The exact solution of the Riemann problem in relativistic MHD with tangential magnetic fields
Romero, R; Pons, J A; Ibáñez, J M; Miralles, J A; Romero, Roberto; Marti, Jose M.; Pons, Jose A.; Ibanez, Jose M.; Miralles, Juan A.
2005-01-01
We have extended the procedure to find the exact solution of the Riemann problem in relativistic hydrodynamics to a particular case of relativistic magnetohydrodynamics in which the magnetic field of the initial states is tangential to the discontinuity and orthogonal to the flow velocity. The wave pattern produced after the break up of the initial discontinuity is analogous to the non--magnetic case and we show that the problem can be understood as a purely relativistic hydrodynamical problem with a modified equation of state. The new degree of freedom introduced by the non-zero component of the magnetic field results in interesting effects consisting in the change of the wave patterns for given initial thermodynamical states, in a similar way to the effects arising from the introduction of tangential velocities. Secondly, when the magnetic field dominates the thermodynamical pressure and energy, the wave speeds approach the speed of light leading to fast shocks and fast and arbitrarily thin rarefaction wave...
Exact solution of the 1D Riemann problem in Newtonian and relativistic hydrodynamics
Lora-Clavijo, F D; Guzman, F S; Gonzalez, J A
2013-01-01
Some of the most interesting scenarios that can be studied in astrophysics, contain fluids and plasma moving under the influence of strong gravitational fields. To study these problems it is required to implement numerical algorithms robust enough to deal with the equations describing such scenarios, which usually involve hydrodynamical shocks. It is traditional that the first problem a student willing to develop research in this area is to numerically solve the one dimensional Riemann problem, both Newtonian and relativistic. Even a more basic requirement is the construction of the exact solution to this problem in order to verify that the numerical implementations are correct. We describe in this paper the construction of the exact solution and a detailed procedure of its implementation.
Riemann Zeros and the Inverse Phase Problem
Tourigny, David S.
2013-10-01
Finding a universal method of crystal structure solution and proving the Riemann hypothesis are two outstanding challenges in apparently unrelated fields. For centro-symmetric crystals however, a connection arises as the result of a statistical approach to the inverse phase problem. It is shown that parameters of the phase distribution are related to the non-trivial Riemann zeros by a Mellin transform.
RIEMANN ZEROS AND THE INVERSE PHASE PROBLEM
TOURIGNY, DAVID S.
2013-01-01
Finding a universal method of crystal structure solution and proving the Riemann hypothesis are two outstanding challenges in apparently unrelated fields. For centrosymmetric crystals however, a connection arises as the result of a statistical approach to the inverse phase problem. It is shown that parameters of the phase distribution are related to the non-trivial Riemann zeros by a Mellin transform. PMID:24293780
Riemann Boundary Value Problems for Koch Curve
Zhengshun Ruanand
2012-11-01
Full Text Available In this study, when L is substituted for Koch curve, Riemann boundary value problems was defined, but generally speaking, Cauchy-type integral is meaningless on Koch curve. When some analytic conditions are attached to functions G (z and g (z, through the limit function of a sequence of Cauchytype integrals, the homogeneous and non-homogeneous Riemann boundary problems on Koch curve are introduced, some similar results was attained like the classical boundary value problems for analytic functions.
A five-wave Harten-Lax-van Leer Riemann solver for relativistic magnetohydrodynamics
Mignone, A.; Ugliano, M.; Bodo, G.
2009-03-01
We present a five-wave Riemann solver for the equations of ideal relativistic magneto-hydrodynamics. Our solver can be regarded as a relativistic extension of the five-wave HLLD Riemann solver initially developed by Miyoshi & Kusano for the equations of ideal magnetohydrodynamics. The solution to the Riemann problem is approximated by a five-wave pattern, comprising two outermost fast shocks, two rotational discontinuities and a contact surface in the middle. The proposed scheme is considerably more elaborate than in the classical case since the normal velocity is no longer constant across the rotational modes. Still, proper closure to the Rankine-Hugoniot jump conditions can be attained by solving a non-linear scalar equation in the total pressure variable which, for the chosen configuration, has to be constant over the whole Riemann fan. The accuracy of the new Riemann solver is validated against one-dimensional tests and multidimensional applications. It is shown that our new solver considerably improves over the popular Harten-Lax-van Leer solver or the recently proposed HLLC schemes.
Riemann boundary value problem for hyperanalytic functions
Ricardo Abreu Blaya
2005-01-01
Full Text Available We deal with Riemann boundary value problem for hyperanalytic functions. Furthermore, necessary and sufficient conditions for solvability of the problem are derived. At the end the explicit form of general solution for singular integral equations with a hypercomplex Cauchy kernel in the Douglis sense is established.
Anton, L; Marti, J M; Ibanez, J M; Aloy, M A; Mimica, P
2009-01-01
We obtain renormalized sets of right and left eigenvectors of the flux vector Jacobians of the relativistic MHD equations, which are regular and span a complete basis in any physical state including degenerate ones. The renormalization procedure relies on the characterization of the degeneracy types in terms of the normal and tangential components of the magnetic field to the wavefront in the fluid rest frame. Proper expressions of the renormalized eigenvectors in conserved variables are obtained through the corresponding matrix transformations. Our work completes previous analysis that present different sets of right eigenvectors for non-degenerate and degenerate states, and can be seen as a relativistic generalization of earlier work performed in classical MHD. Based on the full wave decomposition (FWD) provided by the the renormalized set of eigenvectors in conserved variables, we have also developed a linearized (Roe-type) Riemann solver. Extensive testing against one- and two-dimensional standard numeric...
Approximate Harten-Lax-van Leer Riemann solvers for relativistic magnetohydrodynamics
Mignone, Andrea; Bodo, G.; Ugliano, M.
2012-11-01
We review a particular class of approximate Riemann solvers in the context of the equations of ideal relativistic magnetohydrodynamics. Commonly prefixed as Harten-Lax-van Leer (HLL), this family of solvers approaches the solution of the Riemann problem by providing suitable guesses to the outermots characteristic speeds, without any prior knowledge of the solution. By requiring consistency with the integral form of the conservation law, a simplified set of jump conditions with a reduced number of characteristic waves may be obtained. The degree of approximation crucially depends on the wave pattern used in prepresnting the Riemann fan arising from the initial discontinuity breakup. In the original HLL scheme, the solution is approximated by collapsing the full characteristic structure into a single average state enclosed by two outermost fast mangnetosonic speeds. On the other hand, HLLC and HLLD improves the accuracy of the solution by restoring the tangential and Alfvén modes therefore leading to a representation of the Riemann fan in terms of 3 and 5 waves, respectively.
RIEMANN-HILBERT PROBLEMS OF DEGENERATE HYPERBOLIC SYSTEM
无
2010-01-01
This paper is concerned with the Riemann-Hilbert problems of degenerate hyperbolic system in two general domains, where the boundary curves are given by the parameter equations of the arc length s. We prove the existence and uniqueness of solutions to the Riemann-Hilbert problems by conformal deformations. The corre-sponding representations of solutions to the problems are also presented.
A Riemann problem with small viscosity and dispersion
Kayyunnapara Thomas Joseph
2006-09-01
Full Text Available In this paper we prove existence of global solutions to a hyperbolic system in elastodynamics, with small viscosity and dispersion terms and derive estimates uniform in the viscosity-dispersion parameters. By passing to the limit, we prove the existence of solution the Riemann problem for the hyperbolic system with arbitrary Riemann data.
Reconsideration on Homogeneous Quadratic Riemann Boundary Value Problem
Lu Jian-ke
2004-01-01
The homogeneous quadratic Riemann boundary value problem (1) with Hǒlder continuous coefficients for the normal case was considered by the author in 1997. But the solutions obtained there are incomplete. Here its general method of solution is obtained.
Balsara, Dinshaw S
2016-01-01
The relativistic magnetohydrodynamics (RMHD) set of equations has recently seen increased use in astrophysical computations. Even so, RMHD codes remain fragile. The reconstruction can sometimes yield superluminal velocities in certain parts of the mesh. In this paper we present a reconstruction strategy that overcomes this problem by making a single conservative to primitive transformation per cell followed by higher order WENO reconstruction on a carefully chosen set of primitives that guarantee subluminal reconstruction of the flow variables. For temporal evolution via a predictor step we also present second, third and fourth order accurate ADER methods that keep the velocity subluminal during the predictor step. The RMHD system also requires the magnetic field to be evolved in a divergence-free fashion. In the treatment of classical numerical MHD the analogous issue has seen much recent progress with the advent of multidimensional Riemann solvers. By developing multidimensional Riemann solvers for RMHD, we...
Mach, Patryk; Pietka, Małgorzata
2010-04-01
We give a solution of the Riemann problem in relativistic hydrodynamics in the case of ultrarelativistic equation of state and nonvanishing components of the velocity tangent to the initial discontinuity. Simplicity of the ultrarelativistic equation of state (the pressure being directly proportional to the energy density) allows us to express this solution in analytical terms. The result can be used both to construct and test numerical schemes for relativistic Euler equations in (3+1) dimensions.
Riemann-Hilbert problems from Donaldson-Thomas theory
Bridgeland, Tom
2016-01-01
We study a class of Riemann-Hilbert problems arising naturally in Donaldson-Thomas theory. In certain special cases we show that these problems have unique solutions which can be written explicitly as products of gamma functions. We briefly explain connections with Gromov-Witten theory and exact WKB analysis.
RIEMANN BOUNDARY VALUE PROBLEMS WITH GIVEN PRINCIPAL PART
Li Weifeng; Du Jinyuan
2009-01-01
In this article, the authors discuss the Riemann boundary value problems with given principal part. First, authors consider a special case and give a classification of the solution class Rn by the way. And then, they consider the general case. The solvable conditions for this problem and its solutions is obtained when it is solvable.
Non-Homogeneous Riemann Boundary Value Problem with Radicals
无
2002-01-01
The solution of the non-homogeneous Riemann boundary value problem with radicals (1.2)together with its condition of solvability is obtained for arbitrary positive integers p and q, which generalizes the results for the case p=q=2.
Riemann Problem for a limiting system in elastodynamics
Anupam Pal Choudhury
2014-01-01
Full Text Available This article concerns the resolution of the Riemann problem for a 2x2 system in nonconservative form exhibiting parabolic degeneracy. The system can be perceived as the limiting equation (depending on a parameter tending to 0 of a 2x2 strictly hyperbolic, genuinely nonlinear, non-conservative system arising in context of a model in elastodynamics.
Helmholtz, Riemann, and the Sirens: Sound, Color, and the "Problem of Space"
Pesic, Peter
2013-09-01
Emerging from music and the visual arts, questions about hearing and seeing deeply affected Hermann Helmholtz's and Bernhard Riemann's contributions to what became called the "problem of space [ Raumproblem]," which in turn influenced Albert Einstein's approach to general relativity. Helmholtz's physiological investigations measured the time dependence of nerve conduction and mapped the three-dimensional manifold of color sensation. His concurrent studies on hearing illuminated musical evidence through experiments with mechanical sirens that connect audible with visible phenomena, especially how the concept of frequency unifies motion, velocity, and pitch. Riemann's critique of Helmholtz's work on hearing led Helmholtz to respond and study Riemann's then-unpublished lecture on the foundations of geometry. During 1862-1870, Helmholtz applied his findings on the manifolds of hearing and seeing to the Raumproblem by supporting the quadratic distance relation Riemann had assumed as his fundamental hypothesis about geometrical space. Helmholtz also drew a "close analogy … in all essential relations between the musical scale and space." These intersecting studies of hearing and seeing thus led to reconsideration and generalization of the very concept of "space," which Einstein shaped into the general manifold of relativistic space-time.
Lax Equations, Singularities and Riemann-Hilbert Problems
Santos, Antonio F. dos, E-mail: afsantos@math.ist.utl.pt; Santos, Pedro F. dos, E-mail: pedro.f.santos@math.ist.utl.pt [Instituto Superior Tecnico, Departamento de Matematica (Portugal)
2012-09-15
The existence of singularities of the solution for a class of Lax equations is investigated using a development of the factorization method first proposed by Semenov-Tyan-Shanskii (Funct Anal Appl 17(4):259-272, 1983) and Reymann and Semenov-Tian-Shansky (1994). It is shown that the existence of a singularity at a point t = t{sub i} is directly related to the property that the kernel of a certain Toeplitz operator (whose symbol depends on t) be non-trivial. The investigation of this question involves the factorization on a Riemann surface of a scalar function closely related to the above-mentioned operator. Two examples are presented which show different aspects of the problem of computing the set of singularities of the solution to the system considered. The relation between the Riemann surfaces of the classical and Lax formulation is also considered.
A uniqueness criterion for viscous limits of boundary Riemann problems
Christoforou, Cleopatra
2010-01-01
We deal with initial-boundary value problems for systems of conservation laws in one space dimension and we focus on the boundary Riemann problem. It is known that, in general, different viscous approximations provide different limits. In this paper, we establish sufficient conditions to conclude that two different approximations lead to the same limit. As an application of this result, we show that, under reasonable assumptions, the self-similar second-order approximation and the classical viscous approximation provide the same limit. Our analysis applies to both the characteristic and the non characteristic case. We require neither genuine nonlinearity nor linear degeneracy of the characteristic fields.
Relativistic Kinematics of Two-Parametric Riemann Surface in Genus Two
Nazarenko, A V
2016-01-01
It is considered a model of compact Riemann surface in genus two, represented geometrically by two-parametric hyperbolic octagon with an order four automorphism and described algebraically by the corresponding Fuchsian group. Introducing the Fenchel--Nielsen variables, we compute the Weil--Petersson (WP) symplectic two-form for parameter space and analyze the closed isoperimetric orbits of octagons. WP-Area in parameter space and the canonical action--angle variables for the orbits are found. Exploiting the ideas from the loop quantum gravity, we generate relativistic kinematics by the Lorentz boost and quantize WP-area. We treat the evolution in terms of global variables within the "big bounce" concept.
Balsara, Dinshaw S.; Kim, Jinho
2016-05-01
The relativistic magnetohydrodynamics (RMHD) set of equations has recently seen an increased use in astrophysical computations. Even so, RMHD codes remain fragile. The reconstruction can sometimes yield superluminal velocities in certain parts of the mesh. The current generation of RMHD codes does not have any particularly good strategy for avoiding such an unphysical situation. In this paper we present a reconstruction strategy that overcomes this problem by making a single conservative to primitive transformation per cell followed by higher order WENO reconstruction on a carefully chosen set of primitives that guarantee subluminal reconstruction of the flow variables. For temporal evolution via a predictor step we also present second, third and fourth order accurate ADER methods that keep the velocity subluminal during the predictor step. The methods presented here are very general and should apply to other PDE systems where physical realizability is most easily asserted in the primitive variables. The RMHD system also requires the magnetic field to be evolved in a divergence-free fashion. In the treatment of classical numerical MHD the analogous issue has seen much recent progress with the advent of multidimensional Riemann solvers. By developing multidimensional Riemann solvers for RMHD, we show that similar advances extend to RMHD. As a result, the face-centered magnetic fields can be evolved much more accurately using the edge-centered electric fields in the corrector step. Those edge-centered electric fields come from a multidimensional Riemann solver for RMHD which we present in this paper. The overall update results in a one-step, fully conservative scheme that is suited for AMR. In this paper we also develop several new test problems for RMHD. We show that RMHD vortices can be designed that propagate on the computational mesh as self-preserving structures. These RMHD vortex test problems provide a means to do truly multidimensional accuracy testing for
Riemann problem for the zero-pressure flow in gas dynamics
李杰权; 荔炜
2001-01-01
The Riemann problem for zero-pressure flow in gas dynamics in one dimension and two dimensions is investigated. Through studying the generalized Rankine-Hugoniot conditions of delta-shock waves, the one-dimensional Riemann solution is proposed which exhibits four different structures when the initial density involves Dirac measure. For the two-dimensional case, the Riemann solution with two pieces of initial constant states separated at a smooth curve is obtained.
Riemann problem for one-dimensional binary gas enhanced coalbed methane process
无
2011-01-01
With an extended Langmuir isotherm, a Riemann problem for one-dimensional binary gas enhanced coalbed methane (ECBM) process is investigated. A new analytical solution to the Riemann problem, based on the method of characteristics, is developed by introducing a gas selectivity ratio representing the gas relative sorption affinity. The influence of gas selectivity ratio on the enhanced coalbed methane processes is identified.
Construction of the Global Solutions to the Perturbed Riemann Problem for the Leroux System
Pengpeng Ji
2016-01-01
Full Text Available The global solutions of the perturbed Riemann problem for the Leroux system are constructed explicitly under the suitable assumptions when the initial data are taken to be three piecewise constant states. The wave interaction problems are widely investigated during the process of constructing global solutions with the help of the geometrical structures of the shock and rarefaction curves in the phase plane. In addition, it is shown that the Riemann solutions are stable with respect to the specific small perturbations of the Riemann initial data.
A Global Solution to a Two-dimensional Riemann Problem Involving Shocks as Free Boundaries
Yuxi Zheng
2003-01-01
We present a global solution to a Riemann problem for the pressure gradient system of equations.The Riemann problem has initially two shock waves and two contact discontinuities. The angle between the two shock waves is set initially to be close to 180 degrees. The solution has a shock wave that is usually regarded as a free boundary in the self-similar variable plane. Our main contribution in methodology is handling the tangential oblique derivative boundary values.
Inverse scattering in application to the Riemann problem
Mack, Ruediger; Schleich, Wolfgang P. [Institut fuer Quantenphysik, Universitaet Ulm (Germany)
2008-07-01
We present a method to get the values of the Riemann Zeta-function by autocorrelation measure. Therefore we need a potential with specific energy eigenvalues. We calculate this potential with a variety of techniques, either numerical by the Numerov mehtod and analytically, with a JWKB approximation.
Bäcklund-Darboux Transformation for Non-Isospectral Canonical System and Riemann-Hilbert Problem
Alexander Sakhnovich
2007-03-01
Full Text Available A GBDT version of the Bäcklund-Darboux transformation is constructed for a non-isospectral canonical system, which plays essential role in the theory of random matrix models. The corresponding Riemann-Hilbert problem is treated and some explicit formulas are obtained. A related inverse problem is formulated and solved.
ON SOLUTION OF A KIND OF RIEMANN BOUNDARY VALUE PROBLEM WITH SQUARE ROOTS
路见可
2002-01-01
Solution of the Riemann boundary value problem with square roots (1.1)for analytic functions proposed in [1] is reconsidered, which was solved under certain assumptions on the branch points appeared. Here, the work is continued without these assumptions and the problem is solved in the general case.
Newton's method as applied to the Riemann problem for media with general equations of state
Moiseev, N. Ya.; Mukhamadieva, T. A.
2008-06-01
An approach based on Newton’s method is proposed for solving the Riemann problem for media with normal equations of state. The Riemann integrals are evaluated using a cubic approximation of an isentropic curve that is superior to the Simpson method in terms of accuracy, convergence rate, and efficiency. The potentials of the approach are demonstrated by solving problems for media obeying the Mie-Grüneisen equation of state. The algebraic equation of the isentropic curve and some exact solutions for configurations with rarefaction waves are explicitly given.
A NEW VISCOUS REGULARIZATION OF THE RIEMANN PROBLEM FOR BURGERS' EQUATION
Wang Jinghua; Zhang Hui
2000-01-01
This paper gives a new viscous regularization of the Riemann problem for Burgers' equation ut += 0 with Riemann initial data u = u_(x _＜ 0),u =u+(x ＞ 0) at t = 0. The regularization is given by ut += εetuxx with appropriate initial data. The method is different from the classical method, through comparison of three viscous equations of it. Here it is also shown that the difference of the three regularizations approaches zero in appropriate integral norms depending on the data as ε → 0+ for any given T ＞ 0.
The Non-selfsimilar Riemann Problem for 2-D Zero-Pressure Flow in Gas Dynamics
Wenhua SUN; Wancheng SHENG
2007-01-01
The non-selfsimilar Riemann problem for two-dimensional zero-pressure flow in gas dynamics with two constant states separated by a convex curve is considered. By means of the generalized Rankine-Hugoniot relation and the generalized characteristic analysis method, the global solution involving delta shock wave and vacuum is constructed. The explicit solution for a special case is also given.
ON THE NONLINEAR RIEMANN PROBLEMS FOR GENERAL FIRST ELLIPTIC SYSTEMS IN THE PLANE
李明忠; 宋洁
2005-01-01
The nonlinear Riemann problem for general systems of the first-order linear and quasi-linear equations in the plane are considered. It translates them to singular integral equations and proves the existence of the solution by means of contract principle or. general contract principle. The known results are generalized.
TWO-DIMENSIONAL RIEMANN PROBLEMS:FROM SCALAR CONSERVATION LAWS TO COMPRESSIBLE EULER EQUATIONS
Li Jiequan; Sheng Wancheng; Zhang Tong; Zheng Yuxi
2009-01-01
In this paper we survey the authors' and related work on two-dimensional Rie-mann problems for hyperbolic conservation laws, mainly those related to the compressible Euler equations in gas dynamics. It contains four sections: 1. Historical review. 2. Scalar conservation laws. 3. Euler equations. 4. Simplified models.
Kyncl Martin
2017-01-01
Full Text Available We work with the system of partial differential equations describing the non-stationary compressible turbulent fluid flow. It is a characteristic feature of the hyperbolic equations, that there is a possible raise of discontinuities in solutions, even in the case when the initial conditions are smooth. The fundamental problem in this area is the solution of the so-called Riemann problem for the split Euler equations. It is the elementary problem of the one-dimensional conservation laws with the given initial conditions (LIC - left-hand side, and RIC - right-hand side. The solution of this problem is required in many numerical methods dealing with the 2D/3D fluid flow. The exact (entropy weak solution of this hyperbolical problem cannot be expressed in a closed form, and has to be computed by an iterative process (to given accuracy, therefore various approximations of this solution are being used. The complicated Riemann problem has to be further modified at the close vicinity of boundary, where the LIC is given, while the RIC is not known. Usually, this boundary problem is being linearized, or roughly approximated. The inaccuracies implied by these simplifications may be small, but these have a huge impact on the solution in the whole studied area, especially for the non-stationary flow. Using the thorough analysis of the Riemann problem we show, that the RIC for the local problem can be partially replaced by the suitable complementary conditions. We suggest such complementary conditions accordingly to the desired preference. This way it is possible to construct the boundary conditions by the preference of total values, by preference of pressure, velocity, mass flow, temperature. Further, using the suitable complementary conditions, it is possible to simulate the flow in the vicinity of the diffusible barrier. On the contrary to the initial-value Riemann problem, the solution of such modified problems can be written in the closed form for some
黄沙; 闻国椿
2000-01-01
This paper deals with the Riemann-Hilbert boundary value problem for general nonlinear elliptic complex equations of second order. Firstly we propose the Riemann-Hilbert problem and its well posedness, and then we give the representation of solutions for the modified boundary value problem and prove its solvability, and finally derive solvability conditions of the original Riemann-Hilbert problem.%讨论了一般二阶非线性椭圆复方程的Riemann-Hilbert边值问题. 首先给出Riemann-Hilbert问题及其适应性的概念,其次给出改进后的边值问题解的表述并证明了它的可解性,最后导出原Riemann-Hilbert边值问题的可解条件.
SAHADEB KUILA; T RAJA SEKHAR; G C SHIT
2016-09-01
In this paper, we consider the Riemann problem for a five-equation, two-pressure (5E2P) model proposed by Ransom and Hicks for an isentropic compressible gas–liquid two-phase flows. The model is given by a strictly hyperbolic, non-conservative system of five partial differential equations (PDEs). We investigate the structure of the Riemann problem and construct an approximate solution for it. We solve the Riemann problemfor this model approximately assuming that all waves corresponding to the genuinely nonlinear characteristic fields are rarefaction and discuss their properties. To verify the solver, a series of test problems selected from the literature are presented.
A Riemann problem based method for solving compressible and incompressible flows
Lu, Haitian; Zhu, Jun; Wang, Chunwu; Wang, Donghong; Zhao, Ning
2017-02-01
A Riemann problem based method for solving two-medium flow including compressible and incompressible regions is presented. The material interface is advanced by front tracking method and the material interface boundary conditions are defined by modified ghost fluid method. A coupled compressible and incompressible Riemann problem constructed in the normal direction of the material interface is proposed to predict the interfacial states. With the ghost fluid states, the compressible and incompressible flows are solved by discontinuous Galerkin method. An incompressible discontinuous Galerkin method with nonuniform time step is also deduced. For shock wave formed in compressible flow, the numerical errors for the ghost fluid method in earlier works are analyzed and discussed in the numerical examples. It shows that the proposed method can provide reasonable results including shock wave location.
Balsara, Dinshaw S.; Amano, Takanobu; Garain, Sudip; Kim, Jinho
2016-08-01
In various astrophysics settings it is common to have a two-fluid relativistic plasma that interacts with the electromagnetic field. While it is common to ignore the displacement current in the ideal, classical magnetohydrodynamic limit, when the flows become relativistic this approximation is less than absolutely well-justified. In such a situation, it is more natural to consider a positively charged fluid made up of positrons or protons interacting with a negatively charged fluid made up of electrons. The two fluids interact collectively with the full set of Maxwell's equations. As a result, a solution strategy for that coupled system of equations is sought and found here. Our strategy extends to higher orders, providing increasing accuracy. The primary variables in the Maxwell solver are taken to be the facially-collocated components of the electric and magnetic fields. Consistent with such a collocation, three important innovations are reported here. The first two pertain to the Maxwell solver. In our first innovation, the magnetic field within each zone is reconstructed in a divergence-free fashion while the electric field within each zone is reconstructed in a form that is consistent with Gauss' law. In our second innovation, a multidimensionally upwinded strategy is presented which ensures that the magnetic field can be updated via a discrete interpretation of Faraday's law and the electric field can be updated via a discrete interpretation of the generalized Ampere's law. This multidimensional upwinding is achieved via a multidimensional Riemann solver. The multidimensional Riemann solver automatically provides edge-centered electric field components for the Stokes law-based update of the magnetic field. It also provides edge-centered magnetic field components for the Stokes law-based update of the electric field. The update strategy ensures that the electric field is always consistent with Gauss' law and the magnetic field is always divergence-free. This
Balsara, Dinshaw S., E-mail: dbalsara@nd.edu [Physics Department, University of Notre Dame (United States); Amano, Takanobu, E-mail: amano@eps.s.u-tokyo.ac.jp [Department of Earth and Planetary Science, University of Tokyo, Tokyo 113-0033 (Japan); Garain, Sudip, E-mail: sgarain@nd.edu [Physics Department, University of Notre Dame (United States); Kim, Jinho, E-mail: jkim46@nd.edu [Physics Department, University of Notre Dame (United States)
2016-08-01
In various astrophysics settings it is common to have a two-fluid relativistic plasma that interacts with the electromagnetic field. While it is common to ignore the displacement current in the ideal, classical magnetohydrodynamic limit, when the flows become relativistic this approximation is less than absolutely well-justified. In such a situation, it is more natural to consider a positively charged fluid made up of positrons or protons interacting with a negatively charged fluid made up of electrons. The two fluids interact collectively with the full set of Maxwell's equations. As a result, a solution strategy for that coupled system of equations is sought and found here. Our strategy extends to higher orders, providing increasing accuracy. The primary variables in the Maxwell solver are taken to be the facially-collocated components of the electric and magnetic fields. Consistent with such a collocation, three important innovations are reported here. The first two pertain to the Maxwell solver. In our first innovation, the magnetic field within each zone is reconstructed in a divergence-free fashion while the electric field within each zone is reconstructed in a form that is consistent with Gauss' law. In our second innovation, a multidimensionally upwinded strategy is presented which ensures that the magnetic field can be updated via a discrete interpretation of Faraday's law and the electric field can be updated via a discrete interpretation of the generalized Ampere's law. This multidimensional upwinding is achieved via a multidimensional Riemann solver. The multidimensional Riemann solver automatically provides edge-centered electric field components for the Stokes law-based update of the magnetic field. It also provides edge-centered magnetic field components for the Stokes law-based update of the electric field. The update strategy ensures that the electric field is always consistent with Gauss' law and the magnetic field is
The Riemann Problem for Hyperbolic Equations under a Nonconvex Flux with Two Inflection Points
Fossati, Marco
2014-01-01
This report addresses the solution of Riemann problems for hyperbolic equations when the nonlinear characteristic fields loose their genuine nonlinearity. In this context, exact solvers for nonconvex 1D Riemann problems are developed. First a scalar conservation law for a nonconvex flux with two inflection points is studied. Then the P-system for an isothermal version of the van der Waals gas model is examined in a range of temperatures allowing for a nonconvex pressure function. Eventually the system of the Euler equations of gasdynamics is considered for the polytropic van der Waals gas. In this case, a suitably large specific heat is considered such that the isentropes display a local loss of convexity near the saturation curve and the critical point. Such a nonconvex physical model allows for nonclassical waves to appear as a result of the change of sign of the fundamental derivative of gasdynamics. The solution of the Riemann problem for the considered real gas model reduces to a system of two nonlinear ...
A Riemann-Hilbert approach to the inverse problem for the Stark operator on the line
Its, A.; Sukhanov, V.
2016-05-01
The paper is concerned with the inverse scattering problem for the Stark operator on the line with a potential from the Schwartz class. In our study of the inverse problem, we use the Riemann-Hilbert formalism. This allows us to overcome the principal technical difficulties which arise in the more traditional approaches based on the Gel’fand-Levitan-Marchenko equations, and indeed solve the problem. We also produce a complete description of the relevant scattering data (which have not been obtained in the previous works on the Stark operator) and establish the bijection between the Schwartz class potentials and the scattering data.
Semiclassical limit of the focusing NLS: Whitham equations and the Riemann-Hilbert Problem approach
Tovbis, Alexander; El, Gennady A.
2016-10-01
The main goal of this paper is to put together: a) the Whitham theory applicable to slowly modulated N-phase nonlinear wave solutions to the focusing nonlinear Schrödinger (fNLS) equation, and b) the Riemann-Hilbert Problem approach to particular solutions of the fNLS in the semiclassical (small dispersion) limit that develop slowly modulated N-phase nonlinear wave in the process of evolution. Both approaches have their own merits and limitations. Understanding of the interrelations between them could prove beneficial for a broad range of problems involving the semiclassical fNLS.
An accurate predictor-corrector HOC solver for the two dimensional Riemann problem of gas dynamics
Gogoi, Bidyut B.
2016-10-01
The work in the present manuscript is concerned with the simulation of twodimensional (2D) Riemann problem of gas dynamics. We extend our recently developed higher order compact (HOC) method from one-dimensional (1D) to 2D solver and simulate the problem on a square geometry with different initial conditions. The method is fourth order accurate in space and second order accurate in time. We then compare our results with the available benchmark results. The comparison shows an excellent agreement of our results with the existing ones in the literature. Being a finite difference solver, it is quite straight-forward and simple.
Tidal Interaction between a Fluid Star and a Kerr Black Hole Relativistic Roche-Riemann Model
Wiggins, P; Wiggins, Paul; Lai, Dong
1999-01-01
We present a semi-analytic study of the equilibrium models of close binary systems containing a fluid star (mass $m$ and radius $R_0$) and a Kerr black hole (mass $M$) in circular orbit. We consider the limit $M\\gg m$ where spacetime is described by the Kerr metric. The tidally deformed star is approximated by an ellipsoid, and satisfies the polytropic equation of state. The models also include fluid motion in the stellar interior, allowing binary models with nonsynchronized stellar spin (as expected for coalescing neutron star--black hole binaries) to be constructed. Tidal disruption occurs at orbital radius $r_{\\rm tide}\\sim R_0(M/m)^{1/3}$, but the dimensionless ratio of the black hole as well as on the equation of state and the internal rotation of the star. We find that the general relativistic tidal field disrupts the star at a larger $\\hat r_{\\rm tide}$ than the Newtonian tide; the difference is particularly prominent if the disruption occurs in the vicinity of the black hole's horizon. In general, $\\h...
Riemann-Hadamard method for solving a (2+1)-D problem for degenerate hyperbolic equation
Nikolov, Aleksey; Popivanov, Nedyu
2015-11-01
We consider a (2+1)-D boundary value problem for degenerate hyperbolic equation, which is closely connected with transonic fluid dynamics. This problem was introduced by Protter in 1954 as a multi-dimensional analogue of the Darboux problem in the plain, which is known to be well-posed. However the (2+1)-D problem is overdetermined with infinitely many conditions necessary for its classical solvability and there exist generalized solutions of this problem with strong singularities. Last years we study the exact asymptotic behavior of such singular solutions. We offer a Riemann-Hadamard method for solving the problem instead of the used until now method of successive approximations for solving an equivalent integral equation. As result, we obtain a more convenient representation of the singular solutions giving more precise results in our investigation.
Cassatella-Contra, Giovanni A
2011-01-01
In this paper matrix orthogonal polynomials in the real line are described in terms of a Riemann--Hilbert problem. This approach provides an easy derivation of discrete equations for the corresponding matrix recursion coefficients. The discrete equation is explicitly derived in the matrix Freud case, associated with matrix quartic potentials. It is shown that, when the initial condition and the measure are simultaneously triangularizable, this matrix discrete equation possesses the singularity confinement property, independently if the solution under consideration is given by recursion coefficients to quartic Freud matrix orthogonal polynomials or not.
Analytical solution to the Riemann problem of 1D elastodynamics with general constitutive laws
Berjamin, H; Chiavassa, G; Favrie, N
2016-01-01
Under the hypothesis of small deformations, the equations of 1D elastodynamics write as a 2 x 2 hyperbolic system of conservation laws. Here, we study the Riemann problem for convex and nonconvex constitutive laws. In the convex case, the solution can include shock waves or rarefaction waves. In the nonconvex case, compound waves must also be considered. In both convex and nonconvex cases, a new existence criterion for the initial velocity jump is obtained. Also, admissibility regions are determined. Lastly, analytical solutions are completely detailed for various constitutive laws (hyperbola, tanh and polynomial), and reference test cases are proposed.
Mihalache, D.; Panoiu, N.-C.; Moldoveanu, F.; Baboiu, D.-M. [Dept. of Theor. Phys., Inst. of Atomic Phys., Bucharest (Romania)
1994-09-21
We used the Riemann problem method with a 3*3 matrix system to find the femtosecond single soliton solution for a perturbed nonlinear Schroedinger equation which describes bright ultrashort pulse propagation in properly tailored monomode optical fibres. Compared with the Gel'fand-Levitan-Marchenko approach, the major advantage of the Riemann problem method is that it provides the general single soliton solution in a simple and compact form. Unlike the standard nonlinear Schroedinger equation, here the single soliton solution exhibits periodic evolution patterns. (author)
Akamatsu, Yukinao; Nonaka, Chiho; Takamoto, Makoto
2013-01-01
In this article, we present a state-of-the-art algorithm for solving the relativistic viscous hydrodynamic equation with QCD equation of state. The numerical method is based on the second-order Godunov method and has less numerical dissipation, which are crucial in describing of quark-gluon plasma in high energy heavy-ion collisions. We apply the algorithm to several numerical test problems such as sound wave propagation, shock tube and blast wave problems. In the sound wave propagation, the intrinsic {\\em numerical} viscosity is measured and its explicit expression is shown, which is the second-order of spatial resolution both in the presence and absence of {\\em physical} viscosity. The expression of the numerical viscosity can be used to determine the maximum cell size in order to accurately measure the effect of physical viscosity in the numerical simulation.
Isomonodromy aspects of the tt* equations of Cecotti and Vafa II. Riemann-Hilbert problem
Guest, Martin A; Lin, Chang-Shou
2013-01-01
In Part I (arXiv:1209.2045) we computed the Stokes data, though not the "connection matrix", for the smooth solutions of the tt*-Toda equations whose existence we established by p.d.e. methods. Here we give an alternative proof of the existence of some of these solutions by solving a Riemann-Hilbert problem. In the process, we compute the connection matrix for all smooth solutions, thus completing the computation of the monodromy data. We also give connection formulae relating the asymptotics at zero and infinity of all smooth solutions, clarifying the region of validity of the formulae established earlier by Tracy and Widom. Finally, for the tt*-Toda equations, we resolve some conjectures of Cecotti and Vafa concerning the positivity of S+S^t (where S is the Stokes matrix) and the unimodularity of the eigenvalues of the monodromy matrix.
Dark matter: a problem in relativistic metrology?
Lusanna, Luca
2017-05-01
Besides the tidal degrees of freedom of Einstein general relativity (GR) (namely the two polarizations of gravitational waves after linearization of the theory) there are the inertial gauge ones connected with the freedom in the choice of the 4-coordinates of the space-time, i.e. in the choice of the notions of time and 3-space (the 3+1 splitting of space-time) and in their use to define a non-inertial frame (the inertial ones being forbidden by the equivalence principle) by means of a set of conventions for the relativistic metrology of the space-time (like the GPS ones near the Earth). The canonical York basis of canonical ADM gravity allows us to identify the Hamiltonian inertial gauge variables in globally hyperbolic asymptotically Minkowskian space-times without super-translations and to define the family of non-harmonic Schwinger time gauges. In these 3+1 splittings of space-time the freedom in the choice of time (the problem of clock synchronization) is described by the inertial gauge variable York time (the trace of the extrinsic curvature of the instantaneous 3-spaces). This inertial gauge freedom and the non-Euclidean nature of the instantaneous 3-spaces required by the equivalence principle need to be incorporated as metrical conventions in a relativistic suitable extension of the existing (essentially Galilean) ICRS celestial reference system. In this paper I make a short review of the existing possibilities to explain the presence of dark matter (or at least of part of it) as a relativistic inertial effect induced by the non- Euclidean nature of the 3-spaces. After a Hamiltonian Post-Minkowskian (HPM) linearization of canonical ADM tetrad gravity with particles, having equal inertial and gravitational masses, as matter, followed by a Post-Newtonian (PN) expansion, we find that the Newtonian equality of inertial and gravitational masses breaks down and that the inertial gauge York time produces an increment of the inertial masses explaining at least
The Riemann-Lanczos Problem as an Exterior Differential System with Examples in 4 and 5 Dimensions
Dolan, P
2002-01-01
The key problem of the theory of exterior differential systems (EDS) is to decide whether or not a system is in involution. The special case of EDSs generated by one-forms (Pfaffian systems) can be adequately illustrated by a 2-dimensional example. In 4 dimensions two such problems arise in a natural way, namely, the Riemann-Lanczos and the Weyl-Lanczos problems. It is known from the work of Bampi and Caviglia that the Weyl-Lanczos problem is always in involution in both 4 and 5 dimensions but that the Riemann-Lanczos problem fails to be in involution even for 4 dimensions. However, singular solutions of it can be found. We give examples of singular solutions for the Goedel, Kasner and Debever-Hubaut spacetimes. It is even possible that the singular solution can inherit the spacetime symmetries as in the Debever-Hubaut case. We comment on the Riemann-Lanczos problem in 5 dimensions which is neither in involution nor does it admit a 5-dimensional involution of Vessiot vector fields in the generic case.
ANALYSIS OF FINITE-DIFFERENCE SCHEMES BASED ON EXACT AND APPROXIMATE SOLUTION OF RIEMANN PROBLEM
P. V. Bulat
2015-01-01
Full Text Available The Riemann problem of one-dimensional arbitrary discontinuity breakdown for parameters of unsteady gas flow is considered as applied to the design of Godunov-type numerical methods. The problem is solved in exact and approximate statements (Osher-Solomon difference scheme used in shock capturing numerical methods: the intensities (the ratio of static pressures and flow velocities on the sides of the resulting breakdowns and waves are determined, and then the other parameters are calculated in all regions of the flow. Comparison of calculation results for model flows by exact and approximate solutions is performed. The concept of velocity function is introduced. The dependence of the velocity function on the breakdown intensity is investigated. A special intensity at which isentropic wave creates the same flow rate as the shock wave is discovered. In the vicinity of this singular intensity approximate methods provide the highest accuracy. The domain of applicability for the approximate Osher-Solomon solution is defined by performing test calculations. The results are presented in a form suitable for usage in the numerical methods. The results obtained can be used in the high-resolution numerical methods.
Johnny Henderson
2016-01-01
Full Text Available We investigate the existence and nonexistence of positive solutions for a system of nonlinear Riemann-Liouville fractional differential equations with two parameters, subject to coupled integral boundary conditions.
Trogdon, Thomas; Deconinck, Bernard
2013-05-01
We derive a Riemann-Hilbert problem satisfied by the Baker-Akhiezer function for the finite-gap solutions of the Korteweg-de Vries (KdV) equation. As usual for Riemann-Hilbert problems associated with solutions of integrable equations, this formulation has the benefit that the space and time dependence appears in an explicit, linear and computable way. We make use of recent advances in the numerical solution of Riemann-Hilbert problems to produce an efficient and uniformly accurate numerical method for computing all periodic and quasi-periodic finite-genus solutions of the KdV equation.
The relativistic inverse stellar structure problem
Lindblom, Lee [Theoretical Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States)
2014-01-14
The observable macroscopic properties of relativistic stars (whose equations of state are known) can be predicted by solving the stellar structure equations that follow from Einstein’s equation. For neutron stars, however, our knowledge of the equation of state is poor, so the direct stellar structure problem can not be solved without modeling the highest density part of the equation of state in some way. This talk will describe recent work on developing a model independent approach to determining the high-density neutron-star equation of state by solving an inverse stellar structure problem. This method uses the fact that Einstein’s equation provides a deterministic relationship between the equation of state and the macroscopic observables of the stars which are composed of that material. This talk illustrates how this method will be able to determine the high-density part of the neutron-star equation of state with few percent accuracy when high quality measurements of the masses and radii of just two or three neutron stars become available. This talk will also show that this method can be used with measurements of other macroscopic observables, like the masses and tidal deformabilities, which can (in principle) be measured by gravitational wave observations of binary neutron-star mergers.
The Relativistic Inverse Stellar Structure Problem
Lindblom, Lee
2014-01-01
The observable macroscopic properties of relativistic stars (whose equations of state are known) can be predicted by solving the stellar structure equations that follow from Einstein's equation. For neutron stars, however, our knowledge of the equation of state is poor, so the direct stellar structure problem can not be solved without modeling the highest density part of the equation of state in some way. This talk will describe recent work on developing a model independent approach to determining the high-density neutron-star equation of state by solving an inverse stellar structure problem. This method uses the fact that Einstein's equation provides a deterministic relationship between the equation of state and the macroscopic observables of the stars which are composed of that material. This talk illustrates how this method will be able to determine the high-density part of the neutron-star equation of state with few percent accuracy when high quality measurements of the masses and radii of just two or thr...
Alvarez-Fernandez, Carlos; Manas, Manuel
2009-01-01
We consider the relation of the multi-component 2D Toda hierarchy with matrix orthogonal and biorthogonal polynomials. The multi-graded Hankel reduction of this hierarchy is considered and the corresponding generalized matrix orthogonal polynomials are studied. In particular for these polynomials we consider the recursion relations, and for rank one weights its relation with multiple orthogonal polynomials of mixed type with a type II normalization and the corresponding link with a Riemann--Hilbert problem.
Bui-Thanh, T.; Girolami, M.
2014-11-01
We consider the Riemann manifold Hamiltonian Monte Carlo (RMHMC) method for solving statistical inverse problems governed by partial differential equations (PDEs). The Bayesian framework is employed to cast the inverse problem into the task of statistical inference whose solution is the posterior distribution in infinite dimensional parameter space conditional upon observation data and Gaussian prior measure. We discretize both the likelihood and the prior using the H1-conforming finite element method together with a matrix transfer technique. The power of the RMHMC method is that it exploits the geometric structure induced by the PDE constraints of the underlying inverse problem. Consequently, each RMHMC posterior sample is almost uncorrelated/independent from the others providing statistically efficient Markov chain simulation. However this statistical efficiency comes at a computational cost. This motivates us to consider computationally more efficient strategies for RMHMC. At the heart of our construction is the fact that for Gaussian error structures the Fisher information matrix coincides with the Gauss-Newton Hessian. We exploit this fact in considering a computationally simplified RMHMC method combining state-of-the-art adjoint techniques and the superiority of the RMHMC method. Specifically, we first form the Gauss-Newton Hessian at the maximum a posteriori point and then use it as a fixed constant metric tensor throughout RMHMC simulation. This eliminates the need for the computationally costly differential geometric Christoffel symbols, which in turn greatly reduces computational effort at a corresponding loss of sampling efficiency. We further reduce the cost of forming the Fisher information matrix by using a low rank approximation via a randomized singular value decomposition technique. This is efficient since a small number of Hessian-vector products are required. The Hessian-vector product in turn requires only two extra PDE solves using the adjoint
An HLLC Solver for Relativistic Flows
Mignone, A
2005-01-01
We present an extension of the HLLC approximate Riemann solver by Toro, Spruce and Speares to the relativistic equations of fluid dynamics. The solver retains the simplicity of the original two-wave formulation proposed by Harten, Lax and van Leer (HLL) but it restores the missing contact wave in the solution of the Riemann problem. The resulting numerical scheme is computationally efficient, robust and positively conservative. The performance of the new solver is evaluated through numerical testing in one and two dimensions.
Riemann, topology, and physics
Monastyrsky, Michael I
2008-01-01
This significantly expanded second edition of Riemann, Topology, and Physics combines a fascinating account of the life and work of Bernhard Riemann with a lucid discussion of current interaction between topology and physics. The author, a distinguished mathematical physicist, takes into account his own research at the Riemann archives of Göttingen University and developments over the last decade that connect Riemann with numerous significant ideas and methods reflected throughout contemporary mathematics and physics. Special attention is paid in part one to results on the Riemann–Hilbert problem and, in part two, to discoveries in field theory and condensed matter such as the quantum Hall effect, quasicrystals, membranes with nontrivial topology, "fake" differential structures on 4-dimensional Euclidean space, new invariants of knots and more. In his relatively short lifetime, this great mathematician made outstanding contributions to nearly all branches of mathematics; today Riemann’s name appears prom...
Bai Jing-Song; Zhang Zhan-Ji; Li Ping; Zhong Min
2006-01-01
Based on the classical Roe method, we develop an interface capture method according to the general equation of state, and extend the single-fluid Roe method to the two-dimensional (2D) multi-fluid flows, as well as construct the continuous Roe matrix for the whole flow field. The interface capture equations and fluid dynamic conservative equations are coupled together and solved by using any high-resolution schemes that usually suit for the single-fluid flows. Some numerical examples are given to illustrate the solution of 1D and 2D multi-fluid Riemann problems.
Koch曲线上的齐次Riemann边值问题%Homogeneous Riemann Boundary Value Problems for Koch Curve
阮正顺; 罗艾花
2012-01-01
当L为典型的分形曲线-Koch曲线时,提出了Riemann边值问题,但在一般情况下,在Koch曲线上所做的Cauchy型积分无意义.当对已知函数G(z),g(z)增加一定的解析条件,同时利用一列Cauchy型积分的极限函数,对定义在Koch曲线上的齐次Riemann边值问题进行了讨论,并得到与经典解析函数边值问题相类似的结果.%In this paper, when Lis substituted for Koch curve, Riemann boundary value problems was defined, but generally speaking, Cauchy-type integral is meaningless on Koch curve. When some analytic conditions are attached to functions G(z)and g(z), through the limit function of a sequence of Cauchy-type integrals, the homogeneous Riemann boundary problems on Koch curve are introduced, some similar results was attained with the classical boundary value problems for analytic functions.
Statistical Gauge Theory for Relativistic Finite Density Problems
YING Shu-Qian
2001-01-01
A relativistic quantum field theory is presented for finite density problems based on the principle of locality. It is shown that, in addition to the conventional ones, a local approach to the relativistic quantum field theories at both zero and finite densities consistent with the violation of Bell-like inequalities should contain and provide solutions to at least three additional problems, namely, i) the statistical gauge invariance; ii) the dark components of the local observables; and iii) the fermion statistical blocking effects, based upon an asymptotic nonthermal ensemble. An application to models is presented to show the importance of the discussions.
A Geometric Proof of Riemann Hypothesis
2003-01-01
Beginning from the formal resolution of Riemann Zeta function, by using the formula of inner product between two infinite-dimensional vectors in the complex space, the author proved the world's baffling problem -- Riemann hypothesis raised by German mathematician B. Riemann in 1859.
Contarino, Christian; Toro, Eleuterio F.; Montecinos, Gino I.; Borsche, Raul; Kall, Jochen
2016-06-01
In this paper we design a new implicit solver for the Junction-Generalized Riemann Problem (J-GRP), which is based on a recently proposed implicit method for solving the Generalized Riemann Problem (GRP) for systems of hyperbolic balance laws. We use the new J-GRP solver to construct an ADER scheme that is globally explicit, locally implicit and with no theoretical accuracy barrier, in both space and time. The resulting ADER scheme is able to deal with stiff source terms and can be applied to non-linear systems of hyperbolic balance laws in domains consisting on networks of one-dimensional sub-domains. In this paper we specifically apply the numerical techniques to networks of blood vessels. We report on a test problem with exact solution for a simplified network of three vessels meeting at a single junction, which is then used to carry out a systematic convergence rate study of the proposed high-order numerical methods. Schemes up to fifth order of accuracy in space and time are implemented and tested. We then show the ability of the ADER scheme to deal with stiff sources through a numerical simulation in a network of vessels. An application to a physical test problem consisting of a network of 37 compliant silicon tubes (arteries) and 21 junctions, reveals that it is imperative to use high-order methods at junctions, in order to preserve the desired high order of accuracy in the full computational domain. For example, it is demonstrated that a second-order method throughout, gives comparable results to a method that is fourth order in the interior of the domain and first order at junctions.
Cauchy-Riemann方程解的延拓问题%The Extended Problems of Solution for Cauchy-Riemann Equation
马忠泰; 赵红玲
2005-01-01
This paper, we discuss the solutions' characterize of Cauchy-Riemann equation and the extension phenomenon of Hartogs in Cn and, a series of new extended results of the solutions for Cauchy-Riemann equations is obtained by using the latest developments of the solutions' extension. Furthermore, the case of the extension's limitation for the solutions is also given.
Kamm, James R [Los Alamos National Laboratory; Shashkov, Mikhail J [Los Alamos National Laboratory
2009-01-01
Despite decades of development, Lagrangian hydrodynamics of strengthfree materials presents numerous open issues, even in one dimension. We focus on the problem of closing a system of equations for a two-material cell under the assumption of a single velocity model. There are several existing models and approaches, each possessing different levels of fidelity to the underlying physics and each exhibiting unique features in the computed solutions. We consider the case in which the change in heat in the constituent materials in the mixed cell is assumed equal. An instantaneous pressure equilibration model for a mixed cell can be cast as four equations in four unknowns, comprised of the updated values of the specific internal energy and the specific volume for each of the two materials in the mixed cell. The unique contribution of our approach is a physics-inspired, geometry-based model in which the updated values of the sub-cell, relaxing-toward-equilibrium constituent pressures are related to a local Riemann problem through an optimization principle. This approach couples the modeling problem of assigning sub-cell pressures to the physics associated with the local, dynamic evolution. We package our approach in the framework of a standard predictor-corrector time integration scheme. We evaluate our model using idealized, two material problems using either ideal-gas or stiffened-gas equations of state and compare these results to those computed with the method of Tipton and with corresponding pure-material calculations.
The Quasi-Exactly Solvable Problems in Relativistic Quantum Mechanics
Liu, Li-Yan; Hao, Qing-Hai
2014-06-01
We study the quasi-exactly solvable problems in relativistic quantum mechanics. We consider the problems for the two-dimensional Klein—Gordon and Dirac equations with equal vector and scalar potentials, and try to find the general form of the quasi-exactly solvable potential. After obtaining the general form of the potential, we present several examples to give the specific forms. In the examples, we show for special parameters the harmonic potential plus Coulomb potential, Killingbeck potential and a quartic potential plus Cornell potential are quasi-exactly solvable potentials.
Deift, P; Venakides, S; Zhou, X
1998-01-20
This paper extends the steepest descent method for Riemann-Hilbert problems introduced by Deift and Zhou in a critical new way. We present, in particular, an algorithm, to obtain the support of the Riemann-Hilbert problem for leading asymptotics. Applying this extended method to small dispersion KdV (Korteweg-de Vries) equation, we (i) recover the variational formulation of P. D. Lax and C. D. Levermore [(1979) Proc. Natl. Acad. Sci. USA76, 3602-3606] for the weak limit of the solution, (ii) derive, without using an ansatz, the hyperelliptic asymptotic solution of S. Venakides that describes the oscillations; and (iii) are now able to compute the phase shifts, integrating the modulation equations exactly. The procedure of this paper is a version of fully nonlinear geometrical optics for integrable systems. With some additional analysis the theory can provide rigorous error estimates between the solution and its computed asymptotic expression.
Quantum spaces and the Riemann hypothesis; Ryoshi kukan to Riemann yoso
Kurokawa, N. [Tokyo Inst. of Tech. (Japan)
1998-09-05
The Riemann zeta function is one of important functions in mathematics and appears in the quantum theory of the field, the Casimir effect, the super string theory, chaos and others in physics. The Riemann hypothesis is a hypothesis predicted by Riemann in 1859 that the every real part of the intrinsic zero point of the Riemann zeta function is 1/2 and is considered to be the most difficult problem in the modern mathematics. Efforts to solve this problem brought about developments of many fields in mathematics. This paper describes the Riemann hypothesis, related hypothesis by Hilbert and Polya, analogous matter of the Riemann hypothesis and the attempt of Haas. The clue of the solution of the Riemann hypothesis might exist in the way to understand the quantum spaces and further interaction between physics and mathematics is expected. 16 refs.
The holographic dual of a Riemann problem in a large number of dimensions
Herzog, Christopher P.; Spillane, Michael [C.N. Yang Institute for Theoretical Physics, Department of Physics and Astronomy,Stony Brook University, Stony Brook, NY 11794 (United States); Yarom, Amos [Department of Physics, Technion,Haifa 32000 (Israel)
2016-08-22
We study properties of a non equilibrium steady state generated when two heat baths are initially in contact with one another. The dynamics of the system we study are governed by holographic duality in a large number of dimensions. We discuss the “phase diagram” associated with the steady state, the dual, dynamical, black hole description of this problem, and its relation to the fluid/gravity correspondence.
The holographic dual of a Riemann problem in a large number of dimensions
Herzog, Christopher P.; Spillane, Michael; Yarom, Amos
2016-08-01
We study properties of a non equilibrium steady state generated when two heat baths are initially in contact with one another. The dynamics of the system we study are governed by holographic duality in a large number of dimensions. We discuss the "phase diagram" associated with the steady state, the dual, dynamical, black hole description of this problem, and its relation to the fluid/gravity correspondence.
The holographic dual of a Riemann problem in a large number of dimensions
Herzog, Christopher; Spillane, Michael; Yarom, Amos
2016-01-01
We study properties of a non equilibrium steady state generated when two heat baths are initially in contact with one another. The dynamics of the system we study are governed by holographic duality in a large number of dimensions. We discuss the "phase diagram" associated with the steady state; the dual, dynamical, black hole description of this problem; and its relation to the fluid/gravity correspondence.
New Relativistic Effects in the Dynamics of Nonlinear Hydrodynamical Waves
Rezzolla, L
2002-01-01
In Newtonian and relativistic hydrodynamics the Riemann problem consists of calculating the evolution of a fluid which is initially characterized by two states having different values of uniform rest-mass density, pressure and velocity. When the fluid is allowed to relax, one of three possible wave-patterns is produced, corresponding to the propagation in opposite directions of two nonlinear hydrodynamical waves. New effects emerge in a special relativistic Riemann problem when velocities tangential to the initial discontinuity surface are present. We show that a smooth transition from one wave-pattern to another can be produced by varying the initial tangential velocities while otherwise maintaining the initial states unmodified. These special relativistic effects are produced by the coupling through the relativistic Lorentz factors and do not have a Newtonian counterpart.
Gan YIN; Wancheng SHENG
2008-01-01
The Riemann problems for the Euler system of conservation laws of energy and momentum in special relativity as pressure vanishes are considered. The Riemann solutions for the pressureless relativistic Euler equations are obtained constructively. There are two kinds of solutions, the one involves delta shock wave and the other involves vacuum. The authors prove that these two kinds of solutions are the limits of the solutions as pressure vanishes in the Euler system of conservation laws of energy and momentum in special relativity.
``Riemann equations'' in bidifferential calculus
Chvartatskyi, O.; Müller-Hoissen, F.; Stoilov, N.
2015-10-01
We consider equations that formally resemble a matrix Riemann (or Hopf) equation in the framework of bidifferential calculus. With different choices of a first-order bidifferential calculus, we obtain a variety of equations, including a semi-discrete and a fully discrete version of the matrix Riemann equation. A corresponding universal solution-generating method then either yields a (continuous or discrete) Cole-Hopf transformation, or leaves us with the problem of solving Riemann equations (hence an application of the hodograph method). If the bidifferential calculus extends to second order, solutions of a system of "Riemann equations" are also solutions of an equation that arises, on the universal level of bidifferential calculus, as an integrability condition. Depending on the choice of bidifferential calculus, the latter can represent a number of prominent integrable equations, like self-dual Yang-Mills, as well as matrix versions of the two-dimensional Toda lattice, Hirota's bilinear difference equation, (2+1)-dimensional Nonlinear Schrödinger (NLS), Kadomtsev-Petviashvili (KP) equation, and Davey-Stewartson equations. For all of them, a recent (non-isospectral) binary Darboux transformation result in bidifferential calculus applies, which can be specialized to generate solutions of the associated "Riemann equations." For the latter, we clarify the relation between these specialized binary Darboux transformations and the aforementioned solution-generating method. From (arbitrary size) matrix versions of the "Riemann equations" associated with an integrable equation, possessing a bidifferential calculus formulation, multi-soliton-type solutions of the latter can be generated. This includes "breaking" multi-soliton-type solutions of the self-dual Yang-Mills and the (2+1)-dimensional NLS equation, which are parametrized by solutions of Riemann equations.
Relativistic field theories have no `sign problem' with DMRG
Weir, David J
2010-01-01
The density matrix renormalization group (DMRG) is applied to a relativistic complex scalar field at finite chemical potential. The two-point function and various bulk quantities are studied. It is seen that bulk quantities do not change with the chemical potential until it is larger than the minimum excitation energy. The technical limitations of DMRG for treating bosons in relativistic field theories are discussed. Applications to other relativistic models and to non-topological solitons are also suggested.
2007-01-01
The Riemann Hypothesis is a conjecture made in 1859 by the great mathematician Riemann that all the complex zeros of the zeta function $\\zeta(s)$ lie on the `critical line' ${Rl} s= 1/2$. Our analysis shows that the assumption of the truth of the Riemann Hypothesis leads to a contradiction. We are therefore led to the conclusion that the Riemann Hypothesis is not true.
Ding, Min; Li, Yachun
2017-04-01
We study the 1-D piston problem for the relativistic Euler equations under the assumption that the total variations of both the initial data and the velocity of the piston are sufficiently small. By a modified wave front tracking method, we establish the global existence of entropy solutions including a strong rarefaction wave without restriction on the strength. Meanwhile, we consider the convergence of the entropy solutions to the corresponding entropy solutions of the classical non-relativistic Euler equations as the light speed c→ +∞.
2001-01-01
The relativistic corrections to the Maxwellian velocity distribution are needed for standard solar models. Relativistic equilibrium velocity distribution, if adopted in standard solar models, will lower solar neutrino fluxes and change solar neutrino energy spectra but keep solar sound speeds. It is possibly a solution to the solar neutrino problem.
Balsara, Dinshaw S; Garain, Sudip; Kim, Jinho
2016-01-01
In various astrophysics settings it is common to have a two-fluid relativistic plasma that interacts with the electromagnetic field. While it is common to ignore the displacement current in the ideal, classical magnetohydrodynamic limit, when the flows become relativistic this approximation is less than absolutely well-justified. In such a situation, it is more natural to consider a positively charged fluid made up of positrons or protons interacting with a negatively charged fluid made up of electrons. The two fluids interact collectively with the full set of Maxwell's equations. As a result, a solution strategy for that coupled system of equations is sought and found here. Our strategy extends to higher orders, providing increasing accuracy. Three important innovations are reported here. In our first innovation, the magnetic field within each zone is reconstructed in a divergence-free fashion while the electric field within each zone is reconstructed in a form that is consistent with Gauss' law. In our seco...
Fast estimation from above of the maximum wave speed in the Riemann problem for the Euler equations
Guermond, Jean-Luc; Popov, Bojan
2016-09-01
This paper is concerned with the construction of a fast algorithm for computing the maximum speed of propagation in the Riemann solution for the Euler system of gas dynamics with the co-volume equation of state. The novelty in the algorithm is that it stops when a guaranteed upper bound for the maximum speed is reached with a prescribed accuracy. The convergence rate of the algorithm is cubic and the bound is guaranteed for gasses with the co-volume equation of state and the heat capacity ratio γ in the range (1 , 5 / 3 ].
聂宁明; 赵艳敏; Salvador Jiménez; 李敏; 唐贻发; Luis Vázquez
2010-01-01
研究了两类含Riemann-Liouville分数阶导数的分数阶微分方程两点边值问题.理论上,通过引入分数阶Green函数将含有Riemann-Liouville分数阶导数的两点边值问题等价转换成一个积分方程;并用Lipschitz条件和压缩映射原理给出了含有Riemann-Liouville分数阶导数的两点边值问题的解存在唯一的充分条件;数值上,设计了单打靶法,把含Riemann-Liouville分数阶导数的两点边值问题转化为含Riemann-Liouville分数阶导数的初值问题进行求解,并给出了较为精确的数值解.仿真结果表明:单打靶法是数值求解此类分数阶微分方程两点边值问题的有效工具.
On freeze-out problem in relativistic hydrodynamics
Ivanov, Yu B
2008-01-01
A finite unbound system which is equilibrium in one reference frame is in general nonequilibrium in another frame. This is a consequence of the relative character of the time synchronization in the relativistic physics. This puzzle was a prime motivation of the Cooper--Frye approach to the freeze-out in relativistic hydrodynamics. Solution of the puzzle reveals that the Cooper--Frye recipe is far not a unique phenomenological method that meets requirements of energy-momentum conservation. Alternative freeze-out recipes are considered and discussed.
Quantum relativistic fluid at global thermodynamic equilibrium in curved spacetime
Becattini, F
2015-01-01
We present a new approach to the problem of the thermodynamical equilibrium of a quantum relativistic fluid in a curved spacetime in the limit of small curvature. We calculate the mean value of local operators by expanding the four-temperature Killing vector field in Riemann normal coordinates about the same spacetime point and we derive corrections with respect to the flat spacetime expressions. Thereby, we clarify the origin of the terms proportional to Riemann and Ricci tensors introduced in general hydrodynamic expansion of the stress-energy tensor.
Solving 3D relativistic hydrodynamical problems with WENO discontinuous Galerkin methods
Bugner, Marcus; Bernuzzi, Sebastiano; Weyhausen, Andreas; Bruegmann, Bernd
2015-01-01
Discontinuous Galerkin (DG) methods coupled to WENO algorithms allow high order convergence for smooth problems and for the simulation of discontinuities and shocks. In this work, we investigate WENO-DG algorithms in the context of numerical general relativity, in particular for general relativistic hydrodynamics. We implement the standard WENO method at different orders, a compact (simple) WENO scheme, as well as an alternative subcell evolution algorithm. To evaluate the performance of the different numerical schemes, we study non-relativistic, special relativistic, and general relativistic testbeds. We present the first three-dimensional simulations of general relativistic hydrodynamics, albeit for a fixed spacetime background, within the framework of WENO-DG methods. The most important testbed is a single TOV-star in three dimensions, showing that long term stable simulations of single isolated neutron stars can be obtained with WENO-DG methods.
Li Yongkun
2011-01-01
Full Text Available Abstract In this paper, by making use of the coincidence degree theory of Mawhin, the existence of the nontrivial solution for the boundary value problem with Riemann-Stieltjes Δ-integral conditions on time scales at resonance x Δ Δ ( t = f ( t , x ( t , x Δ ( t + e ( t , a . e . t ∈ [ 0 , T ] T , x Δ ( 0 = 0 , x ( T = ∫ 0 T x σ ( s Δ g ( s is established, where f : [ 0 , T ] T × ℝ × ℝ → ℝ satisfies the Carathéodory conditions and e : [ 0 , T ] T → ℝ is a continuous function and g : [ 0 , T ] T → ℝ is an increasing function with ∫ 0 T Δ g ( s = 1 . An example is given to illustrate the main results.
Kargın, Levent; Kurt, Veli
2015-01-01
In this study, obtaining the matrix analog of the Euler's reflection formula for the classical gamma function we expand the domain of the gamma matrix function and give a infinite product expansion of sinπxP. Furthermore we define Riemann zeta matrix function and evaluate some other matrix integrals. We prove a functional equation for Riemann zeta matrix function.
Relativistic corrections to the central force problem in a generalized potential approach
Singh, Ashmeet
2014-01-01
We present a novel technique to obtain the relativistic corrections to the central force problem in the Lagrangian formulation, using a generalized potential energy. Throughout the paper, we focus on the attractive inverse square law central force. The generalised potential can be made a part of the regular classical lagrangian which can reproduce the relativistic force equation upto second order in $|\\vec{v}|/c$. We then go on to derive the relativistically corrected Hamiltonian from the Lagrangian and estimate the corrections to the total energy of the system. We employ our methodology to calculate the relativistic correction to the circular orbit in attractive gravitational force. We also estimate to the first order energy correction in the ground state of the hydrogen atom in the semi-classical approach. Our predictions in both problems give the reasonable agreement with the known results. Thus we feel that this work has pedagogical value and can be used by undergraduate students to better understand the ...
Simple waves in relativistic fluids.
Lyutikov, Maxim
2010-11-01
We consider the Riemann problem for relativistic flows of polytropic fluids and find relations for the flow characteristics. Evolution of physical quantities takes especially simple form for the case of cold magnetized plasmas. We find exact explicit analytical solutions for one-dimensional expansion of magnetized plasma into vacuum, valid for arbitrary magnetization. We also consider expansion into cold unmagnetized external medium both for stationary initial conditions and for initially moving plasma, as well as reflection of rarefaction wave from a wall. We also find self-similar structure of three-dimensional magnetized outflows into vacuum, valid close to the plasma-vacuum interface.
Relativistic corrections of order m{alpha}{sup 6} to the two-centre problem
Korobov, V I; Tsogbayar, Ts [Joint Institute for Nuclear Research, 141980, Dubna (Russian Federation)
2007-07-14
Effective potentials of the relativistic m{alpha}{sup 6} order correction for the ground state of the Coulomb two-centre problem are calculated. They can be used to evaluate the relativistic contribution of that order to the energies of hydrogen molecular ions or metastable states of the antiprotonic helium atom, where precision spectroscopic data are available. In our studies we use the variational expansion based on randomly chosen exponents that permits us to achieve high numerical accuracy.
Newtonian cosmology - Problems of cosmological didactics
Skarzynski, E.
1983-03-01
The article presents different methods of model construction in Newtonian cosmology. Newtonian cosmology is very convenient for discussion of local problems, so the problems presented are of great didactic importance. The constant k receives a new interpretation in relativistic cosmology as the curvature of the space in consequence of the greater informational capacity of Riemann space in comparison to Euclidean space. 11 references.
Bugner, Marcus; Dietrich, Tim; Bernuzzi, Sebastiano; Weyhausen, Andreas; Brügmann, Bernd
2016-10-01
Discontinuous Galerkin (DG) methods coupled to weighted essentially nonoscillatory (WENO) algorithms allow high order convergence for smooth problems and for the simulation of discontinuities and shocks. In this work, we investigate WENO-DG algorithms in the context of numerical general relativity, in particular for general relativistic hydrodynamics. We implement the standard WENO method at different orders, a compact (simple) WENO scheme, as well as an alternative subcell evolution algorithm. To evaluate the performance of the different numerical schemes, we study nonrelativistic, special relativistic, and general relativistic test beds. We present the first three-dimensional simulations of general relativistic hydrodynamics, albeit for a fixed spacetime background, within the framework of WENO-DG methods. The most important test bed is a single Tolman-Oppenheimer-Volkoff star in three dimensions, showing that long term stable simulations of single isolated neutron stars can be obtained with WENO-DG methods.
Riemann hypothesis and physics
2012-01-01
Neste trabalho, introduzimos a função zeta de Riemann \\'ZETA\\'(s), para s \\'PERTENCE\\' C \\\\ e apresentamos muito do que é conhecido como justificativa para a hipótese de Riemann. A importância de \\'ZETA\\' (s) para a teoria analítica dos números é enfatizada e fornecemos uma prova conhecida do Teorema dos Números Primos. No final, discutimos a importância de \\'ZETA\\'(s) para alguns modelos físicos de interesse e concluimos descrevendo como a hipótese de Riemann pode ser acessada estudando est...
Choreographic solution to the general-relativistic three-body problem.
Imai, Tatsunori; Chiba, Takamasa; Asada, Hideki
2007-05-18
We reexamine the three-body problem in the framework of general relativity. The Newtonian N-body problem admits choreographic solutions, where a solution is called choreographic if every massive particle moves periodically in a single closed orbit. One is a stable figure-eight orbit for a three-body system, which was found first by Moore (1993) and rediscovered with its existence proof by Chenciner and Montgomery (2000). In general relativity, however, the periastron shift prohibits a binary system from orbiting in a single closed curve. Therefore, it is unclear whether general-relativistic effects admit choreography such as the figure eight. We examine general-relativistic corrections to initial conditions so that an orbit for a three-body system can be choreographic and a figure eight. This illustration suggests that the general-relativistic N-body problem also may admit a certain class of choreographic solutions.
GUO Enli; MO Xiaohuan
2006-01-01
In this paper,a survey on Riemann-Finsler geometry is given.Non-trivial examples of Finsler metrics satisfying different curvature conditions are presented.Local and global results in Finsler geometry are analyzed.
Solved and unsolved problems in relativistic quantum chemistry
Kutzelnigg, Werner, E-mail: werner.kutzelnigg@rub.de [Lehrstuhl fuer Theoretische Chemie, Ruhr-Universitaet Bochum, D-44780 Bochum (Germany)
2012-02-20
Graphical abstract: The graphical abstract represents the Dirac-Coulomb Hamiltonian in Fock space in a diagrammatic notation. A line (vertical or slanted) with an upgoing arrow represents an eletron, with a downgoing arrow a positron. A cross in the first line means the potential created by a nucleus, a broken line represents the Coulomb interaction between electrons and positrons. Highlights: Black-Right-Pointing-Pointer Relativistic many-electron theory needs a Fock space and a field-dependent vacuum. Black-Right-Pointing-Pointer A good starting point is QED in Coulomb gauge without transversal photons. Black-Right-Pointing-Pointer The Dirac underworld picture is obsolete. Black-Right-Pointing-Pointer A kinetically balanced even-tempered Gaussian basis is complete. Black-Right-Pointing-Pointer 'Quantum chemistry in Fock space is preferable over QED. - Abstract: A hierarchy of approximations in relativistic many-electron theory is discussed that starts with the Dirac equation and its expansion in a kinetically balanced basis, via a formulation of non-interacting electrons in Fock space (which is the only consistent way to deal with negative-energy states). The most straightforward approximate Hamiltonian for interacting electrons is derived from quantum electrodynamics (QED) in Coulomb gauge with the neglect of transversal photons. This allows an exact (non-perturbative) decoupling of the electromagnetic field from the fermionic field. The electric interaction of the fermions is non-retarded and non-quantized. The quantization of the fermionic field leads to a polarizable vacuum. The simplest (but somewhat problematic) approximation is a no-pair projected theory with external-field projectors. The Dirac-Coulomb operator in configuration space (first quantization) is not acceptable, even if the Brown-Ravenhall disease is much less virulent than often claimed. Effects of transversal photons, such as the Breit interaction and renormalized self-interaction can be
An su(1, 1) algebraic approach for the relativistic Kepler-Coulomb problem
Salazar-Ramirez, M; Granados, V D [Escuela Superior de Fisica y Matematicas, Instituto Politecnico Nacional, Ed. 9, Unidad Profesional Adolfo Lopez Mateos, 07738 Mexico DF (Mexico); MartInez, D [Universidad Autonoma de la Ciudad de Mexico, Plantel Cuautepec, Av. La Corona 320, Col. Loma la Palma, Delegacion Gustavo A. Madero, 07160 Mexico DF (Mexico); Mota, R D, E-mail: dmartinezs77@yahoo.com.m [Unidad Profesional Interdisciplinaria de Ingenieria y TecnologIas Avanzadas, IPN. Av. Instituto Politecnico Nacional 2580, Col. La Laguna Ticoman, Delegacion Gustavo A. Madero, 07340 Mexico DF (Mexico)
2010-11-07
We apply the Schroedinger factorization method to the radial second-order equation for the relativistic Kepler-Coulomb problem. From these operators we construct two sets of one-variable radial operators which are realizations for the su(1, 1) Lie algebra. We use this algebraic structure to obtain the energy spectrum and the supersymmetric ground state for this system.
Exploring the Riemann zeta function 190 years from Riemann's birth
Nikeghbali, Ashkan; Rassias, Michael
2017-01-01
This book is concerned with the Riemann Zeta Function, its generalizations, and various applications to several scientific disciplines, including Analytic Number Theory, Harmonic Analysis, Complex Analysis and Probability Theory. Eminent experts in the field illustrate both old and new results towards the solution of long-standing problems and include key historical remarks. Offering a unified, self-contained treatment of broad and deep areas of research, this book will be an excellent tool for researchers and graduate students working in Mathematics, Mathematical Physics, Engineering and Cryptography.
Early history of the Riemann Hypothesis in positive characteristic
Oort, F.; Schappacher, Norbert
2016-01-01
The classical Riemann Hypothesis RH is among the most prominent unsolved problems in modern mathematics. The development of Number Theory in the 19th century spawned an arithmetic theory of polynomials over finite fields in which an analogue of the Riemann Hypothesis suggested itself. We describe th
Early history of the Riemann Hypothesis in positive characteristic
Oort, F.; Schappacher, Norbert
2016-01-01
The classical Riemann Hypothesis RH is among the most prominent unsolved problems in modern mathematics. The development of Number Theory in the 19th century spawned an arithmetic theory of polynomials over finite fields in which an analogue of the Riemann Hypothesis suggested itself. We describe
Riemann hypothesis is not correct
2014-01-01
This paper use Nevanlinna's Second Main Theorem of the value distribution theory, we got an important conclusion by Riemann hypothesis. this conclusion contradicts the Theorem 8.12 in Titchmarsh's book "Theory of the Riemann Zeta-functions", therefore we prove that Riemann hypothesis is incorrect.
Open circular billiards and the Riemann hypothesis.
Bunimovich, L A; Dettmann, C P
2005-03-18
A comparison of escape rates from one and from two holes in an experimental container (e.g., a laser trap) can be used to obtain information about the dynamics inside the container. If this dynamics is simple enough one can hope to obtain exact formulas. Here we obtain exact formulas for escape from a circular billiard with one and with two holes. The corresponding quantities are expressed as sums over zeros of the Riemann zeta function. Thus we demonstrate a direct connection between recent experiments and a major unsolved problem in mathematics, the Riemann hypothesis.
Universal moduli spaces of Riemann surfaces
Ji, Lizhen; Jost, Jürgen
2017-04-01
We construct a moduli space for Riemann surfaces that is universal in the sense that it represents compact Riemann surfaces of any finite genus. This moduli space is a connected complex subspace of an infinite dimensional complex space, and is stratified according to genus such that each stratum has a compact closure, and it carries a metric and a measure that induce a Riemannian metric and a finite volume measure on each stratum. Applications to the Plateau-Douglas problem for minimal surfaces of varying genus and to the partition function of Bosonic string theory are outlined. The construction starts with a universal moduli space of Abelian varieties. This space carries a structure of an infinite dimensional locally symmetric space which is of interest in its own right. The key to our construction of the universal moduli space then is the Torelli map that assigns to every Riemann surface its Jacobian and its extension to the Satake-Baily-Borel compactifications.
Narita Keiko
2016-09-01
Full Text Available In this article, the definitions and basic properties of Riemann-Stieltjes integral are formalized in Mizar [1]. In the first section, we showed the preliminary definition. We proved also some properties of finite sequences of real numbers. In Sec. 2, we defined variation. Using the definition, we also defined bounded variation and total variation, and proved theorems about related properties.
李耀红; 张海燕
2014-01-01
研究了一类具有Riemann-Liouville分数阶积分条件的新分数阶微分方程边值问题，其非线性项包含Caputo型分数阶导数。将该问题转化为等价的积分方程，应用Leray-Schauder不动点定理结合一个范数形式的新不等式，获得了解的存在性充分条件，推广和改进了已有的结果，并给出了应用实例。%A class of boundary value problem of fractional differential equation with Riemann-Liouville fractional integral conditions is investigated, which involves the Caputo fractional derivative in nonlinear terms and can be reduced to the equivalent integral equation. By using Leray-Schauder fixed point theory combined with a new inequality of norm form, some sufficient conditions on the exitence of solution for boundary value problem are established. Some known results are extended and improved. An example is given to illustrate the application of the result.
A choreographic solution to the general relativistic three-body problem
Imai, T; Chiba, T; Asada, Hideki; Chiba, Takamasa; Imai, Tatsunori
2007-01-01
We revisit the three-body problem in the framework of general relativity. The Newtonian N-body problem admits choreographic solutions, where a solution is called choreographic if every massive particles move periodically in a single closed orbit. One is a stable figure-eight orbit of a three-body system, which was found first by Moore (1993) and re-discovered with its existence proof by Chenciner and Montgomery (2000), In general relativity, however, the periastron shift prohibits a binary system from orbiting in a closed curve. Therefore, it is unclear whether general relativistic effects admit a choreographic solution such as the figure-eight. We carefully examine general relativistic corrections to initial conditions so that an orbit to a three-body system can be closed in a figure-eight. This solution is still choreographic without causing periastron shift. This illustration suggests that the general relativistic N-body problem also may admit a certain class of choreographic solutions.
A lattice gas of prime numbers and the Riemann Hypothesis
Vericat, Fernando
2013-10-01
In recent years, there has been some interest in applying ideas and methods taken from Physics in order to approach several challenging mathematical problems, particularly the Riemann Hypothesis. Most of these kinds of contributions are suggested by some quantum statistical physics problems or by questions originated in chaos theory. In this article, we show that the real part of the non-trivial zeros of the Riemann zeta function extremizes the grand potential corresponding to a simple model of one-dimensional classical lattice gas, the critical point being located at 1/2 as the Riemann Hypothesis claims.
Riemann surface and quantization
Perepelkin, E. E.; Sadovnikov, B. I.; Inozemtseva, N. G.
2017-01-01
This paper proposes an approach of the unified consideration of classical and quantum mechanics from the standpoint of the complex analysis effects. It turns out that quantization can be interpreted in terms of the Riemann surface corresponding to the multivalent LnΨ function. A visual interpretation of "trajectories" of the quantum system and of the Feynman's path integral is presented. A magnetic dipole having a magnetic charge that satisfies the Dirac quantization rule was obtained.
Calculation of the relativistic Bethe logarithm in the two-center problem
Korobov, Vladimir I; Karr, Jean-Philippe
2013-01-01
We present a variational approach to evaluate relativistic corrections of order \\alpha^2 to the Bethe logarithm for the ground electronic state of the Coulomb two center problem. That allows to estimate the radiative contribution at m\\alpha^7 order in molecular-like three-body systems such as hydrogen molecular ions H_2^+ and HD^+, or antiprotonic helium atoms. While we get 10 significant digits for the nonrelativistic Bethe logarithm, calculation of the relativistic corrections is much more involved especially for small values of bond length R. We were able to achieve a level of 3-4 significant digits starting from R=0.2 bohr, that will allow to reach 10^{-10} relative uncertainty on transition frequencies.
Calculation of the relativistic Bethe logarithm in the two-center problem
Korobov, Vladimir I.; Hilico, L.; Karr, J.-Ph.
2013-06-01
We present a variational approach to evaluate relativistic corrections of order α2 to the Bethe logarithm for the ground electronic state of the Coulomb two-center problem. That allows us to estimate the radiative contribution at mα7 order in molecular-like three-body systems such as hydrogen molecular ions H2+ and HD+ or antiprotonic helium atoms. While we get ten significant digits for the nonrelativistic Bethe logarithm, calculation of the relativistic corrections is much more involved, especially for small values of bond length R. We were able to achieve a level of three to four significant digits starting from R=0.2 bohr, which will allow us to reach 10-10 relative uncertainty on transition frequencies.
Teorema de Riemann-Roch, morfismos de Frobenius e a hipótese de Riemann
2014-01-01
The aim of this work is to estimate a bound for the number of rational points of a curve. Observing the various similarities between the ring of integers and the ring of polynomials in one variable, we use tools from number theory to solve a problem of algebraic geometry. From this merger is born one of the noblest areas of mathematics: arithmetic geometry. Making use of the famous Riemann-Roch's theorem and tools of number theory we demonstrate the Riemann hypothesis for the zeta-function of...
CAFE: A NEW RELATIVISTIC MHD CODE
Lora-Clavijo, F. D.; Cruz-Osorio, A. [Instituto de Astronomía, Universidad Nacional Autónoma de México, AP 70-264, Distrito Federal 04510, México (Mexico); Guzmán, F. S., E-mail: fdlora@astro.unam.mx, E-mail: aosorio@astro.unam.mx, E-mail: guzman@ifm.umich.mx [Instituto de Física y Matemáticas, Universidad Michoacana de San Nicolás de Hidalgo. Edificio C-3, Cd. Universitaria, 58040 Morelia, Michoacán, México (Mexico)
2015-06-22
We introduce CAFE, a new independent code designed to solve the equations of relativistic ideal magnetohydrodynamics (RMHD) in three dimensions. We present the standard tests for an RMHD code and for the relativistic hydrodynamics regime because we have not reported them before. The tests include the one-dimensional Riemann problems related to blast waves, head-on collisions of streams, and states with transverse velocities, with and without magnetic field, which is aligned or transverse, constant or discontinuous across the initial discontinuity. Among the two-dimensional (2D) and 3D tests without magnetic field, we include the 2D Riemann problem, a one-dimensional shock tube along a diagonal, the high-speed Emery wind tunnel, the Kelvin–Helmholtz (KH) instability, a set of jets, and a 3D spherical blast wave, whereas in the presence of a magnetic field we show the magnetic rotor, the cylindrical explosion, a case of Kelvin–Helmholtz instability, and a 3D magnetic field advection loop. The code uses high-resolution shock-capturing methods, and we present the error analysis for a combination that uses the Harten, Lax, van Leer, and Einfeldt (HLLE) flux formula combined with a linear, piecewise parabolic method and fifth-order weighted essentially nonoscillatory reconstructors. We use the flux-constrained transport and the divergence cleaning methods to control the divergence-free magnetic field constraint.
CAFE: A New Relativistic MHD Code
Lora-Clavijo, F D; Guzman, F S
2014-01-01
We present CAFE, a new independent code designed to solve the equations of Relativistic ideal Magnetohydrodynamics (RMHD) in 3D. We present the standard tests for a RMHD code and for the Relativistic Hydrodynamics (RMD) regime since we have not reported them before. The tests include the 1D Riemann problems related to blast waves, head-on collision of streams and states with transverse velocities, with and without magnetic field, which is aligned or transverse, constant or discontinuous across the initial discontinuity. Among the 2D tests, without magnetic field we include the 2D Riemann problem, the high speed Emery wind tunnel, the Kelvin-Helmholtz instability test and a set of jets, whereas in the presence of a magnetic field we show the magnetic rotor, the cylindrical explosion and the Kelvin-Helmholtz instability. The code uses High Resolution Shock Capturing methods and as a standard set up we present the error analysis with a simple combination that uses the HLLE flux formula combined with linear, PPM ...
CAFE: A New Relativistic MHD Code
Lora-Clavijo, F. D.; Cruz-Osorio, A.; Guzmán, F. S.
2015-06-01
We introduce CAFE, a new independent code designed to solve the equations of relativistic ideal magnetohydrodynamics (RMHD) in three dimensions. We present the standard tests for an RMHD code and for the relativistic hydrodynamics regime because we have not reported them before. The tests include the one-dimensional Riemann problems related to blast waves, head-on collisions of streams, and states with transverse velocities, with and without magnetic field, which is aligned or transverse, constant or discontinuous across the initial discontinuity. Among the two-dimensional (2D) and 3D tests without magnetic field, we include the 2D Riemann problem, a one-dimensional shock tube along a diagonal, the high-speed Emery wind tunnel, the Kelvin-Helmholtz (KH) instability, a set of jets, and a 3D spherical blast wave, whereas in the presence of a magnetic field we show the magnetic rotor, the cylindrical explosion, a case of Kelvin-Helmholtz instability, and a 3D magnetic field advection loop. The code uses high-resolution shock-capturing methods, and we present the error analysis for a combination that uses the Harten, Lax, van Leer, and Einfeldt (HLLE) flux formula combined with a linear, piecewise parabolic method and fifth-order weighted essentially nonoscillatory reconstructors. We use the flux-constrained transport and the divergence cleaning methods to control the divergence-free magnetic field constraint.
无
2000-01-01
In this paper, a class of quasi-linear Rie mann-Hilbert problems for general holomorphic functions in the unit disk was studied. Under suitable hypotheses, the existence of solutions of the Hardy class H2 to this problem was proved by means of Tikhonov' s fixed point theorem and corresponding theories for general holomorphic functions
Oort, F.
2016-01-01
Let ϕ : S → T be a surjective holomorphic map between compact Riemann surfaces. There is a formula relating the various invariants involved: the genus of S, the genus of T, the degree of ϕ and the amount of ramification. Riemann used this formula in case T has genus zero. Contemporaries referred to
Operators on Differential Form Spaces for Riemann Surfaces
Guang Fu CAO; Xiao Feng WANG
2007-01-01
In the present paper, a problem of Ioana Mihaila is negatively answered on the invertibility of composition operators on Riemann surfaces, and it is proved that the composition operator Cρ is Fredholm if and only if it is invertible if and only ifρ is invertible for some special cases. In addition,the Toeplitz operators on ∧12 a (M) for Riemann surface M are defined and some properties of these operators are discussed.
On Riemann Solvers and Kinetic Relations for Isothermal Two-Phase Flows with Surface Tension
Rohde, Christian
2016-01-01
We consider a sharp-interface approach for the inviscid isothermal dynamics of compressible two-phase flow, that accounts for phase transition and surface tension effects. To fix the mass exchange and entropy dissipation rate across the interface kinetic relations are frequently used. The complete uni-directional dynamics can then be understood by solving generalized two-phase Riemann problems. We present new well-posedness theorems for the Riemann problem and corresponding computable Riemann solvers, that cover quite general equations of state, metastable input data and curvature effects. The new Riemann solver is used to validate different kinetic relations on physically relevant problems including a comparison with experimental data. Riemann solvers are building blocks for many numerical schemes that are used to track interfaces in two-phase flow. It is shown that the new Riemann solver enables reliable and efficient computations for physical situations that could not be treated before.
Amirkhanov, I V; Zhidkova, I E; Vasilev, S A
2000-01-01
Asymptotics of eigenfunctions and eigenvalues has been obtained for a singular perturbated relativistic analog of Schr`dinger equation. A singular convergence of asymptotic expansions of the boundary problems to degenerated problems is shown for a nonrelativistic Schr`dinger equation. The expansions obtained are in a good agreement with a numeric experiment.
Relativistic equation-of-motion coupled-cluster method for the electron attachment problem
Pathak, Himadri; Nayak, Malaya K; Vaval, Nayana; Pal, Sourav
2016-01-01
The article considers the successful implementation of relativistic equation-of-motion coupled clus- ter method for the electron attachment problem (EA-EOMCC) at the level of single- and double- excitation approximation. The Dirac-Coulomb Hamiltonian is used to generate the single particle orbitals and two-body matrix elements. The implemented relativistic EA-EOMCC method is em- ployed to calculate ionization potential values of alkali metal atoms (Li, Na, K, Rb, Cs, Fr) and the vertical electron affinity values of LiX (X=H, F, Cl, Br), NaY (Y=H, F, Cl) starting from their closed-shell configuration. We have taken C 2 as an example to understand what should be the na- ture of the basis and cut off in the orbital energies that can be used for the correlation calculations without loosing a considerable amount of accuracy in the computed values. Both four-component and X2C calculations are done for all the opted systems to understand the effect of relativity in our calculations as well as to justify the fact tha...
Conformal mapping on Riemann surfaces
Cohn, Harvey
2010-01-01
The subject matter loosely called ""Riemann surface theory"" has been the starting point for the development of topology, functional analysis, modern algebra, and any one of a dozen recent branches of mathematics; it is one of the most valuable bodies of knowledge within mathematics for a student to learn.Professor Cohn's lucid and insightful book presents an ideal coverage of the subject in five pans. Part I is a review of complex analysis analytic behavior, the Riemann sphere, geometric constructions, and presents (as a review) a microcosm of the course. The Riemann manifold is introduced in
Gromov Hyperbolicity of Riemann Surfaces
José M. RODR(I)GUEZ; Eva TOUR(I)S
2007-01-01
We study the hyperbolicity in the Gromov sense of Riemann surfaces. We deduce the hyperbolicity of a surface from the hyperbolicity of its "building block components". We also prove the equivalence between the hyperbolicity of a Riemann surface and the hyperbolicity of some graph associated with it. These results clarify how the decomposition of a Riemann surface into Y-pieces and funnels affects the hyperbolicity of the surface. The results simplify the topology of the surface and allow us to obtain global results from local information.
A sharp companion of Ostrowski's inequality for the Riemann-Stieltjes integral and applications
Mohammad W. Alomari
2016-10-01
Full Text Available A sharp companion of Ostrowski's inequality for the Riemann-Stieltjes integral ∫ab f(tdu(t, where f is assumed to be of r-H-Hölder type on [a,b] and u is of bounded variation on [a,b], is proved. Applications to the approximation problem of the Riemann-Stieltjesintegral in terms of Riemann-Stieltjes sums are also pointed out.
The Schrödinger problem, Levy processes noise in relativistic quantum mechanics
Garbaczewski, P; Olkiewicz, R
1995-01-01
The main purpose of the paper is an essentially probabilistic analysis of relativistic quantum mechanics. It is based on the assumption that whenever probability distributions arise, there exists a stochastic process that is either responsible for temporal evolution of a given measure or preserves the measure in the stationary case. Our departure point is the so-called Schr\\"{o}dinger problem of probabilistic evolution, which provides for a unique Markov stochastic interpolation between any given pair of boundary probability densities for a process covering a fixed, finite duration of time, provided we have decided a priori what kind of primordial dynamical semigroup transition mechanism is involved. In the nonrelativistic theory, including quantum mechanics, Feyman-Kac-like kernels are the building blocks for suitable transition probability densities of the process. In the standard "free" case (Feynman-Kac potential equal to zero) the familiar Wiener noise is recovered. In the framework of the Schr\\"{o}dinge...
Computational approach to Riemann surfaces
Klein, Christian
2011-01-01
This volume offers a well-structured overview of existent computational approaches to Riemann surfaces and those currently in development. The authors of the contributions represent the groups providing publically available numerical codes in this field. Thus this volume illustrates which software tools are available and how they can be used in practice. In addition examples for solutions to partial differential equations and in surface theory are presented. The intended audience of this book is twofold. It can be used as a textbook for a graduate course in numerics of Riemann surfaces, in which case the standard undergraduate background, i.e., calculus and linear algebra, is required. In particular, no knowledge of the theory of Riemann surfaces is expected; the necessary background in this theory is contained in the Introduction chapter. At the same time, this book is also intended for specialists in geometry and mathematical physics applying the theory of Riemann surfaces in their research. It is the first...
Colloquium: Physics of the Riemann hypothesis
Schumayer, Dániel; Hutchinson, David A. W.
2011-04-01
Physicists become acquainted with special functions early in their studies. Consider our perennial model, the harmonic oscillator, for which we need Hermite functions, or the Laguerre functions in quantum mechanics. Here a particular number-theoretical function is chosen, the Riemann zeta function, and its influence on the realm of physics is examined and also how physics may be suggestive for the resolution of one of mathematics’ most famous unconfirmed conjectures, the Riemann hypothesis. Does physics hold an essential key to the solution for this more than 100-year-old problem? In this work numerous models from different branches of physics are examined, from classical mechanics to statistical physics, where this function plays an integral role. This function is also shown to be related to quantum chaos and how its pole structure encodes when particles can undergo Bose-Einstein condensation at low temperature. Throughout these examinations light is shed on how the Riemann hypothesis can highlight physics. Naturally, the aim is not to be comprehensive, but rather focusing on the major models and aim to give an informed starting point for the interested reader.
Finding zeros of the Riemann zeta function by periodic driving of cold atoms
Creffield, C. E.; Sierra, G.
2015-06-01
The Riemann hypothesis, which states that the nontrivial zeros of the Riemann zeta function all lie on a certain line in the complex plane, is one of the most important unresolved problems in mathematics. We propose here an approach to finding a physical system to study the Riemann zeros, which is based on applying a time-periodic driving field. This driving allows us to tune the quasienergies of the system (the analog of the eigenenergies for static systems), so that they are directly governed by the zeta function. We further show by numerical simulations that this allows the Riemann zeros to be measured in currently accessible cold-atom experiments.
Relativistic Hydrodynamics and Non-Equilibrium Steady States
Spillane, Michael
2015-01-01
We review recent interest in the relativistic Riemann problem as a method for generating a non-equilibrium steady state. In the version of the problem under con- sideration, the initial conditions consist of a planar interface between two halves of a system held at different temperatures in a hydrodynamic regime. The new double shock solutions are in contrast with older solutions that involve one shock and one rarefaction wave. We use numerical simulations to show that the older solutions are preferred. Briefly we discuss the effects of a conserved charge. Finally, we discuss deforming the relativistic equations with a nonlinear term and how that deformation affects the temperature and velocity in the region connecting the asymptotic fluids.
A RIEMANN-TYPE DEFINITION OF N-TH CESARO-PERRON INTEGRALS
GongZengtai
1994-01-01
In this paper, We give a varlational-type definition of (CnP) integrals. It is equivalent to the original definition of Perron-type and to the definition of Riemann-type, in this way the problem on definition of(CnP)′s Riemann-type has been solved completely.
A Strong Kind of Riemann Integrability
Thomson, Brian S.
2012-01-01
The usual definition of the Riemann integral as a limit of Riemann sums can be strengthened to demand more of the function to be integrated. This super-Riemann integrability has interesting properties and provides an easy proof of a simple change of variables formula and a novel characterization of derivatives. This theory offers teachers and…
A Numerical Test on the Riemann Hypothesis with Applications
N. K. Oladejo
2009-01-01
Full Text Available Problem statement: The Riemann hypothesis involves two products of the zeta function ζ(s which are: Prime numbers and the zeros of the zeta function ζ(s. It states that the zeros of a certain complex-valued function ζ (s of a complex number s ≠ 1 all have a special form, which may be trivial or non trivial. Zeros at the negative even integers (i.e., at S = -2, S = -4, S = -6... are called the non-trivial zeros. The Riemann hypothesis is however concerned with the trivial zeros. Approach: This study tested the hypothesis numerically and established its relationship with prime numbers. Results: Test of the hypotheses was carried out via relative error and test for convergence through ratio integral test was proved to ascertain the results. Conclusion: The result obtained in the above findings and computations supports the fact that the Riemann hypothesis is true, as it assumed a smaller error as possible as x approaches infinity and that the distribution of primes was closely related to the Riemann hypothesis as was tested numerically and the Riemann hypothesis had a positive relationship with prime numbers.
Garofoli, Duilio; Haidle, Miriam Noël
2014-01-01
Cognitive archaeology (CA) has an inherent and major problem. The coupling between extinct minds, brains and behaviors cannot be investigated in a laboratory. Without direct testability, there is a risk that theories in CA will remain merely subjective opinions in which "anything goes". To counter this risk, opponents of relativism originally argued that CA should adopt a method of validation based on "indirectly" testing inferences from the archaeological record. In this paper, we will offer a two-part analysis. In the first part, we will discuss problems with the original anti-relativistic agenda. While we agree with the necessity of developing a rational methodology for this discipline, in our view previous analyses have significant weak points that need to be strengthened. In particular, we will propose that "indirect testability" should be superseded by a methodology based upon deductive mappings from networks of theories, followed by a plausibility-selection stage. This methodology will be implemented by adopting an extension of Barnard's (2010b) proposals for mapping hierarchical systems. In the second part, we will compare our methods with those currently adopted in the CA debate. From this analysis, it will emerge that some proposals in CA are inconsistent with our methodology and are incommensurable with those that are consistent with it. Furthermore, we will show that theories in CA can advance contradictory conclusions precisely because they have been developed using different methods. We conclude that a universal methodology, like that proposed here, is needed for CA to become more objective. It is also crucial for creating conditions for coherent and productive debate among different schools of thought in the field of cognitive evolution.
Equidistribution rates, closed string amplitudes, and the Riemann hypothesis
Cacciatori, Sergio L.; Cardella, Matteo
2010-12-01
We study asymptotic relations connecting unipotent averages of {text{Sp}}left( {2g,mathbb{Z}} right) automorphic forms to their integrals over the moduli space of principally polarized abelian varieties. We obtain reformulations of the Riemann hypothesis as a class of problems concerning the computation of the equidistribution convergence rate in those asymptotic relations. We discuss applications of our results to closed string amplitudes. Remarkably, the Riemann hypothesis can be rephrased in terms of ultraviolet relations occurring in perturbative closed string theory.
Nonclassical degrees of freedom in the Riemann Hamiltonian.
Srednicki, Mark
2011-09-02
The Hilbert-Pólya conjecture states that the imaginary parts of the zeros of the Riemann zeta function are eigenvalues of a quantum Hamiltonian. If so, conjectures by Katz and Sarnak put this Hamiltonian in the Altland-Zirnbauer universality class C. This implies that the system must have a nonclassical two-valued degree of freedom. In such a system, the dominant primitive periodic orbits contribute to the density of states with a phase factor of -1. This resolves a previously mysterious sign problem with the oscillatory contributions to the density of the Riemann zeros.
Amano, Takanobu
2016-01-01
A new multidimensional simulation code for relativistic two-fluid electrodynamics (RTFED) is described. The basic equations consist of the full set of Maxwell's equations coupled with relativistic hydrodynamic equations for separate two charged fluids, representing the dynamics of either an electron-positron or an electron-proton plasma. It can be recognized as an extension of conventional relativistic magnetohydrodynamics (RMHD). Finite resistivity may be introduced as a friction between the two species, which reduces to resistive RMHD in the long wavelength limit without suffering from a singularity at infinite conductivity. A numerical scheme based on HLL (Harten-Lax-Van Leer) Riemann solver is proposed that exactly preserves the two divergence constraints for Maxwell's equations simultaneously. Several benchmark problems demonstrate that it is capable of describing RMHD shocks/discontinuities at long wavelength limit, as well as dispersive characteristics due to the two-fluid effect appearing at small sca...
Equidistribution rates, closed string amplitudes, and the Riemann hypothesis
Cacciatori, S.L.; Cardella, M.
2010-01-01
We study asymptotic relations connecting unipotent averages of Sp(2g,Z) automorphic forms to their integrals over the moduli space of principally polarized abelian varieties. We obtain reformulations of the Riemann hypothesis as a class of problems concerning the computation of the equidistribution
Some computational formulas related the Riemann zeta-function tails
Hongmin Xu
2016-05-01
Full Text Available Abstract In this paper we present two computational formulae for one kind of reciprocal sums related to the Riemann zeta-function at integer points s = 4 , 5 $s=4,5$ , which answers an open problem proposed by Lin (J. Inequal. Appl. 2016:32, 2016.
Equidistribution rates, closed string amplitudes, and the Riemann hypothesis
Cacciatori, S.L.; Cardella, M.
2010-01-01
We study asymptotic relations connecting unipotent averages of Sp(2g,Z) automorphic forms to their integrals over the moduli space of principally polarized abelian varieties. We obtain reformulations of the Riemann hypothesis as a class of problems concerning the computation of the equidistribution
Fractional isoperimetric Noether's theorem in the Riemann-Liouville sense
Frederico, Gastao S F
2012-01-01
We prove Noether-type theorems for fractional isoperimetric variational problems with Riemann-Liouville derivatives. Both Lagrangian and Hamiltonian formulations are obtained. Illustrative examples, in the fractional context of the calculus of variations and optimal control, are discussed in detail.
Time-varying Riemann solvers for conservation laws on networks
Garavello, Mauro; Piccoli, Benedetto
We consider a conservation law on a network and generic Riemann solvers at nodes depending on parameters, which can be seen as control functions. Assuming that the parameters have bounded variation as functions of time, we prove existence of solutions to Cauchy problems on the whole network.
On the conformal geometry of transverse Riemann Lorentz manifolds
Aguirre, E.; Fernández, V.; Lafuente, J.
2007-06-01
Physical reasons suggested in [J.B. Hartle, S.W. Hawking, Wave function of the universe, Phys. Rev. D41 (1990) 1815-1834] for the Quantum Gravity Problem lead us to study type-changing metrics on a manifold. The most interesting cases are Transverse Riemann-Lorentz Manifolds. Here we study the conformal geometry of such manifolds.
An electrostatic depiction of the validity of the Riemann Hypothesis
LeClair, Andre
2013-01-01
We construct a vector field E from the real and imaginary parts of an entire function xi (z) which arises in the quantum statistical mechanics of relativistic gases when the spatial dimension d is analytically continued into the complex z plane. This function is built from the Gamma and Riemann zeta functions and is known to satisfy the functional identity xi (z) = xi (1-z). We describe how this non-trivial identity can be demonstrated using quantum field theory arguments in a cylindrical geometry, where it relates finite temperature black body physics to the Casimir energy on a circle. The vector field E satisfies the conditions for a static electric field. The structure of this "electric field" in the critical strip is determined by its behavior near the Riemann zeros on the critical line Re (z) = 1/2, where each zero can be assigned a plus or minus vorticity of a related pseudo-magnetic field. Using these properties, we show that a hypothetical Riemann zero that is off the critical line leads to a frustrat...
The Riemann zeros as spectrum and the Riemann hypothesis
Sierra, German
2016-01-01
We review a series of works whose aim is to provide a spectral realization of the Riemann zeros and that culminate in a physicist's proof of the Riemann hypothesis. These results are obtained analyzing the spectrum of the Hamiltonian of a massless Dirac fermion in a region of Rindler spacetime that contains moving mirrors whose accelerations are related to the prime numbers. We show that a zero on the critical line becomes an eigenvalue of the Hamiltonian in the limit where the mirrors become transparent, and the self-adjoint extension of the Hamiltonian is adjusted accordingly with the phase of the zeta function. We have also considered the spectral realization of zeros off the critical line using a non self-adjoint operator, but its properties imply that those zeros do not exist. In the derivation of these results we made several assumptions that need to be established more rigorously.
Cattaneo, Carlo
2011-01-01
This title includes: Pham Mau Quam: Problemes mathematiques en hydrodynamique relativiste; A. Lichnerowicz: Ondes de choc, ondes infinitesimales et rayons en hydrodynamique et magnetohydrodynamique relativistes; A.H. Taub: Variational principles in general relativity; J. Ehlers: General relativistic kinetic theory of gases; K. Marathe: Abstract Minkowski spaces as fibre bundles; and, G. Boillat: Sur la propagation de la chaleur en relativite.
Oliveira, Diego F.M., E-mail: diegofregolente@gmail.com [Institute for Multiscale Simulations, Friedrich-Alexander Universität, D-91052, Erlangen (Germany); Leonel, Edson D., E-mail: edleonel@rc.unesp.br [Departamento de Estatística, Matemática Aplicada e Computação, UNESP, Univ. Estadual Paulista, Av. 24A, 1515, Bela Vista, 13506-900, Rio Claro, SP (Brazil); Departamento de Física, UNESP, Univ. Estadual Paulista, Av. 24A, 1515, 13506-900, Rio Claro, SP (Brazil)
2012-11-01
We study some dynamical properties for the problem of a charged particle in an electric field considering both the low velocity and relativistic cases. The dynamics for both approaches is described in terms of a two-dimensional and nonlinear mapping. The structure of the phase spaces is mixed and we introduce a hole in the chaotic sea to let the particles to escape. By changing the size of the hole we show that the survival probability decays exponentially for both cases. Additionally, we show for the relativistic dynamics, that the introduction of dissipation changes the mixed phase space and attractors appear. We study the parameter space by using the Lyapunov exponent and the average energy over the orbit and show that the system has a very rich structure with infinite family of self-similar shrimp shaped embedded in a chaotic region.
Bernhard Riemann, a(rchetypical mathematical-physicist?
Emilio eElizalde
2013-09-01
Full Text Available The work of Bernhard Riemann is discussed under the perspective ofpresent day mathematics and physics, and with a prospective view towards thefuture, too. Against the (unfortunately rather widespread trend---which predominantly dominated national scientific societies in Europe during the last Century---of strictly classifying the work ofscientists with the aim to constrain them to separated domains of knowledge,without any possible interaction among those and often evenfighting against each other (and which, no doubt, was in part responsible forthe decline of European in favor of American science, it will be here argued, using Riemann as a model, archetypical example, that good research transcends any classification.Its uses and applications arguably permeate all domains, subjects and disciplines one can possibly define, to the point that it can be considered to be universally useful.After providing a very concise review of the main publications of Bernhard Riemann on physical problems, some connections between Riemann's papers and contemporary physics will be considered:(i the uses of Riemann's work on the zeta function for devising applications to the regularization of quantum field theories in curved space-time, in particular, of quantum vacuum fluctuations;(ii the uses of the Riemann tensor in general relativity and in recentgeneralizations of this theory, which aim at understanding thepresently observed acceleration of the universe expansion (the dark energy issue.Finally, it will be argued that mathematical physics, which was yet not long ago a model paradigm for interdisciplinary activity---and had a very important pioneering role in this sense---is now quicklybeing surpassed by the extraordinarily fruitful interconnections which seem to pop up from nothing every day and simultaneously involve several disciplines, in the classical sense, including genetics, combinatorics, nanoelectronics, biochemistry, medicine, and even ps
A new relativistic hydrodynamics code for high-energy heavy-ion collisions
Okamoto, Kazuhisa; Akamatsu, Yukinao; Nonaka, Chiho
2016-10-01
We construct a new Godunov type relativistic hydrodynamics code in Milne coordinates, using a Riemann solver based on the two-shock approximation which is stable under the existence of large shock waves. We check the correctness of the numerical algorithm by comparing numerical calculations and analytical solutions in various problems, such as shock tubes, expansion of matter into the vacuum, the Landau-Khalatnikov solution, and propagation of fluctuations around Bjorken flow and Gubser flow. We investigate the energy and momentum conservation property of our code in a test problem of longitudinal hydrodynamic expansion with an initial condition for high-energy heavy-ion collisions. We also discuss numerical viscosity in the test problems of expansion of matter into the vacuum and conservation properties. Furthermore, we discuss how the numerical stability is affected by the source terms of relativistic numerical hydrodynamics in Milne coordinates.
A new relativistic hydrodynamics code for high-energy heavy-ion collisions
Okamoto, Kazuhisa [Nagoya University, Department of Physics, Nagoya (Japan); Akamatsu, Yukinao [Nagoya University, Kobayashi-Maskawa Institute for the Origin of Particles and the Universe (KMI), Nagoya (Japan); Osaka University, Department of Physics, Toyonaka (Japan); Stony Brook University, Department of Physics and Astronomy, Stony Brook, NY (United States); Nonaka, Chiho [Nagoya University, Department of Physics, Nagoya (Japan); Nagoya University, Kobayashi-Maskawa Institute for the Origin of Particles and the Universe (KMI), Nagoya (Japan); Duke University, Department of Physics, Durham, NC (United States)
2016-10-15
We construct a new Godunov type relativistic hydrodynamics code in Milne coordinates, using a Riemann solver based on the two-shock approximation which is stable under the existence of large shock waves. We check the correctness of the numerical algorithm by comparing numerical calculations and analytical solutions in various problems, such as shock tubes, expansion of matter into the vacuum, the Landau-Khalatnikov solution, and propagation of fluctuations around Bjorken flow and Gubser flow. We investigate the energy and momentum conservation property of our code in a test problem of longitudinal hydrodynamic expansion with an initial condition for high-energy heavy-ion collisions. We also discuss numerical viscosity in the test problems of expansion of matter into the vacuum and conservation properties. Furthermore, we discuss how the numerical stability is affected by the source terms of relativistic numerical hydrodynamics in Milne coordinates. (orig.)
A new relativistic hydrodynamics code for high-energy heavy-ion collisions
Okamoto, Kazuhisa; Nonaka, Chiho
2016-01-01
We construct a new Godunov type relativistic hydrodynamics code in Milne coordinates, using a Riemann solver based on the two-shock approximation which is stable under existence of large shock waves. We check the correctness of the numerical algorithm by comparing numerical calculations and analytical solutions in various problems, such as shock tubes, expansion of matter into the vacuum, Landau-Khalatnikov solution, propagation of fluctuations around Bjorken flow and Gubser flow. We investigate the energy and momentum conservation property of our code in a test problem of longitudinal hydrodynamic expansion with an initial condition for high-energy heavy-ion collisions.We also discuss numerical viscosity in the test problems of expansion of matter into the vacuum and conservation properties. Furthermore, we discuss how the numerical stability is affected by the source terms of relativistic numerical hydrodynamics in Milne coordinates.
Algebra of Noncommutative Riemann Surfaces
2006-01-01
We examine several algebraic properties of the noncommutive $z$-plane and Riemann surfaces. The starting point of our investigation is a two-dimensional noncommutative field theory, and the framework of the theory will be converted into that of a complex coordinate system. The basis of noncommutative complex analysis is obtained thoroughly, and the considerations on functional analysis are also given before performing the examination of the conformal mapping and the Teichm\\"{u}ller theory. (K...
The relativistic electro-vortical field—revisiting magneto-genesis and allied problems
Mahajan, Swadesh M.
2016-11-01
Following the idea of MagnetoFluid unification [S. M. Mahajan, Phys. Rev. Lett. 90, 035001 (2003)], a very general Electro-Vortical (EV) field is constructed to describe the dynamics of a perfect relativistic fluid. Structurally similar to the electromagnetic field Fμν , the Electro-Vortical field Mνμ unifies the macroscopic forces into a single grand force that is the weighted sum of the electromagnetic and the inertial/thermal forces. The new effective force may be viewed either as a vortico-thermal generalization of the electromagnetic force or as the electromagnetic generalization of the vortico-thermal forces that a fluid element experiences in course of its evolution. Two fundamental consequences follow from this grand unification: (1) emergences of a new helicity that is conserved for arbitrary thermodynamics and (2) the entire dynamics is formally expressible as an MHD (magnetohydrodynamics) like ideal Ohm's law in which the "electric" and "magnetic" components of the EV field replace the standard electric and magnetic fields. In the light of these more and more encompassing conserved helicities, the "scope and significance" of the classical problem of magneto-genesis (need for a seed field to get a dynamo started) is reexamined. It is shown that in models more advanced than MHD, looking for exotic seed-generation mechanisms (like the baroclinic thermodynamics) should not constitute a fundamental pursuit; the totally ideal dynamics is perfectly capable of generating and sustaining magnetic fields entirely within its own devices. For a specified thermodynamics, a variety of exact and semi exact self-consistent analytical solutions for equilibrium magnetic and flow fields are derived for a single species charged fluid. The scale lengths of the fields are determined by two natural scale lengths: the skin depth and the gradient length of the thermodynamic quantities. Generally, the skin depth, being the shorter (even much shorter) than the gradient length
Riemann equation for prime number diffusion.
Chen, Wen; Liang, Yingjie
2015-05-01
This study makes the first attempt to propose the Riemann diffusion equation to describe in a manner of partial differential equation and interpret in physics of diffusion the classical Riemann method for prime number distribution. The analytical solution of this equation is the well-known Riemann representation. The diffusion coefficient is dependent on natural number, a kind of position-dependent diffusivity diffusion. We find that the diffusion coefficient of the Riemann diffusion equation is nearly a straight line having a slope 0.99734 in the double-logarithmic axis. Consequently, an approximate solution of the Riemann diffusion equation is obtained, which agrees well with the Riemann representation in predicting the prime number distribution. Moreover, we interpret the scale-free property of prime number distribution via a power law function with 1.0169 the scale-free exponent in respect to logarithmic transform of the natural number, and then the fractal characteristic of prime number distribution is disclosed.
MALFLIET, R
1993-01-01
We discuss the present status of relativistic transport theory. Special emphasis is put on problems of topical interest: hadronic features, thermodynamical consistent approximations and spectral properties.
Physical interpretation of the Riemann hypothesis
Pozdnyakov, Dmitry
2012-01-01
An equivalent formulation of the Riemann hypothesis is given. The formulation is generalized. The physical interpretation of the Riemann hypothesis generalized formulation is given in the framework of quantum theory terminology. An axiom is laid down on the ground of the interpretation taking into account the observed properties of the surrounding reality. The Riemann hypothesis is true according to the axiom. It is shown that it is unprovable.
Garcia-Perciante, A L; Brun-Battistini, D; Sandoval-Villalbazo, A
2014-01-01
Extended theories are widely used in the literature to describe relativistic fluids. The motivation for this is mostly due to the causality issues allegedly present in the first order in the gradients theories. However, the decay of fluctuations in the system is also at stake when first order theories that couple heat with acceleration are used. This paper shows that although the introduction of the Maxwell-Cattaneo equation in the description of a simple relativistic fluid formally eliminates the generic instabilities identified by Hiscock and Lindblom in 1985, the hypothesis on the order of magnitude of the corresponding relaxation term contradicts the basic ordering in Knudsen's parameter present in the kinetic approach to hydrodynamics. It is shown that the time derivative, stabilizing term is of second order in such parameter and thus does not belong to the Navier-Stokes regime where the so-called instability arises.
Approximate Riemann solvers for the cosmic ray magnetohydrodynamical equations
Kudoh, Yuki; Hanawa, Tomoyuki
2016-11-01
We analyse the cosmic ray magnetohydrodynamic (CR MHD) equations to improve the numerical simulations. We propose to solve them in the fully conservation form, which is equivalent to the conventional CR MHD equations. In the fully conservation form, the CR energy equation is replaced with the CR `number' conservation, where the CR number density is defined as the three-fourths power of the CR energy density. The former contains an extra source term, while latter does not. An approximate Riemann solver is derived from the CR MHD equations in the fully conservation form. Based on the analysis, we propose a numerical scheme of which solutions satisfy the Rankine-Hugoniot relation at any shock. We demonstrate that it reproduces the Riemann solution derived by Pfrommer et al. for a 1D CR hydrodynamic shock tube problem. We compare the solution with those obtained by solving the CR energy equation. The latter solutions deviate from the Riemann solution seriously, when the CR pressure dominates over the gas pressure in the post-shocked gas. The former solutions converge to the Riemann solution and are of the second-order accuracy in space and time. Our numerical examples include an expansion of high-pressure sphere in a magnetized medium. Fast and slow shocks are sharply resolved in the example. We also discuss possible extension of the CR MHD equations to evaluate the average CR energy.
Quantum Graphs Whose Spectra Mimic the Zeros of the Riemann Zeta Function
Kuipers, Jack; Hummel, Quirin; Richter, Klaus
2014-02-01
One of the most famous problems in mathematics is the Riemann hypothesis: that the nontrivial zeros of the Riemann zeta function lie on a line in the complex plane. One way to prove the hypothesis would be to identify the zeros as eigenvalues of a Hermitian operator, many of whose properties can be derived through the analogy to quantum chaos. Using this, we construct a set of quantum graphs that have the same oscillating part of the density of states as the Riemann zeros, offering an explanation of the overall minus sign. The smooth part is completely different, and hence also the spectrum, but the graphs pick out the low-lying zeros.
Quantum graphs whose spectra mimic the zeros of the Riemann zeta function.
Kuipers, Jack; Hummel, Quirin; Richter, Klaus
2014-02-21
One of the most famous problems in mathematics is the Riemann hypothesis: that the nontrivial zeros of the Riemann zeta function lie on a line in the complex plane. One way to prove the hypothesis would be to identify the zeros as eigenvalues of a Hermitian operator, many of whose properties can be derived through the analogy to quantum chaos. Using this, we construct a set of quantum graphs that have the same oscillating part of the density of states as the Riemann zeros, offering an explanation of the overall minus sign. The smooth part is completely different, and hence also the spectrum, but the graphs pick out the low-lying zeros.
From Veneziano to Riemann: A String Theory Statement of the Riemann Hypothesis
He, Yang-Hui; Minic, Djordje
2015-01-01
We discuss a precise relation between the Veneziano amplitude of string theory, rewritten in terms of ratios of the Riemann zeta function, and two elementary criteria for the Riemann hypothesis formulated in terms of integrals of the logarithm and the argument of the zeta function. We also discuss how the integral criterion based on the argument of the Riemann zeta function relates to the Li criterion for the Riemann hypothesis. We provide a new generalization of this integral criterion. Finally, we comment on the physical interpretation of our recasting of the Riemann hypothesis in terms of the Veneziano amplitude.
From Veneziano to Riemann: A string theory statement of the Riemann hypothesis
He, Yang-Hui; Jejjala, Vishnu; Minic, Djordje
2016-12-01
We discuss a precise relation between the Veneziano amplitude of string theory, rewritten in terms of ratios of the Riemann zeta function, and two elementary criteria for the Riemann hypothesis formulated in terms of integrals of the logarithm and the argument of the zeta function. We also discuss how the integral criterion based on the argument of the Riemann zeta function relates to the Li criterion for the Riemann hypothesis. We provide a new generalization of this integral criterion. Finally, we comment on the physical interpretation of our recasting of the Riemann hypothesis in terms of the Veneziano amplitude.
Random matrices and Riemann hypothesis
Pierre, Christian
2011-01-01
The curious connection between the spacings of the eigenvalues of random matrices and the corresponding spacings of the non trivial zeros of the Riemann zeta function is analyzed on the basis of the geometric dynamical global program of Langlands whose fundamental structures are shifted quantized conjugacy class representatives of bilinear algebraic semigroups.The considered symmetry behind this phenomenology is the differential bilinear Galois semigroup shifting the product,right by left,of automorphism semigroups of cofunctions and functions on compact transcendental quanta.
Functionals of finite Riemann surfaces
Schiffer, Menahem
2014-01-01
This advanced monograph on finite Riemann surfaces, based on the authors' 1949-50 lectures at Princeton University, remains a fundamental book for graduate students. The Bulletin of the American Mathematical Society hailed the self-contained treatment as the source of ""a plethora of ideas, each interesting in its own right,"" noting that ""the patient reader will be richly rewarded."" Suitable for graduate-level courses, the text begins with three chapters that offer a development of the classical theory along historical lines, examining geometrical and physical considerations, existence theo
Gauge Theories, Tessellations & Riemann Surfaces
He, Yang-Hui
2014-01-01
We study and classify regular and semi-regular tessellations of Riemann surfaces of various genera and investigate their corresponding supersymmetric gauge theories. These tessellations are generalizations of brane tilings, or bipartite graphs on the torus as well as the Platonic and Archimedean solids on the sphere. On higher genus they give rise to intricate patterns. Special attention will be paid to the master space and the moduli space of vacua of the gauge theory and to how their geometry is determined by the tessellations.
Gauge theories, tessellations & Riemann surfaces
He, Yang-Hui [Department of Mathematics, City University,London, EC1V 0HB (United Kingdom); School of Physics, NanKai University,Tianjin, 300071 (China); Merton College, University of Oxford,Oxford, OX1 4JD (United Kingdom); Loon, Mark van [Merton College, University of Oxford,Oxford, OX1 4JD (United Kingdom)
2014-06-10
We study and classify regular and semi-regular tessellations of Riemann surfaces of various genera and investigate their corresponding supersymmetric gauge theories. These tessellations are generalizations of brane tilings, or bipartite graphs on the torus as well as the Platonic and Archimedean solids on the sphere. On higher genus they give rise to intricate patterns. Special attention will be paid to the master space and the moduli space of vacua of the gauge theory and to how their geometry is determined by the tessellations.
Riemann pendulum in free fall systems
Fargion, Daniele
2016-07-01
The possible detection in space and in different free fall system of the tidal effects via a Riemann pendulum rate, is considered. The possibility to perform such an experiment for educational purpouse by a Moire' or Holographic double exposure detection is described. The International Space Station may obtain high quality test of 3D Riemann pendulum effects.
Riemann zeta function is a fractal
Woon, S C
1994-01-01
Voronin's theorem on the "Universality" of Riemann zeta function is shown to imply that Riemann zeta function is a fractal (in the sense that Mandelbrot set is a fractal) and a concrete "representation" of the "giant book of theorems'' that Paul Halmos referred to.
Bishop-Runge approximations and inversion of a Riemann-Klein theorem
Henkin, G. M.; Michel, V.
2015-02-01
In this paper we give results about projective embeddings of Riemann surfaces, smooth or nodal, which we apply to the inverse Dirichlet-to-Neumann problem and to the inversion of a Riemann-Klein theorem. To produce useful embeddings, we adapt a technique of Bishop in the open bordered case and use a Runge-type harmonic approximation theorem in the compact case. Bibliography: 37 titles.
The special relativistic shock tube
Thompson, Kevin W.
1986-01-01
The shock-tube problem has served as a popular test for numerical hydrodynamics codes. The development of relativistic hydrodynamics codes has created a need for a similar test problem in relativistic hydrodynamics. The analytical solution to the special relativistic shock-tube problem is presented here. The relativistic shock-jump conditions and rarefaction solution which make up the shock tube are derived. The Newtonian limit of the calculations is given throughout.
Relativistic quantum mechanics
Wachter, Armin
2010-01-01
Which problems do arise within relativistic enhancements of the Schrödinger theory, especially if one adheres to the usual one-particle interpretation, and to what extent can these problems be overcome? And what is the physical necessity of quantum field theories? In many books, answers to these fundamental questions are given highly insufficiently by treating the relativistic quantum mechanical one-particle concept very superficially and instead introducing field quantization as soon as possible. By contrast, this monograph emphasizes relativistic quantum mechanics in the narrow sense: it extensively discusses relativistic one-particle concepts and reveals their problems and limitations, therefore motivating the necessity of quantized fields in a physically comprehensible way. The first chapters contain a detailed presentation and comparison of the Klein-Gordon and Dirac theory, always in view of the non-relativistic theory. In the third chapter, we consider relativistic scattering processes and develop the...
Riemann hypothesis and quantum mechanics
Planat, Michel; Solé, Patrick; Omar, Sami
2011-04-01
In their 1995 paper, Jean-Benoît Bost and Alain Connes (BC) constructed a quantum dynamical system whose partition function is the Riemann zeta function ζ(β), where β is an inverse temperature. We formulate Riemann hypothesis (RH) as a property of the low-temperature Kubo-Martin-Schwinger (KMS) states of this theory. More precisely, the expectation value of the BC phase operator can be written as \\phi _{\\beta }(q)=N_{q-1}^{\\beta -1} \\psi _{\\beta -1}(N_q), where Nq = ∏qk = 1pk is the primorial number of order q and ψb is a generalized Dedekind ψ function depending on one real parameter b as \\psi _b (q)=q \\prod _{p \\in {P,}p \\vert q}\\frac{1-1/p^b}{1-1/p}. Fix a large inverse temperature β > 2. The RH is then shown to be equivalent to the inequality N_q |\\phi _\\beta (N_q)|\\zeta (\\beta -1) \\gt e^\\gamma log log N_q, for q large enough. Under RH, extra formulas for high-temperature KMS states (1.5 < β < 2) are derived. 'Number theory is not pure Mathematics. It is the Physics of the world of Numbers.' Alf van der Poorten
Haba, Z
2009-02-01
We discuss relativistic diffusion in proper time in the approach of Schay (Ph.D. thesis, Princeton University, Princeton, NJ, 1961) and Dudley [Ark. Mat. 6, 241 (1965)]. We derive (Langevin) stochastic differential equations in various coordinates. We show that in some coordinates the stochastic differential equations become linear. We obtain momentum probability distribution in an explicit form. We discuss a relativistic particle diffusing in an external electromagnetic field. We solve the Langevin equations in the case of parallel electric and magnetic fields. We derive a kinetic equation for the evolution of the probability distribution. We discuss drag terms leading to an equilibrium distribution. The relativistic analog of the Ornstein-Uhlenbeck process is not unique. We show that if the drag comes from a diffusion approximation to the master equation then its form is strongly restricted. The drag leading to the Tsallis equilibrium distribution satisfies this restriction whereas the one of the Jüttner distribution does not. We show that any function of the relativistic energy can be the equilibrium distribution for a particle in a static electric field. A preliminary study of the time evolution with friction is presented. It is shown that the problem is equivalent to quantum mechanics of a particle moving on a hyperboloid with a potential determined by the drag. A relation to diffusions appearing in heavy ion collisions is briefly discussed.
The Invar tensor package: Differential invariants of Riemann
Martín-García, J. M.; Yllanes, D.; Portugal, R.
2008-10-01
The long standing problem of the relations among the scalar invariants of the Riemann tensor is computationally solved for all 6ṡ10 objects with up to 12 derivatives of the metric. This covers cases ranging from products of up to 6 undifferentiated Riemann tensors to cases with up to 10 covariant derivatives of a single Riemann. We extend our computer algebra system Invar to produce within seconds a canonical form for any of those objects in terms of a basis. The process is as follows: (1) an invariant is converted in real time into a canonical form with respect to the permutation symmetries of the Riemann tensor; (2) Invar reads a database of more than 6ṡ10 relations and applies those coming from the cyclic symmetry of the Riemann tensor; (3) then applies the relations coming from the Bianchi identity, (4) the relations coming from commutations of covariant derivatives, (5) the dimensionally-dependent identities for dimension 4, and finally (6) simplifies invariants that can be expressed as product of dual invariants. Invar runs on top of the tensor computer algebra systems xTensor (for Mathematica) and Canon (for Maple). Program summaryProgram title:Invar Tensor Package v2.0 Catalogue identifier:ADZK_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADZK_v2_0.html Program obtainable from:CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions:Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.:3 243 249 No. of bytes in distributed program, including test data, etc.:939 Distribution format:tar.gz Programming language:Mathematica and Maple Computer:Any computer running Mathematica versions 5.0 to 6.0 or Maple versions 9 and 11 Operating system:Linux, Unix, Windows XP, MacOS RAM:100 Mb Word size:64 or 32 bits Supplementary material:The new database of relations is much larger than that for the previous version and therefore has not been included in
On the Infrared Problem for the Dressed Non-Relativistic Electron in a Magnetic Field
Amour, Laurent; Grebert, Benoit; Guillot, Jean-Claude
2008-01-01
We consider a non-relativistic electron interacting with a classical magnetic field pointing along the $x_3$-axis and with a quantized electromagnetic field. The system is translation invariant in the $x_3$-direction and we consider the reduced Hamiltonian $H(P_3)$ associated with the total momentum $P_3$ along the $x_3$-axis. For a fixed momentum $P_3$ sufficiently small, we prove that $H(P_3)$ has a ground state in the Fock representation if and only if $E'(P_3)=0$, where $P_3 \\mapsto E'(P_3)$ is the derivative of the map $P_3 \\mapsto E(P_3) = \\inf \\sigma (H(P_3))$. If $E'(P_3) \
Darwin-Riemann Problems in Newtonian Gravity
Eriguchi, Y; Eriguchi, Yoshiharu; Uryu, Koji
1999-01-01
In this paper, we have reviewed the present status of the theory of equilibrium configurations of compact binary star systems in Newtonian gravity. Evolutionary processes of compact binary star systems due to gravitational wave emission can be divided into three stages according to the time scales and configurations. The evolution is quasi-stationary until a merging process starts, since the time scale of the orbital change due to gravitational wave emission is longer than the orbital period. In this stage, equilibrium sequences can be applied to evolution of compact binary star systems. Along the equilibrium sequences, there appear several critical states where some instability sets in or configuration changes drastically. We have discussed relations among these critical points and have stressed the importance of the mass overflow as well as the dynamical instability of orbital motions. Concerning the equilibrium sequences of binary star systems, we have summarized classical results of incompressible ellipso...
Relativistic Flows Using Spatial and Temporal Adaptive Structured Mesh Refinement. I. Hydrodynamics
Wang, Peng; Zhang, Weiqun
2007-01-01
Astrophysical relativistic flow problems require high resolution three-dimensional numerical simulations. In this paper, we describe a new parallel three-dimensional code for simulations of special relativistic hydrodynamics (SRHD) using both spatially and temporally structured adaptive mesh refinement (AMR). We used method of lines to discrete SRHD equations spatially and used a total variation diminishing (TVD) Runge-Kutta scheme for time integration. For spatial reconstruction, we have implemented piecewise linear method (PLM), piecewise parabolic method (PPM), third order convex essentially non-oscillatory (CENO) and third and fifth order weighted essentially non-oscillatory (WENO) schemes. Flux is computed using either direct flux reconstruction or approximate Riemann solvers including HLL, modified Marquina flux, local Lax-Friedrichs flux formulas and HLLC. The AMR part of the code is built on top of the cosmological Eulerian AMR code {\\sl enzo}, which uses the Berger-Colella AMR algorithm and is parall...
A Shock-Patching Code for Ultra-Relativistic Fluid Flows
Wen, L; Laguna, P
1996-01-01
We have developed a one-dimensional code to solve ultra-relativistic hydrodynamic problems, using the Glimm method for an accurate treatment of shocks and contact discontinuities. The implementation of the Glimm method is based on an exact Riemann solver and van der Corput sampling sequence. In order to improve computational efficiency, the Glimm method is replaced by a finite differencing scheme in those regions where the fluid flow is sufficiently smooth. The accuracy and convergence of this hybrid method is investigated in tests involving planar, cylindrically and spherically symmetric flows that exhibit strong shocks and Lorentz factors of up to $\\sim 2000$. This hybrid code has proven to be successful in simulating the interaction between a thin, ultra-relativistic, spherical shell and a low density stationary medium, a situation likely to appear in Gamma-Ray Bursts, supernovae explosions, pulsar winds and AGNs.
RAISHIN: A High-Resolution Three-Dimensional General Relativistic Magnetohydrodynamics Code
Mizuno, Y; Koide, S; Hardee, P; Fishman, G J; Mizuno, Yosuke; Nishikawa, Ken-Ichi; Koide, Shinji; Hardee, Philip; Fishman, Gerald J.
2006-01-01
We have developed a new three-dimensional general relativistic magnetohydrodynamic (GRMHD) code, RAISHIN, using a conservative, high resolution shock-capturing scheme. The numerical fluxes are calculated using the Harten, Lax, & van Leer (HLL) approximate Riemann solver scheme. The flux-interpolated, constrained transport scheme is used to maintain a divergence-free magnetic field. In order to examine the numerical accuracy and the numerical efficiency, the code uses four different reconstruction methods: piecewise linear methods with Minmod and MC slope-limiter function, convex essentially non-oscillatory (CENO) method, and piecewise parabolic method (PPM) using multistep TVD Runge-Kutta time advance methods with second and third-order time accuracy. We describe code performance on an extensive set of test problems in both special and general relativity. Our new GRMHD code has proven to be accurate in second order and has successfully passed with all tests performed, including highly relativistic and mag...
RAISHIN: A High-Resolution Three-Dimensional General Relativistic Magnetohydrodynamics Code
Mizuno, Yosuke; Nishikawa, Ken-Ichi; Koide, Shinji; Hardee, Philip; Fishman, Gerald J.
2006-01-01
We have developed a new three-dimensional general relativistic magnetohydrodynamic (GRMHD) code, RAISHIN, using a conservative, high resolution shock-capturing scheme. The numerical fluxes are calculated using the Harten, Lax, & van Leer (HLL) approximate Riemann solver scheme. The flux-interpolated, constrained transport scheme is used to maintain a divergence-free magnetic field. In order to examine the numerical accuracy and the numerical efficiency, the code uses four different reconstruction methods: piecewise linear methods with Minmod and MC slope-limiter function, convex essentially non-oscillatory (CENO) method, and piecewise parabolic method (PPM) using multistep TVD Runge-Kutta time advance methods with second and third-order time accuracy. We describe code performance on an extensive set of test problems in both special and general relativity. Our new GRMHD code has proven to be accurate in second order and has successfully passed with all tests performed, including highly relativistic and magnetized cases in both special and general relativity.
Riemann solvers and Alfven waves in black hole magnetospheres
Punsly, Brian; Balsara, Dinshaw; Kim, Jinho; Garain, Sudip
2016-09-01
In the magnetosphere of a rotating black hole, an inner Alfven critical surface (IACS) must be crossed by inflowing plasma. Inside the IACS, Alfven waves are inward directed toward the black hole. The majority of the proper volume of the active region of spacetime (the ergosphere) is inside of the IACS. The charge and the totally transverse momentum flux (the momentum flux transverse to both the wave normal and the unperturbed magnetic field) are both determined exclusively by the Alfven polarization. Thus, it is important for numerical simulations of black hole magnetospheres to minimize the dissipation of Alfven waves. Elements of the dissipated wave emerge in adjacent cells regardless of the IACS, there is no mechanism to prevent Alfvenic information from crossing outward. Thus, numerical dissipation can affect how simulated magnetospheres attain the substantial Goldreich-Julian charge density associated with the rotating magnetic field. In order to help minimize dissipation of Alfven waves in relativistic numerical simulations we have formulated a one-dimensional Riemann solver, called HLLI, which incorporates the Alfven discontinuity and the contact discontinuity. We have also formulated a multidimensional Riemann solver, called MuSIC, that enables low dissipation propagation of Alfven waves in multiple dimensions. The importance of higher order schemes in lowering the numerical dissipation of Alfven waves is also catalogued.
ZHANG Peng-Fei; RUAN Tu-Nan
2001-01-01
A systematic theory on the appropriate spin operators for the relativistic states is developed. For a massive relativistic particle with arbitrary nonzero spin, the spin operator should be replaced with the relativistic one, which is called in this paper as moving spin. Further the concept of moving spin is discussed in the quantum field theory. A new is constructed. It is shown that, in virtue of the two operators, problems in quantum field concerned spin can be neatly settled.
Landau levels and Riemann zeros.
Sierra, Germán; Townsend, Paul K
2008-09-12
The number N(E) of complex zeros of the Riemann zeta function with positive imaginary part less than E is the sum of a "smooth" function N[over ](E) and a "fluctuation." Berry and Keating have shown that the asymptotic expansion of N[over ](E) counts states of positive energy less than E in a "regularized" semiclassical model with classical Hamiltonian H=xp. For a different regularization, Connes has shown that it counts states "missing" from a continuum. Here we show how the "absorption spectrum" model of Connes emerges as the lowest Landau level limit of a specific quantum-mechanical model for a charged particle on a planar surface in an electric potential and uniform magnetic field. We suggest a role for the higher Landau levels in the fluctuation part of N(E).
José Manuel Sánchez Muñoz
2011-10-01
Full Text Available En el mes de noviembre de 1859, durante la presentación mensual de losinformes de la Academia de Berlín, el alemán Bernhard Riemann presentóun trabajo que cambiaría los designios futuros de la ciencia matemática. El tema central de su informe se centraba en los números primos, presentando el que hoy día, una vez demostrada la Conjetura de Poincaré, puede ser considerado el problema matemático abierto más importante. El presente artículo muestra en su tercera sección una traducción al castellano de dicho trabajo.
Landau levels and Riemann zeros
Sierra, German
2008-01-01
The number $N(E)$ of complex zeros of the Riemann zeta function with positive imaginary part less than $E$ is the sum of a `smooth' function $\\bar N(E)$ and a `fluctuation'. Berry and Keating have shown that the asymptotic expansion of $\\bar N(E)$ counts states of positive energy less than $E$ in a `regularized' semi-classical model with classical Hamiltonian $H=xp$. For a different regularization, Connes has shown that it counts states `missing' from a continuum. Here we show how the `absorption spectrum' model of Connes emerges as the lowest Landau level limit of a specific quantum mechanical model for a charged particle on a planar surface in an electric potential and uniform magnetic field. We suggest a role for the higher Landau levels in the fluctuation part of $N(E)$.
A Riemann-Hilbert approach to rotating attractors
Câmara, M. C.; Cardoso, G. L.; Mohaupt, T.; Nampuri, S.
2017-06-01
We construct rotating extremal black hole and attractor solutions in gravity theories by solving a Riemann-Hilbert problem associated with the Breitenlohner-Maison linear system. By employing a vectorial Riemann-Hilbert factorization method we explicitly factorize the corresponding monodromy matrices, which have second order poles in the spectral parameter. In the underrotating case we identify elements of the Geroch group which implement Harrison-type transformations which map the attractor geometries to interpolating rotating black hole solutions. The factorization method we use yields an explicit solution to the linear system, from which we do not only obtain the spacetime solution, but also an explicit expression for the master potential encoding the potentials of the infinitely many conserved currents which make this sector of gravity integrable.
On the Physics of the Riemann Zeros
He, Yang-Hui; Jejjala, Vishnu; Minic, Djordje
2013-12-01
We discuss a formal derivation of an integral expression for the Li coefficients associated with the Riemann ξ-function which, in particular, indicates that their positivity criterion is obeyed, whereby entailing the criticality of the non-trivial zeros. We conjecture the validity of this and related expressions without the need for the Riemann Hypothesis and discuss a physical interpretation of this result within the Hilbert-Pólya approach. In this context we also outline a relation between string theory and the Riemann Hypothesis.
On the Physics of the Riemann Zeros
He, Yang-Hui; Minic, Djordje
2010-01-01
We discuss a formal derivation of an integral expression for the Li coefficients associated with the Riemann xi-function which, in particular, indicates that their positivity criterion is obeyed, whereby entailing the criticality of the non-trivial zeros. We conjecture the validity of this and related expressions without the need for the Riemann Hypothesis and discuss a physical interpretation of this result within the Hilbert-Polya approach. In this context we also outline a relation between string theory and the Riemann Hypothesis.
Submaximal Riemann-Roch expected curves and symplectic packing.
Wioletta Syzdek
2007-06-01
Full Text Available We study Riemann-Roch expected curves on $mathbb{P}^1 imes mathbb{P}^1$ in the context of the Nagata-Biran conjecture. This conjecture predicts that for sufficiently large number of points multiple points Seshadri constants of an ample line bundle on algebraic surface are maximal. Biran gives an effective lower bound $N_0$. We construct examples verifying to the effect that the assertions of the Nagata-Biran conjecture can not hold for small number of points. We discuss cases where our construction fails. We observe also that there exists a strong relation between Riemann-Roch expected curves on $mathbb{P}^1 imes mathbb{P}^1$ and the symplectic packing problem. Biran relates the packing problem to the existence of solutions of certain Diophantine equations. We construct such solutions for any ample line bundle on $mathbb{P}^1 imes mathbb{P}^1$ and a relatively smallnumber of points. The solutions geometrically correspond to Riemann-Roch expected curves. Finally we discuss in how far the Biran number $N_0$ is optimal in the case of mathbb{P}^1 imes mathbb{P}^1. In fact we conjecture that it can be replaced by a lower number and we provide evidence justifying this conjecture.
Quadrature-based Lattice Boltzmann Model for Relativistic Flows
Blaga, Robert
2016-01-01
A quadrature-based finite-difference lattice Boltzmann model is developed that is suitable for simulating relativistic flows of massless particles. We briefly review the relativistc Boltzmann equation and present our model. The quadrature is constructed such that the stress-energy tensor is obtained as a second order moment of the distribution function. The results obtained with our model are presented for a particular instance of the Riemann problem (the Sod shock tube). We show that the model is able to accurately capture the behavior across the whole domain of relaxation times, from the hydrodynamic to the ballistic regime. The property of the model of being extendable to arbitrarily high orders is shown to be paramount for the recovery of the analytical result in the ballistic regime.
An efficient solver for large structured eigenvalue problems in relativistic quantum chemistry
Shiozaki, Toru
2015-01-01
We report an efficient program for computing the eigenvalues and symmetry-adapted eigenvectors of very large quaternionic (or Hermitian skew-Hamiltonian) matrices, using which structure-preserving diagonalization of matrices of dimension N > 10000 is now routine on a single computer node. Such matrices appear frequently in relativistic quantum chemistry owing to the time-reversal symmetry. The implementation is based on a blocked version of the Paige-Van Loan algorithm [D. Kressner, BIT 43, 775 (2003)], which allows us to use the Level 3 BLAS subroutines for most of the computations. Taking advantage of the symmetry, the program is faster by up to a factor of two than state-of-the-art implementations of complex Hermitian diagonalization; diagonalizing a 12800 x 12800 matrix took 42.8 (9.5) and 85.6 (12.6) minutes with 1 CPU core (16 CPU cores) using our symmetry-adapted solver and Intel MKL's ZHEEV that is not structure-preserving, respectively. The source code is publicly available under the FreeBSD license.
Nonholonomic mapping theory of autoparallel motions in Riemann-Cartan space
无
2010-01-01
The method of nonholonomic mapping is utilized to construct a Riemann-Cartan space embedded into a known Riemann-Cartan space,which includes two special cases that a Weitzenbck space and a Riemann-Cartan space are respectively embedded into a Euclidean space and a Riemann space.By means of this mapping theory,the nonholonomic corresponding relation between the autoparallels of two Riemman-Cartan spaces is investigated.In particular,an autoparallel in a Riemann-Cartan space can be mapped into a geodesic line in a Riemann space and an autoparallel in Weitzenbck space be mapped into a geodesic line in Euclidean space.Based on the Lagrange-d’Alembert principle,the equations of motion for dynamical systems in Riemman-Cartan space should be autoparallel equations of the space.As applications,the problem of autoparallel motion of spinless particles,Chaplygin’s nonholonomic systems and a rigid body rotating with a fixed point are investigated in space with torsion.
Some Sufficient Conditions for the Riemann hypothesis
Gil, Choe Ryong
2012-01-01
The Riemann hypothesis (RH) is well known. In this paper we would show some sufficient conditions for the RH. The first condition is related with the sum of divisors function and another one is related with the Chebyshev's function.
Dessins d'enfants on Riemann surfaces
Jones, Gareth A
2016-01-01
This volume provides an introduction to dessins d'enfants and embeddings of bipartite graphs in compact Riemann surfaces. The first part of the book presents basic material, guiding the reader through the current field of research. A key point of the second part is the interplay between the automorphism groups of dessins and their Riemann surfaces, and the action of the absolute Galois group on dessins and their algebraic curves. It concludes by showing the links between the theory of dessins and other areas of arithmetic and geometry, such as the abc conjecture, complex multiplication and Beauville surfaces. Dessins d'Enfants on Riemann Surfaces will appeal to graduate students and all mathematicians interested in maps, hypermaps, Riemann surfaces, geometric group actions, and arithmetic.
A physics pathway to the Riemann hypothesis
Sierra, German
2010-01-01
We present a brief review of the spectral approach to the Riemann hypothesis, according to which the imaginary part of the non trivial zeros of the zeta function are the eigenvalues of the Hamiltonian of a quantum mechanical system.
Fredholm Composition Operators on Riemann Surfaces
Guang Fu CAO
2005-01-01
It is proved that the invertibility of a composition operator on the differential form space for a Riemann surface is equivalent to its Fredholmness. In addition, the Fredholmness of weighted composition operators is discussed.
Relativistic gravity gradiometry
Bini, Donato; Mashhoon, Bahram
2016-12-01
In general relativity, relativistic gravity gradiometry involves the measurement of the relativistic tidal matrix, which is theoretically obtained from the projection of the Riemann curvature tensor onto the orthonormal tetrad frame of an observer. The observer's 4-velocity vector defines its local temporal axis and its local spatial frame is defined by a set of three orthonormal nonrotating gyro directions. The general tidal matrix for the timelike geodesics of Kerr spacetime has been calculated by Marck [Proc. R. Soc. A 385, 431 (1983)]. We are interested in the measured components of the curvature tensor along the inclined "circular" geodesic orbit of a test mass about a slowly rotating astronomical object of mass M and angular momentum J . Therefore, we specialize Marck's results to such a "circular" orbit that is tilted with respect to the equatorial plane of the Kerr source. To linear order in J , we recover the gravitomagnetic beating phenomenon [B. Mashhoon and D. S. Theiss, Phys. Rev. Lett. 49, 1542 (1982)], where the beat frequency is the frequency of geodetic precession. The beat effect shows up as a special long-period gravitomagnetic part of the relativistic tidal matrix; moreover, the effect's short-term manifestations are contained in certain post-Newtonian secular terms. The physical interpretation of this effect is briefly discussed.
A robust HLLC-type Riemann solver for strong shock
Shen, Zhijun; Yan, Wei; Yuan, Guangwei
2016-03-01
It is well known that for the Eulerian equations the numerical schemes that can accurately capture contact discontinuity usually suffer from some disastrous carbuncle phenomenon, while some more dissipative schemes, such as the HLL scheme, are free from this kind of shock instability. Hybrid schemes to combine a dissipative flux with a less dissipative flux can cure the shock instability, but also may lead to other problems, such as certain arbitrariness of choosing switching parameters or contact interface becoming smeared. In order to overcome these drawbacks, this paper proposes a simple and robust HLLC-type Riemann solver for inviscid, compressible gas flows, which is capable of preserving sharp contact surface and is free from instability. The main work is to construct a HLL-type Riemann solver and a HLLC-type Riemann solver by modifying the shear viscosity of the original HLL and HLLC methods. Both of the two new schemes are positively conservative under some typical wavespeed estimations. Moreover, a linear matrix stability analysis for the proposed schemes is accomplished, which illustrates the HLLC-type solver with shear viscosity is stable whereas the HLL-type solver with vorticity wave is unstable. Our arguments and numerical experiments demonstrate that the inadequate dissipation associated to the shear wave may be a unique reason to cause the instability.
Approximate Riemann Solvers for the Cosmic Ray Magnetohydrodynamical Equations
Kudoh, Yuki
2016-01-01
We analyze the cosmic-ray magnetohydrodynamic (CR MHD) equations to improve the numerical simulations. We propose to solve them in the fully conservation form, which is equivalent to the conventional CR MHD equations. In the fully conservation form, the CR energy equation is replaced with the CR "number" conservation, where the CR number density is defined as the three fourths power of the CR energy density. The former contains an extra source term, while latter does not. An approximate Riemann solver is derived from the CR MHD equations in the fully conservation form. Based on the analysis, we propose a numerical scheme of which solutions satisfy the Rankine-Hugoniot relation at any shock. We demonstrate that it reproduces the Riemann solution derived by Pfrommer et al. (2006) for a 1D CR hydrodynamic shock tube problem. We compare the solution with those obtained by solving the CR energy equation. The latter solutions deviate from the Riemann solution seriously, when the CR pressure dominates over the gas p...
Formulation of the Relativistic Quantum Hall Effect and "Parity Anomaly"
Yonaga, Kouki; Shibata, Naokazu
2016-01-01
We present a relativistic formulation of the quantum Hall effect on a Riemann sphere. An explicit form of the pseudopotential is derived for the relativistic quantum Hall effect with/without mass term.We clarify particular features of the relativistic quantum Hall states with use of the exact diagonalization study of the pseudopotential Hamiltonian. Physical effects of the mass term to relativistic quantum Hall states are investigated in detail.The mass term acts as an interporating parameter between the relativistic and non-relativistic quantum Hall effects. It is pointed out that the mass term inequivalently affects to many-body physics of the positive and negative Landau levels and brings instability of the Laughlin state of the positive first relativistic Landau level as a consequence of the "parity anomaly".
Unified derivation of exact solutions to the relativistic Coulomb problem: Lie algebraic approach
Panahi, H.; Baradaran, M.; Savadi, A.
2015-10-01
Exact algebraic solutions of the D-dimensional Dirac and Klein-Gordon equations for the Coulomb potential are obtained in a unified treatment. It is shown that two cases are reducible to the same basic equation, which can be solved exactly. Using the Lie algebraic approach, the general exact solutions of the problem are obtained within the framework of representation theory of the sl(2) Lie algebra.
Inverse Scattering Transform of the Coupled Sasa-Satsuma Equation by Riemann-Hilbert Approach
Wu, Jian-Ping; Geng, Xian-Guo
2017-05-01
The inverse scattering transform of a coupled Sasa-Satsuma equation is studied via Riemann-Hilbert approach. Firstly, the spectral analysis is performed for the coupled Sasa-Satsuma equation, from which a Riemann-Hilbert problem is formulated. Then the Riemann-Hilbert problem corresponding to the reflection-less case is solved. As applications, multi-soliton solutions are obtained for the coupled Sasa-Satsuma equation. Moreover, some figures are given to describe the soliton behaviors, including breather types, single-hump solitons, double-hump solitons, and two-bell solitons. Supported by the National Natural Science Foundation of China under Project Nos. 11331008 and 11171312 and the Collaborative Innovation Center for Aviation Economy Development of Henan Province
The post-Keplerian orbital representations of the relativistic two-body problem
Klioner, S. A.; Kopeikin, S. M.
1994-06-01
Orbital parameterizations of the relativstic two-body problem due to Brumberg, Damour-Deruelle, Epstein-Haugan, and Blandford-Teukolsky as well as osculating elements are compared. Exact relations between constants describing the orbit in the parameterizations are derived. It is shown that all the parameterizations in question are valid not only in general relativity, but in a generic class of relatvistic theories of gravity. The obtained results provide us with an additional check of consistency of different models used in timing of binary pulsars.
Marcos Moshinsky
2007-11-01
Full Text Available A direct procedure for determining the propagator associated with a quantum mechanical problem was given by the Path Integration Procedure of Feynman. The Green function, which is the Fourier Transform with respect to the time variable of the propagator, can be derived later. In our approach, with the help of a Laplace transform, a direct way to get the energy dependent Green function is presented, and the propagator can be obtained later with an inverse Laplace transform. The method is illustrated through simple one dimensional examples and for time independent potentials, though it can be generalized to the derivation of more complicated propagators.
Leardini, Fabrice
2013-01-01
This manuscript presents a problem on special relativity theory (SRT) which embodies an apparent paradox relying on the concept of simultaneity. The problem is represented in the framework of Greek epic poetry and structured in a didactic way. Owing to the characteristic properties of Lorenz transformations, three events which are simultaneous in a given inertial reference system, occur at different times in the other two reference frames. In contrast to the famous twin paradox, in the present case there are three, not two, different inertial observers. This feature provides a better framework to expose some of the main characteristics of SRT, in particular, the concept of velocity and the relativistic rule of addition of velocities.
Riemann zeros, prime numbers, and fractal potentials.
van Zyl, Brandon P; Hutchinson, David A W
2003-06-01
Using two distinct inversion techniques, the local one-dimensional potentials for the Riemann zeros and prime number sequence are reconstructed. We establish that both inversion techniques, when applied to the same set of levels, lead to the same fractal potential. This provides numerical evidence that the potential obtained by inversion of a set of energy levels is unique in one dimension. We also investigate the fractal properties of the reconstructed potentials and estimate the fractal dimensions to be D=1.5 for the Riemann zeros and D=1.8 for the prime numbers. This result is somewhat surprising since the nearest-neighbor spacings of the Riemann zeros are known to be chaotically distributed, whereas the primes obey almost Poissonlike statistics. Our findings show that the fractal dimension is dependent on both level statistics and spectral rigidity, Delta(3), of the energy levels.
Bruce, Adam L
2015-01-01
We show the traditional rocket problem, where the ejecta velocity is assumed constant, can be reduced to an integral quadrature of which the completely non-relativistic equation of Tsiolkovsky, as well as the fully relativistic equation derived by Ackeret, are limiting cases. By expanding this quadrature in series, it is shown explicitly how relativistic corrections to the mass ratio equation as the rocket transitions from the Newtonian to the relativistic regime can be represented as products of exponential functions of the rocket velocity, ejecta velocity, and the speed of light. We find that even low order correction products approximate the traditional relativistic equation to a high accuracy in flight regimes up to $0.5c$ while retaining a clear distinction between the non-relativistic base-case and relativistic corrections. We furthermore use the results developed to consider the case where the rocket is not moving relativistically but the ejecta stream is, and where the ejecta stream is massless.
Determinantal approach to a proof of the Riemann hypothesis
Nuttall, John
2011-01-01
We discuss the application of the determinantal method to the proof of the Riemann hypothesis. We start from the fact that, if a certain doubly infinite set of determinants are all positive, then the hypothesis is true. This approach extends the work of Csordas, Norfolk and Varga in 1986, and makes extensive use of the results described by Karlin. We have discovered and proved or conjectured relations in five areas of the problem, as summarized in the Introduction. Further effort could well lead to more progress.
Riemann zeta function from wave-packet dynamics
Mack, R.; Dahl, Jens Peder; Moya-Cessa, H.
2010-01-01
is governed by the temperature of the thermal phase state and tau is proportional to t. We use the JWKB method to solve the inverse spectral problem for a general logarithmic energy spectrum; that is, we determine a family of potentials giving rise to such a spectrum. For large distances, all potentials...... index of JWKB. We compare and contrast exact and approximate eigenvalues of purely logarithmic potentials. Moreover, we use a numerical method to find a potential which leads to exact logarithmic eigenvalues. We discuss possible realizations of Riemann zeta wave-packet dynamics using cold atoms...
Balsara, Dinshaw S.; Vides, Jeaniffer; Gurski, Katharine; Nkonga, Boniface; Dumbser, Michael; Garain, Sudip; Audit, Edouard
2016-01-01
Just as the quality of a one-dimensional approximate Riemann solver is improved by the inclusion of internal sub-structure, the quality of a multidimensional Riemann solver is also similarly improved. Such multidimensional Riemann problems arise when multiple states come together at the vertex of a mesh. The interaction of the resulting one-dimensional Riemann problems gives rise to a strongly-interacting state. We wish to endow this strongly-interacting state with physically-motivated sub-structure. The self-similar formulation of Balsara [16] proves especially useful for this purpose. While that work is based on a Galerkin projection, in this paper we present an analogous self-similar formulation that is based on a different interpretation. In the present formulation, we interpret the shock jumps at the boundary of the strongly-interacting state quite literally. The enforcement of the shock jump conditions is done with a least squares projection (Vides, Nkonga and Audit [67]). With that interpretation, we again show that the multidimensional Riemann solver can be endowed with sub-structure. However, we find that the most efficient implementation arises when we use a flux vector splitting and a least squares projection. An alternative formulation that is based on the full characteristic matrices is also presented. The multidimensional Riemann solvers that are demonstrated here use one-dimensional HLLC Riemann solvers as building blocks. Several stringent test problems drawn from hydrodynamics and MHD are presented to show that the method works. Results from structured and unstructured meshes demonstrate the versatility of our method. The reader is also invited to watch a video introduction to multidimensional Riemann solvers on http://www.nd.edu/~dbalsara/Numerical-PDE-Course.
Interacting Bose and Fermi Gases in Low Dimensions and the Riemann Hypothesis
Leclair, André
We apply the S-matrix based finite temperature formalism to nonrelativistic Bose and Fermi gases in 1+1 and 2+1 dimensions. For the (2+1)-dimensional case in the constant scattering length approximation, the free energy is given in terms of Roger's dilogarithm in a way analagous to the thermodynamic Bethe ansatz for the relativistic (1+1)-dimensional case. The 1d fermionic case with a quasiperiodic two-body potential is closely connected with the Riemann hypothesis.
A proof of the Riemann hypothesis by using the series representation of the Riemann zeta function
Tan, Shanguang
2011-01-01
The Riemann hypothesis was proved in this paper. First, a curve integral of the Riemann zeta function zeta(s) was formed, which is along a horizontal line from s to 1-\\bar{s} which are two nontrivial zeros of zeta(s) and symmetric about the vertical line Re s=1/2. Next, the result of the curve integral was derived and proved equal to zero. Then, by proving a lemma of central dissymmetry of the Riemann zeta function zeta(s), two nontrivial zeros s and 1-\\bar{s} were proved being a same zero or satisfying 1-\\bar{s}=s. Hence, the nontrivial zeros of zeta(s) all have real part Re s=1/2, that is, the Riemann hypothesis was proved.
Philippe G. LeFloch
2000-12-01
Full Text Available This paper deals with the so-called p-system describing the dynamics of isothermal and compressible fluids. The constitutive equation is assumed to have the typical convexity/concavity properties of the van der Waals equation. We search for discontinuous solutions constrained by the associated mathematical entropy inequality. First, following a strategy proposed by Abeyaratne and Knowles and by Hayes and LeFloch, we describe here the whole family of nonclassical Riemann solutions for this model. Second, we supplement the set of equations with a kinetic relation for the propagation of nonclassical undercompressive shocks, and we arrive at a uniquely defined solution of the Riemann problem. We also prove that the solutions depend $L^1$-continuously upon their data. The main novelty of the present paper is the presence of two inflection points in the constitutive equation. The Riemann solver constructed here is relevant for fluids in which viscosity and capillarity effects are kept in balance.
Criteria equivalent to the Riemann Hypothesis
Cisło, J.; Wolf, M.
2008-11-01
We give a brief overview of a few criteria equivalent to the Riemann Hypothesis. Next we concentrate on the Riesz and Báez-Duarte criteria. We prove that they are equivalent and we provide some computer data to support them.
Study Paths, Riemann Surfaces, and Strebel Differentials
Buser, Peter; Semmler, Klaus-Dieter
2017-01-01
These pages aim to explain and interpret why the late Mika Seppälä, a conformal geometer, proposed to model student study behaviour using concepts from conformal geometry, such as Riemann surfaces and Strebel differentials. Over many years Mika Seppälä taught online calculus courses to students at Florida State University in the United States, as…
A Criterion for the Generalized Riemann Hypothesis
Jin Hong LI
2009-01-01
In this paper, we study the automorphic L-functions attached to the classical automorphic forms on GL(2), i.e. holomorphic cusp form. And we also give a criterion for the Generalized Riemann Hypothesis (GRH) for the above L-functions.
Mayergoyz, I. D.
2012-05-01
The review of the mathematical treatment of plasmon resonances as an eigenvalue problem for specific boundary integral equations is presented and general properties of plasmon spectrum are outlined. Promising applications of plasmon resonances to magnetics are described. Interesting relation of eigenvalue treatment of plasmon resonances to the Riemann hypothesis is discussed.
Relativistic Flows Using Spatial And Temporal Adaptive Structured Mesh Refinement. I. Hydrodynamics
Wang, Peng; Abel, Tom; Zhang, Weiqun; /KIPAC, Menlo Park
2007-04-02
Astrophysical relativistic flow problems require high resolution three-dimensional numerical simulations. In this paper, we describe a new parallel three-dimensional code for simulations of special relativistic hydrodynamics (SRHD) using both spatially and temporally structured adaptive mesh refinement (AMR). We used method of lines to discrete SRHD equations spatially and used a total variation diminishing (TVD) Runge-Kutta scheme for time integration. For spatial reconstruction, we have implemented piecewise linear method (PLM), piecewise parabolic method (PPM), third order convex essentially non-oscillatory (CENO) and third and fifth order weighted essentially non-oscillatory (WENO) schemes. Flux is computed using either direct flux reconstruction or approximate Riemann solvers including HLL, modified Marquina flux, local Lax-Friedrichs flux formulas and HLLC. The AMR part of the code is built on top of the cosmological Eulerian AMR code enzo, which uses the Berger-Colella AMR algorithm and is parallel with dynamical load balancing using the widely available Message Passing Interface library. We discuss the coupling of the AMR framework with the relativistic solvers and show its performance on eleven test problems.
Limit of Riemann Solutions to the Nonsymmetric System of Keyfitz-Kranzer Type
Lihui Guo
2014-01-01
Full Text Available The limit of Riemann solutions to the nonsymmetric system of Keyfitz-Kranzer type with a scaled pressure is considered for both polytropic gas and generalized Chaplygin gas. In the former case, the delta shock wave can be obtained as the limit of shock wave and contact discontinuity when u->u+ and the parameter ϵ tends to zero. The point is, the delta shock wave is not the one of transport equations, which is obviously different from cases of some other systems such as Euler equations or relativistic Euler equations. For the generalized Chaplygin gas, unlike the polytropic or isothermal gas, there exists a certain critical value ϵ2 depending only on the Riemann initial data, such that when ϵ drops to ϵ2, the delta shock wave appears as u->u+, which is actually a delta solution of the same system in one critical case. Then as ϵ becomes smaller and goes to zero at last, the delta shock wave solution is the exact one of transport equations. Furthermore, the vacuum states and contact discontinuities can be obtained as the limit of Riemann solutions when u-
RAM: a Relativistic Adaptive Mesh Refinement Hydrodynamics Code
Zhang, Wei-Qun; /KIPAC, Menlo Park; MacFadyen, Andrew I.; /Princeton, Inst. Advanced Study
2005-06-06
The authors have developed a new computer code, RAM, to solve the conservative equations of special relativistic hydrodynamics (SRHD) using adaptive mesh refinement (AMR) on parallel computers. They have implemented a characteristic-wise, finite difference, weighted essentially non-oscillatory (WENO) scheme using the full characteristic decomposition of the SRHD equations to achieve fifth-order accuracy in space. For time integration they use the method of lines with a third-order total variation diminishing (TVD) Runge-Kutta scheme. They have also implemented fourth and fifth order Runge-Kutta time integration schemes for comparison. The implementation of AMR and parallelization is based on the FLASH code. RAM is modular and includes the capability to easily swap hydrodynamics solvers, reconstruction methods and physics modules. In addition to WENO they have implemented a finite volume module with the piecewise parabolic method (PPM) for reconstruction and the modified Marquina approximate Riemann solver to work with TVD Runge-Kutta time integration. They examine the difficulty of accurately simulating shear flows in numerical relativistic hydrodynamics codes. They show that under-resolved simulations of simple test problems with transverse velocity components produce incorrect results and demonstrate the ability of RAM to correctly solve these problems. RAM has been tested in one, two and three dimensions and in Cartesian, cylindrical and spherical coordinates. they have demonstrated fifth-order accuracy for WENO in one and two dimensions and performed detailed comparison with other schemes for which they show significantly lower convergence rates. Extensive testing is presented demonstrating the ability of RAM to address challenging open questions in relativistic astrophysics.
Demianski, Marek
2013-01-01
Relativistic Astrophysics brings together important astronomical discoveries and the significant achievements, as well as the difficulties in the field of relativistic astrophysics. This book is divided into 10 chapters that tackle some aspects of the field, including the gravitational field, stellar equilibrium, black holes, and cosmology. The opening chapters introduce the theories to delineate gravitational field and the elements of relativistic thermodynamics and hydrodynamics. The succeeding chapters deal with the gravitational fields in matter; stellar equilibrium and general relativity
Relativistic viscoelastic fluid mechanics.
Fukuma, Masafumi; Sakatani, Yuho
2011-08-01
A detailed study is carried out for the relativistic theory of viscoelasticity which was recently constructed on the basis of Onsager's linear nonequilibrium thermodynamics. After rederiving the theory using a local argument with the entropy current, we show that this theory universally reduces to the standard relativistic Navier-Stokes fluid mechanics in the long time limit. Since effects of elasticity are taken into account, the dynamics at short time scales is modified from that given by the Navier-Stokes equations, so that acausal problems intrinsic to relativistic Navier-Stokes fluids are significantly remedied. We in particular show that the wave equations for the propagation of disturbance around a hydrostatic equilibrium in Minkowski space-time become symmetric hyperbolic for some range of parameters, so that the model is free of acausality problems. This observation suggests that the relativistic viscoelastic model with such parameters can be regarded as a causal completion of relativistic Navier-Stokes fluid mechanics. By adjusting parameters to various values, this theory can treat a wide variety of materials including elastic materials, Maxwell materials, Kelvin-Voigt materials, and (a nonlinearly generalized version of) simplified Israel-Stewart fluids, and thus we expect the theory to be the most universal description of single-component relativistic continuum materials. We also show that the presence of strains and the corresponding change in temperature are naturally unified through the Tolman law in a generally covariant description of continuum mechanics.
On Lovelock analogs of the Riemann tensor
Camanho, Xian O. [Albert-Einstein-Institut, Max-Planck-Institut fuer Gravitationsphysik, Golm (Germany); Dadhich, Naresh [Jamia Millia Islamia, Centre for Theoretical Physics, New Delhi (India); Inter-University Centre for Astronomy and Astrophysics, Pune (India)
2016-03-15
It is possible to define an analog of the Riemann tensor for Nth order Lovelock gravity, its characterizing property being that the trace of its Bianchi derivative yields the corresponding analog of the Einstein tensor. Interestingly there exist two parallel but distinct such analogs and the main purpose of this note is to reconcile both formulations. In addition we will introduce a simple tensor identity and use it to show that any pure Lovelock vacuum in odd d = 2N + 1 dimensions is Lovelock flat, i.e. any vacuum solution of the theory has vanishing Lovelock-Riemann tensor. Further, in the presence of cosmological constant it is the Lovelock-Weyl tensor that vanishes. (orig.)
Sugawara construction for higher genus Riemann surfaces
Schlichenmaier, Martin
1999-04-01
By the classical genus zero Sugawara construction one obtains representations of the Virasoro algebra from admissible representations of affine Lie algebras (Kac-Moody algebras of affine type). In this lecture, the classical construction is recalled first. Then, after giving a review on the global multi-point algebras of Krichever-Novikov type for compact Riemann surfaces of arbitrary genus, the higher genus Sugawara construction is introduced. Finally, the lecture reports on results obtained in a joint work with O. K. Sheinman. We were able to show that also in the higher genus, multi-point situation one obtains (from representations of the global algebras of affine type) representations of a centrally extended algebra of meromorphic vector fields on Riemann surfaces. The latter algebra is a generalization of the Virasoro algebra to higher genus.
Shuqin Zhang
2004-02-01
Full Text Available Combining properties of Riemann-Liouville fractional calculus and fixed point theorems, we obtain three existence results of one positive solution and of multiple positive solutions for initial value problems with fractional differential equations.
Period Matrices of Real Riemann Surfaces and Fundamental Domains
Pietro Giavedoni
2013-10-01
Full Text Available For some positive integers g and n we consider a subgroup G_{g,n} of the 2g-dimensional modular group keeping invariant a certain locus W_{g,n} in the Siegel upper half plane of degree g. We address the problem of describing a fundamental domain for the modular action of the subgroup on W_{g,n}. Our motivation comes from geometry: g and n represent the genus and the number of ovals of a generic real Riemann surface of separated type; the locus W_{g,n} contains the corresponding period matrix computed with respect to some specific basis in the homology. In this paper we formulate a general procedure to solve the problem when g is even and n equals one. For g equal to two or four the explicit calculations are worked out in full detail.
Baez, Joao-Joan; Lapidaryus, Michelle; Siegel, Edward Carl-Ludwig
2013-03-01
Riemann-hypothesis physics-proof combines: Siegel-Antono®-Smith[AMS Joint Mtg.(2002)- Abs.973-03-126] digits on-average statistics HIll[Am. J. Math 123, 3, 887(1996)] logarithm-function's (1,0)- xed-point base =units =scale-invariance proven Newcomb [Am. J. Math. 4, 39(1881)]-Weyl[Goett. Nachr.(1914); Math. Ann.7, 313(1916)]-Benford[Proc. Am. Phil. Soc. 78, 4, 51(1938)]-law [Kac,Math. of Stat.-Reasoning(1955); Raimi, Sci. Am. 221, 109(1969)] algebraic-inversion to ONLY Bose-Einstein quantum-statistics(BEQS) with digit d = 0 gapFUL Bose-Einstein Condensation(BEC) insight that digits are quanta are bosons because bosons are and always were quanta are and always were digits, via Siegel-Baez category-semantics tabular list-format matrix truth-table analytics in Plato-Aristotle classic ''square-of-opposition'' : FUZZYICS =CATEGORYICS/Category-Semantics, with Goodkind Bose-Einstein Condensation (BEC) ABOVE ground-state with/and Rayleigh(cut-limit of ''short-cut method''1870)-Polya(1922)-''Anderson''(1958) localization [Doyle and Snell,Random-Walks and Electrical-Networks, MAA(1981)-p.99-100!!!] in Brillouin[Wave-Propagation in Periodic-Structures(1946) Dover(1922)]-Hubbard-Beeby[J.Phys.C(1967)] Siegel[J.Nonxline-Sol.40,453(1980)] generalized-disorder collective-boson negative-dispersion mode-softening universality-principle(G...P) first use of the ``square-of-opposition'' in physics since Plato and Aristote!!!
Mizuno, Y.; Nishikawa, K.I.; Zhang, B.; Giacomazzo, B.; Hardee, P.E.; Nagataki, S.; Hartmann, D.H.
2008-01-01
We solve the Riemann problem for the deceleration of arbitrarily magnetized relativistic ejecta injected into a static unmagnetized medium. We find that for the same initial Lorentz factor, the reverse shock becomes progressively weaker with increasing magnetization s (the Poynting-to-kinetic energy flux ratio), and the shock becomes a rarefaction wave when s exceeds a critical value, sc, defined by the balance between the magnetic pressure in the ejecta and the thermal pressure in the forward shock. In the rarefaction wave regime, we find that the rarefied region is accelerated to a Lorentz factor that is significantly larger than the initial value. This acceleration mechanism is due to the strong magnetic pressure in the ejecta.
Amano, Takanobu
2016-11-01
A new multidimensional simulation code for relativistic two-fluid electrodynamics (RTFED) is described. The basic equations consist of the full set of Maxwell’s equations coupled with relativistic hydrodynamic equations for separate two charged fluids, representing the dynamics of either an electron-positron or an electron-proton plasma. It can be recognized as an extension of conventional relativistic magnetohydrodynamics (RMHD). Finite resistivity may be introduced as a friction between the two species, which reduces to resistive RMHD in the long wavelength limit without suffering from a singularity at infinite conductivity. A numerical scheme based on HLL (Harten-Lax-Van Leer) Riemann solver is proposed that exactly preserves the two divergence constraints for Maxwell’s equations simultaneously. Several benchmark problems demonstrate that it is capable of describing RMHD shocks/discontinuities at long wavelength limit, as well as dispersive characteristics due to the two-fluid effect appearing at small scales. This shows that the RTFED model is a promising tool for high energy astrophysics application.
Miller, Gregory H.
2003-08-06
In this paper we present a general iterative method for the solution of the Riemann problem for hyperbolic systems of PDEs. The method is based on the multiple shooting method for free boundary value problems. We demonstrate the method by solving one-dimensional Riemann problems for hyperelastic solid mechanics. Even for conditions representative of routine laboratory conditions and military ballistics, dramatic differences are seen between the exact and approximate Riemann solution. The greatest discrepancy arises from misallocation of energy between compressional and thermal modes by the approximate solver, resulting in nonphysical entropy and temperature estimates. Several pathological conditions arise in common practice, and modifications to the method to handle these are discussed. These include points where genuine nonlinearity is lost, degeneracies, and eigenvector deficiencies that occur upon melting.
Magnetic monopoles over topologically non trivial Riemann surfaces
Martin, I
1996-01-01
An explicit canonical construction of monopole connections on non trivial U(1) bundles over Riemann surfaces of any genus is given. The class of monopole solutions depend on the conformal class of the given Riemann surface and a set of integer weights. The reduction of Seiberg-Witten 4-monopole equations to Riemann surfaces is performed. It is shown then that the monopole connections constructed are solutions to these equations.
Relativistic quantum mechanics
Horwitz, Lawrence P
2015-01-01
This book describes a relativistic quantum theory developed by the author starting from the E.C.G. Stueckelberg approach proposed in the early 40s. In this framework a universal invariant evolution parameter (corresponding to the time originally postulated by Newton) is introduced to describe dynamical evolution. This theory is able to provide solutions for some of the fundamental problems encountered in early attempts to construct a relativistic quantum theory. A relativistically covariant construction is given for which particle spins and angular momenta can be combined through the usual rotation group Clebsch-Gordan coefficients. Solutions are defined for both the classical and quantum two body bound state and scattering problems. The recently developed quantum Lax-Phillips theory of semigroup evolution of resonant states is described. The experiment of Lindner and coworkers on interference in time is discussed showing how the property of coherence in time provides a simple understanding of the results. Th...
Buksman Hollander, Efrain; de Luca, Jayme
2003-02-01
We find a two-degree-of-freedom Hamiltonian for the time-symmetric problem of straight line motion of two electrons in direct relativistic interaction. This time-symmetric dynamical system appeared 100 years ago and it was popularized in the 1940s by the work of Wheeler and Feynman in electrodynamics, which was left incomplete due to the lack of a Hamiltonian description. The form of our Hamiltonian is such that the action of a Lorentz transformation is explicitly described by a canonical transformation (with rescaling of the evolution parameter). The method is closed and defines the Hamitonian in implicit form without power expansions. We outline the method with an emphasis on the physics of this complex conservative dynamical system. The Hamiltonian orbits are calculated numerically at low energies using a self-consistent steepest-descent method (a stable numerical method that chooses only the nonrunaway solution). The two-degree-of-freedom Hamiltonian suggests a simple prescription for the canonical quantization of the relativistic two-body problem.
An Exact, Compressible One-Dimensional Riemann Solver for General, Convex Equations of State
Kamm, James Russell [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2015-03-05
This note describes an algorithm with which to compute numerical solutions to the one- dimensional, Cartesian Riemann problem for compressible flow with general, convex equations of state. While high-level descriptions of this approach are to be found in the literature, this note contains most of the necessary details required to write software for this problem. This explanation corresponds to the approach used in the source code that evaluates solutions for the 1D, Cartesian Riemann problem with a JWL equation of state in the ExactPack package [16, 29]. Numerical examples are given with the proposed computational approach for a polytropic equation of state and for the JWL equation of state.
Leclair, André
2013-11-01
We construct a vector field E from the real and imaginary parts of an entire function ξ(z) which arises in the quantum statistical mechanics of relativistic gases when the spatial dimension d is analytically continued into the complex z plane. This function is built from the Γ and Riemann ζ functions and is known to satisfy the functional identity ξ(z) = ξ(1-z). E satisfies the conditions for a static electric field. The structure of E in the critical strip is determined by its behavior near the Riemann zeros on the critical line ℜ(z) = 1/2, where each zero can be assigned a ⊕ or ⊖ parity, or vorticity, of a related pseudo-magnetic field. Using these properties, we show that a hypothetical Riemann zero that is off the critical line leads to a frustration of this "electric" field. We formulate this frustration more precisely in terms of the potential Φ satisfying E = -∇Φ and construct Φ explicitly. The main outcome of our analysis is a formula for the nth zero on the critical line for large n expressed as the solution of a simple transcendental equation. Riemann's counting formula for the number of zeros on the entire critical strip can be derived from this formula. Our result is much stronger than Riemann's counting formula, since it provides an estimate of the nth zero along the critical line. This provides a simple way to estimate very high zeros to very good accuracy, and we estimate the 10106-th one.
Proof of Riemann's zeta-hypothesis
Bergstrom, Arne
2008-01-01
Make an exponential transformation in the integral formulation of Riemann's zeta-function zeta(s) for Re(s) > 0. Separately, in addition make the substitution s -> 1 - s and then transform back to s again using the functional equation. Using residue calculus, we can in this way get two alternative, equivalent series expansions for zeta(s) of order N, both valid inside the "critical strip", i e for 0 < Re(s) < 1. Together, these two expansions embody important characteristics of the zeta-funct...
Orbifold Riemann surfaces and geodesic algebras
Chekhov, L O [Steklov Mathematical Institute, Moscow (Russian Federation)], E-mail: chekhov@mi.ras.ru
2009-07-31
We study the Teichmueller theory of Riemann surfaces with orbifold points of order 2 using the fat graph technique. The previously developed technique of quantization, classical and quantum mapping-class group transformations, and Poisson and quantum algebras of geodesic functions is applicable to the surfaces with orbifold points. We describe classical and quantum braid group relations for particular sets of geodesic functions corresponding to A{sub n} and D{sub n} algebras and describe their central elements for the Poisson and quantum algebras.
Antippa, Adel F.
2009-01-01
We solve the problem of the relativistic rocket by making use of the relation between Lorentzian and Galilean velocities, as well as the laws of superposition of successive collinear Lorentz boosts in the limit of infinitesimal boosts. The solution is conceptually simple, and technically straightforward, and provides an example of a powerful…
A new spherically symmetric general relativistic hydrodynamical code
Romero, J V; Martí, J M; Miralles, J A; Romero, Jose V; Ibanez, Jose M; Marti, Jose M; Miralles, Juan A
1995-01-01
In this paper we present a full general relativistic one-dimensional hydro-code which incorporates a modern high-resolution shock-capturing algorithm, with an approximate Riemann solver, for the correct modelling of formation and propagation of strong shocks. The efficiency of this code in treating strong shocks is demonstrated by some numerical experiments. The interest of this technique in several astrophysical scenarios is discussed.
Fourier coefficients associated with the Riemann zeta-function
Y. V. Basiuk
2016-06-01
Full Text Available We study the Riemann zeta-function $\\zeta(s$ by a Fourier series method. The summation of $\\log|\\zeta(s|$ with the kernel $1/|s|^{6}$ on the critical line $\\mathrm{Re}\\; s = \\frac{1}{2}$ is the main result of our investigation. Also we obtain a new restatement of the Riemann Hypothesis.
Review of numerical special relativistic hydrodynamics
Odyck, D.E.A. van
2002-01-01
This paper gives an overview of numerical methods for special relativistichydrodynamics (SRHD). First, a short summary of special relativity is given. Next, the SRHD equations are introduced. The exact solution for the SRHD Riemann problem is described. This solution is used in a Godunov scheme to c
A Riemann-Hilbert Approach for the Novikov Equation
Boutet de Monvel, Anne; Shepelsky, Dmitry; Zielinski, Lech
2016-09-01
We develop the inverse scattering transform method for the Novikov equation u_t-u_{txx}+4u^2u_x=3u u_xu_{xx}+u^2u_{xxx} considered on the line xin(-∞,∞) in the case of non-zero constant background. The approach is based on the analysis of an associated Riemann-Hilbert (RH) problem, which in this case is a 3× 3 matrix problem. The structure of this RH problem shares many common features with the case of the Degasperis-Procesi (DP) equation having quadratic nonlinear terms (see [Boutet de Monvel A., Shepelsky D., Nonlinearity 26 (2013), 2081-2107, arXiv:1107.5995]) and thus the Novikov equation can be viewed as a ''modified DP equation'', in analogy with the relationship between the Korteweg-de Vries (KdV) equation and the modified Korteweg-de Vries (mKdV) equation. We present parametric formulas giving the solution of the Cauchy problem for the Novikov equation in terms of the solution of the RH problem and discuss the possibilities to use the developed formalism for further studying of the Novikov equation.
The Riemann hypothesis illuminated by the Newton flow of ζ
Neuberger, J. W.; Feiler, C.; Maier, H.; Schleich, W. P.
2015-10-01
We analyze the Newton flow of the Riemann zeta function ζ and rederive in an elementary way the Riemann-von Mangoldt estimate of the number of non-trivial zeros below a given imaginary part. The representation of the flow on the Riemann sphere highlights the importance of the North pole as the starting and turning point of the separatrices, that is of the continental divides of the Newton flow. We argue that the resulting patterns may lead to deeper insight into the Riemann hypothesis. For this purpose we also compare and contrast the Newton flow of ζ with that of a function which in many ways is similar to ζ, but violates the Riemann hypothesis. We dedicate this paper to the memory of Richard Lewis Arnowitt and his many contributions to general relativity and high energy physics.
Zeros of the Partition Function in the Randomized Riemann Gas
Dueñas, J G
2014-01-01
An arithmetic gas is a second quantized mechanical system where the partition function is a Dirichlet series of a given arithmetic function. One example of such system is known as the bosonic Riemann gas. We assume that the hamiltonian of the bosonic Riemann gas has a random variable with some probability distribution over an ensemble of hamiltonians. We discuss the singularity structure for the average free energy density of this arithmetic gas in the complex $\\beta$ plane. First, assuming the Riemann hypothesis, there is a clustering of singular points along the imaginary axis coming from the non-trivial zeros of the Riemann zeta function on the critical line. This singularity structure associated to the zeros of the partition functions of the ensemble in the complex $\\beta$ plane are the Fisher zeros. Second, there are also logarithmic singularities due to the poles of the Riemann zeta functions associated to the ensemble of hamiltonians. Finally we present the average energy density of the system.
Newton flow of the Riemann zeta function: separatrices control the appearance of zeros
Neuberger, J. W.; Feiler, C.; Maier, H.; Schleich, W. P.
2014-10-01
A great many phenomena in physics can be traced back to the zeros of a function or a functional. Eigenvalue or variational problems prevalent in classical as well as quantum mechanics are examples illustrating this statement. Continuous descent methods taken with respect to the proper metric are efficient ways to attack such problems. In particular, the continuous Newton method brings out the lines of constant phase of a complex-valued function. Although the patterns created by the Newton flow are reminiscent of the field lines of electrostatics and magnetostatics they cannot be realized in this way since in general they are not curl-free. We apply the continuous Newton method to the Riemann zeta function and discuss the emerging patterns emphasizing especially the structuring of the non-trivial zeros by the separatrices. This approach might open a new road toward the Riemann hypothesis.
A robust algorithm for moving interface of multi-material fluids based on Riemann solutions
Xueying Zhang; Ning Zhao
2006-01-01
In the paper,the numerical simulation of interface problems for multiple material fluids is studied.The level set function is designed to capture the location of the material interface.For multi-dimensional and multi-material fluids,the modified ghost fluid method needs a Riemann solution to renew the variable states near the interface.Here we present a new convenient and effective algorithm for solving the Riemann problem in the normal direction.The extrapolated variables are populated by Taylor series expansions in the direction.The anti-diffusive high order WENO difference scheme with the limiter is adopted for the numerical simulation.Finally we implement a series of numerical experiments of multi-material flows.The obtained results are satisfying,compared to those by other methods.
Relativistic theories of materials
Bressan, Aldo
1978-01-01
The theory of relativity was created in 1905 to solve a problem concerning electromagnetic fields. That solution was reached by means of profound changes in fundamental concepts and ideas that considerably affected the whole of physics. Moreover, when Einstein took gravitation into account, he was forced to develop radical changes also in our space-time concepts (1916). Relativistic works on heat, thermodynamics, and elasticity appeared as early as 1911. However, general theories having a thermodynamic basis, including heat conduction and constitutive equations, did not appear in general relativity until about 1955 for fluids and appeared only after 1960 for elastic or more general finitely deformed materials. These theories dealt with materials with memory, and in this connection some relativistic versions of the principle of material indifference were considered. Even more recently, relativistic theories incorporating finite deformations for polarizable and magnetizable materials and those in which couple s...
Brain surface parameterization using Riemann surface structure.
Wang, Yalin; Gu, Xianfeng; Hayashi, Kiralee M; Chan, Tony F; Thompson, Paul M; Yau, Shing-Tung
2005-01-01
We develop a general approach that uses holomorphic 1-forms to parameterize anatomical surfaces with complex (possibly branching) topology. Rather than evolve the surface geometry to a plane or sphere, we instead use the fact that all orientable surfaces are Riemann surfaces and admit conformal structures, which induce special curvilinear coordinate systems on the surfaces. Based on Riemann surface structure, we can then canonically partition the surface into patches. Each of these patches can be conformally mapped to a parallelogram. The resulting surface subdivision and the parameterizations of the components are intrinsic and stable. To illustrate the technique, we computed conformal structures for several types of anatomical surfaces in MRI scans of the brain, including the cortex, hippocampus, and lateral ventricles. We found that the resulting parameterizations were consistent across subjects, even for branching structures such as the ventricles, which are otherwise difficult to parameterize. Compared with other variational approaches based on surface inflation, our technique works on surfaces with arbitrary complexity while guaranteeing minimal distortion in the parameterization. It also offers a way to explicitly match landmark curves in anatomical surfaces such as the cortex, providing a surface-based framework to compare anatomy statistically and to generate grids on surfaces for PDE-based signal processing.
Riemann curvature of a boosted spacetime geometry
Battista, Emmanuele; Esposito, Giampiero; Scudellaro, Paolo; Tramontano, Francesco
2016-10-01
The ultrarelativistic boosting procedure had been applied in the literature to map the metric of Schwarzschild-de Sitter spacetime into a metric describing de Sitter spacetime plus a shock-wave singularity located on a null hypersurface. This paper evaluates the Riemann curvature tensor of the boosted Schwarzschild-de Sitter metric by means of numerical calculations, which make it possible to reach the ultrarelativistic regime gradually by letting the boost velocity approach the speed of light. Thus, for the first time in the literature, the singular limit of curvature, through Dirac’s δ distribution and its derivatives, is numerically evaluated for this class of spacetimes. Moreover, the analysis of the Kretschmann invariant and the geodesic equation shows that the spacetime possesses a “scalar curvature singularity” within a 3-sphere and it is possible to define what we here call “boosted horizon”, a sort of elastic wall where all particles are surprisingly pushed away, as numerical analysis demonstrates. This seems to suggest that such “boosted geometries” are ruled by a sort of “antigravity effect” since all geodesics seem to refuse to enter the “boosted horizon” and are “reflected” by it, even though their initial conditions are aimed at driving the particles toward the “boosted horizon” itself. Eventually, the equivalence with the coordinate shift method is invoked in order to demonstrate that all δ2 terms appearing in the Riemann curvature tensor give vanishing contribution in distributional sense.
Chebyshev's bias and generalized Riemann hypothesis
Alamadhi, Adel; Solé, Patrick
2011-01-01
It is well known that $li(x)>\\pi(x)$ (i) up to the (very large) Skewes' number $x_1 \\sim 1.40 \\times 10^{316}$ \\cite{Bays00}. But, according to a Littlewood's theorem, there exist infinitely many $x$ that violate the inequality, due to the specific distribution of non-trivial zeros $\\gamma$ of the Riemann zeta function $\\zeta(s)$, encoded by the equation $li(x)-\\pi(x)\\approx \\frac{\\sqrt{x}}{\\log x}[1+2 \\sum_{\\gamma}\\frac{\\sin (\\gamma \\log x)}{\\gamma}]$ (1). If Riemann hypothesis (RH) holds, (i) may be replaced by the equivalent statement $li[\\psi(x)]>\\pi(x)$ (ii) due to Robin \\cite{Robin84}. A statement similar to (i) was found by Chebyshev that $\\pi(x;4,3)-\\pi(x;4,1)>0$ (iii) holds for any $x0$ (iv), where $B(x;k,l)=li[\\phi(k)*\\psi(x;k,l)]-\\phi(k)*\\pi(x;k,l)$ is a counting function introduced in Robin's paper \\cite{Robin84} and $R$ resp. $N$) is a quadratic residue modulo $q$ (resp. a non-quadratic residue). We investigate numerically the case $q=4$ and a few prime moduli $p$. Then, we proove that (iv) is eq...
Investigation on shock waves stability in relativistic gas dynamics
Alexander Blokhin
1993-05-01
Full Text Available This paper is devoted to investigation of the linearized mixed problem of shock waves stability in relativistic gas dynamics. The problem of symmetrization of relativistic gas dynamics equations is also discussed.
White, Christopher J.; Stone, James M.; Gammie, Charles F.
2016-08-01
We present a new general relativistic magnetohydrodynamics (GRMHD) code integrated into the Athena++ framework. Improving upon the techniques used in most GRMHD codes, ours allows the use of advanced, less diffusive Riemann solvers, in particular HLLC and HLLD. We also employ a staggered-mesh constrained transport algorithm suited for curvilinear coordinate systems in order to maintain the divergence-free constraint of the magnetic field. Our code is designed to work with arbitrary stationary spacetimes in one, two, or three dimensions, and we demonstrate its reliability through a number of tests. We also report on its promising performance and scalability.
Amour, L. [Reims Univ., Lab. de Mathematiques EDPPM, FRE-CNRS 3111, 51 (France); Faupin, J. [Aarhus Univ., Institut for Matematiske Fag (Denmark); Grebert, B. [Nantes Univ, Lab. de Mathematiques Jean-Leray, UMR-CNRS 6629 (France); Guillot, J.C. [Ecole Polytechnique, Centre de Mathematiques Appliquees, UMR-CNRS 7641, 91 - Palaiseau (France)
2008-10-15
We consider a non-relativistic electron interacting with a classical magnetic field pointing along the x{sub 3}-axis and with a quantized electromagnetic field. The system is translation invariant in the x{sub 3}-direction and the corresponding Hamiltonian has a decomposition H {approx_equal}{integral}{sub R}{sup +}H(P{sub 3})dP{sub 3}. For a fixed momentum P{sub 3} sufficiently small, we prove that H(P{sub 3}) has a ground state in the Fock representation if and only if E'(P{sub 3})=0, where P{sub 3} {yields}E'(P{sub 3}) is the derivative of the map P{sub 3}{yields}E(P{sub 3})=inf{sigma}(H(P{sub 3})). If E'(P{sub 3}){ne}0, we obtain the existence of a ground state in a non-Fock representation. This result holds for sufficiently small values of the coupling constant. (authors)
Dumitru Baleanu
2013-01-01
Full Text Available We obtain the approximate analytical solution for the fractional quadratic Riccati differential equation with the Riemann-Liouville derivative by using the Bernstein polynomials (BPs operational matrices. In this method, we use the operational matrix for fractional integration in the Riemann-Liouville sense. Then by using this matrix and operational matrix of product, we reduce the problem to a system of algebraic equations that can be solved easily. The efficiency and accuracy of the proposed method are illustrated by several examples.
Luciano, Rezzolla
2013-01-01
Relativistic hydrodynamics is a very successful theoretical framework to describe the dynamics of matter from scales as small as those of colliding elementary particles, up to the largest scales in the universe. This book provides an up-to-date, lively, and approachable introduction to the mathematical formalism, numerical techniques, and applications of relativistic hydrodynamics. The topic is typically covered either by very formal or by very phenomenological books, but is instead presented here in a form that will be appreciated both by students and researchers in the field. The topics covered in the book are the results of work carried out over the last 40 years, which can be found in rather technical research articles with dissimilar notations and styles. The book is not just a collection of scattered information, but a well-organized description of relativistic hydrodynamics, from the basic principles of statistical kinetic theory, down to the technical aspects of numerical methods devised for the solut...
Pauli graphs, Riemann hypothesis, and Goldbach pairs
Planat, M.; Anselmi, F.; Solé, P.
2012-06-01
We consider the Pauli group Pq generated by unitary quantum generators X (shift) and Z (clock) acting on vectors of the q-dimensional Hilbert space. It has been found that the number of maximal mutually commuting sets within Pq is controlled by the Dedekind psi function ψ(q) and that there exists a specific inequality involving the Euler constant γ ˜ 0.577 that is only satisfied at specific low dimensions q ∈ A = { 2, 3, 4, 5, 6, 8, 10, 12, 18, 30}. The set A is closely related to the set A∪{ 1, 24} of integers that are totally Goldbach, i.e., that consist of all primes p Riemann hypothesis in terms of R(Nr). We discuss these number-theoretical properties in the context of the qudit commutation structure.
Ice cream and orbifold Riemann-Roch
Buckley, Anita; Reid, Miles; Zhou, Shengtian
2013-06-01
We give an orbifold Riemann-Roch formula in closed form for the Hilbert series of a quasismooth polarized n-fold (X,D), under the assumption that X is projectively Gorenstein with only isolated orbifold points. Our formula is a sum of parts each of which is integral and Gorenstein symmetric of the same canonical weight; the orbifold parts are called ice cream functions. This form of the Hilbert series is particularly useful for computer algebra, and we illustrate it on examples of {K3} surfaces and Calabi-Yau 3-folds. These results apply also with higher dimensional orbifold strata (see [1] and [2]), although the precise statements are considerably trickier. We expect to return to this in future publications.
Geometry of Cauchy-Riemann submanifolds
Shahid, Mohammad; Al-Solamy, Falleh
2016-01-01
This book gathers contributions by respected experts on the theory of isometric immersions between Riemannian manifolds, and focuses on the geometry of CR structures on submanifolds in Hermitian manifolds. CR structures are a bundle theoretic recast of the tangential Cauchy–Riemann equations in complex analysis involving several complex variables. The book covers a wide range of topics such as Sasakian geometry, Kaehler and locally conformal Kaehler geometry, the tangential CR equations, Lorentzian geometry, holomorphic statistical manifolds, and paraquaternionic CR submanifolds. Intended as a tribute to Professor Aurel Bejancu, who discovered the notion of a CR submanifold of a Hermitian manifold in 1978, the book provides an up-to-date overview of several topics in the geometry of CR submanifolds. Presenting detailed information on the most recent advances in the area, it represents a useful resource for mathematicians and physicists alike.
Riemann Surfaces of Carbon as Graphene Nanosolenoids.
Xu, Fangbo; Yu, Henry; Sadrzadeh, Arta; Yakobson, Boris I
2016-01-13
Traditional inductors in modern electronics consume excessive areas in the integrated circuits. Carbon nanostructures can offer efficient alternatives if the recognized high electrical conductivity of graphene can be properly organized in space to yield a current-generated magnetic field that is both strong and confined. Here we report on an extraordinary inductor nanostructure naturally occurring as a screw dislocation in graphitic carbons. Its elegant helicoid topology, resembling a Riemann surface, ensures full covalent connectivity of all graphene layers, joined in a single layer wound around the dislocation line. If voltage is applied, electrical currents flow helically and thus give rise to a very large (∼1 T at normal operational voltage) magnetic field and bring about superior (per mass or volume) inductance, both owing to unique winding density. Such a solenoid of small diameter behaves as a quantum conductor whose current distribution between the core and exterior varies with applied voltage, resulting in nonlinear inductance.
Gaussian Curvature on Hyperelliptic Riemann Surfaces
Abel Castorena
2014-05-01
Let be a compact Riemann surface of genus $g ≥ 1, _1,\\ldots,_g$ be a basis of holomorphic 1-forms on and let $H=(h_{ij})^g_{i,j=1}$ be a positive definite Hermitian matrix. It is well known that the metric defined as $ds_H^2=\\sum^g_{i,j=1}h_{ij}_i\\otimes \\overline{_j}$ is a K\\"a hler metric on of non-positive curvature. Let $K_H:C→ \\mathbb{R}$ be the Gaussian curvature of this metric. When is hyperelliptic we show that the hyperelliptic Weierstrass points are non-degenerated critical points of $K_H$ of Morse index +2. In the particular case when is the × identity matrix, we give a criteria to find local minima for $K_H$ and we give examples of hyperelliptic curves where the curvature function $K_H$ is a Morse function.
Supersymmetric partition functions on Riemann surfaces
Benini, Francesco
2016-01-01
We present a compact formula for the supersymmetric partition function of 2d N=(2,2), 3d N=2 and 4d N=1 gauge theories on $\\Sigma_g \\times T^n$ with partial topological twist on $\\Sigma_g$, where $\\Sigma_g$ is a Riemann surface of arbitrary genus and $T^n$ is a torus with n=0,1,2, respectively. In 2d we also include certain local operator insertions, and in 3d we include Wilson line operator insertions along $S^1$. For genus g=1, the formula computes the Witten index. We present a few simple Abelian and non-Abelian examples, including new tests of non-perturbative dualities. We also show that the large N partition function of ABJM theory on $\\Sigma_g \\times S^1$ reproduces the Bekenstein-Hawking entropy of BPS black holes in AdS4 whose horizon has $\\Sigma_g$ topology.
Phase Space Distribution of Riemann Zeros
Dutta, Parikshit
2016-01-01
We present the partition function of a most generic $U(N)$ single plaquette model in terms of representations of unitary group. Extremising the partition function in large N limit we obtain a relation between eigenvalues of unitary matrices and number of boxes in the most dominant Young tableaux distribution. Since, eigenvalues of unitary matrices behave like coordinates of free fermions whereas, number of boxes in a row is like conjugate momenta of the same, a relation between them allows us to provide a phase space distribution for different phases of the unitary model under consideration. This proves a universal feature that all the phases of a generic unitary matrix model can be described in terms of topology of free fermi phase space distribution. Finally, using this result and analytic properties of resolvent that satisfy Dyson-Schwinger equation, we present a phase space distribution of unfolded zeros of Riemann zeta function.
Spinning branes in Riemann-Cartan spacetime
Vasilic, Milovan; 10.1103/PhysRevD.78.104002
2010-01-01
We use the conservation law of the stress-energy and spin tensors to study the motion of massive brane-like objects in Riemann-Cartan geometry. The world-sheet equations and boundary conditions are obtained in a manifestly covariant form. In the particle case, the resultant world-line equations turn out to exhibit a novel spin-curvature coupling. In particular, the spin of a zero-size particle does not couple to the background curvature. In the string case, the world-sheet dynamics is studied for some special choices of spin and torsion. As a result, the known coupling to the Kalb-Ramond antisymmetric external field is obtained. Geometrically, the Kalb-Ramond field has been recognized as a part of the torsion itself, rather than the torsion potential.
Spinning branes in Riemann-Cartan spacetime
Vasilić, Milovan; Vojinović, Marko
2008-11-01
We use the conservation law of the stress-energy and spin tensors to study the motion of massive branelike objects in Riemann-Cartan geometry. The world-sheet equations and boundary conditions are obtained in a manifestly covariant form. In the particle case, the resultant worldline equations turn out to exhibit a novel spin-curvature coupling. In particular, the spin of a zero-size particle does not couple to the background curvature. In the string case, the world-sheet dynamics is studied for some special choices of spin and torsion. As a result, the known coupling to the Kalb-Ramond antisymmetric external field is obtained. Geometrically, the Kalb-Ramond field has been recognized as a part of the torsion itself, rather than the torsion potential.
Riemann curvature of a boosted spacetime geometry
Battista, Emmanuele; Scudellaro, Paolo; Tramontano, Francesco
2014-01-01
The ultrarelativistic boosting procedure had been applied in the literature to map the metric of Schwarzschild-de Sitter spacetime into a metric describing de Sitter spacetime plus a shock-wave singularity located on a null hypersurface. This paper evaluates the Riemann curvature tensor of the boosted Schwarzschild-de Sitter metric by means of numerical calculations, which make it possible to reach the ultrarelativistic regime gradually by letting the boost velocity approach the speed of light. Thus, for the first time in the literature, the singular limit of curvature through Dirac's delta distribution and its derivatives is numerically evaluated for this class of spacetimes. Eventually, the analysis of the Kteschmann invariant and the geodesic equation show that the spacetime possesses a scalar curvature singularity within a 3-sphere and it is possible to define what we here call boosted horizon, a sort of elastic wall where all particles are surprisingly pushed away, as numerical analysis demonstrates. Thi...
ON A CLASS OF RIEMANN SURFACES
Arturo Fernández; Javier Pérez
2006-01-01
It is considered the class of Riemann surfaces with dimT1 = 0, where T1 is a subclass of exact harmonic forms which is one of the factors in the orthogonal decomposition of the space ΩH of harmonic forms of the surface, namelyΩH = *Ω0H +T1 + *T0H + T0H + T2.The surfaces in the class OHD and the class of planar surfaces satisfy dimT1 = 0. A.Pfluger posed the question whether there might exist other surfaces outside those two classes. Here it is shown that in the case of finite genus g, we should look for a surface S with dimT1 = 0 among the surfaces of the form Sg\\K , where Sg is a closed surface of genus g and K a compact set of positive harmonic measure with perfect components and very irregular boundary.
Generalized One-Dimensional Point Interaction in Relativistic and Non-relativistic Quantum Mechanics
Shigehara, T; Mishima, T; Cheon, T; Cheon, Taksu
1999-01-01
We first give the solution for the local approximation of a four parameter family of generalized one-dimensional point interactions within the framework of non-relativistic model with three neighboring $\\delta$ functions. We also discuss the problem within relativistic (Dirac) framework and give the solution for a three parameter family. It gives a physical interpretation for so-called high energy substantially differ between non-relativistic and relativistic cases.
Sahoo, Raghunath
2016-01-01
This lecture note covers Relativistic Kinematics, which is very useful for the beginners in the field of high-energy physics. A very practical approach has been taken, which answers "why and how" of the kinematics useful for students working in the related areas.
A meshless method for compressible flows with the HLLC Riemann solver
Ma, Z H; Qian, L
2014-01-01
The HLLC Riemann solver, which resolves both the shock waves and contact discontinuities, is popular to the computational fluid dynamics community studying compressible flow problems with mesh methods. Although it was reported to be used in meshless methods, the crucial information and procedure to realise this scheme within the framework of meshless methods were not clarified fully. Moreover, the capability of the meshless HLLC solver to deal with compressible liquid flows is not completely clear yet as very few related studies have been reported. Therefore, a comprehensive investigation of a dimensional non-split HLLC Riemann solver for the least-square meshless method is carried out in this study. The stiffened gas equation of state is adopted to capacitate the proposed method to deal with single-phase gases and/or liquids effectively, whilst direct applying the perfect gas equation of state for compressible liquid flows might encounter great difficulties in correlating the state variables. The spatial der...
Clifford and Riemann-Finsler structures in geometric mechanics and gravity
Vacaru, S; Gaburov, E
2006-01-01
The book contains a collection of works on Riemann-Cartan and metric-affine manifolds provided with nonlinear connection structure and on generalized Finsler-Lagrange and Cartan-Hamilton geometries and Clifford structures modelled on such manifolds. The choice of material presented has evolved from various applications in modern gravity and geometric mechanics and certain generalizations to noncommutative Riemann-Finsler geometry. The authors develop and use the method of anholonomic frames with associated nonlinear connection structure and apply it to a number of concrete problems: constructing of generic off-diagonal exact solutions, in general, with nontrivial torsion and nonmetricity, possessing noncommutative symmetries and describing black ellipsoid/torus configurations, locally anisotropic wormholes, gravitational solitons and warped factors and investigation of stability of such solutions; classification of Lagrange/ Finsler -- affine spaces; definition of nonholonomic Dirac operators and their applic...
Li's criterion for the Riemann hypothesis - numerical approach
Krzysztof Maślanka
2004-01-01
Full Text Available There has been some interest in a criterion for the Riemann hypothesis proved recently by Xian-Jin Li [Li X.-J.: The Positivity of a Sequence of Numbers and the Riemann Hypothesis. J. Number Theory 65 (1997, 325-333]. The present paper reports on a numerical computation of the first 3300 of Li's coefficients which appear in this criterion. The main empirical observation is that these coefficients can be separated in two parts. One of these grows smoothly while the other is very small and oscillatory. This apparent smallness is quite unexpected. If it persisted till infinity then the Riemann hypothesis would be true.
The Basic Existence Theorem of Riemann-Stieltjes Integral
Nakasho Kazuhisa
2016-12-01
Full Text Available In this article, the basic existence theorem of Riemann-Stieltjes integral is formalized. This theorem states that if f is a continuous function and ρ is a function of bounded variation in a closed interval of real line, f is Riemann-Stieltjes integrable with respect to ρ. In the first section, basic properties of real finite sequences are formalized as preliminaries. In the second section, we formalized the existence theorem of the Riemann-Stieltjes integral. These formalizations are based on [15], [12], [10], and [11].
The influence of magnetic field on short-wavelength instability of Riemann ellipsoids
Mizerski, K. A.; Bajer, K.
2011-10-01
We address the question of stability of the so-called S-type Riemann ellipsoids, i.e. a family of Euler flows in gravitational equilibrium with the vorticity and background rotation aligned along the principal axis perpendicular to the flow. The Riemann ellipsoids are the simplest models of self-gravitating, tidally deformed stars in binary systems, with the ellipticity of the flow modelling the tidal deformation. By the use of the WKB theory we show that mathematically the problem of stability of Riemann ellipsoids with respect to short-wavelength perturbations can be reduced to the problem of magneto-elliptic instability in rotating systems, studied previously by Mizerski and Bajer [K.A. Mizerski, K. Bajer, The magneto-elliptic instability of rotating systems, J. Fluid Mech. 632 (2009) 401-430]. In other words the equations describing the evolution of short-wavelength perturbations of the Riemann ellipsoids considered in Lagrangian variables are the same as those for the evolution of the magneto-elliptic-rotational ( MER) waves in unbounded domain. This allowed us to use the most unstable MER eigenmodes found in Mizerski et al. [K.A. Mizerski, K. Bajer, H.K. Moffatt, The α-effect associated with elliptical instability, J. Fluid Mech., 2010 (in preparation)] to provide an estimate of the characteristic tidal synchronization time in binary star systems. We use the idea of Tassoul [J.-L. Tassoul, On synchronization in early-type binaries, Astrophys. J. 322 (1987) 856-861] and that the interactions between perturbations significantly increase the effective viscosity and hence the energy dissipation in an Ekman-type boundary layer at the surface of the star. The results obtained suggest that if the magnetic field generated by (say) the secondary component of a binary system is strong enough to affect the flow dynamics in the primary, non-magnetized component, the characteristic tidal synchronization time can be significantly reduced.
Relativistic impulse dynamics.
Swanson, Stanley M
2011-08-01
Classical electrodynamics has some annoying rough edges. The self-energy of charges is infinite without a cutoff. The calculation of relativistic trajectories is difficult because of retardation and an average radiation reaction term. By reconceptuallizing electrodynamics in terms of exchanges of impulses rather than describing it by forces and potentials, we eliminate these problems. A fully relativistic theory using photonlike null impulses is developed. Numerical calculations for a two-body, one-impulse-in-transit model are discussed. A simple relationship between center-of-mass scattering angle and angular momentum was found. It reproduces the Rutherford cross section at low velocities and agrees with the leading term of relativistic distinguishable-particle quantum cross sections (Møller, Mott) when the distance of closest approach is larger than the Compton wavelength of the particle. Magnetism emerges as a consequence of viewing retarded and advanced interactions from the vantage point of an instantaneous radius vector. Radiation reaction becomes the local conservation of energy-momentum between the radiating particle and the emitted impulse. A net action is defined that could be used in developing quantum dynamics without potentials. A reinterpretation of Newton's laws extends them to relativistic motion.
One-loop amplitudes on the Riemann sphere
Geyer, Yvonne; Mason, Lionel; Monteiro, Ricardo; Tourkine, Piotr
2016-01-01
.... Their derivation from ambitwistor string theory led to proposals for formulae at one loop on a torus for 10 dimensional supergravity, and we recently showed how these can be reduced to the Riemann...
7th International Conference on Hyperbolic Problems Theory, Numerics, Applications
Jeltsch, Rolf
1999-01-01
These proceedings contain, in two volumes, approximately one hundred papers presented at the conference on hyperbolic problems, which has focused to a large extent on the laws of nonlinear hyperbolic conservation. Two-fifths of the papers are devoted to mathematical aspects such as global existence, uniqueness, asymptotic behavior such as large time stability, stability and instabilities of waves and structures, various limits of the solution, the Riemann problem and so on. Roughly the same number of articles are devoted to numerical analysis, for example stability and convergence of numerical schemes, as well as schemes with special desired properties such as shock capturing, interface fitting and high-order approximations to multidimensional systems. The results in these contributions, both theoretical and numerical, encompass a wide range of applications such as nonlinear waves in solids, various computational fluid dynamics from small-scale combustion to relativistic astrophysical problems, multiphase phe...
Small values of the Euler function and the Riemann hypothesis
Nicolas, Jean-Louis
2012-01-01
Let $\\vfi$ be Euler's function, $\\ga$ be Euler's constant and $N_k$ be the product of the first $k$ primes. In this article, we consider the function $c(n) =(n/\\vfi(n)-e^\\ga\\log\\log n)\\sqrt{\\log n}$. Under Riemann's hypothesis, it is proved that $c(N_k)$ is bounded and explicit bounds are given while, if Riemann's hypothesis fails, $c(N_k)$ is not bounded above or below.
Gravitational anomalies in higher dimensional Riemann Cartan space
Yajima, S.; Tokuo, S.; Fukuda, M.; Higashida, Y.; Kamo, Y.; Kubota, S.-I.; Taira, H.
2007-02-01
By applying the covariant Taylor expansion method of the heat kernel, the covariant Einstein anomalies associated with a Weyl fermion of spin \\frac{1}{2} in four-, six- and eight-dimensional Riemann Cartan space are manifestly given. Many unknown terms with torsion tensors appear in these anomalies. The Lorentz anomaly is intimately related to the Einstein anomaly even in Riemann Cartan space. The explicit form of the Lorentz anomaly corresponding to the Einstein anomaly is also obtained.
Gravitational anomalies in higher dimensional Riemann-Cartan space
Yajima, S [Department of Physics, Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555 (Japan); Tokuo, S [Department of Physics, Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555 (Japan); Fukuda, M [Department of Physics, Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555 (Japan); Higashida, Y [Takuma National College of Technology, 551 kohda, Takuma-cho, Mitoyo, Kagawa 769-1192 (Japan); Kamo, Y [Radioisotope Center, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582 (Japan); Kubota, S-I [Computing and Communications Center, Kagoshima University, 1-21-35 Koorimoto, Kagoshima 890-0065 (Japan); Taira, H [Department of Physics, Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555 (Japan)
2007-02-21
By applying the covariant Taylor expansion method of the heat kernel, the covariant Einstein anomalies associated with a Weyl fermion of spin 1/2 in four-, six- and eight-dimensional Riemann-Cartan space are manifestly given. Many unknown terms with torsion tensors appear in these anomalies. The Lorentz anomaly is intimately related to the Einstein anomaly even in Riemann-Cartan space. The explicit form of the Lorentz anomaly corresponding to the Einstein anomaly is also obtained.
Hakim, Rémi
1994-01-01
Il existe à l'heure actuelle un certain nombre de théories relativistes de la gravitation compatibles avec l'expérience et l'observation. Toutefois, la relativité générale d'Einstein fut historiquement la première à fournir des résultats théoriques corrects en accord précis avec les faits.
Jones, Bernard J. T.; Markovic, Dragoljub
1997-06-01
Preface; Prologue: Conference overview Bernard Carr; Part I. The Universe At Large and Very Large Redshifts: 2. The size and age of the Universe Gustav A. Tammann; 3. Active galaxies at large redshifts Malcolm S. Longair; 4. Observational cosmology with the cosmic microwave background George F. Smoot; 5. Future prospects in measuring the CMB power spectrum Philip M. Lubin; 6. Inflationary cosmology Michael S. Turner; 7. The signature of the Universe Bernard J. T. Jones; 8. Theory of large-scale structure Sergei F. Shandarin; 9. The origin of matter in the universe Lev A. Kofman; 10. New guises for cold-dark matter suspects Edward W. Kolb; Part II. Physics and Astrophysics Of Relativistic Compact Objects: 11. On the unification of gravitational and inertial forces Donald Lynden-Bell; 12. Internal structure of astrophysical black holes Werner Israel; 13. Black hole entropy: external facade and internal reality Valery Frolov; 14. Accretion disks around black holes Marek A. Abramowicz; 15. Black hole X-ray transients J. Craig Wheeler; 16. X-rays and gamma rays from active galactic nuclei Roland Svensson; 17. Gamma-ray bursts: a challenge to relativistic astrophysics Martin Rees; 18. Probing black holes and other exotic objects with gravitational waves Kip Thorne; Epilogue: the past and future of relativistic astrophysics Igor D. Novikov; I. D. Novikov's scientific papers and books.
Riemann zeros and phase transitions via the spectral operator on fractal strings
Herichi, Hafedh; Lapidus, Michel L.
2012-09-01
The spectral operator was introduced by Lapidus and van Frankenhuijsen (2006 Fractal Geometry, Complex Dimensions and Zeta Functions: Geometry and Spectra of Fractal Strings) in their reinterpretation of the earlier work of Lapidus and Maier (1995 J. Lond. Math. Soc. 52 15-34) on inverse spectral problems and the Riemann hypothesis. In essence, it is a map that sends the geometry of a fractal string onto its spectrum. In this review, we present the rigorous functional analytic framework given by Herichi and Lapidus (2012) and within which to study the spectral operator. Furthermore, we give a necessary and sufficient condition for the invertibility of the spectral operator (in the critical strip) and therefore obtain a new spectral and operator-theoretic reformulation of the Riemann hypothesis. More specifically, we show that the spectral operator is quasi-invertible (or equivalently, that its truncations are invertible) if and only if the Riemann zeta function ζ(s) does not have any zeros on the vertical line Re(s) = c. Hence, it is not invertible in the mid-fractal case when c=\\frac{1}{2}, and it is quasi-invertible everywhere else (i.e. for all c ∈ (0, 1) with c\
Riemann Zeroes and Phase Transitions via the Spectral Operator on Fractal Strings
Herichi, Hafedh
2012-01-01
The spectral operator was introduced by M. L. Lapidus and M. van Frankenhuijsen [La-vF3] in their reinterpretation of the earlier work of M. L. Lapidus and H. Maier [LaMa2] on inverse spectral problems and the Riemann hypothesis. In essence, it is a map that sends the geometry of a fractal string onto its spectrum. In this survey paper, we present the rigorous functional analytic framework given by the authors in [HerLa1] and within which to study the spectral operator. Furthermore, we also give a necessary and sufficient condition for the invertibility of the spectral operator (in the critical strip) and therefore obtain a new spectral and operator-theoretic reformulation of the Riemann hypothesis. More specifically, we show that the spectral operator is invertible (or equivalently, that zero does not belong to its spectrum) if and only if the Riemann zeta function zeta(s) does not have any zeroes on the vertical line Re(s)=c. Hence, it is not invertible in the mid-fractal case when c=1/2, and it is invertib...
A Hybrid Riemann Solver for Large Hyperbolic Systems of Conservation Laws
Schmidtmann, Birte
2016-01-01
We are interested in the numerical solution of large systems of hyperbolic conservation laws or systems in which the characteristic decomposition is expensive to compute. Solving such equations using finite volumes or Discontinuous Galerkin requires a numerical flux function which solves local Riemann problems at cell interfaces. There are various methods to express the numerical flux function. On the one end, there is the robust but very diffusive Lax-Friedrichs solver; on the other end the upwind Godunov solver which respects all resulting waves. The drawback of the latter method is the costly computation of the eigensystem. This work presents a family of simple first order Riemann solvers, named HLLX$\\omega$, which avoid solving the eigensystem. The new method reproduces all waves of the system with less dissipation than other solvers with similar input and effort, such as HLL and FORCE. The family of Riemann solvers can be seen as an extension or generalization of the methods introduced by Degond et al. \\...
Robinson manifolds and Cauchy-Riemann spaces
Trautman, A
2002-01-01
A Robinson manifold is defined as a Lorentz manifold (M, g) of dimension 2n >= 4 with a bundle N subset of C centre dot TM such that the fibres of N are maximal totally null and there holds the integrability condition [Sec N, Sec N] subset of Sec N. The real part of N intersection N-bar is a bundle of null directions tangent to a congruence of null geodesics. This generalizes the notion of a shear-free congruence of null geodesics (SNG) in dimension 4. Under a natural regularity assumption, the set M of all these geodesics has the structure of a Cauchy-Riemann manifold of dimension 2n - 1. Conversely, every such CR manifold lifts to many Robinson manifolds. Three definitions of a CR manifold are described here in considerable detail; they are equivalent under the assumption of real analyticity, but not in the smooth category. The distinctions between these definitions have a bearing on the validity of the Robinson theorem on the existence of null Maxwell fields associated with SNGs. This paper is largely a re...
Pauli graphs, Riemann hypothesis, Goldbach pairs
Planat, Michel; Solé, Patrick
2011-01-01
Let consider the Pauli group $\\mathcal{P}_q=$ with unitary quantum generators $X$ (shift) and $Z$ (clock) acting on the vectors of the $q$-dimensional Hilbert space via $X|s> =|s+1>$ and $Z|s> =\\omega^s |s>$, with $\\omega=\\exp(2i\\pi/q)$. It has been found that the number of maximal mutually commuting sets within $\\mathcal{P}_q$ is controlled by the Dedekind psi function $\\psi(q)=q \\prod_{p|q}(1+\\frac{1}{p})$ (with $p$ a prime) \\cite{Planat2011} and that there exists a specific inequality $\\frac{\\psi (q)}{q}>e^{\\gamma}\\log \\log q$, involving the Euler constant $\\gamma \\sim 0.577$, that is only satisfied at specific low dimensions $q \\in \\mathcal {A}=\\{2,3,4,5,6,8,10,12,18,30\\}$. The set $\\mathcal{A}$ is closely related to the set $\\mathcal{A} \\cup \\{1,24\\}$ of integers that are totally Goldbach, i.e. that consist of all primes $p2$) is equivalent to Riemann hypothesis. Introducing the Hardy-Littlewood function $R(q)=2 C_2 \\prod_{p|n}\\frac{p-1}{p-2}$ (with $C_2 \\sim 0.660$ the twin prime constant), that is used...
Scattering in Relativistic Particle Mechanics.
de Bievre, Stephan
The problem of direct interaction in relativistic particle mechanics has been extensively studied and a variety of models has been proposed avoiding the conclusions of the so-called no-interaction theorems. In this thesis we study scattering in the relativistic two-body problem. We use our results to analyse gauge invariance in Hamiltonian constraint models and the uniqueness of the symplectic structure in manifestly covariant relativistic particle mechanics. We first present a general geometric framework that underlies approaches to relativistic particle mechanics. This permits a model-independent and geometric definition of the notions of asymptotic completeness and of Moller and scattering operators. Subsequent analysis of these concepts divides into two parts. First, we study the kinematic properties of the scattering transformation, i.e. those properties that arise solely from the invariance of the theory under the Poincare group. We classify all canonical (symplectic) scattering transformations on the relativistic phase space for two free particles in terms of a single function of the two invariants of the theory. We show how this function is determined by the center of mass time delay and scattering angle and vice versa. The second part of our analysis of the relativistic two-body scattering problem is devoted to the dynamical properties of the scattering process. Hence, we turn to two approaches to relativistic particle mechanics: the Hamiltonian constraint models and the manifestly covariant formalism. Using general geometric arguments, we prove "gauge invariance" of the scattering transformation in the Todorov -Komar Hamiltonian constraint model. We conclude that the scattering cross sections of the Todorov-Komar models have the same angular dependence as their non-relativistic counterpart, irrespective of a choice of gauge. This limits the physical relevance of those models. We present a physically non -trivial Hamiltonian constraint model, starting from
Non-normal Hasemann Boundary Value Problem
无
2001-01-01
We will discuss the non-normal Hasemann boundary value problem:we may find these results are coincided with those of normal Hasemann boundary value problem and non normal Riemann boundary value problem.
Chaos and Maps in Relativistic Dynamical Systems
Horwitz, L P
1999-01-01
The basic work of Zaslavskii et al showed that the classical non-relativistic electromagnetically kicked oscillator can be cast into the form of an iterative map on the phase space; the resulting evolution contains a stochastic flow to unbounded energy. Subsequent studies have formulated the problem in terms of a relativistic charged particle in interaction with the electromagnetic field. We review the structure of the covariant Lorentz force used to study this problem. We show that the Lorentz force equation can be derived as well from the manifestly covariant mechanics of Stueckelberg in the presence of a standard Maxwell field, establishing a connection between these equations and mass shell constraints. We argue that these relativistic generalizations of the problem are intrinsically inaccurate due to an inconsistency in the structure of the relativistic Lorentz force, and show that a reformulation of the relativistic problem, permitting variations (classically) in both the particle mass and the effective...
Ernst Equation and Riemann Surfaces: Analytical and Numerical Methods
Ernst, Frederick J [FJE Enterprises, 511 County Route 59, Potsdam, NY 13676 (United States)
2007-06-18
source can be represented by discontinuities in the metric tensor components. The first two chapters of this book are devoted to some basic ideas: in the introductory chapter 1 the authors discuss the concept of integrability, comparing the integrability of the vacuum Ernst equation with the integrability of nonlinear equations of Korteweg-de Vries (KdV) type, while in chapter 2 they describe various circumstances in which the vacuum Ernst equation has been determined to be relevant, not only in connection with gravitation but also, for example, in the construction of solutions of the self-dual Yang-Mills equations. It is also in this chapter that one of several equivalent linear systems for the Ernst equation is described. The next two chapters are devoted to Dmitry Korotkin's concept of algebro-geometric solutions of a linear system: in chapter 3 the structure of such solutions of the vacuum Ernst equation, which involve Riemann theta functions of hyperelliptic algebraic curves of any genus, is contrasted with the periodic structure of such solutions of the KdV equation. How such solutions can be obtained, for example, by solving a matrix Riemann-Hilbert problem and how the metric tensor of the associated spacetime can be evaluated is described in detail. In chapter 4 the asymptotic behaviour and the similarity structure of the general algebro-geometric solutions of the Ernst equation are described, and the relationship of such solutions to the perhaps more familiar multi-soliton solutions is discussed. The next three chapters are based upon the authors' own published research: in chapter 5 it is shown that a problem involving counter-rotating infinitely thin disks of matter can be solved in terms of genus two Riemann theta functions, while in chapter 6 the authors describe numerical methods that facilitate the construction of such solutions, and in chapter 7 three-dimensional graphs are displayed that depict all metrical fields of the associated spacetime
Relativistic and non-relativistic geodesic equations
Giambo' , R.; Mangiarotti, L.; Sardanashvily, G. [Camerino Univ., Camerino, MC (Italy). Dipt. di Matematica e Fisica
1999-07-01
It is shown that any dynamic equation on a configuration space of non-relativistic time-dependent mechanics is associated with connections on its tangent bundle. As a consequence, every non-relativistic dynamic equation can be seen as a geodesic equation with respect to a (non-linear) connection on this tangent bundle. Using this fact, the relationships between relativistic and non-relativistic equations of motion is studied.
On the Riemann Curvature Operators in Randers Spaces
Rafie-Rad, M.
2013-05-01
The Riemann curvature in Riemann-Finsler geometry can be regarded as a collection of linear operators on the tangent spaces. The algebraic properties of these operators may be linked to the geometry and the topology of the underlying space. The principal curvatures of a Finsler space (M, F) at a point x are the eigenvalues of the Riemann curvature operator at x. They are real functions κ on the slit tangent manifold TM0. A principal curvature κ(x, y) is said to be isotropic (respectively, quadratic) if κ(x, y)/F(x, y) is a function of x only (respectively, κ(x, y) is quadratic with respect to y). On the other hand, the Randers metrics are the most popular and prominent metrics in pure and applied disciplines. Here, it is proved that if a Randers metric admits an isotropic principal curvature, then F is of isotropic S-curvature. The same result is also established for F to admit a quadratic principal curvature. These results extend Shen's verbal results about Randers metrics of scalar flag curvature K = K(x) as well as those Randers metrics with quadratic Riemann curvature operator. The Riemann curvature Rik may be broken into two operators Rik and Jik. The isotropic and quadratic principal curvature are characterized in terms of the eigenvalues of R and J.
Vacuum decay in CFT and the Riemann-Hilbert problem
Pimentel, G.L.; Polyakov, A.M.; Tarnopolsky, G.M.
2016-01-01
We study vacuum stability in 1+1 dimensional Conformal Field Theories with external background fields. We show that the vacuum decay rate is given by a non-local two-form. This two-form is a boundary term that must be added to the effective in/out Lagrangian. The two-form is expressed in terms of a
On A Rapidly Converging Series For The Riemann Zeta Function
Pichler, Alois
2012-01-01
To evaluate Riemann's zeta function is important for many investigations related to the area of number theory, and to have quickly converging series at hand in particular. We investigate a class of summation formulae and find, as a special case, a new proof of a rapidly converging series for the Riemann zeta function. The series converges in the entire complex plane, its rate of convergence being significantly faster than comparable representations, and so is a useful basis for evaluation algorithms. The evaluation of corresponding coefficients is not problematic, and precise convergence rates are elaborated in detail. The globally converging series obtained allow to reduce Riemann's hypothesis to similar properties on polynomials. And interestingly, Laguerre's polynomials form a kind of leitmotif through all sections.
Numerical comparison of Riemann solvers for astrophysical hydrodynamics
Klingenberg, Christian; Waagan, Knut
2007-01-01
The idea of this work is to compare a new positive and entropy stable approximate Riemann solver by Francois Bouchut with a state-of the-art algorithm for astrophysical fluid dynamics. We implemented the new Riemann solver into an astrophysical PPM-code, the Prometheus code, and also made a version with a different, more theoretically grounded higher order algorithm than PPM. We present shock tube tests, two-dimensional instability tests and forced turbulence simulations in three dimensions. We find subtle differences between the codes in the shock tube tests, and in the statistics of the turbulence simulations. The new Riemann solver increases the computational speed without significant loss of accuracy.
A Riemann-Roch theorem for the noncommutative two torus
Khalkhali, Masoud; Moatadelro, Ali
2014-12-01
We prove the analogue of the Riemann-Roch formula for the noncommutative two torus Aθ = C(Tθ2)equipped with an arbitrary translation invariant complex structure and a Weyl factor represented by a positive element k ∈C∞(Tθ2). We consider a topologically trivial line bundle equipped with a general holomorphic structure and the corresponding twisted Dolbeault Laplacians. We define a spectral triple (Aθ , H , D) that encodes the twisted Dolbeault complex of Aθ and whose index gives the left hand side of the Riemann-Roch formula. Using Connes' pseudodifferential calculus and heat equation techniques, we explicitly compute the b2 terms of the asymptotic expansion of Tr(e-tD2) . We find that the curvature term on the right hand side of the Riemann-Roch formula coincides with the scalar curvature of the noncommutative torus recently defined and computed in Connes and Moscovici (2014) and independently computed in Fathizadeh and Khalkhali (2014).
3D shape matching and Teichm\\"uller spaces of pointed Riemann surfaces
Fontanari, Claudio
2011-01-01
Shape matching represents a challenging problem in both information engineering and computer science, exhibiting not only a wide spectrum of multimedia applications, but also a deep relation with conformal geometry. After reviewing the theoretical foundations and the practical issues involved in this fashinating subject, we focus on two state-of-the-art approaches relying respectively on local features (landmark points) and on global properties (conformal parameterizations). Finally, we introduce the Teichm\\"uller space of n-pointed Riemann surfaces of genus g into the realm of multimedia, showing that its beautiful geometry provides a natural unified framework for three-dimensional shape matching.
Relativistic magnetohydrodynamics
Hernandez, Juan; Kovtun, Pavel
2017-05-01
We present the equations of relativistic hydrodynamics coupled to dynamical electromagnetic fields, including the effects of polarization, electric fields, and the derivative expansion. We enumerate the transport coefficients at leading order in derivatives, including electrical conductivities, viscosities, and thermodynamic coefficients. We find the constraints on transport coefficients due to the positivity of entropy production, and derive the corresponding Kubo formulas. For the neutral state in a magnetic field, small fluctuations include Alfvén waves, magnetosonic waves, and the dissipative modes. For the state with a non-zero dynamical charge density in a magnetic field, plasma oscillations gap out all propagating modes, except for Alfvén-like waves with a quadratic dispersion relation. We relate the transport coefficients in the "conventional" magnetohydrodynamics (formulated using Maxwell's equations in matter) to those in the "dual" version of magnetohydrodynamics (formulated using the conserved magnetic flux).
A two-fluid model for relativistic heat conduction
López-Monsalvo, César S. [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México (Mexico)
2014-01-14
Three years ago it was presented in these proceedings the relativistic dynamics of a multi-fluid system together with various applications to a set of topical problems [1]. In this talk, I will start from such dynamics and present a covariant formulation of relativistic thermodynamics which provides us with a causal constitutive equation for the propagation of heat in a relativistic setting.
A new generalization of the Riemann zeta function and its difference equation
Qadir Asghar
2011-01-01
Full Text Available Abstract We have introduced a new generalization of the Riemann zeta function. A special case of our generalization converges locally uniformly to the Riemann zeta function in the critical strip. It approximates the trivial and non-trivial zeros of the Riemann zeta function. Some properties of the generalized Riemann zeta function are investigated. The relation between the function and the general Hurwitz zeta function is exploited to deduce new identities.
C=1 conformal field theories on Riemann surfaces
Dijkgraaf, R.; Verlinde, E.; Verlinde, H.
1988-03-01
We study the theory of c=1 torus and Z/sub 2/-orbifold models on general Riemann surfaces. The operator content and occurrence of multi-critical points in this class of theories is discussed. The partition functions and correlation functions of vertex operators and twist fields are calculated using the theory of double covered Riemann surfaces. It is shown that orbifold partition functions are sensitive to the Torelli group. We give an algebraic construction of the operator formulation of these nonchiral theories on higher genus surfaces. Modular transformations are naturally incorporated as canonical transformations in the Hilbert space.
C=1 conformal field theories on Riemann surfaces
Dijkgraaf, Robbert; Verlinde, Erik; Verlinde, Herman
1988-12-01
We study the theory of c=1 torus and ℤ2-orbifold models on general Riemann surfaces. The operator content and occurrence of multi-critical points in this class of theories is discussed. The partition functions and correlation functions of vertex operators and twist fields are calculated using the theory of double covered Riemann surfaces. It is shown that orbifold partition functions are sensitive to the Torelli group. We give an algebraic construction of the operator formulation of these nonchiral theories on higher genus surfaces. Modular transformations are naturally incorporated as canonical transformations in the Hilbert space.
The Berry-Keating Hamiltonian and the local Riemann hypothesis
Srednicki, Mark
2011-07-01
The local Riemann hypothesis states that the zeros of the Mellin transform of a harmonic-oscillator eigenfunction (on a real or p-adic configuration space) have a real part 1/2. For the real case, we show that the imaginary parts of these zeros are the eigenvalues of the Berry-Keating Hamiltonian \\hat{H}_BK=(\\hat{x}\\hat{p}+\\hat{p}\\hat{x})/2 projected onto the subspace of oscillator eigenfunctions of a lower level. This gives a spectral proof of the local Riemann hypothesis for the reals, in the spirit of the Hilbert-Pólya conjecture. The p-adic case is also discussed.
The stable moduli space of Riemann surfaces: Mumford's conjecture
Madsen, I.; Weiss, Michael
2007-01-01
D. Mumford conjectured in "Towards an enumerative geometry of the moduli space of curves" that the rational cohomology of the stable moduli space of Riemann surfaces is a polynomial algebra generated by certain classes $\\kappa_i$ of dimension $2i$. For the purpose of calculating rational cohomology......, one may replace the stable moduli space of Riemann surfaces by $B\\Gamma_{\\infty}$, where $\\Gamma_\\infty$ is the group of isotopy classes of automorphisms of a smooth oriented connected surface of ``large'' genus. Tillmann's theorem that the plus construction makes $B\\Gamma_{\\infty}$ into an infinite...
Deforming super Riemann surfaces with gravitinos and super Schottky groups
Playle, Sam [Dipartimento di Fisica, Università di Torino and INFN, Sezione di Torino,Via P. Giuria 1, I-10125 Torino (Italy)
2016-12-12
The (super) Schottky uniformization of compact (super) Riemann surfaces is briefly reviewed. Deformations of super Riemann surface by gravitinos and Beltrami parameters are recast in terms of super Schottky group cohomology. It is checked that the super Schottky group formula for the period matrix of a non-split surface matches its expression in terms of a gravitino and Beltrami parameter on a split surface. The relationship between (super) Schottky groups and the construction of surfaces by gluing pairs of punctures is discussed in an appendix.
Line operators from M-branes on compact Riemann surfaces
Amariti, Antonio [Physics Department, The City College of the CUNY, 160 Convent Avenue, New York, NY 10031 (United States); Orlando, Domenico [Albert Einstein Center for Fundamental Physics, Institute for Theoretical Physics, University of Bern, Sidlerstrasse 5, CH-3012 Bern (Switzerland); Reffert, Susanne, E-mail: sreffert@itp.unibe.ch [Albert Einstein Center for Fundamental Physics, Institute for Theoretical Physics, University of Bern, Sidlerstrasse 5, CH-3012 Bern (Switzerland)
2016-12-15
In this paper, we determine the charge lattice of mutually local Wilson and 't Hooft line operators for class S theories living on M5-branes wrapped on compact Riemann surfaces. The main ingredients of our analysis are the fundamental group of the N-cover of the Riemann surface, and a quantum constraint on the six-dimensional theory. The latter plays a central role in excluding some of the possible lattices and imposing consistency conditions on the charges. This construction gives a geometric explanation for the mutual locality among the lines, fixing their charge lattice and the structure of the four-dimensional gauge group.
A duality theorem by means of Riemann Stieltjes integral
Ottavio Caligaris
1993-05-01
Full Text Available Duality between the space of continuous functions and the space of bounded variations functions can be easily characterized by means of Riemann-Stieltjes integrals when we consider real valued functions defined, e.g., on [0,1]; here we give a self-contained exposition of Riemann-Stieltjes integration theory for functions which assumes values in infinite dimensional vector spaces and we show as the duality between the space of continuous functions and the space of bounded variation functions can be represented by means of such theory.
A Dirac type xp-Model and the Riemann Zeros
Gupta, Kumar S; de Queiroz, Amilcar R
2012-01-01
We propose a Dirac like modification of the xp-model to a $x \\slashed{p}$ model on a semi-infinite cylinder. This model is inspired on recent work by Sierra et al. on the xp-model on the half-line. Our model realizes the Berry-Keating conjecture on the Riemann zeros. We indicate the connection of our model to that of gapped graphene with a supercritical Coulomb charge, which might provide a physical system for the study of the zeros of the Riemann Zeta function.
Riemann Hypothesis and Random Walks: the Zeta case
LeClair, André
2016-01-01
In previous work it was shown that if certain series based on sums over primes of non-principal Dirichlet characters have a conjectured random walk behavior, then the Euler product formula for its $L$-function is valid to the right of the critical line $\\Re (s) > 1/2$, and the Riemann Hypothesis for this class of $L$-functions follows. Building on this work, here we propose how to extend this line of reasoning to the Riemann zeta function and other principal Dirichlet $L$-functions. We use our results to argue that $ S_\\delta (t) \\equiv \\lim_{\\delta \\to 0^+} \\dfrac{1}{\\pi} \\arg \\zeta (\\tfrac{1}{2}+ \\delta + i t ) = O(1)$, and that it is nearly always on the principal branch. We conjecture that a 1-point correlation function of the Riemann zeros has a normal distribution. This leads to the construction of a probabilistic model for the zeros. Based on these results we describe a new algorithm for computing very high Riemann zeros as a kind of stochastic process, and we calculate the $10^{100}$-th zero to over 1...
A Riemann-Hilbert approach to Painleve IV
Put, M. van der; Top, J.
2013-01-01
The methods of [vdP-Sa, vdP1, vdP2] are applied to the fourth Painleve equation. One obtains a Riemann-Hilbert correspondence between moduli spaces of rank two connections on P-1 and moduli spaces for the monodromy data. The moduli spaces for these connections are identified with Okamoto-Painleve va
Off-shell D=5, N=2 Riemann squared supergravity
Bergshoeff, Eric A.; Rosseel, Jan; Sezgin, Ergin
2011-01-01
We construct a new off-shell invariant in N = 2, D = 5 supergravity whose leading term is the square of the Riemann tensor. It contains a gravitational Chern-Simons term involving the vector field that belongs to the supergravity multiplet. The action is obtained by mapping the transformation rules
Non-abelian vortices on compact Riemann surfaces
Baptista, J.M.
2009-01-01
We consider the vortex equations for a U(n) gauge field A coupled to a Higgs field phi with values on the n x n matrices. It is known that when these equations are defined on a compact Riemann surface Sigma, their moduli space of solutions is closely related to a moduli space of tau-stable holomorph
Weyl transforms associated with the Riemann-Liouville operator
N. B. Hamadi
2006-01-01
Full Text Available For the Riemann-Liouville transform ℛα, α∈ℝ+, associated with singular partial differential operators, we define and study the Weyl transforms Wσ connected with ℛα, where σ is a symbol in Sm, m∈ℝ. We give criteria in terms of σ for boundedness and compactness of the transform Wσ.
Lefschetz and Hirzebruch-Riemann-Roch formulas via noncommutative motives
Cisinski, Denis-Charles
2011-01-01
V. Lunts has recently established Lefschetz fixed point theorems for Fourier-Mukai functors and dg algebras. In the same vein, D. Shklyarov introduced the noncommutative analogue of the Hirzebruch-Riemann-Roch theorem. In this note, making use of the theory of noncommutative motives, we show how these beautiful theorems can be understood as instantiations of more general results.
Weyl and Riemann-Liouville multifractional Ornstein-Uhlenbeck processes
Lim, S C [Faculty of Engineering, Multimedia University, Jalan Multimedia, Cyberjaya 63100, Selangor Darul Ehsan (Malaysia); Teo, L P [Faculty of Information Technology, Multimedia University, Jalan Multimedia, Cyberjaya, 63100, Selangor Darul Ehsan (Malaysia)
2007-06-08
This paper considers two new multifractional stochastic processes, namely the Weyl multifractional Ornstein-Uhlenbeck process and the Riemann-Liouville multifractional Ornstein-Uhlenbeck process. Basic properties of these processes such as locally self-similar property and Hausdorff dimension are studied. The relationship between the multifractional Ornstein-Uhlenbeck processes and the corresponding multifractional Brownian motions is established.
Riemann-Finsler Geometry with Applications to Information Geometry
无
2006-01-01
Information geometry is a new branch in mathematics, originated from the applications of differential geometry to statistics. In this paper we briefly introduce RiemannFinsler geometry, by which we establish Information Geometry on a much broader base,so that the potential applications of Information Geometry will be beyond statistics.
A Riemann-Hilbert approach to Painleve IV
Put, M. van der; Top, J.
2013-01-01
The methods of [vdP-Sa, vdP1, vdP2] are applied to the fourth Painleve equation. One obtains a Riemann-Hilbert correspondence between moduli spaces of rank two connections on P-1 and moduli spaces for the monodromy data. The moduli spaces for these connections are identified with Okamoto-Painleve va
The stable moduli space of Riemann surfaces: Mumford's conjecture
Madsen, I.; Weiss, Michael
2007-01-01
D. Mumford conjectured in "Towards an enumerative geometry of the moduli space of curves" that the rational cohomology of the stable moduli space of Riemann surfaces is a polynomial algebra generated by certain classes $\\kappa_i$ of dimension $2i$. For the purpose of calculating rational cohomolo...
Parabolic stable Higgs bundles over complete noncompact Riemann surfaces
李嘉禹; 王友德
1999-01-01
Let M be an open Riemann surface with a finite set of punctures, a complete Poincar(?)-like metric is introduced near the punctures and the equivalence between the stability of an indecomposable parabolic Higgs bundle, and the existence of a Hermitian-Einstein metric on the bundle is established.
Riemann-Roch Spaces and Linear Network Codes
Hansen, Johan P.
2015-01-01
We construct linear network codes utilizing algebraic curves over finite fields and certain associated Riemann-Roch spaces and present methods to obtain their parameters. In particular we treat the Hermitian curve and the curves associated with the Suzuki and Ree groups all having the maximal...
Jones, Steven R.; Lim, YaeRi; Chandler, Katie R.
2017-01-01
Past research in calculus education has shown that Riemann sum-based conceptions of the definite integral, such as the multiplicatively based summation (MBS) conception, can have important value in interpreting and making sense of certain types of definite integral expressions. However, additional research has shown that students tend to not draw…
Relativistic Gravity Gradiometry: The Mashhoon--Theiss Effect
Bini, Donato
2016-01-01
Relativistic gravity gradiometry involves the measurement of the relativistic tidal matrix in general relativity, which is theoretically obtained from the projection of the Riemann curvature tensor onto the orthonormal tetrad frame of an observer. The observer's 4-velocity vector defines its local temporal axis and its local spatial frame is defined by a set of three orthonormal nonrotating gyro directions. The general tidal matrix for the timelike geodesics of Kerr spacetime has been calculated by Marck~\\cite{Marck}. We are interested in the (measured) components of the curvature tensor along the inclined "circular" geodesic orbit of a test mass about a slowly rotating astronomical object of mass $M$ and angular momentum $J$. Therefore, we specialize Marck's results to such a "circular" orbit about the Kerr source that is tilted with respect to the equatorial plane of the source. To linear order in $J$, we recover the Mashhoon--Theiss effect, which is due to a small denominator ("resonance") phenomenon invol...
Two-Dimensional Riemann Solver for Euler Equations of Gas Dynamics
Brio, M.; Zakharian, A. R.; Webb, G. M.
2001-02-01
We construct a Riemann solver based on two-dimensional linear wave contributions to the numerical flux that generalizes the one-dimensional method due to Roe (1981, J. Comput. Phys.43, 157). The solver is based on a multistate Riemann problem and is suitable for arbitrary triangular grids or any other finite volume tessellations of the plane. We present numerical examples illustrating the performance of the method using both first- and second-order-accurate numerical solutions. The numerical flux contributions are due to one-dimensional waves and multidimensional waves originating from the corners of the computational cell. Under appropriate CFL restrictions, the contributions of one-dimensional waves dominate the flux, which explains good performance of dimensionally split solvers in practice. The multidimensional flux corrections increase the accuracy and stability, allowing a larger time step. The improvements are more pronounced on a coarse mesh and for large CFL numbers. For the second-order method, the improvements can be comparable to the improvements resulting from a less diffusive limiter.
Exploration and extension of an improved Riemann track fitting algorithm
Strandlie, A.; Frühwirth, R.
2017-09-01
Recently, a new Riemann track fit which operates on translated and scaled measurements has been proposed. This study shows that the new Riemann fit is virtually as precise as popular approaches such as the Kalman filter or an iterative non-linear track fitting procedure, and significantly more precise than other, non-iterative circular track fitting approaches over a large range of measurement uncertainties. The fit is then extended in two directions: first, the measurements are allowed to lie on plane sensors of arbitrary orientation; second, the full error propagation from the measurements to the estimated circle parameters is computed. The covariance matrix of the estimated track parameters can therefore be computed without recourse to asymptotic properties, and is consequently valid for any number of observation. It does, however, assume normally distributed measurement errors. The calculations are validated on a simulated track sample and show excellent agreement with the theoretical expectations.
Hamiltonian for the Zeros of the Riemann Zeta Function.
Bender, Carl M; Brody, Dorje C; Müller, Markus P
2017-03-31
A Hamiltonian operator H[over ^] is constructed with the property that if the eigenfunctions obey a suitable boundary condition, then the associated eigenvalues correspond to the nontrivial zeros of the Riemann zeta function. The classical limit of H[over ^] is 2xp, which is consistent with the Berry-Keating conjecture. While H[over ^] is not Hermitian in the conventional sense, iH[over ^] is PT symmetric with a broken PT symmetry, thus allowing for the possibility that all eigenvalues of H[over ^] are real. A heuristic analysis is presented for the construction of the metric operator to define an inner-product space, on which the Hamiltonian is Hermitian. If the analysis presented here can be made rigorous to show that H[over ^] is manifestly self-adjoint, then this implies that the Riemann hypothesis holds true.
Analysis III analytic and differential functions, manifolds and Riemann surfaces
Godement, Roger
2015-01-01
Volume III sets out classical Cauchy theory. It is much more geared towards its innumerable applications than towards a more or less complete theory of analytic functions. Cauchy-type curvilinear integrals are then shown to generalize to any number of real variables (differential forms, Stokes-type formulas). The fundamentals of the theory of manifolds are then presented, mainly to provide the reader with a "canonical'' language and with some important theorems (change of variables in integration, differential equations). A final chapter shows how these theorems can be used to construct the compact Riemann surface of an algebraic function, a subject that is rarely addressed in the general literature though it only requires elementary techniques. Besides the Lebesgue integral, Volume IV will set out a piece of specialized mathematics towards which the entire content of the previous volumes will converge: Jacobi, Riemann, Dedekind series and infinite products, elliptic functions, classical theory of modular fun...
Gravitational wave detector response in terms of spacetime Riemann curvature
Koop, Michael J
2013-01-01
Gravitational wave detectors are typically described as responding to gravitational wave metric perturbations, which are gauge-dependent and --- correspondingly --- unphysical quantities. This is particularly true for ground-based interferometric detectors, like LIGO, space-based detectors, like LISA and its derivatives, spacecraft doppler tracking detectors, and pulsar timing arrays detectors. The description of gravitational waves, and a gravitational wave detector's response, to the unphysical metric perturbation has lead to a proliferation of false analogies and descriptions regarding how these detectors function, and true misunderstandings of the physical character of gravitational waves. Here we provide a fully physical and gauge invariant description of the response of a wide class of gravitational wave detectors in terms of the Riemann curvature, the physical quantity that describes gravitational phenomena in general relativity. In the limit of high frequency gravitational waves, the Riemann curvature...
Poisson Sigma Model with branes and hyperelliptic Riemann surfaces
Ferrario, Andrea
2007-01-01
We derive the explicit form of the superpropagators in presence of general boundary conditions (coisotropic branes) for the Poisson Sigma Model. This generalizes the results presented in Cattaneo and Felder's previous works for the Kontsevich angle function used in the deformation quantization program of Poisson manifolds without branes or with at most two branes. The relevant superpropagators for n branes are defined as gauge fixed homotopy operators of a complex of differential forms on n sided polygons P_n with particular "alternating" boundary conditions. In presence of more than three branes we use first order Riemann theta functions with odd singular characteristics on the Jacobian variety of a hyperelliptic Riemann surface (canonical setting). In genus g the superpropagators present g zero modes contributions.
HLL Riemann Solvers and Alfven Waves in Black Hole Magnetospheres
Punsly, Brian; Kim, Jinho; Garain, Sudip
2016-01-01
In the magnetosphere of a rotating black hole, an inner Alfven critical surface (IACS) must be crossed by inflowing plasma. Inside the IACS, Alfven waves are inward directed toward the black hole. The majority of the proper volume of the active region of spacetime (the ergosphere) is inside of the IACS. The charge and the totally transverse momentum flux (the momentum flux transverse to both the wave normal and the unperturbed magnetic field) are both determined exclusively by the Alfven polarization. However, numerical simulations of black hole magnetospheres are often based on 1-D HLL Riemann solvers that readily dissipate Alfven waves. Elements of the dissipated wave emerge in adjacent cells regardless of the IACS, there is no mechanism to prevent Alfvenic information from crossing outward. Thus, it is unclear how simulated magnetospheres attain the substantial Goldreich-Julian charge density associated with the rotating magnetic field. The HLL Riemann solver is also notorious for producing large recurring...
The Berry-Keating Hamiltonian and the local Riemann hypothesis
Srednicki, Mark, E-mail: mark@physics.ucsb.edu [Department of Physics, University of California, Santa Barbara, CA 93106 (United States)
2011-07-29
The local Riemann hypothesis states that the zeros of the Mellin transform of a harmonic-oscillator eigenfunction (on a real or p-adic configuration space) have a real part 1/2. For the real case, we show that the imaginary parts of these zeros are the eigenvalues of the Berry-Keating Hamiltonian H-hat {sub BK}=( x-hat p-hat + p-hat x-hat )/2 projected onto the subspace of oscillator eigenfunctions of a lower level. This gives a spectral proof of the local Riemann hypothesis for the reals, in the spirit of the Hilbert-Polya conjecture. The p-adic case is also discussed.
Odd Deformations of Super Riemann Surfaces: $\\mathcal N = 1$
Bettadapura, Kowshik
2016-01-01
In this article we study odd deformations of an $\\mathcal N =1$ super Riemann surface. We begin with odd, infinitesimal deformations with the objective being to describe the Kodaira-Spencer map for them and explore the consequences of the vanishing thereof. Our intent is to relate the deformation theory of a super Riemann surface with the obstruction theory of the deformation (itself to be thought of as a complex supermanifold). Illustrations are provided in low genus. Subsequently, we investigate deformations of higher order with a view to further understand this relation between obstruction theory and deformation theory. By way of motivation, a detailed study of odd, second order deformations is presented, leading naturally to a question on the characterisation odd deformations of any order.
Hybrid Riemann Solvers for Large Systems of Conservation Laws
Schmidtmann, Birte; Torrilhon, Manuel
2016-01-01
In this paper we present a new family of approximate Riemann solvers for the numerical approximation of solutions of hyperbolic conservation laws. They are approximate, also referred to as incomplete, in the sense that the solvers avoid computing the characteristic decomposition of the flux Jacobian. Instead, they require only an estimate of the globally fastest wave speeds in both directions. Thus, this family of solvers is particularly efficient for large systems of conservation laws, i.e. with many different propagation speeds, and when no explicit expression for the eigensystem is available. Even though only fastest wave speeds are needed as input values, the new family of Riemann solvers reproduces all waves with less dissipation than HLL, which has the same prerequisites, requiring only one additional flux evaluation.
Pseudo-periodic maps and degeneration of Riemann surfaces
Matsumoto, Yukio
2011-01-01
The first part of the book studies pseudo-periodic maps of a closed surface of genus greater than or equal to two. This class of homeomorphisms was originally introduced by J. Nielsen in 1944 as an extension of periodic maps. In this book, the conjugacy classes of the (chiral) pseudo-periodic mapping classes are completely classified, and Nielsen’s incomplete classification is corrected. The second part applies the results of the first part to the topology of degeneration of Riemann surfaces. It is shown that the set of topological types of all the singular fibers appearing in one-parameter holomorphic families of Riemann surfaces is in a bijective correspondence with the set of conjugacy classes of the pseudo-periodic maps of negative twists. The correspondence is given by the topological monodromy.
A high order special relativistic hydrodynamic code with space-time adaptive mesh refinement
Zanotti, Olindo
2013-01-01
We present a high order one-step ADER-WENO finite volume scheme with space-time adaptive mesh refinement (AMR) for the solution of the special relativistic hydrodynamics equations. By adopting a local discontinuous Galerkin predictor method, a high order one-step time discretization is obtained, with no need for Runge-Kutta sub-steps. This turns out to be particularly advantageous in combination with space-time adaptive mesh refinement, which has been implemented following a "cell-by-cell" approach. As in existing second order AMR methods, also the present higher order AMR algorithm features time-accurate local time stepping (LTS), where grids on different spatial refinement levels are allowed to use different time steps. We also compare two different Riemann solvers for the computation of the numerical fluxes at the cell interfaces. The new scheme has been validated over a sample of numerical test problems in one, two and three spatial dimensions, exploring its ability in resolving the propagation of relativ...
Sergey K. Sekatskii
2015-01-01
Full Text Available Integral equalities involving integrals of the logarithm of the Riemann ς-function with exponential weight functions are introduced, and it is shown that an infinite number of them are equivalent to the Riemann hypothesis. Some of these equalities are tested numerically. The possible contribution of the Riemann function zeroes nonlying on the critical line is rigorously estimated and shown to be extremely small, in particular, smaller than nine milliards of decimals for the maximal possible weight function exp(−2πt. We also show how certain Fourier transforms of the logarithm of the Riemann zeta-function taken along the real (demiaxis are expressible via elementary functions plus logarithm of the gamma-function and definite integrals thereof, as well as certain sums over trivial and nontrivial Riemann function zeroes.
A contribution to the great Riemann solver debate
Quirk, James J.
1992-01-01
The aims of this paper are threefold: to increase the level of awareness within the shock capturing community to the fact that many Godunov-type methods contain subtle flaws that can cause spurious solutions to be computed; to identify one mechanism that might thwart attempts to produce very high resolution simulations; and to proffer a simple strategy for overcoming the specific failings of individual Riemann solvers.
Fractional Langevin equation and Riemann-Liouville fractional derivative.
Sau Fa, Kwok
2007-10-01
In this present work we consider a fractional Langevin equation with Riemann-Liouville fractional time derivative which modifies the classical Newtonian force, nonlocal dissipative force, and long-time correlation. We investigate the first two moments, variances and position and velocity correlation functions of this system. We also compare them with the results obtained from the same fractional Langevin equation which uses the Caputo fractional derivative.
Riemann-Liouville and Weyl fractional oscillator processes
Lim, S.C. [Faculty of Engineering, Multimedia University, 63100 Cyberjaya, Selangor DE (Malaysia)]. E-mail: sclim@mmu.edu.my; Eab, Chai Hok [Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok 10330 (Thailand)]. E-mail: chaihok.e@chula.ac.th
2006-06-26
Two types of oscillator processes can be obtained as solutions to fractional Langevin equation based on Riemann-Liouville and Weyl fractional integro-differential operators. The relation between these fractional oscillator processes and the corresponding fractional Brownian motion is considered. Generalization of the Weyl fractional oscillator process to positive temperature can be carried out and its partition function can be calculated using the zeta function regularization method.
Relativistic MHD with Adaptive Mesh Refinement
Anderson, M; Liebling, S L; Neilsen, D; Anderson, Matthew; Hirschmann, Eric; Liebling, Steven L.; Neilsen, David
2006-01-01
We solve the relativistic magnetohydrodynamics (MHD) equations using a finite difference Convex ENO method (CENO) in 3+1 dimensions within a distributed parallel adaptive mesh refinement (AMR) infrastructure. In flat space we examine a Balsara blast wave problem along with a spherical blast wave and a relativistic rotor test both with unigrid and AMR simulations. The AMR simulations substantially improve performance while reproducing the resolution equivalent unigrid simulation results. We also investigate the impact of hyperbolic divergence cleaning for the spherical blast wave and relativistic rotor. We include unigrid and mesh refinement parallel performance measurements for the spherical blast wave.
Relativistic radiative transfer in relativistic spherical flows
Fukue, Jun
2017-02-01
Relativistic radiative transfer in relativistic spherical flows is numerically examined under the fully special relativistic treatment. We first derive relativistic formal solutions for the relativistic radiative transfer equation in relativistic spherical flows. We then iteratively solve the relativistic radiative transfer equation, using an impact parameter method/tangent ray method, and obtain specific intensities in the inertial and comoving frames, as well as moment quantities, and the Eddington factor. We consider several cases; a scattering wind with a luminous central core, an isothermal wind without a core, a scattering accretion on to a luminous core, and an adiabatic accretion on to a dark core. In the typical wind case with a luminous core, the emergent intensity is enhanced at the center due to the Doppler boost, while it reduces at the outskirts due to the transverse Doppler effect. In contrast to the plane-parallel case, the behavior of the Eddington factor is rather complicated in each case, since the Eddington factor depends on the optical depth, the flow velocity, and other parameters.
Zeta regularized products, Riemann zeta zeros and prime number spectra
Menezes, G; Svaiter, N F
2013-01-01
The Riemann hypothesis states that all nontrivial zeros of the zeta function lie in the critical line $\\Re(s)=1/2$. Hilbert and P\\'olya suggested that one possible way to prove the Riemann hypothesis is to interpret the nontrivial zeros in the light of spectral theory. Following this approach, we associate such a numerical sequence with the discrete spectrum of a linear differential operator. We discuss a necessary condition that such a sequence of numbers should obey in order to be associated with the spectrum of a linear differential operator of a system with countably infinite number of degrees of freedom. The sequence of nontrivial zeros is zeta regularizable. Then, functional integrals associated with hypothetical systems described by self-adjoint operators whose spectra is given by the sequence of the nontrivial zeros of the Riemann zeta function could be constructed. In addition, we demonstrate that if one considers the same situation with primes numbers, the associated functional integral cannot be co...
A quantum mechanical model of the Riemann zeros
Sierra, German
2007-01-01
In 1999 Berry and Keating showed that a regularization of the 1D classical Hamiltonian H = xp gives semiclassically the smooth counting function of the Riemann zeros. In this paper we first generalize this result by considering a phase space delimited by two boundary functions in position and momenta, which induce a fluctuation term in the counting of energy levels. We next quantize the xp Hamiltonian, adding an interaction term that depends on two wave functions associated to the classical boundaries in phase space. The general model is solved exactly, obtaining a continuum spectrum with discrete bound states embbeded in it. We find the boundary wave functions, associated to the Berry-Keating regularization, for which the average Riemann zeros become resonances. A spectral realization of the Riemann zeros is achieved exploiting the symmetry of the model under the exchange of position and momenta which is related to the duality symmetry of the zeta function. The boundary wave functions, giving rise to the Rie...
Non-Newtonian Properties of Relativistic Fluids
Koide, Tomoi
2010-01-01
We show that relativistic fluids behave as non-Newtonian fluids. First, we discuss the problem of acausal propagation in the diffusion equation and introduce the modified Maxwell-Cattaneo-Vernotte (MCV) equation. By using the modified MCV equation, we obtain the causal dissipative relativistic (CDR) fluid dynamics, where unphysical propagation with infinite velocity does not exist. We further show that the problems of the violation of causality and instability are intimately related, and the relativistic Navier-Stokes equation is inadequate as the theory of relativistic fluids. Finally, the new microscopic formula to calculate the transport coefficients of the CDR fluid dynamics is discussed. The result of the microscopic formula is consistent with that of the Boltzmann equation, i.e., Grad's moment method.
Lock, Maximilian P E
2016-01-01
The conflict between quantum theory and the theory of relativity is exemplified in their treatment of time. We examine the ways in which their conceptions differ, and describe a semiclassical clock model combining elements of both theories. The results obtained with this clock model in flat spacetime are reviewed, and the problem of generalizing the model to curved spacetime is discussed, before briefly describing an experimental setup which could be used to test of the model. Taking an operationalist view, where time is that which is measured by a clock, we discuss the conclusions that can be drawn from these results, and what clues they contain for a full quantum relativistic theory of time.
Relativistic Landau Models and Generation of Fuzzy Spheres
Hasebe, Kazuki
2015-01-01
Non-commutative geometry naturally emerges in low energy physics of Landau models as a consequence of level projection. In this work, we proactively utilize the level projection as an effective tool to generate fuzzy geometry. The level projection is specifically applied to the relativistic Landau models. In one-half of the paper, a detail analysis of the relativistic Landau problems on a sphere is presented, where a concise expression of the Dirac-Landau operator eigenstates is obtained based on algebraic methods. We establish $SU(2)$ "gauge" transformation between the relativistic Landau model and the Pauli-Schr\\"odinger non-relativistic quantum mechanics. In the other half, the fuzzy geometries generated from the relativistic Landau levels are elucidated, where unique properties of the relativistic fuzzy geometries are clarified. We consider mass deformation of the relativistic Landau models and demonstrate its geometrical effects to fuzzy geometry. Super fuzzy geometry is also constructed from a supersymm...
Feynman's Relativistic Electrodynamics Paradox and the Aharonov-Bohm Effect
Caprez, Adam; Batelaan, Herman
2009-03-01
An analysis is done of a relativistic paradox posed in the Feynman Lectures of Physics involving two interacting charges. The physical system presented is compared with similar systems that also lead to relativistic paradoxes. The momentum conservation problem for these systems is presented. The relation between the presented analysis and the ongoing debates on momentum conservation in the Aharonov-Bohm problem is discussed.
SU(2) Flat Connection on Riemann Surface and Twisted Geometry with Cosmological Constant
Han, Muxin
2016-01-01
SU(2) flat connection on 2D Riemann surface is shown to relate to the generalized twisted geometry in 3D space with cosmological constant. Various flat connection quantities on Riemann surface are mapped to the geometrical quantities in discrete 3D space. We propose that the moduli space of SU(2) flat connections on Riemann surface generalizes the phase space of twisted geometry or Loop Quantum Gravity to include the cosmological constant.
Convergence in Law to Operator Fractional Brownian Motion of Riemann-Liouville Type
Hong Shuai DAI
2013-01-01
In this paper,we extend the well-studied fractional Brownian motion of Riemann-Liouville type to the multivariate case,and the corresponding processes are called operator fractional Brownian motions of Riemann-Liouville type.We also provide two results on approximation to operator fractional Brownian motions of Riemann-Liouville type.The first approximation is based on a Poisson process,and the second one is based on a sequence of I.I.D.random variables.
Decomposition of integrable holomorphic quadratic differential on Riemann surface of infinite type
无
2010-01-01
In this paper,decomposition of the integrable holomorphic quadratic differential on Riemann surface of infinite type is studied.Hubbard,Schleicher and Shishikura gave a thick-thin decomposition on Riemann surface of finite type with an integrable holomorphic quadratic differential and they thought their result might be generalized to arbitrary hyperbolic Riemann surface of infinite type.We confirm what they thought is right and give a proposition(Proposition 2.2) of its own interest.
Relativistic Remnants of Non-Relativistic Electrons
Kashiwa, Taro
2015-01-01
Electrons obeying the Dirac equation are investigated under the non-relativistic $c \\mapsto \\infty$ limit. General solutions are given by derivatives of the relativistic invariant functions whose forms are different in the time- and the space-like region, yielding the delta function of $(ct)^2 - x^2$. This light-cone singularity does survive to show that the charge and the current density of electrons travel with the speed of light in spite of their massiveness.
BOOK REVIEW: Relativistic Figures of Equilibrium
Mars, M.
2009-08-01
losing material, and the black hole transition, where rotating fluids are seen to approach black holes for suitable limits of their parameters. As the authors themselves mention, one of the emphasis of this book is placed 'on the rigorous treatment of simple models instead of trying to describe real objects with their many complex facets...'. After discussing constant density models both in Newtonian theory (the Maclaurin spheroids) and in the non-rotating relativistic case (the Schwarzschild interior model), the book concentrates on the so-called rigidly rotating disc of dust. Chapter two is mainly devoted to deriving this model and presenting its physical properties. The derivation is based in the so-called inverse scattering method of integrable systems and on a thorough knowledge of the theory of integration on Riemann surfaces. The details, which take up about one fifth of the whole length, are difficult to follow for any reader without a previous mastering of the techniques involved. For the expert, however, this part of the book is very useful because it brings together all the steps required for the complete determination of the solution. After the derivation of the disc of dust, the physical properties of the resulting one-parameter family of solutions are described, including its multipole moment structure, the existence of ergospheres, the Newtonian limit or the motion of test particles. Of particular interest is the transition from the disc of dust to the extreme black hole configuration corresponding to the limit when the parameter describing the fluid approaches its upper end. After this chapter devoted to exact models, the book looks at the problem from a completely different point of view, namely by using numerical methods. This tool has proven to be fundamental for a proper study of this physical problem. This book concentrates on the so-called pseudo-spectral methods and the use of multidomains adapted to the different regions of the spacetime with
Proof of generalized Riemann hypothesis for Dedekind zetas and Dirichlet L-functions
Mcadrecki, Andrzej
2007-01-01
A short proof of the generalized Riemann hypothesis (gRH in short) for zeta functions $\\zeta_{k}$ of algebraic number fields $k$ - based on the Hecke's proof of the functional equation for $\\zeta_{k}$ and the method of the proof of the Riemann hypothesis derived in [$M_{A}$] (algebraic proof of the Riemann hypothesis) is given. The generalized Riemann hypothesis for Dirichlet L-functions is an immediately consequence of (gRH) for $\\zeta_{k}$ and suitable product formula which connects the Dedekind zetas with L-functions.
Properties of Matrix Orthogonal Polynomials via their Riemann-Hilbert Characterization
F. Alberto Grünbaum
2011-10-01
Full Text Available We give a Riemann-Hilbert approach to the theory of matrix orthogonal polynomials. We will focus on the algebraic aspects of the problem, obtaining difference and differential relations satisfied by the corresponding orthogonal polynomials. We will show that in the matrix case there is some extra freedom that allows us to obtain a family of ladder operators, some of them of 0-th order, something that is not possible in the scalar case. The combination of the ladder operators will lead to a family of second-order differential equations satisfied by the orthogonal polynomials, some of them of 0-th and first order, something also impossible in the scalar setting. This shows that the differential properties in the matrix case are much more complicated than in the scalar situation. We will study several examples given in the last years as well as others not considered so far.
Relativistic Guiding Center Equations
White, R. B. [PPPL; Gobbin, M. [Euratom-ENEA Association
2014-10-01
In toroidal fusion devices it is relatively easy that electrons achieve relativistic velocities, so to simulate runaway electrons and other high energy phenomena a nonrelativistic guiding center formalism is not sufficient. Relativistic guiding center equations including flute mode time dependent field perturbations are derived. The same variables as used in a previous nonrelativistic guiding center code are adopted, so that a straightforward modifications of those equations can produce a relativistic version.
Relativistic Linear Restoring Force
Clark, D.; Franklin, J.; Mann, N.
2012-01-01
We consider two different forms for a relativistic version of a linear restoring force. The pair comes from taking Hooke's law to be the force appearing on the right-hand side of the relativistic expressions: d"p"/d"t" or d"p"/d["tau"]. Either formulation recovers Hooke's law in the non-relativistic limit. In addition to these two forces, we…
Carlini, A
1996-01-01
We consider the action principle to derive the classical, relativistic motion of a self-interacting particle in a 4-D Lorentzian spacetime containing a wormhole and which allows the existence of closed time-like curves. In particular, we study the case of a pointlike particle subject to a `hard-sphere' self-interaction potential and which can traverse the wormhole an arbitrary number of times, and show that the only possible trajectories for which the classical action is stationary are those which are globally self-consistent. Generically, the multiplicity of these trajectories (defined as the number of self-consistent solutions to the equations of motion beginning with given Cauchy data) is finite, and it becomes infinite if certain constraints on the same initial data are satisfied. This confirms the previous conclusions (for a non-relativistic model) by Echeverria, Klinkhammer and Thorne that the Cauchy initial value problem in the presence of a wormhole `time machine' is classically `ill-posed' (far too m...
Riemann hypothesis for period polynomials of modular forms.
Jin, Seokho; Ma, Wenjun; Ono, Ken; Soundararajan, Kannan
2016-03-08
The period polynomial r(f)(z) for an even weight k≥4 newform f∈S(k)(Γ(0)((N)) is the generating function for the critical values of L(f,s) . It has a functional equation relating r(f)(z) to r(f)(-1/Nz). We prove the Riemann hypothesis for these polynomials: that the zeros of r(f)(z) lie on the circle |z|=1/√N . We prove that these zeros are equidistributed when either k or N is large.
Holographic partition functions and phases for higher genus Riemann surfaces
Maxfield, Henry; Ross, Simon F.; Way, Benson
2016-06-01
We describe a numerical method to compute the action of Euclidean saddle points for the partition function of a two-dimensional holographic CFT on a Riemann surface of arbitrary genus, with constant curvature metric. We explicitly evaluate the action for the saddles for genus two and map out the phase structure of dominant bulk saddles in a two-dimensional subspace of the moduli space. We discuss spontaneous breaking of discrete symmetries, and show that the handlebody bulk saddles always dominate over certain non-handlebody solutions.
Zero-size objects in Riemann-Cartan spacetime
Vasilić, Milovan; Vojinović, Marko
2008-08-01
We use the conservation law of the stress-energy and spin tensors to study the motion of massive zero-size objects in Riemann-Cartan geometry. The resultant world line equations turn out to exhibit a novel spin-curvature coupling. In particular, the spin of the Dirac particle does not couple to the background curvature. This is a consequence of its truly zero size which consistently rules out the orbital degrees of freedom. As a test of consistency, the wave packet solution of the free Dirac equation is considered. It is shown that the wave packet spin and orbital angular momentum disappear simultaneously in the zero-size limit.
Zero-size objects in Riemann-Cartan spacetime
Vasilic, Milovan
2008-01-01
We use the conservation law of the stress-energy and spin tensors to study the motion of massive zero-size objects in Riemann-Cartan geometry. The resultant world line equations turn out to exhibit a novel spin-curvature coupling. In particular, the spin of the Dirac particle does not couple to the background curvature. This is a consequence of its truly zero size which consistently rules out the orbital degrees of freedom. As a test of consistency, the wave packet solution of the free Dirac equation is considered. It is shown that the wave packet spin and orbital angular momentum disappear simultaneously in the zero-size limit.
The Riemann zeta-function theory and applications
Ivic, Aleksandar
2003-01-01
""A thorough and easily accessible account.""-MathSciNet, Mathematical Reviews on the Web, American Mathematical Society. This extensive survey presents a comprehensive and coherent account of Riemann zeta-function theory and applications. Starting with elementary theory, it examines exponential integrals and exponential sums, the Voronoi summation formula, the approximate functional equation, the fourth power moment, the zero-free region, mean value estimates over short intervals, higher power moments, and omega results. Additional topics include zeros on the critical line, zero-density estim
The Virasoro vertex algebra and factorization algebras on Riemann surfaces
Williams, Brian
2017-08-01
This paper focuses on the connection of holomorphic two-dimensional factorization algebras and vertex algebras which has been made precise in the forthcoming book of Costello-Gwilliam. We provide a construction of the Virasoro vertex algebra starting from a local Lie algebra on the complex plane. Moreover, we discuss an extension of this factorization algebra to a factorization algebra on the category of Riemann surfaces. The factorization homology of this factorization algebra is computed as the correlation functions. We provide an example of how the Virasoro factorization algebra implements conformal symmetry of the beta-gamma system using the method of effective BV quantization.
Holographic partition functions and phases for higher genus Riemann surfaces
Maxfield, Henry; Way, Benson
2016-01-01
We describe a numerical method to compute the action of Euclidean saddlepoints for the partition function of a two-dimensional holographic CFT on a Riemann surface of arbitrary genus, with constant curvature metric. We explicitly evaluate the action for the saddles for genus two and map out the phase structure of dominant bulk saddles in a two-dimensional subspace of the moduli space. We discuss spontaneous breaking of discrete symmetries, and show that the handlebody bulk saddles always dominate over certain non-handlebody solutions.
Riemann-Roch Spaces and Linear Network Codes
Hansen, Johan P.
2015-01-01
We construct linear network codes utilizing algebraic curves over finite fields and certain associated Riemann-Roch spaces and present methods to obtain their parameters. In particular we treat the Hermitian curve and the curves associated with the Suzuki and Ree groups all having the maximal...... number of points for curves of their respective genera. Linear network coding transmits information in terms of a basis of a vector space and the information is received as a basis of a possibly altered vector space. Ralf Koetter and Frank R. Kschischang %\\cite{DBLP:journals/tit/KoetterK08} introduced...... in the above metric making them suitable for linear network coding....
Riemann-Roch Spaces and Linear Network Codes
Hansen, Johan P.
We construct linear network codes utilizing algebraic curves over finite fields and certain associated Riemann-Roch spaces and present methods to obtain their parameters. In particular we treat the Hermitian curve and the curves associated with the Suzuki and Ree groups all having the maximal...... number of points for curves of their respective genera. Linear network coding transmits information in terms of a basis of a vector space and the information is received as a basis of a possibly altered vector space. Ralf Koetter and Frank R. Kschischang %\\cite{DBLP:journals/tit/KoetterK08} introduced...... in the above metric making them suitable for linear network coding....
Norm-Euclidean Galois fields and the Generalized Riemann Hypothesis
McGown, Kevin J
2011-01-01
Assuming the Generalized Riemann Hypothesis (GRH), we show that the norm-Euclidean Galois cubic fields are exactly those with discriminant $\\Delta=7^2,9^2,13^2,19^2,61^2,67^2,103^2,109^2,127^2,157^2$. A large part of the proof is in establishing the following more general result: Let $K$ be a Galois number field of odd prime degree $\\ell$ and conductor $f$. Assume the GRH for $\\zeta_K(s)$. If $38(\\ell-1)^2(\\log f)^6\\log\\log f
Integrable systems twistors, loop groups, and Riemann surfaces
Hitchin, NJ; Ward, RS
2013-01-01
This textbook is designed to give graduate students an understanding of integrable systems via the study of Riemann surfaces, loop groups, and twistors. The book has its origins in a series of lecture courses given by the authors, all of whom are internationally known mathematicians and renowned expositors. It is written in an accessible and informal style, and fills a gap in the existing literature. The introduction by Nigel Hitchin addresses the meaning of integrability: how do werecognize an integrable system? His own contribution then develops connections with algebraic geometry, and inclu
A Riemann-Roch Theoremfor One-Dimensional Complex Groupoids
Perrot, Denis
We consider a smooth groupoid of the form Σ⋊Γ, where Σ is a Riemann surface and Γ a discrete pseudogroup acting on Σ by local conformal diffeomorphisms. After defining a K-cycle on the crossed product C0(Σ)⋊Γ generalising the classical Dolbeault complex, we compute its Chern character in cyclic cohomology, using the index theorem of Connes and Moscovici. This involves in particular a generalisation of the Euler class constructed from the modular automorphism group of the von Neumann algebra L∞(Σ)⋊Γ.
Chaos and maps in relativistic rynamical systems
L. P. Horwitz
2000-01-01
Full Text Available The basic work of Zaslavskii et al showed that the classical non-relativistic electromagnetically kicked oscillator can be cast into the form of an iterative map on the phase space; the resulting evolution contains a stochastic flow to unbounded energy. Subsequent studies have formulated the problem in terms of a relativistic charged particle in interaction with the electromagnetic field. We review the structure of the covariant Lorentz force used to study this problem. We show that the Lorentz force equation can be derived as well from the manifestly covariant mechanics of Stueckelberg in the presence of a standard Maxwell field, establishing a connection between these equations and mass shell constraints. We argue that these relativistic generalizations of the problem are intrinsically inaccurate due to an inconsistency in the structure of the relativistic Lorentz force, and show that a reformulation of the relativistic problem, permitting variations (classically in both the particle mass and the effective “mass” of the interacting electromagnetic field, provides a consistent system of classical equations for describing such processes.
Nuttall's Abelian integral on the Riemann surface of the cube root of a polynomial of degree 3
Aptekarev, A. I.; Tulyakov, D. N.
2016-12-01
We study the field of orthogonal trajectories of a quadratic differential on the three-sheeted Riemann surface of the cube root of a polynomial of degree 3. These trajectories coincide globally with the level lines of the velocity potential of an incompressible fluid flowing to the surface through the infinitely remote point on one sheet and flowing out through the infinitely remote point on another. The statement of the problem is motivated by the task of finding the distribution of the poles of the Hermite- Padé approximants for two analytic functions with three common branch points, which is in its turn related to Nuttall's general conjecture.
Large gaps between consecutive maxima of the Riemann zeta-function on the critical line
Saker, S H
2011-01-01
In this paper, we derive new lower bounds for the normalized distances between consecutive maxima of the Riemann zeta-function on the critical line subject to the truth of the Riemann hypothesis. The method of our proofs relies on a Sobolev type inequality of one dimension and an Opial type inequality with best possible constants.
A Krichever--Novikov Formulation of W--Algebras on Riemann Surfaces
Zucchini, R
1994-01-01
It is shown how the theory of classical $W$--algebras can be formulated on a higher genus Riemann surface in the spirit of Krichever and Novikov. An intriguing relation between the theory of $A_1$ embeddings into simple Lie algebras and the holomorphic geometry of Riemann surfaces is exihibited.
An elementary and real approach to values of the Riemann zeta function
Bagdasaryan, A. G.
2010-02-01
An elementary approach for computing the values at negative integers of the Riemann zeta function is presented. The approach is based on a new method for ordering the integers. We show that the values of the Riemann zeta function can be computed, without using the theory of analytic continuation and any knowledge of functions of complex variable.
Relativistic quantum mechanics; Mecanique quantique relativiste
Ollitrault, J.Y. [CEA Saclay, 91 - Gif-sur-Yvette (France). Service de Physique Theorique]|[Universite Pierre et Marie Curie, 75 - Paris (France)
1998-12-01
These notes form an introduction to relativistic quantum mechanics. The mathematical formalism has been reduced to the minimum in order to enable the reader to calculate elementary physical processes. The second quantification and the field theory are the logical followings of this course. The reader is expected to know analytical mechanics (Lagrangian and Hamiltonian), non-relativistic quantum mechanics and some basis of restricted relativity. The purpose of the first 3 chapters is to define the quantum mechanics framework for already known notions about rotation transformations, wave propagation and restricted theory of relativity. The next 3 chapters are devoted to the application of relativistic quantum mechanics to a particle with 0,1/5 and 1 spin value. The last chapter deals with the processes involving several particles, these processes require field theory framework to be thoroughly described. (A.C.) 2 refs.
Towards relativistic quantum geometry
Ridao, Luis Santiago [Instituto de Investigaciones Físicas de Mar del Plata (IFIMAR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mar del Plata (Argentina); Bellini, Mauricio, E-mail: mbellini@mdp.edu.ar [Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Funes 3350, C.P. 7600, Mar del Plata (Argentina); Instituto de Investigaciones Físicas de Mar del Plata (IFIMAR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mar del Plata (Argentina)
2015-12-17
We obtain a gauge-invariant relativistic quantum geometry by using a Weylian-like manifold with a geometric scalar field which provides a gauge-invariant relativistic quantum theory in which the algebra of the Weylian-like field depends on observers. An example for a Reissner–Nordström black-hole is studied.
Two-Loop Scattering Amplitudes from the Riemann Sphere
Geyer, Yvonne; Monteiro, Ricardo; Tourkine, Piotr
2016-01-01
The scattering equations give striking formulae for massless scattering amplitudes at tree level and, as shown recently, at one loop. The progress at loop level was based on ambitwistor string theory, which naturally yields the scattering equations. We proposed that, for ambitwistor strings, the standard loop expansion in terms of the genus of the worldsheet is equivalent to an expansion in terms of nodes of a Riemann sphere, with the nodes carrying the loop momenta. In this paper, we show how to obtain two-loop scattering equations with the correct factorization properties. We adapt genus-two integrands from the ambitwistor string to the nodal Riemann sphere and show that these yield correct answers, by matching standard results for the four-point two-loop amplitudes of maximal supergravity and super-Yang-Mills theory. In the Yang-Mills case, this requires the loop analogue of the Parke-Taylor factor carrying the colour dependence, which includes non-planar contributions.
One-loop amplitudes on the Riemann sphere
Geyer, Yvonne; Monteiro, Ricardo; Tourkine, Piotr
2016-01-01
The scattering equations provide a powerful framework for the study of scattering amplitudes in a variety of theories. Their derivation from ambitwistor string theory led to proposals for formulae at one loop on a torus for 10 dimensional supergravity, and we recently showed how these can be reduced to the Riemann sphere and checked in simple cases. We also proposed analogous formulae for other theories including maximal super-Yang-Mills theory and supergravity in other dimensions at one loop. We give further details of these results and extend them in two directions. Firstly, we propose new formulae for the one-loop integrands of Yang-Mills theory and gravity in the absence of supersymmetry. These follow from the identification of the states running in the loop as expressed in the ambitwistor-string correlator. Secondly, we give a systematic proof of the non-supersymmetric formulae using the worldsheet factorisation properties of the nodal Riemann sphere underlying the scattering equations at one loop. Our f...
Two-loop scattering amplitudes from the Riemann sphere
Geyer, Yvonne; Mason, Lionel; Monteiro, Ricardo; Tourkine, Piotr
2016-12-01
The scattering equations give striking formulas for massless scattering amplitudes at tree level and, as shown recently, at one loop. The progress at loop level was based on ambitwistor-string theory, which naturally yields the scattering equations. We proposed that, for ambitwistor strings, the standard loop expansion in terms of the genus of the world sheet is equivalent to an expansion in terms of nodes of a Riemann sphere, with the nodes carrying the loop momenta. In this paper, we show how to obtain two-loop scattering equations with the correct factorization properties. We adapt genus-two integrands from the ambitwistor string to the nodal Riemann sphere and show that these yield correct answers, by matching standard results for the four-point two-loop amplitudes of maximal supergravity and super-Yang-Mills theory. In the Yang-Mills case, this requires the loop analogue of the Parke-Taylor factor carrying the color dependence, which includes nonplanar contributions.
Fractal supersymmetric QM, Geometric Probability and the Riemann Hypothesis
Castro, C
2004-01-01
The Riemann's hypothesis (RH) states that the nontrivial zeros of the Riemann zeta-function are of the form $ s_n =1/2+i\\lambda_n $. Earlier work on the RH based on supersymmetric QM, whose potential was related to the Gauss-Jacobi theta series, allows to provide the proper framework to construct the well defined algorithm to compute the probability to find a zero (an infinity of zeros) in the critical line. Geometric probability theory furnishes the answer to the very difficult question whether the probability that the RH is true is indeed equal to unity or not. To test the validity of this geometric probabilistic framework to compute the probability if the RH is true, we apply it directly to the the hyperbolic sine function $ \\sinh (s) $ case which obeys a trivial analog of the RH (the HSRH). Its zeros are equally spaced in the imaginary axis $ s_n = 0 + i n \\pi $. The geometric probability to find a zero (and an infinity of zeros) in the imaginary axis is exactly unity. We proceed with a fractal supersymme...
Lapidus, Michel L
2015-08-06
This research expository article not only contains a survey of earlier work but also contains a main new result, which we first describe. Given c≥0, the spectral operator [Formula: see text] can be thought of intuitively as the operator which sends the geometry onto the spectrum of a fractal string of dimension not exceeding c. Rigorously, it turns out to coincide with a suitable quantization of the Riemann zeta function ζ=ζ(s): a=ζ(∂), where ∂=∂(c) is the infinitesimal shift of the real line acting on the weighted Hilbert space [Formula: see text]. In this paper, we establish a new asymmetric criterion for the Riemann hypothesis (RH), expressed in terms of the invertibility of the spectral operator for all values of the dimension parameter [Formula: see text] (i.e. for all c in the left half of the critical interval (0,1)). This corresponds (conditionally) to a mathematical (and perhaps also, physical) 'phase transition' occurring in the midfractal case when [Formula: see text]. Both the universality and the non-universality of ζ=ζ(s) in the right (resp., left) critical strip [Formula: see text] (resp., [Formula: see text]) play a key role in this context. These new results are presented here. We also briefly discuss earlier joint work on the complex dimensions of fractal strings, and we survey earlier related work of the author with Maier and with Herichi, respectively, in which were established symmetric criteria for the RH, expressed, respectively, in terms of a family of natural inverse spectral problems for fractal strings of Minkowski dimension D∈(0,1), with [Formula: see text], and of the quasi-invertibility of the family of spectral operators [Formula: see text] (with [Formula: see text]).
Wang, Zhen; Qiao, Zhijun
2016-07-01
In this paper, the inverse scattering transform associated with a Riemann-Hilbert problem is formulated for the FQXL model: a generalized Camassa-Holm equation m t = /1 2 k 1 [ m ( u 2 - ux 2 ) ] x + /1 2 k 2 ( 2 m u x + m x u ) , m = u - u x x , which was originally included in the work of Fokas [Physica D 87, 145 (1995)] and was recently shown to be integrable in the sense of Lax pair, bi-Hamilton structure, and conservation laws by Qiao, Xia, and Li [e-print arXiv:1205.2028v2 (2012)]. We have discussed the following properties: direct scattering problems and Jost solutions, asymptotical and analytical behavior of Jost solutions, the scattering equations in a Riemann-Hilbert problem, and the multi-soliton solutions of the FQXL model. Then, one-soliton and two-soliton solutions are presented in a parametric form as a special case of multi-soliton solutions.
Convexity and symmetrization in relativistic theories
Ruggeri, T.
1990-09-01
There is a strong motivation for the desire to have symmetric hyperbolic field equations in thermodynamics, because they guarantee well-posedness of Cauchy problems. A generic quasi-linear first order system of balance laws — in the non-relativistic case — can be shown to be symmetric hyperbolic, if the entropy density is concave with respect to the variables. In relativistic thermodynamics this is not so. This paper shows that there exists a scalar quantity in relativistic thermodynamics whose concavity guarantees a symmetric hyperbolic system. But that quantity — we call it —bar h — is not the entropy, although it is closely related to it. It is formed by contracting the entropy flux vector — ha with a privileged time-like congruencebar ξ _α . It is also shown that the convexity of h plus the requirement that all speeds be smaller than the speed of light c provide symmetric hyperbolic field equations for all choices of the direction of time. At this level of generality the physical meaning of —h is unknown. However, in many circumstances it is equal to the entropy. This is so, of course, in the non-relativistic limit but also in the non-dissipative relativistic fluid and even in relativistic extended thermodynamics for a non-degenerate gas.
Relativistic and Non-relativistic Equations of Motion
Mangiarotti, L
1998-01-01
It is shown that any second order dynamic equation on a configuration space $X$ of non-relativistic time-dependent mechanics can be seen as a geodesic equation with respect to some (non-linear) connection on the tangent bundle $TX\\to X$ of relativistic velocities. Using this fact, the relationship between relativistic and non-relativistic equations of motion is studied.
Beccantini, A
2001-07-01
This thesis represents a contribution to the development of upwind splitting schemes for the Euler equations for ideal gaseous mixtures and their investigation in computing multidimensional flows in irregular geometries. In the preliminary part we develop and investigate the parameterization of the shock and rarefaction curves in the phase space. Then, we apply them to perform some field-by-field decompositions of the Riemann problem: the entropy-respecting one, the one which supposes that genuinely-non-linear (GNL) waves are both shocks (shock-shock one) and the one which supposes that GNL waves are both rarefactions (rarefaction-rarefaction one). We emphasize that their analysis is fundamental in Riemann solvers developing: the simpler the field-by-field decomposition, the simpler the Riemann solver based on it. As the specific heat capacities of the gases depend on the temperature, the shock-shock field-by-field decomposition is the easiest to perform. Then, in the second part of the thesis, we develop an upwind splitting scheme based on such decomposition. Afterwards, we investigate its robustness, precision and CPU-time consumption, with respect to some of the most popular upwind splitting schemes for polytropic/non-polytropic ideal gases. 1-D test-cases show that this scheme is both precise (exact capturing of stationary shock and stationary contact) and robust in dealing with strong shock and rarefaction waves. Multidimensional test-cases show that it suffers from some of the typical deficiencies which affect the upwind splitting schemes capable of exact capturing stationary contact discontinuities i.e the developing of non-physical instabilities in computing strong shock waves. In the final part, we use the high-order multidimensional solver here developed to compute fully-developed detonation flows. (author)
Relativistic dynamics, Green function and pseudodifferential operators
Cirilo-Lombardo, Diego Julio
2016-01-01
The central role played by pseudodifferential operators in relativistic dynamics is very well know. In this work, operators as the Schrodinger one (e.g: square root) are treated from the point of view of the non-local pseudodifferential Green functions. Starting from the explicit construction of the Green (semigroup) theoretical kernel, a theorem linking the integrability conditions and their dependence on the spacetime dimensions is given. Relativistic wave equations with arbitrary spin and the causality problem are discussed with the algebraic interpretation of the radical operator and their relation with coherent and squeezed states. Also we perform by mean of pure theoretical procedures (based in physical concepts and symmetry) the relativistic position operator which satisfies the conditions of integrability : it is non-local, Lorentz invariant and does not have the same problems as the "local"position operator proposed by Newton and Wigner. Physical examples, as Zitterbewegung and rogue waves, are prese...
Remenets, G. F.; Astafiev, A. M.
2016-09-01
Here we present the results of a case study of the rare, abnormal, qualitatively specific behavior of Aldra (northern Norway) and GBR (UK) VLF transmitter signals (10-16 kHz) received at Kola Peninsula. The abnormal amplitude and the phase disturbances of signals were used as a proxy for ultra-energetic relativistic (solar?) electron precipitation (URE, ∼100 MeV) into the middle polar atmosphere. The disturbances have been observed under quiet or moderately disturbed geomagnetic activity. Based on bearing results, it was established that the abnormal variations of the electric conductivity of ionized middle atmosphere (of a sporadic Ds layer under the regular ionosphere D layer) were characterized by the following: (i) the time function of height h(t) of an effective spherical waveguide between the Earth surface and the sporadic Ds layer shows a minimum value equal to ∼30 km and (ii) the reflection coefficient R(t) of radio wave with a grazing angle of incidence from a virtual boundary with height h(t) has a minimum value equal to ∼0.4. The southern boundaries of the ultra-energetic relativistic electron precipitations have been found as well. They turned out to be not southerly than 61 degree of magnetic latitude and similar to the ones obtained in our previous study of the events for other dates under the similar geophysical conditions although we do not know anything definite about the rigidity and density of the electron fluxes. A used calculation method of analysis is based on a necessary condition that a number n of input data should be greater than a number m of output parameter-functions. We have stated by numerical testing that a decrease of n from 6 to 4 generates a lack of uniqueness of an inverse VLF problem solution for m = 2. It is important for future VLF ground-based monitoring of the URE precipitation events.
Generalised Cesaro Convergence, Root Identities and the Riemann Hypothesis
Stone, Richard
2011-01-01
We extend the notion of generalised Cesaro summation/convergence developed previously to the more natural setting of what we call "remainder" Cesaro summation/convergence and, after illustrating the utility of this approach in deriving certain classical results, use it to develop a notion of generalised root identities. These extend elementary root identities for polynomials both to more general functions and to a family of identities parametrised by a complex parameter \\mu. In so doing they equate one expression (the derivative side) which is defined via Fourier theory, with another (the root side) which is defined via remainder Cesaro summation. For \\mu a non-positive integer these identities are naturally adapted to investigating the asymptotic behaviour of the given function and the geometric distribution of its roots. For the Gamma function we show that it satisfies the generalised root identities and use them to constructively deduce Stirling's theorem. For the Riemann zeta function the implications of ...
Simple realization of inflaton potential on a Riemann surface
Keisuke Harigaya
2014-11-01
Full Text Available The observation of the B-mode in the cosmic microwave background radiation combined with the so-called Lyth bound suggests the trans-Planckian variation of the inflaton field during inflation. Such a large variation generates concerns over inflation models in terms of the effective field theory below the Planck scale. If the inflaton resides in a Riemann surface and the inflaton potential is a multivalued function of the inflaton field when it is viewed as a function on a complex plane, the Lyth bound can be satisfied while keeping field values in the effective field theory within the Planck scale. We show that a multivalued inflaton potential can be realized starting from a single-valued Lagrangian of the effective field theory below the Planck scale.
Space-time CFTs from the Riemann sphere
Adamo, Tim; Monteiro, Ricardo; Paulos, Miguel F.
2017-08-01
We consider two-dimensional chiral, first-order conformal field theories governing maps from the Riemann sphere to the projective light cone inside Minkowski space — the natural setting for describing conformal field theories in two fewer dimensions. These theories have a SL(2) algebra of local bosonic constraints which can be supplemented by additional fermionic constraints depending on the matter content of the theory. By computing the BRST charge associated with gauge fixing these constraints, we find anomalies which vanish for specific target space dimensions. These critical dimensions coincide precisely with those for which (biadjoint) cubic scalar theory, gauge theory and gravity are classically conformally invariant. Furthermore, the BRST cohomology of each theory contains vertex operators for the full conformal multiplets of single field insertions in each of these space-time CFTs. We give a prescription for the computation of three-point functions, and compare our formalism with the scattering equations approach to on-shell amplitudes.
Non-Abelian Vortices on Riemann Surfaces: an Integrable Case
Popov, Alexander D
2008-01-01
We consider U(n+1) Yang-Mills instantons on the space \\Sigma\\times S^2, where \\Sigma is a compact Riemann surface of genus g. Using an SU(2)-equivariant dimensional reduction, we show that the U(n+1) instanton equations on \\Sigma\\times S^2 are equivalent to non-Abelian vortex equations on \\Sigma. Solutions to these equations are given by pairs (A,\\phi), where A is a gauge potential of the group U(n) and \\phi is a Higgs field in the fundamental representation of the group U(n). We briefly compare this model with other non-Abelian Higgs models considered recently. Afterwards we show that for g>1, when \\Sigma\\times S^2 becomes a gravitational instanton, the non-Abelian vortex equations are the compatibility conditions of two linear equations (Lax pair) and therefore the standard methods of integrable systems can be applied for constructing their solutions.
Relativistic spherical plasma waves
Bulanov, S. S.; Maksimchuk, A.; Schroeder, C. B.; Zhidkov, A. G.; Esarey, E.; Leemans, W. P.
2012-02-01
Tightly focused laser pulses that diverge or converge in underdense plasma can generate wake waves, having local structures that are spherical waves. Here we study theoretically and numerically relativistic spherical wake waves and their properties, including wave breaking.
Relativistic GLONASS and geodesy
Mazurova, E. M.; Kopeikin, S. M.; Karpik, A. P.
2016-12-01
GNSS technology is playing a major role in applications to civil, industrial and scientific areas. Nowadays, there are two fully functional GNSS: American GPS and Russian GLONASS. Their data processing algorithms have been historically based on the Newtonian theory of space and time with only a few relativistic effects taken into account as small corrections preventing the system from degradation on a fairly long time. Continuously growing accuracy of geodetic measurements and atomic clocks suggests reconsidering the overall approach to the GNSS theoretical model based on the Einstein theory of general relativity. This is essentially more challenging but fundamentally consistent theoretical approach to relativistic space geodesy. In this paper, we overview the basic principles of the relativistic GNSS model and explain the advantages of such a system for GLONASS and other positioning systems. Keywords: relativistic GLONASS, Einstein theory of general relativity.
Bliokh, Konstantin Y
2011-01-01
We consider the relativistic deformation of quantum waves and mechanical bodies carrying intrinsic angular momentum (AM). When observed in a moving reference frame, the centroid of the object undergoes an AM-dependent transverse shift. This is the relativistic analogue of the spin Hall effect, which occurs in free space without any external fields. Remarkably, the shifts of the geometric and energy centroids differ by a factor of 2, and both centroids are crucial for the correct Lorentz transformations of the AM tensor. We examine manifestations of the relativistic Hall effect in quantum vortices, mechanical flywheel, and discuss various fundamental aspects of the phenomenon. The perfect agreement of quantum and relativistic approaches allows applications at strikingly different scales: from elementary spinning particles, through classical light, to rotating black-holes.
Towards Relativistic Atomic Physics and Post-Minkowskian Gravitational Waves
Lusanna, Luca
2009-01-01
A review is given of the formulation of relativistic atomic theory, in which there is an explicit realization of the Poincare' generators, both in the inertial and in the non-inertial rest-frame instant form of dynamics in Minkowski space-time. This implies the need to solve the problem of the relativistic center of mass of an isolated system and to describe the transitions from different conventions for clock synchronization, namely for the identifications of instantaneous 3-spaces, as gauge transformations. These problems, stemming from the Lorentz signature of space-time, are a source of non-locality, which induces a spatial non-separability in relativistic quantum mechanics, with implications for relativistic entanglement. Then the classical system of charged particles plus the electro-magnetic field is studied in the framework of ADM canonical tetrad gravity in asymptotically Minkowskian space-times admitting the ADM Poincare' group at spatial infinity, which allows to get the general relativistic extens...
Exact Relativistic 'Antigravity' Propulsion
Felber, F S
2006-01-01
The Schwarzschild solution is used to find the exact relativistic motion of a payload in the gravitational field of a mass moving with constant velocity. At radial approach or recession speeds faster than 3^-1/2 times the speed of light, even a small mass gravitationally repels a payload. At relativistic speeds, a suitable mass can quickly propel a heavy payload from rest nearly to the speed of light with negligible stresses on the payload.
Exact Relativistic `Antigravity' Propulsion
Felber, Franklin S.
2006-01-01
The Schwarzschild solution is used to find the exact relativistic motion of a payload in the gravitational field of a mass moving with constant velocity. At radial approach or recession speeds faster than 3-1/2 times the speed of light, even a small mass gravitationally repels a payload. At relativistic speeds, a suitable mass can quickly propel a heavy payload from rest nearly to the speed of light with negligible stresses on the payload.
Relativistic quantum revivals.
Strange, P
2010-03-26
Quantum revivals are now a well-known phenomena within nonrelativistic quantum theory. In this Letter we display the effects of relativity on revivals and quantum carpets. It is generally believed that revivals do not occur within a relativistic regime. Here we show that while this is generally true, it is possible, in principle, to set up wave packets with specific mathematical properties that do exhibit exact revivals within a fully relativistic theory.
Relativistic Stern-Gerlach Deflection: Hamiltonian Formulation
Mane, S R
2016-01-01
A Hamiltonian formalism is employed to elucidate the effects of the Stern-Gerlach force on beams of relativistic spin-polarized particles, for passage through a localized region with a static magnetic or electric field gradient. The problem of the spin-orbit coupling for nonrelativistic bounded motion in a central potential (hydrogen-like atoms, in particular) is also briefly studied.
RELATIVISTIC HEAVY ION PHYSICS: A THEORETICAL OVERVIEW.
KHARZEEV,D.
2004-03-28
This is a mini-review of recent theoretical work in the field of relativistic heavy ion physics. The following topics are discussed initial conditions and the Color Glass Condensate; approach to thermalization and the hydrodynamic evolution; hard probes and the properties of the Quark-Gluon Plasma. Some of the unsolved problems and potentially promising directions for future research are listed as well.
Glueball Masses in Relativistic Potential Model
Shpenik, A; Kis, J; Fekete, Yu
2000-01-01
The problem of glueball mass spectra using the relativistic Dirac equation is studied. Also the Breit-Fermi approach used to obtaining hyperfine splitting in glueballs. Our approach is based on the assumption, that the nature and the forces between two gluons are the short-range. We were to calculate the glueball masses with used screened potential.
Solitary Waves in Relativistic Electromagnetic Plasma
XIE Bai-Song; HUA Cun-Cai
2005-01-01
Solitary waves in relativistic electromagnetic plasmas are obtained numerically. The longitudinal momentum of electrons has been taken into account in the problem. It is found that in the moving frame with electromagnetic field propagating the solitary waves can exist in both cases, where the vector potential frequency is larger or smaller than the plasma characteristic frequency.
Dumbser, Michael, E-mail: michael.dumbser@unitn.it [Laboratory of Applied Mathematics, Department of Civil, Environmental and Mechanical Engineering, University of Trento, Via Mesiano 77, I-38123 Trento (Italy); Balsara, Dinshaw S., E-mail: dbalsara@nd.edu [Physics Department, University of Notre Dame du Lac, 225 Nieuwland Science Hall, Notre Dame, IN 46556 (United States)
2016-01-01
In this paper a new, simple and universal formulation of the HLLEM Riemann solver (RS) is proposed that works for general conservative and non-conservative systems of hyperbolic equations. For non-conservative PDE, a path-conservative formulation of the HLLEM RS is presented for the first time in this paper. The HLLEM Riemann solver is built on top of a novel and very robust path-conservative HLL method. It thus naturally inherits the positivity properties and the entropy enforcement of the underlying HLL scheme. However, with just the slight additional cost of evaluating eigenvectors and eigenvalues of intermediate characteristic fields, we can represent linearly degenerate intermediate waves with a minimum of smearing. For conservative systems, our paper provides the easiest and most seamless path for taking a pre-existing HLL RS and quickly and effortlessly converting it to a RS that provides improved results, comparable with those of an HLLC, HLLD, Osher or Roe-type RS. This is done with minimal additional computational complexity, making our variant of the HLLEM RS also a very fast RS that can accurately represent linearly degenerate discontinuities. Our present HLLEM RS also transparently extends these advantages to non-conservative systems. For shallow water-type systems, the resulting method is proven to be well-balanced. Several test problems are presented for shallow water-type equations and two-phase flow models, as well as for gas dynamics with real equation of state, magnetohydrodynamics (MHD & RMHD), and nonlinear elasticity. Since our new formulation accommodates multiple intermediate waves and has a broader applicability than the original HLLEM method, it could alternatively be called the HLLI Riemann solver, where the “I” stands for the intermediate characteristic fields that can be accounted for. -- Highlights: •New simple and general path-conservative formulation of the HLLEM Riemann solver. •Application to general conservative and non
Failure of relativistic codes in the non-relativistic limit: the role of Brillouin configurations
Indelicato, P J; Desclaux, J P
2004-01-01
In the present letter we solve a long standing problem with relativistic calculations done with the widely used Multi-Configuration Dirac-Fock Method. We show, using Relativistic Many-Body Perturbation Theory (RMBPT), how even for relatively high-$Z$, relaxation or correlation causes the non-relativistic limit of states of different total angular momentum but identical orbital angular momentum to have different energies. We identify the role of single excitations obeying to Brillouin's theorem in this problem. We show that with large scale calculations in which this problem is properly treated, we can reproduce very accurately recent high-precision measurements in F-like Ar, and turn then into precise test of QED
The thermal energy of a scalar field on a unidimensional Riemann surface
Elizalde, E
2002-01-01
We discuss some controverted aspects of the evaluation of the thermal energy of a scalar field on a unidimensional Riemann surface. The calculations are carried out using a generalised zeta function approach.
Nontrivial Solution of Fractional Differential System Involving Riemann-Stieltjes Integral Condition
Ge-Feng Yang
2012-01-01
differential system involving the Riemann-Stieltjes integral condition, by using the Leray-Schauder nonlinear alternative and the Banach contraction mapping principle, some sufficient conditions of the existence and uniqueness of a nontrivial solution of a system are obtained.
Murillo, J.; García-Navarro, P.
2012-02-01
In this work, the source term discretization in hyperbolic conservation laws with source terms is considered using an approximate augmented Riemann solver. The technique is applied to the shallow water equations with bed slope and friction terms with the focus on the friction discretization. The augmented Roe approximate Riemann solver provides a family of weak solutions for the shallow water equations, that are the basis of the upwind treatment of the source term. This has proved successful to explain and to avoid the appearance of instabilities and negative values of the thickness of the water layer in cases of variable bottom topography. Here, this strategy is extended to capture the peculiarities that may arise when defining more ambitious scenarios, that may include relevant stresses in cases of mud/debris flow. The conclusions of this analysis lead to the definition of an accurate and robust first order finite volume scheme, able to handle correctly transient problems considering frictional stresses in both clean water and debris flow, including in this last case a correct modelling of stopping conditions.
Vides, Jeaniffer; Nkonga, Boniface; Audit, Edouard
2015-01-01
We derive a simple method to numerically approximate the solution of the two-dimensional Riemann problem for gas dynamics, using the literal extension of the well-known HLL formalism as its basis. Essentially, any strategy attempting to extend the three-state HLL Riemann solver to multiple space dimensions will by some means involve a piecewise constant approximation of the complex two-dimensional interaction of waves, and our numerical scheme is not the exception. In order to determine closed form expressions for the involved fluxes, we rely on the equivalence between the consistency condition and the use of Rankine-Hugoniot conditions that hold across the outermost waves. The proposed scheme is carefully designed to simplify its eventual numerical implementation and its advantages are analytically attested. In addition, we show that the proposed solver can be applied to obtain the edge-centered electric fields needed in the constrained transport technique for the ideal magnetohydrodynamic (MHD) equations. We present several numerical results for hydrodynamics and magnetohydrodynamics that display the scheme's accuracy and its ability to be applied to various systems of conservation laws.
On the higher derivatives of Z(t) associated with the Riemann Zeta-Function
Matsuoka, Kaneaki
2012-01-01
Let $Z(t)$ be the classical Hardy function in the theory of the Riemann zeta-function. The main result in this paper is that if the Riemann hypothesis is true then for any positive integer $n$ there exists a $t_{n}>0$ such that for $t>t_{n}$ the function $Z^{(n+1)}(t)$ has exactly one zero between consecutive zeros of $Z^{(n)}(t)$.
The role of Riemann generalized derivative in the study of qualitative properties of functions
Sorin Radulescu
2013-08-01
Full Text Available Marshal Ash [3] introduced the concept of (sigma,tau differentiable functions and studied the Riemann generalized derivatives In this article we study the convexity and monotonicity of (sigma,tau differentiable functions, using results by Hincin, Humke and Laczkovich, and using the Riemann generalized derivative. We give conditions such that the classic properties of differentiable functions hold also for (sigma,tau differentiable functions.
Artamonov, D V
2011-01-01
Some representation of a pair "a bundle with a connection" on a Riemann surface, based on a representation of a surface as a factor of an exterior of a unit disk, is introduced. In this representation isomonodromic deformations of bundles with logarithmic connections are described by some modification of the Schlesinger system on a Riemann sphere (typically this modification is just the ordinary Schlesinger system) plus some linear system.
Treatment of multiple scattering with the generalized Riemann sphere track fit
Strandlie, A; Frühwirth, R
2002-01-01
In this paper, we present a generalization of the Riemann sphere track fitting method. This generalization makes it possible to efficiently include multiple scattering effects in the estimation procedure. We also show that the Riemann fit can be formulated in an alternative way through a mapping to a paraboloid. This yields results equivalent to the standard formulation, but with the added advantage that measurements with errors both in RPhi as well as in the radial direction can be handled in a straightforward manner.
Rukmini Dey
2004-05-01
Let ℎ be a complete metric of Gaussian curvature 0 on a punctured Riemann surface of genus ≥ 1 (or the sphere with at least three punctures). Given a smooth negative function with =0 in neighbourhoods of the punctures we prove that there exists a metric conformal to ℎ which attains this function as its Gaussian curvature for the punctured Riemann surface. We do so by minimizing an appropriate functional using elementary analysis.
q-Deformed Relativistic Fermion Scattering
Hadi Sobhani
2017-01-01
Full Text Available In this article, after introducing a kind of q-deformation in quantum mechanics, first, q-deformed form of Dirac equation in relativistic quantum mechanics is derived. Then, three important scattering problems in physics are studied. All results have satisfied what we had expected before. Furthermore, effects of all parameters in the problems on the reflection and transmission coefficients are calculated and shown graphically.
Relativistic Quantum Communication
Hosler, Dominic
2013-01-01
In this Ph.D. thesis, I investigate the communication abilities of non-inertial observers and the precision to which they can measure parametrized states. I introduce relativistic quantum field theory with field quantisation, and the definition and transformations of mode functions in Minkowski, Schwarzschild and Rindler spaces. I introduce information theory by discussing the nature of information, defining the entropic information measures, and highlighting the differences between classical and quantum information. I review the field of relativistic quantum information. We investigate the communication abilities of an inertial observer to a relativistic observer hovering above a Schwarzschild black hole, using the Rindler approximation. We compare both classical communication and quantum entanglement generation of the state merging protocol, for both the single and dual rail encodings. We find that while classical communication remains finite right up to the horizon, the quantum entanglement generation tend...
Carlini, A.; Novikov, I. D.
We consider the action principle to derive the classical, relativistic motion of a selfinteracting particle in a 4D Lorentzian spacetime containing a wormhole and which allows the existence of closed time-like curves. In particular, we study the case of a pointlike particle subject to a “hard-sphere” self-interaction potential and which can traverse the wormhole an arbitrary number of times, and show that the only possible trajectories for which the classical action is stationary are those which are globally self-consistent. Generically, the multiplicity of these trajectories (defined as the number of self-consistent solutions to the equations of motion beginning with given Cauchy data) is finite, and it becomes infinite if certain constraints on the same initial data are satisfied. This confirms the previous conclusions (for a nonrelativistic model) by Echeverria, Klinkhammer and Thorne that the Cauchy initial value problem in the presence of a wormhole “time machine” is classically “ill-posed” (far too many solutions). Our results further extend the recent claim by Novikov et al. that the “principle of self-consistency” is a natural consequence of the “principle of minimal action.”
Handbook of relativistic quantum chemistry
Liu, Wenjian (ed.) [Peking Univ., Beijing (China). Center for Computational Science and Engineering
2017-03-01
This handbook focuses on the foundations of relativistic quantum mechanics and addresses a number of fundamental issues never covered before in a book. For instance: How can many-body theory be combined with quantum electrodynamics? How can quantum electrodynamics be interfaced with relativistic quantum chemistry? What is the most appropriate relativistic many-electron Hamiltonian? How can we achieve relativistic explicit correlation? How can we formulate relativistic properties? - just to name a few. Since relativistic quantum chemistry is an integral component of computational chemistry, this handbook also supplements the ''Handbook of Computational Chemistry''. Generally speaking, it aims to establish the 'big picture' of relativistic molecular quantum mechanics as the union of quantum electrodynamics and relativistic quantum chemistry. Accordingly, it provides an accessible introduction for readers new to the field, presents advanced methodologies for experts, and discusses possible future perspectives, helping readers understand when/how to apply/develop the methodologies.
Relativistic Plasma Polarizer: Impact of Temperature Anisotropy on Relativistic Transparency
Hazeltine, R. D.; Stark, David J.; Bhattacharjee, Chinmoy; Arefiev, Alexey V.; Toncian, Toma; Mahajan, S. M.
2015-11-01
3D particle-in-cell simulations demonstrate that the enhanced transparency of a relativistically hot plasma is sensitive to how the energy is partitioned between different degrees of freedom. We consider here the simplest problem: the propagation of a low amplitude pulse through a preformed relativistically hot anisotropic electron plasma to explore its intrinsic dielectric properties. We find that: 1) the critical density for propagation depends strongly on the pulse polarization, 2) two plasmas with the same density and average energy per electron can exhibit profoundly different responses to electromagnetic pulses, 3) the anisotropy-driven Weibel instability develops as expected; the timescales of the growth and back reaction (on anisotropy), however, are long enough that sufficient anisotropy persists for the entire duration of the simulation. This plasma can then function as a polarizer or a wave plate to dramatically alter the pulse polarization. This work was supported by the U.S. DOE Contract Nos. DE-FG02-04ER54742 and DE-AC05-06OR23100 (D. J. S.) and NNSA Contract No. DE-FC52-08NA28512.
Relativistic electronic dressing
Attaourti, Y
2002-01-01
We study the effects of the relativistic electronic dressing in laser-assisted electron-hydrogen atom elastic collisions. We begin by considering the case when no radiation is present. This is necessary in order to check the consistency of our calculations and we then carry out the calculations using the relativistic Dirac-Volkov states. It turns out that a simple formal analogy links the analytical expressions of the differential cross section without laser and the differential cross section in presence of a laser field.
Fabian, A C; Parker, M L
2014-01-01
Broad emission lines, particularly broad iron-K lines, are now commonly seen in the X-ray spectra of luminous AGN and Galactic black hole binaries. Sensitive NuSTAR spectra over the energy range of 3-78 keV and high frequency reverberation spectra now confirm that these are relativistic disc lines produced by coronal irradiation of the innermost accretion flow around rapidly spinning black holes. General relativistic effects are essential in explaining the observations. Recent results are briefly reviewed here.
Relativistic Rotating Vector Model
Lyutikov, Maxim
2016-01-01
The direction of polarization produced by a moving source rotates with the respect to the rest frame. We show that this effect, induced by pulsar rotation, leads to an important correction to polarization swings within the framework of rotating vector model (RVM); this effect has been missed by previous works. We construct relativistic RVM taking into account finite heights of the emission region that lead to aberration, time-of-travel effects and relativistic rotation of polarization. Polarizations swings at different frequencies can be used, within the assumption of the radius-to-frequency mapping, to infer emission radii and geometry of pulsars.
Can one hear the Riemann zeros in black hole ringing?
Aros, Rodrigo; Bugini, Fabrizzio; Diaz, Danilo E.
2016-05-01
We elaborate on an entry of the AdS/CFT dictionary relating functional determinants: the determinant of the one-loop contribution to the effective gravitational action by bulk scalars in an asymptotically locally AdS background X, and the determinant of the two-point function of the dual operator (a.k.a. scattering matrix) at the conformal boundary M. The formula originates from AdS/CFT heuristics that map a quantum contribution in the bulk gravitational partition function to a subleading large-N contribution in the boundary CFT partition function: The formula applies to quotients of AdS as well [1]. In the particular case of the BTZ black hole, a closed expression can be worked out in terms of an associated Patterson-Selberg zeta function ZBTZ (λ) [2]. The determinants can then be thought of as regularized products of either zeta zeros, scattering resonances or quasinormal frequencies [3]. In this sense, one could say that the zeros of ZBTZ (λ) can be heard in the spectrum of quasinormal modes of the BTZ black hole. The question we want to pose is whether a similar situation might exist for the celebrated zeros of the Riemann zeta function.
Orbifold Riemann surfaces: Teichmueller spaces and algebras of geodesic functions
Mazzocco, Marta [Loughborough University, Loughborough (United Kingdom); Chekhov, Leonid O [Institute for Theoretical and Experimental Physics (Russian Federation State Scientific Center), Moscow (Russian Federation)
2009-12-31
A fat graph description is given for Teichmueller spaces of Riemann surfaces with holes and with Z{sub 2}- and Z{sub 3}-orbifold points (conical singularities) in the Poincare uniformization. The corresponding mapping class group transformations are presented, geodesic functions are constructed, and the Poisson structure is introduced. The resulting Poisson algebras are then quantized. In the particular cases of surfaces with n Z{sub 2}-orbifold points and with one and two holes, the respective algebras A{sub n} and D{sub n} of geodesic functions (classical and quantum) are obtained. The infinite-dimensional Poisson algebra D{sub n}, which is the semiclassical limit of the twisted q-Yangian algebra Y'{sub q}(o{sub n}) for the orthogonal Lie algebra o{sub n}, is associated with the algebra of geodesic functions on an annulus with n Z{sub 2}-orbifold points, and the braid group action on this algebra is found. From this result the braid group actions are constructed on the finite-dimensional reductions of this algebra: the p-level reduction and the algebra D{sub n}. The central elements for these reductions are found. Also, the algebra D{sub n} is interpreted as the Poisson algebra of monodromy data of a Frobenius manifold in the vicinity of a non-semisimple point. Bibliography: 36 titles.
Minimal models on Riemann surfaces: The partition functions
Foda, O. (Katholieke Univ. Nijmegen (Netherlands). Inst. voor Theoretische Fysica)
1990-06-04
The Coulomb gas representation of the A{sub n} series of c=1-6/(m(m+1)), m{ge}3, minimal models is extended to compact Riemann surfaces of genus g>1. An integral representation of the partition functions, for any m and g is obtained as the difference of two gaussian correlation functions of a background charge, (background charge on sphere) x (1-g), and screening charges integrated over the surface. The coupling constant x (compacitification radius){sup 2} of the gaussian expressions are, as on the torus, m(m+1), and m/(m+1). The partition functions obtained are modular invariant, have the correct conformal anomaly and - restricting the propagation of states to a single handle - one can verify explicitly the decoupling of the null states. On the other hand, they are given in terms of coupled surface integrals, and it remains to show how they degenerate consistently to those on lower-genus surfaces. In this work, this is clear only at the lattice level, where no screening charges appear. (orig.).
Unsteady Hartmann Two-Phase Flow: The Riemann-Sum Approximation Approach
Jha, B. K.; Babila, C. T.; Isa, S.
2016-12-01
We consider the time dependent Hartmann flow of a conducting fluid in a channel formed by two horizontal parallel plates of infinite extent, there being a layer of a non-conducting fluid between the conducting fluid and the upper channel wall. The flow formation of conducting and non-conducting fluids is coupled by equating the velocity and shear stress at the interface. The unsteady flow formation inside the channel is caused by a sudden change in the pressure gradient. The relevant partial differential equations capturing the present physical situation are transformed into ordinary differential equations using the Laplace transform technique. The ordinary differential equations are then solved analytically and the Riemann-sum approximation method is used to invert the Laplace domain into time domain. The solution obtained is validated by comparisons with the closed form solutions obtained for steady states which have been derived separately and also by the implicit finite difference method. The variation of velocity, mass flow rate and skin-friction on both plates for various physical parameters involved in the problem are reported and discussed with the help of line graphs. It was found that the effect of changes of the electric load parameter is to aid or oppose the flow as compared to the short-circuited case.
On an analytic estimate in the theory of the Riemann zeta function and a theorem of Báez-Duarte.
Burnol, Jean-François
2003-01-01
On the Riemann hypothesis we establish a uniform upper estimate for zeta(s)/zeta (s + A), 0 Riemann Hypothesis. We investigate function-theoretically some of the functions defined by Báez-Duarte in his study and we show that their square-integrability is, in itself, an equivalent formulation of the Riemann Hypothesis. We conclude with a third equivalent formulation which resembles a "causality" statement.
Relativistic cosmology; Cosmologia Relativista
Bastero-Gil, M.
2015-07-01
Relativistic cosmology is nothing but the study of the evolution of our universe expanding from the General Theory of Relativity, which describes the gravitational interaction at any scale and given its character far-reaching is the force that dominate the evolution of the universe. (Author)
Relativistic length agony continued
Redžić D.V.
2014-01-01
Full Text Available We made an attempt to remedy recent confusing treatments of some basic relativistic concepts and results. Following the argument presented in an earlier paper (Redžić 2008b, we discussed the misconceptions that are recurrent points in the literature devoted to teaching relativity such as: there is no change in the object in Special Relativity, illusory character of relativistic length contraction, stresses and strains induced by Lorentz contraction, and related issues. We gave several examples of the traps of everyday language that lurk in Special Relativity. To remove a possible conceptual and terminological muddle, we made a distinction between the relativistic length reduction and relativistic FitzGerald-Lorentz contraction, corresponding to a passive and an active aspect of length contraction, respectively; we pointed out that both aspects have fundamental dynamical contents. As an illustration of our considerations, we discussed briefly the Dewan-Beran-Bell spaceship paradox and the ‘pole in a barn’ paradox. [Projekat Ministarstva nauke Republike Srbije, br. 171028
Bugaev, K A; Sagun, V V; Ivanytskyi, A I; Cleymans, J; Mironchuk, E S; Nikonov, E G; Taranenko, A V; Zinovjev, G M
2016-01-01
We present an elaborate version of the hadron resonance gas model with the combined treatment of separate chemical freeze-outs for strange and non-strange hadrons and with an additional $\\gamma_{s}$ factor which accounts for the remaining strange particle non-equilibration. Within suggested approach the parameters of two chemical freeze-outs are connected by the conservation laws of entropy, baryonic charge, third isospin projection and strangeness. The developed model enables us to perform a high-quality fit of the hadron multiplicity ratios measured at AGS, SPS and RHIC with $\\chi^2/dof \\simeq 0.93$. A special attention is paid to a successful description of the Strangeness Horn. The well-known problem of selective suppression of $\\bar \\Lambda $ and $\\bar \\Xi$ hyperons is also discussed. The main result is that for all collision energies the $\\gamma_{s}$ factor is about 1 within the error bars, except for the center of mass collision energy 7.6 GeV at which we find about 20\\% enhancement of strangeness. Als...
Criterion for stability of a special relativistically covariant dynamical system
Horwitz, L. P.; Zucker, D.
2017-03-01
We study classically the problem of two relativistic particles with an invariant Duffing-like potential which reduces to the usual Duffing form in the nonrelativistic limit. We use a special relativistic generalization (RGEM) of the geometric method (GEM) developed for the analysis of nonrelativistic Hamiltonian systems to study the local stability of a relativistic Duffing oscillator. Poincaré plots of the simulated motion are consistent with the RGEM. We find a threshold for the external driving force required for chaotic behavior in the Minkowski spacetime.
Rayleigh-Brillouin spectrum in special relativistic hydrodynamics.
Garcia-Perciante, A L; Garcia-Colin, L S; Sandoval-Villalbazo, A
2009-06-01
In this paper we calculate the Rayleigh-Brillouin spectrum for a relativistic simple fluid according to three different versions available for a relativistic approach to nonequilibrium thermodynamics. An outcome of these calculations is that Eckart's version predicts that such spectrum does not exist. This provides an argument to question its validity. The remaining two results, which differ one from another, do provide a finite form for such spectrum. This raises the rather intriguing question as to which of the two theories is a better candidate to be taken as a possible version of relativistic nonequilibrium thermodynamics. The answer will clearly require deeper examination of this problem.
The Rayleigh-Brillouin Spectrum in Special Relativistic Hydrodynamics
García-Perciante, A L; Sandoval-Villalbazo, A
2009-01-01
In this paper we calculate the Rayleigh-Brillouin spectrum for a relativistic simple fluid according to three different versions available for a relativistic approach to non-equilibrium thermodynamics. An outcome of these calculations is that Eckart's version predicts that such spectrum does not exist. This provides an argument to question its validity. The remaining two results, which differ one from another, do provide a finite form for such spectrum. This raises the rather intriguing question as to which of the two theories is a better candidate to be taken as a possible version of relativistic non-equilibrium thermodynamics. The answer will clearly require deeper examination of this problem.
Relativistic transformation of temperature and Mosengeil-Ott's antinomy
Mares, J J; Sestak, J; Spicka, V; Kristofik, J; Stavek, J
2016-01-01
A not satisfactorily solved problem of relativistic transformation of temperature playing the decisive role in relativistic thermal physics and cosmology is reopened. It is shown that the origin of the so called Mosengeil-Ott's antinomy and other aligned paradoxes are related to the wrong understanding of physical meaning of temperature and application of Planck's Ansatz of Lorentz's invariance of entropy. In the contribution we have thus reintroduced and anew analyzed fundamental concepts of hotness manifold, fixed thermometric points and temperature. Finally, on the basis of phenomenological arguments the Lorentz invariance of temperature and relativistic transformations of entropy are established.
Trans-Relativistic Particle Acceleration in Astrophysical Plasmas
Becker, Peter A.; Subramanian, P.
2014-01-01
Trans-relativistic particle acceleration due to Fermi interactions between charged particles and MHD waves helps to power the observed high-energy emission in AGN transients and solar flares. The trans-relativistic acceleration process is challenging to treat analytically due to the complicated momentum dependence of the momentum diffusion coefficient. For this reason, most existing analytical treatments of particle acceleration assume that the injected seed particles are already relativistic, and therefore they are not suited to study trans-relativistic acceleration. The lack of an analytical model has forced workers to rely on numerical simulations to obtain particle spectra describing the trans-relativistic case. In this work we present the first analytical solution to the global, trans-relativistic problem describing the acceleration of seed particles due to hard-sphere collisions with MHD waves. The new results include the exact solution for the steady-state Green's function resulting from the continual injection of monoenergetic seed particles with an arbitrary energy. We also introduce an approximate treatment of the trans-relativistic acceleration process based on a hybrid form for the momentum diffusion coefficient, given by the sum of the two asymptotic forms. We refer to this process as "quasi hard-sphere scattering." The main advantage of the hybrid approximation is that it allows the extension of the physical model to include (i) the effects of synchrotron and inverse-Compton losses and (ii) time dependence. The new analytical results can be used to model the trans-relativistic acceleration of particles in AGN and solar environments, and can also be used to compute the spectra of the associated synchrotron and inverse-Compton emission. Applications of both types are discussed. We highlight (i) relativistic ion acceleration in black hole accretion coronae, and (ii) the production of gyrosynchrotron microwave emission due to relativistic electron
General relativity and relativistic astrophysics
Mukhopadhyay, Banibrata
2016-01-01
Einstein established the theory of general relativity and the corresponding field equation in 1915 and its vacuum solutions were obtained by Schwarzschild and Kerr for, respectively, static and rotating black holes, in 1916 and 1963, respectively. They are, however, still playing an indispensable role, even after 100 years of their original discovery, to explain high energy astrophysical phenomena. Application of the solutions of Einstein's equation to resolve astrophysical phenomena has formed an important branch, namely relativistic astrophysics. I devote this article to enlightening some of the current astrophysical problems based on general relativity. However, there seem to be some issues with regard to explaining certain astrophysical phenomena based on Einstein's theory alone. I show that Einstein's theory and its modified form, both are necessary to explain modern astrophysical processes, in particular, those related to compact objects.
Relativistic mechanical-thermodynamical formalism -- description of inelastic collisions
Guemez, Julio; Fernandez, Luis A
2016-01-01
We present a relativistic formalism inspired on the Minkowski four-vectors that also includes conservation laws such as the first law of thermodynamics. It remains close to the relativistic four-vector formalism developed for a single particle, but it is also related to the classical treatment of problems that imperatively require both the Newton's second law and the energy conservation law. We apply the developed formalism to inelastic collisions to better show how it works.
Alba, David; Lusanna, Luca
2009-01-01
A new formulation of relativistic quantum mechanics is proposed in the framework of the rest-frame instant form of dynamics with its instantaneous Wigner 3-spaces and with its description of the particle world-lines by means of derived non-canonical predictive coordinates. In it we quantize the frozen Jacobi data of the non-local 4-center of mass and the Wigner-covariant relative variables in an abstract (frame-independent) internal space whose existence is implied by Wigner-covariance. The formalism takes care of the properties of both relativistic bound states and scattering ones. There is a natural solution to the \\textit{relativistic localization problem}. The non-relativistic limit leads to standard quantum mechanics but with a frozen Hamilton-Jacobi description of the center of mass. Due to the \\textit{non-locality} of the Poincar\\'e generators the resulting theory of relativistic entanglement is both \\textit{kinematically non-local and spatially non-separable}: these properties, absent in the non-relat...
Particle energisation in a collapsing magnetic trap model: the relativistic regime
Oskoui, Solmaz Eradat
2014-01-01
In solar flares, a large number of charged particles is accelerated to high energies. By which physical processes this is achieved is one of the main open problems in solar physics. It has been suggested that during a flare, regions of the rapidly relaxing magnetic field can form a collapsing magnetic trap (CMT) and that this trap may contribute to particle energisation.} In this Research Note we focus on a particular analytical CMT model based on kinematic magnetohydrodynamics. Previous investigations of particle acceleration for this CMT model focused on the non-relativistic energy regime. It is the specific aim of this Research Note to extend the previous work to relativistic particle energies. Particle orbits were calculated numerically using the relativistic guiding centre equations. We also calculated particle orbits using the non-relativistic guiding centre equations for comparison. For mildly relativistic energies the relativistic and non-relativistic particle orbits mainly agree well, but clear devia...
Relativistic Hydrodynamics with Wavelets
DeBuhr, Jackson; Anderson, Matthew; Neilsen, David; Hirschmann, Eric W
2015-01-01
Methods to solve the relativistic hydrodynamic equations are a key computational kernel in a large number of astrophysics simulations and are crucial to understanding the electromagnetic signals that originate from the merger of astrophysical compact objects. Because of the many physical length scales present when simulating such mergers, these methods must be highly adaptive and capable of automatically resolving numerous localized features and instabilities that emerge throughout the computational domain across many temporal scales. While this has been historically accomplished with adaptive mesh refinement (AMR) based methods, alternatives based on wavelet bases and the wavelet transformation have recently achieved significant success in adaptive representation for advanced engineering applications. This work presents a new method for the integration of the relativistic hydrodynamic equations using iterated interpolating wavelets and introduces a highly adaptive implementation for multidimensional simulati...
Relativistic heavy ion reactions
Brink, D.M.
1989-08-01
The theory of quantum chromodynamics predicts that if nuclear matter is heated to a sufficiently high temperature then quarks might become deconfined and a quark-gluon plasma could be produced. One of the aims of relativistic heavy ion experiments is to search for this new state of matter. These lectures survey some of the new experimental results and give an introduction to the theories used to interpret them. 48 refs., 4 tabs., 11 figs.
Relativistic spherical plasma waves
Bulanov, S S; Schroeder, C B; Zhidkov, A G; Esarey, E; Leemans, W P
2011-01-01
Tightly focused laser pulses as they diverge or converge in underdense plasma can generate wake waves, having local structures that are spherical waves. Here we report on theoretical study of relativistic spherical wake waves and their properties, including wave breaking. These waves may be suitable as particle injectors or as flying mirrors that both reflect and focus radiation, enabling unique X-ray sources and nonlinear QED phenomena.
Relativistic Quantum Noninvasive Measurements
Bednorz, Adam
2014-01-01
Quantum weak, noninvasive measurements are defined in the framework of relativity. Invariance with respect to reference frame transformations of the results in different models is discussed. Surprisingly, the bare results of noninvasive measurements are invariant for certain class of models, but not the detection error. Consequently, any stationary quantum realism based on noninvasive measurements will break, at least spontaneously, relativistic invariance and correspondence principle at zero temperature.
Relativistic cosmological hydrodynamics
Hwang, J
1997-01-01
We investigate the relativistic cosmological hydrodynamic perturbations. We present the general large scale solutions of the perturbation variables valid for the general sign of three space curvature, the cosmological constant, and generally evolving background equation of state. The large scale evolution is characterized by a conserved gauge invariant quantity which is the same as a perturbed potential (or three-space curvature) in the comoving gauge.
Liu YANG; Zongmin QIAO
2012-01-01
In this paper,the existence and multiplicity of positive solutions for Robin type boundary value problem of differential equation involving the Riemann-Liouville fractional order derivative are established.
Gravitationally confined relativistic neutrinos
Vayenas, C. G.; Fokas, A. S.; Grigoriou, D.
2017-09-01
Combining special relativity, the equivalence principle, and Newton’s universal gravitational law with gravitational rather than rest masses, one finds that gravitational interactions between relativistic neutrinos with kinetic energies above 50 MeV are very strong and can lead to the formation of gravitationally confined composite structures with the mass and other properties of hadrons. One may model such structures by considering three neutrinos moving symmetrically on a circular orbit under the influence of their gravitational attraction, and by assuming quantization of their angular momentum, as in the Bohr model of the H atom. The model contains no adjustable parameters and its solution, using a neutrino rest mass of 0.05 eV/c2, leads to composite state radii close to 1 fm and composite state masses close to 1 GeV/c2. Similar models of relativistic rotating electron - neutrino pairs give a mass of 81 GeV/c2, close to that of W bosons. This novel mechanism of generating mass suggests that the Higgs mass generation mechanism can be modeled as a latent gravitational field which gets activated by relativistic neutrinos.
Relativistic Radiation Mediated Shocks
Budnik, Ran; Sagiv, Amir; Waxman, Eli
2010-01-01
The structure of relativistic radiation mediated shocks (RRMS) propagating into a cold electron-proton plasma is calculated and analyzed. A qualitative discussion of the physics of relativistic and non relativistic shocks, including order of magnitude estimates for the relevant temperature and length scales, is presented. Detailed numerical solutions are derived for shock Lorentz factors $\\Gamma_u$ in the range $6\\le\\Gamma_u\\le30$, using a novel iteration technique solving the hydrodynamics and radiation transport equations (the protons, electrons and positrons are argued to be coupled by collective plasma processes and are treated as a fluid). The shock transition (deceleration) region, where the Lorentz factor $ \\Gamma $ drops from $ \\Gamma_u $ to $ \\sim 1 $, is characterized by high plasma temperatures $ T\\sim \\Gamma m_ec^2 $ and highly anisotropic radiation, with characteristic shock-frame energy of upstream and downstream going photons of a few~$\\times\\, m_ec^2$ and $\\sim \\Gamma^2 m_ec^2$, respectively.P...
Parker, Edward
2017-08-01
A nonrelativistic particle released from rest at the edge of a ball of uniform charge density or mass density oscillates with simple harmonic motion. We consider the relativistic generalizations of these situations where the particle can attain speeds arbitrarily close to the speed of light; generalizing the electrostatic and gravitational cases requires special and general relativity, respectively. We find exact closed-form relations between the position, proper time, and coordinate time in both cases, and find that they are no longer harmonic, with oscillation periods that depend on the amplitude. In the highly relativistic limit of both cases, the particle spends almost all of its proper time near the turning points, but almost all of the coordinate time moving through the bulk of the ball. Buchdahl's theorem imposes nontrivial constraints on the general-relativistic case, as a ball of given density can only attain a finite maximum radius before collapsing into a black hole. This article is intended to be pedagogical, and should be accessible to those who have taken an undergraduate course in general relativity.
Locally Inertial Reference Frames in Lorentzian and Riemann-Cartan Spacetimes
Giglio, J F T
2011-01-01
In this paper we scrutinize the concept of locally inertial reference frames (LIRF) in Lorentzian and Riemann-Cartan spacetime structures. We present rigorous mathematical definitions for those objects, something that needs preliminary a clear mathematical distinction between the concepts of observers, reference frames, naturally adapted coordinate functions to a given reference frame and which properties may characterize an inertial reference frame (if any) in the Lorentzian and Riemann-Cartan structures. We hope to have clarified some eventual obscure issues associated to the concept of LIRF appearing in the literature, in particular the relationship between LIRFs in Lorentzian and Riemann-Cartan spacetimes and Einstein's most happy though, i.e., the equivalence principle.
Riemann integration via primitives for a new proof to the change of variable theorem
Pouso, Rodrigo López
2011-01-01
We approach the Riemann integral via generalized primitives to give a new proof for a general result on change of variable originally proven by Kestelman and Davies. Our proof is similar to Kestelman's, but we hope readers will find it clearer thanks to the use of a new test for the Riemann integrability (which we introduce in this paper) along with some ingredients from some other more recent proofs available in the literature. We also include a bibliographical review of related results and proofs. Although this paper emphasizes in the change of variable theorem, our contributions to the Riemann integration theory are of independent interest. For instance, we present a very simple proof to the fact that continuous functions are integrable which avoids the use of uniform continuity.
Tokarevskaya, N G; Red'kov, V M
2009-01-01
Complex formalism of Riemann - Silberstein - Majorana - Oppenheimer in Maxwell electrodynamics is extended to the case of arbitrary pseudo-Riemannian space - time in accordance with the tetrad recipe of Tetrode - Weyl - Fock - Ivanenko. In this approach, the Maxwell equations are solved exactly on the background of simplest static cosmological models, spaces of constant curvature of Riemann and Lobachevsky parameterized by spherical coordinates. Separation of variables is realized in the basis of Schr\\"odinger -- Pauli type, description of angular dependence in electromagnetic complex 3-vectors is given in terms of Wigner D-functions. In the case of compact Riemann model a discrete frequency spectrum for electromagnetic modes depending on the curvature radius of space and three discrete parameters is found. In the case of hyperbolic Lobachevsky model no discrete spectrum for frequencies of electromagnetic modes arises.
Schr\\"{o}dinger particle in magnetic and electric fields in Lobachevsky and Riemann spaces
Bogush, A A; Krylov, G G
2010-01-01
Schr\\"{o}dinger equation in Lobachevsky and Riemann 4-spaces has been solved in the presence of external magnetic field that is an analog of a uniform magnetic field in the flat space. Generalized Landau levels have been found, modified by the presence of the space curvature. In Lobachevsky4-model the energy spectrum contains discrete and continuous parts, the number of bound states is finite; in Riemann 4-model all energy spectrum is discrete. Generalized Landau levels are determined by three parameters, the magnitude of the magnetic field $B$, the curvature radius $\\rho$ and the magnetic quantum number $m$. It has been shown that in presence of an additional external electric field the energy spectrum in the Riemann model can be also obtained analytically.
Zolotarev, Vladimir A.
2009-04-01
Functional models are constructed for commutative systems \\{A_1,A_2\\} of bounded linear non-self-adjoint operators which do not contain dissipative operators (which means that \\xi_1A_1+\\xi_2A_2 is not a dissipative operator for any \\xi_1, \\xi_2\\in\\mathbb{R}). A significant role is played here by the de Branges transform and the function classes occurring in this context. Classes of commutative systems of operators \\{A_1,A_2\\} for which such a construction is possible are distinguished. Realizations of functional models in special spaces of meromorphic functions on Riemann surfaces are found, which lead to reasonable analogues of de Branges spaces on these Riemann surfaces. It turns out that the functions E(p) and \\widetilde E(p) determining the order of growth in de Branges spaces on Riemann surfaces coincide with the well-known Baker-Akhiezer functions. Bibliography: 11 titles.
Point form relativistic quantum mechanics and relativistic SU(6)
Klink, W. H.
1993-01-01
The point form is used as a framework for formulating a relativistic quantum mechanics, with the mass operator carrying the interactions of underlying constituents. A symplectic Lie algebra of mass operators is introduced from which a relativistic harmonic oscillator mass operator is formed. Mass splittings within the degenerate harmonic oscillator levels arise from relativistically invariant spin-spin, spin-orbit, and tensor mass operators. Internal flavor (and color) symmetries are introduced which make it possible to formulate a relativistic SU(6) model of baryons (and mesons). Careful attention is paid to the permutation symmetry properties of the hadronic wave functions, which are written as polynomials in Bargmann spaces.
Relativistic magnetohydrodynamics in one dimension.
Lyutikov, Maxim; Hadden, Samuel
2012-02-01
We derive a number of solutions for one-dimensional dynamics of relativistic magnetized plasma that can be used as benchmark estimates in relativistic hydrodynamic and magnetohydrodynamic numerical codes. First, we analyze the properties of simple waves of fast modes propagating orthogonally to the magnetic field in relativistically hot plasma. The magnetic and kinetic pressures obey different equations of state, so that the system behaves as a mixture of gases with different polytropic indices. We find the self-similar solutions for the expansion of hot strongly magnetized plasma into vacuum. Second, we derive linear hodograph and Darboux equations for the relativistic Khalatnikov potential, which describe arbitrary one-dimensional isentropic relativistic motion of cold magnetized plasma and find their general and particular solutions. The obtained hodograph and Darboux equations are very powerful: A system of highly nonlinear, relativistic, time-dependent equations describing arbitrary (not necessarily self-similar) dynamics of highly magnetized plasma reduces to a single linear differential equation.
THE SUM TWO REFLECTIVE POLYNOMIALS AND ITS LINK WITH THE PROOF OF THE RIEMANN HYPOTHESIS
Mathew Curtis
2014-01-01
Full Text Available The investigation into the summation of two polynomials of the same degree under special given conditions results in a polynomial whose solutions follow a pattern that can be easily predicted. In this study, the theory of such polynomials is developed for examination of the integral parts of Riemann’s works. The analysis leads to a theorem that governs the solutions under certain conditions and applying this theorem to the expanded form of the Riemann-Eta function generates expressions that show why the Riemann hypothesis may be true.
Macroscopic pair correlation of the Riemann zeroes for smooth test functions
Rodgers, Brad
2012-01-01
On the assumption of the Riemann hypothesis, we show that over a class of sufficiently smooth test functions, a measure conjectured by Bogolomony and Keating coincides to a very small error with the actual pair correlation measure for zeroes of the Riemann zeta function. Our result extends the well known result of Montgomery that over the same class of test functions the pair correlation measure coincides (to a larger error term) with that of the Gaussian Unitary Ensemble (GUE). The restriction of test functions remains stringent, but we are nonetheless able to detect, at a microscopically blurred resolution, macroscopic troughs in the pair correlation measure.
Horizontal Monotonicity of the Modulus of the Riemann Zeta Function and Related Functions
Matiyasevich, Yuri; Zvengrowski, Peter
2012-01-01
It is shown that the absolute values of Riemann's zeta function and two related functions strictly decrease when the imaginary part of the argument is fixed to any number with absolute value at least 8 and the real part of the argument is negative and increases up to 0; extending this monotonicity to the increase of the real part up to 1/2 is shown to be equivalent to the Riemann Hypothesis. Another result is a double inequality relating the real parts of the logarithmic derivatives of the three functions under consideration.
Solvability and Optimal Controls of Semilinear Riemann-Liouville Fractional Differential Equations
Xue Pan
2014-01-01
Full Text Available We consider the control systems governed by semilinear differential equations with Riemann-Liouville fractional derivatives in Banach spaces. Firstly, by applying fixed point strategy, some suitable conditions are established to guarantee the existence and uniqueness of mild solutions for a broad class of fractional infinite dimensional control systems. Then, by using generally mild conditions of cost functional, we extend the existence result of optimal controls to the Riemann-Liouville fractional control systems. Finally, a concrete application is given to illustrate the effectiveness of our main results.
Bring's Curve: its Period Matrix and the Vector of Riemann Constants
Harry W. Braden
2012-10-01
Full Text Available Bring's curve is the genus 4 Riemann surface with automorphism group of maximal size, S_5. Riera and Rodríguez have provided the most detailed study of the curve thus far via a hyperbolic model. We will recover and extend their results via an algebraic model based on a sextic curve given by both Hulek and Craig and implicit in work of Ramanujan. In particular we recover their period matrix; further, the vector of Riemann constants will be identified.
On the Solutions Fractional Riccati Differential Equation with Modified Riemann-Liouville Derivative
Mehmet Merdan
2012-01-01
Full Text Available Fractional variational iteration method (FVIM is performed to give an approximate analytical solution of nonlinear fractional Riccati differential equation. Fractional derivatives are described in the Riemann-Liouville derivative. A new application of fractional variational iteration method (FVIM was extended to derive analytical solutions in the form of a series for these equations. The behavior of the solutions and the effects of different values of fractional order are indicated graphically. The results obtained by the FVIM reveal that the method is very reliable, convenient, and effective method for nonlinear differential equations with modified Riemann-Liouville derivative
Artamonov, D. V.
2012-06-01
We introduce a way to represent pairs (E,∇), where E is a bundle on a Riemann surface and ∇ is a logarithmic connection in E, based on a representation of the surface as the quotient of the exterior of the unit disc. In this representation, we write the local isomonodromic deformation conditions for the pairs (E,∇). These conditions are written as a modified Schlesinger system on a Riemann sphere (reduced to the ordinary Schlesinger system in the typical case) supplemented by a certain system of linear equations.
Isotropic Landau levels of relativistic and non-relativistic fermions in 3D flat space
Li, Yi; Wu, Congjun
2012-02-01
The usual Landau level quantization, as demonstrated in the 2D quantum Hall effect, is crucially based on the planar structure. In this talk, we explore its 3D counterpart possessing the full 3D rotational symmetry as well as the time reversal symmetry. We construct the Landau level Hamiltonians in 3 and higher dimensional flat space for both relativistic and non-relativistic fermions. The 3D cases with integer fillings are Z2 topological insulators. The non-relativistic version describes spin-1/2 fermions coupling to the Aharonov-Casher SU(2) gauge field. This system exhibits flat Landau levels in which the orbital angular momentum and the spin are coupled with a fixed helicity. Each filled Landau level contributes one 2D helical Dirac Fermi surface at an open boundary, which demonstrates the Z2 topological nature. A natural generalization to Dirac fermions is found as a square root problem of the above non-relativistic version, which can also be viewed as the Dirac equation defined on the phase space. All these Landau level problems can be generalized to arbitrary high dimensions systematically. [4pt] [1] Yi Li and Congjun Wu, arXiv:1103.5422.[0pt] [2] Yi Li, Ken Intriligator, Yue Yu and Congjun Wu, arXiv:1108.5650.
A general relativistic signature in the galaxy bispectrum
Umeh, Obinna; Maartens, Roy; Clarkson, Chris
2016-01-01
Next-generation galaxy surveys will increasingly rely on the galaxy bispectrum to improve cosmological constraints, especially on primordial non-Gaussianity. A key theoretical requirement that remains to be developed is the analysis of general relativistic effects on the bispectrum, which arise from observing galaxies on the past lightcone. Here we compute for the first time all the local relativistic corrections to the bispectrum, from Doppler, gravitational potential and higher-order effects. For the galaxy bispectrum, the problem is much more complex than for the power spectrum, since we need the lightcone corrections at second order. Mode-coupling contributions at second order mean that relativistic corrections can be non-negligible at smaller scales than in the case of the power spectrum. In a primordial Gaussian universe, we show that the relativistic bispectrum for a moderately squeezed shape can differ from the Newtonian prediction by $\\sim 30\\%$ when the short modes are at the equality scale. For the...
George, D.L.
2011-01-01
The simulation of advancing flood waves over rugged topography, by solving the shallow-water equations with well-balanced high-resolution finite volume methods and block-structured dynamic adaptive mesh refinement (AMR), is described and validated in this paper. The efficiency of block-structured AMR makes large-scale problems tractable, and allows the use of accurate and stable methods developed for solving general hyperbolic problems on quadrilateral grids. Features indicative of flooding in rugged terrain, such as advancing wet-dry fronts and non-stationary steady states due to balanced source terms from variable topography, present unique challenges and require modifications such as special Riemann solvers. A well-balanced Riemann solver for inundation and general (non-stationary) flow over topography is tested in this context. The difficulties of modeling floods in rugged terrain, and the rationale for and efficacy of using AMR and well-balanced methods, are presented. The algorithms are validated by simulating the Malpasset dam-break flood (France, 1959), which has served as a benchmark problem previously. Historical field data, laboratory model data and other numerical simulation results (computed on static fitted meshes) are shown for comparison. The methods are implemented in GEOCLAW, a subset of the open-source CLAWPACK software. All the software is freely available at. Published in 2010 by John Wiley & Sons, Ltd.
Equation of state of the relativistic free electron gas at arbitrary degeneracy
Faussurier, Gérald
2016-12-01
We study the problem of the relativistic free electron gas at arbitrary degeneracy. The specific heat at constant volume and particle number CV and the specific heat at constant pressure and particle number CP are calculated. The question of equation of state is also studied. Non degenerate and degenerate limits are considered. We generalize the formulas obtained in the non-relativistic and ultra-relativistic regimes.
Do Newtonian large-scale structure simulations fail to include relativistic effects?
Faraoni, Valerio; Prain, Angus
2015-01-01
The Newtonian simulations describing the formation of large-scale structures do not include relativistic effects. A new approach to this problem is proposed, which consists of splitting the Hawking-Hayward quasi-local energy of a closed spacelike 2-surface into a "Newtonian" part due to local perturbations and a "relativistic" part due to the cosmology. It is found that the Newtonian part dominates over the relativistic one as time evolves, lending support to the validity of Newtonian simulations.
Recurrence relation for relativistic atomic matrix elements
Martínez y Romero, R P; Salas-Brito, A L
2000-01-01
Recurrence formulae for arbitrary hydrogenic radial matrix elements are obtained in the Dirac form of relativistic quantum mechanics. Our approach is inspired on the relativistic extension of the second hypervirial method that has been succesfully employed to deduce an analogous relationship in non relativistic quantum mechanics. We obtain first the relativistic extension of the second hypervirial and then the relativistic recurrence relation. Furthermore, we use such relation to deduce relativistic versions of the Pasternack-Sternheimer rule and of the virial theorem.
Diffraction radiation from relativistic heavy ions
Potylitsyna, N. A.
2001-01-01
In recent years, the relativistic heavy ion beams at new accelerator facilities are allowed to obtain some new interesting results (see, for instance, Datz et al., Phys. Rev. Lett. 79 (18) (1997) 3355; Ladyrin et al., Nucl. Instr. and Meth. A 404 (1998) 129). The problem of non-destructive heavy ion beam diagnostics at these accelerators is highly pressing. The authors of the papers (Rule et al., Proceedings of the Seventh Beam Instrumentation Workshop, Argonne IL, AIP Conference Proceedings, Vol. 390, NY, 1997; Castellano, Nucl. Instr. and Meth. A 394 (1997) 275) suggested to use diffraction radiation (DR) appearing when a charge moves close to a conducting surface (Bolotovskii and Voskresenskii, Sov. Phys. Usp. 9 (1966) 73) for non-destructive electron beam diagnostics. The DR characteristics are defined by both Lorentz-factor and the particle charge, and do not depend on its mass. The estimation of feasibility of using DR for relativistic ion beam diagnostics is undoubtedly interesting.
Exact Relativistic Magnetized Haloes around Rotating Disks
Antonio C. Gutiérrez-Piñeres
2015-01-01
Full Text Available The study of the dynamics of magnetic fields in galaxies is one of important problems in formation and evolution of galaxies. In this paper, we present the exact relativistic treatment of a rotating disk surrounded by a magnetized material halo. The features of the halo and disk are described by the distributional energy-momentum tensor of a general fluid in canonical form. All the relevant quantities and the metric and electromagnetic potentials are exactly determined by an arbitrary harmonic function only. For instance, the generalized Kuzmin-disk potential is used. The particular class of solutions obtained is asymptotically flat and satisfies all the energy conditions. Moreover, the motion of a charged particle on the halo is described. As far as we know, this is the first relativistic model describing analytically the magnetized halo of a rotating disk.
Relativistic quantum chemistry on quantum computers
Veis, L.; Visnak, J.; Fleig, T.
2012-01-01
The past few years have witnessed a remarkable interest in the application of quantum computing for solving problems in quantum chemistry more efficiently than classical computers allow. Very recently, proof-of-principle experimental realizations have been reported. However, so far only...... the nonrelativistic regime (i.e., the Schrodinger equation) has been explored, while it is well known that relativistic effects can be very important in chemistry. We present a quantum algorithm for relativistic computations of molecular energies. We show how to efficiently solve the eigenproblem of the Dirac......-Coulomb Hamiltonian on a quantum computer and demonstrate the functionality of the proposed procedure by numerical simulations of computations of the spin-orbit splitting in the SbH molecule. Finally, we propose quantum circuits with three qubits and nine or ten controlled-NOT (CNOT) gates, which implement a proof...
Exact relativistic theory of geoid's undulation
Kopeikin, Sergei; Karpik, Alexander
2014-01-01
Precise determination of geoid is one of the most important problem of physical geodesy. The present paper extends the Newtonian concept of the geoid to the realm of Einstein's general relativity and derives an exact relativistic equation for the unperturbed geoid and level surfaces under assumption of axisymmetric distribution of background matter in the core and mantle of the Earth. We consider Earth's crust as a small disturbance imposed on the background distribution of matter, and formulate the master equation for the anomalous gravity potential caused by this disturbance. We find out the gauge condition that drastically simplifies the master equation for the anomalous gravitational potential and reduces it to the form closely resembling the one in the Newtonian theory. The master equation gives access to the precise calculation of geoid's undulation with the full account for relativistic effects not limited to the post-Newtonian approximation. The geoid undulation theory, given in the present paper, uti...
Relativistic twins or sextuplets?
Sheldon, E S
2003-01-01
A recent study of the relativistic twin 'paradox' by Soni in this journal affirmed that 'A simple solution of the twin paradox also shows anomalous behaviour of rigidly connected distant clocks' but entailed a pedagogic hurdle which the present treatment aims to surmount. Two scenarios are presented: the first 'flight-plan' is akin to that depicted by Soni, with constant-velocity segments, while the second portrays an alternative mission undertaken with sustained acceleration and deceleration, illustrated quantitatively for a two-way spacecraft flight from Earth to Polaris (465.9 light years distant) and back.
Numerical Relativistic Quantum Optics
2013-11-08
µm and a = 1. The condition for an atomic spectrum to be non-relativistic is Z α−1 ≈ 137, as follows from elementary Dirac theory. One concludes that...peculiar result that B0 = 1 TG is a weak field. At present, such fields are observed only in connection with astrophysical phenomena [14]. The highest...pulsars. The Astrophysical Journal, 541:367–373, Sep 2000. [15] M. Tatarakis, I. Watts, F.N. Beg, E.L. Clark, A.E. Dangor, A. Gopal, M.G. Haines, P.A
Relativistic quantum information
Mann, R. B.; Ralph, T. C.
2012-11-01
Over the past few years, a new field of high research intensity has emerged that blends together concepts from gravitational physics and quantum computing. Known as relativistic quantum information, or RQI, the field aims to understand the relationship between special and general relativity and quantum information. Since the original discoveries of Hawking radiation and the Unruh effect, it has been known that incorporating the concepts of quantum theory into relativistic settings can produce new and surprising effects. However it is only in recent years that it has become appreciated that the basic concepts involved in quantum information science undergo significant revision in relativistic settings, and that new phenomena arise when quantum entanglement is combined with relativity. A number of examples illustrate that point. Quantum teleportation fidelity is affected between observers in uniform relative acceleration. Entanglement is an observer-dependent property that is degraded from the perspective of accelerated observers moving in flat spacetime. Entanglement can also be extracted from the vacuum of relativistic quantum field theories, and used to distinguish peculiar motion from cosmological expansion. The new quantum information-theoretic framework of quantum channels in terms of completely positive maps and operator algebras now provides powerful tools for studying matters of causality and information flow in quantum field theory in curved spacetimes. This focus issue provides a sample of the state of the art in research in RQI. Some of the articles in this issue review the subject while others provide interesting new results that will stimulate further research. What makes the subject all the more exciting is that it is beginning to enter the stage at which actual experiments can be contemplated, and some of the articles appearing in this issue discuss some of these exciting new developments. The subject of RQI pulls together concepts and ideas from
Corinaldesi, Ernesto
1963-01-01
Geared toward advanced undergraduate and graduate students of physics, this text provides readers with a background in relativistic wave mechanics and prepares them for the study of field theory. The treatment originated as a series of lectures from a course on advanced quantum mechanics that has been further amplified by student contributions.An introductory section related to particles and wave functions precedes the three-part treatment. An examination of particles of spin zero follows, addressing wave equation, Lagrangian formalism, physical quantities as mean values, translation and rotat
Rössler, O E; Matsuno, K
1998-04-01
The two mindsets of absolutism and relativism are juxtaposed, and the relational or relativist stance is vindicated. The only 'absolute' entity which undeniably exists, consciousness has the reality of a dream. The escape hatch from this prison is relational, as Descartes and Levinas found out: Unfalsified relational consistency implies exteriority. Exteriority implies infinite power which in turn makes compassion inevitable. Aside from ethics as a royal way to enlightenment, a new technology called 'deep technology' may be accessible. It changes the whole world in a demonstrable fashion by manipulation of the micro frame--that is, the observer-world interface.
Riemann Zeta Zeros and Prime Number Spectra in Quantum Field Theory
Menezes, G.; Svaiter, B. F.; Svaiter, N. F.
2013-10-01
The Riemann hypothesis states that all nontrivial zeros of the zeta function lie in the critical line Re(s) = 1/2. Hilbert and Pólya suggested that one possible way to prove the Riemann hypothesis is to interpret the nontrivial zeros in the light of spectral theory. Using the construction of the so-called super-zeta functions or secondary zeta functions built over the Riemann nontrivial zeros and the regularity property of one of this function at the origin, we show that it is possible to extend the Hilbert-Pólya conjecture to systems with countably infinite number of degrees of freedom. The sequence of the nontrivial zeros of the Riemann zeta function can be interpreted as the spectrum of a self-adjoint operator of some hypothetical system described by the functional approach to quantum field theory. However, if one considers the same situation with numerical sequences whose asymptotic distributions are not "far away" from the asymptotic distribution of prime numbers, the associated functional integral cannot be constructed. Finally, we discuss possible relations between the asymptotic behavior of a sequence and the analytic domain of the associated zeta function.
A canonical system of differential equations arising from the Riemann zeta-function
Suzuki, Masatoshi
2012-01-01
This paper has two main results, which relate to a criteria for the Riemann hypothesis via the family of functions $\\Theta_\\omega(z)=\\xi(1/2-\\omega-iz)/\\xi(1/2+\\omega-iz)$, where $\\omega>0$ is a real parameter and $\\xi(s)$ is the Riemann xi-function. The first main result is necessary and sufficient conditions for $\\Theta_\\omega$ to be a meromorphic inner function in the upper half-plane. It is related to the Riemann hypothesis directly whether $\\Theta_\\omega$ is a meromorphic inner function. In comparison with this, a relation of the Riemann hypothesis and the second main result is indirect. It relates to the theory of de Branges, which associates a meromorphic inner function and a canonical system of linear differential equations (in the sense of de Branges). As the second main result, the canonical system associated with $\\Theta_\\omega$ is constructed explicitly and unconditionally under the restriction of the parameter $\\omega >1$ by applying a method of J.-F. Burnol in his recent work on the gamma functi...
Light-cone gauge strings on higher genus Riemann surfaces in noncritical dimensions
Ishibashi, Nobuyuki
2016-01-01
It is possible to formulate light-cone gauge string field theory in noncritical dimensions. Such a theory corresponds to conformal gauge worldsheet theory with nonstandard longitudinal part. We study the longitudinal part of the worldsheet theory on higher genus Riemann surfaces. The results in this paper shall be used to study the dimensional regularization of light-cone gauge string field theory.
Synge-Beil and Riemann-Jacobi jet structures with applications to physics
Vladimir Balan
2003-01-01
study the Synge-Beil generalized Lagrange jet structure, derive the canonic nonlinear and Cartan connections, and infer the Einstein-Maxwell equations with sources; the classical ansatz is emphasized as a particular case. The Lorentz-type equations are described and the attached Riemann-Jacobi structures for two certain uniparametric cases are presented.
Spin 1 fields in Riemann-Cartan space-times "via" Duffin-Kemmer-Petiau theory
Casana, R; Lunardi, J T; Teixeira, R G
2002-01-01
We consider massive spin 1 fields, in Riemann-Cartan space-times, described by Duffin-Kemmer-Petiau theory. We show that this approach induces a coupling between the spin 1 field and the space-time torsion which breaks the usual equivalence with the Proca theory, but that such equivalence is preserved in the context of the Teleparallel Equivalent of General Relativity.
Landau-Siegel zeros and zeros of the derivative of the Riemann zeta function
Farmer, David W
2010-01-01
We show that if the derivative of the Riemann zeta function has sufficiently many zeros close to the critical line, then the zeta function has many closely spaced zeros. This gives a condition on the zeros of the derivative of the zeta function which implies a lower bound of the class numbers of imaginary quadratic fields.
The Great Gorilla Jump: An Introduction to Riemann Sums and Definite Integrals
Sealey, Vicki; Engelke, Nicole
2012-01-01
The great gorilla jump is an activity designed to allow calculus students to construct an understanding of the structure of the Riemann sum and definite integral. The activity uses the ideas of position, velocity, and time to allow students to explore familiar ideas in a new way. Our research has shown that introducing the definite integral as…
Random matrix theory and discrete moments of the Riemann zeta function
Hughes, C P [Raymond and Beverly Sackler School of Mathematical Sciences, Tel Aviv University, Tel Aviv 69978 (Israel)
2003-03-28
We calculate the discrete moments of the characteristic polynomial of a random unitary matrix, evaluated a small distance away from an eigenangle. Such results allow us to make conjectures about similar moments for the Riemann zeta function, and provide a uniform approach to understanding moments of the zeta function and its derivative.
Fractals of the Julia and Mandelbrot sets of the Riemann $zeta$ Function
Woon, S C
1998-01-01
Computations of the Julia and Mandelbrot sets of the Riemann zeta function and observations of their properties are made. In the appendix section, a corollary of Voronin's theorem is derived and a scale-invariant equation for the bounds in Goldbach conjecture is conjectured.
Exotic Non-relativistic String
Casalbuoni, Roberto; Longhi, Giorgio
2007-01-01
We construct a classical non-relativistic string model in 3+1 dimensions. The model contains a spurion tensor field that is responsible for the non-commutative structure of the model. Under double dimensional reduction the model reduces to the exotic non-relativistic particle in 2+1 dimensions.
'Antigravity' Propulsion and Relativistic Hyperdrive
Felber, F S
2006-01-01
Exact payload trajectories in the strong gravitational fields of compact masses moving with constant relativistic velocities are calculated. The strong field of a suitable driver mass at relativistic speeds can quickly propel a heavy payload from rest to a speed significantly faster than the driver, a condition called hyperdrive. Hyperdrive thresholds and maxima are calculated as functions of driver mass and velocity.
A Simple Relativistic Bohr Atom
Terzis, Andreas F.
2008-01-01
A simple concise relativistic modification of the standard Bohr model for hydrogen-like atoms with circular orbits is presented. As the derivation requires basic knowledge of classical and relativistic mechanics, it can be taught in standard courses in modern physics and introductory quantum mechanics. In addition, it can be shown in a class that…
A Simple Relativistic Bohr Atom
Terzis, Andreas F.
2008-01-01
A simple concise relativistic modification of the standard Bohr model for hydrogen-like atoms with circular orbits is presented. As the derivation requires basic knowledge of classical and relativistic mechanics, it can be taught in standard courses in modern physics and introductory quantum mechanics. In addition, it can be shown in a class that…
Komissarov, S S; Lyutikov, M
2015-01-01
In this paper we describe a simple numerical approach which allows to study the structure of steady-state axisymmetric relativistic jets using one-dimensional time-dependent simulations. It is based on the fact that for narrow jets with v~c the steady-state equations of relativistic magnetohydrodynamics can be accurately approximated by the one-dimensional time-dependent equations after the substitution z=ct. Since only the time-dependent codes are now publicly available this is a valuable and efficient alternative to the development of a high-specialized code for the time-independent equations. The approach is also much cheaper and more robust compared to the relaxation method. We tested this technique against numerical and analytical solutions found in literature as well as solutions we obtained using the relaxation method and found it sufficiently accurate. In the process, we discovered the reason for the failure of the self-similar analytical model of the jet reconfinement in relatively flat atmospheres a...
Robust relativistic bit commitment
Chakraborty, Kaushik; Chailloux, André; Leverrier, Anthony
2016-12-01
Relativistic cryptography exploits the fact that no information can travel faster than the speed of light in order to obtain security guarantees that cannot be achieved from the laws of quantum mechanics alone. Recently, Lunghi et al. [Phys. Rev. Lett. 115, 030502 (2015), 10.1103/PhysRevLett.115.030502] presented a bit-commitment scheme where each party uses two agents that exchange classical information in a synchronized fashion, and that is both hiding and binding. A caveat is that the commitment time is intrinsically limited by the spatial configuration of the players, and increasing this time requires the agents to exchange messages during the whole duration of the protocol. While such a solution remains computationally attractive, its practicality is severely limited in realistic settings since all communication must remain perfectly synchronized at all times. In this work, we introduce a robust protocol for relativistic bit commitment that tolerates failures of the classical communication network. This is done by adding a third agent to both parties. Our scheme provides a quadratic improvement in terms of expected sustain time compared with the original protocol, while retaining the same level of security.
A relativistic trolley paradox
Matvejev, Vadim N.; Matvejev, Oleg V.; Grøn, Ø.
2016-06-01
We present an apparent paradox within the special theory of relativity, involving a trolley with relativistic velocity and its rolling wheels. Two solutions are given, both making clear the physical reality of the Lorentz contraction, and that the distance on the rails between each time a specific point on the rim touches the rail is not equal to 2 π R , where R is the radius of the wheel, but 2 π R / √{ 1 - R 2 Ω 2 / c 2 } , where Ω is the angular velocity of the wheels. In one solution, the wheel radius is constant as the velocity of the trolley increases, and in the other the wheels contract in the radial direction. We also explain two surprising facts. First that the shape of a rolling wheel is elliptical in spite of the fact that the upper part of the wheel moves faster than the lower part, and thus is more Lorentz contracted, and second that a Lorentz contracted wheel with relativistic velocity rolls out a larger distance between two successive touches of a point of the wheel on the rails than the length of a circle with the same radius as the wheels.
Yekini Shehu
2010-01-01
real Banach space which is also uniformly smooth using the properties of generalized f-projection operator. Using this result, we discuss strong convergence theorem concerning general H-monotone mappings and system of generalized mixed equilibrium problems in Banach spaces. Our results extend many known recent results in the literature.
Fractional Dynamics of Relativistic Particle
Tarasov, Vasily E
2011-01-01
Fractional dynamics of relativistic particle is discussed. Derivatives of fractional orders with respect to proper time describe long-term memory effects that correspond to intrinsic dissipative processes. Relativistic particle subjected to a non-potential four-force is considered as a nonholonomic system. The nonholonomic constraint in four-dimensional space-time represents the relativistic invariance by the equation for four-velocity u_{\\mu} u^{\\mu}+c^2=0, where c is a speed of light in vacuum. In the general case, the fractional dynamics of relativistic particle is described as non-Hamiltonian and dissipative. Conditions for fractional relativistic particle to be a Hamiltonian system are considered.
Stability of relativistic plasma-vacuum interfaces
Trakhinin, Yuri
2010-01-01
We study the plasma-vacuum interface problem in relativistic magnetohydrodynamics for the case when the plasma density does not go to zero continuously, but jumps. Unlike the nonrelativistic version of this problem, we have to assume that the plasma expands into the vacuum (otherwise, the problem is underdetermined). We show that even if this necessary condition is satisfied the planar interface can be still violently unstable. By using a suitable secondary symmetrization of the Maxwell equations in vacuum, we find a sufficient condition that precludes violent instabilities. Under this condition we derive a basic a priori estimate in the anisotropic weighted Sobolev space $H^1_*$ for the variable coefficients linearized problem for nonplanar plasma-vacuum interfaces and prove the well-posedness of this problem.
Frontiers in Relativistic Celestial Mechanics, Vol. 1. Theory
Kopeikin, Sergei
2014-10-01
Relativistic celestial mechanics - investigating the motion celestial bodies under the influence of general relativity - is a major tool of modern experimental gravitational physics. With a wide range of prominent authors from the field, this two-volume series consists of reviews on a multitude of advanced topics in the area of relativistic celestial mechanics - starting from more classical topics such as the regime of asymptotically-flat spacetime, light propagation and celestial ephemerides, but also including its role in cosmology and alternative theories of gravity as well as modern experiments in this area. This first volume of a two-volume series is concerned with theoretical foundations such as post-Newtonian solutions to the two-body problem, light propagation through time-dependent gravitational fields, as well as cosmological effects on the movement of bodies in the solar systems. On the occasion of his 80-th birthday, these two volumes honor V. A. Brumberg - one of the pioneers in modern relativistic celestial mechanics. Contributions include: M. Soffel: On the DSX-framework T. Damour: The general relativistic two body problem G. Schaefer: Hamiltonian dynamics of spinning compact binaries through high post-Newtonian approximations A. Petrov and S. Kopeikin: Post-Newtonian approximations in cosmology T. Futamase: On the backreaction problem in cosmology Y. Xie and S. Kopeikin: Covariant theory of the post-Newtonian equations of motion of extended bodies S. Kopeikin and P. Korobkov: General relativistic theory of light propagation in multipolar gravitational fields
Relativistic Landau models and generation of fuzzy spheres
Hasebe, Kazuki
2016-07-01
Noncommutative geometry naturally emerges in low energy physics of Landau models as a consequence of level projection. In this work, we proactively utilize the level projection as an effective tool to generate fuzzy geometry. The level projection is specifically applied to the relativistic Landau models. In the first half of the paper, a detail analysis of the relativistic Landau problems on a sphere is presented, where a concise expression of the Dirac-Landau operator eigenstates is obtained based on algebraic methods. We establish SU(2) “gauge” transformation between the relativistic Landau model and the Pauli-Schrödinger nonrelativistic quantum mechanics. After the SU(2) transformation, the Dirac operator and the angular momentum operators are found to satisfy the SO(3, 1) algebra. In the second half, the fuzzy geometries generated from the relativistic Landau levels are elucidated, where unique properties of the relativistic fuzzy geometries are clarified. We consider mass deformation of the relativistic Landau models and demonstrate its geometrical effects to fuzzy geometry. Super fuzzy geometry is also constructed from a supersymmetric quantum mechanics as the square of the Dirac-Landau operator. Finally, we apply the level projection method to real graphene system to generate valley fuzzy spheres.
One-dimensional relativistic dissipative system with constant force and its quantization
López, G; Hernández, H; L\\'opez, Gustavo; L\\'opez, Xaman-Ek; Hern\\'andez, Hector
2005-01-01
For a relativistic particle under a constant force and a linear velocity dissipation force, a constant of motion is found. Problems are shown for getting the Hamiltoninan of this system. Thus, the quantization of this system is carried out through the constant of motion and using the quantization of the velocity variable. The dissipative relativistic quantum bouncer is outlined within this quantization approach.
One-Dimensional Relativistic Dissipative System with Constant Force and its Quantization
López, G.; López, X. E.; Hernández, H.
2006-04-01
For a relativistic particle under a constant force and a linear velocity dissipation force, a constant of motion is found. Problems are shown for getting the Hamiltonian of this system. Thus, the quantization of this system is carried out through the constant of motion and using the quantization on the velocity variable. The dissipative relativistic quantum bouncer is outlined within this quantization approach.