beam irradiation was conducted after a beam commissioning step.

  8. Radiation effects on relativistic electrons in strong external fields

    International Nuclear Information System (INIS)

    Iqbal, Khalid

    2013-01-01

    The effects of radiation of high energy electron beams are a major issue in almost all types of charged particle accelerators. The objective of this thesis is both the analytical and numerical study of radiation effects. Due to its many applications the study of the self force has become a very active and productive field of research. The main part of this thesis is devoted to the study of radiation effects in laser-based plasma accelerators. Analytical models predict the existence of radiation effects. The investigation of radiation reaction show that in laser-based plasma accelerators, the self force effects lower the energy gain and emittance for moderate energies electron beams and increase the relative energy spread. However, for relatively high energy electron beams, the self radiation and retardation (radiation effects of one electron on the other electron of the system) effects increase the transverse emittance of the beam. The energy gain decreases to even lower value and relative energy spread increases to even higher value due to high radiation losses. The second part of this thesis investigates with radiation reaction in focused laser beams. Radiation effects are very weak even for high energy electrons. The radiation-free acceleration and the simple practical setup make direct acceleration in a focused laser beam very attractive. The results presented in this thesis can be helpful for the optimization of future electron acceleration experiments, in particular in the case of laser-plasma accelerators.

  9. Relativistic electron flux dropout due to field line curvature during the storm on 1 June 2013

    Science.gov (United States)

    Kang, S. B.; Fok, M. C. H.; Engebretson, M. J.; Li, W.; Glocer, A.

    2017-12-01

    Significant electron flux depletion over a wide range of L-shell and energy, referred as a dropout, was observed by Van Allen Probes during the storm main phase on June 1, 2013. During the same period, MeV electron precipitation with isotropic pitch-angle distribution was also observed in the evening sector from POES but no EMIC waves were detected from either space- or ground-based magnetometers. Based on Tsyganenko empirical magnetic field model, magnetic field lines are highly non-dipolar and stretched at the night side in the inner magnetosphere. This condition can break the first adiabatic invariant (conservation of magnetic moment) and generate pitch-angle scattering of relativistic electron to the loss cone. To understand the relative roles of different physical mechanisms on this dropout event, we simulate flux and phase space density of relativistic electrons with event specific plasma wave intensities using the Comprehensive Inner Magnetosphere and Ionosphere (CIMI) model, as a global 4-D inner magnetosphere model. We also employ pitch-angle scattering due to field line curvature in the CIMI model. We re-configure magnetic field every minute and update electric field every 20 seconds to capture radial transport. CIMI-simulation with pitch-angle scattering due to field line curvature shows more depletion of relativistic electron fluxes and better agreement to observation than CIMI-simulation with radial transport only. We conclude that pitch-angle scattering due to field line curvature is one of the dominant processes for the relativistic electron flux dropout.

  10. A comparative study between all-electron scalar relativistic ...

    Indian Academy of Sciences (India)

    using the density functional theory Perdew–Wang 1991 .... Every cluster has two figures, fisrt one for AER calculation and .... orbital electron cloud.59 All these factors might have ..... Huber K P and Herzberg G 1979 Constants of diatomic.

  11. Energy Dependence of Near-relativistic Electron Spectrum at ...

    Indian Academy of Sciences (India)

    chronous altitudes during solar energetic proton events of 2005. ... discussed the radiation belt electron drop outs with respect to their local time, radial and ... number density (Nsw), solar wind speed (Vsw), solar wind pressure (Psw), average.

  12. Dynamic of non relativistic electrons and protons in the plasmasphere

    International Nuclear Information System (INIS)

    Mendes Junior, O.; Pinto Junior, O.; Gonzalez, W.D.

    1985-01-01

    A study of the dynamics of electrons and protons inside the plasmasphere is presented. These particles are subjected to the geomagnetic field and to plasmaspheric electric fields, given by simple static models, during magnetically quiet and disturbed periods. (author) [pt

  13. Study of relativistic electron beams generated by a foilless diode

    International Nuclear Information System (INIS)

    Jones, M.E.; Thode, L.E.

    1979-01-01

    Preliminary results of a numerical and analytical study of foilless diodes are presented. The work produced an electron emission algorithm for the particle-in-cell simulation code CCUBE. Diode performance was studied as a function of applied magnetic field strength and simple geometry changes. Annular electron beams with an energy of 5 MeV appear obtainable with densities exceeding 10 14 cm -3 . 8 figures

  14. Diffusion with Varying Drag; the Runaway Problem.

    Science.gov (United States)

    Rollins, David Kenneth

    We study the motion of electrons in an ionized plasma of electrons and ions in an external electric field. A probability distribution function describes the electron motion and is a solution of a Fokker-Planck equation. In zero field, the solution approaches an equilibrium Maxwellian. For arbitrarily small field, electrons overcome the diffusive effects and are freely accelerated by the field. This is the electron runaway phenomenon. We treat the electric field as a small perturbation. We consider various diffusion coefficients for the one dimensional problem and determine the runaway current as a function of the field strength. Diffusion coefficients, non-zero on a finite interval are examined. Some non-trivial cases of these can be solved exactly in terms of known special functions. The more realistic case where the diffusion coefficient decays with velocity are then considered. To determine the runaway current, the equivalent Schrodinger eigenvalue problem is analysed. The smallest eigenvalue is shown to be equal to the runaway current. Using asymptotic matching a solution can be constructed which is then used to evaluate the runaway current. The runaway current is exponentially small as a function of field strength. This method is used to extract results from the three dimensional problem.

  15. Diffusion with varying drag; the runaway problem

    International Nuclear Information System (INIS)

    Rollins, D.K.

    1986-01-01

    The motion of electrons in an ionized plasma of electrons and ions in an external electric field is studied. A probability distribution function describes the electron motion and is a solution of a Fokker-Planck equation. In zero field, the solution approaches an equilibrium Maxwellian. For arbitrarily small field, electrons overcome the diffusive effects and are freely accelerated by the field. This is the electron-runaway phenomenon. The electric field is treated as a small perturbation. Various diffusion coefficients are considered for the one dimensional problem, and the runaway current is determined as a function of the field strength. Diffusion coefficients, non-zero on a finite interval are examined. Some non-trivial cases of these can be solved exactly in terms of known special functions. The more realistic case where the diffusion coeffient decays with velocity are then considered. To determine the runaway current, the equivalent Schroedinger eigenvalue problem is analyzed. The smallest eigenvalue is shown to be equal to the runaway current. Using asymptotic matching, a solution can be constructed which is then used to evaluate the runaway current. The runaway current is exponentially small as a function of field strength. This method is used to extract results from the three dimensional problem

  16. Magnetohydrodynamic waves with relativistic electrons and positrons in degenerate spin-1/2 astrophysical plasmas

    Science.gov (United States)

    Maroof, R.; Ali, S.; Mushtaq, A.; Qamar, A.

    2015-11-01

    Linear properties of high and low frequency waves are studied in an electron-positron-ion (e-p-i) dense plasma with spin and relativity effects. In a low frequency regime, the magnetohydrodynamic (MHD) waves, namely, the magnetoacoustic and Alfven waves are presented in a magnetized plasma, in which the inertial ions are taken as spinless and non-degenerate, whereas the electrons and positrons are treated quantum mechanically due to their smaller mass. Quantum corrections associated with the spin magnetization and density correlations for electrons and positrons are re-considered and a generalized dispersion relation for the low frequency MHD waves is derived to account for relativistic degeneracy effects. On the basis of angles of propagation, the dispersion relations of different modes are discussed analytically in a degenerate relativistic plasma. Numerical results reveal that electron and positron relativistic degeneracy effects significantly modify the dispersive properties of MHD waves. Our present analysis should be useful for understanding the collective interactions in dense astrophysical compact objects, like, the white dwarfs and in atmosphere of neutron stars.

  17. Magnetohydrodynamic waves with relativistic electrons and positrons in degenerate spin-1/2 astrophysical plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Maroof, R. [Department of Physics, Abdul Wali Khan University, Mardan 23200 (Pakistan); Department of Physics, University of Peshawar, Peshawar 25000 (Pakistan); National Center for Physics (NCP) at QAU Campus, Shahdra Valley Road, Islamabad 44000 (Pakistan); Ali, S. [National Center for Physics (NCP) at QAU Campus, Shahdra Valley Road, Islamabad 44000 (Pakistan); Mushtaq, A. [Department of Physics, Abdul Wali Khan University, Mardan 23200 (Pakistan); National Center for Physics (NCP) at QAU Campus, Shahdra Valley Road, Islamabad 44000 (Pakistan); Qamar, A. [Department of Physics, University of Peshawar, Peshawar 25000 (Pakistan)

    2015-11-15

    Linear properties of high and low frequency waves are studied in an electron-positron-ion (e-p-i) dense plasma with spin and relativity effects. In a low frequency regime, the magnetohydrodynamic (MHD) waves, namely, the magnetoacoustic and Alfven waves are presented in a magnetized plasma, in which the inertial ions are taken as spinless and non-degenerate, whereas the electrons and positrons are treated quantum mechanically due to their smaller mass. Quantum corrections associated with the spin magnetization and density correlations for electrons and positrons are re-considered and a generalized dispersion relation for the low frequency MHD waves is derived to account for relativistic degeneracy effects. On the basis of angles of propagation, the dispersion relations of different modes are discussed analytically in a degenerate relativistic plasma. Numerical results reveal that electron and positron relativistic degeneracy effects significantly modify the dispersive properties of MHD waves. Our present analysis should be useful for understanding the collective interactions in dense astrophysical compact objects, like, the white dwarfs and in atmosphere of neutron stars.

  18. Transport of a relativistic electron beam through hydrogen gas

    International Nuclear Information System (INIS)

    Haan, P. de.

    1981-01-01

    In this thesis the author describes the transport properties of an electron beam through vacuum and through hydrogen gas with pressure ranging from 25 to 1000 Pa. Maximum beam energy and current are 0.8 MeV and 6 kA, respectively. The pulse length is around 150 ns. A description is given of the experimental device. Also the diagnostics for probing the beam and the plasma, produced by the beam, are discussed, as well as the data acquisition system. The interaction between the beam and hydrogen gas with a pressure around 200 Pa is considered. A plasma with density around 10 19 m -3 is produced within a few nanoseconds. Measurements yield the atomic hydrogen temperature, electron density, beam energy loss, and induced plasma current and these are compared with the results of a model combining gas ionization and dissociation, and turbulent plasma heating. The angular distribution of the beam electrons about the magnetic field axis is discussed. (Auth.)

  19. Momentum spectra for single and double electron ionization of He in relativistic collisions

    International Nuclear Information System (INIS)

    Anon.

    1997-01-01

    The complete momentum spectra for single and double ionization of He by 1-GeV/u (β=0.88) U 92+ have been investigated using a classical trajectory Monte Carlo method corrected for the relativistic projectile. The 1/r 12 electron-electron interaction has been included in the post-collision region for double ionization to incorporate the effects of both the nuclear-electron and electron-electron ionizing interactions, and to access the effects of electron correlation in the electron spectra. Experimental measurements were able to determine the longitudinal momentum spectra for single ionization; these observations are in accordance with the theoretical predictions for the three-body momentum balance between projectile, recoil ion, and ionized electron. In particular, the Lorentz contraction of the Coulomb interaction of the projectile manifests itself in the decrease of the post-collision interaction of the projectile with the electron and recoil ion, causing them to recoil back-to-back as in the case for a short electromagnetic pulse. This feature is clearly displayed in both the theoretical and experimental longitudinal momentum spectra, and by comparing to calculations that are performed at the same collision speed but do not include the relativistic potentials. Moreover, collision plane spectra of the three particles demonstrate that the momenta of the recoil ion and ionized electron are preferentially equal, and opposite, to each other. The electron spectra for double ionization show that the inclusion of the electron-electron interaction in the post-collision regime partitions the combined ionization momentum of the electrons so that the electrons are preferentially emitted in opposite azimuthal angles to one another. This is in contrast to calculations made assuming independent electrons. copyright 1997 The American Physical Society

  20. Momentum spectra for single and double electron ionization of He in relativistic collisions

    International Nuclear Information System (INIS)

    Wood, C.J.; Olson, R.E.

    1997-08-01

    The complete momentum spectra for single and double ionization of He by 1GeV/u (β=0.88) U 92+ have been investigated using a classical trajectory Monte Carlo method corrected for the relativistic projectile. The 1/r 12 electron-electron interaction has been included in the post-collision region for double ionization to incorporate the effects of both the nuclear-electron and electron-electron ionizing interactions, and to access the effects of electron correlation in the electron spectra. Experimental measurements were able to determine the longitudinal momentum spectra for single ionization; these observations are in accordance with the theoretical predictions for the three-body momentum balance between projectile, recoil ion, and ionized electron. In particular, the Lorentz contraction of the Coulomb interaction of the projectile manifests itself in the decrease of the post-collision interaction of the projectile with the electron and recoil ion, causing them to recoil back-to-back as in the case for a short electromagnetic pulse. This feature is clearly displayed in both the theoretical and experimental longitudinal momentum spectra, and by comparing to calculations that are performed at the same collision speed but do not include the relativistic potentials. Moreover, collision plane spectra of the three particles demonstrate that the momenta of the recoil ion and ionized electron are preferentially equal, and opposite, to each other. The electron spectra for double ionization show that the inclusion of the electron-electron interaction in the post-collision regime partitions the combined ionization momentum of the electrons so that the electrons are preferentially emitted in opposite azimuthal angles to one another. This is in contrast to calculations made assuming independent electrons. (orig.)

  1. Magnetic Field Generation and Electron Acceleration in Relativistic Laser Channel

    International Nuclear Information System (INIS)

    Kostyukov, I.Yu.; Shvets, G.; Fisch, N.J.; Rax, J.M.

    2001-01-01

    The interaction between energetic electrons and a circularly polarized laser pulse inside an ion channel is studied. Laser radiation can be resonantly absorbed by electrons executing betatron oscillations in the ion channel and absorbing angular momentum from the laser. The absorbed angular momentum manifests itself as a strong axial magnetic field (inverse Faraday effect). The magnitude of this magnetic field is calculated and related to the amount of the absorbed energy. Absorbed energy and generated magnetic field are estimated for the small and large energy gain regimes. Qualitative comparisons with recent experiments are also made

  2. Quasielastic electron scattering: effect of relativistic nuclear potentials

    International Nuclear Information System (INIS)

    Do Dang, G.; Nguyen Van Giai.

    1983-11-01

    It is shown that a solution to the difficulty encountered in reproducing simultaneously the experimental longitudinal and transverse response functions deduced from deep inelastic electron scattering may be found in a consistent treatment of the electromagnetic interaction in a Dirac equation in which Lorentz scalar and vector potentials are explicitly introduced. Results for 12 C and 40 Ca are given and compared with experiments

  3. Investigation of the surface current excitation by a relativistic electron electromagnetic field

    International Nuclear Information System (INIS)

    Naumenko, G; Shevelev, M; Potylitsyn, A; Popov, Yu; Sukhikh, L

    2010-01-01

    Surface current method and pseudo-photon ones are widely used in the problems of diffraction and transition radiation of relativistic electron in conductive targets. The simple analysis disclosed the contradiction between these methods in respect to the surface current excitation on target surfaces. This contradiction was resolved experimentally by the measurement of a surface current on the upstream and downstream target surfaces in diffraction radiation geometry. The experimental test showed, that no surface current is induced on the target downstream surface under the influence of a relativistic electron electromagnetic field in contrast to the upstream surface. This is important for the understanding of a forward transition and diffraction radiation nature and electromagnetic field evolution in interaction processes.

  4. Geant4 simulations on Compton scattering of laser photons on relativistic electrons

    Energy Technology Data Exchange (ETDEWEB)

    Filipescu, D. [Extreme Light Infrastructure - Nuclear Physics, str. Atomistilor nr. 407, Bucharest-Magurele, P.O.BOX MG6, Romania and National Institute for Physics and Nuclear Engineering Horia Hulubei, str. Atomistilor nr. 407 (Romania); Utsunomiya, H. [Department of Physics, Konan University, Okamoto 8-9-1, Higashinada, Kobe 658-8501 (Japan); Gheorghe, I.; Glodariu, T. [National Institute for Physics and Nuclear Engineering Horia Hulubei, str. Atomistilor nr. 407 (Romania); Tesileanu, O. [Extreme Light Infrastructure - Nuclear Physics, str. Atomistilor nr. 407, Bucharest-Magurele, P.O.BOX MG6 (Romania); Shima, T.; Takahisa, K. [Research Center for Nuclear Physics, Osaka University, Suita, Osaka 567-0047 (Japan); Miyamoto, S. [Laboratory of Advanced Science and Technology for Industry, University of Hyogo, 3-1-2 Kouto, Kamigori, Hyogo 678-1205 (Japan)

    2015-02-24

    Using Geant4, a complex simulation code of the interaction between laser photons and relativistic electrons was developed. We implemented physically constrained electron beam emittance and spacial distribution parameters and we also considered a Gaussian laser beam. The code was tested against experimental data produced at the γ-ray beam line GACKO (Gamma Collaboration Hutch of Konan University) of the synchrotron radiation facility NewSUBARU. Here we will discuss the implications of transverse missallignments of the collimation system relative to the electron beam axis.

  5. Generation of relativistic electron beam and its anomalous stopping in the fast ignition scheme

    International Nuclear Information System (INIS)

    Sengupta, S.; Sandhu, A.S.; Dharmadhikari, A.K.; Kumar, G.R.; Das, A.; Kaw, P.K.

    2005-01-01

    We present experimental/theoretical results concerning two main physics issues related to the fast ignition scheme viz. the nonlinear mechanism of conversion of incident laser energy into a relativistic electron beam at the critical layer and its subsequent transport through an overdense plasma. Theoretical/numerical modelling of the experimental data, firstly shows that the conversion of the laser energy into an inward propagating electron beam occurs through the nonlinear mechanism of wave breaking of plasma waves excited at the critical layer and, secondly the transport of the electron beam through the overdense plasma is influenced by electrostatically induced and/or turbulence induced anomalous resistivity. (author)

  6. X-ray and γ-ray emission from channeled relativistic electrons and positrons

    International Nuclear Information System (INIS)

    Terhune, R.W.; Pantell, R.H.

    1977-01-01

    The characteristics of the radiation from channeled relativistic electrons and positrons are discussed and model calculations carried out. Radiation near 2.5 keV associated with transitions etween the 2 p→1s eigenstates of 2-MeV electrons channeled along the axis of MgO is predicted with 50 times the usual bremsstrahlung intensity in a 10% bandwidth. Recent low-energy bremsstrahlung measurements made with 28-MeV electrons propagating along an axis in silicon are interpreted in terms of this model

  7. X-ray flares from runaway pair production in active galactic nuclei

    Science.gov (United States)

    Kirk, J. G.; Mastichiadis, A.

    1992-01-01

    The hard X-ray spectrum of AGNs is nonthermal, probably arising from an electron-positron pair cascade, with some emission reflected off relatively cold matter. There has been interest in models on which protons are accelerated and create relativistic electrons on interaction with a local radiation field. It is shown here that a sufficient column density of protons can lead to runaway pair production: photons generated by the relativistic pairs are the targets for the protons to produce more pairs. This can produce X-ray fluxes with the characteristics observed in AGN. The model predicts the maximum ratio of luminosity to source size as well as their spectrum in the early phases. The same mechanism may also be able to create the knots of synchrotron-radiating pair plasma seen in sources such as 3C273.

  8. Chaos in Dirac electron optics: Emergence of a relativistic quantum chimera

    OpenAIRE

    Xu, Hong-Ya; Wang, Guang-Lei; Huang, Liang; Lai, Ying-Cheng

    2018-01-01

    We uncover a remarkable quantum scattering phenomenon in two-dimensional Dirac material systems where the manifestations of both classically integrable and chaotic dynamics emerge simultaneously and are electrically controllable. The distinct relativistic quantum fingerprints associated with different electron spin states are due to a physical mechanism analogous to chiroptical effect in the presence of degeneracy breaking. The phenomenon mimics a chimera state in classical complex dynamical ...

  9. Electronic excitation in transmission of relativistic H- ions through thin foils

    International Nuclear Information System (INIS)

    Reinhold, C.O.; Kuerpick, P.; Burgdoerfer, J.; Yoshida, S.

    1998-01-01

    The authors describe a theoretical model to study the transmission of relativistic H - ions through thin carbon foils. The approach is based on a Monte Carlo solution of the Langevin equation describing electronic excitations of the atoms during the transport through the foil. Calculations for the subshell populations of outgoing hydrogen atoms are found to be in good agreement with recent experimental data on an absolute scale and show that there exists a propensity for populating extreme Stark states

  10. Novel non-intercepting diagnostic techniques for low-emittance relativistic electron beams

    International Nuclear Information System (INIS)

    Moran, M.J.; Chang, B.

    1988-01-01

    Relativistic electron beams are being generated with emittances low enough that diffraction radiation can be used for beam diagnostics. Techniques based on diffraction radiation can be used to measure the beam transverse momentum distribution and to measure the transverse spatial distribution. The radiation is intense and can be in the visible spectral region where optical diagnostic techniques can be used to maximum advantage. 4 refs. 3 figs

  11. Instabilities excited by head-on collisions of two relativistic electron beams

    Energy Technology Data Exchange (ETDEWEB)

    Kou Shu-Ying

    1982-02-01

    In this paper, we studied the instabilities excited by head-on collision of two relativistic electron beams in transporting, taking account of the magnetic field B/sub 0/ and the thermal pressure delp of the beams. The conditions under which the instabilities occur and the growth rate of instabilities are obtained. The results show that these instabilities can be excited or inhibited by controlling the velocity of the beams.

  12. Planar channeled relativistic electrons and positrons in the field of resonant hypersonic wave

    International Nuclear Information System (INIS)

    Grigoryan, L.Sh.; Mkrtchyan, A.H.; Khachatryan, H.F.; Tonoyan, V.U.; Wagner, W.

    2003-01-01

    The wave function of a planar channeled relativistic particle (electron, positron) in a single crystal excited by longitudinal hypersonic vibrations (HVs) is determined. The obtained expression is valid for periodic (not necessarily harmonic) HV of desired profile and single crystals with an arbitrary periodic continuous potential. A revised formula for the wave number of HV that exert resonance influence on the state of a channeled particle was deduced to allow for non-linear effects due to the influence of HV

  13. Specular Reflectivity and Hot-Electron Generation in High-Contrast Relativistic Laser-Plasma Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Kemp, Gregory Elijah [The Ohio State Univ., Columbus, OH (United States)

    2013-01-01

    Ultra-intense laser (> 1018 W/cm2) interactions with matter are capable of producing relativistic electrons which have a variety of applications in state-of-the-art scientific and medical research conducted at universities and national laboratories across the world. Control of various aspects of these hot-electron distributions is highly desired to optimize a particular outcome. Hot-electron generation in low-contrast interactions, where significant amounts of under-dense pre-plasma are present, can be plagued by highly non-linear relativistic laser-plasma instabilities and quasi-static magnetic field generation, often resulting in less than desirable and predictable electron source characteristics. High-contrast interactions offer more controlled interactions but often at the cost of overall lower coupling and increased sensitivity to initial target conditions. An experiment studying the differences in hot-electron generation between high and low-contrast pulse interactions with solid density targets was performed on the Titan laser platform at the Jupiter Laser Facility at Lawrence Livermore National Laboratory in Livermore, CA. To date, these hot-electrons generated in the laboratory are not directly observable at the source of the interaction. Instead, indirect studies are performed using state-of-the-art simulations, constrained by the various experimental measurements. These measurements, more-often-than-not, rely on secondary processes generated by the transport of these electrons through the solid density materials which can susceptible to a variety instabilities and target material/geometry effects. Although often neglected in these types of studies, the specularly reflected light can provide invaluable insight as it is directly influenced by the interaction. In this thesis, I address the use of (personally obtained) experimental specular reflectivity measurements to indirectly study hot-electron generation in the context of high-contrast, relativistic

  14. Time-resolved tomographic images of a relativistic electron beam

    International Nuclear Information System (INIS)

    Koehler, H.A.; Jacoby, B.A.; Nelson, M.

    1984-07-01

    We obtained a sequential series of time-resolved tomographic two-dimensional images of a 4.5-MeV, 6-kA, 30-ns electron beam. Three linear fiber-optic arrays of 30 or 60 fibers each were positioned around the beam axis at 0 0 , 61 0 , and 117 0 . The beam interacting with nitrogen at 20 Torr emitted light that was focused onto the fiber arrays and transmitted to a streak camera where the data were recorded on film. The film was digitized, and two-dimensional images were reconstructed using the maximum-entropy tomographic technique. These images were then combined to produce an ultra-high-speed movie of the electron-beam pulse

  15. First observation of Smith-Purcell radiation from relativistic electrons

    International Nuclear Information System (INIS)

    Doucas, G.; Mulvey, J.H.; Omori, M.; Walsh, J.; Kimmitt, M.F.

    1992-01-01

    A beam of 3.6 MeV electrons has been used to study the generation of radiation in far infra-red (FIR) by the Smith-Purcell mechanism. The dependence of wavelength on angle of emission, over angles from 56 deg to 150 deg and wavelengths from 350 μm to 1860 μm, is in excellent agreement with the Smith-Purcell dispersion relation. Comparison of the yield with that from a 5000 K source suggests that the spontaneous Smith-Purcell effect offers an easily tunable alternative to the synchrotron as a coherent FIR source, and could form the basis of a cheap, compact Free Electron Laser (FEL). (author) 6 refs.; 5 figs

  16. Particle Acceleration and Magnetic Field Generation in Electron-Positron Relativistic Shocks

    Science.gov (United States)

    Nishikawa, K.-I.; Hardee, P.; Richardson, G.; Preece, R.; Sol, H.; Fishman, G. J.

    2005-01-01

    Shock acceleration is a ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., Buneman, Weibel, and other two-stream instabilities) created in collisionless shocks are responsible for particle (electron, positron, and ion) acceleration. Using a three-dimensional relativistic electromagnetic particle (REMP) code, we have investigated particle acceleration associated with a relativistic electron-positron jet front propagating into an ambient electron-positron plasma with and without initial magnetic fields. We find small differences in the results for no ambient and modest ambient magnetic fields. New simulations show that the Weibel instability created in the collisionless shock front accelerates jet and ambient particles both perpendicular and parallel to the jet propagation direction. Furthermore, the nonlinear fluctuation amplitudes of densities, currents, and electric and magnetic fields in the electron-positron shock are larger than those found in the electron-ion shock studied in a previous paper at a comparable simulation time. This comes from the fact that both electrons and positrons contribute to generation of the Weibel instability. In addition, we have performed simulations with different electron skin depths. We find that growth times scale inversely with the plasma frequency, and the sizes of structures created by tine Weibel instability scale proportionally to the electron skin depth. This is the expected result and indicates that the simulations have sufficient grid resolution. While some Fermi acceleration may occur at the jet front, the majority of electron and positron acceleration takes place behind the jet front and cannot be characterized as Fermi acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying nonuniform, small-scale magnetic fields, which contribute to the electron s (positron s) transverse deflection behind the jet head. This

  17. Multi-stage autoacceleration of an intense relativistic electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Kamada, K; Hasegawa, D; Igarashi, H; Kusunoki, T; Lee, C Y; Koguchi, H; Ando, R; Masuzaki, M [Kanazawa Univ. (Japan). Department of Physics

    1997-12-31

    Two-stage autoacceleration was accomplished by using different length cavities. Two cavities were located with the distance longer than the beam duration. The electron kinetic energy increased from 500 to 700 keV at the first stage and from 700 to 900 keV at the second, while the beam duration decreased 10 to 5 ns at the first stage and 5 to 2.5 ns at the second. (author). 7 figs., 7 refs.

  18. Current density monitor for intense relativistic electron beams

    International Nuclear Information System (INIS)

    Fiorito, R.B.; Raleigh, M.; Seltzer, S.M.

    1986-01-01

    We describe a new type of electric probe which is capable of measuring the time-resolved current density profile of a stable, reproducible, high-energy (>4-MeV) high-current (>1-kA) electron beam. The sensing element of this probe is an open-ended but capped-off 50-Ω coaxial line constructed of graphite. The graphite sensor is 4.3 mm in diameter, 6 cm long, and is range thin to the primary beam electrons. The probe produces a signal proportional to the intercepted beam current. When the sensor is scanned radially through the beam during repeated pulses, a curve of signal versus depth of insertion is produced from which the radial current density profile can be determined. Measurements are presented of the profile of the electron beam from the Experimental Test Accelerator (4.5 MeV, 10 kA) at Lawrence Livermore National Laboratory. Good agreement is shown between measurements made with this probe and the beam radius as predicted by transport codes. The advantage of the electric probe lies in its ruggedness, simplicity, inherent fast rise time, and low cost. In contrast to other systems it requires no radiation shielding, water cooling, or auxiliary support equipment to operate in an intense beam environment

  19. Multiple loss processes of relativistic electrons outside the heart of outer radiation belt during a storm sudden commencement

    International Nuclear Information System (INIS)

    Yu, J.

    2015-01-01

    By examining the compression-induced changes in the electron phase space density and pitch angle distribution observed by two satellites of Van Allen Probes (RBSP-A/B), we find that the relativistic electrons (>2 MeV) outside the heart of outer radiation belt (L*≥5) undergo multiple losses during a storm sudden commencement. The relativistic electron loss mainly occurs in the field-aligned direction (pitch angle α < 30° or >150°), and the flux decay of the field-aligned electrons is independent of the spatial location variations of the two satellites. However, the relativistic electrons in the pitch angle range of 30°–150° increase (decrease) with the decreasing (increasing) geocentric distance (|ΔL|<0.25) of the RBSP-B (RBSP-A) location, and the electron fluxes in the quasi-perpendicular direction display energy-dispersive oscillations in the Pc5 period range (2–10 min). The relativistic electron loss is confirmed by the decrease of electron phase space density at high-L shell after the magnetospheric compressions, and their loss is associated with the intense plasmaspheric hiss, electromagnetic ion cyclotron (EMIC) waves, relativistic electron precipitation (observed by POES/NOAA satellites at 850 km), and magnetic field fluctuations in the Pc5 band. Finally, the intense EMIC waves and whistler mode hiss jointly cause the rapidly pitch angle scattering loss of the relativistic electrons within 10 h. Moreover, the Pc5 ULF waves also lead to the slowly outward radial diffusion of the relativistic electrons in the high-L region with a negative electron phase space density gradient.

  20. Modeling terrestrial gamma ray flashes produced by relativistic feedback discharges

    Science.gov (United States)

    Liu, Ningyu; Dwyer, Joseph R.

    2013-05-01

    This paper reports a modeling study of terrestrial gamma ray flashes (TGFs) produced by relativistic feedback discharges. Terrestrial gamma ray flashes are intense energetic radiation originating from the Earth's atmosphere that has been observed by spacecraft. They are produced by bremsstrahlung interactions of energetic electrons, known as runaway electrons, with air atoms. An efficient physical mechanism for producing large fluxes of the runaway electrons to make the TGFs is the relativistic feedback discharge, where seed runaway electrons are generated by positrons and X-rays, products of the discharge itself. Once the relativistic feedback discharge becomes self-sustaining, an exponentially increasing number of relativistic electron avalanches propagate through the same high-field region inside the thundercloud until the electric field is partially discharged by the ionization created by the discharge. The modeling results indicate that the durations of the TGF pulses produced by the relativistic feedback discharge vary from tens of microseconds to several milliseconds, encompassing all durations of the TGFs observed so far. In addition, when a sufficiently large potential difference is available in thunderclouds, a self-propagating discharge known as the relativistic feedback streamer can be formed, which propagates like a conventional positive streamer. For the relativistic feedback streamer, the positive feedback mechanism of runaway electron production by the positrons and X-rays plays a similar role as the photoionization for the conventional positive streamer. The simulation results of the relativistic feedback streamer show that a sequence of TGF pulses with varying durations can be produced by the streamer. The relativistic streamer may initially propagate with a pulsed manner and turn into a continuous propagation mode at a later stage. Milliseconds long TGF pulses can be produced by the feedback streamer during its continuous propagation. However

  1. Experimental simulation of satellite observations of 100 kHz radio waves from relativistic electron beams above thunderclouds

    OpenAIRE

    Fullekrug, Martin; Hanuise, C; Parrot, M

    2011-01-01

    Relativistic electron beams above thunderclouds emit 100 kHz radio waves which illuminate the Earth's atmosphere and near-Earth space. This contribution aims to clarify the physical processes which are relevant for the spatial spreading of the radio wave energy below and above the ionosphere and thereby enables an experimental simulation of satellite observations of 100 kHz radio waves from relativistic electron beams above thunderclouds. The simulation uses the DEMETER satellite which...

  2. Effect of relativistic electron radiation on Se Zn monocrystal microembrittlement

    International Nuclear Information System (INIS)

    Mazilov, A.V.; Stratienko, V.A.; Migal', V.P.; Lugovskaya, E.I.

    2002-01-01

    The influence of 60 MeV electron irradiation (fluences between 10 9 and 10 16 el/sm 2 ) on the mikrobrittleness of n-type sphalerite-structure zinc selenide has been investigated.It was found that irradiation caused the crack lengths to increase under constant load.In the fluence range of 10 9 to 10 13 el/sm 2 , an increase was observed in the critical load, at which cracks were formed. It is shown that the mechanical properties of zinc selenide are dominantly influenced by the defect clusters, for the formation of which an energy over 400 eV is needed

  3. Dielectric laser acceleration of non-relativistic electrons at a photonic structure

    Energy Technology Data Exchange (ETDEWEB)

    Breuer, John

    2013-08-29

    This thesis reports on the observation of dielectric laser acceleration of non-relativistic electrons via the inverse Smith-Purcell effect in the optical regime. Evanescent modes in the vicinity of a periodic grating structure can travel at the same velocity as the electrons along the grating surface. A longitudinal electric field component is used to continuously impart momentum onto the electrons. This is only possible in the near-field of a suitable photonic structure, which means that the electron beam has to pass the structure within about one wavelength. In our experiment we exploit the third spatial harmonic of a single fused silica grating excited by laser pulses derived from a Titanium:sapphire oscillator and accelerate non-relativistic 28 keV electrons. We measure a maximum energy gain of 280 eV, corresponding to an acceleration gradient of 25 MeV/m, already comparable with state-of-the-art radio-frequency linear accelerators. To experience this acceleration gradient the electrons approach the grating closer than 100 nm. We present the theory behind grating-based particle acceleration and discuss simulation results of dielectric laser acceleration in the near-field of photonic grating structures, which is excited by near-infrared laser light. Our measurements show excellent agreement with our simulation results and therefore confirm the direct acceleration with the light field. We further discuss the acceleration inside double grating structures, dephasing effects of non-relativistic electrons as well as the space charge effect, which can limit the attainable peak currents of these novel accelerator structures. The photonic structures described in this work can be readily concatenated and therefore represent a scalable realization of dielectric laser acceleration. Furthermore, our structures are directly compatible with the microstructures used for the acceleration of relativistic electrons demonstrated in parallel to this work by our collaborators in

  4. Channeling and coherent bremsstrahlung effects for relativistic positrons and electrons

    International Nuclear Information System (INIS)

    Walker, R.L.

    1976-01-01

    Channeling of positrons in single crystals of silicon was observed in transmission and scattering measurements for incident energies from 16 to 28 MeV. In addition, the spectral dependence upon crystal orientation of the forward coherent bremsstrahlung produced by beams of 28-MeV positrons and electrons incident upon a 5 μm thick single crystal of silicon was measured with a NaI photon spectrometer. Effects of channeling and perhaps of the nonvalidity of the first Born approximation were observed for beam directions near the [111] axis of the crystal, and coherent peaks near 0.5 MeV were observed for a compound interference direction, in agreement with first-order theoretical calculations. 32 fig

  5. Electron cyclotron heating in weakly relativistic, finite-β plasmas

    International Nuclear Information System (INIS)

    Audenaerde, K.; Scharer, J.; Lam, N.; Beyer, J.; Wisconsin Univ., Madison

    1982-01-01

    ECRF wave launching and absorption in the plug and barrier regions of tandem mirrors are examined. The 3-D magnetic field, density and electron temperature profiles are modelled to simulate these regions. It is found that the X mode of elevated temperatures (Tsub(e) approx.= 50 keV) exhibits substantial spatial shifts from the cold plasma resonance surface. For steep plasma density profiles the X-mode bends away from the resonance zone and absorption is concentrated at the plasma surface. The O-mode exhibits a ray trajectory which more easily penetrates the plasma core and has a moderate absorption at Tsub(e) approx. 50 keV such that single pass absorption is adequate. Finally, the use of quasi-optical ECRF launchers to overcome reactor environmental problems associated with standard overmoded waveguide launchers used for gyrotron sources presented is considered. (author)

  6. Evidence for acceleration of outer zone electrons to relativistic energies by whistler mode chorus

    Directory of Open Access Journals (Sweden)

    N. P. Meredith

    2002-07-01

    Full Text Available We use plasma wave and electron data from the Combined Release and Radiation Effects Satellite (CRRES to investigate the viability of a local stochastic electron acceleration mechanism to relativistic energies driven by gyroresonant interactions with whistler mode chorus. In particular, we examine the temporal evolution of the spectral response of the electrons and the waves during the 9 October 1990 geomagnetic storm. The observed hardening of the electron energy spectra over about 3 days in the recovery phase is coincident with prolonged substorm activity, as monitored by the AE index and enhanced levels of whistler mode chorus waves. The observed spectral hardening is observed to take place over a range of energies appropriate to the resonant energies associated with Doppler-shifted cyclotron resonance, as supported by the construction of realistic resonance curves and resonant diffusion surfaces. Furthermore, we show that the observed spectral hardening is not consistent with energy-independent radial diffusion models. These results provide strong circumstantial evidence for a local stochastic acceleration mechanism, involving the energisation of a seed population of electrons with energies of the order of a few hundred keV to relativistic energies, driven by wave-particle interactions involving whistler mode chorus. The results suggest that this mechanism contributes to the reformation of the relativistic outer zone population during geomagnetic storms, and is most effective when the recovery phase is characterised by prolonged substorm activity. An additional significant result of this paper is that we demonstrate that the lower energy part of the storm-time electron distribution is in steady-state balance, in accordance with the Kennel and Petschek (1966 theory of limited stably-trapped particle fluxes.Key words. Magnetospheric physics (storms and substorms, energetic particles, trapped – Space plasma physics (wave-particle interactions

  7. STATISTICAL STUDY ON THE DECAY PHASE OF SOLAR NEAR-RELATIVISTIC ELECTRON EVENTS

    International Nuclear Information System (INIS)

    Lario, D.

    2010-01-01

    We study the decay phase of solar near-relativistic (53-315 keV) electron events as observed by the Advanced Composition Explorer (ACE) and the Ulysses spacecraft during solar cycle 23. By fitting an exponential function (exp - t/τ) to the time-intensity profile in the late phase of selected solar near-relativistic electron events, we examine the dependence of τ on electron energy, electron intensity spectra, event peak intensity, event fluence, and solar wind velocity, as well as heliocentric radial distance, heliolatitude, and heliolongitude of the spacecraft with respect to the parent solar event. The decay rates are found to be either independent or slightly decrease with the electron energy. No clear dependence is found between τ and the heliolongitude of the parent solar event, with the exception of well-connected events for which low values of τ are more commonly observed than for poorly-connected events. For those events concurrently observed by ACE and Ulysses, decay rates increase at distances >3 AU. Events with similar decay rates at ACE and Ulysses were observed mainly when Ulysses was at high heliographic latitudes. We discuss the basic physical mechanisms that control the decay phase of the electron events and conclude that both solar wind convection and adiabatic deceleration effects influence the final shape of the decay phase of solar energetic particle events, but not as expressed by the models based on diffusive transport acting on an isotropic particle population.

  8. Modelling properties of hard x-rays generated by the interaction between relativistic electrons and very intense laser beams

    International Nuclear Information System (INIS)

    Popa, Alexandru

    2009-01-01

    In a previous paper we presented a calculation model for high harmonic generation by relativistic Thomson scattering of the electromagnetic radiation by free electrons. In this paper we present a similar model for the calculation of the energies of hard x-rays (20- 200 keV) resulted from the interaction between relativistic electrons (20-100 MeV) and very intense laser beams. Starting from the relativistic equations of motion of an electron in the electromagnetic field we show that the Lienard-Wiechert equation leads to electromagnetic waves whose frequencies are in the domain of hard x-rays. When the relativistic parameter of the laser beam is greater than unity, the model predicts the existence of harmonics of the above frequencies. Our theoretical values are in good agreement with experimental values of the x-ray energies from the literature and predict accurately their angular distribution.

  9. Particle-in-cell simulation of two-dimensional electron velocity shear driven instability in relativistic domain

    Energy Technology Data Exchange (ETDEWEB)

    Shukla, Chandrasekhar, E-mail: chandrasekhar.shukla@gmail.com; Das, Amita, E-mail: amita@ipr.res.in [Institute for Plasma Research, Bhat, Gandhinagar 382428 (India); Patel, Kartik [Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India)

    2016-08-15

    We carry out particle-in-cell simulations to study the instabilities associated with a 2-D sheared electron flow configuration against a neutralizing background of ions. Both weak and strong relativistic flow velocities are considered. In the weakly relativistic case, we observe the development of electromagnetic Kelvin-Helmholtz instability with similar characteristics as that predicted by the electron Magnetohydrodynamic (EMHD) model. On the contrary, in a strong relativistic case, the compressibility effects of electron fluid dominate and introduce upper hybrid electrostatic oscillations transverse to the flow which are very distinct from EMHD fluid behavior. In the nonlinear regime, both weak and strong relativistic cases lead to turbulence with broad power law spectrum.

  10. Nonlinear interaction of a parallel-flow relativistic electron beam with a plasma

    International Nuclear Information System (INIS)

    Jungwirth, K.; Koerbel, S.; Simon, P.; Vrba, P.

    1975-01-01

    Nonlinear evolution of single-mode high-frequency instabilities (ω approximately ksub(parallel)vsub(b)) excited by a parallel-flow high-current relativistic electron beam in a magnetized plasma is investigated. Fairly general dimensionless equations are derived. They describe both the temporal and the spatial evolution of amplitude and phase of the fundamental wave. Numerically, the special case of excitation of the linearly most unstable mode is solved in detail assuming that the wave energy dissipation is negligible. Then the strength of interaction and the relativistic properties of the beam are fully respected by a single parameter lambda. The value of lambda ensuring the optimum efficiency of the wave excitation as well as the efficiency of the self-acceleration of some beam electrons at higher values of lambda>1 are determined in the case of a fully compensated relativistic beam. Finally, the effect of the return current dissipation is also included (phenomenologically) into the theoretical model, its role for the beam-plasma interaction being checked numerically. (J.U.)

  11. All-optical time-resolved measurement of laser energy modulation in a relativistic electron beam

    Directory of Open Access Journals (Sweden)

    D. Xiang

    2011-11-01

    Full Text Available We propose and demonstrate an all-optical method to measure laser energy modulation in a relativistic electron beam. In this scheme the time-dependent energy modulation generated from the electron-laser interaction in an undulator is converted into time-dependent density modulation with a chicane, which is measured to infer the laser energy modulation. The method, in principle, is capable of simultaneously providing information on femtosecond time scale and 10^{-5} energy scale not accessible with conventional methods. We anticipate that this method may have wide applications in many laser-based advanced beam manipulation techniques.

  12. Relativistic electron acceleration by net inverse bremsstrahlung in a laser-irradiated plasma

    International Nuclear Information System (INIS)

    Kim, S.H.; Chen, K.W.

    1985-01-01

    Using the quantum-kinetic method, the net acceleration of relativistic electrons in a laser-irradiated plasma is studied as a function of the relevant parameters of the incident laser wave and the plasma wave. It is suggested that, in general, the net acceleration in laser-produced turbulent plasmas is primarily due to inverse bremsstrahlung proceses, and the acceleration gradient exceeds several hundreds gigavolt per meter when the electron energy is large (TeV) and the momentum spread of the beam is properly controlled

  13. Wakefield excitation in plasma resonator by a sequence of relativistic electron bunches

    International Nuclear Information System (INIS)

    Kiselev, V.A.; Linnik, A.F.; Mirny, V.I.; Onishchenko, I.N.; Uskov, V.V.

    2008-01-01

    Wakefield excitation in a plasma resonator by a sequence of relativistic electron bunches with the purpose to increase excited field amplitude in comparison to waveguide case is experimentally investigated. A sequence of short electron bunches is produced by the linear resonant accelerator. Plasma resonator is formed at the beam-plasma discharge in rectangular metal waveguide filled with gas and closed by metal foil at entrance and movable short-circuited plunger at exit. Measurements of wakefield amplitude are performed showing considerably higher wakefield amplitude for resonator case

  14. Total yield of channeling radiation from relativistic electrons in thin Si and W crystals

    International Nuclear Information System (INIS)

    Abdrashitov, S.V.; Bogdanov, O.V.; Dabagov, S.B.; Pivovarov, Yu.L.; Tukhfatullin, T.A.

    2013-01-01

    Orientation dependences of channeling radiation total yield from relativistic 155–855 MeV electrons at both 〈1 0 0〉 axial and (1 0 0) planar channeling in thin silicon and tungsten crystals are studied by means of computer simulations. The model as well as computer code developed allows getting the quantitative results for orientation dependence of channeling radiation that can be used for crystal alignment in channeling experiments and/or for diagnostics of initial angular divergence of electron beam

  15. Chaos in Dirac Electron Optics: Emergence of a Relativistic Quantum Chimera.

    Science.gov (United States)

    Xu, Hong-Ya; Wang, Guang-Lei; Huang, Liang; Lai, Ying-Cheng

    2018-03-23

    We uncover a remarkable quantum scattering phenomenon in two-dimensional Dirac material systems where the manifestations of both classically integrable and chaotic dynamics emerge simultaneously and are electrically controllable. The distinct relativistic quantum fingerprints associated with different electron spin states are due to a physical mechanism analogous to a chiroptical effect in the presence of degeneracy breaking. The phenomenon mimics a chimera state in classical complex dynamical systems but here in a relativistic quantum setting-henceforth the term "Dirac quantum chimera," associated with which are physical phenomena with potentially significant applications such as enhancement of spin polarization, unusual coexisting quasibound states for distinct spin configurations, and spin selective caustics. Experimental observations of these phenomena are possible through, e.g., optical realizations of ballistic Dirac fermion systems.

  16. Chaos in Dirac Electron Optics: Emergence of a Relativistic Quantum Chimera

    Science.gov (United States)

    Xu, Hong-Ya; Wang, Guang-Lei; Huang, Liang; Lai, Ying-Cheng

    2018-03-01

    We uncover a remarkable quantum scattering phenomenon in two-dimensional Dirac material systems where the manifestations of both classically integrable and chaotic dynamics emerge simultaneously and are electrically controllable. The distinct relativistic quantum fingerprints associated with different electron spin states are due to a physical mechanism analogous to a chiroptical effect in the presence of degeneracy breaking. The phenomenon mimics a chimera state in classical complex dynamical systems but here in a relativistic quantum setting—henceforth the term "Dirac quantum chimera," associated with which are physical phenomena with potentially significant applications such as enhancement of spin polarization, unusual coexisting quasibound states for distinct spin configurations, and spin selective caustics. Experimental observations of these phenomena are possible through, e.g., optical realizations of ballistic Dirac fermion systems.

  17. Relativistic electron transport in a solid target: study of heating in the framework of inertial fusion

    International Nuclear Information System (INIS)

    Martinolli, E.

    2003-04-01

    This work is dedicated to the study of the energy deposition of fast electrons in matter. This topic is of prime importance for inertial fusion driven by laser since relativistic electrons are produced in laser-matter interaction for a laser operating in ultra-intense regime. This thesis is made up of: a theoretical chapter dealing with the generation and transport of fast electrons, of 2 chapters reporting experimental data obtained with optical and X-rays diagnostics at the laser facilities of LULI in France and RAL in U.K., and of a chapter dedicated to the simulation of electron transport by using a Monte-Carlo code combined to a hybrid collisional-electromagnetic PIC code. A new spectrometer has been designed: the detection of Kα rays coming from a fluorescent layer embedded in the target has allowed us to assess the size of the electron beam and the level of ionisation. (A.C.)

  18. Equilibrium and stability properties of relativistic electron rings and E-layers

    International Nuclear Information System (INIS)

    Uhm, H.

    1976-01-01

    Equilibrium and stability properties of magnetically confined partially-neutralized thin electron ring and E-layer are investigated using the Vlasov-Maxwell equations. The analysis is carried out within the context of the assumption that the minor dimensions (a,b) of the system are much less than the collisionless skin depth (c/antiω/sub p/). The equilibrium configuration of the E-layer is assumed to be an infinitely long, azimuthally symmetric hollow electron beam which is aligned parallel to a uniform axial magnetic field. On the other hand, the electron ring is located at the midplane of an externally imposed mirror field which acts to confine the ring both axially and radially. The equilibrium properties of the E-layer and electron ring are obtained self-consistently for several choices of equilibrium electron distribution function. The negative-mass instability analysis is carried out for the relativistic E-layer equilibrium in which all of the electrons have the same transverse energy and a spread in canonical angular momentum, assuming a fixed ion background. The ion resonance instability properties are investigated for a relativistic nonneutral E-layer aligned parallel to a uniform magnetic field and located between two ground coaxial cylindrical conductors. The stability properties of a nonrelativistic electron ring is investigated within the framework of the linearized Vlasov-Poisson equations. The dispersion relation is obtained for the self-consistent electron distribution function in which all electrons have the same value of energy an the same value of canonical angular momentum. The positive ions in the electron ring are assumed to form an immobile partially neutralizing background. The stability criteria as well as the instability growth rates are derived and discussed including the effect of geometrical configuration of the system. Equilibrium space-charge effects play a significant role in stability behavior

  19. Quantum electrodynamics and the relativistic theory of many-electron atoms

    International Nuclear Information System (INIS)

    Sucher, J.

    1981-01-01

    The development of relativistic theories of many-electron atoms is reviewed, with emphasis on the fact that the Dirac-Coulomb Hamiltonian H/sub DC/ has no bound states. This fact implies that neither the Dirac-Hartree-Fock (DHF) equations nor the DHF wavefunction chi have a simple theoretical interpretation. A no-pair hamiltonian H/sub +/ is defined which does not have the fatal flaw of H/sub DC/ and hence can serve as a starting point for a systematic study of relativistic effects in many-electron atoms which can go beyond central-field approximations. H/sub +/ differs from H/sub DC/ by the presence of external-field positive-energy projection operators in the electron-electron interaction terms. Unlike H/sub DC/, H/sub +/ and its eigenfunctions psi have a clear-cut field-theoretic meaning, which is described. Similar remarks hold for a simpler no-pair Hamiltonian h/sub +/, which involves free positive-energy projection operators and for related Hamiltonians H/sub +/' and h/sup +/' which include the Breit operator. Relativistic Hartree-Fock equations are obtained from H/sub +/ and the relation between their solutions psi and the DHF solutions chi is discussed. The DHF equations may be reinterpreted as approximations to the new HF-type equations; this provides a rationale for their success in applications. It is argued that the Breit operator ought to be included even in the original DHF equations

  20. Nonlinear electrostatic excitations in magnetized dense plasmas with nonrelativistic and ultra-relativistic degenerate electrons

    International Nuclear Information System (INIS)

    Mahmood, S.; Sadiq, Safeer; Haque, Q.

    2013-01-01

    Linear and nonlinear electrostatic waves in magnetized dense electron-ion plasmas are studied with nonrelativistic and ultra-relativistic degenerate and singly, doubly charged helium (He + , He ++ ) and hydrogen (H + ) ions, respectively. The dispersion relation of electrostatic waves in magnetized dense plasmas is obtained under both the energy limits of degenerate electrons. Using reductive perturbation method, the Zakharov-Kuznetsov equation for nonlinear propagation of electrostatic solitons in magnetized dense plasmas is derived for both nonrelativistic and ultra-relativistic degenerate electrons. It is found that variations in plasma density, magnetic field intensity, different mass, and charge number of ions play significant role in the formation of electrostatic solitons in magnetized dense plasmas. The numerical plots are also presented for illustration using the parameters of dense astrophysical plasma situations such as white dwarfs and neutron stars exist in the literature. The present investigation is important for understanding the electrostatic waves propagation in the outer periphery of compact stars which mostly consists of hydrogen and helium ions with degenerate electrons in dense magnetized plasmas

  1. Electro-optic sampling for time resolving relativistic ultrafast electron diffraction

    International Nuclear Information System (INIS)

    Scoby, C. M.; Musumeci, P.; Moody, J.; Gutierrez, M.; Tran, T.

    2009-01-01

    The Pegasus laboratory at UCLA features a state-of-the-art electron photoinjector capable of producing ultrashort (<100 fs) high-brightness electron bunches at energies of 3.75 MeV. These beams recently have been used to produce static diffraction patterns from scattering off thin metal foils, and it is foreseen to take advantage of the ultrashort nature of these bunches in future pump-probe time-resolved diffraction studies. In this paper, single shot 2-d electro-optic sampling is presented as a potential technique for time of arrival stamping of electron bunches used for diffraction. Effects of relatively low bunch charge (a few 10's of pC) and modestly relativistic beams are discussed and background compensation techniques to obtain high signal-to-noise ratio are explored. From these preliminary tests, electro-optic sampling is suitable to be a reliable nondestructive time stamping method for relativistic ultrafast electron diffraction at the Pegasus lab.

  2. Generation of relativistic electron bunches in plasma synchrotron Gyrac-x for hard x-ray production

    International Nuclear Information System (INIS)

    Andreev, V.V.; Umnov, A.M.

    2000-01-01

    Experiment performed on plasma synchrotron Gyrac-X operating on synchrotron gyromagnetic autoresonance (SGA) is described. Gyrac-X is a compact plasma x-ray source in which kinetic energy of relativistic electrons obtained under SGA converts into x-ray by falling e-bunches on to a heavy metal target. The plasma synchrotron acts in a regime of a magnetic field pulse packet under constant level of microwave power. Experiments and numerical modeling of the process showed that such a regime allowed obtaining dense short lived relativistic electron bunches with average electron energy of 500 keV - 4.5 MeV. Parameters of the relativistic electron bunch (energy, density and volume) and dynamics of the electron bunches can be controlled by varying the parameters of the SGA process. Possibilities of x-ray intensity increase are also discussed

  3. Study on intense relativistic electron beam propagation in a low density collisionless plasma

    International Nuclear Information System (INIS)

    Korenev, S.A.; Rubin, N.B.; Khodataev, K.V.

    1982-01-01

    The results of investigations into the increase in effectivity of transport of an intensive relativistic electron beam (IREB) in a collisionless plasma of low density are presented. The electron beam with the current of 1.5 kA, energy of 300 keV, radius of 1.5 cm is in ected into a plasma channel 180 cm long which is a metallic cylinder covered with a biniplast layer from inside 0.5 cm thickness on which there is a metallic net from the vacuum side. Plasma production is carried out during the supply of voltage pulse to the net. A condition of the optimum IREB distribution is found. It is sohwn that self-focusing IREB transport in plasma of low density can be effective if equilibrium conditions are carried out in plasma with the concentration of electrons less (or equal) to the concentration of electrons in a beam

  4. Focusing of relativistic electrons in dense plasma using a resistivity-gradient-generated magnetic switchyard.

    Science.gov (United States)

    Robinson, A P L; Key, M H; Tabak, M

    2012-03-23

    A method for producing a self-generated magnetic focussing structure for a beam of laser-generated relativistic electrons using a complex array of resistivity gradients is proposed and demonstrated using numerical simulations. The array of resistivity gradients is created by using a target consisting of alternating layers of different Z material. This new scheme is capable of effectively focussing the fast electrons even when the source is highly divergent. The application of this technique to cone-guided fast ignition inertial confinement fusion is considered, and it is shown that it may be possible to deposit over 25% of the fast electron energy into a hot spot even when the fast electron divergence angle is very large (e.g., 70° half-angle).

  5. Radiative interaction of a focused relativistic electron beam in energy-loss spectroscopy of nanoscopic platelets

    International Nuclear Information System (INIS)

    Itskovsky, M. A.; Maniv, T.; Cohen, H.

    2008-01-01

    A quantum-mechanical scattering theory for relativistic, highly focused electron beams in the vacuum near nanoscopic platelets is presented, revealing an excitation mechanism due to the electron wave scattering from the platelet edges. Radiative electromagnetic excitations within the light cone are shown to arise, allowed by the breakdown of momentum conservation along the beam axis in the inelastic-scattering process. Calculated for metallic (silver and gold) and insulating (SiO 2 and MgO) nanoplatelets, radiative features are revealed above the main surface-plasmon-polariton peak, and dramatic enhancements in the electron-energy-loss probability at gaps of the 'classical' spectra are found. The corresponding radiation should be detectable in the vacuum far-field zone, with e beams exploited as sensitive 'tip detectors' of electronically excited nanostructures

  6. Radiative interaction of a focused relativistic electron beam in energy-loss spectroscopy of nanoscopic platelets

    Science.gov (United States)

    Itskovsky, M. A.; Cohen, H.; Maniv, T.

    2008-07-01

    A quantum-mechanical scattering theory for relativistic, highly focused electron beams in the vacuum near nanoscopic platelets is presented, revealing an excitation mechanism due to the electron wave scattering from the platelet edges. Radiative electromagnetic excitations within the light cone are shown to arise, allowed by the breakdown of momentum conservation along the beam axis in the inelastic-scattering process. Calculated for metallic (silver and gold) and insulating ( SiO2 and MgO) nanoplatelets, radiative features are revealed above the main surface-plasmon-polariton peak, and dramatic enhancements in the electron-energy-loss probability at gaps of the “classical” spectra are found. The corresponding radiation should be detectable in the vacuum far-field zone, with e beams exploited as sensitive “tip detectors” of electronically excited nanostructures.

  7. particle simulation for electrostatic oscillation of virtual cathode in relativistic electron beams

    International Nuclear Information System (INIS)

    Chen Deming; Wang Min

    1990-01-01

    The virtual cathode oscillation in relativistic electron beams is studied by a 1-D electrostatic particle simulation code with finite-size-particle model. When injection current is less than the space charge limiting current, electron beam propagates stably and transsmits completely. When injection current exceeds the space charge limit, its propagation is unstable, a part of electrons reflect and the other electrons transsmit. The position and potential of the virtual cathode caused by space charge effects oscillate periodically. When the beam current increases, the virtual cathode position closer to the injection plane and its oscillating region gets narrower, the virtual cathode potential decreases and its amplitude increases, the oscillation frequency increases above the beam plasma frequency

  8. MM-wave emission by magnetized plasma during sub-relativistic electron beam relaxation

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, I. A., E-mail: Ivanov@inp.nsk.su; Arzhannikov, A. V.; Burmasov, V. S.; Popov, S. S.; Postupaev, V. V.; Sklyarov, V. F.; Vyacheslavov, L. N. [Budker Institute of Nuclear Physics, 11 Lavrentjev Avenue, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, 2 Pirogova Street, Novosibirsk 630090 (Russian Federation); Burdakov, A. V.; Sorokina, N. V. [Budker Institute of Nuclear Physics, 11 Lavrentjev Avenue, Novosibirsk 630090 (Russian Federation); Novosibirsk State Technical University, 20 Karl Marx Avenue, Novosibirsk 630092 (Russian Federation); Gavrilenko, D. E.; Kasatov, A. A.; Kandaurov, I. V.; Mekler, K. I.; Rovenskikh, A. F.; Trunev, Yu. A. [Budker Institute of Nuclear Physics, 11 Lavrentjev Avenue, Novosibirsk 630090 (Russian Federation); Kurkuchekov, V. V.; Kuznetsov, S. A. [Novosibirsk State University, 2 Pirogova Street, Novosibirsk 630090 (Russian Federation); Polosatkin, S. V. [Budker Institute of Nuclear Physics, 11 Lavrentjev Avenue, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, 2 Pirogova Street, Novosibirsk 630090 (Russian Federation); Novosibirsk State Technical University, 20 Karl Marx Avenue, Novosibirsk 630092 (Russian Federation)

    2015-12-15

    There are described electromagnetic spectra of radiation emitted by magnetized plasma during sub-relativistic electron beam in a double plasma frequency band. Experimental studies were performed at the multiple-mirror trap GOL-3. The electron beam had the following parameters: 70–110 keV for the electron energy, 1–10 MW for the beam power and 30–300 μs for its duration. The spectrum was measured in 75–230 GHz frequency band. The frequency of the emission follows variations in electron plasma density and magnetic field strength. The specific emission power on the length of the plasma column is estimated on the level 0.75 kW/cm.

  9. Micro-channel plate detector for ultra-fast relativistic electron diffraction

    International Nuclear Information System (INIS)

    Musumeci, P.; Moody, J.T.; Scoby, C.M.; Gutierrez, M.S.; Bender, H.A.; Hilko, B.; Kruschwitz, C.A.; Wilcox, N.S.

    2011-01-01

    Using relativistic ultra-short electron beams to obtain single-shot diffraction patterns holds the promise to yield real-time resolution of atomic motion in an easily accessible environment, such as a university laboratory, at a fraction of the cost of fourth-generation X-ray sources. One of the main issues in bringing this technique to full maturity is the development of efficient detector systems to record the diffraction pattern using a few MeV electron beams. Low noise, high spatial resolution, and single-electron detection capability are all characteristics of an ideal detector. In this paper, we compare the performances of a traditional fluorescent phosphor screen with a detection system based on the micro-channel plate (MCP). Since MCPs are typically used with lower energy electron beams, these tests constitute one of the few experimental data points available on the use of these devices with MeV energy beams.

  10. Micro-channel plate detector for ultra-fast relativistic electron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Musumeci, P., E-mail: musumeci@physics.ucla.edu [UCLA Department of Physics and Astronomy, 475 Portola Plaza, Los Angeles, CA, 90095-1547 (United States); Moody, J.T.; Scoby, C.M.; Gutierrez, M.S. [UCLA Department of Physics and Astronomy, 475 Portola Plaza, Los Angeles, CA, 90095-1547 (United States); Bender, H.A.; Hilko, B.; Kruschwitz, C.A.; Wilcox, N.S. [National Security Technologies, LLC, Los Alamos Operations, Los Alamos, NM (United States)

    2011-05-01

    Using relativistic ultra-short electron beams to obtain single-shot diffraction patterns holds the promise to yield real-time resolution of atomic motion in an easily accessible environment, such as a university laboratory, at a fraction of the cost of fourth-generation X-ray sources. One of the main issues in bringing this technique to full maturity is the development of efficient detector systems to record the diffraction pattern using a few MeV electron beams. Low noise, high spatial resolution, and single-electron detection capability are all characteristics of an ideal detector. In this paper, we compare the performances of a traditional fluorescent phosphor screen with a detection system based on the micro-channel plate (MCP). Since MCPs are typically used with lower energy electron beams, these tests constitute one of the few experimental data points available on the use of these devices with MeV energy beams.

  11. Effects of the electron's anomaly in relativistic laser-assisted Mott scattering

    International Nuclear Information System (INIS)

    Ngoko Djiokap, J.M.; Tetchou Nganso, H.M.; Kwato Njock, M.G.

    2006-02-01

    We investigate the influence of the electron's anomalous magnetic moment on the process of relativistic Mott scattering in a powerful electromagnetic plane wave for which the ponderomotive energy is of the order of the magnitude of the electron's rest mass. For this purpose, we use the Coulomb-Dirac-Volkov and the Dirac-Volkov functions with the electron's anomaly to describe the initial and final states respectively. First-order Born differential cross sections of induced and inverse bremsstrahlung are obtained for linearly polarized laser light. Numerical calculations are carried out for various parameters values (i.e. scattering angle, the nucleus charge, photon energy, electrical field) and are compared with results obtained by Li et al. It is found that for parameters used in the present work, incorporating the anomaly of the electron in the initial and final states yields cross sections which are strongly modified whatever the scattering geometry, as compared to the outcome of the previous treatment. (author)

  12. Propagation of a TE surface mode in a relativistic electron beam–quantum plasma system

    International Nuclear Information System (INIS)

    Abdel Aziz, M.

    2012-01-01

    The dispersion properties of a transverse electric (TE) surface waves propagating along the interface between a magneto-quantum plasma–relativistic beam system and vacuum are studied by using the quantum hydrodynamic model. The general dispersion relations are derived and analyzed in some special cases of interest. Moreover, the effects of density gradients for the beam and plasma on the dispersion properties of surface waves are investigated. The kind of dispersion relations depends strongly on the ambient magnetic field B o via the gyro-frequency ω c , the quantum parameters, and the width of the plasma layer as well as the relativistic factor for the electron beam. It is found that the quantum effects play a crucial role to facilitate the propagation of TE surface waves. -- Highlights: ► Propagation of TE surface waves on bounded magneto-quantum plasma by relativistic beam is studied. ► The quantum plasma consists of transitional layer adjacent to uniform layer. ► Influence of quantum effects on the propagation of TE surface waves are taken into account. ► Effects of homogeneity and inhomogeneity for beam on TE surface waves are considered. ► It is found that quantum effects facilitate the propagation of TE surface modes.

  13. Explicit symplectic algorithms based on generating functions for relativistic charged particle dynamics in time-dependent electromagnetic field

    Science.gov (United States)

    Zhang, Ruili; Wang, Yulei; He, Yang; Xiao, Jianyuan; Liu, Jian; Qin, Hong; Tang, Yifa

    2018-02-01

    Relativistic dynamics of a charged particle in time-dependent electromagnetic fields has theoretical significance and a wide range of applications. The numerical simulation of relativistic dynamics is often multi-scale and requires accurate long-term numerical simulations. Therefore, explicit symplectic algorithms are much more preferable than non-symplectic methods and implicit symplectic algorithms. In this paper, we employ the proper time and express the Hamiltonian as the sum of exactly solvable terms and product-separable terms in space-time coordinates. Then, we give the explicit symplectic algorithms based on the generating functions of orders 2 and 3 for relativistic dynamics of a charged particle. The methodology is not new, which has been applied to non-relativistic dynamics of charged particles, but the algorithm for relativistic dynamics has much significance in practical simulations, such as the secular simulation of runaway electrons in tokamaks.

  14. Highly relativistic magnetospheric electrons: A role in coupling to the middle atmosphere?

    International Nuclear Information System (INIS)

    Baker, D.N.; Blake, J.B.; Gorney, D.J.; Higbie, P.R.; Klebesadel, R.W.; King, J.H.

    1987-01-01

    Long-term (1979-present) observations of relativistic electrons (2--15 MeV) at geostationary orbit show a strong solar cycle dependence. Such electrons were largely absent near the last solar maximum (1979--80), while they were prominent during the approach to solar minimum (1983--85). This population now is dwindling as solar minimum has been reached. The strong magnetospheric presence of high-speed solar wind streams which results from solar coronal hole structures during the approach to solar activity (sunspot) minimum. We clearly observe 27-day periodic enhancements of the relativistic electrons in association with concurrently measured solar wind streams (V/sub S//sub W/approx. >600 km/s). We have used a numerical transport code to study the coupling of these high-energy electrons to earth's upper and middle atmosphere. We calculate using the observed energy spectra of the electrons that, when precipitated, these electrons show a large (maximum of ∼100 keV/cm 3 -s) energy deposition at 40--60 km altitude, which is 3--4 orders of magnitude greater than the galactic cosmic ray or solar EUV energy deposition at these altitudes. We also find that the global energy deposition in the mid-latitudes totals nearly 10 21 ergs for a typical 2--3 day event period. We conclude that this previously unrecognized electron population could play an important role in coupling solar wind and magnetospheric variability (on 27--day and 11--year cycles) to the middle atmosphere through a modulating effect on lower D-region ionization and, possibly, on upper level ozone chemistry. These electrons also may contribute to the recent Antarctic polar ozone depletion phenomenon. copyright American Geophysical Union 1987

  15. Heating of a plasma by a powerful relativistic electron beam in a strong magnetic field

    International Nuclear Information System (INIS)

    Arzhannikov, A.V.; Brejzman, B.N.; Vyacheslavov, L.N.; Kojdan, V.S.; Konyukhov, V.V.; Ryutov, D.D.

    1975-01-01

    The results of an experimental investigation into the interaction of a powerful relativistic electron beam with plasma in the INAR apparatus are presented. The relativistic electron beam had initial energy of 1 MeV, maximum injection current of 10 kA, duration of 70 ns, and diameter of 2 cm. The total beam energy at entry into the plasma was approximately 300 J. The beam was injected into the column of a hydrogen plasma 230 cm long, 8 cm in diameter, and with a density of 3x10 14 cm -3 . The magnetic field had mirror-trap geometry (mirror ratio 1.7, intensity in the uniform region up to 15 kOe). In the experiments various diagnostic methods were used, making it possible to measure the beam current, the total current within the plasma, the total energy of the beam entering and leaving the plasma, and the distribution of beam current over the cross-section at the plasma outlet; the energy content of the plasma was determined from diamagnetic measurements; the electron distribution function was analysed by the method of Thomson scattering of light at 90 0 . From an analysis of the shape of the diamagnetic signals and distribution of diamagnetism along the length of the apparatus it was established that under the assumption of predominant electron heating, the temperature of plasma electrons in order of magnitude equals 1 keV for a plasma density of 5x10 13 cm -3 . The cause of heating cannot be dissipation of the reversed current. Thomson scattering of laser radiation indicated the presence of a comparatively cold plasma component with a temperature of 25 eV. High-energy electrons moving from the opposite direction toward the beam were recorded; their appearance evidently was associated with acceleration of plasma electrons in the induction fields. Mechanisms which can provide effective heating of the whole mass of electrons under conditions in which pair collisions are minor are indicated. (author)

  16. Relativistic quantum Hall conductivity for 3D and 2D electron plasma in an external magnetic field

    International Nuclear Information System (INIS)

    Gonzalez Felipe, R.; Perez Martinez, A.; Perez-Rojas, H.

    1990-05-01

    The complete antisymmetric form of the conductivity tensor in the static limit, as well as the expression for the Hall conductivity, is obtained for the relativistic 3D and 2D electron gas in a magnetic field. The non-relativistic 2D limit is also discussed. The typical step form of the 2D Hall conductivity at zero temperature is obtained under the simple hypothesis of constancy of the chemical potential. (author). 6 refs, 1 fig

  17. Interplanetary Parameters Leading to Relativistic Electron Enhancement and Persistent Depletion Events at Geosynchronous Orbit and Potential for Prediction

    Science.gov (United States)

    Pinto, Victor A.; Kim, Hee-Jeong; Lyons, Larry R.; Bortnik, Jacob

    2018-02-01

    We have identified 61 relativistic electron enhancement events and 21 relativistic electron persistent depletion events during 1996 to 2006 from the Geostationary Operational Environmental Satellite (GOES) 8 and 10 using data from the Energetic Particle Sensor (EPS) >2 MeV fluxes. We then performed a superposed epoch time analysis of the events to find the characteristic solar wind parameters that determine the occurrence of such events, using the OMNI database. We found that there are clear differences between the enhancement events and the persistent depletion events, and we used these to establish a set of threshold values in solar wind speed, proton density and interplanetary magnetic field (IMF) Bz that can potentially be useful to predict sudden increases in flux. Persistent depletion events are characterized by a low solar wind speed, a sudden increase in proton density that remains elevated for a few days, and a northward turning of IMF Bz shortly after the depletion starts. We have also found that all relativistic electron enhancement or persistent depletion events occur when some geomagnetic disturbance is present, either a coronal mass ejection or a corotational interaction region; however, the storm index, SYM-H, does not show a strong connection with relativistic electron enhancement events or persistent depletion events. We have tested a simple threshold method for predictability of relativistic electron enhancement events using data from GOES 11 for the years 2007-2010 and found that around 90% of large increases in electron fluxes can be identified with this method.

  18. Problems of Maltreated Runaway Youth.

    Science.gov (United States)

    Kurtz, P. David; And Others

    1991-01-01

    Shelter staff from 8 states completed Client Information Records on 2,019 runaways. Found significant differences in problems reported by physically abused and sexually abused runaways when compared to nonabused runaway peers. Runaways who were both physically and sexually maltreated were significantly more vulnerable and much worse off than those…

  19. Relativistic band-structure calculations for electronic properties of actinide dioxides

    International Nuclear Information System (INIS)

    Maehira, Takahiro; Hotta, Takashi

    2007-01-01

    Energy band structures of actinide dioxides AnO 2 (An=Th, U, Np, and Pu) are investigated by a relativistic linear augmented-plane-wave method with the exchange-correlation potential in a local density approximation (LDA). It is found in common that the energy bands in the vicinity of the Fermi level are mainly due to the hybridization between actinide 5f and oxygen 2p electrons. By focusing on the crystalline electric field states, we point out the problem in the application of the LDA to AnO 2

  20. Chaotic behavior in a relativistic electron beam interacting with a transverse slow electromagnetic wave

    International Nuclear Information System (INIS)

    Serbeto, A.; Alves, M.V.

    1993-01-01

    Using a nonlinear set of equations which describes the excitation of a purely transverse slow electromagnetic wave by a relativistic electron beam, it is shown that the system runs from chaotic behavior to a regular stable state due to crisis phenomenon and from stabilized soliton and repeated stabilized explosive solutions to a temporal chaos. These behaviors suggest that the primary mechanism for the saturation of the explosive instability is not only the cubic nonlinear frequency shift as pointed out by many authors until now. The inclusion of the velocity perturbation in the beam charge initial equilibrium state leads the system to these strange behaviors. (author)

  1. Relativistic effects in the calibration of electrostatic electron analyzers. I. Toroidal analyzers

    Energy Technology Data Exchange (ETDEWEB)

    Keski Rahkonen, O [Helsinki University of Technology, Espoo (Finland). Laboratory of Physics; Krause, M O [Oak Ridge National Lab., Tenn. (USA)

    1978-02-01

    Relativistic correction terms up to the second order are derived for the kinetic energy of an electron travelling along the circular central trajectory of a toroidal analyzer. Furthermore, a practical energy calibration equation of the spherical sector plate analyzer is written for the variable-plate-voltage recording mode. Accurate measurements with a spherical analyzer performed using kinetic energies from 600 to 2100 eV are in good agreement with this theory showing our approximation (neglect of fringing fields, and source and detector geometry) is realistic enough for actual calibration purposes.

  2. Acceleration of relativistic electrons in plasma reactors and non-linear spectra of cosmic radio sources

    International Nuclear Information System (INIS)

    Kaplan, S.A.; Lomadze, R.D.

    1978-01-01

    A second approximation to the theory of turbulent plasma reactors in connection with the problem of interpretation of the non-linear spectra of cosmic radio sources has been investigated by the authors (Kaplan and Lomadze, 1977; Lomadze, 1977). The present paper discusses the basic results received for a Compton reactor with plasma waves of phase velocities smaller than the velocity of light, as well as for the synchrotron reactor. The distortion of the distribution function of relativistic electrons caused by their diffusion from the reactor is also presented as an example. (Auth.)

  3. Studies of the relativistic electron source and related phenomena in Petawatt Laser matter interactions

    International Nuclear Information System (INIS)

    Key, M.H.; Campbell, E.M.; Cowan, T.E.; Hatchett, S.P.; Henry, E.A.; Koch, J.A.; Landgon, A.B.; Lasinski, B.F.; Lee, R.W.; MacKinnon, A.; Offenberger, A.; Pennington, D.M.; Perry, M.D.; Sangster, T.C.; Yasuike, K.; Snavely, R.; Roth, M.; Phillips, T.W.; Stoyer, M.A.; Wilks, S.C.; Singh, M.S.

    1999-01-01

    The interaction of laser radiation with solid targets at 1 petawatt power and intensity up to 3x10 20 Wcm -2 has been studied with emphasis on relativistic electrons and high energy ions. Secondary effects including Bremsstrahlung radiation, nuclear interactions and heating have been characterized. A collimated beam of protons with up to 55 MeV energy is emitted normal to the rear surface of thin targets and its characteristics and origin are discussed. The significance of the data for radiography, fast ignition and proton beam applications is summarized

  4. Reaction of congo red in water after irradiation by pulsed intense relativistic electron beam

    International Nuclear Information System (INIS)

    Kikuchi, Takashi; Kondo, Hironobu; Sasaki, Toru; Harada, Nob.; Moriwaki, Hiroshi; Nakanishi, Hiromitsu; Imada, Go

    2011-01-01

    The reaction of congo red, a well-known toxic azo dye, occurred after irradiation by a pulsed intense relativistic electron beam (PIREB). An aquation of congo red was irradiated by PIREB (2 MeV, 0.36 kA, 140 ns). After PIREB irradiation, the solution was measured by electrospray ionization-mass spectrometry and liquid chromatography/mass spectrometry. It was found that congo red underwent a reaction (77% conversion after five shots of PIREB irradiation) and the hydroxylated compounds of the dye were observed as reaction products. (author)

  5. Electron Parametric Instabilities Driven by Relativistically Intense Laser Light in Plasma

    Science.gov (United States)

    Barr, H. C.; Mason, P.; Parr, D. M.

    1999-08-01

    A unified treatment of electron parametric instabilities driven by ultraintense laser light in plasma is described. It is valid for any intensity, polarization, plasma density, and scattering geometry. The method is applied to linearly polarized light in both underdense plasma and overdense plasma accessible by self-induced transparency. New options arise which are hybrids of stimulated Raman scattering, the two plasmon decay, the relativistic modulational and filamentation instabilities, and stimulated harmonic generation. There is vigorous growth over a wide range of wave numbers and harmonics.

  6. Geosynchronous Relativistic Electron Events Associated with High-Speed Solar Wind Streams in 2006

    Directory of Open Access Journals (Sweden)

    Sungeun Lee

    2009-12-01

    Full Text Available Recurrent enhancements of relativistic electron events at geosynchronous orbit (GREEs were observed in 2006. These GREE enhancements were associated with high-speed solar wind streams coming from the same coronal hole. For the first six months of 2006, the occurrence of GREEs has 27 day periodicity and the GREEs were enhanced with various flux levels. Several factors have been studied to be related to GREEs: (1 High speed stream, (2 Pc5 ULF wave activity, (3 Southward IMF Bz, (4 substorm occurrence, (5 Whistler mode chorus wave, and (6 Dynamic pressure. In this paper, we have examined the effectiveness about those parameters in selected periods.

  7. The relativistic electron response at geosynchronous orbit during the January 1997 magnetic storm

    International Nuclear Information System (INIS)

    Reeves, G.D.; Friedel, R.H.; Belian, R.D.; Meier, M.M.; Henderson, M.G.; Onsager, T.; Singer, H.J.; Baker, D.N.; Li, X.

    1998-01-01

    The first geomagnetic storm of 1997 began on January 10. It is of particular interest because it was exceptionally well observed by the full complement of International Solar Terrestrial Physics (ISTP) satellites and because of its possible association with the catastrophic failure of the Telstar 401 telecommunications satellite. Here we report on the energetic electron environment observed by five geosynchronous satellites. In part one of this paper we examine the magnetospheric response to the magnetic cloud. The interval of southward IMF drove strong substorm activity while the interval of northward IMF and high solar wind density strongly compressed the magnetosphere. At energies above a few hundred keV, two distinct electron enhancements were observed at geosynchronous orbit. The first enhancement began and ended suddenly, lasted for approximately 1 day, and is associated with the strong compression of the magnetosphere. The second enhancement showed a more characteristic time delay, peaking on January 15. Both enhancements may be due to transport of electrons from the same initial acceleration event at a location inside geosynchronous orbit but the first enhancement was due to a temporary, quasi-adiabatic transport associated with the compression of the magnetosphere while the second enhancement was due to slower diffusive processes. In the second part of the paper we compare the relativistic electron fluxes measured simultaneously at different local times. We find that the >2-MeV electron fluxes increased first at noon followed by dusk and then dawn and that there can be difference of two orders of magnitude in the fluxes observed at different local times. Finally, we discuss the development of data-driven models of the relativistic electron belts for space weather applications. By interpolating fluxes between satellites we produced a model that gives the >2-MeV electron fluxes at all local times as a function of universal time. In a first application of

  8. Limitation of accelerating process in the partly neutralized relativistic electron hollow beam

    International Nuclear Information System (INIS)

    Chen, H.C.

    1984-01-01

    A fluid-Maxwell theory of the diocotron instability is developed for a relativistic electron hollow beam which is assumed in rigid-rotor and cold laminar flow equilibria. Stability analysis is performed for a sharp boundary electron density profile including the influence of positive ions which can accumulate in a long pulse device, and which form a partially neutralizing background. In the case of the strong magnetic field and tenuous electron beam (plasma frequency ω/sub p/b 1 2 ) has a stabilizing effect on the diocotron instability, R 1 and R 2 are the inner and outer radius of the annular hollow beam, respectively. However, the ions accumulating in the center of the beam (0 1 ) have a destabilizing effect on the diocotron instability. Most importantly the kink mode becomes unstable with a growth rate several tenths of the diocotron frequency ω/sub D/ equivalent ω 2 /sub p/b/2γ 2 ω/sub c/, where γ is the relativistic scaling factor

  9. Arbitrary amplitude nucleus-acoustic solitons in multi-ion quantum plasmas with relativistically degenerate electrons

    Science.gov (United States)

    Sultana, S.; Schlickeiser, R.

    2018-02-01

    A three component degenerate relativistic quantum plasma (consisting of relativistically degenerate electrons, nondegenerate inertial light nuclei, and stationary heavy nuclei) is considered to model the linear wave and also the electrostatic solitary waves in the light nuclei-scale length. A well-known normal mode analysis is employed to investigate the linear wave properties. A mechanical-motion analog (Sagdeev-type) pseudo-potential approach, which reveals the existence of large amplitude solitary excitations, is adopted to study the nonlinear wave properties. Only the positive potential solitary excitations are found to exist in the plasma medium under consideration. The basic properties of the arbitrary amplitude electrostatic acoustic modes in the light nuclei-scale length and their existence domain in terms of soliton speed (Mach number) are examined. The modifications of solitary wave characteristics and their existence domain with the variation of different key plasma configuration parameters (e.g., electrons degeneracy parameter, inertial light nuclei number density, and degenerate electron number density) are also analyzed. Our results, which may be helpful to explain the basic features of the nonlinear wave propagation in multi-component degenerate quantum plasmas, in connection with astrophysical compact objects (e.g., white dwarfs) are briefly discussed.

  10. A self-consistent nonlinear theory of resistive-wall instability in a relativistic electron beam

    International Nuclear Information System (INIS)

    Uhm, H.S.

    1994-01-01

    A self-consistent nonlinear theory of resistive-wall instability is developed for a relativistic electron beam propagating through a grounded cylindrical resistive tube. The theory is based on the assumption that the frequency of the resistive-wall instability is lower than the cutoff frequency of the waveguide. The theory is concentrated on study of the beam current modulation directly related to the resistive-wall klystron, in which a relativistic electron beam is modulated at the first cavity and propagates downstream through the resistive wall. Because of the self-excitation of the space charge waves by the resistive-wall instability, a highly nonlinear current modulation of the electron beam is accomplished as the beam propagates downstream. A partial integrodifferential equation is obtained in terms of the initial energy modulation (ε), the self-field effects (h), and the resistive-wall effects (κ). Analytically investigating the partial integrodifferential equation, a scaling law of the propagation distance z m at which the maximum current modulation occurs is obtained. It is found in general that the self-field effects dominate over the resistive-wall effects at the beginning of the propagation. As the beam propagates farther downstream, the resistive-wall effects dominate. Because of a relatively large growth rate of the instability, the required tube length of the klystron is short for most applications

  11. A neural network model of the relativistic electron flux at geosynchronous orbit

    International Nuclear Information System (INIS)

    Koons, H.C.; Gorney, D.J.

    1991-01-01

    A neural network has been developed to model the temporal variations of relativistic (>3 MeV) electrons at geosynchronous orbit based on model inputs consisting of 10 consecutive days of the daily sum of the planetary magnetic index ΣKp. The neural network consists of three layers of neurons, containing 10 neurons in the input layer, 6 neurons in a hidden layer, and 1 output neuron. The output is a prediction of the daily-averaged electron flux for the tenth day. The neural network was trained using 62 days of data from July 1, 1984, through August 31, 1984, from the SEE spectrometer on the geosynchronous spacecraft 1982-019. The performance of the model was measured by comparing model outputs with measured fluxes over a 6-year period from April 19, 1982, to June 4, 1988. For the entire data set the rms logarithmic error of the neural network is 0.76, and the average logarithmic error is 0.58. The neural network is essentially zero biased, and for accumulation intervals of 3 days or longer the average logarithmic error is less than 0.1. The neural network provides results that are significantly more accurate than those from linear prediction filters. The model has been used to simulate conditions which are rarely observed in nature, such as long periods of quiet (ΣKp = 0) and ideal impulses. It has also been used to make reasonably accurate day-ahead forecasts of the relativistic electron flux at geosynchronous orbit

  12. Laser-driven relativistic electron dynamics in a cylindrical plasma channel

    Science.gov (United States)

    Geng, Pan-Fei; Lv, Wen-Juan; Li, Xiao-Liang; Tang, Rong-An; Xue, Ju-Kui

    2018-03-01

    The energy and trajectory of the electron, which is irradiated by a high-power laser pulse in a cylindrical plasma channel with a uniform positive charge and a uniform negative current, have been analyzed in terms of a single-electron model of direct laser acceleration. We find that the energy and trajectory of the electron strongly depend on the positive charge density, the negative current density, and the intensity of the laser pulse. The electron can be accelerated significantly only when the positive charge density, the negative current density, and the intensity of the laser pulse are in suitable ranges due to the dephasing rate between the wave and electron motion. Particularly, when their values satisfy a critical condition, the electron can stay in phase with the laser and gain the largest energy from the laser. With the enhancement of the electron energy, strong modulations of the relativistic factor cause a considerable enhancement of the electron transverse oscillations across the channel, which makes the electron trajectory become essentially three-dimensional, even if it is flat at the early stage of the acceleration. Project supported by the National Natural Science Foundation of China (Grant Nos. 11475027, 11765017, 11764039, 11305132, and 11274255), the Natural Science Foundation of Gansu Province, China (Grant No. 17JR5RA076), and the Scientific Research Project of Gansu Higher Education, China (Grant No. 2016A-005).

  13. Ion response to relativistic electron bunches in the blowout regime of laser-plasma accelerators.

    Science.gov (United States)

    Popov, K I; Rozmus, W; Bychenkov, V Yu; Naseri, N; Capjack, C E; Brantov, A V

    2010-11-05

    The ion response to relativistic electron bunches in the so called bubble or blowout regime of a laser-plasma accelerator is discussed. In response to the strong fields of the accelerated electrons the ions form a central filament along the laser axis that can be compressed to densities 2 orders of magnitude higher than the initial particle density. A theory of the filament formation and a model of ion self-compression are proposed. It is also shown that in the case of a sharp rear plasma-vacuum interface the ions can be accelerated by a combination of three basic mechanisms. The long time ion evolution that results from the strong electrostatic fields of an electron bunch provides a unique diagnostic of laser-plasma accelerators.

  14. Dispersion characteristics of anisotropic unmagnetized ultra-relativistic transverse plasma wave with arbitrary electron degeneracy

    Science.gov (United States)

    Sarfraz, M.; Farooq, H.; Abbas, G.; Noureen, S.; Iqbal, Z.; Rasheed, A.

    2018-03-01

    Thermal momentum space anisotropy is ubiquitous in many astrophysical and laboratory plasma environments. Using Vlasov-Maxwell's model equations, a generalized polarization tensor for a collisionless ultra-relativistic unmagnetized electron plasma is derived. In particular, the tensor is obtained by considering anisotropy in the momentum space. The integral of moments of Fermi-Dirac distribution function in terms of Polylog functions is used for describing the border line plasma systems (T/e TF e ≈1 ) comprising arbitrary electron degeneracy, where Te and TF e, are thermal and Fermi temperatures, respectively. Furthermore, the effects of variation in thermal momentum space anisotropy on the electron equilibrium number density and the spectrum of electromagnetic waves are analyzed.

  15. Relativistic electron acceleration in focused laser fields after above-threshold ionization

    International Nuclear Information System (INIS)

    Dodin, I.Y.; Fisch, N.J.

    2003-01-01

    Electrons produced as a result of above-threshold ionization of high-Z atoms can be accelerated by currently producible laser pulses up to GeV energies, as shown recently by Hu and Starace [Phys. Rev. Lett. 88, 245003 (2002)]. To describe electron acceleration by general focused laser fields, we employ an analytical model based on a Hamiltonian, fully relativistic, ponderomotive approach. Though the above-threshold ionization represents an abrupt process compared to laser oscillations, the ponderomotive approach can still adequately predict the resulting energy gain if the proper initial conditions are introduced for the particle drift following the ionization event. Analytical expressions for electron energy gain are derived and the applicability conditions of the ponderomotive formulation are studied both analytically and numerically. The theoretical predictions are supported by numerical computations

  16. Rocket measurements of relativistic electrons: New features in fluxes, spectra and pitch angle distributions

    International Nuclear Information System (INIS)

    Herrero, F.A.; Baker, D.N.; Goldberg, R.A.

    1991-01-01

    The authors report new features of precipitating relativistic electron fluxes measured on a spinning sounding rocket payload at midday between altitudes of 70 and 130 km in the auroral region (Poker Flat, Alaska, 65.1 degree N, 147.5 degree W, and L = 5.5). The sounding rocket (NASA 33.059) was launched at 21:29 UT on May 13, 1990 during a relativistic electron enhancement event of modest intensity. Electron fluxes were measured for a total of about 210 seconds at energies from 0.1 to 3.8 MeV, while pitch angle was sampled from 0 degree to 90 degree every spin cycle. Flux levels during the initial 90 seconds were about 5 to 8 times higher than in the next 120 seconds, revealing a time scale of more than 100 seconds for large amplitude intensity variations. A shorter time scale appeared for downward electron bursts lasting 10 to 20 seconds. Electrons with energies below about 0.2 MeV showed isotropic pitch angle distributions during most of the first 90 seconds of data, while at higher energies the electrons had highest fluxes near the mirroring angle (90 degree); when they occurred, the noted downward bursts were seen at all energies. Data obtained during the second half of the flight showed little variation in the shape of the pitch angle distribution for energies greater than 0.5 MeV; the flux at 90 degree was about 100 times the flux at 0 degree. They have compared the low altitude fluxes with those measured at geostationary orbit (L = 6.6), and find that the low altitude fluxes are much higher than expected from a simple mapping of a pancake distribution at high altitudes (at the equator). Energy deposition of this modest event is estimated to increase rapidly above 45 km, already exceeding the cosmic ray background at 45 km

  17. Final-state interactions and superscaling in the semi-relativistic approach to quasielastic electron and neutrino scattering

    International Nuclear Information System (INIS)

    Amaro, J. E.; Barbaro, M. B.; Caballero, J. A.; Donnelly, T. W.; Udias, J. M.

    2007-01-01

    The semi-relativistic approach to electron and neutrino quasielastic scattering from nuclei is extended to include final-state interactions. Starting with the usual nonrelativistic continuum shell model, the problem is relativized by using the semi-relativistic expansion of the current in powers of the initial nucleon momentum and relativistic kinematics. Two different approaches are considered for the final-state interactions: the Smith-Wambach 2p-2h damping model and the Dirac-equation-based potential extracted from a relativistic mean-field plus the Darwin factor. Using the latter, the scaling properties of (e,e ' ) and (ν μ ,μ - ) cross sections for intermediate momentum transfers are investigated

  18. Electron trapping in the electrosound solitary wave for propagation of high intensity laser in a relativistic plasma

    International Nuclear Information System (INIS)

    Heidari, E; Aslaninejad, M; Eshraghi, H

    2010-01-01

    Using a set of relativistic equations for plasmas with warm electrons and cold ions, we have investigated the effects of trapped electrons in the propagation of an electrosound wave and discussed the possibility of the formation of electromagnetic solitons in a plasma. The effective potential energy and deviations of the electron and ion number densities in this relativistic model have been found. We have obtained the governing equations for the amplitude of the HF field with relativistic corrections. In order to show the destructive impact of the trapped electrons on the solitary wave, a relativistic effective potential and the governing equation have been found. It is shown that for certain values of the parameters the condition of localization of the HF amplitude is violated. In addition, it is shown that as the flow velocity of the plasma changes, the shape of the solitary wave shows two opposing behaviours, depending on whether the solitary wave velocity is larger than the flow velocity or smaller. Also, the existence of stationary solitary waves which are prohibited for nonrelativistic plasma has been predicted. Finally, we have obtained the Korteweg-de Vries equation showing the relativistic, trapping and nonlinearity effects.

  19. Fine features of parametric X-ray radiation by relativistic electrons and ions

    Directory of Open Access Journals (Sweden)

    K.B. Korotchenko

    2017-11-01

    Full Text Available In present work within the frame of dynamic theory for parametric X-ray radiation in two-beam approximation we have presented detailed studies on parametric radiation emitted by relativistic both electrons and ions at channeling in crystals that is highly requested at planned experiments. The analysis done has shown that the intensity of radiation at relativistic electron channeling in Si (110 with respect to the conventional parametric radiation intensity has up to 5% uncertainty, while the error of approximate formulas for calculating parametric X-ray radiation maxima does not exceed 1.2%. We have demonstrated that simple expressions for the Fourier components of Si crystal susceptibility χ0 and χgσ could be reduced, as well as the temperature dependence for radiation maxima in Si crystal (diffraction plane (110 within Debye model. Moreover, for any types of channeled ions it is shown that the parametric X-ray radiation intensity is proportional to z2−b(Z,z/z with the function b(Z,z depending on the screening parameter and the ion charge number z=Z−Ze.

  20. Electrons in a relativistic-intensity laser field: generation of zeptosecond electromagnetic pulses and energy spectrum of the accelerated electrons

    International Nuclear Information System (INIS)

    Andreev, A A; Galkin, A L; Kalashnikov, M P; Korobkin, V V; Romanovsky, Mikhail Yu; Shiryaev, O B

    2011-01-01

    We study the motion of an electron and emission of electromagnetic waves by an electron in the field of a relativistically intense laser pulse. The dynamics of the electron is described by the Newton equation with the Lorentz force in the right-hand side. It is shown that the electrons may be ejected from the interaction region with high energy. The energy spectrum of these electrons and the technique of using the spectrum to assess the maximal intensity in the focus are analysed. It is found that electromagnetic radiation of an electron moving in an intense laser field occurs within a small angle around the direction of the electron trajectory tangent. The tangent quickly changes its direction in space; therefore, electromagnetic radiation of the electron in the far-field zone in a certain direction in the vicinity of the tangent is a short pulse with a duration as short as zeptoseconds. The calculation of the temporary and spectral distribution of the radiation field is carried out. (superintense laser fields)

  1. Cyclotron Acceleration of Relativistic Electrons through Landau Resonance with Obliquely Propagating Whistler Mode Chorus Emissions

    Science.gov (United States)

    Omura, Y.; Hsieh, Y. K.; Foster, J. C.; Erickson, P. J.; Kletzing, C.; Baker, D. N.

    2017-12-01

    A recent test particle simulation of obliquely propagating whistler mode wave-particle interaction [Hsieh and Omura, 2017] shows that the perpendicular wave electric field can play a significant role in trapping and accelerating relativistic electrons through Landau resonance. A further theoretical and numerical investigation verifies that there occurs nonlinear wave trapping of relativistic electrons by the nonlinear Lorentz force of the perpendicular wave magnetic field. An electron moving with a parallel velocity equal to the parallel phase velocity of an obliquely propagating wave basically see a stationary wave phase. Since the electron position is displaced from its gyrocenter by a distance ρ*sin(φ), where ρ is the gyroradius and φ is the gyrophase, the wave phase is modulated with the gyromotion, and the stationary wave fields as seen by the electron are expanded as series of Bessel functions Jn with phase variations n*φ. The J1 components of the wave electric and magnetic fields rotate in the right-hand direction with the gyrofrequency, and they can be in resonance with the electron undergoing the gyromotion, resulting in effective electron acceleration and pitch angle scattering. We have performed a subpacket analysis of chorus waveforms observed by the Van Allen Probes [Foster et al., 2017], and calculated the energy gain by the cyclotron acceleration through Landau resonance. We compare the efficiencies of accelerations by cyclotron and Landau resonances in typical events of rapid electron acceleration observed by the Van Allen Probes.References:[1] Hsieh, Y.-K., and Y. Omura (2017), Nonlinear dynamics of electrons interacting with oblique whistler mode chorus in the magnetosphere, J. Geophys. Res. Space Physics, 122, 675-694, doi:10.1002/2016JA023255.[2] Foster, J. C., P. J. Erickson, Y. Omura, D. N. Baker, C. A. Kletzing, and S. G. Claudepierre (2017), Van Allen Probes observations of prompt MeV radiation belt electron acceleration in nonlinear

  2. Progress in Development of C60 Nanoparticle Plasma Jet for Diagnostic of Runaway Electron Beam-Plasma Interaction and Disruption Mitigation Study for ITER

    Science.gov (United States)

    Bogatu, I. N.; Thompson, J. R.; Galkin, S. A.; Kim, J. S.

    2013-10-01

    We produced a C60 nanoparticle plasma jet (NPPJ) with uniquely fast response-to-delivery time (~ 1 - 2 ms) and unprecedentedly high momentum (~ 0 . 6 g .km/s). The C60 NPPJ was obtained by using a solid state TiH2/C60 pulsed power cartridge producing ~180 mg of C60 molecular gas by sublimation and by electromagnetic acceleration of the C60 plasma in a coaxial gun (~35 cm length, 96 kJ energy) with the output of a high-density (>1023 m-3) hyper-velocity (>4 km/s) plasma jet. The ~ 75 mg C60/C plasma jet has the potential to rapidly and deeply deliver enough mass to significantly increase electron density (to ne ~ 2 . 4 ×1021 m-3, i.e. ~ 60 times larger than typical DIII-D pre-disruption value, ne 0 ~ 4 ×1019 m-3), and to modify the 'critical electric field' and the runaway electrons (REs) collisional drag during different phases of REs dynamics. The C60 NPPJ, as a novel injection technique, allows RE beam-plasma interaction diagnostic by quantitative spectroscopy of C ions visible/UV line intensity. The system is scalable to ~ 1 - 2 g C60/C plasma jet output and technology is adaptable to ITER acceptable materials (BN and Be) for disruption mitigation. Work supported by US DOE DE-FG02-08ER85196 grant.

  3. Applying the new gamma ray imager diagnostic to measurements of runaway electron Bremsstrahlung radiation in the DIII-D Tokamak (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, C. M., E-mail: coopercm@fusion.gat.com [Oak Ridge Associated Universities, Oak Ridge, Tennessee 37830 (United States); Pace, D. C.; Paz-Soldan, C.; Eidietis, N. W. [General Atomics, P.O. Box 85608, San Diego, California 92186-5608 (United States); Commaux, N.; Shiraki, D. [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830 (United States); Hollmann, E. M. [University of California, San Diego, La Jolla, California 92093-0533 (United States)

    2016-11-15

    A new gamma ray imager (GRI) is developed to probe the electron distribution function with 2D spatial resolution during runaway electron (RE) experiments at the DIII-D tokamak. The diagnostic is sensitive to 0.5–100 MeV gamma rays, allowing characterization of the RE distribution function evolution during RE growth and dissipation. The GRI consists of a lead “pinhole camera” mounted on the DIII-D midplane with 123 honeycombed tangential chords 20 cm wide that span the vessel interior. Up to 30 bismuth germanate (BGO) scintillation detectors capture RE bremsstrahlung radiation for Pulse Height Analysis (PHA) capable of discriminating up to 20 000 pulses per second. Digital signal processing routines combining shaping filters are performed during PHA to reject noise and record gamma ray energy. The GRI setup and PHA algorithms will be described and initial data from experiments will be presented. A synthetic diagnostic is developed to generate the gamma ray spectrum of a GRI channel given the plasma information and a prescribed distribution function. Magnetic reconstructions of the plasma are used to calculate the angle between every GRI sightline and orient and discriminate gamma rays emitted by a field-aligned RE distribution function.

  4. Applying the new gamma ray imager diagnostic to measurements of runaway electron Bremsstrahlung radiation in the DIII-D Tokamak (invited)

    International Nuclear Information System (INIS)

    Cooper, C. M.; Pace, D. C.; Paz-Soldan, C.; Eidietis, N. W.; Commaux, N.; Shiraki, D.; Hollmann, E. M.

    2016-01-01

    A new gamma ray imager (GRI) is developed to probe the electron distribution function with 2D spatial resolution during runaway electron (RE) experiments at the DIII-D tokamak. The diagnostic is sensitive to 0.5–100 MeV gamma rays, allowing characterization of the RE distribution function evolution during RE growth and dissipation. The GRI consists of a lead “pinhole camera” mounted on the DIII-D midplane with 123 honeycombed tangential chords 20 cm wide that span the vessel interior. Up to 30 bismuth germanate (BGO) scintillation detectors capture RE bremsstrahlung radiation for Pulse Height Analysis (PHA) capable of discriminating up to 20 000 pulses per second. Digital signal processing routines combining shaping filters are performed during PHA to reject noise and record gamma ray energy. The GRI setup and PHA algorithms will be described and initial data from experiments will be presented. A synthetic diagnostic is developed to generate the gamma ray spectrum of a GRI channel given the plasma information and a prescribed distribution function. Magnetic reconstructions of the plasma are used to calculate the angle between every GRI sightline and orient and discriminate gamma rays emitted by a field-aligned RE distribution function.

  5. Transfer and focusing of high current relativistic electron beams on a target

    International Nuclear Information System (INIS)

    Baranchikov, E.I.; Gordeev, A.V.; Koba, Yu.V.; Korolev, V.D.; Penkina, V.S.; Rudakov, L.I.; Smirnov, V.P.; Sukhov, A.D.; Tarumov, E.Z.; Bakshaeev, Yu.L.

    Research is being conducted at the I. V. Kurchatov Atomic Energy Institute to investigate possibilities of creating a pulsed thermonuclear reactor based on REBs; this work involves the creation of a multimodel system using vacuum lines for transferring energy and an acute angled external magnetic field for transferring electron beams to the target. A field of this configuration can be used at the same time for accumulating a ''cloud'' of relativistic protons around the target for purposes of irradiating them. This alternative solution of the problem of target irradiation, instead of focusing beams directly on it, may prove to be highly promising. Experiments are described which were conducted recently on high current electron accelerators ''URAL'', ''MS'' and others and which were directed at investigating possibilities of transferring and focusing high current REBs, as well as effective transmission of electromagnetic energy using vacuum lines at considerable distances

  6. One-dimensional theory and simulation of acceleration in relativistic electron beam Raman scattering

    International Nuclear Information System (INIS)

    Abe, T.

    1986-01-01

    Raman scattering by a parallel relativistic electron beam was examined analytically and by using the numerical simulation. Incident wave energy can be transferred not only to the scattered electromagnetic wave but also to the beam. That is, the beam can be accelerated by the Doppler-shifted plasma oscillation accompanied by the scattered wave. The energy conversion rates for them were obtained. They increase with the γ value of the electron beam. For the larger γ values of the beam, the energy of the incident wave is mainly transferred to the beam, while in smaller γ, the energy conversion rate to the scattered wave is about 0.2 times that to the beam. Even in smaller γ, the total energy conversion rate is about 0.1

  7. Design and performance of a Tesla transformer type relativistic electron beam generator

    International Nuclear Information System (INIS)

    Jain, K.K.; Chennareddy, D.; John, P.I.; Saxena, Y.C.

    1986-01-01

    A relativistic electron beam generator driven by an air core Tesla transformer is described. The Tesla transformer circuit analysis is outlined and computational results are presented for the case when the coaxial water line has finite resistance. The transformer has a coupling coefficient of 0.56 and a step-up ratio of 25. The Tesla transformer can provide 800 kV at the peak of the second half cycle of the secondary output voltage and has been tested up to 600 kV. A 100-200 keV, 15-20 kA electron beam having 150 ns pulse width has been obtained. The beam generator described is being used for the beam injection into a toroidal device BETA. (author). 20 refs. 9 figures

  8. Confinement of electron beams by mesh arrays in a relativistic klystron amplifier

    International Nuclear Information System (INIS)

    Wang Pingshan; Gu Binlin

    1998-01-01

    Theoretical and experimental results of intense beam confinement by conducting meshes in a relativistic klystron amplifier (RKA) are presented. Electron motions in a steady intense electron beam confined by conducting meshes are analyzed with an approximate space charge field distribution. And the conditions for steady beam transportation are discussed. Experimental results of a long distance (60 cm) transportation of an intense beam (400 kV, 2.5 kA) generated by a linear induction accelerator are presented. Experimental results of modulated beam transportation confined by the mesh array are presented also. The results show that the focusing ability of the conducting meshes is not very sensitive to the beam energy. And the meshes can be used effectively in a RKA to replace the magnetic field system

  9. Radiative response on massive noble gas injection for Runaway suppression in disruptive plasmas

    International Nuclear Information System (INIS)

    Reiter, Bernhard

    2010-01-01

    The most direct way to avoid the formation of a relativistic electron beam under the influence of an electric field in a highly conducting plasma, is to increase the electron density to a value, where the retarding collisional force balances the accelerating one. In a disruptive tokamak plasma, rapid cooling induces a high electric field, which could easily violate the force balance and push electrons into the relativistic regime. Such relativistic electrons, the so-called runaways, accumulate many MeV's and can cause substantial damage when they hit the wall. This thesis is based on the principle of rapidly fueling the plasma for holding the force balance even under the influence of high electric fields typical for disruptions. The method of injecting high amounts of noble gas particles into the plasma from a close distance is put into practice in the ASDEX Upgrade fusion test facility. In the framework of this thesis, a multi-channel photometer system based on 144 AXUV detectors in a toroidal stereo measurement setup was built. It kept its promise to provide new insights into the transport mechanisms in a disruptive plasma under the influence of strong radiative interaction dynamics between injected matter and the hot plasma.

  10. Electron acoustic waves and parametric instabilities in a 4-component relativistic quantum plasma with Thomas-Fermi distributed electrons

    Science.gov (United States)

    Ikramullah, Ahmad, Rashid; Sharif, Saqib; Khattak, Fida Younus

    2018-01-01

    The interaction of Circularly Polarized Electro-Magnetic (CPEM) waves with a 4-component relativistic quantum plasma is studied. The plasma constituents are: relativistic-degenerate electrons and positrons, dynamic degenerate ions, and Thomas-Fermi distributed electrons in the background. We have employed the Klein-Gordon equations for the electrons as well as for the positrons, while the ions are represented by the Schrödinger equation. The Maxwell and Poisson equations are used for electromagnetic waves. Three modes are observed: one of the modes is associated with the electron acoustic wave, a second mode at frequencies greater than the electron acoustic wave mode could be associated with the positrons, and the third one at the lowest frequencies could be associated with the ions. Furthermore, Stimulated Raman Scattering (SRS), Modulational, and Stimulated Brillouin Scattering (SBS) instabilities are studied. It is observed that the growth rates of both the SRS and SBS instabilities decrease with increase in the quantum parameter of the plasma. It is also observed that the scattering spectra in both the SRS and SBS get restricted to very small wavenumber regions. It is shown that for low amplitude CPEM wave interaction with the quantum plasma, the positron concentration has no effect on the SRS and SBS spectra. In the case of large amplitude CPEM wave interaction, however, one observes spectral changes with varying positron concentrations. An increase in the positron concentration also enhances the scattering instability growth rates. Moreover, the growth rate first increases and then decreases with increasing intensity of the CPEM wave, indicating an optimum value of the CPEM wave intensity for the growth of these scattering instabilities. The modulational instability also shows dependence on the quantum parameter as well as on the positron concentration.

  11. Relativistic electron-atom scattering in an extremely powerful laser field: Relevance of spin effects

    International Nuclear Information System (INIS)

    Panek, P.; Kaminski, J.Z.; Ehlotzky, F.

    2002-01-01

    We reconsider the relativistic scattering of electrons by an atom, being approximated by a static potential, in an extremely powerful electromagnetic plane wave of frequency ω and linear polarization ε. Since to a first order of approximation spin effects can be neglected, we first describe the scattered electron by the Gordon solution of the Klein-Gordon equation. Then we investigate the same scattering process by including the spin effects, using for the electron the Volkov solution of the Dirac equation. For sufficiently energetic electrons, the first-order Born approximation can be employed to represent the corresponding scattering matrix element. We compare the results of the differential cross sections of induced and inverse bremsstrahlung, evaluated from both approximations, for various parameter values and angular configurations and we find that in most cases the spin effects are marginal, even at very high laser power. On the other hand, we recover the various asymmetries in the angular distributions of the scattered electrons and their respective energies due to the laser-induced drift motion of the electrons in the direction of propagation of the radiation field, thus confirming the findings of our previous work [Phys. Rev. A 59, 2105 (1999); Laser Physics 10, 163 (2000)

  12. Propagation of a laser-driven relativistic electron beam inside a solid dielectric.

    Science.gov (United States)

    Sarkisov, G S; Ivanov, V V; Leblanc, P; Sentoku, Y; Yates, K; Wiewior, P; Chalyy, O; Astanovitskiy, A; Bychenkov, V Yu; Jobe, D; Spielman, R B

    2012-09-01

    Laser probe diagnostics: shadowgraphy, interferometry, and polarimetry were used for a comprehensive characterization of ionization wave dynamics inside a glass target induced by a laser-driven, relativistic electron beam. Experiments were done using the 50-TW Leopard laser at the University of Nevada, Reno. We show that for a laser flux of ∼2 × 10(18) W/cm2 a hemispherical ionization wave propagates at c/3 for 10 ps and has a smooth electron-density distribution. The maximum free-electron density inside the glass target is ∼2 × 10(19) cm-3, which corresponds to an ionization level of ∼0.1%. Magnetic fields and electric fields do not exceed ∼15 kG and ∼1 MV/cm, respectively. The electron temperature has a hot, ringlike structure with a maximum of ∼0.7 eV. The topology of the interference phase shift shows the signature of the "fountain effect", a narrow electron beam that fans out from the propagation axis and heads back to the target surface. Two-dimensional particle-in-cell (PIC) computer simulations demonstrate radial spreading of fast electrons by self-consistent electrostatic fields driven by laser. The very low ionization observed after the laser heating pulse suggests a fast recombination on the sub-ps time scale.

  13. Heating of a plasma by a powerful relativistic electron beam in a strong magnetic field

    International Nuclear Information System (INIS)

    Arzhannikov, A.V.; Brejzman, B.N.; Vyacheslavov, L.N.; Kojdan, V.S.; Konyukhov, V.V.; Ryutov, D.D.

    1975-01-01

    The results of an experimental investigation into the interaction of a powerful relativistic electron beam with plasma in the INAR apparatus are presented. The relativistic electron beam had initial energy of 1 MeV, maximum injection current of 10 kA, duration of 70 ns, and diameter of 2 cm. The total beam energy at entry into the plasma was approximately 300 J. The beam was injected into the column of a hydrogen plasma 230 cm long, 8 cm in diameter, and with a density of 3 x 10 14 cm -3 . The magnetic field had mirror-trap geometry (mirror ratio 1.7, intensity in the uniform portion up to 15 kOe). In the experiments, various diagnostic methods were used, making it possible to measure the beam current, the total current within the plasma, the total energy of the beam entering and leaving the plasma, and the distribution of beam current over the cross-section at the plasma outlet; opposing high-energy electrons were recorded. The density of the preliminary plasma was controlled during the experiment; the energy content of the plasma was determined from diamagnetic measurements; the electron distribution function was analysed by the method of Thomson scattering of light at 90deg. From an analysis of the shape of the diamagnetic signals and distribution of diamagnetism along the length of the apparatus it was established that under the assumption of predominant electron heating, the temperature of plasma electrons in order of magnitude equals 1 keV for a plasma density of 5 x 10 13 cm -3 . The cause of heating cannot be dissipation of the reversed current. According to Thomson scattering of laser radiation, the authors established the presence of a comparatively cold plasma component with temperature of 25 eV. High-energy electrons moving from the opposite direction toward the beam were recorded; their appearance evidently was associated with acceleration of plasma electrons in the induction fields. Mechanisms which can provide effective heating of the whole mass of

  14. Relativistic Electrons Observed at UARS and the Interpretation of their Storm-Associated Intensity Variations

    Science.gov (United States)

    Pesnell, W. D.; Goldberg, R. A.; Chenette, D. L.; Gaines, E. E.

    1999-01-01

    The High Energy Particle Spectrometer (HEPS) instrument on the Upper Atmosphere Research Satellite (UARS) provides a database of electron intensities well resolved in energy and pitch-angle. Because of its 57 deg. orbital inclination, UARS encounters with magnetic shells L greater than 2 occur quite far off-equator (B/B (sub 0) greater than 9), corresponding to equatorial pitch angle alpha (sub 0) greater than 20 deg. Data acquired by HEPS (October 1991 through September 1994) span the declining phase of Solar Cycle 22. To reveal the storm-associated time dependence of relativistic electron intensities over the wide range of energies (50 keV to 5 MeV) covered by HEPS, we divide the daily average of the measured spectrum at a given L value (bin width = 0.25) by the corresponding 500-day average and plot the results with a color scale that spans only 2.5 decades. The data show that our off-equatorial electron intensities typically increase with time after the end of recovery phase (not during main phase or recovery phase) of each geomagnetic storm. The delay in off-equatorial energetic electron response and the subsequent lifetime of the corresponding electron flux enhancement seem to increase with particle energy above 300 keV. The trend below 300 keV seems to be opposite, such that the delay varies inversely with electron energy. Our working hypothesis for interpretation is that stormtime radial transport tends to increase the phase-space densities of trapped relativistic electrons but typically leads to a flux increases at specified energies only as the current (as indicated by Dst) decays. Flux enhancements in early recovery phase are greatest for equatorially mirroring electrons, and to pitch-angle anisotropies are initially large. Subsequent pitch-angle diffusion broadens the flux enhancement to particles that mirror off equator, thus gradually increasing low-altitude electron intensities (as detected by HEPS/UARS) on time scales equal to about 20% of

  15. A general theory of electronic parametric instability of relativistically intense laser light in plasma

    International Nuclear Information System (INIS)

    Parr, D.M.

    2000-04-01

    This thesis studies the propagation and stability of ultraintense laser light in plasma. A new method is devised, both general and inclusive yet requiring only modest computational effort. The exact anharmonic waveforms for laser light are established. An examination of their stability extends the theory of electron parametric instabilities to relativistic regimes in plasmas of any density including classically overdense plasma accessible by self-induced transparency. Such instabilities can rapidly degrade intense pulses, but can also be harnessed, for example in the self-resonant laser wakefield accelerator. Understanding both the new and established regimes is thus basic to the success of many applications arising in high-field science, including novel x-ray sources and ignition of laser fusion targets, as well as plasma-based accelerator schemes. A covariant formulation of a cold electron fluid plasma is Lorentz transformed to the laser group velocity frame; this is the essence of the method and produces a very simple final model. Then, first, the zero-order laser 'driver' model is developed, in this frame representing a spatially homogeneous environment and thus soluble numerically as ordinary differential equations. The linearised first-order system leads to a further set of differential equations, whose solution defines the growth and other characteristics of an instability. The method is exact, rugged and flexible, avoiding the many approximations and restrictions previously necessary. This approach unifies all theory on purely electronic parametric instabilities over the last 30 years and, for the first time in generality, extends it into the ultrahigh relativistic regime. Besides extensions to familiar parametric instabilities, such as Stimulated Raman Scattering and Two-Plasmon Decay, strong stimulated harmonic generation emerges across a wide range of harmonics with high growth rates, presenting a varied and complex physical entity

  16. A new Predictive Model for Relativistic Electrons in Outer Radiation Belt

    Science.gov (United States)

    Chen, Y.

    2017-12-01

    Relativistic electrons trapped in the Earth's outer radiation belt present a highly hazardous radiation environment for spaceborne electronics. These energetic electrons, with kinetic energies up to several megaelectron-volt (MeV), manifest a highly dynamic and event-specific nature due to the delicate interplay of competing transport, acceleration and loss processes. Therefore, developing a forecasting capability for outer belt MeV electrons has long been a critical and challenging task for the space weather community. Recently, the vital roles of electron resonance with waves (including such as chorus and electromagnetic ion cyclotron) have been widely recognized; however, it is still difficult for current diffusion radiation belt models to reproduce the behavior of MeV electrons during individual geomagnetic storms, mainly because of the large uncertainties existing in input parameters. In this work, we expanded our previous cross-energy cross-pitch-angle coherence study and developed a new predictive model for MeV electrons over a wide range of L-shells inside the outer radiation belt. This new model uses NOAA POES observations from low-Earth-orbits (LEOs) as inputs to provide high-fidelity nowcast (multiple hour prediction) and forecast (> 1 day prediction) of the energization of MeV electrons as well as the evolving MeV electron distributions afterwards during storms. Performance of the predictive model is quantified by long-term in situ data from Van Allen Probes and LANL GEO satellites. This study adds new science significance to an existing LEO space infrastructure, and provides reliable and powerful tools to the whole space community.

  17. Relativistic electron beam interaction and $K_{\\alpha}$-generation in solid targets

    CERN Document Server

    Fill, E; Eder, D; Eidmann, K; Saemann, A

    1999-01-01

    When fs laser pulses interact with solid surfaces at intensities I lambda /sup 2/ >10/sup 18/ W/cm/sup 2/ mu m/sup 2/, collimated relativistic electron beams are generated. These electrons can be used for producing intense X-radiation (bremsstrahlung or K/sub alpha /) for pumping an innershell X-ray laser. The basic concept of such a laser involves the propagation of the electron beam in a material which converts electron energy into appropriate pump photons. Using the ATLAS titanium-sapphire laser at Max-Planck-Institut fur Quantenoptik, we investigate the generation of hot electrons and of characteristic radiation in copper. The laser (200 mJ/130 fs) is focused by means of an off-axis parabola to a diameter of about 10 mu m. By varying the position of the focus, we measure the copper K/sub alpha /-yield as a function of intensity in a range from 10/sup 15/ to 2 x 10/sup 18/ W/cm/sup 2/ while keeping the laser pulse energy constant. Surprisingly, the highest emission is obtained at an intensity of about 10/s...

  18. On quantum effects in spontaneous emission by a relativistic electron beam in an undulator

    Energy Technology Data Exchange (ETDEWEB)

    Geloni, Gianluca [European XFEL GmbH, Hamburg (Germany); Kocharyan, Vitali; Saldin, Evgeni [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2012-02-15

    Robb and Bonifacio (2011) claimed that a previously neglected quantum effect results in noticeable changes in the evolution of the energy distribution associated with spontaneous emission in long undulators. They revisited theoretical models used to describe the emission of radiation by relativistic electrons as a continuous diffusive process, and claimed that in the asymptotic limit for a large number of undulator periods the evolution of the electron energy distribution occurs as discrete energy groups according to Poisson distribution. We show that these novel results have no physical sense, because they are based on a one-dimensional model of spontaneous emission and assume that electrons are sheets of charge. However, electrons are point-like particles and, as is well-known, the bandwidth of the angular-integrated spectrum of undulator radiation is independent of the number of undulator periods. If we determine the evolution of the energy distribution using a three-dimensional theory we find the well-known results consistent with a continuous diffusive process. The additional pedagogical purpose of this paper is to review how quantum diffusion of electron energy in an undulator with small undulator parameter can be simply analyzed using the Thomson cross-section expression, unlike the conventional treatment based on the expression for the Lienard-Wiechert fields. (orig.)

  19. Generation of attosecond electron beams in relativistic ionization by short laser pulses

    Science.gov (United States)

    Cajiao Vélez, F.; Kamiński, J. Z.; Krajewska, K.

    2018-03-01

    Ionization by relativistically intense short laser pulses is studied in the framework of strong-field quantum electrodynamics. Distinctive patterns are found in the energy probability distributions of photoelectrons, which are sensitive to the properties of a driving laser field. It is demonstrated that these electrons are generated in the form of solitary attosecond wave packets. This is particularly important in light of various applications of attosecond electron beams such as in ultrafast electron diffraction and crystallography, or in time-resolved electron microscopy of physical, chemical, and biological processes. We also show that, for intense laser pulses, high-energy ionization takes place in narrow regions surrounding the momentum spiral, the exact form of which is determined by the shape of a driving pulse. The self-intersections of the spiral define the momenta for which the interference patterns in the energy distributions of photoelectrons are observed. Furthermore, these interference regions lead to the synthesis of single-electron wave packets characterized by coherent double-hump structures.

  20. Fast plasma shutdown by killer pellet injection in JT-60U with reduced heat flux on the divertor plate and avoiding runaway electron generation

    International Nuclear Information System (INIS)

    Yoshino, R.; Kondoh, T.; Neyatani, Y.; Itami, K.; Kawano, Y.; Isei, N.

    1997-01-01

    A killer pellet is an impurity pellet that is injected into a tokamak plasma in order to terminate a discharge without causing serious damage to the tokamak machine. In JT-60U neon ice pellets have been injected into OH and NB heated plasmas and fast plasma shutdowns have been demonstrated without large vertical displacement. The heat pulse on the divertor plate has been greatly reduced by killer pellet injections (KPI), but a low-power heat flux tail with a long time duration is observed. The total energy on the divertor plate increases with longer heat flux tail, so it has been reduced by shortening the tail. Runaway electron (RE) generation has been observed just after KPI and/or in the later phase of the plasma current quench. However, RE generation has been avoided when large magnetic perturbations are excited. These experimental results clearly show that KPI is a credible fast shutdown method avoiding large vertical displacement, reducing heat flux on the divertor plate, and avoiding (or minimizing) RE generation. (Author)

  1. Evaluating the Role and Effects of Precipitation on Relativistic Electron Losses during Storms

    Science.gov (United States)

    Chen, Y.; Fu, X.

    2016-12-01

    Theoretic studies have suggested that during storm times various waves (e.g., whistler-mode chorus and electromagnetic ion cyclotron waves) can cause significant precipitation of relativistic ( MeV) electrons that are originally trapped inside the outer radiation belt. However, the role of precipitation and its quantitative contribution to the losses of outer-belt electrons remain open questions. In this study, we tackle these questions by systemically examining the latest wave and electron in-situ, simultaneous observations made at different altitudes by Van Allen Probes from near equator, NOAA POES at low Earth orbits near/across electron loss cone, and BARREL under the mesosphere. After calibrating with DEMTER observations, we first confirm and quantify the response of POES MEPED proton channels to MeV electrons. Next, we identify a list of precipitation events from BARREL and POES measurements, examine the temporal adn spatial relation between the two data sets, and estimate the intensities of electron precipitation with ascertained uncertainties. Then, from Van Allen Probes data, we select another list of dropout events during storms. By cross checking the above two lists, we are able to determine the causal relation between precipitation and dropouts through individual case as well as statistical studies so as to quantify the contributions from precipitation. This study mainly focuses on the relatively small L-shells with positive phase space density radial gradient in order to alleviate the impacts from outward radial diffusion and adiabatic effects. Based upon the recent discovery of cross-energy cross-pitch angle coherence, we pay particular attention to the cross-term diffusions which may account for the extra "loss" needed by observed MeV electron dropouts. Results from this observational study will advance our knowledge on the loss mechanism of outer-belt electrons, and thus lay down another stepping stone towards high-fidelity physics-based models for

  2. Interaction of an intense relativistic electron beam with full density air

    International Nuclear Information System (INIS)

    Murphy, D.P.; Pechacek, R.E.; Raleigh, M.; Oliphant, W.F.; Meger, R.A.

    1987-01-01

    The authors report on a study of plasma generation by direct deposition of energy from an intense relativistic electron beam (REB) into full density air. It has been postulated that a sufficiently intense REB can fully ionize the air and produce a 2 eV plasma with Spitzer conductivity. The REB is produced from a field emission diode driven by either the Gamble I or Gamble II generator. Gamble I can produce a 0.60 MV, 300 kA, 50 ns REB and Gamble II can produce a 2.0 MV, 1.0 MA, 50 ns REB. The REB was injected into a short diagnostic cell containing full density air and up to a 14 kG solenoidal magnetic field. The diagnostics include beam and net current measurements, x-ray and visible photography and visible light spectroscopy

  3. The infrared problem for the dressed non-relativistic electron in a magnetic field

    International Nuclear Information System (INIS)

    Amour, L.; Faupin, J.; Grebert, B.; Guillot, J.C.

    2008-01-01

    We consider a non-relativistic electron interacting with a classical magnetic field pointing along the x 3 -axis and with a quantized electromagnetic field. The system is translation invariant in the x 3 -direction and the corresponding Hamiltonian has a decomposition H ≅∫ R + H(P 3 )dP 3 . For a fixed momentum P 3 sufficiently small, we prove that H(P 3 ) has a ground state in the Fock representation if and only if E'(P 3 )=0, where P 3 →E'(P 3 ) is the derivative of the map P 3 →E(P 3 )=infσ(H(P 3 )). If E'(P 3 )≠0, we obtain the existence of a ground state in a non-Fock representation. This result holds for sufficiently small values of the coupling constant. (authors)

  4. Kinetic study of the sausage mode of a resistive instability of a relativistic electron beam

    International Nuclear Information System (INIS)

    Gureev, K.G.; Zolotarev, V.O.; Stolbetsov, S.D.

    1984-01-01

    The nonlinear problem of the growth of the sausage mode of the resistive instability of a relativistic electron beam propagating without collisions through a tenuous plasma is solved. The plasma conductivity is assumed to be high, so that the wave phase velocity is low in comparison with the velocity of light. A kinetic approach is taken to the description of the beam. A numerical solution of the problem shows that this instability occurs in a cold, uniform beam. In the nonlinear stage of the instability the beam goes through states with a hollow structure. Suppression of the instability is found for a beam with a Bennett distribution function. The stabilization results from phase mixing of the beam particles

  5. Heating of a dense plasma with an intense relativistic electron beam: initial observations

    International Nuclear Information System (INIS)

    Montgomery, M.D.; Parker, J.V.; Riepe, K.B.; Sheffield, R.L.

    1981-01-01

    A dense (approx. 10 17 cm -3 ) plasma has been heated via the relativistic two-stream instability using a 3 MeV, intense (5 x 10 5 A/cm 2 ) electron beam. Evidence for heating has been obtained with diamagnetic loops, thin-foil witness plates, and a 2-channel, broad-band soft x-ray detector. Measurements of energy loss from the beam using calorimetry techniques have been attempted. The measured strong dependence of heating on beam transverse temperature and the very short interaction length ( 100 ns after the beam pulse are consistent with a plasma temperature <150 eV and line emission near 80 to 90 eV

  6. System for detecting neutrons in the harsh radiation environment of a relativistic electron beam

    International Nuclear Information System (INIS)

    Kruse, L.W.

    1978-06-01

    Newly developed detectors and procedures allow measurement of neutron yield and energy in the harsh radiation environment of a relativistic electron beam source. A new photomultiplier tube design and special gating methods provide the basis for novel time-of-flight and total-yield detectors. The technique of activation analysis is expanded to provide a neutron energy spectrometer. There is a demonstrated potential in the use of the integrated system as a valuable diagnostic tool to study particle-beam fusion, intense ion-beam interactions, and pulsed neutron sources for simulating weapons effects. A physical lower limit of 10 8 neutrons into 4π is established for accurate and meaningful measurements in the REB environment

  7. Multiple electromagnetic electron-positron pair production in relativistic heavy-ion collisions

    International Nuclear Information System (INIS)

    Alscher, A.; Hencken, K.; Trautmann, D.; Baur, G.

    1997-01-01

    We calculate the cross sections for the production of one and more electron-positron pairs due to the strong electromagnetic fields in relativistic heavy-ion collisions. We derive the N-pair amplitude using the generating functional of fermions in an external field and the path-integral formalism. The N-pair production probability is found to be an approximate Poisson distribution. We calculate total cross sections for the production of one pair in lowest order, including corrections from the Poisson distribution up to third order. Furthermore, we calculate cross sections for the production of up to five pairs including corrections from the Poisson distribution. copyright 1997 The American Physical Society

  8. XI International Symposium on Radiation from Relativistic Electrons in Periodic Structures (RREPS2015)

    International Nuclear Information System (INIS)

    2016-01-01

    These Proceedings are published as a recollection of contributions presented at the XI International Symposium on “Radiation from Relativistic Electrons in Periodic Structures” (RREPS-15), which was held in Saint Petersburg, September 6-11, 2015, Russian Federation. RREPS-15 was co-organized by Saint-Petersburg State University, National Research Tomsk Polytechnic University, and National Research Nuclear University (MEPhI). The main goal of the symposium was to bring together the scientists from around the world who work on designs of new radiation sources and their applications. There were 108 participants registered from 12 countries. The website of the symposium is available at http://rreps.tpu.ru/. (paper)

  9. Self-focusing of electromagnetic waves as a result of relativistic electron-mass variation

    International Nuclear Information System (INIS)

    Spatschek, K.H.

    1977-01-01

    Relativistic electron-mass variations due to the presence of intense electromagnetic radiation in the plasma cause a nonlinear refractive index. Using a variational principle the latter is obtained up to fourth order in the electric field amplitude and it is shown that nonlinear effects of the second order lead to self-focusing of a beam of radiation. By nonlinear optics considerations, the self-focusing length of an axially symmetric beam is obtained. Including higher-order dispersive effects it is shown that within the thin-beam approximation the complex electric field envelope obeys a cubic nonlinear Schroedinger equation with an attractive self-consistent potential. The cylindrically symmetric nonlinear Schroedinger equation predicts collapse of the radiation at the self-focusing distance. The nature of the self-focusing singularity is analysed and it is shown that higher-order nonlinearities saturate the amplitude. Then oscillations of the beam radius along the axial direction occur. (author)

  10. Nonlinear dynamic of interaction of the relativistic electron beam with plasma

    International Nuclear Information System (INIS)

    Dorofeenko, V.G.; Krasovitskii, V.B.; Osmolovsky, S.I.

    1994-01-01

    Quasi-transverse instability of thin relativistic electron beam in a dense plasma is studied numerically and analytically in a broad range of the frequency of the beam modulation and external longitudinal magnetic field. It is shown that the nonlinear stage of solution depends on the increment of the instability. It is permitted to classify possible nonlinear solutions and also to determine optimal regimes of the modulation for transport of beam along magnetic field in a plasma without substantial radial divergence. Numerical calculations show, that injection of the bunches with parameters, corresponding nonlinear regime of the beam's instability, in neutrally-charged plasma permits to output on the stationary regime without loss of particles

  11. Planar and nonplanar ion acoustic shock waves in relativistic degenerate astrophysical electron-positron-ion plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Ata-ur-Rahman,; Qamar, A. [Institute of Physics and Electronics, University of Peshawar, Peshawar 25000 (Pakistan); National Centre for Physics, QAU Campus, Shahdrah Valley Road, Islamabad 44000 (Pakistan); Ali, S. [National Centre for Physics, QAU Campus, Shahdrah Valley Road, Islamabad 44000 (Pakistan); Mirza, Arshad M. [Theoretical Plasma Physics Group, Physics Department, Quaid-i-Azam University, Islamabad 45320 (Pakistan)

    2013-04-15

    We have studied the propagation of ion acoustic shock waves involving planar and non-planar geometries in an unmagnetized plasma, whose constituents are non-degenerate ultra-cold ions, relativistically degenerate electrons, and positrons. By using the reductive perturbation technique, Korteweg-deVries Burger and modified Korteweg-deVries Burger equations are derived. It is shown that only compressive shock waves can propagate in such a plasma system. The effects of geometry, the ion kinematic viscosity, and the positron concentration are examined on the ion acoustic shock potential and electric field profiles. It is found that the properties of ion acoustic shock waves in a non-planar geometry significantly differ from those in planar geometry. The present study has relevance to the dense plasmas, produced in laboratory (e.g., super-intense laser-dense matter experiments) and in dense astrophysical objects.

  12. Design study of primary ion provider for relativistic heavy ion collider electron beam ion source.

    Science.gov (United States)

    Kondo, K; Kanesue, T; Tamura, J; Okamura, M

    2010-02-01

    Brookhaven National Laboratory has developed the new preinjector system, electron beam ion source (EBIS) for relativistic heavy ion collider (RHIC) and National Aeronautics and Space Administration Space Radiation Laboratory. Design of primary ion provider is an essential problem since it is required to supply beams with different ion species to multiple users simultaneously. The laser ion source with a defocused laser can provide a low charge state and low emittance ion beam, and is a candidate for the primary ion source for RHIC-EBIS. We show a suitable design with appropriate drift length and solenoid, which helps to keep sufficient total charge number with longer pulse length. The whole design of primary ion source, as well as optics arrangement, solid targets configuration and heating about target, is presented.

  13. Beam-front dynamics and ion acceleration in drifting intense relativistic electron beams

    International Nuclear Information System (INIS)

    Alexander, K.F.; Hintze, W.

    1976-01-01

    Collective ion acceleration at the injection of a relativistic electron beam into a low-pressure gas or a plasma is discussed and its strong dependence on the beam-front dynamics is shown. A simple one-dimensional model taking explicitly into account the motion and ionizing action of the ions in the beam-front region is developed for the calculation of the beam drift velocity. The obtained pressure dependence is in good agreement with experimental data. The energy distribution is shown of the ions accelerated in the moving potential well of the space charge region. Scaling laws for the beam-front dynamics and ion acceleration are derived. (J.U.)

  14. Atmospheric Signatures and Effects of Space-based Relativistic Electron Beam Injection

    Science.gov (United States)

    Marshall, R. A.; Sanchez, E. R.; Kero, A.; Turunen, E. S.; Marsh, D. R.

    2017-12-01

    Future relativistic electron beam injection experiments have the potential to provide groundbreaking insights into the physics of wave-particle interactions and beam-neutral interactions, relevant to space physics and to fundamental plasma physics. However, these experiments are only useful if their signatures can be detected. In this work, we use a physics-based forward modeling framework to investigate the observable signatures of a relativistic beam interacting with the upper atmosphere. The modeling framework is based around the Electron Precipitation Monte Carlo (EPMC) model, used to simulate electron precipitation in the upper atmosphere. That model is coupled to physics-based models of i) optical emission production; ii) bremsstrahlung photon production and propagation; iii) D-region ion chemistry; and iv) VLF wave propagation in the Earth-ionosphere waveguide. Using these modeling tools, we predict the optical, X-ray, chemical, radar, and VLF signatures of a realistic beam injection, based on recent space-based accelerator designs. In particular, we inject a beam pulse of 10 mA for a duration of 500 μs at an energy of 1 MeV, providing a total pulse energy of 5 J. We further investigate variations in these parameters, in particular the total energy and the electron energy. Our modeling shows that for this 5 J pulse injection at 1 MeV electron energy, the optical signal is easily detectable from the ground in common emission bands, but the X-ray signal is likely too weak to be seen from either balloons or LEO orbiting spacecraft. We further predict the optical signal-to-noise ratio that would be expected in different optical systems. Chemical signatures such as changes to NOx and HOx concentrations are too short-lived to be detectable; however our modeling provides a valuable estimate of the total chemical response. Electron density perturbations should be easily measurable from ground-based high-power radars and via VLF subionospheric remote sensing

  15. Extremely short relativistic-electron-bunch generation in the laser wakefield via novel bunch injection scheme

    Directory of Open Access Journals (Sweden)

    A. G. Khachatryan

    2004-12-01

    Full Text Available Recently a new electron-bunch injection scheme for the laser wakefield accelerator has been proposed [JETP Lett. 74, 371 (2001JTPLA20021-364010.1134/1.1427124; Phys. Rev. E 65, 046504 (2002PLEEE81063-651X10.1103/PhysRevE.65.046504]. In this scheme, a low energy electron bunch, sent in a plasma channel just before a high-intensity laser pulse, is trapped in the laser wakefield, considerably compressed and accelerated to an ultrarelativistic energy. In this paper we show the possibility of the generation of an extremely short (on the order of 1   μm long or a few femtoseconds in duration relativistic-electron-bunch by this mechanism. The initial electron bunch, which can be generated, for example, by a laser-driven photocathode rf gun, should have an energy of a few hundred keVs to a few MeVs, a duration in the picosecond range or less and a relatively low concentration. The trapping conditions and parameters of an accelerated bunch are investigated. The laser pulse dynamics as well as a possible experimental setup for the demonstration of the injection scheme are also considered.

  16. Nonlinear bound on unstable field energy in relativistic electron beams and plasmas

    International Nuclear Information System (INIS)

    Davidson, R.C.; Yoon, P.H.

    1989-01-01

    This paper makes use of Fowler's method [J. Math Phys. 4, 559 (1963)] to determine the nonlinear thermodynamic bound on field energy in unstable plasmas or electron beams in which the electrons are relativistic. Treating the electrons as the only active plasma component, the nonlinear Vlasov--Maxwell equations and the associated global conservation constraints are used to calculate the lowest upper bound on the field energy [ΔE-script/sub F/]/sub max/ that can evolve for the general initial electron distribution function f/sub b//sub / 0 equivalentf/sub b/(x,p,0). The results are applied to three choices of the initial distribution function f/sub b//sub / 0 . Two of the distribution functions have an inverted population in momentum p/sub perpendicular/ perpendicular to the magnetic field B 0 e/sub z/, and the third distribution function reduces to a bi-Maxwellian in the nonrelativistic limit. The lowest upper bound on the efficiency of radiation generation, eta/sub max/ = [ΔE-script/sub F/]/sub max//[V -1 ∫ d 3 x∫ d 3 p(γ-1)mc 2 f/sub b//sub / 0 ], is calculated numerically over a wide range of system parameters for varying degrees of initial anisotropy

  17. A theory of two-stream instability in two hollow relativistic electron beams

    International Nuclear Information System (INIS)

    Uhm, H.S.

    1993-01-01

    Stability properties of two-stream instability of two hollow electron beams are investigated. The equilibrium configuration consists of two intense relativistic hollow electron beams propagating through a grounded conducting cylinder. Analysis of the longitudinal two-stream instability is carried out within the framework of the linearized Vlasov--Maxwell equations for the equilibrium distribution function, in which beam electrons have a Lorentzian distribution in the axial momentum. Dispersion relation of the longitudinal two-stream instability is derived. Stability criteria from this dispersion relation indicate that the normalized velocity difference Δβ between the beams should be within a certain range of value to be unstable. Growth rate of the instability is a substantial fraction of the real frequency, thereby indicating that the longitudinal two-stream instability is an effective means of beam current modulation. Transverse instability of hollow electron beams is also investigated. Dispersion relation of the coupled transverse oscillation of the beams is derived and numerical investigation of this dispersion relation is carried out. Growth rate of the kink instability is a substantial fraction of the diocotron frequency, which may pose a serious threat to the two-stream klystron

  18. Relativistic total and differential cross section proton--proton electron--positron pair production calculation

    International Nuclear Information System (INIS)

    Rubinstein, J.E.

    1976-01-01

    Circle Feynman diagrams for a specific permutation of variables along with their corresponding algebraic expressions are presented to evaluate [H] 2 for proton-proton electron-positron pair production. A Monte Carlo integration technique is introduced and is used to set up the multiple integral expression for the total pair production cross section. The technique is first applied to the Compton scattering problem and then to an arbitrary multiple integral. The relativistic total cross section for proton-proton electron-positron pair production was calculated for eight different values of incident proton energy. A variety of differential cross sections were calculated for the above energies. Angular differential cross section distributions are presented for the electron, positron, and proton. Invariant mass differential cross section distributions are done both with and without the presence of [H] 2 . Both WGHT and log 10 (TOTAL) distributions were also obtained. The general behavioral trends of the total and differential cross sections for proton-proton electron-positron pair production are presented. The range of validity for this calculation is from 0 to about 200 MeV

  19. Resonance effects in projectile-electron loss in relativistic collisions with excited atoms

    International Nuclear Information System (INIS)

    Voitkiv, A B

    2005-01-01

    The theory of electron loss from projectile-ions in relativistic ion-atom collisions is extended to the case of collisions with excited atoms. The main feature of such collisions is a resonance which can emerge between electron transitions in the ion and atom. The resonance becomes possible due to the Doppler effect and has a well-defined impact energy threshold. In the resonance case, the ion-atom interaction is transmitted by the radiation field and the range of this interaction becomes extremely long. Because of this the presence of other atoms in the target medium and the size of the space occupied by the medium have to be taken into account and it turns out that microscopic loss cross sections may be strongly dependent on such macroscopic parameters as the target density, temperature and size. We consider both the total and differential loss cross sections and show that the resonance can have a strong impact on the angular and energy distributions of electrons emitted from the projectiles and the total number of electron loss events

  20. Effect of EMIC Wave Normal Angle Distribution on Relativistic Electron Scattering in Outer RB

    Science.gov (United States)

    Khazanov, G. V.; Gamayunov, K. V.

    2007-01-01

    We present the equatorial and bounce average pitch angle diffusion coefficients for scattering of relativistic electrons by the H+ mode of EMIC waves. Both the model (prescribed) and self consistent distributions over the wave normal angle are considered. The main results of our calculation can be summarized as follows: First, in comparison with field aligned waves, the intermediate and highly oblique waves reduce the pitch angle range subject to diffusion, and strongly suppress the scattering rate for low energy electrons (E less than 2 MeV). Second, for electron energies greater than 5 MeV, the |n| = 1 resonances operate only in a narrow region at large pitch-angles, and despite their greatest contribution in case of field aligned waves, cannot cause electron diffusion into the loss cone. For those energies, oblique waves at |n| greater than 1 resonances are more effective, extending the range of pitch angle diffusion down to the loss cone boundary, and increasing diffusion at small pitch angles by orders of magnitude.