WorldWideScience

Sample records for relativistic radiation pressure

  1. Relativistic drag and emission radiation pressures in an isotropic photonic gas

    Science.gov (United States)

    Lee, Jeffrey S.; Cleaver, Gerald B.

    2016-06-01

    By invoking the relativistic spectral radiance, as derived by Lee and Cleaver,1 the drag radiation pressure of a relativistic planar surface moving through an isotropic radiation field, with which it is in thermal equilibrium, is determined in inertial and non-inertial frames. The forward- and backward-directed emission radiation pressures are also derived and compared. A fleeting (inertial frames) or ongoing (some non-inertial frames) Carnot cycle is shown to exist as a result of an intra-surfaces temperature gradient. The drag radiation pressure on an object with an arbitrary frontal geometry is also described.

  2. Relativistic Drag and Emission Radiation Pressures in an Isotropic Photonic Gas

    CERN Document Server

    Lee, Jeff S

    2015-01-01

    By invoking the relativistic spectral radiance, as derived by Lee and Cleaver [1], the drag radiation pressure of a relativistic planar surface moving through an isotropic radiation field, with which it is in thermal equilibrium, is determined in inertial and non-inertial frames. The forward- and rearward-directed emission radiation pressures are also derived and compared. A fleeting (inertial frames) or ongoing (some non-inertial frames) Carnot cycle is shown to exist as a result of an intra-surfaces temperature gradient. The drag radiation pressure on an object with an arbitrary frontal geometry is also described.

  3. Relativistic radiative transfer in relativistic spherical flows

    Science.gov (United States)

    Fukue, Jun

    2017-02-01

    Relativistic radiative transfer in relativistic spherical flows is numerically examined under the fully special relativistic treatment. We first derive relativistic formal solutions for the relativistic radiative transfer equation in relativistic spherical flows. We then iteratively solve the relativistic radiative transfer equation, using an impact parameter method/tangent ray method, and obtain specific intensities in the inertial and comoving frames, as well as moment quantities, and the Eddington factor. We consider several cases; a scattering wind with a luminous central core, an isothermal wind without a core, a scattering accretion on to a luminous core, and an adiabatic accretion on to a dark core. In the typical wind case with a luminous core, the emergent intensity is enhanced at the center due to the Doppler boost, while it reduces at the outskirts due to the transverse Doppler effect. In contrast to the plane-parallel case, the behavior of the Eddington factor is rather complicated in each case, since the Eddington factor depends on the optical depth, the flow velocity, and other parameters.

  4. Relativistic Radiation Mediated Shocks

    CERN Document Server

    Budnik, Ran; Sagiv, Amir; Waxman, Eli

    2010-01-01

    The structure of relativistic radiation mediated shocks (RRMS) propagating into a cold electron-proton plasma is calculated and analyzed. A qualitative discussion of the physics of relativistic and non relativistic shocks, including order of magnitude estimates for the relevant temperature and length scales, is presented. Detailed numerical solutions are derived for shock Lorentz factors $\\Gamma_u$ in the range $6\\le\\Gamma_u\\le30$, using a novel iteration technique solving the hydrodynamics and radiation transport equations (the protons, electrons and positrons are argued to be coupled by collective plasma processes and are treated as a fluid). The shock transition (deceleration) region, where the Lorentz factor $ \\Gamma $ drops from $ \\Gamma_u $ to $ \\sim 1 $, is characterized by high plasma temperatures $ T\\sim \\Gamma m_ec^2 $ and highly anisotropic radiation, with characteristic shock-frame energy of upstream and downstream going photons of a few~$\\times\\, m_ec^2$ and $\\sim \\Gamma^2 m_ec^2$, respectively.P...

  5. Ion motion effects on the generation of short-cycle relativistic laser pulses during radiation pressure acceleration

    Institute of Scientific and Technical Information of China (English)

    W.P.Wang; X.M.Zhang; X.F.Wang; X.Y.Zhao; J.C.Xu; Y.H.Yu; L.Q.Yi; Y.Shi; L.G.Zhang; T.J.Xu; C.Liu; Z.K.Pei; B.F.Shen

    2014-01-01

    The effects of ion motion on the generation of short-cycle relativistic laser pulses during radiation pressure acceleration are investigated by analytical modeling and particle-in-cell simulations. Studies show that the rear part of the transmitted pulse modulated by ion motion is sharper compared with the case of the electron shutter only. In this study, the ions further modulate the short-cycle pulses transmitted. A 3.9 fs laser pulse with an intensity of 1.33×1021W cm-2is generated by properly controlling the motions of the electron and ion in the simulations. The short-cycle laser pulse source proposed can be applied in the generation of single attosecond pulses and electron acceleration in a small bubble regime.

  6. Nonlinear interaction of ultraintense laser pulse with relativistic thin plasma foil in the radiation pressure-dominant regime

    Indian Academy of Sciences (India)

    KRISHNA KUMAR SONI; K P MAHESHWARI

    2016-11-01

    We present a study of the effect of laser pulse temporal profile on the energy/momentum acquired by the ions as a result of the ultraintense laser pulse focussed on a thin plasma layer in the radiation pressuredominant(RPD) regime. In the RPD regime, the plasma foil is pushed by ultraintense laser pulse when the radiation cannot propagate through the foil, while the electron and ion layers move together. The nonlinear character of laser–matter interaction is exhibited in the relativistic frequency shift, and also change in the wave amplitude as the EM wave gets reflected by the relativistically moving thin dense plasma layer. Relativistic effects in a highenergy plasma provide matching conditions that make it possible to exchange very effectively ordered kineticenergy and momentum between the EM fields and the plasma. When matter moves at relativistic velocities, the efficiency of the energy transfer from the radiation to thin plasma foil is more than 30% and in ultrarelativisticcase it approaches one. The momentum/energy transfer to the ions is found to depend on the temporal profile of the laser pulse. Our numerical results show that for the same laser and plasma parameters, a Lorentzian pulse canaccelerate ions upto 0.2 GeV within 10 fs which is 1.5 times larger than that a Gaussian pulse can.

  7. Radiative transfer in ultra-relativistic outflows

    OpenAIRE

    Beloborodov, Andrei M.

    2010-01-01

    Analytical and numerical solutions are obtained for the equation of radiative transfer in ultra-relativistic opaque jets. The solution describes the initial trapping of radiation, its adiabatic cooling, and the transition to transparency. Two opposite regimes are examined: (1) Matter-dominated outflow. Surprisingly, radiation develops enormous anisotropy in the fluid frame before decoupling from the fluid. The radiation is strongly polarized. (2) Radiation-dominated outflow. The transfer occu...

  8. Spectroscopic diagnostics of low-pressure inductively coupled Kr plasma using a collisional-radiative model with fully relativistic cross sections

    Science.gov (United States)

    Gangwar, Reetesh K.; Dipti; Srivastava, Rajesh; Stafford, Luc

    2016-06-01

    A collisional-radiative (C-R) model for krypton plasma using fully relativistic distorted-wave cross sections for electron excitations was developed. The model was applied to the characterization of inductively coupled Kr plasma with cylindrical geometry over the pressure regime 1-50 mTorr. Radially averaged emission intensities from transitions of Kr (4p55p  →  4p55s) in the range 500-900 nm were recorded at 17 cm from the planar RF-driven coil, with the plasma operated in the inductive regime (H mode). The measured emission intensities were then fitted by varying the electron density, n e, and electron temperature, T e, in the C-R model. At both low and high pressures, variations of the electron density by over two orders of magnitude had only a minor role on the relative emission intensities. On the other hand, T e values deduced from the comparison between experiment and model decreased from 6.7 to 2.6 eV as pressure increased from 1 to 50 mTorr. These results are found to be in good agreement with the effective electron temperature determined from Langmuir probe measurements and the predictions of a model based on the particle balance equation of charged particles.

  9. Diffraction radiation from relativistic heavy ions

    Science.gov (United States)

    Potylitsyna, N. A.

    2001-01-01

    In recent years, the relativistic heavy ion beams at new accelerator facilities are allowed to obtain some new interesting results (see, for instance, Datz et al., Phys. Rev. Lett. 79 (18) (1997) 3355; Ladyrin et al., Nucl. Instr. and Meth. A 404 (1998) 129). The problem of non-destructive heavy ion beam diagnostics at these accelerators is highly pressing. The authors of the papers (Rule et al., Proceedings of the Seventh Beam Instrumentation Workshop, Argonne IL, AIP Conference Proceedings, Vol. 390, NY, 1997; Castellano, Nucl. Instr. and Meth. A 394 (1997) 275) suggested to use diffraction radiation (DR) appearing when a charge moves close to a conducting surface (Bolotovskii and Voskresenskii, Sov. Phys. Usp. 9 (1966) 73) for non-destructive electron beam diagnostics. The DR characteristics are defined by both Lorentz-factor and the particle charge, and do not depend on its mass. The estimation of feasibility of using DR for relativistic ion beam diagnostics is undoubtedly interesting.

  10. Helical relativistic electron beam and THz radiation

    CERN Document Server

    Son, S

    2011-01-01

    A THz laser generation utilizing a helical relativistic electron beam propagating through a strong magnetic field is discussed. The initial amplification rate in this scheme is much stronger than that in the conventional free electron laser. A magnetic field of the order of Tesla can yield a radiation in the range of 0.5 to 3 THz, corresponding to the total energy of mJ and the duration of tens of pico-second, or the temporal power of the order of GW.

  11. Radiation reaction in a system of relativistic gravitating particles

    Science.gov (United States)

    Galtsov, D. V.

    A Lorentz-covariant approach is developed to the description of electromagnetic and gravitational radiation in general relativity. A model of a relativistic system of gravitating point particles is constructed in which energy losses can be interpreted in terms of radiation-reaction forces. These forces are applied not only to the point particles but also to fields generated by these particles in the near zone. It is concluded that radiation friction in a system of relativistic gravitating particles is collective in character.

  12. Similarity solutions for radiation in time-dependent relativistic flows

    CERN Document Server

    Lucy, L B

    2004-01-01

    Exact analytic solutions are derived for radiation in time-dependent relativistic flows. The flows are spherically-symmetric homologous explosions or implosions of matter with a grey extinction coefficient. The solutions are suitable for testing numerical transfer codes, and this is illustrated for a fully relativistic Monte Carlo code.

  13. Intense terahertz radiation from relativistic laser-plasma interactions

    Science.gov (United States)

    Liao, G. Q.; Li, Y. T.; Li, C.; Liu, H.; Zhang, Y. H.; Jiang, W. M.; Yuan, X. H.; Nilsen, J.; Ozaki, T.; Wang, W. M.; Sheng, Z. M.; Neely, D.; McKenna, P.; Zhang, J.

    2017-01-01

    The development of tabletop intense terahertz (THz) radiation sources is extremely important for THz science and applications. This paper presents our measurements of intense THz radiation from relativistic laser-plasma interactions under different experimental conditions. Several THz generation mechanisms have been proposed and investigated, including coherent transition radiation (CTR) emitted by fast electrons from the target rear surface, transient current radiation at the front of the target, and mode conversion from electron plasma waves (EPWs) to THz waves. The results indicate that relativistic laser plasma is a promising driver of intense THz radiation sources.

  14. A relativistic correlationless kinetic equation with radiation reaction fully incorporated

    Science.gov (United States)

    Lai, H. M.

    1984-06-01

    The Landau-Lifshitz expression for the Lorentz-Dirac equation is used to derive a relativistic correlationless kinetic equation for a system of electrons with radiation reaction fully incorporated. Various situations and possible applications are discussed.

  15. Radiation pressure in SFA theory: retardation and recoil corrections

    CERN Document Server

    Krajewska, K

    2015-01-01

    Radiation pressure effects in ionization by short linearly-polarized laser pulses are investigated in the framework of strong-field approximation, in both nonrelativistic and relativistic formulations. Differences between both approaches are discussed, and retardation and recoil corrections are defined. It is demonstrated how these corrections can be incorporated into the nonrelativistic approach, leading to the so-called quasi-relativistic formulation. These three approaches are further applied to the analysis of signatures of radiation pressure in energy-angular distributions of photoelectrons. It is demonstrated that, for Ti:Sapphire laser pulses of intensities up to $10^{16}\\mathrm{W/cm}^2$, predictions of the quasi-relativistic formulation agree well with those of the full relativistic one, and that the recoil corrections contribute predominantly to the radiation pressure effects.

  16. Emission of gravitational radiation from ultra-relativistic sources

    CERN Document Server

    Segalis, E B; Segalis, Ehud B.; Ori, Amos

    2001-01-01

    Recent observations suggest that blobs of matter are ejected with ultra-relativistic speeds in various astrophysical phenomena such as supernova explosions, quasars, and microquasars. In this paper we analyze the gravitational radiation emitted when such an ultra-relativistic blob is ejected from a massive object. We express the gravitational wave by the metric perturbation in the transverse-traceless gauge, and calculate its amplitude and angular dependence. We find that in the ultra-relativistic limit the gravitational wave has a wide angular distribution, like $1+\\cos\\theta$. The typical burst's frequency is Doppler shifted, with the blue-shift factor being strongly beamed in the forward direction. As a consequence, the energy flux carried by the gravitational radiation is beamed. In the second part of the paper we estimate the anticipated detection rate of such bursts by a gravitational-wave detector, for blobs ejected in supernova explosions. Dar and De Rujula recently proposed that ultra-relativistic bl...

  17. Radiation reaction in a system of relativistic gravitating particles

    Energy Technology Data Exchange (ETDEWEB)

    Galtsov, D.V.

    1983-01-01

    A Lorentz-covariant approach is developed to the description of electromagnetic and gravitational radiation in general relativity. A model of a relativistic system of gravitating point particles is constructed in which energy losses can be interpreted in terms of radiation-reaction forces. These forces are applied not only to the point particles but also to fields generated by these particles in the near zone. It is concluded that radiation friction in a system of relativistic gravitating particles is collective in character. 16 references.

  18. Beaming of particles and synchrotron radiation in relativistic magnetic reconnection

    CERN Document Server

    Kagan, Daniel; Piran, Tsvi

    2016-01-01

    Relativistic reconnection has been invoked as a mechanism for particle acceleration in numerous astrophysical systems. According to idealised analytical models reconnection produces a bulk relativistic outflow emerging from the reconnection sites (X-points). The resulting radiation is therefore highly beamed. Using two-dimensional particle-in-cell (PIC) simulations, we investigate particle and radiation beaming, finding a very different picture. Instead of having a relativistic average bulk motion with isotropic electron velocity distribution in its rest frame, we find that the bulk motion of particles in X-points is similar to their Lorentz factor gamma, and the particles are beamed within about 5/gamma. On the way from the X-point to the magnetic islands, particles turn in the magnetic field, forming a fan confined to the current sheet. Once they reach the islands they isotropise after completing a full Larmor gyration and their radiation is not strongly beamed anymore. The radiation pattern at a given freq...

  19. Radiative transitions in mesons in a non relativistic quark model

    OpenAIRE

    Bonnaz, R.; Silvestre-Brac, B.; Gignoux, C.

    2001-01-01

    In the framework of the non relativistic quark model, an exhaustive study of radiative transitions in mesons is performed. The emphasis is put on several points. Some traditional approximations (long wave length limit, non relativistic phase space, dipole approximation for E1 transitions, gaussian wave functions) are analyzed in detail and their effects commented. A complete treatment using three different types of realistic quark-antiquark potential is made. The overall agreement with experi...

  20. Radiative transitions in mesons in a non relativistic quark model

    CERN Document Server

    Bonnaz, R; Gignoux, C

    2002-01-01

    In the framework of the non relativistic quark model, an exhaustive study of radiative transitions in mesons is performed. The emphasis is put on several points. Some traditional approximations (long wave length limit, non relativistic phase space, dipole approximation for E1 transitions, gaussian wave functions) are analyzed in detail and their effects commented. A complete treatment using three different types of realistic quark-antiquark potential is made. The overall agreement with experimental data is quite good, but some improvements are suggested.

  1. Origin of the Negative Pressure for Relativistic Boson Condensate

    Institute of Scientific and Technical Information of China (English)

    ZHANG Yang

    2000-01-01

    We study the physical origin of the negative pressure for quantum scalar fields in inflationary models. The vacuum state and other quantum coherent states are explicitly constructed for the charged and uncharged relativistic boson condensates, in which the pressure takes negative values.

  2. Single electron detection and spectroscopy via relativistic cyclotron radiation

    CERN Document Server

    Asner, D M; de Viveiros, L; Doe, P J; Fernandes, J L; Fertl, M; Finn, E C; Formaggio, J A; Furse, D; Jones, A M; Kofron, J N; LaRoque, B H; Leber, M; McBride, E L; Miller, M L; Mohanmurthy, P; Monreal, B; Oblath, N S; Robertson, R G H; Rosenberg, L J; Rybka, G; Rysewyk, D; Sternberg, M G; Tedeschi, J R; Thummler, T; VanDevender, B A; Woods, N L

    2014-01-01

    It has been understood since 1897 that accelerating charges must emit electromagnetic radiation. Cyclotron radiation, the particular form of radiation emitted by an electron orbiting in a magnetic field, was first derived in 1904. Despite the simplicity of this concept, and the enormous utility of electron spectroscopy in nuclear and particle physics, single-electron cyclotron radiation has never been observed directly. Here we demonstrate single-electron detection in a novel radiofrequency spec- trometer. We observe the cyclotron radiation emitted by individual magnetically-trapped electrons that are produced with mildly-relativistic energies by a gaseous radioactive source. The relativistic shift in the cyclotron frequency permits a precise electron energy measurement. Precise beta elec- tron spectroscopy from gaseous radiation sources is a key technique in modern efforts to measure the neutrino mass via the tritium decay endpoint, and this work demonstrates a fundamentally new approach to precision beta sp...

  3. Single-electron detection and spectroscopy via relativistic cyclotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Asner, David M.; Bradley, Rich; De Viveiros Souza Filho, Luiz A.; Doe, Peter J.; Fernandes, Justin L.; Fertl, M.; Finn, Erin C.; Formaggio, Joseph; Furse, Daniel L.; Jones, Anthony M.; Kofron, Jared N.; LaRoque, Benjamin; Leber, Michelle; MCBride, Lisa; Miller, M. L.; Mohanmurthy, Prajwal T.; Monreal, Ben; Oblath, Noah S.; Robertson, R. G. H.; Rosenberg, Leslie; Rybka, Gray; Rysewyk, Devyn M.; Sternberg, Michael G.; Tedeschi, Jonathan R.; Thummler, Thomas; VanDevender, Brent A.; Woods, N. L.

    2015-04-01

    It has been understood since 1897 that accelerating charges should emit electromagnetic radiation. Cyclotron radiation, the particular form of radiation emitted by an electron orbiting in a magnetic field, was first derived in 1904. Despite the simplicity of this concept, and the enormous utility of electron spectroscopy in nuclear and particle physics, single-electron cyclotron radiation has never been observed directly. Here we demonstrate single-electron detection in a novel radiofrequency spectrometer. We observe the cyclotron radiation emitted by individual electrons that are produced with mildly-relativistic energies by a gaseous radioactive source and are magnetically trapped. The relativistic shift in the cyclotron frequency permits a precise electron energy measurement. Precise beta electron spectroscopy from gaseous radiation sources is a key technique in modern efforts to measure the neutrino mass via the tritium decay endpoint, and this work is a proof-of-concept for future neutrino mass experiments using this technique.

  4. PIC Simulation of Relativistic Electromagnetic Plasma Expansion with Radiation Damping

    Science.gov (United States)

    Noguchi, Koichi; Liang, Edison; Wilks, Scott

    2004-11-01

    One of the unsolved problems in astrophysics is the acceleration of nonthermal high-energy particles. Nonthermal radiation is observed from pulsars, blazers, gamma-ray bursts and black holes. Recently, a new mechanism of relativistic nonthermal particle acceleration, called the Diamagnetic Relativistic Pulse Accelerator(DRPA), discovered using multi-dimensional Particle-in-Cell(PIC) simulations. When a plasma-loaded electromagnetic pulse expands relativistically, the self-induced drift current creates ponderomotive trap, which drags only the fast particles in the trap and leave slow ones behind. Here we study the effect of radiation on an electron-positron plasma accelerated by the DRPA, by introducing the radiation force in our 2D PIC code. In the radiation case, particles are accelerated by the EM pulse but decelerated by the radiation reaction simultaneously, whereas particles are accelerated indefinitely in the non-radiation case. We find that even with the radiation dumping the DRPA mechanism remains robust and particles are accelerated to over γ>100. After the simulation reaches the quasi-equilibrium state, kinetic energy becomes constant, and field energy is converted to radiation using particles as the transfer agent. We will also produce sample light waves of the radiation output.

  5. Semi-implicit scheme for treating radiation under M1 closure in general relativistic conservative fluid dynamics codes

    CERN Document Server

    Sdowski, Aleksander; Tchekhovskoy, Alexander; Zhu, Yucong

    2012-01-01

    A numerical scheme is described for including radiation in multi-dimensional general-relativistic conservative fluid dynamics codes. In this method, a covariant form of the M1 closure scheme is used to close the radiation moments, and the radiative source terms are treated semi-implicitly in order to handle both optically thin and optically thick regimes. The scheme has been implemented in a conservative general relativistic radiation hydrodynamics code KORAL. The robustness of the code is demonstrated on a number of test problems, including radiative relativistic shock tubes, static radiation pressure supported atmosphere, shadows, beams of light in curved spacetime, and radiative Bondi accretion. The advantages of M1 closure relative to other approaches such as Eddington closure and flux-limited diffusion are discussed, and its limitations are also highlighted.

  6. Synchrotron radiation of self-collimating relativistic MHD jets

    CERN Document Server

    Porth, Oliver; Meliani, Zakaria; Vaidya, Bhargav

    2011-01-01

    The goal of this paper is to derive signatures of synchrotron radiation from state-of-the-art simulation models of collimating relativistic magnetohydrodynamic (MHD) jets featuring a large-scale helical magnetic field. We perform axisymmetric special relativistic MHD simulations of the jet acceleration region using the PLUTO code. The computational domain extends from the slow magnetosonic launching surface of the disk up to 6000^2 Schwarzschild radii allowing to reach highly relativistic Lorentz factors. The Poynting dominated disk wind develops into a jet with Lorentz factors of 8 and is collimated to 1 degree. In addition to the disk jet, we evolve a thermally driven spine jet, emanating from a hypothetical black hole corona. Solving the linearly polarized synchrotron radiation transport within the jet, we derive VLBI radio and (sub-) mm diagnostics such as core shift, polarization structure, intensity maps, spectra and Faraday rotation measure (RM), directly from the Stokes parameters. We also investigate...

  7. Formation of relativistic jets. Magnetohydrodynamics and synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Porth, Oliver Joachim Georg

    2011-11-09

    In this thesis, the formation of relativistic jets is investigated by means of special relativistic magnetohydrodynamic simulations and synchrotron radiative transfer. Our results show that the magnetohydrodynamic jet self-collimation paradigm can also be applied to the relativistic case. In the first part, jets launched from rotating hot accretion disk coronae are explored, leading to well collimated, but only mildly relativistic flows. Beyond the light-cylinder, the electric charge separation force balances the classical trans-field Lorentz force almost entirely, resulting in a decreased efficiency of acceleration and collimation in comparison to non-relativistic disk winds. In the second part, we examine Poynting dominated flows of various electric current distributions. By following the outflow for over 3000 Schwarzschild radii, highly relativistic jets of Lorentz factor Γ>or similar 8 and half-opening angles below 1 are obtained, providing dynamical models for the parsec scale jets of active galactic nuclei. Applying the magnetohydrodynamic structure of the quasi-stationary simulation models, we solve the relativistically beamed synchrotron radiation transport. This yields synthetic radiation maps and polarization patterns that can be used to confront high resolution radio and (sub-) mm observations of nearby active galactic nuclei. Relativistic motion together with the helical magnetic fields of the jet formation site imprint a clear signature on the observed polarization and Faraday rotation. In particular, asymmetries in the polarization direction across the jet can disclose the handedness of the magnetic helix and thus the spin direction of the central engine. Finally, we show first results from fully three-dimensional, high resolution adaptive mesh refinement simulations of jet formation from a rotating magnetosphere and examine the jet stability. Relativistic field-line rotation leads to an electric charge separation force that opposes the magnetic

  8. Microscopic Processes On Radiation from Accelerated Particles in Relativistic Jets

    Science.gov (United States)

    Nishikawa, K.-I.; Hardee, P. E.; Mizuno, Y.; Medvedev, M.; Zhang, B.; Sol, H.; Niemiec, J.; Pohl, M.; Nordlund, A.; Fredriksen, J.; hide

    2009-01-01

    Nonthermal radiation observed from astrophysical systems containing relativistic jets and shocks, e.g., gamma-ray bursts (GRBs), active galactic nuclei (AGNs), and Galactic microquasar systems usually have power-law emission spectra. Recent PIC simulations of relativistic electron-ion (electro-positron) jets injected into a stationary medium show that particle acceleration occurs within the downstream jet. In the collisionless relativistic shock particle acceleration is due to plasma waves and their associated instabilities (e.g., the Buneman instability, other two-streaming instability, and the Weibel (filamentation) instability) created in the shocks are responsible for particle (electron, positron, and ion) acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields. These magnetic fields contribute to the electron's transverse deflection behind the jet head. The jitter'' radiation from deflected electrons has different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants.

  9. Coherent radiation of relativistic electrons in wire metamaterial

    Science.gov (United States)

    Soboleva, V.; Naumenko, G.; Bleko, V.

    2016-07-01

    We present in this work the experimental investigation of the interaction of relativistic electron field with wire metamaterial. The measurements of the spectral-angular characteristics of coherent radiation were done in millimeter wavelength region in far-field zone at the relativistic electron beam with energy of 6 MeV. Used target represent the right triangular prism that consist of periodic placed copper wires. We showed that bunched electron beam passing near wire metamaterial prism generates coherent Cherenkov radiation. Spectral angular characteristics of radiation from the wire target were compared with the characteristics of Cherenkov radiation generated in similar experimental conditions in a dielectric target (Teflon prism) that has the same form and sizes.

  10. Relativistic Radiation Magnetohydrodynamics in Dynamical Spacetimes: Numerical Methods and Tests

    OpenAIRE

    2008-01-01

    Many systems of current interest in relativistic astrophysics require a knowledge of radiative transfer in a magnetized gas flowing in a strongly-curved, dynamical spacetime. Such systems include coalescing compact binaries containing neutron stars or white dwarfs, disks around merging black holes, core collapse supernovae, collapsars, and gamma-ray burst sources. To model these phenomena, all of which involve general relativity, radiation (photon and/or neutrino), and magnetohydrodynamics, w...

  11. Relativistic Cherenkov radiation in a magneto-dielectric media

    Directory of Open Access Journals (Sweden)

    2016-09-01

    Full Text Available In this paper, relativistic Cherenkov radiation was studied in a 3-D magneto-dielectric medium. Electric permittivity and magnetic permeability of the medium as functions of frequency, are assumed to satisfy Kramers- Kronig equations. A new interaction Hamiltonian, which is different from Hamiltonian term in non-relativistic state, was introduced by the quantized vector potential field and particle field operator obtained from the second quantization method. The rate of electron energy dissipation was calculated using Fermi’s golden rule.

  12. Radiation of relativistic electrons in a periodic wire structure

    Energy Technology Data Exchange (ETDEWEB)

    Soboleva, V.V., E-mail: sobolevaveronica@mail.ru; Naumenko, G.A.; Bleko, V.V.

    2015-07-15

    We present in this work the experimental investigation of the interaction of relativistic electron field with periodic wire structures. We used two types of the targets in experiments: flat wire target and sandwich wire target that represent the right triangular prism. The measurements were done in millimeter wavelength region (10–40 mm) on the relativistic electron beam with energy of 6.2 MeV in far-field zone. We showed that bunched electron beam passing near wire metamaterial prism generates coherent Cherenkov radiation. The experiments with flat wire target were carried out in two geometries. In the first geometry the electron beam passed close to the flat wire target surface. In the second case the electron beam passed through the flat wire structure with generation of a coherent backward transition radiation (CBTR). The comparison of the Cherenkov radiation intensity and BTR intensity from the flat wire target and from the flat conductive target (conventional BTR) was made.

  13. Gravitational and dilaton radiation from a relativistic membrane

    CERN Document Server

    Galtsov, D V; Gal'tsov, Dmitri V.; Melkumova, Elena Yu.

    2001-01-01

    Recent scenarios of the TeV-scale brane cosmology suggest a possibility of existence in the early universe of two-dimensional topological defects: relativistic membranes. Like cosmic strings, oscillating membranes could emit gravitational radiation contributing to a stochastic background of gravitational waves. We calculate dilaton and gravitational radiation from a closed toroidal membrane excited along one homology cycle. The spectral-angular distributions of dilaton and gravitational radiation are obtained in a closed form in terms of Bessel's functions. The angular distributions are affected by oscillating factors due to an interference of radiation from different segments of the membrane. The dilaton radiation power is dominated by a few lower harmonics of the basic frequency, while the spectrum of the gravitational radiation contains also a substantial contribution from higher harmonics. The radiative lifetime of the membrane is determined by its tension and depends weakly on the ratio of two radii of t...

  14. Relativistic stellar jets: dynamics and non-thermal radiation

    Directory of Open Access Journals (Sweden)

    Bosch-Ramon Valentí

    2013-12-01

    Full Text Available Relativistic stellar jets, produced in binary systems called microquasars, propagate through media with different spatial scales releasing their energy in the form of work and radiation from radio to gamma rays. There are several medium-interaction scenarios that these jets can face. In particular, in relativistic stellar jets the presence of a star is an unavoidable element whose importance deserves to be studied. In the case of highmass stars, their powerful winds are likely to interact dynamically with the jet, but also low-mass stars in the post-main sequence phase can present dense winds that will act as an obstacle for the jet propagation. In this work, we present a semi-qualitative discussion on the importance of the star for the evolution of relativistic stellar jets.

  15. Radiative cooling of relativistic electron beams

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Zhirong [Stanford Univ., CA (United States)

    1998-05-01

    Modern high-energy particle accelerators and synchrotron light sources demand smaller and smaller beam emittances in order to achieve higher luminosity or better brightness. For light particles such as electrons and positrons, radiation damping is a natural and effective way to obtain low emittance beams. However, the quantum aspect of radiation introduces random noise into the damped beams, yielding equilibrium emittances which depend upon the design of a specific machine. In this dissertation, the author attempts to make a complete analysis of the process of radiation damping and quantum excitation in various accelerator systems, such as bending magnets, focusing channels and laser fields. Because radiation is formed over a finite time and emitted in quanta of discrete energies, he invokes the quantum mechanical approach whenever the quasiclassical picture of radiation is insufficient. He shows that radiation damping in a focusing system is fundamentally different from that in a bending system. Quantum excitation to the transverse dimensions is absent in a straight, continuous focusing channel, and is exponentially suppressed in a focusing-dominated ring. Thus, the transverse normalized emittances in such systems can in principle be damped to the Compton wavelength of the electron, limited only by the Heisenberg uncertainty principle. In addition, he investigates methods of rapid damping such as radiative laser cooling. He proposes a laser-electron storage ring (LESR) where the electron beam in a compact storage ring repetitively interacts with an intense laser pulse stored in an optical resonator. The laser-electron interaction gives rise to rapid cooling of electron beams and can be used to overcome the space charge effects encountered in a medium energy circular machine. Applications to the designs of low emittance damping rings and compact x-ray sources are also explored.

  16. Diffraction phenomena in spontaneous and stimulated radiation by relativistic particles in crystals (Review)

    Energy Technology Data Exchange (ETDEWEB)

    Baryshevsky, V.G. (Inst. of Nuclear Problems, Minsk (Belarus)); Dubovskaya, I.Ya. (Lawrence Berkeley Lab., CA (United States))

    1991-12-01

    This report discusses: the dispersion characteristics of parametric x-ray radiation (PXR) and diffraction radiation of oscillator; cooperative effects in x-radiation by charged particles in crystals; and diffraction x-radiation by relativistic oscillator.

  17. Radiation from relativistic shocks with turbulent magnetic fields

    CERN Document Server

    Nishikawa, K -I; Medvedev, M; Zhang, B; Hardee, P; Nordlund, A; Frederiksen, J; Mizuno, Y; Sol, H; Pohl, M; Hartmann, D H; Oka, M; Fishman, G J

    2009-01-01

    Using our new 3-D relativistic electromagnetic particle (REMP) code parallelized with MPI, we investigated long-term particle acceleration associated with a relativistic electron-positron jet propagating in an unmagnetized ambient electron-positron plasma. The simulations were performed using a much longer simulation system than our previous simulations in order to investigate the full nonlinear stage of the Weibel instability and its particle acceleration mechanism. Cold jet electrons are thermalized and ambient electrons are accelerated in the resulting shocks. Acceleration of ambient electrons leads to a maximum ambient electron density three times larger than the original value. Behind the bow shock in the jet shock strong electromagnetic fields are generated. These fields may lead to time dependent afterglow emission. We calculated radiation from electrons propagating in a uniform parallel magnetic field to verify the technique. We also used the new technique to calculate emission from electrons based on...

  18. Relativistic surfatron process for Landau resonant electrons in radiation belts

    CERN Document Server

    Osmane, A

    2014-01-01

    Recent theoretical studies of the nonlinear wave-particle interactions for relativistic particles have shown that Landau resonant orbits could be efficiently accelerated along the mean background magnetic field for propagation angles $\\theta$ in close proximity to a critical propagation $\\theta_\\textrm{c}$ associated with a Hopf--Hopf bifurcation condition. In this report, we extend previous studies to reach greater modeling capacities for the study of electrons in radiation belts by including longitudinal wave effects and inhomogeneous magnetic fields. We find that even though both effects can limit the surfatron acceleration of electrons in radiation belts, gains in energy of the order of 100 keV, taking place on the order of ten milliseconds, are sufficiently strong for the mechanism to be relevant to radiation belt dynamics.

  19. Spontaneous radiation from relativistic electrons in a tapered undulator

    Science.gov (United States)

    Bosco, P.; Colson, W. B.

    1983-01-01

    The spectrum, angular distribution, polarization, and coherence properties of the radiation emitted by relativistic electrons undulating through a quasiperiodic tapered magnetic field are studied. Tapering the wavelength and/or field strength along the undulator's axis has the effect of spreading the spectral line to higher frequencies; interference over this broader spectral range results in a more complex line shape. The angular dependence, on the other hand, is not affected by the amount of taper. The polarization of the radiation in the forward direction is determined by the transverse polarization of the undulator, but the polarization changes off axis. The radiation patterns predicted here are distinct from those of untapered undulators and their detection is now feasible. They will provide useful diagnostics of electron trajectories and threshold behavior in free-electron-laser oscillators using tapered undulators.

  20. Coherent forward and backward diffraction radiation of relativistic electrons in a dielectric targets

    Science.gov (United States)

    Naumenko, G. A.; Shevelev, M. V.; Popov, Yu A.

    2016-08-01

    During the interaction of the relativistic electrons field with a dielectric target various types of electromagnetic radiation, such as Cerenkov radiation, diffraction radiation, transition radiation can be generated. In this report we present the results of experimental studies of the diffraction radiation generated by relativistic electrons in a dielectric target at the interface vacuum-insulator and insulator-conductor in the millimeter wavelength range. The experimental results show that the component of the diffraction radiation of relativistic electrons at the interface insulator-conductor, for any significant refractive index of insulator, is suppressed. The analysis of the results from different points of view was done.

  1. Relativistic nonlinear electrodynamics the QED vacuum and matter in super-strong radiation fields

    CERN Document Server

    Avetissian, Hamlet K

    2016-01-01

    This revised edition of the author’s classic 2006 text offers a comprehensively updated review of the field of relativistic nonlinear electrodynamics. It explores the interaction of strong and super-strong electromagnetic/laser radiation with the electromagnetic quantum vacuum and diverse types of matter – including free charged particles and antiparticles, acceleration beams, plasma and plasmous media.  The appearance of laser sources of relativistic and ultra-relativistic intensities over the last decade has stimulated investigation of a large class of processes under such super-strong radiation fields. Revisions for this second edition reflect these developments and the book includes new chapters on Bremsstrahlung and nonlinear absorption of superintense radiation in plasmas, the nonlinear interaction of relativistic atoms with intense laser radiation, nonlinear interaction of strong laser radiation with Graphene, and relativistic nonlinear phenomena in solid-plasma targets under supershort laser pul...

  2. Particle acceleration, magnetization and radiation in relativistic shocks

    Science.gov (United States)

    Derishev, Evgeny V.; Piran, Tsvi

    2016-08-01

    The mechanisms of particle acceleration and radiation, as well as magnetic field build-up and decay in relativistic collisionless shocks, are open questions with important implications to various phenomena in high-energy astrophysics. While the Weibel instability is possibly responsible for magnetic field build-up and diffusive shock acceleration is a model for acceleration, both have problems and current particle-in-cell simulations show that particles are accelerated only under special conditions and the magnetic field decays on a very short length-scale. We present here a novel model for the structure and the emission of highly relativistic collisionless shocks. The model takes into account (and is based on) non-local energy and momentum transport across the shock front via emission and absorption of high-energy photons. This leads to a pre-acceleration of the fluid and pre-amplification of the magnetic fields in the upstream region. Both have drastic implications on the shock structure. The model explains the persistence of the shock-generated magnetic field at large distances from the shock front. The dissipation of this magnetic field results in a continuous particle acceleration within the downstream region. A unique feature of the model is the existence of an `attractor', towards which any shock will evolve. The model is applicable to any relativistic shock, but its distinctive features show up only for sufficiently large compactness. We demonstrate that prompt and afterglow gamma-ray bursts' shocks satisfy the relevant conditions, and we compare their observations with the predictions of the model.

  3. Particle acceleration, magnetization and radiation in relativistic shocks

    CERN Document Server

    Derishev, Evgeny V

    2015-01-01

    What are the mechanisms of particle acceleration and radiation, as well as magnetic field build up and decay in relativistic shocks are open questions with important implications to various phenomena in high energy astrophysics. While the Weibel instability is possibly responsible for magnetic field build up and diffusive shock acceleration is a model for acceleration, both have problems and current PIC simulation show that particles are accelerated only under special conditions and the magnetic field decays on a short length scale. We present here a novel model for the structure and the emission of highly relativistic collisionless shocks. The model takes into account (and is based on) non-local energy and momentum transport across the shock front via emission and absorption of high-energy photons. This leads to a pre-acceleration of the fluid and pre-amplificaiton of the magnetic fields in the upstream region. Both have drastic implications on the shock structure. The model explains the persistence of the s...

  4. Radiative leptonic Bc decay in the relativistic independent quark model

    Science.gov (United States)

    Barik, N.; Naimuddin, Sk.; Dash, P. C.; Kar, Susmita

    2008-12-01

    The radiative leptonic decay Bc-→μ-ν¯μγ is analyzed in its leading order in a relativistic independent quark model based on a confining potential in an equally mixed scalar-vector harmonic form. The branching ratio for this decay in the vanishing lepton mass limit is obtained as Br(Bc→μνμγ)=6.83×10-5, which includes the contributions of the internal bremsstrahlung and structure-dependent diagrams at the level of the quark constituents. The contributions of the bremsstrahlung and the structure-dependent diagrams, as well as their additive interference parts, are compared and found to be of the same order of magnitude. Finally, the predicted photon energy spectrum is observed here to be almost symmetrical about the peak value of the photon energy at Ẽγ≃(MBc)/(4), which may be quite accessible experimentally at LHC in near future.

  5. Relativistic and Radiative Energy Shifts for Rydberg States

    CERN Document Server

    Jentschura, U D; Evers, J; Mohr, P J; Keitel, C H

    2004-01-01

    We investigate relativistic and quantum electrodynamic effects for highly-excited bound states in hydrogenlike systems (Rydberg states). In particular, hydrogenic one-loop Bethe logarithms are calculated for all circular states (l = n-1) in the range 20 20 to an accuracy of five to seven decimal digits, within the specified manifolds of atomic states. Within the numerical accuracy, the results constitute unified, general formulas for quantum electrodynamic corrections whose validity is not restricted to a single atomic state. The results are relevant for accurate predictions of radiative shifts of Rydberg states and for the description of the recently investigated laser-dressed Lamb shift, which is observable in a strong coherent-wave light field.

  6. Wave-induced loss of ultra-relativistic electrons in the Van Allen radiation belts

    Science.gov (United States)

    Shprits, Yuri Y.; Drozdov, Alexander Y.; Spasojevic, Maria; Kellerman, Adam C.; Usanova, Maria E.; Engebretson, Mark J.; Agapitov, Oleksiy V.; Zhelavskaya, Irina S.; Raita, Tero J.; Spence, Harlan E.; Baker, Daniel N.; Zhu, Hui; Aseev, Nikita A.

    2016-01-01

    The dipole configuration of the Earth's magnetic field allows for the trapping of highly energetic particles, which form the radiation belts. Although significant advances have been made in understanding the acceleration mechanisms in the radiation belts, the loss processes remain poorly understood. Unique observations on 17 January 2013 provide detailed information throughout the belts on the energy spectrum and pitch angle (angle between the velocity of a particle and the magnetic field) distribution of electrons up to ultra-relativistic energies. Here we show that although relativistic electrons are enhanced, ultra-relativistic electrons become depleted and distributions of particles show very clear telltale signatures of electromagnetic ion cyclotron wave-induced loss. Comparisons between observations and modelling of the evolution of the electron flux and pitch angle show that electromagnetic ion cyclotron waves provide the dominant loss mechanism at ultra-relativistic energies and produce a profound dropout of the ultra-relativistic radiation belt fluxes. PMID:27678050

  7. Wave-induced loss of ultra-relativistic electrons in the Van Allen radiation belts.

    Science.gov (United States)

    Shprits, Yuri Y; Drozdov, Alexander Y; Spasojevic, Maria; Kellerman, Adam C; Usanova, Maria E; Engebretson, Mark J; Agapitov, Oleksiy V; Zhelavskaya, Irina S; Raita, Tero J; Spence, Harlan E; Baker, Daniel N; Zhu, Hui; Aseev, Nikita A

    2016-09-28

    The dipole configuration of the Earth's magnetic field allows for the trapping of highly energetic particles, which form the radiation belts. Although significant advances have been made in understanding the acceleration mechanisms in the radiation belts, the loss processes remain poorly understood. Unique observations on 17 January 2013 provide detailed information throughout the belts on the energy spectrum and pitch angle (angle between the velocity of a particle and the magnetic field) distribution of electrons up to ultra-relativistic energies. Here we show that although relativistic electrons are enhanced, ultra-relativistic electrons become depleted and distributions of particles show very clear telltale signatures of electromagnetic ion cyclotron wave-induced loss. Comparisons between observations and modelling of the evolution of the electron flux and pitch angle show that electromagnetic ion cyclotron waves provide the dominant loss mechanism at ultra-relativistic energies and produce a profound dropout of the ultra-relativistic radiation belt fluxes.

  8. Wave-induced loss of ultra-relativistic electrons in the Van Allen radiation belts

    Science.gov (United States)

    Shprits, Yuri Y.; Drozdov, Alexander Y.; Spasojevic, Maria; Kellerman, Adam C.; Usanova, Maria E.; Engebretson, Mark J.; Agapitov, Oleksiy V.; Zhelavskaya, Irina S.; Raita, Tero J.; Spence, Harlan E.; Baker, Daniel N.; Zhu, Hui; Aseev, Nikita A.

    2016-09-01

    The dipole configuration of the Earth's magnetic field allows for the trapping of highly energetic particles, which form the radiation belts. Although significant advances have been made in understanding the acceleration mechanisms in the radiation belts, the loss processes remain poorly understood. Unique observations on 17 January 2013 provide detailed information throughout the belts on the energy spectrum and pitch angle (angle between the velocity of a particle and the magnetic field) distribution of electrons up to ultra-relativistic energies. Here we show that although relativistic electrons are enhanced, ultra-relativistic electrons become depleted and distributions of particles show very clear telltale signatures of electromagnetic ion cyclotron wave-induced loss. Comparisons between observations and modelling of the evolution of the electron flux and pitch angle show that electromagnetic ion cyclotron waves provide the dominant loss mechanism at ultra-relativistic energies and produce a profound dropout of the ultra-relativistic radiation belt fluxes.

  9. Channeling and electromagnetic radiation of relativistic charged particles in metal-organic frameworks

    Science.gov (United States)

    Zhevago, N. K.; Glebov, V. I.

    2017-06-01

    We have developed the theory of electromagnetic interaction of relativistic charged particles with metal-organic frameworks (MOFs). The electrostatic potential and electron number density distribution in MOFs were calculated using the most accurate data for the atomic form factors. Peculiarities of axial channeling of fast charged particles and various types of electromagnetic radiation from relativistic particles has been discussed.

  10. General Relativistic Radiative Transfer and GeneralRelativistic MHD Simulations of Accretion and Outflows of Black Holes

    Energy Technology Data Exchange (ETDEWEB)

    Fuerst, Steven V.; /KIPAC, Menlo Park; Mizuno, Yosuke; /USRA, Huntsville; Nishikawa, Ken-Ichi; /USRA, Huntsville /Alabama U., Huntsville; Wu, Kinwah; /Mullard Space Sci.

    2007-01-05

    We calculate the emission from relativistic flows in black hole systems using a fully general relativistic radiative transfer formulation, with flow structures obtained by general relativistic magneto-hydrodynamic simulations. We consider thermal free-free emission and thermal synchrotron emission. Bright filament-like features protrude (visually) from the accretion disk surface, which are enhancements of synchrotron emission where the magnetic field roughly aligns with the line-of-sight in the co-moving frame. The features move back and forth as the accretion flow evolves, but their visibility and morphology are robust. We propose that variations and drifts of the features produce certain X-ray quasi-periodic oscillations (QPOs) observed in black-hole X-ray binaries.

  11. Radiation of non-relativistic particle on a conducting sphere and a string of spheres

    CERN Document Server

    Shul'ga, N F; Larikova, E A

    2016-01-01

    The radiation arising under uniform motion of non-relativistic charged particle by (or through) perfectly conducting sphere is considered. The rigorous results are obtained using the method of images known from electrostatics.

  12. General relativistic radiation hydrodynamics of accretion flows - II. Treating stiff source terms and exploring physical limitations

    Science.gov (United States)

    Roedig, C.; Zanotti, O.; Alic, D.

    2012-10-01

    We present the implementation of an implicit-explicit (IMEX) Runge-Kutta numerical scheme for general relativistic (GR) hydrodynamics coupled to an optically thick radiation field in two existing GR-(magneto)hydrodynamics codes. We argue that the necessity of such an improvement arises naturally in most astrophysically relevant regimes where the optical thickness is high as the equations become stiff. By performing several simple 1D tests, we verify the codes' new ability to deal with this stiffness and show consistency. Then, still in one spatial dimension, we compute a luminosity versus accretion rate diagram for the set-up of spherical accretion on to a Schwarzschild black hole and find good agreement with previous work which included more radiation processes than we currently have available. Lastly, we revisit the supersonic Bondi-Hoyle-Lyttleton (BHL) accretion in two dimensions where we can now present simulations of realistic temperatures, down to T ˜ 106 K or less. Here we find that radiation pressure plays an important role, but also that these highly dynamical set-ups push our approximate treatment towards the limit of physical applicability. The main features of radiation hydrodynamics BHL flows manifest as (i) an effective adiabatic index approaching γeff ˜ 4/3; (ii) accretion rates two orders of magnitude lower than without radiation pressure, but still super-Eddington; (iii) luminosity estimates around the Eddington limit, hence with an overall radiative efficiency as small as ηBHL˜10-2; (iv) strong departures from thermal equilibrium in shocked regions; (v) no appearance of the flip-flop instability. We conclude that the current optically thick approximation to the radiation transfer does give physically substantial improvements over the pure hydro also in set-ups departing from equilibrium, and, once accompanied by an optically thin treatment, is likely to provide a fundamental tool for investigating accretion flows in a large variety of

  13. Observation of relativistic runaway electrons by synchrotron radiation in TEXTOR

    Energy Technology Data Exchange (ETDEWEB)

    Jaspers, R.; Lopes Cardozo, N.J.; Schueller, F.C. (FOM-Instituut voor Plasmafysica, Rijnhuizen (Netherlands)); Finken, K.H.; Mank, G.; Rusbueldt, D.; Hoenen, F. (Forschungszentrum Juelich GmbH (Germany). Inst. fuer Plasmaphysik); Boedo, J. (California Univ., Los Angeles, CA (United States). Inst. of Plasma and Fusion Research)

    1992-01-01

    Runaway electrons are a promising tool to study magnetic turbulence in tokamak plasma. Recently, several studies have been devoted to this issue. In these studies hard X-rays, created when runaways hit the limiter, have been analysed. This paper also addresses the question of confinement of runaways. Here, however, not the runaways leaving the plasma are studied, but the runaways in the interior. They were diagnosed by means of the infrared synchrotron radiation which relativistic runaways (> 10 MeV) emit, as shown by Finken et al. With this tool information can be obtained about runaway - confinement times, energy, birth-rate, dimensions of the runaway beam and perhaps about their energy distribution. In this paper, at first a presentation of the measurements is given and the energy and pitch angle is deduced from the data. Then a comparison of the runaway confinement in low density plasmas (n[sub e](0) < 0.8 10[sup 19] m[sup -3]) is made for three different conditions; normal ohmic discharge, discharge with a gas puff and one with neutral beam injection (NBI). (author) 7 refs., 4 figs.

  14. Prompt precipitation and energization of relativistic radiation belt electrons induced by ULF oscillations in the magnetosphere

    Science.gov (United States)

    Brito, T.; Hudson, M. K.; Kress, B. T.

    2011-12-01

    The energization and loss processes for energetic radiation belt electrons are not yet well understood. Global simulations using magnetohydrodynamics (MHD) model fields as drivers provide a valuable tool to study the dynamics of these ~MeV energetic particles. We use satellite measurements of the solar wind as the boundary condition for the Lyon-Fedder-Mobarry (LFM) 3D MHD code calculation of fields which then drive electrons in a 3D test particle simulation that keeps track of attributes like energy, pitch-angle and L-shell. Wave-particle interaction can cause both energization and pitch-angle scattering loss. Ultra Low Frequency (ULF) waves resolved by the MHD code have been correlated with both enhancement in outer zone radiation belt electron flux1 and modulation of precipitation loss to the atmosphere2. The time scales seen in several studies linking ULF waves with radiation belt flux increases are usually several hours to a few days1,3, but few studies consider the effects of ULF waves in the Pc-4 to Pc-5 range on electron loss to the atmosphere on a time scale of tens of minutes. We investigate such rapid loss, using measured solar wind input to MHD-test particle simulations for a CME-shock event that occurred on January 21, 2005. We focus on mechanisms by which ULF waves, seen both in the simulations and observations, especially ones driven by pressure variations in the solar wind, influence the radiation belts. ULF modulation was seen in precipitation detected by the MINIS balloon campaign measurements of atmospheric Bremsstrahlung from MeV electron precipitation4. We propose a coherent energization and precipitation mechanism due to trapped electron drift resonance with azimuthally propagating poloidal mode ULF waves during the CME-shock compression of the magnetosphere4; depending on the drift phase, some electrons are energized by the azimuthal electric field pulse and some are de-energized in the perpendicular direction causing them to pitch

  15. Radiation of Relativistic Particles in a Quasi-Homogeneous Magnetic Field

    CERN Document Server

    Epp, V

    2016-01-01

    Spectrum of radiation of a relativistic particle moving in a nonhomogeneous magnetic field is considered. The spectrum depends on the pitch-angle $\\alpha$ between the velocity direction and a line tangent to the field line. In case of very small $\\alpha$ the particle generates so-called curvature radiation, in an intermediate case undulator-kind radiation is produced. In this paper we present the calculations of radiation properties in a case when both curvature and undulator radiation is observed.

  16. Ultra-low-frequency wave-driven diffusion of radiation belt relativistic electrons.

    Science.gov (United States)

    Su, Zhenpeng; Zhu, Hui; Xiao, Fuliang; Zong, Q-G; Zhou, X-Z; Zheng, Huinan; Wang, Yuming; Wang, Shui; Hao, Y-X; Gao, Zhonglei; He, Zhaoguo; Baker, D N; Spence, H E; Reeves, G D; Blake, J B; Wygant, J R

    2015-12-22

    Van Allen radiation belts are typically two zones of energetic particles encircling the Earth separated by the slot region. How the outer radiation belt electrons are accelerated to relativistic energies remains an unanswered question. Recent studies have presented compelling evidence for the local acceleration by very-low-frequency (VLF) chorus waves. However, there has been a competing theory to the local acceleration, radial diffusion by ultra-low-frequency (ULF) waves, whose importance has not yet been determined definitively. Here we report a unique radiation belt event with intense ULF waves but no detectable VLF chorus waves. Our results demonstrate that the ULF waves moved the inner edge of the outer radiation belt earthward 0.3 Earth radii and enhanced the relativistic electron fluxes by up to one order of magnitude near the slot region within about 10 h, providing strong evidence for the radial diffusion of radiation belt relativistic electrons.

  17. HEROIC: 3D General Relativistic Radiative Postprocessor with Comptonization for Black Hole Accretion Discs

    CERN Document Server

    Narayan, Ramesh; Psaltis, Dimitrios; Sadowski, Aleksander

    2015-01-01

    We describe HEROIC, an upgraded version of the relativistic radiative post-processor code HERO described in a previous paper, but which now Includes Comptonization. HEROIC models Comptonization via the Kompaneets equation, using a quadratic approximation for the source function in the short characteristics radiation solver. It employs a simple form of accelerated lambda iteration to handle regions of high scattering opacity. In addition to solving for the radiation field, HEROIC also solves for the gas temperature by applying the condition of radiative equilibrium. We present benchmarks and tests of the Comptonization module in HEROIC with simple 1D and 3D scattering problems. We also test the ability of the code to handle various relativistic effects using model atmospheres and accretion flows in a black hole space-time. We present two applications of HEROIC to general relativistic MHD simulations of accretion discs. One application is to a thin accretion disc around a black hole. We find that the gas below ...

  18. General relativistic radiation hydrodynamics of accretion flows: II. Treating stiff source terms and exploring physical limitations

    CERN Document Server

    Roedig, Constanze; Alic, Daniela

    2012-01-01

    We present the implementation of an implicit-explicit (IMEX) Runge-Kutta numerical scheme for general relativistic hydrodynamics coupled to an optically thick radiation field in two existing GR-hydrodynamics codes. We argue that the necessity of such an improvement arises naturally in astrophysically relevant regimes where the optical thickness is high as the equations become stiff. By performing several 1D tests we verify the codes' new ability to deal with this stiffness and show consistency. Then, still in 1D, we compute a luminosity versus accretion rate diagram for the setup of spherical accretion onto a Schwarzschild black hole and find good agreement with previous work. Lastly, we revisit the supersonic Bondi Hoyle Lyttleton (BHL) accretion in 2D where we can now present simulations of realistic temperatures, down to T~10^6 K. Here we find that radiation pressure plays an important role, but also that these highly dynamical set-ups push our approximate treatment towards the limit of physical applicabil...

  19. Radiation from the Relativistic Jet a Role of the Shear Boundary Layer

    CERN Document Server

    Stawarz, L

    2002-01-01

    Recent radio and optical large scale jets' observations suggest a two-component jet morphology, consisting of a fast central spine surrounded with a boundary layer with a velocity shear. We study radiation of electrons accelerated at such boundary layers as an option for standard approaches involving internal shocks in jets. The acceleration process in the boundary layer yields in a natural way a two component electron distribution: a power-law continuum with a bump at the energy, where energy gains equal radiation losses, followed by a cut-off. For such distributions we derive the observed spectra of synchrotron and inverse-Compton radiation, including comptonization of synchrotron and CMB photons. Under simple assumptions of energy equipartition between the relativistic particles and the magnetic field, the relativistic jet velocity at large scales and a turbulent character of the shear layer, the considered radiation can substantially contribute to the jet radiative output. In the considered conditions the...

  20. Terahertz radiation emission from plasma beat-wave interactions with a relativistic electron beam

    Science.gov (United States)

    Gupta, D. N.; Kulagin, V. V.; Suk, H.

    2017-10-01

    We present a mechanism to generate terahertz radiation from laser-driven plasma beat-wave interacting with an electron beam. The theory of the energy transfer between the plasma beat-wave and terahertz radiation is elaborated through nonlinear coupling in the presence of a negative-energy relativistic electron beam. An expression of terahertz radiation field is obtained to find out the efficiency of the process. Our results show that the efficiency of terahertz radiation emission is strongly sensitive to the electron beam energy. Emitted field strength of the terahertz radiation is calculated as a function of electron beam velocity.

  1. General Relativistic Radiative Transfer Code in Rotating Black Hole Spacetime: {ARTIST}

    Science.gov (United States)

    Takahashi, Rohta; Umemura, Masayuki

    2016-10-01

    We present a general relativistic radiative transfer code, {ARTIST} (Authentic Radiative Transfer In Space-Time), which is a perfectly causal scheme to pursue the propagation of radiation with absorption and scattering around a Kerr black hole. The code explicitly solves the invariant radiation intensity along null geodesics in the Kerr-Schild coordinates, and therefore properly includes light bending, Doppler boosting, frame dragging, and gravitational redshifts. The notable aspect of {ARTIST} is that it conserves the radiative energy with high accuracy, and is not subject to the numerical diffusion, since the transfer is solved on long characteristics along null geodesics. We first solve the wavefront propagation around a Kerr black hole, which was originally explored by Hanni (1977). This demonstrates repeated wavefront collisions, light bending, and causal propagation of radiation with the speed of light. We show that the decay rate of the total energy of wavefronts near a black hole is determined solely by the black hole spin in late phases, in agreement with analytic expectations. As a result, the {ARTIST} turns out to correctly solve the general relativistic radiation fields until late phases as t ˜ 90M. We also explore the effects of absorption and scattering, and apply this code for a photon wall problem and an orbiting hot spot problem. All the simulations in the present study are performed in the equatorial plane around a Kerr black hole. The {ARTIST} is the first step to realize the general relativistic radiation hydrodynamics.

  2. General relativistic radiative transfer code in rotating black hole space-time: ARTIST

    Science.gov (United States)

    Takahashi, Rohta; Umemura, Masayuki

    2017-02-01

    We present a general relativistic radiative transfer code, ARTIST (Authentic Radiative Transfer In Space-Time), that is a perfectly causal scheme to pursue the propagation of radiation with absorption and scattering around a Kerr black hole. The code explicitly solves the invariant radiation intensity along null geodesics in the Kerr-Schild coordinates, and therefore properly includes light bending, Doppler boosting, frame dragging, and gravitational redshifts. The notable aspect of ARTIST is that it conserves the radiative energy with high accuracy, and is not subject to the numerical diffusion, since the transfer is solved on long characteristics along null geodesics. We first solve the wavefront propagation around a Kerr black hole that was originally explored by Hanni. This demonstrates repeated wavefront collisions, light bending, and causal propagation of radiation with the speed of light. We show that the decay rate of the total energy of wavefronts near a black hole is determined solely by the black hole spin in late phases, in agreement with analytic expectations. As a result, the ARTIST turns out to correctly solve the general relativistic radiation fields until late phases as t ˜ 90 M. We also explore the effects of absorption and scattering, and apply this code for a photon wall problem and an orbiting hotspot problem. All the simulations in this study are performed in the equatorial plane around a Kerr black hole. The ARTIST is the first step to realize the general relativistic radiation hydrodynamics.

  3. Observation of Relativistic Electron Microbursts in Conjunction with Intense Radiation Belt Whistler-Mode Waves

    Science.gov (United States)

    Kersten, K.; Cattell, C. A.; Breneman, A.; Goetz, K.; Kellogg, P. J.; Wygant, J. R.; Wilson, L. B., III; Blake, J. B.; Looper, M. D.; Roth, I.

    2011-01-01

    We present multi-satellite observations of large amplitude radiation belt whistler-mode waves and relativistic electron precipitation. On separate occasions during the Wind petal orbits and STEREO phasing orbits, Wind and STEREO recorded intense whistler-mode waves in the outer nightside equatorial radiation belt with peak-to-peak amplitudes exceeding 300 mV/m. During these intervals of intense wave activity, SAMPEX recorded relativistic electron microbursts in near magnetic conjunction with Wind and STEREO. This evidence of microburst precipitation occurring at the same time and at nearly the same magnetic local time and L-shell with a bursty temporal structure similar to that of the observed large amplitude wave packets suggests a causal connection between the two phenomena. Simulation studies corroborate this idea, showing that nonlinear wave.particle interactions may result in rapid energization and scattering on timescales comparable to those of the impulsive relativistic electron precipitation.

  4. Stellar feedback by radiation pressure and photoionization

    CERN Document Server

    Sales, Laura V; Springel, Volker; Petkova, Margarita

    2013-01-01

    The relative impact of radiation pressure and photoionization feedback from young stars on surrounding gas is studied with hydrodynamic radiative transfer (RT) simulations. The calculations focus on the single-scattering (direct radiation pressure) and optically thick regime, and adopt a moment-based RT-method implemented in the moving-mesh code AREPO. The source luminosity, gas density profile and initial temperature are varied. At typical temperatures and densities of molecular clouds, radiation pressure drives velocities of order ~20 km/s over 1-5 Myr; enough to unbind the smaller clouds. However, these estimates ignore the effects of photoionization that naturally occur concurrently. When radiation pressure and photoionization act together, the latter is substantially more efficient, inducing velocities comparable to the sound speed of the hot ionized medium (10-15 km/s) on timescales far shorter than required for accumulating similar momentum with radiation pressure. This mismatch allows photoionization ...

  5. HERO - A 3D general relativistic radiative post-processor for accretion discs around black holes

    Science.gov (United States)

    Zhu, Yucong; Narayan, Ramesh; Sadowski, Aleksander; Psaltis, Dimitrios

    2015-08-01

    HERO (Hybrid Evaluator for Radiative Objects) is a 3D general relativistic radiative transfer code which has been tailored to the problem of analysing radiation from simulations of relativistic accretion discs around black holes. HERO is designed to be used as a post-processor. Given some fixed fluid structure for the disc (i.e. density and velocity as a function of position from a hydrodynamic or magnetohydrodynamic simulation), the code obtains a self-consistent solution for the radiation field and for the gas temperatures using the condition of radiative equilibrium. The novel aspect of HERO is that it combines two techniques: (1) a short-characteristics (SC) solver that quickly converges to a self-consistent disc temperature and radiation field, with (2) a long-characteristics (LC) solver that provides a more accurate solution for the radiation near the photosphere and in the optically thin regions. By combining these two techniques, we gain both the computational speed of SC and the high accuracy of LC. We present tests of HERO on a range of 1D, 2D, and 3D problems in flat space and show that the results agree well with both analytical and benchmark solutions. We also test the ability of the code to handle relativistic problems in curved space. Finally, we discuss the important topic of ray defects, a major limitation of the SC method, and describe our strategy for minimizing the induced error.

  6. Radiation from relativistic particles in nongeodesic motion in a strong gravitational field

    Energy Technology Data Exchange (ETDEWEB)

    Aliev, A.N. (AN Gruzinskoj SSR, Abastumani. Abastumanskaya Astrofizicheskaya Observatoriya); Galtsov, D.V. (Moskovskij Gosudarstvennyj Univ. (USSR). Kafedra Teoreticheskoj Fiziki)

    1981-10-01

    The scalar and electromagnetic radiation emitted by relativistic particles moving along the stable nongeodesic trajectories in the Kerr gravitational field are described. Two particular models of the nongeodesic motion are developed involving a slightly charged rotating black hole and a rotating black hole immersed in an external magnetic field.

  7. Coherent X-ray radiation excited by a diverging relativistic electron beam in a single crystal

    Energy Technology Data Exchange (ETDEWEB)

    Blazhevich, S. V., E-mail: noskovbupk@mail.ru; Noskov, A. V. [Belgorod State National Research University (Russian Federation)

    2015-05-15

    We develop a dynamic theory of coherent X-rays generated in a single-crystal wafer by a diverging relativistic electron beam. The dependence of the spectral-angular density of coherent X-ray radiation on the angle of divergence is analyzed for the case when the angular spread can be described by the 2D Gaussian distribution. The theory constructed here makes it possible to analyze coherent radiation for an arbitrary angular distribution of electrons in the beam as well.

  8. Explaining the dynamics of the ultra-relativistic third Van Allen radiation belt

    OpenAIRE

    Mann, Ian R.; Ozeke, L. G.; Murphy, Kyle R; Clauderpierre, S. G.; Turner, D. L.; Baker, D. N.; Rae, I. J.; Kale, A; Milling, David; Boyd, A. J.; Spence, H. E.; Reeves, G. D.; H. J. Singer; Dimitrakoudis, S.; Daglis, I. A.

    2016-01-01

    Since the discovery of the Van Allen radiation belts over 50 years ago, an explanation for their complete dynamics has remained elusive. Especially challenging is understanding the recently discovered ultra-relativistic third electron radiation belt. Current theory asserts that loss in the heart of the outer belt, essential to the formation of the third belt, must be controlled by high-frequency plasma wave–particle scattering into the atmosphere, via whistler mode chorus, plasmaspheric hiss,...

  9. On output measurements via radiation pressure

    DEFF Research Database (Denmark)

    Leeman, S.; Healey, A.J.; Forsberg, F.;

    1990-01-01

    It is shown, by simple physical argument, that measurements of intensity with a radiation pressure balance should not agree with those based on calorimetric techniques. The conclusion is ultimately a consequence of the circumstance that radiation pressure measurements relate to wave momentum, whi...

  10. Radiative decays $V\\rightarrow P\\gamma^{*}$ in the instant form of relativistic quantum mechanics

    CERN Document Server

    Krutov, Alexander; Troitsky, Vadim

    2016-01-01

    Calculations of form factor for the radiative decays $V\\rightarrow P\\gamma^{*}$ process are performed in the framework of an instant form of relativistic quantum mechanics. The electromagnetic current operator for this decay is constructed. The transition form factor is obtained in the so called relativistic modified impulse approximation (MIA). The current operator satisfies the conditions of Lorentz-covariance and current conservation in MIA. The results of the calculations are compared with the analogous results in the light-front dynamics and in the model of vector meson dominance

  11. Delta Shocks and Vacuum States in Vanishing Pressure Limits of Solutions to the Relativistic Euler Equations

    Institute of Scientific and Technical Information of China (English)

    Gan YIN; Wancheng SHENG

    2008-01-01

    The Riemann problems for the Euler system of conservation laws of energy and momentum in special relativity as pressure vanishes are considered. The Riemann solutions for the pressureless relativistic Euler equations are obtained constructively. There are two kinds of solutions, the one involves delta shock wave and the other involves vacuum. The authors prove that these two kinds of solutions are the limits of the solutions as pressure vanishes in the Euler system of conservation laws of energy and momentum in special relativity.

  12. A scheme for radiation pressure and photon diffusion with the M1 closure in RAMSES-RT

    OpenAIRE

    Rosdahl, J.; Teyssier, Romain

    2015-01-01

    We describe and test an updated version of radiation-hydrodynamics in the RAMSES code, that includes three new features: (i) radiation pressure on gas, (ii) accurate treatment of radiation diffusion in an unresolved optically thick medium, and (iii) relativistic corrections that account for Doppler effects and work done by the radiation to first order in v/c. We validate the implementation in a series of tests, which include a morphological assessment of the M1 closure for the Eddington tenso...

  13. HEROIC: 3D general relativistic radiative post-processor with comptonization for black hole accretion discs

    Science.gov (United States)

    Narayan, Ramesh; Zhu, Yucong; Psaltis, Dimitrios; Saḑowski, Aleksander

    2016-03-01

    We describe Hybrid Evaluator for Radiative Objects Including Comptonization (HEROIC), an upgraded version of the relativistic radiative post-processor code HERO described in a previous paper, but which now Includes Comptonization. HEROIC models Comptonization via the Kompaneets equation, using a quadratic approximation for the source function in a short characteristics radiation solver. It employs a simple form of accelerated lambda iteration to handle regions of high scattering opacity. In addition to solving for the radiation field, HEROIC also solves for the gas temperature by applying the condition of radiative equilibrium. We present benchmarks and tests of the Comptonization module in HEROIC with simple 1D and 3D scattering problems. We also test the ability of the code to handle various relativistic effects using model atmospheres and accretion flows in a black hole space-time. We present two applications of HEROIC to general relativistic magnetohydrodynamics simulations of accretion discs. One application is to a thin accretion disc around a black hole. We find that the gas below the photosphere in the multidimensional HEROIC solution is nearly isothermal, quite different from previous solutions based on 1D plane parallel atmospheres. The second application is to a geometrically thick radiation-dominated accretion disc accreting at 11 times the Eddington rate. Here, the multidimensional HEROIC solution shows that, for observers who are on axis and look down the polar funnel, the isotropic equivalent luminosity could be more than 10 times the Eddington limit, even though the spectrum might still look thermal and show no signs of relativistic beaming.

  14. Investigating the source of near-relativistic and relativistic electrons in Earth's inner radiation belt

    Science.gov (United States)

    Turner, D. L.; O'Brien, T. P.; Fennell, J. F.; Claudepierre, S. G.; Blake, J. B.; Jaynes, A. N.; Baker, D. N.; Kanekal, S.; Gkioulidou, M.; Henderson, M. G.; Reeves, G. D.

    2017-01-01

    Using observations from NASA's Van Allen Probes, we study the role of sudden particle enhancements at low L shells (SPELLS) as a source of inner radiation belt electrons. SPELLS events are characterized by electron intensity enhancements of approximately an order of magnitude or more in less than 1 day at L belt electrons under quiet/average conditions. During SPELLS events, the evolution of electron distributions reveals an enhancement of phase space density that can exceed 3 orders of magnitude in the slot region and continues into the inner radiation belt, which is evidence that these events are an important - and potentially dominant - source of inner belt electrons. Electron fluxes from September 2012 through February 2016 reveal that SPELLS occur frequently ( 2.5/month at 200 keV), but the number of observed events decreases exponentially with increasing electron energy for ≥100 keV. After SPELLS events, the slot region reforms due to slow energy-dependent decay over several day time scales, consistent with losses due to interactions with plasmaspheric hiss. Combined, these results indicate that the peaked phase space density distributions in the inner electron radiation belt result from an "on/off," geomagnetic-activity-dependent source from higher radial distances.

  15. Influence of ions on relativistic double layers radiation in astrophysical plasmas

    Directory of Open Access Journals (Sweden)

    AM Ahadi

    2009-12-01

    Full Text Available As double layers (DLs are one of the most important acceleration mechanisms in space as well as in laboratory plasmas, they are studied from different points of view. In this paper, the emitted power and energy radiated from charged particles, accelerated in relativistic cosmic DLs are investigated. The effect of the presence of additional ions in a multi-species plasma, as a real example of astrophysical plasma, is also investigated. Considering the acceleration role of DLs, radiations from accelerated charged particles could be seen as a loss mechanism. These radiations are influenced directly by the additional ion species as well as their relative densities.

  16. Numerical Treatment of Anisotropic Radiation Field Coupling with the Relativistic Resistive Magnetofluids

    CERN Document Server

    Takahashi, Hiroyuki R

    2013-01-01

    We develop a numerical scheme for solving a fully special relativistic resistive radiation magnetohydrodynamics. Our code guarantees conservations of total mass, momentum and energy. Radiation energy density and radiation flux are consistently updated using the M-1 closure method, which can resolve an anisotropic radiation fields in contrast to the Eddington approximation as well as the flux-limited diffusion approximation. For the resistive part, we adopt a simple form of the Ohm's law. The advection terms are explicitly solved with an approximate Riemann solver, mainly HLL scheme, and HLLC and HLLD schemes for some tests. The source terms, which describe the gas-radiation interaction and the magnetic energy dissipation, are implicitly integrated, relaxing the Courant-Friedrichs-Lewy condition even in optically thick regime or a large magnetic Reynolds number regime. Although we need to invert $4\\times 4$ (for gas-radiation interaction) and $3\\times 3$ (for magnetic energy dissipation) matrices at each grid ...

  17. High power THz source based on coherent radiation of picosecond relativistic electron bunch train

    Institute of Scientific and Technical Information of China (English)

    2011-01-01

    Tunable and compact high power terahertz (THz) radiation based on coherent radiation (CR) of the picosecond relativistic electron bunch train is under development at the Tsinghua accelerator lab. Coherent synchronization radiation (CSR) and coherent transition radiation (CTR) are researched based on an S-band compact electron linac, a bending magnet or a thin foil. The bunch train’s form factors, which are the key factor of THz radiation, are analyzed by the PARMELA simulation. The effects of electron bunch trains under different conditions, such as the bunch number, bunch charges, micro-pulses inter-distance, and accelerating gradient of the gun are investigated separately in this paper. The optimal radiated THz power and spectra should take these factors as a whole into account.

  18. On coherent radiation by relativistic electrons in ultrathin crystals

    Energy Technology Data Exchange (ETDEWEB)

    Shul' ga, N.F., E-mail: shulga@kipt.kharkov.ua [National Science Center “Kharkov Institute of Physics and Technology”, 1, Akademicheskaya str., Kharkov 61108 (Ukraine); Karazin Kharkov National University, 31, Kurchatov ave., Kharkov 61108 (Ukraine); Shul' ga, S.N. [National Science Center “Kharkov Institute of Physics and Technology”, 1, Akademicheskaya str., Kharkov 61108 (Ukraine); Karazin Kharkov National University, 31, Kurchatov ave., Kharkov 61108 (Ukraine)

    2014-08-22

    A quantitative theory of the radiation process by ultrarelativistic electrons in ultrathin crystals is proposed. The theory is based upon the factorization theorem of the radiation cross-section and upon the description of the scattering process on the basis of the eikonal approximation of quantum electrodynamics. The conditions are obtained, under which the effect of radiation suppression in ultrathin crystals must take place. It is shown that these conditions may be fulfilled at the interaction of electrons with the energy accessible on CERN accelerator with ultrathin silicon crystals. Since the last years one can produce such crystals for the experiments in high energy physics. This opens new possibilities in study of interaction of high energy particles with matter.

  19. HERO: A 3D General Relativistic Radiative Postprocessor for Accretion Discs around Black Holes

    CERN Document Server

    Zhu, Yucong; Sadowski, Aleksander; Psaltis, Dimitrios

    2015-01-01

    HERO (Hybrid Evaluator for Radiative Objects) is a 3D general relativistic radiative transfer code which has been tailored to the problem of analyzing radiation from simulations of relativistic accretion discs around black holes. HERO is designed to be used as a postprocessor. Given some fixed fluid structure for the disc (i.e. density and velocity as a function of position from a hydrodynamics or magnetohydrodynamics simulation), the code obtains a self-consistent solution for the radiation field and for the gas temperatures using the condition of radiative equilibrium. The novel aspect of HERO is that it combines two techniques: 1) a short characteristics (SC) solver that quickly converges to a self consistent disc temperature and radiation field, with 2) a long characteristics (LC) solver that provides a more accurate solution for the radiation near the photosphere and in the optically thin regions. By combining these two techniques, we gain both the computational speed of SC and the high accuracy of LC. W...

  20. On the Stability of 4,5 in the Relativistic R3BP with Radiating Secondary

    Indian Academy of Sciences (India)

    Jagadish Singh; Nakone Bello

    2014-12-01

    This paper discusses the motion of a test particle in the neighbourhood of the triangular points 4,5 by considering the less massive primary (secondary) as a source of radiation in the framework of the relativistic restricted three-body problem (R3BP). It is found that the positions and stability of the triangular point are affected by both relativistic and electromagnetic radiation factors. It turns out that both the coordinates of the infinitesimal mass are affected, contrary to the classical where this happens only for one coordinate. A practical application of this model could be the study of dynamical evolution of dust particles in orbits around a binary system with a dark degenerate first primary and a secondary stellar companion.

  1. Cosmology and stellar equilibrium using Newtonian hydrodynamics with general relativistic pressure

    CERN Document Server

    Baqui, P O; Piattella, O F

    2015-01-01

    We revisit the analysis made by Hwang and Noh [JCAP 1310 (2013)] aiming the construction of a Newtonian set of equations incorporating pressure effects typical of General Relativity theory. We perform in an explicit way the deduction of the Hwang-Noh equations, comparing it with similar computations found in the literature. Later, we investigate stellar equilibrium and cosmology, at background and perturbative levels, using the new set of equations. It is shown that, in this context, the predictions for the background evolution of the universe are deeply changed with respect to the full relativistic theory: the acceleration of the universe is achieved with positive pressure. The properties of neutron stars are reproduced qualitatively, but the upper mass is at least one order of magnitude higher than that obtained in General Relativity. However, the perturbed cosmological equations at small scales reproduce those found in the relativistic context. We argue that this last result may open new possibilities for ...

  2. Nonthermal radiation from relativistic electrons accelerated at spherically expanding shocks

    CERN Document Server

    Kang, Hyesung

    2014-01-01

    We study the evolution of the energy spectrum of cosmic-ray electrons accelerated at spherically expanding shocks with low Mach numbers and the ensuing spectral signatures imprinted in radio synchrotron emission. Time-dependent simulations of diffusive shock acceleration (DSA) of electrons in the test-particle limit have been performed for spherical shocks with the parameters relevant for typical shocks in the intracluster medium. The electron and radiation spectra at the shock location can be described properly by the test-particle DSA predictions with the instantaneous shock parameters. However, the volume integrated spectra of both electrons and radiation deviate significantly from the test-particle power-laws, because the shock compression ratio and the flux of injected electrons at the shock gradually decrease as the shock slows down in time. So one needs to be cautious about interpreting observed radio spectra of evolving shocks by simple DSA models in the test-particle regime.

  3. Non-thermal Radiation Processes in Relativistic Outflows from AGN

    Science.gov (United States)

    Lefa, Eva

    2012-11-01

    Non-thermal, leptonic radiation processes have been extensively studied for the interpretation of the observed radiation from jets of Active Galactic Nuclei (AGN). This work addresses the synchrotron and Inverse Compton scattering (ICS) mechanisms, and investigates the potential of a self-consistent, time-dependent approach to currently unsolved problems. Furthermore, it examines how deviations from standard, one-zone models can modify the radiated spectrum. A detailed analysis of the shape of the ICS spectrum is also performed. In the first part a possible interpretation of the hard γ-ray blazar spectra in the framework of leptonic models is investigated. It is demonstrated that hard γ-ray spectra can be generated and maintained in the presence of energy losses, under the basic assumption of a narrow electron energy distribution (EED). Broader spectra can also be modeled if multiple zones contribute to the emission. In such a scheme, hard flaring events, like the one in Mkn 501 in 2009, can be successfully interpreted within a "leading blob" scenario, when one or few zones of emission become dominant. In the second part the shape of the Compton spectrum close to the maximum cutoff is investigated. Analytical approximations for the spectral shape in the cutoff region are derived for various soft photon fields, providing a direct link between the parent EED and the upscattered spectrum. Additionally, a generalization of the beaming pattern for various processes is derived, which accounts for non-stationary, anisotropic and non-homogeneous EEDs. It is shown that anisotropic EEDs may lead to radiated spectra substantially different from the isotropic case. Finally, a self-consistent, non-homogeneous model describing the synchrotron emission from stratified jets is developed. It is found that transverse jet stratification leads to characteristic features in the emitted spectrum different to expectations in homogeneous models.

  4. ``Pheudo-cyclotron'' radiation of non-relativistic particles in small-scale magnetic turbulence

    Science.gov (United States)

    Keenan, Brett; Ford, Alex; Medvedev, Mikhail V.

    2014-03-01

    Plasma turbulence in some astrophysical objects (e.g., weakly magnetized collisionless shocks in GRBs and SN) has small-scale magnetic field fluctuations. We study spectral characteristics of radiation produced by particles moving in such turbulence. It was shown earlier that relativistic particles produce jitter radiation, which spectral characteristics are markedly different from synchrotron radiation. Here we study radiation produced by non-relativistic particles. In the case of a homogeneous fields, such radiation is cyclotron and its spectrum consists of just a single harmonic at the cyclotron frequency. However, in the sub-Larmor-scale turbulence, the radiation spectrum is much reacher and reflects statistical properties of the underlying magnetic field. We present both analytical estimates and results of ab initio numerical simulations. We also show that particle propagation in such turbulence is diffusive and evaluate the diffusion coefficient. We demonstrate that the diffusion coefficient correlates with some spectral parameters. These results can be very valuable for remote diagnostics of laboratory and astrophysical plasmas. Supported by grant DOE grant DE-FG02-07ER54940 and NSF grant AST-1209665.

  5. Demonstration of Coherent Terahertz Transition Radiation from Relativistic Laser-Solid Interactions

    Science.gov (United States)

    Liao, Guo-Qian; Li, Yu-Tong; Zhang, Yi-Hang; Liu, Hao; Ge, Xu-Lei; Yang, Su; Wei, Wen-Qing; Yuan, Xiao-Hui; Deng, Yan-Qing; Zhu, Bao-Jun; Zhang, Zhe; Wang, Wei-Min; Sheng, Zheng-Ming; Chen, Li-Ming; Lu, Xin; Ma, Jing-Long; Wang, Xuan; Zhang, Jie

    2016-05-01

    Coherent transition radiation in the terahertz (THz) region with energies of sub-mJ/pulse has been demonstrated by relativistic laser-driven electron beams crossing the solid-vacuum boundary. Targets including mass-limited foils and layered metal-plastic targets are used to verify the radiation mechanism and characterize the radiation properties. Observations of THz emissions as a function of target parameters agree well with the formation-zone and diffraction model of transition radiation. Particle-in-cell simulations also well reproduce the observed characteristics of THz emissions. The present THz transition radiation enables not only a potential tabletop brilliant THz source, but also a novel noninvasive diagnostic for fast electron generation and transport in laser-plasma interactions.

  6. Investigation of a method to calculate spontaneous radiation spectra from relativistic electrons in undulators

    Institute of Scientific and Technical Information of China (English)

    CHEN Ming-Zhi; HE Jian-Hua

    2009-01-01

    Undulators are key devices to produce brilliant synchrotron radiation at the synchrotron radiation facilities.In this paper we present a numerical computing method,including the computing program that has been developed to calculate the spontaneous radiation emitted from relativistic electrons in undulators by simulating the electrons' trajectory.The effects of electron beam emittance and energy spread have also been taken into account.Comparing with other computing methods available at present,this method has a few advantages with respect to several aspects.It can adopt any measured or arbitrarily simulated 3D magnetic field and arbitrary electron beam pattern for the calculation and it's able to analyze undulators of any type of magnetic structure.It's expected to predict precisely the practical radiation spectrum.The calculation results of a short period in-vacuum undulator and an EllipticaUy Polarized Undulator (EPU) at Shanghai Synchrotron Radiation Facility (SSRF) are presented as examples.

  7. Radiation Reaction Effects in Cascade Scattering of Intense, Tightly Focused Laser Pulses by Relativistic Electrons

    CERN Document Server

    Zhidkov, A; Bulanov, S S; Hosokai, T; Koga, J; Kodama, R

    2013-01-01

    Non-linear cascade scattering of intense, tightly focused laser pulses by relativistic electrons is studied numerically in the classical approximation including the radiation damping for the quantum parameter hwx-ray/E<1 and an arbitrary radiation parameter Kai. The electron energy loss, along with its side scattering by the ponderomotive force, makes the scattering in the vicinity of high laser field nearly impossible at high electron energies. The use of a second, co-propagating laser pulse as a booster is shown to solve this problem.

  8. Gravitational Instability in Radiation Pressure Dominated Backgrounds

    CERN Document Server

    Thompson, Todd A

    2008-01-01

    I consider the physics of gravitational instabilities in the presence of dynamically important radiation pressure and gray radiative diffusion, governed by a constant opacity, kappa. For any non-zero radiation diffusion rate on an optically-thick scale, the medium is unstable unless the classical gas-only isothermal Jeans criterion is satisfied. When diffusion is "slow," although the dynamical Jeans instability is stabilized by radiation pressure on scales smaller than the adiabatic Jeans length, on these same spatial scales the medium is unstable to a diffusive mode. In this regime, neglecting gas pressure, the characteristic timescale for growth is independent of spatial scale and given by (3 kappa c_s^2)/(4 pi G c), where c_s is the adiabatic sound speed. This timescale is that required for a fluid parcel to radiate away its thermal energy content at the Eddington limit, the Kelvin-Helmholz timescale for a radiation pressure supported self-gravitating object. In the limit of "rapid" diffusion, radiation do...

  9. Second order perturbations of a zero-pressure cosmological medium: Proofs of the relativistic-Newtonian correspondence

    OpenAIRE

    Hwang, J.; Noh, H.

    2004-01-01

    The dynamic world model and its linear perturbations were first studied in Einstein's gravity. In the system without pressure the relativistic equations coincide exactly with the later known ones in Newton's gravity. Here we prove that, except for the gravitational wave contribution, even to the second-order perturbations, equations for the relativistic irrotational zero-pressure fluid in a flat Friedmann background coincide exactly with the previously known Newtonian equations. Thus, to the ...

  10. Ultra-relativistic electrons in Jupiter's radiation belts.

    Science.gov (United States)

    Bolton, S J; Janssen, M; Thorne, R; Levin, S; Klein, M; Gulkis, S; Bastian, T; Sault, R; Elachi, C; Hofstadter, M; Bunker, A; Dulk, G; Gudim, E; Hamilton, G; Johnson, W T K; Leblanc, Y; Liepack, O; McLeod, R; Roller, J; Roth, L; West, R

    2002-02-28

    Ground-based observations have shown that Jupiter is a two-component source of microwave radio emission: thermal atmospheric emission and synchrotron emission from energetic electrons spiralling in Jupiter's magnetic field. Later in situ measurements confirmed the existence of Jupiter's high-energy electron-radiation belts, with evidence for electrons at energies up to 20[?]MeV. Although most radiation belt models predict electrons at higher energies, adiabatic diffusion theory can account only for energies up to around 20[?]MeV. Unambiguous evidence for more energetic electrons is lacking. Here we report observations of 13.8[?]GHz synchrotron emission that confirm the presence of electrons with energies up to 50[?]MeV; the data were collected during the Cassini fly-by of Jupiter. These energetic electrons may be repeatedly accelerated through an interaction with plasma waves, which can transfer energy into the electrons. Preliminary comparison of our data with model results suggests that electrons with energies of less than 20[?]MeV are more numerous than previously believed.

  11. Radiation Pressure Acceleration: the factors limiting maximum attainable ion energy

    CERN Document Server

    Bulanov, S S; Schroeder, C B; Bulanov, S V; Esirkepov, T Zh; Kando, M; Pegoraro, F; Leemans, W P

    2016-01-01

    Radiation pressure acceleration (RPA) is a highly efficient mechanism of laser-driven ion acceleration, with with near complete transfer of the laser energy to the ions in the relativistic regime. However, there is a fundamental limit on the maximum attainable ion energy, which is determined by the group velocity of the laser. The tightly focused laser pulses have group velocities smaller than the vacuum light speed, and, since they offer the high intensity needed for the RPA regime, it is plausible that group velocity effects would manifest themselves in the experiments involving tightly focused pulses and thin foils. However, in this case, finite spot size effects are important, and another limiting factor, the transverse expansion of the target, may dominate over the group velocity effect. As the laser pulse diffracts after passing the focus, the target expands accordingly due to the transverse intensity profile of the laser. Due to this expansion, the areal density of the target decreases, making it trans...

  12. GAMMA-RAY BURST DYNAMICS AND AFTERGLOW RADIATION FROM ADAPTIVE MESH REFINEMENT, SPECIAL RELATIVISTIC HYDRODYNAMIC SIMULATIONS

    Energy Technology Data Exchange (ETDEWEB)

    De Colle, Fabio; Ramirez-Ruiz, Enrico [Astronomy and Astrophysics Department, University of California, Santa Cruz, CA 95064 (United States); Granot, Jonathan [Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel); Lopez-Camara, Diego, E-mail: fabio@ucolick.org [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, Ap. 70-543, 04510 D.F. (Mexico)

    2012-02-20

    We report on the development of Mezcal-SRHD, a new adaptive mesh refinement, special relativistic hydrodynamics (SRHD) code, developed with the aim of studying the highly relativistic flows in gamma-ray burst sources. The SRHD equations are solved using finite-volume conservative solvers, with second-order interpolation in space and time. The correct implementation of the algorithms is verified by one-dimensional (1D) and multi-dimensional tests. The code is then applied to study the propagation of 1D spherical impulsive blast waves expanding in a stratified medium with {rho}{proportional_to}r{sup -k}, bridging between the relativistic and Newtonian phases (which are described by the Blandford-McKee and Sedov-Taylor self-similar solutions, respectively), as well as to a two-dimensional (2D) cylindrically symmetric impulsive jet propagating in a constant density medium. It is shown that the deceleration to nonrelativistic speeds in one dimension occurs on scales significantly larger than the Sedov length. This transition is further delayed with respect to the Sedov length as the degree of stratification of the ambient medium is increased. This result, together with the scaling of position, Lorentz factor, and the shock velocity as a function of time and shock radius, is explained here using a simple analytical model based on energy conservation. The method used for calculating the afterglow radiation by post-processing the results of the simulations is described in detail. The light curves computed using the results of 1D numerical simulations during the relativistic stage correctly reproduce those calculated assuming the self-similar Blandford-McKee solution for the evolution of the flow. The jet dynamics from our 2D simulations and the resulting afterglow light curves, including the jet break, are in good agreement with those presented in previous works. Finally, we show how the details of the dynamics critically depend on properly resolving the structure of the

  13. Gamma-Ray Burst Dynamics and Afterglow Radiation from Adaptive Mesh Refinement, Special Relativistic Hydrodynamic Simulations

    Science.gov (United States)

    De Colle, Fabio; Granot, Jonathan; López-Cámara, Diego; Ramirez-Ruiz, Enrico

    2012-02-01

    We report on the development of Mezcal-SRHD, a new adaptive mesh refinement, special relativistic hydrodynamics (SRHD) code, developed with the aim of studying the highly relativistic flows in gamma-ray burst sources. The SRHD equations are solved using finite-volume conservative solvers, with second-order interpolation in space and time. The correct implementation of the algorithms is verified by one-dimensional (1D) and multi-dimensional tests. The code is then applied to study the propagation of 1D spherical impulsive blast waves expanding in a stratified medium with ρvpropr -k , bridging between the relativistic and Newtonian phases (which are described by the Blandford-McKee and Sedov-Taylor self-similar solutions, respectively), as well as to a two-dimensional (2D) cylindrically symmetric impulsive jet propagating in a constant density medium. It is shown that the deceleration to nonrelativistic speeds in one dimension occurs on scales significantly larger than the Sedov length. This transition is further delayed with respect to the Sedov length as the degree of stratification of the ambient medium is increased. This result, together with the scaling of position, Lorentz factor, and the shock velocity as a function of time and shock radius, is explained here using a simple analytical model based on energy conservation. The method used for calculating the afterglow radiation by post-processing the results of the simulations is described in detail. The light curves computed using the results of 1D numerical simulations during the relativistic stage correctly reproduce those calculated assuming the self-similar Blandford-McKee solution for the evolution of the flow. The jet dynamics from our 2D simulations and the resulting afterglow light curves, including the jet break, are in good agreement with those presented in previous works. Finally, we show how the details of the dynamics critically depend on properly resolving the structure of the relativistic flow.

  14. Enhancement of threshold electric field for relativistic runaway electrons due to magnetic fluctuation and synchrotron radiation

    Science.gov (United States)

    Li, Shucai; Wang, Lu; Chen, Zhongyong; Huang, Duwei; Tong, Ruihai

    2016-10-01

    The dynamics of relativistic electrons are analyzed using the relativistic Fokker-Planck equation including deceleration due to synchrotron radiation (SR) and radial diffusion loss caused by magnetic fluctuation (MF). Threshold electric field for avalanche growth is enhanced, and the growth rate is reduced by the combined effect of MF and SR as compared to the case with only SR. The threshold electric field is determined by the time scales balance between momentum evolution and radial diffusion loss induced by MF, and increased with level of MF. More importantly, the hysteresis behavior of runaway pointed out by does not exist anymore. This is because the ``seed electrons'' cannot be sustained as a result of diffusion loss. This work was supported by NSFC Grant No. 11305071, and the Ministry of Science and technology of China, under Contract Nos. 2013GB112002, 2015GB111002 and 2015GB111001.

  15. Explaining the dynamics of the ultra-relativistic third Van Allen radiation belt

    Science.gov (United States)

    Mann, I. R.; Ozeke, L. G.; Murphy, K. R.; Claudepierre, S. G.; Turner, D. L.; Baker, D. N.; Rae, I. J.; Kale, A.; Milling, D. K.; Boyd, A. J.; Spence, H. E.; Reeves, G. D.; Singer, H. J.; Dimitrakoudis, S.; Daglis, I. A.; Honary, F.

    2016-10-01

    Since the discovery of the Van Allen radiation belts over 50 years ago, an explanation for their complete dynamics has remained elusive. Especially challenging is understanding the recently discovered ultra-relativistic third electron radiation belt. Current theory asserts that loss in the heart of the outer belt, essential to the formation of the third belt, must be controlled by high-frequency plasma wave-particle scattering into the atmosphere, via whistler mode chorus, plasmaspheric hiss, or electromagnetic ion cyclotron waves. However, this has failed to accurately reproduce the third belt. Using a data-driven, time-dependent specification of ultra-low-frequency (ULF) waves we show for the first time how the third radiation belt is established as a simple, elegant consequence of storm-time extremely fast outward ULF wave transport. High-frequency wave-particle scattering loss into the atmosphere is not needed in this case. When rapid ULF wave transport coupled to a dynamic boundary is accurately specified, the sensitive dynamics controlling the enigmatic ultra-relativistic third radiation belt are naturally explained.

  16. Pressure of Degenerate and Relativistic electrons in a superhigh magnetic field

    CERN Document Server

    Gao, Zhi Fu; He, Peng Qiu; Jie, Du Yuan

    2013-01-01

    Based on our previous work, we deduce a general formula for pressure of degenerate and relativistic electrons,Pe, which is suitable for superhigh magnetic fields, discuss the quantization of Landau levels of electrons, and consider the quantum electrodynam-ic(QED) effects on the equations of states (EOSs) for different matter systems. The main conclusions are as follows:Pe is related to the magnetic field B, matter density ?, and electron fraction Ye ; the stronger the magnetic field, the higher the electron pressure becomes; the high electron pressure could be caused by high Fermi energy of electrons in a superhigh magnetic field; compared with a common radio pulsar, a magnetar could be a more compact oblate spheroid-like deformed neutron star due to the anisotropic total pressure; and an increase in the maximum mass of a magnetar is expected because of the positive contribution of the magnetic field energy to the EOS of the star.

  17. Collective effects in the radiation pressure force

    CERN Document Server

    Bachelard, R; Guerin, W; Kaiser, R

    2016-01-01

    We discuss the role of diffuse, Mie and cooperative scattering on the radiation pressure force acting on the center of mass of a cloud of cold atoms. Even though a mean-field Ansatz (the `timed Dicke state'), previously derived from a cooperative scattering approach, has been shown to agree satisfactorily with experiments, diffuse scattering also describes very well most features of the radiation pressure force on large atomic clouds. We compare in detail an incoherent, random walk model for photons and a diffraction approach to the more complete description based on coherently coupled dipoles. We show that a cooperative scattering approach, although it provides a quite complete description of the scattering process, is not necessary to explain the previous experiments on the radiation pressure force.

  18. Time-dependent Multi-group Multidimensional Relativistic Radiative Transfer Code Based On Spherical Harmonic Discrete Ordinate Method

    CERN Document Server

    Tominaga, Nozomu; Blinnikov, Sergei I

    2015-01-01

    We develop a time-dependent multi-group multidimensional relativistic radiative transfer code, which is required to numerically investigate radiation from relativistic fluids involved in, e.g., gamma-ray bursts and active galactic nuclei. The code is based on the spherical harmonic discrete ordinate method (SHDOM) that evaluates a source function including anisotropic scattering in spherical harmonics and implicitly solves the static radiative transfer equation with a ray tracing in discrete ordinates. We implement treatments of time dependence, multi-frequency bins, Lorentz transformation, and elastic Thomson and inelastic Compton scattering to the publicly available SHDOM code. Our code adopts a mixed frame approach; the source function is evaluated in the comoving frame whereas the radiative transfer equation is solved in the laboratory frame. This implementation is validated with various test problems and comparisons with results of a relativistic Monte Carlo code. These validations confirm that the code ...

  19. High-energy emission from non-relativistic radiative shocks: application to gamma-ray novae

    CERN Document Server

    Vurm, Indrek

    2016-01-01

    Multiwavelength radiation from relativistic particles accelerated at shocks in novae and other astrophysical sources carries a wealth of information about the outflow properties and the microphysical processes at work near the shocks. The observation of GeV gamma-rays from novae by Fermi/LAT demonstrates that the shocks in these systems can accelerate particles to energies of at least $\\sim 10$ GeV. The low-energy extension of the same non-thermal particle distribution inevitably gives rise to emission extending into the X-ray band. Above $\\gtrsim 10$ keV this radiation can escape the system without significant absorption/attenuation, and can potentially be detected by NuSTAR. We present theoretical models for hard X-ray and gamma-ray emission from radiative shocks in both leptonic and hadronic scenarios, accounting for the rapid evolution of the downstream properties due to the fast cooling of thermal plasma. Due to strong Coulomb cooling of the mildly relativistic electrons nominally responsible for produci...

  20. Cooling of relativistic electron beams in intense laser pulses: Chirps and radiation

    Energy Technology Data Exchange (ETDEWEB)

    Yoffe, S.R., E-mail: sam.yoffe@strath.ac.uk; Noble, A., E-mail: adam.noble@strath.ac.uk; Macleod, A.J., E-mail: alexander.macleod@strath.ac.uk; Jaroszynski, D.A., E-mail: d.a.jaroszynski@strath.ac.uk

    2016-09-01

    Next-generation high-power laser facilities (such as the Extreme Light Infrastructure) will provide unprecedented field intensities, and will allow us to probe qualitatively new physical regimes for the first time. One of the important fundamental questions which will be addressed is particle dynamics when radiation reaction and quantum effects play a significant role. Classical theories of radiation reaction predict beam cooling in the interaction of a relativistic electron bunch and a high-intensity laser pulse, with final-state properties only dependent on the laser fluence. The observed quantum suppression of this cooling instead exhibits a dependence on the laser intensity directly. This offers the potential for final-state properties to be modified or even controlled by tailoring the intensity profile of the laser pulse. In addition to beam properties, quantum effects will be manifest in the emitted radiation spectra, which could be manipulated for use as radiation sources. We compare predictions made by classical, quasi-classical and stochastic theories of radiation reaction, and investigate the influence of chirped laser pulses on the observed radiation spectra. - Highlights: • Classical theories of radiation reaction predict electron beam cooling in high fields. • Quantum effects lead to a reduction in electron beam cooling. • Quasi-classical model agrees with predictions from a single-emission stochastic model. • Negative frequency chirp found to increase photon emission, but not maximum energy.

  1. High pressure and synchrotron radiation satellite workshop

    Energy Technology Data Exchange (ETDEWEB)

    Bass, J.; Guignot, N.; Morard, G.; Mezouar, M.; Andrault, D.; Bolfan-Casanova, N.; Sturhahn, W.; Daniel, I.; Reynard, B.; Simionovici, A.; Sanchez Valle, C.; Martinez, I.; Kantor, I.; Dubrovinsky, I.; Mccammon, C.; Dubrovinskaia, N.; Kurnosiv, A.; Kuznetsov, A.; Goncharenko, I.; Loubeyre, P.; Desgreniers, S.; Weck, G.; Yoo, C.S.; Iota, V.; Park, J.; Cynn, H.; Gorelli, F.; Toulemonde, P.; Machon, D.; Merlen, A.; San Miguel, A.; Amboage, M.; Aquilanti, G.; Mathon, O.; Pascarelli, S.; Itie, J.P.; Mcmillan, P.F.; Trapananti, A.; Di Cicco, A.; Panfilis, S. de; Filipponi, A.; Kreisel, J.; Bouvier, P.; Dkhil, B.; Chaabane, B.; Rosner, H.; Koudela, D.; Schwarz, U.; Handestein, A.; Hanfland, M.; Opahle, I.; Koepernik, K.; Kuzmin, M.; Mueller, K.H.; Mydosh, J.; Richter, M.; Hejny, C.; Falconi, S.; Lundegaard, L.F.; Mcmahon, M.I; Loa, I.; Syassen, K.; Wang, X.; Roth, H.; Lorenz, T.; Farber Daniel, I.; Antonangeli Daniele, I.; Krisch, M.; Badro, J.; Fiquet, G.; Occelli, F.; Mao, W.L.; Mao, H.K.; Eng, P.; Kao, C.C.; Shu, J.F.; Hemley, R.J.; Tse, J.S.; Yao, Y.; Deen, P.P.; Paolasini, I.; Braithwaite, D.; Kernavanois, N.; Lapertot, G.; Rupprecht, K.; Leupold, O.; Ponkratz, U.; Wortmann, G.; Beraud, A.; Krisch, M.; Farber, D.; Antonangeli, D.; Aracne, C.; Zarestky, J.L.; Mcqueeney, R.; Mathon, O.; Baudelet, F.; Decremps, F.; Itie, J.P.; Nataf, I.; Pascarelli, S.; Polian, A

    2006-07-01

    The workshop is dedicated to recent advances on science at high pressure at third generation synchrotron sources. A variety of experiments using synchrotron radiation techniques including X-ray diffraction, EXAFS (extended X-ray absorption fine structure), inelastic X-ray scattering, Compton scattering and Moessbauer spectroscopy of crystalline, liquid or amorphous samples, are reported. This document gathers the abstracts of the presentations.

  2. Theoretical Study of Ultra-Relativistic Laser Electron Interaction with Radiation Reaction by Quantum Description

    Science.gov (United States)

    Seto, Keita; Nagatomo, Hideo; Koga, James; Mima, Kunioki

    In the near future, the intensity of the ultra-short pulse laser will reach to 1022 W/cm2. When an electron is irradiated by this laser, the electron's behavior is relativistic with significant bremsstrahlung. This radiation from the electron is regarded as the energy loss of electron. Therefore, the electron's motion changes because of the kinetic energy changing. This radiation effect on the charged particle is the self-interaction, called the “radiation reaction” or the “radiation damping”. For this reason, the radiation reaction appears in laser electron interactions with an ultra-short pulse laser whose intensity becomes larger than 1022 W/cm2. In the classical theory, it is described by the Lorentz-Abraham-Dirac (LAD) equation. But, this equation has a mathematical difficulty, which we call the “run-away”. Therefore, there are many methods for avoiding this problem. However, Dirac's viewpoint is brilliant, based on the idea of quantum electrodynamics. We propose a new equation of motion in the quantum theory with radiation reaction in this paper.

  3. Energy Penetration into Arrays of Aligned Nanowires Irradiated with Relativistic Intensities: Scaling to Terabar Pressures

    Energy Technology Data Exchange (ETDEWEB)

    Bargsten, Clayton [Colorado State Univ., Fort Collins, CO (United States); Hollinger, Reed [Colorado State Univ., Fort Collins, CO (United States); Capeluto, Maria Gabriela [Univ. of Buenos Aires (Argentina); Kaymak, Vural [Heinrich Heine Univ., Dusseldorf (Germany); Pukhov, Alexander [Heinrich Heine Univ., Dusseldorf (Germany); Wang, Shoujun [Colorado State Univ., Fort Collins, CO (United States); Rockwood, Alex [Colorado State Univ., Fort Collins, CO (United States); Wang, Yong [Colorado State Univ., Fort Collins, CO (United States); Keiss, David [Colorado State Univ., Fort Collins, CO (United States); Tommasini, Riccardo [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); London, Richard [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Park, Jaebum [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Busquet, Michel [ARTEP Inc., Ellicott City, MD (United States); Klapisch, M [ARTEP Inc., Ellicott City, MD (United States); Shlyaptsev, Vyacheslav N. [Colorado State Univ., Fort Collins, CO (United States); Rocca, Jorge J. [Colorado State Univ., Fort Collins, CO (United States)

    2016-11-11

    Ultra-high-energy-density (UHED) matter, characterized by energy densities > 1 x 108 J cm-3 and pressures greater than a gigabar, is encountered in the center of stars and in inertial confinement fusion capsules driven by the world’s largest lasers. Similar conditions can be obtained with compact, ultra-high contrast, femtosecond lasers focused to relativistic intensities onto targets composed of aligned nanowire arrays. Here we report the measurement of the key physical process in determining the energy density deposited in high aspect ratio nanowire array plasmas: the energy penetration. By monitoring the x-ray emission from buried Co tracer segments in Ni nanowire arrays irradiated at an intensity of 4 x 1019 W cm-2, we demonstrate energy penetration depths of several μm, leading to UHED plasmas of that size. Relativistic 3D particle-in-cell-simulations, validated by these measurements, predict that irradiation of nanostructures at intensities of > 1 x 1022 W cm-2 will lead to a virtually unexplored extreme UHED plasma regime characterized by energy densities in excess of 8 x 1010 J cm-3, equivalent to a pressure of 0.35 Tbar.

  4. Energy penetration into arrays of aligned nanowires irradiated with relativistic intensities: Scaling to terabar pressures

    Science.gov (United States)

    Bargsten, Clayton; Hollinger, Reed; Capeluto, Maria Gabriela; Kaymak, Vural; Pukhov, Alexander; Wang, Shoujun; Rockwood, Alex; Wang, Yong; Keiss, David; Tommasini, Riccardo; London, Richard; Park, Jaebum; Busquet, Michel; Klapisch, Marcel; Shlyaptsev, Vyacheslav N.; Rocca, Jorge J.

    2017-01-01

    Ultrahigh-energy density (UHED) matter, characterized by energy densities >1 × 108 J cm−3 and pressures greater than a gigabar, is encountered in the center of stars and inertial confinement fusion capsules driven by the world’s largest lasers. Similar conditions can be obtained with compact, ultrahigh contrast, femtosecond lasers focused to relativistic intensities onto targets composed of aligned nanowire arrays. We report the measurement of the key physical process in determining the energy density deposited in high-aspect-ratio nanowire array plasmas: the energy penetration. By monitoring the x-ray emission from buried Co tracer segments in Ni nanowire arrays irradiated at an intensity of 4 × 1019 W cm−2, we demonstrate energy penetration depths of several micrometers, leading to UHED plasmas of that size. Relativistic three-dimensional particle-in-cell simulations, validated by these measurements, predict that irradiation of nanostructures at intensities of >1 × 1022 W cm−2 will lead to a virtually unexplored extreme UHED plasma regime characterized by energy densities in excess of 8 × 1010 J cm−3, equivalent to a pressure of 0.35 Tbar. PMID:28097218

  5. Energy penetration into arrays of aligned nanowires irradiated with relativistic intensities: Scaling to terabar pressures.

    Science.gov (United States)

    Bargsten, Clayton; Hollinger, Reed; Capeluto, Maria Gabriela; Kaymak, Vural; Pukhov, Alexander; Wang, Shoujun; Rockwood, Alex; Wang, Yong; Keiss, David; Tommasini, Riccardo; London, Richard; Park, Jaebum; Busquet, Michel; Klapisch, Marcel; Shlyaptsev, Vyacheslav N; Rocca, Jorge J

    2017-01-01

    Ultrahigh-energy density (UHED) matter, characterized by energy densities >1 × 10(8) J cm(-3) and pressures greater than a gigabar, is encountered in the center of stars and inertial confinement fusion capsules driven by the world's largest lasers. Similar conditions can be obtained with compact, ultrahigh contrast, femtosecond lasers focused to relativistic intensities onto targets composed of aligned nanowire arrays. We report the measurement of the key physical process in determining the energy density deposited in high-aspect-ratio nanowire array plasmas: the energy penetration. By monitoring the x-ray emission from buried Co tracer segments in Ni nanowire arrays irradiated at an intensity of 4 × 10(19) W cm(-2), we demonstrate energy penetration depths of several micrometers, leading to UHED plasmas of that size. Relativistic three-dimensional particle-in-cell simulations, validated by these measurements, predict that irradiation of nanostructures at intensities of >1 × 10(22) W cm(-2) will lead to a virtually unexplored extreme UHED plasma regime characterized by energy densities in excess of 8 × 10(10) J cm(-3), equivalent to a pressure of 0.35 Tbar.

  6. Energy Density in Aligned Nanowire Arrays Irradiated with Relativistic Intensities: Path to Terabar Pressure Plasmas

    Science.gov (United States)

    Rocca, J.; Bargsten, C.; Hollinger, R.; Shylaptsev, V.; Wang, S.; Rockwood, A.; Wang, Y.; Keiss, D.; Capeluto, M.; Kaymak, V.; Pukhov, A.; Tommasini, R.; London, R.; Park, J.

    2016-10-01

    Ultra-high-energy-density (UHED) plasmas, characterized by energy densities >1 x 108 J cm-3 and pressures greater than a gigabar are encountered in the center of stars and in inertial confinement fusion capsules driven by the world's largest lasers. Similar conditions can be obtained with compact, ultra-high contrast, femtosecond lasers focused to relativistic intensities onto aligned nanowire array targets. Here we report the measurement of the key physical process in determining the energy density deposited in high aspect ratio nanowire array plasmas: the energy penetration. By monitoring the x-ray emission from buried Co tracer segments in Ni nanowire arrays irradiated at an intensity of 4 x 1019 W cm-2, we demonstrate energy penetration depths of several μm, leading to UHED plasmas of that size. Relativistic 3D particle-in-cell-simulations validated by these measurements predict that irradiation of nanostructures at increased intensity will lead to a virtually unexplored extreme UHED plasma regime characterized by energy densities in excess of 8 x 1010 J cm-3, equivalent to a pressure of 0.35 Tbar. This work was supported by the Fusion Energy Program, Office of Science of the U.S Department of Energy, and by the Defense Threat Reduction Agency.

  7. Viscous boundary layers of radiation-dominated, relativistic jets. I. The two-stream model

    CERN Document Server

    Coughlin, Eric R

    2015-01-01

    Using the relativistic equations of radiation hydrodynamics in the viscous limit, we analyze the boundary layers that develop between radiation-dominated jets and their environments. In this paper we present the solution for the self-similar, 2-D, plane-parallel two-stream problem, wherein the jet and the ambient medium are considered to be separate, interacting fluids, and we compare our results to those of previous authors. (In a companion paper we investigate an alternative scenario, known as the free-streaming jet model.) Consistent with past findings, we show that the boundary layer that develops between the jet and its surroundings creates a region of low-density material. These models may be applicable to sources such as super-Eddington tidal disruption events and long gamma-ray bursts.

  8. On the Question of Interference in Radiation Produced by Relativistic Channeled Particles

    CERN Document Server

    Boldyshev, V F

    2002-01-01

    Two approaches used in the description of the channeling radiation emitted from relativistic positrons are compared with each other. In the first (traditional) case, the probability of the process is proportional to a sum of absolute squares of the amplitudes of the transition between two states with definite transverse energy levels of the positrons traversing single crystals. In the second case, we begin with calculation of the sum of amplitudes for transition between states with different transverse energy levels for corresponding radiation frequency, and then the sum is squared. One must keep in mind that the latter approach can be used only in the case when positrons move in a nearly harmonic planar potential with equidistant transverse energy levels. It is shown that the calculation based on the second approach can give rise to a peak structure in the spectrum when the number of transverse energy levels is much greater than one.

  9. FOREWORD: IX International Symposium on Radiation from Relativistic Electrons in Periodic Structures (RREPS-2011)

    Science.gov (United States)

    Potylitsyn, Alexander; Karataev, Pavel

    2012-05-01

    This volume contains papers presented at the IX International Symposium on Radiation from Relativistic Electrons in Periodic Structures (RREPS'11) which was held at Royal Holloway, University of London on September 12-16, Egham, United Kingdom. The symposium was organized jointly by Royal Holloway, University of London and Tomsk Polytechnic University, Tomsk, Russia. RREPS is a biennial series of symposia founded in September 1993 as an initiative of the Nuclear Physics Institute at Tomsk Polytechnic University. The intention was to strengthen the basic and applied research focused on radiation from relativistic electrons in condensed media, particularly from natural and artificial periodic structures, and to review the research activity in this area. Since then, the symposium has developed into a forum attracting young scientists from different areas of research and from many countries. Previous successful symposia were held at Tomsk, Russia (1993, 1995, 1997, 2003), Lake Baikal, Russia (1999), Lake Aiya, Altai, Russia (2001), Czech Technical University in Prague, Czech Republic (2007) and Zvenigorod, Moscow region, Russia (2009). As an outcome of the symposia the conference proceedings have been published in Nuclear Instruments and Methods in Physics Research, Section B (Vol. 145 No 1-2, October 1998; Vol. 173 No 1-2, January 2001; Vol. 201 No 1 January 2003; Vol. 227 No 1-2, January 2005; Vol. 266 No 17, September 2008) and Journal of Physics: Conference Series (Vol. 236, June 2010). The purpose of the present RREPS'11 symposium was to review the up-to-date situation in the area of electromagnetic radiation generated by relativistic charged particles in condensed media, and to discuss the research strategy for the near future. Nowadays, electromagnetic radiation studies cover electron energies from a few MeV up to hundreds of GeV in many laboratories throughout the world. The goal is to study the physics of the generation of various kinds of radiation and their

  10. Three-dimensional relativistic pair plasma reconnection with radiative feedback in the Crab Nebula

    Energy Technology Data Exchange (ETDEWEB)

    Cerutti, B. [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Werner, G. R.; Uzdensky, D. A. [Center for Integrated Plasma Studies, Physics Department, University of Colorado, UCB 390, Boulder, CO 80309-0390 (United States); Begelman, M. C., E-mail: bcerutti@astro.princeton.edu, E-mail: greg.werner@colorado.edu, E-mail: uzdensky@colorado.edu, E-mail: mitch@jila.colorado.edu [JILA, University of Colorado and National Institute of Standards and Technology, UCB 440, Boulder, CO 80309-0440 (United States)

    2014-02-20

    The discovery of rapid synchrotron gamma-ray flares above 100 MeV from the Crab Nebula has attracted new interest in alternative particle acceleration mechanisms in pulsar wind nebulae. Diffuse shock-acceleration fails to explain the flares because particle acceleration and emission occur during a single or even sub-Larmor timescale. In this regime, the synchrotron energy losses induce a drag force on the particle motion that balances the electric acceleration and prevents the emission of synchrotron radiation above 160 MeV. Previous analytical studies and two-dimensional (2D) particle-in-cell (PIC) simulations indicate that relativistic reconnection is a viable mechanism to circumvent the above difficulties. The reconnection electric field localized at X-points linearly accelerates particles with little radiative energy losses. In this paper, we check whether this mechanism survives in three dimension (3D), using a set of large PIC simulations with radiation reaction force and with a guide field. In agreement with earlier works, we find that the relativistic drift kink instability deforms and then disrupts the layer, resulting in significant plasma heating but few non-thermal particles. A moderate guide field stabilizes the layer and enables particle acceleration. We report that 3D magnetic reconnection can accelerate particles above the standard radiation reaction limit, although the effect is less pronounced than in 2D with no guide field. We confirm that the highest-energy particles form compact bunches within magnetic flux ropes, and a beam tightly confined within the reconnection layer, which could result in the observed Crab flares when, by chance, the beam crosses our line of sight.

  11. Three-dimensional Relativistic Pair Plasma Reconnection with Radiative Feedback in the Crab Nebula

    Science.gov (United States)

    Cerutti, B.; Werner, G. R.; Uzdensky, D. A.; Begelman, M. C.

    2014-02-01

    The discovery of rapid synchrotron gamma-ray flares above 100 MeV from the Crab Nebula has attracted new interest in alternative particle acceleration mechanisms in pulsar wind nebulae. Diffuse shock-acceleration fails to explain the flares because particle acceleration and emission occur during a single or even sub-Larmor timescale. In this regime, the synchrotron energy losses induce a drag force on the particle motion that balances the electric acceleration and prevents the emission of synchrotron radiation above 160 MeV. Previous analytical studies and two-dimensional (2D) particle-in-cell (PIC) simulations indicate that relativistic reconnection is a viable mechanism to circumvent the above difficulties. The reconnection electric field localized at X-points linearly accelerates particles with little radiative energy losses. In this paper, we check whether this mechanism survives in three dimension (3D), using a set of large PIC simulations with radiation reaction force and with a guide field. In agreement with earlier works, we find that the relativistic drift kink instability deforms and then disrupts the layer, resulting in significant plasma heating but few non-thermal particles. A moderate guide field stabilizes the layer and enables particle acceleration. We report that 3D magnetic reconnection can accelerate particles above the standard radiation reaction limit, although the effect is less pronounced than in 2D with no guide field. We confirm that the highest-energy particles form compact bunches within magnetic flux ropes, and a beam tightly confined within the reconnection layer, which could result in the observed Crab flares when, by chance, the beam crosses our line of sight.

  12. A scheme for radiation pressure and photon diffusion with the M1 closure in RAMSES-RT

    Science.gov (United States)

    Rosdahl, J.; Teyssier, R.

    2015-06-01

    We describe and test an updated version of radiation-hydrodynamics in the RAMSES code, that includes three new features: (i) radiation pressure on gas, (ii) accurate treatment of radiation diffusion in an unresolved optically thick medium, and (iii) relativistic corrections that account for Doppler effects and work done by the radiation to first order in v/c. We validate the implementation in a series of tests, which include a morphological assessment of the M1 closure for the Eddington tensor in an astronomically relevant setting, dust absorption in an optically semithick medium, direct pressure on gas from ionizing radiation, convergence of our radiation diffusion scheme towards resolved optical depths, correct diffusion of a radiation flash and a constant luminosity radiation, and finally, an experiment from Davis et al. of the competition between gravity and radiation pressure in a dusty atmosphere, and the formation of radiative Rayleigh-Taylor instabilities. With the new features, RAMSES-RT can be used for state-of-the-art simulations of radiation feedback from first principles, on galactic and cosmological scales, including not only direct radiation pressure from ionizing photons, but also indirect pressure via dust from multiscattered IR photons reprocessed from higher-energy radiation, both in the optically thin and thick limits.

  13. Magnetic Field Generation, Particle Energization and Radiation at Relativistic Shear Boundary Layers

    Science.gov (United States)

    Liang, Edison; Fu, Wen; Spisak, Jake; Boettcher, Markus

    2015-11-01

    Recent large scale Particle-in-Cell (PIC) simulations have demonstrated that in unmagnetized relativistic shear flows, strong transverse d.c. magnetic fields are generated and sustained by ion-dominated currents on the opposite sides of the shear interface. Instead of dissipating the shear flow free energy via turbulence formation and mixing as it is usually found in MHD simulations, the kinetic results show that the relativistic boundary layer stabilizes itself via the formation of a robust vacuum gap supported by a strong magnetic field, which effectively separates the opposing shear flows, as in a maglev train. Our new PIC simulations have extended the runs to many tens of light crossing times of the simulation box. Both the vacuum gap and supporting magnetic field remain intact. The electrons are energized to reach energy equipartition with the ions, with 10% of the total energy in electromagnetic fields. The dominant radiation mechanism is similar to that of a wiggler, due to oscillating electron orbits around the boundary layer.

  14. The Earth's Electron Radiation Belts Modeling: from the Source Population to Relativistic Energies

    Science.gov (United States)

    Aseev, N.; Shprits, Y. Y.; Kellerman, A. C.; Drozdov, A.; Zhu, H.

    2016-12-01

    The dynamics of the Earth's electron radiation belts is characterized by intricate interactions of different particle populations. During the main phase of a geomagnetic storm, electron source (tens keV) and seed (hundreds keV) populations are injected from the plasma sheet to the outer belt region. The source population transfers energy to electromagnetic waves, while the seed population can be accelerated locally by interaction with chorus waves. Electrons can also be lost by scattering into the loss cone due to wave-particle interaction and by magnetopause shadowing due to outward radial motion. In this work, we present results of simulations of the dynamics of electron fluxes in the inner magnetosphere from a few keV to relativistic energies of several MeV using the VERB-4D code. The code includes radial, energy and pitch angle diffusion, convection and adiabatic effects due to compression or expansion of the magnetic field. We extended the spatial outer boundary of the computational domain to 10-15 RE which allow us to study, how the source and seed population particles are convected from the plasma sheet, accelerated to relativistic energies and lost to the atmosphere or the magnetopause. The results of simulations reproduce Van Allen Probes, GOES and THEMIS observations, indicating that magnetospheric convection is the main driver of electron dynamics above the GEO, while radial diffusion and local diffusion are the most important processes in the outer belt region.

  15. Photospheric Emission of Collapsar Jet in 3D Relativistic Radiation Hydrodynamical Simulation

    CERN Document Server

    Ito, Hirotaka; Nagataki, Shigehiro; Warren, Donald C; Barkov, Maxim V

    2015-01-01

    We explore the photospheric emission from a relativistic jet breaking out from a massive stellar envelope based on relativistic hydrodynamical simulations and post-process radiation transfer calculations in three dimensions (3D). To investigate the impact of 3D dynamics on the emission, two models of injection conditions are considered for the jet at the center of the progenitor star: one with periodic precession and another without precession. We show that structures developed within the jet due to the interaction with the stellar envelope, as well as due to the precession, have a significant imprint on the resulting emission. Particularly, we find that the signature of precession activity by the central engine is not smeared out and can be directly observed in the light curve as a periodic signal. We also show non-thermal features that can account for observations of gamma-ray bursts are produced in the resulting spectra, even though only thermal photons are injected initially and the effect of non-thermal ...

  16. General relativistic radiative transfer in hot astrophysical plasmas a characteristic approach

    CERN Document Server

    Zane, S; Nobili, L; Erna, M; Zane, Silvia; Turolla, Roberto; Nobili, Luciano; Erna, Myris

    1996-01-01

    In this paper we present a characteristic method for solving the transfer equation in differentially moving media in a curved spacetime. The method is completely general, but its capabilities are exploited at best in presence of symmetries, when the existence of conserved quantities allows to derive analytical expressions for the photon trajectories in phase space. In spherically--symmetric, stationary configurations the solution of the transfer problem is reduced to the integration of a single ordinary differential equation along the bi--parametric family of characteristic rays. Accurate expressions for the radiative processes relevant to continuum transfer in a hot astrophysical plasma have been used in evaluating the source term, including relativistic e--p, e--e bremsstrahlung and Compton scattering. A numerical code for the solution of the transfer problem in moving media in a Schwarzschild spacetime has been developed and tested. Some applications, concerning ``hot'' and ``cold'' accretion onto non--rot...

  17. Radiation from Particles Accelerated in Relativistic Jet Shocks and Shear-flows

    CERN Document Server

    Nishikawa, K -I; Dutan, I; Zhang, B; Meli, A; Choi, E J; Min, K; Niemiec, J; Mizuno, Y; Medvedev, M; Nordlund, A; Frederiksen, J T; Sol, H; Pohl, M; Hartmann, D

    2014-01-01

    We have investigated particle acceleration and emission from shocks and shear flows associated with an unmagnetized relativistic jet plasma propagating into an unmagnetized ambient plasma. Strong electro-magnetic fields are generated in the jet shock via the filamentation (Weibel) instability. Shock field strength and structure depend on plasma composition (($e^{\\pm}$ or $e^-$- $p^+$ plasmas) and Lorentz factor. In the velocity shear between jet and ambient plasmas, strong AC ($e^{\\pm}$ plasmas) or DC ($e^-$- $p^+$ plasmas) magnetic fields are generated via the kinetic Kelvin-Helmholtz instability (kKHI), and the magnetic field structure also depends on the jet Lorentz factor. We have calculated, self-consistently, the radiation from electrons accelerated in shock generated magnetic fields. The spectra depend on the jet's initial Lorentz factor and temperature via the resulting particle acceleration and magnetic field generation. Our ongoing "Global" jet simulations containing shocks and velocity shears will ...

  18. Radiative interaction between the relativistic jet and optically thick envelope in tidal disruption events

    Science.gov (United States)

    Lu, Wenbin; Krolik, Julian; Crumley, Patrick; Kumar, Pawan

    2017-10-01

    Reverberation observations yielding a lag spectrum have uncovered an Fe K α fluorescence line in the tidal disruption event (TDE) Swift J1644+57. The discovery paper used the lag spectrum to argue that the source of the X-ray continuum was located very close to the black hole (∼30 gravitational radii) and moved subrelativistically. We reanalyse the lag spectrum, pointing out that dilution effects cause it to indicate a geometric scale an order of magnitude larger than inferred by Kara et al. If the X-ray continuum is produced by a relativistic jet, as suggested by the rapid variability, high luminosity and hard spectrum, this larger scale predicts an Fe ionization state consistent with efficient K α photon production. Moreover, the momentum of the jet X-rays impinging on the surrounding accretion flow on this large scale accelerates a layer of gas to speeds ∼0.1-0.2c, consistent with the blueshifted line profile. Implications of our results on the global picture of jetted TDEs are discussed. A power-law γ/X-ray spectrum may be produced by external ultraviolet (UV)-optical photons being repetitively inverse-Compton scattered by cold electrons in the jet, although our model for the K α reverberation does not depend on the jet radiation mechanism (magnetic reconnection in a Poynting jet is still a viable mechanism). The non-relativistic wind driven by jet radiation may explain the late-time radio rebrightening in Swift J1644+57. This energy injection may also cause the thermal UV-optical emission from jetted TDEs to be systematically brighter than in non-jetted ones.

  19. General properties of the radiation spectra from relativistic electrons moving in a Langmuir turbulence

    CERN Document Server

    Teraki, Yuto

    2014-01-01

    We examine the radiation spectra from relativistic electrons moving in a Langmuir turbulence expected to exist in high energy astrophysical objects by using numerical method. The spectral shape is characterized by the spatial scale {\\lambda}, field strength {\\sigma}, and frequency of the Langmuir waves, and in term of frequency they are represented by {\\omega}_0 = 2{\\pi}c/{\\lambda}, {\\omega}_st = e{\\sigma}/mc, and {\\omega}_p, respectively. We normalize {\\omega}_st and {\\omega}_p by {\\omega}_0 as \\a \\equiv {\\omega}_st/{\\omega}_0 and \\b \\equiv{\\omega}_p/{\\omega}_0, and examine the spectral shape in the a-b plane. An earlier study based on Diffusive Radiation in Langmuir turbulence (DRL) theory by Fleishman and Toptygin showed that the typical frequency is {\\gamma}^2{\\omega}_p and that the low frequency spectrum behaves as F_{\\omega} pronto {\\omega}^1 for b > 1 irrespective of a. Here, we adopt the first principle numerical approach to obtain the radiation spectra in more detail. We generate Langmuir turbulence ...

  20. Three-dimensional relativistic pair plasma reconnection with radiative feedback in the Crab Nebula

    CERN Document Server

    Cerutti, Benoit; Uzdensky, Dmitri A; Begelman, Mitchell C

    2013-01-01

    The discovery of rapid synchrotron gamma-ray flares above 100 MeV from the Crab Nebula has attracted new interest in alternative particle acceleration mechanisms in pulsar wind nebulae. Diffuse shock-acceleration fails to explain the flares because particle acceleration and emission occur during a single or even sub-Larmor timescale. In this regime, the synchrotron energy losses induce a drag force on the particle motion that balances the electric acceleration and prevents the emission of synchrotron radiation above 160 MeV. Previous analytical studies and 2D particle-in-cell (PIC) simulations indicate that relativistic reconnection is a viable mechanism to circumvent the above difficulties. The reconnection electric field localized at X-points linearly accelerates particles with little radiative energy losses. In this paper, we check whether this mechanism survives in 3D, using a set of large PIC simulations with radiation reaction force and with a guide field. In agreement with earlier works, we find that t...

  1. Radiation pressure of active dispersive chiral slabs.

    Science.gov (United States)

    Wang, Maoyan; Li, Hailong; Gao, Dongliang; Gao, Lei; Xu, Jun; Qiu, Cheng-Wei

    2015-06-29

    We report a mechanism to obtain optical pulling or pushing forces exerted on the active dispersive chiral media. Electromagnetic wave equations for the pure chiral media using constitutive relations containing dispersive Drude models are numerically solved by means of Auxiliary Differential Equation Finite Difference Time Domain (ADE-FDTD) method. This method allows us to access the time averaged Lorentz force densities exerted on the magnetoelectric coupling chiral slabs via the derivation of bound electric and magnetic charge densities, as well as bound electric and magnetic current densities. Due to the continuously coupled cross-polarized electromagnetic waves, we find that the pressure gradient force is engendered on the active chiral slabs under a plane wave incidence. By changing the material parameters of the slabs, the total radiation pressure exerted on a single slab can be directed either along the propagation direction or in the opposite direction. This finding provides a promising avenue for detecting the chirality of materials by optical forces.

  2. Effects of quantum statistical pressure on the Washimi-Karpman magnetization and power radiation in degenerate quantum Fermi-Dirac plasmas

    Science.gov (United States)

    Lee, Myoung-Jae; Jung, Young-Dae

    2017-09-01

    The physical properties of the Washimi-Karpman ponderomotive magnetization are investigated in relativistically degenerate quantum Fermi-Dirac plasmas including the influence of quantum statistical degeneracy pressure. The induced magnetization and power radiation due to the Washimi-Karpman ponderomotive interaction are obtained in Fermi-Dirac plasmas. It is found that the ponderomotive magnetization decreases with an increase of the relativistic degeneracy parameter. It is also shown that the quantum statistical degeneracy pressure effect is more significant in small frequency and large wave number domains than that in large frequency and small wave number domains. In addition, it is found that the ponderomotive power radiation decreases with an increase of the relativistic degeneracy parameter in Fermi-Dirac plasmas. The variations of the Washimi-Karpman magnetization and power radiation due to the physical characteristics of degenerate quantum Fermi-Dirac plasmas are also discussed.

  3. Effects of ULF wave power on relativistic radiation belt electrons: 8-9 October 2012 geomagnetic storm

    Science.gov (United States)

    Pokhotelov, D.; Rae, I. J.; Murphy, K. R.; Mann, I. R.

    2016-12-01

    Electromagnetic ultralow-frequency (ULF) waves are known to play a substantial role in radial transport, acceleration, and loss of relativistic particles trapped in the Earth's outer radiation belt. Using in situ observations by multiple spacecraft operating in the vicinity of outer radiation belts, we analyze the temporal and spatial behavior of ULF waves throughout the geomagnetic storm of 8-9 October 2012 and compare with the dynamics of relativistic electron fluxes on board the twin Van Allen Probes spacecraft. The analysis shows that the relativistic electron fluxes reduce from their prestorm levels during the first phase of the storm and rapidly increase during the second phase of the storm. We demonstrate that the behavior of ULF wave power changes throughout the storm, from ULF oscillations being a mixture of compressional and shear magnetic components during the first phase of the storm to ULF oscillations being dominated by transverse (shear) components during the second phase. We analyze the parameters of ULF-driven radial diffusion throughout the storm and compare the observed diffusion coefficients with their statistical averages. We demonstrate that the observed diffusion coefficients are strong enough to impact the redistribution of relativistic electron fluxes from and to the outer boundary of radiation belts and the diffusion might influence the effects of any local electron acceleration by transporting fluxes inward or outward according to phase space density gradients.

  4. Review of modeling of losses and sources of relativistic electrons in the outer radiation belt I: Radial transport

    Science.gov (United States)

    Shprits, Yuri Y.; Elkington, Scot R.; Meredith, Nigel P.; Subbotin, Dmitriy A.

    2008-11-01

    In this paper, we focus on the modeling of radial transport in the Earth's outer radiation belt. A historical overview of the first observations of the radiation belts is presented, followed by a brief description of radial diffusion. We describe how resonant interactions with poloidal and toroidal components of the ULF waves can change the electron's energy and provide radial displacements. We also present radial diffusion and guiding center simulations that show the importance of radial transport in redistributing relativistic electron fluxes and also in accelerating and decelerating radiation belt electrons. We conclude by presenting guiding center simulations of the coupled particle tracing and magnetohydrodynamic (MHD) codes and by discussing the origin of relativistic electrons at geosynchronous orbit. Local acceleration and losses and 3D simulations of the dynamics of the radiation belt fluxes are discussed in the companion paper [Shprits, Y.Y., Subbotin, D.A., Meredith, N.P., Elkington, S.R., 2008. Review of modeling of losses and sources of relativistic electrons in the outer radiation belt II: Local acceleration and loss. Journal of Atmospheric and Solar-Terrestrial Physics, this issue. doi:10.1016/j.jastp.2008.06.014].

  5. Radiation effects on reactor pressure vessel supports

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, R.E. [Nuclear Regulatory Commission, Washington, DC (United States). Div. of Engineering Technology; Lipinski, R.E. [Idaho National Engineering Lab., Rockville, MD (United States)

    1996-05-01

    The purpose of this report is to present the findings from the work done in accordance with the Task Action Plan developed to resolve the Nuclear Regulatory Commission (NRC) Generic Safety Issue No. 15, (GSI-15). GSI-15 was established to evaluate the potential for low-temperature, low-flux-level neutron irradiation to embrittle reactor pressure vessel (RPV) supports to the point of compromising plant safety. An evaluation of surveillance samples from the High Flux Isotope Reactor (HFIR) at the Oak Ridge National Laboratory (ORNL) had suggested that some materials used for RPV supports in pressurized-water reactors could exhibit higher than expected embrittlement rates. However, further tests designed to evaluate the applicability of the HFIR data to reactor RPV supports under operating conditions led to the conclusion that RPV supports could be evaluated using traditional method. It was found that the unique HFIR radiation environment allowed the gamma radiation to contribute significantly to the embrittlement. The shielding provided by the thick steel RPV shell ensures that degradation of RPV supports from gamma irradiation is improbable or minimal. The findings reported herein were used, in part, as the basis for technical resolution of the issue.

  6. Odyssey: A Public GPU-Based Code for General-Relativistic Radiative Transfer in Kerr Spacetime

    CERN Document Server

    Pu, Hung-Yi; Younsi, Ziri; Yoon, Suk-Jin

    2016-01-01

    General-relativistic radiative transfer (GRRT) calculations coupled with the calculation of geodesics in the Kerr spacetime are an essential tool for determining the images, spectra and light curves from matter in the vicinity of black holes. Such studies are especially important for ongoing and upcoming millimeter/submillimeter (mm/sub-mm) Very Long Baseline Interferometry (VLBI) observations of the supermassive black holes at the centres of Sgr A^{*} and M87. To this end we introduce Odyssey, a Graphics Processing Unit(GPU)-based code for ray tracing and radiative transfer in the Kerr spacetime. On a single GPU, the performance of Odyssey can exceed 1 nanosecond per photon, per Runge-Kutta integration step. Odyssey is publicly available, fast, accurate, and flexible enough to be modified to suit the specific needs of new users. Along with a Graphical User Interface (GUI) powered by a video-accelerated display architecture, we also present an educational software tool, Odyssey_Edu, for showing in real time h...

  7. Gravitational Radiation from the radial infall of highly relativistic point particles into Kerr black holes

    CERN Document Server

    Cardoso, V; Cardoso, Vitor; Lemos, Jos\\'e P. S.

    2003-01-01

    In this paper, we consider the gravitational radiation generated by the collision of highly relativistic particles with rotating Kerr black holes. We use the Sasaki-Nakamura formalism to compute the waveform, energy spectra and total energy radiated during this process. We show that the gravitational spectrum for high-energy collisions has definite characteristic universal features, which are independent of the spin of the colliding objects. We also discuss possible connections between these results and the black hole-black hole collision at the speed of light process. With these results at hand, we predict that during the high speed collision of a non-rotating hole with a rotating one, about 35% of the total energy gets converted into gravitational waves. Thus, if one is able to produce black holes at the Large Hadron Collider, 35% of the partons' energy should be emitted during the so called balding phase. This energy will be missing, since we don't have gravitational wave detectors able to measure such amp...

  8. Odyssey: A Public GPU-based Code for General Relativistic Radiative Transfer in Kerr Spacetime

    Science.gov (United States)

    Pu, Hung-Yi; Yun, Kiyun; Younsi, Ziri; Yoon, Suk-Jin

    2016-04-01

    General relativistic radiative transfer calculations coupled with the calculation of geodesics in the Kerr spacetime are an essential tool for determining the images, spectra, and light curves from matter in the vicinity of black holes. Such studies are especially important for ongoing and upcoming millimeter/submillimeter very long baseline interferometry observations of the supermassive black holes at the centers of Sgr A* and M87. To this end we introduce Odyssey, a graphics processing unit (GPU) based code for ray tracing and radiative transfer in the Kerr spacetime. On a single GPU, the performance of Odyssey can exceed 1 ns per photon, per Runge-Kutta integration step. Odyssey is publicly available, fast, accurate, and flexible enough to be modified to suit the specific needs of new users. Along with a Graphical User Interface powered by a video-accelerated display architecture, we also present an educational software tool, Odyssey_Edu, for showing in real time how null geodesics around a Kerr black hole vary as a function of black hole spin and angle of incidence onto the black hole.

  9. ODYSSEY: A PUBLIC GPU-BASED CODE FOR GENERAL RELATIVISTIC RADIATIVE TRANSFER IN KERR SPACETIME

    Energy Technology Data Exchange (ETDEWEB)

    Pu, Hung-Yi [Institute of Astronomy and Astrophysics, Academia Sinica, 11F of Astronomy-Mathematics Building, AS/NTU No. 1, Taipei 10617, Taiwan (China); Yun, Kiyun; Yoon, Suk-Jin [Department of Astronomy and Center for Galaxy Evolution Research, Yonsei University, Seoul 120-749 (Korea, Republic of); Younsi, Ziri [Institut für Theoretische Physik, Max-von-Laue-Straße 1, D-60438 Frankfurt am Main (Germany)

    2016-04-01

    General relativistic radiative transfer calculations coupled with the calculation of geodesics in the Kerr spacetime are an essential tool for determining the images, spectra, and light curves from matter in the vicinity of black holes. Such studies are especially important for ongoing and upcoming millimeter/submillimeter very long baseline interferometry observations of the supermassive black holes at the centers of Sgr A* and M87. To this end we introduce Odyssey, a graphics processing unit (GPU) based code for ray tracing and radiative transfer in the Kerr spacetime. On a single GPU, the performance of Odyssey can exceed 1 ns per photon, per Runge–Kutta integration step. Odyssey is publicly available, fast, accurate, and flexible enough to be modified to suit the specific needs of new users. Along with a Graphical User Interface powered by a video-accelerated display architecture, we also present an educational software tool, Odyssey-Edu, for showing in real time how null geodesics around a Kerr black hole vary as a function of black hole spin and angle of incidence onto the black hole.

  10. Detecting solar chameleons through radiation pressure

    Directory of Open Access Journals (Sweden)

    S. Baum

    2014-12-01

    Full Text Available Light scalar fields can drive the accelerated expansion of the universe. Hence, they are obvious dark energy candidates. To make such models compatible with tests of General Relativity in the solar system and “fifth force” searches on Earth, one needs to screen them. One possibility is the so-called “chameleon” mechanism, which renders an effective mass depending on the local matter density. If chameleon particles exist, they can be produced in the sun and detected on Earth exploiting the equivalent of a radiation pressure. Since their effective mass scales with the local matter density, chameleons can be reflected by a dense medium if their effective mass becomes greater than their total energy. Thus, under appropriate conditions, a flux of solar chameleons may be sensed by detecting the total instantaneous momentum transferred to a suitable opto-mechanical force/pressure sensor. We calculate the solar chameleon spectrum and the reach in the chameleon parameter space of an experiment using the preliminary results from a force/pressure sensor, currently under development at INFN Trieste, to be mounted in the focal plane of one of the X-Ray telescopes of the CAST experiment at CERN. We show, that such an experiment signifies a pioneering effort probing uncharted chameleon parameter space.

  11. Observation of coherently enhanced tunable narrow-band terahertz transition radiation from a relativistic sub-picosecond electron bunch train

    Energy Technology Data Exchange (ETDEWEB)

    Piot, P. [Northern Illinois Univ., DeKalb, IL (United States); Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States); Sun, Y. -E [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Maxwell, T. J. [Northern Illinois Univ., DeKalb, IL (United States); Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States); Ruan, J. [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States); Lumpkin, A. H. [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States); Rihaoui, M. M. [Northern Illinois Univ., DeKalb, IL (United States); Thurman-Keup, R. [Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States)

    2011-06-27

    We experimentally demonstrate the production of narrow-band (δf/f ~ =20% at f ~ = 0.5 THz) THz transition radiation with tunable frequency over [0.37, 0.86] THz. The radiation is produced as a train of sub-picosecond relativistic electron bunches transits at the vacuum-aluminum interface of an aluminum converter screen. In addition, we show a possible application of modulated beams to extend the dynamical range of a popular bunch length diagnostic technique based on the spectral analysis of coherent radiation.

  12. The radiative efficiency of relativistic jet and wind: a case study of GRB 070110

    Science.gov (United States)

    Du, Shuang; Lü, Hou-Jun; Zhong, Shu-Qing; Liang, En-Wei

    2016-11-01

    A rapidly spinning, strongly magnetized neutron star (NS) is invoked as the central engine for some gamma-ray bursts (GRBs), especially, the `internal plateau' feature of X-ray afterglow. However, for these `internal plateau' GRBs, how to produce their prompt emission remains an open question. Two different physical processes have been proposed in the literature, (1) a new-born NS is surrounded by a hyper-accreting and neutrino cooling disc, the GRB jet can be powered by neutrino annihilation aligning the spin axis; (2) a differentially rotating millisecond pulsar was formed due to different angular velocity between the interior core and outer shell parts of the NS, which can power an episodic GRB jet. In this paper, by analysing the data of one peculiar GRB 070110 (with internal plateau), we try to test which model is being favoured. By deriving the physical parameters of magnetar with observational data, the parameter regime for initial period (P0) and surface polar cap magnetic field (Bp) of the central NS are 0.96 ˜ 1.2 ms and (2.4 ˜ 3.7) × 1014 G, respectively. The radiative efficiency of prompt emission is about ηγ ˜ 6 per cent. However, the radiative efficiency of internal plateau (ηX) is larger than 31 per cent assuming the MNS ˜ 1.4 M⊙ and P0˜ 1.2 ms. The clear difference between the radiation efficiencies of prompt emission and internal plateau implies that they maybe originated from different components (e.g. prompt emission from the relativistic jet powered by neutrino annihilation, while the internal plateau from the magnetic outflow wind).

  13. Radiation pressure feedback in the formation of massive stars

    CERN Document Server

    Kuiper, Rolf; Beuther, Henrik; Henning, Thomas

    2011-01-01

    We investigate the radiation pressure feedback in the formation of massive stars in 1, 2, and 3D radiation hydrodynamics simulations of the collapse of massive pre-stellar cores. In contrast to previous research, we consider frequency dependent stellar radiation feedback, resolve the dust sublimation front in the vicinity of the forming star down to 1.27 AU, compute the evolution for several 10^5 yrs covering the whole accretion phase of the forming star, and perform a comprehensive survey of the parameter space. The most fundamental result is that the formation of a massive accretion disk in slowly rotating cores preserves a high anisotropy in the radiation field. The thermal radiation escapes through the optically thin atmosphere, effectively diminishing the radiation pressure feedback onto the accretion flow. Gravitational torques in the self-gravitating disk drive a sufficiently high accretion rate to overcome the residual radiation pressure. Simultaneously, the radiation pressure launches an outflow in t...

  14. Vacuum Radiation Pressure Fluctuations and Barrier Penetration

    CERN Document Server

    Huang, Haiyan

    2016-01-01

    We apply recent results on the probability distribution for quantum stress tensor fluctuations to the problem of barrier penetration by quantum particles. The probability for large stress tensor fluctuations decreases relatively slowly with increasing magnitude of the fluctuation, especially when the quantum stress tensor operator has been averaged over a finite time interval. This can lead to large vacuum radiation pressure fluctuations on charged or polarizable particles, which can in turn push the particle over a potential barrier. The rate for this effect depends sensitively upon the details of the time averaging of the stress tensor operator, which might be determined by factors such as the shape of the potential. We make some estimates for the rate of barrier penetration by this mechanism and argue that in some cases this rate can exceed the rate for quantum tunneling through the barrier. The possibility of observation of this effect is discussed.

  15. Acoustic solitons in a magnetized quantum electron-positron-ion plasma with relativistic degenerate electrons and positrons pressure

    Science.gov (United States)

    Abdikian, A.; Mahmood, S.

    2016-12-01

    The obliquely nonlinear acoustic solitary propagation in a relativistically quantum magnetized electron-positron (e-p) plasma in the presence of the external magnetic field as well as the stationary ions for neutralizing the plasma background was studied. By considering the dynamic of the fluid e-p quantum and by using the quantum hydrodynamics model and the standard reductive perturbation technique, the Zakharov-Kuznetsov (ZK) equation is derived for small but finite amplitude waves and the solitary wave solution for the parameters relevant to dense astrophysical objects such as white dwarf stars is obtained. The numerical results show that the relativistic effects lead to propagate the electrostatic bell shape structures in quantum e-p plasmas like those in classical pair-ion or pair species for relativistic plasmas. It is also observed that by increasing the relativistic effects, the amplitude and width of the e-p acoustic solitary wave will decrease. In addition, the wave amplitude increases as positron density decreases in magnetized e-p plasmas. It is indicated that by increasing the strength of the magnetic field, the width of the soliton reduces and it becomes sharper. At the end, we have analytically and numerically shown that the pulse soliton solution of the ZK equation is unstable and have traced the dependence of the instability growth rate on electron density. It is found that by considering the relativistic pressure, the instability of the soliton pulse can be reduced. The results can be useful to study the obliquely nonlinear propagation of small amplitude localized structures in magnetized quantum e-p plasmas and be applicable to understand the particle and energy transport mechanism in compact stars such as white dwarfs, where the effects of relativistic electron degeneracy become important.

  16. Relativistic electron acceleration and decay time scales in the inner and outer radiation belts: SAMPEX

    Science.gov (United States)

    Baker, D. N.; Blake, J. B.; Callis, L. B.; Cummings, J. R.; Hovestadt, D.; Kanekal, S.; Klecker, B.; Mewaldt, R. A.; Zwickl, R. D.

    1994-01-01

    High-energy electrons have been measured systematically in a low-altitude (520 x 675 km), nearly polar (inclination = 82 deg) orbit by sensitive instruments onboard the Solar, Anomalous, and Magnetospheric Particle Explorer (SAMPEX). Count rate channels with electron energy thresholds ranging from 0.4 MeV to 3.5 MeV in three different instruments have been used to examine relativistic electron variations as a function of L-shell parameter and time. A long run of essentially continuous data (July 1992 - July 1993) shows substantial acceleration of energetic electrons throughout much of the magnetosphere on rapid time scales. This acceleration appears to be due to solar wind velocity enhancements and is surprisingly large in that the radiation belt 'slot' region often is filled temporarily and electron fluxes are strongly enhanced even at very low L-values (L aprroximately 2). A superposed epoch analysis shows that electron fluxes rise rapidly for 2.5 is approximately less than L is approximately less than 5. These increases occur on a time scale of order 1-2 days and are most abrupt for L-values near 3. The temporal decay rate of the fluxes is dependent on energy and L-value and may be described by J = Ke-t/to with t(sub o) approximately equals 5-10 days. Thus, these results suggest that the Earth's magnetosphere is a cosmic electron accelerator of substantial strength and efficiency.

  17. Liberation of specific angular momentum through radiation and scattering in relativistic black hole accretion discs

    CERN Document Server

    Stevens, Adam R H

    2015-01-01

    A key component of explaining the array of galaxies observed in the Universe is the feedback of active galactic nuclei, each powered by a massive black hole's accretion disc. For accretion to occur, angular momentum must be lost by that which is accreted. Electromagnetic radiation must offer some respite in this regard, the contribution for which is quantified in this paper using solely general relativity under the thin-disc regime. Herein, I calculate extremised situations where photons are entirely responsible for energy removal in the disc and then extend and relate this to the standard relativistic accretion disc outlined by Novikov & Thorne that includes the effect of viscosity. While there is potential for the contribution of angular-momentum removal from photons to be >~1% out to ~10^4 Schwarzschild radii, especially if the disc is irradiated and is liberated of angular momentum through scattering, it is more likely of order 10^2 Schwarzschild radii if thermal emission from the disc itself is stron...

  18. Transverse phase space mapping of relativistic electron beams using optical transition radiation

    Directory of Open Access Journals (Sweden)

    G. P. Le Sage

    1999-12-01

    Full Text Available Optical transition radiation (OTR has proven to be a versatile and effective diagnostic for measuring the profile, divergence, and emittance of relativistic electron beams with a wide range of parameters. Diagnosis of the divergence of modern high brightness beams is especially well suited to OTR interference (OTRI techniques, where multiple dielectric or metal foils are used to generate a spatially coherent interference pattern. Theoretical analysis of measured OTR and OTRI patterns allows precise measurement of electron beam emittance characteristics. Here we describe an extension of this technique to allow mapping of divergence characteristics as a function of transverse coordinates within a measured beam. We present the first experimental analysis of the transverse phase space of an electron beam using all optical techniques. Comparing an optically masked portion of the beam to the entire beam, we measure different angular spread and average direction of the particles. Direct measurement of the phase-space ellipse tilt angle has been demonstrated using this optical masking technique.

  19. Active control of radiated sound using nearfield pressure sensing

    Institute of Scientific and Technical Information of China (English)

    CHEN Ke'an; YIN Xuefei

    2004-01-01

    Based on nearfield sound pressure sensing to pick up error information, an approach for constructing active acoustic structure to effectively reduce radiated sound power at low frequency is proposed. The idea is that a nearfield pressure after active control is used as error signals and transformed into an objective function in adaptive active control process.Firstly sound power expression using near-field pressure radiated from a flexible structure is derived, and then three kind of nearfield pressure based active control strategies, I.e. Minimization of radiated sound power, minimization of sound power for dominant radiation modes and minimization of sound power for modified dominant radiation modes are respectively presented and applied to active control of radiated single and broadband noise. Finally computer simulations on sound power reduction under three strategies are conducted and it is shown that the proposed active control strategies are invalid and considerable reduction in radiated sound power can be achieved.

  20. FOREWORD: Proceedings of the Adriatico Conference on Vacuum in Non-Relativistic Matter-Radiation Systems

    Science.gov (United States)

    Persico, Franco; Power, Edwin A.

    1988-01-01

    The physics of the electromagnetic vacuum, its fluctuations and its role in spontaneous emission has been studied since the early days of the quantum theory of radiation. In recent years there has been a renewed interest in the nature of the vacuum state and its potency in giving rise to observable effects. For example the question of amplification of photon signals and the way vacuum fluctuations may provide inescapable noise is fundamental to the theory of measurement. Quantum electrodynamics in cavities has become a very active area of research both experimentally and theoretically and the way the radiation field, even in vacuo, is changed by confinement is of interest and importance. The effective Einstein A-coefficient can be much smaller than in free space because the available modes are sparser in a cavity. Radiative connections such as the Lamb shift energies are also changed as the virtual photon modes are varied by the confinement. The existence of electromagnetic field energy (from the vacuum fluctuations) in the neighbourhood of atoms/molecules in their ground state is demonstrated by its effect on test molecules brought into the vicinity of the original sources. All the forces analogous to that of Van der Waals, including of course their Casimir retardations at long range, are explicable in terms of these virtual cloud effects. The Adriatico Conference on "Vacuum in Non-Relativistic Matter-Radiation Systems" held in July 1987 brought together scientists in quantum optics, quantum field theorists and others interested in the electromagnetic vacuum. It was most successful in that the participants found enough mutual agreement but with clearly defined tensions between them to provide excitement and argument throughout the four days' meeting. This volume consists of most of the papers presented at the conference. It is clear that the collection ranges from the pedagogical and the review type article to research papers with original material. The

  1. Radiation reaction effects in cascade scattering of intense, tightly focused laser pulses by relativistic electrons: Classical approach

    Science.gov (United States)

    Zhidkov, A.; Masuda, S.; Bulanov, S. S.; Koga, J.; Hosokai, T.; Kodama, R.

    2014-05-01

    Nonlinear cascade scattering of intense, tightly focused laser pulses by relativistic electrons is studied numerically in the classical approximation including radiation damping for the quantum parameter ⟨ℏωxray⟩/ɛ <1 and an arbitrary radiation parameter χ. The electron's energy loss, along with its being scattered to the side by the ponderomotive force, makes scattering in the vicinity of a high laser field nearly impossible at high electron energies. The use of a second, copropagating laser pulse as a booster is shown to partially solve this problem.

  2. A scheme for radiation pressure and photon diffusion with the M1 closure in RAMSES-RT

    CERN Document Server

    Rosdahl, J

    2014-01-01

    We describe and test an updated version of radiation-hydrodynamics (RHD) in the RAMSES code, that includes three new features: i) radiation pressure on gas, ii) accurate treatment of radiation diffusion in an unresolved optically thick medium, and iii) relativistic corrections that account for Doppler effects and work done by the radiation to first order in v/c. We validate the implementation in a series of tests, which include a morphological assessment of the M1 closure for the Eddington tensor in an astronomically relevant setting, dust absorption in a optically semi-thick medium, direct pressure on gas from ionising radiation, convergence of our radiation diffusion scheme towards resolved optical depths, correct diffusion of a radiation flash and a constant luminosity radiation, and finally, an experiment from Davis et al. of the competition between gravity and radiation pressure in a dusty atmosphere, and the formation of radiative Rayleigh-Taylor instabilities. With the new features, RAMSES-RT can be us...

  3. Influence of slowing down in the radiator on the Cherenkov radiation angular distributions from relativistic heavy ions at FAIR, SPS and LHC energies

    Energy Technology Data Exchange (ETDEWEB)

    Fiks, E.I., E-mail: elenafiks@gmail.com [National Research Tomsk Polytechnic University, Tomsk (Russian Federation); Pivovarov, Yu.L. [National Research Tomsk Polytechnic University, Tomsk (Russian Federation); Bogdanov, O.V. [National Research Tomsk Polytechnic University, Tomsk (Russian Federation); INFN Laboratori Nazionali di Frascati, Frascati (RM) (Italy); Geissel, H.; Scheidenberger, C. [Helmholtzzentrum für Schwerionenforschung GSI, Darmstadt (Germany)

    2013-08-15

    The calculations of Cherenkov radiation (ChR) angular distributions from relativistic heavy ions (RHI) at very high energies (from 30 GeV/u up to 3000 GeV/u) taking into account their slowing-down (ionization energy loss) in a radiator are performed for the first time. The slowing-down of RHI in an optically transparent solid radiator can drastically change the ChR angular distributions at RHI energies of order of 1 GeV/u. The results of calculation show that at higher RHI energies (>30 GeV/u) (FAIR, SPS and LHC), the ChR angular distribution (at the reasonable radiator thickness) is very close to the Tamm–Frank distribution and practically does not depend on the RHI slowing-down in a radiator, if only ionization energy loss is taken into account.

  4. Magnetic Moment Fields in Dense Relativistic Plasma Interacting with Laser Radiations

    Directory of Open Access Journals (Sweden)

    B.Ghosh1* , S.N.Paul 1 , S.Bannerjee2 and C.Das3

    2013-04-01

    Full Text Available Theory of the generation of magnetic moment field from resonant interaction of three high frequency electromagnetic waves in un-magnetized dense electron plasma is developed including the relativistic change of electron mass. It is shown that the inclusion of relativistic effect enhances the magnetic moment field. For high intensity laser beams this moment field may be of the order of a few mega gauss. Such a high magnetic field can considerably affect the transport of electrons in fusion plasma

  5. Probing the early-time dynamics of relativistic heavy-ion collisions with electromagnetic radiation

    CERN Document Server

    Vujanovic, Gojko; Denicol, Gabriel S; Luzum, Matthew; Schenke, Bjoern; Jeon, Sangyong; Gale, Charles

    2014-01-01

    Using 3+1D viscous relativistic fluid dynamics, we show that electromagnetic probes are sensitive to the initial conditions and to the out-of-equilibrium features of relativistic heavy-ion collisions. Within the same approach, we find that hadronic observables show a much lesser sensitivity to these aspects. We conclude that electromagnetic observables allow access to dynamical regions that are beyond the reach of soft hadronic probes.

  6. Non-relativistic particle higher-order harmonic radiation based short-wavelength laser and the operation stability

    Institute of Scientific and Technical Information of China (English)

    LUO Xiao-hua; WU Mu-ying; HE Wei; SHAO Ming-zhu; LUO Shi-yu

    2011-01-01

    Under classical mechanics, the general equation of particle motion in the periodic field is derived. In the dampless case, the existence possibility of the higher-order harmonic radiation is explored by using Bessel function expansion of a generalized trigonometrical function and the multi-scale method. In the damping case, the critical properties and a chaotic behavior are discussed by the Melnikov method. The results show that the use of a higher-order harmonic radiation of non-relativistic particles as a short-wavelength laser source is perfectly possible, and the system's critical condition is related to its parameters. Only by adjusting parameters suitablely, the stable higher-order harmonic radiation with bigger intensity can be obtained.

  7. Spontaneous emission and spectral properties of radiation by relativistic electrons in a gyro-klystron and optical-klystron undulator.

    Science.gov (United States)

    Prakash, Bramha; Mishra, Ganeswar; Khullar, Roma

    2016-03-01

    In this paper spontaneous emission of radiation by relativistic electrons in a gyro-klystron is studied. The scheme consists of two solenoid sections separated by a dispersive section. In the dispersive section the electrons are made non-resonant with the radiation. The dispersive section transforms a small change of the velocity into changes of the phases of the electrons. This leads to enhanced radiation due to klystron-type modulation as compared with a conventional gyrotron-type device driven by cyclotron maser interaction. It is shown that the klystron-modulated spectrum depends on the dispersive field strength, finite perpendicular velocity component and length of the solenoids but is independent of the axial magnetic field strength. A simple scheme to design a gyro-klystron is discussed.

  8. NON-RELATIVISTIC RADIATION MEDIATED SHOCK BREAKOUTS. III. SPECTRAL PROPERTIES OF SUPERNOVA SHOCK BREAKOUT

    Energy Technology Data Exchange (ETDEWEB)

    Sapir, Nir; Waxman, Eli [Department of Particle Physics and Astrophysics, Weizmann Institute of Science, Rehovot 76100 (Israel); Katz, Boaz [Institute for Advanced Study, Princeton, NJ 08540 (United States)

    2013-09-01

    The spectrum of radiation emitted following shock breakout from a star's surface with a power-law density profile {rho}{proportional_to}x{sup n} is investigated. Assuming planar geometry, local Compton equilibrium, and bremsstrahlung emission as the dominant photon production mechanism, numerical solutions are obtained for the photon number density and temperature profiles as a function of time for hydrogen-helium envelopes. The temperature solutions are determined by the breakout shock velocity v{sub 0} and the pre-shock breakout density {rho}{sub 0} and depend weakly on the value of n. Fitting formulae for the peak surface temperature at breakout as a function of v{sub 0} and {rho}{sub 0} are provided, with T{sub peak} approx. 9.44 exp [12.63(v{sub 0}/c){sup 1/2}] eV, and the time dependence of the surface temperature is tabulated. The time integrated emitted spectrum is a robust prediction of the model, determined by T{sub peak} and v{sub 0} alone and insensitive to details of light travel time or slight deviations from spherical symmetry. Adopting commonly assumed progenitor parameters, breakout luminosities of Almost-Equal-To 10{sup 45} erg s{sup -1} and Almost-Equal-To 10{sup 44} erg s{sup -1} in the 0.3-10 keV band are expected for blue supergiant (BSG) and red supergiant (RSG)/He-WR progenitors, respectively (T{sub peak} is well below the band for RSGs, unless their radius is {approx}10{sup 13} cm). >30 detections of SN 1987A-like (BSG) breakouts are expected over the lifetime of ROSAT and XMM-Newton. An absence of such detections would imply either that the typical parameters assumed for BSG progenitors are grossly incorrect or that their envelopes are not hydrostatic. The observed spectrum and duration of XRF 080109/SN 2008D are in tension with a non-relativistic breakout from a stellar surface interpretation.

  9. Three-Dimensional General Relativistic Radiation Magnetohydrodynamical Simulation of Super-Eddington Accretion, using a new code HARMRAD with M1 Closure

    CERN Document Server

    McKinney, Jonathan C; Sadowski, Aleksander; Narayan, Ramesh

    2013-01-01

    Black hole (BH) accretion flows and jets are dynamic hot relativistic magnetized plasma flows whose radiative opacity can significantly affect flow structure and behavior. We describe a numerical scheme, tests, and an astrophysically relevant application using the M1 radiation closure within a new three-dimensional (3D) general relativistic (GR) radiation (R) magnetohydrodynamics (MHD) massively parallel code called HARMRAD. Our 3D GRRMHD simulation of super-Eddington accretion (about $20$ times Eddington) onto a rapidly rotating BH (dimensionless spin $j=0.9375$) shows sustained non-axisymmemtric disk turbulence, a persistent electromagnetic jet driven by the Blandford-Znajek effect, and a total radiative output consistently near the Eddington rate. The total accretion efficiency is of order $20\\%$, the large-scale electromagnetic jet efficiency is of order $10\\%$, and the total radiative efficiency that reaches large distances remains low at only order $1\\%$. However, the radiation jet and the electromagnet...

  10. Self-consistent simulation of radiation and space-charge in high-brightness relativistic electron beams

    Science.gov (United States)

    Gillingham, David R.

    2007-12-01

    The ability to preserve the quality of relativistic electron beams through transport bend elements such as a bunch compressor chicane is increasingly difficult as the current increases because of effects such as coherent synchrotron radiation (CSR) and space-charge. Theoretical CSR models and simulations, in their current state, often make unrealistic assumptions about the beam dynamics and/or structures. Therefore, we have developed a model and simulation that contains as many of these elements as possible for the purpose of making high-fidelity end-to-end simulations. Specifically, we are able to model, in a completely self-consistent, three-dimensional manner, the sustained interaction of radiation and space-charge from a relativistic electron beam in a toroidal waveguide with rectangular cross-section. We have accomplished this by combining a time-domain field solver that integrates a paraxial wave equation valid in a waveguide when the dimensions are small compared to the bending radius with a particle-in-cell dynamics code. The result is shown to agree with theory under a set of constraints, namely thin rigid beams, showing the stimulation resonant modes and including comparisons for waveguides approximating vacuum, and parallel plate shielding. Using a rigid beam, we also develop a scaling for the effect of beam width, comparing both our simulation and numerical integration of the retarded potentials. We further demonstrate the simulation calculates the correct longitudinal space-charge forces to produce the appropriate potential depression for a converging beam in a straight waveguide with constant dimensions. We then run fully three-dimensional, self-consistent end-to-end simulations of two types of bunch compressor designs, illustrating some of the basic scaling properties and perform a detailed analysis of the output phase-space distribution. Lastly, we show the unique ability of our simulation to model the evolution of charge/energy perturbations on a

  11. Gamma-Ray Burst Dynamics and Afterglow Radiation from Adaptive Mesh Refinement, Special Relativistic Hydrodynamic Simulations

    CERN Document Server

    De Colle, Fabio; Lopez-Camara, Diego; Ramirez-Ruiz, Enrico

    2011-01-01

    We report on the development of Mezcal-SRHD, a new adaptive mesh refinement, special relativistic hydrodynamics (SRHD) code, developed with the aim of studying the highly relativistic flows in Gamma-Ray Burst sources. The SRHD equations are solved using finite volume conservative solvers. The correct implementation of the algorithms is verified by one-dimensional (1D) shock tube and multidimensional tests. The code is then applied to study the propagation of 1D spherical impulsive blast waves expanding in a stratified medium with $\\rho \\propto r^{-k}$, bridging between the relativistic and Newtonian phases, as well as to a two-dimensional (2D) cylindrically symmetric impulsive jet propagating in a constant density medium. It is shown that the deceleration to non-relativistic speeds in one-dimension occurs on scales significantly larger than the Sedov length. This transition is further delayed with respect to the Sedov length as the degree of stratification of the ambient medium is increased. This result, toge...

  12. Vacuum channeling radiation by relativistic electrons in a transverse field of a laser-based Bessel beam.

    Science.gov (United States)

    Schächter, L; Kimura, W D

    2015-05-15

    Relativistic electrons counterpropagating through the center of a radially polarized J_{1} optical Bessel beam in vacuum will emit radiation in a manner analogous to the channeling radiation that occurs when charged particles traverse through a crystal lattice. However, since this interaction occurs in vacuum, problems with scattering of the electrons by the lattice atoms are eliminated. Contrary to inverse Compton scattering, the emitted frequency is also determined by the amplitude of the laser field, rather than only by its frequency. Adjusting the value of the laser field permits the tuning of the emitted frequency over orders of magnitude, from terahertz to soft X rays. High flux intensities are predicted (~100 MW/cm^{2}). Extended interaction lengths are feasible due to the diffraction-free properties of the Bessel beam and its radial field, which confines the electron trajectory within the center of the Bessel beam.

  13. Relativistic radiation belt electron responses to GEM magnetic storms: Comparison of CRRES observations with 3-D VERB simulations

    Science.gov (United States)

    Kim, Kyung-Chan; Shprits, Yuri; Subbotin, Dmitriy; Ni, Binbin

    2012-08-01

    Understanding the dynamics of relativistic electron acceleration, loss, and transport in the Earth's radiation belt during magnetic storms is a challenging task. The U.S. National Science Foundation's Geospace Environment Modeling (GEM) has identified five magnetic storms for in-depth study that occurred during the second half of the Combined Release and Radiation Effects Satellite (CRRES) mission in the year 1991. In this study, we show the responses of relativistic radiation belt electrons to the magnetic storms by comparing the time-dependent 3-D Versatile Electron Radiation Belt (VERB) simulations with the CRRES MEA 1 MeV electron observations in order to investigate the relative roles of the competing effects of previously proposed scattering mechanisms at different storm phases, as well as to examine the extent to which the simulations can reproduce observations. The major scattering processes in our model are radial transport due to Ultra Low Frequency (ULF) electromagnetic fluctuations, pitch angle and energy diffusion including mixed diffusion by whistler mode chorus waves outside the plasmasphere, and pitch angle scattering by plasmaspheric hiss inside the plasmasphere. The 3-D VERB simulations show that during the storm main phase and early recovery phase the estimated plasmapause is located deep in the inner region, indicating that pitch angle scattering by chorus waves can be a dominant loss process in the outer belt. We have also confirmed the important role played by mixed energy-pitch angle diffusion by chorus waves, which tends to reduce the fluxes enhanced by local acceleration, resulting in comparable levels of computed and measured fluxes. However, we cannot reproduce the more pronounced flux dropout near the boundary of our simulations during the main phase, which indicates that non-adiabatic losses may extend toL-shells lower than our simulation boundary. We also provide a detailed description of simulations for each of the GEM storm events.

  14. On the deceleration of relativistic jets in active galactic nuclei I: Radiation drag

    CERN Document Server

    Beskin, V S

    2016-01-01

    Deceleration of relativistic jets from active galactic nuclei (AGNs) detected recently by MOJAVE team is discussed in connection with the interaction of the jet material with the external photon field. Appropriate energy density of the isotropic photon field which is necessary to decelerate jets is determined. It is shown that the disturbances of the electric potential and magnetic surfaces play important role in general dynamics of particle deceleration.

  15. On the deceleration of relativistic jets in active galactic nuclei- I. Radiation drag

    Science.gov (United States)

    Beskin, V. S.; Chernoglazov, A. V.

    2016-12-01

    Deceleration of relativistic jets from active galactic nuclei (AGNs) detected recently by the Monitoring Of Jets in Active galactic nuclei with Very Long Baseline Array Experiments (MOJAVE) team is discussed in connection with the interaction of the jet material with an external photon field. The appropriate energy density of the isotropic photon field necessary to decelerate jets is determined. It is shown that disturbances of the electric potential and magnetic surfaces play an important role in the general dynamics of particle deceleration.

  16. The Blackbody Radiation Spectrum Follows from Zero-Point Radiation and the Structure of Relativistic Spacetime in Classical Physics

    CERN Document Server

    Boyer, Timothy H

    2011-01-01

    The analysis of this article is entirely within classical physics. Any attempt to describe nature within classical physics requires the presence of Lorentz-invariant classical electromagnetic zero-point radiation so as to account for the Casimir forces between parallel conducting plates at low temperatures. Furthermore, conformal symmetry carries solutions of Maxwell's equations into solutions. In an inertial frame, conformal symmetry leaves zero-point radiation invariant and does not connect it to non-zero-temperature; time-dilating conformal transformations carry the Lorentz-invariant zero-point radiation spectrum into zero-point radiation and carry the thermal radiation spectrum at non-zero temperature into thermal radiation at a different non-zero-temperature. However, in a non-inertial frame, a time-dilating conformal transformation carries classical zero-point radiation into thermal radiation at a finite non-zero-temperature. By taking the no-acceleration limit, one can obtain the Planck radiation spect...

  17. Signals at ground level of relativistic solar particles associated with a radiation storm on 2014 April 18

    Science.gov (United States)

    Augusto, Carlos; Navia, Carlos; de Oliveira, Marcel N.; Fauth, Anderson; Nepomuceno, André

    2016-02-01

    Active region NOAA AR2036, located at S20W34 at the Sun disk, produced a moderately strong (GOES class M7.3) flare on 2014 April 18. The flare itself was long in duration, and a halo coronal mass ejection (CME) was emitted. In addition, a radiation storm, that is, solar energetic particles (SEP), began to reach the Earth at 13:30 UT in the aftermath of the solar blast, meeting the condition of an S1 (minor) radiation storm level. In temporal coincidence with the onset of the S1 radiation storm, the Tupi telescopes located within the South Atlantic Anomaly (SAA) detected a fast rise in the muon counting rate, caused by relativistic protons from this solar blast, with a confidence of up to 3.5% at peak. At the time of the solar blast, of all ground-based detectors, the Tupi telescopes had the best geoeffective location. Indeed, in association with the radiation storm, a gradual increase in the particle intensity was found in some neutron monitors (NMs), all of them in the west region relative to the Sun-Earth line, yet within the geoeffective region. However, their confidence levels are smaller: up to 3%. The fast rising observed at Tupi suggests possible detection of solar particles emitted during the impulsive phase, following by a gradual phase observed also at NMs. Details of these observations, including the expected energy spectrum, are reported.

  18. Characterization and Application of Hard X-Ray Betatron Radiation Generated by Relativistic Electrons from a Laser-Wakefield Accelerator

    CERN Document Server

    Schnell, Michael; Uschmann, Ingo; Jansen, Oliver; Kaluza, Malte Christoph; Spielmann, Christian

    2015-01-01

    The necessity for compact table-top x-ray sources with higher brightness, shorter wavelength and shorter pulse duration has led to the development of complementary sources based on laser-plasma accelerators, in contrast to conventional accelerators. Relativistic interaction of short-pulse lasers with underdense plasmas results in acceleration of electrons and in consequence in the emission of spatially coherent radiation, which is known in the literature as betatron radiation. In this article we report on our recent results in the rapidly developing field of secondary x-ray radiation generated by high-energy electron pulses. The betatron radiation is characterized with a novel setup allowing to measure the energy, the spatial energy distribution in the far-field of the beam and the source size in a single laser shot. Furthermore, the polarization state is measured for each laser shot. In this way the emitted betatron x-rays can be used as a non-invasive diagnostic tool to retrieve very subtle information of t...

  19. Observational evidence of competing source, loss, and transport processes for relativistic electrons in Earth's outer radiation belt

    Science.gov (United States)

    Turner, Drew; Mann, Ian; Usanova, Maria; Rodriguez, Juan; Henderson, Mike; Angelopoulos, Vassilis; Morley, Steven; Claudepierre, Seth; Li, Wen; Kellerman, Adam; Boyd, Alexander; Kim, Kyung-Chan

    Earth’s outer electron radiation belt is a region of extreme variability, with relativistic electron intensities changing by orders of magnitude over time scales ranging from minutes to years. Extreme variations of outer belt electrons ultimately result from the relative impacts of various competing source (and acceleration), loss, and transport processes. Most of these processes involve wave-particle interactions between outer belt electrons and different types of plasma waves in the inner magnetosphere, and in turn, the activity of these waves depends on different solar wind and magnetospheric driving conditions and thus can vary drastically from event to event. Using multipoint analysis with data from NASA’s Van Allen Probes, THEMIS, and SAMPEX missions, NOAA’s GOES and POES constellations, and ground-based observatories, we present results from case studies revealing how different source/acceleration and loss mechanisms compete during active periods to result in drastically different distributions of outer belt electrons. By using a combination of low-Earth orbiting and high-altitude-equatorial orbiting satellites, we briefly review how it is possible to get a much more complete picture of certain wave activity and electron losses over the full range of MLTs and L-shells throughout the radiation belt. We then show example cases highlighting the importance of particular mechanisms, including: substorm injections and whistler-mode chorus waves for the source and acceleration of relativistic electrons; magnetopause shadowing and wave-particle interactions with EMIC waves for sudden losses; and ULF wave activity for driving radial transport, a process which is important for redistributing relativistic electrons, contributing both to acceleration and loss processes. We show how relativistic electron enhancement events involve local acceleration that is consistent with wave-particle interactions between a seed population of 10s to 100s of keV electrons, with a

  20. Active control of radiated pressure of a submarine hull

    Science.gov (United States)

    Pan, Xia; Tso, Yan; Juniper, Ross

    2008-03-01

    A theoretical analysis of the active control of low-frequency radiated pressure from submarine hulls is presented. Two typical hull models are examined in this paper. Each model consists of a water-loaded cylindrical shell with a hemispherical shell at one end and conical shell at the other end, which forms a simple model of a submarine hull. The conical end is excited by an axial force to simulate propeller excitations while the other end is free. The control action is implemented through a Tee-sectioned circumferential stiffener driven by pairs of PZT stack actuators. These actuators are located under the flange of the stiffener and driven out of phase to produce a control moment. A number of cost functions for minimizing the radiated pressure are examined. In general, it was found that the control system was capable of reducing more than half of the total radiated pressure from each of the submarine hull for the first three axial modes.

  1. Radiation pressure on a dielectric wedge

    CERN Document Server

    Mansuripur, Masud; Moloney, Jerome V

    2014-01-01

    The force of electromagnetic radiation on a dielectric medium may be derived by a direct application of the Lorentz law of classical electrodynamics. While the light's electric field acts upon the (induced) bound charges in the medium, its magnetic field exerts a force on the bound currents. We use the example of a wedge-shaped solid dielectric, immersed in a transparent liquid and illuminated at Brewster's angle, to demonstrate that the linear momentum of the electromagnetic field within dielectrics has neither the Minkowski nor the Abraham form; rather, the correct expression for momentum density has equal contributions from both. The time rate of change of the incident momentum thus expressed is equal to the force exerted on the wedge plus that experienced by the surrounding liquid.

  2. Atmospheric pressure photoionization using tunable VUV synchrotron radiation

    Science.gov (United States)

    Giuliani, A.; Giorgetta, J.-L.; Ricaud, J.-P.; Jamme, F.; Rouam, V.; Wien, F.; Laprévote, O.; Réfrégiers, M.

    2012-05-01

    We report here the first coupling of an atmospheric pressure photoionization (APPI) source with a synchrotron radiation beamline in the vacuum ultra-violet (VUV). A commercial APPI source of a QStar Pulsar i from AB Sciex was modified to receive photons from the DISCO beamline at the SOLEIL synchrotron radiation facility. Photons are delivered at atmospheric pressure in the 4-20 eV range. The advantages of this new set up, termed SR-APPI, over classical APPI are spectral purity and continuous tunability. The technique may also be used to perform tunable photoionization mass spectrometry on fragile compounds difficult to vaporize by classical methods.

  3. NOAA POES Observations of Relativistic Electron Precipitation during a Radiation Belt Depletion Event

    Science.gov (United States)

    Millan, R. M.; Yando, K.; Green, J. C.

    2008-12-01

    We present POES observations of relativistic electron precipitation during an electron depletion event observed by GOES and GPS. On January 19, 2000 NOAA-15 passed very near the MAXIS balloon payload (L=4.7) which detected an intense duskside precipitation event (Millan et al., 2007). Recent work has shown that the NOAA MEPED proton detector responds to electrons above ~700 keV. We combine data from this high energy channel with data from the MEPED electron detector to examine the energy distribution and spatial extent of precipitation during this period. The results are compared with the MAXIS balloon observations.

  4. Pion production via proton synchrotron radiation in strong magnetic fields in relativistic field theory: Scaling relations and angular distributions

    Science.gov (United States)

    Maruyama, Tomoyuki; Cheoun, Myung-Ki; Kajino, Toshitaka; Mathews, Grant J.

    2016-06-01

    We study pion production by proton synchrotron radiation in the presence of a strong magnetic field when the Landau numbers of the initial and final protons are ni,f ∼104-105. We find in our relativistic field theory calculations that the pion decay width depends only on the field strength parameter which previously was only conjectured based upon semi-classical arguments. Moreover, we also find new results that the decay width satisfies a robust scaling relation, and that the polar angular distribution of emitted pion momenta is very narrow and can be easily obtained. This scaling implies that one can infer the decay width in more realistic magnetic fields of 1015 G, where ni,f ∼1012-1013, from the results for ni,f ∼104-105. The resultant pion intensity and angular distributions for realistic magnetic field strengths are presented and their physical implications discussed.

  5. Local Dynamical Instabilities in Magnetized, Radiation Pressure Supported Accretion Disks

    CERN Document Server

    Blaes, Omer M; Blaes, Omer; Socrates, Aristotle

    2000-01-01

    We present a general linear dispersion relation which describes the coupled behavior of magnetorotational, photon bubble, and convective instabilities in weakly magnetized, differentially rotating accretion disks. We presume the accretion disks to be geometrically thin and supported vertically by radiation pressure. We fully incorporate the effects of a nonzero radiative diffusion length on the linear modes. In an equilibrium with purely vertical magnetic field, the vertical magnetorotational modes are completely unaffected by compressibility, stratification, and radiative diffusion. However, in the presence of azimuthal fields, which are expected in differentially rotating flows, the growth rate of all magnetorotational modes can be reduced substantially below the orbital frequency. This occurs if diffusion destroys radiation sound waves on the length scale of the instability, and the magnetic energy density of the azimuthal component exceeds the non-radiative thermal energy density. While sluggish in this c...

  6. Jet formation from massive young stars: Magnetohydrodynamics versus radiation pressure

    CERN Document Server

    Vaidya, Bhargav; Beuther, Henrik; Porth, Oliver

    2011-01-01

    Observations indicate that outflows from massive young stars are more collimated during their early evolution compared to later stages. Our paper investigates various physical processes that impacts the outflow dynamics, i.e. its acceleration and collimation. We perform axisymmetric MHD simulations particularly considering the radiation pressure exerted by the star and the disk. We have modified the PLUTO code to include radiative forces in the line-driving approximation. We launch the outflow from the innermost disk region (r < 50 AU) by magneto-centrifugal acceleration. In order to disentangle MHD effects from radiative forces, we start the simulation in pure MHD, and later switch on the radiation force. We perform a parameter study considering different stellar masses (thus luminosity), magnetic flux, and line-force strength. For our reference simulation - assuming a 30 Msun star, we find substantial de-collimation of 35 % due to radiation forces. The opening angle increases from 20 deg to 32 deg for st...

  7. The Effect of the Gravitational Mass on the Electromagnetic Radiation from an Oblique, Relativistically Rotating Dipole (Neutron Star)

    CERN Document Server

    AlMuhammad, Anwar S

    2002-01-01

    Relying on the magnetic dipole model of the pulsar, we use the extension of the work of Haxton-Ruffini [31] for single charges by DePaolis-Ingrosso-Qadir [32] for an obliquely rotating magnetic dipole, to incorporate the effect of the gravitational mass. So, by using the numerical and analytical solutions of the differential equation for the radiation, we construct the energy spectra for different masses of the dipole-NS. These spectra show that, in relatively low angular momentum l, the effect of the gravitational mass is very significant in suppressing the relativistic enhancement factor, which had been found [27, 28, 32], by two to three orders of magnitude, as the mass changes from 0.5 solar mass to 3 solar masses. It is an indication that most of the angular momentum of the NS is retained as rotational kinetic energy instead of being radiated as an electromagnetic energy. Also, the suppressing in radiation energy is more or less independent of the angular momentum, and the high rotational velocity. We al...

  8. Improved Solar-Radiation-Pressure Models for GPS Satellites

    Science.gov (United States)

    Bar-Sever, Yoaz; Kuang, Da

    2006-01-01

    A report describes a series of computational models conceived as an improvement over prior models for determining effects of solar-radiation pressure on orbits of Global Positioning System (GPS) satellites. These models are based on fitting coefficients of Fourier functions of Sun-spacecraft- Earth angles to observed spacecraft orbital motions.

  9. Boosted high harmonics pulse from a double-sided relativistic mirror

    CERN Document Server

    Esirkepov, T Zh; Kando, M; Pirozhkov, A S; Zhidkov, A G

    2009-01-01

    A high-density thin plasma slab, accelerating in the radiation pressure dominant regime by a co-propagating ultra-intense electromagnetic wave, reflects a counter-propagating relativistically strong electromagnetic wave, producing strongly time-compressed and intensified radiation due to the double Doppler effect. The reflected light contains relativistic harmonics generated at the plasma slab, all upshifted with the same factor as the fundamental mode of the incident light.

  10. Detection of radiation pressure acting on 2009 BD

    Science.gov (United States)

    Micheli, Marco; Tholen, David J.; Elliott, Garrett T.

    2012-05-01

    We report the direct detection of radiation pressure on the asteroid 2009 BD, one of the smallest multi-opposition near-Earth objects currently known, with H ˜ 28.4. Under the purely gravitational model of NEODyS the object is currently considered a possible future impactor, with impact solutions starting in 2071. The detection of a radiation-related acceleration allows us to estimate an Area to Mass Ratio ( AMR) for the object, that can be converted (under some assumptions) into a range of possible values for its average density. Our result AMR = (2.97 ± 0.33) × 10 -4 m 2 kg -1 is compatible with the object being of natural origin, and it is narrow enough to exclude a man-made nature. The possible origin of this object, its future observability, and the importance of radiation pressure in the impact monitoring process are also discussed.

  11. Detection of radiation pressure acting on 2009 BD

    CERN Document Server

    Micheli, Marco; Elliott, Garrett T

    2011-01-01

    We report the direct detection of radiation pressure on the asteroid 2009 BD, one of the smallest multi-opposition near-Earth objects currently known, with H ~ 28.4. Under the purely gravitational model of NEODyS the object is currently considered a possible future impactor, with impact solutions starting in 2071. The detection of a radiation-related acceleration allows us to estimate an Area to Mass Ratio (AMR) for the object, that can be converted (under some assumptions) into a range of possible values for its average density. Our result AMR = (2.97 \\pm 0.33) x 10^(-4) m^2 kg^(-1) is compatible with the object being of natural origin, and it is narrow enough to exclude a man-made nature. The possible origin of this object, its future observability, and the importance of radiation pressure in the impact monitoring process, are also discussed.

  12. On origin and destruction of relativistic dust and its implication for ultrahigh energy cosmic rays

    CERN Document Server

    Hoang, Thiem; Schlickeiser, R

    2014-01-01

    Dust grains may be accelerated to relativistic speeds by radiation pressure of luminous sources, diffusive shocks, and other acceleration mechanisms. Such relativistic grains have been suggested as potential primary particles of ultrahigh energy cosmic rays (UHECRs). In this paper, we reexamine this idea by studying in detail different destruction mechanisms for relativistic grains moving with Lorentz factor $\\gamma$ through a variety of environment conditions. For the solar radiation field, we find that sublimation/melting is a dominant destruction mechanism for silicate grains and large graphite grains. Using an improved treatment of photoelectric emission, we calculate the closest distance that relativistic grains can approach the Sun before destroyed by Coulomb explosions. A range of survival parameters for relativistic grains (size $a$ and $\\gamma$) against both sublimation and Coulomb explosions by the solar radiation field is identified. We also study collisional destruction mechanisms, consisting of e...

  13. Observation of coherent transition radiation using relativistic pico second electron pulse

    Energy Technology Data Exchange (ETDEWEB)

    Jones, C.R.; Kosai, H.; Dutt, J.M. [North Carolina Central Univ., Durham, NC (United States)

    1995-12-31

    When an electron beams passes through boundaries of two different media with different dielectric constants, it generates radiation. The radiation emitted by the prebunched electron beam becomes coherent if the size of the bunch is smaller than the wavelength. Therefore, transition radiation can be considered as a possible broad band radiation source as well as a probe to the pico second and sub picosecond electron beam profiles. Using 1.2 MeV, 200 mA, macropulse electron beam, transition radiation was generated. The electron gun consists of 2.856 GHz Klystron, thermionic cathode. The emitted electron beam was bunched by passing through an alpha magnet. As a result of the combination, a pico second pulse (1.2 MeV, up to 80 A micropulse) was obtained. Experimental results, comparisons with the theory, and simulated electron beam profiles will be presented.

  14. Influence of multiple scattering of relativistic electrons on the linewidth of Parametric X-ray Radiation produced in the extremely Bragg geometry in the absence of photoabsorption

    Science.gov (United States)

    Tabrizi, Mehdi

    2016-10-01

    The multiple scattering effect on the linewidth of backward Parametric X-ray Radiation (PXR) produced in the extremely Bragg geometry by low energy relativistic electrons traversing a single crystal is discussed. It is shown that there are conditions when the influence of photoabsorption on the linewidth can be neglected, and only the multiple scattering process of relativistic electrons in crystals leads to the PXR lines broadening. Based on obtained theoretical and numerical results for the linewidth broadening caused by multiple scattering of 30 and 50 MeV relativistic electrons in a Si crystal of various thicknesses, an experiment could be performed to help in revealing the scattering effect on the PXR lines in the absence of photoabsorption. This leads to more accurate understanding of the influence of scattering process on the linewidth of backward PXR and helps to better construct a table-top narrow bandwidth X-ray source for both scientific and industrial applications.

  15. Simultaneous event-specific estimates of transport, loss, and source rates for relativistic outer radiation belt electrons

    Science.gov (United States)

    Schiller, Q.; Tu, W.; Ali, A. F.; Li, X.; Godinez, H. C.; Turner, D. L.; Morley, S. K.; Henderson, M. G.

    2017-03-01

    The most significant unknown regarding relativistic electrons in Earth's outer Van Allen radiation belt is the relative contribution of loss, transport, and acceleration processes within the inner magnetosphere. Detangling each individual process is critical to improve the understanding of radiation belt dynamics, but determining a single component is challenging due to sparse measurements in diverse spatial and temporal regimes. However, there are currently an unprecedented number of spacecraft taking measurements that sample different regions of the inner magnetosphere. With the increasing number of varied observational platforms, system dynamics can begin to be unraveled. In this work, we employ in situ measurements during the 13-14 January 2013 enhancement event to isolate transport, loss, and source dynamics in a one-dimensional radial diffusion model. We then validate the results by comparing them to Van Allen Probes and Time History of Events and Macroscale Interactions during Substorms observations, indicating that the three terms have been accurately and individually quantified for the event. Finally, a direct comparison is performed between the model containing event-specific terms and various models containing terms parameterized by geomagnetic index. Models using a simple 3/Kp loss time scale show deviation from the event-specific model of nearly 2 orders of magnitude within 72 h of the enhancement event. However, models using alternative loss time scales closely resemble the event-specific model.

  16. Formation of Overheated Regions and Truncated Disks around Black Holes; Three-dimensional General Relativistic Radiation-magnetohydrodynamics Simulations

    CERN Document Server

    Takahashi, Hiroyuki R; Kawashima, Tomohisa; Sekiguchi, Yuichiro

    2016-01-01

    Using three-dimensional general relativistic radiation magnetohydrodynamics simulations of accretion flows around stellar mass black holes, we report that the relatively cold disk ($\\gtrsim 10^{7}$K) is truncated near the black hole. Hot and less-dense regions, of which the gas temperature is $ \\gtrsim 10^9$K and more than ten times higher than the radiation temperature (overheated regions), appear within the truncation radius. The overheated regions also appear above as well as below the disk, and sandwich the cold disk, leading to the effective Compton upscattering. The truncation radius is $\\sim 30 r_{\\rm g}$ for $\\dot{M} \\sim L_{\\rm Edd}/c^2$, where $r_{\\rm g}, \\dot M, L_\\mathrm{Edd}, c$ are the gravitational radius, mass accretion rate, Eddington luminosity, and light speed. Our results are consistent with observations of very high state, whereby the truncated disk is thought to be embedded in the hot rarefied regions. The truncation radius shifts inward to $\\sim 10 r_{\\rm g}$ with increasing mass accret...

  17. Radiation from relativistic electrons in "light" and in conventional undulators. Classical and quantum approaches

    Science.gov (United States)

    Potylitsyn, A. P.; Kolchuzhkin, A. M.; Strokov, S. A.

    2016-07-01

    A photon spectrum of undulator radiation (UR) is calculated in the semi-classical approach. The UR intensity spectrum is determined by an electron trajectory in the undulator neglecting by energy losses for radiation. Using the Planck's law, the UR photon spectrum can be calculated from the classical intensity spectrum both for linear and nonlinear regimes. The radiation of an electron in a field of strong electromagnetic wave (radiation in the "light" undulator) is considered in the quantum electromagnetic frame. Comparison of results obtained by both approaches has been shown that UR spectra in the whole cone coincide with high accuracy for the case xbeam were simulated with taking into account the discrete process of photon emission along an electron trajectory in both kinds of undulators.

  18. Viscous boundary layers of radiation-dominated, relativistic jets. II. The free-streaming jet model

    CERN Document Server

    Coughlin, Eric R

    2015-01-01

    We analyze the interaction of a radiation-dominated jet and its surroundings using the equations of radiation hydrodynamics in the viscous limit. In a previous paper we considered the two-stream scenario, which treats the jet and its surroundings as distinct media interacting through radiation viscous forces. Here we present an alternative boundary layer model, known as the free-streaming jet model -- where a narrow stream of fluid is injected into a static medium -- and present solutions where the flow is ultrarelativistic and the boundary layer is dominated by radiation. It is shown that these jets entrain material from their surroundings and that their cores have a lower density of scatterers and a harder spectrum of photons, leading to observational consequences for lines of sight that look "down the barrel of the jet." These jetted outflow models may be applicable to the jets produced during long gamma-ray bursts and super-Eddington phases of tidal disruption events.

  19. Wave-induced loss of ultra-relativistic electrons in the Van Allen radiation belts

    OpenAIRE

    Yuri Shprits; A. Y. Drozdov; M. Spasojevic; A. C. Kellerman; M. E. Usanova; M. J. Engebretson; O. V. Agapitov; K. G. Orlova; I. S. Zhelavskaya; T. Raita; H. E. Spence; D. N. Baker; H. Zhu

    2016-01-01

    The dipole configuration of the Earth's magnetic field allows for the trapping of highly energetic particles, which form the radiation belts. Although significant advances have been made in understanding the acceleration mechanisms in the radiation belts, the loss processes remain poorly understood. Unique observations on 17 January 2013 provide detailed information throughout the belts on the energy spectrum and pitch angle (angle between the velocity of a particle and the magnetic field) di...

  20. Solar radiation and water vapor pressure to forecast chickenpox epidemics.

    Science.gov (United States)

    Hervás, D; Hervás-Masip, J; Nicolau, A; Reina, J; Hervás, J A

    2015-03-01

    The clear seasonality of varicella infections in temperate regions suggests the influence of meteorologic conditions. However, there are very few data on this association. The aim of this study was to determine the seasonal pattern of varicella infections on the Mediterranean island of Mallorca (Spain), and its association with meteorologic conditions and schooling. Data on the number of cases of varicella were obtained from the Network of Epidemiologic Surveillance, which is composed of primary care physicians who notify varicella cases on a compulsory basis. From 1995 to 2012, varicella cases were correlated to temperature, humidity, rainfall, water vapor pressure, atmospheric pressure, wind speed, and solar radiation using regression and time-series models. The influence of schooling was also analyzed. A total of 68,379 cases of varicella were notified during the study period. Cases occurred all year round, with a peak incidence in June. Varicella cases increased with the decrease in water vapor pressure and/or the increase of solar radiation, 3 and 4 weeks prior to reporting, respectively. An inverse association was also observed between varicella cases and school holidays. Using these variables, the best fitting autoregressive moving average with exogenous variables (ARMAX) model could predict 95 % of varicella cases. In conclusion, varicella in our region had a clear seasonality, which was mainly determined by solar radiation and water vapor pressure.

  1. Core-crust transition pressure for relativistic slowly rotating neutron stars

    CERN Document Server

    González-Romero, L M

    2013-01-01

    We study the influence of core-\\textit{crust} transition pressure changes on the general dynamical properties of neutron star configurations. First we study the matching conditions in core-\\textit{crust} transition pressure region, where phase transitions in the equation of state causes energy density jumps. Then using a surface \\textit{crust} approximation, we can construct configurations where the matter is described by the equation of state of the core of the star and the core-\\textit{crust} transition pressure. We will consider neutron stars in the slow rotation limit, considering perturbation theory up to second order in the angular velocity so that the deformation of the star is also taken into account. The junction determines the parameters of the star such as total mass, angular and quadrupolar momentum.

  2. Non-relativistic radiation mediated shock breakouts: II. Bolometric properties of SN shock breakout

    CERN Document Server

    Katz, Boaz; Waxman, Eli

    2011-01-01

    Exact bolometric light curves of supernova shock breakouts are derived based on the universal, non relativistic, planar breakout solutions (Sapir et al. 2011), assuming spherical symmetry, constant Thomson scattering opacity, \\kappa, and angular intensity corresponding to the steady state planar limit. These approximations are accurate for progenitors with a scale height much smaller than the radius. The light curves are insensitive to the density profile and are determined by the progenitor radius R, and the breakout velocity and density, v_0 and \\rho_0 respectively, and \\kappa. The total breakout energy, E_BO, and the maximal ejecta velocity, v_max, are shown to be E_BO=8.0\\pi R^2\\kappa^-1cv_0 and v_max=2.0v_0 respectively, to an accuracy of about 10%. The calculated light curves are valid up to the time of transition to spherical expansion, t_sph\\approx R/4v_0. Approximate analytic expressions for the light curves are provided for breakouts in which the shock crossing time at breakout, t_0=c/\\kappa\\rho_0v_...

  3. Relativistic-microwave theory of ball lightning

    Science.gov (United States)

    Wu, H.-C.

    2016-06-01

    Ball lightning, a fireball sometimes observed during lightnings, has remained unexplained. Here we present a comprehensive theory for the phenomenon: At the tip of a lightning stroke reaching the ground, a relativistic electron bunch can be produced, which in turn excites intense microwave radiation. The latter ionizes the local air and the radiation pressure evacuates the resulting plasma, forming a spherical plasma bubble that stably traps the radiation. This mechanism is verified by particle simulations. The many known properties of ball lightning, such as the occurrence site, relation to the lightning channels, appearance in aircraft, its shape, size, sound, spark, spectrum, motion, as well as the resulting injuries and damages, are also explained. Our theory suggests that ball lighting can be created in the laboratory or triggered during thunderstorms. Our results should be useful for lightning protection and aviation safety, as well as stimulate research interest in the relativistic regime of microwave physics.

  4. Relativistic-microwave theory of ball lightning.

    Science.gov (United States)

    Wu, H-C

    2016-06-22

    Ball lightning, a fireball sometimes observed during lightnings, has remained unexplained. Here we present a comprehensive theory for the phenomenon: At the tip of a lightning stroke reaching the ground, a relativistic electron bunch can be produced, which in turn excites intense microwave radiation. The latter ionizes the local air and the radiation pressure evacuates the resulting plasma, forming a spherical plasma bubble that stably traps the radiation. This mechanism is verified by particle simulations. The many known properties of ball lightning, such as the occurrence site, relation to the lightning channels, appearance in aircraft, its shape, size, sound, spark, spectrum, motion, as well as the resulting injuries and damages, are also explained. Our theory suggests that ball lighting can be created in the laboratory or triggered during thunderstorms. Our results should be useful for lightning protection and aviation safety, as well as stimulate research interest in the relativistic regime of microwave physics.

  5. Relativistic Gravothermal Instabilities

    CERN Document Server

    Roupas, Zacharias

    2014-01-01

    The thermodynamic instabilities of the self-gravitating, classical ideal gas are studied in the case of static, spherically symmetric configurations in General Relativity taking into account the Tolman-Ehrenfest effect. One type of instabilities is found at low energies, where thermal energy becomes too weak to halt gravity and another at high energies, where gravitational attraction of thermal pressure overcomes its stabilizing effect. These turning points of stability are found to depend on the total rest mass $\\mathcal{M}$ over the radius $R$. The low energy instability is the relativistic generalization of Antonov instability, which is recovered in the limit $G\\mathcal{M} \\ll R c^2$ and low temperatures, while in the same limit and high temperatures, the high energy instability recovers the instability of the radiation equation of state. In the temperature versus energy diagram of series of equilibria, the two types of gravothermal instabilities make themselves evident as a double spiral! The two energy l...

  6. Fluctuations of Quantum Radiation Pressure in Dissipative Fluid

    CERN Document Server

    Wu, C H; Wu, Chun-Hsien; Lee, Da-Shin

    2003-01-01

    Using the generalized Langevin equations involving the stress tensor approach, quantum fluctuations of electromagnetic radiation pressure in the presence of a dissipative environment have been studied. We consider a perfectly reflecting mirror which is exposed to the electromagnetic radiation pressure in a fluid at finite temperature. The dynamics of velocity fluctuations of the mirror is studied analytically in both small time and large time limits. In the small time limit, the minimum uncertainty of the mirror's position measurement from both quantum and thermal noises effects including the photon counting error in the laser interferometer is obtained based on the fluctuation-dissipation theorem as compared with the ''standard quantum limit''. In addition, the result of the large time behavior of fluctuations of the mirror's velocity in a dissipative environment can be applied to the laser interferometer of the ground-based gravitational wave detector. The role of the dissipative effects in this case is pla...

  7. High pressure x-ray diffraction techniques with synchrotron radiation

    Institute of Scientific and Technical Information of China (English)

    刘景

    2016-01-01

    This article summarizes the developments of experimental techniques for high pressure x-ray diffraction (XRD) in diamond anvil cells (DACs) using synchrotron radiation. Basic principles and experimental methods for various diffraction geometry are described, including powder diffraction, single crystal diffraction, radial diffraction, as well as coupling with laser heating system. Resolution in d-spacing of different diffraction modes is discussed. More recent progress, such as extended application of single crystal diffraction for measurements of multigrain and electron density distribution, time-resolved diffraction with dynamic DAC and development of modulated heating techniques are briefl y introduced. The current status of the high pressure beamline at BSRF (Beijing Synchrotron Radiation Facility) and some results are also presented.

  8. Echo-enabled tunable terahertz radiation generation with a laser-modulated relativistic electron beam

    Directory of Open Access Journals (Sweden)

    Zhen Wang

    2014-09-01

    Full Text Available A new scheme to generate narrow-band tunable terahertz (THz radiation using a variant of the echo-enabled harmonic generation is analyzed. We show that by using an energy chirped beam, THz density modulation in the beam phase space can be produced with two lasers having the same wavelength. This removes the need for an optical parametric amplifier system to provide a wavelength-tunable laser to vary the central frequency of the THz radiation. The practical feasibility and applications of this scheme are demonstrated numerically with a start-to-end simulation using the beam parameters at the Shanghai Deep Ultraviolet Free-Electron Laser facility (SDUV. The central frequency of the density modulation can be continuously tuned by either varying the chirp of the beam or the momentum compactions of the chicanes. The influence of nonlinear rf chirp and longitudinal space charge effect have also been studied in our article. The methods to generate the THz radiation in SDUV with the new scheme and the estimation of the radiation power are also discussed briefly.

  9. K{alpha}{sub 1} radiation from heavy, helium-like ions produced in relativistic collisions

    Energy Technology Data Exchange (ETDEWEB)

    Surzhykov, A.; Jentschura, U.D. [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany); Stoehlker, T. [Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany); Fritzsche, S. [Kassel Univ. (Germany). Inst. fuer Physik

    2006-11-15

    Bound-state transitions in few-electron, heavy ions following radiative electron capture are studied within the framework of the density matrix theory and the multiconfiguration Dirac-Fock approach. Special attention is paid to the K{alpha}{sub 1}(1s{sub 1/2}2p{sub 3/2}{sup 1,3}P{sub J=1,2}{yields}1s{sub 1/2}{sup 2} {sup 1}S{sub J=0}) radiative decay of helium-like uranium U{sup 90+} projectiles. This decay has recently been observed at the GSI facility in Darmstadt, giving rise to a surprisingly isotropic angular distribution, which is inconsistent with previous experiments and calculations based on a 'one-particle' model. We show that the unexpected isotropy essentially results from the mutual cancellation of the angular distributions of the {sup 1}P{sub 1}{yields}{sup 1}S{sub 0} electric dipole and {sup 3}P{sub 2}{yields}{sup 1}S{sub 0} magnetic quadrupole transitions, both of which contribute to the K{alpha}{sub 1} radiation. Detailed computations on the anisotropy of the K{alpha}{sub 1} radiation have been carried out for a wide range of projectile energies and are compared to available experimental data. (orig.)

  10. Radiative instability of a relativistic electron beam moving in a photonic crystal

    CERN Document Server

    Baryshevsky, V G

    2010-01-01

    The radiative instability of a beam moving in a photonic crystal of finite dimensions is studied. The dispersion equation is obtained. The law $\\Gamma\\sim \\rho ^{1/\\left( {s + 3} \\right)}$ is shown to be valid and caused by the mixing of the electromagnetic field modes in the finite volume due to the periodic disturbance from the photonic crystal.

  11. Radiative instability of a relativistic electron beam moving in a photonic crystal

    OpenAIRE

    Baryshevsky, V.G.; Gurinovich, A. A.

    2013-01-01

    The radiative instability of a beam moving in a photonic crystal of finite dimensions is studied. The dispersion equation is obtained. The law $\\Gamma\\sim \\rho ^{1/\\left( {s + 3} \\right)}$ is shown to be valid and caused by the mixing of the electromagnetic field modes in the finite volume due to the periodic disturbance from the photonic crystal.

  12. Self-organization of cosmic radiation pressure instability

    Science.gov (United States)

    Hogan, Craig J.

    1991-01-01

    Under some circumstances the absorption of radiation momentum by an absorbing medium opens the possibility of a dynamical instability, sometimes called 'mock gravity'. Here, a simplified abstract model is studied in which the radiation source is assumed to remain spatially uniform, there is no reabsorption or reradiated light, and no forces other than radiative pressure act on the absorbing medium. It is shown that this model displays the unique feature of being not only unstable, but also self-organizing. The structure approaches a statistical dynamical steady state which is almost independent of initial conditions. In this saturated state the absorbers are concentrated in thin walls around empty bubbles; as the instability develops the big bubbles get bigger and the small ones get crushed and disappear. A linear analysis shows that to first order the thin walls are indeed stable structures. It is speculated that this instability may play a role in forming cosmic large-scale structure.

  13. Cooperative scattering and radiation pressure force in dense atomic clouds

    CERN Document Server

    Bachelard, Romain; Courteille, Philippe

    2011-01-01

    We consider the collective scattering by a cloud of $N$ two-level atoms driven by an uniform radiation field. Dense atomic clouds can be described by a continuous density and the problem reduces to deriving the spectrum of the atom-atom coupling operator. For clouds much larger than the optical wavelength, the spectrum is treated as a continuum, and analytical expressions for several macroscopic quantities, such as scattered radiation intensity and radiation pressure force, are derived. The analytical results are then compared to the exact $N$-body solution and with those obtained assuming a symmetric timed Dicke state. In contrast with the symmetric timed Dicke state, our calculations takes account of the back action of the atoms on the driving field leading to phase shifts due to the finite refraction of the cloud.

  14. Ion acceleration through radiation pressure in quanto-electrodynamical regimes

    Science.gov (United States)

    Del Sorbo, Dario; Ridgers, Chris; Laser Plasmas; Fusion Team

    2016-10-01

    The strong radiation pressure carried by high-intensity lasers interacting with plasmas can accelerate ions over very short distances. The resulting compact particle accelerator could find applications in medical physics (radiotherapy) as well as in fundamental physics (hadron interactions). With next-generation multi-petawatt lasers, reaching focused intensity 1023Wcm-2 , ions could potentially reach GeV energies. However, the physics of laser-matter interactions at these extreme intensities is not well understood. In particular, on acceleration by the electromagnetic fields of the laser, the electrons in the plasma start to radiate hard photons prolifically. These hard photons can decay to electron-positron pairs, a cascade of pair production can ensue leading to the formation of an over-dense pair plasma which can absorb the laser-pulse. We have developed a self-consistent theory for both hole boring and light sail radiation pressure ion-acceleration, accounting for radiation-reaction and pair-creation. We show that the key role is played by a pair plasma that arises between the laser and the accelerated ions, strongly modifying the laser absorption.

  15. Atmospheric pressure photoionization using tunable VUV synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Giuliani, A., E-mail: alexandre.giuliani@synchrotron-soleil.fr [Synchrotron SOLEIL, L' Orme des Merisiers, Saint Aubin, 91192 Gif-sur-Yvette (France); INRA, U1008 CEPIA, Rue de la Geraudiere, F-44316 Nantes (France); Giorgetta, J.-L.; Ricaud, J.-P. [Synchrotron SOLEIL, L' Orme des Merisiers, Saint Aubin, 91192 Gif-sur-Yvette (France); Jamme, F. [Synchrotron SOLEIL, L' Orme des Merisiers, Saint Aubin, 91192 Gif-sur-Yvette (France); INRA, U1008 CEPIA, Rue de la Geraudiere, F-44316 Nantes (France); Rouam, V.; Wien, F. [Synchrotron SOLEIL, L' Orme des Merisiers, Saint Aubin, 91192 Gif-sur-Yvette (France); Laprevote, O. [Laboratoire de Spectrometrie de Masse, ICSN-CNRS, 1 Avenue de la Terrasse, 91190 Gif-sur-Yvette (France); Laboratoire de Chimie-Toxicologie Analytique et cellulaire, IFR 71, Faculte des Sciences Pharmaceutiques et Biologiques, Universite Paris Descartes, 4 Avenue de l' Observatoire, 75006 Paris (France); Refregiers, M. [Synchrotron SOLEIL, L' Orme des Merisiers, Saint Aubin, 91192 Gif-sur-Yvette (France)

    2012-05-15

    Highlights: Black-Right-Pointing-Pointer Coupling of an atmospheric pressure photoionization source with a vacuum ultra-violet (VUV) beamline. Black-Right-Pointing-Pointer The set up allows photoionization up to 20 eV. Black-Right-Pointing-Pointer Compared to classical atmospheric pressure photoionization (APPI), our set up offers spectral purity and tunability. Black-Right-Pointing-Pointer Allows photoionization mass spectrometry on fragile and hard to vaporize molecules. - Abstract: We report here the first coupling of an atmospheric pressure photoionization (APPI) source with a synchrotron radiation beamline in the vacuum ultra-violet (VUV). A commercial APPI source of a QStar Pulsar i from AB Sciex was modified to receive photons from the DISCO beamline at the SOLEIL synchrotron radiation facility. Photons are delivered at atmospheric pressure in the 4-20 eV range. The advantages of this new set up, termed SR-APPI, over classical APPI are spectral purity and continuous tunability. The technique may also be used to perform tunable photoionization mass spectrometry on fragile compounds difficult to vaporize by classical methods.

  16. On The Relativistic Classical Motion of a Radiating Spinning Particle in a Magnetic Field

    CERN Document Server

    Kar, Arnab

    2010-01-01

    We propose classical equations of motion for a charged particle with magnetic moment, taking radiation reaction into account. This generalizes the Landau-Lifshitz equations for the spinless case. In the special case of spin-polarized motion in a constant magnetic field (synchrotron motion) we verify that the particle does lose energy. Previous proposals did not predict dissipation of energy and also suffered from runaway solutions analogous to those of the Lorentz-Dirac equations of motion.

  17. A Monte Carlo Code for Relativistic Radiation Transport Around Kerr Black Holes

    Science.gov (United States)

    Schnittman, Jeremy David; Krolik, Julian H.

    2013-01-01

    We present a new code for radiation transport around Kerr black holes, including arbitrary emission and absorption mechanisms, as well as electron scattering and polarization. The code is particularly useful for analyzing accretion flows made up of optically thick disks and optically thin coronae. We give a detailed description of the methods employed in the code and also present results from a number of numerical tests to assess its accuracy and convergence.

  18. On the relativistic classical motion of a radiating spinning particle in a magnetic field

    Science.gov (United States)

    Kar, Arnab; Rajeev, S. G.

    2011-04-01

    We propose classical equations of motion for a charged particle with magnetic moment, taking radiation reaction into account. This generalizes the Landau-Lifshitz equations for the spinless case. In the special case of spin-polarized motion in a constant magnetic field (synchrotron motion) we verify that the particle does lose energy. Previous proposals did not predict dissipation of energy and also suffered from runaway solutions analogous to those of the Lorentz-Dirac equations of motion.

  19. ``Pheudo-cyclotron'' radiation and transport of non-relativistic particles in inhomogeneous sub-Larmor-scale electro-magnetic fields

    Science.gov (United States)

    Keenan, Brett; Ford, Alex; Medvedev, Mikhail

    2014-10-01

    Plasma turbulence in some astrophysical objects (e.g., weakly magnetized collisionless shocks in GRBs and SN) has small-scale electro-magnetic field fluctuations. We study spectral characteristics of radiation produced by particles moving in such turbulence and relate it to transport properties (diffusion) of these particles. It was shown earlier that relativistic particles produce jitter radiation, which spectral characteristics are markedly different from synchrotron radiation. Here we study radiation produced by non-relativistic particles. Unlike radiation in homogeneous field, which spectrum consists of a single cyclotron harmonic, radiation in the sub-Larmor-scale turbulence reflects statistical properties of the underlying magnetic field. We present both analytical estimates and results of ab initio numerical simulations. We also show that particle propagation in such turbulence is diffusive and evaluate the diffusion coefficient. We demonstrate that the diffusion coefficient correlates with some spectral parameters. These results can be very valuable for remote diagnostics of laboratory and astrophysical plasmas. Supported by grant DOE grant DE-FG02-07ER54940 and NSF grant AST-1209665.

  20. A public code for general relativistic, polarised radiative transfer around spinning black holes

    Science.gov (United States)

    Dexter, Jason

    2016-10-01

    Ray tracing radiative transfer is a powerful method for comparing theoretical models of black hole accretion flows and jets with observations. We present a public code, GRTRANS, for carrying out such calculations in the Kerr metric, including the full treatment of polarised radiative transfer and parallel transport along geodesics. The code is written in FORTRAN 90 and efficiently parallelises with OPENMP, and the full code and several components have PYTHON interfaces. We describe several tests which are used for verifiying the code, and we compare the results for polarised thin accretion disc and semi-analytic jet problems with those from the literature as examples of its use. Along the way, we provide accurate fitting functions for polarised synchrotron emission and transfer coefficients from thermal and power-law distribution functions, and compare results from numerical integration and quadrature solutions of the polarised radiative transfer equations. We also show that all transfer coefficients can play an important role in predicted images and polarisation maps of the Galactic centre black hole, Sgr A*, at submillimetre wavelengths.

  1. Relativistic many-body calculation of energies, lifetimes, polarizabilities, blackbody radiative shift and hyperfine constants in Lu2+

    CERN Document Server

    Safronova, U I; Johnson, W R

    2016-01-01

    Energy levels of 30 low-lying states of Lu2+ and allowed electric-dipole matrix elements between these states are evaluated using a relativistic all-order method in which all single, double and partial triple excitations of Dirac-Fock wave functions are included to all orders of perturbation theory. Matrix elements are critically evaluated for their accuracy and recommended values of the matrix elements are given together with uncertainty estimates. Line strengths, transition rates and lifetimes of the metastable 5d(3/2) and 5d(5/2) states are calculated. Recommended values are given for static polarizabilities of the 6s, 5d and 6p states and tensor polarizabilities of the 5d and 6p(3/2) states. Uncertainties of the polarizability values are estimated in all cases. The blackbody radiation shift of the 6s(1/2)-5d(5/2) transition frequency of the Lu2+ ion is calculated with the aid of the recommended scalar polarizabilities of the 6s(1/2) and 5d(5/2) states. Finally, A and B hyperfine constants are determined f...

  2. Prediction of relativistic electron flux in the Earth's outer radiation belt at geostationary orbit by adaptive methods

    Science.gov (United States)

    Myagkova, I. N.; Dolenko, S. A.; Efitorov, A. O.; Shirokii, V. R.; Sentemova, N. S.

    2017-01-01

    The paper investigates the possibilities of the prediction of the time series of the flux of relativistic electrons in the Earth's outer radiation belt by parameters of the solar wind and the interplanetary magnetic field measured at the libration point and by the values of the geomagnetic indices. Different adaptive methods are used (namely, artificial neural networks, group method of data handling, and projection to latent structures). The comparison of quality indicators of predictions with a horizon of 1-12 h between each other and with the trivial model prediction has shown that the best result is obtained for the average value of the responses of three neural networks that have been trained with different sets of initial weights. The prediction result of the group method of data handling is close to the result of neural networks, and the projection to latent structures is much worse. It is shown that an increase in the prediction horizon from 1 to 12 h reduces its quality but not dramatically, which makes it possible to use these methods for medium-term prediction.

  3. Swift J1644+57: an Ideal Test Bed of Radiation Mechanisms in a Relativistic Super-Eddington Jet

    CERN Document Server

    Crumley, Patrick; Santana, Rodolfo; Hernández, Roberto A; Kumar, Pawan; Markoff, Sera

    2016-01-01

    Within the first 10 days after Swift discovered the jetted tidal disruption event (TDE) Sw J1644+57, simultaneous observations in the radio, near-infrared, optical, X-ray and gamma-ray bands were carried out. These multiwavelength data provide a unique opportunity to constrain the emission mechanism and make-up of a relativistic super-Eddington jet. We consider an exhaustive variety of radiation mechanisms for the generation of X-rays in this TDE, and rule out many processes such as SSC, photospheric and proton synchrotron. The infrared to gamma-ray data for Sw J1644+57 are consistent with synchrotron and external-inverse-Compton (EIC) processes provided that electrons in the jet are continuously accelerated on a time scale shorter than ~1% of the dynamical time to maintain a power-law distribution. The requirement of continuous electron acceleration points to magnetic reconnection in a Poynting flux dominated jet. The EIC process may require fine tuning to explain the observed temporal decay of the X-ray lig...

  4. Relativistic many-body calculation of energies, lifetimes, polarizabilities, blackbody radiative shift, and hyperfine constants in Lu2 +

    Science.gov (United States)

    Safronova, U. I.; Safronova, M. S.; Johnson, W. R.

    2016-09-01

    Energy levels of 30 low-lying states of Lu2 + and allowed electric-dipole matrix elements between these states are evaluated using a relativistic all-order method in which all single, double, and partial triple excitations of Dirac-Fock wave functions are included to all orders of perturbation theory. Matrix elements are critically evaluated for their accuracy and recommended values of the matrix elements are given together with uncertainty estimates. Line strengths, transition rates, and lifetimes of the metastable 5 d3 /2 and 5 d5 /2 states are calculated. Recommended values are given for static polarizabilities of the 6 s , 5 d , and 6 p states and tensor polarizabilities of the 5 d and 6 p3 /2 states. Uncertainties of the polarizability values are estimated in all cases. The blackbody radiation shift of the 6 s1 /2-5 d5 /2 transition frequency of the Lu2 + ion is calculated with the aid of the recommended scalar polarizabilities of the 6 s1 /2 and 5 d5 /2 states. Finally, A and B hyperfine constants are determined for states of 2+175Lu with n ≤9 . This work provides recommended values of transition matrix elements, polarizabilities, and hyperfine constants of Lu2 +, critically evaluated for accuracy, for benchmark tests of high-precision theoretical methodology and planning of future experiments.

  5. Coherent X-Radiation Excited by a Beam of Multiply Scattered Relativistic Electrons in a Single Crystal in the Bragg Scattering Geometry

    Science.gov (United States)

    Blazhevich, S. V.; Noskov, A. V.; Nemtsev, S. N.

    2016-11-01

    A dynamic theory of coherent x-radiation emitted by a divergent beam of relativistic electrons traversing a thin single-crystal plate is developed which takes into account multiple scattering of the electrons on the target atoms. The case is considered in which the target is quite thin, so that it is not necessary to take absorption of radiation into account, but the electron path in the target is quite long, so that it is necessary to take multiple scattering into account. Expressions are obtained which describe the spectral-angular characteristics of parametric x-radiation and diffracted transient radiation under these conditions. Conditions are described under which diffracted bremsstrahlung radiation can be neglected. The possibility of manifesting the effects of dynamic diffraction is investigated.

  6. Pion Production from Proton Synchrotron Radiation under Strong Magnetic Field in a Relativistic Quantum Approach

    Directory of Open Access Journals (Sweden)

    Maruyama Tomoyuki

    2016-01-01

    Full Text Available We study pion production from proton synchrotron radiation in the presence of strong magnetic fields by using the exact proton propagator in a strong magnetic field and explicitly including the anomalous magnetic moment. Results in this exact quantum approach do not agree with those obtained in the semi-classical approach. Then, we find that the anomalous magnetic moment of the proton greatly enhances the production rate by about two orders magnitude, and that the decay width satisfies a robust scaling law.

  7. Novel radiation sources using relativistic electrons from infrared to x-rays

    CERN Document Server

    Rullhusen, P; Dhez, P

    1998-01-01

    The purpose of this book is to give a description of the state of the art in theoretical and experimental work achieved in radiation source development. It summarizes clearly and comprehensibly, the basic physical aspects needed to understand the phenomena, and also provides the interested reader with sufficient literature to be able to follow the development in more detail. In addition, it contains a unified view of most theoretical effects and their common properties. The most recent developments as well as references to further work can be found in this volume. In many cases, review article

  8. Non-relativistic radiation mediated shock breakouts: I. Exact bolometric planar breakout solutions

    CERN Document Server

    Sapir, Nir; Waxman, Eli

    2011-01-01

    The problem of a non-steady planar radiation mediated shock (RMS) breaking out from a surface with a power-law density profile, \\rho\\propto x^n, is numerically solved in the approximation of diffusion with constant opacity. For an appropriate choice of time, length and energy scales, determined by the breakout opacity, velocity and density, the solution is universal, i.e. depends only on the density power law index n. The resulting luminosity depends weakly on the value of n. An approximate analytic solution, based on the self-similar hydrodynamic solutions and on the steady RMS solutions, is constructed and shown to agree with the numerical solutions as long as the shock is far from the surface, \\tau>> c/v_{sh}. Approximate analytic expressions, calibrated based on the exact solutions, are provided, that describe the escaping luminosity as a function of time. These results can be used to calculate the bolometric properties of the bursts of radiation produced during supernova (SN) shock breakouts. For complet...

  9. Stormtime Dynamics of the Relativistic Electron Flux in Earth's Radiation Belts

    Science.gov (United States)

    Vassiliadis, D.

    2011-01-01

    A state-vector representation is a powerful technique for describing complex plasma systems. Its framework can be adapted for classification methods which can be used to analyze the system's history and for prediction methods which can serve to forecast its future activity. A state-vector description is developed for the electron flux dynamics in Earth's radiation belts, based on an 11-year (1993-2003) dataset of high-cadence flux measurements from a low-Earth (SAMPEX) orbit over a wide L range and at a fixed energy (2-6 MeV). A clustering algorithm is used to divide the state space into regions, or clusters of vectors, and it becomes evident that flux intensifications during storms correspond to characteristic transitions in state space following geoeffective interplanetary disturbances (such as interplanetary coronal mass ejections and high-speed streams). Examples are discussed to show that the classification is valid for medium-term (several-days) and long-term (solar-cycle-phase) timescales. The state-vector representation is then used as the basis of a predictive model of the flux distribution given upstream solar wind measurements. It is found that model accuracy of storm prediction is maximized if the model is tuned at a highly nonlinear regime. The relation to earlier state representations and models of the radiation belt flux is discussed.

  10. The electromagnetic radiation fields of a relativistic electron avalanche with special attention to the origin of narrow bipolar pulses

    Science.gov (United States)

    Cooray, G. V.; Cooray, G. K.

    2011-12-01

    Gurevich et al. [1] postulated that the source of narrow bipolar pulses, a class of high energy pulses that occur during thunderstorms, could be a runaway electron avalanche driven by the intense electric fields of a thunderstorm. Recently, Watson and Marshall [2] used the modified transmission line model to test the mechanism of the source of narrow bipolar pulses. In a recent paper, Cooray and Cooray [3] demonstrated that the electromagnetic fields of accelerating charges could be used to evaluate the electromagnetic fields from electrical discharges if the temporal and spatial variation of the charges in the discharge is known. In the present study, those equations were utilized to evaluate the electromagnetic fields generated by a relativistic electron avalanche. In the analysis it is assumed that all the electrons in the avalanche are moving with the same speed. In other words, the growth or the decay of the number of electrons takes place only at the head of the avalanche. It is shown that the radiation is emanating only from the head of the avalanche where electrons are being accelerated. It is also shown that an analytical expression for the radiation field of the avalanche at any distance can be written directly in terms of the e-folding length of the avalanche. This makes it possible to extract directly the spatial variation of the e-folding length of the avalanche from the measured radiation fields. In the study this model avalanche was used to investigate whether it can be used to describe the measured electromagnetic fields of narrow bipolar pulses. The results obtained are in reasonable agreement with the two station data of Eack [4] for speeds of propagation around (2 - 2.5) x 10^8 m/s and when the propagation effects on the electric fields measured at the distant station is taken into account. [1] Gurevich et al. (2004), Phys. Lett. A., 329, pp. 348 -361. [2] Watson, S. S. and T. C. Marshall (2007), Geophys. Res. Lett., Vol. 34, L04816, doi: 10

  11. Towards radiation pressure acceleration of protons using linearly polarized ultrashort petawatt laser pulses

    CERN Document Server

    Kim, I Jong; Kim, Chul Min; Kim, Hyung Taek; Sung, Jae Hee; Lee, Seong Ku; Yu, Tae Jun; Choi, Il Woo; Lee, Chang-Lyoul; Nam, Kee Hwan; Nickles, Peter V; Jeong, Tae Moon; Lee, Jongmin

    2013-01-01

    Particle acceleration using ultraintense, ultrashort laser pulses is one of the most attractive topics in relativistic laser-plasma research. We report proton/ion acceleration in the intensity range of 5x1019 W/cm2 to 3.3x1020 W/cm2 by irradiating linearly polarized, 30-fs, 1-PW laser pulses on 10- to 100-nm-thick polymer targets. The proton energy scaling with respect to the intensity and target thickness was examined. The experiments demonstrated, for the first time with linearly polarized light, a transition from the target normal sheath acceleration to radiation pressure acceleration and showed a maximum proton energy of 45 MeV when a 10-nm-thick target was irradiated by a laser intensity of 3.3x1020 W/cm2. The experimental results were further supported by two- and three-dimensional particle-in-cell simulations. Based on the deduced proton energy scaling, proton beams having an energy of ~ 200 MeV should be feasible at a laser intensity of 1.5x1021 W/cm2.

  12. Ion Acceleration by the Radiation Pressure of Slow Electromagnetic Wave

    CERN Document Server

    Bulanov, S V; Kando, M; Pegoraro, F; Bulanov, S S; Geddes, C G R; Schroeder, C; Esarey, E; Leemans, W

    2012-01-01

    When the ions are accelerated by the radiation pressure of the laser pulse, their velocity can not exceed the laser group velocity, in the case when it is less than the speed of light in vacuum. This is demonstrated in two cases corresponding to the thin foil target irradiated by a high intensity laser light and to the hole boring by the laser pulse in the extended plasma accompanied by the collisionless shock wave formation. It is found that the beams of accelerated at the collisionless shock wave front ions are unstable against the Buneman-lke and the Weibel-like instabilities which result in the ion energy spectrum broadening.

  13. Non-adiabatic radiative collapse of a relativistic star under different initial conditions

    Indian Academy of Sciences (India)

    Ranjan Sharma; Ramesh Tikekar

    2012-09-01

    We examine the role of space-time geometry in the non-adiabatic collapse of a star dissipating energy in the form of radial heat flow, studying its evolution under different initial conditions. The collapse of a star filled with a homogeneous perfect fluid is compared with that of a star filled with inhomogeneous imperfect fluid under anisotropic pressure. Both the configurations are spherically symmetric. However, in the latter case, the physical space = constant of the configurations endowed with spheroidal or pseudospheroidal geometry is assumed to be inhomogeneous. It is observed that as long as the collapse is shear-free, its evolution depends only on the mass and size of the star at the onset of collapse.

  14. Exotic dense matter states pumped by relativistic laser plasma in the radiation dominant regime

    CERN Document Server

    Colgan, J; Jr.,; Faenov, A Ya; Pikuz, S A; Wagenaars, E; Booth, N; Brown, C R D; Culfa, O; Dance, R J; Evans, R G; Gray, R J; Hoarty, D J; Kaempfer, T; Lancaster, K L; McKenna, P; Rossall, A L; Skobelev, I Yu; Schulze, K S; Uschmann, I; Zhidkov, A G; Woolsey, N C

    2012-01-01

    The properties of high energy density plasma are under increasing scrutiny in recent years due to their importance to our understanding of stellar interiors, the cores of giant planets$^{1}$, and the properties of hot plasma in inertial confinement fusion devices$^2$. When matter is heated by X-rays, electrons in the inner shells are ionized before the valence electrons. Ionization from the inside out creates atoms or ions with empty internal electron shells, which are known as hollow atoms (or ions)$^{3,4,5}$. Recent advances in free-electron laser (FEL) technology$^{6,7,8,9}$ have made possible the creation of condensed matter consisting predominantly of hollow atoms. In this Letter, we demonstrate that such exotic states of matter, which are very far from equilibrium, can also be formed by more conventional optical laser technology when the laser intensity approaches the radiation dominant regime$^{10}$. Such photon-dominated systems are relevant to studies of photoionized plasmas found in active galactic ...

  15. Non-relativistic radiation mediated shock breakouts: III. Spectral properties of SN shock breakout

    CERN Document Server

    Sapir, Nir; Waxman, Eli

    2013-01-01

    The spectrum of radiation emitted following shock breakout from a star's surface with a power-law density profile $\\rho \\propto x^n$ is investigated. Assuming planar geometry, local Compton equilibrium and bremsstrahlung emission as the dominant photon production mechanism, numerical solutions are obtained for the photon number density and temperature profiles as a function of time, for hydrogen-helium envelopes. The temperature solutions are determined by the breakout shock velocity $v_0$ and the pre-shock breakout density $\\rho_0$, and depend weakly on the value of n. Fitting formulas for the peak surface temperature at breakout as a function of $v_0$ and $\\rho_0$ are provided, with $T_{peak}\\approx 9.44\\exp{[12.63(v_0/c)^{1/2}]}$ eV, and the time dependence of the surface temperature is tabulated. The time integrated emitted spectrum is a robust prediction of the model, determined by $\\mathcal{T}_{\\rm peak}$ and $v_0$ alone and insensitive to details of light travel time or slight deviations from spherical...

  16. Radiation Pressure and Photon Momentum in Negative-Index Media

    CERN Document Server

    Mansuripur, Masud

    2013-01-01

    Radiation pressure and photon momentum in negative-index media are no different than their counterparts in ordinary (positive-index) materials. This is because the parameters responsible for these properties are the admittance, sqrt(epsilon/mu), and the group refractive index n_g of the material (both positive entities), and not the phase refractive index, n=sqrt(epsilon*mu), which is negative in negative-index media. One approach to investigating the exchange of momentum between electromagnetic waves and material media is via the Doppler shift phenomenon. In this paper we use the Doppler shift to arrive at an expression for the radiation pressure on a mirror submerged in a negative-index medium. In preparation for the analysis, we investigate the phenomenon of Doppler shift in various settings, and show the conditions under which a so-called "inverse" Doppler shift could occur. We also argue that a recent observation of the inverse Doppler shift upon reflection from a negative-index medium cannot be correct,...

  17. Radiation pressure on fluffy submicron-sized grains

    CERN Document Server

    Silsbee, Kedron

    2015-01-01

    We investigate the claim that the ratio {\\beta} of radiation pressure force to gravitational force on a dust grain in our solar system can substantially exceed unity for some grain sizes, provided that grain porosity is high enough. For model grains consisting of random aggregates of silicate spherules, we find that the maximum value of {\\beta} is almost independent of grain porosity, but for small (<0.3 {\\mu}m) grains, {\\beta} actually decreases with increasing porosity. These results affect the interpretation of the grain trajectories estimated from the Stardust mission, which were modeled assuming {\\beta} values exceeding one. We find that radiation pressure effects are not large enough for particles Orion and Hylabrook captured by Stardust to be of interstellar origin given their reported impact velocities. We also investigate the effect of metallic iron inclusions in the dust grains, and find that metallic iron will increase {\\beta}, but at least half the grain (by mass) must be iron in order to raise...

  18. The importance of radiation pressure in the launching of jets

    CERN Document Server

    Church, M J; Balucinska-Church, M

    2007-01-01

    Based on the results of applying the extended ADC emission model to three Z-track sources: GX340+0, GX5-1 and CygX-2, we propose an explanation of the Z-track sources in which the Normal and Horizontal Branches are dominated by the increasing radiation pressure of the neutron star. The emitted flux becomes several times super-Eddington at the Hard Apex and Horizontal Branch and we suggest that the inner accretion disk is disrupted by this and that part of the accretion flow is diverted vertically. This position on the Z-track is exactly the position where radio emission is detected showing the presence of jets. We thus propose that high radiation pressure is a necessary condition for the launching of jets. We also show that flaring must consist of unstable nuclear burning and that the mass accretion rate per unit emitting area of the neutron star mdot at the onset of flaring agrees well with the critical theoretical value at which burning becomes unstable.

  19. High pressure x-ray diffraction techniques with synchrotron radiation

    Science.gov (United States)

    Jing, Liu

    2016-07-01

    This article summarizes the developments of experimental techniques for high pressure x-ray diffraction (XRD) in diamond anvil cells (DACs) using synchrotron radiation. Basic principles and experimental methods for various diffraction geometry are described, including powder diffraction, single crystal diffraction, radial diffraction, as well as coupling with laser heating system. Resolution in d-spacing of different diffraction modes is discussed. More recent progress, such as extended application of single crystal diffraction for measurements of multigrain and electron density distribution, time-resolved diffraction with dynamic DAC and development of modulated heating techniques are briefly introduced. The current status of the high pressure beamline at BSRF (Beijing Synchrotron Radiation Facility) and some results are also presented. Project supported by the National Natural Science Foundation of China (Grant Nos. 10875142, 11079040, and 11075175). The 4W2 beamline of BSRF was supported by the Chinese Academy of Sciences (Grant Nos. KJCX2-SW-N20, KJCX2-SW-N03, and SYGNS04).

  20. Kinetic Modeling of Radiative Turbulence in Relativistic Astrophysical Plasmas: Particle Acceleration and High-Energy Flares

    Science.gov (United States)

    Wise, John

    In the near future, next-generation telescopes, covering most of the electromagnetic spectrum, will provide a view into the very earliest stages of galaxy formation. To accurately interpret these future observations, accurate and high-resolution simulations of the first stars and galaxies are vital. This proposal is centered on the formation of the first galaxies in the Universe and their observational signatures in preparation for these future observatories. This proposal has two overall goals: 1. To simulate the formation and evolution of a statistically significant sample of galaxies during the first billion years of the Universe, including all relevant astrophysics while resolving individual molecular clouds, in various cosmological environments. These simulations will utilize a sophisticated physical model of star and black hole formation and feedback, including radiation transport and magnetic fields, which will lead to the most realistic and resolved predictions for the early universe; 2. To predict the observational features of the first galaxies throughout the electromagnetic spectrum, allowing for optimal extraction of galaxy and dark matter halo properties from their photometry, imaging, and spectra; The proposed research plan addresses a timely and relevant issue to theoretically prepare for the interpretation of future observations of the first galaxies in the Universe. A suite of adaptive mesh refinement simulations will be used to follow the formation and evolution of thousands of galaxies observable with the James Webb Space Telescope (JWST) that will be launched during the second year of this project. The simulations will have also tracked the formation and death of over 100,000 massive metal-free stars. Currently, there is a gap of two orders of magnitude in stellar mass between the smallest observed z > 6 galaxy and the largest simulated galaxy from "first principles", capturing its entire star formation history. This project will eliminate this

  1. Radiation Pressure Supported Starburst Disks and AGN Fueling

    CERN Document Server

    Thompson, T A; Murray, N; Thompson, Todd A.; Quataert, Eliot; Murray, Norm

    2005-01-01

    We consider the structure of marginally Toomre-stable starburst disks under the assumption that radiation pressure on dust grains provides the dominant vertical support against gravity. This is particularly appropriate when the disk is optically thick to its own IR radiation, as in the central regions of ULIRGs. Because the disk radiates at its Eddington limit, the Schmidt-law for star formation changes in the optically-thick limit, with the star formation rate per unit area scaling as Sigma_g/kappa, where Sigma_g is the gas surface density and kappa is the mean opacity. We show that optically thick starburst disks have a characteristic flux and dust effective temperature of F10^{13} L_sun/kpc^2 and T_eff~90K, respectively. We compare our predictions with observations and find good agreement. We extend our model from many-hundred parsec scales to sub-parsec scales and address the problem of fueling AGN. We assume that angular momentum transport proceeds via global torques rather than a local viscosity. We acc...

  2. Quantitative measurement of radiation pressure on a microcantilever in ambient environment

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Dakang; Munday, Jeremy N., E-mail: jnmunday@umd.edu [Department of Electrical and Computer Engineering, University of Maryland, College Park, Maryland 20742 (United States); Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, Maryland 20742 (United States); Garrett, Joseph L. [Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, Maryland 20742 (United States); Department of Physics, University of Maryland, College Park, Maryland 20742 (United States)

    2015-03-02

    Light reflected off a material or absorbed within it exerts radiation pressure through the transfer of momentum. Micro/nano-mechanical transducers have become sensitive enough that radiation pressure can influence these systems. However, photothermal effects often accompany and overwhelm the radiation pressure, complicating its measurement. In this letter, we investigate the radiation force on an uncoated silicon nitride microcantilever in ambient conditions. We identify and separate the radiation pressure and photothermal forces through an analysis of the cantilever's frequency response. Further, by working in a regime where radiation pressure is dominant, we are able to accurately measure the radiation pressure. Experimental results are compared to theory and found to agree within the measured and calculated uncertainties.

  3. Boosted High-Harmonics Pulse from a Double-Sided Relativistic Mirror

    Science.gov (United States)

    Esirkepov, T. Zh.; Bulanov, S. V.; Kando, M.; Pirozhkov, A. S.; Zhidkov, A. G.

    2009-07-01

    An ultrabright high-power x- and γ-radiation source is proposed. A high-density thin plasma slab, accelerating in the radiation pressure dominant regime by an ultraintense electromagnetic wave, reflects a counterpropagating relativistically strong electromagnetic wave, producing extremely time-compressed and intensified radiation. The reflected light contains relativistic harmonics generated at the plasma slab, all upshifted with the same factor as the fundamental mode of the incident light. The theory of an arbitrarily moving thin plasma slab reflectivity is presented.

  4. Solar radiation pressure used for formation flying control around the Sun-Earth libration point

    Institute of Scientific and Technical Information of China (English)

    Sheng-ping GONG; Jun-feng LI; He-xi BAOYIN

    2009-01-01

    Solar radiation pressure is used to control the formation flying around the L2 libration point in the Sun-Earth system. Formation flying control around a halo orbit requires a very small thrust that cannot be satisfied by the latest thrusters. The key contribution of this paper is that the continuous low thrust is produced by solar radiation pressure to achieve the tight formation flying around the libration point. However, only certain families of formation types can be controlled by solar radiation pressure since the direction of solar radiation pressure is restricted to a certain range. Two types of feasible formations using solar radiation pressure control are designed. The conditions of feasible formations are given analytically. Simulations are presented for each case, and the results show that the formations are well controlled by solar radiation pressure.

  5. Radiation pressure induced difference-sideband generation beyond linearized description

    CERN Document Server

    Xiong, Hao; Yang, X; Wu, Y

    2016-01-01

    We investigate radiation-pressure induced generation of the frequency components at the difference-sideband in an optomechanical system, which beyond the conventional linearized description of optomechanical interactions between cavity fields and the mechanical oscillation. We analytically calculate amplitudes of these signals, and identify a simple square-root law for both the upper and lower difference-sideband generation which can describe the dependence of the intensities of these signals on the pump power. Further calculation shows that difference-sideband generation can be greatly enhanced via achieving the matching conditions. The effect of difference-sideband generation, which may have potential application for manipulation of light, is especially suited for on-chip optomechanical devices, where nonlinear optomechanical interaction in the weak coupling regime is within current experimental reach.

  6. Radiation pressure efficiency measurements of nanoparticle coated microspheres

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Soo Y. [National Research Council, Research Associateship Programs, 500 Fifth Street NW (Keck 568), Washington, D.C. 20001 (United States); Taylor, Joseph D.; Ladouceur, Harold D.; Hart, Sean J.; Terray, Alex, E-mail: terray@nrl.navy.mil [Naval Research Laboratory, Chemistry Division, Bioanalytical Chemistry, Code 6112, 4555 Overlook Avenue S.W., Washington, D.C. 20375 (United States)

    2013-12-02

    Experimental measurements of the radiation pressure efficiency (Q{sub pr}) for several microparticles have been compared to theoretical calculations extrapolated from the Bohren-Huffman code for Mie scattering of coated particles. An increased shift of the Q{sub pr} parameter was observed for 2 μm SiO{sub 2} core particles coated with nanoparticles of higher refractive indices. Coatings of 14 nm melamine particles were found to increase the Q{sub pr} parameter 135 times over similar coatings using SiO{sub 2} particles of the same size. While a coating of 100 nm polystyrene particles also showed a significant increase, they did not agree well with theoretical values. It is hypothesized that other factors such as increased scatter, drag, and finite coating coverage are no longer negligible for coatings using nanoparticles in this size regime.

  7. Radiation pressure efficiency measurements of nanoparticle coated microspheres

    Science.gov (United States)

    Kim, Soo Y.; Taylor, Joseph D.; Ladouceur, Harold D.; Hart, Sean J.; Terray, Alex

    2013-12-01

    Experimental measurements of the radiation pressure efficiency (Qpr) for several microparticles have been compared to theoretical calculations extrapolated from the Bohren-Huffman code for Mie scattering of coated particles. An increased shift of the Qpr parameter was observed for 2 μm SiO2 core particles coated with nanoparticles of higher refractive indices. Coatings of 14 nm melamine particles were found to increase the Qpr parameter 135 times over similar coatings using SiO2 particles of the same size. While a coating of 100 nm polystyrene particles also showed a significant increase, they did not agree well with theoretical values. It is hypothesized that other factors such as increased scatter, drag, and finite coating coverage are no longer negligible for coatings using nanoparticles in this size regime.

  8. Nonlinear radiation pressure dynamics in an optomechanical crystal

    CERN Document Server

    Krause, Alex G; Ludwig, Max; Safavi-Naeini, Amir H; Chan, Jasper; Marquardt, Florian; Painter, Oskar

    2015-01-01

    Utilizing a silicon nanobeam optomechanical crystal, we investigate the attractor diagram arising from the radiation pressure interaction between a localized optical cavity at $\\lambda = 1552$nm and a mechanical resonance at $\\omega/2\\pi = 3.72$GHz. At a temperature of $T \\approx 10$K, highly nonlinear driving of mechanical motion is observed via continuous wave optical pumping. Introduction of a time-dependent (modulated) optical pump is used to steer the system towards an otherwise inaccessible dynamically stable attractor in which mechanical self-oscillation occurs for an optical pump red-detuned from the cavity resonance. An analytical model incorporating thermo-optic effects due to optical absorption heating is developed, and found to accurately predict the measured device behavior.

  9. Cooperative scattering and radiation pressure force in dense atomic clouds

    Energy Technology Data Exchange (ETDEWEB)

    Bachelard, R. [University of Nova Gorica, School of Applied Sciences, Vipavska 11c SI-5270 Ajdovscina (Slovenia); Piovella, N. [Dipartimento di Fisica, Universita Degli Studi di Milano, Via Celoria 16, I-20133 Milano (Italy); Courteille, Ph. W. [Instituto de Fisica de Sao Carlos, Universidade de Sao Paulo, 13560-970 Sao Carlos, SP (Brazil)

    2011-07-15

    Atomic clouds prepared in ''timed Dicke'' states, i.e. states where the phase of the oscillating atomic dipole moments linearly varies along one direction of space, are efficient sources of superradiant light emission [Scully et al., Phys. Rev. Lett. 96, 010501 (2006)]. Here, we show that, in contrast to previous assertions, timed Dicke states are not the states automatically generated by incident laser light. In reality, the atoms act back on the driving field because of the finite refraction of the cloud. This leads to nonuniform phase shifts, which, at higher optical densities, dramatically alter the cooperative scattering properties, as we show by explicit calculation of macroscopic observables, such as the radiation pressure force.

  10. Laplace plane modifications arising from solar radiation pressure

    Energy Technology Data Exchange (ETDEWEB)

    Rosengren, Aaron J.; Scheeres, Daniel J., E-mail: aaron.rosengren@colorado.edu [ADepartment of Aerospace Engineering Sciences, University of Colorado at Boulder, Boulder, CO 80309 (United States)

    2014-05-01

    The dynamical effects of solar radiation pressure (SRP) in the solar system have been rigorously studied since the early 1900s. This non-gravitational perturbation plays a significant role in the evolution of dust particles in circumplanetary orbits, as well as in the orbital motion about asteroids and comets. For gravitationally dominated orbits, SRP is negligible and the resulting motion is largely governed by the oblateness of the primary and the attraction of the Sun. The interplay between these gravitational perturbations gives rise to three mutually perpendicular planes of equilibrium for circular satellite orbits. The classical Laplace plane lies between the equatorial and orbital planes of the primary, and is the mean reference plane about whose axis the pole of a satellite's orbit precesses. From a previously derived solution for the secular motion of an orbiter about a small body in a SRP dominated environment, we find that SRP acting alone will cause an initially circular orbit to precess around the pole of the primary's heliocentric orbital plane. When the gravitational and non-gravitational perturbations act in concert, the resulting equilibrium planes turn out to be qualitatively different, in some cases, from those obtained without considering the radiation pressure. The warping of the surfaces swept out by the modified equilibria as the semi-major axis varies depends critically on the cross-sectional area of the body exposed. These results, together with an adiabatic invariance argument on Poynting-Robertson drag, provide a natural qualitative explanation for the initial albedo dichotomy of Saturn's moon, Iapetus.

  11. Radiation pressure confinement - IV. Application to broad absorption line outflows

    CERN Document Server

    Baskin, Alexei; Stern, Jonathan

    2014-01-01

    A fraction of quasars present broad absorption lines, produced by outflowing gas with typical velocities of 3000 - 10,000 km/s. If the outflowing gas fills a significant fraction of the volume where it resides, then it will be highly ionized by the quasar due to its low density, and will not produce the observed UV absorption. The suggestion that the outflow is shielded from the ionizing radiation was excluded by recent observations. The remaining solution is a dense outflow with a filling factor $f<10^{-3}$. What produces such a small $f$? Here we point out that radiation pressure confinement (RPC) inevitably leads to gas compression and the formation of dense thin gas sheets/filaments, with a large gradient in density and ionization along the line of sight. The total column of ionized dustless gas is a few times $10^{22}$ cm$^{-2}$, consistent with the observed X-ray absorption and detectable P V absorption. The predicted maximal columns of various ions show a small dependence on the system parameters, a...

  12. The Role of Radiation Pressure in the Narrow Line Regions of Seyfert Host Galaxies

    Science.gov (United States)

    Davies, Rebecca L.; Dopita, Michael A.; Kewley, Lisa; Groves, Brent; Sutherland, Ralph; Hampton, Elise J.; Shastri, Prajval; Kharb, Preeti; Bhatt, Harish; Scharwächter, Julia; Jin, Chichuan; Banfield, Julie; Zaw, Ingyin; James, Bethan; Juneau, Stéphanie; Srivastava, Shweta

    2016-06-01

    We investigate the relative significance of radiation pressure and gas pressure in the extended narrow line regions (ENLRs) of four Seyfert galaxies from the integral field Siding Spring Southern Seyfert Spectroscopic Snapshot Survey (S7). We demonstrate that there exist two distinct types of starburst-active galactic nucleus (AGN) mixing curves on standard emission line diagnostic diagrams, which reflect the balance between gas pressure and radiation pressure in the ENLR. In two of the galaxies the ENLR is radiation pressure dominated throughout and the ionization parameter remains constant (log U ˜ 0). In the other two galaxies radiation pressure is initially important, but gas pressure becomes dominant as the ionization parameter in the ENLR decreases from log U ˜ 0 to -3.2 ≲ log U ≲ -3.4. Where radiation pressure is dominant, the AGN regulates the density of the interstellar medium on kiloparsec scales and may therefore have a direct impact on star formation activity and/or the incidence of outflows in the host galaxy to scales far beyond the zone of influence of the black hole. We find that both radiation pressure dominated and gas pressure dominated ENLRs are dynamically active with evidence for outflows, indicating that radiation pressure may be an important source of AGN feedback even when it is not dominant over the entire ENLR.

  13. Relativistic astrophysics

    CERN Document Server

    Demianski, Marek

    2013-01-01

    Relativistic Astrophysics brings together important astronomical discoveries and the significant achievements, as well as the difficulties in the field of relativistic astrophysics. This book is divided into 10 chapters that tackle some aspects of the field, including the gravitational field, stellar equilibrium, black holes, and cosmology. The opening chapters introduce the theories to delineate gravitational field and the elements of relativistic thermodynamics and hydrodynamics. The succeeding chapters deal with the gravitational fields in matter; stellar equilibrium and general relativity

  14. The importance of energetic particle injections and cross-energy and -species interactions to the acceleration and loss of relativistic electrons in Earth's outer radiation belt (invited talk)

    Science.gov (United States)

    Turner, Drew; Gkioulidou, Matina; Ukhorskiy, Aleksandr; Gabrielse, Christine; Runov, Andrei; Angelopoulos, Vassilis

    2014-05-01

    Earth's radiation belts provide a natural laboratory to study a variety of physical mechanisms important for understanding the nature of energetic particles throughout the Universe. The outer electron belt is a particularly variable population, with drastic changes in relativistic electron intensities occurring on a variety of timescales ranging from seconds to decades. Outer belt variability ultimately results from the complex interplay between different source, loss, and transport processes, and all of these processes are related to the dynamics of the inner magnetosphere. Currently, an unprecedented number of spacecraft are providing in situ observations of the inner magnetospheric environment, including missions such as NASA's THEMIS and Van Allen Probes and ESA's Cluster and operational monitors such as NOAA's GOES and POES constellations. From a sampling of case studies using multi-point observations, we present examples showcasing the significant importance of two processes to outer belt dynamics: energetic particle injections and wave-particle interactions. Energetic particle injections are transient events that tie the inner magnetosphere to the near-Earth magnetotail; they involve the rapid inward transport of plasmasheet particles into the trapping zone in the inner magnetosphere. We briefly review key concepts and present new evidence from Van Allen Probes, GOES, and THEMIS of how these injections provide: 1. the seed population of electrons that are subsequently accelerated locally to relativistic energies in the outer belt and 2. the source populations of ions and electrons that produce a variety of ULF and VLF waves, which are also important for driving outer belt dynamics via wave-particle interactions. Cases of electron acceleration by chorus waves, losses by plasmaspheric hiss and EMIC waves, and radial transport driven by ULF waves will also be presented. Finally, we discuss the implications of this developing picture of the system, namely how

  15. Electromagnetic radiation as a probe of the initial state and of viscous dynamics in relativistic nuclear collisions

    CERN Document Server

    Vujanovic, Gojko; Denicol, Gabriel S; Luzum, Matthew; Jeon, Sangyong; Gale, Charles

    2016-01-01

    The penetrating nature of electromagnetic signals makes them suitable probes to explore the properties of the strongly-interacting medium created in relativistic nuclear collisions. We examine the effects of the initial conditions and shear relaxation time on the spectra and flow coefficients of electromagnetic probes, using an event-by-event 3+1D viscous hydrodynamic simulation (MUSIC).

  16. Detection of Yarkovsky effect and solar radiation pressure on Near-Earth Asteroids

    Science.gov (United States)

    Faggioli, Laura; Del Vigna, Alessio; Milani, Andrea; Spoto, Federica; Valsecchi, Giovanni B.

    2016-10-01

    The orbit of small-sized asteroids can be affected by non-gravitational perturbations. When this happens, non-gravitational forces need to be taken into account since they are as important as collisions and gravitational perturbations for the overall understanding of the asteroid orbital evolution.The Yarkovsky effect and the Solar Radiation Pressure (SRP) are non-gravitational perturbations that can be modelled knowing the physical properties of asteroids, and whose consequences of the motions can be measured from accurate astrometry.The knowledge of the physical properties of asteroids is usually not sufficient to produce the thermophysical models needed for the computation of the Yarkovsky acceleration. Nevertheless, it can often be measured as a semimajor axis drift if the astrometric dataset contains extremely accurate observations (e.g. radar data), or if the observations span a sufficiently long time interval.Farnocchia et al. 2013 list 21 NEAs with a measurable semimajor-axis drift. Since 2013, the number of asteroids for which it is possible to detect the Yarkovsky effect has grown. This is due to the increased quality and time span of the observations, and to new radar measurements that have since become available. We are able to detect the Yarkovsky effect for more than 40 NEAs, employing a high precision dynamical model, including the Newtonian attraction of 16 massive asteroids and the planetary relativistic terms, and a suitable astrometric data treatment. We present a list of objects with a significant detection of Yarkovksy effect and a value compatible with the Yarkovsky mechanism.The computed non-gravitational perturbations will be added to the web portal of the ESA SSA-NEO Coordination Centre, highlighting the fact that the orbit has been computed taking the Yarkovsky effect or the SRP into account. The inclusion of non-gravitational perturbations can also affect the results of the impact monitoring, as in the case of (410777) 2009 FD, (29075

  17. Heavy ion acceleration in the radiation pressure acceleration and breakout afterburner regimes

    Science.gov (United States)

    Petrov, G. M.; McGuffey, C.; Thomas, A. G. R.; Krushelnick, K.; Beg, F. N.

    2017-07-01

    We present a theoretical study of heavy ion acceleration from ultrathin (20 nm) gold foil irradiated by high-intensity sub-picosecond lasers. Using two-dimensional particle-in-cell simulations, three laser systems are modeled that cover the range between femtosecond and picosecond pulses. By varying the laser pulse duration we observe a transition from radiation pressure acceleration (RPA) to the relativistic induced transparency (RIT) regime for heavy ions akin to light ions. The underlying physics of beam formation and acceleration is similar for light and heavy ions, however, nuances of the acceleration process make the heavy ions more challenging. A more detailed study involving variation of peak laser intensity I 0 and pulse duration τFWHM revealed that the transition point from RPA to RIT regime depends on the peak laser intensity on target and occurs for pulse duration {τ }{{F}{{W}}{{H}}{{M}}}{{R}{{P}}{{A}}\\to {{R}}{{I}}{{T}}}[{{f}}{{s}}]\\cong 210/\\sqrt{{I}0[{{W}} {{{cm}}}-2]/{10}21}. The most abundant gold ion and charge-to-mass ratio are Au51+ and q/M ≈ 1/4, respectively, half that of light ions. For ultrathin foils, on the order of one skin depth, we established a linear scaling of the maximum energy per nucleon (E/M)max with (q/M)max, which is more favorable than the quadratic one found previously. The numerical simulations predict heavy ion beams with very attractive properties for applications: high directionality (high fluxes (>1011 ions sr-1) and energy (>20 MeV/nucleon) from laser systems delivering >20 J of energy on target.

  18. Relativistic magnetohydrodynamics in one dimension.

    Science.gov (United States)

    Lyutikov, Maxim; Hadden, Samuel

    2012-02-01

    We derive a number of solutions for one-dimensional dynamics of relativistic magnetized plasma that can be used as benchmark estimates in relativistic hydrodynamic and magnetohydrodynamic numerical codes. First, we analyze the properties of simple waves of fast modes propagating orthogonally to the magnetic field in relativistically hot plasma. The magnetic and kinetic pressures obey different equations of state, so that the system behaves as a mixture of gases with different polytropic indices. We find the self-similar solutions for the expansion of hot strongly magnetized plasma into vacuum. Second, we derive linear hodograph and Darboux equations for the relativistic Khalatnikov potential, which describe arbitrary one-dimensional isentropic relativistic motion of cold magnetized plasma and find their general and particular solutions. The obtained hodograph and Darboux equations are very powerful: A system of highly nonlinear, relativistic, time-dependent equations describing arbitrary (not necessarily self-similar) dynamics of highly magnetized plasma reduces to a single linear differential equation.

  19. Exploring Rotations Due to Radiation Pressure: 2-D to 3-D Transition Is Interesting!

    Science.gov (United States)

    Waxman, Michael A.

    2010-01-01

    Radiation pressure is an important topic within a standard physics course (see, in particular, Refs. 1 and 2). The physics of radiation pressure is described, the magnitude of it is derived, both for the case of a perfectly absorbing surface and of a perfect reflector, and various applications of this interesting effect are discussed, such as…

  20. Relativistic electronic dressing

    CERN Document Server

    Attaourti, Y

    2002-01-01

    We study the effects of the relativistic electronic dressing in laser-assisted electron-hydrogen atom elastic collisions. We begin by considering the case when no radiation is present. This is necessary in order to check the consistency of our calculations and we then carry out the calculations using the relativistic Dirac-Volkov states. It turns out that a simple formal analogy links the analytical expressions of the differential cross section without laser and the differential cross section in presence of a laser field.

  1. Satellite de-orbiting via controlled solar radiation pressure

    Science.gov (United States)

    Deienno, Rogerio; Sanchez, Diogo Merguizo; de Almeida Prado, Antonio Fernando Bertachini; Smirnov, Georgi

    2016-06-01

    The goal of the present research was to study the use of solar radiation pressure to place a satellite in an orbit that makes it to re-enter the atmosphere of the Earth. This phase of the mission is usual, since the orbital space around the Earth is crowded and all satellites have to be discarded after the end of their lifetimes. The technique proposed here is based on a device that can increase and decrease the area-to-mass ratio of the satellite when it is intended to reduce its altitude until a re-entry point is reached. Equations that predict the evolution of the eccentricity and semi-major axis of the orbit of the satellite are derived and can be used to allow the evaluation of the time required for the decay of the satellite. Numerical simulations are made, and they show the time required for the decay as a function of the area-to-mass ratio and the evolution of the most important orbital elements. The results show maps that indicate regions of fast decays as a function of the area-to-mass ratio and the initial inclination of the orbit of the satellite. They also confirmed the applicability of the equations derived here. The numerical results showed the role played by the evection and the Sun-synchronous resonances in the de-orbiting time.

  2. Enhanced solar radiation pressure modeling for Galileo satellites

    Science.gov (United States)

    Montenbruck, O.; Steigenberger, P.; Hugentobler, U.

    2015-03-01

    This paper introduces a new approach for modeling solar radiation pressure (SRP) effects on Global Navigation Satellite Systems (GNSSs). It focuses on the Galileo In-Orbit Validation (IOV) satellites, for which obvious SRP modeling deficits can be identified in presently available precise orbit products. To overcome these problems, the estimation of empirical accelerations in the Sun direction (D), solar panel axis (Y) and the orthogonal (B) axis is complemented by an a priori model accounting for the contribution of the rectangular spacecraft body. Other than the GPS satellites, which comprise an almost cubic body, the Galileo IOV satellites exhibit a notably rectangular shape with a ratio of about 2:1 for the main body axes. Use of the a priori box model allows to properly model the varying cross section exposed to the Sun during yaw-steering attitude mode and helps to remove systematic once-per-revolution orbit errors that have so far affected the Galileo orbit determination. Parameters of a simple a priori cuboid model suitable for the IOV satellites are established from the analysis of a long-term set of GNSS observations collected with the global network of the Multi-GNSS Experiment of the International GNSS Service. The model is finally demonstrated to reduce the peak magnitude of radial orbit errors from presently 20 cm down to 5 cm outside eclipse phases.

  3. Relativistic impulse dynamics.

    Science.gov (United States)

    Swanson, Stanley M

    2011-08-01

    Classical electrodynamics has some annoying rough edges. The self-energy of charges is infinite without a cutoff. The calculation of relativistic trajectories is difficult because of retardation and an average radiation reaction term. By reconceptuallizing electrodynamics in terms of exchanges of impulses rather than describing it by forces and potentials, we eliminate these problems. A fully relativistic theory using photonlike null impulses is developed. Numerical calculations for a two-body, one-impulse-in-transit model are discussed. A simple relationship between center-of-mass scattering angle and angular momentum was found. It reproduces the Rutherford cross section at low velocities and agrees with the leading term of relativistic distinguishable-particle quantum cross sections (Møller, Mott) when the distance of closest approach is larger than the Compton wavelength of the particle. Magnetism emerges as a consequence of viewing retarded and advanced interactions from the vantage point of an instantaneous radius vector. Radiation reaction becomes the local conservation of energy-momentum between the radiating particle and the emitted impulse. A net action is defined that could be used in developing quantum dynamics without potentials. A reinterpretation of Newton's laws extends them to relativistic motion.

  4. Radiative Energy Loss of Heavy Quark and Dead Cone Effect in Ultra-relativistic Heavy Ion Collisions

    Institute of Scientific and Technical Information of China (English)

    XIANG Wen-Chang; DING Heng-Tong; ZHOU Dai-Cui

    2005-01-01

    @@ The lowest-order heavy quark radiative energy loss has been analysed to quantify the dead cone effect. The medium-induced gluon radiation is found to fill the dead cone, it is reduced at large gluon energies compared to the radiation of light quarks. We calculate the radiative energy loss of heavy quarks in the condition of dead cone effect. It is found that the radiative energy loss with dead cone effect is smaller than that without the dead cone effect.

  5. Interplay between radiation pressure force and scattered light intensity in the cooperative scattering by cold atoms

    CERN Document Server

    Bienaime, Tom; Chabe, Julien; Rouabah, Mohamed-Taha; Bellando, Louis; Courteille, Philippe W; Piovella, Nicola; Kaiser, Robin

    2013-01-01

    The interplay between the superradiant emission of a cloud of cold two-level atoms and the radiation pressure force is discussed. Using a microscopic model of coupled atomic dipoles driven by an external laser, the radiation field and the average radiation pressure force are derived. A relation between the far-field scattered intensity and the force is derived, using the optical theorem. Finally, the scaling of the sample scattering cross section with the parameters of the system is studied.

  6. Effects of Lingual Effort on Swallow Pressures Following Radiation Treatment

    Science.gov (United States)

    Lenius, Kerry; Stierwalt, Julie; LaPointe, Leonard L.; Bourgeois, Michelle; Carnaby, Giselle; Crary, Michael

    2015-01-01

    Purpose: This article investigated the effects of increased oral lingual pressure on pharyngeal pressures during swallowing in patients who have undergone radiotherapy for head and neck cancer. It was hypothesized that increased oral lingual pressure would result in increased pharyngeal pressures. Method: A within-subject experimental design was…

  7. Modified holographic Ricci dark energy coupled to interacting relativistic and non-relativistic dark matter in the nonflat universe

    CERN Document Server

    Li, En-Kun; Geng, Jin-Ling

    2014-01-01

    The modified holographic Ricci dark energy coupled to interacting relativistic and non-relativistic dark matter is considered in the nonflat Friedmann-Robertson-Walker universe. Through examining the deceleration parameter, one can find that the transition time of the Universe from decelerating to accelerating phase in the interacting holographic Ricci dark energy model is close to that in the $\\Lambda$ cold dark matter model. The evolution of modified holographic Ricci dark energy's state parameter and the evolution of dark matter and dark energy's densities shows that the dark energy holds the dominant position from the near past to the future. By studying the statefinder diagnostic and the evolution of the total pressure, one can find that this model could explain the Universe's transition from the radiation to accelerating expansion stage through the dust stage. According to the $Om$ diagnostic, it is easy to find that when the interaction is weak and the proportion of relativistic dark matter in total da...

  8. On Radiation Pressure in Static, Dusty H II Regions

    Science.gov (United States)

    Draine, B. T.

    2011-05-01

    Radiation pressure acting on gas and dust causes H II regions to have central densities that are lower than the density near the ionized boundary. H II regions in static equilibrium comprise a family of similarity solutions with three parameters: β, γ, and the product Q 0 n rms; β characterizes the stellar spectrum, γ characterizes the dust/gas ratio, Q 0 is the stellar ionizing output (photons/s), and n rms is the rms density within the ionized region. Adopting standard values for β and γ, varying Q 0 n rms generates a one-parameter family of density profiles, ranging from nearly uniform density (small Q 0 n rms) to shell-like (large Q 0 n rms). When Q 0 n rms >~ 1052 cm-3 s-1, dusty H II regions have conspicuous central cavities, even if no stellar wind is present. For given β, γ, and Q 0 n rms, a fourth quantity, which can be Q 0, determines the overall size and density of the H II region. Examples of density and emissivity profiles are given. We show how quantities of interest—such as the peak-to-central emission measure ratio, the rms-to-mean density ratio, the edge-to-rms density ratio, and the fraction of the ionizing photons absorbed by the gas—depend on β, γ, and Q 0 n rms. For dusty H II regions, compression of the gas and dust into an ionized shell results in a substantial increase in the fraction of the stellar photons that actually ionize H (relative to a uniform-density H II region with the same dust/gas ratio and density n = n rms). We discuss the extent to which radial drift of dust grains in H II regions can alter the dust-to-gas ratio. The applicability of these solutions to real H II regions is discussed.

  9. The Kelvin-Helmholtz instability in the Orion nebula: the effect of radiation pressure

    Science.gov (United States)

    Yaghouti, S. Akram; Nejad-Asghar, Mohsen; Abbassi, Shahram

    2017-09-01

    The recent observations of rippled structures on the surface of the Orion molecular cloud (Berné et al. 2010) have been attributed to the Kelvin-Helmholtz (KH) instability. The wavelike structures that have been mainly seen near star-forming regions take place at the interface between the hot diffuse gas, which is ionized by massive stars, and the cold dense molecular clouds. The radiation pressure of massive stars and stellar clusters is one of the important issues that has been considered frequently in the dynamics of clouds. Here, we investigate the influence of radiation pressure, from the well-known Trapezium cluster in the Orion nebula, on the evolution of KH instability. The stability of the interface between the H ii region and the molecular clouds in the presence of radiation pressure has been studied using the linear perturbation analysis for a certain range of wavelengths. The linear analysis shows that the consideration of the radiation pressure intensifies the growth rate of KH modes and consequently decreases the e-fold time-scale of the instability. On the other hand, the domain of the instability is extended and includes more wavelengths, consisting of smaller ones rather than the case where the effect of the radiation pressure is not considered. Our results show that for λKH > 0.15 pc, the growth rate of KH instability does not depend on radiation pressure. Based on our results, the radiation pressure is a triggering mechanism in the development of the KH instability and subsequent formation of turbulent sub-structures in the molecular clouds near massive stars. The role of magnetic fields in the presence of radiation pressure is also investigated and it has resulted in the magnetic field suppressing the effects induced by radiation pressure.

  10. Electron acceleration and emission in a field of a plane and converging dipole wave of relativistic amplitudes with the radiation reaction force taken into account

    Science.gov (United States)

    Bashinov, Aleksei V.; Gonoskov, Arkady A.; Kim, A. V.; Marklund, Mattias; Mourou, G.; Sergeev, Aleksandr M.

    2013-04-01

    A comparative analysis is performed of the electron emission characteristics as the electrons move in laser fields with ultra-relativistic intensity and different configurations corresponding to a plane or tightly focused wave. For a plane travelling wave, analytical expressions are derived for the emission characteristics, and it is shown that the angular distribution of the radiation intensity changes qualitatively even when the wave intensity is much less than that in the case of the radiation-dominated regime. An important conclusion is drawn that the electrons in a travelling wave tend to synchronised motion under the radiation reaction force. The characteristic features of the motion of electrons are found in a converging dipole wave, associated with the curvature of the phase front and nonuniformity of the field distribution. The values of the maximum achievable longitudinal momenta of electrons accelerated to the centre, as well as their distribution function are determined. The existence of quasi-periodic trajectories near the focal region of the dipole wave is shown, and the characteristics of the emission of both accelerated and oscillating electrons are analysed.

  11. CODE's new solar radiation pressure model for GNSS orbit determination

    Science.gov (United States)

    Arnold, D.; Meindl, M.; Beutler, G.; Dach, R.; Schaer, S.; Lutz, S.; Prange, L.; Sośnica, K.; Mervart, L.; Jäggi, A.

    2015-08-01

    The Empirical CODE Orbit Model (ECOM) of the Center for Orbit Determination in Europe (CODE), which was developed in the early 1990s, is widely used in the International GNSS Service (IGS) community. For a rather long time, spurious spectral lines are known to exist in geophysical parameters, in particular in the Earth Rotation Parameters (ERPs) and in the estimated geocenter coordinates, which could recently be attributed to the ECOM. These effects grew creepingly with the increasing influence of the GLONASS system in recent years in the CODE analysis, which is based on a rigorous combination of GPS and GLONASS since May 2003. In a first step we show that the problems associated with the ECOM are to the largest extent caused by the GLONASS, which was reaching full deployment by the end of 2011. GPS-only, GLONASS-only, and combined GPS/GLONASS solutions using the observations in the years 2009-2011 of a global network of 92 combined GPS/GLONASS receivers were analyzed for this purpose. In a second step we review direct solar radiation pressure (SRP) models for GNSS satellites. We demonstrate that only even-order short-period harmonic perturbations acting along the direction Sun-satellite occur for GPS and GLONASS satellites, and only odd-order perturbations acting along the direction perpendicular to both, the vector Sun-satellite and the spacecraft's solar panel axis. Based on this insight we assess in the third step the performance of four candidate orbit models for the future ECOM. The geocenter coordinates, the ERP differences w. r. t. the IERS 08 C04 series of ERPs, the misclosures for the midnight epochs of the daily orbital arcs, and scale parameters of Helmert transformations for station coordinates serve as quality criteria. The old and updated ECOM are validated in addition with satellite laser ranging (SLR) observations and by comparing the orbits to those of the IGS and other analysis centers. Based on all tests, we present a new extended ECOM which

  12. Relativistic and non-relativistic solitons in plasmas

    Science.gov (United States)

    Barman, Satyendra Nath

    This thesis entitled as "Relativistic and Non-relativistic Solitons in Plasmas" is the embodiment of a number of investigations related to the formation of ion-acoustic solitary waves in plasmas under various physical situations. The whole work of the thesis is devoted to the studies of solitary waves in cold and warm collisionless magnetized or unmagnetized plasmas with or without relativistic effect. To analyze the formation of solitary waves in all our models of plasmas, we have employed two established methods namely - reductive perturbation method to deduce the Korteweg-de Vries (KdV) equation, the solutions of which represent the important but near exact characteristic concepts of soliton-physics. Next, the pseudopotential method to deduce the energy integral with total nonlinearity in the coupling process for exact characteristic results of solitons has been incorporated. In Chapter 1, a brief description of plasma in nature and laboratory and its generation are outlined elegantly. The nonlinear differential equations to characterize solitary waves and the relevant but important methods of solutions have been mentioned in this chapter. The formation of solitary waves in unmagnetized and magnetized plasmas, and in relativistic plasmas has been described through mathematical entity. Applications of plasmas in different fields are also put forwarded briefly showing its importance. The study of plasmas as they naturally occur in the universe encompasses number of topics including sun's corona, solar wind, planetary magnetospheres, ionospheres, auroras, cosmic rays and radiation. The study of space weather to understand the universe, communications and the activities of weather satellites are some useful areas of space plasma physics. The surface cleaning, sterilization of food and medical appliances, killing of bacteria on various surfaces, destroying of viruses, fungi, spores and plasma coating in industrial instruments ( like computers) are some of the fields

  13. The Role of Radiation Pressure in the Narrow Line Regions of Seyfert Host Galaxies

    CERN Document Server

    Davies, Rebecca L; Kewley, Lisa J; Groves, Brent; Sutherland, Ralph; Hampton, Elise J; Shastri, Prajval; Kharb, Preeti; Bhatt, Harish; Scharwächter, Julia; Jin, Chichuan; Banfield, Julie; Zaw, Ingyin; James, Bethan; Juneau, Stéphanie; Srivastava, Shweta

    2016-01-01

    We investigate the relative significance of radiation pressure and gas pressure in the extended narrow line regions (ENLRs) of four Seyfert galaxies from the integral field Siding Spring Southern Seyfert Spectroscopic Snapshot Survey (S7). We demonstrate that there exist two distinct types of starburst-AGN mixing curves on standard emission line diagnostic diagrams which reflect the balance between gas pressure and radiation pressure in the ENLR. In two of the galaxies the ENLR is radiation pressure dominated throughout and the ionization parameter remains constant (log U ~ 0). In the other two galaxies radiation pressure is initially important, but gas pressure becomes dominant as the ionization parameter in the ENLR decreases from log U ~ 0 to -3.4 <= log U <= -3.2. Where radiation pressure is dominant, the AGN regulates the density of the interstellar medium on kpc scales and may therefore have a direct impact on star formation activity and/or the incidence of outflows in the host galaxy to scales fa...

  14. Relativistic spherical plasma waves

    CERN Document Server

    Bulanov, S S; Schroeder, C B; Zhidkov, A G; Esarey, E; Leemans, W P

    2011-01-01

    Tightly focused laser pulses as they diverge or converge in underdense plasma can generate wake waves, having local structures that are spherical waves. Here we report on theoretical study of relativistic spherical wake waves and their properties, including wave breaking. These waves may be suitable as particle injectors or as flying mirrors that both reflect and focus radiation, enabling unique X-ray sources and nonlinear QED phenomena.

  15. Orbital transfers in an asteroid system considering the solar radiation pressure

    Science.gov (United States)

    Oliveira, Geraldo Magela Couto; Bertachini de A. Prado, Antonio F.; Sanchez, Diogo Merguizo; Gomes, Vivian Martins

    2017-10-01

    The present paper studies the effects of the radiation pressure in the trajectories of a spacecraft in transfers between the collinear Lagrange points of a double asteroid system. The system considered is this paper is formed by the double asteroid 1996FG3 and the maneuvers are always assumed to be bi-impulsive. In a system formed by asteroids, the solar radiation pressure has a significant influence in the transfers paths. This occurs because the gravitational forces in these systems are smaller if compared with systems formed by larger bodies. Solutions with lower and higher fuel consumption can be found by adding the solar radiation pressure. The radiation pressure was not used as a control but its effects over the transfers were measured. For a small system of primaries such as an asteroid system, it is very important to take into account this force to make sure that the spacecraft will reach the desired point.

  16. New empirically-derived solar radiation pressure model for GPS satellites

    Science.gov (United States)

    Bar-Sever, Y.; Kuang, D.

    2003-01-01

    Solar radiation pressure force is the second largest perturbation acting on GPS satellites, after the gravitational attraction from the Earth, Sun, and Moon. It is the largest error source in the modeling of GPS orbital dynamics.

  17. Theory for planetary exospheres: II. Radiation pressure effect on exospheric density profiles

    CERN Document Server

    Beth, Arnaud; Toublanc, Dominique; Dandouras, Iannis; Mazelle, Christian

    2015-01-01

    The planetary exospheres are poorly known in their outer parts, since the neutral densities are low compared with the instruments detection capabilities. The exospheric models are thus often the main source of information at such high altitudes. We present a new way to take into account analytically the additional effect of the radiation pressure on planetary exospheres. In a series of papers, we present with an Hamiltonian approach the effect of the radiation pressure on dynamical trajectories, density profiles and escaping thermal flux. Our work is a generalization of the study by Bishop and Chamberlain (1989). In this second part of our work, we present here the density profiles of atomic Hydrogen in planetary exospheres subject to the radiation pressure. We first provide the altitude profiles of ballistic particles (the dominant exospheric population in most cases), which exhibit strong asymmetries that explain the known geotail phenomenon at Earth. The radiation pressure strongly enhances the densities c...

  18. Acoustical and optical radiation pressure and the development of single beam acoustical tweezers

    Science.gov (United States)

    Thomas, Jean-Louis; Marchiano, Régis; Baresch, Diego

    2017-07-01

    Studies on radiation pressure in acoustics and optics have enriched one another and have a long common history. Acoustic radiation pressure is used for metrology, levitation, particle trapping and actuation. However, the dexterity and selectivity of single-beam optical tweezers are still to be matched with acoustical devices. Optical tweezers can trap, move and position micron size particles, biological samples or even atoms with subnanometer accuracy in three dimensions. One limitation of optical tweezers is the weak force that can be applied without thermal damage due to optical absorption. Acoustical tweezers overcome this limitation since the radiation pressure scales as the field intensity divided by the speed of propagation of the wave. However, the feasibility of single beam acoustical tweezers was demonstrated only recently. In this paper, we propose a historical review of the strong similarities but also the specificities of acoustical and optical radiation pressures, from the expression of the force to the development of single-beam acoustical tweezers.

  19. Comparison of Radiation Pressure Perturbations on Rocket Bodies and Debris at Geosynchronous Earth Orbit

    Science.gov (United States)

    2014-09-01

    1 Comparison of Radiation Pressure Perturbations on Rocket Bodies and Debris at Geosynchronous Earth Orbit Charles J. Wetterer and Keric Hill...and Debris at Geosynchronous Earth Orbit 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK... orbital position arising because of changes in the shape, attitude, angular rates, BRDF parameters, and radiation pressure model are plotted as a

  20. Motion of the Plasma Critical Layer During Relativistic-electron Laser Interaction with Immobile and Comoving Ion Plasma for Ion Acceleration

    CERN Document Server

    Sahai, Aakash A

    2014-01-01

    We analyze the motion of the plasma critical layer by two different processes in the relativistic-electron laser-plasma interaction regime ($a_0>1$). The differences are highlighted when the critical layer ions are stationary in contrast to when they move with it. Controlling the speed of the plasma critical layer in this regime is essential for creating low-$\\beta$ traveling acceleration structures of sufficient laser-excited potential for laser ion accelerators (LIA). In Relativistically Induced Transparency Acceleration (RITA) scheme the heavy plasma-ions are fixed and only trace-density light-ions are accelerated. The relativistic critical layer and the acceleration structure move longitudinally forward by laser inducing transparency through apparent relativistic increase in electron mass. In the Radiation Pressure Acceleration (RPA) scheme the whole plasma is longitudinally pushed forward under the action of the laser radiation pressure, possible only when plasma ions co-propagate with the laser front. I...

  1. Radiation Hydrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Castor, J I

    2003-10-16

    The discipline of radiation hydrodynamics is the branch of hydrodynamics in which the moving fluid absorbs and emits electromagnetic radiation, and in so doing modifies its dynamical behavior. That is, the net gain or loss of energy by parcels of the fluid material through absorption or emission of radiation are sufficient to change the pressure of the material, and therefore change its motion; alternatively, the net momentum exchange between radiation and matter may alter the motion of the matter directly. Ignoring the radiation contributions to energy and momentum will give a wrong prediction of the hydrodynamic motion when the correct description is radiation hydrodynamics. Of course, there are circumstances when a large quantity of radiation is present, yet can be ignored without causing the model to be in error. This happens when radiation from an exterior source streams through the problem, but the latter is so transparent that the energy and momentum coupling is negligible. Everything we say about radiation hydrodynamics applies equally well to neutrinos and photons (apart from the Einstein relations, specific to bosons), but in almost every area of astrophysics neutrino hydrodynamics is ignored, simply because the systems are exceedingly transparent to neutrinos, even though the energy flux in neutrinos may be substantial. Another place where we can do ''radiation hydrodynamics'' without using any sophisticated theory is deep within stars or other bodies, where the material is so opaque to the radiation that the mean free path of photons is entirely negligible compared with the size of the system, the distance over which any fluid quantity varies, and so on. In this case we can suppose that the radiation is in equilibrium with the matter locally, and its energy, pressure and momentum can be lumped in with those of the rest of the fluid. That is, it is no more necessary to distinguish photons from atoms, nuclei and electrons, than it is

  2. A Mathematica package for calculation of planar channeling radiation spectra of relativistic electrons channeled in a diamond-structure single crystal (quantum approach)

    Science.gov (United States)

    Azadegan, B.

    2013-03-01

    The presented Mathematica code is an efficient tool for simulation of planar channeling radiation spectra of relativistic electrons channeled along major crystallographic planes of a diamond-structure single crystal. The program is based on the quantum theory of channeling radiation which has been successfully applied to study planar channeling at electron energies between 10 and 100 MeV. Continuum potentials for different planes of diamond, silicon and germanium single crystals are calculated using the Doyle-Turner approximation to the atomic scattering factor and taking thermal vibrations of the crystal atoms into account. Numerical methods are applied to solve the one-dimensional Schrödinger equation. The code is designed to calculate the electron wave functions, transverse electron states in the planar continuum potential, transition energies, line widths of channeling radiation and depth dependencies of the population of quantum states. Finally the spectral distribution of spontaneously emitted channeling radiation is obtained. The simulation of radiation spectra considerably facilitates the interpretation of experimental data. Catalog identifier: AEOH_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEOH_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 446 No. of bytes in distributed program, including test data, etc.: 209805 Distribution format: tar.gz Programming language: Mathematica. Computer: Platforms on which Mathematica is available. Operating system: Operating systems on which Mathematica is available. RAM: 1 MB Classification: 7.10. Nature of problem: Planar channeling radiation is emitted by relativistic charged particles during traversing a single crystal in direction parallel to a crystallographic plane. Channeling is modeled as the motion

  3. Relativistic hydrodynamics

    CERN Document Server

    Luciano, Rezzolla

    2013-01-01

    Relativistic hydrodynamics is a very successful theoretical framework to describe the dynamics of matter from scales as small as those of colliding elementary particles, up to the largest scales in the universe. This book provides an up-to-date, lively, and approachable introduction to the mathematical formalism, numerical techniques, and applications of relativistic hydrodynamics. The topic is typically covered either by very formal or by very phenomenological books, but is instead presented here in a form that will be appreciated both by students and researchers in the field. The topics covered in the book are the results of work carried out over the last 40 years, which can be found in rather technical research articles with dissimilar notations and styles. The book is not just a collection of scattered information, but a well-organized description of relativistic hydrodynamics, from the basic principles of statistical kinetic theory, down to the technical aspects of numerical methods devised for the solut...

  4. Radiative corrections beyond the ultra relativistic limit in unpolarized ep elastic and Moeller scatterings for the PRad Experiment at Jefferson Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Akushevich, I.; Gao, H.; Meziane, M. [Duke University, Durham, NC (United States); Ilyichev, A. [National Center of Particle and High Energy Physics, Minsk (Belarus)

    2015-01-01

    The clear 7σ discrepancy between measurements of the proton charge radius from muonic hydrogen Lamb shifts and those from hydrogen Lamb shift and electron scattering lead to both intense theoretical and experimental efforts to understand and explain this difference. In this regard, a new experiment (PRad) based on unpolarized ep elastic scattering cross section measurements normalized to Moeller scattering is underway at Jefferson Laboratory to extract the proton charge radius based on new proton electric form factor down to values of momentum transfer squared Q{sup 2}, as low as 10{sup -4} GeV/c{sup 2}. To reach the precision of the experiment in such a small Q{sup 2} region requires reliable knowledge of radiative corrections. In this paper, we present a complete calculation of radiative corrections for unpolarized elastic ep and Moeller scatterings performed within a covariant formalism resulting in the set of explicit formulas beyond the ultra relativistic approximation (m{sub e}{sup 2} << Q{sup 2}), and numerical results for the kinematics of the PRad experiment. (orig.)

  5. RADCHARM++: A C++ routine to compute the electromagnetic radiation generated by relativistic charged particles in crystals and complex structures

    Energy Technology Data Exchange (ETDEWEB)

    Bandiera, Laura; Bagli, Enrico; Guidi, Vincenzo [INFN Sezione di Ferrara and Dipartimento di Fisica e Scienze della Terra, Università degli Studi di Ferrara, Via Saragat 1, 44121 Ferrara (Italy); Tikhomirov, Victor V. [Research Institute for Nuclear Problems, Belarusian State University, Minsk (Belarus)

    2015-07-15

    The analytical theories of coherent bremsstrahlung and channeling radiation well describe the process of radiation generation in crystals under some special cases. However, the treatment of complex situations requires the usage of a more general approach. In this report we present a C++ routine, named RADCHARM++, to compute the electromagnetic radiation emitted by electrons and positrons in crystals and complex structures. In the RADCHARM++ routine, the model for the computation of e.m. radiation generation is based on the direct integration of the quasiclassical formula of Baier and Katkov. This approach allows one taking into account real trajectories, and thereby the contribution of incoherent scattering. Such contribution can be very important in many cases, for instance for electron channeling. The generality of the Baier–Katkov operator method permits one to simulate the electromagnetic radiation emitted by electrons/positrons in very different cases, e.g., in straight, bent and periodically bent crystals, and for different beam energy ranges, from sub-GeV to TeV and above. The RADCHARM++ routine has been implemented in the Monte Carlo code DYNECHARM++, which solves the classical equation of motion of charged particles traveling through a crystal under the continuum potential approximation. The code has proved to reproduce the results of experiments performed at the MAinzer MIkrotron (MAMI) with 855 MeV electrons and has been used to predict the radiation spectrum generated by the same electron beam in a bent crystal.

  6. SiCOI pressure sensors radiation response; Reponse aux radiations de capteurs de pression SiCOI

    Energy Technology Data Exchange (ETDEWEB)

    Nikiforov, A.Y.; Luchinin, V.V.; Korlyakov, A.A.; Figurov, V.S. [Specialized Electronic Systems, Moscow (Russian Federation)

    1999-07-01

    Radiation tests of SiC-based pressure sensors were carried out. The measured bridge dis-balance voltage deviations from the initial values did not exceed 2% after dose rate 5 x 10{sup 10} rad(Si)/s, total dose 10{sup 6} rad(Si)/s and neutron flux 10{sup 13} n/cm{sup 2} irradiation. (authors)

  7. Progress in high pressure EDXD system and research at Beijing Synchrotron Radiation Facility

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The synchrotron radiation from a new wiggler of BEPC has been used to high pressure research. Upgraded DAC apparatus and EDXD system have been operated to determine the pressure-induced phase transition of materials at BSRF since June 1998. The improved performance of the system and the preliminary results of the research were described.

  8. Radiation-pressure-driven dust waves inside bursting interstellar bubbles

    NARCIS (Netherlands)

    Ochsendorf, B.B.; Verdolini, S.; Cox, N.L.J.; Berné, O.; Kaper, L.; Tielens, A.G.G.M.

    2014-01-01

    Massive stars drive the evolution of the interstellar medium through their radiative and mechanical energy input. After their birth, they form "bubbles" of hot gas surrounded by a dense shell. Traditionally, the formation of bubbles is explained through the input of a powerful stellar wind, even tho

  9. Terahertz radiation driven by two-color laser pulses at near-relativistic intensities: Competition between photoionization and wakefield effects.

    Science.gov (United States)

    González de Alaiza Martínez, P; Davoine, X; Debayle, A; Gremillet, L; Bergé, L

    2016-06-03

    We numerically investigate terahertz (THz) pulse generation by linearly-polarized, two-color femtosecond laser pulses in highly-ionized argon. Major processes consist of tunneling photoionization and ponderomotive forces associated with transverse and longitudinal field excitations. By means of two-dimensional particle-in-cell (PIC) simulations, we reveal the importance of photocurrent mechanisms besides transverse and longitudinal plasma waves for laser intensities >10(15) W/cm(2). We demonstrate the following. (i) With two-color pulses, photoionization prevails in the generation of GV/m THz fields up to 10(17) W/cm(2) laser intensities and suddenly loses efficiency near the relativistic threshold, as the outermost electron shell of ionized Ar atoms has been fully depleted. (ii) PIC results can be explained by a one-dimensional Maxwell-fluid model and its semi-analytical solutions, offering the first unified description of the main THz sources created in plasmas. (iii) The THz power emitted outside the plasma channel mostly originates from the transverse currents.

  10. Relativistic diffusion.

    Science.gov (United States)

    Haba, Z

    2009-02-01

    We discuss relativistic diffusion in proper time in the approach of Schay (Ph.D. thesis, Princeton University, Princeton, NJ, 1961) and Dudley [Ark. Mat. 6, 241 (1965)]. We derive (Langevin) stochastic differential equations in various coordinates. We show that in some coordinates the stochastic differential equations become linear. We obtain momentum probability distribution in an explicit form. We discuss a relativistic particle diffusing in an external electromagnetic field. We solve the Langevin equations in the case of parallel electric and magnetic fields. We derive a kinetic equation for the evolution of the probability distribution. We discuss drag terms leading to an equilibrium distribution. The relativistic analog of the Ornstein-Uhlenbeck process is not unique. We show that if the drag comes from a diffusion approximation to the master equation then its form is strongly restricted. The drag leading to the Tsallis equilibrium distribution satisfies this restriction whereas the one of the Jüttner distribution does not. We show that any function of the relativistic energy can be the equilibrium distribution for a particle in a static electric field. A preliminary study of the time evolution with friction is presented. It is shown that the problem is equivalent to quantum mechanics of a particle moving on a hyperboloid with a potential determined by the drag. A relation to diffusions appearing in heavy ion collisions is briefly discussed.

  11. Relativistic Kinematics

    CERN Document Server

    Sahoo, Raghunath

    2016-01-01

    This lecture note covers Relativistic Kinematics, which is very useful for the beginners in the field of high-energy physics. A very practical approach has been taken, which answers "why and how" of the kinematics useful for students working in the related areas.

  12. Magnetic Dissipation in Relativistic Jets

    Directory of Open Access Journals (Sweden)

    Yosuke Mizuno

    2016-10-01

    Full Text Available The most promising mechanisms for producing and accelerating relativistic jets, and maintaining collimated structure of relativistic jets involve magnetohydrodynamical (MHD processes. We have investigated the magnetic dissipation mechanism in relativistic jets via relativistic MHD simulations. We found that the relativistic jets involving a helical magnetic field are unstable for the current-driven kink instability, which leads to helically distorted structure in relativistic jets. We identified the regions of high current density in filamentary current sheets, indicative of magnetic reconnection, which are associated to the kink unstable regions and correlated to the converted regions of magnetic to kinetic energies of the jets. We also found that an over-pressured relativistic jet leads to the generation of a series of stationary recollimation shocks and rarefaction structures by the nonlinear interaction of shocks and rarefaction waves. The differences in the recollimation shock structure due to the difference of the magnetic field topologies and strengths may be observable through mm-VLBI observations and space-VLBI mission.

  13. The Lorentz Force and the Radiation Pressure of Light

    CERN Document Server

    Rothman, Tony

    2008-01-01

    In order to make plausible the idea that light exerts a pressure on matter, some introductory physics texts consider the force exerted by an electromagnetic wave on an electron. The argument as presented is both mathematically incorrect and has several serious conceptual difficulties without obvious resolution at the classical, yet alone introductory, level. We discuss these difficulties and propose an alternate demonstration.

  14. Ultrafast ignition with relativistic shock waves induced by high power lasers

    Institute of Scientific and Technical Information of China (English)

    Shalom; Eliezer; Noaz; Nissim; Shirly; Vinikman; Pinhasi; Erez; Raicher; José; Maria; Martinez; Val

    2014-01-01

    In this paper we consider laser intensities greater than 1016 W cm-2where the ablation pressure is negligible in comparison with the radiation pressure.The radiation pressure is caused by the ponderomotive force acting mainly on the electrons that are separated from the ions to create a double layer(DL).This DL is accelerated into the target,like a piston that pushes the matter in such a way that a shock wave is created.Here we discuss two novel ideas.Firstly,the transition domain between the relativistic and non-relativistic laser-induced shock waves.Our solution is based on relativistic hydrodynamics also for the above transition domain.The relativistic shock wave parameters,such as compression,pressure,shock wave and particle flow velocities,sound velocity and rarefaction wave velocity in the compressed target,and temperature are calculated.Secondly,we would like to use this transition domain for shockwave-induced ultrafast ignition of a pre-compressed target.The laser parameters for these purposes are calculated and the main advantages of this scheme are described.If this scheme is successful a new source of energy in large quantities may become feasible.

  15. HOW SIGNIFICANT IS RADIATION PRESSURE IN THE DYNAMICS OF THE GAS AROUND YOUNG STELLAR CLUSTERS?

    Energy Technology Data Exchange (ETDEWEB)

    Silich, Sergiy; Tenorio-Tagle, Guillermo, E-mail: silich@inaoep.mx [Instituto Nacional de Astrofisica Optica y Electronica, AP 51, 72000 Puebla (Mexico)

    2013-03-01

    The impact of radiation pressure on the dynamics of the gas in the vicinity of young stellar clusters is thoroughly discussed. The radiation over the thermal/ram pressure ratio time evolution is calculated explicitly and the crucial roles of the cluster mechanical power, the strong time evolution of the ionizing photon flux, and the bolometric luminosity of the exciting cluster are stressed. It is shown that radiation has only a narrow window of opportunity to dominate the wind-driven shell dynamics. This may occur only at early stages of the bubble evolution and if the shell expands into a dusty and/or a very dense proto-cluster medium. The impact of radiation pressure on the wind-driven shell always becomes negligible after about 3 Myr. Finally, the wind-driven model results allow one to compare the model predictions with the distribution of thermal pressure derived from X-ray observations. The shape of the thermal pressure profile then allows us to distinguish between the energy and the momentum-dominated regimes of expansion and thus conclude whether radiative losses of energy or the leakage of hot gas from the bubble interior have been significant during bubble evolution.

  16. Outward Motion of Porous Dust Aggregates by Stellar Radiation Pressure in Protoplanetary Disks

    CERN Document Server

    Tazaki, Ryo

    2014-01-01

    We study the dust motion at the surface layer of protoplanetary disks. Dust grains in surface layer migrate outward due to angular momentum transport via gas-drag force induced by the stellar radiation pressure. In this study, we calculate mass flux of the outward motion of compact grains and porous dust aggregates by the radiation pressure. The radiation pressure force for porous dust aggregates is calculated using the T-Matrix Method for the Clusters of Spheres. First, we confirm that porous dust aggregates are forced by strong radiation pressure even if they grow to be larger aggregates in contrast to homogeneous and spherical compact grains to which efficiency of radiation pressure becomes lower when their sizes increase. In addition, we find that the outward mass flux of porous dust aggregates with monomer size of 0.1 $\\mu$m is larger than that of compact grains by an order of magnitude at the disk radius of 1 AU, when their sizes are several microns. This implies that large compact grains like calcium-a...

  17. The spectrum of the relativistic radiation of electric charges and dipoles in their free falling into a black hole

    CERN Document Server

    Shatskiy, A A; Lipatova, L N

    2013-01-01

    The free fall of electric charges and dipoles, radial and freely falling into the Schwarzschild black hole event horizon, was considered. Inverse effect of electromagnetic fields on the black hole is neglected. Dipole was considered as a point particle, so the deformation associated with exposure by tidal forces are neglected. According to the theorem, "the lack of hair" of black holes, multipole magnetic fields must be fully emitted by multipole fall into a black hole. The spectrum of electromagnetic radiation power for these multipoles (monopole and dipole) was found. Differences were found in the spectra for different orientations of the falling dipole. A general method has been developed to find radiated electromagnetic multipole fields for the free falling multipoles into a black hole (including higher order multipoles - quadrupoles, etc.). The electromagnetic spectrum can be compared with observational data from stellar mass and smaller black holes.

  18. Black Sun: Ocular Invisibility of Relativistic Luminous Astrophysical Bodies

    CERN Document Server

    Lee, Jeffrey S

    2015-01-01

    The relativistic Doppler shifting of visible electromagnetic radiation to beyond the human ocular range reduces the incident radiance of the source. Consequently, luminous astrophysical bodies (LABs) can be rendered invisible with sufficient relativistic motion. This paper determines the proper distance as a function of relativistic velocity at which a luminous object attains ocular invisibility.

  19. Highly relativistic radiation belt electron acceleration, transport, and loss: Large solar storm events of March and June 2015.

    Science.gov (United States)

    Baker, D N; Jaynes, A N; Kanekal, S G; Foster, J C; Erickson, P J; Fennell, J F; Blake, J B; Zhao, H; Li, X; Elkington, S R; Henderson, M G; Reeves, G D; Spence, H E; Kletzing, C A; Wygant, J R

    2016-07-01

    Two of the largest geomagnetic storms of the last decade were witnessed in 2015. On 17 March 2015, a coronal mass ejection-driven event occurred with a Dst (storm time ring current index) value reaching -223 nT. On 22 June 2015 another strong storm (Dst reaching -204 nT) was recorded. These two storms each produced almost total loss of radiation belt high-energy (E ≳ 1 MeV) electron fluxes. Following the dropouts of radiation belt fluxes there were complex and rather remarkable recoveries of the electrons extending up to nearly 10 MeV in kinetic energy. The energized outer zone electrons showed a rich variety of pitch angle features including strong "butterfly" distributions with deep minima in flux at α = 90°. However, despite strong driving of outer zone earthward radial diffusion in these storms, the previously reported "impenetrable barrier" at L ≈ 2.8 was pushed inward, but not significantly breached, and no E ≳ 2.0 MeV electrons were seen to pass through the radiation belt slot region to reach the inner Van Allen zone. Overall, these intense storms show a wealth of novel features of acceleration, transport, and loss that are demonstrated in the present detailed analysis.

  20. Semi-empirical calculations of radiative decay rates in Mo II. A comparison between oscillator strength parametrization and core-polarization-corrected relativistic Hartree-Fock approaches

    Science.gov (United States)

    Bouazza, Safa; Palmeri, Patrick; Quinet, Pascal

    2017-09-01

    We present a semi-empirical determination of Mo II radiative parameters in a wide wavelength range 1716-8789 Å. Our fitting procedure to experimental oscillator strengths available in the literature permits us to provide reliable values for a large number of Mo II lines, predicting previously unmeasured oscillator strengths of lines involving 4d45p and 4d35s5p odd-parity configurations. The extracted transition radial integral values are compared with ab-initio calculations: on average they are 0.88 times the values obtained with the basic pseudo-relativistic Hartree Fock method and they agree well when core polarization effects are included. When making a survey of our present and previous studies and including also those given in the literature we observe as general trends a decreasing of transition radial integral values with filling nd shells of the same principal quantum numbers for ndk(n + 1)s → ndk(n + 1)p transitions.

  1. Gravitation relativiste

    CERN Document Server

    Hakim, Rémi

    1994-01-01

    Il existe à l'heure actuelle un certain nombre de théories relativistes de la gravitation compatibles avec l'expérience et l'observation. Toutefois, la relativité générale d'Einstein fut historiquement la première à fournir des résultats théoriques corrects en accord précis avec les faits.

  2. On Radiation Pressure and the Poynting-Robertson Effect for Fluffy Dust Particles

    CERN Document Server

    Klacka, J

    2002-01-01

    Equation of motion for real dust particle under the action of electromagnetic radiation is more general than equation of motion corresponding to standardly used Poynting-Robertson effect (P-R effect). As a consequence, orbital evolution of particles may significantly differ from that corresponding to the P-R effect. The paper discusses recently published (Icarus, June 2002) derivation of equation of motion, which is in contradiction with known relativistically covariant formulation. The ``new'' derivation does not respect fundamental physical laws (law of conservation of energy, law of conservation of momentum) which must hold in any frame of reference. Application of the derived ``general'' equation of motion to the special case treated by Einstein in 1905 yields result which is not consistent with Einstein's result. Correct solution is presented.

  3. On the impact of radiation pressure on the dynamics and inner structure of dusty wind-driven shells

    CERN Document Server

    Martinez-Gonzalez, Sergio; Tenorio-Tagle, Guillermo

    2014-01-01

    Massive young stellar clusters are strong sources of radiation and mechanical energy. Their powerful winds and radiation pressure sweep-up interstellar gas into thin expanding shells which trap the ionizing radiation produced by the central clusters affecting the dynamics and the distribution of their ionized gas. Here we continue our comparison of the star cluster winds and radiation pressure effects on the dynamics of shells around young massive clusters. We calculate the impact that radiation pressure has on the distribution of matter and thermal pressure within such shells as well as on the density weighted ionization parameter $U_w$ and put our results on the diagnostic diagram which allows one to discriminate between the wind-dominated and radiation-dominated regimes. We found that model predicted values of the ionization parameter agree well with typical values found in local starburst galaxies. Radiation pressure may affect the inner structure and the dynamics of wind-driven shells only at the earlies...

  4. Relativistic Astrophysics

    Science.gov (United States)

    Jones, Bernard J. T.; Markovic, Dragoljub

    1997-06-01

    Preface; Prologue: Conference overview Bernard Carr; Part I. The Universe At Large and Very Large Redshifts: 2. The size and age of the Universe Gustav A. Tammann; 3. Active galaxies at large redshifts Malcolm S. Longair; 4. Observational cosmology with the cosmic microwave background George F. Smoot; 5. Future prospects in measuring the CMB power spectrum Philip M. Lubin; 6. Inflationary cosmology Michael S. Turner; 7. The signature of the Universe Bernard J. T. Jones; 8. Theory of large-scale structure Sergei F. Shandarin; 9. The origin of matter in the universe Lev A. Kofman; 10. New guises for cold-dark matter suspects Edward W. Kolb; Part II. Physics and Astrophysics Of Relativistic Compact Objects: 11. On the unification of gravitational and inertial forces Donald Lynden-Bell; 12. Internal structure of astrophysical black holes Werner Israel; 13. Black hole entropy: external facade and internal reality Valery Frolov; 14. Accretion disks around black holes Marek A. Abramowicz; 15. Black hole X-ray transients J. Craig Wheeler; 16. X-rays and gamma rays from active galactic nuclei Roland Svensson; 17. Gamma-ray bursts: a challenge to relativistic astrophysics Martin Rees; 18. Probing black holes and other exotic objects with gravitational waves Kip Thorne; Epilogue: the past and future of relativistic astrophysics Igor D. Novikov; I. D. Novikov's scientific papers and books.

  5. Are the Narrow Line Regions in Active Galaxies Dusty and Radiation Pressure Dominated?

    CERN Document Server

    Dopita, M A; Sutherland, R S; Binette, L; Cecil, G N

    2002-01-01

    The remarkable similarity between emission spectra of narrow line regions (NLR) in Seyfert Galaxies has long presented a mystery. In photoionization models, this similarity implies that the ionization parameter is nearly always the same, about U ~ 0.01. Here we present dusty, radiation-pressure dominated photoionization models that can provide natural physical insight into this problem. In these models, dust and the radiation pressure acting on it provide the controlling factor in moderating the density, excitation and surface brightness of photoionized NLR structures. Additionally, photoelectric heating by the dust is important in determining the temperature structure of the models. These models can also explain the coexistence of the low-, intermediate- and coronal ionization zones within a single self-consistent physical structure. The radiation pressure acting on dust may also be capable of driving the fast (~3000 km/s) outflows such as are seen in the HST observations of NGC 1068.

  6. New frontier of laser particle acceleration: driving protons to 80 MeV by radiation pressure

    CERN Document Server

    Kim, I Jong; Kim, Chul Min; Kim, Hyung Taek; Lee, Chang-Lyoul; Choi, Il Woo; Singhal, Himanshu; Sung, Jae Hee; Lee, Seong Ku; Lee, Hwang Woon; Nickles, Peter V; Jeong, Tae Moon; Nam, Chang Hee

    2014-01-01

    The radiation pressure acceleration (RPA) of charged particles has been considered a challenging task in laser particle acceleration. Laser-driven proton/ion acceleration has attracted considerable interests due to its underlying physics and potential for applications such as high-energy density physics, ultrafast radiography, and cancer therapy. Among critical issues to overcome the biggest challenge is to produce energetic protons using an efficient acceleration mechanism. The proton acceleration by radiation pressure is considerably more efficient than the conventional target normal sheath acceleration driven by expanding hot electrons. Here we report the generation of 80-MeV proton beams achieved by applying 30-fs circularly polarized laser pulses with an intensity of 6.1 x 1020 W/cm2 to ultrathin targets. The radiation pressure acceleration was confirmed from the obtained optimal target thickness, quadratic energy scaling, polarization dependence, and 3D-PIC simulations. We expect this fast energy scalin...

  7. Line Emission from Radiation-Pressurized HII Region II: Dynamics and Population Synthesis

    CERN Document Server

    Verdolini, Silvia; Krumholz, Mark R; Matzner, Christopher D; Tielens, Alexander G G M

    2013-01-01

    Optical and infrared emission lines from HII regions are an important diagnostic used to study galaxies, but interpretation of these lines requires significant modeling of both the internal structure and dynamical evolution of the emitting regions. Most of the models in common use today assume that HII region dynamics are dominated by the expansion of stellar wind bubbles, and have neglected the contribution of radiation pressure to the dynamics, and in some cases also to the internal structure. However, recent observations of nearby galaxies suggest that neither assumption is justified, motivating us to revisit the question of how HII region line emission depends on the physics of winds and radiation pressure. In a companion paper we construct models of single HII regions including and excluding radiation pressure and winds, and in this paper we describe a population synthesis code that uses these models to simulate galactic collections of HII regions with varying physical parameters. We show that the choice...

  8. Theory for planetary exospheres: I. Radiation pressure effect on dynamical trajectories

    CERN Document Server

    Beth, Arnaud; Toublanc, Dominique; Dandouras, Iannis; Mazelle, Christian

    2015-01-01

    The planetary exospheres are poorly known in their outer parts, since the neutral densities are low compared with the instruments detection capabilities. The exospheric models are thus often the main source of information at such high altitudes. We present a new way to take into account analytically the additional effect of the radiation pressure on planetary exospheres. In a series of papers, we present with an Hamiltonian approach the effect of the radiation pressure on dynamical trajectories, density profiles and escaping thermal flux. Our work is a generalization of the study by Bishop and Chamberlain (1989). In this first paper, we present the complete exact solutions of particles trajectories, which are not conics, under the influence of the solar radiation pressure. This problem was recently partly solved by Lantoine and Russell (2011) and Biscani and Izzo (2014). We give here the full set of solutions, including solutions not previously derived, as well as simpler formulations for previously known cas...

  9. Laser radiation pressure slowing of a molecular beam

    CERN Document Server

    Barry, J F; Norrgard, E B; DeMille, D

    2011-01-01

    There is substantial interest in producing samples of ultracold molecules for possible applications in quantum computation, quantum simulation of condensed matter systems, precision measurements, controlled chemistry, and high precision spectroscopy. A crucial step to obtaining large samples of ultracold, trapped molecules is developing a means to bridge the gap between typical molecular source velocities (~150-600 m/s) and velocities for which trap loading or confinement is possible (~5-20 m/s). Here we show deceleration of a beam of neutral strontium monofluoride (SrF) molecules using radiative force. Under certain conditions, the deceleration results in a substantial flux of molecules with velocities <50 m/s. The observed slowing, from ~140 m/s, corresponds to scattering ~10000 photons. We also observe longitudinal velocity compression under different conditions. Combined with molecular laser cooling techniques, this lays the groundwork to create slow and cold molecular beams suitable for trap loading.

  10. Radiation Pressure Force from Optical Cycling on a Polyatomic Molecule

    CERN Document Server

    Kozyryev, Ivan; Matsuda, Kyle; Hemmerling, Boerge; Doyle, John M

    2016-01-01

    We demonstrate multiple photon cycling and radiative force deflection on the triatomic free radical strontium monohydroxide (SrOH). Optical cycling is achieved on SrOH in a cryogenic buffer-gas beam by employing the rotationally closed $P\\left(N''=1\\right)$ branch of the vibronic transition $\\tilde{X}^{2}\\Sigma^{+}\\left(000\\right)\\leftrightarrow\\tilde{A}^{2}\\Pi_{1/2}\\left(000\\right)$. A single repumping laser excites the Sr-O stretching vibrational mode, and photon cycling of the molecule deflects the SrOH beam by an angle of $0.2^{\\circ}$ via scattering of $\\sim100$ photons per molecule. This approach can be used for direct laser cooling of SrOH and more complex, isoelectronic species.

  11. Negative radiation pressure and negative effective refractive index via dielectric birefringence.

    Science.gov (United States)

    Nemirovsky, Jonathan; Rechtsman, Mikael C; Segev, Mordechai

    2012-04-09

    We show that light guided in a planar dielectric slab geometry incorporating a biaxial medium has lossless modes with group and phase velocities in opposite directions. Particles in a vacuum gap inserted into the structure experience negative radiation pressure: the particles are pulled by light rather than pushed by it. This effectively one-dimensional dielectric structure represents a new geometry for achieving negative radiation pressure in a wide range of frequencies with minimal loss. Moreover, this geometry provides a straightforward platform for experimentally resolving the Abrahams-Minkowski dilemma.

  12. Radiation pressure forces on individual micron-size dust particles: a new experimental approach

    Energy Technology Data Exchange (ETDEWEB)

    Krauss, Oliver [Institute for Planetology, University of Muenster, Wilhelm-Klemm-Str. 10, D-48149 Muenster (Germany)]. E-mail: okrauss@uni-muenster.de; Wurm, Gerhard [Institute for Planetology, University of Muenster, Wilhelm-Klemm-Str. 10, D-48149 Muenster (Germany)

    2004-12-15

    We present a newly developed experimental setup for the measurement of radiation pressure forces on individual dust particles. The principle of measurement is to observe the momentum transfer from a high-power laser pulse to a particle that is levitated in a quadrupole trap. Microscopic observation of the particle motion provides information on the forces that act on the particle in the directions parallel and perpendicular to the incident laser beam. First measurements with micron-size graphite grains that serve as analog particles for carbonaceous dust grains in various astrophysical environments reveal that such highly irregularly shaped particles show very high ratios of transversal to radial radiation pressure forces.

  13. Cherenkov and parametric (quasi-Cherenkov) radiation from relativistic charged particles moving in crystals formed by metallic wires

    CERN Document Server

    Baryshevsky, Vladimir

    2016-01-01

    Until recently, the interaction of electromagnetic waves with crystals built from parallel metallic wires (wire media) was analyzed in the approximation of isotropic scattering of the electromagnetic wave by a single wire. However, if the wires are thick (kR~1), electromagnetic wave scattering by a wire is anisotropic, i.e., the scattering amplitude depends on the scattering angle. In this work, we derive the equations that describe diffraction of electromagnetic waves and spontaneous emission of charged particles in wire media, and take into account the angular dependence of scattering amplitude. Numerical solutions of these equations show that the radiation intensity increases as the wire radius is increased and achieves its maximal value in the range kR~1. The case when the condition kR~1 is fulfilled in the THz frequency range is considered in detail. The calculations show that the instantaneous power of Cherenkov and parametric (quasi-Cherenkov) radiations from electron bunches in the crystal can be tens...

  14. Microscopic Processes in Relativistic Jets

    Science.gov (United States)

    Nishikawa, K.-I.; Hardee, P.; Mizuno, Y.; Medvedev, M.; Zhang, B.; Nordlund, A.; Fredricksen, J.; Sol, H.; Niemiec, J.; Lyubarsky, Y.; hide

    2008-01-01

    Nonthermal radiation observed from astrophysical systems containing relativistic jets and shocks, e.g., gamma-ray bursts (GRBs), active galactic nuclei (AGNs), and Galactic microquasar systems usually have power-law emission spectra. Recent PIC simulations of relativistic electron-ion (electro-positron) jets injected into a stationary medium show that particle acceleration occurs within the downstream jet. In the collisionless relativistic shock particle acceleration is due to plasma waves and their associated instabilities (e.g., the Buneman instability, other two-streaming instability, and the Weibel (filamentation) instability) created in the shocks are responsible for particle (electron, positron, and ion) acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields. These magnetic fields contribute to the electron's transverse deflection behind the jet head. The 'jitter' radiation from deflected electrons has different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants.

  15. How Significant is Radiation Pressure in the Dynamics of the Gas Around Young Stellar Clusters?

    CERN Document Server

    Silich, Sergiy

    2013-01-01

    The impact of radiation pressure on the dynamics of the gas in the vicinity of young stellar clusters is thoroughly discussed. The radiation over the thermal/ram pressure ratio time evolution is calculated explicitely and the crucial role of the cluster mechanical power and of the strong time evolution of the ionizing photon flux and of the bolometric luminosity of the exciting cluster is stressed. It is shown that radiation has only a narrow window of opportunity to dominate the wind-driven shell dynamics. This may occur only at early stages of the bubble evolution and if the shell expands into a dusty and/or a very dense proto-cluster medium. The impact of radiation pressure on the wind-driven shell becomes always negligible after about 3 Myr. Finally, the wind-driven model results allow one to compare the model predictions with the distribution of thermal pressure derived from X-ray observations. The shape of the thermal pressure profile allows then to distinguish between the energy and the momentum domina...

  16. Total dose radiation effects of pressure sensors fabricated on Unibond-SOI materials

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Piezoresistive pressure sensors with a twin-island structure were suc cessfully fabricated using high quality Unibond-SOI (On Insulator) materials. Since the piezoresistors were structured by the single crystalline silicon overlayer of the SOI wafer and were totally isolated by the buried SiO2, the sensors are radiation-hard. The sensitivity and the linearity of the pressure sensors keep their original values after being irradiated by 60Co γ-rays up to 2.3 × 104 Gy (H2O). However, the offset voltage of the sensor has a slight drift, increasing with the radiation dose. The absolute walue of the offset voltage deviation depends on the pressure sensor itself. For comparison, corresponding polysilicon pressure sensors were fabricated using the similar process and irradiated at the same condition.

  17. A non-contact mine pressure evaluation method by electromagnetic radiation

    Science.gov (United States)

    Wang, Enyuan; He, Xueqiu; Liu, Xiaofei; Li, Zhonghui; Wang, Chao; Xiao, Dong

    2011-10-01

    An electromagnetic radiation evaluation method for the relative stress state of coal bed under stress was proposed in this paper. The stress distribution of mine roadway or working face, as well as high stress zone or stress gradient zone, was analyzed by the method. The main advantages of the technique are its characteristics of non-contact, orientability, and regional monitoring. Correlation analysis of electromagnetic radiation with relative stress was carried out in coal mines and tunnels. The results indicate that the electromagnetic radiation technology has a wide application prospect in the evaluation of mine pressure.

  18. A solution to the radiation pressure problem in the formation of massive stars

    CERN Document Server

    Kuiper, Rolf; Beuther, Henrik; Henning, Thomas

    2012-01-01

    We review our recent studies demonstrating that the radiation pressure problem in the formation of massive stars can be circumvented via an anisotropy of the thermal radiation field. Such an anisotropy naturally establishes with the formation of a circumstellar disk. The required angular momentum transport within the disk can be provided by developing gravitational torques. Radiative Rayleigh-Taylor instabilities in the cavity regions - as previously suggested in the literature - are not required and are shown to be not occurring in the context of massive star formation.

  19. Exotic dense-matter states pumped by a relativistic laser plasma in the radiation-dominated regime.

    Science.gov (United States)

    Colgan, J; Abdallah, J; Faenov, A Ya; Pikuz, S A; Wagenaars, E; Booth, N; Culfa, O; Dance, R J; Evans, R G; Gray, R J; Kaempfer, T; Lancaster, K L; McKenna, P; Rossall, A L; Skobelev, I Yu; Schulze, K S; Uschmann, I; Zhidkov, A G; Woolsey, N C

    2013-03-22

    In high-spectral resolution experiments with the petawatt Vulcan laser, strong x-ray radiation of KK hollow atoms (atoms without n = 1 electrons) from thin Al foils was observed at pulse intensities of 3 × 10(20) W/cm(2). The observations of spectra from these exotic states of matter are supported by detailed kinetics calculations, and are consistent with a picture in which an intense polychromatic x-ray field, formed from Thomson scattering and bremsstrahlung in the electrostatic fields at the target surface, drives the KK hollow atom production. We estimate that this x-ray field has an intensity of >5 × 10(18) W/cm(2) and is in the 3 keV range.

  20. Radiatively Driven Jets around Black Holes

    CERN Document Server

    Chattopadhyay, I; Chattopadhyay, Indranil; Chakrabarti, Sandip K.

    2004-01-01

    The hot, puffed up, post-shock region of an advective disc is the source of high energy photons and also the jets and outflows. We study the relativistic equations of motion of jets as these high energy photons interact with them. We show that the much discussed terminal velocity of jets depends on the comparative value of radiative energy density, flux and the radiative pressure. We show that electron-positron pair plasma jets achieves highly relativistic terminal speeds for higher disc luminosities.

  1. The present status of high-pressure research at Beijing Synchrotron Radiation Facility

    CERN Document Server

    Liu, J; Li, Y C

    2002-01-01

    The present status of high-pressure research at Beijing Synchrotron Radiation Facility is reported. A ten-poles wiggler beamline provides a white beam for investigating samples using a diamond anvil cell. In situ energy-dispersive diffraction is used to determine the pressure-induced phase transitions and equations of state. High pressure can be stably applied by a stepper-motorized loading system with a strain sensor. Some megabar experiments have been carried out without damage on diamonds. Improved beam collimation reduces the background and eliminates gasket scatter. Some research and future developments are also presented.

  2. Radiative heat transfer in plasma of pulsed high pressure caesium discharge

    Science.gov (United States)

    Lapshin, V. F.

    2016-01-01

    Two-temperature many component gas dynamic model is used for the analysis of features of radiative heat transfer in pulsed high pressure caesium discharge plasma. It is shown that at a sufficiently high pressure the radial optical thickness of arc column is close to unit (τR (λ) ∼ 1) in most part of spectrum. In this case radiative heat transfer has not local character. In these conditions the photons which are emitted in any point of plasma volume are absorbed in other point remote from an emission point on considerable distance. As a result, the most part of the electric energy put in the discharge mainly near its axis is almost instantly redistributed on all volume of discharge column. In such discharge radial profiles of temperature are smooth. In case of low pressure, when discharge plasma is optically transparent for own radiation in the most part of a spectrum (τR(λ) << 1), the emission of radiation without reabsorption takes place. Radiative heat transfer in plasma has local character and profiles of temperature have considerable gradient.

  3. Stretching and squeezing of sessile dielectric drops by the optical radiation pressure.

    Science.gov (United States)

    Chraïbi, Hamza; Lasseux, Didier; Arquis, Eric; Wunenburger, Régis; Delville, Jean-Pierre

    2008-06-01

    We study numerically the deformation of sessile dielectric drops immersed in a second fluid when submitted to the optical radiation pressure of a continuous Gaussian laser wave. Both drop stretching and drop squeezing are investigated at steady state where capillary effects balance the optical radiation pressure. A boundary integral method is implemented to solve the axisymmetric Stokes flow in the two fluids. In the stretching case, we find that the drop shape goes from prolate to near-conical for increasing optical radiation pressure whatever the drop to beam radius ratio and the refractive index contrast between the two fluids. The semiangle of the cone at equilibrium decreases with the drop to beam radius ratio and is weakly influenced by the index contrast. Above a threshold value of the radiation pressure, these "optical cones" become unstable and a disruption is observed. Conversely, when optically squeezed, the drop shifts from an oblate to a concave shape leading to the formation of a stable "optical torus." These findings extend the electrohydrodynamics approach of drop deformation to the much less investigated "optical domain" and reveal the openings offered by laser waves to actively manipulate droplets at the micrometer scale.

  4. Theory for planetary exospheres: II. Radiation pressure effect on exospheric density profiles

    Science.gov (United States)

    Beth, A.; Garnier, P.; Toublanc, D.; Dandouras, I.; Mazelle, C.

    2016-03-01

    The planetary exospheres are poorly known in their outer parts, since the neutral densities are low compared with the instruments detection capabilities. The exospheric models are thus often the main source of information at such high altitudes. We present a new way to take into account analytically the additional effect of the radiation pressure on planetary exospheres. In a series of papers, we present with an Hamiltonian approach the effect of the radiation pressure on dynamical trajectories, density profiles and escaping thermal flux. Our work is a generalization of the study by Bishop and Chamberlain (1989). In this second part of our work, we present here the density profiles of atomic Hydrogen in planetary exospheres subject to the radiation pressure. We first provide the altitude profiles of ballistic particles (the dominant exospheric population in most cases), which exhibit strong asymmetries that explain the known geotail phenomenon at Earth. The radiation pressure strongly enhances the densities compared with the pure gravity case (i.e. the Chamberlain profiles), in particular at noon and midnight. We finally show the existence of an exopause that appears naturally as the external limit for bounded particles, above which all particles are escaping.

  5. Effect of Thermal Radiation on the Integrity of Pressurized Aircraft Evacuation Slides and Slide Materials

    Science.gov (United States)

    1981-03-01

    Pres sureI 19. Security Classif. (of this reort) 20. Security Classif. (of this pegs ) 21. No. of Pagos J~ ’E tce UnlsiidUnclassified :179 Ffig DOT F... deta from the new integrity of pressurized evacuation laboratory test method. slide materials exposed to thermal radiation; (2) develop a practical

  6. Relativistic and non-relativistic geodesic equations

    Energy Technology Data Exchange (ETDEWEB)

    Giambo' , R.; Mangiarotti, L.; Sardanashvily, G. [Camerino Univ., Camerino, MC (Italy). Dipt. di Matematica e Fisica

    1999-07-01

    It is shown that any dynamic equation on a configuration space of non-relativistic time-dependent mechanics is associated with connections on its tangent bundle. As a consequence, every non-relativistic dynamic equation can be seen as a geodesic equation with respect to a (non-linear) connection on this tangent bundle. Using this fact, the relationships between relativistic and non-relativistic equations of motion is studied.

  7. Assessing Radiation Pressure as a Feedback Mechanism in Star-forming Galaxies

    Science.gov (United States)

    Andrews, Brett H.; Thompson, Todd A.

    2011-02-01

    Radiation pressure from the absorption and scattering of starlight by dust grains may be an important feedback mechanism in regulating star-forming galaxies. We compile data from the literature on star clusters, star-forming subregions, normal star-forming galaxies, and starbursts to assess the importance of radiation pressure on dust as a feedback mechanism, by comparing the luminosity and flux of these systems to their dust Eddington limit. This exercise motivates a novel interpretation of the Schmidt law, the L IR-L'CO correlation, and the L IR-L'HCN correlation. In particular, the linear L IR-L'HCN correlation is a natural prediction of radiation pressure regulated star formation. Overall, we find that the Eddington limit sets a hard upper bound to the luminosity of any star-forming region. Importantly, however, many normal star-forming galaxies have luminosities significantly below the Eddington limit. We explore several explanations for this discrepancy, especially the role of "intermittency" in normal spirals—the tendency for only a small number of subregions within a galaxy to be actively forming stars at any moment because of the time dependence of the feedback process and the luminosity evolution of the stellar population. If radiation pressure regulates star formation in dense gas, then the gas depletion timescale is 6 Myr, in good agreement with observations of the densest starbursts. Finally, we highlight the importance of observational uncertainties, namely, the dust-to-gas ratio and the CO-to-H2 and HCN-to-H2 conversion factors, that must be understood before a definitive assessment of radiation pressure as a feedback mechanism in star-forming galaxies.

  8. Emission of excimer radiation from direct current, high-pressure hollow cathode discharges

    Science.gov (United States)

    El-Habachi, Ahmed; Schoenbach, Karl H.

    1998-01-01

    A novel, nonequilibrium, high-pressure, direct current discharge, the microhollow cathode discharge, has been found to be an intense source of xenon and argon excimer radiation peaking at wavelengths of 170 and 130 nm, respectively. In argon discharges with a 100 μm diam hollow cathode, the intensity of the excimer radiation increased by a factor of 5 over the pressure range from 100 to 800 mbar. In xenon discharges, the intensity at 170 nm increased by two orders of magnitude when the pressure was raised from 250 mbar to 1 bar. Sustaining voltages were 200 V for argon and 400 V for xenon discharges, at current levels on the order of mA. The resistive current-voltage characteristics of the microdischarges indicate the possibility to form arrays for direct current, flat panel excimer lamps.

  9. Sensitive Detection: Photoacoustics, Thermography, and Optical Radiation Pressure

    Energy Technology Data Exchange (ETDEWEB)

    Diebold, Gerald J. [Brown Univ., Providence, RI (United States)

    2017-04-21

    Research during the granting period has been carried out in several areas concerned with sensitive detection. An infrared pyrometer based on the photoacoustic effect has been developed. The sensitivity of this instrument to temperature differentials has been shown to be 50 mK. An investigation of transients that accompany photoacoustic waves generated by pulsed lasers has been carried out. Experiments have shown the existence of the transients, and a theory based on rapid heat diffusion has been developed. The photoacoustic effect in one dimension is known to increase without bound (in the linear acoustics regime) when an optical beam moves in a fluid at the sound speed. A solution to the wave equation for pressure has been found that describes the photoacoustic effect in a cell where an infrared optical grating moves at the sound speed. It was shown that the amplification effect exists along with a cavity resonance that can be used to great advantage in trace gas detection. The theory of the photoacoustic effect in a structure where the acoustic properties periodically vary in a one-dimensional based has been formulated based on solutions to a Mathieu equation. It was found that it is possible to excite photoacoustic waves within the band gaps to produce large amplitude acoustic waves. The idea of self-oscillation in a photoacoustic cell using a continuous laser has been investigated. A theory has been completed showing that in a compressive wave, the absorption increases as a result of the density increase leading to further absorption and hence an increased amplitude photoacoustic effect with the result that in a resonator, self-oscillation can place. Experiments have been carried out where irradiation of a suspension of absorbing carbon particles with a high power laser has been shown to result in cavitation luminescence. That is, following generation of CO and H2 from the carbon particles through the carbon-steam reaction, an expanding gas bubble is

  10. Radiation annealing of radiation embrittlement of the reactor pressure vessel steel

    Science.gov (United States)

    Krasikov, E.; Nikolaenko, V.

    2016-02-01

    Influence of neutron irradiation on RPV steel degradation are examined with reference to the possible reasons of the substantial experimental data scatter and furthermore - nonstandard (non-monotonous) and oscillatory embrittlement behavior. In our glance this phenomenon may be explained by presence of the wavelike component in the embrittlement kinetics. We suppose that the main factor affecting steel anomalous embrittlement is fast neutron intensity (dose rate or flux), flux effect manifestation depends on state-of-the-art fluence level. At low fluencies radiation degradation has to exceed normative value, then approaches to normative meaning and finally became sub normative. Data on radiation damage change including through the ex-service RPVs taking into account chemical factor, fast neutron fluence and neutron flux were obtained and analyzed. In our opinion controversy in the estimation on neutron flux on radiation degradation impact may be explained by presence of the wavelike component in the embrittlement kinetics. Therefore flux effect manifestation depends on fluence level. At low fluencies radiation degradation has to exceed normative value, then approaches to normative meaning and finally became sub normative. Moreover as a hypothesis we suppose that at some stages of irradiation damaged metal have to be partially restored by irradiation i.e. neutron bombardment. Nascent during irradiation structure undergo occurring once or periodically transformation in a direction both degradation and recovery of the initial properties. According to our hypothesis at some stage(s) of metal structure degradation neutron bombardment became recovering factor. As a result oscillation arise that in tern lead to enhanced data scatter.

  11. Ion acceleration and plasma jet formation in ultra-thin foils undergoing expansion and relativistic transparency

    Energy Technology Data Exchange (ETDEWEB)

    King, M.; Gray, R.J.; Powell, H.W.; MacLellan, D.A.; Gonzalez-Izquierdo, B. [SUPA Department of Physics, University of Strathclyde, Glasgow G4 0NG (United Kingdom); Stockhausen, L.C. [Centro de Laseres Pulsados (CLPU), Parque Cientifico, Calle del Adaja, s/n. 37185 Villamayor, Salamanca (Spain); Hicks, G.S.; Dover, N.P. [The John Adams Institute for Accelerator Science, Blackett Laboratory, Imperial College London, London SW7 2BZ (United Kingdom); Rusby, D.R. [SUPA Department of Physics, University of Strathclyde, Glasgow G4 0NG (United Kingdom); Central Laser Facility, STFC Rutherford Appleton Laboratory, Oxfordshire OX11 0QX (United Kingdom); Carroll, D.C. [Central Laser Facility, STFC Rutherford Appleton Laboratory, Oxfordshire OX11 0QX (United Kingdom); Padda, H. [SUPA Department of Physics, University of Strathclyde, Glasgow G4 0NG (United Kingdom); Torres, R. [Centro de Laseres Pulsados (CLPU), Parque Cientifico, Calle del Adaja, s/n. 37185 Villamayor, Salamanca (Spain); Kar, S. [Centre for Plasma Physics, Queens University Belfast, Belfast BT7 1NN (United Kingdom); Clarke, R.J.; Musgrave, I.O. [Central Laser Facility, STFC Rutherford Appleton Laboratory, Oxfordshire OX11 0QX (United Kingdom); Najmudin, Z. [The John Adams Institute for Accelerator Science, Blackett Laboratory, Imperial College London, London SW7 2BZ (United Kingdom); Borghesi, M. [Centre for Plasma Physics, Queens University Belfast, Belfast BT7 1NN (United Kingdom); Neely, D. [Central Laser Facility, STFC Rutherford Appleton Laboratory, Oxfordshire OX11 0QX (United Kingdom); McKenna, P., E-mail: paul.mckenna@strath.ac.uk [SUPA Department of Physics, University of Strathclyde, Glasgow G4 0NG (United Kingdom)

    2016-09-01

    At sufficiently high laser intensities, the rapid heating to relativistic velocities and resulting decompression of plasma electrons in an ultra-thin target foil can result in the target becoming relativistically transparent to the laser light during the interaction. Ion acceleration in this regime is strongly affected by the transition from an opaque to a relativistically transparent plasma. By spatially resolving the laser-accelerated proton beam at near-normal laser incidence and at an incidence angle of 30°, we identify characteristic features both experimentally and in particle-in-cell simulations which are consistent with the onset of three distinct ion acceleration mechanisms: sheath acceleration; radiation pressure acceleration; and transparency-enhanced acceleration. The latter mechanism occurs late in the interaction and is mediated by the formation of a plasma jet extending into the expanding ion population. The effect of laser incident angle on the plasma jet is explored.

  12. Mitigation of radiation-pressure-induced angular instability of a Fabry–Perot cavity consisting of suspended mirrors

    Energy Technology Data Exchange (ETDEWEB)

    Nagano, Koji, E-mail: knagano@icrr.u-tokyo.ac.jp [KAGRA Observatory, Institute for Cosmic Ray Research, The University of Tokyo, 5-1-5 Kashiwa-no-Ha, Kashiwa, Chiba 277-8582 (Japan); Enomoto, Yutaro; Nakano, Masayuki [KAGRA Observatory, Institute for Cosmic Ray Research, The University of Tokyo, 5-1-5 Kashiwa-no-Ha, Kashiwa, Chiba 277-8582 (Japan); Furusawa, Akira [Department of Applied Physics, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan); Kawamura, Seiji [KAGRA Observatory, Institute for Cosmic Ray Research, The University of Tokyo, 5-1-5 Kashiwa-no-Ha, Kashiwa, Chiba 277-8582 (Japan)

    2016-12-01

    To observe radiation pressure noise in optical cavities consisting of suspended mirrors, high laser power is necessary. However, because the radiation pressure on the mirrors could cause an angular anti-spring effect, the high laser power could induce angular instability to the cavity. An angular control system using radiation pressure as an actuator, which was previously invented to reduce the anti-spring effect for the low power case, was applied to the higher power case where the angular instability would occur. As a result the angular instability was mitigated. It was also demonstrated that the cavity was unstable without this control system. - Highlights: • High laser power could cause angular instability to a suspended Fabry–Perot cavity. • To mitigate the instability, the control system using radiation pressure is applied. • Mitigating the radiation-pressure-induced angular instability is demonstrated. • It is also confirmed that the cavity would be unstable without the control system.

  13. Relativistic magnetohydrodynamics

    Science.gov (United States)

    Hernandez, Juan; Kovtun, Pavel

    2017-05-01

    We present the equations of relativistic hydrodynamics coupled to dynamical electromagnetic fields, including the effects of polarization, electric fields, and the derivative expansion. We enumerate the transport coefficients at leading order in derivatives, including electrical conductivities, viscosities, and thermodynamic coefficients. We find the constraints on transport coefficients due to the positivity of entropy production, and derive the corresponding Kubo formulas. For the neutral state in a magnetic field, small fluctuations include Alfvén waves, magnetosonic waves, and the dissipative modes. For the state with a non-zero dynamical charge density in a magnetic field, plasma oscillations gap out all propagating modes, except for Alfvén-like waves with a quadratic dispersion relation. We relate the transport coefficients in the "conventional" magnetohydrodynamics (formulated using Maxwell's equations in matter) to those in the "dual" version of magnetohydrodynamics (formulated using the conserved magnetic flux).

  14. Relativistic Achilles

    CERN Document Server

    Leardini, Fabrice

    2013-01-01

    This manuscript presents a problem on special relativity theory (SRT) which embodies an apparent paradox relying on the concept of simultaneity. The problem is represented in the framework of Greek epic poetry and structured in a didactic way. Owing to the characteristic properties of Lorenz transformations, three events which are simultaneous in a given inertial reference system, occur at different times in the other two reference frames. In contrast to the famous twin paradox, in the present case there are three, not two, different inertial observers. This feature provides a better framework to expose some of the main characteristics of SRT, in particular, the concept of velocity and the relativistic rule of addition of velocities.

  15. Special Relativistic Hydrodynamics with Gravitation

    Science.gov (United States)

    Hwang, Jai-chan; Noh, Hyerim

    2016-12-01

    Special relativistic hydrodynamics with weak gravity has hitherto been unknown in the literature. Whether such an asymmetric combination is possible has been unclear. Here, the hydrodynamic equations with Poisson-type gravity, considering fully relativistic velocity and pressure under the weak gravity and the action-at-a-distance limit, are consistently derived from Einstein’s theory of general relativity. An analysis is made in the maximal slicing, where the Poisson’s equation becomes much simpler than our previous study in the zero-shear gauge. Also presented is the hydrodynamic equations in the first post-Newtonian approximation, now under the general hypersurface condition. Our formulation includes the anisotropic stress.

  16. Special relativistic hydrodynamics with gravitation

    CERN Document Server

    Hwang, Jai-chan

    2016-01-01

    The special relativistic hydrodynamics with weak gravity is hitherto unknown in the literature. Whether such an asymmetric combination is possible was unclear. Here, the hydrodynamic equations with Poisson-type gravity considering fully relativistic velocity and pressure under the weak gravity and the action-at-a-distance limit are consistently derived from Einstein's general relativity. Analysis is made in the maximal slicing where the Poisson's equation becomes much simpler than our previous study in the zero-shear gauge. Also presented is the hydrodynamic equations in the first post-Newtonian approximation, now under the {\\it general} hypersurface condition. Our formulation includes the anisotropic stress.

  17. On the impact of radiation pressure on the dynamics and inner structure of dusty wind-driven shells

    Energy Technology Data Exchange (ETDEWEB)

    Martínez-González, Sergio; Silich, Sergiy; Tenorio-Tagle, Guillermo, E-mail: silich@inaoep.mx [Instituto Nacional de Astrofísica Óptica y Electrónica, AP 51, 72000 Puebla (Mexico)

    2014-04-20

    Massive young stellar clusters are strong sources of radiation and mechanical energy. Their powerful winds and radiation pressure sweep up interstellar gas into thin expanding shells that trap the ionizing radiation produced by the central clusters affecting the dynamics and the distribution of their ionized gas. Here we continue our comparison of the star cluster winds and radiation pressure effects on the dynamics of shells around young massive clusters. We calculate the impact that radiation pressure has on the distribution of matter and thermal pressure within such shells, as well as on the density-weighted ionization parameter U{sub w} , and put our results on the diagnostic diagram, which allows one to discriminate between the wind-dominated and radiation-dominated regimes. We found that model-predicted values of the ionization parameter agree well with typical values found in local starburst galaxies. Radiation pressure may affect the inner structure and the dynamics of wind-driven shells, but only during the earliest stages of evolution (before ∼3 Myr) or if a major fraction of the star cluster mechanical luminosity is dissipated or radiated away within the star cluster volume and thus the star cluster mechanical energy output is significantly smaller than star cluster synthetic models predict. However, even in these cases radiation dominates over the wind dynamical pressure only if the exciting cluster is embedded into a high-density ambient medium.

  18. Electromagnetic Radiation and Equation of Motion for Really Shaped Particle -- New Covariant Formulation

    CERN Document Server

    Klacka, J

    2001-01-01

    Relativistically covariant form of equation of motion for real particle (body) under the action of electromagnetic radiation is derived. Equation of motion in the proper frame of the particle uses the radiation pressure cross section 3 $\\times$ 3 matrix. Obtained covariant equation of motion is compared with another covariant equation of motion which was presented more than one year ago.

  19. Radiation pressure confinement - III. The origin of the broad ionization distribution in AGN outflows

    Science.gov (United States)

    Stern, Jonathan; Behar, Ehud; Laor, Ari; Baskin, Alexei; Holczer, Tomer

    2014-12-01

    The winds of ionized gas driven by active galactic nuclei (AGN) can be studied through absorption lines in their X-ray spectra. A recurring feature of these outflows is their broad ionization distribution, including essentially all ionization levels (e.g., Fe0+ to Fe25+). This characteristic feature can be quantified with the absorption measure distribution (AMD), defined as the distribution of column density with ionization parameter |dN/d log ξ|. Observed AMDs extend over 0.1 ≲ ξ ≲ 104 (cgs), and are remarkably similar in different objects. Power-law fits (|dN/d log ξ| ≈ N1ξa) yield N1 = 3 × 1021 cm- 2 ± 0.4 dex and a = 0-0.4. What is the source of this broad ionization distribution, and what sets the small range of observed N1 and a? A common interpretation is a multiphase outflow, with a wide range of gas densities in a uniform gas pressure medium. However, the incident radiation pressure leads to a gas pressure gradient in the photoionized gas, and therefore to a broad range of ionization states within a single slab. We show that this compression of the gas by the radiation pressure leads to an AMD with |dN/d log ξ| = 8 × 1021 ξ0.03 cm-2, remarkably similar to that observed. The calculated values of N1 and a depend weakly on the gas metallicity, the ionizing spectral slope, the distance from the nucleus, the ambient density, and the total absorber column. Thus, radiation pressure compression (RPC) of the photoionized gas provides a natural explanation for the observed AMD. RPC predicts that the gas pressure increases with decreasing ionization, which can be used to test the validity of RPC in ionized AGN outflows.

  20. Bright betatronlike x rays from radiation pressure acceleration of a mass-limited foil target.

    Science.gov (United States)

    Yu, Tong-Pu; Pukhov, Alexander; Sheng, Zheng-Ming; Liu, Feng; Shvets, Gennady

    2013-01-25

    By using multidimensional particle-in-cell simulations, we study the electromagnetic emission from radiation pressure acceleration of ultrathin mass-limited foils. When a circularly polarized laser pulse irradiates the foil, the laser radiation pressure pushes the foil forward as a whole. The outer wings of the pulse continue to propagate and act as a natural undulator. Electrons move together with ions longitudinally but oscillate around the latter transversely, forming a self-organized helical electron bunch. When the electron oscillation frequency coincides with the laser frequency as witnessed by the electron, betatronlike resonance occurs. The emitted x rays by the resonant electrons have high brightness, short durations, and broad band ranges which may have diverse applications.

  1. High-Q silica zipper cavity for optical radiation pressure driven MOMS switch

    CERN Document Server

    Tetsumoto, Tomohiro

    2014-01-01

    We design a silica zipper cavity that has high optical and mechanical Q (quality factor) values and demonstrate numerically the feasibility of a radiation pressure driven micro opto-mechanical system (MOMS) directional switch. The silica zipper cavity has an optical Q of 6.0x10^4 and an effective mode volume Vmode of 0.66{\\lambda}^3 when the gap between two cavities is 34 nm. We found that this Q/V_mode value is five times higher than can be obtained with a single nanocavity design. The mechanical Q (Q_m) is determined by thermo-elastic damping and is 2.0x10^6 in a vacuum at room temperature. The opto-mechanical coupling rate g_OM is as high as 100 GHz/nm, which allows us to move the directional cavity-waveguide system and switch 1550-nm light with 770-nm light by controlling the radiation pressure.

  2. Experimental Demonstration of a Synthetic Lorentz Force by Using Radiation Pressure

    Science.gov (United States)

    Šantić, N.; Dubček, T.; Aumiler, D.; Buljan, H.; Ban, T.

    2015-09-01

    Synthetic magnetism in cold atomic gases opened the doors to many exciting novel physical systems and phenomena. Ubiquitous are the methods used for the creation of synthetic magnetic fields. They include rapidly rotating Bose-Einstein condensates employing the analogy between the Coriolis and the Lorentz force, and laser-atom interactions employing the analogy between the Berry phase and the Aharonov-Bohm phase. Interestingly, radiation pressure - being one of the most common forces induced by light - has not yet been used for synthetic magnetism. We experimentally demonstrate a synthetic Lorentz force, based on the radiation pressure and the Doppler effect, by observing the centre-of-mass motion of a cold atomic cloud. The force is perpendicular to the velocity of the cold atomic cloud, and zero for the cloud at rest. Our novel concept is straightforward to implement in a large volume, for a broad range of velocities, and can be extended to different geometries.

  3. Self-organization of cosmic radiation pressure instability. II - One-dimensional simulations

    Science.gov (United States)

    Hogan, Craig J.; Woods, Jorden

    1992-01-01

    The clustering of statistically uniform discrete absorbing particles moving solely under the influence of radiation pressure from uniformly distributed emitters is studied in a simple one-dimensional model. Radiation pressure tends to amplify statistical clustering in the absorbers; the absorbing material is swept into empty bubbles, the biggest bubbles grow bigger almost as they would in a uniform medium, and the smaller ones get crushed and disappear. Numerical simulations of a one-dimensional system are used to support the conjecture that the system is self-organizing. Simple statistics indicate that a wide range of initial conditions produce structure approaching the same self-similar statistical distribution, whose scaling properties follow those of the attractor solution for an isolated bubble. The importance of the process for large-scale structuring of the interstellar medium is briefly discussed.

  4. Radiation pressure and laser cooling of a three-level atom in a ladder configuration

    Institute of Scientific and Technical Information of China (English)

    Tan Lei; Wang Zhi-Cheng; Gu Huai-Qiang

    2004-01-01

    Radiation pressure and laser cooling of a moving three-level ladder-type atom in bichromatic travelling fields are considered. The dependence of the force on parameters such as detunings, Rabi frequencies and spontaneous decay rates is calculated numerically and shown graphically, and analytical expressions for the force are obtained for some special parameter values. It is shown that the radiation pressure shows Doppler-shifted resonance peaks resulting respectively from one-photon and two-photon transitions. Using the present scheme, Doppler cooling of sodium exploiting the 3 2S1/2-3 2P3/2-3 2D5/2 cascade transitions is investigated. It is found that temperatures lower than the Doppler limit can be achieved.

  5. Three-dimensional visualization of shear wave propagation generated by dual acoustic radiation pressure

    Science.gov (United States)

    Mochizuki, Yuta; Taki, Hirofumi; Kanai, Hiroshi

    2016-07-01

    An elastic property of biological soft tissue is an important indicator of the tissue status. Therefore, quantitative and noninvasive methods for elasticity evaluation have been proposed. Our group previously proposed a method using acoustic radiation pressure irradiated from two directions for elastic property evaluation, in which by measuring the propagation velocity of the shear wave generated by the acoustic radiation pressure inside the object, the elastic properties of the object were successfully evaluated. In the present study, we visualized the propagation of the shear wave in a three-dimensional space by the synchronization of signals received at various probe positions. The proposed method succeeded in visualizing the shear wave propagation clearly in the three-dimensional space of 35 × 41 × 4 mm3. These results show the high potential of the proposed method to estimate the elastic properties of the object in the three-dimensional space.

  6. Optical back-action in silicon nanowire resonators: bolometric versus radiation pressure effects

    Science.gov (United States)

    Gil-Santos, E.; Ramos, D.; Pini, V.; Llorens, J.; Fernández-Regúlez, M.; Calleja, M.; Tamayo, J.; San Paulo, A.

    2013-03-01

    We study optical back-action effects associated with confined electromagnetic modes in silicon nanowire resonators interacting with a laser beam used for interferometric read-out of the nanowire vibrations. Our analysis describes the resonance frequency shift produced in the nanowires by two different mechanisms: the temperature dependence of the nanowire's Young's modulus and the effect of radiation pressure. We find different regimes in which each effect dominates depending on the nanowire morphology and dimensions, resulting in either positive or negative frequency shifts. Our results also show that in some cases bolometric and radiation pressure effects can have opposite contributions so that their overall effect is greatly reduced. We conclude that Si nanowire resonators can be engineered for harnessing back-action effects for either optimizing frequency stability or exploiting dynamic phenomena such as parametric amplification.

  7. Suppression of Classical and Quantum Radiation Pressure Noise via Electro-Optic Feedback

    CERN Document Server

    Buchler, B C; Shaddock, D A; Ralph, T C; McClelland, D E; Buchler, Ben C.; Gray, Malcolm B.; Shaddock, Daniel A.; Ralph, Timothy C.; Clelland, David E. Mc

    1998-01-01

    We present theoretical results that demonstrate a new technique to be used to improve the sensitivity of thermal noise measurements: intra-cavity intensity stabilisation. It is demonstrated that electro-optic feedback can be used to reduce intra-cavity intensity fluctuations, and the consequent radiation pressure fluctuations, by a factor of two below the quantum noise limit. We show that this is achievable in the presence of large classical intensity fluctuations on the incident laser beam. The benefits of this scheme are a consequence of the sub-Poissonian intensity statistics of the field inside a feedback loop, and the quantum non-demolition nature of radiation pressure noise as a readout system for the intra-cavity intensity fluctuations.

  8. Ionization Parameter as a Diagnostic of Radiation and Wind Pressures in H II Regions and Starburst Galaxies

    CERN Document Server

    Yeh, Sherry C C

    2012-01-01

    The ionization parameter U is potentially useful for measuring radiation pressure feedback from massive star clusters, as it reflects the radiation-to-gas-pressure ratio and is readily derived from mid-infrared line ratios. We consider several effects which determine the apparent value of U in HII regions and galaxies. An upper limit is set by the compression of gas by radiation pressure. The pressure from stellar winds and the presence of neutral clumps both reduce U for a given radiation intensity. The most intensely irradiated regions are selectively dimmed by internal dust absorption of ionizing photons, inducing observational bias on galactic scales. We explore these effects analytically and numerically, and use them to interpret previous observational results. We find that radiation confinement sets the upper limit log_10 U = -1 seen in individual regions. Unresolved starbursts display a maximum value of ~ -2.3. While lower, this is also consistent with a large portion of their HII regions being radiati...

  9. Simulations of radiation pressure experiments narrow down the energy and momentum of light in matter.

    Science.gov (United States)

    Bethune-Waddell, Max; Chau, Kenneth J

    2015-12-01

    Consensus on a single electrodynamic theory has yet to be reached. Discord was seeded over a century ago when Abraham and Minkowski proposed different forms of electromagnetic momentum density and has since expanded in scope with the gradual introduction of other forms of momentum and force densities. Although degenerate sets of electrodynamic postulates can be fashioned to comply with global energy and momentum conservation, hope remains to isolate a single theory based on detailed comparison between force density predictions and radiation pressure experiments. This comparison is two-fold challenging because there are just a handful of quantitative radiation pressure measurements over the past century and the solutions developed from different postulates, which consist of approximate expressions and inferential deductions, are scattered throughout the literature. For these reasons, it is appropriate to conduct a consolidated and comprehensive re-analysis of past experiments under the assumption that the momentum and energy of light in matter are degenerate. We create a combined electrodynamic/fluid dynamic simulation testbed that uses five historically significant sets of electrodynamic postulates, including those by Abraham and Minkowski, to model radiation pressure under diverse configurations with minimal assumptions. This leads to new interpretations of landmark investigations of light momentum, including the Balazs thought experiment, the Jones-Richards and Jones-Leslie measurements of radiation pressure on submerged mirrors, observations of laser-deformed fluid surfaces, and experiments on optical trapping and tractor beaming of dielectric particles. We discuss the merits and demerits of each set of postulates when compared to available experimental evidence and fundamental conservation laws. Of the five sets of postulates, the Abraham and Einstein-Laub postulates provide the greatest consistency with observations and the most physically plausible

  10. Synthetic Lorentz force in classical atomic gases via Doppler effect and radiation pressure

    CERN Document Server

    Dubček, T; Jukić, D; Aumiler, D; Ban, T; Buljan, H

    2014-01-01

    We theoretically predict a novel type of synthetic Lorentz force for classical (cold) atomic gases, which is based on the Doppler effect and radiation pressure. A fairly uniform and strong force can be constructed for gases in macroscopic volumes of several cubic millimeters and more. This opens the possibility to mimic classical charged gases in magnetic fields, such as those in a tokamak, in cold atom experiments.

  11. A simple table-top demonstration of radiation pressure on a macroscopic object

    CERN Document Server

    Jesensky, G; Khomenko, O; Kim, W J

    2016-01-01

    We report a simple demonstration of radiation pressure on a table-top experiment. Utilizing dynamic force microscopy in ambient environment, the resonant motion of a cm-sized cantilever driven by an amplitude-modulated diode laser is directly observed. Our versatile setup involves a host of exciting techniques that are relevant in precision force measurements and represents an ideal experiment in the undergraduate laboratory.

  12. Increased intracranial pressure in mini-pigs exposed to simulated solar particle event radiation

    Science.gov (United States)

    Sanzari, JK; Muehlmatt, A; Savage, A; Lin, L; Kennedy, AR

    2014-01-01

    Changes in intracranial pressure (ICP) during space flight have stimulated an area of research in space medicine. It is widely speculated that elevations in ICP contribute to structural and functional ocular changes, including deterioration in vision, which is also observed during space flight. The aim of this study was to investigate changes in OP occurring as a result of ionizing radiation exposure (at doses and dose-rates relevant to solar particle event radiation). We used a large animal model, the Yucatan mini-pig, and were able to obtain measurements over a 90 day period. This is the first investigation to show long term recordings of ICP in a large animal model without an invasive craniotomy procedure. Further, this is the first investigation reporting increased ICP after radiation exposure. PMID:25242832

  13. Radiation pressure force emission line profiles and black hole mass in active galactic nuclei

    CERN Document Server

    Netzer, H

    2010-01-01

    We present a new analysis of the motion of broad line region (BLR) clouds in active galactic nuclei (AGNs) taking into account the combined influence of gravity and radiation pressure force. We calculate cloud orbits under a large range of conditions and include the effect of a changing column density as a function of location. The dependence of radiation pressure force on the level of ionization and the column density are accurately computed. The main results are: a. The mean cloud location r(BLR) and the line widths (FWHMs) are combined in such a way that the simple virial mass estimate, r{BLR} FWHM^2/G, gives a reasonable approximation to the black hole mass M even when radiation pressure force is important. The reason is that L/M rather than L is the main parameter affecting the planar cloud motion. b. Reproducing the observed mean radius, FWHM and intensity of H-beta and CIV 1549 requires at least two different populations of clouds. c. The cloud location is a function of both L^{1/2} and L/M. Given this...

  14. Inactivation of Cryptosporidium parvum oocysts using medium- and low-pressure ultraviolet radiation.

    Science.gov (United States)

    Craik, S A; Weldon, D; Finch, G R; Bolton, J R; Belosevic, M

    2001-04-01

    The effect of ultraviolet radiation from low- and medium-pressure mercury arc lamps on Cryptosporidium parvum oocysts was studied using a collimated beam apparatus. Experiments were conducted using parasites suspended in both filtered surface water and phosphate buffered laboratory water. Inactivation of oocysts was measured as reduction in infectivity using a CD-1 neonatal mouse model and was found to be a non-linear function of UV dose over the range of germicidal doses tested (0.8-119 mJ/cm2). Oocyst inactivation increased rapidly with UV dose at doses less than 25 mJ/cm2 with two and three log-units inactivation at approximately 10 and 25 mJ/cm2, respectively. The cause of significant leveling-off and tailing in the UV inactivation curve at higher doses was not determined. Maximum measured oocyst inactivation ranged from 3.4 to greater than 4.9 log-units and was dependent on different batches of parasites. Water type and temperature, the concentration of oocysts in the suspension, and the UV irradiance did not have significant impacts on oocyst inactivation. When compared on the basis of germicidal UV dose, the oocysts were equally sensitive to low- and medium-pressure UV radiation. With respect to Cryptosporidium, both low- and medium-pressure ultraviolet radiation are attractive alternatives to conventional chemical disinfection methods in drinking water treatment.

  15. Radiation Pressure-supported Accretion Disks: Vertical Structure, Energy Advection, and Convective Stability

    CERN Document Server

    Gu, Wei-Min

    2012-01-01

    By taking into account the local energy balance per unit volume between the viscous heating and the advective cooling plus the radiative cooling, we investigate the vertical structure of radiation pressure-supported accretion disks in spherical coordinates. Our solutions show that the photosphere of the disk is close to the polar axis and therefore the disk seems to be extremely thick. However, the profile of density implies that most of the accreted matter exists in a moderate range around the equatorial plane. We show that the well-known polytropic relation between the pressure and the density is unsuitable for describing the vertical structure of radiation pressure-supported disks. More importantly, we find that the energy advection is significant even for slightly sub-Eddington accretion disks. We argue that the non-negligible advection may help to understand why the standard thin disk model is likely to be inaccurate above \\sim 0.3 Eddington luminosity, which was found by some works on the black hole spi...

  16. Radiation Pressure on Bacterial Clumps in the Solar Vicinity and Their Survival Between Interstellar Transits

    Science.gov (United States)

    Wickramasinghe, N. C.; Wickramasinghe, J. T.

    Radiation pressure cross-sections for clumps of hollow bacterial grains with thin coatings of graphite are calculated using rigorous Guttler formulae. The carbonized skins are expected to form through exposure to solar ultraviolet radiation, but a limiting thickness of about 0.03 μm is determined by opacity effects. The ratios of radiation pressure to gravity P/G are calculated for varying sizes of the clumps and for varying thickness of the graphite coatings. Bacterial clumps and individual desiccated bacteria without coatings of radii in the range 0.3-8 μm have P/G ratios less than unity, whereas particles with coatings of 0.02 μm thickness have ratios in excess of unity. Such coatings also provide protection from damaging ultraviolet radiation. Putative cometary bacteria, such as have been recently collected in the stratosphere, are thus not gravitationally bound in the solar system provided they possess carbonised exterior coatings. They are rapidly expelled from the solar system reaching nearby protosolar nebulae in timescales of a few million years. Even with the most pessimistic assumptions galactic cosmic rays are unable to diminish viability to an extent that vitiates the continuity of panspermia.

  17. Limits and Signatures of Relativistic Spaceflight

    CERN Document Server

    Yurtsever, Ulvi

    2015-01-01

    While special relativity imposes an absolute speed limit at the speed of light, our Universe is not empty Minkowski spacetime. The constituents that fill the interstellar/intergalactic vacuum, including the cosmic microwave background photons, impose a lower speed limit on any object travelling at relativistic velocities. Scattering of cosmic microwave phtotons from an ultra-relativistic object may create radiation with a characteristic signature allowing the detection of such objects at large distances.

  18. Radiation pressure confinement - II. Application to the broad line region in active galactic nuclei

    CERN Document Server

    Baskin, Alexei; Stern, Jonathan

    2014-01-01

    Active galactic nuclei (AGN) are characterized by broad emission lines. The lines show similar properties from the lowest luminosity (10^39 erg/s) to the highest luminosity (10^47 erg/s) AGN. What produces this similarity over such a vast range of 10^8 in luminosity? Photoionization is inevitably associated with momentum transfer to the photoionized gas. Yet, most of the photoionized gas in the Broad Line Region (BLR) follows Keplerian orbits, which suggests that the BLR originates from gas clouds with a large enough column for gravity to dominate. The photoionized surface layer of these clouds must develop a pressure gradient which balances the incident radiation force. We present solutions for the structure of such a hydrostatic photoionized gas layer in the BLR. The gas is stratified, with a low-density highly-ionized surface layer, set by the ambient pressure, a density rise inwards, and a uniform density cooler inner region, where the gas pressure, 2n_ekT, reaches the incident radiation pressure n_gamma,...

  19. Radiation reaction for multipole moments

    CERN Document Server

    Kazinski, P O

    2006-01-01

    We propose a Poincare-invariant description for the effective dynamics of systems of charged particles by means of intrinsic multipole moments. To achieve this goal we study the effective dynamics of such systems within two frameworks -- the particle itself and hydrodynamical one. We give a relativistic-invariant definition for the intrinsic multipole moments both pointlike and extended relativistic objects. Within the hydrodynamical framework we suggest a covariant action functional for a perfect fluid with pressure. In the case of a relativistic charged dust we prove the equivalence of the particle approach to the hydrodynamical one to the problem of radiation reaction for multipoles. As the particular example of a general procedure we obtain the effective model for a neutral system of charged particles with dipole moment.

  20. Relativistic quantum information

    Science.gov (United States)

    Mann, R. B.; Ralph, T. C.

    2012-11-01

    Over the past few years, a new field of high research intensity has emerged that blends together concepts from gravitational physics and quantum computing. Known as relativistic quantum information, or RQI, the field aims to understand the relationship between special and general relativity and quantum information. Since the original discoveries of Hawking radiation and the Unruh effect, it has been known that incorporating the concepts of quantum theory into relativistic settings can produce new and surprising effects. However it is only in recent years that it has become appreciated that the basic concepts involved in quantum information science undergo significant revision in relativistic settings, and that new phenomena arise when quantum entanglement is combined with relativity. A number of examples illustrate that point. Quantum teleportation fidelity is affected between observers in uniform relative acceleration. Entanglement is an observer-dependent property that is degraded from the perspective of accelerated observers moving in flat spacetime. Entanglement can also be extracted from the vacuum of relativistic quantum field theories, and used to distinguish peculiar motion from cosmological expansion. The new quantum information-theoretic framework of quantum channels in terms of completely positive maps and operator algebras now provides powerful tools for studying matters of causality and information flow in quantum field theory in curved spacetimes. This focus issue provides a sample of the state of the art in research in RQI. Some of the articles in this issue review the subject while others provide interesting new results that will stimulate further research. What makes the subject all the more exciting is that it is beginning to enter the stage at which actual experiments can be contemplated, and some of the articles appearing in this issue discuss some of these exciting new developments. The subject of RQI pulls together concepts and ideas from

  1. Synchrotron Radiation and High Pressure: New Light on Materials Under Extreme Conditions

    Science.gov (United States)

    Hemley, Russell

    2005-03-01

    Current technological advances now make it possible to perform experiments on materials subjected to static or sustained conditions up to multimegabar pressures (>300 GPa) and from cryogenic temperatures to several thousand degrees (˜0.5 eV range). With these techniques, densities of condensed matter can be increased over an order of magnitude, causing numerous transformations and new physical and chemical phenomena to occur. Growth in this area largely been made possible by accelerating developments in diamond-anvil cell methods coupled with new synchrotron radiation techniques. Significant advances have occurred in x-ray diffraction, spectroscopy, inelastic scattering, radiography, and infrared spectroscopy. With recent developments, structure refinements based on polycrystalline data up to multimegabar pressures have been possible. Single-crystal methods have been extended to megabar pressure, with the prospect of full crystallographic refinements. `Three- dimensional' diffraction data can be collected for determining strength, deformation, and elastic tensors at high P-T conditions. Studies carried out during the past three years provide numerous breakthroughs in high-pressure x-ray spectroscopy and a broad range of inelastic scattering methods. Other experiments have exploited the use of x-ray radiography over a range of pressures. Finally, synchrotron infrared measurements have revealed a wealth of high-pressure phenomena, particularly for molecular systems. Examples to be discussed include investigations of dense hydrogen; transformations in molecular materials; novel ceramics; new types of superconductors, electronic, and magnetic materials; and liquids and amorphous materials.

  2. The Effects of Magnetic Fields on the Dynamics of Radiation Pressure-dominated Massive Star Envelopes

    Science.gov (United States)

    Jiang, Yan-Fei; Cantiello, Matteo; Bildsten, Lars; Quataert, Eliot; Blaes, Omer

    2017-07-01

    We use three-dimensional radiation magnetohydrodynamic simulations to study the effects of magnetic fields on the energy transport and structure of radiation pressure-dominated main sequence massive star envelopes at the region of the iron opacity peak. We focus on the regime where the local thermal timescale is shorter than the dynamical timescale, corresponding to inefficient convective energy transport. We begin with initially weak magnetic fields relative to the thermal pressure, from 100 to 1000 G in differing geometries. The unstable density inversion amplifies the magnetic field, increasing the magnetic energy density to values close to equipartition with the turbulent kinetic energy density. By providing pressure support, the magnetic field’s presence significantly increases the density fluctuations in the turbulent envelope, thereby enhancing the radiative energy transport by allowing photons to diffuse out through low-density regions. Magnetic buoyancy brings small-scale magnetic fields to the photosphere and increases the vertical energy transport, with the energy advection velocity proportional to the Alfvén velocity, although in all cases we study, photon diffusion still dominates the energy transport. The increased radiative and advective energy transport causes the stellar envelope to shrink by several scale heights. We also find larger turbulent velocity fluctuations compared with the purely hydrodynamic case, reaching ≈ 100 {{{km}}{{s}}}-1 at the stellar photosphere. The photosphere also shows vertical oscillations with similar averaged velocities and periods of a few hours. The increased turbulent velocity and oscillations will have strong impacts on the line broadening and periodic signals in massive stars.

  3. Experimental determination of radiated internal wave power without pressure field data

    CERN Document Server

    Lee, Frank M; Swinney, Harry L; Morrison, P J

    2014-01-01

    We present a method to determine, using only velocity field data, the time-averaged energy flux $\\left$ and total radiated power $P$ for two-dimensional internal gravity waves. Both $\\left$ and $P$ are determined from expressions involving only a scalar function, the stream function $\\psi$. We test the method using data from a direct numerical simulation for tidal flow of a stratified fluid past a knife edge. The results for the radiated internal wave power given by the stream function method agree to within 0.5% with results obtained using pressure and velocity data from the numerical simulation. The results for the radiated power computed from the stream function agree well with power computed from the velocity and pressure if the starting point for the stream function computation is on a solid boundary, but if a boundary point is not available, care must be taken to choose an appropriate starting point. We also test the stream function method by applying it to laboratory data for tidal flow past a knife ed...

  4. The effect of radiation pressure on dusty absorbing gas around AGN

    CERN Document Server

    Fabian, A C; Gandhi, P

    2007-01-01

    Many Active Galactic Nuclei (AGN) are surrounded by gas which absorbs the radiation produced by accretion onto the central black hole and obscures the nucleus from direct view. The dust component of the gas greatly enhances the effect of radiation pressure above that for Thomson scattering so that an AGN which is sub-Eddington for ionized gas in the usual sense can appear super-Eddington for cold dusty gas. The radiation-pressure enhancement factor depends on the AGN spectrum but ranges between unity and about 500, depending on the column density. It means that an AGN for which the absorption is long-lived should have a column density N_H>5x10^23 lambda cm^-2, where lambda is its Eddington fraction L_bol/L_Edd, provided that N_H}>5x10^21 cm^-2. We have compared the distribution of several samples of AGN - local, CDFS and Lockman Hole - with this expectation and find good agreement. We show that the limiting enhancement factor can explain the black hole mass - bulge mass relation and note that the effect of ra...

  5. Study of the radiation X-UV produced during the relativistic interaction between a femtosecond laser and an helium plasma; Etude du rayonnement X-UV produit lors de l'interaction relativiste entre un laser femtoseconde et un plasme d'helium

    Energy Technology Data Exchange (ETDEWEB)

    Ta Phuoc, K

    2002-10-15

    The aim of this work is to design a new source of X-radiation that is both femtosecond and polychromatic. We have studied the Larmor radiation emitted during the relativistic interaction between an intense femtosecond laser and an under dense helium plasma. When the value of a{sub 0}, the laser force parameter, is below 1 and when the interaction is volume is important, the characteristics of the emitted radiation are those of Bremsstrahlung radiation and radiative recombination. When the value of a{sub 0} is about 5 the emitted radiation is strongly different and look like much more the Larmor radiation. Nevertheless some features such as the shape of the angular distribution or the amplitude of the laser polarization effect are not yet well understood. The spectra of the X-ray produced is peaked around 150 eV and spreads up to 2 keV. The number of photons produced by laser shot is over 10{sup 9} and the duration of the X-ray impulse is expected to be in the same order of magnitude as that of the laser impulse: 30 fs. The average photon flux is 2*10{sup 3} ph/s/0.1%BW at 2 keV and reaches 6*10{sup 7} ph/s/0.1%BW at 0.15 keV. The average brilliance is 1.5*10{sup 4} ph/s/mm{sup 2}/mrad{sup 2}/0.1%BW at 2 keV and 8*10{sup 4} ph/s/mm{sup 2}/mrad{sup 2}/0.1%BW at 0.15 keV. Different ways are considered to improve the characteristics of this new X-ray source. (A.C.)

  6. Intensification of pretreatment and pressure leaching of copper anode slime by microwave radiation

    Institute of Scientific and Technical Information of China (English)

    杨洪英; 马致远; 黄松涛; 吕阳; 熊柳

    2015-01-01

    The application of microwave irradiation for pretreatment of copper anode slime with high nickel content prior to pressure sulfuric acid leaching has been proposed. The microwave-assisted pretreatment is a rapid and efficient process. Through the technology of microwave assisted pretreatment-pressure leaching of copper anode slime, copper, tellurium, selenium and nickel are almost completely recovered. Under optimal conditions, the leaching efficiencies of copper, tellurium, selenium and nickel are 97.12%, 95.97%, 95.37% and 93.90%, respectively. The effect of microwave radiation on the temperature of copper anode slime and leaching solution is investigated. It is suggested that the enhancement on the recoveries of copper, tellurium and selenium can be attributed to the temperature gradient which is caused by shallow microwave penetration depth and super heating occurring at the solid–liquid interface. The kinetic study shows that the pressure leaching of copper anode slime, with and without microwave assisted pretreatment, are both controlled by chemical reactions on the surfaces of particles. It is found that the activation energy calculated for microwave-assisted pretreatment-pressure leaching (49.47 kJ/mol) is lower than that for pressure leaching which is without microwave assisted pretreatment (60.57 kJ/mol).

  7. Effect of ambient pressure and radiation reabsorption of atmosphere on the flame spreading over thermally thin combustibles in microgravity

    Institute of Scientific and Technical Information of China (English)

    杜文峰; 胡文瑞

    2003-01-01

    For the flame spread over thermally thin combustibles in an atmosphere, if the atmosphere cannot emit and absorb the thermal radiation (e.g. for atmosphere of O2-N2), the conductive heat transfer from the flame to the fuel surface dominates the flame spread at lower ambient atmosphere. As the ambient pressure increases, the flame spread rate increases, and the radiant heat transfer from the flame to the fuel surface gradually becomes the dominant driving force for the flame spread. In contrast, if the atmosphere is able to emit and absorb the thermal radiation (e.g. for atmosphere of O2-CO2), at lower pressure, the heat transfer from flame to the fuel surface is enhanced by the radiation reabsorption of the atmosphere at the leading edge of the flame, and both conduction and thermal radiation play important roles in the mechanism of flame spread. With the increase in ambient pressure, the oxygen diffuses more quickly from ambient atmosphere into the flame, the chemical reaction in the flame is enhanced, and the flame spread rate increases. When the ambient pressure is greater than a critical value, the thermal radiation from the flame to the solid surface is hampered by the radiation reabsorption of ambient atmosphere with the further increase in ambient pressure. As a result, with the increase in ambient pressure, the flame spread rate decreases and the heat conduction gradually dominates the flame spread over the fuel surface.

  8. Relativistic quantum mechanics and introduction to field theory

    Energy Technology Data Exchange (ETDEWEB)

    Yndurain, F.J. [Universidad Autonoma de Madrid (Spain). Dept. de Fisica Teorica

    1996-12-01

    The following topics were dealt with: relativistic transformations, the Lorentz group, Klein-Gordon equation, spinless particles, spin 1/2 particles, Dirac particle in a potential, massive spin 1 particles, massless spin 1 particles, relativistic collisions, S matrix, cross sections, decay rates, partial wave analysis, electromagnetic field quantization, interaction of radiation with matter, interactions in quantum field theory and relativistic interactions with classical sources.

  9. Relativistic Fluid Dynamics

    CERN Document Server

    Cattaneo, Carlo

    2011-01-01

    This title includes: Pham Mau Quam: Problemes mathematiques en hydrodynamique relativiste; A. Lichnerowicz: Ondes de choc, ondes infinitesimales et rayons en hydrodynamique et magnetohydrodynamique relativistes; A.H. Taub: Variational principles in general relativity; J. Ehlers: General relativistic kinetic theory of gases; K. Marathe: Abstract Minkowski spaces as fibre bundles; and, G. Boillat: Sur la propagation de la chaleur en relativite.

  10. AGN feedback: galactic-scale outflows driven by radiation pressure on dust

    CERN Document Server

    Ishibashi, W

    2015-01-01

    Galaxy-scale outflows, which are thought to provide the link connecting the central black hole to its host galaxy, are now starting to be observed. However, the physical origin of the mechanism driving the observed outflows, whether due to energy-driving or radiation-driving, is still debated; and in some cases, it is not clear whether the central source is an active galactic nucleus (AGN) or a nuclear starburst. Here we study the role of radiation pressure on dust in driving galactic-scale AGN outflows, and analyse the dynamics of the outflowing shell as a function of the underlying physical parameters. We show that high-velocity outflows ($\\gtrsim$1000 km/s) with large momentum flux ($\\gtrsim 10 L/c$) can be obtained, by taking into account the effects of radiation trapping. In particular, the high observed values of the momentum boosts can be reproduced, provided that the shell is initially optically thick to the reprocessed infrared radiation. Alternatively, the inferred measurements of the momentum flux ...

  11. Investigation of Low-Pressure Ultraviolet Radiation on Inactivation of Rhabitidae Nematode from Water

    Directory of Open Access Journals (Sweden)

    Mohammad Hadi Dehghani

    2013-03-01

    Full Text Available Background: Rhabditidae is a family of free-living nematodes. Free living nematodes due to their active movement and resistance to chlorination, do not remove in conventional water treatment processes thus can be entered to distribution systems and cause adverse health effects. Ultraviolet radiation (UV can be used as a method of inactivating for these organisms. This cross sectional study was done to investigate the efficiency of ultraviolet lamp in the inactivation of free living nematode in water.Methods: The effects of radation time, turbidity, pH and temperature were invistigated in this study. Ultraviolet lamp used in this study was a 11 W lamp and intensity of this lamp was 24 µw / cm2.Results: Radiation time required to achieve 100% efficiency for larvae nematode and adults was 9 and 10 minutes respectively. There was a significant correlation between the increase in radiation time, temperature rise and turbidity reduction with inactivation efficiency of lamp (P<0.001. Increase of turbidity up 25 NTU decreased inactivation efficiency of larvae and adult nematodes from 100% to 66% and 100% to 64% respectively. Change in pH range from 6 to 9 did not affect the efficiency of inactivation. With increasing temperature inactivation rate increased. Also the effect of the lamp on inactivation of larvae nematod was mor than adults.Conclusions: It seems that with requiring the favorable conditions low-pressure ultraviolet radiation systems can be used for disinfection of water containing Rhabitidae nematode.

  12. Soot and Spectral Radiation Modeling for a High-Pressure Turbulent Spray Flame

    Energy Technology Data Exchange (ETDEWEB)

    Ferreryo-Fernandez, Sebastian [Pennsylvania State Univ., University Park, PA (United States); Paul, Chandan [Pennsylvania State Univ., University Park, PA (United States); Sircar, Arpan [Pennsylvania State Univ., University Park, PA (United States); Imren, Abdurrahman [Pennsylvania State Univ., University Park, PA (United States); Haworth, Daniel C [Pennsylvania State Univ., University Park, PA (United States); Roy, Somesh P [Marquette University (United States); Modest, Michael F [University of California Merced (United States)

    2017-04-26

    Simulations are performed of a transient high-pressure turbulent n-dodecane spray flame under engine-relevant conditions. An unsteady RANS formulation is used, with detailed chemistry, a semi-empirical two-equation soot model, and a particle-based transported composition probability density function (PDF) method to account for unresolved turbulent fluctuations in composition and temperature. Results from the PDF model are compared with those from a locally well-stirred reactor (WSR) model to quantify the effects of turbulence-chemistry-soot interactions. Computed liquid and vapor penetration versus time, ignition delay, and flame lift-off height are in good agreement with experiment, and relatively small differences are seen between the WSR and PDF models for these global quantities. Computed soot levels and spatial soot distributions from the WSR and PDF models show large differences, with PDF results being in better agreement with experimental measurements. An uncoupled photon Monte Carlo method with line-by-line spectral resolution is used to compute the spectral intensity distribution of the radiation leaving the flame. This provides new insight into the relative importance of molecular gas radiation versus soot radiation, and the importance of turbulent fluctuations on radiative heat transfer.

  13. Galilean relativistic fluid mechanics

    CERN Document Server

    Ván, Péter

    2015-01-01

    Single component Galilean-relativistic (nonrelativistic) fluids are treated independently of reference frames. The basic fields are given, their balances, thermodynamic relations and the entropy production is calculated. The usual relative basic fields, the mass, momentum and energy densities, the diffusion current density, the pressure tensor and the heat flux are the time- and spacelike components of the third order mass-momentum-energy density tensor according to a velocity field. The transformation rules of the basic fields are derived and prove that the non-equilibrium thermodynamic background theory, that is the Gibbs relation, extensivity condition and the entropy production is absolute, that is independent of the reference frame and also of the fluid velocity. --- Az egykomponensu Galilei-relativisztikus (azaz nemrelativisztikus) disszipativ folyadekokat vonatkoztatasi rendszertol fuggetlenul targyaljuk. Megadjuk az alapmennyisegeket, ezek merlegeit, a termodinamikai osszefuggeseket es kiszamoljuk az ...

  14. Surface Structure in an Accretion Disk Annulus with Comparable Radiation and Gas Pressure

    CERN Document Server

    Blaes, Omer; Krolik, Julian H

    2007-01-01

    We have employed a 3-d energy-conserving radiation MHD code to simulate the vertical structure and thermodynamics of a shearing box whose parameters were chosen so that the radiation and gas pressures would be comparable. The upper layers of this disk segment are magnetically-dominated, creating conditions appropriate for both photon bubble and Parker instabilities. We find little evidence for photon bubbles, even though the simulation has enough spatial resolution to see them and their predicted growth rates are high. On the other hand, there is strong evidence for Parker instabilities, and they appear to dominate the evolution of the magnetically supported surface layers. The disk photosphere is complex, with large density inhomogeneities at both the scattering and effective (thermalization) photospheres of the evolving horizontally-averaged structure. Both the dominant magnetic support and the inhomogeneities are likely to have strong effects on the spectrum and polarization of thermal photons emerging fro...

  15. Theory for planetary exospheres: I. Radiation pressure effect on dynamical trajectories

    Science.gov (United States)

    Beth, A.; Garnier, P.; Toublanc, D.; Dandouras, I.; Mazelle, C.

    2016-03-01

    The planetary exospheres are poorly known in their outer parts, since the neutral densities are low compared with the instruments detection capabilities. The exospheric models are thus often the main source of information at such high altitudes. We present a new way to take into account analytically the additional effect of the radiation pressure on planetary exospheres. In a series of papers, we present with an Hamiltonian approach the effect of the radiation pressure on dynamical trajectories, density profiles and escaping thermal flux. Our work is a generalisation of the study by Bishop and Chamberlain (Bishop, J., Chamberlian, J.W. [1989]. Icarus 81, 145-163). In this first paper, we present the complete solutions of particles trajectories, which are not conics, under the influence of the solar radiation pressure with some assumptions. This problem is similar to the classical Stark problem (Stark, J. [1914]. Ann. Phys. 348, 965-982). This problem was largely tackled in the literature and more specifically, recently by Lantoine and Russell (Lantoine, G., Russell, R.P. [2011]. Celest. Mech. Dynam. Astron. 109, 333-366) and by Biscani and Izzo (Biscani, F., Izzo, D. [2014]. Mon. Not. R. Astron. Soc. 439, 810-822) as we will discuss in this paper. We give here the full set of solutions for the motion of a particle (in our case for an atom or a molecule), i.e. the space coordinates and the time solution for bounded and unbounded trajectories in terms of Jacobi elliptic functions. We thus provide here the complete set of solutions for this so-call Stark effect (Stark, J. [1914]. Ann. Phys. 348, 965-982) in terms of Jacobi elliptic functions (Jacobi, C.G.J. [1829]. Fundamenta nova theoriae functionum ellipticarum. Sumtibus fratrum), which may be used to model the trajectories of particles in planetary exospheres.

  16. Adjustable box-wing model for solar radiation pressure impacting GPS satellites

    Science.gov (United States)

    Rodriguez-Solano, C. J.; Hugentobler, U.; Steigenberger, P.

    2012-04-01

    One of the major uncertainty sources affecting Global Positioning System (GPS) satellite orbits is the direct solar radiation pressure. In this paper a new model for the solar radiation pressure on GPS satellites is presented that is based on a box-wing satellite model, and assumes nominal attitude. The box-wing model is based on the physical interaction between solar radiation and satellite surfaces, and can be adjusted to fit the GPS tracking data. To compensate the effects of solar radiation pressure, the International GNSS Service (IGS) analysis centers employ a variety of approaches, ranging from purely empirical models based on in-orbit behavior, to physical models based on pre-launch spacecraft structural analysis. It has been demonstrated, however, that the physical models fail to predict the real orbit behavior with sufficient accuracy, mainly due to deviations from nominal attitude, inaccurately known optical properties, or aging of the satellite surfaces. The adjustable box-wing model presented in this paper is an intermediate approach between the physical/analytical models and the empirical models. The box-wing model fits the tracking data by adjusting mainly the optical properties of the satellite's surfaces. In addition, the so called Y-bias and a parameter related to a rotation lag angle of the solar panels around their rotation axis (about 1.5° for Block II/IIA and 0.5° for Block IIR) are estimated. This last parameter, not previously identified for GPS satellites, is a key factor for precise orbit determination. For this study GPS orbits are generated based on one year (2007) of tracking data, with the processing scheme derived from the Center for Orbit Determination in Europe (CODE). Two solutions are computed, one using the adjustable box-wing model and one using the CODE empirical model. Using this year of data the estimated parameters and orbits are analyzed. The performance of the models is comparable, when looking at orbit overlap and orbit

  17. Sensitivity coefficients for the stochastic estimation of the radiation damage to the reactor pressure vessel

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez, C.M.; Hernandez Valle, S. [Centro de Investigaciones Tecnologicas, Nucleares y Ambientales, La Habana (Cuba). E-mail: calvarez@ctn.isctn.edu.cu; svalle@ctn.isctn.edu.cu

    2000-07-01

    The construction of the sensitivity matrix in the case of the vessel radiation damage estimation by Monte Carlo techniques poses new problems related to the uncertainties of the obtained responses. In the case of deterministic calculations, the sensitivity coefficient obtention is a straightforward procedure based on the perturbation formalism through the calculation of the adjoint fluxes. In the paper an alternative procedure implementation based on the differential operator method is described with the modifications needed to the used HEXANN-EVALU code for the response estimations in the VVER-440 pressure vessel. (author)

  18. Laser Acceleration of Quasi-Monoenergetic Protons via Radiation Pressure Driven Thin Foil

    Science.gov (United States)

    Liu, Chuan S.; Shao, Xi; Eliasson, Bengt; Liu, T. C.; Dudnikova, Galina; Sagdeev, Roald Z.

    2011-01-01

    We present a theoretical and simulation study of laser acceleration of quasi-monoenergetic protons in a thin foil irradiated by high intensity laser light. The underlying physics of radiation pressure acceleration (RPA) is discussed, including the importance of optimal thickness and circularly polarized light for efficient acceleration of ions to quasi-monoenergetic beams. Preliminary two-dimensional simulation studies show that certain parameter regimes allow for stabilization of the Rayleigh-Taylor instability and possibility of acceleration of monoenergetic ions to an excess of 200 MeV, making them suitable for important applications such as medical cancer therapy and fast ignition.

  19. Relativistic calculations of coalescing binary neutron stars

    Indian Academy of Sciences (India)

    Joshua Faber; Phillippe Grandclément; Frederic Rasio

    2004-10-01

    We have designed and tested a new relativistic Lagrangian hydrodynamics code, which treats gravity in the conformally flat approximation to general relativity. We have tested the resulting code extensively, finding that it performs well for calculations of equilibrium single-star models, collapsing relativistic dust clouds, and quasi-circular orbits of equilibrium solutions. By adding a radiation reaction treatment, we compute the full evolution of a coalescing binary neutron star system. We find that the amount of mass ejected from the system, much less than a per cent, is greatly reduced by the inclusion of relativistic gravitation. The gravity wave energy spectrum shows a clear divergence away from the Newtonian point-mass form, consistent with the form derived from relativistic quasi-equilibrium fluid sequences.

  20. Relativistic Tennis Using Flying Mirror

    Science.gov (United States)

    Pirozhkov, A. S.; Kando, M.; Esirkepov, T. Zh.; Ma, J.; Fukuda, Y.; Chen, L.-M.; Daito, I.; Ogura, K.; Homma, T.; Hayashi, Y.; Kotaki, H.; Sagisaka, A.; Mori, M.; Koga, J. K.; Kawachi, T.; Daido, H.; Bulanov, S. V.; Kimura, T.; Kato, Y.; Tajima, T.

    2008-06-01

    Upon reflection from a relativistic mirror, the electromagnetic pulse frequency is upshifted and the duration is shortened by the factor proportional to the relativistic gamma-factor squared due to the double Doppler effect. We present the results of the proof-of-principle experiment for frequency upshifting of the laser pulse reflected from the relativistic "flying mirror", which is a wake wave near the breaking threshold created by a strong driver pulse propagating in underdense plasma. Experimentally, the wake wave is created by a 2 TW, 76 fs Ti:S laser pulse from the JLITE-X laser system in helium plasma with the electron density of ≈4-6×1019 cm-3. The reflected signal is observed with a grazing-incidence spectrograph in 24 shots. The wavelength of the reflected radiation ranges from 7 to 14 nm, the corresponding frequency upshifting factors are ˜55-115, and the gamma-factors are y = 4-6. The reflected signal contains at least 3×107 photons/sr. This effect can be used to generate coherent high-frequency ultrashort pulses that inherit temporal shape and polarization from the original (low-frequency) ones. Apart from this, the reflected radiation contains important information about the wake wave itself, e.g. location, size, phase velocity, etc.

  1. The Role of Cerenkov Radiation in the Pressure Balance of Cool Core Clusters of Galaxies

    Science.gov (United States)

    Lieu, Richard

    2017-03-01

    Despite the substantial progress made recently in understanding the role of AGN feedback and associated non-thermal effects, the precise mechanism that prevents the core of some clusters of galaxies from collapsing catastrophically by radiative cooling remains unidentified. In this Letter, we demonstrate that the evolution of a cluster's cooling core, in terms of its density, temperature, and magnetic field strength, inevitably enables the plasma electrons there to quickly become Cerenkov loss dominated, with emission at the radio frequency of ≲350 Hz, and with a rate considerably exceeding free–free continuum and line emission. However, the same does not apply to the plasmas at the cluster's outskirts, which lacks such radiation. Owing to its low frequency, the radiation cannot escape, but because over the relevant scale size of a Cerenkov wavelength the energy of an electron in the gas cannot follow the Boltzmann distribution to the requisite precision to ensure reabsorption always occurs faster than stimulated emission, the emitting gas cools before it reheats. This leaves behind the radiation itself, trapped by the overlying reflective plasma, yet providing enough pressure to maintain quasi-hydrostatic equilibrium. The mass condensation then happens by Rayleigh–Taylor instability, at a rate determined by the outermost radius where Cerenkov radiation can occur. In this way, it is possible to estimate the rate at ≈2 M ⊙ year‑1, consistent with observational inference. Thus, the process appears to provide a natural solution to the longstanding problem of “cooling flow” in clusters; at least it offers another line of defense against cooling and collapse should gas heating by AGN feedback be inadequate in some clusters.

  2. Relativistic electron beams above thunderclouds

    DEFF Research Database (Denmark)

    Füellekrug, M.; Roussel-Dupre, R.; Symbalisty, E. M. D.;

    2011-01-01

    Non-luminous relativistic electron beams above thunderclouds have been detected by the radio signals of low frequency similar to 40-400 kHz which they radiate. The electron beams occur similar to 2-9 ms after positive cloud-to-ground lightning discharges at heights between similar to 22-72 km above...... thunderclouds. Intense positive lightning discharges can also cause sprites which occur either above or prior to the electron beam. One electron beam was detected without any luminous sprite which suggests that electron beams may also occur independently of sprites. Numerical simulations show that beams...... of electrons partially discharge the lightning electric field above thunderclouds and thereby gain a mean energy of similar to 7MeV to transport a total charge of similar to-10mC upwards. The impulsive current similar to 3 x 10(-3) Am-2 associated with relativistic electron beams above thunderclouds...

  3. Double Relativistic Electron Accelerating Mirror

    Directory of Open Access Journals (Sweden)

    Saltanat Sadykova

    2013-02-01

    Full Text Available In the present paper, the possibility of generation of thin dense relativistic electron layers is shown using the analytical and numerical modeling of laser pulse interaction with ultra-thin layers. It was shown that the maximum electron energy can be gained by optimal tuning between the target width, intensity and laser pulse duration. The optimal parameters were obtained from a self-consistent system of Maxwell equations and the equation of motion of electron layer. For thin relativistic electron layers, the gaining of maximum electron energies requires a second additional overdense plasma layer, thus cutting the laser radiation off the plasma screen at the instant of gaining the maximum energy (DREAM-schema.

  4. Relativistic Runaway Electrons

    Science.gov (United States)

    Breizman, Boris

    2014-10-01

    This talk covers recent developments in the theory of runaway electrons in a tokamak with an emphasis on highly relativistic electrons produced via the avalanche mechanism. The rapidly growing population of runaway electrons can quickly replace a large part of the initial current carried by the bulk plasma electrons. The magnetic energy associated with this current is typically much greater than the particle kinetic energy. The current of a highly relativistic runaway beam is insensitive to the particle energy, which separates the description of the runaway current evolution from the description of the runaway energy spectrum. A strongly anisotropic distribution of fast electrons is generally prone to high-frequency kinetic instabilities that may cause beneficial enhancement of runaway energy losses. The relevant instabilities are in the frequency range of whistler waves and electron plasma waves. The instability thresholds reported in earlier work have been revised considerably to reflect strong dependence of collisional damping on the wave frequency and the role of plasma non-uniformity, including radial trapping of the excited waves in the plasma. The talk also includes a discussion of enhanced scattering of the runaways as well as the combined effect of enhanced scattering and synchrotron radiation. A noteworthy feature of the avalanche-produced runaway current is a self-sustained regime of marginal criticality: the inductive electric field has to be close to its critical value (representing avalanche threshold) at every location where the runaway current density is finite, and the current density should vanish at any point where the electric field drops below its critical value. This nonlinear Ohm's law enables complete description of the evolving current profile. Work supported by the U.S. Department of Energy Contract No. DEFG02-04ER54742 and by ITER contract ITER-CT-12-4300000273. The views and opinions expressed herein do not necessarily reflect those of

  5. SOLAR RADIATION PRESSURE AND LOCAL INTERSTELLAR MEDIUM FLOW PARAMETERS FROM INTERSTELLAR BOUNDARY EXPLORER LOW ENERGY HYDROGEN MEASUREMENTS

    Energy Technology Data Exchange (ETDEWEB)

    Schwadron, N. A.; Moebius, E.; Kucharek, H.; Lee, M. A.; French, J. [University of New Hampshire, Durham, NH 03824 (United States); Saul, L.; Wurz, P. [University of Bern, 3012 Bern (Switzerland); Bzowski, M. [Space Research Centre of the Polish Academy of Sciences, Warsaw (Poland); Fuselier, S. A.; Livadiotis, G.; McComas, D. J. [Southwest Research Institute, San Antonio, TX 78228 (United States); Frisch, P. [University of Chicago, Chicago, IL 60637 (United States); Gruntman, M. [University of Southern California, Los Angeles, CA 90089 (United States); Mueller, H. R. [Dartmouth College, Hanover, NH 03755 (United States)

    2013-10-01

    Neutral hydrogen atoms that travel into the heliosphere from the local interstellar medium (LISM) experience strong effects due to charge exchange and radiation pressure from resonant absorption and re-emission of Lyα. The radiation pressure roughly compensates for the solar gravity. As a result, interstellar hydrogen atoms move along trajectories that are quite different than those of heavier interstellar species such as helium and oxygen, which experience relatively weak radiation pressure. Charge exchange leads to the loss of primary neutrals from the LISM and the addition of new secondary neutrals from the heliosheath. IBEX observations show clear effects of radiation pressure in a large longitudinal shift in the peak of interstellar hydrogen compared with that of interstellar helium. Here, we compare results from the Lee et al. interstellar neutral model with IBEX-Lo hydrogen observations to describe the distribution of hydrogen near 1 AU and provide new estimates of the solar radiation pressure. We find over the period analyzed from 2009 to 2011 that radiation pressure divided by the gravitational force (μ) has increased slightly from μ = 0.94 ± 0.04 in 2009 to μ = 1.01 ± 0.05 in 2011. We have also derived the speed, temperature, source longitude, and latitude of the neutral H atoms and find that these parameters are roughly consistent with those of interstellar He, particularly when considering the filtration effects that act on H in the outer heliosheath. Thus, our analysis shows that over the period from 2009 to 2011, we observe signatures of neutral H consistent with the primary distribution of atoms from the LISM and a radiation pressure that increases in the early rise of solar activity.

  6. Towards Relaxing the Spherical Solar Radiation Pressure Model for Accurate Orbit Predictions

    Science.gov (United States)

    Lachut, M.; Bennett, J.

    2016-09-01

    The well-known cannonball model has been used ubiquitously to capture the effects of atmospheric drag and solar radiation pressure on satellites and/or space debris for decades. While it lends itself naturally to spherical objects, its validity in the case of non-spherical objects has been debated heavily for years throughout the space situational awareness community. One of the leading motivations to improve orbit predictions by relaxing the spherical assumption, is the ongoing demand for more robust and reliable conjunction assessments. In this study, we explore the orbit propagation of a flat plate in a near-GEO orbit under the influence of solar radiation pressure, using a Lambertian BRDF model. Consequently, this approach will account for the spin rate and orientation of the object, which is typically determined in practice using a light curve analysis. Here, simulations will be performed which systematically reduces the spin rate to demonstrate the point at which the spherical model no longer describes the orbital elements of the spinning plate. Further understanding of this threshold would provide insight into when a higher fidelity model should be used, thus resulting in improved orbit propagations. Therefore, the work presented here is of particular interest to organizations and researchers that maintain their own catalog, and/or perform conjunction analyses.

  7. Line Emission from Radiation-Pressurized HII Regions I: Internal Structure and Line Ratios

    CERN Document Server

    Yeh, Sherry C C; Krumholz, Mark R; Matzner, Christopher D; Tielens, Alexander G G M

    2013-01-01

    The emission line ratios [OIII]5007/H-beta and [NII]6584/H-alpha have been adopted as an empirical way to distinguish between the fundamentally different mechanisms of ionization in emission-line galaxies. However, detailed interpretation of these diagnostics requires calculations of the internal structure of the emitting HII regions, and these calculations depend on the assumptions one makes about the relative importance of radiation pressure and stellar winds. In this paper we construct a grid of quasi-static HII region models to explore how choices about these parameters alter HII regions' emission line ratios. We find that, when radiation pressure is included in our models, HII regions reach a saturation point beyond which further increases in the luminosity of the driving stars does not produce any further increase in effective ionization parameter, and thus does not yield any further alteration in an HII region's line ratio. We also show that, if stellar winds are assumed to be strong, the maximum possi...

  8. Solar sail equilibria with albedo radiation pressure in the circular restricted three-body problem

    Science.gov (United States)

    Grøtte, Mariusz E.; Holzinger, Marcus J.

    2017-02-01

    Solar Radiation Pressure (SRP) and albedo effects are investigated in the circular restricted three-body problem for a system consisting of the Sun, a reflective minor body and a solar sail. As an approximation of albedo radiation pressure (ARP), the minor body is treated as Lambertian with reflected flux scattered by the bidirectional reflectance distribution function. Incorporating ARP, which is a function of SRP, into the solar sail equations of motion renders additional artificial equilibrium points in a volume between the L1 and L2 points which is defined as the region of influence. Based on the model, characterization of the findings are provided that are theoretically applicable to any body with discernible albedo such as for instance Earth, Mars or an asteroid. Example results are presented for a Sun-Vesta system which show that the inclusion of ARP generates artificial equilibrium points requiring solar sail designs with very low mass-to-area ratio. The equilibrium points are found to be unstable in general but asymptotic stability may be enforced with sail attitude feedback control.

  9. Deducing radiation pressure on a submerged mirror from the Doppler shift

    CERN Document Server

    Mansuripur, Masud

    2012-01-01

    Radiation pressure on a flat mirror submerged in a transparent liquid, depends not only on the refractive index n of the liquid, but also on the phase angle psi_0 of the Fresnel reflection coefficient of the mirror, which could be anywhere between 0^{\\circ} and 180^{\\circ}. Depending on the value of psi_0, the momentum per incident photon picked up by the mirror covers the range between the Abraham and Minkowski values, i.e., the interval (2\\hbarw_0/nc,2n\\hbarw_0/c). Here \\hbar is the reduced Planck constant, w_0 is the frequency of the incident photon, and c is the speed of light in vacuum. We argue that a simple experimental setup involving a dielectric slab of refractive index n, a vibrating mirror placed a short distance behind the slab, a collimated, monochromatic light beam illuminating the mirror through the slab, and an interferometer to measure the phase of the reflected beam, is all that is needed to deduce the precise magnitude of the radiation pressure on a submerged mirror. In the proposed experi...

  10. Noise in pressure transducer readings produced by variations in solar radiation

    Science.gov (United States)

    Cain, S. F.; Davis, G.A.; Loheide, S.P.; Butler, J.J.

    2004-01-01

    Variations in solar radiation can produce noise in readings from gauge pressure transducers when the transducer cable is exposed to direct sunlight. This noise is a result of insolation-induced heating and cooling of the air column in the vent tube of the transducer cable. A controlled experiment was performed to assess the impact of variations in solar radiation on transducer readings. This experiment demonstrated that insolation-induced fluctuations in apparent pressure head can be as large as 0.03 m. The magnitude of these fluctuations is dependent on cable color, the diameter of the vent tube, and the length of the transducer cable. The most effective means of minimizing insolation-induced noise is to use integrated transducer-data logger units that fit within a well. Failure to address this source of noise can introduce considerable uncertainty into analyses of hydraulic tests when the head change is relatively small, as is often the case for tests in highly permeable aquifers or for tests using distant observation wells.

  11. Estimating the Error in Statistical HAMR Object Populations Resulting from Simplified Radiation Pressure Modeling

    Science.gov (United States)

    Flegel, S.; Vörsmann, P.; Wiedemann, C.; Kebschull, C.; Braun, V.; Möckel, M.; Gelhaus, J.; Krag, H.; Klinkrad, H.

    2012-09-01

    The high-area-to-mass ratio (HAMR) object population in ESA's MASTER-2009 software (Meteoroid and Space Debris Terrestrial Environment Reference) is dominated by Multi-Layer Insulation debris at large sizes. The underlying model employs two independent mechanisms whereby Multi-Layer Insulation debris is created. These mechanisms are fragmentation events on the one hand and a deterioration process leading to the continuous release of larger objects on the other hand. All debris source models used to create the MASTER debris population rely on a semi-analytical propagator to model the major secular and long periodic orbit perturbations. The orbit parameters of HAMR objects are highly susceptive to radiation pressure effects which can result in fast secular and periodic changes for area-to-mass ratios above about 1 square meter per kilogram. The implementation of radiation pressure in this propagator is limited to the effects of solar irradiation on a spherical object and using a cylindrical Earth shadow. The current paper discusses the applicability of such a simplified theory to large statistical HAMR object populations where the main objective is not to predict the exact future location of a single object but rather to give a correct representation of the overall distribution of all HAMR objects. The basis for the current study is given by a numerical propagator which is supported by published observation results. Initially, the effects of object orientation, Earth albedo and thermal radiation on the orbit evolution are discussed. Results from published observations and simulation results give insight into the validity of the implemented model. Fundamental differences between the orbit prediction of this refined numerical propagator and the semi-analytical propagator are looked at with a view towards large statistical populations. To this end, a plausible, statistical, population of HAMR objects is propagated over an extended time period using both propagation

  12. A collisional-radiative model for low-pressure weakly magnetized Ar plasmas

    Science.gov (United States)

    Zhu, Xi-Ming; Tsankov, Tsanko; Czarnetzki, Uwe; Marchuk, Oleksandr

    2016-09-01

    Collisional-radiative (CR) models are widely investigated in plasma physics for describing the kinetics of reactive species and for optical emission spectroscopy. This work reports a new Ar CR model used in low-pressure (0.01-10 Pa) weakly magnetized (<0.1 Tesla) plasmas, including ECR, helicon, and NLD discharges. In this model 108 realistic levels are individually studied, i.e. 51 lowest levels of the Ar atom and 57 lowest levels of the Ar ion. We abandon the concept of an ``effective level'' usually adopted in previous models for glow discharges. Only in this way the model can correctly predict the non-equilibrium population distribution of close energy levels. In addition to studying atomic metastable and radiative levels, this model describes the kinetic processes of ionic metastable and radiative levels in detail for the first time. This is important for investigation of plasma-surface interaction and for optical diagnostics using atomic and ionic line-ratios. This model could also be used for studying Ar impurities in tokamaks and astrophysical plasmas.

  13. Interaction of Charged Particles with Ultra Strong Electromagnetic Waves in the Radiation Dominant Regime

    Science.gov (United States)

    Bulanov, S. V.; Esirkepov, T. Zh.; Koga, J.; Tajima, T.

    2004-10-01

    The plasma particle interaction with a relativistically intense electromagnetic wave under the conditions when the radiation reaction effects are dominant is considered. We analyze the radiation damping effects on the electron motion inside the circularly polarized planar wave and inside a subcycle crossed-field electromagnetic pulse. We consider the ion acceleration due to the radiation pressure action on a thin plasma slab. The results of 2D and 3D PIC simulations are presented.

  14. Viscous Stability of Relativistic Keplerian Accretion Disks

    CERN Document Server

    Ghosh, P

    1998-01-01

    We investigate the viscous stability of thin, Keplerian accretion disks in regions where general relativistic (GR) effects are essential. For gas pressure dominated (GPD) disks, we show that the Newtonian conclusion that such disks are viscously stable is reversed by GR modifications in the behaviors of viscous stress and surface density over a significantly large annular region not far from the innermost stable orbit at $r=\\rms$. For slowly-rotating central objects, this region spans a range of radii $14\\lo r\\lo 19$ in units of the central object's mass $M$. For radiation pressure dominated (RPD) disks, the Newtonian conclusion that they are viscously unstable remains valid after including the above GR modifications, except in a very small annulus around $r\\approx 14M$, which has a negligible influence. Inclusion of the stabilizing effect of the mass-inflow through the disk's inner edge via a GR analogue of Roche-lobe overflow adds a small, stable region around \\rms~for RPD disks, but leaves GPD disks unchan...

  15. Relativistic Remnants of Non-Relativistic Electrons

    CERN Document Server

    Kashiwa, Taro

    2015-01-01

    Electrons obeying the Dirac equation are investigated under the non-relativistic $c \\mapsto \\infty$ limit. General solutions are given by derivatives of the relativistic invariant functions whose forms are different in the time- and the space-like region, yielding the delta function of $(ct)^2 - x^2$. This light-cone singularity does survive to show that the charge and the current density of electrons travel with the speed of light in spite of their massiveness.

  16. Radiation Pressure Confinement -- III. The origin of the broad ionization distribution in AGN outflows

    CERN Document Server

    Stern, Jonathan; Laor, Ari; Baskin, Alexei; Holczer, Tomer

    2014-01-01

    The winds of ionized gas driven by Active Galactic Nuclei (AGN) can be studied through absorption features in their X-ray spectra. A recurring feature of these outflows is their broad ionization distribution, including essentially all ionization levels (e.g., Fe^0+ to Fe^25+). The absorption measure distribution (AMD) is defined as the distribution of column density with ionization parameter |dN / dlog xi|. The AMD extends over a wide range of 0.1 < xi < 10^4 (cgs), and is remarkably similar in different objects. Power-law fits to the observed AMDs (|dN / dlog xi| ~ N_1 xi^a) yield N_1 = 3x10^21 cm^-2 +- 0.4 dex and a = 0 -- 0.4. What is the source of this broad ionization distribution, and what sets the small range of observed $N_1$ and $a$ values? A common interpretation is a multiphase outflow, with a wide range of gas densities in a uniform pressure medium. However, it has already been shown that the incident radiation pressure leads to a gas pressure gradient in the photoionized gas, and therefore ...

  17. Relativistic quantum mechanics

    CERN Document Server

    Wachter, Armin

    2010-01-01

    Which problems do arise within relativistic enhancements of the Schrödinger theory, especially if one adheres to the usual one-particle interpretation, and to what extent can these problems be overcome? And what is the physical necessity of quantum field theories? In many books, answers to these fundamental questions are given highly insufficiently by treating the relativistic quantum mechanical one-particle concept very superficially and instead introducing field quantization as soon as possible. By contrast, this monograph emphasizes relativistic quantum mechanics in the narrow sense: it extensively discusses relativistic one-particle concepts and reveals their problems and limitations, therefore motivating the necessity of quantized fields in a physically comprehensible way. The first chapters contain a detailed presentation and comparison of the Klein-Gordon and Dirac theory, always in view of the non-relativistic theory. In the third chapter, we consider relativistic scattering processes and develop the...

  18. Radiation damping of a polarizable particle

    Science.gov (United States)

    Novotny, Lukas

    2017-09-01

    A polarizable body moving in an external electromagnetic field will slow down. This effect is referred to as radiation damping and is analogous to Doppler cooling in atomic physics. Using the principles of special relativity we derive an expression for the radiation damping force and find that it solely depends on the scattered power. The cooling of the particle's center-of-mass motion is balanced by heating due to radiation pressure shot noise, giving rise to an equilibrium that depends on the ratio of the field's frequency and the particle's mass. While damping is of relativistic nature, heating has its roots in quantum mechanics.

  19. Relativistic Spin Operators

    Institute of Scientific and Technical Information of China (English)

    ZHANG Peng-Fei; RUAN Tu-Nan

    2001-01-01

    A systematic theory on the appropriate spin operators for the relativistic states is developed. For a massive relativistic particle with arbitrary nonzero spin, the spin operator should be replaced with the relativistic one, which is called in this paper as moving spin. Further the concept of moving spin is discussed in the quantum field theory. A new is constructed. It is shown that, in virtue of the two operators, problems in quantum field concerned spin can be neatly settled.

  20. Relativistic Guiding Center Equations

    Energy Technology Data Exchange (ETDEWEB)

    White, R. B. [PPPL; Gobbin, M. [Euratom-ENEA Association

    2014-10-01

    In toroidal fusion devices it is relatively easy that electrons achieve relativistic velocities, so to simulate runaway electrons and other high energy phenomena a nonrelativistic guiding center formalism is not sufficient. Relativistic guiding center equations including flute mode time dependent field perturbations are derived. The same variables as used in a previous nonrelativistic guiding center code are adopted, so that a straightforward modifications of those equations can produce a relativistic version.

  1. Relativistic Linear Restoring Force

    Science.gov (United States)

    Clark, D.; Franklin, J.; Mann, N.

    2012-01-01

    We consider two different forms for a relativistic version of a linear restoring force. The pair comes from taking Hooke's law to be the force appearing on the right-hand side of the relativistic expressions: d"p"/d"t" or d"p"/d["tau"]. Either formulation recovers Hooke's law in the non-relativistic limit. In addition to these two forces, we…

  2. Newtonian and General Relativistic Models of Spherical Shells

    CERN Document Server

    Vogt, D

    2009-01-01

    A family of spherical shells with varying thickness is derived by using a simple Newtonian potential-density pair. Then, a particular isotropic form of a metric in spherical coordinates is used to construct a General Relativistic version of the Newtonian family of shells. The matter of these relativistic shells presents equal azimuthal and polar pressures, while the radial pressure is a constant times the tangential pressure. We also make a first study of stability of both the Newtonian and relativistic families of shells.

  3. Turbulent Comptonization in Relativistic Accretion Disks

    CERN Document Server

    Socrates, A; Blaes, Omer M; Socrates, Aristotle; Davis, Shane W.; Blaes, Omer

    2006-01-01

    Turbulent Comptonization, a potentially important damping and radiation mechanism in relativistic accretion flows, is discussed. Particular emphasis is placed on the physical basis, relative importance, and thermodynamics of turbulent Comptonization. The effects of metal-absorption opacity on the spectral component resulting from turbulent Comptonization is considered as well.

  4. RELATIVISTIC TRANSPORT-THEORY

    NARCIS (Netherlands)

    MALFLIET, R

    1993-01-01

    We discuss the present status of relativistic transport theory. Special emphasis is put on problems of topical interest: hadronic features, thermodynamical consistent approximations and spectral properties.

  5. The Role of Non-ionizing Radiation Pressure in Star Formation: The Stability of Cores and Filaments

    CERN Document Server

    Seo, Young Min

    2016-01-01

    Stars form when filaments and dense cores in molecular clouds fragment and collapse due to self-gravity. In the most basic analyses of gravitational stability, the competition between self-gravity and thermal pressure sets the critical (i.e. maximum stable) mass of spheres and the critical line density of cylinders. Previous work has considered additional support from magnetic fields and turbulence. Here, we consider the effects of non-ionizing radiation, specifically the inward radiation pressure force that acts on dense structures embedded in an isotropic radiation field. Using hydrostatic, isothermal models, we find that irradiation lowers the critical mass and line density for gravitational collapse, and can thus act as a trigger for star formation. For structures with moderate central densities, $\\sim10^3$ cm$^{-3}$, the interstellar radiation field in the Solar vicinity has an order unity effect on stability thresholds. For more evolved objects with higher central densities, a significant lowering of st...

  6. Enhanced radiation pressure-assisted acceleration by temporally tuned counter-propagating pulses

    Energy Technology Data Exchange (ETDEWEB)

    Aurand, B., E-mail: bastian.aurand@fysik.lth.se [Department of Physics, Lund University, 22100 Lund (Sweden); Gesellschaft für Schwerionenforschung, 64291 Darmstadt (Germany); Helmholtz Institute Jena, 07743 Jena (Germany); Kuschel, S.; Jäckel, O.; Rödel, C. [Helmholtz Institute Jena, 07743 Jena (Germany); Zhao, H.Y. [Institute of Modern Physics, 73000 Lanzhou (China); Herzer, S. [Helmholtz Institute Jena, 07743 Jena (Germany); Institute of Optics and Quantum Electronics, 07743 Jena (Germany); Paz, A.E.; Bierbach, J. [Helmholtz Institute Jena, 07743 Jena (Germany); Polz, J. [Helmholtz Institute Jena, 07743 Jena (Germany); Institute of Optics and Quantum Electronics, 07743 Jena (Germany); Elkin, B. [Fraunhofer Institut für Grenzflächen-und Bioverfahrenstechnik, 70569 Stuttgart (Germany); Karmakar, A. [Leibniz-Supercomputing Center, 85748 Garching (Germany); Gibbon, P. [ExtreMe Matter Institut, 64291 Darmstadt (Germany); Institute for Advanced Simulation, Forschungszentrum Jülich GmbH, 52428 Jülich (Germany); Kaluza, M.C. [Helmholtz Institute Jena, 07743 Jena (Germany); Institute of Optics and Quantum Electronics, 07743 Jena (Germany); Kuehl, T. [Gesellschaft für Schwerionenforschung, 64291 Darmstadt (Germany); Helmholtz Institute Jena, 07743 Jena (Germany); Universität Mainz, 55099 Mainz (Germany)

    2014-03-11

    Within the last decade, laser-ion acceleration has become a field of broad interest. The possibility to generate short proton- or heavy ion bunches with an energy of a few tens of MeV by table-top laser systems could open new opportunities for medical or technical applications. Nevertheless, today's laser-acceleration schemes lead mainly to a temperature-like energy distribution of the accelerated ions, a big disadvantage compared to mono-energetic beams from conventional accelerators. Recent results [1] of laser-ion acceleration using radiation-pressure appear promising to overcome this drawback. In this paper, we demonstrate the influence of a second counter-propagating laser pulse interacting with a nm-thick target, creating a well defined pre-plasma.

  7. Precise calibration of LIGO test mass actuators using photon radiation pressure

    CERN Document Server

    Goetz, E; Erickson, S; Savage, R L; González, G; Kawabe, K; Landry, M; Marka, S; O'Reilly, B; Riles, K; Sigg, D; Willems, P

    2009-01-01

    Precise calibration of kilometer-scale interferometric gravitational wave detectors is crucial for source localization and waveform reconstruction. A technique that uses the radiation pressure of a power-modulated auxiliary laser to induce calibrated displacements of one of the ~10 kg arm cavity mirrors, a so-called photon calibrator, has been demonstrated previously and has recently been implemented on the LIGO detectors. In this article, we discuss the inherent precision and accuracy of the LIGO photon calibrators and several improvements that have been developed to reduce the estimated voice coil actuator calibration uncertainties to less than 2 percent (1-sigma). These improvements include accounting for rotation-induced apparent length variations caused by interferometer and photon calibrator beam centering offsets, absolute laser power measurement using temperature-controlled InGaAs photodetectors mounted on integrating spheres and calibrated by NIST, minimizing errors induced by localized elastic defor...

  8. Droplet actuation by surface acoustic waves: an interplay between acoustic streaming and radiation pressure

    Science.gov (United States)

    Brunet, Philippe; Baudoin, Michael; Matar, Olivier Bou; Zoueshtiagh, Farzam

    2010-11-01

    Surface acoustic waves (SAW) are known to be a versatile technique for the actuation of sessile drops. Droplet displacement, internal mixing or drop splitting, are amongst the elementary operations that SAW can achieve, which are useful on lab-on-chip microfluidics benches. On the purpose to understand the underlying physical mechanisms involved during these operations, we study experimentally the droplet dynamics varying different physical parameters. Here in particular, the influence of liquid viscosity and acoustic frequency is investigated: it is indeed predicted that both quantities should play a role in the acoustic-hydrodynamic coupling involved in the dynamics. The key point is to compare the relative magnitude of the attenuation length, i.e. the scale within which the acoustic wave decays in the fluid, and the size of the drop. This relative magnitude governs the relative importance of acoustic streaming and acoustic radiation pressure, which are both involved in the droplet dynamics.

  9. Proton Acceleration with Double-Layer Targets in the Radiation Pressure Dominant Regime

    Institute of Scientific and Technical Information of China (English)

    LU Hai-Yang; WANG Cheng; LIU Jian-Sheng

    2011-01-01

    @@ Acceleration of protons by a circularly polarized laser pulse irradiating on a double-layer target is investigated by a theoretical model and particle-in-cell simulations.The target is made up of a heavy ion layer coated with a proton layer on the rear surface.The results show that when the first layer is transparent induced by the hole-boring effect, the whole proton layer is accelerated by the transmitted laser pulse to high energy with low energy spread.The quality of the proton beam generated from a double-layer target is better than that from a single-layer target.The improvement is attributed to the flat top structure of the electrostatic field caused by the electrons injected into the second layer.It is easier to control the spectrum quality by using a double-layer target rather than using a single-layer one when the radiation pressure acceleration is dominant.

  10. Radiation Pressure on Submerged Mirrors: Implications for the Momentum of Light in Dielectric Media

    CERN Document Server

    Mansuripur, Masud

    2014-01-01

    Radiation pressure measurements on mirrors submerged in dielectric liquids have consistently shown an effective Minkowski momentum for the photons within the liquid. Using an exact theoretical calculation based on Maxwell's equations and the Lorentz law of force, we demonstrate that this result is a consequence of the fact that conventional mirrors impart, upon reflection, a 180 degree phase-shift to the incident beam of light. If the mirror is designed to impart a different phase, then the effective momentum will turn out to be anywhere between the two extremes of the Minkowski and Abraham momenta. Since all values in the range between these two extremes are equally likely to be found in experiments, we argue that the photon momentum inside a dielectric host has the arithmetic mean value of the Abraham and Minkowski momenta.

  11. Radiation pressure and the linear momentum of light in dispersive dielectric media

    CERN Document Server

    Mansuripur, Masud

    2014-01-01

    We derive an exact expression for the radiation pressure of a quasi- monochromatic plane wave incident from the free space onto the flat surface of a semi-infinite dielectric medium. In order to account for the total optical momentum (incident plus reflected) that is transferred to the dielectric, the mechanical momentum acquired by the medium must be added to the rate of flow of the electromagnetic momentum (the so-called Abraham momentum) inside the dielectric. We confirm that the electromagnetic momentum travels with the group velocity of light inside the medium. The photon drag effect, in which the photons captured in a semiconductor appear to have the Minkowski momentum, is explained by analyzing a model system consisting of a thin absorptive layer embedded in a transparent dielectric.

  12. Nonlinear acoustics in a dispersive continuum: Random waves, radiation pressure, and quantum noise

    Science.gov (United States)

    Cabot, M. A.

    The nonlinear interaction of sound with sound is studied using dispersive hydrodynamics which derived from a variational principle and the assumption that the internal energy density depends on gradients of the mass density. The attenuation of sound due to nonlinear interaction with a background is calculated and is shown to be sensitive to both the nature of the dispersion and decay bandwidths. The theoretical results are compared to those of low temperature helium experiments. A kinetic equation which described the nonlinear self-inter action of a background is derived. When a Deybe-type cutoff is imposed, a white noise distribution is shown to be a stationary distribution of the kinetic equation. The attenuation and spectrum of decay of a sound wave due to nonlinear interaction with zero point motion is calculated. In one dimension, the dispersive hydrodynamic equations are used to calculate the Langevin and Rayleigh radiation pressures of wave packets and solitary waves.

  13. Enhancement of proton acceleration by frequency-chirped laser pulse in radiation pressure mechanism

    Science.gov (United States)

    Vosoughian, H.; Riazi, Z.; Afarideh, H.; Yazdani, E.

    2015-07-01

    The transition from hole-boring to light-sail regime of radiation pressure acceleration by frequency-chirped laser pulses is studied using particle-in-cell simulation. The penetration depth of laser into the plasma with ramped density profile increases when a negatively chirped laser pulse is applied. Because of this induced transparency, the laser reflection layer moves deeper into the target and the hole-boring stage would smoothly transit into the light-sail stage. An optimum chirp parameter which satisfies the laser transparency condition, a 0 ≈ π n e l / n c λ , is obtained for each ramp scale length. Moreover, the efficiency of conversion of laser energy into the kinetic energy of particles is maximized at the obtained optimum condition. A relatively narrow proton energy spectrum with peak enhancement by a factor of 2 is achieved using a negatively chirped pulse compared with the un-chirped pulse.

  14. Self-cooling of a micro-mirror by radiation pressure

    CERN Document Server

    Gigan, S; Baeuerle, D; Blaser, F; Boehm, H R; Hertzberg, J B; Langer, G; Paternostro, M; Schwab, K; Zeilinger, A

    2006-01-01

    We demonstrate passive feedback cooling of a mechanical resonator based on radiation pressure forces and assisted by photothermal forces in a high-finesse optical cavity. The resonator is a free-standing high-reflectance micro-mirror (of mass m=400ng and mechanical quality factor Q=10^4) that is used as back-mirror in a detuned Fabry-Perot cavity of optical finesse F=500. We observe an increased damping in the dynamics of the mechanical oscillator by a factor of 30 and a corresponding cooling of the oscillator modes below 10 K starting from room temperature. This effect is an important ingredient for recently proposed schemes to prepare quantum entanglement of macroscopic mechanical oscillators.

  15. Physical Mechanism of the Transverse Instability in Radiation Pressure Ion Acceleration

    Science.gov (United States)

    Wan, Y.; Pai, C.-H.; Zhang, C. J.; Li, F.; Wu, Y. P.; Hua, J. F.; Lu, W.; Gu, Y. Q.; Silva, L. O.; Joshi, C.; Mori, W. B.

    2016-12-01

    The transverse stability of the target is crucial for obtaining high quality ion beams using the laser radiation pressure acceleration (RPA) mechanism. In this Letter, a theoretical model and supporting two-dimensional (2D) particle-in-cell (PIC) simulations are presented to clarify the physical mechanism of the transverse instability observed in the RPA process. It is shown that the density ripples of the target foil are mainly induced by the coupling between the transverse oscillating electrons and the quasistatic ions, a mechanism similar to the oscillating two stream instability in the inertial confinement fusion research. The predictions of the mode structure and the growth rates from the theory agree well with the results obtained from the PIC simulations in various regimes, indicating the model contains the essence of the underlying physics of the transverse breakup of the target.

  16. Physical mechanism of the transverse instability in radiation pressure ion acceleration

    CERN Document Server

    Wan, Y; Zhang, C J; Li, F; Wu, Y P; Hua, J F; Lu, W; Gu, Y Q; Silva, L O; Joshi, C; Mori, W B

    2016-01-01

    The transverse stability of the target is crucial for obtaining high quality ion beams using the laser radiation pressure acceleration (RPA) mechanism. In this letter, a theoretical model and supporting two-dimensional (2D) Particle-in-Cell (PIC) simulations are presented to clarify the physical mechanism of the transverse instability observed in the RPA process. It is shown that the density ripples of the target foil are mainly induced by the coupling between the transverse oscillating electrons and the quasi-static ions, a mechanism similar to the transverse two stream instability in the inertial confinement fusion (ICF) research. The predictions of the mode structure and the growth rates from the theory agree well with the results obtained from the PIC simulations in various regimes, indicating the model contains the essence of the underlying physics of the transverse break-up of the target.

  17. Enhanced laser absorption from radiation pressure in intense laser plasma interactions

    Science.gov (United States)

    Dollar, F.; Zulick, C.; Raymond, A.; Chvykov, V.; Willingale, L.; Yanovsky, V.; Maksimchuk, A.; Thomas, A. G. R.; Krushelnick, K.

    2017-06-01

    The reflectivity of a short-pulse laser at intensities of 2× {10}21 {{Wcm}}-2 with ultra-high contrast ({10}-15) on sub-micrometer silicon nitride foils was studied experimentally using varying polarizations and target thicknesses. The reflected intensity and beam quality were found to be relatively constant with respect to intensity for bulk targets. For submicron targets, the measured reflectivity drops substantially without a corresponding increase in transmission, indicating increased conversion of fundamental to other wavelengths and particle heating. Experimental results and trends observed in 3D particle-in-cell simulations emphasize the critical role of ion motion due to radiation pressure on the absorption process. Ion motion during ultra-short pulses enhances the electron heating, which subsequently transfers more energy to the ions.

  18. Nonlinear magnetosonic waves in dense plasmas with non-relativistic and ultra-relativistic degenerate electrons

    Energy Technology Data Exchange (ETDEWEB)

    Hussain, S.; Mahmood, S.; Rehman, Aman-ur- [Theoretical Physics Division (TPD), PINSTECH, P.O. Nilore, Islamabad 44000, Pakistan and Pakistan Institute of Engineering and Applied Sciences (PIEAS), P.O. Nilore, Islamabad 44000 (Pakistan)

    2014-11-15

    Linear and nonlinear propagation of magnetosonic waves in the perpendicular direction to the ambient magnetic field is studied in dense plasmas for non-relativistic and ultra-relativistic degenerate electrons pressure. The sources of nonlinearities are the divergence of the ions and electrons fluxes, Lorentz forces on ions and electrons fluids and the plasma current density in the system. The Korteweg-de Vries equation for magnetosonic waves propagating in the perpendicular direction of the magnetic field is derived by employing reductive perturbation method for non-relativistic as well as ultra-relativistic degenerate electrons pressure cases in dense plasmas. The plots of the magnetosonic wave solitons are also shown using numerical values of the plasma parameters such a plasma density and magnetic field intensity of the white dwarfs from literature. The dependence of plasma density and magnetic field intensity on the magnetosonic wave propagation is also pointed out in dense plasmas for both non-relativistic and ultra-relativistic degenerate electrons pressure cases.

  19. Relativistic Binaries in Globular Clusters

    Directory of Open Access Journals (Sweden)

    Benacquista Matthew J.

    2006-02-01

    Full Text Available The galactic population of globular clusters are old, dense star systems, with a typical cluster containing 10^4 - 10^7 stars. As an old population of stars, globular clusters contain many collapsed and degenerate objects. As a dense population of stars, globular clusters are the scene of many interesting close dynamical interactions between stars. These dynamical interactions can alter the evolution of individual stars and can produce tight binary systems containing one or two compact objects. In this review, we discuss the theoretical models of globular cluster evolution and binary evolution, techniques for simulating this evolution which lead to relativistic binaries, and current and possible future observational evidence for this population. Globular cluster evolution will focus on the properties that boost the production of hard binary systems and on the tidal interactions of the galaxy with the cluster, which tend to alter the structure of the globular cluster with time. The interaction of the components of hard binary systems alters the evolution of both bodies and can lead to exotic objects. Direct N-body integrations and Fokker-Planck simulations of the evolution of globular clusters that incorporate tidal interactions and lead to predictions of relativistic binary populations are also discussed. We discuss the current observational evidence for cataclysmic variables, millisecond pulsars, and low-mass X-ray binaries as well as possible future detection of relativistic binaries with gravitational radiation.

  20. Relativistic Binaries in Globular Clusters

    Directory of Open Access Journals (Sweden)

    Benacquista Matthew

    2002-01-01

    Full Text Available The galactic population of globular clusters are old, dense star systems, with a typical cluster containing $10^4 - 10^6$ stars. As an old population of stars, globular clusters contain many collapsed and degenerate objects. As a dense population of stars, globular clusters are the scene of many interesting close dynamical interactions between stars. These dynamical interactions can alter the evolution of individual stars and can produce tight binary systems containing one or two compact objects. In this review, we discuss the theoretical models of globular cluster evolution and binary evolution, techniques for simulating this evolution which lead to relativistic binaries, and current and possible future observational evidence for this population. Globular cluster evolution will focus on the properties that boost the production of hard binary systems and on the tidal interactions of the galaxy with the cluster, which tend to alter the structure of the globular cluster with time. The interaction of the components of hard binary systems alters the evolution of both bodies and can lead to exotic objects. Direct $N$-body integrations and Fokker--Planck simulations of the evolution of globular clusters that incorporate tidal interactions and lead to predictions of relativistic binary populations are also discussed. We discuss the current observational evidence for cataclysmic variables, millisecond pulsars, and low-mass X-ray binaries as well as possible future detection of relativistic binaries with gravitational radiation.

  1. Relativistic Binaries in Globular Clusters

    Directory of Open Access Journals (Sweden)

    Matthew J. Benacquista

    2013-03-01

    Full Text Available Galactic globular clusters are old, dense star systems typically containing 10^4 – 10^6 stars. As an old population of stars, globular clusters contain many collapsed and degenerate objects. As a dense population of stars, globular clusters are the scene of many interesting close dynamical interactions between stars. These dynamical interactions can alter the evolution of individual stars and can produce tight binary systems containing one or two compact objects. In this review, we discuss theoretical models of globular cluster evolution and binary evolution, techniques for simulating this evolution that leads to relativistic binaries, and current and possible future observational evidence for this population. Our discussion of globular cluster evolution will focus on the processes that boost the production of tight binary systems and the subsequent interaction of these binaries that can alter the properties of both bodies and can lead to exotic objects. Direct N-body integrations and Fokker–Planck simulations of the evolution of globular clusters that incorporate tidal interactions and lead to predictions of relativistic binary populations are also discussed. We discuss the current observational evidence for cataclysmic variables, millisecond pulsars, and low-mass X-ray binaries as well as possible future detection of relativistic binaries with gravitational radiation.

  2. Simulations of radiation pressure ion acceleration with the VEGA Petawatt laser

    Science.gov (United States)

    Stockhausen, Luca C.; Torres, Ricardo; Conejero Jarque, Enrique

    2016-09-01

    The Spanish Pulsed Laser Centre (CLPU) is a new high-power laser facility for users. Its main system, VEGA, is a CPA Ti:Sapphire laser which, in its final phase, will be able to reach Petawatt peak powers in pulses of 30 fs with a pulse contrast of 1 :1010 at 1 ps. The extremely low level of pre-pulse intensity makes this system ideally suited for studying the laser interaction with ultrathin targets. We have used the particle-in-cell (PIC) code OSIRIS to carry out 2D simulations of the acceleration of ions from ultrathin solid targets under the unique conditions provided by VEGA, with laser intensities up to 1022 W cm-2 impinging normally on 20 - 60 nm thick overdense plasmas, with different polarizations and pre-plasma scale lengths. We show how signatures of the radiation pressure-dominated regime, such as layer compression and bunch formation, are only present with circular polarization. By passively shaping the density gradient of the plasma, we demonstrate an enhancement in peak energy up to tens of MeV and monoenergetic features. On the contrary linear polarization at the same intensity level causes the target to blow up, resulting in much lower energies and broader spectra. One limiting factor of Radiation Pressure Acceleration is the development of Rayleigh-Taylor like instabilities at the interface of the plasma and photon fluid. This results in the formation of bubbles in the spatial profile of laser-accelerated proton beams. These structures were previously evidenced both experimentally and theoretically. We have performed 2D simulations to characterize this bubble-like structure and report on the dependency on laser and target parameters.

  3. Dust scattering and the radiation pressure force in the M82 superwind

    Energy Technology Data Exchange (ETDEWEB)

    Coker, Carl T.; Thompson, Todd A.; Martini, Paul, E-mail: coker@astronomy.ohio-state.edu, E-mail: thompson@astronomy.ohio-state.edu, E-mail: martini@astronomy.ohio-state.edu [Department of Astronomy and Center for Cosmology and Astro-Particle Physics, The Ohio State University, Columbus, OH 43210 (United States)

    2013-11-20

    Radiation pressure on dust grains may be an important physical mechanism driving galaxy-wide superwinds in rapidly star-forming galaxies. We calculate the combined dust and gas Eddington ratio (Γ) for the archetypal superwind of M82. By combining archival Galaxy Evolution Explorer data, a standard dust model, Monte Carlo dust scattering calculations, and the Herschel map of the dust surface density distribution, the observed far-UV/near-UV surface brightness in the outflow constrains both the total UV luminosity escaping from the starburst along its minor axis (L {sub *,UV}) and the flux-mean opacity, thus allowing a calculation of Γ. We find that L {sub *,UV} ≈ (1-6) × 10{sup 42} erg s{sup –1}, ∼2-12 times greater than the UV luminosity observed from our line of sight. On a scale of 1-3 kpc above the plane of M82, we find that Γ ∼ 0.01-0.06. On smaller scales (∼0.25-0.5 kpc), where the enclosed mass decreases, our calculation of L {sub *,UV} implies that Γ ∼ 0.1 with factor of few uncertainties. Within the starburst itself, we estimate the single-scattering Eddington ratio to be of order unity. Thus, although radiation pressure is weak compared to gravity on kpc scales above the plane of M82, it may yet be important in launching the observed outflow. We discuss the primary uncertainties in our calculation, the sensitivity of Γ to the dust grain size distribution, and the time evolution of the wind following M82's recent starburst episodes.

  4. Relativistic Tennis with Photons: Frequency Up-Shifting, Light Intensification and Ion Acceleration with Flying Mirrors

    Science.gov (United States)

    Bulanov, S. V.; Esirkepov, T. Zh.; Kando, M.; Koga, J. K.; Pirozhkov, A. S.; Rosanov, N. N.; Zhidkov, A. G.

    2011-01-01

    We formulate the Flying Mirror Concept for relativistic interaction of ultra-intense electromagnetic waves with plasmas, present its theoretical description and the results of computer simulations and laboratory experiments. In collisionless plasmas, the relativistic flying mirrors are thin and dense electron or electron-ion layers accelerated by the high intensity electromagnetic waves up to velocity close to the speed of light in vacuum; in nonlinear-media and in nonlinear vacuum they are the ionization fronts and the refraction index modulations induced by a strong electromagnetic wave. The reflection of the electromagnetic wave at the relativistic mirror results in its energy and frequency change due to the double Doppler effect. In the co-propagating configuration, in the radiation pressure dominant regime, the energy of the electromagnetic wave is transferred to the ion energy providing a highly efficient acceleration mechanism. In the counter-propagation configuration the frequency of the reflected wave is multiplied by the factor proportional to the gamma-factor squared. If the relativistic mirror performs an oscillatory motion as in the case of the electron motion at the plasma-vacuum interface, the reflected light spectrum is enriched with high order harmonics.

  5. The effect of radiation pressure on virial black hole mass estimates and the case of Narrow Line Seyfert 1 galaxies

    CERN Document Server

    Marconi, Alessandro; Maiolino, Roberto; Nagao, Tohru; Pastorini, Guia; Pietrini, Paola; Robinson, Andrew; Torricelli, Guidetta

    2008-01-01

    We consider the effect of radiation pressure from ionizing photons on black hole (BH) mass estimates based on the application of the virial theorem to broad emission lines in AGN spectra. BH masses based only on the virial product V^2R and neglecting the effect of radiation pressure can be severely underestimated especially in objects close to the Eddington limit. We provide an empirical calibration of the correction for radiation pressure and we show that it is consistent with a simple physical model in which BLR clouds are optically thick to ionizing radiation and have average column densities of NH~10^23 cm^-2. This value is remarkably similar to what is required in standard BLR photoionization models to explain observed spectra. With the inclusion of radiation pressure the discrepancy between virial BH masses based on single epoch spectra and on reverberation mapping data drops from 0.4 to 0.2 dex rms. The use of single epoch observations as surrogates of reverberation mapping campaigns can thus provide m...

  6. Metal enrichment by radiation pressure in active galactic nucleus outflows -- theory and observations

    CERN Document Server

    Baskin, Alexei

    2012-01-01

    Outflows from active galactic nuclei may be produced by absorption of continuum radiation by UV resonance lines of abundant metal ions, as observed in broad absorption line quasars (BALQs). The radiation pressure exerted on the metal ions is coupled to the rest of the gas through Coulomb collisions of the metal ions. We calculate the photon density and gas density which allow decoupling of the metal ions from the rest of the gas. These conditions may lead to an outflow composed mostly of the metal ions. We derive a method to constrain the metals/H ratio of observed UV outflows, based on the Ly {\\alpha} and Si iv {\\lambda}{\\lambda}1394, 1403 absorption profiles. We apply this method to an SDSS sample of BALQs to derive a handful of candidate outflows with a higher than solar metal/H ratio. This mechanism can produce ultra fast UV outflows, if a shield of the continuum source with a strong absorption edge is present.

  7. Modes of targets in water excited and identified using radiation pressure of modulated focused ultrasound

    Science.gov (United States)

    Daniel, Timothy; Fortuner, Auberry; Abawi, Ahmad; Kirsteins, Ivars; Marston, Philip

    2016-11-01

    The modulated radiation pressure (MRP) of ultrasound has been widely used to selectively excite low frequency modes of fluid objects. We previously used MRP to excite less compliant metallic object in water including the low frequency modes of a circular metal plate in water. A larger focused ultrasonic transducer allows us to drive modes of larger more-realistic targets. In our experiments solid targets are suspended by strings or supported on sand and the modulated ultrasound is focused on the target's surface. Target sound emissions were recorded and a laser vibrometer was used to measure the surface velocity of the target to give the magnitude of the target response. The source transducer was driven with a doublesideband suppressed carrier voltage as in. By varying the modulation frequency and monitoring target response, resonant frequencies can be measured and compared to finite element models. We also demonstrate the radiation torque of a focused first-order acoustic vortex beam associated with power absorption in the Stokes layer adjacent to a sphere. Funded by ONR.

  8. Dynamics in the vicinity of (101955) Bennu: solar radiation pressure effects in equatorial orbits

    Science.gov (United States)

    Chanut, T. G. G.; Aljbaae, S.; Prado, A. F. B. A.; Carruba, V.

    2017-09-01

    Here, we study the dynamical effects of the solar radiation pressure (SRP) on a spacecraft that will survey the near-Earth rotating asteroid (101955) Bennu when the projected shadow is accounted for. The spacecraft's motion near (101955) Bennu is modelled in the rotating frame fixed at the centre of the asteroid, neglecting the Sun gravity effects. We calculate the SRP at the perihelion, semimajor axis and aphelion distances of the asteroid from the Sun. The goals of this work are to analyse the stability for both homogeneous and inhomogeneous mass distribution and study the effects of the SRP in equatorial orbits close to the asteroid (101955) Bennu. As results, we find that the mascon model divided into 10 equal layers seems to be the most suitable for this problem. We can highlight that the centre point E8, which was linearly stable in the case of the homogeneous mass distribution, becomes unstable in this new model changing its topological structure. For a Sun initial longitude ψ0 = -180°, starting with the spacecraft longitude λ = 0, the orbits suffer fewer impacts and some (between 0.4 and 0.5 km), remaining unwavering even if the maximum solar radiation is considered. When we change the initial longitude of the Sun to ψ0 = -135°, the orbits with initial longitude λ = 90° appear to be more stable. Finally, when the passage of the spacecraft in the shadow is accounted for, the effects of SRP are softened, and we find more stable orbits.

  9. Reducing ion energy spread in hole-boring radiation pressure acceleration by using two-ion-species targets

    CERN Document Server

    Weng, S M; Sheng, Z M

    2014-01-01

    The generation of fast ion beams in the hole-boring radiation pressure acceleration by intense laser pulses has been studied for targets with different ion components. We find that the oscillation of the longitudinal electric field for accelerating ions can be effectively suppressed by using a two-ion-species target, because fast ions from a two-ion-species target are distributed into more bunches and each bunch bears less charge. Consequently, the energy spread of ion beams generated in the hole-boring radiation pressure acceleration can be greatly reduced down to 3.7% according to our numerical simulation.

  10. The effects of the solar radiation pressure on the F-ring particles

    Science.gov (United States)

    Sfair, R.; Giuliatti Winter, S.

    The Saturn s F-ring is a narrow ring orbiting outside the main ring system of Saturn It is located between two close satellites Prometheus the interior one and Pandora The gravitational interactions between the ring particles and the satellites can be responsible for several structures found in this ring Showalter et al 1992 showed that the F-ring material could be divided into two regions a core composed by centimeter or large particles and a dust envelope composed by mu m particles Recent observations by Cassini instruments brought more complications to this region with the discovery of two new faint rings between the A ring and Prometheus one of these rings has the satellite Atlas embedded on it These new rings are tenuous like the dust envelope which surround the F-ring and the solar radiation force can play a significant role in this dynamical environment In this work we analysed the effects due to the solar radiation forces on the particles of the F ring and the two new discovered rings In this analysis we also included the perturbation of the satellite Prometheus on the F ring particles and the satellite Atlas on the new rings particles We have numerically simulated particles with size ranging from 1-500 mu m in radius The density of these particles was assumed to be 1g cm 3 Our results show that a sample of scattered F ring particles can be trapped due to Prometheus effects However the particles from the new discovered rings have a short lifetime due to the solar radiation pressure Only those particles coorbital to Atlas

  11. Inactivation of single-celled Ascaris suum eggs by low-pressure UV radiation.

    Science.gov (United States)

    Brownell, Sarah A; Nelson, Kara L

    2006-03-01

    Intact and decorticated single-celled Ascaris suum eggs were exposed to UV radiation from low-pressure, germicidal lamps at fluences (doses) ranging from 0 to 8,000 J/m2 for intact eggs and from 0 to 500 J/m2 for decorticated eggs. With a UV fluence of 500 J/m2, 0.44-+/-0.20-log inactivation (mean+/-95% confidence interval) (63.7%) of intact eggs was observed, while a fluence of 4,000 J/m2 resulted in 2.23-+/-0.49-log inactivation (99.4%). (The maximum quantifiable inactivation was 2.5 log units.) Thus, according to the methods used here, Ascaris eggs are the most UV-resistant water-related pathogen identified to date. For the range of fluences recommended for disinfecting drinking water and wastewater (200 to 2,000 J/m2), from 0- to 1.5-log inactivation can be expected, although at typical fluences (less than 1,000 J/m2), the inactivation may be less than 1 log. When the eggs were decorticated (the outer egg shell layers were removed with sodium hypochlorite, leaving only the lipoprotein ascaroside layer) before exposure to UV, 1.80-+/-0.32-log reduction (98.4%) was achieved with a fluence of 500 J/m2, suggesting that the outer eggshell layers protected A. suum eggs from inactivation by UV radiation. This protection may have been due to UV absorption by proteins in the outer layers of the 3- to 4-microm-thick eggshell. Stirring alone (without UV exposure) also inactivated some of the Ascaris eggs (approximately 20% after 75 min), which complicated determination of the inactivation caused by UV radiation alone.

  12. Kinematics of and emission from helically orbiting blobs in a relativistic magnetized jet

    CERN Document Server

    Mohan, P

    2015-01-01

    We present a general relativistic (GR) model of jet variability in active galactic nuclei due to orbiting blobs in helical motion along a funnel or cone shaped magnetic surface anchored to the accretion disk near the black hole. Considering a radiation pressure driven flow in the inner region, we find that it stabilizes the flow yielding Lorentz factors ranging between $1.1 - 7$ at small radii for reasonable initial conditions. Assuming these as inputs, simulated light curves (LCs) for the funnel model include Doppler and gravitational shifts, aberration, light bending and time delay. These LCs are studied for quasi-periodic oscillations (QPOs) and the power spectral density (PSD) shape and yield an increased amplitude ($\\sim$ 12 %); a beamed portion and a systematic phase shift with respect to that from a previous special relativistic model. The results strongly justify implementing a realistic magnetic surface geometry in a GR framework to describe effects on emission from orbital features in the jet close ...

  13. Direct Numerical Simulation of Radiation Pressure-Driven Turbulence and Winds in Star Clusters and Galactic Disks

    CERN Document Server

    Krumholz, Mark R

    2012-01-01

    The pressure exerted by the radiation of young stars may be an important feedback mechanism that drives turbulence and winds in forming star clusters and the disks of starburst galaxies. However, there is great uncertainty in how efficiently radiation couples to matter in these high optical depth environments. In particular, it is unclear what levels of turbulence the radiation can produce, and whether the infrared radiation trapped by the dust opacity can give rise to heavily mass-loaded winds. In this paper we report a series of numerical experiments performed with the radiation-hydrodynamics code ORION in which we drive strong radiation fluxes through columns of dusty matter confined by gravity in order to answer these questions. We consider both systems where the radiation flux is sub-Eddington throughout the gas column, and those where it is super-Eddington at the midplane but sub-Eddington in the atmosphere. In the latter, we find that the radiation-matter interaction gives rise to radiation-driven Rayl...

  14. Relativistic quantum mechanics; Mecanique quantique relativiste

    Energy Technology Data Exchange (ETDEWEB)

    Ollitrault, J.Y. [CEA Saclay, 91 - Gif-sur-Yvette (France). Service de Physique Theorique]|[Universite Pierre et Marie Curie, 75 - Paris (France)

    1998-12-01

    These notes form an introduction to relativistic quantum mechanics. The mathematical formalism has been reduced to the minimum in order to enable the reader to calculate elementary physical processes. The second quantification and the field theory are the logical followings of this course. The reader is expected to know analytical mechanics (Lagrangian and Hamiltonian), non-relativistic quantum mechanics and some basis of restricted relativity. The purpose of the first 3 chapters is to define the quantum mechanics framework for already known notions about rotation transformations, wave propagation and restricted theory of relativity. The next 3 chapters are devoted to the application of relativistic quantum mechanics to a particle with 0,1/5 and 1 spin value. The last chapter deals with the processes involving several particles, these processes require field theory framework to be thoroughly described. (A.C.) 2 refs.

  15. Towards relativistic quantum geometry

    Energy Technology Data Exchange (ETDEWEB)

    Ridao, Luis Santiago [Instituto de Investigaciones Físicas de Mar del Plata (IFIMAR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mar del Plata (Argentina); Bellini, Mauricio, E-mail: mbellini@mdp.edu.ar [Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Funes 3350, C.P. 7600, Mar del Plata (Argentina); Instituto de Investigaciones Físicas de Mar del Plata (IFIMAR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mar del Plata (Argentina)

    2015-12-17

    We obtain a gauge-invariant relativistic quantum geometry by using a Weylian-like manifold with a geometric scalar field which provides a gauge-invariant relativistic quantum theory in which the algebra of the Weylian-like field depends on observers. An example for a Reissner–Nordström black-hole is studied.

  16. On the relativistic anisotropic configurations

    Energy Technology Data Exchange (ETDEWEB)

    Shojai, F. [University of Tehran, Department of Physics, Tehran (Iran, Islamic Republic of); Institute for Research in Fundamental Sciences (IPM), Foundations of Physics Group, School of Physics, Tehran (Iran, Islamic Republic of); Kohandel, M. [Alzahra University, Department of Physics and Chemistry, Tehran (Iran, Islamic Republic of); Stepanian, A. [University of Tehran, Department of Physics, Tehran (Iran, Islamic Republic of)

    2016-06-15

    In this paper we study anisotropic spherical polytropes within the framework of general relativity. Using the anisotropic Tolman-Oppenheimer-Volkov equations, we explore the relativistic anisotropic Lane-Emden equations. We find how the anisotropic pressure affects the boundary conditions of these equations. Also we argue that the behavior of physical quantities near the center of star changes in the presence of anisotropy. For constant density, a class of exact solution is derived with the aid of a new ansatz and its physical properties are discussed. (orig.)

  17. Radiation of X-rays using polarized LiNbO3 single crystal in low-pressure ambient gas.

    Science.gov (United States)

    Fukao, Shinji; Nakanishi, Yoshikazu; Mizoguchi, Tadahiro; Ito, Yoshiaki; Yoshikado, Shinzo

    2009-09-01

    The dependence of X-ray intensity on the pressure and type of ambient gas was investigated for LiNbO(3) single crystals polarized in the c-axis direction at pressures of approximately 1 to 30 Pa. Ionization of surrounding gas molecules by the electric field generated by the crystal led to the production of both positive ions and free electrons. The electrons were accelerated toward a Cu target, radiating both white X-rays and X-rays specific to the crystal or target material by bremsstrahlung. The integrated X-ray intensity per cycle in the energy range 1 to 20 keV showed a local maximum value at a pressure P(max). The logarithm of P(max) was proportional to the Boltzmann factor using the first ionization energy of each ambient gas molecule. The value of P(max) was found to be independent of the electrical surface area of the crystal. The integrated X-ray intensity was approximated qualitatively by a quadratic function with pressure, which was upwardly convex. It was found that one of the causes of the reduction in X-ray intensity at pressures P > P(max) is the adsorption of positive ions generated by the ionization of gas molecules on the negative electric surface. It was also discovered that the lifetime of the X-ray radiation device could be improved when the X-ray radiation case was covered with another hermetically sealed decompression case. The gas with the smallest first ionization energy, with a partial pressure of P(max), was enclosed inside the X-ray radiation case (inner case) and the gas with the largest first ionization energy was enclosed at a suitable pressure between the inner and outer cases.

  18. Eclipse intervals for satellites in circular orbit under the effects of Earth’s oblateness and solar radiation pressure

    Directory of Open Access Journals (Sweden)

    M.N. Ismail

    2015-06-01

    Full Text Available In this work, the circumstances of eclipse for a circular satellites’ orbit are studied. The time of passage of the ingress and egress points is calculated. Finally, the eclipse intervals of satellites’ orbit are calculated. An application was done taken into account the effects of solar radiation pressure and Earth’s oblateness on the orbital elements of circular orbit satellite.

  19. Inactivation of Staphylococcus saprophyticus in chicken meat and exudate using high pressure processing, gamma radiation, and ultraviolet light

    Science.gov (United States)

    Stapylococcus saprophyticus is a common contaminant in foods and causes urinary tract infections in humans. Three nonthermal food safety intervention technologies used to improve the safety foods include high pressure processing (HPP), ionizing (gamma) radiation (GR), and ultraviolet light (UV-C). A...

  20. Relativistic and Non-relativistic Equations of Motion

    CERN Document Server

    Mangiarotti, L

    1998-01-01

    It is shown that any second order dynamic equation on a configuration space $X$ of non-relativistic time-dependent mechanics can be seen as a geodesic equation with respect to some (non-linear) connection on the tangent bundle $TX\\to X$ of relativistic velocities. Using this fact, the relationship between relativistic and non-relativistic equations of motion is studied.

  1. The effects of oblateness and solar radiation pressure on halo orbits in the photogravitational Sun-Earth system

    Science.gov (United States)

    Srivastava, Vineet K.; Kumar, Jai; Kushvah, Badam Singh

    2016-12-01

    In this paper, we construct a third-order analytic approximate solution using the Lindstedt-Poincare method in the photogravitational circular restricted three body problem considering the Sun as a radiating source and the Earth as an oblate spheroid for computing halo orbits around the collinear Lagrangian points L1 and L2. Further, the well-known differential correction and continuation schemes are used to compute halo orbits and their families numerically. The effects of solar radiation pressure and oblateness on the orbit are studied around both Lagrangian points. From the study, it is noticed that time period of the halo orbit increases around L1 and L2 accounting oblateness of the Earth and solar radiation pressure of the Sun. It is also found that stability of halo orbits is a weak function of the out-of-plane amplitude and mass reduction factor.

  2. The Diagnostics Of Hydrogen-Cesium Plasma Using Fully Relativistic Electron Impact Cross Sections

    Science.gov (United States)

    Priti, Priti; Dipti, Dipti; Gangwar, Reetesh; Srivastava, Rajesh

    2016-10-01

    Electron excitation cross-sections and rate coefficients have been calculated using fully relativistic distorted wave theory for several fine-structure transitions from the ground as well as excited states of cesium atom in the wide range of incident electron energy. These processes play dominant role in low pressure hydrogen-cesium plasma relevant to the negative ion based neutral beam injectors for the ITER project. The calculated cross-sections are used to construct a reliable collisional radiative (CR) model to characterize the hydrogen-cesium plasma. The calculated plasma parameters are compared with the available experimental and theoretical results.

  3. Constraining the dynamical importance of hot gas and radiation pressure in quasar outflows using emission line ratios

    CERN Document Server

    Stern, Jonathan; Zakamska, Nadia L; Hennawi, Joseph F

    2015-01-01

    Quasar feedback models often predict an expanding hot gas bubble which drives a galaxy-scale outflow. In many circumstances the hot gas is predicted to radiate inefficiently, making the hot bubble hard to observe directly. We present an indirect method to detect the presence of a hot bubble using hydrostatic photoionization models of the cold (10^4 K) line-emitting gas. These models assume that the cold gas is in pressure equilibrium with either the hot gas pressure or with the radiation pressure, whichever is larger. We compare our models with observations of the broad line region (BLR), the inner face of the dusty torus, the narrow line region (NLR), and the extended NLR, and thus constrain the hot gas pressure over a dynamical range of 10^5 in radius, from 0.1 pc to 10 kpc. We find that the emission line ratios observed in the average quasar spectrum are consistent with radiation-pressure-dominated models on all scales. On scales > L_AGN/c inferred for galaxy-scale outflows in luminous quasars. This appare...

  4. Collisional-radiative model of helium microwave discharges at atmospheric pressure

    Science.gov (United States)

    Santos, M.; Alves, L. L.; Gadonna, K.; Belmonte, T.

    2011-10-01

    This paper presents a stationary collisional-radiative model to describe the behavior of helium microwave discharges (2.45 GHz), produced in cylindrical geometry (1 mm radius) at atmospheric pressure. The model couples the rate balance equations for the charged particles (electrons, He+ and He2+ions), the He(n excimers, to the two-term homogeneous and stationary electron Boltzmann equation,. The latter is solved using a coherent set of electron cross sections, adjusted to ensure good predictions of the swarm parameters and the Townsend ionization coefficient. The model was solved for typical 5x1014 cm-3 electron density and 2500 K gas temperature, yielding [He2+]/[He+] ~ 0.92 and [He2*]/[He] ~ 3.4x10-8. Results show also that the He2+ions are produced mainly from the 3-body conversion of He+ ions and lost by the corresponding reverse reaction together with diffusion and dissociative recombination. The He2*is produced by a 3-body reaction involving the 23P states and by the electron-stabilized recombination of He2+and is lost by electron dissociation. This paper presents a stationary collisional-radiative model to describe the behavior of helium microwave discharges (2.45 GHz), produced in cylindrical geometry (1 mm radius) at atmospheric pressure. The model couples the rate balance equations for the charged particles (electrons, He+ and He2+ions), the He(n excimers, to the two-term homogeneous and stationary electron Boltzmann equation,. The latter is solved using a coherent set of electron cross sections, adjusted to ensure good predictions of the swarm parameters and the Townsend ionization coefficient. The model was solved for typical 5x1014 cm-3 electron density and 2500 K gas temperature, yielding [He2+]/[He+] ~ 0.92 and [He2*]/[He] ~ 3.4x10-8. Results show also that the He2+ions are produced mainly from the 3-body conversion of He+ ions and lost by the corresponding reverse reaction together with diffusion and dissociative recombination. The He2*is produced

  5. Contribution to the theoretical study of a high power microwave radiation produced by a relativistic electron beam; Contribution a l`etude theorique d`un rayonnement micro-onde de forte puissance a partir d`un faisceau d`electrons relativistes

    Energy Technology Data Exchange (ETDEWEB)

    Sellem, F

    1997-10-21

    This thesis is dedicated to the study of microwave radiation produced by relativistic electron beams. The vircator (virtual cathode oscillator) is a powerful microwave source based on this principle. This device is described but the complexity of the physical processes involved makes computer simulation necessary before proposing a simplified model. The existent M2V code has been useful to simulate the behaviour of a vircator but the representation of some phenomena such as hot points, the interaction of waves with particles lacks reliability. A new code CODEX has been written, it can solve Maxwell equations on a double mesh system by a finite difference method. The electric and magnetic fields are directly computed from the scalar and vectorial potentials. This new code has been satisfactorily tested on 3 configurations: the bursting of an electron beam in vacuum, the evolution of electromagnetic fields in diode and the propagation of waves in a wave tube. CODEX has been able to simulate the behaviour of a vircator, the frequency and power are well predicted and some contributions to the problem of origin of microwave production have been made. It seems that the virtual cathode is not directly involved in the microwave production. (A.C.) 139 refs.

  6. Applying Relativistic Reconnection to Blazar Jets

    CERN Document Server

    Nalewajko, Krzysztof

    2016-01-01

    Rapid and luminous flares of non-thermal radiation observed in blazars require an efficient mechanism of energy dissipation and particle acceleration in relativistic active galactic nuclei (AGN) jets. Particle acceleration in relativistic magnetic reconnection is being actively studied by kinetic numerical simulations. Relativistic reconnection produces hard power-law electron energy distributions N(gamma) = N_0 gamma^(-p) exp(-gamma/gamma_max) with index p -> 1 and exponential cut-off Lorentz factor gamma_max ~ sigma in the limit of magnetization sigma = B^2/(4 pi w) >> 1 (where w is the relativistic enthalpy density). Reconnection in electron-proton plasma can additionally boost gamma_max by the mass ratio m_p/m_e. Hence, in order to accelerate particles to gamma_max ~ 10^6 in the case of BL Lacs, reconnection should proceed in plasma of very high magnetization sigma_max >~ 10^3. On the other hand, moderate mean jet magnetization values are required for magnetic bulk acceleration of relativistic jets, sigma...

  7. Motion of the plasma critical layer during relativistic-electron laser interaction with immobile and comoving ion plasma for ion acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Sahai, Aakash A., E-mail: aakash.sahai@gmail.com [Department of Electrical Engineering, Duke University, Durham, North Carolina 27708 (United States)

    2014-05-15

    We analyze the motion of the plasma critical layer by two different processes in the relativistic-electron laser-plasma interaction regime (a{sub 0}>1). The differences are highlighted when the critical layer ions are stationary in contrast to when they move with it. Controlling the speed of the plasma critical layer in this regime is essential for creating low-β traveling acceleration structures of sufficient laser-excited potential for laser ion accelerators. In Relativistically Induced Transparency Acceleration (RITA) scheme, the heavy plasma-ions are fixed and only trace-density light-ions are accelerated. The relativistic critical layer and the acceleration structure move longitudinally forward by laser inducing transparency through apparent relativistic increase in electron mass. In the Radiation Pressure Acceleration (RPA) scheme, the whole plasma is longitudinally pushed forward under the action of the laser radiation pressure, possible only when plasma ions co-propagate with the laser front. In RPA, the acceleration structure velocity critically depends upon plasma-ion mass in addition to the laser intensity and plasma density. In RITA, mass of the heavy immobile plasma-ions does not affect the speed of the critical layer. Inertia of the bared immobile ions in RITA excites the charge separation potential, whereas RPA is not possible when ions are stationary.

  8. Motion of the plasma critical layer during relativistic-electron laser interaction with immobile and comoving ion plasma for ion accelerationa)

    Science.gov (United States)

    Sahai, Aakash A.

    2014-05-01

    We analyze the motion of the plasma critical layer by two different processes in the relativistic-electron laser-plasma interaction regime (a0>1). The differences are highlighted when the critical layer ions are stationary in contrast to when they move with it. Controlling the speed of the plasma critical layer in this regime is essential for creating low-β traveling acceleration structures of sufficient laser-excited potential for laser ion accelerators. In Relativistically Induced Transparency Acceleration (RITA) scheme, the heavy plasma-ions are fixed and only trace-density light-ions are accelerated. The relativistic critical layer and the acceleration structure move longitudinally forward by laser inducing transparency through apparent relativistic increase in electron mass. In the Radiation Pressure Acceleration (RPA) scheme, the whole plasma is longitudinally pushed forward under the action of the laser radiation pressure, possible only when plasma ions co-propagate with the laser front. In RPA, the acceleration structure velocity critically depends upon plasma-ion mass in addition to the laser intensity and plasma density. In RITA, mass of the heavy immobile plasma-ions does not affect the speed of the critical layer. Inertia of the bared immobile ions in RITA excites the charge separation potential, whereas RPA is not possible when ions are stationary.

  9. General Relativistic Radiant Shock Waves in the Post-Quasistatic Approximation

    Energy Technology Data Exchange (ETDEWEB)

    H, Jorge A Rueda [Centro de Fisica Fundamental, Universidad de Los Andes, Merida 5101, Venezuela Escuela de Fisica, Universidad Industrial de Santander, A.A. 678, Bucaramanga (Colombia); Nunez, L A [Centro de Fisica Fundamental, Universidad de Los Andes, Merida 5101, Venezuela Centro Nacional de Calculo Cientifico, Universidad de Los Andes, CeCalCULA, Corporacion Parque Tecnologico de Merida, Merida 5101, Venezuela (Venezuela)

    2007-05-15

    An evolution of radiant shock wave front is considered in the framework of a recently presented method to study self-gravitating relativistic spheres, whose rationale becomes intelligible and finds full justification within the context of a suitable definition of the post-quasistatic approximation. The spherical matter configuration is divided into two regions by the shock and each side of the interface having a different equation of state and anisotropic phase. In order to simulate dissipation effects due to the transfer of photons and/or neutrinos within the matter configuration, we introduce the flux factor, the variable Eddington factor and a closure relation between them. As we expected the strong of the shock increases the speed of the fluid to relativistic ones and for some critical values is larger than light speed. In addition, we find that energy conditions are very sensible to the anisotropy, specially the strong energy condition. As a special feature of the model, we find that the contribution of the matter and radiation to the radial pressure are the same order of magnitude as in the mant as in the core, moreover, in the core radiation pressure is larger than matter pressure.

  10. grim: A Flexible, Conservative Scheme for Relativistic Fluid Theories

    Science.gov (United States)

    Chandra, Mani; Foucart, Francois; Gammie, Charles F.

    2017-03-01

    Hot, diffuse, relativistic plasmas such as sub-Eddington black-hole accretion flows are expected to be collisionless, yet are commonly modeled as a fluid using ideal general relativistic magnetohydrodynamics (GRMHD). Dissipative effects such as heat conduction and viscosity can be important in a collisionless plasma and will potentially alter the dynamics and radiative properties of the flow from that in ideal fluid models; we refer to models that include these processes as Extended GRMHD. Here we describe a new conservative code, grim, that enables all of the above and additional physics to be efficiently incorporated. grim combines time evolution and primitive variable inversion needed for conservative schemes into a single step using an algorithm that only requires the residuals of the governing equations as inputs. This algorithm enables the code to be physics agnostic as well as flexibility regarding time-stepping schemes. grim runs on CPUs, as well as on GPUs, using the same code. We formulate a performance model and use it to show that our implementation runs optimally on both architectures. grim correctly captures classical GRMHD test problems as well as a new suite of linear and nonlinear test problems with anisotropic conduction and viscosity in special and general relativity. As tests and example applications, we resolve the shock substructure due to the presence of dissipation, and report on relativistic versions of the magneto-thermal instability and heat flux driven buoyancy instability, which arise due to anisotropic heat conduction, and of the firehose instability, which occurs due to anisotropic pressure (i.e., viscosity). Finally, we show an example integration of an accretion flow around a Kerr black hole, using Extended GRMHD.

  11. The relation between post-shock temperature, cosmic-ray pressure, and cosmic-ray escape for non-relativistic shocks

    NARCIS (Netherlands)

    Vink, J.; Yamazaki, R.; Helder, E.A.; Schure, K.M.

    2010-01-01

    Supernova remnants (SNRs) are thought to be the dominant source of Galactic cosmic rays. This requires that at least 5% of the available energy is transferred to cosmic rays, implying a high cosmic-ray pressure downstream of SNR shocks. Recently, it has been shown that the downstream temperature in

  12. A Monolithic Radiation-Pressure Driven, Low Phase Noise Silicon Nitride Opto-Mechanical Oscillator

    CERN Document Server

    Tallur, Siddharth; Bhave, Sunil A

    2011-01-01

    Cavity opto-mechanics enabled radiation pressure (RP) driven oscillators shown in the past offer an all optical Radio Frequency (RF) source without the need for external electrical feedback. However these oscillators require external tapered fiber or prism coupling and non-standard fabrication processes. In this work, we present a CMOS compatible fabrication process to design high optical quality factor opto-mechanical resonators in silicon nitride. The ring resonators designed in this process demonstrate low phase noise RP driven oscillations. Using integrated grating couplers and waveguide to couple light to the micro-resonator eliminates 1/f^3 and other higher order phase noise slopes at close-to-carrier frequencies present in previous demonstrations. We present an RP driven OMO operating at 41.97MHz with a signal power of -11dBm and phase noise of -85dBc/Hz at 1kHz offset with only 1/f^2 noise down to 10Hz offset from carrier.

  13. Physics and Novel Schemes of Laser Radiation Pressure Acceleration for Quasi-monoenergetic Proton Generation

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Chuan S. [Univ. of Maryland, College Park, MD (United States). Dept. of Physics; Shao, Xi [Univ. of Maryland, College Park, MD (United States)

    2016-06-14

    The main objective of our work is to provide theoretical basis and modeling support for the design and experimental setup of compact laser proton accelerator to produce high quality proton beams tunable with energy from 50 to 250 MeV using short pulse sub-petawatt laser. We performed theoretical and computational studies of energy scaling and Raleigh--Taylor instability development in laser radiation pressure acceleration (RPA) and developed novel RPA-based schemes to remedy/suppress instabilities for high-quality quasimonoenergetic proton beam generation as we proposed. During the project period, we published nine peer-reviewed journal papers and made twenty conference presentations including six invited talks on our work. The project supported one graduate student who received his PhD degree in physics in 2013 and supported two post-doctoral associates. We also mentored three high school students and one undergraduate student of physics major by inspiring their interests and having them involved in the project.

  14. The role of VUV radiation in the inactivation of bacteria with an atmospheric pressure plasma jet

    CERN Document Server

    Schneider, Simon; Ellerweg, Dirk; Denis, Benjamin; Narberhaus, Franz; Bandow, Julia E; Benedikt, Jan

    2011-01-01

    A modified version of a micro scale atmospheric pressure plasma jet (\\mu-APPJ) source, so-called X-Jet, is used to study the role of plasma generated VUV photons in the inactivation of E. coli bacteria. The plasma is operated in He gas or a He/O2 mixture and the X-Jet modification of the jet geometry allows effective separation of heavy reactive particles (such as O atoms or ozone molecules) from the plasma-generated photons. The measurements of the evolution of zone of inhibitions formed in monolayers of vegetative E. coli bacteria, of VUV emission intensity and of positive ion spectra show that photochemistry in the gas phase followed by photochemistry products impacting on bacteria can result in bacterial inactivation. Interestingly, this process is more effective than direct inactivation by VUV radiation damage. Mainly protonated water cluster ions are detected by mass spectrometry indicating that water impurity has to be carefully considered. The measurements indicate that the combination of the presence...

  15. Families of periodic orbits in Hill's problem with solar radiation pressure: application to Hayabusa 2

    Science.gov (United States)

    Giancotti, Marco; Campagnola, Stefano; Tsuda, Yuichi; Kawaguchi, Jun'ichiro

    2014-11-01

    This work studies periodic solutions applicable, as an extended phase, to the JAXA asteroid rendezvous mission Hayabusa 2 when it is close to target asteroid 1999 JU3. The motion of a spacecraft close to a small asteroid can be approximated with the equations of Hill's problem modified to account for the strong solar radiation pressure. The identification of families of periodic solutions in such systems is just starting and the field is largely unexplored. We find several periodic orbits using a grid search, then apply numerical continuation and bifurcation theory to a subset of these to explore the changes in the orbit families when the orbital energy is varied. This analysis gives information on their stability and bifurcations. We then compare the various families on the basis of the restrictions and requirements of the specific mission considered, such as the pointing of the solar panels and instruments. We also use information about their resilience against parameter errors and their ground tracks to identify one particularly promising type of solution.

  16. Experimental Demonstration of Synthetic Lorentz Force on Cold Atoms by Using Radiation Pressure

    Science.gov (United States)

    Ban, Ticijana; Santic, Neven; Dubcek, Tena; Aumiler, Damir; Buljan, Hrvoje

    2015-05-01

    The quest for synthetic magnetism in quantum degenerate atomic gases is motivated by producing controllable quantum emulators, which could mimic complex quantum systems such as interacting electrons in magnetic fields. Experiments on synthetic magnetic fields for neutral atoms have enabled realization of the Hall effect, Harper and Haldane Hamiltonians, and other intriguing topological effects. Here we present the first demonstration of a synthetic Lorentz force, based on the radiation pressure and the Doppler effect, in cold atomic gases captured in a Magneto-Optical Trap (MOT). Synthetic Lorentz force on cold atomic cloud is measured by recording the cloud trajectory. The observed force is perpendicular to the cloud velocity, and it is zero for the atomic cloud at rest. The proposed concept is straightforward to implement in a large volume and different geometries, it is applicable for a broad range of velocities, and it can be realized for different atomic species. The experiment is based on the theoretical proposal introduced in. This work was supported by the UKF Grant No. 5/13 and Croatian MZOS.

  17. Effects of medium-pressure UV lamps radiation on water quality in a chlorinated indoor swimming pool.

    Science.gov (United States)

    Cassan, Delphine; Mercier, Béatrice; Castex, Françoise; Rambaud, André

    2006-03-01

    The aim of our study was to determine the impact of medium-pressure UV lamps radiation on water quality in a chlorinated indoor swimming pool. An indoor swimming pool was equipped with two medium-pressure UV lamps. We collected eight samples of water daily over a four-weeks period and measured total and free chlorine, pH, water temperature, bacteriological parameters, total organic carbon and trihalomethanes. During the first week, which served as control, medium-pressure UV lamps were turned off. During the next three weeks, medium-pressure UV lamps were kept on 24 h per day. The third week, we reduced the level of the injected chlorine into water, and the last week we also reduced the water renewal volume by 27%. Our results showed that bacteriological parameters remained within allowable french limits. When medium-pressure UV lamps were kept on, total, free and active chlorine levels were significantly increased (P<0.001), whereas combined chlorine level were significantly decreased (P<0.001 and P<0.05, respectively). The levels of chloroform and bromodichloromethane were significantly increased when medium-pressure UV lamps were kept on (P<0.001), whereas chlorodibromomethane and bromoform levels significantly decreased (P<0.05 and P<0.001, respectively). The additional formation of chloroform and bromodichloromethane may be explained by the increase in active chlorine and by radicalizing mechanisms initiated by UV radiation.

  18. Radiation-pressure-dominant acceleration: Polarization and radiation reaction effects and energy increase in three-dimensional simulations.

    Science.gov (United States)

    Tamburini, M; Liseykina, T V; Pegoraro, F; Macchi, A

    2012-01-01

    Polarization and radiation reaction (RR) effects in the interaction of a superintense laser pulse (I>10(23) W cm-2) with a thin plasma foil are investigated with three dimensional particle-in-cell (PIC) simulations. For a linearly polarized laser pulse, strong anisotropies such as the formation of two high-energy clumps in the plane perpendicular to the propagation direction and significant radiation reactions effects are observed. On the contrary, neither anisotropies nor significant radiation reaction effects are observed using circularly polarized laser pulses, for which the maximum ion energy exceeds the value obtained in simulations of lower dimensionality. The dynamical bending of the initially flat plasma foil leads to the self-formation of a quasiparabolic shell that focuses the impinging laser pulse strongly increasing its energy and momentum densities.

  19. Relativistic spherical plasma waves

    Science.gov (United States)

    Bulanov, S. S.; Maksimchuk, A.; Schroeder, C. B.; Zhidkov, A. G.; Esarey, E.; Leemans, W. P.

    2012-02-01

    Tightly focused laser pulses that diverge or converge in underdense plasma can generate wake waves, having local structures that are spherical waves. Here we study theoretically and numerically relativistic spherical wake waves and their properties, including wave breaking.

  20. Relativistic GLONASS and geodesy

    Science.gov (United States)

    Mazurova, E. M.; Kopeikin, S. M.; Karpik, A. P.

    2016-12-01

    GNSS technology is playing a major role in applications to civil, industrial and scientific areas. Nowadays, there are two fully functional GNSS: American GPS and Russian GLONASS. Their data processing algorithms have been historically based on the Newtonian theory of space and time with only a few relativistic effects taken into account as small corrections preventing the system from degradation on a fairly long time. Continuously growing accuracy of geodetic measurements and atomic clocks suggests reconsidering the overall approach to the GNSS theoretical model based on the Einstein theory of general relativity. This is essentially more challenging but fundamentally consistent theoretical approach to relativistic space geodesy. In this paper, we overview the basic principles of the relativistic GNSS model and explain the advantages of such a system for GLONASS and other positioning systems. Keywords: relativistic GLONASS, Einstein theory of general relativity.

  1. Relativistic Hall Effect

    CERN Document Server

    Bliokh, Konstantin Y

    2011-01-01

    We consider the relativistic deformation of quantum waves and mechanical bodies carrying intrinsic angular momentum (AM). When observed in a moving reference frame, the centroid of the object undergoes an AM-dependent transverse shift. This is the relativistic analogue of the spin Hall effect, which occurs in free space without any external fields. Remarkably, the shifts of the geometric and energy centroids differ by a factor of 2, and both centroids are crucial for the correct Lorentz transformations of the AM tensor. We examine manifestations of the relativistic Hall effect in quantum vortices, mechanical flywheel, and discuss various fundamental aspects of the phenomenon. The perfect agreement of quantum and relativistic approaches allows applications at strikingly different scales: from elementary spinning particles, through classical light, to rotating black-holes.

  2. Exact Relativistic 'Antigravity' Propulsion

    CERN Document Server

    Felber, F S

    2006-01-01

    The Schwarzschild solution is used to find the exact relativistic motion of a payload in the gravitational field of a mass moving with constant velocity. At radial approach or recession speeds faster than 3^-1/2 times the speed of light, even a small mass gravitationally repels a payload. At relativistic speeds, a suitable mass can quickly propel a heavy payload from rest nearly to the speed of light with negligible stresses on the payload.

  3. Exact Relativistic `Antigravity' Propulsion

    Science.gov (United States)

    Felber, Franklin S.

    2006-01-01

    The Schwarzschild solution is used to find the exact relativistic motion of a payload in the gravitational field of a mass moving with constant velocity. At radial approach or recession speeds faster than 3-1/2 times the speed of light, even a small mass gravitationally repels a payload. At relativistic speeds, a suitable mass can quickly propel a heavy payload from rest nearly to the speed of light with negligible stresses on the payload.

  4. Relativistic quantum revivals.

    Science.gov (United States)

    Strange, P

    2010-03-26

    Quantum revivals are now a well-known phenomena within nonrelativistic quantum theory. In this Letter we display the effects of relativity on revivals and quantum carpets. It is generally believed that revivals do not occur within a relativistic regime. Here we show that while this is generally true, it is possible, in principle, to set up wave packets with specific mathematical properties that do exhibit exact revivals within a fully relativistic theory.

  5. Comparison of microstructural features of radiation embrittlement of VVER-440 and VVER-1000 reactor pressure vessel steels

    Science.gov (United States)

    Kuleshova, E. A.; Gurovich, B. A.; Shtrombakh, Ya. I.; Erak, D. Yu.; Lavrenchuk, O. V.

    2002-02-01

    Comparative microstructural studies of both surveillance specimens and reactor pressure vessel (RPV) materials of VVER-440 and VVER-1000 light water reactor systems have been carried out, following irradiation to different fast neutron fluences and of the heat treatment for extended periods at the operating temperatures. It is shown that there are several microstructural features in the radiation embrittlement of VVER-1000 steels compared to VVER-440 RPV steels that can cause changes in the contributions of different radiation embrittlement mechanisms for VVER-1000 steel.

  6. Relativistic viscoelastic fluid mechanics.

    Science.gov (United States)

    Fukuma, Masafumi; Sakatani, Yuho

    2011-08-01

    A detailed study is carried out for the relativistic theory of viscoelasticity which was recently constructed on the basis of Onsager's linear nonequilibrium thermodynamics. After rederiving the theory using a local argument with the entropy current, we show that this theory universally reduces to the standard relativistic Navier-Stokes fluid mechanics in the long time limit. Since effects of elasticity are taken into account, the dynamics at short time scales is modified from that given by the Navier-Stokes equations, so that acausal problems intrinsic to relativistic Navier-Stokes fluids are significantly remedied. We in particular show that the wave equations for the propagation of disturbance around a hydrostatic equilibrium in Minkowski space-time become symmetric hyperbolic for some range of parameters, so that the model is free of acausality problems. This observation suggests that the relativistic viscoelastic model with such parameters can be regarded as a causal completion of relativistic Navier-Stokes fluid mechanics. By adjusting parameters to various values, this theory can treat a wide variety of materials including elastic materials, Maxwell materials, Kelvin-Voigt materials, and (a nonlinearly generalized version of) simplified Israel-Stewart fluids, and thus we expect the theory to be the most universal description of single-component relativistic continuum materials. We also show that the presence of strains and the corresponding change in temperature are naturally unified through the Tolman law in a generally covariant description of continuum mechanics.

  7. Box-wing model approach for solar radiation pressure modelling in a multi-GNSS scenario

    Science.gov (United States)

    Tobias, Guillermo; Jesús García, Adrián

    2016-04-01

    The solar radiation pressure force is the largest orbital perturbation after the gravitational effects and the major error source affecting GNSS satellites. A wide range of approaches have been developed over the years for the modelling of this non gravitational effect as part of the orbit determination process. These approaches are commonly divided into empirical, semi-analytical and analytical, where their main difference relies on the amount of knowledge of a-priori physical information about the properties of the satellites (materials and geometry) and their attitude. It has been shown in the past that the pre-launch analytical models fail to achieve the desired accuracy mainly due to difficulties in the extrapolation of the in-orbit optical and thermic properties, the perturbations in the nominal attitude law and the aging of the satellite's surfaces, whereas empirical models' accuracies strongly depend on the amount of tracking data used for deriving the models, and whose performances are reduced as the area to mass ratio of the GNSS satellites increases, as it happens for the upcoming constellations such as BeiDou and Galileo. This paper proposes to use basic box-wing model for Galileo complemented with empirical parameters, based on the limited available information about the Galileo satellite's geometry. The satellite is modelled as a box, representing the satellite bus, and a wing representing the solar panel. The performance of the model will be assessed for GPS, GLONASS and Galileo constellations. The results of the proposed approach have been analyzed over a one year period. In order to assess the results two different SRP models have been used. Firstly, the proposed box-wing model and secondly, the new CODE empirical model, ECOM2. The orbit performances of both models are assessed using Satellite Laser Ranging (SLR) measurements, together with the evaluation of the orbit prediction accuracy. This comparison shows the advantages and disadvantages of

  8. Newtonian view of general relativistic stars

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, A.M. [Instituto Federal do Espirito Santo (IFES), Grupo de Ciencias Ambientais e Recursos Naturais, Guarapari (Brazil); Velten, H.E.S.; Fabris, J.C. [Universidade Federal do Espirito Santo (UFES), Departamento de Fisica, Vitoria (Brazil); Salako, I.G. [Institut de Mathematiques et de Sciences Physiques (IMSP), Porto-Novo (Benin)

    2014-11-15

    Although general relativistic cosmological solutions, even in the presence of pressure, can be mimicked by using neo-Newtonian hydrodynamics, it is not clear whether there exists the same Newtonian correspondence for spherical static configurations. General relativity solutions for stars are known as the Tolman-Oppenheimer-Volkoff (TOV) equations. On the other hand, the Newtonian description does not take into account the total pressure effects and therefore cannot be used in strong field regimes. We discuss how to incorporate pressure in the stellar equilibrium equations within the neo-Newtonian framework. We compare the Newtonian, neo-Newtonian, and the full relativistic theory by solving the equilibrium equations for both three approaches and calculating the mass-radius diagrams for some simple neutron stars' equations of state. (orig.)

  9. An Enhanced Box-Wing Solar Radiation pressure model for BDS and initial results

    Science.gov (United States)

    Zhao, Qunhe; Wang, Xiaoya; Hu, Xiaogong; Guo, Rui; Shang, Lin; Tang, Chengpan; Shao, Fan

    2016-04-01

    Solar radiation pressure forces are the largest non-gravitational perturbations acting on GNSS satellites, which is difficult to be accurately modeled due to the complicated and changing satellite attitude and unknown surface material characteristics. By the end of 2015, there are more than 50 stations of the Multi-GNSS Experiment(MGEX) set-up by the IGS. The simple box-plate model relies on coarse assumptions about the dimensions and optical properties of the satellite due to lack of more detailed information. So, a physical model based on BOX-WING model is developed, which is more sophisticated and more detailed physical structure has been taken into account, then calculating pressure forces according to the geometric relations between light rays and surfaces. All the MGEX stations and IGS core stations had been processed for precise orbit determination tests with GPS and BDS observations. Calculation range covers all the two kinds of Eclipsing and non-eclipsing periods in 2015, and we adopted the un-differential observation mode and more accurate values of satellite phase centers. At first, we tried nine parameters model, and then eliminated the parameters with strong correlation between them, came into being five parameters of the model. Five parameters were estimated, such as solar scale, y-bias, three material coefficients of solar panel, x-axis and z-axis panels. Initial results showed that, in the period of yaw-steering mode, use of Enhanced ADBOXW model results in small improvement for IGSO and MEO satellites, and the Root-Mean-Square(RMS) error value of one-day arc orbit decreased by about 10%~30% except for C08 and C14. The new model mainly improved the along track acceleration, up to 30% while in the radial track was not obvious. The Satellite Laser Ranging(SLR) validation showed, however, that this model had higher prediction accuracy in the period of orbit-normal mode, compared to GFZ multi-GNSS orbit products, as well with relative post

  10. Modeling of the Radiation Doses during Dismantling of RBMK-1500 Reactor Pressurized Tanks from Emergency Core Cooling System

    Directory of Open Access Journals (Sweden)

    A. Simonis

    2013-01-01

    Full Text Available Decommissioning of the Ignalina Nuclear Power Plant involves multiple problems. One of them is personnel radiation safety during the performance of dismantling activities. In this paper, modeling results of radiation doses during the dismantling of the pressurized tank from the emergency core cooling system (ECCS PT of RBMK-1500 reactor are presented. The radiological surveys indicate that the inner surface of the ECCS PT is contaminated with radioactive products of corrosion and sediments due to the radioactive water. The effective doses to the workers have been modeled for different strategies of ECCS PT dismantling. In order to select the optimal personnel radiation safety, the modeling has been performed by the means of computer code “VISIPLAN 3D ALARA Planning tool” developed by SCK CEN (Belgium. The impacts of dismantling tools, shielding types, and extract ventilation flow rate on effective doses during the dismantling of ECCS PT have been analyzed. The total effective personnel doses have been obtained by summarizing the effective personnel doses from various sources of exposure, that is, direct radiation from radioactive equipment, internal radiation due to inhalation of radioactive aerosols, and direct radiation from radioactive aerosols arising during hot cutting in premises. The uncertainty of the collective doses is also presented in this paper.

  11. Relativistic Jet Dynamics and Calorimetry of Gamma-Ray Bursts

    CERN Document Server

    Wygoda, N; Frail, D

    2011-01-01

    We present numerical solutions of the 2D relativistic hydrodynamics equations describing the deceleration and expansion of highly relativistic conical jets, of opening angles 0.05R/c the emission of radiation from the jet blast wave is similar to that of a spherical blast wave carrying the same energy. Thus, the total (calorimetric) energy of GRB blast waves may be estimated with only a small fractional error based on t>R/c observations.

  12. An a priori solar radiation pressure model for the QZSS Michibiki satellite

    Science.gov (United States)

    Zhao, Qile; Chen, Guo; Guo, Jing; Liu, Jingnan; Liu, Xianglin

    2017-07-01

    It has been noted that the satellite laser ranging (SLR) residuals of the Quasi-Zenith Satellite System (QZSS) Michibiki satellite orbits show very marked dependence on the elevation angle of the Sun above the orbital plane (i.e., the β angle). It is well recognized that the systematic error is caused by mismodeling of the solar radiation pressure (SRP). Although the error can be reduced by the updated ECOM SRP model, the orbit error is still very large when the satellite switches to orbit-normal (ON) orientation. In this study, an a priori SRP model was established for the QZSS Michibiki satellite to enhance the ECOM model. This model is expressed in ECOM's D, Y, and B axes (DYB) using seven parameters for the yaw-steering (YS) mode, and additional three parameters are used to compensate the remaining modeling deficiencies, particularly the perturbations in the Y axis, based on a redefined DYB for the ON mode. With the proposed a priori model, QZSS Michibiki's precise orbits over 21 months were determined. SLR validation indicated that the systematic β -angle-dependent error was reduced when the satellite was in the YS mode, and better than an 8-cm root mean square (RMS) was achieved. More importantly, the orbit quality was also improved significantly when the satellite was in the ON mode. Relative to ECOM and adjustable box-wing model, the proposed SRP model showed the best performance in the ON mode, and the RMS of the SLR residuals was better than 15 cm, which was a two times improvement over the ECOM without a priori model used, but was still two times worse than the YS mode.

  13. Stable radiation pressure acceleration of ions by suppressing transverse Rayleigh-Taylor instability with multiple Gaussian pulses

    Science.gov (United States)

    Zhou, M. L.; Liu, B.; Hu, R. H.; Shou, Y. R.; Lin, C.; Lu, H. Y.; Lu, Y. R.; Gu, Y. Q.; Ma, W. J.; Yan, X. Q.

    2016-08-01

    In the case of a thin plasma slab accelerated by the radiation pressure of an ultra-intense laser pulse, the development of Rayleigh-Taylor instability (RTI) will destroy the acceleration structure and terminate the acceleration process much sooner than theoretical limit. In this paper, a new scheme using multiple Gaussian pulses for ion acceleration in a radiation pressure acceleration regime is investigated with particle-in-cell simulation. We found that with multiple Gaussian pulses, the instability could be efficiently suppressed and the divergence of the ion bunch is greatly reduced, resulting in a longer acceleration time and much more collimated ion bunch with higher energy than using a single Gaussian pulse. An analytical model is developed to describe the suppression of RTI at the laser-plasma interface. The model shows that the suppression of RTI is due to the introduction of the long wavelength mode RTI by the multiple Gaussian pulses.

  14. Relativistic electron beams above thunderclouds

    Directory of Open Access Journals (Sweden)

    M. Füllekrug

    2011-08-01

    Full Text Available Non-luminous relativistic electron beams above thunderclouds have been detected by the radio signals of low frequency ∼40–400 kHz which they radiate. The electron beams occur ∼2–9 ms after positive cloud-to-ground lightning discharges at heights between ∼22–72 km above thunderclouds. Intense positive lightning discharges can also cause sprites which occur either above or prior to the electron beam. One electron beam was detected without any luminous sprite which suggests that electron beams may also occur independently of sprites. Numerical simulations show that beams of electrons partially discharge the lightning electric field above thunderclouds and thereby gain a mean energy of ∼7 MeV to transport a total charge of ∼−10 mC upwards. The impulsive current ∼3 × 10−3 Am−2 associated with relativistic electron beams above thunderclouds is directed downwards and needs to be considered as a novel element of the global atmospheric electric circuit.

  15. Non-relativistic Free–Free Emission due to the n-distribution of Electrons—Radiative Cooling and Thermally Averaged and Total Gaunt Factors

    Science.gov (United States)

    de Avillez, Miguel A.; Breitschwerdt, Dieter

    2017-09-01

    Tracking the thermal evolution of plasmas, characterized by an n-distribution, using numerical simulations, requires the determination of the emission spectra and of the radiative losses due to free–free emission from the corresponding temperature-averaged and total Gaunt factors. Detailed calculations of the latter are presented and associated with n-distributed electrons with the parameter n ranging from 1 (corresponding to the Maxwell–Boltzmann distribution) to 100. The temperature-averaged and total Gaunt factors with decreasing n tend toward those obtained with the Maxwell–Boltzmann distribution. Radiative losses due to free–free emission in a plasma evolving under collisional ionization equilibrium conditions and composed by H, He, C, N, O, Ne, Mg, Si, S, and Fe ions, are presented. These losses decrease with a decrease in the parameter n, reaching a minimum when n = 1, and thus converge with the loss of thermal plasma. Tables of the thermal-averaged and total Gaunt factors calculated for n-distributions, and a wide range of electron and photon energies, are presented.

  16. Investigation of relativistic runaway electrons

    Energy Technology Data Exchange (ETDEWEB)

    Jaspers, R.; Lopes Cardozo, N.J.; Schueller, F.C. [FOM-Instituut voor Plasmafysica, Rijnhuizen (Netherlands); Finken, K.H.; Mank, G.; Hoenen, F. [Forschungszentrum Juelich GmbH (Germany). Inst. fuer Plasmaphysik; Boedo, J. [California Univ., Los Angeles, CA (United States). Inst. of Plasma and Fusion Research

    1993-12-31

    The runaway generation during disruptions is regarded as a serious problem in future tokamak devices. The number and the high energy of these runaways can lead to considerable damage of wall components. In the TEXTOR tokamak (R{sub 0}=1.75 m, a=0.46 m; I{sub p}=350 kA, B{sub t}=2.25T, flat top time {approx_equal}2 s), low density discharges (n{sub e} < 1x10{sup 19} m{sup -3}) are analyzed to study the creation mechanism and the energy increase of the runaways. This is mainly done by the synchrotron radiation emitted by highly relativistic runaways (> 20 MeV). The general features of this synchrotron radiation will be described in Sect.2. In Sect.3 the creation rate of runaways is derived from this radiation. An intriguing observation made at the end of low density ohmic discharges is a fast increase in the pitch angle (i.e. the ratio of perpendicular to parallel velocity) from the runaways on a time scale of less than 65 {mu}s. This phenomenon is discussed in Sect.4. Finally some conclusions will be drawn on the implications these results have for future tokamak operation. (author) 4 refs., 3 figs.

  17. Relativistic theories of materials

    CERN Document Server

    Bressan, Aldo

    1978-01-01

    The theory of relativity was created in 1905 to solve a problem concerning electromagnetic fields. That solution was reached by means of profound changes in fundamental concepts and ideas that considerably affected the whole of physics. Moreover, when Einstein took gravitation into account, he was forced to develop radical changes also in our space-time concepts (1916). Relativistic works on heat, thermodynamics, and elasticity appeared as early as 1911. However, general theories having a thermodynamic basis, including heat conduction and constitutive equations, did not appear in general relativity until about 1955 for fluids and appeared only after 1960 for elastic or more general finitely deformed materials. These theories dealt with materials with memory, and in this connection some relativistic versions of the principle of material indifference were considered. Even more recently, relativistic theories incorporating finite deformations for polarizable and magnetizable materials and those in which couple s...

  18. Relativistic Quantum Communication

    CERN Document Server

    Hosler, Dominic

    2013-01-01

    In this Ph.D. thesis, I investigate the communication abilities of non-inertial observers and the precision to which they can measure parametrized states. I introduce relativistic quantum field theory with field quantisation, and the definition and transformations of mode functions in Minkowski, Schwarzschild and Rindler spaces. I introduce information theory by discussing the nature of information, defining the entropic information measures, and highlighting the differences between classical and quantum information. I review the field of relativistic quantum information. We investigate the communication abilities of an inertial observer to a relativistic observer hovering above a Schwarzschild black hole, using the Rindler approximation. We compare both classical communication and quantum entanglement generation of the state merging protocol, for both the single and dual rail encodings. We find that while classical communication remains finite right up to the horizon, the quantum entanglement generation tend...

  19. Relativistic quantum mechanics

    CERN Document Server

    Horwitz, Lawrence P

    2015-01-01

    This book describes a relativistic quantum theory developed by the author starting from the E.C.G. Stueckelberg approach proposed in the early 40s. In this framework a universal invariant evolution parameter (corresponding to the time originally postulated by Newton) is introduced to describe dynamical evolution. This theory is able to provide solutions for some of the fundamental problems encountered in early attempts to construct a relativistic quantum theory. A relativistically covariant construction is given for which particle spins and angular momenta can be combined through the usual rotation group Clebsch-Gordan coefficients. Solutions are defined for both the classical and quantum two body bound state and scattering problems. The recently developed quantum Lax-Phillips theory of semigroup evolution of resonant states is described. The experiment of Lindner and coworkers on interference in time is discussed showing how the property of coherence in time provides a simple understanding of the results. Th...

  20. Handbook of relativistic quantum chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wenjian (ed.) [Peking Univ., Beijing (China). Center for Computational Science and Engineering

    2017-03-01

    This handbook focuses on the foundations of relativistic quantum mechanics and addresses a number of fundamental issues never covered before in a book. For instance: How can many-body theory be combined with quantum electrodynamics? How can quantum electrodynamics be interfaced with relativistic quantum chemistry? What is the most appropriate relativistic many-electron Hamiltonian? How can we achieve relativistic explicit correlation? How can we formulate relativistic properties? - just to name a few. Since relativistic quantum chemistry is an integral component of computational chemistry, this handbook also supplements the ''Handbook of Computational Chemistry''. Generally speaking, it aims to establish the 'big picture' of relativistic molecular quantum mechanics as the union of quantum electrodynamics and relativistic quantum chemistry. Accordingly, it provides an accessible introduction for readers new to the field, presents advanced methodologies for experts, and discusses possible future perspectives, helping readers understand when/how to apply/develop the methodologies.

  1. Relativistic collapse and explosion of rotating supermassive stars with thermonuclear effects

    CERN Document Server

    Montero, Pedro J; Mueller, Ewald

    2011-01-01

    We present results of general relativistic simulations of collapsing supermassive stars with and without rotation using the two-dimensional general relativistic numerical code Nada, which solves the Einstein equations written in the BSSN formalism and the general relativistic hydrodynamics equations with high resolution shock capturing schemes. These numerical simulations use an equation of state which includes effects of gas pressure, and in a tabulated form those associated with radiation and the electron-positron pairs. We also take into account the effect of thermonuclear energy released by hydrogen and helium burning. We find that objects with a mass of 5x10^{5} solar mass and an initial metallicity greater than Z_{CNO}~0.007 do explode if non-rotating, while the threshold metallicity for an explosion is reduced to Z_{CNO}~0.001 for objects uniformly rotating. The critical initial metallicity for a thermonuclear explosion increases for stars with mass ~10^{6} solar mass. For those stars that do not explo...

  2. Relativistic Disc lines

    CERN Document Server

    Fabian, A C; Parker, M L

    2014-01-01

    Broad emission lines, particularly broad iron-K lines, are now commonly seen in the X-ray spectra of luminous AGN and Galactic black hole binaries. Sensitive NuSTAR spectra over the energy range of 3-78 keV and high frequency reverberation spectra now confirm that these are relativistic disc lines produced by coronal irradiation of the innermost accretion flow around rapidly spinning black holes. General relativistic effects are essential in explaining the observations. Recent results are briefly reviewed here.

  3. Relativistic Rotating Vector Model

    CERN Document Server

    Lyutikov, Maxim

    2016-01-01

    The direction of polarization produced by a moving source rotates with the respect to the rest frame. We show that this effect, induced by pulsar rotation, leads to an important correction to polarization swings within the framework of rotating vector model (RVM); this effect has been missed by previous works. We construct relativistic RVM taking into account finite heights of the emission region that lead to aberration, time-of-travel effects and relativistic rotation of polarization. Polarizations swings at different frequencies can be used, within the assumption of the radius-to-frequency mapping, to infer emission radii and geometry of pulsars.

  4. The special relativistic shock tube

    Science.gov (United States)

    Thompson, Kevin W.

    1986-01-01

    The shock-tube problem has served as a popular test for numerical hydrodynamics codes. The development of relativistic hydrodynamics codes has created a need for a similar test problem in relativistic hydrodynamics. The analytical solution to the special relativistic shock-tube problem is presented here. The relativistic shock-jump conditions and rarefaction solution which make up the shock tube are derived. The Newtonian limit of the calculations is given throughout.

  5. Towards coherent combining of X-band high power microwaves: phase-locked long pulse radiations by a relativistic triaxial klystron amplifier

    Science.gov (United States)

    Ju, Jinchuan; Zhang, Jun; Qi, Zumin; Yang, Jianhua; Shu, Ting; Zhang, Jiande; Zhong, Huihuang

    2016-08-01

    The radio-frequency breakdown due to ultrahigh electric field strength essentially limits power handling capability of an individual high power microwave (HPM) generator, and this issue becomes more challenging for high frequency bands. Coherent power combining therefore provides an alternative approach to achieve an equivalent peak power of the order of ∼100 GW, which consequently provides opportunities to explore microwave related physics at extremes. The triaxial klystron amplifier (TKA) is a promising candidate for coherent power combing in high frequency bands owing to its intrinsic merit of high power capacity, nevertheless phase-locked long pulse radiation from TKA has not yet been obtained experimentally as the coaxial structure of TKA can easily lead to self-excitation of parasitic modes. In this paper, we present investigations into an X-band TKA capable of producing 1.1 GW HPMs with pulse duration of about 103 ns at the frequency of 9.375 GHz in experiment. Furthermore, the shot-to-shot fluctuation standard deviation of the phase shifts between the input and output microwaves is demonstrated to be less than 10°. The reported achievements open up prospects for accomplishing coherent power combining of X-band HPMs in the near future, and might also excite new development interests concerning high frequency TKAs.

  6. A General Quadrature Solution for Relativistic, Non-relativistic, and Weakly-Relativistic Rocket Equations

    CERN Document Server

    Bruce, Adam L

    2015-01-01

    We show the traditional rocket problem, where the ejecta velocity is assumed constant, can be reduced to an integral quadrature of which the completely non-relativistic equation of Tsiolkovsky, as well as the fully relativistic equation derived by Ackeret, are limiting cases. By expanding this quadrature in series, it is shown explicitly how relativistic corrections to the mass ratio equation as the rocket transitions from the Newtonian to the relativistic regime can be represented as products of exponential functions of the rocket velocity, ejecta velocity, and the speed of light. We find that even low order correction products approximate the traditional relativistic equation to a high accuracy in flight regimes up to $0.5c$ while retaining a clear distinction between the non-relativistic base-case and relativistic corrections. We furthermore use the results developed to consider the case where the rocket is not moving relativistically but the ejecta stream is, and where the ejecta stream is massless.

  7. Performance of water and hybrid stabilized electric arcs: the impact of dependence of radiation losses and plasma density on pressure

    Science.gov (United States)

    Jeništa, J.; Bartlová, M.; Aubrecht, V.

    2006-10-01

    Processes in the worldwide unique type of thermal plasma generator with water vortex stabilization and combined stabilization of arc by argon flow and water vortex have been numerically studied. Two-dimensional axisymmetric numerical model assumes laminar and compressible plasma flow in the state of local thermodynamic equilibrium. The calculation domain includes the arc discharge area between the near-cathode region and the outlet nozzle of the plasma torch. Radiation losses from the arc are calculated by the partial characteristics method for atmospheric pressure water and argon-water discharges. Thermal, electrical and fluid-dynamic characteristics of such arcs have been studied for the range of currents 150÷600 A under the assumption that radiation losses and plasma density depend linearly on pressure. It was proved that, taking this dependence into account, plasma velocity decrease while power losses from the arc by radiation and radial conduction increase with current. Outlet plasma temperature as well as electric potential drop remain practically unchanged.

  8. Relativistic cosmology; Cosmologia Relativista

    Energy Technology Data Exchange (ETDEWEB)

    Bastero-Gil, M.

    2015-07-01

    Relativistic cosmology is nothing but the study of the evolution of our universe expanding from the General Theory of Relativity, which describes the gravitational interaction at any scale and given its character far-reaching is the force that dominate the evolution of the universe. (Author)

  9. The Relativistic Rocket

    Science.gov (United States)

    Antippa, Adel F.

    2009-01-01

    We solve the problem of the relativistic rocket by making use of the relation between Lorentzian and Galilean velocities, as well as the laws of superposition of successive collinear Lorentz boosts in the limit of infinitesimal boosts. The solution is conceptually simple, and technically straightforward, and provides an example of a powerful…

  10. Relativistic length agony continued

    Directory of Open Access Journals (Sweden)

    Redžić D.V.

    2014-01-01

    Full Text Available We made an attempt to remedy recent confusing treatments of some basic relativistic concepts and results. Following the argument presented in an earlier paper (Redžić 2008b, we discussed the misconceptions that are recurrent points in the literature devoted to teaching relativity such as: there is no change in the object in Special Relativity, illusory character of relativistic length contraction, stresses and strains induced by Lorentz contraction, and related issues. We gave several examples of the traps of everyday language that lurk in Special Relativity. To remove a possible conceptual and terminological muddle, we made a distinction between the relativistic length reduction and relativistic FitzGerald-Lorentz contraction, corresponding to a passive and an active aspect of length contraction, respectively; we pointed out that both aspects have fundamental dynamical contents. As an illustration of our considerations, we discussed briefly the Dewan-Beran-Bell spaceship paradox and the ‘pole in a barn’ paradox. [Projekat Ministarstva nauke Republike Srbije, br. 171028

  11. Directed evolution and in silico analysis of reaction centre proteins reveal molecular signatures of photosynthesis adaptation to radiation pressure.

    Directory of Open Access Journals (Sweden)

    Giuseppina Rea

    Full Text Available Evolutionary mechanisms adopted by the photosynthetic apparatus to modifications in the Earth's atmosphere on a geological time-scale remain a focus of intense research. The photosynthetic machinery has had to cope with continuously changing environmental conditions and particularly with the complex ionizing radiation emitted by solar flares. The photosynthetic D1 protein, being the site of electron tunneling-mediated charge separation and solar energy transduction, is a hot spot for the generation of radiation-induced radical injuries. We explored the possibility to produce D1 variants tolerant to ionizing radiation in Chlamydomonas reinhardtii and clarified the effect of radiation-induced oxidative damage on the photosynthetic proteins evolution. In vitro directed evolution strategies targeted at the D1 protein were adopted to create libraries of chlamydomonas random mutants, subsequently selected by exposures to radical-generating proton or neutron sources. The common trend observed in the D1 aminoacidic substitutions was the replacement of less polar by more polar amino acids. The applied selection pressure forced replacement of residues more sensitive to oxidative damage with less sensitive ones, suggesting that ionizing radiation may have been one of the driving forces in the evolution of the eukaryotic photosynthetic apparatus. A set of the identified aminoacidic substitutions, close to the secondary plastoquinone binding niche and oxygen evolving complex, were introduced by site-directed mutagenesis in un-transformed strains, and their sensitivity to free radicals attack analyzed. Mutants displayed reduced electron transport efficiency in physiological conditions, and increased photosynthetic performance stability and oxygen evolution capacity in stressful high-light conditions. Finally, comparative in silico analyses of D1 aminoacidic sequences of organisms differently located in the evolution chain, revealed a higher ratio of residues

  12. Relativistic calculation of dielectronic recombination for He-like krypton

    Institute of Scientific and Technical Information of China (English)

    Shi Xi-Heng; Wang Yan-Sen; Chen Chong-Yang; Gu Ming-Feng

    2005-01-01

    Dielectronic recombination (DR) cross sections and rate coefficients of He-like Kr are calculated employing the relativistic flexible atomic code, in which autoionization rates are calculated based on the relativistic distorted-wave approximation and the configuration interaction is considered. The Auger and total radiative rates of some strong resonances are listed and compared with the results from multiconfiguration Dirac-Fock and Hebrew University Lawrence Livermore Atomic Code methods. The n-3 scaling law is checked and used to extrapolate rate coefficients. We also show the variation of DR branching ratio with different DR resonances or atomic number Z. The effect of radiative cascades on DR cross sections are studied.

  13. The Maximum Energy of Accelerated Particles in Relativistic Collisionless Shocks

    CERN Document Server

    Sironi, Lorenzo; Arons, Jonathan

    2013-01-01

    The afterglow emission from gamma-ray bursts (GRBs) is usually interpreted as synchrotron radiation from electrons accelerated at the GRB external shock, that propagates with relativistic velocities into the magnetized interstellar medium. By means of multi-dimensional particle-in-cell simulations, we investigate the acceleration performance of weakly magnetized relativistic shocks, in the magnetization range 0relativistic shocks. We find that relativistic perpendicular shocks propagating in electron-positron plasmas are efficient particle accelerators if the magnetization is sigma<1e-3. For electron-ion plasmas, the transition to efficient acceleration occurs for sigma<3e-5. Here, the acceleration process proceeds similarly for the two species, since the electrons enter the shock nearly in equipartition with the ions, as a result of strong pre-heating in the self-generated upstream turbulence. In both...

  14. Unveiling the influence of the radiation pressure in nature of orbits in the photogravitational restricted three-body problem

    CERN Document Server

    Zotos, Euaggelos E

    2015-01-01

    The case of the planar circular photogravitational restricted three-body problem where the more massive primary is an emitter of radiation is numerically investigated. A thorough numerical analysis takes place in the configuration $(x,y)$ and the $(x,C)$ space in which we classify initial conditions of orbits into three main categories: (i) bounded, (ii) escaping and (iii) collisional. Our results reveal that the radiation pressure factor has a huge impact on the character of orbits. Interpreting the collisional motion as leaking in the phase space we related our results to both chaotic scattering and the theory of leaking Hamiltonian systems. We successfully located the escape as well as the collisional basins and we managed to correlate them with the corresponding escape and collision times. We hope our contribution to be useful for a further understanding of the escape and collision properties of motion in this interesting version of the restricted three-body problem.

  15. High-pressure potato starch granule gelatinization: synchrotron radiation micro-SAXS/WAXS using a diamond anvil cell.

    Science.gov (United States)

    Gebhardt, R; Hanfland, M; Mezouar, M; Riekel, C

    2007-07-01

    Potato starch granules have been examined by synchrotron radiation small- and wide-angle scattering in a diamond anvil cell (DAC) up to 750 MPa. Use of a 1 microm synchrotron radiation beam allowed the mapping of individual granules at several pressure levels. The data collected at 183 MPa show an increase in the a axis and lamellar period from the edge to the center of the granule, probably due to a gradient in water content of the crystalline and amorphous lamellae. The average granules radius increases up to the onset of gelatinization at about 500 MPa, but the a axis and the lamellar periodicity remain constant or even show a decrease, suggesting an initial hydration of amorphous growth rings. The onset of gelatinization is accompanied by (i) an increase in the average a axis and lamellar periodicity, (ii) the appearance of an equatorial SAXS streak, and (iii) additional short-range order peaks.

  16. Hot self-similar relativistic MHD flows

    CERN Document Server

    Zakamska, Nadia L; Blandford, Roger D

    2008-01-01

    We consider axisymmetric relativistic jets with a toroidal magnetic field and an ultrarelativistic equation of state, with the goal of studying the lateral structure of jets whose pressure is matched to the pressure of the medium through which they propagate. We find all self-similar steady-state solutions of the relativistic MHD equations for this setup. One of the solutions is the case of a parabolic jet being accelerated by the pressure gradient as it propagates through a medium with pressure declining as p(z)\\propto z^{-2}. As the jet material expands due to internal pressure gradients, it runs into the ambient medium resulting in a pile-up of material along the jet boundary, while the magnetic field acts to produce a magnetic pinch along the axis of the jet. Such jets can be in a lateral pressure equilibrium only if their opening angle \\theta_j at distance z is smaller than about 1/\\gamma, where \\gamma is the characteristic bulk Lorentz-factor at this distance; otherwise, different parts of the jet canno...

  17. Lagrangian Formulation of Relativistic Particle Average Motion in a Laser Field of Arbitrary Intensity

    CERN Document Server

    Dodin, I Y; Fraiman, G M

    2003-01-01

    The Lagrangian and Hamiltonian functions describing average motion of a relativistic particle under the action of intensive high-frequency electromagnetic radiation are obtained. In weak, low-frequency background fields, such a particle on average drifts with an effective, relativistically invariant mass, which depends on the intensity of the electromagnetic field.

  18. An experimental apparatur for EDXD of high pressure specimens using synchrotron radiation at BSRF

    Institute of Scientific and Technical Information of China (English)

    Y.H.Jing; Y.Yang; X.Ju; JingLiu; R.Z.Che; J.Zhao

    2001-01-01

    A high pressure energy dispersive X-ray diffraction apparatus on 3W1A bearmline,at BSRF,is described.A ten-Poles permanent magnetic wiggler provided white X-ray beam.The extreme high pressure up to 115GPa has been obtained by a modified Mao-Bell diamond anvil cell.A motorized loading system with strain sensor can finely control the pressure change.The in situ experimental procedures are described.Some applications are also presented.2001 Elsevier Science B.V.All rights reserved.

  19. High-speed visualization and radiated pressure measurement of a laser-induced gas bubble in glycerin-water solutions

    Science.gov (United States)

    Nakajima, Takehiro; Kondo, Tomoki; Ando, Keita

    2016-11-01

    We study the dynamics of a spherical gaseous bubble created by focusing a nanosecond laser pulse at 532 nm into a large volume of glycerin-water solutions. Free oscillation of the bubble and shock wave emission from the bubble dynamics are recorded by a high-speed camera together with a pulse laser stroboscope; concurrently, pressure radiated from the oscillating bubble is measured by a hydrophone. The bubble achieves a mechanical equilibrium after free oscillation is damped out; the equilibrium state stays for a while, unlike vapor bubbles. We speculate that the bubble content is mainly gases originally dissolved in the liquid (i.e., air). The bubble dynamics we observed are compared to Rayleigh-Plesset-type calculations that account for diffusive effects; the (unknown) initial pressure just after laser focusing is tuned to obtain agreement between the experiment and the calculation. Moreover, viscous effects on the shock propagation are examined with the aid of compressible Navier-Stokes simulation.

  20. The effect of the operation modes of a gas discharge low-pressure amalgam lamp on the intensity of generation of 185 nm UV vacuum radiation

    Energy Technology Data Exchange (ETDEWEB)

    Vasilyak, L. M., E-mail: vasilyak@ihed.ras.ru [Russian Academy of Sciences, Joint Institute of High Temperatures (Russian Federation); Drozdov, L. A., E-mail: lit@npo.lit.ru; Kostyuchenko, S. V.; Sokolov, D. V. [ZAO LIT (Russian Federation); Kudryavtsev, N. N.; Sobur, D. A., E-mail: soburda@gmail.com [Moscow Institute for Physics and Technology (Russian Federation)

    2011-12-15

    The effect of the discharge current, mercury vapor pressure, and the inert gas pressure on the intensity and efficiency of the 185 nm line generation are considered. The spectra of the UV radiation (vacuum ultraviolet) transmission by protective coatings from the oxides of rare earth metals and aluminum are investigated.

  1. Equation of state of the relativistic free electron gas at arbitrary degeneracy

    Science.gov (United States)

    Faussurier, Gérald

    2016-12-01

    We study the problem of the relativistic free electron gas at arbitrary degeneracy. The specific heat at constant volume and particle number CV and the specific heat at constant pressure and particle number CP are calculated. The question of equation of state is also studied. Non degenerate and degenerate limits are considered. We generalize the formulas obtained in the non-relativistic and ultra-relativistic regimes.

  2. Relativistic Solutions of Anisotropic Compact Objects

    CERN Document Server

    Paul, Bikash Chandra

    2016-01-01

    We present a class of new relativistic solutions with anisotropic fluid for compact stars in hydrostatic equilibrium. The interior space-time geometry considered here for compact objects are described by parameters namely, $\\lambda$, $k$, $A$, $R$ and $n$. The values of the geometrical parameters are determined here for obtaining a class of physically viable stellar models. The energy-density, radial pressure and tangential pressure are finite and positive inside the anisotropic stars. Considering some stars of known mass we present stellar models which describe compact astrophysical objects with nuclear density.

  3. Relativistic Spherical Wake Wave in Plasma. Relativistic focusing spherical mirror and Schwinger pair production

    Science.gov (United States)

    Bulanov, Stepan; Maksimchuk, Anatoly; Zhidkov, Alexei

    2009-11-01

    We report on the analytic and computer simulation study of a relativistic spherical wake wave. Such a wave in the breaking regime, traveling towards the center is able to reflect and focus the incoming radiation and up-shifting its frequency. The reflected and focused electromagnetic pulse can have such high intensity, that it is able to create e^+e^- pairs via Schwinger process.

  4. New Relativistic Effects in the Dynamics of Nonlinear Hydrodynamical Waves

    CERN Document Server

    Rezzolla, L

    2002-01-01

    In Newtonian and relativistic hydrodynamics the Riemann problem consists of calculating the evolution of a fluid which is initially characterized by two states having different values of uniform rest-mass density, pressure and velocity. When the fluid is allowed to relax, one of three possible wave-patterns is produced, corresponding to the propagation in opposite directions of two nonlinear hydrodynamical waves. New effects emerge in a special relativistic Riemann problem when velocities tangential to the initial discontinuity surface are present. We show that a smooth transition from one wave-pattern to another can be produced by varying the initial tangential velocities while otherwise maintaining the initial states unmodified. These special relativistic effects are produced by the coupling through the relativistic Lorentz factors and do not have a Newtonian counterpart.

  5. Scaling of Magnetic Reconnection in Relativistic Collisionless Pair Plasmas

    Science.gov (United States)

    Liu, Yi-Hsin; Guo, Fan; Daughton, William; Li, Hui; Hesse, Michael

    2015-01-01

    Using fully kinetic simulations, we study the scaling of the inflow speed of collisionless magnetic reconnection in electron-positron plasmas from the non-relativistic to ultra-relativistic limit. In the anti-parallel configuration, the inflow speed increases with the upstream magnetization parameter sigma and approaches the speed of light when sigma is greater than O(100), leading to an enhanced reconnection rate. In all regimes, the divergence of the pressure tensor is the dominant term responsible for breaking the frozen-in condition at the x-line. The observed scaling agrees well with a simple model that accounts for the Lorentz contraction of the plasma passing through the diffusion region. The results demonstrate that the aspect ratio of the diffusion region, modified by the compression factor of proper density, remains approximately 0.1 in both the non-relativistic and relativistic limits.

  6. Relativistic Hydrodynamics with Wavelets

    CERN Document Server

    DeBuhr, Jackson; Anderson, Matthew; Neilsen, David; Hirschmann, Eric W

    2015-01-01

    Methods to solve the relativistic hydrodynamic equations are a key computational kernel in a large number of astrophysics simulations and are crucial to understanding the electromagnetic signals that originate from the merger of astrophysical compact objects. Because of the many physical length scales present when simulating such mergers, these methods must be highly adaptive and capable of automatically resolving numerous localized features and instabilities that emerge throughout the computational domain across many temporal scales. While this has been historically accomplished with adaptive mesh refinement (AMR) based methods, alternatives based on wavelet bases and the wavelet transformation have recently achieved significant success in adaptive representation for advanced engineering applications. This work presents a new method for the integration of the relativistic hydrodynamic equations using iterated interpolating wavelets and introduces a highly adaptive implementation for multidimensional simulati...

  7. Spectral and Polarization Signatures of Relativistic Shocks in Blazars

    CERN Document Server

    Boettcher, Markus

    2016-01-01

    Relativistic shocks are one of the most plausible sites of the emission of strongly variable, polarized multi-wavelength emission from relativistic jet sources such as blazars, via diffusive shock acceleration (DSA) of relativistic particles. This paper summarizes recent results on a self-consistent coupling of diffusive shock acceleration and radiation transfer in blazar jets. We demonstrate that the observed spectral energy distributions (SEDs) of blazars strongly constrain the nature of hydromagnetic turbulence responsible for pitch-angle scattering by requiring a strongly energy-dependent pitch-angle mean free path. The prominent soft X-ray excess ("Big Blue Bump") in the SED of the BL Lac object AO 0235+164 can be modelled as the signature of bulk Compton scattering of external radiation fields by the thermal electron population, which places additional constraints on the level of hydromagnetic turbulence. It has further been demonstrated that internal shocks propagating in a jet pervaded by a helical ma...

  8. Acceleration and loss of relativistic electrons during small geomagnetic storms.

    Science.gov (United States)

    Anderson, B R; Millan, R M; Reeves, G D; Friedel, R H W

    2015-12-16

    Past studies of radiation belt relativistic electrons have favored active storm time periods, while the effects of small geomagnetic storms (Dst > -50 nT) have not been statistically characterized. In this timely study, given the current weak solar cycle, we identify 342 small storms from 1989 through 2000 and quantify the corresponding change in relativistic electron flux at geosynchronous orbit. Surprisingly, small storms can be equally as effective as large storms at enhancing and depleting fluxes. Slight differences exist, as small storms are 10% less likely to result in flux enhancement and 10% more likely to result in flux depletion than large storms. Nevertheless, it is clear that neither acceleration nor loss mechanisms scale with storm drivers as would be expected. Small geomagnetic storms play a significant role in radiation belt relativistic electron dynamics and provide opportunities to gain new insights into the complex balance of acceleration and loss processes.

  9. [Time lag effect between stem sap flow and photosynthetically active radiation, vapor pressure deficit of Acacia mangium].

    Science.gov (United States)

    Wang, Hua; Zhao, Ping; Cai, Xi-An; Ma, Ling; Rao, Xing-Quan; Zeng, Xiao-Ping

    2008-02-01

    Based on the measurement of the stem sap flow of Acacia mangium with Granier' s thermal dissipation probe, and the cross-correlation and time serial analysis of the sap flow and corresponding photosynthetically active radiation and vapor pressure deficit, this paper studied the time lag effect between the stem sap flow of A. mangium and the driving factors of the tree canopy transpiration. The results indicated that the main driving factors of the transpiration were photosynthetically active radiation (PAR) and vapor pressure deficit (VPD). Sap flux density (Js) was more dependent on PAR than on VPD, and the dependence was more significant in dry season than in wet season. Sap flow lagged behind PAR but advanced than VPD in both dry and wet seasons. The time lag did not show any significant variation across different size tree individuals, but showed significant variation in different seasons. Time lag effect was not correlated with tree height, diameter at the breast, and canopy size. The time lag between Js and VPD was significantly related to nighttime water recharge in dry season, but reversed in wet season.

  10. On the Motion of Carbon Nanotube Clusters near Optical Fiber Tips: Thermophoresis, Radiative Pressure, and Convection Effects.

    Science.gov (United States)

    Vélez-Cordero, J Rodrigo; Hernández-Cordero, J

    2015-09-15

    We analyze the motion of multiwalled carbon nanotubes clusters in water or ethanol upon irradiation with a 975 and 1550 nm laser beam guided by an optical fiber. Upon measuring the velocities of the nanotube clusters in and out of the laser beam cone, we were able to identify thermophoresis, convection and radiation pressure as the main driving forces that determine the equilibrium position of the dispersion at low optical powers: while thermophoresis and convection pull the clusters toward the laser beam axis (negative Soret coefficient), radiation pressure pushes the clusters away from the fiber tip. A theoretical solution for the thermophoretic velocity, which considers interfacial motion and a repulsive potential interaction between the nanotubes and the solvent (hydrophobic interaction), shows that the main mechanism implicated in this type of thermophoresis is the thermal expansion of the fluid, and that the clusters migrate to hotter regions with a characteristic thermal diffusion coefficient D(T) of 9 × 10(-7) cm(2) K(-1) s(-1). We further show that the characteristic length associated with thermophoresis is not that of the nanotube clusters size, O(1) μm, but that corresponding to the microstructure of the clusters, O(1) nm. We finally discuss the role of the formation of gas-liquid interfaces (microbubbles) at high optical powers on the deposition of carbon nanotubes on the optical fiber end faces.

  11. Relativistic heavy ion reactions

    Energy Technology Data Exchange (ETDEWEB)

    Brink, D.M.

    1989-08-01

    The theory of quantum chromodynamics predicts that if nuclear matter is heated to a sufficiently high temperature then quarks might become deconfined and a quark-gluon plasma could be produced. One of the aims of relativistic heavy ion experiments is to search for this new state of matter. These lectures survey some of the new experimental results and give an introduction to the theories used to interpret them. 48 refs., 4 tabs., 11 figs.

  12. Relativistic Quantum Noninvasive Measurements

    CERN Document Server

    Bednorz, Adam

    2014-01-01

    Quantum weak, noninvasive measurements are defined in the framework of relativity. Invariance with respect to reference frame transformations of the results in different models is discussed. Surprisingly, the bare results of noninvasive measurements are invariant for certain class of models, but not the detection error. Consequently, any stationary quantum realism based on noninvasive measurements will break, at least spontaneously, relativistic invariance and correspondence principle at zero temperature.

  13. Relativistic cosmological hydrodynamics

    CERN Document Server

    Hwang, J

    1997-01-01

    We investigate the relativistic cosmological hydrodynamic perturbations. We present the general large scale solutions of the perturbation variables valid for the general sign of three space curvature, the cosmological constant, and generally evolving background equation of state. The large scale evolution is characterized by a conserved gauge invariant quantity which is the same as a perturbed potential (or three-space curvature) in the comoving gauge.

  14. Relativistic gravity gradiometry

    Science.gov (United States)

    Bini, Donato; Mashhoon, Bahram

    2016-12-01

    In general relativity, relativistic gravity gradiometry involves the measurement of the relativistic tidal matrix, which is theoretically obtained from the projection of the Riemann curvature tensor onto the orthonormal tetrad frame of an observer. The observer's 4-velocity vector defines its local temporal axis and its local spatial frame is defined by a set of three orthonormal nonrotating gyro directions. The general tidal matrix for the timelike geodesics of Kerr spacetime has been calculated by Marck [Proc. R. Soc. A 385, 431 (1983)]. We are interested in the measured components of the curvature tensor along the inclined "circular" geodesic orbit of a test mass about a slowly rotating astronomical object of mass M and angular momentum J . Therefore, we specialize Marck's results to such a "circular" orbit that is tilted with respect to the equatorial plane of the Kerr source. To linear order in J , we recover the gravitomagnetic beating phenomenon [B. Mashhoon and D. S. Theiss, Phys. Rev. Lett. 49, 1542 (1982)], where the beat frequency is the frequency of geodetic precession. The beat effect shows up as a special long-period gravitomagnetic part of the relativistic tidal matrix; moreover, the effect's short-term manifestations are contained in certain post-Newtonian secular terms. The physical interpretation of this effect is briefly discussed.

  15. Gravitationally confined relativistic neutrinos

    Science.gov (United States)

    Vayenas, C. G.; Fokas, A. S.; Grigoriou, D.

    2017-09-01

    Combining special relativity, the equivalence principle, and Newton’s universal gravitational law with gravitational rather than rest masses, one finds that gravitational interactions between relativistic neutrinos with kinetic energies above 50 MeV are very strong and can lead to the formation of gravitationally confined composite structures with the mass and other properties of hadrons. One may model such structures by considering three neutrinos moving symmetrically on a circular orbit under the influence of their gravitational attraction, and by assuming quantization of their angular momentum, as in the Bohr model of the H atom. The model contains no adjustable parameters and its solution, using a neutrino rest mass of 0.05 eV/c2, leads to composite state radii close to 1 fm and composite state masses close to 1 GeV/c2. Similar models of relativistic rotating electron - neutrino pairs give a mass of 81 GeV/c2, close to that of W bosons. This novel mechanism of generating mass suggests that the Higgs mass generation mechanism can be modeled as a latent gravitational field which gets activated by relativistic neutrinos.

  16. A relativistic gravity train

    Science.gov (United States)

    Parker, Edward

    2017-08-01

    A nonrelativistic particle released from rest at the edge of a ball of uniform charge density or mass density oscillates with simple harmonic motion. We consider the relativistic generalizations of these situations where the particle can attain speeds arbitrarily close to the speed of light; generalizing the electrostatic and gravitational cases requires special and general relativity, respectively. We find exact closed-form relations between the position, proper time, and coordinate time in both cases, and find that they are no longer harmonic, with oscillation periods that depend on the amplitude. In the highly relativistic limit of both cases, the particle spends almost all of its proper time near the turning points, but almost all of the coordinate time moving through the bulk of the ball. Buchdahl's theorem imposes nontrivial constraints on the general-relativistic case, as a ball of given density can only attain a finite maximum radius before collapsing into a black hole. This article is intended to be pedagogical, and should be accessible to those who have taken an undergraduate course in general relativity.

  17. Fractal basins of attraction in the planar circular restricted three-body problem with oblateness and radiation pressure

    CERN Document Server

    Zotos, Euaggelos E

    2016-01-01

    In this paper we use the planar circular restricted three-body problem where one of the primary bodies is an oblate spheroid or an emitter of radiation in order to determine the basins of attraction associated with the equilibrium points. The evolution of the position of the five Lagrange points is monitored when the values of the mass ratio $\\mu$, the oblateness coefficient $A_1$, and the radiation pressure factor $q$ vary in predefined intervals. The regions on the configuration $(x,y)$ plane occupied by the basins of attraction are revealed using the multivariate version of the Newton-Raphson method. The correlations between the basins of convergence of the equilibrium points and the corresponding number of iterations needed in order to obtain the desired accuracy are also illustrated. We conduct a thorough and systematic numerical investigation demonstrating how the dynamical quantities $\\mu$, $A_1$, and $q$ influence the basins of attractions. Our results suggest that the mass ratio and the radiation pre...

  18. Newtonian Limits of the Relativistic Cosmological Perturbations

    CERN Document Server

    Hwang, J

    1997-01-01

    Relativistic cosmological perturbation analyses can be made based on several different fundamental gauge conditions. In the pressureless limit the variables in certain gauge conditions show the correct Newtonian behaviors. We consider the general curvature and the cosmological constant in the background medium. The perturbed density in the comoving gauge, and the perturbed velocity and the perturbed potential in the zero-shear gauge show the same behavior as the Newtonian ones in a general scale. Far inside horizon, except for the uniform-density gauge, density perturbations in all the fundamental gauge conditions show the correct Newtonian behavior. In this paper we elaborate these Newtonian correspondences. We also present the relativistic results considering general pressures in the background and perturbation.

  19. Point form relativistic quantum mechanics and relativistic SU(6)

    Science.gov (United States)

    Klink, W. H.

    1993-01-01

    The point form is used as a framework for formulating a relativistic quantum mechanics, with the mass operator carrying the interactions of underlying constituents. A symplectic Lie algebra of mass operators is introduced from which a relativistic harmonic oscillator mass operator is formed. Mass splittings within the degenerate harmonic oscillator levels arise from relativistically invariant spin-spin, spin-orbit, and tensor mass operators. Internal flavor (and color) symmetries are introduced which make it possible to formulate a relativistic SU(6) model of baryons (and mesons). Careful attention is paid to the permutation symmetry properties of the hadronic wave functions, which are written as polynomials in Bargmann spaces.

  20. Limits on luminosity and mass accretion rate of a radiation pressure dominated accretion disc

    CERN Document Server

    Cao, Xinwu

    2015-01-01

    There is a maximum for the gravity of a black hole in the vertical direction in the accretion disc. Outflows may probably be driven from the disc if the radiation flux of the disc is greater than a critical value corresponding to the maximal vertical gravity. We find that outflows are driven by the radiation force from the disc if the accretion rate is greater than the Eddington rate. The radiation of the disc is therefore limited by such outflows. The disc luminosity, L=L_Edd\\propto ln mdot, at large-mdot cases. The Eddington ratio of the disc is ~3 for mdot~100, which is significantly lower than that of a conventional slim disc without outflows. This implies that the emission from some ultra-luminous X-ray sources with highly super Eddington luminosity should be Doppler beamed, or intermediate mass black holes are in these sources instead of stellar mass black holes. The spectra of the discs with outflows are saturated in the high frequency end provided mdot>2. We suggest that the saturated emission can be ...