WorldWideScience

Sample records for relativistic quark potential

  1. Nucleon Spin Content in a Relativistic Quark Potential Model Approach

    Institute of Scientific and Technical Information of China (English)

    DONG YuBing; FENG QingGuo

    2002-01-01

    Based on a relativistic quark model approach with an effective potential U(r) = (ac/2)(1 + γ0)r2, the spin content of the nucleon is investigated. Pseudo-scalar interaction between quarks and Goldstone bosons is employed to calculate the couplings between the Goldstone bosons and the nucleon. Different approaches to deal with the center of mass correction in the relativistic quark potential model approach are discussed.

  2. Relativistic Modeling of Quark Stars with Tolman IV Type Potential

    CERN Document Server

    Malaver, Manuel

    2015-01-01

    In this paper, we studied the behavior of relativistic objects with anisotropic matter distribution considering Tolman IV form for the gravitational potential Z. The equation of state presents a quadratic relation between the energy density and the radial pressure. New exact solutions of the Einstein-Maxwell system are generated. A physical analysis of electromagnetic field indicates that is regular in the origin and well behaved. We show as the presence of an electrical field modifies the energy density, the radial pressure and the mass of the stellar object and generates a singular charge density.

  3. Radiative transitions in mesons in a non relativistic quark model

    OpenAIRE

    Bonnaz, R.; Silvestre-Brac, B.; Gignoux, C.

    2001-01-01

    In the framework of the non relativistic quark model, an exhaustive study of radiative transitions in mesons is performed. The emphasis is put on several points. Some traditional approximations (long wave length limit, non relativistic phase space, dipole approximation for E1 transitions, gaussian wave functions) are analyzed in detail and their effects commented. A complete treatment using three different types of realistic quark-antiquark potential is made. The overall agreement with experi...

  4. Radiative transitions in mesons in a non relativistic quark model

    CERN Document Server

    Bonnaz, R; Gignoux, C

    2002-01-01

    In the framework of the non relativistic quark model, an exhaustive study of radiative transitions in mesons is performed. The emphasis is put on several points. Some traditional approximations (long wave length limit, non relativistic phase space, dipole approximation for E1 transitions, gaussian wave functions) are analyzed in detail and their effects commented. A complete treatment using three different types of realistic quark-antiquark potential is made. The overall agreement with experimental data is quite good, but some improvements are suggested.

  5. Relativistic quark model and pentaquark spectroscopy

    CERN Document Server

    Gerasyuta, S M

    2002-01-01

    The relativistic five-quark equations are found in the framework of the dispersion relation technique. The solutions of these equations using the method based on the extraction of leading singularities of the amplitudes are obtained. The five-quark amplitudes for the low-lying pentaquarks are calculated under the condition that flavor SU(3) symmetry holds. The poles of five-quark amplitudes determine the masses of the lowest pentaquarks. The mass spectra of pentaquarks which contain only light quarks are calculated. The calculation of pentaquark amplitudes estimates the contributions of three subamplitudes. The main contributions to the pentaquark amplitude are determined by the subamplitudes, which include the meson states.

  6. Chiral quark model with relativistic kinematics

    CERN Document Server

    Garcilazo, H

    2003-01-01

    The non-strange baryon spectrum is studied within a three-body model that incorporates relativistic kinematics. We found that the combined effect of relativistic kinematics together with the pion exchange between quarks is able to reverse the order of the first positive- and negative-parity nucleon excited states as observed experimentally. Including the chiral partner of the pion (the $\\sigma$ meson) leads to an overall good description of the spectrum.

  7. Relativistic wave equation for hypothetic composite quarks

    Energy Technology Data Exchange (ETDEWEB)

    Krolikowski, W. [Institute of Theoretical Physics, Warsaw University, Warsaw (Poland)

    1997-05-01

    A two-body wave equation is derived, corresponding to the hypothesis (discussed already in the past) that u and d current quarks are relativistic bound states of a spin-1/2 preon existing in two weak flavors and three colors, and a spin-0 preon with no weak flavor nor color, held together by a new strong but Abelian, vectorlike gauge force. Some non-conventional (though somewhat nostalgic) consequences of this strong Abelian binding within composite quarks are pointed out. Among them are: new tiny magnetic-type moments of quarks (and nucleons) and new isomeric nucleon states possibly excitable at some high energies. The letter may arise through a rearrangement mechanism for quark preons inside nucleons. In the interaction q (anti)q{yields}q (anti)q of preon-composite quarks, beside the color forces, there act additional exchange forces corresponding to diagrams analogical to the so called dual diagrams for the interaction {pi}{pi}{yields}{pi}{pi} of quark-composite pions. (author)

  8. Lorentz structure vs relativistic consistency of an effective power-law potential model for quark-antiquark systems

    Energy Technology Data Exchange (ETDEWEB)

    Barik, N.; Jena, S.N.

    1982-11-01

    We show here that the relativistic consistency of an effective power-law potential V(r) = Ar/sup ..nu../+V/sub 0/ (with A, ..nu..>0) (used successfully to describe the heavy-meson spectra) in generating Dirac bound states of QQ-bar and Qq-bar systems implies, and also at the same time is implied by, an equally mixed vector-scalar Lorentz structure which was observed phenomenologically in the fine-hyperfine splittings of meson spectra.

  9. Electromagnetic form factors and static properties of the nucleon in a relativistic potential model of independent quarks with chiral symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Barik, N.; Dash, B.K.

    1986-10-01

    Nucleon charge and magnetic form factors G/sub E//sub ,//sub M//sup p//sup ,//sup n/(q/sup 2/) have been presented in a quark model with an equally mixed scalar and vector potential in harmonic form taking the pionic contributions into account. The static properties such as the magnetic moment, charge radius, and axial-vector coupling constant in the neutron-..beta..-decay process are shown to be in excellent agreement with the corresponding experimental values. The role of the finite extension of the quark-pion vertex in determining the charge radius and magnetic moment due to the pion cloud surrounding the nucleons has been studied.

  10. Properties of relativistically rotating quark stars

    Science.gov (United States)

    Zhou, Enping

    2017-06-01

    In this work, quasi-equilibrium models of rapidly rotating triaxially deformed quark stars are computed in general relativistic gravity, assuming a conformally flat spatial geometry (Isenberg-Wilson-Mathews formulation) and a polynomial equation of state. Especially, since we are using a full 3-D numerical relativity initial data code, we are able to consider the triaxially deformed rotating quark stars at very high spins. Such triaxially deformed stars are possible gravitational radiation sources detectable by ground based gravitational wave observatories. Additionally, the bifurcation from axisymmetric rotating sequence to triaxially rotating sequence hints a more realistic spin up limit for rotating compact stars compared with the mass-shedding limit. With future observations such as sub-millisecond pulsars, we could possibly distinguish between equation of states of compact stars, thus better understanding strong interaction in the low energy regime.

  11. Heavy Baryon Transitions in a Relativistic Three-Quark Model

    CERN Document Server

    Ivanov, M A; Kroll, P; Lyubovitskij, V E

    1997-01-01

    Exclusive semileptonic decays of bottom and charm baryons are considered within a relativistic three-quark model with a Gaussian shape for the baryon-three-quark vertex and standard quark propagators. We calculate the baryonic Isgur-Wise functions, decay rates and asymmetry parameters.

  12. Relativistic five-quark equations and u, d- pentaquark spectroscopy

    CERN Document Server

    Gerasyuta, S M

    2003-01-01

    The relativistic five-quark equations are found in the framework of the dispersion relation technique. The five-quark amplitudes for the low-lying pentaquarks including u, d quarks are calculated. The poles of the five-quark amplitudes determine the masses of the lowest pentaquarks. The calculation of pentaquark amplitudes estimates the contributions of four subamplitudes. The main contributions to the pentaquark amplitude are determined by the subamplitudes, which include the meson states M.

  13. Strange baryon spectroscopy in the relativistic quark model

    CERN Document Server

    Faustov, R N

    2015-01-01

    Mass spectra of strange baryons are calculated in the framework of the relativistic quark model based on the quasipotential approach. Baryons are treated as the relativistic quark-diquark bound systems. It is assumed that two quarks with equal constituent masses form a diquark. The diquark excitations and its internal structure are consistently taken into account. Calculations are performed up to rather high orbital and radial excitations of strange baryons. On this basis the Regge trajectories are constructed. The obtained results are compared with available experimental data and previous predictions. It is found that all masses of the 4- and 3-star, as well as most of the 2- and 1-star states of strange baryons with established quantum numbers are well reproduced. The developed relativistic quark-diquark model predicts less excited states than three-quark models of strange baryons.

  14. Strange baryon spectroscopy in the relativistic quark model

    Science.gov (United States)

    Faustov, R. N.; Galkin, V. O.

    2015-09-01

    Mass spectra of strange baryons are calculated in the framework of the relativistic quark model based on the quasipotential approach. Baryons are treated as relativistic quark-diquark bound systems. It is assumed that two quarks with equal constituent masses form a diquark. The diquark excitations and its internal structure are consistently taken into account. Calculations are performed up to rather high orbital and radial excitations of strange baryons. On this basis the Regge trajectories are constructed. The obtained results are compared with available experimental data and previous predictions. It is found that all masses of the 4- and 3-star states of strange baryons with established quantum numbers, as well as most of the 2- and 1-star states, are well reproduced. The developed relativistic quark-diquark model predicts less excited states than three-quark models of strange baryons.

  15. Radiative leptonic Bc decay in the relativistic independent quark model

    Science.gov (United States)

    Barik, N.; Naimuddin, Sk.; Dash, P. C.; Kar, Susmita

    2008-12-01

    The radiative leptonic decay Bc-→μ-ν¯μγ is analyzed in its leading order in a relativistic independent quark model based on a confining potential in an equally mixed scalar-vector harmonic form. The branching ratio for this decay in the vanishing lepton mass limit is obtained as Br(Bc→μνμγ)=6.83×10-5, which includes the contributions of the internal bremsstrahlung and structure-dependent diagrams at the level of the quark constituents. The contributions of the bremsstrahlung and the structure-dependent diagrams, as well as their additive interference parts, are compared and found to be of the same order of magnitude. Finally, the predicted photon energy spectrum is observed here to be almost symmetrical about the peak value of the photon energy at Ẽγ≃(MBc)/(4), which may be quite accessible experimentally at LHC in near future.

  16. Relativistic three-body quark model of light baryons based on hypercentral approach

    Science.gov (United States)

    Aslanzadeh, M.; Rajabi, A. A.

    2015-05-01

    In this paper, we have treated the light baryons as a relativistic three-body bound system. Inspired by lattice QCD calculations, we treated baryons as a spin-independent three-quark system within a relativistic three-quark model based on the three-particle Klein-Gordon equation. We presented the analytical solution of three-body Klein-Gordon equation with employing the constituent quark model based on a hypercentral approach through which two- and three-body forces are taken into account. Herewith the average energy values of the up, down and strange quarks containing multiplets are reproduced. To describe the hyperfine structure of the baryon, the splittings within the SU(6)-multiplets are produced by the generalized Gürsey Radicati mass formula. The considered SU(6)-invariant potential is popular "Coulomb-plus-linear" potential and the strange and non-strange baryons spectra are in general well reproduced.

  17. Nuclear equation of state in a relativistic independent quark model with chiral symmetry and variation with quark masses

    CERN Document Server

    Barik, N; Mohanty, D K; Panda, P K; Frederico, T

    2013-01-01

    We have calculated the properties of nuclear matter in a self-consistent manner with quark-meson coupling mechanism incorporating structure of nucleons in vacuum through a relativistic potential model; where the dominant confining interaction for the free independent quarks inside a nucleon, is represented by a phenomenologically average potential in equally mixed scalar-vector harmonic form. Corrections due to spurious centre of mass motion as well as those due to other residual interactions such as the one gluon exchange at short distances and quark-pion coupling arising out of chiral symmetry restoration; have been considered in a perturbation manner to obtain the nucleon mass in vacuum. The nucleon-nucleon interaction in nuclear matter is then realized by introducing additional quark couplings to sigma and omega mesons through mean field approximations. The relevant parameters of the interaction are obtained self consistently while realizing the saturation properties such as the binding energy, pressure a...

  18. Baryon Wave Functions in Covariant Relativistic Quark Models

    CERN Document Server

    Dillig, M

    2002-01-01

    We derive covariant baryon wave functions for arbitrary Lorentz boosts. Modeling baryons as quark-diquark systems, we reduce their manifestly covariant Bethe-Salpeter equation to a covariant 3-dimensional form by projecting on the relative quark-diquark energy. Guided by a phenomenological multigluon exchange representation of a covariant confining kernel, we derive for practical applications explicit solutions for harmonic confinement and for the MIT Bag Model. We briefly comment on the interplay of boosts and center-of-mass corrections in relativistic quark models.

  19. The Thomas-Fermi Quark Model: Non-Relativistic Aspects

    CERN Document Server

    Liu, Quan

    2012-01-01

    Non-relativistic aspects of the Thomas-Fermi statistical quark model are developed. A review is given and our modified approach to spin in the model is explained. Our results are limited so far to two inequivalent simultaneous wave functions which can apply to multiple degenerate flavors. An explicit spin interaction is introduced, which requires the introduction of a generalized spin "flavor". Although the model is designed to be most reliable for many-quark states, we find surprisingly that it may be used to fit the low energy spectrum of octet and decouplet baryons. The low energy fit allows us to investigate the six-quark doubly strange H-dibaryon state, possible 6 quark nucleon-nucleon resonances and flavor symmetric strange states of higher quark content.

  20. Static quark-antiquark potential

    Energy Technology Data Exchange (ETDEWEB)

    Deo, B.B.; Barik, B.K.

    1983-01-01

    A heavy-quark--antiquark potential is suggested which connects asymptotic freedom and quark confinement in a unified manner by formal methods of field theory using some plausible assumptions. The potential has only one additional adjustable parameter B which is proportional to (M/sub q//m/sub q/), where M/sub q/ and m/sub q/ are the constituent and current quark masses, respectively.

  1. Mass spectrum of low-lying baryons in the ground state in a relativistic potential model of independent quarks with chiral symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Barik, N.; Dash, B.K.

    1986-04-01

    Under the assumption that baryons are an assembly of independent quarks, confined in a first approximation by an effective potential U(r) = 1/2(1+..gamma../sup 0/)(ar/sup 2/+V/sub 0/ ) which presumably represents the nonperturbative gluon interactions, the mass spectrum of the low-lying ground-state baryons has been calculated by considering perturbatively the contributions of the residual quark-pion coupling arising out of the requirement of chiral symmetry and that of the quark-gluon coupling due to one-gluon exchange over and above the necessary center-of-mass correction. The physical masses of the baryons so obtained agree quite well with the corresponding experimental value. The strong coupling constant ..cap alpha../sub c/ = 0.58 required here to describe the QCD mass splittings is quite consistent with the idea of treating one-gluon-exchange effects in lowest-order perturbation theory.

  2. New Relativistic Atomic Mass Spectra of Quark (u, d and s) for Extended Modified Cornell Potential in Nano and Plank’s Scales

    OpenAIRE

    Abdelmadjid Maireche

    2016-01-01

    A novel study for the exact solvability of relativistic quantum spectrum systems for extended Cornell potential is discussed used both Boopp’s shift method and standard perturbation theory in non-commutativity three dimensional real space (NC-3DS), furthermore the exact corrections for the spectrum of studied potential was depended on infinitesimal parameter  and a new discreet quantum numbers and we have also found the corresponding noncommutative Hamiltonian.

  3. Relativistic Three-Quark Bound States in Separable Two-Quark Approximation

    CERN Document Server

    Öttel, M; Alkofer, R

    2002-01-01

    Baryons as relativistic bound states in 3-quark correlations are described by an effective Bethe-Salpeter equation when irreducible 3-quark interactions are neglected and separable 2-quark correlations are assumed. We present an efficient numerical method to calculate the nucleon mass and its covariant wave function in this quantum field theoretic quark-diquark model with quark-exchange interaction. Expanding the components of the spinorial wave function in terms of Chebyshev polynomials, the four-dimensional integral equations are in a first step reduced to a coupled set of one-dimensional ones. This set of linear and homogeneous equations defines a generalised eigenvalue problem. Representing the eigenvector corresponding to the largest eigenvalue, the Chebyshev moments are then obtained by iteration. The nucleon mass is implicitly determined by the eigenvalue, and its covariant wave function is reconstructed from the moments within the Chebyshev approximation.

  4. Linear Landau damping in strongly relativistic quark gluon plasma

    Energy Technology Data Exchange (ETDEWEB)

    Murtaza, G.; Khattak, N.A.D.; Shah, H.A. [Salam Chair in Physics, G C Univ., Lahore (Pakistan)]|[Dept. of Physics, G C Univ., Lahore (Pakistan)

    2004-07-01

    On the basis of semi classical kinetic Vlasov equation for Quark-Gluon plasma (QGP) and Yang-Mills equation in covariant gauge, linear Landau damping for electrostatic perturbations like Langmuir waves is investigated. For the extreme relativistic case, wherein the thermal speed of the particles exceeds the phase velocity of the perturbations, the linear Landau damping is absent. However, a departure from extreme relativistic case generates an imaginary component of the frequency giving rise to linear Landau damping effect. The relevant integral for the conductivity tensor has been evaluated and the dispersion relation for the longitudinal part of the oscillation obtained. (orig.)

  5. Observing compact quark matter droplets in relativistic nuclear collisions

    CERN Document Server

    Paech, Kerstin; Lisa, M A; Dumitru, A; Stöcker, H; Greiner, W

    2000-01-01

    Compactness is introduced as a new method to search for the onset of the quark matter transition in relativistic heavy ion collisions. That transition supposedly leads to stronger compression and higher compactness of the source in coordinate space. That effect could be observed via pion interferometry. We propose to measure the compactness of the source in the appropriate principal axis frame of the compactness tensor in coordinate space.

  6. Nuclear Transparency in a Relativistic Quark Model

    CERN Document Server

    Iwama, T; Yazaki, K; Iwama, Tetsu; Kohama, Akihisa; Yazaki, Koichi

    1998-01-01

    We examine the nuclear transparency for the quasi-elastic ($e, e'p$) process at large momentum transfers in a relativistic quantum-mechanical model for the internal structure of the proton, using a relativistic harmonic oscillator model. A proton in a nuclear target is struck by the incident electron and then propagates through the residual nucleus suffering from soft interactions with other nucleons. We call the proton "dynamical" when we take into account of internal excitations, and "inert" when we freeze it to the ground state. When the dynamical proton is struck with a hard (large-momentum transfer) interaction, it shrinks, i.e., small-sized configuration dominates the process. It then travels through nuclear medium as a time-dependent mixture of intrinsic excited states and thus changing its size. Its absorption due to the soft interactions with nuclear medium depends on its transverse-size. Since the nuclear transparency is a measure of the absorption strength, we calculate it in our model for the dyna...

  7. Magnetic moments of heavy baryons in the relativistic three-quark model

    CERN Document Server

    Faessler, A; Ivanov, M A; Körner, J G; Lyubovitskij, V E; Nicmorus, D; Pumsa-ard, K; Faessler, Amand; Gutsche, Th.

    2006-01-01

    The magnetic moments of ground state single, double and triple heavy baryons containing charm or bottom quarks are calculated in a relativistic three-quark model, which, in the heavy quark limit, is consistent with Heavy Quark Effective Theory and Heavy Hadron Chiral Perturbation Theory. The internal quark structure of baryons is modeled by baryonic three-quark currents with a spin-flavor structure patterned according to standard covariant baryonic wave functions and currents used in QCD sum rule calculations.

  8. Nuclear equation of state in a relativistic independent quark model with chiral symmetry and dependence on quark masses

    Science.gov (United States)

    Barik, N.; Mishra, R. N.; Mohanty, D. K.; Panda, P. K.; Frederico, T.

    2013-07-01

    We have calculated the properties of nuclear matter in a self-consistent manner with a quark-meson coupling mechanism incorporating the structure of nucleons in vacuum through a relativistic potential model; where the dominant confining interaction for the free independent quarks inside a nucleon is represented by a phenomenologically average potential in equally mixed scalar-vector harmonic form. Corrections due to spurious center of mass motion as well as those due to other residual interactions, such as the one gluon exchange at short distances and quark-pion coupling arising out of chiral symmetry restoration, have been considered in a perturbative manner to obtain the nucleon mass in vacuum. The nucleon-nucleon interaction in nuclear matter is then realized by introducing additional quark couplings to σ and ω mesons through mean field approximations. The relevant parameters of the interaction are obtained self-consistently while realizing the saturation properties such as the binding energy, pressure, and compressibility of the nuclear matter. We also discuss some implications of chiral symmetry in nuclear matter along with the nucleon and nuclear σ term and the sensitivity of nuclear matter binding energy with variations in the light quark mass.

  9. Chemical Potential Dependence of the Dressed-Quark Propagator from an Effective Quark-Quark Interaction

    Institute of Scientific and Technical Information of China (English)

    ZONG Hong-Shi; PING Jia-Lun; SUN Wei-Min; CHANG Chao-Hsi; WANG Fan

    2002-01-01

    We exhibit a method for obtaining the low chemical potential dependence of the dressed quark propagatorfrom an effective quark-quark interaction model. Within this approach we explore the chemical potential dependenceof the dressed-quark propagator, which provides a means of determining the behavior of the chiral and deconfinementorder parameters. A comparison with the results of previous researches is given.

  10. Baryons as relativistic three-quark bound states

    CERN Document Server

    Eichmann, Gernot; Williams, Richard; Alkofer, Reinhard; Fischer, Christian S

    2016-01-01

    We review the spectrum and electromagnetic properties of baryons described as relativistic three-quark bound states within QCD. The composite nature of baryons results in a rich excitation spectrum, whilst leading to highly non-trivial structural properties explored by the coupling to external (electromagnetic and other) currents. Both present many unsolved problems despite decades of experimental and theoretical research. We discuss the progress in these fields from a theoretical perspective, focusing on nonperturbative QCD as encoded in the functional approach via Dyson-Schwinger and Bethe-Salpeter equations. We give a systematic overview as to how results are obtained in this framework and explain technical connections to lattice QCD. We also discuss the mutual relations to the quark model, which still serves as a reference to distinguish 'expected' from 'unexpected' physics. We confront recent results on the spectrum of non-strange and strange baryons, their form factors and the issues of two-photon proce...

  11. Relativistic five-quark equations and hybrid baryon spectroscopy

    CERN Document Server

    Gerasyuta, S M

    2002-01-01

    The relativistic five-quark equations are found in the framework of the dispersion relation technique. The Behavior of the low-energy five-particle amplitude is determined by its leading singularities in the pair invariant masses. The solutions of these equations using the method based on the extraction leading singularities of the amplitudes are obtained. The mass spectra of nucleon and delta-isobar hybrid baryons are calculated. The calculations of hybrid baryon amplitudes estimate the contributions of four subamplitudes. The main contributions to the hybrid baryon amplitude are determined by the subamplitudes, which include the excited gluon states.

  12. A Euclidean bridge to the relativistic constituent quark model

    CERN Document Server

    Hobbs, T J; Miller, Gerald A

    2016-01-01

    ${\\bf Background}$ Knowledge of nucleon structure is today ever more of a precision science, with heightened theoretical and experimental activity expected in coming years. At the same time, a persistent gap lingers between theoretical approaches grounded in Euclidean methods (e.g., lattice QCD, Dyson-Schwinger Equations [DSEs]) as opposed to traditional Minkowski field theories (such as light-front constituent quark models). ${\\bf Purpose}$ Seeking to bridge these complementary worldviews, we explore the potential of a Euclidean constituent quark model (ECQM). This formalism enables us to study the gluonic dressing of the quark-level axial-vector vertex, which we undertake as a test of the framework. ${\\bf Method}$ To access its indispensable elements with a minimum of inessential detail, we develop our ECQM using the simplified quark $+$ scalar diquark picture of the nucleon. We construct a hyperspherical formalism involving polynomial expansions of diquark propagators to marry our ECQM with the results of ...

  13. Heavy meson masses and decay constants from relativistic heavy quarks in full lattice QCD

    CERN Document Server

    McNeile, C; Follana, E; Hornbostel, K; Lepage, G P

    2012-01-01

    We determine masses and decay constants of heavy-heavy and heavy-charm pseudoscalar mesons as a function of heavy quark mass using a fully relativistic formalism known as Highly Improved Staggered Quarks for the heavy quark. We are able to cover the region from the charm quark mass to the bottom quark mass using MILC ensembles with lattice spacing values from 0.15 fm down to 0.044 fm. We obtain f_{B_c} = 0.427(6) GeV; m_{B_c} = 6.285(10) GeV and f_{\\eta_b} = 0.667(6) GeV. Our value for f_{\\eta_b} is within a few percent of f_{\\Upsilon} confirming that spin effects are surprisingly small for heavyonium decay constants. Our value for f_{B_c} is significantly lower than potential model values being used to estimate production rates at the LHC. We discuss the changing physical heavy-quark mass dependence of decay constants from heavy-heavy through heavy-charm to heavy-strange mesons. A comparison between the three different systems confirms that the B_c system behaves in some ways more like a heavy-light system t...

  14. Baryons as relativistic three-quark bound states

    Science.gov (United States)

    Eichmann, Gernot; Sanchis-Alepuz, Hèlios; Williams, Richard; Alkofer, Reinhard; Fischer, Christian S.

    2016-11-01

    We review the spectrum and electromagnetic properties of baryons described as relativistic three-quark bound states within QCD. The composite nature of baryons results in a rich excitation spectrum, whilst leading to highly non-trivial structural properties explored by the coupling to external (electromagnetic and other) currents. Both present many unsolved problems despite decades of experimental and theoretical research. We discuss the progress in these fields from a theoretical perspective, focusing on nonperturbative QCD as encoded in the functional approach via Dyson-Schwinger and Bethe-Salpeter equations. We give a systematic overview as to how results are obtained in this framework and explain technical connections to lattice QCD. We also discuss the mutual relations to the quark model, which still serves as a reference to distinguish 'expected' from 'unexpected' physics. We confront recent results on the spectrum of non-strange and strange baryons, their form factors and the issues of two-photon processes and Compton scattering determined in the Dyson-Schwinger framework with those of lattice QCD and the available experimental data. The general aim is to identify the underlying physical mechanisms behind the plethora of observable phenomena in terms of the underlying quark and gluon degrees of freedom.

  15. Euclidean bridge to the relativistic constituent quark model

    Science.gov (United States)

    Hobbs, T. J.; Alberg, Mary; Miller, Gerald A.

    2017-03-01

    Background: Knowledge of nucleon structure is today ever more of a precision science, with heightened theoretical and experimental activity expected in coming years. At the same time, a persistent gap lingers between theoretical approaches grounded in Euclidean methods (e.g., lattice QCD, Dyson-Schwinger equations [DSEs]) as opposed to traditional Minkowski field theories (such as light-front constituent quark models). Purpose: Seeking to bridge these complementary world views, we explore the potential of a Euclidean constituent quark model (ECQM). This formalism enables us to study the gluonic dressing of the quark-level axial-vector vertex, which we undertake as a test of the framework. Method: To access its indispensable elements with a minimum of inessential detail, we develop our ECQM using the simplified quark + scalar diquark picture of the nucleon. We construct a hyperspherical formalism involving polynomial expansions of diquark propagators to marry our ECQM with the results of Bethe-Salpeter equation (BSE) analyses, and constrain model parameters by fitting electromagnetic form factor data. Results: From this formalism, we define and compute a new quantity—the Euclidean density function (EDF)—an object that characterizes the nucleon's various charge distributions as functions of the quark's Euclidean momentum. Applying this technology and incorporating information from BSE analyses, we find the quenched dressing effect on the proton's axial-singlet charge to be small in magnitude and consistent with zero, while use of recent determinations of unquenched BSEs results in a large suppression. Conclusions: The quark + scalar diquark ECQM is a step toward a realistic quark model in Euclidean space, and needs additional refinements. The substantial effect we obtain for the impact on the axial-singlet charge of the unquenched dressed vertex compared to the quenched demands further investigation.

  16. Doubly heavy baryons in a quark model with AdS/QCD inspired potential

    CERN Document Server

    Giannuzzi, Floriana

    2009-01-01

    The spectrum of doubly heavy baryons, hadrons made up of two heavy quarks and one light quark, is computed through a potential model with relativistic kinematics. The expression for the $Q\\bar Q$ potential comes from the AdS/QCD correspondence.

  17. Charmonium-Nucleon Interaction from Quenched Lattice QCD with Relativistic Heavy Quark Action

    Science.gov (United States)

    Kawanai, Taichi; Sasaki, Shoichi; Hatsuda, Tetsuo

    2009-10-01

    Low energy charmonium-nucleon interaction is of particular interest in this talk. A heavy quarkonium state like the charmonium does not share the same quark flavor with the nucleon so that cc-nucleon interaction might be described by the gluonic van der Waals interaction, which is weak but attractive. Therefore, the information of the strength of cc-nucleon interaction is vital for considering the possibility of the formation of charmonium bound to nuclei. We will present the preliminary results for the scattering length and the interaction range of charmonium-nucleon s-wave scattering from quenched lattice QCD. These low-energy quantities can provide useful constraints on the phenomenological cc-nucleon potential, which is required for precise prediction of the binding energy of nuclear-bound charmonium in exact few body calculations. Our simulations are performed at a lattice cutoff of 1/a=2.0 GeV with the nonperturbatively O(a) improved Wilson action for the light quark and a relativistic heavy quark action for the charm quark. A new attempt of calculating the cc-nucleon potential through the Bethe-Salpeter wave function will be also discussed.

  18. Relativistic quark-diquark model of baryons. Non strange spectrum and nucleon electromagnetic form factors

    CERN Document Server

    De Sanctis, M; Santopinto, E; Vassallo, A

    2015-01-01

    We briefly describe our relativistic quark-diquark model, developed within the framework of point form dynamics, which is the relativistic extension of the interacting quark-diquark model. In order to do that we have to show the main properties and quantum numbers of the effective degree of freedom of constituent diquark. Our results for the nonstrange baryon spectrum and for the nucleon electromagnetic form factors are discussed.

  19. Semileptonic decays of Λ{sub c} baryons in the relativistic quark model

    Energy Technology Data Exchange (ETDEWEB)

    Faustov, R.N.; Galkin, V.O. [Institute of Informatics in Education, FRC CSC RAS, Moscow (Russian Federation)

    2016-11-15

    Motivated by recent experimental progress in studying weak decays of the Λ{sub c} baryon we investigate its semileptonic decays in the framework of the relativistic quark model based on the quasipotential approach with the QCD-motivated potential. The form factors of the Λ{sub c} → Λlν{sub l} and Λ{sub c} → nlν{sub l} decays are calculated in the whole accessible kinematical region without extrapolations and additional model assumptions. Relativistic effects are systematically taken into account including transformations of baryon wave functions from the rest to moving reference frame and contributions of the intermediate negative-energy states. Baryon wave functions found in the previous mass spectrum calculations are used for the numerical evaluation. Comprehensive predictions for decay rates, asymmetries and polarization parameters are given. They agree well with available experimental data. (orig.)

  20. Relativistic simulations of compact object mergers for nucleonic matter and strange quark matter

    Energy Technology Data Exchange (ETDEWEB)

    Bauswein, Andreas Ottmar

    2010-01-29

    Under the assumption that the energy of the ground state of 3-flavor quark matter is lower than the one of nucleonic matter, the compact stellar remnants of supernova explosions are composed of this quark matter. Because of the appearance of strange quarks, such objects are called strange stars. Considering their observational features, strange stars are very similar to neutron stars made of nucleonic matter, and therefore observations cannot exclude the existence of strange stars. This thesis introduces a new method for simulating mergers of compact stars and black holes within a general relativistic framework. The main goal of the present work is the investigation of the question, whether the coalescence of two strange stars in a binary system yields observational signatures that allow one to distinguish them from colliding neutron stars. In this context the gravitational-wave signals are analyzed. It is found that in general the characteristic frequencies in the gravitational-wave spectra are higher for strange stars. Moreover, the amount of matter that becomes gravitationally unbound during the merging is determined. The detection of ejecta of strange star mergers as potential component of cosmic ray flux could serve as a proof of the existence of strange quark matter. (orig.)

  1. Quark-anti-quark potential in N = 4 SYM

    Science.gov (United States)

    Gromov, Nikolay; Levkovich-Maslyuk, Fedor

    2016-12-01

    We construct a closed system of equations describing the quark-anti-quark potential at any coupling in planar N = 4 supersymmetric Yang-Mills theory. It is based on the Quantum Spectral Curve method supplemented with a novel type of asymptotics. We present a high precision numerical solution reproducing the classical and one-loop string predictions very accurately. We also analytically compute the first 7 nontrivial orders of the weak coupling expansion.

  2. Pentaquarks in a relativistic quark model and nature of Theta-states

    CERN Document Server

    Gerasyuta, S M

    2003-01-01

    The relativistic five-quark equations are found in the framework of the dispersion relation technique. The solutions of these equations using the method based on the extraction of the leading singularities of the amplitudes are obtained. The five-quark amplitudes for the low-lying pentaquarks including the u, d, s- quarks are calculated. The poles of these amplitudes determine the masses of Theta-pentaquarks. The mass spectra of the isotensor Theta-pentaquarks are calculated.

  3. Interquark potential with finite quark mass from lattice QCD.

    Science.gov (United States)

    Kawanai, Taichi; Sasaki, Shoichi

    2011-08-26

    We present an investigation of the interquark potential determined from the q ̄q Bethe-Salpeter (BS) amplitude for heavy quarkonia in lattice QCD. The q ̄q potential at finite quark mass m(q) can be calculated from the equal-time and Coulomb gauge BS amplitude through the effective Schrödinger equation. The definition of the potential itself requires information about a kinetic mass of the quark. We then propose a self-consistent determination of the quark kinetic mass on the same footing. To verify the proposed method, we perform quenched lattice QCD simulations with a relativistic heavy-quark action at a lattice cutoff of 1/a≈2.1  GeV in a range 1.0≤m(q)≤3.6 GeV. Our numerical results show that the q ̄q potential in the m(q)→∞ limit is fairly consistent with the conventional one obtained from Wilson loops. The quark-mass dependence of the q ̄q potential and the spin-spin potential are also examined. © 2011 American Physical Society

  4. A Euclidean bridge to the relativistic constituent quark model

    Science.gov (United States)

    Hobbs, Timothy; Alberg, Mary; Miller, Gerald

    2017-01-01

    We explore the potential of a Euclidean constituent quark model (ECQM) to bridge the lingering gap between Euclidean and Minkowski field theories in studies of nucleon structure. Specifically, we develop our ECQM using a simplified quark-scalar diquark picture of the nucleon as a first calculation. Our treatment in Euclidean space necessitates a hyperspherical formalism involving polynomial expansions of diquark propagators in order to marry our ECQM with results from Bethe-Salpeter Equation (BSE) analyses. From this framework, we define and compute a new quantity - a Euclidean density function (EDF) - an object that characterizes the nucleon's various charge distributions as functions of the quark's Euclidean momentum. Applying this technology and incorporating information from BSE analyses, we find the quenched dressing effect on the proton's axial-singlet charge to be small in magnitude and consistent with zero, while use of recent determinations of unquenched BSEs results in a large suppression. The substantial effect we obtain for the impact on the axial-singlet charge of the unquenched dressed vertex compared to the quenched demands further investigation. Work supported by DOE grant DE-FG02-97ER-41014 and NSF Grant No. 1516105.

  5. Electromagnetic properties of light and heavy baryons in the relativistic quark model

    Energy Technology Data Exchange (ETDEWEB)

    Nicmorus Marinescu, Diana

    2007-06-14

    One of the main challenges of nowadays low-energy physics remains the description of the internal structure of hadrons, strongly connected to the electromagnetic properties of matter. In this vein, the success of the relativistic quark model in the analysis of the hadron structure constitutes a solid motivation for the study carried out throughout this work. The relativistic quark model is extended to the investigation of static electromagnetic properties of both heavy and light baryons. The bare contributions to the magnetic moments of the single-, double- and triple-heavy baryons are calculated. Moreover, the relativistic quark model allows the study of the electromagnetic properties of the light baryon octet incorporating meson cloud contributions in a perturbative manner. The long disputed values of the multipole ratios E2/M1 and C2/M1 and the electromagnetic form factors of the N{yields}{delta}{gamma} transition are successfully reproduced. The relativistic quark model can be viewed as a quantum field theory approach based on a phenomenological Lagrangian coupling light and heavy baryons to their constituent quarks. In our approach the baryon is a composite object of three constituent quarks, at least in leading order. The effective interaction Lagrangian is written in terms of baryon and constituent quark fields. The effective action preserves Lorentz covariance and gauge invariance. The main ingredients of the model are already introduced at the level of the interaction Lagrangian: the three-quark baryon currents, the Gaussian distribution of the constituent quarks inside the baryon and the compositeness condition which sets an upper limit for the baryon-quark vertex. The S-matrix elements are expressed by a set of Feynman quark-diagrams. The model contains only few parameters, namely, the cut-off parameter of the Gaussian quark distribution and the free quark propagator, which are unambiguously determined from the best fit to the data. The heavy quark limit

  6. Meson Cloud Effect on △(1232) Resonance Transition Properties with a Relativistic Quark Model Approach

    Institute of Scientific and Technical Information of China (English)

    DONG Yu-Bing; FENG Qing-Guo

    2002-01-01

    Based on a relativistic quark model approach, the transition properties of the first nucleon resonance △(1232), and the coupling constants gπNN, g△πN are investigated. Tvo different vays to remove the center of mass motion are considered. The results of the relativistic approaches with and without center ofmass correction are compared with those of nonrelativistic constituent quark model. Moreover, pion meson cloud effect on these calculated observables is explicitly addressed. Better results are obtained by taking the pion meson cloud into account.

  7. Relativistic Effects in a QCD Inspired quark model and the necessity of a short distance scale

    CERN Document Server

    Pathak, Krishna Kingkar

    2010-01-01

    We study the masses and decay constants of heavy light flavoured mesons in a QCD Inspired Quark model. We modify the relativistic correction procedure by introducing a short distance scale r0 in analogy with relativistic Hydrogen atom and estimate the values of masses and decay constants of heavy-light mesons. Necessity of a short distance scale r0 \\leq 10-3 - 10-5 fm in the model is indicated. Keywords: heavy- light mesons, masses, decay constants

  8. Relativistic quark model for the Omega- electromagnetic form factors

    Energy Technology Data Exchange (ETDEWEB)

    G. Ramalho, K. Tsushima, Franz Gross

    2009-08-01

    We compute the Omega- electromagnetic form factors and the decuplet baryon magnetic moments using a quark model application of the Covariant Spectator Theory. Our predictions for the Omega- electromagnetic form factors can be tested in the future by lattice QCD simulations at the physical strange quark mass.

  9. A relativistic quark model for the Omega- electromagnetic form factors

    CERN Document Server

    Ramalho, G; Gross, Franz

    2009-01-01

    We compute the Omega- electromagnetic form factors and the decuplet baryon magnetic moments using a quark model application of the Covariant Spectator Theory. Our predictions for the Omega- electromagnetic form factors can be tested in the future by lattice QCD simulations at the physical strange quark mass.

  10. HEAVY QUARK POTENTIALS AND QUARKONIA BINDING.

    Energy Technology Data Exchange (ETDEWEB)

    PETRECZKY,P.

    2004-11-04

    The author reviews recent progress in studying in-medium modification of inter-quark forces at finite temperature in lattice QCD. Some applications to the problem of quarkonium binding in potential models is also discussed.

  11. Semileptonic decays of $\\Lambda_b$ baryons in the relativistic quark model

    CERN Document Server

    Faustov, R N

    2016-01-01

    Semileptonic $\\Lambda_b$ decays are investigated in the framework of the relativistic quark model based on the quasipotential approach and the quark-diquark picture of baryons. The decay form factors are expressed through the overlap integrals of the initial and final baryon wave functions. All calculations are done without employing nonrelativistic and heavy quark expansions. The momentum transfer dependence of the decay form factors is explicitly determined in the whole accessible kinematical range without any extrapolations or model assumptions. Both the heavy-to-heavy $\\Lambda_b\\to\\Lambda_c\\ell\

  12. Relativistic BCS-BEC Crossover at Quark Level

    Directory of Open Access Journals (Sweden)

    Zhuang P.

    2010-10-01

    Full Text Available The non-relativistic G0G formalism of BCS-BEC crossover at finite temperature is extended to relativistic fermion systems. The theory recovers the BCS mean field approximation at zero temperature and the non-relativistic results in a proper limit. For massive fermions, when the coupling strength increases, there exist two crossovers from the weak coupling BCS superfluid to the non-relativistic BEC state and then to the relativistic BEC state. For color superconductivity at moderate baryon density, the matter is in the BCS-BEC crossover region, and the behavior of the pseudogap is quite similar to that found in high temperature superconductors.

  13. Perturbative static four-quark potentials

    CERN Document Server

    Lang, J; Green, A M

    1995-01-01

    A first attempt to understand hadron dynamics at low energies in terms of the fundamental quark and gluon degrees of freedom incorporates the effects of the gluonic field into a potential depending only on the spatial positions of the quarks, which are considered in the infinite mass limit. A suitable framework for calculating such potentials between static quarks, i.e.\\ a generalization of the Wilson loop will be discussed. Making a connection with recent Monte Carlo lattice simulations for the lowest two energies of a system of two quarks and two antiquarks, the static qq\\bar{q}\\bar{q}-potential will be calculated in perturbation theory to fourth order. The result will be shown to be exactly equal to the prediction of a straightforward two-body approach, which in Monte Carlo lattice simulations has been found to be a reasonable approximation for very small interquark distances.

  14. Semileptonic decays of $\\Lambda_c$ baryons in the relativistic quark model

    CERN Document Server

    Faustov, R N

    2016-01-01

    Motivated by recent experimental progress in studying weak decays of the $\\Lambda_c$ baryon we investigate its semileptonic decays in the framework of the relativistic quark model based on the quasipotential approach and QCD. The form factors of the $\\Lambda_c\\to \\Lambda l\

  15. Octet baryon electromagnetic form factors in a relativistic quark model

    CERN Document Server

    Ramalho, G

    2011-01-01

    We study the octet baryon electromagnetic properties by applying the covariant spectator quark model, and provide covariant parametrization that can be used to study baryon electromagnetic reactions. While we use the lattice QCD data in the large pion mass regime (small pion cloud effects) to determine the parameters of the model in the valence quark sector, we use the nucleon physical and octet baryon magnetic moment data to parameterize the pion cloud contributions. The valence quark contributions for the octet baryon electromagnetic form factors are estimated by extrapolating the lattice parametrization in the large pion mass regime to the physical regime. As for the pion cloud contributions, we parameterize them in a covariant, phenomenological manner, combined with SU(3) symmetry. We also discuss the impact of the pion cloud effects on the octet baryon electromagnetic form factors and their radii.

  16. Octet to decuplet electromagnetic transition in a relativistic quark model

    CERN Document Server

    Ramalho, G

    2013-01-01

    We study the octet to decuplet baryon electromagnetic transitions using the covariant spectator quark model, and predict the transition magnetic dipole form factors for those involving the strange baryons. Utilizing SU(3) symmetry, the valence quark contributions are supplemented by the pion cloud dressing based on the one estimated in the $\\gamma^\\ast N \\to \\Delta$ reaction. Although the valence quark contributions are dominant in general, the pion cloud effects turn out to be very important to describe the experimental data. We also show that, other mesons besides the pion in particular the kaon, may be relevant for some reactions such as $\\gamma^\\ast \\Sigma^+ \\to \\Sigma^{*+}$, based on our analysis for the radiative decay widths of the strange decuplet baryons.

  17. Octet Baryon Electromagnetic Form Factors in a Relativistic Quark Model

    Energy Technology Data Exchange (ETDEWEB)

    Gilberto Ramalho, Kazuo Tsushima

    2011-09-01

    We study the octet baryon electromagnetic properties by applying the covariant spectator quark model, and provide covariant parametrization that can be used to study baryon electromagnetic reactions. While we use the lattice QCD data in the large pion mass regime (small pion cloud effects) to determine the parameters of the model in the valence quark sector, we use the nucleon physical and octet baryon magnetic moment data to parameterize the pion cloud contributions. The valence quark contributions for the octet baryon electromagnetic form factors are estimated by extrapolating the lattice parametrization in the large pion mass regime to the physical regime. As for the pion cloud contributions, we parameterize them in a covariant, phenomenological manner, combined with SU(3) symmetry. We also discuss the impact of the pion cloud effects on the octet baryon electromagnetic form factors and their radii.

  18. Relativistic Covariance and Quark-Diquark Wave Functions

    CERN Document Server

    Dillig, M

    2006-01-01

    We derive covariant wave functions for hadrons composed of two constituents for arbitrary Lorentz boosts. Focussing explicitly on baryons as quark-diquark systems, we reduce their manifestly covariant Bethe-Salpeter equation to covariant 3-dimensional forms by projecting on the relative quark-diquark energy. Guided by a phenomenological multi gluon exchange representation of covariant confining kernels, we derive explicit solutions for harmonic confinement and for the MIT Bag Model. We briefly sketch implications of breaking the spherical symmetry of the ground state and the transition from the instant form to the light cone via the infinite momentum frame.

  19. The relativistic geoid: redshift and acceleration potential

    Science.gov (United States)

    Philipp, Dennis; Lämmerzahl, Claus; Puetzfeld, Dirk; Hackmann, Eva; Perlick, Volker

    2017-04-01

    We construct a relativistic geoid based on a time-independent redshift potential, which foliates the spacetime into isochronometric surfaces. This relativistic potential coincides with the acceleration potential for isometric congruences. We show that the a- and u- geoid, defined in a post-Newtonian framework, coincide also in a more general setup. Known Newtonian and post-Newtonian results are recovered in the respective limits. Our approach offers a relativistic definition of the Earth's geoid as well as a description of the Earth itself (or observers on its surface) in terms of an isometric congruence. Being fully relativistic, this notion of a geoid can also be applied to other compact objects such as neutron stars. By definition, this relativistic geoid can be determined by a congruence of Killing observers equipped with standard clocks by comparing their frequencies as well as by measuring accelerations of objects that follow the congruence. The redshift potential gives the correct result also for frequency comparison through optical fiber links as long as the fiber is at rest w.r.t. the congruence. We give explicit expressions for the relativistic geoid in the Kerr spacetime and the Weyl class of spacetimes. To investigate the influence of higher order mass multipole moments we compare the results for the Schwarzschild case to those obtained for the Erez-Rosen and q-metric spacetimes.

  20. Relativistic Symmetry Suppresses Quark Spin-Orbit Splitting

    CERN Document Server

    Page, P R; Ginocchio, J N; Page, Philip R.; Goldman, Terry; Ginocchio, Joseph. N.

    2001-01-01

    Experimental data indicate small spin-orbit splittings in hadrons. Forheavy-light mesons we identify a relativistic symmetry that suppresses thesesplittings. We suggest an experimental test in electron-positron annihilation.Furthermore, we argue that the dynamics necessary for this symmetry arepossible in QCD.

  1. The B*Bpi coupling using relativistic heavy quarks

    CERN Document Server

    Flynn, J M; Kawanai, T; Lehner, C; Samways, B; Sachrajda, C T; Van de Water, R S; Witzel, O

    2015-01-01

    We report on a calculation of the B*Bpi coupling in lattice QCD. The strong matrix element for a B* to Bpi transition is directly related to the leading order low-energy constant in heavy meson chiral perturbation theory (HMChPT) for B mesons. We carry out our calculation directly at the b-quark mass using a non-perturbatively tuned clover action that controls discretization effects of order pa and (ma)^n for all n. Our analysis is performed on RBC/UKQCD gauge configurations using domain-wall fermions and the Iwasaki gauge action at two lattice spacings of ainverse = 1.729(25) GeV, ainverse = 2.281(28) GeV, and unitary pion masses down to 290 MeV. We achieve good statistical precision and control all systematic uncertainties, giving a final result for the HMChPT coupling g_b = 0.56(3)stat(7)sys in the continuum and at the physical light-quark masses. This is the first calculation performed directly at the physical b-quark mass and lies in the region one would expect from carrying out an interpolation between ...

  2. Deeply virtual Compton scattering in a relativistic quark model

    Energy Technology Data Exchange (ETDEWEB)

    Spitzenberg, T.

    2007-09-15

    This thesis is mainly concerned with a model calculation for generalized parton distributions (GPDs). We calculate vectorial- and axial GPDs for the N{yields}N and N{yields}{delta} transition in the framework of a light front quark model. This requires the elaboration of a connection between transition amplitudes and GPDs. We provide the first quark model calculations for N{yields}{delta} GPDs. The examination of transition amplitudes leads to various model independent consistency relations. These relations are not exactly obeyed by our model calculation since the use of the impulse approximation in the light front quark model leads to a violation of Poincare covariance. We explore the impact of this covariance breaking on the GPDs and form factors which we determine in our model calculation and find large effects. The reference frame dependence of our results which originates from the breaking of Poincare covariance can be eliminated by introducing spurious covariants. We extend this formalism in order to obtain frame independent results from our transition amplitudes. (orig.)

  3. Extended Quark Potential Model From Random Phase Approximation

    Institute of Scientific and Technical Information of China (English)

    DENGWei-Zhen; CHENXiao-Lin; 等

    2002-01-01

    The quark potential model is extended to include the sea quark excitation using the random phase approximation.The effective quark interaction preserves the important QCD properties-chiral symmetry and confinement simultaneously.A primary qualitative analysis shows that the π meson as a well-known typical Goldstone boson and the other mesons made up of valence qq quark pair such as the ρ meson can also be described in this extended quark potential model.

  4. Workshop on Quark-Gluon Plasma and Relativistic Heavy Ions

    CERN Document Server

    Lombardo, Maria Paola; Nardi, Marzia; GISELDA 2002; QGP 2002

    2002-01-01

    This book offers the unique possibility of tackling the problem of hadronic deconfinement from different perspectives. After general introductions to the physical issues, from both the theoretical and the experimental point of view, the book presents the most recent expertise on field theory approaches to the QCD phase diagram, many-body techniques and applications, the dynamics of phase transitions, and phenomenological analysis of relativistic heavy ion collisions. One of the major goals of this book is to promote interchange among those fields of research, which have traditionally been cult

  5. Effective potential for relativistic scattering

    CERN Document Server

    Elbistan, Mahmut; Balog, Janos

    2016-01-01

    We consider quantum inverse scattering with singular potentials and calculate the Sine-Gordon model effective potential in the laboratory and centre-of-mass frames. The effective potentials are frame dependent but closely resemble the zero-momentum potential of the equivalent Ruijsenaars-Schneider model.

  6. Glueball Masses in Relativistic Potential Model

    CERN Document Server

    Shpenik, A; Kis, J; Fekete, Yu

    2000-01-01

    The problem of glueball mass spectra using the relativistic Dirac equation is studied. Also the Breit-Fermi approach used to obtaining hyperfine splitting in glueballs. Our approach is based on the assumption, that the nature and the forces between two gluons are the short-range. We were to calculate the glueball masses with used screened potential.

  7. Relationship between quark-antiquark potential and quark-antiquark free energy in hadronic matter

    Institute of Scientific and Technical Information of China (English)

    SHEN Zhen-Yu; XU Xiao-Ming

    2015-01-01

    In high-temperature quark-gluon plasma and its subsequent hadronic matter created in a high-energy nucleus-nucleus collision,the quark-antiquark potential depends on the temperature.The temperature-dependent potential is expected to be derived from the free energy obtained in lattice gauge theory calculations.This requires one to study the relationship between the quark-antiquark potential and the quark-antiquark free energy.When the system's temperature is above the critical temperature,the potential of a heavy quark and a heavy antiquark almost equals the free energy,but the potential of a light quark and a light antiquark,of a heavy quark and a light antiquark and of a light quark and a heavy antiquark is substantially larger than the free energy.When the system's temperature is below the critical temperature,the quark-antiquark free energy can be taken as the quark-antiquark potential.This allows one to apply the quark-antiquark free energy to study hadron properties and hadron-hadron reactions in hadronic matter.

  8. B-meson decay constants from 2+1-flavor lattice QCD with domain-wall light quarks and relativistic heavy quarks

    CERN Document Server

    Christ, Norman H; Izubuchi, Taku; Kawanai, Taichi; Lehner, Christoph; Soni, Amarjit; Van de Water, Ruth S; Witzel, Oliver

    2014-01-01

    We calculate the B-meson decay constants f_B, f_Bs, and their ratio in unquenched lattice QCD using domain-wall light quarks and relativistic b-quarks. We use gauge-field ensembles generated by the RBC and UKQCD collaborations using the domain-wall fermion action and Iwasaki gauge action with three flavors of light dynamical quarks. We analyze data at two lattice spacings of a ~ 0.11, 0.086 fm with unitary pion masses as light as M_pi ~ 290 MeV; this enables us to control the extrapolation to the physical light-quark masses and continuum. For the b-quarks we use the anisotropic clover action with the relativistic heavy-quark interpretation, such that discretization errors from the heavy-quark action are of the same size as from the light-quark sector. We renormalize the lattice heavy-light axial-vector current using a mostly nonperturbative method in which we compute the bulk of the matching factor nonperturbatively, with a small correction, that is close to unity, in lattice perturbation theory. We also impr...

  9. Nucleation rate of the quark-gluon plasma droplet at finite quark chemical potential

    Indian Academy of Sciences (India)

    D S Gosain; S Somorendro Singh; Agam K Jha

    2012-05-01

    The nucleation rate of quark-gluon plasma (QGP) droplet is computed at finite quark chemical potential. In the course of computing the nucleation rate, the finite size effects of the QGP droplet are taken into account. We consider the phenomenological flow parameter of quarks and gluons, which is dependent on quark chemical potential and we calculate the nucleation rate of the QGP droplet with this parameter. While calculating the nucleation rate, we find that for low values of quark phenomenological parameter $ q$, nucleation rate is negligible and when increases, nucleation rate increases significantly.

  10. The B -> pi l nu form factor from unquenched lattice QCD with domain-wall light quarks and relativistic b-quarks

    CERN Document Server

    Kawanai, Taichi; Witzel, Oliver

    2012-01-01

    We report on a lattice-QCD calculation of the B to pi l nu form factor with domain-wall light quarks and relativistic b-quarks using the 2 + 1 flavor domain-wall fermion and Iwasaki gauge-field ensembles generated by the RBC and UKQCD Collaborations. We present initial results obtained from the coarser (a ~ 0.11 fm) 24^3 lattices and some of the finer (a ~ 0.086 fm) 32^3 lattices.

  11. Chemical Potential Dependence of Dressed-Quark Propagator

    Institute of Scientific and Technical Information of China (English)

    ZONGHong-Shi; HOUFeng-Yao; SUNWei-Min; WUXiao-Hua

    2004-01-01

    A method for obtaining the low chemical potential dependence of the dressed quark propagator from an effective quark-quark interaction model is developed.Of particular interest here is to give a general recipe to find without arbitrariness the solution representing the “Wigner”phase at non-zero chemical potential for the purpose of studying QCD phase structure.

  12. Chemical Potential Dependence of Dressed-Quark Propagator

    Institute of Scientific and Technical Information of China (English)

    ZONG Hong-Shi; HOU Feng-Yao; SUN Wei-Min; WU Xiao-Hua

    2004-01-01

    A method for obtaining the low chemical potential dependence of the dressed quark propagator from an effective quark-quark interaction model is developed. Of particular interest here is to give a generalrecipe to find without arbitrariness the solution representing the "Wigner" phase at non-zero chemical potential for the purpose of studying QCD phase structure.

  13. Linear Chemical Potential Dependence of Two-Quark Condensate

    Institute of Scientific and Technical Information of China (English)

    ZONG Hong-Shi; SUN Wei-Min

    2006-01-01

    By differentiating the inverse dressed quark propagator at finite chemical potential μ with respect to μ, the linear response of the dressed quark propagator to the chemical potential can be obtained. From this we extract a modelindependent formula for the linear chemical potential dependence of the in-medium two-quark condensate and show by two independent methods (explicit calculation and Lorentz covariance arguments) that the first-order contribution in μto the in-medium two-quark condensate vanishes identically. Therefore if one wants to study the in-medium two-quark condensate one should expand to at least the second order in the chemical potential μ.

  14. "Chemical" composition of the Quark-Gluon Plasma in relativistic heavy-ion collisions

    CERN Document Server

    Scardina, F; Plumari, S; Greco, V

    2012-01-01

    We study the evolution of the quark-gluon composition of the plasma created in ultra-Relativistic Heavy Ion Collisions (uRHIC's) employing a partonic transport theory that includes both elastic and inelastic collisions plus a mean fields dynamics associated to the widely used quasi-particle model. The latter, able to describe lattice QCD thermodynamics, implies a "chemical" equilibrium ratio between quarks and gluons strongly increasing as $T\\rightarrow T_c$, the phase transition temperature. Accordingly we see in realistic simulations of uRHIC's a rapid evolution from a gluon dominated initial state to a quark dominated plasma close to $T_c$. The quark to gluon ratio can be modified by about a factor of $\\sim 20$ in the bulk of the system and appears to be large also in the high $p_T$ region. We discuss how this aspect, often overflown, can be essential for a quantitative study of several key issues in the QGP physics: shear viscosity, jet quenching, quarkonia suppression. Furthemore a bulk plasma made by mo...

  15. Extended Quark Potential Model from Random Phase Approximation

    Institute of Scientific and Technical Information of China (English)

    DENG Wei-Zhen; CHEN Xiao-Lin; LU Da-Hai; YANG Li-Ming

    2002-01-01

    The quark potential model is extended to include the sea quark excitation using the random phase approx-imation. The effective quark interaction preserves the important QCD properties - chiral symmetry and confinementsimultaneously. A primary qualitative analysis shows that the π meson as a well-known typical Goldstone boson andthe other mesons made up of valence qq quark pair such as the ρ meson can also be described in this extended quarkpotential model.

  16. Rare Λb → nl+l- decays in the relativistic quark-diquark picture

    Science.gov (United States)

    Faustov, R. N.; Galkin, V. O.

    2017-08-01

    The form factors of the rare Λb → nl+l- decays are calculated in the framework of the relativistic quark-diquark picture of baryons with the consistent account of the relativistic effects. Their momentum transfer squared dependence is determined explicitly in the whole accessible kinematical range. The decay branching fractions, forward-backward asymmetries and the fractions of longitudinally polarized dileptons are determined. The branching fraction of the rare Λb → nμ+μ- decay are found to be Br(Λb → nμ+μ-) = (3.75 ± 0.38) × 10-8 and thus could be measured at the LHC. Prediction for the branching fraction of the rare radiative Λb → nγ decay is also given.

  17. Ground state heavy baryon production in a relativistic quark-diquark model

    CERN Document Server

    Nobary, M A Gomshi

    2007-01-01

    We use current-current interaction to calculate the fragmentation functions to describe the production of spin-1/2, spin-1/2$'$ and spin-3/2 baryons with massive constituents in a relativistic quark-diquark model. Our results are in their analytic forms and are applicable for singly, doubly and triply heavy baryons. We discuss the production of $\\Omega_{bbc}$, $\\Omega_{bcc}$ and $\\Omega_{ccc}$ baryons in some detail. The results are satisfactorily compared with those obtained for triply heavy baryons calculated in a perturbative regime within reasonable values of the parameters involved.

  18. Towards next-to-leading order corrections to the heavy quark potential in the effective string theory

    Science.gov (United States)

    Hwang, Sungmin

    2017-03-01

    We present our calculation of the non-relativistic corrections to the heavy quark-antiquark potential up to leading and next-to-leading order (NLO) via the effective string theory (EST). Full systematics of effective field theory (EFT) are discussed in order for including the NLO contribution that arises in the EST. We also show how the number of dimensionful parameters arising from the EST are reduced by the constraints between the Wilson coeffcients from non-relativistic EFTs for QCD.

  19. Duality in the non-relativistic harmonic oscillator quark model in the Shifman-Voloshin limit a pedagogical example

    CERN Document Server

    Le Yaouanc, A; Morénas, V; Oliver, L; Pène, O; Raynal, J C

    2000-01-01

    The detailed way in which duality between sum of exclusive states and the free quark model description operates in semileptonic total decay widths, is analysed. It is made very explicit by the use of the non relativistic harmonic oscillator quark model in the SV limit, and a simple interaction current with the lepton pair. In particular, the Voloshin sum rule is found to eliminate the mismatches of order $\\delta m/m_b^2$.

  20. Relativistic effects on the neutron charge form factor in the constituent quark model

    CERN Document Server

    Cardarelli, F

    1999-01-01

    The neutron charge form factor GEn(Q**2) is investigated within a constituent quark model formulated on the light-front. It is shown that, if the quark initial motion is neglected in the Melosh rotations, the Dirac neutron form factor F1n(Q**2) receives a relativistic correction which cancels exactly against the Foldy term in GEn(Q**2), as it has been recently argued by Isgur. Moreover, at the same level of approximation the ratio of the proton to neutron magnetic form factors GMp(Q**2)/GMn(Q**2) is still given by the naive SU(6)-symmetry expectation, -3/2. However, it is also shown that the full Melosh rotations break SU(6) symmetry, giving rise to GEn(Q**2) neq 0 and GMp(Q**2)/GMn(Q**2) neq -3/2 even when a SU(6)-symmetric canonical wave function is assumed. It turns out that relativistic effects alone cannot explain simultaneously the experimental data on GEn(Q**2) and GMp(Q**2)/GMn(Q**2).

  1. Chemical Potential Dependence of the Dressed—Quark Propagator from an Effective Quark—Quark Interaction

    Institute of Scientific and Technical Information of China (English)

    ZONGHong-Shi; PINGJia-Lun; 等

    2002-01-01

    We exhibit a method for obtaining the low chemical potential dependence of the dressed quark propagator from the dressed-quark propagator,which provides a means of determining the behavior of the chiral and deconfinement order parameters.A comparison with the results of previous researches is given.

  2. Constituent gluons and the static quark potential

    CERN Document Server

    Greensite, Jeff

    2015-01-01

    We suggest that Hamiltonian matrix elements between physical states in QCD might be approximated, in Coulomb gauge, by "lattice-improved" tree diagrams; i.e. tree diagram contributions with dressed ghost, transverse gluon, and Coulomb propagators obtained from lattice simulations. Such matrix elements can be applied to a variational treatment of hadronic states which include constituent gluons. As an illustration and first application of this hybrid approach, we derive a variational estimate of the heavy quark potential for distances up to 2.5 fm. The Coulomb string tension in SU(3) gauge theory is about a factor of four times greater than the asymptotic string tension. In our variational approach, using for simplicity a single variational parameter, we can reduce this overshoot by nearly the factor required. The building blocks of our approach are Coulomb gauge propagators, and in this connection we present new lattice results for the ghost and transverse gluon propagators in position space.

  3. Constituent gluons and the static quark potential

    Energy Technology Data Exchange (ETDEWEB)

    Greensite, Jeff [San Francisco State Univ., CA (United States); Szczepaniak, Adam P. [Indiana Univ., Bloomington, IN (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2016-04-01

    We suggest that Hamiltonian matrix elements between physical states in QCD might be approximated, in Coulomb gauge, by "lattice-improved" tree diagrams; i.e. tree diagram contributions with dressed ghost, transverse gluon, and Coulomb propagators obtained from lattice simulations. Such matrix elements can be applied to a variational treatment of hadronic states which include constituent gluons. As an illustration and first application of this hybrid approach, we derive a variational estimate of the heavy quark potential for distances up to 2.5 fm. The Coulomb string tension in SU(3) gauge theory is about a factor of four times greater than the asymptotic string tension. In our variational approach, using for simplicity a single variational parameter, we can reduce this overshoot by nearly the factor required. The building blocks of our approach are Coulomb gauge propagators, and in this connection we present new lattice results for the ghost and transverse gluon propagators in position space.

  4. Effect of temperature gradient on heavy quark anti-quark potential using gravity dual model

    CERN Document Server

    Ganesh, S

    2016-01-01

    The Quark-gluon plasma (QGP) is an expanding fireball, with finite dimensions. Given the finite dimensions, the temperature would be highest at the center, and close to the critical temperature, $T_c$, at the boundary, giving rise to a temperature gradient inside the QGP. A heavy quark anti-quark pair immersed in the QGP medium would see this temperature gradient. The effect of the temperature gradient on the quark anti-quark potential is analyzed using a gravity dual model. The resulting modification to the potential due to the temperature gradient is seen to have a $L^{-2}$ correction term. This could be a possible fallout of the breaking of conformal invariance at finite temperature.

  5. Collective modes of an anisotropic quark-gluon plasma induced by relativistic jets

    CERN Document Server

    Mandal, Mahatsab

    2012-01-01

    We discuss the characteristics of collective modes induced by relativistic jets in an anisotropic quark-gluon plasma(AQGP). Assuming a tsunami-like initial jet distribution, it is found that the dispersion relations for both the stable and unstable modes are modified substantially due to the passage of jet compared to the case when there is no jet. It has also been shown that the growth rate of instability first increases compared to the no jet case and then completely turned into damping except the case when the jet velocity is perpendicular to the wave vector in which case the instability always grows. Thus, the introduction of the jet in the AQGP, in general, might to faster isotropization for the special case when the wave vector is parallel to the anisotropy axis.

  6. B-meson decay constants from 2+1-flavor lattice QCD with domain-wall light quarks and relativistic heavy quarks

    Energy Technology Data Exchange (ETDEWEB)

    Christ, Norman H. [Columbia Univ., New York, NY (United States); Flynn, Jonathan M. [Univ. of Southampton, Southampton (United Kingdom); Izubuchi, Taku [Brookhaven National Lab. (BNL), Upton, NY (United States); Kawanai, Taichi [RIKEN, Wako (Japan); Brookhaven National Lab. (BNL), Upton, NY (United States); Lehner, Christoph [Brookhaven National Lab. (BNL), Upton, NY (United States); Soni, Amarjit [Brookhaven National Lab. (BNL), Upton, NY (United States); Van de Water, Ruth S. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Witzel, Oliver [Boston Univ., Boston, MA (United States)

    2015-03-10

    We calculate the B-meson decay constants fB, fBs, and their ratio in unquenched lattice QCD using domain-wall light quarks and relativistic b-quarks. We use gauge-field ensembles generated by the RBC and UKQCD collaborations using the domain-wall fermion action and Iwasaki gauge action with three flavors of light dynamical quarks. We analyze data at two lattice spacings of a ≈ 0.11, 0.086 fm with unitary pion masses as light as Mπ ≈ 290 MeV; this enables us to control the extrapolation to the physical light-quark masses and continuum. For the b-quarks we use the anisotropic clover action with the relativistic heavy-quark interpretation, such that discretization errors from the heavy-quark action are of the same size as from the light-quark sector. We renormalize the lattice heavy-light axial-vector current using a mostly nonperturbative method in which we compute the bulk of the matching factor nonperturbatively, with a small correction, that is close to unity, in lattice perturbation theory. We also improve the lattice heavy-light current through O(αsa). We extrapolate our results to the physical light-quark masses and continuum using SU(2) heavy-meson chiral perturbation theory, and provide a complete systematic error budget. We obtain fB0 = 196.2(15.7) MeV, fB+ = 195.4(15.8) MeV, fBs = 235.4(12.2) MeV, fBs/fB0 = 1.193(59), and fBs/fB+ = 1.220(82), where the errors are statistical and total systematic added in quadrature. In addition, these results are in good agreement with other published results and provide an important independent cross check of other three-flavor determinations of B-meson decay constants using staggered light quarks.

  7. Exciting gauge unstable modes of the quark-gluon plasma by relativistic jets

    Energy Technology Data Exchange (ETDEWEB)

    Mannarelli, M; Manuel, C [Instituto de Ciencias del Espacio (IEEC/CSIC), Campus Universitat Autonoma de Barcelona, Facultat de Ciencies, Torre C5 E-08193 Bellaterra (Barcelona) (Spain)], E-mail: massimo@ieec.uab.es

    2008-05-15

    We present a study of the properties of the collective modes of a system composed by a thermalized quark-gluon plasma traversed by a relativistic jet of partons. We find that when the jet traverses the system unstable gauge field modes are excited and grow on very short time scales. The aim is to provide a novel mechanism for the description of the jet quenching phenomenon, where the jet crossing the plasma loses energy exciting colored unstable modes. In order to simplify the analysis we employ a linear response approximation, valid for short time scales. We assume that the partons in the jet can be described with a tsunami-like distribution function, whereas we treat the quark-gluon plasma employing two different approaches. In the first approach we adopt a Vlasov approximation for the kinetic equations, in the second approach we solve a set of fluid equations. In both cases we derive the expressions of the dispersion law of the collective unstable modes and compare the results obtained.

  8. Initial energy density of quark-gluon plasma in relativistic heavy-ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Wong, C.Y.

    1984-01-01

    Recently, there has been considerable interest in the central rapidity region of highly relativistic heavy-ion collisions. Such an interest stems from the possibility of creating hadron matter of high energy density which may exceed the critical energy density for a phase transition between ordinary confined matter and the unconfined quark-gluon plasma. The experimental searches and identification of the quark-gluon plasma may provide a new insight into the question of quark confinement. The estimate of the initial energy density is quite uncertain. The initial energy density is nonetheless an important physical quantity. It is one of the factors which determines whether the produced matter can undergo phase transition or not. The energy density has been estimated previously by using the color neutralization model of Brodsky et al. However, the color neutralization model gives a central rapidity multiplicity in heavy-ion collision too low by a factor of two. For this reason, we wish to obtain a better estimate of the energy density (in the central rapidity region). As is well known, a simple Glauber-type multiple collision model can reproduce the total multiplicity and multiplicity plateau near the central rapidity region to within 30%. The simple multiple collision model has an approximate validity as a gross description of the reaction process. We shall adopt a semiempirical approach. Using the multiple collision model and the thickness function of Glauber, we obtain analytical functional form for all the quantities in question. A single parameter, r/sub rms/, is adjusted to fit the experimental central rapidity multiplicity data. The semi-empirical results provide a useful tool to extrapolate to the unknown central rapidity region of heavy-ion collisions.

  9. Meson-Meson Scattering in the Relativistic Quark Model from Constraint Dynamics

    Science.gov (United States)

    Crater, Horace; Wong, Cheuk-Yin

    2004-11-01

    Previously, Crater and Van Alstine footnote H.W. Crater and P. Van Alstine, Ann. Phys. (N.Y.) Vol. 148, 57 (1983) employed Dirac's relativistic constraint dynamics to derive Two-Body Dirac equations which were subsequently applied successfully to obtain a covariant nonperturbative description of QED and QCD bound states footnote H.W. Crater, R.L. Becker, C.Y. Wong, and P. Van Alstine, Phys. Rev. D, Vol.46, 5117 (1992), H. Crater and P. Van Alstine to appear in Phys. Rev. D Vol 70 (hep-ph/0208186). We use this formalism to generalize the microscopic theory of meson-meson scattering developed by Barnes and Swanson footnote T. barnes and E.S. Swanson, Phys. Rev. D Vol. 46, 131 (1992) footnote C.Y. Wong, T. Barnes and E.S. Swanson, Phys. Rev. C Vol 62, 045201 (2001)from the nonrelativistic to the relativistic domain. The application of the present formalism will be demonstrated with a simple quark model for the scattering of mesons.

  10. Hadron Mass Spectra and Decay Rates in a Potential Model with Relativistic Wave Equations.

    Science.gov (United States)

    Namgung, Wuk

    Hadron properties of mass spectra and decay rates are calculated in a quark potential model. Wave equations based on the Klein-Gordon and Todorov equations both of which incorporate the feature of relativistic two-body kinematics are used. The wave equations are modified to contain potentials which transform either like a Lorentz scalar or like a time-component of a four-vector. Potentials based on the Fogleman-Lichtenberg-Wills potential which has the properties suggested by QCD of both confinement and asymptotic freedom are used. The potentials, motivated by QCD but otherwise phenomenological, are further generalized to forms which can apply to any color representation. To break the degeneracy between vector and pseudoscalar mesons or between spin-3/2 and spin-1/2 baryons, the essential feature of spin dependence is included in the potentials. The masses of vector and pseudoscalar mesons are calculated with only a small number of adjustable parameters, and good qualitative agreement with experiment is obtained for both heavy and light mesons. Baryons are treated in this framework by making use of a quark-diquark two-body model of baryons. First, diquark properties are calculated without any additional parameters. The g-factors of diquarks and spin-flavor configuration of baryons, which are necessary for the calculation of baryons, are given. Then baryon masses are calculated also without additional parameters. The results of the masses of ground-state baryons are in good qualitative agreement with experiment. Also effective constituent quark masses are obtained using current quark masses as input. The calculated effective constituent quark masses are in the right range of the values that most theoretical estimates have given. The general qualitative features of hadron spectra are similar with the two relativistic wave equations, although there are differences in detail. The Van Royen-Weisskopf formula for electromagnetic decay widths of vector mesons into lepton

  11. Heavy quark potential from deformed AdS5 models

    Science.gov (United States)

    Zhang, Zi-qiang; Hou, De-fu; Chen, Gang

    2017-04-01

    In this paper, we investigate the heavy quark potential in some holographic QCD models. The calculation relies on a modified renormalization scheme mentioned in a previous work of Albacete et al. After studying the heavy quark potential in Pirner-Galow model and Andreev-Zakharov model, we extend the discussion to a general deformed AdS5 case. It is shown that the obtained potential is negative definite for all quark-antiquark separations, differs from that using the usual renormalization scheme.

  12. Instanton effects on the heavy-quark static potential

    Science.gov (United States)

    Yakhshiev, U. T.; Kim, Hyun-Chul; Turimov, B.; Musakhanov, M. M.; Hiyama, Emiko

    2017-08-01

    We investigate instanton effects on the heavy-quark potential, including its spin-dependent part, based on the instanton liquid model. Starting with the central potential derived from the instanton vacuum, we obtain the spin-dependent part of the heavy-quark potential. We discuss the results of the heavy-quark potential from the instanton vacuum. Finally, we solve the nonrelativistic two-body problem, associated with the heavy-quark potential from the instanton vacuum. The instanton effects on the quarkonia spectra are marginal but are required for quantitative description of the spectra. Supported by Basic Science Research Program through the National Research Foundation (NRF) of Korea funded by the Korean government (Ministry of Education, Science and Technology, MEST), Grant Numbers 2016R1D1A1B03935053 (UY) and 2015R1D1A1A01060707 (HChK) and The work was also partly Supported by RIKEN iTHES Project

  13. Thermalization of Quark Matter Produced at the Highest Energy of a Relativistic Heavy-Ion Collider

    Institute of Scientific and Technical Information of China (English)

    XU Xiao-Ming

    2005-01-01

    @@ Thermalization of quark matter is studied via a transport equation, which includes triple-quark elastic scattering amplitudes calculated in perturbative QCD. The triple-quark scatterings are demonstrated to be important for an anisotropic initial quark distribution produced in central Au-Au collisions at √sNN = 200 GeV. By examining momentum isotropy to which the transport equation leads, we can determine a thermalization time of 2.2fm/c for quark matter itself to thermalize by the two-quark and the triple-quark elastic scatterings. Meanwhile, an initial thermal quark distribution function is obtained.

  14. Nucleon electromagnetic form factors and electroexcitation of low lying nucleon resonances in a light-front relativistic quark model

    CERN Document Server

    Aznauryan, I G

    2012-01-01

    We utilize a light-front relativistic quark model (LF RQM) to predict the 3q core contribution to the electroexcitation amplitudes for the Delta(1232)P33, N(1440)P11, N(1520)D13, and N(1535)S11 up to Q2= 12GeV2. The parameters of the model have been specified via description of the nucleon electromagnetic form factors in the approach that combines 3q and pion-cloud contributions in the LF dynamics.

  15. Quark-antiquark potentials from QCD and quarkonium spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Laschka, Alexander

    2012-12-11

    This work examines the interaction between a heavy quark and its antiquark. By combining perturbative and non-perturbative methods, interaction potentials with an extended range of validity are derived from quantum chromodynamics. Using these potentials the spectra of the quarkonium bound states are calculated and compared with experimental results. This provides a new approach for determining the masses of the charm and bottom quark.

  16. Mesons in the Constituent Quark Model

    Institute of Scientific and Technical Information of China (English)

    WANG Li; PING Jia-Lun

    2007-01-01

    The quark-antiquark (q(-q)) spectrum is studied by solving the Schrǒdinger equation in the framework of non-relativistic constituent quark model. An overall good fit to the experimental data of meson is obtained. The interactions between quark and antiquark consist of quadratic colour confinement-exchange, one-gluon-exchange, and Goldstone-boson-exchange potentials.

  17. Heavy meson spectra for heavy quark potential in quantum chromodynamics with dilaton

    Institute of Scientific and Technical Information of China (English)

    陈洪; 杨兴华; 姜焕清

    2002-01-01

    For heavy meson systems, we study the heavy quark potential, which emerges from the effective dilaton-gluoncoupling inspired from the superstring theory. We put emphasis on the new confinement generating mechanism of thispotential through the investigation of the spin-averaged energy levels of the heavy meson systems. By using a unifiedapproach to the solutions of the Schrodinger and the spinless Salpeter equations, we can examine in a realistic waythe effects of using a relativistic kinetic energy. The obtained results agree favourably with other predictions, and therelativistic equation can better account for the observed energy levels.

  18. Hadron production in relativistic heavy ion interactions and the search for the quark-gluon plasma

    Energy Technology Data Exchange (ETDEWEB)

    Tannenbaum, M.J.

    1989-12-01

    The course starts with an introduction, from the experimentalist's point of view, of the challenge of measuring Relativistic Heavy Ion interactions. A review of some theoretical predictions for the expected signatures of the quark gluon plasma will be made, with a purpose to understand how they relate to quantities which may be experimentally measured. A short exposition of experimental techniques and details is given including charged particles in matter, momentum resolution, kinematics and Lorentz Transformations, calorimetry. Principles of particle identification including magnetic spectrometers, time of flight measurement. Illustrations using the E802 spectrometer and other measured results. Resolution smearing of spectra, and binning effects. Parent to daughter effects in decay, with {pi}{sup 0} {yields} {gamma} {gamma} as an example. The experimental situation from the known data in p -- p collisions and proton-nucleus reactions is reviewed and used as a basis for further discussions. The Cronin Effect'' and the Seagull Effect'' being two arcana worth noting. Then, selected experiments from the BNL and CERN heavy ion programs are discussed in detail. 118 refs., 45 figs.

  19. Charm quarks as a probe of matter produced in relativistic nucleus-nucleus collisions

    Directory of Open Access Journals (Sweden)

    Ali Yasir

    2014-04-01

    Full Text Available Direct measurement of hadrons containing charm quark carries important information about the initial stage of the nucleus-nucleus collision at relativistic energies. The study of open charm in Pb-Pb collisions at SPS energies will be a powerful tool to investigate the production of heavy flavours and their interaction with the medium produced in such collisions. A feasibility study was initiated for the measurement of the D0 mesons (open charm by its two-body decay into pion and kaon in central Pb-Pb collision at SPS energies in NA61/SHINE experiment. To generate the physical input we used AMPT (A Multi Phase Transport Model event generator and employed GEANT4 application to describe particle transport through the NA61/SHINE experimental setup supplemented by a future vertex detector (VD that will allow for precise vertex reconstruction close to the primary interaction point. The results of the simulation shows that this measurement is feasible with a dedicated VD which allows the precise tracking close to the target.

  20. Octet baryons in the independent-quark-model approach based on the Dirac equation with a power-law potential

    Energy Technology Data Exchange (ETDEWEB)

    Barik, N.; Das, M. (Utkal Univ., Bhubaneswar (India). Dept. of Physics)

    1983-01-13

    Several properties of octet baryons such as (i) the magnetic moment, (ii) (Gsub(A)/Gsub(v))sub(n) for neutron ..beta..-decay and (iii) the charge radius of the proton have been calculated in a simple independent-quark model under the assumption that the individual constituent quarks are confined, in first approximation, by a relativistic power-law potential Vsub(q)(r)=(1+..beta..) (asup(..nu..+1)rsup(..nu..)+V/sub 0/) with a, ..nu..>0. In view of the simplicity of the model, the results obtained are quite encouraging.

  1. Parton Distributions in Nucleon on the Basis of a Relativistic Independent Quark Model

    CERN Document Server

    Barik, N

    2001-01-01

    At a low resolution scale with $Q^2={\\mu}^2$ corresponding to the nucleon bound state; deep inelastic unpolarized structure functions $F_1(x,{\\mu}^2)$ and $F_2(x,{\\mu}^2)$ are derived with correct support using the symmetric part of the hadronic tensor under some simplifying assumptions in the Bjorken limit. For doing this; the nucleon in its ground state has been represented by a suitably constructed momentum wave packet of its valence quarks in their appropriate SU(6) spin flavor configuration with the momentum probability amplitude taken phenomenologically in reference to the independent quark model of scalar-vector harmonic potential. The valence quark distribution functions $u_v(x,{\\mu}^2)$ and $d_v(x,{\\mu}^2)$, extracted from the structure function $F_1(x,{\\mu}^2)$ in a parton model interpretation, satisfy normalization constraints as well as the momentum sum-rule requirements at a bound state scale of ${\\mu}^2=0.1 GeV^2$. QCD evolution of these distribution functions taken as the inputs; yields at $Q_0...

  2. Hot QCD equation of state and quark-gluon plasma-- finite quark chemical potential

    CERN Document Server

    Chandra, Vinod

    2008-01-01

    We explore the relevance of a hot QCD equation of state of $O[g^6\\ln(1/g)]$, which has been obtained\\cite{avrn} for non-vanishing quark-chemical potentials to heavy ion collisions. Employing a method proposed in a recent paper \\cite{chandra1}, we use the EOS to determine a host of thermodynamic quantities, the energy density, specific heat, entropy dnesity, and the temperature dependence of screening lengths, with the behaviour of QGP at RHIC and LHC in mind. We also investigate the sensitivity of these observables to the quark chemical potential.

  3. Angular Momentum Dependent Quark Potential of QCD Traits and Dynamical O(4) Symmetry

    CERN Document Server

    Compean, C B

    2006-01-01

    A common quark potential that captures the essential traits of the QCD quark-gluon dynamics is expected to (i) interpolate between a Coulomb-like potential (associated with one-gluon exchange) and the infinite wall potential (associated with trapped but asymptotically free quarks), (ii) reproduce in the intermediary region the linear confinement potential (associated with multi-gluon self-interactions) as established by lattice QCD calculations of hadron properties. We first show that the exactly soluble trigonometric Rosen-Morse potential possesses all these properties. Next we observe that this potential, once interpreted as angular momentum dependent, acquires a dynamical O(4) symmetry and reproduces exactly quantum numbers and level splittings of the non-strange baryon spectra in the SU(2)_I* O(4) classification scheme according to which baryons cling on to multi-spin parity clusters of the type (K/2,K/2)*[(1/2,0) + (0, 1/2)], whose relativistic image is \\psi_{\\mu_{1}...\\mu_{K}}. Finally, we bring exact e...

  4. Towards next-to-leading order corrections to the heavy quark potential in the effective string theory

    Directory of Open Access Journals (Sweden)

    Hwang Sungmin

    2017-01-01

    Full Text Available We present our calculation of the non-relativistic corrections to the heavy quark-antiquark potential up to leading and next-to-leading order (NLO via the effective string theory (EST. Full systematics of effective field theory (EFT are discussed in order for including the NLO contribution that arises in the EST. We also show how the number of dimensionful parameters arising from the EST are reduced by the constraints between the Wilson coeffcients from non-relativistic EFTs for QCD.

  5. Heavy quark potential from QCD-related effective coupling

    Science.gov (United States)

    Ayala, César; González, Pedro; Vento, Vicente

    2016-12-01

    We implement our past investigations of quark-antiquark interaction through a non-perturbative running coupling defined in terms of a gluon mass function, similar to that used in some Schwinger-Dyson approaches. This coupling leads to a quark-antiquark potential, which satisfies not only asymptotic freedom but also describes linear confinement correctly. From this potential, we calculate the bottomonium and charmonium spectra below the first open flavor meson-meson thresholds and show that for a small range of values of the free parameter determining the gluon mass function an excellent agreement with data is attained.

  6. Quark number susceptibilities at finite chemical potential from fugacity expansion

    CERN Document Server

    Schadler, Hans-Peter

    2014-01-01

    Generalized quark number susceptibilities are expected to be good probes for the phase transitions in QCD and the search of a possible critical point. However, their computation in lattice QCD is plagued by the complex action problem which appears at finite chemical potential mu. In this work we explore the possibilities of an expansion in the fugacity parameter exp(mu beta) which has features that make, in particular quark number related bulk observables easily accessible. We present results at finite chemical potential for generalized susceptibilities up to the 4th order as well as their ratios and compare them to model calculations.

  7. Hadronic correction to Coulomb potential between quarks and diquark structure

    Energy Technology Data Exchange (ETDEWEB)

    Xin-Heng, Guo [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil); Xue-Qian, Li; Peng-Nian, Shen [Academia Sinica, Beijing, BJ (China). Inst. of High Energy Physics; Chuang, Wang [Nankai Univ., TJ (China). Dept. of Physics

    1997-07-01

    We have studied the hadronic correction from the background pion fields due to the chiral symmetry breaking to the Coulomb potential that governs the short-distance behavior of the interactions between the bound quarks. The background fields are associated with the constituent quark mass. We find a modified form which favors the diquark structure. We also roughly estimate an influence of this correction on the phase shifts in nucleon scattering and find that it may cause an extra middle range attraction between nucleons which is expected. (author) 17 refs., 4 figs.

  8. Quarks

    Science.gov (United States)

    Gell-Mann, M.

    In these lectures I want to speak about at least two interpretations of the concept of quarks for hadrons and the possible relations between them. First I want to talk about quarks as "constituent quarks". These were used especially by G. Zweig (1964) who referred to them as aces. One has a sort of a simple model by which one gets elementary results about the low-lying bound and resonant states of mesons and baryons, and certain crude symmetry properties of these states, by saying that the hadrons act as if they were made up of subunits, the constituent quarks q. These quarks are arranged in an isotopic spin doublet u, d and an isotopic spin singlet s, which has the same charge as d and acts as if it had a slightly higher mass…

  9. Static quark-antiquark potential in the quark-gluon plasma from lattice QCD.

    Science.gov (United States)

    Burnier, Yannis; Kaczmarek, Olaf; Rothkopf, Alexander

    2015-02-27

    We present a state-of-the-art determination of the complex valued static quark-antiquark potential at phenomenologically relevant temperatures around the deconfinement phase transition. Its values are obtained from nonperturbative lattice QCD simulations using spectral functions extracted via a novel Bayesian inference prescription. We find that the real part, both in a gluonic medium, as well as in realistic QCD with light u, d, and s quarks, lies close to the color singlet free energies in Coulomb gauge and shows Debye screening above the (pseudo)critical temperature T_{c}. The imaginary part is estimated in the gluonic medium, where we find that it is of the same order of magnitude as in hard-thermal loop resummed perturbation theory in the deconfined phase.

  10. The relativistic bound states of a non-central potential

    Indian Academy of Sciences (India)

    MAHDI ESHGHI; HOSSEIN MEHRABAN; SAMEER MIKHDAIR

    2017-04-01

    We investigate the relativistic effects of a moving particle in the field of a pseudoharmonic oscillatory ring-shaped potential under the spin and pseudospin symmetric Dirac wave equation. We obtain the bound-state energy eigenvalue equation and the corresponding two-components spinor wave functions by using the formalism of supersymmetric quantum mechanics (SUSYQM). Furthermore, the non-relativistic limits are obtained by simply making a proper replacement of parameters. The thermodynamic properties are also studied. Our numerical results for the energy eigenvalues are also presented.

  11. Transport coefficients of heavy quarks around $T_c$ at finite quark chemical potential

    CERN Document Server

    Berrehrah, H; Aichelin, J; Cassing, W; Torres-Rincon, J M; Bratkovskaya, E

    2014-01-01

    The interactions of heavy quarks with the partonic environment at finite temperature $T$ and finite quark chemical potential $\\mu_q$ are investigated in terms of transport coefficients within the Dynamical Quasi-Particle model (DQPM) designed to reproduce the lattice-QCD results (including the partonic equation of state) in thermodynamic equilibrium. These results are confronted with those of nuclear many-body calculations close to the critical temperature $T_c$. The hadronic and partonic spatial diffusion coefficients join smoothly and show a pronounced minimum around $T_c$, at $\\mu_q=0$ as well as at finite $\\mu_q$. Close and above $T_c$ its absolute value matches the lQCD calculations for $\\mu_q=0$. The smooth transition of the heavy quark transport coefficients from the hadronic to the partonic medium corresponds to a cross over in line with lattice calculations, and differs substantially from perturbative QCD (pQCD) calculations which show a large discontinuity at $T_c$. This indicates that in the vicini...

  12. Gluon chains and the quark-antiquark potential

    CERN Document Server

    Greensite, J

    2009-01-01

    The flux tube between a quark and an antiquark in Coulomb gauge is imagined in the gluon-chain model as a sequence of constituent gluons bound together by Coulombic nearest-neighbor interactions. We diagonalize the transfer matrix in SU(2) lattice gauge theory in a finite basis of states containing a static quark-antiquark pair together with zero, one, and two gluons in Coulomb gauge. We show that while the string tension of the color-Coulomb potential (obtained from the zero-gluon to zero-gluon element of the transfer matrix) overshoots the true asymptotic string tension by a factor of about three, the inclusion of a few states with constituent gluons reduces the discrepancy considerably. The minimal energy eigenstate of the transfer matrix in the zero-, one-, and two-gluon basis exhibits a linearly rising potential with the string tension only about 1.4 times larger than the asymptotic one.

  13. General relativistic ray-tracing algorithm for the determination of the electron-positron energy deposition rate from neutrino pair annihilation around rotating neutron and quark stars

    Science.gov (United States)

    Kovács, Z.; Harko, T.

    2011-11-01

    We present a full general relativistic numerical code for estimating the energy-momentum deposition rate (EMDR) from neutrino pair annihilation (?). The source of the neutrinos is assumed to be a neutrino-cooled accretion disc around neutron and quark stars. We calculate the neutrino trajectories by using a ray-tracing algorithm with the general relativistic Hamilton's equations for neutrinos and derive the spatial distribution of the EMDR due to the annihilations of neutrinos and antineutrinos around rotating neutron and quark stars. We obtain the EMDR for several classes of rotating neutron stars, described by different equations of state of the neutron matter, and for quark stars, described by the Massachusetts Institute of Technology (MIT) bag model equation of state and in the colour-flavour-locked (CFL) phase. The distribution of the total annihilation rate of the neutrino-antineutrino pairs around rotating neutron and quark stars is studied for isothermal discs and accretion discs in thermodynamical equilibrium. We demonstrate both the differences in the equations of state for neutron and quark matter and rotation with the general relativistic effects significantly modify the EMDR of the electrons and positrons generated by the neutrino-antineutrino pair annihilation around compact stellar objects, as measured at infinity.

  14. Quark sea asymmetry of the nucleon

    Science.gov (United States)

    Mírez, Carlos; Tomio, Lauro; Trevisan, L. A.; Frederico, T.

    2010-02-01

    The light anti-quark and quark distribution in the proton, as well as the neutron to proton ratio of the structure functions, extracted from experimental data, are well fitted by a statistical model of linear-confined quarks. The parameters of the model are given by a temperature, which is adjusted by the Gottfried sum-rule violation, and two chemical potentials given by the corresponding up ( u) and down ( d) quark normalizations in the nucleon. The quark energy levels are generated by a relativistic linear-confined scalar plus vector potential.

  15. Dilepton production as a useful probe of quark gluon plasma with temperature dependent chemical potential quark mass

    Science.gov (United States)

    Kumar, Yogesh; Singh, S. Somorendro

    2016-07-01

    We extend the previous study of dilepton production using [S. Somorendro Singh and Y. Kumar, Can. J. Phys. 92 (2014) 31] based on a simple quasiparticle model of quark-gluon plasma (QGP). In this model, finite value of quark mass uses temperature dependent chemical potential the so-called Temperature Dependent Chemical Potential Quark Mass (TDCPQM). We calculate dilepton production in the relevant range of mass region. It is observed that the production rate is marginally enhanced from the earlier work. This is due to the effect of TDCPQM and its effect is highly significant in the production of dilepton.

  16. A new scheme of causal viscous hydrodynamics for relativistic heavy-ion collisions: Riemann solver for quark-gluon plasma

    CERN Document Server

    Akamatsu, Yukinao; Nonaka, Chiho; Takamoto, Makoto

    2013-01-01

    In this article, we present a state-of-the-art algorithm for solving the relativistic viscous hydrodynamic equation with QCD equation of state. The numerical method is based on the second-order Godunov method and has less numerical dissipation, which are crucial in describing of quark-gluon plasma in high energy heavy-ion collisions. We apply the algorithm to several numerical test problems such as sound wave propagation, shock tube and blast wave problems. In the sound wave propagation, the intrinsic {\\em numerical} viscosity is measured and its explicit expression is shown, which is the second-order of spatial resolution both in the presence and absence of {\\em physical} viscosity. The expression of the numerical viscosity can be used to determine the maximum cell size in order to accurately measure the effect of physical viscosity in the numerical simulation.

  17. Single photons, dileptons and hadrons from relativistic heavy ion collisions and quark-hadron phase transition

    Indian Academy of Sciences (India)

    Dinesh Kumar Srivastava

    2001-08-01

    The production of single photons in Pb+Pb collisions at the CERN SPS as measured by the WA98 experiment is analysed. A quark gluon plasma is assumed to be formed initially, which expands, cools, hadronizes, and undergoes freeze-out. A rich hadronic equation of state is used and the transverse expansion of the interacting system is taken into account. The recent estimates of photon production in quark-matter (at two loop level) along with the dominant reactions in the hadronic matter leading to photons are used. About half of the radiated photons are seen to have a thermal origin. The same treatment and the initial conditions provide a very good description to hadronic spectra measured by several groups and the intermediate mass dileptons measured by the NA50 experiment, lending a strong support to the conclusion that quark gluon plasma has been formed in these collisions. Predictions for RHIC and LHC energies are also given.

  18. Recent relativistic heavy ion collider results on photon, dilepton and heavy quark

    Indian Academy of Sciences (India)

    Frédéric Fleuret

    2009-01-01

    We present here a review of the recent results obtained by the RHIC experiments in the framework of QCD under extreme conditions of high temperature or large baryon density, the so-called quark gluon plasma. We focus on a specific category of observables: the electromagnetic probes which cover a large spectrum of experimental studies.

  19. Nucleon electromagnetic form factors in a relativistic quark model with chiral symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Barik, N.; Das, M.

    1987-05-01

    The nucleon electromagnetic form factors are computed in an independent quark model based on the Dirac equation. Corrections for centre-of-mass motion and pion-cloud effects are incorporated. Results for static quantities are in reasonable agreement with the experimental data.

  20. The Lienard-Wiechert potentials and relativistic length

    Science.gov (United States)

    Streltsov, V. N.

    Additional arguments in favor of the relativistic length concept and the elongation formula that follows from it are presented. The formula is obtained as a direct consequence of the Feynman-Wheeler presentation (the 'mean' Lienard-Wiechert potential). It is shown that the relativization of the radar measuring procedure also leads to the elongation formula. The deduction of the Lienard-Wiechert potential based on the Lorentz transformation of the Coulomb potential is given. The relationship of the formation way of radiation with the electric field sizes of a moving charge (that are in fact defined by the Lienard-Wiechert equipotential) is discussed.

  1. Quark-Number Susceptibility at Finite Chemical Potential and Zero Temperature

    Institute of Scientific and Technical Information of China (English)

    HE Deng-Ke; JIANG Yu; FENG Hong-Tao; SUN Wei-Min; ZONG Hong-Shi

    2008-01-01

    We give a direct method for calculating the quark-number susceptibility at finite chemical potential and zero temperature.In this approach the quark-number susceptibility is totally determined by G[μ](p)(the dressed quark propagator at finite chemical potential μ).By applying the general result in our previous study[Phys.Rev.C 71(2005)015205,034901,73 (2006) 016004] G[μ](p)is calculated from the model quark propagator proposed by Pagels and Stokar[Phys.Rev.D 20(1979)2947].The full analytic expression of the quark-number susceptibility at finite μ and zero T is obtained.

  2. Multi-strange-quark states at ultra-relativistic heavy-ion collisions

    Indian Academy of Sciences (India)

    J P Coffin; C Kuhn; B Hippolyte; J Baudot; I Belikov

    2003-05-01

    We examine the possibility of producing and evidencing exotic strange matter (strangelets and metastable multi-hypernuclear objects, MEMO’s), including also pure hyperonic bound states ((), (Ξ )), at RHIC and LHC. Simulations are presented to estimate the sensitivity of the STAR and ALICE experiments to the detection of these objects, focusing mainly on metastable short-lived (weak decaying) strange dibaryons, with a particular emphasis on the -dibaryon, a six quark-bag bound state (uuddss).

  3. Searching for quark matter with dileptons and photons: From SPS to relativistic heavy-ion collider

    Indian Academy of Sciences (India)

    Itzhak Tserruya

    2001-08-01

    The heavy-ion programme at the CERN SPS, which started back in ’86, has produced a wealth of very interesting and intriguing results in the quest for the quark-gluon plasma. The highlights of the programme on dilepton and direct photon measurements are reviewed emphasizing the most recent results obtained in Pb–Pb collisions at 158 A GeV. Prospects from RHIC are discussed.

  4. Relativistic and quantum electrodynamics effects in the helium pair potential.

    Science.gov (United States)

    Przybytek, M; Cencek, W; Komasa, J; Łach, G; Jeziorski, B; Szalewicz, K

    2010-05-01

    The helium pair potential was computed including relativistic and quantum electrodynamics contributions as well as improved accuracy adiabatic ones. Accurate asymptotic expansions were used for large distances R. Error estimates show that the present potential is more accurate than any published to date. The computed dissociation energy and the average R for the (4)He(2) bound state are 1.62+/-0.03 mK and 47.1+/-0.5 A. These values can be compared with the measured ones: 1.1(-0.2)(+0.3) mK and 52+/-4 A [R. E. Grisenti, Phys. Rev. Lett. 85, 2284 (2000)].

  5. Disentangling the timescales behind the nonperturbative heavy quark potential

    Science.gov (United States)

    Burnier, Yannis; Rothkopf, Alexander

    2012-09-01

    The static part of the heavy quark potential has been shown to be closely related to the spectrum of the rectangular Wilson loop. In particular the lowest lying positive frequency peak encodes the late time evolution of the two-body system, characterized by a complex potential. While initial studies assumed a perfect separation of early- and late-time physics, where a simple Lorentzian (Breit-Wigner) shape suffices to describe the spectral peak, we argue that scale decoupling in general is not complete. Thus early-time, i.e., nonpotential effects significantly modify the shape of the lowest peak. We derive on general grounds an improved peak distribution that reflects this fact. Application of the improved fit to nonperturbative lattice QCD spectra now yields a potential that is compatible with a transition to a deconfined screening plasma.

  6. Relativistic quark-diquark model of baryons with a spin-isospin transition interaction: Non-strange baryon spectrum and nucleon magnetic moments

    Energy Technology Data Exchange (ETDEWEB)

    Sanctis, M. de [Universidad Nacional de Colombia, Bogota (Colombia); Ferretti, J. [Universita La Sapienza, Dipartimento di Fisica, Roma (Italy); INFN, Roma (Italy); Santopinto, E.; Vassallo, A. [INFN, Sezione di Genova, Genova (Italy)

    2016-05-15

    The relativistic interacting quark-diquark model of baryons, recently developed, is here extended introducing in the mass operator a spin-isospin transition interaction. This refined version of the model is used to calculate the non-strange baryon spectrum. The results are compared to the present experimental data. A preliminary calculation of the magnetic moments of the proton and neutron is also presented. (orig.)

  7. A study of charm quark correlations in ultra-relativistic $p$ + $p$ collisions with PYTHIA

    CERN Document Server

    Shi, Shusu; Mustafa, Mustafa

    2015-01-01

    Measurements of heavy flavor quark (charm and bottom) correlations in heavy ion collisions are instrumental to understand the flavor dependence of energy loss mechanisms in hot and dense QCD media. Experimental measurements of these correlations in baseline $p$+$p$ collisions are crucial to understand the contributions of perturbative and non-perturbative QCD processes to the correlation functions and further help in interpreting correlation measurements in heavy ion collisions. In this paper, we investigate $D$-$\\bar{D}$ meson correlations and $D$ with one particle from $D$ meson decay daughter correlations using PYTHIA Event Generator in $p$ + $p$ collisions at $\\sqrt{s}$ = 200, 500 and 5500 GeV. Charm/bottom events are found to contribute mainly to the away side/near side pattern of $D$-electron correlations, respectively. In the energy region of RHIC, $D$-$\\bar{D}$ correlations inherit initial $c$-$\\bar{c}$ correlations and $B\\rightarrow DX$ decay contribution is insignificant. Furthermore, Bottom quark c...

  8. A Modified Approach for Calculating Dressed Quark Propagator at Finite Chemical Potential

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    Based on the rainbow approximation of Dyson-Schwinger equation and the assumption that the full inverse quark propagator at finite chemical potential is analytic in the neighborhood of μ = 0, it is proved that the dressed From the dressed quark propagator at finite chemical potential μ can be written as (g0-1)[μ]=iγ·(p~)A((p~2))+B((p~2))with (p~)μ=((p),p4+iμ).From the dressed quark propagator at finite chemical potential in Munczek model the bag constant of a baryon and the scalar quark condensate are evaluated. A comparison with previous results is given.

  9. Exact relativistic time evolution for a step potential barrier

    CERN Document Server

    Villavicencio, J

    2000-01-01

    We derive an exact analytic solution to a Klein-Gordon equation for a step potential barrier with cutoff plane wave initial conditions, in order to explore wave evolution in a classical forbidden region. We find that the relativistic solution rapidly evanesces within a depth $2x_p$ inside the potential, where $x_p$ is the penetration length of the stationary solution. Beyond the characteristic distance $2x_p$, a Sommerfeld-type precursor travels along the potential at the speed of light, $c$. However, no spatial propagation of a main wavefront along the structure is observed. We also find a non-causal time evolution of the wavefront peak. The effect is only an apparent violation of Einstein causality.

  10. Complete Monopole Dominance of the Static Quark Potential

    CERN Document Server

    Cundy, Nigel

    2016-01-01

    In earlier work, we used a gauge independent Abelian Decomposition to show that Abelian degrees of freedom are wholly responsible for the static quark potential. The restricted Abelian field can be split into two terms, a Maxwell term and a $\\theta$ (Dirac) term. The $\\theta$ term's contribution to the string tension can be analysed theoretically and numerically, and arises because of the existence of a certain type of monopole. While the Abelian field can be constructed without gauge fixing, its two component parts are gauge-dependent, with a gauge transformation moving the topological features from one part to another. This allows us to isolate and identify the topological objects responsible for confinement by constructing a gauge where the $\\theta$ term wholly accounts for the string tension. We confirm the presence of these monopoles in lattice simulations of SU(2) Yang-Mills theory.

  11. Strange quark polarization of the nucleon: a parameter-independent prediction of the chiral potential model.

    Science.gov (United States)

    Chen, X B; Chen, X S; Wang, F

    2001-07-02

    We perform a one-loop calculation of the strange quark polarization (Deltas) of the nucleon in an SU(3) chiral potential model. We find that if the intermediate quark excited states are summed over in a proper way, i.e., summed up to a given energy instead of given radial and orbital quantum numbers, Deltas turns out to be almost independent of all the model parameters: quark masses and potential strengths. The contribution from the quark-antiquark pair creation and annihilation " Z" diagrams is found to be significant. Our numerical results agree quite reasonably with experiments and lattice QCD calculations.

  12. Eigenenergies of a Relativistic Particle in an Infinite Range Linear Potential Using WKB Method

    Science.gov (United States)

    Shivalingaswamy, T.; Kagali, B. A.

    2011-01-01

    Energy eigenvalues for a non-relativistic particle in a linear potential well are available. In this paper we obtain the eigenenergies for a relativistic spin less particle in a similar potential using an extension of the well-known WKB method treating the potential as the time component of a four-vector potential. Since genuine bound states do…

  13. The effect of nonlinearity in relativistic nucleon–nucleon potential

    Indian Academy of Sciences (India)

    B B Sahu; S K Singh; M Bhuyan; S K Patra

    2014-04-01

    A simple form for nucleon–nucleon (NN) potential is introduced as an alternative to the popular M3Y form using the relativistic mean field theory (RMFT) with the non-linear terms in -meson for the first time. In contrast to theM3Y form, the new interaction becomes exactly zero at a finite distance and the expressions are analogous with the M3Y terms. Further, its applicability is examined by the study of proton and cluster radioactivity by folding it with the RMFT-densities of the cluster and daughter nuclei to obtain the optical potential in the region of proton-rich nuclides just above the double magic core 100Sn. The results obtained were found comparable with the widely used M3Y interactions.

  14. No-Hair Relations for Neutron Stars and Quark Stars: Relativistic Results

    CERN Document Server

    Yagi, Kent; Pappas, George; Yunes, Nicolas; Apostolatos, Theocharis A

    2014-01-01

    Astrophysical charge-free black holes are known to satisfy no-hair relations through which all multipole moments can be specified in terms of just their mass and spin angular momentum. We here investigate the possible existence of no-hair-like relations among multipole moments for neutron stars and quark stars that are independent of their equation of state. We calculate the multipole moments of these stars up to hexadecapole order by constructing uniformly-rotating and unmagnetized stellar solutions to the Einstein equations. For slowly-rotating stars, we construct stellar solutions to quartic order in spin in a slow-rotation expansion, while for rapidly-rotating stars, we solve the Einstein equations numerically with the LORENE and RNS codes. We find that the multipole moments extracted from these numerical solutions are consistent with each other. We confirm that the current-dipole is related to the mass-quadrupole in an approximately equation of state independent fashion, which does not break for rapidly ...

  15. The calculation of quark number susceptibility at finite chemical potential and temperature

    Energy Technology Data Exchange (ETDEWEB)

    Jiang Yu; Li Ning [Department of Physics, Nanjing University, Nanjing 210093 (China); Sun Weimin [Department of Physics, Nanjing University, Nanjing 210093 (China); Joint Center for Particle, Nuclear Physics and Cosmology, Nanjing 210093 (China); Zong Hongshi, E-mail: zonghs@chenwang.nju.edu.c [Department of Physics, Nanjing University, Nanjing 210093 (China); Joint Center for Particle, Nuclear Physics and Cosmology, Nanjing 210093 (China)

    2010-03-01

    In this paper, we calculate the quark number susceptibility (QNS) at finite chemical potential mu and finite temperature T in the framework of the Dyson-Schwinger approach using the meromorphic quark propagator proposed in [Phys. Rev. D 70, 014014 (2004)]. Analysis and discussions of the calculated result of the QNS is given.

  16. The mass spectrum of double heavy baryons in new potential quark models

    Directory of Open Access Journals (Sweden)

    Kovalenko Vladimir

    2017-01-01

    Full Text Available A new approach to study the mass spectrum of double heavy baryons (QQ′q containing strange and charmed quarks is proposed. It is based on the separation of variables in the Schrodinger equation in the prolate spheroidal coordinates. Two nonrelativistic potential models are considered. In the first model, the interaction potential of the quarks is the sum of the Coulomb and non-spherically symmetrical linear confinement potential. In the second model it is assumed that the quark confinement provided by a spherically symmetric harmonic oscillator potential. In both models the mass spectrum is calculated, and a comparison with previous results from other models is performed.

  17. Magnetic moments of the nucleon octet in a relativistic quark model with chiral symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Barik, N.; Dash, B.K.

    1986-11-01

    Incorporating the lowest-order pionic correction, the magnetic moments of the nucleon octet have been calculated in a chiral potential model. The potential, representing phenomenologically the nonperturbative gluon interactions including gluon self-couplings, is chosen with equally mixed scalar and vector parts in harmonic form. The results are in reasonable agreement with experiment.

  18. Applying Bayesian parameter estimation to relativistic heavy-ion collisions: simultaneous characterization of the initial state and quark-gluon plasma medium

    CERN Document Server

    Bernhard, Jonah E; Bass, Steffen A; Liu, Jia; Heinz, Ulrich

    2016-01-01

    We quantitatively estimate properties of the quark-gluon plasma created in ultra-relativistic heavy-ion collisions utilizing Bayesian statistics and a multi-parameter model-to-data comparison. The study is performed using a recently developed parametric initial condition model, TRENTO, which interpolates among a general class of particle production schemes, and a modern hybrid model which couples viscous hydrodynamics to a hadronic cascade. We calibrate the model to multiplicity, transverse momentum, and flow data and report constraints on the parametrized initial conditions and the temperature-dependent transport coefficients of the quark-gluon plasma. We show that initial entropy deposition is consistent with a saturation-based picture, extract a relation between the minimum value and slope of the temperature-dependent specific shear viscosity, and find a clear signal for a nonzero bulk viscosity.

  19. Effects of an electromagnetic quark form factor on meson properties

    Energy Technology Data Exchange (ETDEWEB)

    Silvestre-Brac, B. E-mail: silvestre@isn.in2p3.fr

    2002-12-30

    A form factor is introduced in the quark electromagnetic current. Its effect is analyzed on charge mean square radii and form factors in the mesonic sector. The decay of a vector meson into lepton-antilepton pair is also affected. Two different expressions for the form factors, and two different types of quark potential are tested and some relativistic kinematical corrections are proposed. In any case the introduction of a quark form factor greatly improves the agreement with experimental data.

  20. The charge form factor of pseudoscalar mesons in a relativistic constituent quark model

    Energy Technology Data Exchange (ETDEWEB)

    Cardarelli, F.; Pace, E. [Univ. of Rome, Roma (Italy); Grach, I.L. [Inst. of Theoretical and Experimental Physics, Moscow (Russian Federation)] [and others

    1994-04-01

    The charge form factor of pseudoscalar mesons has been investigated in the light-cone formalism, up to Q{sup 2} relevant to CEBAF energies. The consequences of adopting the meson wave functions generated through the Godfrey-Isgur q{bar q} potential, which reproduces the mass spectra, are discussed.

  1. Radiative Energy Loss of Heavy Quark and Dead Cone Effect in Ultra-relativistic Heavy Ion Collisions

    Institute of Scientific and Technical Information of China (English)

    XIANG Wen-Chang; DING Heng-Tong; ZHOU Dai-Cui

    2005-01-01

    @@ The lowest-order heavy quark radiative energy loss has been analysed to quantify the dead cone effect. The medium-induced gluon radiation is found to fill the dead cone, it is reduced at large gluon energies compared to the radiation of light quarks. We calculate the radiative energy loss of heavy quarks in the condition of dead cone effect. It is found that the radiative energy loss with dead cone effect is smaller than that without the dead cone effect.

  2. Heavy quark potential and jet quenching parameter in a D-instanton background

    CERN Document Server

    Zhang, Zi-qiang; Chen, Gang

    2016-01-01

    Applying the AdS/CFT correspondence, two important quantities, heavy quark potential and jet quenching parameter, are calculated in a D-instanton background. This dual gravitational theory is related to a near horizon limit of stack of black D3-branes with homogeneously distributed D-instantons. It is shown that the presence of instantons affects heavy quark potential and jet quenching parameter.

  3. The B->pi l nu and Bs->K l nu form factors and |Vub| from 2+1-flavor lattice QCD with domain-wall light quarks and relativistic heavy quarks

    CERN Document Server

    Flynn, J M; Kawanai, T; Lehner, C; Soni, A; Van de Water, R S; Witzel, O

    2015-01-01

    We calculate the form factors for B->pi l nu & Bs->K l nu decay in lattice QCD. We use the (2+1)-flavor RBC-UKQCD gauge field-ensembles generated with the domain-wall fermion and Iwasaki gauge actions. For the b quarks we use the anisotropic clover action with the relativistic heavy-quark interpretation. We analyze data at 2 lattice spacings a~0.11, 0.086 fm with pion masses as light as M_pi~290 MeV. We extrapolate our numerical results to the physical light-quark masses and to the continuum and interpolate in the pion/kaon energy using SU(2) "hard-pion" chiral perturbation theory. We provide complete systematic error budgets for the vector & scalar form factors f+(q^2) & f0(q2) for B->pi l nu & Bs ->K l nu at 3 momenta that span the q^2 range accessible in our numerical simulations. Next we extrapolate these results to q^2 = 0 using a model-independent z-parameterization based on analyticity & unitarity. We present our final results for f+(q^2) & f0(q^2) as the z coefficients and matr...

  4. Energy eigenvalues of spherical symmetric potentials with relativistic corrections: analytic results

    Energy Technology Data Exchange (ETDEWEB)

    Dineykhan, M; Zhaugasheva, S A [Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna (Russian Federation); Toinbaeva, N Sh [al-Farabi Kazak National University, Almaty (Kazakhstan)

    2010-01-14

    Based on the investigation of the asymptotic behaviour of the polarization loop function for charged n scalar particles in an external gauge field, we determine the interaction Hamiltonian including the relativistic corrections. The energy eigenvalues of spherical symmetric potentials for two-particle bound state systems with relativistic corrections are analytically derived. The energy spectra of linear and funnel potentials with orbital and radial excitations are determined. The energy spectrum of a superposition of Coulomb and Yukawa potentials is also determined. Our result shows that the energy spectrum with the relativistic corrections for the linear, harmonic oscillator and funnel potentials is smaller than the upper boundaries for the energy spectrum established in the framework of the spinless Salpeter equation for the orbital and radial excited states. The relativistic corrections to the energy spectrum of a superposition of the attractive Coulomb potential and the Yukawa (exponentially screened Coulomb) potentials are very small.

  5. Directed flow of charm quarks as a witness of the initial strong magnetic field in ultra-relativistic heavy ion collisions

    Science.gov (United States)

    Das, Santosh K.; Plumari, S.; Chatterjee, S.; Alam, J.; Scardina, F.; Greco, V.

    2017-05-01

    Ultra-relativistic Heavy-Ion Collision (HIC) generates very strong initial magnetic field (B →) inducing a vorticity in the reaction plane. The high B → influences the evolution dynamics that is opposed by the large Faraday current due to electric field generated by the time varying B → . We show that the resultant effects entail a significantly large directed flow (v1) of charm quarks (CQs) compared to light quarks due to a combination of several favorable conditions for CQs, mainly: (i) unlike light quarks formation time scale of CQs, τf ≃ 0.1 fm /c is comparable to the time scale when B → attains its maximum value and (ii) the kinetic relaxation time of CQs is similar to the QGP lifetime, this helps the CQ to retain the initial kick picked up from the electromagnetic field in the transverse direction. The effect is also odd under charge exchange allowing to distinguish it from the vorticity of the bulk matter due to the initial angular momentum conservation; conjointly thanks to its mass, Mc > >ΛQCD, there should be no mixing with the chiral magnetic dynamics. Hence CQs provide very crucial and independent information on the strength of the magnetic field produced in HIC.

  6. Critical Temperature of Chiral Symmetry Restoration for Quark Matter with a Chiral Chemical Potential

    CERN Document Server

    Ruggieri, M

    2016-01-01

    In this article we study restoration of chiral symmetry at finite temperature for quark matter with a chiral chemical potential, $\\mu_5$, by means of a quark-meson model with vacuum fluctuations included. Vacuum fluctuations give a divergent contribution to the vacuum energy, so the latter has to be renormalized before computing physical quantities. The vacuum term is important for restoration of chiral symmetry at finite temperature and $\\mu_5\

  7. Thermodynamics of relativistic Newton—Wigner particle in external potential field

    Science.gov (United States)

    Larkin, A. S.; Filinov, V. S.

    2015-11-01

    Thermodynamic properties of relativistic spinless particle described by the Klein-Gordon equation have been studied using the Newton-Wigner theory of particle in external potential field. Concept of Wiener path integral was extended on relativistic case. A new path integral Monte-Carlo method was developed for relativistic particle in external potential field. The bounds of applicability of available analytical approaches and related results have been specified by comparison with Monte-Carlo calculations. Developed path integral formalism can be directly extended on systems of many identical Newton-Wigner particles, which interact with external field and each other.

  8. Analytical mechanics of a relativistic particle in a positional potential

    CERN Document Server

    Mignemi, S

    2012-01-01

    We propose a form for the action of a relativistic particle subject to a positional force that is invariant under time reparametrization and therefore allows for a consistent Hamiltonian formulation of the dynamics. This approach can be useful in the study of phenomenological models. Also the Dirac and Klein-Gordon equation differ from the standard formulation, with corrections of order (E-m)/m in the energy spectra.

  9. Relativistic corrections to the central force problem in a generalized potential approach

    CERN Document Server

    Singh, Ashmeet

    2014-01-01

    We present a novel technique to obtain the relativistic corrections to the central force problem in the Lagrangian formulation, using a generalized potential energy. Throughout the paper, we focus on the attractive inverse square law central force. The generalised potential can be made a part of the regular classical lagrangian which can reproduce the relativistic force equation upto second order in $|\\vec{v}|/c$. We then go on to derive the relativistically corrected Hamiltonian from the Lagrangian and estimate the corrections to the total energy of the system. We employ our methodology to calculate the relativistic correction to the circular orbit in attractive gravitational force. We also estimate to the first order energy correction in the ground state of the hydrogen atom in the semi-classical approach. Our predictions in both problems give the reasonable agreement with the known results. Thus we feel that this work has pedagogical value and can be used by undergraduate students to better understand the ...

  10. RELATIVISTIC HEAVY ION PHYSICS: A THEORETICAL OVERVIEW.

    Energy Technology Data Exchange (ETDEWEB)

    KHARZEEV,D.

    2004-03-28

    This is a mini-review of recent theoretical work in the field of relativistic heavy ion physics. The following topics are discussed initial conditions and the Color Glass Condensate; approach to thermalization and the hydrodynamic evolution; hard probes and the properties of the Quark-Gluon Plasma. Some of the unsolved problems and potentially promising directions for future research are listed as well.

  11. Probing charge correlations of quark gluon plasma by identified two-hadron rapidity correlations in ultra-relativistic AA collisions

    CERN Document Server

    Song, Jun; Liang, Zuo-tang

    2014-01-01

    We propose a new kind of two-particle correlation of identified hadrons in longitudinal rapidity space, called $G_{\\alpha\\beta}(y_{\\alpha},y_{\\beta})$, which can reflect clearly the charge correlations of hot quark system produced in AA collisions at LHC energies. It is derived from the basic scenario of quark combination mechanism of hadron production. Like the elliptic flow of identified hadrons at intermediate transverse momentum, this correlation is independent of the absolute hadronic yields but dependent only on the flavor compositions of hadrons, and thus exhibits interesting properties for different kinds of hadron species. We suggest the measurement of this observable in AA collisions at LHC to gain more insights into the charge correlation properties of produced hot quark matter.

  12. Isospin-dependent relativistic microscopic optical potential in the Dirac Brueckner-Hartree-Fock method

    Institute of Scientific and Technical Information of China (English)

    RONG; Jian; MA; Zhongyu

    2004-01-01

    The relativistic microscopic optical potential in the asymmetric nuclear matter is studied in the framework of the Dirac Brueckner-Hartree-Fock method. A new decomposition of the Dirac structure of the nuclear self-energy in nuclear matter is adopted. The self-energy of a nucleon with E> 0 in nuclear matter is calculated with the G matrix in the Hartree-Fock approach. The optical potential of a nucleon in the nuclear medium is identified with the nucleon self-energy. The energy and asymmetric parameter dependence of the relativistic optical potentials for proton and neutron are discussed. The resulting Schroedinger equivalent potentials have reasonable behaviors of the energy dependence. The asymmetric parameter dependence of relativistic optical potentials and Schroedinger potentials are emphasized.

  13. Chemical Potential Dependence of the Dressed-Quark Propagator in a Simple Confining QCD Model

    Institute of Scientific and Technical Information of China (English)

    ZONG Hong-Shi; HOU Feng-Yao; CHEN Xiang-Song; LIU Yu-Xin

    2004-01-01

    Based on the Dyson-Schwinger approach, a method for obtaining the chemical potential dependence of the dressed quark propagator in the ‘Nambu-Goldstone' and the ‘Wigner' phase is developed. The bag constant in the presence of the non-zero chemical potential is analysed.

  14. Cornwall-Jackiw-Tomboulis Effective Potential for Quark Propagator in Real-Time Thermal Field Theory and Landau Gauge

    Institute of Scientific and Technical Information of China (English)

    2005-01-01

    We complete the derivation of the Cornwall-Jackiw-Tomboulis effective potential for quark propagator at finite temperature and finite quark chemical potential in the real-time formalism of thermal field theory and in Landau gauge. In the approximation that the function A(p2) in inverse quark propagator is replaced by unity, by means of the running gauge coupling and the quark mass function invariant under the renormalization group in zero temperature Quantum Chromadynamics (QCD), we obtain a calculable expression for the thermal effective potential, which will be a useful means to research chiral phase transition in QCD in the real-time formalism.

  15. The Two-Loop Scale Dependence of the Static QCD Potential including Quark Masses

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, Stanley J.

    1999-06-14

    The interaction potential V(Q{sup 2}) between static test charges can be used to define an effective charge {alpha}{sub V}(Q{sup 2}) and a physically-based renormalization scheme for quantum chromodynamics and other gauge theories. In this paper we use recent results for the finite-mass fermionic corrections to the heavy-quark potential at two-loops to derive the next-to-leading order term for the Gell Mann-Low function of the V-scheme. The resulting effective number of flavors N{sub F}(Q{sup 2}/m{sup 2}) in the {alpha}{sub V} scheme is determined as a gauge-independent and analytic function of the ratio of the momentum transfer to the quark pole mass. The results give automatic decoupling of heavy quarks and are independent of the renormalization procedure. Commensurate scale relations then provide the next-to-leading order connection between all perturbatively calculable observables to the analytic and gauge-invariant {alpha}{sub V} scheme without any scale ambiguity and a well defined number of active flavors. The inclusion of the finite quark mass effects in the running of the coupling is compared with the standard treatment of finite quark mass effects in the {ovr MS} scheme.

  16. Reformulating the TBA equations for the quark anti-quark potential and their two loop expansion

    Energy Technology Data Exchange (ETDEWEB)

    Bajnok, Zoltán; Balog, János [MTA Lendület Holographic QFT Group, Wigner Research Centre,H-1525 Budapest 114, P.O.B. 49 (Hungary); Correa, Diego H. [Instituto de Física La Plata, CONICET, Universidad Nacional de La Plata, C.C. 67, 1900 La Plata (Argentina); Hegedűs, Árpád [MTA Lendület Holographic QFT Group, Wigner Research Centre,H-1525 Budapest 114, P.O.B. 49 (Hungary); Massolo, Fidel I. Schaposnik [Instituto de Física La Plata, CONICET, Universidad Nacional de La Plata, C.C. 67, 1900 La Plata (Argentina); Tóth, Gábor Zsolt [MTA Lendület Holographic QFT Group, Wigner Research Centre,H-1525 Budapest 114, P.O.B. 49 (Hungary)

    2014-03-11

    The boundary thermodynamic Bethe Ansatz (BTBA) equations introduced in http://dx.doi.org/10.1007/JHEP08(2012)134http://dx.doi.org/10.1007/JHEP10(2013)135 to describe the cusp anomalous dimension contain imaginary chemical potentials and singular boundary fugacities, which make its systematic expansion problematic. We propose an alternative formulation based on real chemical potentials and additional source terms. We expand our equations to double wrapping order and find complete agreement with the direct two-loop gauge theory computation of the cusp anomalous dimension.

  17. Quarks in finite nuclei

    CERN Document Server

    Guichon, P A M; Thomas, A W

    1996-01-01

    We describe the development of a theoretical description of the structure of finite nuclei based on a relativistic quark model of the structure of the bound nucleons which interact through the (self-consistent) exchange of scalar and vector mesons.

  18. Radiative decay of mesons in an independent-quark potential model

    Energy Technology Data Exchange (ETDEWEB)

    Barik, N.; Dash, P.C. (Department of Physics, Utkal University, Bhubaneswar 751004 (India)); Panda, A.R. (Department of Physics, Kendrapara College, Kendrapara, Orissa (India))

    1992-11-01

    We investigate in a potential model of independent quarks the {ital M}1 transitions among the low-lying vector ({ital V}) and pseudoscalar ({ital P}) mesons. We perform a static'' calculation of the partial decay widths of twelve possible {ital M}1 transitions such as {ital V}{r arrow}{ital P}{gamma} and {ital P}{r arrow}{ital V}{gamma} within the traditional picture of photon emission by a confined quark and/or antiquark. The model accounts well for the observed decay widths.

  19. Perfect Abelian dominance of confinement in quark-antiquark potential in SU(3) lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Suganuma, Hideo [Department of Physics, Kyoto University, Kitashirakawaoiwake, Sakyo, Kyoto 606-8502 (Japan); Sakumichi, Naoyuki [Theoretical Research Division, Nishina Center, RIKEN, Wako, Saitama 351-0198 (Japan)

    2016-01-22

    In the context of the dual superconductor picture for the confinement mechanism, we study maximally Abelian (MA) projection of quark confinement in SU(3) quenched lattice QCD with 32{sup 4} at β=6.4 (i.e., a ≃ 0.058 fm). We investigate the static quark-antiquark potential V(r), its Abelian part V{sub Abel}(r) and its off-diagonal part V{sub off}(r), respectively, from the on-axis lattice data. As a remarkable fact, we find almost perfect Abelian dominance for quark confinement, i.e., σ{sub Abel} ≃ σ for the string tension, on the fine and large-volume lattice. We find also a nontrivial summation relation of V (r) ≃ V{sub Abel}(r)+V{sub off}(r)

  20. Equation of state of a quark-gluon plasma using the Cornell potential

    Science.gov (United States)

    Udayanandan, K. M.; Sethumadhavan, P.; Bannur, V. M.

    2007-10-01

    The equation of state (EOS) of quark-gluon plasma (QGP) using the Cornell potential based on Mayer's cluster expansion is presented. The string constant and the strong coupling constant for QGP are calculated. The EOS developed could describe the lattice EOS for pure gauge, two-flavor and three-flavor QGP qualitatively.

  1. Quark-Quark Forces in Quantum Chromodynamics

    CERN Document Server

    Arkhipov, A A

    2014-01-01

    By single-time reduction technique of Bethe-Salpeter formalism for two-fermion systems analytical expressions for the quasipotential of quark-quark interactions in QCD have been obtained in one-gluon exchange approximation. The influence of infrared singularities of gluon Green`s functions on the character of quark-quark forces in QCD has been investigated. The way the asymptotic freedom manifests itself in terms of two-quark interaction quasipotential in quantum chromodynamics is shown. Consistent relativistic consideration of quark interaction problem by single-time reduction technique in QFT allows one to establish a nontrivial energy dependence of the two-quark interaction quasipotential. As a result of the energy dependence of the interaction quasipotential, the character of the forces changes qualitatively during the transition from the discrete spectrum (the region of the negative values of the binding energy) to the continuous spectrum (that of the positive values of the binding energy): the smooth be...

  2. On a relativistic particle and a relativistic position-dependent mass particle subject to the Klein–Gordon oscillator and the Coulomb potential

    Energy Technology Data Exchange (ETDEWEB)

    Vitória, R.L.L.; Furtado, C., E-mail: furtado@fisica.ufpb.br; Bakke, K., E-mail: kbakke@fisica.ufpb.br

    2016-07-15

    The relativistic quantum dynamics of an electrically charged particle subject to the Klein–Gordon oscillator and the Coulomb potential is investigated. By searching for relativistic bound states, a particular quantum effect can be observed: a dependence of the angular frequency of the Klein–Gordon oscillator on the quantum numbers of the system. The meaning of this behaviour of the angular frequency is that only some specific values of the angular frequency of the Klein–Gordon oscillator are permitted in order to obtain bound state solutions. As an example, we obtain both the angular frequency and the energy level associated with the ground state of the relativistic system. Further, we analyse the behaviour of a relativistic position-dependent mass particle subject to the Klein–Gordon oscillator and the Coulomb potential.

  3. On a relativistic particle and a relativistic position-dependent mass particle subject to the Klein-Gordon oscillator and the Coulomb potential

    Science.gov (United States)

    Vitória, R. L. L.; Furtado, C.; Bakke, K.

    2016-07-01

    The relativistic quantum dynamics of an electrically charged particle subject to the Klein-Gordon oscillator and the Coulomb potential is investigated. By searching for relativistic bound states, a particular quantum effect can be observed: a dependence of the angular frequency of the Klein-Gordon oscillator on the quantum numbers of the system. The meaning of this behaviour of the angular frequency is that only some specific values of the angular frequency of the Klein-Gordon oscillator are permitted in order to obtain bound state solutions. As an example, we obtain both the angular frequency and the energy level associated with the ground state of the relativistic system. Further, we analyse the behaviour of a relativistic position-dependent mass particle subject to the Klein-Gordon oscillator and the Coulomb potential.

  4. Quark mass functions and pion structure in Minkowski space

    Energy Technology Data Exchange (ETDEWEB)

    Biernat, Elmer P. [CFTP, Institute Superior Tecnico; Gross, Franz L. [JLAB; Pena, Maria Teresa [CFTP, Institute Superior Tecnico; Stadler, Alfred [University of Evora

    2014-03-01

    We present a study of the dressed quark mass function and the pion structure in Minkowski space using the Covariant Spectator Theory (CST). The quark propagators are dressed with the same kernel that describes the interaction between different quarks. We use an interaction kernel in momentum space that is a relativistic generalization of the linear confining q-qbar potential and a constant potential shift that defines the energy scale. The confining interaction has a Lorentz scalar part that is not chirally invariant by itself but decouples from the equations in the chiral limit and therefore allows the Nambu--Jona-Lasinio (NJL) mechanism to work. We adjust the parameters of our quark mass function calculated in Minkowski-space to agree with LQCD data obtained in Euclidean space. Results of a calculation of the pion electromagnetic form factor in the relativistic impulse approximation using the same mass function are presented and compared with experimental data.

  5. Relativistic quantum effects of confining potentials on the Klein-Gordon oscillator

    Science.gov (United States)

    Vitória, R. L. L.; Bakke, K.

    2016-02-01

    The behaviour of the Klein-Gordon oscillator under the influence of linear and Coulomb-type potentials is investigated. The introduction of the scalar potentials is made by modifying the mass term of the Klein-Gordon equation, then, by searching for relativistic bound states, a particular quantum effect can be observed: a dependence of the angular frequency of the Klein-Gordon oscillator on the quantum numbers associated with the radial modes and the angular momentum. As an example, we analyse the angular frequency and the energy level associated with the ground state of the relativistic system.

  6. The QCD string with quarks; 1, spinless quarks

    CERN Document Server

    Dubin, A Yu; Simonov, Yu A

    1993-01-01

    Starting from the QCD Lagrangian we derive the effective action for massive quark and antiquark at large distances, corresponding to the minimal area low of the Wilson loop. The path integral method is used to quantize the system and the spectrum is obtained with asymptotically linear Regge trajectories. Two dynamical regimes distinguished by the string energy--momentum distribution are found: at large orbital excitations ($l\\gg 1$) the system behaves as a string and yields the Regge slope of $\\frac{1}{2 \\pi \\sigma}$, while at small $l$ one obtains a potential-like regime for relativistic or nonrelativistic system . The problem of relative time is clarified. It is shown that in the valence quark approximation one can reduce the initial four-dimensional dynamics to the three-dimensional one. The limiting case of a pure string (without quark kinetic terms) is studied and the spectrum of the straight-line string is obtained.

  7. The three-quark potential and perfect Abelian dominance in SU(3) lattice QCD

    CERN Document Server

    Suganuma, Hideo

    2015-01-01

    We study the static three-quark (3Q) potential for more than 300 different patterns of 3Q systems with high statistics, i.e., 1000-2000 gauge configurations, in SU(3) lattice QCD at the quenched level. For all the distances, the 3Q potential is found to be well described by the Y-ansatz, i.e., one-gluon-exchange (OGE) Coulomb plus Y-type linear potential. Also, we investigate Abelian projection of quark confinement in the context of the dual superconductor picture proposed by Yoichiro~Nambu~{\\it et al.} in SU(3) lattice QCD. Remarkably, quark confinement forces in both Q$\\bar{\\rm Q}$ and 3Q systems can be described only with Abelian variables in the maximally Abelian gauge, i.e., $\\sigma_{\\rm Q \\bar Q} \\simeq \\sigma_{\\rm Q \\bar Q}^{\\rm Abel} \\simeq \\sigma_{\\rm 3Q} \\simeq \\sigma_{\\rm 3Q}^{\\rm Abel}$, which we call ``perfect Abelian dominance'' of quark confinement.

  8. Exact treatment of the relativistic double ring-shaped Kratzer potential using the quantum Hamilton-Jacobi formalism

    Science.gov (United States)

    Gharbi, A.; Touloum, S.; Bouda, A.

    2015-04-01

    We study the Klein-Gordon equation with noncentral and separable potential under the condition of equal scalar and vector potentials and we obtain the corresponding relativistic quantum Hamilton-Jacobi equation. The application of the quantum Hamilton-Jacobi formalism to the double ring-shaped Kratzer potential leads to its relativistic energy spectrum as well as the corresponding eigenfunctions.

  9. Static properties of the nucleon octet in a relativistic potential model with center-of-mass correction

    Energy Technology Data Exchange (ETDEWEB)

    Barik, N.; Dash, B.K.; Das, M.

    1985-04-01

    The static properties, such as magnetic moment, charge radius, and axial-vector coupling constants, of the quark core of baryons in the nucleon octet have been studied in an independent-quark model based on the Dirac equation with equally mixed scalar-vector potential in harmonic form in the current quark mass limit. The results obtained with the corrections due to center-of-mass motion are in reasonable agreement with experimental values.

  10. Quark confinement potential examined by excitation energy of the Lambda_c and Lambda_b baryons in a quark-diquark model

    CERN Document Server

    Jido, Daisuke

    2016-01-01

    The possibility to have diquark configuration in heavy baryons, such as Lambda_c and Lambda_b, is examined by a nonrelativistic potential model with a heavy quark and a light scalar diquark. Assuming that the Lambda_c and Lambda_b baryons are composed of the heavy quark and the scalar-isoscalar ud diquark, we solve the two-body Schrodinger equation with the Coulomb plus linear potential and obtain the energy spectra for the heavy baryons. Contrary to our expectation, it is found that the potential determined by the quarkonium spectra fails to reproduce the excitation spectra of the Lambda_c and Lambda_b in the quark-diquark picture, while the Lambda_c and Lambda_b spectra is reproduced with a half strength of the confinement string tension than for the quarkonium. The Xi_c excitation energy is also calculated and is found to be smaller than Lambda_c in the quark-diquark model. This is not consistent with the experimental observation. These puzzles should be solved when one takes the quark-diquark picture for ...

  11. Hyperon Single-Particle Potentials Calculated from SU6 Quark-Model Baryon-Baryon Interactions

    CERN Document Server

    Kohno, M; Fujita, T; Nakamoto, C; Suzuki, Y

    2000-01-01

    Using the SU6 quark-model baryon-baryon interaction recently developed by the Kyoto-Niigata group, we calculate NN, Lambda N and Sigma N G-matrices in ordinary nuclear matter. This is the first attempt to discuss the Lambda and Sigma single-particle potentials in nuclear medium, based on the realistic quark-model potential. The Lambda potential has the depth of more than 40 MeV, which is more attractive than the value expected from the experimental data of Lambda-hypernuclei. The Sigma potential turns out to be repulsive, the origin of which is traced back to the strong Pauli repulsion in the Sigma N (I=3/2) ^3S_1 state.

  12. Heavy Quark Potential at Finite Temperature in a Dual Gravity Closer to Large N QCD

    CERN Document Server

    Patra, Binoy Krishna

    2014-01-01

    In gauge-gravity duality, heavy quark potential at finite temperature is usually calculated with the pure AdS background, which does not capture the renormalisation group (RG) running in the gauge theory part and the potential also does not contain any confining term in the deconfined phase. Following the developments in \\cite{KS}, a geometry was contructed recently in \\cite{ Mia:NPB2010, Mia:PRD2010}, which captures the RG flow similar to QCD and we employ their geometry to obtain the heavy quark potential by analytically continuing the string configurations into the complex plane. In addition to the attractive terms, the obtained potential has confining terms both at $T=0$ and $T \

  13. Systematics of the Exclusive Meson Production in the Proton-Proton System in Relativistic Quark-Models

    CERN Document Server

    Dillig, M

    2002-01-01

    We investigate the exclusive production of the pseudoscalar mesons $\\pi ^{0}, \\eta, \\eta^{\\prime}, K^{+}$ and of the vector mesons $\\omega, \\phi$ in a microscopic gluon-exchange or instanton model. We describe the baryons as covariant quark - scalar diquark systems with harmonic confinement, thus taking into account center-of-mass corrections and Lorentz contraction in different frames. The excitation of intermediate baryon resonances is accounted by colorless 2-gluon (soft Pomeron) exchange. We find that our model accounts for the systematics of the high precision data on exclusive meson production from various modern proton factories.

  14. Nucleon form factors in an independent-quark model based on Dirac equation with power-law potential

    Energy Technology Data Exchange (ETDEWEB)

    Barik, N.; Das, M.

    1986-01-01

    The nucleon electromagnetic form factors G/sub E//sup p/(qS) and G/sub M//sup p/(qS) and the axial-vector form factor G/sub A/(qS) are investigated in a simple model of relativistic quarks confined by a vector-scalar mixed potential U/sub q/(r) = (1+el)(a/sup nu+1/r/sup / +V0) without taking into account the center-of-mass correction and the pion-cloud effects. The respective rms radii associated with G/sub E//sup p/(qS) and G/sub A/(qS) come out as /sup 1/2/ = 1.07 fm and /sup 1/2/ = 1.17 fm. The possibility of restoring in this model the chiral symmetry in the usual way is discussed and the pion-nucleon form factor G/sub piN/N(qS) is derived. The pion-nucleon coupling constant is obtained as g/sub piN/N = 10.2, as compared to (g/sub piN/N)/sub expt/approx. =13.

  15. On the hadron production from the quark-gluon plasma phase in ultra-relativistic heavy-ion collisions

    CERN Document Server

    Berdnikov, Yu A; Ivanov, A N; Ivanova, V A; Kosmach, V F; Samsonov, V M; Troitskaya, N I; Berdnikov, Ya. A.

    2000-01-01

    We describe the quark gluon plasma (QGP) as a thermalized quark-gluon system, the thermalized QGP phase of QCD. The hadronization of the thermalized QGP phase is given in a way resembling a simple coalescence model. The input parameters of the approach are the spatial volumes of the hadronization. We introduce three dimensionless parameters C_M, C_B and C_\\bar{B} related to the spatial volumes of the production of low-lying mesons (M), baryons (B) and antibaryons (\\bar{B}). We show that at the temperature T= 175 MeV our predictions for the ratios of multiplicities agree good with the presently available set of hadron ratios measured for various experiments given by NA44, NA49, NA50 and WA97 Collaborations on Pb+Pb collisions at 158 GeV/nucleon, NA35 Collaboration on S+S collisions and NA38 Collaboration on O+U and S+U collisions at 200 GeV/nucleon.

  16. Relativistic bounds states for a neutral particle confined to a parabolic potential induced by noninertial effects

    Science.gov (United States)

    Bakke, K.

    2010-10-01

    We obtain the solutions of the Dirac equation when the noninertial effects of the Fermi-Walker reference frame break the relativistic Landau-Aharonov-Casher quantization, but they provide bound states in an analogous way to a Dirac neutral particle subject to Tan-Inkson quantum dot potential [W.-C. Tan, J.C. Inkson, Semicond. Sci. Technol. 11 (1996) 1635].

  17. On Extraction of Chemical Potentials of Quarks from Particle Transverse Momentum Spectra in High Energy Collisions

    Directory of Open Access Journals (Sweden)

    Hong Zhao

    2015-01-01

    Full Text Available We present two methods to extract the chemical potentials of quarks in high energy collisions. The first method is based on the ratios of negatively/positively charged particles, and the temperatures extracted from the transverse momentum spectra of related hadrons are needed. The second method is based on the chemical potentials of some particles, and we also need the transverse momentum spectra of related hadrons. To extract the quark chemical potentials, we would like to propose experimental collaborations to measure simultaneously not only the transverse momentum spectra of p-, p, K-, K+, π-, and π+, but also those of D-, D+, B-, and B+ (even those of Δ++, Δ-, and Ω- in high energy nuclear collisions.

  18. Analytical approximations to the spectra of quark-antiquark potentials

    Energy Technology Data Exchange (ETDEWEB)

    Amore, Paolo [Facultad de Ciencias, Universidad de Colima, Bernal DIaz del Castillo 340, Colima (Mexico); De Pace, Arturo [Istituto Nazionale di Fisica Nucleare, Sezione di Torino, via Giuria 1, I-10125 Turin (Italy); Lopez, Jorge [Physics Department, University of Texas at El Paso, El Paso, TX (United States)

    2006-07-15

    A method recently devised to obtain analytical approximations to certain classes of integrals is used in combination with the WKB expansion to derive accurate analytical expressions for the spectrum of quantum potentials. The accuracy of our results is verified by comparing them both with the literature on the subject and with the numerical results obtained with a Fortran code. As an application of the method that we propose, we consider meson spectroscopy with various phenomenological potentials.

  19. Analytical approximations to the spectra of quark antiquark potentials

    Science.gov (United States)

    Amore, Paolo; DePace, Arturo; Lopez, Jorge

    2006-07-01

    A method recently devised to obtain analytical approximations to certain classes of integrals is used in combination with the WKB expansion to derive accurate analytical expressions for the spectrum of quantum potentials. The accuracy of our results is verified by comparing them both with the literature on the subject and with the numerical results obtained with a Fortran code. As an application of the method that we propose, we consider meson spectroscopy with various phenomenological potentials.

  20. Magnetic moments of confined quarks and baryons in an independent-quark model based on Dirac equation with power-law potential

    Energy Technology Data Exchange (ETDEWEB)

    Barik, N.; Das, M.

    1983-12-01

    The effect of confinement on the magnetic moment of a quark has been studied in a simple independent-quark model based on the Dirac equation with a power-law potential. The magnetic moments so obtained for the constituent quarks, which are found to be significantly different from their corresponding Dirac moments, are used in predicting the magnetic moments of baryons in the nucleon octet as well as those in the charmed and b-flavored sectors. We not only get an improved result for the proton magnetic moment, but the calculation for the rest of the nucleon octet also turns out to be in reasonable agreement with experiment. The overall predictions for the charmed and b-flavored baryons are also comparable with other model predictions.

  1. The pressure of deconfined QCD for all temperatures and quark chemical potentials

    CERN Document Server

    Ipp, A

    2007-01-01

    A new method for the evaluation of the perturbative expansion of the QCD pressure is presented which is valid for all temperatures and quark chemical potentials in the deconfined phase, and worked out up to and including order g^4. This new approach unifies several distinct perturbative approaches to the equation of state, and agrees with dimensional reduction, HDL and HTL resummation schemes, and the zero-temperature result in their respective ranges of validity.

  2. Brazilian relativistic O(q**4) two-pion exchange nucleon nucleon potential: Parametrized version

    Energy Technology Data Exchange (ETDEWEB)

    C.A. da Rocha; R. Higa; M.R. Robilotta

    2007-03-01

    In our recent works we derived a chiral O(q4) two-pion exchange nucleon-nucleon potential (TPEP) formulated in a relativistic baryon (RB) framework, expressed in terms of the so called low energy constants (LECs) and functions representing covariant loop integrations. In order to facilitate the use of the potential in nuclear applications, we present a parametrized version of our configuration space TPEP.

  3. Quark confinement potential examined by excitation energy of the Λc and Λb baryons in a quark-diquark model

    Science.gov (United States)

    Jido, Daisuke; Sakashita, Minori

    2016-08-01

    The possibility of having a diquark configuration in heavy baryons, such as Λ and Λ, is examined by a nonrelativistic potential model with a heavy quark and a light scalar diquark. Assuming that the Λ and Λ baryons are composed of the heavy quark and the point-like scalar-isoscalar ud diquark, we solve the two-body Schrödinger equation with the Coulomb plus linear potential and obtain the energy spectra for the heavy baryons. Contrary to our expectation, it is found that the potential determined by the quarkonium spectra fails to reproduce the excitation spectra of the Λ and Λ in the quark-diquark picture, while the Λ and Λ spectra are reproduced with half the strength of the confinement string tension than for the quarkonium. The finite size effect of the diquark is also examined and it is found that the introduction of a finite size diquark would resolve the failure of the spectrum reproduction. The Ξ excitation energy is also calculated and is found to be smaller than Λ in the quark-diquark model. This is not consistent with experimental observations.

  4. Relativistic Landau–He–McKellar–Wilkens quantization and relativistic bound states solutions for a Coulomb-like potential induced by the Lorentz symmetry breaking effects

    Energy Technology Data Exchange (ETDEWEB)

    Bakke, K., E-mail: kbakke@fisica.ufpb.br [Departamento de Física, Universidade Federal da Paraíba, Caixa Postal 5008, 58051-970, João Pessoa, PB (Brazil); Belich, H. [Departamento de Física e Química, Universidade Federal do Espírito Santo, Av. Fernando Ferrari, 514, Goiabeiras, 29060-900, Vitória, ES (Brazil)

    2013-06-15

    In this work, we discuss the relativistic Landau–He–McKellar–Wilkens quantization and relativistic bound states solutions for a Dirac neutral particle under the influence of a Coulomb-like potential induced by the Lorentz symmetry breaking effects. We present new possible scenarios of studying Lorentz symmetry breaking effects by fixing the space-like vector field background in special configurations. It is worth mentioning that the criterion for studying the violation of Lorentz symmetry is preserving the gauge symmetry. -- Highlights: •Two new possible scenarios of studying Lorentz symmetry breaking effects. •Coulomb-like potential induced by the Lorentz symmetry breaking effects. •Relativistic Landau–He–McKellar–Wilkens quantization. •Exact solutions of the Dirac equation.

  5. The properties of nuclear matter with lattice $NN$ potential in relativistic Brueckner-Hartree-Fock theory

    CERN Document Server

    Hu, Jinniu; Shen, Hong

    2016-01-01

    We study the properties of nuclear matter with lattice nucleon-nucleon ($NN$) potential in the relativistic Brueckner-Hartree-Fock (RBHF) theory. To use this potential in such a microscopic many-body theory, we firstly have to construct a one-boson-exchange potential (OBEP) based on the latest lattice $NN$ potential. Three mesons, pion, $\\sigma$ meson, and $\\omega$ meson, are considered. Their coupling constants and cut-off momenta are determined by fitting the on-shell behaviors and phase shifts of the lattice force, respectively. Therefore, we obtain two parameter sets of the OBEP potential (named as LOBEP1 and LOBEP2) with these two fitting ways. We calculate the properties of symmetric and pure neutron matter with LOBEP1 and LOBEP2. In non-relativistic Brueckner-Hartree-Fock case, the binding energies of symmetric nuclear matter are around $-3$ and $-5$ MeV at saturation densities, while it becomes $-8$ and $-12$ MeV in relativistic framework with $^1S_0,~^3S_1,$ and $^3D_1$ channels using our two paramet...

  6. Reactions of Proton Halo Nuclei in a Relativistic Optical Potential

    CERN Document Server

    Rashdan, M

    2003-01-01

    The reaction cross section, sigma sub R; of the proton halo nuclei sup 1 sup 7 Ne and sup 1 sup 2 N on Si is calculated using an optical potential derived from the solution of the Dirac-Brueckner-Bethe-Goldstone equation, starting from the one-boson-exchange potential of Bonn. The nuclear densities are generated from self-consistent Hartree-Fock calculations using the recent Skyrme interaction SKRA. It is found that the enhancement in the reaction cross section found experimentally for the sup 1 sup 7 Ne + Si system in comparison to sup 1 sup 5 O + Si, where sup 1 sup 5 O has been considered as a core of sup 1 sup 7 Ne, is mainly due to the proton halo structure of sup 1 sup 7 Ne which increases the interaction, in the surface and tail regions. Glauber model calculations did not produce this enhancement in sigma sub R for proton halo nuclei

  7. Relativistic frozen core potential scheme with relaxation of core electrons

    Science.gov (United States)

    Nakajima, Yuya; Seino, Junji; Hayami, Masao; Nakai, Hiromi

    2016-10-01

    This letter proposes a relaxation scheme for core electrons based on the frozen core potential method at the infinite-order Douglas-Kroll-Hess level, called FCP-CR. The core electrons are self-consistently relaxed using frozen molecular valence potentials after the valence SCF calculation is performed. The efficiency of FCP-CR is confirmed by calculations of gold clusters. Furthermore, FCP-CR reproduces the results of the all-electron method for the energies of coinage metal dimers and the core ionization energies and core level shifts of vinyl acetate and three tungsten complexes at the Hartree-Fock and/or symmetry-adapted cluster configuration interaction levels.

  8. Photons from Quark and Hadron Phases in Au+Au Collisions

    Institute of Scientific and Technical Information of China (English)

    LONG Jia-Li; HE Ze-Jun; MA Yu-Gang; GUAN Na-Na

    2008-01-01

    Based on a relativistic hydrodynamic model describing the evolution of the chemically equilibrating quark-gluon plasma system with finite baryon density in a 3+l-dimensional spacetime, we compute photons from the quark phase, hadronic phase and initial non-thermal contributions. It is found that due to the effects of the initial quark chemical potential, chemical equilibration and rapid expansion of the system, the photon yield of the quark-gluon plasma is strongly suppressed, and photons from hadronic matter and initial non-thermal contributions almost reproduce experimental data.

  9. Two-pion exchange nucleon-nucleon potential: relativistic chiral expansion

    CERN Document Server

    Higa, R

    2003-01-01

    We present a relativistic procedure for the chiral expansion of the two-pion exchange component of the $NN$ potential, which emphasizes the role of intermediate $\\pi N$ subamplitudes. The relationship between power counting in $\\pi N$ and $NN$ processes is discussed and results are expressed directly in terms of observable subthreshold coefficients. Interactions are determined by one and two-loop diagrams, involving pions, nucleons and other degrees of freedom, frozen into empirical subthreshold coefficients. The full evaluation of these diagrams produces amplitudes containing many different loop integrals. Their simplification by means of relations among these integrals leads to a set of intermediate results. Subsequent truncation to $O(q^4)$ yields the relativistic potential, which depends on five loop integrals, representing bubble, triangle, crossed box and box diagrams. The bubble and triangle integrals are the same as in $\\pi N$ scattering and we have shown that they also determine the chiral structures...

  10. Analytical Solution of Relativistic Few-Body Bound Systems with a Generalized Yukawa Potential

    Science.gov (United States)

    Aslanzadeh, M.; Rajabi, A. A.

    2016-03-01

    We have investigated in this paper the few-body bound systems in a simple semi-relativistic scheme. For this aim, we introduced a spin independent relativistic description for a few-identical body system by presenting the analytical solution of few-particle Klein-Gordon equation. Performing calculations in D-dimensional configuration on the basis of the hypercentral approach, we reduced the few-body Klein-Gordon equation to a Schrödinger-like form. This equation is solved by using the Nikiforov-Uvarov method, through which the energy equations and eigenfunctions for a few-body bound system are obtained. We used the spin- and isospin-independent generalized Yukawa potential in our calculations, and the dependence of the few-body binding energies on the potential parameters has been investigated.

  11. The Relativistic Boltzmann Equation on Bianchi Type I Space Time for Hard Potentials

    Science.gov (United States)

    Noutchegueme, Norbert; Takou, Etienne; Tchuengue, E. Kamdem

    2017-08-01

    In this paper, we consider the Cauchy problem for the spatially homogeneous relativistic Boltzmann equation with small initial data. The collision kernel considered here is for a hard potentials case. The background space-time in which the study is done is the Bianchi type I space-time. Under certain conditions made on the scattering kernel and on the metric, a uniqueness global (in time) solution is obtained in a suitable weighted functional space.

  12. Nonperturbative heavy-quark diffusion in the quark-gluon plasma.

    Science.gov (United States)

    van Hees, H; Mannarelli, M; Greco, V; Rapp, R

    2008-05-16

    We evaluate heavy-quark (HQ) transport properties in a quark-gluon plasma (QGP) within a Brueckner many-body scheme employing interaction potentials extracted from thermal lattice QCD. The in-medium T matrices for elastic charm- and bottom-quark scattering off light quarks in the QGP are dominated by attractive meson and diquark channels which support resonance states up to temperatures of ~1.5T(c). The resulting drag coefficient increases with decreasing temperature, contrary to expectations based on perturbative QCD scattering. Employing relativistic Langevin simulations we compute HQ spectra and elliptic flow in sqrt[s(NN)]=200 GeV Au-Au collisions. A good agreement with electron decay data supports our nonperturbative computation of HQ diffusion, indicative for a strongly coupled QGP.

  13. Deng-Fan Potential for Relativistic Spinless Particles -- an Ansatz Solution

    Institute of Scientific and Technical Information of China (English)

    H. Hassanabadi; B.H. Yazarloo; S. Zarrinkamar; H. Rahimov

    2012-01-01

    Deng-Fan potential originally appeared many years ago as an attractive proposition for molecular systems. On the contrary to the ground state of one-dimensional Schr6dinger equation, this potential fails to admit exact analytical solutions for arbitrary quantum number in both relativistic and nonrelativistic regime. Because of this complexity, there exists only few papers, which discuss this interesting problem. Here, using an elegant ansatz, we have calculated the system spectra as well as the eigenfunctions in the general case of unequal vector and scalar potentials under Klein-Gordon equation.

  14. A Potential Model Approach in the Study of Static and Dynamic properties of Heavy-Light Quark-Antiquark Systems

    CERN Document Server

    Roy, Sabyasachi

    2016-01-01

    We report some approximate analytic form of meson wave function constructed upon solving Schrodinger equation with linear plus Coulomb type Cornell potential. With this wave function, we study Isgur-Wise function and its derivatives for heavy-light mesons in the infinite heavy quark mass limit. We also explore the elastic form factors, charge radii and decay constants of pseudoscalar mesons in this QCD inspired quark model approach.

  15. The effect of instanton-induced interaction on -wave meson spectra in constituent quark model

    Indian Academy of Sciences (India)

    Bhavyashri; S Sarangi; Godfrey Saldanha; K B Vijaya Kumar

    2008-01-01

    The mass spectrum of the -wave mesons is considered in a non-relativistic constituent quark model. The full Hamiltonian used in the investigation includes the kinetic energy, the confinement potential, the one-gluon-exchange potential (OGEP) and the instanton-induced quark-antiquark interaction (III). A good description of the mass spectrum is obtained. The respective role of III and OGEP in the P-wave meson spectrum is discussed.

  16. Tetraquarks Production in Quark-Gluon Plasma with Diquarks

    Institute of Scientific and Technical Information of China (English)

    MA Zhong-Biao; GAO Chong-Shou

    2006-01-01

    @@ We present a way to calculate tetraquarks ratios for quark-gluon plasma with diquarks. The ratios of tetraquarks over baryons produced from quark matter are high than hadronic gas model limits. It is a better way to search for four-quark states in relativistic heavy ion collisions. It may become a criterion to judge whether quark-gluon plasma has formed to search for four-quark states in relativistic heavy ion collisions.

  17. Spin symmetry in the relativistic modified Rosen-Morse potential with the approximate centrifugal term

    Institute of Scientific and Technical Information of China (English)

    Chen Wen-Li; Wei Gao-Feng

    2011-01-01

    By applying a Pekeris-type approximation to the centrifugal term, we study the spin symmetry of a Dirac nucleon subjected to scalar and vector modified Rosen-Morse potentials. A complicated energy equation and associated twocomponent spinors with arbitrary spin-orbit coupling quantum number k are presented. The positive-energy bound states are checked numerically in the case of spin symmetry. The relativistic modified Rosen-Morse potential cannot trap a Dirac nucleon in the limiting case α→ 0.

  18. Lab cooks up quark soup

    CERN Multimedia

    Dumé, Belle

    2003-01-01

    "Physicists working at the Relativistic Heavy Ion Collider (RHIC) at the Brookhaven National Laboratory in the US say that they have come closer than ever before to creating a quark-gluon plasma" (0.5 page)

  19. Higher order quark number fluctuations via imaginary chemical potentials in Nf=2 +1 QCD

    Science.gov (United States)

    D'Elia, Massimo; Gagliardi, Giuseppe; Sanfilippo, Francesco

    2017-05-01

    We discuss analytic continuation as a tool to extract the cumulants of the quark number fluctuations in the strongly interacting medium from lattice QCD simulations at imaginary chemical potentials. The method is applied to Nf=2 +1 QCD, discretized with stout improved staggered fermions, physical quark masses and the tree level Symanzik gauge action, exploring temperatures ranging from 135 up to 350 MeV and adopting mostly lattices with Nt=8 sites in the temporal direction. The method is based on a global fit of various cumulants as a function of the imaginary chemical potentials. We show that it is particularly convenient to consider cumulants up to order two, and that below Tc the method can be advantageous, with respect to a direct Montecarlo sampling at μ =0 , for the determination of generalized susceptibilities of order four or higher, and especially for mixed susceptibilities, for which the gain is well above one order of magnitude. We provide cumulants up to order eight, which are then used to discuss the radius of convergence of the Taylor expansion and the possible location of the second-order critical point at real μ : no evidence for such a point is found in the explored range of T and for chemical potentials within present determinations of the pseudocritical line.

  20. Equation of state for hot quark-gluon plasma transitions to hadrons with full QCD potential

    Science.gov (United States)

    Sheikholeslami-Sabzevari, Bijan

    2002-05-01

    A practical method based on Mayer's cluster expansion to calculate critical values for a quark-gluon plasma (QGP) phase transition to hadrons is represented. It can be applied to a high-temperature QGP for clustering of quarks to mesons and baryons. The potential used is the Cornell potential, i.e., a potential containing both confining and gluon exchange terms. Debye screening effects are included. An equation of state (EOS) for hadron production is found by analytical methods, which is valid near the critical point. The example of the formation of J/ψ and Υ is recalculated. It is shown that in the range of temperatures available by today's accelerators, the latter particles are suppressed. This is further confirmation for heavy quarkonia suppression and, hence, for a signature of a QGP. The EOS presented here also shows that in future colliders there will be no heavy quarkonia production by the mechanism of phase transition. Hence, if there will be heavy quarkonia production, it must be based on some other mechanisms, perhaps on the basis of some recently suggested possibilities.

  1. Disentangling the timescales behind the non-perturbative heavy quark potential

    CERN Document Server

    Burnier, Yannis

    2012-01-01

    The static part of the heavy quark potential has been shown to be closely related to the spectrum of the rectangular Wilson loop. In particular the lowest lying positive frequency peak encodes the late time evolution of the two-body system, characterized by a complex potential. While initial studies assumed a perfect separation of early and late time physics, where a simple Lorentian (Breit-Wigner) shape suffices to describe the spectral peak, we argue that scale decoupling in general is not complete. Thus early time, i.e. non-potential effects, significantly modify the shape of the lowest peak. We derive on general grounds an improved peak distribution that reflects this fact. Application of the improved fit to non-perturbative lattice QCD spectra now yields a potential that is compatible with a transition to a deconfined screening plasma.

  2. A gauge invariant Debye mass for the complex heavy-quark potential

    CERN Document Server

    Burnier, Yannis

    2016-01-01

    The concept of a screening mass is a powerful tool to simplify the intricate physics of in-medium test charges surrounded by light charge carriers. While it has been successfully used to describe electromagnetic properties, its definition and computation in QCD is plagued by questions of gauge invariance and the presence of non-perturbative contributions from the magnetic sector. Here we present a recent alternative definition of a gauge invariant Debye mass parameter following closely the original idea of Debye and Hueckel. Our test charges are a static heavy quark-antiquark pair whose complex potential and its in-medium modification can be extracted using lattice QCD. By combining in a generalized Gauss-Law the non-perturbative aspects of quark binding with a perturbative ansatz for the medium effects, we succeed to describe the lattice values of the potential with a single temperature dependent parameter, in turn identified with a Debye mass. We find that its behavior, as evaluated in a recent quenched lat...

  3. On PT-Symmetric Periodic Potential, Quark Confinement, and Other Impossible Pursuits

    Directory of Open Access Journals (Sweden)

    Christianto V.

    2009-01-01

    Full Text Available As we know, it has been quite common nowadays for particle physicists to think of six impossible things before breakfast, just like what their cosmology fellows used to do. In the present paper, we discuss a number of those impossible things, including PT-symmetric periodic potential, its link with condensed matter nuclear science, and possible neat link with Quark confinement theory. In recent years, the PT-symmetry and its related periodic potential have gained considerable interests among physicists. We begin with a review of some results from a preceding paper discussing derivation of PT-symmetric periodic potential from biquaternion Klein-Gordon equation and proceed further with the remaining issues. Further observation is of course recommended in order to refute or verify this proposition.

  4. Decay Constants and Distribution Amplitudes of B Meson in the Relativistic Potential Model

    CERN Document Server

    Sun, Hao-Kai

    2016-01-01

    In this work we study the decay constants of $B$ and $B_s$ mesons based on the wave function obtained in the relativistic potential model. Our results are in good agreement with experiment data which enables us to apply this method to the investigation of $B$-meson distribution amplitudes. A very compact form of the distribution amplitudes is obtained. We also investigate the one-loop QCD corrections to the purely leptonic decays of $B$ mesons. We find that, after subtracting the infrared divergence in the one-loop corrections using the factorization method, the QCD one-loop corrections to the leptonic decay amplitude will be zero.

  5. A Light-Cone QCD Inspired Meson Model with a Relativistic Confining Potential in Momentum Space

    Institute of Scientific and Technical Information of China (English)

    LI Lei; WANG Shun-Jin; ZHOU Shan-Gui; ZHANG Guang-Biao

    2007-01-01

    For describing the radial excited states a relativistic confining potential in momentum space is included in the meson effective light-cone Hamiltonian. The meson eigen equations are transformed from the front form to the instant form and formulated in total angular representation. Details about numerically solving these equations are discussed, mainly focusing on treating singularities arising from one-gluon exchange interactions and confinement. The results of pseudo-scalar mesons indicate that the improved meson effective light-cone Hamiltonian can describe the ground states and radial excited states well. Some radial excited states are also predicted and waiting for experimental test.

  6. Relativistic Treatment of Spinless Particles Subject to a q-Deformed Morse Potential

    Institute of Scientific and Technical Information of China (English)

    Sami Ortakaya

    2013-01-01

    The approximate analytical solutions of the Klein-Gordon equation with equal scalar and vector q-deformed Morse potential are presented for arbitrary (l)-states by using Laplace integral transform.The energy eigenvalues and corresponding wave functions are obtained for n and (l) values.In this study,in the non-relativistic limit c → ∞,it has been also provided that the energy eigenfunctions for Klein-Gordon system turn into those for Schr(o)dinger one.

  7. Parton densities with the quark linear potential in the statistical approach

    CERN Document Server

    Mirjalili, A; Yazdanpanah, M M

    2014-01-01

    The statistical approach is used to calculate the parton distribution functions (PDFs) of the nucleon. At first it is assumed that the partons are free particles and the light-front kinematic variables are employed to extract the Bjorken $x$-dependence of the PDFs. These PDFs are used to evaluate the combinations of the sea quarks such as $\\bar d-\\bar u$. As our first attempt to improve the result, we make the statistical parameters to depend on $Q^2$, using different values of Gottfried sum rule. The related results are indicating better behavior by accessing to the PDFs while they contain the $Q^2$ dependence parameters. As a further task and in order to have more improvement in the calculations, a linear potential is considered to describe the quark interactions. The solution of the related Dirac equation yields the Airy function and is considered as a wave function in spatial space. Using the fourier transformation the wave functions are obtained in momentum space. Based on the light-front kinematic varia...

  8. Quark structure of chiral solitons

    CERN Document Server

    Diakonov, D

    2004-01-01

    There is a prejudice that the chiral soliton model of baryons is something orthogonal to the good old constituent quark models. In fact, it is the opposite: the spontaneous chiral symmetry breaking in strong interactions explains the appearance of massive constituent quarks of small size thus justifying the constituent quark models, in the first place. Chiral symmetry ensures that constituent quarks interact very strongly with the pseudoscalar fields. The ``chiral soliton'' is another word for the chiral field binding constituent quarks. We show how the old SU(6) quark wave functions follow from the ``soliton'', however, with computable relativistic corrections and additional quark-antiquark pairs. We also find the 5-quark wave function of the exotic baryon Theta+.

  9. Deriving relativistic Bohmian quantum potential using variational method and conformal transformations

    Indian Academy of Sciences (India)

    Rahmani Faramarz; Golshani Mehdi; Sarbishei Mohsen

    2016-04-01

    In this paper we shall argue that conformal transformations give some new aspects to a metric and changes the physics that arises from the classical metric. It is equivalent to adding a new potential to relativistic Hamilton–Jacobi equation. We start by using conformal transformations on a metric and obtain modified geodesics. Then, we try to show that extra terms in the modified geodesics are indications of a background force. We obtain this potential by using variational method. Then, we see that this background potential is the same as the Bohmian non-local quantum potential. This approach gives a method stronger than Bohm’s original method in deriving Bohmian quantumpotential. We do not use any quantum mechanical postulates in this approach.

  10. K--nucleus relativistic mean field potentials consistent with kaonic atoms

    Science.gov (United States)

    Friedman, E.; Gal, A.; Mareš, J.; Cieplý, A.

    1999-08-01

    K- atomic data are used to test several models of the K- nucleus interaction. The t(ρ)ρ optical potential, due to coupled channel models incorporating the Λ(1405) dynamics, fails to reproduce these data. A standard relativistic mean field (RMF) potential, disregarding the Λ(1405) dynamics at low densities, also fails. The only successful model is a hybrid of a theoretically motivated RMF approach in the nuclear interior and a completely phenomenological density dependent potential, which respects the low density theorem in the nuclear surface region. This best-fit K- optical potential is found to be strongly attractive, with a depth of 180+/-20 MeV at the nuclear interior, in agreement with previous phenomenological analyses.

  11. Relativistic heavy ion reactions

    Energy Technology Data Exchange (ETDEWEB)

    Brink, D.M.

    1989-08-01

    The theory of quantum chromodynamics predicts that if nuclear matter is heated to a sufficiently high temperature then quarks might become deconfined and a quark-gluon plasma could be produced. One of the aims of relativistic heavy ion experiments is to search for this new state of matter. These lectures survey some of the new experimental results and give an introduction to the theories used to interpret them. 48 refs., 4 tabs., 11 figs.

  12. Quark Models and Quark Phenomenology

    CERN Document Server

    Lipkin, Harry Jeannot

    1997-01-01

    Overwhelming experimental evidence for quarks as real physical constituents of hadrons along with the QCD analogs of the Balmer Formula, Bohr Atom and Schroedinger Equation already existed in 1966. A model of colored quarks interacting with a one-gluon-exchange potential explained the systematics of the meson and baryon spectrum and gave a hadron mass formula in surprising agreement with experiment. The simple quark model dismissed as heresy and witchcraft by the establishment predicted quantum numbers of an enormous number of hadronic states as well as relations between masses, reaction cross sections and electromagnetic properties, all unexplained by other approaches. Further developments leading to QCD included confinement in the large $N_c$ limit, duality, dual resonance and string models, high energy scattering systematics, unified treatment of mesons and baryons, no exotics and no free quarks.

  13. Individual complex Dirac eigenvalue distributions from random matrix theory and comparison to quenched lattice QCD with a quark chemical potential.

    Science.gov (United States)

    Akemann, G; Bloch, J; Shifrin, L; Wettig, T

    2008-01-25

    We analyze how individual eigenvalues of the QCD Dirac operator at nonzero quark chemical potential are distributed in the complex plane. Exact and approximate analytical results for both quenched and unquenched distributions are derived from non-Hermitian random matrix theory. When comparing these to quenched lattice QCD spectra close to the origin, excellent agreement is found for zero and nonzero topology at several values of the quark chemical potential. Our analytical results are also applicable to other physical systems in the same symmetry class.

  14. Towards an extension of 1905 relativistic dynamics with a variable rest mass measuring potential energy

    CERN Document Server

    Hidalgo-Gato, Rafael A Valls

    2012-01-01

    From a rigorous historic analysis of 1686 I. Newton and 1905 A. Einstein works where the last derived the universal mass-energy relationship, it is concluded that rest mass measures potential energy. From the same formula used to obtain that relation, it is derived the ratio Total Energy/Potential Energy is equal to the gamma relativistic factor. It is derived a formula for the variation of a body rest mass with its position in a gravity field, explaining with it the behavior of an atomic clock. It is revised the bodies free fall in a gravitational field, finding that a constant total mass is equal to the gravitational mass, while the variable rest mass is equal to the inertial mass, maintaining all an identical behavior independent of their masses. A revision of the E\\"otv\\"os experiment concludes that it is unable to detect the found difference between inertial and gravitational mass. Applying the extended 1905 relativistic dynamics to Mercury, its perihelion shift is determined; it is concluded with the co...

  15. πN Elastic Scattering and Resonances in Quark Potential Model

    Institute of Scientific and Technical Information of China (English)

    CHEN Ju-Mei; WANG Hai-Jun; LI Cheng-Zu; SU Jun-Chen; LIANG Lin-Mei; CHEN Ping-Xing; DAI Hong-Yi

    2008-01-01

    The quark potential model is used to investigate the low-energy elastic scattering of π N system. The model potential consists of the t-channel and s-channel one-gluon exchange potentials and the harmonic oscillator confining potential. By means of the resonating group method, a nonlocal effective potential for the πN system is derived from the interquark potentials and used to calculate the π N elastic scattering phase shifts. By considering the effect of QCD renormalization, the suppression of the spin-orbital coupling and the contribution of the color octet of the clusters (qq) and (qqq), the numerical results are in fairly good agreement with the experimental data. The same model and method are employed to investigate the possible πN resonances. For this purpose, the resonating group equation is transformed into a standard Schrodinger equation in which the nonlocal effective πN interaction potential is included. Solving the Schrodinger equation by the variational method, we are able to reproduce the masses of some currently concerned πN resonances.

  16. Static quark potential and string tension for compact U(1) in (2+1) dimensions

    CERN Document Server

    Loan, M; Hamer, C; Loan, Mushtaq; Brunner, Michael; Hamer, Chris

    2002-01-01

    Compact U(1) lattice gauge theory in (2+1) dimensions is studied on anisotropic lattices using Standard Path Integral Monte Carlo techniques. We extract the static quark potential and the string tension from 1.0 <= Dtau <= 0.333 simulations at 1.0 <= beta <= 3.0. Estimating the actual value of the renormalization constant, (c = 44), we observe the evidence of scaling in the string tension for 1.4142 <= beta <= 2.5; with the asymptotic behaviour in the large-beta limit given by K sqrt(beta) = e^(-2.494 beta +2.29). Extrapolations are made to the extreme anisotropic or "Hamiltonian" limit, and comparisons are made with previous estimates obtained by various other methods in the Hamiltonian formulation.

  17. Strange Stars with Realistic Quark Vector Interaction and Phenomenological Density-dependent Scalar Potential

    CERN Document Server

    Dey, M; Dey, J; Ray, S; Samanta, B C; Dey, Mira; Bombaci, Ignazio; Dey, Jishnu; Ray, Subharthi

    1998-01-01

    We derive an equation of state (EOS) for strange matter, starting from an interquark potential which (i) has asymptotic freedom built into it, (ii) shows confinement at zero density ($\\rho_B = 0$) and deconfinement at high $\\rho_B$, and (iii) gives a stable configuration for chargeless, $\\beta$-stable quark matter. This EOS is then used to calculate the structure of Strange Stars, and in particular their mass-radius relation. Our present results confirm and reinforce the recent claim\\cite{li,b} that the compact objects associated with the x-ray pulsar Her X-1, and with the x-ray burster 4U 1820-30 are strange stars.

  18. Quark gluon plasma

    Indian Academy of Sciences (India)

    C P Singh

    2000-04-01

    Recent trends in the research of quark gluon plasma (QGP) are surveyed and the current experimental and theoretical status regarding the properties and signals of QGP is reported. We hope that the experiments commencing at relativistic heavy-ion collider (RHIC) in 2000 will provide a glimpse of the QGP formation.

  19. From perturbative calculations of the QCD static potential towards four-loop pole-running heavy quarks masses relation

    CERN Document Server

    Kataev, A L

    2016-01-01

    The summary of the available semi-analytical results for the three-loop corrections to the QCD static potential and for the $\\mathcal{O}(\\alpha_s^4)$ contributions to the ratio of the running and pole heavy quark masses are presented. The procedure of the determination of the dependence of the four-loop contribution to the pole-running heavy quarks mass ratio on the number of quarks flavours, based on application of the least squares method is described. The necessity of clarifying the reason of discrepancy between the numerical uncertainties of the $\\alpha_s^4$ coefficients in the mass ratio, obtained by this mathematical method by the direct numerical calculations is emphasised.

  20. T-matrix approach to heavy quark diffusion in the QGP

    Energy Technology Data Exchange (ETDEWEB)

    Hees, H. van [Justus-Liebig-Universitaet Giessen, Institut fuer Theoretische Physik, Giessen (Germany); Mannarelli, M. [Instituto de Ciencias del Espacio (IEEC/CSIC), Bellaterra (Barcelona) (Spain); Greco, V. [INFN-LNS, Catania (Italy); Dipartimento Interateneo di Fisica di Bari, Bari (Italy); Rapp, R. [Texas A and M University, Cyclotron Institute and Physics Department, College Station, TX (United States)

    2009-06-15

    We assess transport properties of heavy quarks in the quark-gluon plasma (QGP) using static heavy-quark (HQ) potentials from lattice-QCD calculations in a Brueckner many-body T-matrix approach to evaluate elastic heavy-quark-light-quark scattering amplitudes. In the attractive meson and diquark channels, resonance states are formed for temperatures up to {proportional_to}1.5T{sub c}, increasing pertinent drag and diffusion coefficients for heavy-quark rescattering in the QGP beyond the expectations from perturbative-QCD calculations. We use these transport coefficients, complemented with perturbative elastic HQ gluon scattering, in a relativistic Langevin simulation to obtain HQ p{sub t} distributions and elliptic flow (v{sub 2}) under conditions relevant for the hot and dense medium created in ultrarelativistic heavy-ion collisions. The heavy quarks are hadronized to open-charm and -bottom mesons within a combined quark-coalescence fragmentation scheme. The resulting single-electron spectra from their semileptonic decays are confronted with recent data on ''non-photonic electrons'' in 200 A GeV Au-Au collisions at the Relativistic Heavy-Ion Collider (RHIC). (orig.)

  1. a Relativistic Calculation of Baryon Masses

    Science.gov (United States)

    Giammarco, Joseph Michael

    1990-01-01

    We calculate ground state baryon masses using a saddle-point variational (SPV) method, which permits us the use of fully relativistic 4-component Dirac spinors without the need for positive energy projection operators. This variational approach has been shown to work in the relativistic domain for one particle in an external potential (Dirac equation). We have extended its use to the relativistic 3-body Breit equation. Our procedure is as follows: we pick a trial wave function having the appropriate spin, flavor and color dependence. This can be accomplished with a non-symmetric relativistic spatial wave function having two different size parameters if the the first two quarks are always chosen to be identical. We than calculate an energy eigenvalue for the particle state and vary the parameters in our wave function to search for a "saddle-point". We minimize the energy with respect to the two size parameters and maximize with respect to two parameters that measure the contribution from the negative-energy states. This gives the baryon's mass as a function of four input parameters: the masses of the up, down and strange quarks (m_{u=d },m_{s}), and the strength of the coupling constants for the potentials ( alpha_{s},mu). We do this for the eight Baryon ground states and fit these to experimental data. This fit gives the values of the input parameters. For the potentials we use a coulombic term to represent one-gluon exchange and a linear term for confinement. For both terms we include a retardation term required by relativity. We also add delta function and spin-spin terms to account for the large contribution of the coulomb interaction at the origin. The results we obtain from our SPV method are in good agreement with experimental data. The actual search for the saddle-point parameters and the fitting of the quark masses and the values of the coupling strengths was done on a CDC Cyber 860.

  2. The Solution of the Relativistic Schrodinger Equation for the $\\delta'$-Function Potential in 1-dimension Using Cutoff Regularization

    CERN Document Server

    Al-Hashimi, M H

    2015-01-01

    We study the relativistic version of Schr\\"odinger equation for a point particle in 1-d with potential of the first derivative of the delta function. The momentum cutoff regularization is used to study the bound state and scattering states. The initial calculations show that the reciprocal of the bare coupling constant is ultra-violet divergent, and the resultant expression cannot be renormalized in the usual sense. Therefore a general procedure has been developed to derive different physical properties of the system. The procedure is used first on the non-relativistic case for the purpose of clarification and comparisons. The results from the relativistic case show that this system behaves exactly like the delta function potential, which means it also shares the same features with quantum field theories, like being asymptotically free, and in the massless limit, it undergoes dimensional transmutation and it possesses an infrared conformal fixed point.

  3. B -meson decay constants from 2+1 -flavor lattice QCD with domain-wall light quarks and relativistic heavy quarks

    Energy Technology Data Exchange (ETDEWEB)

    Christ, N. H.; Flynn, J. M.; Izubuchi, T.; Kawanai, T.; Lehner, C.; Soni, A.; Van de Water, R. S.; Witzel, O.

    2015-03-01

    We calculate the B-meson decay constants fB, fBs, and their ratio in unquenched lattice QCD using domain-wall light quarks and relativistic b quarks. We use gauge-field ensembles generated by the RBC and UKQCD collaborations using the domain-wall fermion action and Iwasaki gauge action with three flavors of light dynamical quarks. We analyze data at two lattice spacings of a0.11, 0.086 fm with unitary pion masses as light as Mπ290MeV; this enables us to control the extrapolation to the physical light-quark masses and continuum. For the b quarks we use the anisotropic clover action with the relativistic heavy-quark interpretation, such that discretization errors from the heavy-quark action are of the same size as from the light-quark sector. We renormalize the

  4. High energy cosmic ray signature of quark nuggets

    Science.gov (United States)

    Audouze, J.; Schaeffer, R.; Silk, J.

    1985-01-01

    It has been recently proposed that dark matter in the Universe might consist of nuggets of quarks which populate the nuclear desert between nucleons and neutron star matter. It is further suggested that the Centauro events which could be the signature of particles with atomic mass A approx. 100 and energy E approx. 10 to 15th power eV might also be related to debris produced in the encounter of two neutron stars. A further consequence of the former proposal is examined, and it is shown that the production of relativistic quark nuggets is accompanied by a substantial flux of potentially observable high energy neutrinos.

  5. Correction of Relativistic Center-of-Mass Vector on Electric Polarizability of Pion Meson

    Institute of Scientific and Technical Information of China (English)

    DONG Yu-Bing

    2005-01-01

    We estimate the correction of relativistic center-of-mass vector on electric polarizability of an equal-mass quark-antiquark system numerically. Effect on the system confined by different interactive potentials is analysed. A great improvement for the electric polarizability of pion meson is obtained.

  6. 相对论重离子碰撞夸克胶子等离子体对磁场分布的影响%Effect of quark gluon plasma on the magnetic field distribution in relativistic heavy ion collisions

    Institute of Scientific and Technical Information of China (English)

    陈勋; 冯笙琴

    2016-01-01

    首先利用Woods‐Saxon分布,计算相对论重离子碰撞磁场空间分布;并在此基础上考虑夸克胶子等离子体(QGP)的响应,假定QGP为理想导体情况下,研究磁场在QGP环境下的分布特征。%Spatial distributions of magnetic field are calculated in relativistic heavy ion collision based on Woods‐Saxon dis‐tribution .We further study the characteristics of magnetic field distribution while considering Quark gluon plasma (QGP) as an ideal conductor response in a QGP environment .

  7. Complex heavy-quark potential and Debye mass in a gluonic medium from lattice QCD

    CERN Document Server

    Burnier, Yannis

    2016-01-01

    We improve and extend our study of the complex in-medium heavy quark potential and its Debye mass $m_D$ in a gluonic medium with a finer scan around the deconfinement transition and newly generated ensembles closer to the thermodynamic limit. On the lattices with larger physical volume, Re[V] shows signs of screening, i.e. a finite $m_D$, only in the deconfined phase, reminiscent of a genuine phase transition. Consistently Im[V] exhibits nonzero values also only above $T_C$. We compare the behavior of Re[V] with the color singlet free-energies that have been used historically to extract the Debye mass. An effective coupling constant is computed to assess the residual influence of the confining part of the potential at $T>0$. Our previous finding of a gradual screening of Re[V] around $T_C$ on finer lattices is critically reassessed and interpreted to originate from finite volume artifacts that affect the deployed $\\beta=7$, $\\xi_b=3.5$ parameter set at $N_s=32$.

  8. Relativistic Scattering States of Coulomb Potential Plus a New Ring-Shaped Potential

    Institute of Scientific and Technical Information of China (English)

    CHEN Chang-Yuan; LU Fa-Lin; SUN Dong-Sheng

    2006-01-01

    In this paper, exact solutions of scattering states of the Klein-Gordon equation with Coulomb potential plus a new ring-shaped potential are studied under the condition that the scalar potential is equal to the vector potential.The normalized wave functions of scattering states on the "k/2π scale" and the calculation formula of phase shifts are presented. Analytical properties of the scattering amplitude are discussed.

  9. Spin-orbit coupled potential energy surfaces and properties using effective relativistic coupling by asymptotic representation

    Science.gov (United States)

    Ndome, Hameth; Eisfeld, Wolfgang

    2012-08-01

    A new method has been reported recently [H. Ndome, R. Welsch, and W. Eisfeld, J. Chem. Phys. 136, 034103 (2012)], 10.1063/1.3675846 that allows the efficient generation of fully coupled potential energy surfaces (PESs) including derivative and spin-orbit (SO) coupling. The method is based on the diabatic asymptotic representation of the molecular fine structure states and an effective relativistic coupling operator and therefore is called effective relativistic coupling by asymptotic representation (ERCAR). The resulting diabatic spin-orbit coupling matrix is constant and the geometry dependence of the coupling between the eigenstates is accounted for by the diabatization. This approach allows to generate an analytical model for the fully coupled PESs without performing any ab initio SO calculations (except perhaps for the atoms) and thus is very efficient. In the present work, we study the performance of this new method for the example of hydrogen iodide as a well-established test case. Details of the diabatization and the accuracy of the results are investigated in comparison to reference ab initio calculations. The energies of the adiabatic fine structure states are reproduced in excellent agreement with reference ab initio data. It is shown that the accuracy of the ERCAR approach mainly depends on the quality of the underlying ab initio data. This is also the case for dissociation and vibrational level energies, which are influenced by the SO coupling. A method is presented how one-electron operators and the corresponding properties can be evaluated in the framework of the ERCAR approach. This allows the computation of dipole and transition moments of the fine structure states in good agreement with ab initio data. The new method is shown to be very promising for the construction of fully coupled PESs for more complex polyatomic systems to be used in quantum dynamics studies.

  10. Relativistic scalar particle subject to a confining potential and Lorentz symmetry breaking effects in the cosmic string spacetime

    CERN Document Server

    Belich, H

    2015-01-01

    The behaviour of a relativistic scalar particle subject to a scalar potential under the effects of the violation of the Lorentz symmetry in the cosmic string spacetime is discussed. It is considered two possible scenarios of the Lorentz symmetry breaking in the CPT-even gauge sector of the Standard Model Extension defined by a tensor $\\left(K_{F}\\right)_{\\mu\

  11. Transversity of quarks in a nucleon

    Indian Academy of Sciences (India)

    K Bora; D K Choudhury

    2003-11-01

    The transversity distribution of quarks in a nucleon is one of the three fundamental distributions, that characterize nucleon’s properties in hard scattering processes at leading twist (twist 2). It measures the distribution of quark transverse spin in a nucleon polarized transverse to its (infinite) momentum. It is a chiral-odd twist-two distribution function – gluons do not couple to it. Quarks in a nucleon/hadron are relativistically bound and transversity is a measure of the relativistic nature of bound quarks in a nucleon. In this work, we review some important aspects of this less familiar distribution function which has not been measured experimentally so far.

  12. Thermal Recombination: Beyond the Valence Quark Approximation

    CERN Document Server

    Müller, B; Bass, S A

    2005-01-01

    Quark counting rules derived from recombination models agree well with data on hadron production at intermediate transverse momenta in relativistic heavy-ion collisions. They convey a simple picture of hadrons consisting only of valence quarks. We discuss the inclusion of higher Fock states that add sea quarks and gluons to the hadron structure. We show that, when recombination occurs from a thermal medium, hadron spectra remain unaffected by the inclusion of higher Fock states. However, the quark number scaling for elliptic flow is somewhat affected. We discuss the implications for our understanding of data from the Relativistic Heavy Ion Collider.

  13. Chiral Symmetry Restoration with a Chiral Chemical Potential: the Role of Momentum Dependent Quark Self-energy

    CERN Document Server

    Ruggieri, M

    2016-01-01

    In this article we study restoration of chiral symmetry at finite temperature for quark matter with a chiral chemical potential, $\\mu_5$, by means of a nonlocal Nambu-Jona-Lasinio model. This model allows to introduce in the simplest way possible a Euclidean momentum, $p_E$, dependent quark mass function which decays (neglecting logarithms) as $1/p_E^2$ for large $p_E$ in agreement with asymptotic behaviour expected in presence of a nonperturbative quark condensate. We show that the momentum dependence of the quark mass function, which has been neglected in all of the previous model studies, drastically affects the dependence of the critical temperature versus $\\mu_5$. We explain this in terms of a natural removal of ultraviolet modes at $T>0$ in the gap equation, as well as of the natural addition of these modes at $T=0$ which help to catalyze chiral symmetry breaking. As a result we find that within this model the critical temperature increases with $\\mu_5$.

  14. Evaluating the last missing ingredient for the three-loop quark static potential by differential equations

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Roman N. [Budker Institute of Nuclear Physics,630090 Novosibirsk (Russian Federation); Smirnov, Vladimir A. [Skobeltsyn Institute of Nuclear Physics, Moscow State University,119992 Moscow (Russian Federation)

    2016-10-18

    We analytically evaluate the three-loop Feynman integral which was the last missing ingredient for the analytical evaluation of the three-loop quark static potential. To evaluate the integral we introduce an auxiliary parameter y, which corresponds to the residual energy in some of the HQET propagators. We construct a differential system for 109 master integrals depending on y and fix boundary conditions from the asymptotic behaviour in the limit y→∞. The original integral is recovered from the limit y→0. To solve these linear differential equations we try to find an ϵ-form of the differential system. Though this step appears to be, strictly speaking, not possible, we succeed to find an ϵ-form of all irreducible diagonal blocks, which is sufficient for solving the differential system in terms of an ϵ expansion. We find a solution up to weight six in terms of multiple polylogarithms and obtain an analytical result for the required three-loop Feynman integral by taking the limit y→0. As a by-product, we obtain analytical results for some Feynman integrals typical for HQET.

  15. Evaluating the last missing ingredient for the three-loop quark static potential by differential equations

    Science.gov (United States)

    Lee, Roman N.; Smirnov, Vladimir A.

    2016-10-01

    We analytically evaluate the three-loop Feynman integral which was the last missing ingredient for the analytical evaluation of the three-loop quark static potential. To evaluate the integral we introduce an auxiliary parameter y, which corresponds to the residual energy in some of the HQET propagators. We construct a differential system for 109 master integrals depending on y and fix boundary conditions from the asymptotic behaviour in the limit y → ∞. The original integral is recovered from the limit y → 0. To solve these linear differential equations we try to find an ɛ-form of the differential system. Though this step appears to be, strictly speaking, not possible, we succeed to find an ɛ-form of all irreducible diagonal blocks, which is sufficient for solving the differential system in terms of an ɛ expansion. We find a solution up to weight six in terms of multiple polylogarithms and obtain an analytical result for the required three-loop Feynman integral by taking the limit y → 0. As a by-product, we obtain analytical results for some Feynman integrals typical for HQET.

  16. Evaluating the last missing ingredient for the three-loop quark static potential by differential equations

    CERN Document Server

    Lee, Roman N

    2016-01-01

    We analytically evaluate the three-loop Feynman integral which was the last missing ingredient for the analytical evaluation of the three-loop quark static potential. To evaluate the integral we introduce an auxiliary parameter $y$, which corresponds to the residual energy in some of the HQET propagators. We construct a differential system for 109 master integrals depending on $y$ and fix boundary conditions from the asymptotic behaviour in the limit $y\\to \\infty$. The original integral is recovered from the limit $y\\to 0$. To solve these linear differential equations we try to find an $\\epsilon$-form of the differential system. Though this step appears to be, strictly speaking, not possible, we succeed to find an $\\epsilon$-form of all irreducible diagonal blocks, which is sufficient for solving the differential system in terms of an $\\epsilon$ expansion. We find a solution up to weight six in terms of multiple polylogarithms and obtain an analytical result for the required three-loop Feynman integral by tak...

  17. {lambda}{sub MS} from the static potential for QCD with n{sub f}=2 dynamical quark flavors

    Energy Technology Data Exchange (ETDEWEB)

    Jansen, Karl [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Roma Univ. ' ' Tor Vergata' ' (Italy). Dipt. di Fisica; INFN, Roma (Italy); Karbstein, Felix [Helmholtz-Institut Jena (Germany); Jena Univ. (Germany). Theoretisch-Physikalisches Inst.; Nagy, Attila [Humboldt Univ. Berlin (Germany); Wagner, Marc [Frankfurt Univ. (Germany). Inst. fuer Theoretische Physik

    2011-12-15

    We determine {lambda}{sub MS} for QCD with n{sub f}=2 dynamical quark flavors by fitting the Q anti Q static potential known analytically in the perturbative regime up to terms of O({alpha}{sub s}{sup 4}) and {proportional_to}{alpha}{sub s}{sup 4} ln{alpha}{sub s} to corresponding results obtained from lattice simulations. This has become possible, due to recent advances in both perturbative calculations, namely the determination and publication of the last missing contribution to the Q anti Q static potential at O({alpha}{sub s}{sup 4}), and lattice simulations with n{sub f}=2 dynamical quark flavors performed at the rather fine lattice spacing of a{approx}0.042 fm. Imposing conservative error estimates we obtain {lambda}{sub MS}=315(30) MeV. (orig.)

  18. On a relativistic scalar particle subject to a Coulomb-type potential given by Lorentz symmetry breaking effects

    CERN Document Server

    Bakke, K

    2015-01-01

    The behaviour of a relativistic scalar particle in a possible scenario that arises from the violation of the Lorentz symmetry is investigated. The background of the Lorentz symmetry violation is defined by a tensor field that governs the Lorentz symmetry violation out of the Standard Model Extension. Thereby, we show that a Coulomb-type potential can be induced by Lorentz symmetry breaking effects and bound states solutions to the Klein-Gordon equation can be obtained. Further, we discuss the effects of this Coulomb-type potential on the confinement of the relativistic scalar particle to a linear confining potential by showing that bound states solutions to the Klein-Gordon equation can also be achieved, and obtain a quantum effect characterized by the dependence of a parameter of the linear confining potential on the quantum numbers $\\left\\{n,l\\right\\}$ of the system.

  19. Quark number density and susceptibility calculation under one-loop correction in the mean-field potential

    Indian Academy of Sciences (India)

    S SOMORENDRO SINGH; G SAXENA

    2017-06-01

    We calculate quark number density and susceptibility under one-loop correction in the mean-field potential. The calculation shows continuous increase in the number density and susceptibility up to the temperature $T = 0.4 \\rm{GeV}$. Then the values of number density and susceptibility approach the very weakly result with higher values of temperature. The result indicates that the calculated values fit well with increase in temperature to match the lattice QCD simulations of the same quantities.

  20. A New Relativistic Study for Interactions in One-electron atoms (Spin ½ Particles) with Modified Mie-type Potential

    OpenAIRE

    Abdelmadjid Maireche

    2016-01-01

    In this paper, we present a novel theoretical analytical perform further investigation for the exact solvability of relativistic quantum spectrum systems for modified Mie-type potential (m.m.t.) potential is discussed for spin-1/2 particles by means Boopp’s shift method instead to solving deformed Dirac equation with star product, in the framework of noncommutativity three dimensional real space (NC: 3D-RS). The exact corrections for excited states are found straightforwardly for interactions...

  1. Effective-Range Expansion of Neutron-Deuteron Scattering Studied by a Quark-Model Nonlocal Gaussian Potential

    Science.gov (United States)

    Fukukawa, K.; Fujiwara, Y.

    2011-05-01

    The S-wave effective-range parameters of the neutron-deuteron (nd) scattering are calculated in the Faddeev formalism using a nonlocal Gaussian potential based on the quark-model baryon-baryon interaction fss2. The spin-doublet low-energy eigenphase shift is sufficiently attractive to reproduce predictions by the AV18 plus Urbana three-body force, yielding almost correct values of the scattering length and the triton binding energy without the three-nucleon force. This feature is due to the strong distortion effect of the deuteron in this spin channel, which is very sensitive to the nonlocal description of the short-range repulsion in the quark-model nucleon-nucleon interaction. We incorporate the Coulomb force by extending the framework of the Coulomb externally corrected approximation and calculate the differential cross sections of the pd scattering.

  2. Decay constants in the heavy quark limit in models à la Bakamjian and Thomas

    CERN Document Server

    Morénas, V; Oliver, L; Pène, O; Raynal, J C

    1998-01-01

    In quark models à la Bakamjian and Thomas, that yield covariance and Isgur-Wise scaling of form factors in the heavy quark limit, we compute the decay constants $f^{(n)}$ and $f^{(n)}_{1/2}$ of S-wave and P-wave mesons composed of heavy and light quarks. Heavy quark limit scaling $\\sqrt{M} f = Cst$ is obtained, and it is shown that this class of models satisfies the sum rules involving decay constants and Isgur-Wise functions recently formulated by us in the heavy quark limit of QCD. Moreover, the model also satisfies the selection rules of the type $f^{(n)}_{3/2} = 0$ that must hold in this limit. We discuss different Ansätze for the dynamics of the mass operator at rest. For non-relativistic kinetic energies ${p^2 \\over 2m}$ the decay constants are finite even if the potential $V(r)$ has a Coulomb part. For the relativistic form $\\sqrt{p^2 + m^2}$, the S-wave decay constants diverge if there is a Coulomb singularity. Using phenomenological models of the spectrum with relativistic kinetic energy and regula...

  3. Phenomenology with Lattice NRQCD b Quarks

    CERN Document Server

    Colquhoun, Brian; Dowdall, Rachel J; Koponen, Jonna; Lepage, G Peter; Lytle, Andrew T

    2015-01-01

    The HPQCD collaboration has used radiatively-improved NonRelativistic QCD (NRQCD) for $b$ quarks in bottomonium to determine the decay rate of $\\Upsilon$ and $\\Upsilon^\\prime$ mesons to leptons in lattice QCD. Using time-moments of vector bottomonium current-current correlators, we are also able to determine the $b$ quark mass in the $\\overline{\\mathrm{MS}}$ scheme. We use the same NRQCD $b$ quarks and Highly Improved Staggered Quark (HISQ) light quarks -- with masses down to their physical values -- to give a complete picture of heavy-light meson decay constants including those for vector mesons. We also study the semileptonic $B\\rightarrow\\pi\\ell\

  4. Potential Functions of Al2 by the Relativistic Fock-Space Coupled Cluster Method

    Directory of Open Access Journals (Sweden)

    Uzi Kaldor

    2002-05-01

    Full Text Available Abstract: Potential functions of the ground and low excited states of Al2 are calculated by the relativistic Fock-space coupled cluster method in the framework of the projected Dirac-Coulomb Hamiltonian. A moderate-size basis [16s11p3d3f/6s6p3d2f] is used. 3Πu is confirmed as the ground state of the system. Its spin orbit splittings are reproduced well, with the Λ = 1, 2 states lying 32.5 and 66.1 cm−1, respectively, above the Λ = 0 minimum (experimental values are 30.4 and 63.4 cm−1. The bond is somewhat too weak, with De 0.14 eV below experiment, Re too high by 0.08 ˚A, and ωe 21 cm−1 too low. It is speculated that the better agreement obtained in earlier calculations may be due to neglect of basis set superposition errors. The description of bonding in the molecule may be improved by the use of a better basis and the inclusion of more correlation by the intermediate Hamiltonian coupled cluster method, which makes it possible to handle larger P spaces and extend the potential functions to the whole range of internuclear separations.

  5. Relativistic symmetries with the trigonometric P(o)schl-Teller potential plus Coulomb-like tensor interaction

    Institute of Scientific and Technical Information of China (English)

    Babatunde J.Falaye; Sameer M.Ikhdair

    2013-01-01

    The Dirac equation is solved to obtain its approximate bound states for a spin-1/2 particle in the presence of trigonometric P(o)schl-Teller (tPT) potential including a Coulomb-like tensor interaction with arbitrary spin-orbit quantum number κ using an approximation scheme to substitute the centrifugal terms κ(κ ± 1)r-2.In view of spin and pseudo-spin (p-spin) symmetries,the relativistic energy eigenvalues and the corresponding two-component wave functions of a particle moving in the field of attractive and repulsive tPT potentials are obtained using the asymptotic iteration method (AIM).We present numerical results in the absence and presence of tensor coupling A and for various values of spin and p-spin constants and quantum numbers n and κ.The non-relativistic limit is also obtained.

  6. Baryon Ratios in Quark-Gluon Plasma

    Institute of Scientific and Technical Information of China (English)

    MA Zhong-Biao; MIAO Hong; GAO Chong-Shou

    2003-01-01

    A way to calculate ratios of baryon produced from quark gluon plasma in relativistic heavyion collisionsis presented. It is assumed that at the beginning of the hadronization there are diquarks and anti-diquarks in the quarkmatter. The number of three-quark states is distributed between the corresponding multiplets, and hadronic decays aretaken into account. The results are shown at last.

  7. Relativistic diffusion.

    Science.gov (United States)

    Haba, Z

    2009-02-01

    We discuss relativistic diffusion in proper time in the approach of Schay (Ph.D. thesis, Princeton University, Princeton, NJ, 1961) and Dudley [Ark. Mat. 6, 241 (1965)]. We derive (Langevin) stochastic differential equations in various coordinates. We show that in some coordinates the stochastic differential equations become linear. We obtain momentum probability distribution in an explicit form. We discuss a relativistic particle diffusing in an external electromagnetic field. We solve the Langevin equations in the case of parallel electric and magnetic fields. We derive a kinetic equation for the evolution of the probability distribution. We discuss drag terms leading to an equilibrium distribution. The relativistic analog of the Ornstein-Uhlenbeck process is not unique. We show that if the drag comes from a diffusion approximation to the master equation then its form is strongly restricted. The drag leading to the Tsallis equilibrium distribution satisfies this restriction whereas the one of the Jüttner distribution does not. We show that any function of the relativistic energy can be the equilibrium distribution for a particle in a static electric field. A preliminary study of the time evolution with friction is presented. It is shown that the problem is equivalent to quantum mechanics of a particle moving on a hyperboloid with a potential determined by the drag. A relation to diffusions appearing in heavy ion collisions is briefly discussed.

  8. Melting hadrons, boiling quarks from Hagedorn temperature to ultra-relativistic heavy-ion collisions at CERN : with a tribute to Rolf Hagedorn

    CERN Document Server

    2015-01-01

    This book shows how the study of multi-hadron production phenomena in the years after the founding of CERN culminated in Hagedorn's pioneering idea of limiting temperature, leading on to the discovery of the quark-gluon plasma - announced, in February 2000 at CERN. Following the foreword by Herwig Schopper -- the Director General (1981-1988) of CERN at the key historical juncture -- the first part is a tribute to Rolf Hagedorn (1919-2003) and includes contributions by contemporary friends and colleagues, and those who were most touched by Hagedorn: Tamás Biró, Igor Dremin, Torleif Ericson, Marek Gázdzicki, Mark Gorenstein, Hans Gutbrod, Maurice Jacob, István Montvay, Berndt Müller, Grazyna Odyniec, Emanuele Quercigh, Krzysztof Redlich, Helmut Satz, Luigi Sertorio, Ludwik Turko, and Gabriele Veneziano. The second and third parts retrace 20 years of developments that after discovery of the Hagedorn temperature in 1964 led to its recognition as the melting point of hadrons into boiling quarks, and t...

  9. The Bayesian reconstruction of the in-medium heavy quark potential from lattice QCD and its stability

    Energy Technology Data Exchange (ETDEWEB)

    Burnier, Yannis [Institut de Théorie des Phénomènes Physiques, Ecole Polytechnique Fédérale de Lausanne, CH-1015, Lausanne (Switzerland); Kaczmarek, Olaf [Fakultät für Physik, Universität Bielefeld, D-33615 Bielefeld (Germany); Rothkopf, Alexander [Institute for Theoretical Physics, Heidelberg University, Philosophenweg 16, D-69120 Heidelberg (Germany)

    2016-01-22

    We report recent results of a non-perturbative determination of the static heavy-quark potential in quenched and dynamical lattice QCD at finite temperature. The real and imaginary part of this complex quantity are extracted from the spectral function of Wilson line correlators in Coulomb gauge. To obtain spectral information from Euclidean time numerical data, our study relies on a novel Bayesian prescription that differs from the Maximum Entropy Method. We perform simulations on quenched 32{sup 3} × N{sub τ} (β = 7.0, ξ = 3.5) lattices with N{sub τ} = 24, …, 96, which cover 839MeV ≥ T ≥ 210MeV. To investigate the potential in a quark-gluon plasma with light u,d and s quarks we utilize N{sub f} = 2 + 1 ASQTAD lattices with m{sub l} = m{sub s}/20 by the HotQCD collaboration, giving access to temperatures between 286MeV ≥ T ≥ 148MeV. The real part of the potential exhibits a clean transition from a linear, confining behavior in the hadronic phase to a Debye screened form above deconfinement. Interestingly its values lie close to the color singlet free energies in Coulomb gauge at all temperatures. We estimate the imaginary part on quenched lattices and find that it is of the same order of magnitude as in hard-thermal loop perturbation theory. From among all the systematic checks carried out in our study, we discuss explicitly the dependence of the result on the default model and the number of datapoints.

  10. Aharonov-Bohm Effect for Bound States on the Confinement of a Relativistic Scalar Particle to a Coulomb-Type Potential in Kaluza-Klein Theory

    Directory of Open Access Journals (Sweden)

    E. V. B. Leite

    2015-01-01

    Full Text Available Based on the Kaluza-Klein theory, we study the Aharonov-Bohm effect for bound states for a relativistic scalar particle subject to a Coulomb-type potential. We introduce this scalar potential as a modification of the mass term of the Klein-Gordon equation, and a magnetic flux through the line element of the Minkowski spacetime in five dimensions. Then, we obtain the relativistic bound states solutions and calculate the persistent currents.

  11. Fast lattice Boltzmann solver for relativistic hydrodynamics.

    Science.gov (United States)

    Mendoza, M; Boghosian, B M; Herrmann, H J; Succi, S

    2010-07-01

    A lattice Boltzmann formulation for relativistic fluids is presented and numerically validated through quantitative comparison with recent hydrodynamic simulations of relativistic fluids. In order to illustrate its capability to handle complex geometries, the scheme is also applied to the case of a three-dimensional relativistic shock wave, generated by a supernova explosion, impacting on a massive interstellar cloud. This formulation opens up the possibility of exporting the proven advantages of lattice Boltzmann methods, namely, computational efficiency and easy handling of complex geometries, to the context of (mildly) relativistic fluid dynamics at large, from quark-gluon plasmas up to supernovae with relativistic outflows.

  12. Effective-Range Expansion of the Neutron-Deuteron Scattering Studied by a Quark-Model Nonlocal Gaussian Potential

    CERN Document Server

    Fukukawa, Kenji

    2010-01-01

    The S-wave effective range parameters of the neutron-deuteron (nd) scattering are derived in the Faddeev formalism, using a nonlocal Gaussian potential based on the quark-model baryon-baryon interaction fss2. The spin-doublet low-energy eigenphase shift is sufficiently attractive to reproduce predictions by the AV18 plus Urbana three-nucleon force, yielding the observed value of the doublet scattering length and the correct differential cross sections below the deuteron breakup threshold. This conclusion is consistent with the previous result for the triton binding energy, which is nearly reproduced by fss2 without reinforcing it with the three-nucleon force.

  13. D meson spectroscopy and their decay properties using Martin potential in a relativistic Dirac formalism

    Energy Technology Data Exchange (ETDEWEB)

    Shah, Manan [Sardar Patel University, Department of Physics, Vallabh Vidyanagar (India); P D Patel Institute of Applied Sciences, CHARUSAT, Changa (India); Patel, Bhavin [P D Patel Institute of Applied Sciences, CHARUSAT, Changa (India); Vinodkumar, P.C. [Sardar Patel University, Department of Physics, Vallabh Vidyanagar (India)

    2016-01-15

    For the present study, we have used the Martin-like potential for the quark confinement. Our predicted states in the S-wave, 2 {sup 3}S{sub 1} (2605.86 MeV) and 2 {sup 1}S{sub 0} (2521.72 MeV), are in very good agreement with experimental results of 2608 ± 2.4 ± 2.5 MeV and 2539.4 ± 4.5 ± 6.8 MeV, respectively, reported by the BABAR Collaboration. The calculated P-wave D meson states, 1{sup 3}P{sub 2} (2462.50 MeV), 1{sup 3}P{sub 1} (2407.56 MeV), 1{sup 3}P{sub 0} (2373.82 MeV) and 1{sup 1}P{sub 1} (2423.28 MeV), are in close agreement with experimental average (Particle Data Group) values of 2462.6 ± 0.7 MeV, 2427 ± 26 ± 25 MeV, 2318 ± 29 MeV and 2421.3 ± 0.6 MeV, respectively. The pseudoscalar decay constant (f{sub P}= 202.57 MeV) of the D meson is in very good agreement with the experiment as well as with the lattice predictions. The Cabibbo favoured nonleptonic decay branching ratios, BR(D{sup 0} → K{sup -}π{sup +}) of 4.071% and BR(D{sup 0} → K{sup +}π{sup -}) of 1.135 x 10{sup -4}, are also in very good agreement with the respective experimental values of 3.91 ± 0.08% and (1.48 ± 0.07) x 10{sup -4} reported by CLEO Collaboration. The mixing parameters of the D{sup 0}-D{sup 0} oscillation, x{sub q} (5.14 x 10{sup -3}), y{sub q} (6.02 x 10{sup -3}) and R{sub M} (3.13 x 10{sup -5}), are in very good agreement with BaBar and Belle Collaboration results. (orig.)

  14. B -meson decay constants from 2+1 -flavor lattice QCD with domain-wall light quarks and relativistic heavy quarks

    Energy Technology Data Exchange (ETDEWEB)

    Christ, N. H.; Flynn, J. M.; Izubuchi, T.; Kawanai, T.; Lehner, C.; Soni, A.; Van de Water, R. S.; Witzel, O.

    2015-03-01

    We calculate the B-meson decay constants fB, fBs, and their ratio in unquenched lattice QCD using domain-wall light quarks and relativistic b quarks. We use gauge-field ensembles generated by the RBC and UKQCD collaborations using the domain-wall fermion action and Iwasaki gauge action with three flavors of light dynamical quarks. We analyze data at two lattice spacings of a0.11, 0.086 fm with unitary pion masses as light as Mπ290MeV; this enables us to control the extrapolation to the physical light-quark masses and continuum. For the b quarks we use the anisotropic clover action with the relativistic heavy-quark interpretation, such that discretization errors from the heavy-quark action are of the same size as from the light-quark sector. We renormalize the

  15. Relativistic equation-of-motion coupled-cluster method using open-shell reference wavefunction: Application to ionization potential

    Science.gov (United States)

    Pathak, Himadri; Sasmal, Sudip; Nayak, Malaya K.; Vaval, Nayana; Pal, Sourav

    2016-08-01

    The open-shell reference relativistic equation-of-motion coupled-cluster method within its four-component description is successfully implemented with the consideration of single- and double- excitation approximations using the Dirac-Coulomb Hamiltonian. At the first attempt, the implemented method is employed to calculate ionization potential value of heavy atomic (Ag, Cs, Au, Fr, and Lr) and molecular (HgH and PbF) systems, where the effect of relativity does really matter to obtain highly accurate results. Not only the relativistic effect but also the effect of electron correlation is crucial in these heavy atomic and molecular systems. To justify the fact, we have taken two further approximations in the four-component relativistic equation-of-motion framework to quantify how the effect of electron correlation plays a role in the calculated values at different levels of theory. All these calculated results are compared with the available experimental data as well as with other theoretically calculated values to judge the extent of accuracy obtained in our calculations.

  16. Real-time quantum dynamics of heavy quark systems at high temperature

    CERN Document Server

    Akamatsu, Yukinao

    2012-01-01

    On the basis of the closed-time path formalism of non-equilibrium quantum field theory, we derive the real-time quantum dynamics of heavy quark systems. Even though our primary goal is the description of heavy quarkonia, our method allows a unified description of the propagation of single heavy quarks as well as their bound states. To make calculations tractable, we deploy leading-order perturbation theory and consider the non-relativistic limit. Various dynamical equations, such as the master equation for quantum Brownian motion and time-evolution equation for heavy quark and quarkonium forward correlators, are obtained from a single operator, the renormalized effective Hamiltonian. We are thus able to reproduce previous results of perturbative calculations of the drag force and the complex potential simultaneously. In addition, we present stochastic time-evolution equations for heavy quark and quarkonium wave function, which are equivalent to the dynamical equations.

  17. Lambda alpha, Sigma alpha and Xi alpha potentials derived from the SU6 quark-model baryon-baryon interaction

    CERN Document Server

    Fujiwara, Y; Suzuki, Y

    2006-01-01

    We calculate Lambda alpha, Sigma alpha and Xi alpha potentials from the nuclear-matter G-matrices of the SU6 quark-model baryon-baryon interaction. The alpha-cluster wave function is assumed to be a simple harmonic-oscillator shell-model wave function. A new method is proposed to derive the direct and knock-on terms of the interaction Born kernel from the hyperon-nucleon G-matrices, with explicit treatments of the nonlocality and the center-of-mass motion between the hyperon and alpha. We find that the SU6 quark-model baryon-baryon interactions, FSS and fss2, yield a reasonable bound-state energy for 5 He Lambda, -3.18 -- -3.62 MeV, in spite of the fact that they give relatively large depths for the Lambda single-particle potentials, 46 -- 48 MeV, in symmetric nuclear matter. An equivalent local potential derived from the Wigner transform of the nonlocal Lambda alpha kernel shows a strong energy dependence for the incident Lambda-particle, indicating the importance of the strangeness-exchange process in the o...

  18. Phase diagram and nucleation in the Polyakov-loop-extended Quark-Meson truncation of QCD with the unquenched Polyakov-loop potential

    CERN Document Server

    Stiele, Rainer

    2016-01-01

    Unquenching of the Polyakov-loop potential showed to be an important improvement for the description of the phase structure and thermodynamics of strongly-interacting matter at zero quark chemical potentials with Polyakov-loop extended chiral models. This work constitutes the first application of the quark backreaction on the Polyakov-loop potential at nonzero density. The observation is that it links the chiral and deconfinement phase transition also at small temperatures and large quark chemical potentials. The build up of the surface tension in the Polyakov-loop extended Quark-Meson model is explored by investigating the two and 2+1-flavour Quark-Meson model and analysing the impact of the Polyakov-loop extension. In general, the order of magnitude of the surface tension is given by the chiral phase transition. The coupling of the chiral and deconfinement transition with the unquenched Polyakov-loop potential leads to the fact that the Polyakov-loop contributes at all temperatures.

  19. Higher order quark number fluctuations via imaginary chemical potentials in $N_f=2+1$ QCD

    CERN Document Server

    D'Elia, Massimo; Sanfilippo, Francesco

    2016-01-01

    We discuss analytic continuation as a tool to extract the cumulants of the quark number fluctuations in the strongly interacting medium from lattice QCD simulations at imaginary chemical potentials. The method is applied to $N_f = 2+1$ QCD, discretized with stout improved staggered fermions, physical quark masses and the tree level Symanzik gauge action, exploring temperatures ranging from 135 up to 350 MeV and adopting mostly lattices with $N_t = 8$ sites in the temporal direction. The method is based on a global fit of various cumulants as a function of the imaginary chemical potentials. We show that it is particularly convenient to consider cumulants up to order two, and that below $T_c$ the method can be advantageous, with respect to a direct Montecarlo sampling at $\\mu = 0$, for the determination of generalized susceptibilities of order four or higher, and especially for mixed susceptibilities, for which the gain is well above one order of magnitude. We provide cumulants up to order eight, which are then...

  20. Relativistic Coupled Cluster Calculations with Variational Quantum Electrodynamics Resolve the Discrepancy between Experiment and Theory Concerning the Electron Affinity and Ionization Potential of Gold

    Science.gov (United States)

    Pašteka, L. F.; Eliav, E.; Borschevsky, A.; Kaldor, U.; Schwerdtfeger, P.

    2017-01-01

    The first ionization potential (IP) and electron affinity (EA) of the gold atom have been determined to an unprecedented accuracy using relativistic coupled cluster calculations up to the pentuple excitation level including the Breit and QED contributions. We reach meV accuracy (with respect to the experimental values) by carefully accounting for all individual contributions beyond the standard relativistic coupled cluster approach. Thus, we are able to resolve the long-standing discrepancy between experimental and theoretical IP and EA of gold.

  1. Thermodynamics of the quark-gluon plasma at finite chemical potential: color path integral Monte Carlo results

    Energy Technology Data Exchange (ETDEWEB)

    Filinov, V.S.; Fortov, V.E. [Joint Institute for High Temperatures, Russian Academy of Sciences, Izhorskaya 13, bd. 2, 125412 Moscow (Russian Federation); Bonitz, M. [Institute for Theoretical Physics and Astrophysics, Christian Albrechts University Kiel, Leibnizstrasse 15, D-24098 Kiel (Germany); Ivanov, Y.B. [National Research Center ' ' Kurchatov Institute' ' , Kurchatov Sq. 1, 123182 Moscow, Russia, National Research Nuclear University ' ' MEPhI' ' , Kashirskoe sh. 31, 115409 Moscow (Russian Federation); Ilgenfritz, E.M. [Joint Institute for Nuclear Reseach, Joliot-Curie str. 6, Dubna, 141980, Moscow Region (Russian Federation)

    2015-02-01

    Based on the constituent quasiparticle model of the quark-gluon plasma (QGP), color quantum path-integral Monte-Carlo (PIMC) calculations of the thermodynamic properties of the QGP are performed. We extend our previous zero chemical potential simulations to the QGP at finite baryon chemical potential. The results indicate that color PIMC can be applied not only above the QCD critical temperature T{sub c} but also below T{sub c}. Besides reproducing the lattice equation of state our approach yields also valuable additional insight into the internal structure of the QGP, via the pair distribution functions of the various quasiparticles. In particular, the pair distribution function of gluons reflects the existence of gluon-gluon bound states at low temperatures and μ = 175 MeV, i.e. glueballs, while meson-like bound states are not found. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  2. Mass spectra of four-quark states in the hidden charm sector

    Science.gov (United States)

    Patel, Smruti; Shah, Manan; Vinodkumar, P. C.

    2014-08-01

    Masses of the low-lying four-quark states in the hidden charm sector ( are calculated within the framework of a non-relativistic quark model. The four-body system is considered as two two-body systems such as diquark-antidiquark ( - and quark-antiquark-quark-antiquark ( - q molecular-like four-quark states. Here, the Cornell-type potential has been used for describing the two-body interactions among Q - q , - , Q - , Qq - and Q - q , with appropriate string tensions. Our present analysis suggests the following exotic states: X(3823) , Z c(3900) , X(3915) , Z c(4025) , (4040) , Z 1(4050) and X(4160) as Q - q molecular-like four-quark states, while Z c(3885) , X(3940) and Y(4140) as the diquark-antidiquark four-quark states. We have been able to assign the JPC values for many of the recently observed exotic states according to their structure. Apart from this, we have identified the charged state Z(4430) recently confirmed by LHCb as the first radial excitation of Zc(3885) with G = + 1 and Y(4360) state as the first radial excitation of Y(4008) with G = - 1 and the state as the first radial excitation of the state.

  3. Pion Cloud Effects on △-N Mass Splitting from Quark Models

    Institute of Scientific and Technical Information of China (English)

    DONG Yu-Bing; FENG Qing-Guo

    2002-01-01

    Pion cloud effects on △-N mass splitting are studied based on quark models. Pseudo-scalar pion-quarkcoupling is discussed in the relativistic and nonrelativistic frameworks. We separately calculate the pion cloud effects bythe one-pion exchange potential and by another method which is consistent with the baryon chiral perturbation theory.Remark able discrepancy in the mass splitting between the two methods is shown.

  4. The Effect of Logarithmic Mesonic Potential on the Magnetic Catalysis in the Chiral Quark-Sigma Model

    CERN Document Server

    Abu-Shady, M

    2015-01-01

    The chiral symmetry breaking in the presence of external magnetic field is studied in the framework of logarithmic quark-sigma model. The effective logarithmic mesonic potential is employed and is numerically solved in the mean-field approximation. We find that the chiral symmetry breaking enhances in comparison with the original sigma model. Two sets of parameterization are investigated in the present model. We find that increasing coupling constant enhances the breaking symmetry while increasing sigma mass inhibits enhancing chiral broken vacuum state. A comparison with the Numbu-Jona-Lasinio model and the Schwinger-Dyson equation is discussed. We conclude that the logarithmic sigma model enhances the magnetic catalysis in comparison with the original sigma model and other models.

  5. Use of the configuration interaction method to describe 'Fine'-splitting in the bound two-quark systems

    CERN Document Server

    Lendyel, V; Shpenik, A

    2002-01-01

    The screened quasi-relativistic potential is used for describing the spin-orbit splitting in sup 3 P sub J waves in a quark-antiquark system.The Fermi-Breit equation is numerically solved in the configuration interaction approximation.This approximation takes the mixing of wave functions into account up to the fifth order and corrects substantially perturbative calculations.We research the Lorentz nature of the potential.The good quantitative results for bb-bar and cc-bar quarkonia and the quite acceptable qualitative characteristics for unequal quark masses are obtained.

  6. Determination of hadron-quark phase transition line from lattice QCD and two-solar-mass neutron star observations

    CERN Document Server

    Sugano, Junpei; Yahiro, Masahiro

    2016-01-01

    We aim at drawing the hadron-quark phase transition line in the QCD phase diagram by using the two phase model (TPM) in which the entanglement Polyakov-loop extended Nambu--Jona-Lasinio (EPNJL) model with vector-type four-quark interaction is used for the quark phase and the relativistic mean field (RMF) model is for the hadron phase. Reasonable TPM is constructed by using lattice QCD data and neutron star observations as reliable constraints. For the EPNJL model, we determine the strength of vector-type four-quark interaction at zero quark chemical potential from lattice QCD data on quark number density normalized by its Stefan-Boltzmann limit. For the hadron phase, we consider three RMF models, NL3, TM1 and model proposed by Maruyama, Tatsumi, Endo and Chiba (MTEC). We find that MTEC is most consistent with the neutron star observations and TM1 is the second best. Assuming that the hadron-quark phase transition occurs in the core of neutron star, we explore the density-dependence of vector-type four-quark i...

  7. Quasiclassical propagator of a relativistic particle via the path-dependent gauge potential

    Energy Technology Data Exchange (ETDEWEB)

    Yakaboylu, Enderalp; Hatsagortsyan, Karen Z.; Keitel, Christoph H. [Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, 69117 Heidelberg (Germany)

    2016-07-01

    The proper time formalism for a particle propagator in an external electromagnetic field is combined with the path-dependent formulation of gauge theory to simplify the quasiclassical propagator of a relativistic particle. The latter is achieved due to a specific choice of gauge corresponding to the use of the classical path in the path-dependent formulation of gauge theory, which leads to cancellation of the interaction part of the classical action in the Feynman path integral. A simple expression for the quasiclassical propagator is obtained in all cases of the external field when the classical equations of motion in this field are integrable. As an example, simple expressions for the propagators are derived for a spinless charged particle interacting with the following fields: an arbitrary constant and uniform electromagnetic field, an arbitrary plane wave, and finally an arbitrary plane wave combined with an arbitrary constant and uniform electromagnetic field. In all these cases the quasiclassical propagator coincides with the exact result.

  8. Hexaquark states as possible candidates for di-baryonic molecular states with Yukawa potential in a semi-relativistic scheme

    Energy Technology Data Exchange (ETDEWEB)

    Patel, Smruti J., E-mail: fizix.smriti@gmail.com; Vinodkumar, P. C. [P. G. Department of Physics, Sardar Patel University, VallabhVidyanagar - 388120, Gujarat (India)

    2016-05-06

    We study the mass spectra of hexaquark states as di-hadronic molecules with Yukawa potential in a semi-relativistic scheme. We have solved numerically the relevant equation using mathematica notebook of Range-Kutta method including effective Yukawa like potential between two baryons to model the two-body interaction and have calculated their masses and binding energy. We have been able to assign the J{sup P} values for many of the exotic states according to their compositions. We have predicted some of the di-baryonic exotic states for which experimental as well as theoretical data are not available and we look forward to see the experimental support in favour of our predictions. So in the absence of such results our predictions can be used as guidelines for future experimental and theoretical analysis of exotic states.

  9. Relativistic scalar particle subject to a confining potential and Lorentz symmetry breaking effects in the cosmic string space-time

    Science.gov (United States)

    Belich, H.; Bakke, K.

    2016-03-01

    The behavior of a relativistic scalar particle subject to a scalar potential under the effects of the violation of the Lorentz symmetry in the cosmic string space-time is discussed. It is considered two possible scenarios of the Lorentz symmetry breaking in the CPT-even gauge sector of the Standard Model Extension defined by a tensor (KF)μναβ. Then, by introducing a scalar potential as a modification of the mass term of the Klein-Gordon equation, it is shown that the Klein-Gordon equation in the cosmic string space-time is modified by the effects of the Lorentz symmetry violation backgrounds and bound state solution to the Klein-Gordon equation can be obtained.

  10. Spin-0 to Spin-1/2 Deterministic Dynamics: From Relativistic Quantum Potential to Quantum Stress Tensor

    CERN Document Server

    Bartley, David L

    2016-01-01

    The Bohm/de Broglie theory of deterministic non-relativistic quantum mechanics is broadened to accommodate the free-particle Dirac equation. As with the spin-0 theory, an effective particle rest-mass scalar field in the presence of the spin-1/2 pilot wave is allowed, together with the assumption that the convective current component describes ensemble dynamics. Non-positive excursions of the ensemble density for extreme cases of positive-energy solutions of the Dirac equation are interpreted in terms of virtual-like pair creation and annihilation beneath the Compton wavelength. A specific second-rank tensor is defined in terms of the Dirac spinors for generalizing from simply a quantum potential to a stress tensor required to account for the force of pilot wave on particle. A simple dependence of the stress tensor on a two-component spin pseudovector field is determined. Consistency is found with an earlier non-relativistic theory of objects with spin.

  11. Leading and next to leading large $n_f$ terms in the cusp anomalous dimension and the quark-antiquark potential

    CERN Document Server

    Grozin, Andrey

    2016-01-01

    I discuss 3 related quantities: the cusp anomalous dimension, the HQET heavy-quark field anomalous dimension, and the quark-antiquark potential. Leading large $n_f$ terms can be calculated to all orders in $\\alpha_s$. Next to leading terms with the abelian color structure $C_F^2$ also can be found to all orders (but not non-abelian $C_F C_A$ terms). This talk is based on Appendices C and D in [arXiv:1510.07803].

  12. Relativistic Energy Analysis Of Five Dimensional q-Deformed Radial Rosen-Morse Potential Combined With q-Deformed Trigonometric Scarf Non-Central Potential Using Asymptotic Iteration Method (AIM)

    CERN Document Server

    Pramono, Subur; Cari, Cari

    2016-01-01

    In this work, we study the exact solution of Dirac equation in the hyper-spherical coordinate under influence of separable q-Deformed quantum potentials. The q-deformed hyperbolic Rosen-Morse potential is perturbed by q-deformed non-central trigonometric Scarf potentials, where whole of them can be solved by using Asymptotic Iteration Method (AIM). This work is limited to spin symmetry case. The relativistic energy equation and orbital quantum number equation lD-1 have been obtained using Asymptotic Iteration Method. The upper radial wave function equations and angular wave function equations are also obtained by using this method. The relativistic energy levels are numerically calculated using Mat Lab, the increase of radial quantum number n causes the increase of bound state relativistic energy level both in dimension D = 5 and D = 3. The bound state relativistic energy level decreases with increasing of both deformation parameter q and orbital quantum number nl.

  13. Exact Solutions of the Mass-Dependent Klein-Gordon Equation with the Vector Quark-Antiquark Interaction and Harmonic Oscillator Potential

    Directory of Open Access Journals (Sweden)

    M. K. Bahar

    2013-01-01

    Full Text Available Using the asymptotic iteration and wave function ansatz method, we present exact solutions of the Klein-Gordon equation for the quark-antiquark interaction and harmonic oscillator potential in the case of the position-dependent mass.

  14. Quark-gluon plasma 5

    CERN Document Server

    2016-01-01

    This is the fifth volume in the series on the subject of quark-gluon plasma, a unique phase created in heavy-ion collisions at high energy. It contains review articles by the world experts on various aspects of quark-gluon plasma taking into account the advances driven by the latest experimental data collected at both the Relativistic Heavy-Ion Collider (RHIC) and the Large Hadron Collider (LHC). The articles are pedagogical and comprehensive which can be helpful for both new researchers entering the field as well as the experienced physicists working on the subject.

  15. A relativistic quantum oscillator subject to a Coulomb-type potential induced by effects of the violation of the Lorentz symmetry

    Science.gov (United States)

    Vitória, R. L. L.; Belich, H.; Bakke, K.

    2017-01-01

    We consider a background of the violation of the Lorentz symmetry determined by the tensor (KF)_{μναβ} which governs the Lorentz symmetry violation out of the Standard Model Extension, where this background gives rise to a Coulomb-type potential, and then, we analyse its effects on a relativistic quantum oscillator. Furthermore, we analyse the behaviour of the relativistic quantum oscillator under the influence of a linear scalar potential and this background of the Lorentz symmetry violation. We show in both cases that analytical solutions to the Klein-Gordon equation can be achieved.

  16. Nonperturbative determination of the QCD potential at O(1/m)

    Energy Technology Data Exchange (ETDEWEB)

    Koma, Y. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Koma, M. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)]|[Osaka Univ. (JP). Research Center for Nuclear Physics (RCNP); Wittig, H. [Mainz Univ. (Germany). Inst. fuer Physik

    2006-07-15

    The relativistic correction to the QCD static inter-quark potential at O(1/m) is investigated nonperturbatively for the first time by using lattice Monte Carlo QCD simulations. The correction is found to be comparable with the Coulombic term of the static potential when applied to charmonium, and amounts to 26% of the Coulombic term for bottomonium. (Orig.)

  17. Spectra of heavy-light mesons in a relativistic model

    CERN Document Server

    Liu, Jing-Bin

    2016-01-01

    The spectra and wave functions of heavy-light mesons are calculated within a relativistic quark model, which is derived from the instantaneous Bethe-Salpeter equation by applying the Foldy-Wouthuysen transformation on the heavy quark. The kernel we choose is based on scalar confining and vector Coulomb potentials. The Hamiltonian for heavy-light quark-antiquark system is calculated up to order $1/m_Q^2$. The results are in good agreement with available experimental data except for the masses of the anomalous $D_{s0}^*(2317)$ and $D_{s1}(2460)$ states. The newly observed charmed meson states can be accommodated successfully in the relativistic model and their assignments are presented, the $D_{sJ}^*(2860)$ can be interpreted as the $|1^{3/2}D_1\\rangle$ and $|1^{5/2}D_3\\rangle$ states being the $J^P=1^-$ and $3^-$ members of the 1D family in our model.

  18. Ab initio effective core potentials including relativistic effects and their application to the electronic structure calculations of heavy atoms and molecules

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Y.S.

    1977-11-01

    The effects of the 4f shell of electrons and the relativity of valence electrons are compared. The effect of 4f shell (lanthanide contraction) is estimated from the numerical Hartree-Fock (HF) calculations of pseudo-atoms corresponding to Hf, Re, Au, Hg, Tl, Pb and Bi without 4f electrons and with atomic numbers reduced by 14. The relativistic effect estimated from the numerical Dirac-Hartree-Fock (DHF) calculations of those atoms is comparable in the magnitude with that of the 4f shell of electrons. Both are larger for 6s than for 5d or 6p electrons. The various relativistic effects on valence electrons are discussed in detail to determine the proper level of the approximation for the valence electron calculations of systems with heavy elements. An effective core potential system has been developed for heavy atoms in which relativistic effects are included in the effective potentials.

  19. Relativistic semiempirical-core-potential calculations of Sr+ using Laguerre and Slater spinors

    Science.gov (United States)

    Jiang, Jun; Mitroy, J.; Cheng, Yongjun; Bromley, Michael W. J.

    2016-12-01

    A relativistic description of the structure of heavy alkali-metal atoms and alkali-like ions using S-spinors and L-spinors is developed. The core wave function is defined by a Dirac-Fock calculation using an S-spinor basis. The S-spinor basis is then supplemented with a large set of L-spinors for calculation of the valence wave function in a frozen-core model. The numerical stability of the L-spinor approach is demonstrated by computing the energies and decay rates of several low-lying hydrogen eigenstates, along with the polarizabilities of a Z =60 hydrogenic ion. The approach is then applied to calculate the dynamic polarizabilities of the 5 s , 4 d , and 5 p states of Sr+. The magic wavelengths at which the Stark shifts between different pairs of transitions are 0 are computed. Determination of the magic wavelengths for the 5 s →4 d3/2 and 5 s →4 d5/2 transitions near 417 nm (near the wavelength for the 5 s →5 pj transitions) would allow determination of the oscillator strength ratio for the 5 s →5 p1/2 and 5 s →5 p3/2 transitions.

  20. Properties of Magnetized Quark-Hybrid Stars

    CERN Document Server

    Orsaria, M; Vucetich, H; Weber, F

    2011-01-01

    The structure of a magnetized quark-hybrid stars (QHS) is modeled using a standard relativistic mean-field equation of state (EoS) for the description of hadronic matter. For quark matter we consider a bag model EoS which is modified perturbatively to account for the presence of a uniform magnetic field. The mass-radius (M-R) relationship, gravitational redshift and rotational Kepler periods of such stars are compared with those of standard neutron stars (NS).

  1. A Heavy Quark Symmetry Approach to Baryons

    Energy Technology Data Exchange (ETDEWEB)

    Albertus, C. [Departamento de Fisica Moderna. Facultad de Ciencias, Universidad de Granada, E-18071 Granada (Spain); Amaro, J.E. [Departamento de Fisica Moderna. Facultad de Ciencias, Universidad de Granada, E-18071 Granada (Spain); Hernandez, E. [Grupo de Fisica Nuclear. Facultad de Ciencias, Universidad de Salamanca, E-37008 Salamanca (Spain); Nieves, J. [Departamento de Fisica Moderna. Facultad de Ciencias, Universidad de Granada, E-18071 Granada (Spain)

    2005-06-13

    We evaluate different properties of baryons with a heavy c or b quark. The use of Heavy Quark Symmetry (HQS) provides with an important simplification of the non relativistic three body problem which can be solved by means of a simple variational approach. This scheme is able to reproduce previous results obtained with more involved Faddeev calculations. The resulting wave functions are parametrized in a simple manner, and can be used to calculate further observables.

  2. Hot QCD equations of state and relativistic heavy ion collisions

    Science.gov (United States)

    Chandra, Vinod; Kumar, Ravindra; Ravishankar, V.

    2007-11-01

    We study two recently proposed equations of state obtained from high-temperature QCD and show how they can be adapted to use them for making predictions for relativistic heavy ion collisions. The method involves extracting equilibrium distribution functions for quarks and gluons from the equation of state (EOS), which in turn will allow a determination of the transport and other bulk properties of the quark gluon-plasma. Simultaneously, the method also yields a quasiparticle description of interacting quarks and gluons. The first EOS is perturbative in the QCD coupling constant and has contributions of O(g5). The second EOS is an improvement over the first, with contributions up to O[g6ln(1/g)]; it incorporates the nonperturbative hard thermal contributions. The interaction effects are shown to be captured entirely by the effective chemical potentials for the gluons and the quarks, in both cases. The chemical potential is seen to be highly sensitive to the EOS. As an application, we determine the screening lengths, which are, indeed, the most important diagnostics for QGP. The screening lengths are seen to behave drastically differently depending on the EOS considered and therefore yield a way to distinguish the two equations of state in heavy ion collisions.

  3. Hot QCD equation of state and relativistic heavy ion collisions

    CERN Document Server

    Chandra, Vinod; Ravishankar, V

    2007-01-01

    We study two recently proposed equations of state (EOS) which are obtained from high temperature QCD, and show how they can be adapted to use them for making predictions for relativistic heavy ion collisions. The method involves extracting equilibrium distribution functions for quarks and gluons from the EOS, which in turn will allow a determination of the transport and other bulk properties of the quark gluon plasma. Simultaneously, the method also yields a quasi particle description of interacting quarks and gluons. The first EOS is perturbative in the QCD coupling constant and has contributions of $O(g^5)$. The second EOS is an improvement over the first, with contributions upto $ O(g^6 ln(\\frac{1}{g}))$; it incorporates the nonperturbative hard thermal contributions. The interaction effects are shown to be captured entirely by the effective chemical potentials for the gluons and the quarks, in both the cases. The chemical potential is seen to be highly sensitive to the EOS. As an application, we determine...

  4. Heavy-light mesons in a relativistic model

    Science.gov (United States)

    Liu, Jing-Bin; Yang, Mao-Zhi

    2016-07-01

    We study the heavy-light mesons in a relativistic model, which is derived from the Bethe-Salpeter equation by applying the Foldy-Wouthuysen transformation to the heavy quark. The kernel we choose is based on scalar confinement and vector Coulomb potentials. The transverse interaction of the gluon exchange is also taken into account in this model. The spectra and wave functions of D, Ds, B, Bs meson states are obtained. The spectra are calculated up to the order of 1/m Q, and wave functions are treated to leading order. Supported by National Natural Science Foundation of China (11375088, 10975077, 10735080, 11125525)

  5. Effects of adiabatic, relativistic, and quantum electrodynamics interactions on the pair potential and thermophysical properties of helium.

    Science.gov (United States)

    Cencek, Wojciech; Przybytek, Michał; Komasa, Jacek; Mehl, James B; Jeziorski, Bogumił; Szalewicz, Krzysztof

    2012-06-14

    The adiabatic, relativistic, and quantum electrodynamics (QED) contributions to the pair potential of helium were computed, fitted separately, and applied, together with the nonrelativistic Born-Oppenheimer (BO) potential, in calculations of thermophysical properties of helium and of the properties of the helium dimer. An analysis of the convergence patterns of the calculations with increasing basis set sizes allowed us to estimate the uncertainties of the total interaction energy to be below 50 ppm for interatomic separations R smaller than 4 bohrs and for the distance R = 5.6 bohrs. For other separations, the relative uncertainties are up to an order of magnitude larger (and obviously still larger near R = 4.8 bohrs where the potential crosses zero) and are dominated by the uncertainties of the nonrelativistic BO component. These estimates also include the contributions from the neglected relativistic and QED terms proportional to the fourth and higher powers of the fine-structure constant α. To obtain such high accuracy, it was necessary to employ explicitly correlated Gaussian expansions containing up to 2400 terms for smaller R (all R in the case of a QED component) and optimized orbital bases up to the cardinal number X = 7 for larger R. Near-exact asymptotic constants were used to describe the large-R behavior of all components. The fitted potential, exhibiting the minimum of -10.996 ± 0.004 K at R = 5.608 0 ± 0.000 1 bohr, was used to determine properties of the very weakly bound (4)He(2) dimer and thermophysical properties of gaseous helium. It is shown that the Casimir-Polder retardation effect, increasing the dimer size by about 2 Å relative to the nonrelativistic BO value, is almost completely accounted for by the inclusion of the Breit-interaction and the Araki-Sucher contributions to the potential, of the order α(2) and α(3), respectively. The remaining retardation effect, of the order of α(4) and higher, is practically negligible for the bound

  6. Quark Degrees of Freedom in Finite Nuclei

    CERN Document Server

    Tsushima, K; Thomas, A W; Tsushima, Kazuo; Saito, Koichi; Thomas, Anthony W.

    1996-01-01

    Properties of finite nuclei are investigated based on relativistic Hartree equations which have been derived from a relativistic quark model of the structure of bound nucleons. Nucleons are assumed to interact through the (self-consistent) exchange of scalar ($\\sigma$) and vector ($\\omega$ and and the rms charge radius in $^{40}$Ca. Calculated properties of static, closed-shell nuclei, as well as symmetric nuclear matter are compared with experimental data and with the results of Quantum Hadrodynamics (QHD).

  7. Cooking Up Hot Quark Soup

    Science.gov (United States)

    Walsh, Karen McNulty

    2011-03-28

    Near-light-speed collisions of gold ions provide a recipe for in-depth explorations of matter and fundamental forces. The Relativistic Heavy Ion Collider (RHIC) has produced the most massive antimatter nucleus ever discovered—and the first containing an anti-strange quark. The presence of strange antimatter makes this antinucleus the first to be entered below the plane of the classic Periodic Table of Elements, marking a new frontier in physics.

  8. Asymptotic Freedom, Dimensional Transmutation, and an Infra-red Conformal Fixed Point for the $\\delta$-Function Potential in 1-dimensional Relativistic Quantum Mechanics

    CERN Document Server

    Al-Hashimi, M H; Wiese, U -J

    2014-01-01

    We consider the Schr\\"odinger equation for a relativistic point particle in an external 1-dimensional $\\delta$-function potential. Using dimensional regularization, we investigate both bound and scattering states, and we obtain results that are consistent with the abstract mathematical theory of self-adjoint extensions of the pseudo-differential operator $H = \\sqrt{p^2 + m^2}$. Interestingly, this relatively simple system is asymptotically free. In the massless limit, it undergoes dimensional transmutation and it possesses an infra-red conformal fixed point. Thus it can be used to illustrate non-trivial concepts of quantum field theory in the simpler framework of relativistic quantum mechanics.

  9. Influence of pions on the hadron-quark phase transition

    CERN Document Server

    Lourenço, O; Frederico, T; Delfino, A; Malheiro, M

    2013-01-01

    In this work we present the features of the hadron-quark phase transition diagrams in which the pions are included in the system. To construct such diagrams we use two different models in the description of the hadronic and quark sectors. At the quark level, we consider two distinct parametrizations of the Polyakov-Nambu-Jona-Lasinio (PNJL) models. In the hadronic side, we use a well known relativistic mean-field (RMF) nonlinear Walecka model. We show that the effect of the pions on the hadron-quark phase diagrams is to move the critical end point (CEP) of the transitions lines. Such an effect also depends on the value of the critical temperature (T_0) in the pure gauge sector used to parametrize the PNJL models. Here we treat the phase transitions using two values for T_0, namely, T_0 = 270 MeV and T_0 = 190 MeV. The last value is used to reproduce lattice QCD data for the transition temperature at zero chemical potential.

  10. Dynamics of the QCD string with light and heavy quarks

    CERN Document Server

    Gubankova, E C

    1994-01-01

    Abstract: The generalization of the effective action [1] of the quark--antiquark system in the confining vacuum is performed for the case of arbitrary quark masses. The interaction of quarks is described by the averaged Wilson loop for which we use the minimal area law asymptotics. The system is quantized by the path integral method and the quantum Hamiltonian is obtained. It contains not only quark degrees of freedom but also the string energy density. As well as in the equal masses case [1] two dynamical regimes are found [2]: for large orbital excitations (l \\gg 1) the system is represented as rotating string, which leads to asymptotically linear Regge trajectories, while at small l one obtains a potential-like relativistic or nonrelativistic regime. In the limiting cases of light-light and heavy-light mesons a unified description is developed [2]. For the Regge trajectories one obtains nearly straight-line patterns with the slope very close to 1/2 \\pi \\sigma and 1/ \\pi\\sigma correspondingly. The upper bou...

  11. Influence of pions on the hadron-quark phase transition

    Energy Technology Data Exchange (ETDEWEB)

    Lourenco, O.; Dutra, M.; Frederico, T.; Malheiro, M. [Departamento de Fisica, Instituto Tecnologico de Aeronautica-CTA, 12228-900, Sao Jose dos Campos (Brazil); Delfino, A. [Instituto de Fisica, Universidade Federal Fluminense, Av. Litoranea s/n, 24210-150, Boa Viagem, Niteroi RJ (Brazil)

    2013-05-06

    In this work we present the features of the hadron-quark phase transition diagrams in which the pions are included in the system. To construct such diagrams we use two different models in the description of the hadronic and quark sectors. At the quark level, we consider two distinct parametrizations of the Polyakov-Nambu-Jona-Lasinio (PNJL) models. In the hadronic side, we use a well known relativistic mean-field (RMF) nonlinear Walecka model. We show that the effect of the pions on the hadron-quark phase diagrams is to move the critical end point (CEP) of the transitions lines. Such an effect also depends on the value of the critical temperature (T{sub 0}) in the pure gauge sector used to parametrize the PNJL models. Here we treat the phase transitions using two values for T{sub 0}, namely, T{sub 0}= 270 MeV and T{sub 0}= 190 MeV. The last value is used to reproduce lattice QCD data for the transition temperature at zero chemical potential.

  12. Phenomenology of heavy quark systems

    Energy Technology Data Exchange (ETDEWEB)

    Gilman, F.J.

    1987-03-01

    The spectroscopy of heavy quark systems is examined with regards to spin independent and spin dependent potentials. It is shown that a qualitative picture exists of the spin-independent forces, and that a semi-quantitative understanding exists for the spin-dependent effects. A brief review is then given of the subject of the decays of hadrons containing heavy quarks, including weak decays at the quark level, and describing corrections to the spectator model. (LEW)

  13. Z(3) metastable states in Polyakov Quark Meson model

    CERN Document Server

    Mishra, Hiranmaya

    2016-01-01

    We study the existence of Z(3) metastable states in the presence of the dynamical quarks within the ambit of Polyakov quark meson (PQM) model. Within the parameters of the model, it is seen that for temperatures $T_m$ greater than the chiral transition temperature $T_c$, Z(3) metastable states exist ( $T_{m} \\sim 310$ MeV at zero chemical potential). At finite chemical potential $T_m$ is larger than the same at vanishing chemical potential. We also observe a shift of ($\\sim 5^\\circ$) in the phase of the metastable vacua at zero chemical potential. The energy density difference between true and Z(3) metastable vacua is very large in this model. This indicates a strong explicit symmetry breaking effect due to quarks in PQM model. We compare this explicit symmetry breaking in PQM model with small explicit symmetry breaking as a linear term in Polyakov loop added to the Polyakov loop potential. We also study about the possibility of domain growth in a quenched transition to QGP in relativistic heavy ion collision...

  14. A New Relativistic Study for Interactions in One-electron atoms (Spin ½ Particles with Modified Mie-type Potential

    Directory of Open Access Journals (Sweden)

    Abdelmadjid Maireche

    2016-11-01

    Full Text Available In this paper, we present a novel theoretical analytical perform further investigation for the exact solvability of relativistic quantum spectrum systems for modified Mie-type potential (m.m.t. potential is discussed for spin-1/2 particles by means Boopp’s shift method instead to solving deformed Dirac equation with star product, in the framework of noncommutativity three dimensional real space (NC: 3D-RS. The exact corrections for excited states are found straightforwardly for interactions in one-electron atoms by means of the standard perturbation theory. Furthermore, the obtained corrections of energies are depended on four infinitesimal parameter ,which induced by position-position noncommutativity, in addition to the discreet atomic quantum numbers: and (the angular momentum quantum number and we have also shown that, the usual states in ordinary two and three dimensional spaces are canceled and has been replaced by new degenerated sub-states in the new quantum symmetries of (NC: 3D-RS and we have also applied our obtained results to the case of modified Krazer-Futes potential.

  15. Thermal and transport properties of a non-relativistic quantum gas interacting through a delta-shell potential

    CERN Document Server

    Postnikov, Sergey

    2013-01-01

    This work extends the seminal work of Gottfried on the two-body quantum physics of particles interacting through a delta-shell potential to many-body physics by studying a system of non-relativistic particles when the thermal De-Broglie wavelength of a particle is smaller than the range of the potential and the density is such that average distance between particles is smaller than the range. The ability of the delta-shell potential to reproduce some basic properties of the deuteron are examined. Relations for moments of bound states are derived. The virial expansion is used to calculate the first quantum correction to the ideal gas pressure in the form of the second virial coefficient. Additionally, all thermodynamic functions are calculated up to the first order quantum corrections. For small departures from equilibrium, the net flows of mass, energy and momentum, characterized by the coefficients of diffusion, thermal conductivity and shear viscosity, respectively, are calculated. Properties of the gas are...

  16. Quark gluon plasma

    CERN Document Server

    Nayak, Tapan; Sarkar, Sourav

    2014-01-01

    At extremely high temperatures and densities, protons and neutrons may dissolve into a "soup" of quarks and gluons, called the Quark-Gluon Plasma (QGP). For a few microseconds, shortly after the Big Bang, the Universe was filled with the QGP matter. The search and study of Quark-Gluon Plasma (QGP) is one of the most fundamental research topics of our times. The QGP matter has been probed by colliding heavy ions at the Relativistic Heavy Ion Collider at Brookhaven National Laboratory, New York and the Large Hadron Collider at CERN, Geneva. By colliding heavy-ions at a speed close to that of light, scientists aim to obtain - albeit over a tiny volume of the size of a nucleus and for an infinitesimally short instant - a QGP state. This QGP state can be observed by dedicated experiments, as it reverts to hadronic matter through expansion and cooling. This volume presents some of the current theoretical and experimental understandings in the field of QGP.

  17. Quark spin-orbit correlations

    CERN Document Server

    Lorcé, Cédric

    2014-01-01

    The proton spin puzzle issue focused the attention on the parton spin and orbital angular momentum contributions to the proton spin. However, a complete characterization of the proton spin structure requires also the knowledge of the parton spin-orbit correlation. We showed that this quantity can be expressed in terms of moments of measurable parton distributions. Using the available phenomenological information about the valence quarks, we concluded that this correlation is negative, meaning that the valence quark spin and kinetic orbital angular momentum are, in average, opposite. The quark spin-orbit correlation can also be expressed more intuitively in terms of relativistic phase-space distributions, which can be seen as the mother distributions of the standard generalized and transverse-momentum dependent parton distributions. We present here for the first time some examples of the general multipole decomposition of these phase-space distributions.

  18. Relativistic astrophysics

    CERN Document Server

    Demianski, Marek

    2013-01-01

    Relativistic Astrophysics brings together important astronomical discoveries and the significant achievements, as well as the difficulties in the field of relativistic astrophysics. This book is divided into 10 chapters that tackle some aspects of the field, including the gravitational field, stellar equilibrium, black holes, and cosmology. The opening chapters introduce the theories to delineate gravitational field and the elements of relativistic thermodynamics and hydrodynamics. The succeeding chapters deal with the gravitational fields in matter; stellar equilibrium and general relativity

  19. Relativistic study of the energy-dependent Coulomb potential including Coulomb-like tensor interaction

    CERN Document Server

    Hamzavi, Majid

    2012-01-01

    The exact Dirac equation for the energy-dependent Coulomb (EDC) potential including a Coulomb-like tensor (CLT) potential has been studied in the presence of spin and pseudospin (p-spin) symmetries with arbitrary spin-orbit quantum number The energy eigenvalues and corresponding eigenfunctions are obtained in the framework of asymptotic iteration method (AIM). Some numerical results are obtained in the presence and absence of EDC and CLT potentials.

  20. Searching for Ξcc+ in relativistic heavy ion collisions

    Science.gov (United States)

    Zhao, Jiaxing; He, Hang; Zhuang, Pengfei

    2017-08-01

    We study the doubly charmed baryon Ξcc+ structure and production in high energy nuclear collisions. By solving the three-quark Schrödinger equation including relativistic correction and calculating the yield via coalescence mechanism, we find that, the Ξcc+ created in nuclear collisions is in the quark-diquark state as a consequence of chiral symmetry restoration in hot medium, and the production is extremely enhanced due to the large number of charm quarks.

  1. Meson-Meson Scattering in Relativistic Constraint Dynamics

    CERN Document Server

    Crater, H W; Crater, Horace W.

    2004-01-01

    Dirac's relativistic constraint dynamics have been successfully applied to obtain a covariant nonperturbative description of QED and QCD bound states. We use this formalism to describe a microscopic theory of meson-meson scattering as a relativistic generalization of the nonrelativistic quark-interchange model developed by Barnes and Swanson.

  2. Theoretical Concepts for Ultra-Relativistic Heavy Ion Collisions

    CERN Document Server

    McLerran, Larry

    2009-01-01

    Various forms of matter may be produced in ultra-relativistic heavy ion collisions. These are the Quark Gluon Plasma, the Color Glass Condensate, the Glasma and Quarkyonic Matter. A novel effect that may be associated with topological charge fluctuations is the Chiral Magnetic Effect. I explain these concepts and explain how they may be seen in ultra-relativistic heavy ion collisions.

  3. SU(2) quark potential on a body-centered-hypercubic lattice

    Science.gov (United States)

    Celmaster, William; Moriarty, K. J. M.

    1986-06-01

    Wilson loops are computed in SU(2) gauge theory on a 144 body-centered-hypercubic lattice. From these, the interquark potential is extracted as a function of β. The string tension does not follow the asymptotic scaling curve. Nevertheless, by comparing the trajectory to previous data on high-temperature deconfinement we find compelling evidence for scaling and universality up to a lattice spacing a=0.77/ √σ .

  4. Conformal symmetry algebra of the quark potential and degeneracies in the hadron spectra

    CERN Document Server

    Kirchbach, Mariana

    2012-01-01

    The essence of the potential algebra concept [3] is that quantum mechanical free motions of scalar particles on curved surfaces of given isometry algebras can be mapped on 1D Schroedinger equations with particular potentials. As long as the Laplace-Beltrami operator on a curved surface is proportional to one of the Casimir invariants of the isometry algebra, free motion on the surface is described by means of the eigenvalue problem of that very Casimir operator and the excitation modes are classified according to the irreps of the algebra of interest. In consequence, also the spectra of the equivalent Schroedinger operators are classified according to the same irreps. We here use the potential algebra concept as a guidance in the search for an interaction describing conformal degeneracies. For this purpose we subject the so(4) isometry algebra of the S^3 ball to a particular non-unitary similarity transformation and obtain a deformed isometry copy to S^3 such that free motion on the copy is equivalent to a co...

  5. Spinless relativistic particle in energy-dependent potential and normalization of the wave function

    Science.gov (United States)

    Benchikha, Amar; Chetouani, Lyazid

    2014-06-01

    The problem of normalization related to a Klein-Gordon particle subjected to vector plus scalar energy-dependent potentials is clarified in the context of the path integral approach. In addition the correction relating to the normalizing constant of wave functions is exactly determined. As examples, the energy dependent linear and Coulomb potentials are considered. The wave functions obtained via spectral decomposition, were found exactly normalized.

  6. Measurement of the Relativistic Potential Difference Across a Rotating Dielectric Cylinder

    CERN Document Server

    Hertzberg, J B; Hummon, M T; Krause, D; Peck, S K; Hunter, L R

    2001-01-01

    According to the Special Theory of Relativity, a rotating magnetic dielectric cylinder in an axial magnetic field should exhibit a contribution to the radial electric potential that is associated with the motion of the material's magnetic dipoles. In 1913 Wilson and Wilson reported a measurement of the potential difference across a magnetic dielectric constructed from wax and steel balls. Their measurement has long been regarded as a verification of this prediction. In 1995 Pelligrini and Swift questioned the theoretical basis of experiment. In particular, they pointed out that it is not obvious that a rotating medium may be treated as if each point in the medium is locally inertial. They calculated the effect in the rotating frame and predicted a potential different from both Wilson's theory and experiment. Subsequent analysis of the experiment suggests that Wilson's experiment does not distinguish between the two predictions due to the fact that their composite steel-wax cylinder is conductive in the region...

  7. Hydrodynamic Overview at Hot Quarks 2016

    CERN Document Server

    Noronha-Hostler, Jacquelyn

    2016-01-01

    This presents an overview of relativistic hydrodynamic modeling in heavy-ion collisions prepared for Hot Quarks 2016, at South Padre Island, TX, USA. The influence of the initial state and viscosity on various experimental observables are discussed. Specific problems that arise in the hydrodynamical modeling at the Beam Energy Scan are briefly discussed.

  8. Magnetic field effects on the static quark potential at zero and finite temperature

    Science.gov (United States)

    Bonati, Claudio; D'Elia, Massimo; Mariti, Marco; Mesiti, Michele; Negro, Francesco; Rucci, Andrea; Sanfilippo, Francesco

    2016-11-01

    We investigate the static Q Q ¯ potential at zero and finite temperature in the presence of a constant and uniform external magnetic field B →, for several values of the lattice spacing and for different orientations with respect to B →. As a byproduct, we provide continuum limit extrapolated results for the string tension, the Coulomb coupling and the Sommer parameter at T =0 and B =0 . We confirm the presence in the continuum of a B -induced anisotropy, regarding essentially the string tension, for which it is of the order of 15% at |e |B ˜1 GeV2 and would suggest, if extrapolated to larger fields, a vanishing string tension along the magnetic field for |e |B ≳4 GeV2. The angular dependence for |e |B ≲1 GeV2 can be nicely parametrized by the first allowed term in an angular Fourier expansion, corresponding to a quadrupole deformation. Finally, for T ≠0 , the main effect of the magnetic field is a general suppression of the string tension, leading to a early loss of the confining properties: this happens even before the appearance of inverse magnetic catalysis in the chiral condensate, supporting the idea that the influence of the magnetic field on the confining properties is the leading effect originating the decrease of Tc as a function of B .

  9. Magnetic field effects on the static quark potential at zero and finite temperature

    CERN Document Server

    Bonati, Claudio; Mariti, Marco; Mesiti, Michele; Negro, Francesco; Rucci, Andrea; Sanfilippo, Francesco

    2016-01-01

    We investigate the static $Q\\bar{Q}$ potential at zero and finite temperature in the presence of a constant and uniform external magnetic field $\\vec{B}$, for several values of the lattice spacing and for different orientations with respect to $\\vec{B}$. As a byproduct, we provide continuum limit extrapolated results for the string tension, the Coulomb coupling and the Sommer parameter at $T = 0$ and $B = 0$. We confirm the presence in the continuum of a $B$-induced anisotropy, regarding essentially the string tension, for which it is of the order of 15\\% at $|e| B \\sim 1~{\\rm GeV}^2$ and would suggest, if extrapolated to larger fields, a vanishing string tension along the magnetic field for $|e| B \\gtrsim 4$ GeV$^2$. The angular dependence for $|e| B \\lesssim 1$ GeV$^2$ can be nicely parametrized by the first allowed term in an angular Fourier expansion, corresponding to a quadrupole deformation. Finally, for $T \

  10. Relativistic Two-Dimensional Harmonic Oscillator Plus Cornell Potentials in External Magnetic and AB Fields

    Directory of Open Access Journals (Sweden)

    Sameer M. Ikhdair

    2013-01-01

    Full Text Available The Klein-Gordon (KG equation for the two-dimensional scalar-vector harmonic oscillator plus Cornell potentials in the presence of external magnetic and Aharonov-Bohm (AB flux fields is solved using the wave function ansatz method. The exact energy eigenvalues and the wave functions are obtained in terms of potential parameters, magnetic field strength, AB flux field, and magnetic quantum number. The results obtained by using different Larmor frequencies are compared with the results in the absence of both magnetic field (ωL = 0 and AB flux field (ξ=0 cases. Effect of external fields on the nonrelativistic energy eigenvalues and wave function solutions is also precisely presented. Some special cases like harmonic oscillator and Coulombic fields are also studied.

  11. Downward relativistic potential step and phenomenological account of Bohmian trajectories of the Klein paradox

    Science.gov (United States)

    Razavi, M.; Mollai, M.; Jami, S.; Ahanj, A.

    2016-09-01

    The Dirac equation has been applied to fermions scattering from the downward potential step. The results show that some particles do not fall off the edge of the step and reflect. Then, based on the de Broglie-Bohm interpretation of quantum mechanics (Bohmian mechanics) and Bohmian trajectories we have resolved the problem. Lastly, a phenomenological study of the Bohmian trajectory of the Klein paradox has been discussed.

  12. Relativistic symmetries of the Manning-Rosen potential in the frame of supersymmetry

    Science.gov (United States)

    Feizi, H.; Ranjbar, A. H.

    2013-01-01

    The analytical bound state solutions of the Dirac equation for the Manning-Rosen potential are carried out by a new proper approximation to the spin-orbit coupling term. The energy spectrum formula and the corresponding two-component spinor wave functions of the Dirac equation are obtained for the application of the Supersymmetric Quantum Mechanics (SUSYQM). We study three special cases; the general s -wave problem, spin symmetry and pseudospin symmetry.

  13. Simulation of wake potentials induced by relativistic proton bunches in electron clouds

    Energy Technology Data Exchange (ETDEWEB)

    Petrov, Fedor; Boine-Frankenheim, Oliver; Weiland, Thomas [Technische Universitaet Darmstadt (Germany). Institut fuer Theorie Elektromagnetischer Felder (TEMF)

    2012-07-01

    Electron clouds limit the intensity of modern high intensity hadron accelerators. Presently electron clouds are the main limiting factor for the LHC operation with 25 ns bunch trains. The bunches passing through an electron cloud induce a wake field. When the electron cloud density exceeds a certain threshold beam instabilities occur. The presence of electron clouds results in a shift of the synchronous phase, which increases if the bunch spacing is reduced. For LHC and SPS conditions we compare the longitudinal electron cloud wake potentials and stopping powers obtained using a simplified 2D electrostatic Particle-in-Cell code with fully electromagnetic simulations using VORPAL. In addition we analyze the wake fields induced by displaced or tilted bunches.

  14. Dirac equation with anisotropic oscillator, quantum E3‧ and Holt superintegrable potentials and relativistic generalized Yang-Coulomb monopole system

    Science.gov (United States)

    Mohammadi, Vahid; Chenaghlou, Alireza

    2017-09-01

    The two-dimensional Dirac equation with spin and pseudo-spin symmetries is investigated in the presence of the maximally superintegrable potentials. The integrals of motion and the quadratic algebras of the superintegrable quantum E3‧, anisotropic oscillator and the Holt potentials are studied. The corresponding Casimir operators and the structure functions of the mentioned superintegrable systems are found. Also, we obtain the relativistic energy spectra of the corresponding superintegrable systems. Finally, the relativistic energy eigenvalues of the generalized Yang-Coulomb monopole (YCM) superintegrable system (a SU(2) non-Abelian monopole) are calculated by the energy spectrum of the eight-dimensional oscillator which is dual to the former system by Hurwitz transformation.

  15. Computation of masses and binding energies of some hadrons and bosons according to the rotating lepton model and the relativistic Newton equation

    Science.gov (United States)

    Vayenas, C. G.; Fokas, A. S.; Grigoriou, D.

    2016-08-01

    We compute analytically the masses, binding energies and hamiltonians of gravitationally bound Bohr-type states via the rotating relativistic lepton model which utilizes the de Broglie wavelength equation in conjunction with special relativity and Newton's relativistic gravitational law. The latter uses the inertial-gravitational masses, rather than the rest masses, of the rotating particles. The model also accounts for the electrostatic charge- induced dipole interactions between a central charged lepton, which is usually a positron, with the rotating relativistic lepton ring. We use three rotating relativistic neutrinos to model baryons, two rotating relativistic neutrinos to model mesons, and a rotating relativistic electron neutrino - positron (or electron) pair to model the W± bosons. It is found that gravitationally bound ground states comprising three relativistic neutrinos have masses in the baryon mass range (∼⃒ 0.9 to 1 GeV/c2), while ground states comprising two neutrinos have masses in the meson mass range (∼⃒ 0.4 to 0.8 GeV/c2). It is also found that the rest mass values of quarks are in good agreement with the heaviest neutrino mass value of 0.05 eV/c2 and that the mass of W± bosons (∼⃒ 81 GeV/c2) corresponds to the mass of a rotating gravitationally confined e± — ve pair. A generalized expression is also derived for the gravitational potential energy of such relativistic Bohr-type structures.

  16. Decaying hadrons within constituent-quark models

    CERN Document Server

    Kleinhappel, Regina

    2012-01-01

    Within conventional constituent-quark models hadrons come out as stable bound states of the valence (anti)quarks. Thereby the resonance character of hadronic excitations is completely ignored. A more realistic description of hadron spectra can be achieved by including explicit mesonic degrees of freedom, which couple directly to the constituent quarks. We will present a coupled-channel formalism that describes such hybrid systems in a relativistically invariant way and allows for the decay of excited hadrons. The formalism is based on the point-form of relativistic quantum mechanics. If the confining forces between the (anti)quarks are described by instantaneous interactions it can be formally shown that the mass-eigenvalue problem for a system that consists of dynamical (anti)quarks and mesons reduces to a hadronic eigenvalue problem in which the eigenstates of the pure confinement problem (bare hadrons) are coupled via meson loops. The only point where the quark substructure enters are form factors at the m...

  17. Melting Hadrons, Boiling Quarks

    CERN Document Server

    Rafelski, Johann

    2015-01-01

    In the context of the Hagedorn temperature half-centenary I describe our understanding of the hot phases of hadronic matter both below and above the Hagedorn temperature. The first part of the review addresses many frequently posed questions about properties of hadronic matter in different phases, phase transition and the exploration of quark-gluon plasma (QGP). The historical context of the discovery of QGP is shown and the role of strangeness and strange antibaryon signature of QGP illustrated. In the second part I discuss the corresponding theoretical ideas and show how experimental results can be used to describe the properties of QGP at hadronization. Finally in two appendices I present previously unpublished reports describing the early prediction of the different forms of hadron matter and of the formation of QGP in relativistic heavy ion collisions, including the initial prediction of strangeness and in particular strange antibaryon signature of QGP.

  18. Melting hadrons, boiling quarks

    Energy Technology Data Exchange (ETDEWEB)

    Rafelski, Johann [CERN-PH/TH, Geneva 23 (Switzerland); The University of Arizona, Department of Physics, Tucson, Arizona (United States)

    2015-09-15

    In the context of the Hagedorn temperature half-centenary I describe our understanding of the hot phases of hadronic matter both below and above the Hagedorn temperature. The first part of the review addresses many frequently posed questions about properties of hadronic matter in different phases, phase transition and the exploration of quark-gluon plasma (QGP). The historical context of the discovery of QGP is shown and the role of strangeness and strange antibaryon signature of QGP illustrated. In the second part I discuss the corresponding theoretical ideas and show how experimental results can be used to describe the properties of QGP at hadronization. The material of this review is complemented by two early and unpublished reports containing the prediction of the different forms of hadron matter, and of the formation of QGP in relativistic heavy ion collisions, including the discussion of strangeness, and in particular strange antibaryon signature of QGP. (orig.)

  19. Nonlinear waves in strongly interacting relativistic fluids

    CERN Document Server

    Fogaça, D A; Filho, L G Ferreira

    2013-01-01

    During the past decades the study of strongly interacting fluids experienced a tremendous progress. In the relativistic heavy ion accelerators, specially the RHIC and LHC colliders, it became possible to study not only fluids made of hadronic matter but also fluids of quarks and gluons. Part of the physics program of these machines is the observation of waves in this strongly interacting medium. From the theoretical point of view, these waves are often treated with li-nearized hydrodynamics. In this text we review the attempts to go beyond linearization. We show how to use the Reductive Perturbation Method to expand the equations of (ideal and viscous) relativistic hydrodynamics to obtain nonlinear wave equations. These nonlinear wave equations govern the evolution of energy density perturbations (in hot quark gluon plasma) or baryon density perturbations (in cold quark gluon plasma and nuclear matter). Different nonlinear wave equations, such as the breaking wave, Korteweg-de Vries and Burgers equations, are...

  20. Relativistic magnetohydrodynamics in one dimension.

    Science.gov (United States)

    Lyutikov, Maxim; Hadden, Samuel

    2012-02-01

    We derive a number of solutions for one-dimensional dynamics of relativistic magnetized plasma that can be used as benchmark estimates in relativistic hydrodynamic and magnetohydrodynamic numerical codes. First, we analyze the properties of simple waves of fast modes propagating orthogonally to the magnetic field in relativistically hot plasma. The magnetic and kinetic pressures obey different equations of state, so that the system behaves as a mixture of gases with different polytropic indices. We find the self-similar solutions for the expansion of hot strongly magnetized plasma into vacuum. Second, we derive linear hodograph and Darboux equations for the relativistic Khalatnikov potential, which describe arbitrary one-dimensional isentropic relativistic motion of cold magnetized plasma and find their general and particular solutions. The obtained hodograph and Darboux equations are very powerful: A system of highly nonlinear, relativistic, time-dependent equations describing arbitrary (not necessarily self-similar) dynamics of highly magnetized plasma reduces to a single linear differential equation.

  1. Shear and Bulk Viscosities of a Weakly Coupled Quark Gluon Plasma with Finite Chemical Potential and Temperature---Leading-Log Results

    CERN Document Server

    Chen, Jiunn-Wei; Song, Yu-Kun; Wang, Qun

    2012-01-01

    We calculate the shear (eta) and bulk (zeta) viscosities of a weakly coupled quark gluon plasma at the leading-log order with finite temperature T and quark chemical potential mu. We find that the shear viscosity to entropy density ratio eta/s increases monotonically with mu and eventually scales as (mu/T)^2 at large mu. In contrary, zeta/s is insensitive to mu. Both eta/s and zeta/s are monotonically decreasing functions of the quark flavor number N_f when N_f \\geq 2. This property is also observed in pion gas systems. Our perturbative calculation suggests that QCD becomes the most perfect (i.e. with the smallest eta/s) at mu=0 and N_f = 16 (the maximum N_f with asymptotic freedom). It would be interesting to test whether the currently smallest eta/s computed close to the phase transition with mu=0 and N_f = 0 can be further reduced by increasing N_f.

  2. B0d-B¯0d mixing and the prediction of the top-quark mass in an independent particle potential model

    Science.gov (United States)

    Barik, N.; Das, P.; Panda, A. R.; Roy, K. C.

    1993-10-01

    Considering B0d-B¯ 0d mixing in a potential model of independent quarks by taking the effective interaction Hamiltonian of the standard Salam-Weinberg-Glashow model and subsequently diagonalizing the corresponding mass matrix with respect to B0d and B¯0d states, we obtain an expression for the mass difference ΔM0Bd in terms of the t-quark mass mt. Using the recent observation of the mixing parameter xd=0.72+/-0.15 by the ARGUS Collaboration, we predict the lower bound on the top-quark mass as mt>=149 GeV. Further, a consideration of experimental mass difference ΔM0Bd=(4.0+/-0.8)×10-13 GeV also leads to mt=167+16-17 GeV which is in agreement with the recent experimental bound as well as other theoretical predictions. However, such a prediction of mt that utilizes the experimental value of the CKM matrix element ||Vtd|| may not appear convincing in view of the large uncertainties in the measurement of ||Vtd|| so far reported. Therefore using the range of mt values within its bounds predicted from other independent works, we make a reasonable estimation of ||Vtd||.

  3. Temporal mesonic correlators at NLO for any quark mass

    CERN Document Server

    Burnier, Y

    2013-01-01

    We present NLO results for thermal imaginary-time correlators in the vector and scalar channels as a function of the quark mass. The range of quark masses for which a non-relativistic approximation works in the temperature range considered is estimated, and charm quarks turn out to be a borderline case. Comparing with simulation data from fine lattices, we find good agreement in the vector channel but a substantial discrepancy in the scalar one. An explanation for the discrepancy is suggested in terms of physics of the quark-antiquark threshold region. Perturbative predictions for the bottom scalar spectral function around the threshold are also briefly reviewed.

  4. Masses and Internal Structure of Mesons in the String Quark Model

    CERN Document Server

    Soloviev, L D

    2000-01-01

    The relativistic quantum string quark model, proposed earlier, is applied to all mesons, from pion to $\\Upsilon$, lying on the leading Regge trajectories (i.e., to the lowest radial excitations in terms of the potential quark models). The model describes the meson mass spectrum, and comparison with measured meson masses allows one to determine the parameters of the model: current quark masses, universal string tension, and phenomenological constants describing nonstring short-range interaction. The meson Regge trajectories are in general nonlinear; practically linear are only trajectories for light-quark mesons with non-zero lowest spins. The model predicts masses of many new higher-spin mesons. A new $K^*(1^-)$ meson is predicted with mass 1910 Mev. In some cases the masses of new low-spin mesons are predicted by extrapolation of the phenomenological short-range parameters in the quark masses. In this way the model predicts the mass of $\\eta_b(1S)(0^{-+})$ to be $9500\\pm 30$ MeV, and the mass of $B_c(0^-)$ t...

  5. Probing the hadron-quark mixed phase at high isospin and baryon density. Sensitive observables

    Energy Technology Data Exchange (ETDEWEB)

    Di Toro, Massimo; Greco, Vincenzo [INFN-Laboratori Nazionali del Sud, Catania (Italy); University of Catania, Physics and Astronomy Dept., Catania (Italy); Colonna, Maria [INFN-Laboratori Nazionali del Sud, Catania (Italy); Shao, Guo-Yun [Xi' an Jiaotong University, Department of Applied Physics, Xi' an (China)

    2016-08-15

    We discuss the isospin effect on the possible phase transition from hadronic to quark matter at high baryon density and finite temperatures. The two-Equation of State (Two-EoS) model is adopted to describe the hadron-quark phase transition in dense matter formed in heavy-ion collisions. For the hadron sector we use Relativistic Mean-Field (RMF) effective models, already tested on heavy-ion collision (HIC). For the quark phase we consider various effective models, the MIT-Bag static picture, the Nambu-Jona-Lasinio (NJL) approach with chiral dynamics and finally the NJL coupled to the Polyakov-loop field (PNJL), which includes both chiral and (de)confinement dynamics. The idea is to extract mixed phase properties which appear robust with respect to the model differences. In particular we focus on the phase transitions of isospin asymmetric matter, with two main results: (i) an earlier transition to a mixed hadron-quark phase, at lower baryon density/chemical potential with respect to symmetric matter; (ii) an ''Isospin Distillation'' to the quark component of the mixed phase, with predicted effects on the final hadron production. Possible observation signals are suggested to probe in heavy-ion collision experiments at intermediate energies, in the range of the NICA program. (orig.)

  6. Approximate, non-relativistic scattering phase shifts, bound state energies, and wave function normalization factors for a screened Coulomb potential of the Hulthen type

    Energy Technology Data Exchange (ETDEWEB)

    Buehring, W.

    1983-03-01

    Non-relativistic scattering phase shifts, bound state energies, and wave function normalization factors for a screened Coulomb potential of the Hulthen type are presented in the form of relatively simple analytic expressions. These formulae have been obtained by a suitable renormalization procedure applied to the quantities derived from an approximate Schroedinger equation which contains the exact Hulthen potential together with an approximate angular momentum term. When the screening exponent vanishes, our formulae reduce to the exact Coulomb expresions. The interrelation between our formulae and Pratt's analytic perturbation theory for screened Coulomb potentials' is discussed.

  7. String theory and relativistic heavy ion collisions

    Science.gov (United States)

    Friess, Joshua J.

    It has long been known that string theory describes not only quantum gravity, but also gauge theories with a high degree of supersymmetry. Said gauge theories also have a large number of colors in a regime with a large effective coupling constant that does not depend on energy scale. Supersymmetry is broken in nature, if it is present at all, however the gauge theory described by string theory shares many common features with QCD at temperatures above the quark deconfinement transition. It is generally though not entirely accepted that collisions of gold nuclei at the Relativistic Heavy Ion Collider (RHIC) produce a thermalized Quark-Gluon Plasma (QGP) at temperatures distinctly above the transition temperature as determined from lattice simulations. Hence, we might hope that a string theoretic description of gauge dynamics can elucidate some otherwise intractable physics of the strongly coupled plasma. Here we use string theory to calculate the outgoing energy flux from a RHIC process called "jet quenching", in which a high-momentum quark or gluon traverses a large distance in the QGP. Our setup is in the context of the highly supersymmetric string dual gauge theory, but we nevertheless find that the gross features of the resulting stress-energy tensor match reasonably well with experimental data. We will furthermore discuss the technology behind computations of the leading-order corrections to gauge theory observables that are uniquely string-induced, and we will describe a potential solution to string theory that could resolve a number of discrepancies between the traditional highly supersymmetric setup and QCD---in particular, a significant reduction in the amount of supersymmetry, and a finite effective coupling that is still greater than unity but does depend on energy scale.

  8. ATLAS top quark results

    CERN Document Server

    Menke, Sven; The ATLAS collaboration

    2017-01-01

    The top quark is the heaviest known fundamental particle. As it is the only quark that decays before it hadronises, analyses of events containing top quarks allow to probe the properties of bare quarks and to test perturbative QCD. This talk will focus on recent precision top-quark measurements by the ATLAS Collaboration: Single top-quark and top-quark pair production cross sections including differential distributions will be presented, as well as measurements of top-quark pair production in association with a W or Z boson and measurements of top quark properties such as the spin correlation and W boson helicity in top quark pair events.

  9. Heavy quark threshold dynamics in higher order

    Energy Technology Data Exchange (ETDEWEB)

    Piclum, J.H.

    2007-05-15

    In this work we discuss an important building block for the next-to-next-to-next-to leading order corrections to the pair production of top quarks at threshold. Specifically, we explain the calculation of the third order strong corrections to the matching coefficient of the vector current in non-relativistic Quantum Chromodynamics and provide the result for the fermionic part, containing at least one loop of massless quarks. As a byproduct, we obtain the matching coefficients of the axial-vector, pseudo-scalar and scalar current at the same order. Furthermore, we calculate the three-loop corrections to the quark renormalisation constants in the on-shell scheme in the framework of dimensional regularisation and dimensional reduction. Finally, we compute the third order strong corrections to the chromomagnetic interaction in Heavy Quark Effective Theory. The calculational methods are discussed in detail and results for the master integrals are given. (orig.)

  10. Observational constraints on quarks in neutron stars

    CERN Document Server

    Nana, P; Nana, Pan; Xiaoping, Zheng

    2006-01-01

    We estimate the constraints of observational mass and redshift on the properties of equations of state for quarks in the compact stars. We discuss two scenarios: strange stars and hybrid stars. We construct the equations of state utilizing MIT bag model taking medium effect into account for quark matter and relativistic mean field theory for hadron matter. We find that quark may exist in strange stars and the interior of neutron stars, and only these quark matters with stiff equations of state could be consistent with both constraints. The bag constant is main one parameter that affects the mass strongly for strange stars and only the intermediate coupling constant may be the best choice for compatibility with observational constraints in hybrid stars.

  11. Relativistic hydrodynamics

    CERN Document Server

    Luciano, Rezzolla

    2013-01-01

    Relativistic hydrodynamics is a very successful theoretical framework to describe the dynamics of matter from scales as small as those of colliding elementary particles, up to the largest scales in the universe. This book provides an up-to-date, lively, and approachable introduction to the mathematical formalism, numerical techniques, and applications of relativistic hydrodynamics. The topic is typically covered either by very formal or by very phenomenological books, but is instead presented here in a form that will be appreciated both by students and researchers in the field. The topics covered in the book are the results of work carried out over the last 40 years, which can be found in rather technical research articles with dissimilar notations and styles. The book is not just a collection of scattered information, but a well-organized description of relativistic hydrodynamics, from the basic principles of statistical kinetic theory, down to the technical aspects of numerical methods devised for the solut...

  12. Production and decay of heavy top quarks

    Energy Technology Data Exchange (ETDEWEB)

    Kauffman, R.P.

    1989-08-01

    Experimental evidence indicates that the top quark exists and has a mass between 50 and 200 GeV/c{sup 2}. The decays of a top quark with a mass in this range are studied with emphasis placed on the mass region near the threshold for production of real W bosons. Topics discussed are: (1) possible enhancement of strange quark production when M{sub W} + m{sub s} < m{sub t} < M{sub W} + m{sub b}; (2) exclusive decays of T mesons to B and B{asterisk} mesons using the non-relativistic quark model; (3) polarization of intermediate W's in top quark decay as a source of information on the top quark mass. The production of heavy top quarks in an e{sup +}e{sup {minus}} collider with a center-of-mass energy of 2 TeV is studied. The effective-boson approximation for photons, Z{sup 0}'s and W's is reviewed and an analogous approximation for interfaces between photons and Z{sup 0}'s is developed. The cross sections for top quark pair production from photon-photon, photon-Z{sup 0}, Z{sup 0}Z{sup 0}, and W{sup +}W{sup {minus}} fusion are calculated using the effective-boson approximation. Production of top quarks along with anti-bottom quarks via {gamma}W{sup +} and Z{sup 0}W{sup +} fusion is studied. An exact calculation of {gamma}e{sup +} {yields} {bar {nu}}t{bar b} is made and compared with the effective-W approximation. 31 refs., 46 figs.

  13. PREFACE: Hot Quarks 2004

    Science.gov (United States)

    Antinori, Federico; Bass, Steffen A.; Bellwied, Rene; Ullrich, Thomas; Velkovska, Julia; Wiedemann, Urs

    2005-04-01

    Why another conference devoted to ultra-relativistic heavy-ion physics? As we looked around the landscape of the existing international conferences and workshops, we realized that there was not a single one tailored to the people who are most directly involved with the actual research work: students, post-docs, and junior faculty/research scientists. Of course there are schools, but that was not what we had in mind. We wanted a meeting where young researchers could come together to discuss in depth the physics that they are working on without any hindrance. The major conferences have very limited time for discussions which is often shared amongst the most established. This leaves little room for young people to ask their questions and to get the detailed feedback which they deserve and which satisfies their curiosity. A discussion-driven workshop, centering on those without whom there will be no future—that seemed like what was needed. And thus the Hot Quarks workshop was born. The aim of Hot Quarks was to enhance the direct exchange of scientific information among the younger members of the community, from both experiment and theory. Participation was by invitation only in order to emphasize the contributions from junior researchers. This approach makes the workshop unique among the many forums in the field. For young scientists it represented an opportunity for exposure that they would not have had in one of the major conferences. The hope is that this meeting has helped to stimulate the next generation of scientists in our field and, at the same time, strengthened their sense of community. It all came together from 18 24 July 2004, when the 77 participants met at The Inn at Snakedance in the Taos Ski Valley, New Mexico, USA, for the first Hot Quarks workshop. Photograph Participants gather in the sunshine at the foot of the Taos Ski Valley chairlift. By all accounts, Hot Quarks 2004 was a great success. Every participant had the opportunity to present her or

  14. Holographic quark-gluon plasmas at finite quark density

    Energy Technology Data Exchange (ETDEWEB)

    Bigazzi, F. [Dipartimento di Fisica e Astronomia, Universita di Firenze, Sesto Fiorentino (Firenze), Pisa (Italy); INFN, Sezione di Torino (Italy); Cotrone, A. [Dipartimento di Fisica, Universita di Torino (Italy); Mas, J. [Departamento de Fisica de Particulas, Universidade de Santiago de Compostela (Spain); Instituto Galego de Fisica de Altas Enerxias (IGFAE), Santiago de Compostela (Spain); Tarrio, J. [Institute for Theoretical Physics and Spinoza Institute, Universiteit Utrecht, 3584 CE, Utrecht (Netherlands); Mayerson, D. [Institute for Theoretical Physics, University of Amsterdam (Netherlands)

    2012-07-15

    Gravity solutions holographically dual to strongly coupled quark-gluon plasmas with non-zero quark density are reviewed. They are motivated by the urgency of finding novel tools to explore the phase diagram of QCD-like theories at finite chemical potential. After presenting the solutions and their regime of validity, some of their physical properties are discussed. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. The formation of relativistic plasma structures and their potential role in the generation of cosmic ray electrons

    Directory of Open Access Journals (Sweden)

    M. E. Dieckmann

    2008-11-01

    Full Text Available Recent particle-in-cell (PIC simulation studies have addressed particle acceleration and magnetic field generation in relativistic astrophysical flows by plasma phase space structures. We discuss the astrophysical environments such as the jets of compact objects, and we give an overview of the global PIC simulations of shocks. These reveal several types of phase space structures, which are relevant for the energy dissipation. These structures are typically coupled in shocks, but we choose to consider them here in an isolated form. Three structures are reviewed. (1 Simulations of interpenetrating or colliding plasma clouds can trigger filamentation instabilities, while simulations of thermally anisotropic plasmas observe the Weibel instability. Both transform a spatially uniform plasma into current filaments. These filament structures cause the growth of the magnetic fields. (2 The development of a modified two-stream instability is discussed. It saturates first by the formation of electron phase space holes. The relativistic electron clouds modulate the ion beam and a secondary, spatially localized electrostatic instability grows, which saturates by forming a relativistic ion phase space hole. It accelerates electrons to ultra-relativistic speeds. (3 A simulation is also revised, in which two clouds of an electron-ion plasma collide at the speed 0.9c. The inequal densities of both clouds and a magnetic field that is oblique to the collision velocity vector result in waves with a mixed electrostatic and electromagnetic polarity. The waves give rise to growing corkscrew distributions in the electrons and ions that establish an equipartition between the electron, the ion and the magnetic energy. The filament-, phase space hole- and corkscrew structures are discussed with respect to electron acceleration and magnetic field generation.

  16. Some applications of thermal field theory to quark-gluon plasma

    Indian Academy of Sciences (India)

    Munshi G Mustafa

    2006-04-01

    We briefly introduce the thermal field theory within imaginary time formalism, the hard thermal loop perturbation theory and some of its applications to the physics of the quark-gluon plasma, possibly created in relativistic heavy-ion collisions.

  17. Relativistic Kinematics

    CERN Document Server

    Sahoo, Raghunath

    2016-01-01

    This lecture note covers Relativistic Kinematics, which is very useful for the beginners in the field of high-energy physics. A very practical approach has been taken, which answers "why and how" of the kinematics useful for students working in the related areas.

  18. Fractional Dynamics of Relativistic Particle

    CERN Document Server

    Tarasov, Vasily E

    2011-01-01

    Fractional dynamics of relativistic particle is discussed. Derivatives of fractional orders with respect to proper time describe long-term memory effects that correspond to intrinsic dissipative processes. Relativistic particle subjected to a non-potential four-force is considered as a nonholonomic system. The nonholonomic constraint in four-dimensional space-time represents the relativistic invariance by the equation for four-velocity u_{\\mu} u^{\\mu}+c^2=0, where c is a speed of light in vacuum. In the general case, the fractional dynamics of relativistic particle is described as non-Hamiltonian and dissipative. Conditions for fractional relativistic particle to be a Hamiltonian system are considered.

  19. Stability of Quark Star Models

    Science.gov (United States)

    Azam, M.; Mardan, S. A.; Rehman, M. A.

    2016-05-01

    In this paper, we investigate the stability of quark stars with four different types of inner matter configurations; isotropic, charged isotropic, anisotropic and charged anisotropic by using the concept of cracking. For this purpose, we have applied local density perturbations technique to the hydrostatic equilibrium equation as well as on physical parameters involved in the model. We conclude that quark stars become potentially unstable when inner matter configuration is changed and electromagnetic field is applied.

  20. A study of transverse charge density of pions in relativistic quantum mechanics%A study of transverse charge density of pions in relativistic quantum mechanics

    Institute of Scientific and Technical Information of China (English)

    董宇兵; 王翼展

    2011-01-01

    The transverse charge density of pions is calculated based on relativistic quantum mechanics, where the pion is regarded as a quark-antiquark bound state. Corrections from the two spin-1/2 constituents and from the wave function of a quark and antiquark i

  1. Two views on the Bjorken scenario for ultra-relativistic heavy-ion collisions

    CERN Multimedia

    Maire, Antonin

    2011-01-01

    The sketch describes the Bjorken scenario foreseen for the collision of ultra-relativistic heavy-ions, leading to the creation of strongly-interacting hot and dense deconfined matter, the so-called Quark-Gluon Plasma (QGP).

  2. Recalling Quark Matter '83 and the birth of RHIC

    Science.gov (United States)

    Ludlam, Thomas W.

    2016-12-01

    I provide a brief review of the Quark Matter '83 meeting at Brookhaven, in the context of the decisive U.S. science policy actions during the summer of 1983 that led up to it. At the Brookhaven meeting a large community of nuclear and high energy physicists came together for the first time to examine the parameters for the Relativistic Heavy Ion Collider, setting the stage for decades of quark matter research to follow.

  3. Relativistic impulse dynamics.

    Science.gov (United States)

    Swanson, Stanley M

    2011-08-01

    Classical electrodynamics has some annoying rough edges. The self-energy of charges is infinite without a cutoff. The calculation of relativistic trajectories is difficult because of retardation and an average radiation reaction term. By reconceptuallizing electrodynamics in terms of exchanges of impulses rather than describing it by forces and potentials, we eliminate these problems. A fully relativistic theory using photonlike null impulses is developed. Numerical calculations for a two-body, one-impulse-in-transit model are discussed. A simple relationship between center-of-mass scattering angle and angular momentum was found. It reproduces the Rutherford cross section at low velocities and agrees with the leading term of relativistic distinguishable-particle quantum cross sections (Møller, Mott) when the distance of closest approach is larger than the Compton wavelength of the particle. Magnetism emerges as a consequence of viewing retarded and advanced interactions from the vantage point of an instantaneous radius vector. Radiation reaction becomes the local conservation of energy-momentum between the radiating particle and the emitted impulse. A net action is defined that could be used in developing quantum dynamics without potentials. A reinterpretation of Newton's laws extends them to relativistic motion.

  4. Fermion confinement by a relativistic flux tube

    CERN Document Server

    Olsson, M G; Williams, K; Olsson, M G; Veseli, S; Williams, K

    1996-01-01

    We formulate the description of the dynamic confinement of a single fermion by a flux tube. The range of validity extends from the relativistic corrections of a slowly moving quark to the ultra-relativistic motion in a heavy-light meson. The reduced Salpeter equation, also known as the no-pair equation, provides the framework for our discussion. The Regge structure is that of a Nambu string with one end fixed. Numerical solutions are found giving very good fits to heavy-light meson masses. The Isgur-Wise function with a zero recoil slope of \\xi'(1)\\simeq -1.23 is obtained.

  5. Calcium quarks.

    Science.gov (United States)

    Niggli, Ernst; Egger, Marcel

    2002-05-01

    Elementary subcellular Ca2+ signals arising from the opening of single ion channels may offer the possibility to examine the stochastic behavior and the microscopic chemical reaction rates of these channel proteins in their natural environment. Such an analysis can yield detailed information about the molecular function that cannot be derived from recordings obtained from an ensemble of channels. In this review, we summarize experimental evidence suggesting that Ca2+ sparks, elementary Ca2+ signaling events of cardiac and skeletal muscle excitation contraction coupling, may be comprised of a number of smaller Ca2+ signaling events, the Ca2+ quarks.

  6. Quark mass effects in quark number susceptibilities

    CERN Document Server

    Graf, Thorben

    2016-01-01

    The quark degrees of freedom of the QGP with special focus on mass effects are investigated. A next-to-leading-order perturbation theory approach with quark mass dependence is applied and compared to lattice QCD results.

  7. Preparation of the ATLAS experiment in the LHC proton collider, performances of the electromagnetic calorimeter and its potentialities for the top quark; Preparation de l'experience ATLAS aupres du futur grand collisionneur de protons LHC: performances du calorimetre electromagnetique et potentiels pour la physique du quark top

    Energy Technology Data Exchange (ETDEWEB)

    Hubaut, F

    2007-03-15

    ATLAS is the biggest and the more complex detector ever built, it will operate on the LHC and is the outcome of a huge international collaboration of 2000 physicists. This document reviews the theoretical and experimental achievements of one of them, his collaboration spread over 7 years and has followed 2 axis. First, the design, construction and test of the electromagnetic calorimeter of ATLAS and secondly, the development of analysis strategies in the physics of the top quark. The expected important production of top quarks in LHC will allow an accurate measurement of the properties of this particle and in the same way will provide new testing areas for the standard model. The top quark, being extremely massive, might play a significant role in the mechanism of electro-weak symmetry breaking. This document is organized into 5 chapters: 1) ATLAS detector, performance and progress, 2) the optimization of the energy measurement with the electromagnetic calorimeter, 3) the performance of the electromagnetic calorimeter, 4) the physics of the top quark, and 5) the potentialities of ATLAS in the top quark sector. This document presented before an academic board will allow its author to manage research works and particularly to tutor thesis students. (A.C.)

  8. On the quark-gluon plasma search

    OpenAIRE

    Hamieh, S. D.

    2004-01-01

    We report on the effect of the quantum statistics on the two-proton spin correlation (SC) in cold and thermal nuclear matter. We have found that two nucleons SC function can be well approximated by a guassian with correlations length $\\sigma\\sim1.2$ fm. We have proposed SC measurement on low protons energy as test of the quark-gluon plasma formation in relativistic heavy ions collisions.

  9. Gravitation relativiste

    CERN Document Server

    Hakim, Rémi

    1994-01-01

    Il existe à l'heure actuelle un certain nombre de théories relativistes de la gravitation compatibles avec l'expérience et l'observation. Toutefois, la relativité générale d'Einstein fut historiquement la première à fournir des résultats théoriques corrects en accord précis avec les faits.

  10. Relativistic Astrophysics

    Science.gov (United States)

    Jones, Bernard J. T.; Markovic, Dragoljub

    1997-06-01

    Preface; Prologue: Conference overview Bernard Carr; Part I. The Universe At Large and Very Large Redshifts: 2. The size and age of the Universe Gustav A. Tammann; 3. Active galaxies at large redshifts Malcolm S. Longair; 4. Observational cosmology with the cosmic microwave background George F. Smoot; 5. Future prospects in measuring the CMB power spectrum Philip M. Lubin; 6. Inflationary cosmology Michael S. Turner; 7. The signature of the Universe Bernard J. T. Jones; 8. Theory of large-scale structure Sergei F. Shandarin; 9. The origin of matter in the universe Lev A. Kofman; 10. New guises for cold-dark matter suspects Edward W. Kolb; Part II. Physics and Astrophysics Of Relativistic Compact Objects: 11. On the unification of gravitational and inertial forces Donald Lynden-Bell; 12. Internal structure of astrophysical black holes Werner Israel; 13. Black hole entropy: external facade and internal reality Valery Frolov; 14. Accretion disks around black holes Marek A. Abramowicz; 15. Black hole X-ray transients J. Craig Wheeler; 16. X-rays and gamma rays from active galactic nuclei Roland Svensson; 17. Gamma-ray bursts: a challenge to relativistic astrophysics Martin Rees; 18. Probing black holes and other exotic objects with gravitational waves Kip Thorne; Epilogue: the past and future of relativistic astrophysics Igor D. Novikov; I. D. Novikov's scientific papers and books.

  11. The controversy about "1/m_Q duality violation" ; a quark model point of view

    CERN Document Server

    Le Yaouanc, A; Morénas, V; Oliver, L; Pène, O; Raynal, J C; Yaouanc, Alain Le; Melikhov, Dimitri; Morenas, Vincent; Oliver, Lluis; Pene, Olivier; Raynal, Jean-Claude

    2006-01-01

    A detailed discussion based on exact calculations, possible in the non relativistic quark model, is given to show that there is no 1/m_Q term in the heavy quark expansion of totally integrated semileptonic decay rates. More generally, it is shown that OPE holds with very few terms in the expansion, at least in the harmonic oscillator model.

  12. Finite Hypernuclei in the Latest Quark-Meson Coupling Model

    Energy Technology Data Exchange (ETDEWEB)

    Pierre A. M. Guichon; Anthony W. Thomas; Kazuo Tsushima

    2007-12-12

    The most recent development of the quark-meson coupling (QMC) model, in which the effect of the mean scalar field in-medium on the hyperfine interaction is also included self-consistently, is used to compute the properties of finite hypernuclei. The calculations for $\\Lambda$ and $\\Xi$ hypernuclei are of comparable quality to earlier QMC results without the additional parameter needed there. Even more significantly, the additional repulsion associated with the increased hyperfine interaction in-medium completely changes the predictions for $\\Sigma$ hypernuclei. Whereas in the earlier work they were bound by an amount similar to $\\Lambda$ hypernuclei, here they are unbound, in qualitative agreement with the experimental absence of such states. The equivalent non-relativistic potential felt by the $\\Sigma$ is repulsive inside the nuclear interior and weakly attractive in the nuclear surface, as suggested by the analysis of $\\Sigma$-atoms.

  13. Relativistic elastic differential cross sections for equal mass nuclei

    Directory of Open Access Journals (Sweden)

    C.M. Werneth

    2015-10-01

    Full Text Available The effects of relativistic kinematics are studied for nuclear collisions of equal mass nuclei. It is found that the relativistic and non-relativistic elastic scattering amplitudes are nearly indistinguishable, and, hence, the relativistic and non-relativistic differential cross sections become indistinguishable. These results are explained by analyzing the Lippmann–Schwinger equation with the first order optical potential that was employed in the calculation.

  14. Relativistic elastic differential cross sections for equal mass nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Werneth, C.M., E-mail: charles.m.werneth@nasa.gov [NASA Langley Research Center, 2 West Reid Street, Hampton, VA 23681 (United States); Maung, K.M.; Ford, W.P. [The University of Southern Mississippi, 118 College Drive, Box 5046, Hattiesburg, MS 39406 (United States)

    2015-10-07

    The effects of relativistic kinematics are studied for nuclear collisions of equal mass nuclei. It is found that the relativistic and non-relativistic elastic scattering amplitudes are nearly indistinguishable, and, hence, the relativistic and non-relativistic differential cross sections become indistinguishable. These results are explained by analyzing the Lippmann–Schwinger equation with the first order optical potential that was employed in the calculation.

  15. Lattice QCD Thermodynamics with Physical Quark Masses

    CERN Document Server

    Soltz, R A; Karsch, F; Mukherjee, Swagato; Vranas, P

    2015-01-01

    Over the past few years new physics methods and algorithms as well as the latest supercomputers have enabled the study of the QCD thermodynamic phase transition using lattice gauge theory numerical simulations with unprecedented control over systematic errors. This is largely a consequence of the ability to perform continuum extrapolations with physical quark masses. Here we review recent progress in lattice QCD thermodynamics, focussing mainly on results that benefit from the use of physical quark masses: the crossover temperature, the equation of state, and fluctuations of the quark number susceptibilities. In addition, we place a special emphasis on calculations that are directly relevant to the study of relativistic heavy ion collisions at RHIC and the LHC.

  16. Meson spectroscopy, quark mixing and quantum chromodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Filippov, A.T.

    1979-04-01

    A semiphenomenological theory of the quark-antiquark meson mass spectrum is presented. Relativistic kinematic effects due to unequal quark masses and SU (3) -breaking effects in the slopes of Regge trajectories and in radially excited states are taken into account. Violation of the OZI rule is accounted for by means of a mixing matrix for the quark wave functions, which is given by QCD. To describe the dependence of the mixing parameters on the meson masses, a simple extrapolation of the QCD expressions is proposed from the ''asymptotic-freedom'' region to the ''infrared-slavery'' region. To calculate the masses and mixing angles of the pseudoscalar mesons, the condition for a minimal pion mass is proposed. The eta-meson mass is then shown to be close to its maximum. The predictions of the theory for meson masses and mixing angles are in good agreement with experiment.

  17. Nonperturbative effects in a rapidly expanding quark gluon plasma

    CERN Document Server

    Mohanty, A K; Gleiser, Marcello; 10.1103/PhysRevC.65.034908

    2002-01-01

    Within first-order phase transitions, we investigate pretransitional effects due to the nonperturbative, large-amplitude thermal fluctuations which can promote phase mixing before the critical temperature is reached from above. In contrast with the cosmological quark-hadron transition, we find that the rapid cooling typical of the relativistic heavy ion collider and large hadron collider experiments and the fact that the quark-gluon plasma is chemically unsaturated suppress the role of nonperturbative effects at current collider energies. Significant supercooling is possible in a (nearly) homogeneous state of quark gluon plasma. (24 refs).

  18. Nonlocal quark model description of a composite Higgs particle

    CERN Document Server

    Kachanovich, Aliaksei

    2016-01-01

    We propose a description of the Higgs boson as top-antitop quark bound state within a nonlocal relativistic quark model of Nambu - Jona-Lasinio type. In contrast to model with local four-fermion interaction, the mass of the scalar bound state can be lighter than the sum of its constituents. This is achieved by adjusting the interaction range and the value of the coupling constant to experimental data, for both the top quark mass and the scalar Higgs boson mass, which can simultaneously be described.

  19. Renormalization group for non-relativistic fermions.

    Science.gov (United States)

    Shankar, R

    2011-07-13

    A brief introduction is given to the renormalization group for non-relativistic fermions at finite density. It is shown that Landau's theory of the Fermi liquid arises as a fixed point (with the Landau parameters as marginal couplings) and its instabilities as relevant perturbations. Applications to related areas, nuclear matter, quark matter and quantum dots, are briefly discussed. The focus will be on explaining the main ideas to people in related fields, rather than addressing the experts.

  20. Magnetism and rotation in relativistic field theory

    Science.gov (United States)

    Mameda, Kazuya; Yamamoto, Arata

    2016-09-01

    We investigate the analogy between magnetism and rotation in relativistic theory. In nonrelativistic theory, the exact correspondence between magnetism and rotation is established in the presence of an external trapping potential. Based on this, we analyze relativistic rotation under external trapping potentials. A Landau-like quantization is obtained by considering an energy-dependent potential.

  1. PREFACE: Quark Matter 2008

    Science.gov (United States)

    Jan-e~Alam; Subhasis~Chattopadhyay; Tapan~Nayak

    2008-10-01

    Quark Matter 2008—the 20th International Conference on Ultra-Relativistic Nucleus-Nucleus Collisions was held in Jaipur, the Pink City of India, from 4-10 February, 2008. Organizing Quark Matter 2008 in India itself indicates the international recognition of the Indian contribution to the field of heavy-ion physics, which was initiated and nurtured by Bikash Sinha, Chair of the conference. The conference was inaugurated by the Honourable Chief Minister of Rajasthan, Smt. Vasundhara Raje followed by the key note address by Professor Carlo Rubbia. The scientific programme started with the theoretical overview, `SPS to RHIC and onwards to LHC' by Larry McLerran followed by several theoretical and experimental overview talks on the ongoing experiments at SPS and RHIC. The future experiments at the LHC, FAIR and J-PARC, along with the theoretical predictions, were discussed in great depth. Lattice QCD predictions on the nature of the phase transition and critical point were vigorously debated during several plenary and parallel session presentations. The conference was enriched by the presence of an unprecedented number of participants; about 600 participants representing 31 countries across the globe. This issue contains papers based on plenary talks and oral presentations presented at the conference. Besides invited and contributed talks, there were also a large number of poster presentations. Members of the International Advisory Committee played a pivotal role in the selection of speakers, both for plenary and parallel session talks. The contributions of the Organizing Committee in all aspects, from helping to prepare the academic programme down to arranging local hospitality, were much appreciated. We thank the members of both the committees for making Quark Matter 2008 a very effective and interesting platform for scientific deliberations. Quark Matter 2008 was financially supported by: Air Liquide (New Delhi) Board of Research Nuclear Sciences (Mumbai) Bose

  2. Relativistic actions for bound-states and applications in the meson spectroscopy; Acoes relativisticas para estados ligados e aplicacoes na espectroscopia de mesons

    Energy Technology Data Exchange (ETDEWEB)

    Silva Carvalho, Hendly da

    1991-08-01

    We study relativistic equations for bound states of two-body systems using Dirac`s constraint formalism and supersymmetry. The two-body system can be of spinless particles, one of them spinning and the other one spinless, or both of them spinning. The interaction is described by scalar, timelike four-vector and spacelike four-vector potentials under Lorentz transformations. As an application we use the relativistic wave equation for two scalar particles and calculate the mass spectra of the mesons treating them as spinless quark-antiquark bound states. The interaction potential in this case is a convenient adaptation of the potential employed in non-relativistic calculations. Finally, we compare our results with more recent experimental data and with theoretical results obtained with the same potential used by us but with a non-relativistic wave equation. We also compare our results with results obtained with the relativistic wave equation but with a different interaction potential. (author). 38 refs, 9 figs, 8 tabs.

  3. A relativistic correction to semiclassical charmonium

    Science.gov (United States)

    Weiss, J.

    1995-09-01

    It is shown that the relativistic linear potentials, introduced by the author within the particle à la Wheeler-Feynman direct-interaction (AAD) theory, applied to the semiclassically quantized charmonium, yield energy spectrum comparable to that of some known models. Using the expansion of the relativistic linear AAD potentials in powers ofc -1, the charmonium spectrum, given as a rule by Bohr-Sommerfeld quantization of circular orbits, is extended up to the second order of relativistic corrections.

  4. Statistical Quark Model for the Nucleon Structure Function

    Science.gov (United States)

    Mirez, Carlos; Tomio, Lauro; Trevisan, Luis A.; Frederico, Tobias

    2009-06-01

    A statistical quark model, with quark energy levels given by a central linear confining potential is used to obtain the light sea-quark asymmetry, d¯/ū, and also for the ratio d/u, inside the nucleon. After adjusting a temperature parameter by the Gottfried sum rule violation, and chemical potentials by the valence up and down quark normalizations, the results are compared with experimental data available.

  5. ATLAS Top Quark Results

    CERN Document Server

    Black, Kevin; The ATLAS collaboration

    2017-01-01

    The top quark is the heaviest known fundamental particle. As it is the only quark that decays before it hadronizes, this gives us the unique opportunity to probe the properties of bare quarks at the Large Hadron Collider. This talk will present highlights of a few recent precision measurements by the ATLAS Collaboration of the top quark using 13 TeV and 8 TeV collision data: top-quark pair and single top production cross sections including differential distributions will be presented alongside top quark properties measurements. These measurements, including results using boosted top quarks, probe our understanding of top quark production in the TeV regime. Measurements of the top quark mass and searches for rare top quark decays are also presented.

  6. Collisional interactions between self-interacting non-relativistic boson stars: effective potential analysis and numerical simulations

    CERN Document Server

    Cotner, Eric

    2016-01-01

    Scalar particles are a common prediction of many beyond the Standard Model theories. If they are light and cold enough, there is a possibility they may form Bose-Einstein condensates, which will then become gravitationally bound. These boson stars are solitonic solutions to the Einstein-Klein-Gordon equations, but may be approximated in the non-relativistic regime with a coupled Schr\\"odinger-Poisson system. General properties of single soliton states are derived, including the possibility of quartic self-interactions. Binary collisions between two solitons are then studied, and the effects of different mass ratios, relative phases, self-couplings, and separation distances are characterized, leading to an easy conceptual understanding of how these parameters affect the collision outcome in terms of conservation of energy. Applications to dark matter are discussed.

  7. Strangeness Production in 19.6 GeV Collisions at the Relativistic Heavy Ion Collider

    Science.gov (United States)

    2010-05-12

    the universe. As of now, Quark-Giuon Plasma, QGP , is what scientists be lieve existed at the beginning. QGP is studied through the STAR Experiment at...Labs PHOBOS - One of the other experiments at Brookhaven National Labs QGP – Quark Gluon Plasma RHIC – Relativistic Heavy Ion Collider RICH – Ring...dynamics of the first three milliseconds of the universe. As of now, Quark-Gluon Plasma, QGP , is what scientists believe existed at the beginning. QGP is a

  8. Schroedinger vs Dirac bound state spectra of Q anti Q-systems and a plausible Lorentz structure of the effective power-law potential

    Energy Technology Data Exchange (ETDEWEB)

    Barik, N.; Barik, B.K. (Utkal Univ., Bhubaneswar (India). Dept. of Physics)

    1981-12-01

    It is shown that a non-relativistic power-law potential model for the heavy quarks in the form V(r) = Arsup(..nu..) + V/sub 0/, (A,..nu..>0) acquires relativistic consistency in generating Dirac bound states of Q anti Q-system in agreement with the Schroedinger spectroscopy if the interaction is modelled by equally mixed scalar and vector parts as suggested by the phenomenology of fine-hyperfine splittings of heavy quarkonium systems in a non-relativistic perturbative approach.

  9. Thermophoretic Flow in Relativistic Heavy-Ion Collisions

    CERN Document Server

    Thoma, M H

    2001-01-01

    If a quark-gluon plasma is formed in relativistic heavy-ion collisions, there might be a mixed phase of quarks and gluons and hadronic clusters when the critical temperature is reached in the expansion of the fireball. If there is a temperature gradient in the fireball, the hadronic clusters, embedded in the heat bath of quarks and gluons, are subjected to a thermophoretic force. It is shown that even for small temperature gradients and short lifetimes of the mixed phase thermophoresis leads to a strong flow.

  10. Relativistic cosmological hydrodynamics

    CERN Document Server

    Hwang, J

    1997-01-01

    We investigate the relativistic cosmological hydrodynamic perturbations. We present the general large scale solutions of the perturbation variables valid for the general sign of three space curvature, the cosmological constant, and generally evolving background equation of state. The large scale evolution is characterized by a conserved gauge invariant quantity which is the same as a perturbed potential (or three-space curvature) in the comoving gauge.

  11. The Relativistic Heavy Ion Collider

    Science.gov (United States)

    Fischer, Wolfram

    The Relativistic Heavy Ion Collider (RHIC), shown in Fig. 1, was build to study the interactions of quarks and gluons at high energies [Harrison, Ludlam and Ozaki (2003)]. The theory of Quantum Chromodynamics (QCD) describes these interactions. One of the main goals for the RHIC experiments was the creation and study of the Quark-Gluon Plasma (QGP), which was expected to be formed after the collision of heavy ions at a temperature of approximately 2 trillion kelvin (or equivalently an energy of 150 MeV). The QGP is the substance which existed only a few microseconds after the Big Bang. The QGP was anticipated to be weakly interacting like a gas but turned out to be strongly interacting and more like a liquid. Among its unusual properties is its extremely low viscosity [Auerbach and Schlomo (2009)], which makes the QGP the substance closest to a perfect liquid known to date. The QGP is opaque to moderate energy quarks and gluons leading to a phenomenon called jet quenching, where of a jet and its recoil jet only one is observable and the other suppressed after traversing and interacting with the QGP [Jacak and Müller (2012)]...

  12. Relativistic and non-relativistic geodesic equations

    Energy Technology Data Exchange (ETDEWEB)

    Giambo' , R.; Mangiarotti, L.; Sardanashvily, G. [Camerino Univ., Camerino, MC (Italy). Dipt. di Matematica e Fisica

    1999-07-01

    It is shown that any dynamic equation on a configuration space of non-relativistic time-dependent mechanics is associated with connections on its tangent bundle. As a consequence, every non-relativistic dynamic equation can be seen as a geodesic equation with respect to a (non-linear) connection on this tangent bundle. Using this fact, the relationships between relativistic and non-relativistic equations of motion is studied.

  13. Non-relativistic particles in a thermal bath

    Directory of Open Access Journals (Sweden)

    Vairo Antonio

    2014-04-01

    Full Text Available Heavy particles are a window to new physics and new phenomena. Since the late eighties they are treated by means of effective field theories that fully exploit the symmetries and power counting typical of non-relativistic systems. More recently these effective field theories have been extended to describe non-relativistic particles propagating in a medium. After introducing some general features common to any non-relativistic effective field theory, we discuss two specific examples: heavy Majorana neutrinos colliding in a hot plasma of Standard Model particles in the early universe and quarkonia produced in heavy-ion collisions dissociating in a quark-gluon plasma.

  14. $\\Lambda$ polarization in peripheral collisions at moderate relativistic energies

    CERN Document Server

    Xie, Y L; Stöcker, H; Wang, D J; Csernai, L P

    2016-01-01

    The polarization of $\\Lambda$ hyperons from relativistic flow vorticity is studied in peripheral heavy ion reactions at FAIR and NICA energies, just above the threshold of the transition to the Quark-Gluon Plasma. Previous calculations at higher energies with larger initial angular momentum, predicted significant $\\Lambda$ polarization based on the classical vorticity term in the polarization, while relativistic modifications decreased the polarization and changed its structure in the momentum space. At the lower energies studied here, we see the same effect namely that the relativistic modifications decrease the polarization arising from the initial shear flow vorticity.

  15. The relativistic virial theorem and scale invariance

    CERN Document Server

    Gaite, Jose

    2013-01-01

    The virial theorem is related to the dilatation properties of bound states. This is realized, in particular, by the Landau-Lifshitz formulation of the relativistic virial theorem, in terms of the trace of the energy-momentum tensor. We construct a Hamiltonian formulation of dilatations in which the relativistic virial theorem naturally arises as the condition of stability against dilatations. A bound state becomes scale invariant in the ultrarelativistic limit, in which its energy vanishes. However, for very relativistic bound states, scale invariance is broken by quantum effects and the virial theorem must include the energy-momentum tensor trace anomaly. This quantum field theory virial theorem is directly related to the Callan-Symanzik equations. The virial theorem is applied to QED and then to QCD, focusing on the bag model of hadrons. In massless QCD, according to the virial theorem, 3/4 of a hadron mass corresponds to quarks and gluons and 1/4 to the trace anomaly.

  16. On the strange quark mass with improved staggered quarks

    OpenAIRE

    Hein, J.; Davies, C.; Lepage, G. P.; Mason, Q.; Trottier, H.

    2002-01-01

    We present results on the sum of the masses of light and strange quark using improved staggered quarks. Our calculation uses 2+1 flavours of dynamical quarks. The effects of the dynamical quarks are clearly visible.

  17. Zero temperature quark matter equation of state

    Energy Technology Data Exchange (ETDEWEB)

    Grassi, F.

    1987-09-01

    An equation of state is computed for a plasma of one flavor quarks interacting through some phenomenological potential, in the Hartree approximation, at zero temperature. Assuming that the confining potential is scalar and color-independent, it is shown that the quarks undergo a first-order mass phase transition. In addition, due to the way screening is introduced, all the thermodynamic quantities computed are independent of the actual shape of the interquark potential. This equation of state is then generalized to a potential with scalar and vector components, Fock corrections are discussed and the case of a several quark flavor plasma is studied. 19 refs., 2 figs.

  18. New exact bound states solutions for (C.F.P.S. potential in the case of Non commutative three dimensional non relativistic quantum mechanics

    Directory of Open Access Journals (Sweden)

    Abdelmadjid MAIRECHE

    2015-09-01

    Full Text Available We obtain here the modified bound-states solutions for central fraction power singular potential (C.F.P.S. in noncommutative 3-dimensional non relativistic quantum mechanics (NC-3D NRQM. It has been observed that the commutative energy spectra was changed, and replaced degenerate new states, depending on four quantum numbers: j, l and sz=±1/2 corresponding to the two spins states of electron by (up and down and the deformed Hamiltonian formed by two new operators: the first describes the spin-orbit interaction , while the second obtained Hamiltonian describes the modified Zeeman effect (containing ordinary Zeeman effect in addition to the usual commutative Hamiltonian. We showed that the isotropic commutative Hamiltonian HCFPS will be in non commutative space anisotropic Hamiltonian HNC-CFPS.

  19. Viscosity over entropy ratio in a quark plasma

    Science.gov (United States)

    Czerski, P.; Alberico, W. M.; Chiacchiera, S.; DePace, A.; Hansen, H.; Molinari, A.; Nardi, M.

    2009-02-01

    The quark viscosity in the quark-gluon plasma is evaluated in the hard thermal loop (HTL) approximation. The different contributions to the viscosity arising from the various components of the quark spectral function are discussed. The calculation is extended to finite values of the chemical potential.

  20. Quark confinement in a constituent quark model

    Energy Technology Data Exchange (ETDEWEB)

    Langfeld, K.; Rho, M. [CEA Centre d`Etudes de Saclay, 91 - Gif-sur-Yvette (France). Service de Physique Theorique

    1995-07-01

    On the level of an effective quark theory, we define confinement by the absence of quark anti-quark thresholds in correlation function. We then propose a confining Nambu-Jona-Lasinio-type model. The confinement is implemented in analogy to Anderson localization in condensed matter systems. We study the model`s phase structure as well as its behavior under extreme conditions, i.e. high temperature and/or high density.

  1. Top quark properties

    Indian Academy of Sciences (India)

    Yuji Takeuchi

    2012-10-01

    Since the top quark was discovered at Tevatron in 1995, many top quark properties have been measured. However, the top quark is still interesting due to unique features which originate from the extremely heavy mass, and providing various test grounds on the Standard Model as well as searches for a new physics. Though the measurements of the top quark had been performed only at Tevatron so far, LHC is now ready for measurements with more top quarks than Tevatron. In this article, recent measurements of top quark properties from Tevatron (CDF and DØ) as well as LHC (ATLAS and CMS) are presented.

  2. Relativistic magnetohydrodynamics

    Science.gov (United States)

    Hernandez, Juan; Kovtun, Pavel

    2017-05-01

    We present the equations of relativistic hydrodynamics coupled to dynamical electromagnetic fields, including the effects of polarization, electric fields, and the derivative expansion. We enumerate the transport coefficients at leading order in derivatives, including electrical conductivities, viscosities, and thermodynamic coefficients. We find the constraints on transport coefficients due to the positivity of entropy production, and derive the corresponding Kubo formulas. For the neutral state in a magnetic field, small fluctuations include Alfvén waves, magnetosonic waves, and the dissipative modes. For the state with a non-zero dynamical charge density in a magnetic field, plasma oscillations gap out all propagating modes, except for Alfvén-like waves with a quadratic dispersion relation. We relate the transport coefficients in the "conventional" magnetohydrodynamics (formulated using Maxwell's equations in matter) to those in the "dual" version of magnetohydrodynamics (formulated using the conserved magnetic flux).

  3. Relativistic Achilles

    CERN Document Server

    Leardini, Fabrice

    2013-01-01

    This manuscript presents a problem on special relativity theory (SRT) which embodies an apparent paradox relying on the concept of simultaneity. The problem is represented in the framework of Greek epic poetry and structured in a didactic way. Owing to the characteristic properties of Lorenz transformations, three events which are simultaneous in a given inertial reference system, occur at different times in the other two reference frames. In contrast to the famous twin paradox, in the present case there are three, not two, different inertial observers. This feature provides a better framework to expose some of the main characteristics of SRT, in particular, the concept of velocity and the relativistic rule of addition of velocities.

  4. The q overlineq relativistic interaction in the Wilson loop approach

    Science.gov (United States)

    Brambilla, N.; Vairo, A.

    1998-05-01

    We study the q overlineq relativistic interaction starting from the Feynman-Schwinger representation of the gauge-invariant quark-antiquark Green function. We focus on the one-body limit and discuss the obtained non-perturbative interaction kernel of the Dirac equation.

  5. The QCD spectrum with three quark flavors

    CERN Document Server

    Bernard, C; DeGrand, T A; Datta, S; DeTar, C E; Gottlieb, S; Heller, U M; Orginos, K; Sugar, R; Toussaint, D; Bernard, Claude; Burch, Tom; Grand, Thomas A. De; Datta, Saumen; Tar, Carleton De; Gottlieb, Steven; Heller, Urs M.; Orginos, Kostas; Sugar, Robert; Toussaint, Doug

    2001-01-01

    We present results from a lattice hadron spectrum calculation using three flavors of dynamical quarks - two light and one strange, and quenched simulations for comparison. These simulations were done using a one-loop Symanzik improved gauge action and an improved Kogut-Susskind quark action. The lattice spacings, and hence also the physical volumes, were tuned to be the same in all the runs to better expose differences due to flavor number. Lattice spacings were tuned using the static quark potential, so as a byproduct we obtain updated results for the effect of sea quarks on the static quark potential. We find indications that the full QCD meson spectrum is in better agreement with experiment than the quenched spectrum. For the 0++ (a0) meson we see a coupling to two pseudoscalar mesons, or a meson decay on the lattice.

  6. Tetraquark bound states and resonances in a unitary microscopic quark model: A case study of bound states of two light quarks and two heavy antiquarks

    Science.gov (United States)

    Bicudo, P.; Cardoso, M.

    2016-11-01

    We address q q Q ¯Q ¯ exotic tetraquark bound states and resonances with a fully unitarized and microscopic quark model. We propose a triple string flip-flop potential, inspired by lattice QCD tetraquark static potentials and flux tubes, combining meson-meson and double Y potentials. Our model includes the color excited potential, but neglects the spin-tensor potentials, as well as all the other relativistic effects. To search for bound states and resonances, we first solve the two-body mesonic problem. Then we develop fully unitary techniques to address the four-body tetraquark problem. We fold the four-body Schrödinger equation with the mesonic wave functions, transforming it into a two-body meson-meson problem with nonlocal potentials. We find bound states for some quark masses, including the one reported in lattice QCD. Moreover, we also find resonances and calculate their masses and widths, by computing the T matrix and finding its pole positions in the complex energy plane, for some quantum numbers. However, a detailed analysis of the quantum numbers where binding exists shows a discrepancy with recent lattice QCD results for the l l b ¯ b ¯ tetraquark bound states. We conclude that the string flip-flop models need further improvement.

  7. Small Current Quark Mass Effects on Dressed-Quark Propagator in an Effective Quark-Quark Interaction Model

    Institute of Scientific and Technical Information of China (English)

    ZONG Hong-Shi; WU Xiao-Hua; SUN Wei-Min; ZHAO En-Guang; WANG Fan

    2003-01-01

    A method for obtaining the smallcurrent quark mass dependence of the dressed quark propagator froman effective quark-quark interaction model is developed. Within this approach the small current quark mass effects ondressed-quark propagator have been studied. A comparison with previous results is given.

  8. Review of Top Quark Physics Results

    Energy Technology Data Exchange (ETDEWEB)

    Kehoe, R.; Narain, M.; Kumar, A.

    2007-12-01

    As the heaviest known fundamental particle, the top quark has taken a central role in the study of fundamental interactions. Production of top quarks in pairs provides an important probe of strong interactions. The top quark mass is a key fundamental parameter which places a valuable constraint on the Higgs boson mass and electroweak symmetry breaking. Observations of the relative rates and kinematics of top quark final states constrain potential new physics. In many cases, the tests available with study of the top quark are both critical and unique. Large increases in data samples from the Fermilab Tevatron have been coupled with major improvements in experimental techniques to produce many new precision measurements of the top quark. The first direct evidence for electroweak production of top quarks has been obtained, with a resulting direct determination of V{sub tb}. Several of the properties of the top quark have been measured. Progress has also been made in obtaining improved limits on potential anomalous production and decay mechanisms. This review presents an overview of recent theoretical and experimental developments in this field. We also provide a brief discussion of the implications for further efforts.

  9. Potential description of the charmonium from lattice QCD

    CERN Document Server

    Kawanai, Taichi

    2015-01-01

    We present spin-independent and spin-spin interquark potentials for charmonium states, that are calculated using a relativistic heavy quark action for charm quarks on the PACS-CS gauge configurations generated with the Iwasaki gauge action and 2+1 flavors of Wilson clover quark. The interquark potential with finite quark masses is defined through the equal-time Bethe-Salpeter amplitude. The light and strange quark masses are close to the physical point where the pion mass corresponds to $M_\\pi \\approx 156(7)$ MeV, and charm quark mass is tuned to reproduce the experimental values of $\\eta_c$ and $J/\\psi$ states. Our simulations are performed with a lattice cutoff of $a^{-1}\\approx 2.2$ GeV and a spatial volume of $(3 {\\rm fm})^3$. We solve the nonrelativistic Schr\\"odinger equation with resulting charmonium potentials as theoretical inputs. The resultant charmonium spectrum below the open charm threshold shows a fairly good agreement with experimental data of well-established charmonium states.

  10. Potential description of the charmonium from lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Kawanai, Taichi [Jülich Supercomputing Center, Jülich D-52425 (Germany); Sasaki, Shoichi [Department of Physics, Tohoku University, Sendai 980-8578 (Japan)

    2016-01-22

    We present spin-independent and spin-spin interquark potentials for charmonium states, that are calculated using a relativistic heavy quark action for charm quarks on the PACS-CS gauge configurations generated with the Iwasaki gauge action and 2+1 flavors of Wilson clover quark. The interquark potential with finite quark masses is defined through the equal-time Bethe-Salpeter amplitude. The light and strange quark masses are close to the physical point where the pion mass corresponds to M{sub π} ≈ 156(7) MeV, and charm quark mass is tuned to reproduce the experimental values of η{sub c} and J/ψ states. Our simulations are performed with a lattice cutoff of a{sup −1} ≈ 2.2 GeV and a spatial volume of (3 fm){sup 3}. We solve the nonrelativistic Schrödinger equation with resulting charmonium potentials as theoretical inputs. The resultant charmonium spectrum below the open charm threshold shows a fairly good agreement with experimental data of well-established charmonium states.

  11. Quarks and partons. [Review

    Energy Technology Data Exchange (ETDEWEB)

    Paschos, E A

    1976-01-01

    This contribution reviews the evidence accumulated over the past year in favor of quarks and partons. Then it applies the quark ideas in order to interpret the neutrino-induced production of charm and the structure of neutral currents.

  12. Chemical Evolution of Strongly Interacting Quark-Gluon Plasma

    Directory of Open Access Journals (Sweden)

    Ying-Hua Pan

    2014-01-01

    Full Text Available At very initial stage of relativistic heavy ion collisions a wave of quark-gluon matter is produced from the break-up of the strong color electric field and then thermalizes at a short time scale (~1 fm/c. However, the quark-gluon plasma (QGP system is far out of chemical equilibrium, especially for the heavy quarks which are supposed to reach chemical equilibrium much late. In this paper a continuing quark production picture for strongly interacting QGP system is derived, using the quark number susceptibilities and the equation of state; both of them are from the results calculated by the Wuppertal-Budapest lattice QCD collaboration. We find that the densities of light quarks increase by 75% from the temperature T=400 MeV to T=150 MeV, while the density of strange quark annihilates by 18% in the temperature region. We also offer a discussion on how this late production of quarks affects the final charge-charge correlations.

  13. Contribution of Quark Structure Term in Nucleon Electric and Magnetic Form Factors

    Institute of Scientific and Technical Information of China (English)

    WANG Hong-Min; ZHANG Ben-Ai

    2004-01-01

    The constituent quarks in the nucleon have always been considered as a point-like particle in the relativistic constituent quark model. However its calculation results of GnE agree poorly with the new experimental data. The electromagnetic structure of light front constituent quarks is considered in this paper. We find that the calculation results have good agreement with the new experimental data of GnE after considering the contribution of the quark structure term. This treatment seems to be able to improve the fit to experimental data of Gep/GMp, /Q2F2p/kpF1p,and Gen/GMn as well.

  14. Quark and gluon condensates in nuclear matter with Brown- Rho scaling

    Institute of Scientific and Technical Information of China (English)

    郭华; 杨树; 刘玉鑫

    2001-01-01

    Quark and gluon condensates in nuclear matter are investigated in a density-dependent relativistic mean-field theory. The in-medium quark condensate decreases rapidly as the density of nu-clear matter increases, if the Brown-Rho scaling is included. The decrease in the in-medium quark condensate with the nuclear matter density is consistent with the result predicted by the partial chiral symmetry restoration. The gluon condensate and the influence of the strange quark contents on the gluon condensate in nuclear matter are discussed.

  15. Lattice heavy quark effective theory and the isgur-wise function

    CERN Document Server

    Hashimoto, S

    1996-01-01

    We compute the Isgur-Wise function using heavy quark effective theory formulated on the lattice. The non-relativistic kinetic energy term of the heavy quark is included to the action as well as terms remaining in the infinite quark mass limit. The classical velocity of the heavy quark is renormalized on the lattice and we determine the renormalized velocity non-perturbatively using the energy-momentum dispersion relation. The slope parameter of the Isgur-Wise function at zero recoil is obtained at \\beta=6.0 on a 24^3\\times 48 lattice for three values of m_{Q}.

  16. Axial form factor of the nucleon in the perturbative chiral quark model

    CERN Document Server

    Khosonthongkee, K; Faessler, Amand; Gutsche, T; Lyubovitskij, V E; Pumsa-ard, K; Yan, Y

    2004-01-01

    We apply the perturbative chiral quark model (PCQM) at one loop to analyze the axial form factor of the nucleon. This chiral quark model is based on an effective Lagrangian, where baryons are described by relativistic valence quarks and a perturbative cloud of Goldstone bosons as dictated by chiral symmetry. We apply the formalism to obtain analytical expressions for the axial form factor of the nucleon, which is given in terms of fundamental parameters of low-energy pion-nucleon physics (weak pion decay constant, strong pion-nucleon form factor) and of only one model parameter (radius of the nucleonic three-quark core).

  17. Top quark measurements

    CERN Document Server

    Iorio, Alberto Orso Maria

    2016-01-01

    Measurements of top quarks from Run-I and Run-II of the LHC are presented. Results on dif- ferential and inclusive top quark production cross sections, measured by the ATLAS, CMS and LHCb experiments, and measurements of top quark properties and mass are reported.

  18. Top Quark Results

    CERN Document Server

    ATLAS collaboration; LHCb collaboration

    2016-01-01

    Measurements of top quarks from Run-I and Run-II of the LHC are presented. Results on differential and inclusive top quark production cross sections, measured by the ATLAS, CMS and LHCb experiments, and measurements of top quark properties and mass are reported.

  19. Scattering of Quark-Quasiparticles in the Quark-Gluon Plasma

    Energy Technology Data Exchange (ETDEWEB)

    Mannarelli, M. [Center for Theoretical Physics, Laboratory for Nuclear Science and Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Rapp, R. [Cyclotron Institute and Physics Department, Texas A and M University, College Station, Texas 77843-3366 (United States)

    2006-08-07

    Employing a Brueckner-type many-body approach, based on a driving potential extracted from lattice QCD, we study light quark properties in a Quark-Gluon Plasma (QGP) at moderate temperatures, T{approx}1-2T{sub c}. The quark-antiquark T-matrix is calculated self-consistently with pertinent quark self-energies. While the repulsive octet channel induces quasiparticle masses of up to 150 MeV, the attractive color-singlet part exhibits resonance structures which lead to quasiparticle widths of {approx}200MeV.

  20. Relativistic heavy-ion collisions

    CERN Document Server

    Bhalerao, Rajeev S

    2014-01-01

    The field of relativistic heavy-ion collisions is introduced to the high-energy physics students with no prior knowledge in this area. The emphasis is on the two most important observables, namely the azimuthal collective flow and jet quenching, and on the role fluid dynamics plays in the interpretation of the data. Other important observables described briefly are constituent quark number scaling, ratios of particle abundances, strangeness enhancement, and sequential melting of heavy quarkonia. Comparison is made of some of the basic heavy-ion results obtained at LHC with those obtained at RHIC. Initial findings at LHC which seem to be in apparent conflict with the accumulated RHIC data are highlighted.

  1. Proton to pion ratio at RHIC from dynamical quark recombination

    CERN Document Server

    Ayala, Alejandro; Paic, Guy; Toledo-Sanchez, Genaro

    2008-01-01

    We propose an scenario to study, from a dynamical point of view, the thermal recombination of quarks in the midsts of a relativistic heavy-ion collision. We coin the term dynamical quark recombination to refer to the process of quark-antiquark and three-quark clustering, to form mesons and baryons, respectively, as a function of energy density. Using the string-flip model we show that the probabilities to form such clusters differ. We apply these ideas to the calculation of the proton and pion spectra in a Bjorken-like scenario that incorporates the evolution of these probabilities with proper time and compute the proton to pion ratio, comparing to recent RHIC data at the highest energy. We show that for a standard choice of parameters, this ratio reaches one, though the maximum is very sensitive to the initial evolution proper time.

  2. Observational Constraints on Quark Matter in Neutron Stars

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    We study the observational constraints of mass and redshift on the properties of the equation of state (EOS) for quark matter in compact stars based on the quasi-particle description. We discuss two scenarios: strange stars and hybrid stars. We construct the equations of state utilizing an extended MIT bag model taking the medium effect into account for quark matter and the relativistic mean field theory for hadron matter. We show that quark matter may exist in strange stars and in the interior of neutron stars. The bag constant is a key parameter that affects strongly the mass of strange stars. The medium effect can lead to the stiffer hybrid-star EOS approaching the pure hadronic EOS, due to the reduction of quark matter, and hence the existence of heavy hybrid stars. We find that a middle range coupling constant may be the best choice for the hybrid stars being compatible with the observational constraints.

  3. A Fully it ab initio Potential Curve of Near-Spectroscopic Quality for the $OH^{-}$ Anion Importance of Connected Quadruple Excitations and Scalar Relativistic Effects

    CERN Document Server

    Martin, J M L

    2001-01-01

    A benchmark study has been carried out on the ground-state potential curve of the hydroxyl anion, OH^{-}, including detailed calibration of both the 1-particle and n-particle basis sets. The CCSD(T) basis set limit overestimates $\\omega_e$ by about 10 cm^{-1}, which is only remedied by inclusion of connected quadruple excitations in the coupled cluster expansion --- or, equivalently, the inclusion of the $2\\pi$ orbitals in the active space of a multireference calculation. Upon inclusion of scalar relativistic effects (-3 cm^{-1} on $\\omega_e$), a potential curve of spectroscopic quality (sub-cm^{-1} accuracy) is obtained. Our best computed EA(OH), 1.828 eV, agrees to three decimal places with the best available experimental value. Our best computed dissociation energies, D_0(OH^-)=4.7796 eV and D_0(OH)=4.4124 eV, suggest that the experimental D_0(OH)=4.392 eV may possibly be about 0.02 eV too low.

  4. Multi-dimensional potential energy surfaces and non-axial octupole correlations in actinide and transfermium nuclei from relativistic mean field models

    CERN Document Server

    Lu, Bing-Nan; Zhao, En-Guang; Zhou, Shan-Gui

    2013-01-01

    We have developed multi-dimensional constrained covariant density functional theories (MDC-CDFT) for finite nuclei in which the shape degrees of freedom \\beta_{\\lambda\\mu} with even \\mu, e.g., \\beta_{20}, \\beta_{22}, \\beta_{30}, \\beta_{32}, \\beta_{40}, etc., can be described simultaneously. The functional can be one of the following four forms: the meson exchange or point-coupling nucleon interactions combined with the non-linear or density-dependent couplings. For the pp channel, either the BCS approach or the Bogoliubov transformation is implemented. The MDC-CDFTs with the BCS approach for the pairing (in the following labelled as MDC-RMF models with RMF standing for "relativistic mean field") have been applied to investigate multi-dimensional potential energy surfaces and the non-axial octupole $Y_{32}$-correlations in N=150 isotones. In this contribution we present briefly the formalism of MDC-RMF models and some results from these models. The potential energy surfaces with and without triaxial deformatio...

  5. Magnetic Moments of Baryons containing all heavy quarks in Quark-Diquark Model

    CERN Document Server

    Thakkar, Kaushal; Vinodkumar, P C

    2016-01-01

    The triply heavy flavour baryons are studied using the Quark-diquark description of the three-body system. The confinement potential for present study of triply heavy flavour baryons is assumed as coulomb plus power potential with power index $\

  6. On the Dirac equation for a quark

    CERN Document Server

    Pestov, I B

    2003-01-01

    It is argued from geometrical, group-theoretical and physical points of view that in the framework of QCD it is not only necessary but also possible to modify the Dirac equation so that correspondence principle holds valid. The Dirac wave equation for a quark is proposed and some consequences are considered. In particular, it is shown that interquark potential expresses the Coulomb law for the quarks and, in fact, coincides with the known Cornell potential.

  7. Space-Time Geometry of Quark and Strange Quark Matter

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    We study quark and strange quark matter in the context of general relativity. For this purpose, we solve Einstein's field equations for quark and strange quark matter in spherical symmetric space-times. We analyze strange quark matter for the different equations of state (EOS) in the spherical symmetric space-times, thus we are able to obtain the space-time geometries of quark and strange quark matter. Also, we discuss die features of the obtained solutions. The obtained solutions are consistent with the results of Brookhaven Laboratory, i.e. the quark-gluon plasma has a vanishing shear (i.e. quark-gluon plasma is perfect).

  8. Relativistic corrections to the pair $B_c$-meson production in $e^+e^-$ annihilation

    CERN Document Server

    Karyasov, A A; Martynenko, F A

    2016-01-01

    Relativistic corrections to the pair $B_c$-meson production in $e^+e^-$-annihilation are calculated. We investigate a production of pair pseudoscalar, vector and pseudoscalar+vector $B_c$-mesons in the leading order perturbative quantum chromodynamics and relativistic quark model. Relativistic expressions of the pair production cross sections are obtained. Their numerical evaluation shows that relativistic effects in the production amplitudes and bound state wave functions three times reduce nonrelativistic results at the center-of-mass energy s=22 GeV.

  9. Relativistic corrections to the pair Bc-meson production in e+e− annihilation

    Directory of Open Access Journals (Sweden)

    A.A. Karyasov

    2016-10-01

    Full Text Available Relativistic corrections to the pair Bc-meson production in e+e−-annihilation are calculated. We investigate a production of pair pseudoscalar, vector and pseudoscalar+vector Bc-mesons in the leading order perturbative quantum chromodynamics and relativistic quark model. Relativistic expressions of the pair production cross sections are obtained. Their numerical evaluation shows that relativistic effects in the production amplitudes and bound state wave functions three times reduce nonrelativistic results at the center-of-mass energy s=22 GeV.

  10. Relativistic corrections to the pair Bc-meson production in e+e- annihilation

    Science.gov (United States)

    Karyasov, A. A.; Martynenko, A. P.; Martynenko, F. A.

    2016-10-01

    Relativistic corrections to the pair Bc-meson production in e+e--annihilation are calculated. We investigate a production of pair pseudoscalar, vector and pseudoscalar+vector Bc-mesons in the leading order perturbative quantum chromodynamics and relativistic quark model. Relativistic expressions of the pair production cross sections are obtained. Their numerical evaluation shows that relativistic effects in the production amplitudes and bound state wave functions three times reduce nonrelativistic results at the center-of-mass energy s = 22 GeV.

  11. Relativistic gas in a Schwarzschild metric

    CERN Document Server

    Kremer, Gilberto M

    2013-01-01

    A relativistic gas in a Schwarzschild metric is studied within the framework of a relativistic Boltzmann equation in the presence of gravitational fields, where Marle's model for the collision operator of the Boltzmann equation is employed. The transport coefficients of bulk and shear viscosities and thermal conductivity are determined from the Chapman-Enskog method. It is shown that the transport coefficients depend on the gravitational potential. Expressions for the transport coefficients in the presence of weak gravitational fields in the non-relativistic (low temperatures) and ultra-relativistic (high temperatures) limiting cases are given. Apart from the temperature gradient the heat flux has two relativistic terms. The first one, proposed by Eckart, is due to the inertia of energy and represents an isothermal heat flux when matter is accelerated. The other, suggested by Tolman, is proportional to the gravitational potential gradient and indicates that -- in the absence of an acceleration field -- a stat...

  12. PREFACE: Quark Matter 2006 Conference Quark Matter 2006 Conference

    Science.gov (United States)

    Ma, Yu-Gang; Wang, En-Ke; Cai, Xu; Huang, Huan-Zhong; Wang, Xin-Nian; Zhu, Zhi-Yuan

    2007-07-01

    The Quark Matter 2006 conference was held on 14-20 November 2006 at the Shanghai Science Hall of the Shanghai Association of Sciences and Technology in Shanghai, China. It was the 19th International Conference on Ultra-Relativistic Nucleus-Nucleus Collisions. The conference was organized jointly by SINAP (Shanghai Institute of Applied Physics, Chinese Academy of Sciences (CAS)) and CCNU (Central China Normal University, Wuhan). Over 600 scientists from 32 countries in five continents attended the conference. This is the first time that China has hosted such a premier conference in the field of relativistic heavy-ion collisions, an important event for the Chinese high energy nuclear physics community. About one half of the conference participants are junior scientists—a clear indication of the vigor and momentum for this field, in search of the fundamental nature of the nuclear matter at extreme conditions. Professor T D Lee, honorary chair of the conference and one of the founders of the quark matter research, delivered an opening address with his profound and philosophical remarks on the recent discovery of the nature of strongly-interacting quark-gluon-plasma (sQGP). Professor Hongjie Xu, director of SINAP, gave a welcome address to all participants on behalf of the two hosting institutions. Dr Peiwen Ji, deputy director of the Mathematics and Physics Division of the Natural Science Foundation of China (NSFC), also addressed the conference participants and congratulated them on the opening of the conference. Professor Mianheng Jiang, vice president of the Chinese Academy of Sciences (CAS), gave a concise introduction about the CAS as the premier research institution in China. He highlighted continued efforts at CAS to foster international collaborations between China and other nations. The Quark Matter 2006 conference is an example of such a successful collaboration between high energy nuclear physicists in China and other nations all over the world. The

  13. Strongly Coupled Quark Gluon Plasma (SCQGP)

    CERN Document Server

    Bannur, V M

    2006-01-01

    We propose that the reason for the non-ideal behavior seen in lattice simulation of quark gluon plasma (QGP) and relativistic heavy ion collisions (URHICs) experiments is that the QGP near T_c and above is strongly coupled plasma (SCP), i.e., strongly coupled quark gluon plasma (SCQGP). It is remarkable that the widely used equation of state (EoS) of SCP in QED (quantum electrodynamics) very nicely fits lattice results on all QGP systems, with proper modifications to include color degrees of freedom and running coupling constant. Results on pressure in pure gauge, 2-flavors and 3-flavors QGP, are all can be explained by treating QGP as SCQGP as demonstated here.Energy density and speed of sound are also presented for all three systems.

  14. The cool potential of gluons

    CERN Document Server

    Peshier, Andre

    2015-01-01

    We put forward the idea that the quark-gluon plasma might exist way below the usual confinement temperature $T_c$. Our argument rests on the possibility that the plasma produced in heavy-ion collisions could reach a transient quasi-equilibrium with `over-occupied' gluon density, as advocated by Blaizot et al. Taking further into account that gluons acquire an effective mass by interaction effects, they can have a positive chemical potential and therefore behave similarly to non-relativistic bosons. Relevant properties of this dense state of interacting gluons, which we dub serried glue, can then be inferred on rather general grounds from Maxwell's relation.

  15. Quark Deconfinement Phase Transition in Neutron Stars

    CERN Document Server

    Alaverdyan, G B

    2009-01-01

    The hadron-quark phase transition in the interior of compact stars is investigated, when the transition proceeds through a mixed phase. The hadronic phase is described in the framework of relativistic mean-field theory, when also the scalar-isovector delta-meson mean-field is taken into account. The changes of the parameters of phase transition caused by the presence of delta-meson field are explored. The results of calculation of structure of the mixed phase (Glendenning construction) are compared with the results of usual first-order phase transition (Maxwell construction).

  16. From hadron gas to quark matter, 1

    CERN Document Server

    Hagedorn, Rolf

    1981-01-01

    An analytical, non-perturbative description of a strongly interacting hadron gas is presented. Its main features are: the formulation is relativistically covariant, hadrons have finite extensions which are treated a la Van der Waals and their strong interactions are simulated by a hadronic mass spectrum generated by a bootstrap equation under the constraints of baryon number conservation. The system exhibits a singularity, which has the typical features of a phase transition gas to liquid, but which the authors interpret here as the transition into a quark-gluon plasma phase, which, however, cannot be described by this model. (16 refs).

  17. Accuracy of geometries : influence of basis set, exchange-correlation potential, inclusion of core electrons, and relativistic corrections

    NARCIS (Netherlands)

    Swart, M; Snijders, JG

    The geometries of a set of small molecules were optimized using eight different exchange-correlation (xc) potentials in a few different basis sets of Slater-type orbitals, ranging from a minimal basis (I) to a triple-zeta valence basis plus double polarization functions (VII). This enables a

  18. Bound states of relativistic particle in the Rosen-Morse type Potential with Pseudospin symmetry%伪自旋对称情形下Rosen-Morse类型势场中相对论粒子的束缚态

    Institute of Scientific and Technical Information of China (English)

    张爱萍; 凌亚文

    2009-01-01

    在伪自旋对称情形下研究了Rosen-Morse类型势场中相对论粒子的束缚态,利用Nikiforov-Uvarov方法求解了伪自旋对称情形下的Klein-Gordon和Dirac方程,得到了相对论粒子被束缚在Rosen-Morse类型势场的精确束缚态解.%The bound states of the relativistic particle in the Rosen-Morse type potential with pseudospin symmetry are investigated.The solutions of the Klein-Gordon and Dirac equations for this kind of potential are investigated by using the Nikiforov-Uvarov method.The exact analytical solutions are obtained for relativistic particle moving in the Rosen-Morse type potential with pseudospin symmetry.

  19. Correlation consistent valence basis sets for use with the Stuttgart-Dresden-Bonn relativistic effective core potentials the atoms Ga-Kr and In-Xe

    CERN Document Server

    Martin, J M L; Martin, Jan M.L.; Sundermann, Andreas

    2001-01-01

    We propose large-core correlation-consistent pseudopotential basis sets for the heavy p-block elements Ga-Kr and In-Xe. The basis sets are of cc-pVTZ and cc-pVQZ quality, and have been optimized for use with the large-core (valence-electrons only) Stuttgart-Dresden-Bonn relativistic pseudopotentials. Validation calculations on a variety of third-row and fourth-row diatomics suggest them to be comparable in quality to the all-electron cc-pVTZ and cc-pVQZ basis sets for lighter elements. Especially the SDB-cc-pVQZ basis set in conjunction with a core polarization potential (CPP) yields excellent agreement with experiment for compounds of the later heavy p-block elements. For accurate calculations on Ga (and, to a lesser extent, Ge) compounds, explicit treatment of 13 valence electrons appears to be desirable, while it seems inevitable for In compounds. For Ga and Ge, we propose correlation consistent basis sets extended for (3d) correlation. For accurate calculations on organometallic complexes of interest to h...

  20. PREFACE: Quark Matter 2006 Conference

    Science.gov (United States)

    Ma, Yu-Gang; Wang, En-Ke; Cai, Xu; Huang, Huan-Zhong; Wang, Xin-Nian; Zhu, Zhi-Yuan

    2007-07-01

    The Quark Matter 2006 conference was held on 14 20 November 2006 at the Shanghai Science Hall of the Shanghai Association of Sciences and Technology in Shanghai, China. It was the 19th International Conference on Ultra-Relativistic Nucleus Nucleus Collisions. The conference was organized jointly by SINAP (Shanghai Institute of Applied Physics, Chinese Academy of Sciences (CAS)) and CCNU (Central China Normal University, Wuhan). Over 600 scientists from 32 countries in five continents attended the conference. This is the first time that China has hosted such a premier conference in the field of relativistic heavy-ion collisions, an important event for the Chinese high energy nuclear physics community. About one half of the conference participants are junior scientists—a clear indication of the vigor and momentum for this field, in search of the fundamental nature of the nuclear matter at extreme conditions. Professor T D Lee, honorary chair of the conference and one of the founders of the quark matter research, delivered an opening address with his profound and philosophical remarks on the recent discovery of the nature of strongly-interacting quark-gluon-plasma (sQGP). Professor Hongjie Xu, director of SINAP, gave a welcome address to all participants on behalf of the two hosting institutions. Dr Peiwen Ji, deputy director of the Mathematics and Physics Division of the Natural Science Foundation of China (NSFC), also addressed the conference participants and congratulated them on the opening of the conference. Professor Mianheng Jiang, vice president of the Chinese Academy of Sciences (CAS), gave a concise introduction about the CAS as the premier research institution in China. He highlighted continued efforts at CAS to foster international collaborations between China and other nations. The Quark Matter 2006 conference is an example of such a successful collaboration between high energy nuclear physicists in China and other nations all over the world. The

  1. Creating the Primordial Quark-Gluon Plasma at the LHC

    Science.gov (United States)

    Harris, John W.

    2013-04-01

    Ultra-relativistic collisions of heavy ions at the Large Hadron Collider (LHC) and the Relativistic Heavy Ion Collider (RHIC) create an extremely hot system at temperatures (T) expected only within the first microseconds after the Big Bang. At these temperatures (T ˜ 2 x 10^12 K), a few hundred thousand times hotter than the sun's core, the known ``elementary'' particles cannot exist and matter ``melts'' to form a ``soup'' of quarks and gluons, called the quark-gluon plasma (QGP). This ``soup'' flows easily, with extremely low viscosity, suggesting a nearly perfect hot liquid of quarks and gluons. Furthermore, the liquid is dense, highly interacting and opaque to energetic probes (fast quarks or gluons). RHIC has been in operation for twelve years and has established an impressive set of findings. Recent results from heavy ion collisions at the LHC extend the study of the QGP to higher temperatures and harder probes, such as jets (energetic clusters of particles), particles with extremely large transverse momenta and those containing heavy quarks. I will present a motivation for physics in the field and an overview of the new LHC heavy ion results in relation to results from RHIC.

  2. Relativistic Fluid Dynamics

    CERN Document Server

    Cattaneo, Carlo

    2011-01-01

    This title includes: Pham Mau Quam: Problemes mathematiques en hydrodynamique relativiste; A. Lichnerowicz: Ondes de choc, ondes infinitesimales et rayons en hydrodynamique et magnetohydrodynamique relativistes; A.H. Taub: Variational principles in general relativity; J. Ehlers: General relativistic kinetic theory of gases; K. Marathe: Abstract Minkowski spaces as fibre bundles; and, G. Boillat: Sur la propagation de la chaleur en relativite.

  3. Relativistic and nonrelativistic solutions for diatomic molecules in the presence of double ring-shaped Kratzer potential.

    Science.gov (United States)

    Durmus, Aysen; Yasuk, Fevziye

    2007-02-21

    The authors investigate solutions of the three dimensional Klein-Gordon and Schrodinger equations in the presence of a new exactly solvable potential of V(r,theta)=-2De(re/r-(1/2)(re2/r2))+b/r2 sin2 theta+a/r2 cos2 theta type, the so-called double ring-shaped Kratzer potential. For a diatomic molecule system in double ring-shaped Kratzer potential, the exact bound state energy eigenvalues and corresponding wave functions have been determined within the framework of the asymptotic iteration method. Bound state eigenfunction solutions used in applications related to molecular spectroscopy are obtained in terms of confluent hypergeometric function and Jacobi polynomial. This new formulation is tested by calculating the energies of rovibrational states of a number of diatomic molecules. Also, the author-prove that in the nonrelativistic limit c-->infinity, where c is the speed of light, solutions of the Klein-Gordon system converge to those of the Schrodinger system.

  4. A Relativistic Coupled-Channel Formalism for the Pion Form Factor

    Directory of Open Access Journals (Sweden)

    Klink W.H.

    2010-04-01

    Full Text Available The electromagnetic form factor of a confined quark-antiquark pair is calculated within the framework of point-form relativistic quantum mechanics. The dynamics of the exchanged photon is explicitly taken into account by treating the electromagnetic scattering of an electron by a meson as a relativistic two-channel problem for a Bakamjian-Thomas type mass operator. This approach guarantees Poincare invariance. Using a Feshbach reduction the coupled-channel problem can be converted into a one-channel problem for the elastic electron-meson channel. By comparing the one-photon-exchange optical potential at the constituent and hadronic levels, we are able to unambiguously identify the electromagnetic meson form factor. Violations of cluster-separability properties, which are inherent in the Bakamjian-Thomas approach, become negligible for su?ciently large invariant mass of the electron-meson system. In the limit of an in?nitely large invariant mass, an equivalence with form-factor calculations done in front-form relativistic quantum mechanics is established analytically.

  5. Top quark physics

    Energy Technology Data Exchange (ETDEWEB)

    Ahmadov, A.; Azuelos, G.; Bauer, U.; Belyaev, A.; Berger, E. L.; Sullivan, Z.; Tait, T. M. P.

    2000-03-24

    The top quark, when it was finally discovered at Fermilab in 1995 completed the three-generation structure of the Standard Model (SM) and opened up the new field of top quark physics. Viewed as just another SM quark, the top quark appears to be a rather uninteresting species. Produced predominantly, in hadron-hadron collisions, through strong interactions, it decays rapidly without forming hadrons, and almost exclusively through the single mode t {r_arrow} Wb. The relevant CKM coupling V{sub tb} is already determined by the (three-generation) unitarity of the CKM matrix. Rare decays and CP violation are unmeasurable small in the SM. Yet the top quark is distinguished by its large mass, about 35 times larger than the mass of the next heavy quark, and intriguingly close to the scale of electroweak (EW) symmetry breaking. This unique property raises a number of interesting questions. Is the top quark mass generated by the Higgs mechanism as the SM predicts and is its mass related to the top-Higgs-Yukawa coupling? Or does it play an even more fundamental role in the EW symmetry breaking mechanism? If there are new particles lighter than the top quark, does the top quark decay into them? Could non-SM physics first manifest itself in non-standard couplings of the top quark which show up as anomalies in top quark production and decays? Top quark physics tries to answer these questions. Several properties of the top quark have already been examined at the Tevatron. These include studies of the kinematical properties of top production, the measurements of the top mass, of the top production cross-section, the reconstruction of t{bar t}pairs in the fully hadronic final states, the study of {tau} decays of the top quark, the reconstruction of hadronic decays of the W boson from top decays, the search for flavor changing neutral current decays, the measurement of the W helicity in top decays, and bounds on t{bar t} spin correlations. Most of these measurements are limited by

  6. Comment on 'Non-relativistic treatment of diatomic molecules interacting with generalized Kratzer potential in hyperspherical coordinates'

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, Francisco M, E-mail: fernande@quimica.unlp.edu.ar [INIFTA (UNLP, CCT La Plata-CONICET), Division Quimica Teorica, Blvd 113 S/N, Sucursal 4, Casilla de Correo 16, 1900 La Plata (Argentina)

    2011-08-26

    We argue that the textbook method for solving eigenvalue equations is simpler, more elegant and efficient than the asymptotic iteration method applied in Durmus (2011 J. Phys. A: Math. Theor.44 155205). We show that the Kratzer potential is not a realistic model for the vibration-rotation spectra of diatomic molecules because it predicts the position of the absorption infrared bands too far from the experimental ones (at least for the HCl and H{sub 2} molecules chosen as illustrative examples in that paper). (comment)

  7. Quark-gluon plasma phase transition using cluster expansion method

    Science.gov (United States)

    Syam Kumar, A. M.; Prasanth, J. P.; Bannur, Vishnu M.

    2015-08-01

    This study investigates the phase transitions in QCD using Mayer's cluster expansion method. The inter quark potential is modified Cornell potential. The equation of state (EoS) is evaluated for a homogeneous system. The behaviour is studied by varying the temperature as well as the number of Charm Quarks. The results clearly show signs of phase transition from Hadrons to Quark-Gluon Plasma (QGP).

  8. Recent results on relativistic heavy ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Munhoz, Marcelo [Universidade de Sao Paulo (IF/USP), Sao Paulo, SP (Brazil). Inst. de Fisica

    2013-07-01

    Full text: The study of relativistic heavy ion collisions is a very important tool in order to understand the strong interaction described by QCD. The formation of the Quark-Gluon Plasma and the study of its properties is a very challenging quest. The Large Hadron Collider (LHC) from CERN (European Organization for Nuclear Research) generates ultra-relativistic Pb + Pb collisions at the TeV scale inaugurating a new era for such studies. Three experiments, ATLAS, CMS and ALICE are able to measure the products of such collisions. In special, the ALICE experiment was designed specifically for the study of heavy ion collisions. In this presentation, I'll discuss the latest results that shed light in the QGP understanding. (author)

  9. Heavy quark masses

    Science.gov (United States)

    Testa, Massimo

    1990-01-01

    In the large quark mass limit, an argument which identifies the mass of the heavy-light pseudoscalar or scalar bound state with the renormalized mass of the heavy quark is given. The following equation is discussed: m(sub Q) = m(sub B), where m(sub Q) and m(sub B) are respectively the mass of the heavy quark and the mass of the pseudoscalar bound state.

  10. Nonperturbative Heavy-Quark Interactions in the QGP

    Energy Technology Data Exchange (ETDEWEB)

    Rapp, Ralf; Riek, Felix [Texas A and M University, Cyclotron Institute and Physics Department, College Station, TX, 77843-3666 (United States); Hees, Hendrik van [Justus-Liebig-Universitaet Giessen, Heinrich-Buff-Ring 16, D-35392 Giessen (Germany); Greco, Vincenzo [INFN-LNS, Laboratori Nazionali del Sud, and Dipartimento di Fisica e Astronomia, Universita di Catania (Italy); Mannarelli, Massimo [IEEC/CSIC, Universitat Autonoma de Barcelona, Torre C5, E-08193 Bellaterra (Barcelona) (Spain)

    2009-11-01

    We adopt a T-matrix approach to study quarkonium properties and heavy-quark transport in a Quark-Gluon Plasma. The T-matrix approach is well suited to implement potential scattering and thus provides a common framework for low-momentum transfer interactions in heavy-heavy and heavy-light quark systems. We assume that the underlying potentials can be estimated from the heavy-quark free energy computed in lattice QCD. We discuss constraints from vacuum spectroscopy, uncertainties arising from different choices of the potential, and the role of elastic and inelastic widths which are naturally accounted for in the T-matrix formalism.

  11. Hadron-quark phase transition in dense stars

    Energy Technology Data Exchange (ETDEWEB)

    Grassi, F.

    1987-10-01

    An equation of state is computed for a plasma of one flavor quarks interacting through some phenomenological potential, at zero temperature. Assuming that the confining potential is scalar and color-independent, it is shown that the quarks undergo a first-order mass phase transition. In addition, due to the way screening is introduced, all the thermodynamic quantities computed are independent of the actual shape of the interquark potential. This equation of state is then generalized to a several quark flavor plasma and applied to the study of the hadron-quark phase transition inside a neutron star. 45 refs., 4 figs.

  12. Proton relativistic model; Modelo relativistico do proton

    Energy Technology Data Exchange (ETDEWEB)

    Araujo, Wilson Roberto Barbosa de

    1995-12-31

    In this dissertation, we present a model for the nucleon, which is composed by three relativistic quarks interacting through a contract force. The nucleon wave-function was obtained from the Faddeev equation in the null-plane. The covariance of the model under kinematical null-plane boots is discussed. The electric proton form-factor, calculated from the Faddeev wave-function, was in agreement with the data for low-momentum transfers and described qualitatively the asymptotic region for momentum transfers around 2 GeV. (author) 42 refs., 22 figs., 1 tab.

  13. Hadron production in heavy relativistic systems

    CERN Document Server

    Kuiper, R; Kuiper, Rolf; Wolschin, Georg

    2007-01-01

    We investigate particle production in heavy-ion collisions at RHIC energies as function of incident energy, and centrality in a three-sources Relativistic Diffusion Model. Pseudorapidity distributions of produced charged hadrons in Au + Au and Cu + Cu collisions at sqrt(s_NN) = 19.6 GeV, 62.4 GeV, 130 GeV and 200 GeV show an almost equilibrated midrapidity source that tends to increase in size towards higher incident energy, and more central collisions. It may indicate quark-gluon plasma formation prior to hadronization.

  14. Relativistic recursion relations for transition matrix elements

    CERN Document Server

    Martínez y Romero, R P; Salas-Brito, A L

    2004-01-01

    We review some recent results on recursion relations which help evaluating arbitrary non-diagonal, radial hydrogenic matrix elements of $r^\\lambda$ and of $\\beta r^\\lambda$ ($\\beta$ a Dirac matrix) derived in the context of Dirac relativistic quantum mechanics. Similar recursion relations were derived some years ago by Blanchard in the non relativistic limit. Our approach is based on a generalization of the second hypervirial method previously employed in the non-relativistic Schr\\"odinger case. An extension of the relations to the case of two potentials in the so-called unshifted case, but using an arbitrary radial function instead of a power one, is also given. Several important results are obtained as special instances of our recurrence relations, such as a generalization to the relativistic case of the Pasternack-Sternheimer rule. Our results are useful in any atomic or molecular calculation which take into account relativistic corrections.

  15. Heavy-quark transport coefficients in a hot viscous quark-gluon plasma medium

    Science.gov (United States)

    Das, Santosh K.; Chandra, Vinod; Alam, Jan-e.

    2014-01-01

    Heavy-quark (HQ) transport coefficients have been estimated for a viscous quark-gluon plasma (QGP) medium, utilizing a recently proposed quasi-particle description based on a realistic QGP equation of state (EoS). Interactions entering through the EoS significantly suppress the temperature dependence of the drag coefficient of QGP, compared to those of an ideal relativistic system of quarks and gluons. The inclusion of shear and bulk viscosities through the corrections to the thermal phase space factors of the bath particles alters the magnitude of the drag coefficient; the enhancement is significant at lower temperatures. In the competition between the effects of the EoS and dissipative corrections through phase space factors, the former eventually dictate how the drag coefficient would behave as a function of temperature and how much it quantitatively digresses from the ideal case. The observations suggest a significant impact of both the realistic EoS and the viscosities on the HQs transport at Relativistic Heavy Ion Collider and Large Hadron Collider collision energies.

  16. Top Quark Measurements

    CERN Document Server

    Juste, A

    2006-01-01

    Ten years after its discovery at the Tevatron collider, we still know little about the top quark. Its large mass suggests it may play a key role in the mechanism of Electroweak Symmetry Breaking (EWSB), or open a window of sensitivity to new physics related to EWSB and preferentially coupled to it. To determine whether this is the case, precision measurements of top quark properties are necessary. The high statistics samples being collected by the Tevatron experiments during Run II start to incisively probe the top quark sector. This report summarizes the experimental status of the top quark, focusing in particular on the recent measurements from the Tevatron Run II.

  17. Top quark properties

    CERN Document Server

    Cuevas Maestro, Javier

    2016-01-01

    An overview of recent top quark measurements in proton-proton collisions at 7, and 8 TeV in data collected with the CMS and ATLAS experiments at the LHC, using a data sample collected during the years 2011, 2012 is presented. The results include measurements of top-quark pairs spin correlation, the top pair charge asymmetry, the cross section of top-quark pair events produced in association with a W or a Z boson. The mass of the top quark is estimated by different methods. Some results on the same topics are also presented in data collected by the CDF and D0 collaborations at the Tevatron collider.

  18. Third-order correction to top-quark pair production near threshold I. Effective theory set-up and matching coefficients

    CERN Document Server

    Beneke, M; Schuller, K

    2013-01-01

    This is the first in a series of papers, in which we compute the third-order QCD corrections to top-antitop production near threshold in e+ e- collisions. The present paper provides a detailed outline of the strategy of computation in the framework of non-relativistic effective theory and the threshold expansion, applicable more generally to heavy-quark pair production near threshold. It summarizes matching coefficients and potentials relevant to the next-to-next-to-next-to-leading order and ends with the master formula for the computation of the third-order Green function. The master formula is evaluated in part II of the series.

  19. Relativistic radiative transfer in relativistic spherical flows

    Science.gov (United States)

    Fukue, Jun

    2017-02-01

    Relativistic radiative transfer in relativistic spherical flows is numerically examined under the fully special relativistic treatment. We first derive relativistic formal solutions for the relativistic radiative transfer equation in relativistic spherical flows. We then iteratively solve the relativistic radiative transfer equation, using an impact parameter method/tangent ray method, and obtain specific intensities in the inertial and comoving frames, as well as moment quantities, and the Eddington factor. We consider several cases; a scattering wind with a luminous central core, an isothermal wind without a core, a scattering accretion on to a luminous core, and an adiabatic accretion on to a dark core. In the typical wind case with a luminous core, the emergent intensity is enhanced at the center due to the Doppler boost, while it reduces at the outskirts due to the transverse Doppler effect. In contrast to the plane-parallel case, the behavior of the Eddington factor is rather complicated in each case, since the Eddington factor depends on the optical depth, the flow velocity, and other parameters.

  20. New quarks: exotic versus strong

    OpenAIRE

    Holdom, B.

    2011-01-01

    The new quarks of a fourth family are being pushed into the strongly interacting regime due to the lower limits on their masses. The theoretical basis and experimental implications of such quarks are compared with exotic quarks.

  1. The Quark - A Decade Later

    Science.gov (United States)

    Dakin, James T.

    1974-01-01

    Reviews theoretical principles underlying the quark model. Indicates that the agreement with experimental results and the understanding of the quark-quark force are two hurdles for the model to survive in the future. (CC)

  2. The Quark - A Decade Later

    Science.gov (United States)

    Dakin, James T.

    1974-01-01

    Reviews theoretical principles underlying the quark model. Indicates that the agreement with experimental results and the understanding of the quark-quark force are two hurdles for the model to survive in the future. (CC)

  3. Measuring top quark production asymmetries at LHCb

    CERN Document Server

    Gauld, Rhorry

    2013-01-01

    Simulated data is studied to assess the potential sensitivity of LHCb to measure top quark production asymmetries, via the single particle pseudorapidity asymmetry in muonic decays of top quarks, with current integrated luminosities of 1, 2 fb$^{−1}$ at 7, 8 TeV LHC centre of mass energies respectively. This includes estimates of reconstruction effects as well as theoretical errors present in signal modelling at the next-to-leading order.

  4. Excited State Mass spectra and Regge trajectories of Bottom Baryons in Hypercentral quark Model

    CERN Document Server

    Thakkar, Kaushal; Rai, Ajay Kumar; Vinodkumar, P C

    2016-01-01

    We present the mass spectra of excited states of singly heavy baryons consist of a bottom quark and light quarks (u, d and s). The QCD motivated hypercentral quark model is employed for the three body description of baryons. The form of confinement potential is hyper coloumb plus power potential with potential index $\

  5. Vector-like quarks at the origin of light quark masses and mixing

    Energy Technology Data Exchange (ETDEWEB)

    Botella, Francisco J. [Universitat de Valencia-CSIC, Departament de Fisica Teorica and IFIC, Burjassot (Spain); Branco, G.C.; Nebot, Miguel; Rebelo, M.N.; Silva-Marcos, J.I. [Universidade de Lisboa, Departamento de Fisica and Centro de Fisica Teorica de Particulas (CFTP), Instituto Superior Tecnico (IST), Lisbon (Portugal)

    2017-06-15

    We show how a novel fine-tuning problem present in the Standard Model can be solved through the introduction of a Z{sub 6} flavour symmetry, together with three Q = -1/3 quarks, three Q = 2/3 quarks, as well as a complex singlet scalar. The Z{sub 6} symmetry is extended to the additional fields and it is an exact symmetry of the Lagrangian, only softly broken in the scalar potential, in order to avoid the domain-wall problem. Specific examples are given and a phenomenological analysis of the main features of the model is presented. It is shown that even for vector-like quarks with masses accessible at the LHC, one can have realistic quark masses and mixing, while respecting the strict constraints on processes arising from flavour changing neutral currents. The vector-like quark decay channels are also described. (orig.)

  6. Three-dimensional super Yang-Mills with compressible quark matter

    Energy Technology Data Exchange (ETDEWEB)

    Faedo, Antón F. [Departament de Física Fonamental and Institut de Ciències del Cosmos, Universitat de Barcelona,Martí i Franquès 1, ES-08028, Barcelona (Spain); Kundu, Arnab [Theory Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064 (India); Mateos, David [Departament de Física Fonamental and Institut de Ciències del Cosmos, Universitat de Barcelona,Martí i Franquès 1, ES-08028, Barcelona (Spain); Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, ES-08010, Barcelona (Spain); Pantelidou, Christiana [Departament de Física Fonamental and Institut de Ciències del Cosmos, Universitat de Barcelona,Martí i Franquès 1, ES-08028, Barcelona (Spain); Tarrío, Javier [Departament de Física Fonamental and Institut de Ciències del Cosmos, Universitat de Barcelona,Martí i Franquès 1, ES-08028, Barcelona (Spain); Université Libre de Bruxelles (ULB) and International Solvay Institutes,Service de Physique Théorique et Mathématique, Campus de la Plaine, CP 231, B-1050, Brussels (Belgium)

    2016-03-22

    We construct the gravity dual of three-dimensional, SU(N{sub /tiny} {sub c}) super Yang-Mills theory with N{sub /tiny} {sub f} flavors of dynamical quarks in the presence of a non-zero quark density N{sub /tiny} {sub q}. The supergravity solutions include the backreaction of N{sub /tiny} {sub c} color D2-branes and N{sub /tiny} {sub f} flavor D6-branes with N{sub /tiny} {sub q} units of electric flux on their worldvolume. For massless quarks, the solutions depend non-trivially only on the dimensionless combination ρ=N{sub /tiny} {sub c}{sup 2}N{sub /tiny} {sub q}/λ{sup 2}N{sub /tiny} {sub f}{sup 4}, with λ=g{sub /tiny} {sub YM}{sup 2}N{sub /tiny} {sub c} the ’t Hooft coupling, and describe renormalization group flows between the super Yang-Mills theory in the ultraviolet and a non-relativistic theory in the infrared. The latter is dual to a hyperscaling-violating, Lifshitz-like geometry with dynamical and hyperscaling-violating exponents z=5 and θ=1, respectively. If ρ≪1 then at intermediate energies there is also an approximate AdS{sub 4} region, dual to a conformal Chern-Simons-Matter theory, in which the flow exhibits quasi-conformal dynamics. At zero temperature we compute the chemical potential and the equation of state and extract the speed of sound. At low temperature we compute the entropy density and extract the number of low-energy degrees of freedom. For quarks of non-zero mass M{sub /tiny} {sub q} the physics depends non-trivially on ρ and M{sub /tiny} {sub q}N{sub /tiny} {sub c}/λN{sub /tiny} {sub f}.

  7. An independent quark model study of weak leptonic decays of pseudoscalar mesons

    Science.gov (United States)

    Jena, S. N.; Nanda, P. K.; Sahoo, S.; Panda, S.

    2015-05-01

    An independent quark model with a relativistic power-law potential is used to study the weak leptonic decays of light and heavy pseudoscalar mesons. The partial decay width and the decay constant for the weak leptonic decay are derived from the quark-antiquark momentum distribution amplitude which is obtained from the bound quark eigenfunction with the assumption of a strong correlation existing between quark-antiquark momenta inside the decaying meson in its rest frame. The model parameters are first determined from the application of the model to study the ground state hyperfine splitting of ρ, K, D, Ds, B, Bs and Bc mesons. The same model with no adjustable parameters is then used to evaluate the decay constants fM and the decay widths of pseudoscalar mesons. The model predictions agree quite well with the available experimental data as well as with those of several other models. The decay constant for pion and kaon are obtained as fπ = 132 MeV and fk = 161 MeV which closely agree with experimental values. But in case of heavier mesons for which experimental data are not yet available, the present model gives its predictions as fBC > fBS > fB, fDS > fD, fD > fB and fπ > fB which are in conformity with most of other model predictions. The model predictions of the corresponding decay widths and the branching ratios for the (l\\bar {ν }l) and (τ \\bar {ν }τ ) decay modes are in close agreement with the available experimental data.

  8. Exact duality and Bjorken sum rule in heavy quark models à la Bakamjian-Thomas

    CERN Document Server

    Le Yaouanc, A; Pène, O; Raynal, J C

    1996-01-01

    The heavy mass limit of quark models based on the Bakamjian-Thomas cons\\-truction reveals remarkable features. In addition to previously demonstrated properties of covariance and Isgur-Wise scaling, exact duality, leading to the Bjorken-Isgur-Wise sum rule, is proven, for the first time to our knowledge in relativistic quark models. Inelastic as well as elastic contributions to the sum rule are then discussed in terms of ground state averages of a few number of operators corresponding to the nonrelativistic dipole operator and various relativistic corrections.

  9. Production of dileptons with intermediate masses in an expanding quark-gluon matter

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A study of dilepton spectra, in intermediate mass region (IMR), from main background sources, quark phase, and secondary processes in hadronic phase on the basis of a relativistic hydrodynamic model has been carried out. The comparison between these results indicates that in this mass region the contribution from the background sources dominates, and due to the effect of the phase boundary on the evolution of the system the contribution from the quark phase becomes more important than that from secondary processes.

  10. Initial Temperature and Extent of Chemical Equilibration of Partons in Relativistic Collision of Heavy Nuclei

    CERN Document Server

    Srivastava, Dinesh K; Mustafa, Munshi G

    2016-01-01

    We emphasize that a knowledge of energy and entropy densities of quark gluon plasma - a thermalized de-confined matter, formed in relativistic heavy ion collisions fixes the formation temperature and the product of gluon fugacity and formation time uniquely, {\\em provided} we know the relative fugacities of quarks and gluons. This also provides that a smaller formation time would imply larger fugacities for partons. Next we explore the limits of chemical equilibration of partons during the initial stages in relativistic collision of heavy nuclei. The experimentally measured rapidity densities of transverse energy and charged particle multiplicity at RHIC and LHC energies are used to estimate the energy and number densities with the assumption of formation of a thermally equilibrated quark gluon plasma which may be chemically equilibrated to the same or differing extents for quarks and gluons. The estimates are found to be very sensitive to the correction factor used for the Bj\\"{o}rken energy density for iden...

  11. Precise top-quark mass from the diphoton mass spectrum

    CERN Document Server

    Kawabata, Sayaka

    2016-01-01

    We calculate the $gg\\to\\gamma\\gamma$ amplitude by including the $t\\bar t$ bound-state effects near their mass threshold. In terms of the non-relativistic expansion of the amplitude, the LO contribution is a constant (energy-independent) term in the one-loop amplitude. We include the NLO contribution described by the non-relativistic Green function and part of the NNLO contribution. Despite a missing NLO piece which can be accomplished with the two-loop-level amplitude via massive quarks, the shape of the diphoton mass spectrum is predicted with a good accuracy. Thanks to the simple and clean nature of the observable, its experimental measurement can be a superior method to determine the top-quark mass at hadron colliders.

  12. Spectrum of Binding System for Heavy Quark (Q) with an Anti-sbottom (b) or for a Sbottom and Anti-sbottom Pair

    Institute of Scientific and Technical Information of China (English)

    CHANG Chao-Hsi; CUI Jian-Ying; YANG Jin-Min

    2003-01-01

    Since long-lived light bottom squark (sbottom) and its anti-particle with a mass close to the bottomquark have not been excluded by experiments so far, so we would like to consider such a sbottom to combine with itsanti-particle to form a color singlet meson-like bound state or to combine with a common anti-quark to form a fermion-like one, or accordingly their anti-particles to form an anti-particle bound system. Namely we calculate the low-lyingspectrum of the systems specifically based on QCD inspired potential model. To be relativistic as much as possible, westart with the framework of Bethe-Salpeter (BS) equation even for non-relativistic binding systems. Finally, we obtainthe requested spectrum by constructing general forms of the BS wave functions and solving the BS equations underinstantaneous approximation.

  13. Top quark theory

    NARCIS (Netherlands)

    E. Laenen

    2011-01-01

    The theoretical aspects of a number of top quark properties such as its mass and its couplings are reviewed. Essential aspects in the theoretical description of top quark production, singly, in pairs and in association, as well as its decay related to spin and angular correlations are discussed.

  14. Top quark theory

    Indian Academy of Sciences (India)

    Eric Laenen

    2012-10-01

    The theoretical aspects of a number of top quark properties such as its mass and its couplings are reviewed. Essential aspects in the theoretical description of top quark production, singly, in pairs and in association, as well as its decay related to spin and angular correlations are discussed.

  15. Relativistic longitudinal non-Abelian oscillations in quark–antiquark plasma

    Indian Academy of Sciences (India)

    Vishnu M Bannur

    2002-10-01

    We study the relativistic version of the non-Abelian, longitudinal wave in quark–antiquark plasma reported earlier by Bhat et al [Phys. Rev. D39, 649 (1989)]. We have also relaxed various approximations they made in their analysis. Both the quark and antiquark dynamics are taken in our analysis. The non-linearity arising from non-Abelian field as well as from plasma are included. Hence it is an exact longitudinal mode in relativistic quark–antiquark plasma, relevant to the study of quark gluon plasma. We find that earlier results are reproduced for non-relativistic and low amplitude oscillations, but are modified for relativistic or large amplitude waves. Further more, the above results are based on just four first-order equations for gauge invariant quantities derived from gauge covariant twelve first-order equations.

  16. Massively parallel simulations of relativistic fluid dynamics on graphics processing units with CUDA

    CERN Document Server

    Bazow, Dennis; Strickland, Michael

    2016-01-01

    Relativistic fluid dynamics is a major component in dynamical simulations of the quark-gluon plasma created in relativistic heavy-ion collisions. Simulations of the full three-dimensional dissipative dynamics of the quark-gluon plasma with fluctuating initial conditions are computationally expensive and typically require some degree of parallelization. In this paper, we present a GPU implementation of the Kurganov-Tadmor algorithm which solves the 3+1d relativistic viscous hydrodynamics equations including the effects of both bulk and shear viscosities. We demonstrate that the resulting CUDA-based GPU code is approximately two orders of magnitude faster than the corresponding serial implementation of the Kurganov-Tadmor algorithm. We validate the code using (semi-)analytic tests such as the relativistic shock-tube and Gubser flow.

  17. Heavy quark interactions and quarkonium binding

    Science.gov (United States)

    Satz, Helmut

    2009-06-01

    We consider heavy quark interactions in quenched and unquenched lattice QCD. In a region just above the deconfinement point, non-Abelian gluon polarization leads to a strong increase in the binding. Comparing quark-antiquark and quark-quark interaction, the dependence of the binding on the separation distance r is found to be the same for the colorless singlet Q{\\skew3\\bar{Q}} and the colored anti-triplet QQ state. In a potential model description of in-medium J/ψ behavior, this enhancement of the binding leads to a survival up to temperatures of 1.5 Tc or higher; it could also result in J/ψ flow. Based on joint work with O Kaczmarek and F Karsch.

  18. Gapless Color-Flavor-Locked Quark Matter

    DEFF Research Database (Denmark)

    Alford, Mark; Kouvaris, Christoforos; Rajagopal, Krishna

    2004-01-01

    In neutral cold quark matter that is sufficiently dense that the strange quark mass M_s is unimportant, all nine quarks (three colors; three flavors) pair in a color-flavor locked (CFL) pattern, and all fermionic quasiparticles have a gap. We argue that as a function of decreasing quark chemical...... potential mu or increasing M_s, there is a quantum phase transition from the CFL phase to a new ``gapless CFL phase'' in which only seven quasiparticles have a gap. The transition occurs where M_s^2/mu is approximately equal to 2*Delta, with Delta the gap parameter. Gapless CFL, like CFL, leaves unbroken...... different from those of the CFL phase, even though its U(1) symmetries are the same. Both gapless quasiparticles have quadratic dispersion relations at the quantum critical point. For values of M_s^2/mu above the quantum critical point, one branch has conventional linear dispersion relations while the other...

  19. Relativistic Remnants of Non-Relativistic Electrons

    CERN Document Server

    Kashiwa, Taro

    2015-01-01

    Electrons obeying the Dirac equation are investigated under the non-relativistic $c \\mapsto \\infty$ limit. General solutions are given by derivatives of the relativistic invariant functions whose forms are different in the time- and the space-like region, yielding the delta function of $(ct)^2 - x^2$. This light-cone singularity does survive to show that the charge and the current density of electrons travel with the speed of light in spite of their massiveness.

  20. Highlights from the Quark Matter 2012 conference: a theorist's perspective

    CERN Document Server

    CERN. Geneva

    2012-01-01

    The series of Quark Matter conferences is traditionally the most important venue for showing new results in the field of ultra-relativistic nucleus-nucleus collisions. This year's edition was held in August in Washington DC and it attracted almost 700 participants. It featured the newest results from experiments at the LHC and at RHIC, as well as a broad range of new theoretical developments. This talk will provide - from a theorist's perspective - a selective review of results presented at this conference.

  1. The extent of strangeness equilibration in quark gluon plasma

    Indian Academy of Sciences (India)

    Dipali Pal; Abhijit Sen; Munshi Golam Mustafa; Dinesh Kumar Srivastava

    2003-05-01

    The evolution and production of strangeness from chemically equilibrating and transversely expanding quark gluon plasma which may be formed in the wake of relativistic heavy-ion collisions is studied with initial conditions obtained from the self screened parton cascade (SSPC) model. The extent of partonic equilibration increases almost linearly with the square of the initial energy density, which can then be scaled with the number of participants.

  2. Top quark physics

    Energy Technology Data Exchange (ETDEWEB)

    Erbacher, Robin D.; /UC, Davis

    2005-10-01

    While the top quark was discovered in 1995 at the Fermilab Tevatron, a decade later they still have very little information about the top. As the heaviest particle yet discovered, the top quark is interesting in and of itself, but some speculate that it may play a special role in physics beyond the Standard Model. With Run 2 of the Tevatron well underway, they have the opportunity to study top quark properties with much better sensitivity, and to test whether top quarks behave as predicted by current theories. This article focuses on the basics of top quark physics at the Tevatron, highlighting only a sample of the many recent measurements, as new results are being released monthly, and constantly changing the landscape of our knowledge of top.

  3. Potential Models for Radiative Rare B Decays

    CERN Document Server

    Ahmad, S

    2002-01-01

    We compute the branching ratios for the radiative rare decays of B into K-Meson states and compare them to the experimentally determined branching ratio for inclusive decay b -> s gamma using non relativistic quark model, and form factor definitions consistent with HQET covariant trace formalism. Such calculations necessarily involve a potential model. In order to test the sensitivity of calculations to potential models we have used three different potentials, namely linear potential, screening confining potential and heavy quark potential as it stands in QCD.We find the branching ratios relative to the inclusive b ->s gamma decay to be (16.07\\pm 5.2)% for B -> K^* (892)gamma and (7.25\\pm 3.2)% for B -> K_2^* (1430)gamma for linear potential. In the case of the screening confining potential these values are (19.75\\pm 5.3)% and (4.74\\pm 1.2)% while those for the heavy quark potential are (11.18\\pm 4.6)% and (5.09\\pm 2.7)% respectively. All these values are consistent with the corresponding present CLEO experim...

  4. Light Quark Mass Effects in Bottom Quark Mass Determinations

    OpenAIRE

    Hoang, A. H.

    2001-01-01

    Recent results for charm quark mass effects in perturbative bottom quark mass determinations from $\\Upsilon$ mesons are reviewed. The connection between the behavior of light quark mass corrections and the infrared sensitivity of some bottom quark mass definitions is examined in some detail.

  5. Relativistic quantum mechanics

    CERN Document Server

    Wachter, Armin

    2010-01-01

    Which problems do arise within relativistic enhancements of the Schrödinger theory, especially if one adheres to the usual one-particle interpretation, and to what extent can these problems be overcome? And what is the physical necessity of quantum field theories? In many books, answers to these fundamental questions are given highly insufficiently by treating the relativistic quantum mechanical one-particle concept very superficially and instead introducing field quantization as soon as possible. By contrast, this monograph emphasizes relativistic quantum mechanics in the narrow sense: it extensively discusses relativistic one-particle concepts and reveals their problems and limitations, therefore motivating the necessity of quantized fields in a physically comprehensible way. The first chapters contain a detailed presentation and comparison of the Klein-Gordon and Dirac theory, always in view of the non-relativistic theory. In the third chapter, we consider relativistic scattering processes and develop the...

  6. Relativistic effects on linear and nonlinear polarizabilities studied by effective-core potential, Douglas-Kroll, and Dirac-Hartree-Fock response theory

    DEFF Research Database (Denmark)

    Norman, Patrick; Schimmelpfennig, Bernd; Ruud, Kenneth;

    2002-01-01

    A systematic investigation of a hierarchy of methods for including relativistic effects in the calculation of linear and nonlinear optical properties was carried out. The simple ECP method and the more involved spin-averaged Douglas-Kroll approximation were compared to benchmark results obtained ...

  7. Relativistic Spin Operators

    Institute of Scientific and Technical Information of China (English)

    ZHANG Peng-Fei; RUAN Tu-Nan

    2001-01-01

    A systematic theory on the appropriate spin operators for the relativistic states is developed. For a massive relativistic particle with arbitrary nonzero spin, the spin operator should be replaced with the relativistic one, which is called in this paper as moving spin. Further the concept of moving spin is discussed in the quantum field theory. A new is constructed. It is shown that, in virtue of the two operators, problems in quantum field concerned spin can be neatly settled.

  8. Relativistic Guiding Center Equations

    Energy Technology Data Exchange (ETDEWEB)

    White, R. B. [PPPL; Gobbin, M. [Euratom-ENEA Association

    2014-10-01

    In toroidal fusion devices it is relatively easy that electrons achieve relativistic velocities, so to simulate runaway electrons and other high energy phenomena a nonrelativistic guiding center formalism is not sufficient. Relativistic guiding center equations including flute mode time dependent field perturbations are derived. The same variables as used in a previous nonrelativistic guiding center code are adopted, so that a straightforward modifications of those equations can produce a relativistic version.

  9. Relativistic Linear Restoring Force

    Science.gov (United States)

    Clark, D.; Franklin, J.; Mann, N.

    2012-01-01

    We consider two different forms for a relativistic version of a linear restoring force. The pair comes from taking Hooke's law to be the force appearing on the right-hand side of the relativistic expressions: d"p"/d"t" or d"p"/d["tau"]. Either formulation recovers Hooke's law in the non-relativistic limit. In addition to these two forces, we…

  10. Quark Confinement and Force Unification

    Directory of Open Access Journals (Sweden)

    Stone R. A. Jr.

    2010-04-01

    Full Text Available String theory had to adopt a bi-scale approach in order to produce the weakness of gravity. Taking a bi-scale approach to particle physics along with a spin connection produces 1 the measured proton radius, 2 a resolution of the multiplicity of measured weak angle values 3 a correct theoretical value for the Z 0 4 a reason that h is a constant and 5 a “neutral current” source. The source of the “neutral current” provides 6 an alternate solution to quark confinement, 7 produces an effective r like potential, and 8 gives a reason for the observed but unexplained Regge trajectory like J M 2 behavior seen in quark composite particle spin families.

  11. HUNTING THE QUARK GLUON PLASMA.

    Energy Technology Data Exchange (ETDEWEB)

    LUDLAM, T.; ARONSON, S.

    2005-04-11

    The U.S. Department of Energy's Relativistic Heavy Ion Collider (RHIC) construction project was completed at BNL in 1999, with the first data-taking runs in the summer of 2000. Since then the early measurements at RHIC have yielded a wealth of data, from four independent detectors, each with its international collaboration of scientists: BRAHMS, PHENIX, PHOBOS, and STAR [1]. For the first time, collisions of heavy nuclei have been carried out at colliding-beam energies that have previously been accessible only for high-energy physics experiments with collisions of ''elementary'' particles such as protons and electrons. It is at these high energies that the predictions of quantum chromodynamics (QCD), the fundamental theory that describes the role of quarks and gluons in nuclear matter, come into play, and new phenomena are sought that may illuminate our view of the basic structure of matter on the sub-atomic scale, with important implications for the origins of matter on the cosmic scale. The RHIC experiments have recorded data from collisions of gold nuclei at the highest energies ever achieved in man-made particle accelerators. These collisions, of which hundreds of millions have now been examined, result in final states of unprecedented complexity, with thousands of produced particles radiating from the nuclear collision. All four of the RHIC experiments have moved quickly to analyze these data, and have begun to understand the phenomena that unfold from the moment of collision as these particles are produced. In order to provide benchmarks of simpler interactions against which to compare the gold-gold collisions, the experiments have gathered comparable samples of data from collisions of a very light nucleus (deuterium) with gold nuclei, as well as proton-proton collisions, all with identical beam energies and experimental apparatus. The early measurements have revealed compelling evidence for the existence of a new form of nuclear

  12. RELATIVISTIC TRANSPORT-THEORY

    NARCIS (Netherlands)

    MALFLIET, R

    1993-01-01

    We discuss the present status of relativistic transport theory. Special emphasis is put on problems of topical interest: hadronic features, thermodynamical consistent approximations and spectral properties.

  13. Search for Tetraquarks in Relativistic Heavy-Ion Collisions

    Institute of Scientific and Technical Information of China (English)

    MA Zhong-Biao; GAO Chong-Shou

    2006-01-01

    Tetraquarks can be produced in relativistic heavy-ion collision. The yield of this kind of tetraquarks can increase significantly soon as the formation of QGP after the collision. If there is no phase transition after collision, the upper bound of the production of this four-quark states can be estimated from the free hadronic gas model for nuclearmatter. The relative yield ratio of tetraquark cs(s)(s) to Ω is less than 0.0164.

  14. Memory of Quark Matter Card Game

    CERN Document Server

    Csörgő, J; Csörgő, T

    2013-01-01

    Scientists at the Relativistic Heavy Ion Collider (RHIC, BNL) recently discovered, that the hottest known form of matter is not a gas, but acts like a fluid. Furthermore, this fluid of quarks expands and flows much more perfectly than water or any other well known fluid. This aspect of the RHIC discovery can be introduced even to primary levels of physics education, noting that the usual solid to liquid to gas sequence of phase transitions now are known to be followed by a transition to a nearly perfect fluid, a liquid of quarks, at the largest temperatures made by humans. The educational games described herein were invented by middle school students, members of a Science Club in Hungary. The games were invented for their entertainment, the educational applications in teaching high energy particle and nuclear physics to laypersons are quite unexpected but most welcomed. This manuscript describes games with a deck of cards called Quark Matter cards, where each card represents an elementary particle. The games ...

  15. Searches for resonances in final states with top and bottom quarks and for vector-like quarks

    CERN Document Server

    Calvet, Samuel; The ATLAS collaboration

    2015-01-01

    New physics is often expected to be strongly coupled to the third generation quarks. Production of new bosons (W', Z', ...) or vector-like quarks at LHC would then lead to final states with bottom- and top-quarks, potentially accompanied by boosted W, Z or H bosons. This talk highlights recent ATLAS and CMS searches for such finale states using LHC Run 1 data.

  16. Covariant quark model of form factors in the heavy mass limit

    OpenAIRE

    Yaouanc, A. Le; Oliver, L; Pène, O.; Raynal, J. -C.

    1995-01-01

    We show that quark models of current matrix-elements based on the Bakamjian-Thomas construction of relativistic states with a fixed number of particles, plus the additivity assumption, are covariant in the heavy-quark limit and satisfy the full set of heavy-quark symmetry relations discovered by Isgur and Wise. We find the lower bound of $\\rho^2$ in such models to be $3/4$ for ground state mesons, independently of any parameter. Another welcome property of these models is that in the infinite...

  17. Relativistic field theories have no `sign problem' with DMRG

    CERN Document Server

    Weir, David J

    2010-01-01

    The density matrix renormalization group (DMRG) is applied to a relativistic complex scalar field at finite chemical potential. The two-point function and various bulk quantities are studied. It is seen that bulk quantities do not change with the chemical potential until it is larger than the minimum excitation energy. The technical limitations of DMRG for treating bosons in relativistic field theories are discussed. Applications to other relativistic models and to non-topological solitons are also suggested.

  18. Quark i mattoni del mondo

    CERN Document Server

    Fritzsch, Harald

    1983-01-01

    Quark rossi, verdi e blu ; quark dotati di stranezza e di incanto ; quark 'su' e 'giù' : sembra che i fisici delle particelle giochino a confondere la curiosità del profano, con queste denominazioni fantasiose. Che cosa significano ? e, soprattutto, i quark sono i costituenti davvero elementari della materia ?

  19. Baryons and Low-Density Baryonic Matter in 1+1 Dimensional Large N_c QCD with Heavy Quarks

    CERN Document Server

    Adhikari, Prabal; Jamgochian, Arec; Kumar, Nilay

    2012-01-01

    This paper studies baryons and baryonic matter in the combined large N_c and heavy quark mass limits of QCD in 1+1 dimension. In this non-relativistic limit, baryons are composed of N_c quarks that interact, at leading order in N_c, through a color Coulomb potential. Using variational techniques, very accurate calculations of single baryon masses and interaction energies of low-density baryon crystal are performed. These results are used to cross-check a general numerical approach applicable for arbitrary quark masses and baryon densities recently proposed by Bringoltz, which is based on a lattice in a finite box with periodic boundary conditions. The Bringoltz method differs from a previous approach of Salcedo, et al. in its treatment of a finite box effect - namely gauge configurations that wind around the box. One might expect these effects to be small for large enough boxes, in which the baryon density approaches zero to high accuracy at the edges. However, the effects of these windings appear to be quite...

  20. Interplay between quark-antiquark and diquark condensates in vacuum in a two-flavor Nambu-Jona-Lasinio model

    CERN Document Server

    Bang-Rong, Z

    2007-01-01

    By means of a relativistic effective potential, we have analytically researched competition between the quark-antiquark condensates $$ and the diquark condensates $$ in vacuum in ground state of a two-flavor Nambu-Jona-Lasinio (NJL) model and obtained the $G_S-H_S$ phase diagram, where $G_S$ and $H_S$ are the respective four-fermion coupling constants in scalar quark-antiquark channel and scalar color anti-triplet diquark channel. The results show that, in the chiral limit, there is only the pure $$ phase when $G_S/H_S>2/3$, and as $G_S/H_S$ decreases to $2/3>G_S/H_S\\geq 0$ one will first have a coexistence phase of the condensates $$ and $$ and then a pure $$ phase. In non-zero bare quark mass case, the critical value of $G_S/H_S$ at which the pure $$ phase will transfer to the coexistence phase of the condensates $$ and $$ will be less than 2/3. Our theoretical results, combined with present phenomenological fact that there is no diquark condensates in the vacuum of QCD, will also impose a real restriction ...

  1. Transport models for relativistic heavy-ion collisions at Relativistic Heavy Ion Collider and Large Hadron Collider

    Indian Academy of Sciences (India)

    Subrata Pal

    2015-05-01

    We review the transport models that are widely used to study the properties of the quark-gluon plasma formed in relativistic heavy-ion collisions at RHIC and LHC. We show that transport model analysis of two important and complementary observables, the anisotropic flow of bulk hadrons and suppression of hadron yields at high transverse momentum, provide exciting new information on the properties of the plasma formed.

  2. Heavy quarkonium potential from Bethe-Salpeter wave function on the lattice

    CERN Document Server

    Kawanai, Taichi

    2013-01-01

    We propose a novel method for the determination of the interquark potential together with quark "kinetic mass'' $m_Q$ from the equal-time $Q\\bar{Q}$ Bethe-Salpeter (BS) amplitude in lattice QCD. Our approach allows us to calculate spin-dependent $Q\\bar{Q}$ potentials, e.g. the spin-spin potential, as well. In order to investigate several systematic uncertainties on such $Q\\bar{Q}$ potentials, we carry out lattice QCD simulations using quenched gauge configurations generated with the single plaquette gauge action with three different lattice spacings, $a \\approx$ 0.093, 0.068 and 0.047 fm, and two different physical volumes, $L \\approx$ 2.2 and 3.0 fm. For heavy quarks, we employ the relativistic heavy quark (RHQ) action which can control large discretization errors introduced by large quark mass $m_Q$. The spin-independent central $Q\\bar{Q}$ potential for the charmonium system yields the "Coulomb plus linear'' behavior with good scaling and small volume dependence. We explore the quark mass dependence over th...

  3. Top quark measurements at ATLAS

    CERN Document Server

    Grancagnolo, Sergio; The ATLAS collaboration

    2017-01-01

    The top quark is the heaviest known fundamental particle. As it is the only quark that decays before it hadronizes, this gives us the unique opportunity to probe the properties of bare quarks at the Large Hadron Collider. This talk will present highlights of a few recent precision measurements by the ATLAS Collaboration of the top quark using 13 TeV and 8 TeV collision data: top-quark pair and single top production cross sections including differential distributions will be presented alongside top quark properties measurements. These measurements, including results using boosted top quarks, probe our understanding of top quark production in the TeV regime. Measurements of the top quark mass and searches for rare top quark decays are also presented.

  4. Quark Mass Correction to Chiral Separation Effect and Pseudoscalar Condensate

    CERN Document Server

    Guo, Er-dong

    2016-01-01

    We derived an analytic structure of the quark mass correction to chiral separation effect (CSE) in small mass regime. We confirmed this structure by a D3/D7 holographic model study in a finite density, finite magnetic field background. The quark mass correction to CSE can be related to correlators of pseudo-scalar condensate, quark number density and quark condensate in static limit. We found scaling relations of these correlators with spatial momentum in the small momentum regime. They characterize medium responses to electric field, inhomogeneous quark mass and chiral shift. Beyond the small momentum regime, we found existence of normalizable mode, which possibly leads to formation of spiral phase. The normalizable mode exists beyond a critical magnetic field, whose magnitude decreases with quark chemical potential.

  5. Conceptual design of the Relativistic Heavy Ion Collider: RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Samios, Nicholas P.

    1986-05-01

    The complete Relativistic Heavy Ion Collider (RHIC) facility will be a complex set of accelerators and beam transfer equipment connecting them. A significant portion of the total facility either exists or is under construction. Two existing Tandem Van de Graaff accelerators will serve for the initial ion acceleration. Ions with a charge of -1 would be accelerated from ground to +15 MV potential, pass through a stripping foil, and accelerate back to ground potential, where they would pass through a second stripping foil. From there the ions will traverse a long transfer line to the AGS tunnel and be injected into the Booster accelerator. The Booster accelerates the ion bunch, and then the ions pass through one more stripper and then enter the Alternating Gradient Synchrotron (AGS), where they are accelerated to the top AGS energy and transferred to the collider. Bending and focusing of ion beams is to be achieved by superconducting magnets. The physics goals behind the RHIC are enumerated, particularly as regards the study of quark matter and the characteristics of high energy nucleus-nucleus collisions. The design of the collider and all its components is described, including the injector, the lattice, magnet system, cryogenic and vacuum systems, beam transfer, injection, and dump, rf system, and beam instrumentation and control system. Also given are cost estimates, construction schedules, and a management plan. (LEW)

  6. Strange-quark-matter stars

    Energy Technology Data Exchange (ETDEWEB)

    Glendenning, N.K.

    1989-11-01

    We investigate the implications of rapid rotation corresponding to the frequency of the new pulsar reported in the supernovae remnant SN1987A. It places very stringent conditions on the equation of state if the star is assumed to be bound by gravity alone. We find that the central energy density of the star must be greater than 13 times that of nuclear density to be stable against the most optimistic estimate of general relativistic instabilities. This is too high for the matter to consist of individual hadrons. We conclude that it is implausible that the newly discovered pulsar, if its half-millisecond signals are attributable to rotation, is a neutron star. We show that it can be a strange quark star, and that the entire family of strange stars can sustain high rotation if strange matter is stable at an energy density exceeding about 5.4 times that of nuclear matter. We discuss the conversion of a neutron star to strange star, the possible existence of a crust of heavy ions held in suspension by centrifugal and electric forces, the cooling and other features. 34 refs., 10 figs., 1 tab.

  7. Spectra of heavy-light mesons in a relativistic model

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jing-Bin; Lue, Cai-Dian [Institute of High Energy Physics, Beijing (China)

    2017-05-15

    The spectra and wave functions of heavy-light mesons are calculated within a relativistic quark model which is based on a heavy-quark expansion of the instantaneous Bethe-Salpeter equation by applying the Foldy-Wouthuysen transformation. The kernel we choose is the standard combination of linear scalar and Coulombic vector. The effective Hamiltonian for heavy-light quark-antiquark system is calculated up to order 1/m{sub Q}{sup 2}. Our results are in good agreement with available experimental data except for the anomalous D{sub s0}{sup *}(2317) and D{sub s1}(2460) states. The newly observed heavy-light meson states can be accommodated successfully in the relativistic quark model with their assignments presented. The D{sub sJ}{sup *}(2860) can be interpreted as the vertical stroke 1{sup 3/2}D{sub 1} right angle and vertical stroke 1{sup 5/2}D{sub 3} right angle states being members of the 1D family with J{sup P} = 1{sup -} and 3{sup -}. (orig.)

  8. Better Hadronic Top Quark Polarimetry

    CERN Document Server

    Tweedie, Brock

    2014-01-01

    Observables sensitive to top quark polarization are important for characterizing or even discovering new physics. The most powerful spin analyzer in top decay is the down-type fermion from the W, which in the case of leptonic decay allows for very clean measurements. However, in many applications it is useful to measure the polarization of hadronically decaying top quarks. Usually it is assumed that at most 50% of the spin analyzing power can be recovered in this case. This paper introduces a simple and truly optimal hadronic spin analyzer, with a power of 64% at leading-order. The improvement is demonstrated to be robust in a handful of simulated measurements, including the spins and spin correlations of boosted top quarks from multi-TeV top-antitop resonances, the spins of semi-boosted tops from chiral stop decays, and the potentially CP-violating spin correlations induced in continuum top pairs by color dipole operators. For the boosted studies, we explore jet substructure techniques that exhibit improved ...

  9. Relativistic quantum mechanics; Mecanique quantique relativiste

    Energy Technology Data Exchange (ETDEWEB)

    Ollitrault, J.Y. [CEA Saclay, 91 - Gif-sur-Yvette (France). Service de Physique Theorique]|[Universite Pierre et Marie Curie, 75 - Paris (France)

    1998-12-01

    These notes form an introduction to relativistic quantum mechanics. The mathematical formalism has been reduced to the minimum in order to enable the reader to calculate elementary physical processes. The second quantification and the field theory are the logical followings of this course. The reader is expected to know analytical mechanics (Lagrangian and Hamiltonian), non-relativistic quantum mechanics and some basis of restricted relativity. The purpose of the first 3 chapters is to define the quantum mechanics framework for already known notions about rotation transformations, wave propagation and restricted theory of relativity. The next 3 chapters are devoted to the application of relativistic quantum mechanics to a particle with 0,1/5 and 1 spin value. The last chapter deals with the processes involving several particles, these processes require field theory framework to be thoroughly described. (A.C.) 2 refs.

  10. Towards relativistic quantum geometry

    Energy Technology Data Exchange (ETDEWEB)

    Ridao, Luis Santiago [Instituto de Investigaciones Físicas de Mar del Plata (IFIMAR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mar del Plata (Argentina); Bellini, Mauricio, E-mail: mbellini@mdp.edu.ar [Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Funes 3350, C.P. 7600, Mar del Plata (Argentina); Instituto de Investigaciones Físicas de Mar del Plata (IFIMAR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mar del Plata (Argentina)

    2015-12-17

    We obtain a gauge-invariant relativistic quantum geometry by using a Weylian-like manifold with a geometric scalar field which provides a gauge-invariant relativistic quantum theory in which the algebra of the Weylian-like field depends on observers. An example for a Reissner–Nordström black-hole is studied.

  11. Top quark physics: Overview

    Energy Technology Data Exchange (ETDEWEB)

    Parke, S.

    1998-01-01

    In this presentation I will primarily focus on top quark physics but I will include a discussion of the W-boson mass and the possibility of discovering a light Higgs boson via associated production at the Tevatron.

  12. Hermitian quark matrices

    Indian Academy of Sciences (India)

    Narendra Singh

    2003-01-01

    Assuming a relation between the quark mass matrices of the two sectors a unique solution can be obtained for the CKM flavor mixing matrix. A numerical example is worked out which is in excellent agreement with experimental data.

  13. Do Quarks Propagate?

    DEFF Research Database (Denmark)

    Sørensen, Paul Haase; Taylor, John C.

    1984-01-01

    Processes with coloured particles in the initial state are generally infrared divergent. We investigate the effect of this on processes with colourless particles in the initial state, when the amplitude is near an intermediate quark pole. The result is a characteristic logarithmic depedence...... on the 'binding energy'(even though spectator interactions are taken into account), and the result is gauge-invariant. Summed to all orders the logarithms could perhaps suppress the quark pole....

  14. Relativistic diffusion equation from stochastic quantization

    CERN Document Server

    Kazinski, P O

    2007-01-01

    The new scheme of stochastic quantization is proposed. This quantization procedure is equivalent to the deformation of an algebra of observables in the manner of deformation quantization with an imaginary deformation parameter (the Planck constant). We apply this method to the models of nonrelativistic and relativistic particles interacting with an electromagnetic field. In the first case we establish the equivalence of such a quantization to the Fokker-Planck equation with a special force. The application of the proposed quantization procedure to the model of a relativistic particle results in a relativistic generalization of the Fokker-Planck equation in the coordinate space, which in the absence of the electromagnetic field reduces to the relativistic diffusion (heat) equation. The stationary probability distribution functions for a stochastically quantized particle diffusing under a barrier and a particle in the potential of a harmonic oscillator are derived.

  15. From neutron stars to quark stars in mimetic gravity

    CERN Document Server

    Astashenok, A V

    2015-01-01

    Realistic models of neutron and quark stars in the framework of mimetic gravity with Lagrange multiplier constraint are presented. We discuss the effect of mimetic scalar aiming to describe dark matter on mass-radius relation and the moment of inertia for slowly rotating relativistic stars. The mass-radius relation and moment of inertia depend on the value of mimetic scalar in the center of star. This fact leads to the ambiguity in the mass-radius relation for a given equation of state. {Such ambiguity allows to explain some observational facts better than in standard General Relativity}. The case of two mimetic potentials namely $V(\\phi)\\sim A\\phi^{-2}$ and $V(\\phi)\\sim Ae^{B\\phi^{2}}$ is considered in detail. The relative deviation of maximal moment of inertia is approximately twice larger than the relative deviation of maximal stellar mass. We also briefly discuss the mimetic $f(R)$ gravity. In the case of $f(R)=R+aR^2$ mimetic gravity it is expected that increase of maximal mass and maximal moment of iner...

  16. From neutron stars to quark stars in mimetic gravity

    Science.gov (United States)

    Astashenok, Artyom V.; Odintsov, Sergei D.

    2016-09-01

    Realistic models of neutron and quark stars in the framework of mimetic gravity with a Lagrange multiplier constraint are presented. We discuss the effect of a mimetic scalar aiming to describe dark matter on the mass-radius relation and the moment of inertia for slowly rotating relativistic stars. The mass-radius relation and moment of inertia depend on the value of the mimetic scalar in the center of the star. This fact leads to the ambiguity in the mass-radius relation for a given equation of state. Such ambiguity allows us to explain some observational facts better than in standard general relativity. The case of mimetic potential V (ϕ )˜A eC ϕ2 is considered in detail. The relative deviation of the maximal moment of inertia is approximately twice as large as the relative deviation of the maximal stellar mass. We also briefly discuss the mimetic f (R ) gravity. In the case of f (R )=R +a R2 mimetic gravity, it is expected that the increase of maximal mass and maximal moment of inertia due to the mimetic scalar becomes much stronger with bigger parameter a . The influence of the scalar field in mimetic gravity can lead to the possible existence of extreme neutron stars with large masses.

  17. Estimating transport coefficients in hot and dense quark matter

    CERN Document Server

    Deb, Paramita; Mishra, Hiranmaya

    2016-01-01

    We compute the transport coefficients-- namely, coefficients of shear and bulk viscosity as well as thermal conductivity for hot and dense quark matter. The calculations are performed within the Nambu Jona Lasinio (NJL) model. The estimation of the transport coefficients is made using a quasi particle approach of solving Boltzmann kinetic equation within the relaxation time approximation. The transition rates are calculated in a manifestly covariant manner to estimate the thermal averaged cross sections for quark quark as well as quark anti-quark scattering. The calculations are performed for finite chemical potential also. Within the parameters of the model, the ratio of shear viscosity to entropy density has a minimum at the Mott transition temperature. At vanishing chemical potential, the ratio of bulk viscosity to entropy density, on the other hand, decrease with temperature with a sharp decrease near the critical temperature and vanishes beyond it. At finite chemical potential, however, it increases slow...

  18. Effective field theories for baryons with two- and three-heavy quarks

    CERN Document Server

    Vairo, Antonio

    2010-01-01

    Baryons made of two or three heavy quarks can be described in the modern language of non-relativistic effective field theories. These, besides allowing a rigorous treatment of the systems, provide new insight in the nature of the three-body interaction in QCD.

  19. Relativistic and Non-relativistic Equations of Motion

    CERN Document Server

    Mangiarotti, L

    1998-01-01

    It is shown that any second order dynamic equation on a configuration space $X$ of non-relativistic time-dependent mechanics can be seen as a geodesic equation with respect to some (non-linear) connection on the tangent bundle $TX\\to X$ of relativistic velocities. Using this fact, the relationship between relativistic and non-relativistic equations of motion is studied.

  20. Explicit formulae for the two way time-transfer in the T2L2 experiment including the J2 contribution to the Earth potential in a relativistic framework

    CERN Document Server

    Minazzoli, Olivier; Samain, Etienne; Exertier, Pierre; Vrancken, Patrick; Guillemot, Philippe

    2010-01-01

    The topic of this paper is to study the two way time-transfer problem between a ground based station and a low orbit Earth's satellite, in the aim of an application to the T2L2 experiment. The sudy is driven in a fully relativistic framework. Because of the rapid increase in clock's precision/measurements, the first term beyond the Earth's potential monopolar term is explicitly taken into account. Explicit formulae, for both the distance and offset problems (definitions in the text) are proposed for the relevant applications.