Quantum regime of a free-electron laser: relativistic approach
Kling, Peter; Sauerbrey, Roland; Preiss, Paul; Giese, Enno; Endrich, Rainer; Schleich, Wolfgang P.
2017-01-01
In the quantum regime of the free-electron laser, the dynamics of the electrons is not governed by continuous trajectories but by discrete jumps in momentum. In this article, we rederive the two crucial conditions to enter this quantum regime: (1) a large quantum mechanical recoil of the electron caused by the scattering with the laser and the wiggler field and (2) a small energy spread of the electron beam. In contrast to our recent approach based on nonrelativistic quantum mechanics in a co-moving frame of reference, we now pursue a model in the laboratory frame employing relativistic quantum electrodynamics.
Relativistic quantum revivals.
Strange, P
2010-03-26
Quantum revivals are now a well-known phenomena within nonrelativistic quantum theory. In this Letter we display the effects of relativity on revivals and quantum carpets. It is generally believed that revivals do not occur within a relativistic regime. Here we show that while this is generally true, it is possible, in principle, to set up wave packets with specific mathematical properties that do exhibit exact revivals within a fully relativistic theory.
Towards relativistic quantum geometry
Ridao, Luis Santiago [Instituto de Investigaciones Físicas de Mar del Plata (IFIMAR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mar del Plata (Argentina); Bellini, Mauricio, E-mail: mbellini@mdp.edu.ar [Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Funes 3350, C.P. 7600, Mar del Plata (Argentina); Instituto de Investigaciones Físicas de Mar del Plata (IFIMAR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mar del Plata (Argentina)
2015-12-17
We obtain a gauge-invariant relativistic quantum geometry by using a Weylian-like manifold with a geometric scalar field which provides a gauge-invariant relativistic quantum theory in which the algebra of the Weylian-like field depends on observers. An example for a Reissner–Nordström black-hole is studied.
Relativistic quantum mechanics
Wachter, Armin
2010-01-01
Which problems do arise within relativistic enhancements of the Schrödinger theory, especially if one adheres to the usual one-particle interpretation, and to what extent can these problems be overcome? And what is the physical necessity of quantum field theories? In many books, answers to these fundamental questions are given highly insufficiently by treating the relativistic quantum mechanical one-particle concept very superficially and instead introducing field quantization as soon as possible. By contrast, this monograph emphasizes relativistic quantum mechanics in the narrow sense: it extensively discusses relativistic one-particle concepts and reveals their problems and limitations, therefore motivating the necessity of quantized fields in a physically comprehensible way. The first chapters contain a detailed presentation and comparison of the Klein-Gordon and Dirac theory, always in view of the non-relativistic theory. In the third chapter, we consider relativistic scattering processes and develop the...
Relativistic quantum chemistry on quantum computers
Veis, L.; Visnak, J.; Fleig, T.
2012-01-01
The past few years have witnessed a remarkable interest in the application of quantum computing for solving problems in quantum chemistry more efficiently than classical computers allow. Very recently, proof-of-principle experimental realizations have been reported. However, so far only...... the nonrelativistic regime (i.e., the Schrodinger equation) has been explored, while it is well known that relativistic effects can be very important in chemistry. We present a quantum algorithm for relativistic computations of molecular energies. We show how to efficiently solve the eigenproblem of the Dirac......-Coulomb Hamiltonian on a quantum computer and demonstrate the functionality of the proposed procedure by numerical simulations of computations of the spin-orbit splitting in the SbH molecule. Finally, we propose quantum circuits with three qubits and nine or ten controlled-NOT (CNOT) gates, which implement a proof...
Relativistic Quantum Communication
Hosler, Dominic
2013-01-01
In this Ph.D. thesis, I investigate the communication abilities of non-inertial observers and the precision to which they can measure parametrized states. I introduce relativistic quantum field theory with field quantisation, and the definition and transformations of mode functions in Minkowski, Schwarzschild and Rindler spaces. I introduce information theory by discussing the nature of information, defining the entropic information measures, and highlighting the differences between classical and quantum information. I review the field of relativistic quantum information. We investigate the communication abilities of an inertial observer to a relativistic observer hovering above a Schwarzschild black hole, using the Rindler approximation. We compare both classical communication and quantum entanglement generation of the state merging protocol, for both the single and dual rail encodings. We find that while classical communication remains finite right up to the horizon, the quantum entanglement generation tend...
Relativistic quantum mechanics
Horwitz, Lawrence P
2015-01-01
This book describes a relativistic quantum theory developed by the author starting from the E.C.G. Stueckelberg approach proposed in the early 40s. In this framework a universal invariant evolution parameter (corresponding to the time originally postulated by Newton) is introduced to describe dynamical evolution. This theory is able to provide solutions for some of the fundamental problems encountered in early attempts to construct a relativistic quantum theory. A relativistically covariant construction is given for which particle spins and angular momenta can be combined through the usual rotation group Clebsch-Gordan coefficients. Solutions are defined for both the classical and quantum two body bound state and scattering problems. The recently developed quantum Lax-Phillips theory of semigroup evolution of resonant states is described. The experiment of Lindner and coworkers on interference in time is discussed showing how the property of coherence in time provides a simple understanding of the results. Th...
Handbook of relativistic quantum chemistry
Liu, Wenjian (ed.) [Peking Univ., Beijing (China). Center for Computational Science and Engineering
2017-03-01
This handbook focuses on the foundations of relativistic quantum mechanics and addresses a number of fundamental issues never covered before in a book. For instance: How can many-body theory be combined with quantum electrodynamics? How can quantum electrodynamics be interfaced with relativistic quantum chemistry? What is the most appropriate relativistic many-electron Hamiltonian? How can we achieve relativistic explicit correlation? How can we formulate relativistic properties? - just to name a few. Since relativistic quantum chemistry is an integral component of computational chemistry, this handbook also supplements the ''Handbook of Computational Chemistry''. Generally speaking, it aims to establish the 'big picture' of relativistic molecular quantum mechanics as the union of quantum electrodynamics and relativistic quantum chemistry. Accordingly, it provides an accessible introduction for readers new to the field, presents advanced methodologies for experts, and discusses possible future perspectives, helping readers understand when/how to apply/develop the methodologies.
Relativistic quantum information
Mann, R. B.; Ralph, T. C.
2012-11-01
Over the past few years, a new field of high research intensity has emerged that blends together concepts from gravitational physics and quantum computing. Known as relativistic quantum information, or RQI, the field aims to understand the relationship between special and general relativity and quantum information. Since the original discoveries of Hawking radiation and the Unruh effect, it has been known that incorporating the concepts of quantum theory into relativistic settings can produce new and surprising effects. However it is only in recent years that it has become appreciated that the basic concepts involved in quantum information science undergo significant revision in relativistic settings, and that new phenomena arise when quantum entanglement is combined with relativity. A number of examples illustrate that point. Quantum teleportation fidelity is affected between observers in uniform relative acceleration. Entanglement is an observer-dependent property that is degraded from the perspective of accelerated observers moving in flat spacetime. Entanglement can also be extracted from the vacuum of relativistic quantum field theories, and used to distinguish peculiar motion from cosmological expansion. The new quantum information-theoretic framework of quantum channels in terms of completely positive maps and operator algebras now provides powerful tools for studying matters of causality and information flow in quantum field theory in curved spacetimes. This focus issue provides a sample of the state of the art in research in RQI. Some of the articles in this issue review the subject while others provide interesting new results that will stimulate further research. What makes the subject all the more exciting is that it is beginning to enter the stage at which actual experiments can be contemplated, and some of the articles appearing in this issue discuss some of these exciting new developments. The subject of RQI pulls together concepts and ideas from
Relativistic Quantum Noninvasive Measurements
Bednorz, Adam
2014-01-01
Quantum weak, noninvasive measurements are defined in the framework of relativity. Invariance with respect to reference frame transformations of the results in different models is discussed. Surprisingly, the bare results of noninvasive measurements are invariant for certain class of models, but not the detection error. Consequently, any stationary quantum realism based on noninvasive measurements will break, at least spontaneously, relativistic invariance and correspondence principle at zero temperature.
Relativistic quantum mechanics; Mecanique quantique relativiste
Ollitrault, J.Y. [CEA Saclay, 91 - Gif-sur-Yvette (France). Service de Physique Theorique]|[Universite Pierre et Marie Curie, 75 - Paris (France)
1998-12-01
These notes form an introduction to relativistic quantum mechanics. The mathematical formalism has been reduced to the minimum in order to enable the reader to calculate elementary physical processes. The second quantification and the field theory are the logical followings of this course. The reader is expected to know analytical mechanics (Lagrangian and Hamiltonian), non-relativistic quantum mechanics and some basis of restricted relativity. The purpose of the first 3 chapters is to define the quantum mechanics framework for already known notions about rotation transformations, wave propagation and restricted theory of relativity. The next 3 chapters are devoted to the application of relativistic quantum mechanics to a particle with 0,1/5 and 1 spin value. The last chapter deals with the processes involving several particles, these processes require field theory framework to be thoroughly described. (A.C.) 2 refs.
Lock, Maximilian P E
2016-01-01
The conflict between quantum theory and the theory of relativity is exemplified in their treatment of time. We examine the ways in which their conceptions differ, and describe a semiclassical clock model combining elements of both theories. The results obtained with this clock model in flat spacetime are reviewed, and the problem of generalizing the model to curved spacetime is discussed, before briefly describing an experimental setup which could be used to test of the model. Taking an operationalist view, where time is that which is measured by a clock, we discuss the conclusions that can be drawn from these results, and what clues they contain for a full quantum relativistic theory of time.
Relativistic quantum metrology: exploiting relativity to improve quantum measurement technologies.
Ahmadi, Mehdi; Bruschi, David Edward; Sabín, Carlos; Adesso, Gerardo; Fuentes, Ivette
2014-05-22
We present a framework for relativistic quantum metrology that is useful for both Earth-based and space-based technologies. Quantum metrology has been so far successfully applied to design precision instruments such as clocks and sensors which outperform classical devices by exploiting quantum properties. There are advanced plans to implement these and other quantum technologies in space, for instance Space-QUEST and Space Optical Clock projects intend to implement quantum communications and quantum clocks at regimes where relativity starts to kick in. However, typical setups do not take into account the effects of relativity on quantum properties. To include and exploit these effects, we introduce techniques for the application of metrology to quantum field theory. Quantum field theory properly incorporates quantum theory and relativity, in particular, at regimes where space-based experiments take place. This framework allows for high precision estimation of parameters that appear in quantum field theory including proper times and accelerations. Indeed, the techniques can be applied to develop a novel generation of relativistic quantum technologies for gravimeters, clocks and sensors. As an example, we present a high precision device which in principle improves the state-of-the-art in quantum accelerometers by exploiting relativistic effects.
Relativistic Quantum Metrology: Exploiting relativity to improve quantum measurement technologies
Ahmadi, Mehdi; Friis, Nicolai; Sabín, Carlos; Adesso, Gerardo; Fuentes, Ivette
2013-01-01
We present a framework for relativistic quantum metrology that is useful for both Earth-based and space-based technologies. Quantum metrology has been so far successfully applied to design precision instruments such as clocks and sensors which outperform classical devices by exploiting quantum properties. There are advanced plans to implement these and other quantum technologies in space, for instance Space-QUEST and Space Optical Clock projects intend to implement quantum communications and quantum clocks at regimes where relativity starts to kick in. However, typical setups do not take into account the effects of relativity on quantum properties. To include and exploit these effects, we introduce techniques for the application of metrology to quantum field theory (QFT). QFT properly incorporates quantum theory and relativity, in particular, at regimes where space-based experiments take place. This framework allows for high precision estimation of parameters that appear in QFT including proper times and acce...
Numerical Relativistic Quantum Optics
2013-11-08
µm and a = 1. The condition for an atomic spectrum to be non-relativistic is Z α−1 ≈ 137, as follows from elementary Dirac theory. One concludes that...peculiar result that B0 = 1 TG is a weak field. At present, such fields are observed only in connection with astrophysical phenomena [14]. The highest...pulsars. The Astrophysical Journal, 541:367–373, Sep 2000. [15] M. Tatarakis, I. Watts, F.N. Beg, E.L. Clark, A.E. Dangor, A. Gopal, M.G. Haines, P.A
Non-relativistic Quantum Mechanics versus Quantum Field Theories
Pineda, Antonio
2007-01-01
We briefly review the derivation of a non-relativistic quantum mechanics description of a weakly bound non-relativistic system from the underlying quantum field theory. We highlight the main techniques used.
Rehman, M. A.; Qureshi, M. N. S. [Department of Physics, GC University, Kachery Road, Lahore 54000 (Pakistan); Shah, H. A. [Department of Physics, Forman Christian College, Ferozepur Road, Lahore 54600 (Pakistan); Masood, W. [COMSATS, Institute of Information Technology, Park Road, Chak Shehzad, Islamabad 44000 (Pakistan); National Centre for Physics (NCP) Shahdra Valley Road, Islamabad (Pakistan)
2015-10-15
Nonlinear circularly polarized Alfvén waves are studied in magnetized nonrelativistic, relativistic, and ultrarelativistic degenerate Fermi plasmas. Using the quantum hydrodynamic model, Zakharov equations are derived and the Sagdeev potential approach is used to investigate the properties of the electromagnetic solitary structures. It is seen that the amplitude increases with the increase of electron density in the relativistic and ultrarelativistic cases but decreases in the nonrelativistic case. Both right and left handed waves are considered, and it is seen that supersonic, subsonic, and super- and sub-Alfvénic solitary structures are obtained for different polarizations and under different relativistic regimes.
Point form relativistic quantum mechanics and relativistic SU(6)
Klink, W. H.
1993-01-01
The point form is used as a framework for formulating a relativistic quantum mechanics, with the mass operator carrying the interactions of underlying constituents. A symplectic Lie algebra of mass operators is introduced from which a relativistic harmonic oscillator mass operator is formed. Mass splittings within the degenerate harmonic oscillator levels arise from relativistically invariant spin-spin, spin-orbit, and tensor mass operators. Internal flavor (and color) symmetries are introduced which make it possible to formulate a relativistic SU(6) model of baryons (and mesons). Careful attention is paid to the permutation symmetry properties of the hadronic wave functions, which are written as polynomials in Bargmann spaces.
Star Products for Relativistic Quantum Mechanics
Henselder, P.
2007-01-01
The star product formalism has proved to be an alternative formulation for nonrelativistic quantum mechanics. We want introduce here a covariant star product in order to extend the star product formalism to relativistic quantum mechanics in the proper time formulation.
Critique of Conventional Relativistic Quantum Mechanics.
Fanchi, John R.
1981-01-01
Following an historical sketch of the development of relativistic quantum mechanics, a discussion of the still unresolved difficulties of the currently accepted theories is presented. This review is designed to complement and update the discussion of relativistic quantum mechanics presented in many texts used in college physics courses. (Author/SK)
Quantum information processing and relativistic quantum fields
Benincasa, Dionigi M. T.; Borsten, Leron; Buck, Michel; Dowker, Fay
2014-04-01
It is shown that an ideal measurement of a one-particle wave packet state of a relativistic quantum field in Minkowski spacetime enables superluminal signalling. The result holds for a measurement that takes place over an intervention region in spacetime whose extent in time in some frame is longer than the light-crossing time of the packet in that frame. Moreover, these results are shown to apply not only to ideal measurements but also to unitary transformations that rotate two orthogonal one-particle states into each other. In light of these observations, possible restrictions on the allowed types of intervention are considered. A more physical approach to such questions is to construct explicit models of the interventions as interactions between the field and other quantum systems such as detectors. The prototypical Unruh-DeWitt detector couples to the field operator itself and so most likely respects relativistic causality. On the other hand, detector models which couple to a finite set of frequencies of field modes are shown to lead to superluminal signalling. Such detectors do, however, provide successful phenomenological models of atom-qubits interacting with quantum fields in a cavity but are valid only on time scales many orders of magnitude larger than the light-crossing time of the cavity.
Effective photon mass and exact translating quantum relativistic structures
Haas, Fernando; Manrique, Marcos Antonio Albarracin
2016-04-01
Using a variation of the celebrated Volkov solution, the Klein-Gordon equation for a charged particle is reduced to a set of ordinary differential equations, exactly solvable in specific cases. The new quantum relativistic structures can reveal a localization in the radial direction perpendicular to the wave packet propagation, thanks to a non-vanishing scalar potential. The external electromagnetic field, the particle current density, and the charge density are determined. The stability analysis of the solutions is performed by means of numerical simulations. The results are useful for the description of a charged quantum test particle in the relativistic regime, provided spin effects are not decisive.
Quantum Information Processing and Relativistic Quantum Fields
Benincasa, Dionigi M T; Buck, Michel; Dowker, Fay
2014-01-01
It is shown that an ideal measurement of a one-particle wave packet state of a relativistic quantum field in Minkowski spacetime enables superluminal signalling. The result holds for a measurement that takes place over an intervention region in spacetime whose extent in time in some frame is longer than the light-crossing time of the packet in that frame. Moreover, these results are shown to apply not only to ideal measurements but also to unitary transformations that rotate two orthogonal one-particle states into each other. In light of these observations, possible restrictions on the allowed types of intervention are considered. A more physical approach to such questions is to construct explicit models of the interventions as interactions between the field and other quantum systems such as detectors. The prototypical Unruh-DeWitt detector couples to the field operator itself and so most likely respects relativistic causality. On the other hand, detector models which couple to a finite set of frequencies of ...
Lattice Boltzmann equation for relativistic quantum mechanics.
Succi, Sauro
2002-03-15
Relativistic versions of the quantum lattice Boltzmann equation are discussed. It is shown that the inclusion of nonlinear interactions requires the standard collision operator to be replaced by a pair of dynamic fields coupling to the relativistic wave function in a way which can be described by a multicomponent complex lattice Boltzmann equation.
Relativistic neoclassical radial fluxes in the 1/nu regime
Marushchenko, I; Marushchenko, N B
2013-01-01
The radial neoclassical fluxes of electrons in the 1/nu-regime are calculated with relativistic effects taken into account and compared with those in the non-relativistic approach. The treatment is based on the relativistic drift-kinetic equation with the thermodynamic equilibrium given by the relativistic J\\"uttner-Maxwellian distribution function. It is found that for the range of fusion temperatures, T_e < 100 keV, the relativistic effects produce a reduction of the radial fluxes which does not exceed 10%. This rather small effect is a consequence of the non-monotonic temperature dependence of the relativistic correction caused by two counteracting factors: a reduction of the contribution from the bulk and a significant broadening with the temperature growth of the energy range of electrons contributing to transport. The relativistic formulation for the radial fluxes given in this paper is expressed in terms a set of relativistic thermodynamic forces which is not identical to the canonical set since it ...
Tensor Fields in Relativistic Quantum Mechanics
Dvoeglazov, Valeriy V
2015-01-01
We re-examine the theory of antisymmetric tensor fields and 4-vector potentials. We discuss corresponding massless limits. We analize the quantum field theory taking into account the mass dimensions of the notoph and the photon. Next, we deduced the gravitational field equations from relativistic quantum mechanics.
A Structurally Relativistic Quantum Theory. Part 1: Foundations
Grgin, Emile
2012-01-01
The apparent impossibility of extending non-relativistic quantum mechanics to a relativistic quantum theory is shown to be due to the insufficient structural richness of the field of complex numbers over which quantum mechanics is built. A new number system with the properties needed to support an inherently relativistic quantum theory is brought to light and investigated to a point sufficient for applications.
Symmetry and Covariance of Non-relativistic Quantum Mechanics
Omote, Minoru; kamefuchi, Susumu
2000-01-01
On the basis of a 5-dimensional form of space-time transformations non-relativistic quantum mechanics is reformulated in a manifestly covariant manner. The resulting covariance resembles that of the conventional relativistic quantum mechanics.
Relativistic quantum level-spacing statistics in chaotic graphene billiards.
Huang, Liang; Lai, Ying-Cheng; Grebogi, Celso
2010-05-01
An outstanding problem in quantum nonlinear dynamics concerns about the energy-level statistics in experimentally accessible relativistic quantum systems. We demonstrate, using chaotic graphene confinements where electronic motions are governed by the Dirac equation in the low-energy regime, that the level-spacing statistics are those given by Gaussian orthogonal ensemble (GOE) random matrices. Weak magnetic field can change the level-spacing statistics to those of Gaussian unitary ensemble for electrons in graphene. For sufficiently strong magnetic field, the GOE statistics are restored due to the appearance of Landau levels.
Towards universal quantum computation through relativistic motion
Bruschi, David Edward; Kok, Pieter; Johansson, Göran; Delsing, Per; Fuentes, Ivette
2013-01-01
We show how to use relativistic motion to generate continuous variable Gaussian cluster states within cavity modes. Our results can be demonstrated experimentally using superconducting circuits where tunable boundary conditions correspond to mirrors moving with velocities close to the speed of light. In particular, we propose the generation of a quadripartite square cluster state as a first example that can be readily implemented in the laboratory. Since cluster states are universal resources for universal one-way quantum computation, our results pave the way for relativistic quantum computation schemes.
A Quantum Relativistic Prisoner's Dilemma Cellular Automaton
Alonso-Sanz, Ramón; Carvalho, Márcio; Situ, Haozhen
2016-10-01
The effect of variable entangling on the dynamics of a spatial quantum relativistic formulation of the iterated prisoner's dilemma game is studied in this work. The game is played in the cellular automata manner, i.e., with local and synchronous interaction. The game is assessed in fair and unfair contests.
Teleportation of the Relativistic Quantum Field
Laiho, R; Nazin, S S
2000-01-01
The process of teleportation of a completely unknown one-particle state of a free relativistic quantum field is considered. In contrast to the non-relativistic quantum mechanics, the teleportation of an unknown state of the quantum field cannot be in principle described in terms of a measurement in a tensor product of two Hilbert spaces to which the unknown state and the state of the EPR-pair belong. The reason is of the existence of a cyclic (vacuum) state common to both the unknown state and the EPR-pair. Due to the common vacuum vector and the microcausality principle (commutation relations for the field operators), the teleportation amplitude contains inevitably contributions which are irrelevant to the teleportation process. Hence in the relativistic theory the teleportation in the sense it is understood in the non-relativistic quantum mechanics proves to be impossible because of the impossibility of the realization of the appropriate measurement as a tensor product of the measurements related to the ind...
From quantum to classical instability in relativistic stars
Landulfo, André G S; Matsas, George E A; Vanzella, Daniel A T
2014-01-01
It has been shown that gravitational fields produced by realistic classical-matter distributions can force quantum vacuum fluctuations of some nonminimally coupled free scalar fields to undergo a phase of exponential growth. The consequences of this unstable phase to the background spacetime have not been addressed so far due to known difficulties concerning backreaction in semiclassical gravity. It seems reasonable to believe, however, that the quantum fluctuations will "classicalize" when they become large enough, after which backreaction can be treated in the general-relativistic context. Here we investigate the emergence of a classical regime out of the quantum field evolution during the unstable phase. By studying the appearance of classical correlations and loss of quantum coherence, we show that by the time backreaction becomes important the system already behaves classically. Consequently, the gravity-induced vacuum instability will naturally lead to initial conditions for the eventual classical descr...
Optimization of a relativistic quantum mechanical engine
Peña, Francisco J.; Ferré, Michel; Orellana, P. A.; Rojas, René G.; Vargas, P.
2016-08-01
We present an optimal analysis for a quantum mechanical engine working between two energy baths within the framework of relativistic quantum mechanics, adopting a first-order correction. This quantum mechanical engine, with the direct energy leakage between the energy baths, consists of two adiabatic and two isoenergetic processes and uses a three-level system of two noninteracting fermions as its working substance. Assuming that the potential wall moves at a finite speed, we derive the expression of power output and, in particular, reproduce the expression for the efficiency at maximum power.
Non-relativistic quantum mechanics
Puri, Ravinder R.
2017-01-01
This book develops and simplifies the concept of quantum mechanics based on the postulates of quantum mechanics. The text discusses the technique of disentangling the exponential of a sum of operators, closed under the operation of commutation, as the product of exponentials to simplify calculations of harmonic oscillator and angular momentum. Based on its singularity structure, the Schrödinger equation for various continuous potentials is solved in terms of the hypergeometric or the confluent hypergeometric functions. The forms of the potentials for which the one-dimensional Schrödinger equation is exactly solvable are derived in detail. The problem of identifying the states of two-level systems which have no classical analogy is addressed by going beyond Bell-like inequalities and separability. The measures of quantumness of mutual information in two two-level systems is also covered in detail. Offers a new approach to learning quantum mechanics based on the history of quantum mechanics and its postu...
Path integration in relativistic quantum mechanics
Redmount, I H; Redmount, Ian H.; Suen, Wai-Mo
1993-01-01
The simple physics of a free particle reveals important features of the path-integral formulation of relativistic quantum theories. The exact quantum-mechanical propagator is calculated here for a particle described by the simple relativistic action proportional to its proper time. This propagator is nonvanishing outside the light cone, implying that spacelike trajectories must be included in the path integral. The propagator matches the WKB approximation to the corresponding configuration-space path integral far from the light cone; outside the light cone that approximation consists of the contribution from a single spacelike geodesic. This propagator also has the unusual property that its short-time limit does not coincide with the WKB approximation, making the construction of a concrete skeletonized version of the path integral more complicated than in nonrelativistic theory.
Weibel instability in relativistic quantum plasmas
Mendonça, J. T.; Brodin, G.
2015-08-01
Generation of quasi-static magnetic fields, due to the Weibel instability is studied in a relativistic quantum plasma. This instability is induced by a temperature anisotropy. The dispersion relation and growth rates for low frequency electromagnetic perturbations are derived using a wave-kinetic equation which describes the evolution of the electron Wigner quasi-distribution. The influence of parallel kinetic effects is discussed in detail.
Formulation of the Relativistic Quantum Hall Effect and "Parity Anomaly"
Yonaga, Kouki; Shibata, Naokazu
2016-01-01
We present a relativistic formulation of the quantum Hall effect on a Riemann sphere. An explicit form of the pseudopotential is derived for the relativistic quantum Hall effect with/without mass term.We clarify particular features of the relativistic quantum Hall states with use of the exact diagonalization study of the pseudopotential Hamiltonian. Physical effects of the mass term to relativistic quantum Hall states are investigated in detail.The mass term acts as an interporating parameter between the relativistic and non-relativistic quantum Hall effects. It is pointed out that the mass term inequivalently affects to many-body physics of the positive and negative Landau levels and brings instability of the Laughlin state of the positive first relativistic Landau level as a consequence of the "parity anomaly".
On the Velocity of Moving Relativistic Unstable Quantum Systems
K. Urbanowski
2015-01-01
Full Text Available We study properties of moving relativistic quantum unstable systems. We show that in contrast to the properties of classical particles and quantum stable objects the velocity of freely moving relativistic quantum unstable systems cannot be constant in time. We show that this new quantum effect results from the fundamental principles of the quantum theory and physics: it is a consequence of the principle of conservation of energy and of the fact that the mass of the quantum unstable system is not defined. This effect can affect the form of the decay law of moving relativistic quantum unstable systems.
Bodek, K.; Rozpędzik, D.; Zejma, J. [Jagiellonian University, Faculty of Physics, Astronomy and Applied Informatics, Reymonta 4, 30059 Kraków (Poland); Caban, P.; Rembieliński, J.; Włodarczyk, M. [University of Łódź, Faculty of Physics and Applied Informatics, Pomorska 149/153, 90236 Łódź (Poland); Ciborowski, J. [University of Warsaw, Faculty of Physics, Hoza 69, 00681 Warsaw (Poland); Enders, J.; Köhler, A. [Technische Universität Darmstadt, Institut für Kernphysik, Schlossgartenstraße 9, 64289 Darmstadt (Germany); Kozela, A. [Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego 152, 31342 Kraków (Poland)
2013-11-07
The Polish-German project QUEST aims at studying relativistic quantum spin correlations of the Einstein-Rosen-Podolsky-Bohm type, through measurement of the correlation function and the corresponding probabilities for relativistic electron pairs. The results will be compared to theoretical predictions obtained by us within the framework of relativistic quantum mechanics, based on assumptions regarding the form of the relativistic spin operator. Agreement or divergence will be interpreted in the context of non-uniqueness of the relativistic spin operator in quantum mechanics as well as dependence of the correlation function on the choice of observables representing the spin. Pairs of correlated electrons will originate from the Mo/ller scattering of polarized 15 MeV electrons provided by the superconducting Darmstadt electron linear accelerator S-DALINAC, TU Darmstadt, incident on a Be target. Spin projections will be determined using the Mott polarimetry technique. Measurements (starting 2013) are planned for longitudinal and transverse beam polarizations and different orientations of the beam polarization vector w.r.t. the Mo/ller scattering plane. This is the first project to study relativistic spin correlations for particles with mass.
Relativistic quantum information theory and quantum reference frames
Palmer, Matthew C
2013-01-01
This thesis is a compilation of research in relativistic quantum information theory, and research in quantum reference frames. The research in the former category provides a fundamental construction of quantum information theory of localised qubits in curved spacetimes. For example, this concerns quantum experiments on free-space photons and electrons in the vicinity of the Earth. From field theory a description of localised qubits that traverse classical trajectories in curved spacetimes is obtained, for photons and massive spin-1/2 fermions. The equations governing the evolution of the two-dimensional quantum state and its absolute phase are determined. Quantum information theory of these qubits is then developed. The Stern-Gerlach measurement formalism for massive spin-1/2 fermions is also derived from field theory. In the latter category of research, the process of changing reference frames is considered for the case where the reference frames are quantum systems. As part of this process, it is shown that...
On the velocity of moving relativistic unstable quantum systems
Urbanowski, K
2015-01-01
We study properties of moving relativistic quantum unstable systems. We show that in contrast to the properties of classical particles and quantum stable objects the velocity of moving freely relativistic quantum unstable systems can not be constant in time. We show that this effect results from the fundamental principles of the quantum theory and physics: It is a consequence of the principle of conservation of energy and of the fact that the mass of the quantum unstable system is not definite.
Unification of Relativistic and Quantum Mechanics from Elementary Cycles Theory
Dolce, Donatello
2016-01-01
In Elementary Cycles theory elementary quantum particles are consistently described as the manifestation of ultra-fast relativistic spacetime cyclic dynamics, classical in the essence. The peculiar relativistic geometrodynamics of Elementary Cycles theory yields de facto a unification of ordinary relativistic and quantum physics. In particular its classical-relativistic cyclic dynamics reproduce exactly from classical physics first principles all the fundamental aspects of Quantum Mechanics, such as all its axioms, the Feynman path integral, the Dirac quantisation prescription (second quantisation), quantum dynamics of statistical systems, non-relativistic quantum mechanics, atomic physics, superconductivity, graphene physics and so on. Furthermore the theory allows for the explicit derivation of gauge interactions, without postulating gauge invariance, directly from relativistic geometrodynamical transformations, in close analogy with the description of gravitational interaction in general relativity. In thi...
Relativistic Quantum Teleportation with superconducting circuits
Friis, Nicolai; Truong, Kevin; Sabín, Carlos; Solano, Enrique; Johansson, Göran; Fuentes, Ivette
2012-01-01
We study the effects of relativistic motion on quantum teleportation and propose a realizable experiment where our results can be tested. We compute bounds on the optimal fidelity of teleportation when one of the observers undergoes non-uniform motion for a finite time. The upper bound to the optimal fidelity is degraded due to the observer's motion however, we discuss how this degradation can be corrected. These effects are observable for experimental parameters that are within reach of cutting-edge superconducting technology.
Balance equations in semi-relativistic quantum hydrodynamics
Ivanov, A Yu; Kuz'menkov, L S
2014-01-01
Method of the quantum hydrodynamics has been applied in quantum plasmas studies. As the first step in our consideration, derivation of classical semi-relativistic (i. e. described by the Darwin Lagrangian on microscopic level) hydrodynamical equations is given after a brief review of method development. It provides better distinguishing between classic and quantum semi-relativistic effects. Derivation of the classical equations is interesting since it is made by a natural, but not very widespread method. This derivation contains explicit averaging of the microscopic dynamics. Derivation of corresponding quantum hydrodynamic equations is presented further. Equations are obtained in the five-momentum approximation including the continuity equation, Euler and energy balance equations. It is shown that relativistic corrections lead to presence of new quantum terms in expressions for a force field, a work field etc. The semi-relativistic generalization of the quantum Bohm potential is obtained. Quantum part of the...
Quantum ion-acoustic solitary waves in weak relativistic plasma
Biswajit Sahu
2011-06-01
Small amplitude quantum ion-acoustic solitary waves are studied in an unmagnetized twospecies relativistic quantum plasma system, comprised of electrons and ions. The one-dimensional quantum hydrodynamic model (QHD) is used to obtain a deformed Korteweg–de Vries (dKdV) equation by reductive perturbation method. A linear dispersion relation is also obtained taking into account the relativistic effect. The properties of quantum ion-acoustic solitary waves, obtained from the deformed KdV equation, are studied taking into account the quantum mechanical effects in the weak relativistic limit. It is found that relativistic effects signiﬁcantly modify the properties of quantum ion-acoustic waves. Also the effect of the quantum parameter on the nature of solitary wave solutions is studied in some detail.
Causal localizations in relativistic quantum mechanics
Castrigiano, Domenico P. L., E-mail: castrig@ma.tum.de; Leiseifer, Andreas D., E-mail: andreas.leiseifer@tum.de [Fakultät für Mathematik, TU München, Boltzmannstraße 3, 85747 Garching (Germany)
2015-07-15
Causal localizations describe the position of quantum systems moving not faster than light. They are constructed for the systems with finite spinor dimension. At the center of interest are the massive relativistic systems. For every positive mass, there is the sequence of Dirac tensor-localizations, which provides a complete set of inequivalent irreducible causal localizations. They obey the principle of special relativity and are fully Poincaré covariant. The boosters are determined by the causal position operator and the other Poincaré generators. The localization with minimal spinor dimension is the Dirac localization. Thus, the Dirac equation is derived here as a mere consequence of the principle of causality. Moreover, the higher tensor-localizations, not known so far, follow from Dirac’s localization by a simple construction. The probability of localization for positive energy states results to be described by causal positive operator valued (PO-) localizations, which are the traces of the causal localizations on the subspaces of positive energy. These causal Poincaré covariant PO-localizations for every irreducible massive relativistic system were, all the more, not known before. They are shown to be separated. Hence, the positive energy systems can be localized within every open region by a suitable preparation as accurately as desired. Finally, the attempt is made to provide an interpretation of the PO-localization operators within the frame of conventional quantum mechanics attributing an important role to the negative energy states.
Quasiparticle excitations in relativistic quantum field theory
Arteaga, Daniel
2008-01-01
We analyze the particle-like excitations arising in relativistic field theories in states different than the vacuum. The basic properties characterizing the quasiparticle propagation are studied using two different complementary methods. First we introduce a frequency-based approach, wherein the quasiparticle properties are deduced from the spectral analysis of the two-point propagators. Second, we put forward a real-time approach, wherein the quantum state corresponding to the quasiparticle excitation is explicitly constructed, and the time-evolution is followed. Both methods lead to the same result: the energy and decay rate of the quasiparticles are determined by the real and imaginary parts of the retarded self-energy respectively. Both approaches are compared, on the one hand, with the standard field-theoretic analysis of particles in the vacuum and, on the other hand, with the mean-field-based techniques in general backgrounds.
Extreme Regimes in Quantum Gravity
Battista, Emmanuele
2016-01-01
The thesis is divided into two parts. In the first part the low-energy limit of quantum gravity is analysed, whereas in the second we deal with the high-energy domain. In the first part, by applying the effective field theory point of view to the quantization of general relativity, detectable, though tiny, quantum effects in the position of Newtonian Lagrangian points of the Earth-Moon system are found. In order to make more realistic the quantum corrected model proposed, the full three-body problem where the Earth and the Moon interact with a generic massive body and the restricted four-body problem involving the perturbative effects produced by the gravitational presence of the Sun in the Earth-Moon system are also studied. After that, a new quantum theory having general relativity as its classical counterpart is analysed. By exploiting this framework, an innovative interesting prediction involving the position of Lagrangian points within the context of general relativity is described. Furthermore, the new ...
Markovian quantum master equation beyond adiabatic regime
Yamaguchi, Makoto; Yuge, Tatsuro; Ogawa, Tetsuo
2017-01-01
By introducing a temporal change time scale τA(t ) for the time-dependent system Hamiltonian, a general formulation of the Markovian quantum master equation is given to go well beyond the adiabatic regime. In appropriate situations, the framework is well justified even if τA(t ) is faster than the decay time scale of the bath correlation function. An application to the dissipative Landau-Zener model demonstrates this general result. The findings are applicable to a wide range of fields, providing a basis for quantum control beyond the adiabatic regime.
Supercurrent in the quantum Hall regime
Amet, F.; Ke, C. T.; Borzenets, I. V.; Wang, J.; Watanabe, K.; Taniguchi, T.; Deacon, R. S.; Yamamoto, M.; Bomze, Y.; Tarucha, S.; Finkelstein, G.
2016-05-01
A promising route for creating topological states and excitations is to combine superconductivity and the quantum Hall (QH) effect. Despite this potential, signatures of superconductivity in the QH regime remain scarce, and a superconducting current through a QH weak link has been challenging to observe. We demonstrate the existence of a distinct supercurrent mechanism in encapsulated graphene samples contacted by superconducting electrodes, in magnetic fields as high as 2 tesla. The observation of a supercurrent in the QH regime marks an important step in the quest for exotic topological excitations, such as Majorana fermions and parafermions, which may find applications in fault-tolerant quantum computing.
Relativistic quantum mechanics and introduction to field theory
Yndurain, F.J. [Universidad Autonoma de Madrid (Spain). Dept. de Fisica Teorica
1996-12-01
The following topics were dealt with: relativistic transformations, the Lorentz group, Klein-Gordon equation, spinless particles, spin 1/2 particles, Dirac particle in a potential, massive spin 1 particles, massless spin 1 particles, relativistic collisions, S matrix, cross sections, decay rates, partial wave analysis, electromagnetic field quantization, interaction of radiation with matter, interactions in quantum field theory and relativistic interactions with classical sources.
Relativistic systems and their evolution in quantum tomography
Arkhipov, AS; Man'ko, [No Value
2004-01-01
We propose a method of writing the relativistic equation for the probability-distribution function in the tomographic representation. The connection with the quantum-mechanical description of a zero-spin particle is discussed.
Quantum Gravity and a Time Operator in Relativistic Quantum Mechanics
Bauer, M
2016-01-01
The problem of time in the quantization of gravity arises from the fact that time in Schroedinger's equation is a parameter. This sets time apart from the spatial coordinates, represented by operators in quantum mechanics (QM). Thus "time" in QM and "time" in General Relativity (GR) are seen as mutually incompatible notions. The introduction of a dy- namical time operator in relativistic quantum mechanics (RQM), that in the Heisenberg representation is also a function of the parameter t (iden- tifed as the laboratory time), prompts to examine whether it can help to solve the disfunction referred to above. In particular, its application to the conditional interpretation of the canonical quantization approach toquantum gravity is developed. 1
Particle energisation in a collapsing magnetic trap model: the relativistic regime
Oskoui, Solmaz Eradat
2014-01-01
In solar flares, a large number of charged particles is accelerated to high energies. By which physical processes this is achieved is one of the main open problems in solar physics. It has been suggested that during a flare, regions of the rapidly relaxing magnetic field can form a collapsing magnetic trap (CMT) and that this trap may contribute to particle energisation.} In this Research Note we focus on a particular analytical CMT model based on kinematic magnetohydrodynamics. Previous investigations of particle acceleration for this CMT model focused on the non-relativistic energy regime. It is the specific aim of this Research Note to extend the previous work to relativistic particle energies. Particle orbits were calculated numerically using the relativistic guiding centre equations. We also calculated particle orbits using the non-relativistic guiding centre equations for comparison. For mildly relativistic energies the relativistic and non-relativistic particle orbits mainly agree well, but clear devia...
On a Probabilistic Interpretation of Relativistic Quantum Mechanics
Gorobey, Natalia; Lukyanenko, Inna
2010-01-01
A probabilistic interpretation of one-particle relativistic quantum mechanics is proposed. Quantum Action Principle formulated earlier is used for to make the dynamics of the Minkowsky time variable of a particle to be classical. After that, quantum dynamics of a particle in the 3D space obtains the ordinary probabilistic interpretation. In addition, the classical dynamics of the Minkowsky time variable may serve as a tool for "observation" of the quantum dynamics of a particle. A relativistic analog of the hydrogen atom energy spectrum is obtained.
Rideout, David; Amelino-Camelia, Giovanni; Demarie, Tommaso F; Higgins, Brendon L; Kempf, Achim; Kent, Adrian; Laflamme, Raymond; Ma, Xian; Mann, Robert B; Martin-Martinez, Eduardo; Menicucci, Nicolas C; Moffat, John; Simon, Christoph; Sorkin, Rafael; Smolin, Lee; Terno, Daniel R
2012-01-01
Physical theories are developed to describe phenomena in particular regimes, and generally are valid only within a limited range of scales. For example, general relativity provides an effective description of the Universe at large length scales, and has been tested from the cosmic scale down to distances as small as 10 meters. In contrast, quantum theory provides an effective description of physics at small length scales. Direct tests of quantum theory have been performed at the smallest probeable scales at the Large Hadron Collider, ${\\sim} 10^{-20}$ meters, up to that of hundreds of kilometers. Yet, such tests fall short of the scales required to investigate potentially significant physics that arises at the intersection of quantum and relativistic regimes. We propose to push direct tests of quantum theory to larger and larger length scales, approaching that of the radius of curvature of spacetime, where we begin to probe the interaction between gravity and quantum phenomena. In particular, we review a wide...
Classical Simulation of Relativistic Quantum Mechanics in Periodic Optical Structures
Longhi, Stefano
2011-01-01
Spatial and/or temporal propagation of light waves in periodic optical structures offers a rather unique possibility to realize in a purely classical setting the optical analogues of a wide variety of quantum phenomena rooted in relativistic wave equations. In this work a brief overview of a few optical analogues of relativistic quantum phenomena, based on either spatial light transport in engineered photonic lattices or on temporal pulse propagation in Bragg grating structures, is presented. Examples include spatial and temporal photonic analogues of the Zitterbewegung of a relativistic electron, Klein tunneling, vacuum decay and pair-production, the Dirac oscillator, the relativistic Kronig-Penney model, and optical realizations of non-Hermitian extensions of relativistic wave equations.
Cavity Optomechanics in the Quantum Regime
Botter, Thierry Claude Marc
An exciting scientific goal, common to many fields of research, is the development of ever-larger physical systems operating in the quantum regime. Relevant to this dissertation is the objective of preparing and observing a mechanical object in its motional quantum ground state. In order to sense the object's zero-point motion, the probe itself must have quantum-limited sensitivity. Cavity optomechanics, the interactions between light and a mechanical object inside an optical cavity, provides an elegant means to achieve the quantum regime. In this dissertation, I provide context to the successful cavity-based optical detection of the quantum-ground-state motion of atoms-based mechanical elements; mechanical elements, consisting of the collective center-of-mass (CM) motion of ultracold atomic ensembles and prepared inside a high-finesse Fabry-Perot cavity, were dispersively probed with an average intracavity photon number as small as 0.1. I first show that cavity optomechanics emerges from the theory of cavity quantum electrodynamics when one takes into account the CM motion of one or many atoms within the cavity, and provide a simple theoretical framework to model optomechanical interactions. I then outline details regarding the apparatus and the experimental methods employed, highlighting certain fundamental aspects of optical detection along the way. Finally, I describe background information, both theoretical and experimental, to two published results on quantum cavity optomechanics that form the backbone of this dissertation. The first publication shows the observation of zero-point collective motion of several thousand atoms and quantum-limited measurement backaction on that observed motion. The second publication demonstrates that an array of near-ground-state collective atomic oscillators can be simultaneously prepared and probed, and that the motional state of one oscillator can be selectively addressed while preserving the near-zero-point motion of
Multidimensional electron beam-plasma instabilities in the relativistic regime
BRET, ANTOINE; Gremillet, Laurent; Dieckmann, Mark Eric
2010-01-01
The interest in relativistic beam-plasma instabilities has been greatly rejuvenated over the past two decades by novel concepts in laboratory and space plasmas. Recent advances in this long-standing field are here reviewed from both theoretical and numerical points of view. The primary focus is on the two-dimensional spectrum of unstable electromagnetic waves growing within relativistic, unmagnetized, and uniform electron beam-plasma systems. Although the goal is to provide a unified picture ...
Noldus, Johan
2005-01-01
This paper can be seen as an exercise in how to adapt quantum mechanics from a strict relativistic perspective while being respectful and critical towards the experimental achievements of the contemporary theory. The result is a fully observer independent relativistic quantum mechanics for N particle systems without tachyonic solutions. A remaining worry for the moment is Bell's theorem.
Irreversible degradation of quantum coherence under relativistic motion
Wang, Jieci; Jing, Jiliang; Fan, Heng
2016-01-01
We study the dynamics of quantum coherence under Unruh thermal noise and seek under which condition the coherence can be frozen in a relativistic setting. We find that the quantum coherence can not be frozen for any acceleration due to the effect of Unruh thermal noise. We also find that quantum coherence is more robust than entanglement under the effect of Unruh thermal noise and therefore the coherence type quantum resources are more accessible for relativistic quantum information processing tasks. Besides, the dynamic of quantum coherence is found to be more sensitive than entanglement to the preparation of the detectors' initial state and the atom-field coupling strength, while it is less sensitive than entanglement to the acceleration of the detector.
The mathematical representation of physical objects and relativistic Quantum Mechanics
Romay, Enrique Ordaz
2004-01-01
The mathematical representation of the physical objects determines which mathematical branch will be applied during the physical analysis in the systems studied. The difference among non-quantum physics, like classic or relativistic physics, and quantum physics, especially in quantum field theory, is nothing else than the difference between the mathematics that is used on both branches of the physics. A common physical and mathematical origin for the analysis of the different systems brings b...
The Calculation of Matrix Elements in Relativistic Quantum Mechanics
Ilarraza-Lomelí, A. C.; Valdés-Martínez, M. N.; Salas-Brito, A. L.; Martínez-y-Romero, R. P.; Núñez-Yépez, H. N
2001-01-01
Employing a relativistic version of a hypervirial result, recurrence relations for arbitrary non-diagonal radial hydrogenic matrix elements have recently been obtained in Dirac relativistic quantum mechanics. In this contribution honoring Professor L\\"owdin, we report on a new relation we have recently discovered between the matrix elements $$ and $$---where $\\beta$ is a Dirac matrix and the numbers distiguish between different radial eigenstates--- that allow for a simplification and hence f...
The Quantum-Gravity Regime under Microgravity
Laemmerzahl, Claus; Könemann, Thorben
Gravity is the weakest of the four known interactions. Accordingly, one needs either huge masses to explore this interaction or a long time to accumulate its small influence. The latter is possible only under microgravity conditions. In this contribution we would like to focus on three issues related to basic problems in the quantum-gravity regime: (i) Search for fundamental decoherence: Decoherence describes the transition from the quantum world to the classical regime. There are many technical sources of decoherence but the question is whether there is a fundamental mechanism for such a decoherence which would be a solution for the measurement problem in quantum mechanics. Here we describe the estimates on such a fundamental decoherence from experiments with Bose-Einstein condensates in microgravity. (ii) Search for possible self-gravity effects: Self gravity has been proposed e.g. by Penrose to resolve the measurement problem. Self gravitating systems are also give Bose stars which are a model for the pyhsics around black holes or for dark matter. Here we would like to describe effects of self gravity in Bose-Einstein condensates. We calculate stationary spherically symmetric states and discuss the possibility to measure such effects related to self gravity. (iii) Test of the semiclassical Einstein equations. Since General Relativity and quantum theory appear to be incompatible, it has been discussed whether the semiclassical Einstein equations might be valid. Here we would like to discuss a proposal made by Peres and Lindner to use Bose-Einstein condensates for a true quantum test of these semiclassical Einstein equations from which one can decide whether such an ansatz is valid or not.
Relativistic classical integrable tops and quantum R-matrices
Levin, A.; Olshanetsky, M.; Zotov, A.
2014-07-01
We describe classical top-like integrable systems arising from the quantum exchange relations and corresponding Sklyanin algebras. The Lax operator is expressed in terms of the quantum non-dynamical R-matrix even at the classical level, where the Planck constant plays the role of the relativistic deformation parameter in the sense of Ruijsenaars and Schneider (RS). The integrable systems (relativistic tops) are described as multidimensional Euler tops, and the inertia tensors are written in terms of the quantum and classical R-matrices. A particular case of gl N system is gauge equivalent to the N-particle RS model while a generic top is related to the spin generalization of the RS model. The simple relation between quantum R-matrices and classical Lax operators is exploited in two ways. In the elliptic case we use the Belavin's quantum R-matrix to describe the relativistic classical tops. Also by the passage to the noncommutative torus we study the large N limit corresponding to the relativistic version of the nonlocal 2d elliptic hydrodynamics. Conversely, in the rational case we obtain a new gl N quantum rational non-dynamical R-matrix via the relativistic top, which we get in a different way — using the factorized form of the RS Lax operator and the classical Symplectic Hecke (gauge) transformation. In particular case of gl2 the quantum rational R-matrix is 11-vertex. It was previously found by Cherednik. At last, we describe the integrable spin chains and Gaudin models related to the obtained R-matrix.
Gonthier, P L; Baring, M G; Costello, R M; Mercer, C L; Gonthier, Peter L.; Harding, Alice K.; Baring, Matthew G.; Costello, Rachel M.; Mercer, Cassandra L.
2000-01-01
This paper explores the effects of strong magnetic fields on the Compton scattering of relativistic electrons. Recent studies of upscattering and energy loss by relativistic electrons that have used the non-relativistic, magnetic Thomson cross section for resonant scattering or the Klein-Nishina cross section for non-resonant scattering do not account for the relativistic quantum effects of strong fields ($ > 4 \\times 10^{12}$ G). We have derived a simplified expression for the exact QED scattering cross section for the broadly-applicable case where relativistic electrons move along the magnetic field. To facilitate applications to astrophysical models, we have also developed compact approximate expressions for both the differential and total polarization-dependent cross sections, with the latter representing well the exact total QED cross section even at the high fields believed to be present in environments near the stellar surfaces of Soft Gamma-Ray Repeaters and Anomalous X-Ray Pulsars. We find that stron...
Multimode optomechanical system in the quantum regime
Nielsen, William H P; Møller, Christoffer B; Polzik, Eugene S; Schliesser, Albert
2016-01-01
We realise a simple and robust optomechanical system with a multitude of long-lived ($Q>10^7$) mechanical modes in a phononic-bandgap shielded membrane resonator. An optical mode of a compact Fabry-Perot resonator detects these modes' motion with a measurement rate ($96~\\mathrm{kHz}$) that exceeds the mechanical decoherence rates already at moderate cryogenic temperatures ($10\\,\\mathrm{K}$). Reaching this quantum regime entails, i.~a., quantum measurement backaction exceeding thermal forces, and thus detectable optomechanical quantum correlations. In particular, we observe ponderomotive squeezing of the output light mediated by a multitude of mechanical resonator modes, with quantum noise suppression up to -2.4 dB (-3.6 dB if corrected for detection losses) and bandwidths $\\lesssim 90\\,\\mathrm{ kHz}$. The multi-mode nature of the employed membrane and Fabry-Perot resonators lends itself to hybrid entanglement schemes involving multiple electromagnetic, mechanical, and spin degrees of freedom.
On two misconceptions in current relativistic quantum information
Bradler, Kamil
2011-01-01
We describe two problems current relativistic quantum information suffers from. The first point is an explanation of an alleged ambiguity of entropic quantities detected in a number of publications and incorrectly resolved in [M. Montero and E. Mart{\\i}n-Mart{\\i}nez, Physical Review A 83, 062323 (2011)]. We found that the problem arises due to wrong algebraic manipulations with fermions and ignoring the superselection rule for bosons and fermions. This leads to a misinterpretation of certain entropic quantities when applied to fermion fields. The second discussed point is to alert to a conceptual misunderstanding of the role of entanglement (and quantum correlations in general) in some of the studied relativistic scenarios. Instead, we argue in favor of investigating capacities of quantum channels induced by the relevant physical processes as dictated by quantum Shannon theory.
A Signed Particle Formulation of Non-Relativistic Quantum Mechanics
Sellier, Jean Michel
2015-01-01
A formulation of non-relativistic quantum mechanics in terms of Newtonian particles is presented in the shape of a set of three postulates. In this new theory, quantum systems are described by ensembles of signed particles which behave as field-less classical objects which carry a negative or positive sign and interact with an external potential by means of creation and annihilation events only. This approach is shown to be a generalization of the signed particle Wigner Monte Carlo method which reconstructs the time-dependent Wigner quasi-distribution function of a system and, therefore, the corresponding Schroedinger time-dependent wave-function. Its classical limit is discussed and a physical interpretation, based on experimental evidences coming from quantum tomography, is suggested. Moreover, in order to show the advantages brought by this novel formulation, a straightforward extension to relativistic effects is discussed. To conclude, quantum tunnelling numerical experiments are performed to show the val...
Relativistic quantum Darwinism in Dirac fermion and graphene systems
Ni, Xuan; Huang, Liang; Lai, Ying-Cheng; Pecora, Louis
2012-02-01
We solve the Dirac equation in two spatial dimensions in the setting of resonant tunneling, where the system consists of two symmetric cavities connected by a finite potential barrier. The shape of the cavities can be chosen to yield both regular and chaotic dynamics in the classical limit. We find that certain pointer states about classical periodic orbits can exist, which are signatures of relativistic quantum Darwinism (RQD). These localized states suppress quantum tunneling, and the effect becomes less severe as the underlying classical dynamics in the cavity is chaotic, leading to regularization of quantum tunneling. Qualitatively similar phenomena have been observed in graphene. A physical theory is developed to explain relativistic quantum Darwinism and its effects based on the spectrum of complex eigenenergies of the non-Hermitian Hamiltonian describing the open cavity system.
A quantum relativistic battle of the sexes cellular automaton
Alonso-Sanz, Ramón; Situ, Haozhen
2017-02-01
The effect of variable entangling on the dynamics of a spatial quantum relativistic formulation of the iterated battle of the sexes game is studied in this work. The game is played in the cellular automata manner, i.e., with local and synchronous interaction. The game is assessed in fair and unfair contests. Despite the full range of quantum parameters initially accessible, they promptly converge into fairly stable configurations, that often show rich spatial structures in simulations with no negligible entanglement.
Effect of relativistic motion on witnessing nonclassicality of quantum states
Checińska, Agata; Lorek, Krzysztof; Dragan, Andrzej
2017-01-01
We show that the operational definition of nonclassicality of a quantum state depends on the motion of the observer. We use the relativistic Unruh-DeWitt detector model to witness nonclassicality of the probed field state. It turns out that the witness based on the properties of the P representation of the quantum state depends on the trajectory of the detector. Inertial and noninertial motion of the device have qualitatively different impact on the performance of the witness.
Alba, David; Lusanna, Luca
2009-01-01
A new formulation of relativistic quantum mechanics is proposed in the framework of the rest-frame instant form of dynamics with its instantaneous Wigner 3-spaces and with its description of the particle world-lines by means of derived non-canonical predictive coordinates. In it we quantize the frozen Jacobi data of the non-local 4-center of mass and the Wigner-covariant relative variables in an abstract (frame-independent) internal space whose existence is implied by Wigner-covariance. The formalism takes care of the properties of both relativistic bound states and scattering ones. There is a natural solution to the \\textit{relativistic localization problem}. The non-relativistic limit leads to standard quantum mechanics but with a frozen Hamilton-Jacobi description of the center of mass. Due to the \\textit{non-locality} of the Poincar\\'e generators the resulting theory of relativistic entanglement is both \\textit{kinematically non-local and spatially non-separable}: these properties, absent in the non-relat...
Exact solution of the relativistic quantum Toda chain
Zhang, Xin; Yang, Wen-Li; Shi, Kangjie; Wang, Yupeng
2016-01-01
The relativistic quantum Toda chain model is studied with the generalized algebraic Bethe Ansatz method. By employing a set of local gauge transformations, proper local vacuum states can be obtained for this model. The exact spectrum and eigenstates of the model are thus constructed simultaneously.
Bags in relativistic quantum field theory with spontaneously broken symmetry
Wadati, M.; Matsumoto, H.; Umezawa, H.
1978-08-15
Presented is a microscopic derivation of bags from a relativistic quantum theory with spontaneously broken symmetry. The static energy of a bag whose singularity is the surface of a sphere coincides with the volume tension in the MIT bag theory. A similarity between the bags and the point defects in crystals is pointed out.
Nonperturbative approach to relativistic quantum communication channels
Landulfo, André G. S.
2016-05-01
We investigate the transmission of both classical and quantum information between two arbitrary observers in globally hyperbolic spacetimes using a quantum field as a communication channel. The field is supposed to be in some arbitrary quasifree state and no choice of representation of its canonical commutation relations is made. Both sender and receiver possess some localized two-level quantum system with which they can interact with the quantum field to prepare the input and receive the output of the channel, respectively. The interaction between the two-level systems and the quantum field is such that one can trace out the field degrees of freedom exactly and thus obtain the quantum channel in a nonperturbative way. We end the paper determining the unassisted as well as the entanglement-assisted classical and quantum channel capacities.
Relativistic quantum correlations in bipartite fermionic states
S KHAN; N A KHAN
2016-10-01
The influences of relative motion, the size of the wave packet and the average momentum of the particles on different types of correlations present in bipartite quantum states are investigated. In particular, the dynamics of the quantum mutual information, the classical correlation and the quantum discord on the spincorrelations of entangled fermions are studied. In the limit of small average momentum, regardless of the size of the wave packet and the rapidity, the classical and the quantum correlations are equally weighted. On the otherhand, in the limit of large average momentum, the only correlations that exist in the system are the quantum correlations. For every value of the average momentum, the quantum correlations maximize at an optimal size of the wave packet. It is shown that after reaching a minimum value, the revival of quantum discord occurs with increasing rapidity.
On the ontological emergence from quantum regime
Luty, Damian [Adam Mickiewicz University, Poznan (Poland)
2014-07-01
There are several views on the relation between quantum physics and theory of relativity (especially General Relativity, GR). A popular perspective is this: GR with its macroscopic gravitational effects will turn out to be a limit of a more fundamental theory which should consider discrete physics and not deal with continuity (like theory of relativity). Thus, GR will emerge from a more basic theory, which should be quantum-like. One could call this an epistemic emergence view towards fundamental theories. The question is, given that scientific realism is valid: should emergence be a fundamental notion in our ontological view about the evolving, physical Universe? Is there an ontological emergence fully compatible with the notion of fundamentality? I argue that if we want to defend ontological emergence (from quantum to macroscopic regime) as something fundamental, we will arrive at the position of metaphysics of dispositions (and I argue, why this is undesirable), or conclude, that we cannot square fully fundamental ontology with the notion of emergence, and that we have to accept an ontological pluralism relativised to a certain scale. I defend the latter proposition, showing, that epistemic emergence doesn't entail (logically) ontological emergence.
On transition of propagation of relativistic particles from the ballistic to the diffusion regime
Prosekin, A Y; Aharonian, F A
2015-01-01
A stationary distribution function that describes the entire processes of propagation of relativistic particles, including the transition between the ballistic and diffusion regimes, is obtained. The spacial component of the constructed function satisfies to the first two moments of the Boltzmann equation. The angular part of the distribution provides accurate values for the angular moments derived from the Boltzmann equation, and gives a correct expression in the limit of small-angle approximation. Using the derived function, we studied the gamma-ray images produced through the $pp$ interaction of relativistic particles with gas clouds in the proximity of the accelerator. In general, the morphology and the energy spectra of gamma-rays significantly deviate from the "standard" results corresponding to the propagation of relativistic particles strictly in the diffusion regime.
Open quantum dots in graphene: Scaling relativistic pointer states
Ferry, D. K.; Huang, L.; Yang, R.; Lai, Y.-C.; Akis, R.
2010-04-01
Open quantum dots provide a window into the connection between quantum and classical physics, particularly through the decoherence theory, in which an important set of quantum states are not "washed out" through interaction with the environment-the pointer states provide connection to trapped classical orbits which remain stable in the dots. Graphene is a recently discovered material with highly unusual properties. This single layer, one atom thick, sheet of carbon has a unique bandstructure, governed by the Dirac equation, in which charge carriers imitate relativistic particles with zero rest mass. Here, an atomic orbital-based recursive Green's function method is used for studying the quantum transport. We study quantum fluctuations in graphene and bilayer graphene quantum dots with this recursive Green's function method. Finally, we examine the scaling of the domiant fluctuation frequency with dot size.
Relativistic Classical Integrable Tops and Quantum R-matrices
Levin, A; Zotov, A
2014-01-01
We describe classical top-like integrable systems arising from the quantum exchange relations and corresponding Sklyanin algebras. The Lax operator is expressed in terms of the quantum non-dynamical $R$-matrix even at the classical level, where the Planck constant plays the role of the relativistic deformation parameter in the sense of Ruijsenaars and Schneider (RS). The integrable systems (relativistic tops) are described as multidimensional Euler tops, and the inertia tensors are written in terms of the quantum and classical $R$-matrices. A particular case of ${\\rm gl}_N$ system is gauge equivalent to the $N$-particle RS model while a generic top is related to the spin generalization of the RS model. The simple relation between quantum $R$-matrices and classical Lax operators is exploited in two ways. In the elliptic case we use the Belavin's quantum $R$-matrix to describe the relativistic classical tops. Also by the passage to the noncommutative torus we study the large $N$ limit corresponding to the relat...
Foundations for proper-time relativistic quantum theory
Gill, Tepper L.; Morris, Trey; Kurtz, Stewart K.
2015-05-01
This paper is a progress report on the foundations for the canonical proper-time approach to relativistic quantum theory. We first review the the standard square-root equation of relativistic quantum theory, followed by a review of the Dirac equation, providing new insights into the physical properties of both. We then introduce the canonical proper-time theory. For completeness, we give a brief outline of the canonical proper-time approach to electrodynamics and mechanics, and then introduce the canonical proper-time approach to relativistic quantum theory. This theory leads to three new relativistic wave equations. In each case, the canonical generator of proper-time translations is strictly positive definite, so that it represents a particle. We show that the canonical proper-time extension of the Dirac equation for Hydrogen gives results that are consistently closer to the experimental data, when compared to the Dirac equation. However, these results are not sufficient to account for either the Lamb shift or the anomalous magnetic moment.
Heisenberg scaling in relativistic quantum metrology
Friis, Nicolai; Fuentes, Ivette; Dür, Wolfgang
2015-01-01
We address the issue of precisely estimating small parameters encoded in a general linear transformation of the modes of a bosonic quantum field. Such Bogoliubov transformations frequently appear in the context of quantum optics. We provide a recipe for computing the quantum Fisher information for arbitrary pure initial states. We show that the maximally achievable precision of estimation is inversely proportional to the squared average particle number, and that such Heisenberg scaling requires non-classical, but not necessarily entangled states. Our method further allows to quantify losses in precision arising from being able to monitor only finitely many modes, for which we identify a lower bound.
General relativistic effects in quantum interference of "clocks"
Zych, Magdalena; Costa, Fabio; Brukner, Časlav
2016-01-01
Quantum mechanics and general relativity have been each successfully tested in numerous experiments. However, the regime where both theories are jointly required to explain physical phenomena remains untested by laboratory experiments, and is also not fully understood by theory. This contribution reviews recent ideas for a new type of experiments: quantum interference of "clocks", which aim to test novel quantum effects that arise from time dilation. "Clock" interference experiments could be realised with atoms or photons in near future laboratory experiments.
Geometric Models of the Quantum Relativistic Rotating Oscillator
Cotaescu, I I
1997-01-01
A family of geometric models of quantum relativistic rotating oscillator is defined by using a set of one-parameter deformations of the static (3+1) de Sitter or anti-de Sitter metrics. It is shown that all these models lead to the usual isotropic harmonic oscillator in the non-relativistic limit, even though their relativistic behavior is different. As in the case of the (1+1) models, these will have even countable energy spectra or mixed ones, with a finite discrete sequence and a continuous part. In addition, all these spectra, except that of the pure anti-de Sitter model, will have a fine-structure, given by a rotator-like term.
Relativistic quantum metrology in open system dynamics.
Tian, Zehua; Wang, Jieci; Fan, Heng; Jing, Jiliang
2015-01-22
Quantum metrology studies the ultimate limit of precision in estimating a physical quantity if quantum strategies are exploited. Here we investigate the evolution of a two-level atom as a detector which interacts with a massless scalar field using the master equation approach for open quantum system. We employ local quantum estimation theory to estimate the Unruh temperature when probed by a uniformly accelerated detector in the Minkowski vacuum. In particular, we evaluate the Fisher information (FI) for population measurement, maximize its value over all possible detector preparations and evolution times, and compare its behavior with that of the quantum Fisher information (QFI). We find that the optimal precision of estimation is achieved when the detector evolves for a long enough time. Furthermore, we find that in this case the FI for population measurement is independent of initial preparations of the detector and is exactly equal to the QFI, which means that population measurement is optimal. This result demonstrates that the achievement of the ultimate bound of precision imposed by quantum mechanics is possible. Finally, we note that the same configuration is also available to the maximum of the QFI itself.
Laser-Matter Interaction: Classical Regime versus Quantum Regime
Pálffy, Adriana; Weidenmüller, Hans A
2016-01-01
Doppler backscattering of optical laser photons on a "flying mirror" of relativistic electrons promises to yield coherent photons with MeV-range energies. We compare the nuclear interaction of such a laser pulse with the standard atom-laser interaction. The mean-field description of atoms must be replaced by a rate equation and the classical field strength, far too faint in nuclei, by the dipole transition rate. Significant nuclear excitation occurs for photon numbers much smaller than typical for atoms. That drastically reduces the requirements on the experimental realization of a "flying mirror".
On the Effect of Quantum Noise in a Quantum-Relativistic Prisoner's Dilemma Cellular Automaton
Alonso-Sanz, Ramón; Situ, Haozhen
2016-12-01
The disrupting effect of quantum noise on the dynamics of a spatial quantum relativistic formulation of the iterated prisoner's dilemma game with variable entangling is studied in this work. The game is played in the cellular automata manner, i.e., with local and synchronous interaction. The game is assessed in fair and unfair contests.
Toward a fully relativistic theory of quantum information
Adami, Christoph
2011-01-01
Information theory is a statistical theory dealing with the relative state of detectors and physical systems. Because of this physicality of information, the classical framework of Shannon needs to be extended to deal with quantum detectors, perhaps moving at relativistic speeds, or even within curved space-time. Considerable progress toward such a theory has been achieved in the last fifteen years, while much is still not understood. This review recapitulates some milestones along this road, and speculates about future ones.
Relativistic Quantum Transport in Graphene Systems
2015-07-09
disorders, electron-electron interactions, spin- orbital interactions, and electromagnetic radiation on PCs, typically studied in the diffusive regime...chaos. 15. SUBJECT TERMS electromagnetic wave scattering, chaos theory, waveform design 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF...1-14 (2014). 2 14. L. Huang, Y.-C. Lai, H.-G. Luo, and C. Grebogi, “Universal formalism of Fano resonance,” AIP Advances 5, 017137, 1-18 (2015). 15
Thermodynamics of relativistic quantum fields: extracting energy from gravitational waves
Bruschi, David Edward
2016-01-01
We investigate the quantum thermodynamical properties of localised relativistic quantum fields that can be used as quantum thermal machines. We study the efficiency and power of energy transfer between the classical degrees of freedom, such as the energy input due to motion or to an impinging gravitational wave, and the excitations of the confined quantum field. We find that the efficiency of energy transfer depends dramatically on the input initial state of the system. Furthermore, we investigate the ability to extract the energy and to store it in a battery. This process is inefficient in optical cavities but is significantly enhanced when employing trapped Bose Einstein Condensates. Finally, we apply our techniques to a setup where an impinging gravitational wave excites the phononic modes of a Bose Einstein Condensate. We find that, in this case, the amount of energy transfer to the phonons increases with time and quickly approaches unity. These results suggest that, in the future, it might be possible to...
Similarity for ultra-relativistic laser plasmas and the optimal acceleration regime
Pukhov, A
2005-01-01
A similarity theory is developed for ultra-relativistic laser-plasmas. It is shown that the most fundamental S-similarity is valid for both under- and overdense plasmas. Optimal scalings for laser wake field electron acceleration are obtained heuristically. The strong message of the present work is that the bubble acceleration regime [see Pukhov, Meyer-ter-Vehn, Appl. Phys. B, 74, 355 (2002)] satisfies these optimal scalings.
Relativistic effects on the modulational instability of electron plasma waves in quantum plasma
Basudev Ghosh; Swarniv Chandra; Sailendra Nath Paul
2012-05-01
Relativistic effects on the linear and nonlinear properties of electron plasma waves are investigated using the one-dimensional quantum hydrodynamic (QHD) model for a twocomponent electron–ion dense quantum plasma. Using standard perturbation technique, a nonlinear Schrödinger equation (NLSE) containing both relativistic and quantum effects has been derived. This equation has been used to discuss the modulational instability of the wave. Through numerical calculations it is shown that relativistic effects signiﬁcantly change the linear dispersion character of the wave. Unlike quantum effects, relativistic effects are shown to reduce the instability growth rate of electron plasma waves.
Experimental considerations for quantum-entanglement studies with relativistic fermions
Schlemme, Steffen; Peck, Marius; Enders, Joachim [TU Darmstadt (Germany); Bodek, Kazimierz; Rozpedzik, Dagmara; Zejma, Jacek [Jagiellonian University, Cracow (Poland); Caban, Pawel; Rembielinski, Jakub [University of Lodz, Lodz (Poland); Ciborowski, Jacek; Dragowski, Michal; Wlodarczyk, Marta [Warsaw University, Warsaw (Poland); Kozela, Adam [Institute of Nuclear Physics, PAS, Cracow (Poland)
2015-07-01
The QUEST (Quantum entanglement of Ultra-relativistic Electrons in Singlet and Triplet states) project is aimed at the determination of the electron spin correlation function at relativistic energies. Electron pairs are created through Moeller scattering, and polarization observables are planned to be measured in Mott scattering. The predicted spin correlation function is energy dependent with values of several per cent at energies of 10-20 MeV. The results of a first test experiment at the S-DALINAC were not sensitive enough to detect entangled and Mott-scattered electron pairs at the expected energies. Further steps are either to improve the former setup or design a new polarimeter for lower energies to improve statistics due to the higher scattering cross sections. This contribution presents general considerations, test results, and an outlook.
Nonequilibrium electron transport through quantum dots in the Kondo regime
Wölfle, Peter; Paaske, Jens; Rosch, Achim
2005-01-01
Electron transport at large bias voltage through quantum dots in the Kondo regime is described within the perturbative renormalization group extended to nonequilibrium. The conductance, local magnetization, dynamical spin susceptibility and local spectral function are calculated. We show how the ...
General relativistic effects in quantum interference of “clocks”
Zych, M.; Pikovski, I.; Costa, F.; Brukner, Č.
2016-06-01
Quantum mechanics and general relativity have been each successfully tested in numerous experiments. However, the regime where both theories are jointly required to explain physical phenomena remains untested by laboratory experiments, and is also not fully understood by theory. This contribution reviews recent ideas for a new type of experiments: quantum interference of “clocks”, which aim to test novel quantum effects that arise from time dilation. “Clock” interference experiments could be realised with atoms or photons in near future laboratory experiments.
Relativistic quantum transport theory for electrodynamics
Zhuang, P; Zhuang, P; Heinz, U
1995-01-01
We investigate the relationship between the covariant and the three-dimensional (equal-time) formulations of quantum kinetic theory. We show that the three-dimensional approach can be obtained as the energy average of the covariant formulation. We illustrate this statement in scalar and spinor QED. For scalar QED we derive Lorentz covariant transport and constraint equations directly from the Klein-Gordon equation rather than through the previously used Feshbach-Villars representation. We then consider pair production in a spatially homogeneous but time-dependent electric field and show that the pair density is derived much more easily via the energy averaging method than in the equal-time representation. Proceeding to spinor QED, we derive the covariant version of the equal-time equation derived by Bialynicki-Birula et al. We show that it must be supplemented by another self-adjoint equation to obtain a complete description of the covariant spinor Wigner operator. After spinor decomposition and energy averag...
Brunetti, G
1999-01-01
The problem of the anisotropic Inverse Compton scattering between a monochromatic photon beam and relativistic electrons is revisited and formally solved without approximations. Solutions are given for the single scattering with an electron beam and with a population of electrons isotropically distributed, under the assumption that the energy distribution of the relativistic particles follows a simple power law as it is the case in many astrophysical applications. Both the Thomson approximation and the Klein-Nishina regime are considered for the scattering of an unpolarized photon beam. The equations are obtained without the ultra-relativistic approximation and are compared with the ultra-relativistic solutions given in the literature. The main characteristics of the power distribution and spectra of the scattered radiation are discussed for relevant examples. In the Thomson case for an isotropic electron population simple formulae holding down to mildly-relativistic energies are given. As an application the ...
Quantum relativistic fluid at global thermodynamic equilibrium in curved spacetime
Becattini, F
2015-01-01
We present a new approach to the problem of the thermodynamical equilibrium of a quantum relativistic fluid in a curved spacetime in the limit of small curvature. We calculate the mean value of local operators by expanding the four-temperature Killing vector field in Riemann normal coordinates about the same spacetime point and we derive corrections with respect to the flat spacetime expressions. Thereby, we clarify the origin of the terms proportional to Riemann and Ricci tensors introduced in general hydrodynamic expansion of the stress-energy tensor.
Relativistic quantum chemistry the fundamental theory of molecular science
Reiher, Markus
2014-01-01
Einstein proposed his theory of special relativity in 1905. For a long time it was believed that this theory has no significant impact on chemistry. This view changed in the 1970s when it was realized that (nonrelativistic) Schrödinger quantum mechanics yields results on molecular properties that depart significantly from experimental results. Especially when heavy elements are involved, these quantitative deviations can be so large that qualitative chemical reasoning and understanding is affected. For this to grasp the appropriate many-electron theory has rapidly evolved. Nowadays relativist
Poincaré covariance of relativistic quantum position
Farkas, S; Weiner, M D; Farkas, Sz.
2002-01-01
A great number of problems of relativistic position in quantum mechanics are due to the use of coordinates which are not inherent objects of spacetime, cause unnecessary complications and can lead to misconceptions. We apply a coordinate-free approach to rule out such problems. Thus it will be clear, for example, that the Lorentz covariance of position, required usually on the analogy of Lorentz covariance of spacetime coordinates, is not well posed and we show that in a right setting the Newton--Wigner position is Poincar\\'e covariant, in contradiction with the usual assertions.
Relativistic and quantum electrodynamics effects in the helium pair potential.
Przybytek, M; Cencek, W; Komasa, J; Łach, G; Jeziorski, B; Szalewicz, K
2010-05-01
The helium pair potential was computed including relativistic and quantum electrodynamics contributions as well as improved accuracy adiabatic ones. Accurate asymptotic expansions were used for large distances R. Error estimates show that the present potential is more accurate than any published to date. The computed dissociation energy and the average R for the (4)He(2) bound state are 1.62+/-0.03 mK and 47.1+/-0.5 A. These values can be compared with the measured ones: 1.1(-0.2)(+0.3) mK and 52+/-4 A [R. E. Grisenti, Phys. Rev. Lett. 85, 2284 (2000)].
A finite Zitterbewegung model for relativistic quantum mechanics
Noyes, H.P.
1990-02-19
Starting from steps of length h/mc and time intervals h/mc{sup 2}, which imply a quasi-local Zitterbewegung with velocity steps {plus minus}c, we employ discrimination between bit-strings of finite length to construct a necessary 3+1 dimensional event-space for relativistic quantum mechanics. By using the combinatorial hierarchy to label the strings, we provide a successful start on constructing the coupling constants and mass ratios implied by the scheme. Agreement with experiments is surprisingly accurate. 22 refs., 1 fig.
The Quasi-Exactly Solvable Problems in Relativistic Quantum Mechanics
Liu, Li-Yan; Hao, Qing-Hai
2014-06-01
We study the quasi-exactly solvable problems in relativistic quantum mechanics. We consider the problems for the two-dimensional Klein—Gordon and Dirac equations with equal vector and scalar potentials, and try to find the general form of the quasi-exactly solvable potential. After obtaining the general form of the potential, we present several examples to give the specific forms. In the examples, we show for special parameters the harmonic potential plus Coulomb potential, Killingbeck potential and a quartic potential plus Cornell potential are quasi-exactly solvable potentials.
Estimates on Functional Integrals of Quantum Mechanics and Non-relativistic Quantum Field Theory
Bley, Gonzalo A.; Thomas, Lawrence E.
2017-01-01
We provide a unified method for obtaining upper bounds for certain functional integrals appearing in quantum mechanics and non-relativistic quantum field theory, functionals of the form {E[{exp}(A_T)]} , the (effective) action {A_T} being a function of particle trajectories up to time T. The estimates in turn yield rigorous lower bounds for ground state energies, via the Feynman-Kac formula. The upper bounds are obtained by writing the action for these functional integrals in terms of stochastic integrals. The method is illustrated in familiar quantum mechanical settings: for the hydrogen atom, for a Schrödinger operator with {1/|x|^2} potential with small coupling, and, with a modest adaptation of the method, for the harmonic oscillator. We then present our principal applications of the method, in the settings of non-relativistic quantum field theories for particles moving in a quantized Bose field, including the optical polaron and Nelson models.
Takamoto, Makoto
2016-01-01
In this Letter, we report compressible mode effects on relativistic magnetohydrodynamic (RMHD) turbulence in Poynting-dominated plasmas using 3-dimensional numerical simulations. We decomposed fluctuations in the turbulence into 3 MHD modes (fast, slow, and Alfv\\'en) following the procedure mode decomposition in (Cho & Lazarian 2002), and analyzed their energy spectra and structure functions separately. We also analyzed the ratio of compressible mode to Alfv\\'en mode energy with respect to its Mach number. We found the ratio of compressible mode increases not only with the Alfv\\'en Mach number but with the background magnetization, which indicates a strong coupling between the fast and Alfv\\'en modes and appearance of a new regime of RMHD turbulence in Poynting-dominated plasmas where the fast and Alfv\\'en modes strongly couples and cannot be distinguished, different from the non-relativistic MHD case. This finding will affect particle acceleration efficiency obtained by assuming Alfv\\'enic critical balan...
``Simplest Molecule'' Clarifies Modern Physics II. Relativistic Quantum Mechanics
Harter, William; Reimer, Tyle
2015-05-01
A ``simplest molecule'' consisting of CW- laser beam pairs helps to clarify relativity from poster board - I. In spite of a seemingly massless evanescence, an optical pair also clarifies classical and quantum mechanics of relativistic matter and antimatter. Logical extension of (x,ct) and (ω,ck) geometry gives relativistic action functions of Hamiltonian, Lagrangian, and Poincare that may be constructed in a few ruler-and-compass steps to relate relativistic parameters for group or phase velocity, momentum, energy, rapidity, stellar aberration, Doppler shifts, and DeBroglie wavelength. This exposes hyperbolic and circular trigonometry as two sides of one coin connected by Legendre contact transforms. One is Hamiltonian-like with a longitudinal rapidity parameter ρ (log of Doppler shift). The other is Lagrange-like with a transverse angle parameter σ (stellar aberration). Optical geometry gives recoil in absorption, emission, and resonant Raman-Compton acceleration and distinguishes Einstein rest mass, Galilean momentum mass, and Newtonian effective mass. (Molecular photons appear less bullet-like and more rocket-like.) In conclusion, modern space-time physics appears as a simple result of the more self-evident Evenson's axiom: ``All colors go c.''
"simplest Molecule" Clarifies Modern Physics II. Relativistic Quantum Mechanics
Reimer, T. C.; Harter, W. G.
2014-06-01
A "simplest molecule" consisting of CW-laser beam pairs helps to clarify relativity in Talk I. In spite of a seemingly massless evanescence, an optical pair also clarifies classical and quantum mechanics of relativistic matter and anti-matter. *Logical extension of (x,ct) and (ω,ck) geometry gives relativistic action functions of Hamiltonian, Lagrangian, and Poincare that may be constructed in a few ruler-and-compass steps to relate relativistic parameters for group or phase velocity, momentum, energy, rapidity, stellar aberration, Doppler shifts, and DeBroglie wavelength. This exposes hyperbolic and circular trigonometry as two sides of one coin connected by Legendre contact transforms. One is Hamiltonian-like with a longitudinal rapidity parameter ρ (log of Doppler shift). The other is Lagrange-like with a transverse angle parameter σ (stellar aberration). Optical geometry gives recoil in absorption, emission, and resonant Raman-Compton acceleration and distinguishes Einstein rest mass, Galilean momentum mass, and Newtonian effective mass. (Molecular photons appear less bullet-like and more rocket-like.) In conclusion, modern space-time physics appears as a simple result of the more self-evident Evenson's axiom: "All colors go c."
Objective realism and freedom of choice in relativistic quantum field theory
Bednorz, Adam
2016-01-01
An attempt to incorporate freedom of choice into relativistic quantum field theory is proposed. It is shown that it leads to breakdown of relativistic invariant properly defined objective realism. The argument does not rely on Bell theorem but direct analysis of invariance and positivity of objective correlations in quantum field theory.
Terahertz Quantum Plasmonics of Nanoslot Antennas in Nonlinear Regime.
Kim, Joon-Yeon; Kang, Bong Joo; Park, Joohyun; Bahk, Young-Mi; Kim, Won Tae; Rhie, Jiyeah; Jeon, Hyeongtag; Rotermund, Fabian; Kim, Dai-Sik
2015-10-14
Quantum tunneling in plasmonic nanostructures has presented an interesting aspect of incorporating quantum mechanics into classical optics. However, the study has been limited to the subnanometer gap regime. Here, we newly extend quantum plasmonics to gap widths well over 1 nm by taking advantage of the low-frequency terahertz regime. Enhanced electric fields of up to 5 V/nm induce tunneling of electrons in different arrays of ring-shaped nanoslot antennas of gap widths from 1.5 to 10 nm, which lead to a significant nonlinear transmission decrease. These observations are consistent with theoretical calculations considering terahertz-funneling-induced electron tunneling across the gap.
Effective approach to non-relativistic quantum mechanics
Jacobs, David M
2015-01-01
Boundary conditions on non-relativistic wavefunctions are generally not completely constrained by the basic precepts of quantum mechanics, so understanding the set of possible self-adjoint extensions of the Hamiltonian is required. For real physical systems, non-trivial self-adjoint extensions have been used to model contact potentials when those interactions are expected a priori. However, they must be incorporated into the effective description of any quantum mechanical system in order to capture possible short-distance physics that does not decouple in the low energy limit. Here, an approach is described wherein an artificial boundary is inserted at an intermediate scale on which boundary conditions may encode short-distance effects that are hidden behind the boundary. Using this approach, an analysis is performed of the free particle, harmonic oscillator, and Coulomb potential in three dimensions. Requiring measurable quantities, such as spectra and cross sections, to be independent of this artificial bou...
X-ray and electron generation in the relativistic lambda-cubed regime
Mordovanakis, Aghapi G.
Over the last two decades, laser-plasma interactions at relativistic intensities have been carried out using large laser facilities producing at least several hundred millijoule pulses at a repetition rate of 10 Hz or lower. A less explored regime is when intensities in excess of 1018 W/cm2 are attained by focusing millijoule-level femtosecond pulses to a spot with a diameter comparable to the laser wavelength. This so-called relativistic lambda3 regime allows the study of certain laser-plasma experiments at kilohertz repetition rate. The present dissertation contributes to the understanding of the x-ray source and hot electrons produced in this regime. The micron-sized lambda3 focus engenders a comparably sized x-ray source that could be attractive for high resolution x-ray imaging applications. With this in mind, the source size is measured for various target materials using the knife-edge technique. Furthermore, the source spatial coherence properties are investigated by analyzing the diffraction pattern off a straight edge. Also investigated are the spatial and energy distributions of hot electrons escaping the plasma. In the case of an Al plasma, the electrons have a Maxwellian-like energy distribution with a temperature that scales with (I lambda 2)0.6 in the 1017--2 x 10 18 W/cm2 intensity range. On the other hand, in the case of an SiO2 plasma with lambda/2 scale-length, the electrons are emitted in a collimated relativistic jet having a non-Maxwellian distribution with = 675 keV. This is the first demonstration of laser-generated relativistic electron beams at kilohertz repetition rate. Additionally, this dissertation reports on two pioneering demonstrations in a related but fundamentally different regime, that of high-average power fiber lasers. In the first experiment, Ni Kalpha x-rays are produced using a fiber CPA system at the intensity of 2 x 1018 W/cm 2, the highest reported to date from a fiber system. The conversion efficiency into the Kalpha
Dynamic optical hysteresis in the quantum regime
Rodriguez, S R K; Storme, F; Sagnes, I; Gratiet, L Le; Galopin, E; Lemaitre, A; Amo, A; Ciuti, C; Bloch, J
2016-01-01
For more than 40 years, optical bistability --- the existence of two stable states with different photon numbers for the same driving conditions --- has been experimentally reported. Surprisingly, the quantum theory of a single-mode nonlinear cavity always predicts a unique steady state, i.e. no bistability. To reconcile this apparent contradiction, a tunneling time for bistability has been introduced. This is a timescale over which quantum fluctuations trigger transitions between classically stable states, and which can be astronomically longer than the measurement. While quantum fluctuations ultimately forbid the static hysteresis associated with bistability, it was recently predicted that optical hysteresis should emerge dynamically for finite sweep rates of the driving intensity. This dynamic hysteresis is expected to exhibit a double power-law behavior defining a classical-to-quantum crossover. Here, by measuring the dynamic optical hysteresis of a semiconductor microcavity for various sweep rates of the...
Scattering of strong electromagnetic wave by relativistic electrons: Thomson and Compton regimes
Potylitsyn, A. P.; Kolchuzhkin, A. M.
2017-04-01
The processes of the nonlinear Compton and the nonlinear Thomson scattering in a field of intense plane electromagnetic wave in terms of photon yield have been considered. The quantum consideration of the Compton scattering process allows us to calculate the probability of a few successive collisions k of an electron with laser photons accompanied by the absorption of n photons (nonlinear regime) when the number of collisions and the number of absorbed photons are of random quantities. The photon spectrum of the nonlinear Thomson scattering process was obtained from the classical formula for intensity using the Planck's law. The conditions for which the difference between the classical and the quantum regimes is manifested was obtained. Such a condition is determined by a discrete quantum radiation mechanism, namely, by the mean number of photons k bar emitted by an electron passing through the laser pulse.
Quantum Corrections on Relativistic Mean Field Theory for Nuclear Matter
ZHANG Qi-Ren; GAO Chun-Yuan
2011-01-01
We propose a quantization procedure for the nucleon-scalar meson system, in which an arbitrary mean scalar meson field Φ is introduced.The equivalence of this procedure with the usual one is proven for any given value of Φ.By use of this procedure, the scalar meson field in the Walecka's MFA and in Chin's RHA are quantized around the mean field.Its corrections on these theories are considered by perturbation up to the second order.The arbitrariness of Φ makes us free to fix it at any stage in the calculation.When we fix it in the way of Walecka's MFA, the quantum corrections are big, and the result does not converge.When we fix it in the way of Chin's RHA, the quantum correction is negligibly small, and the convergence is excellent.It shows that RHA covers the leading part of quantum field theory for nuclear systems and is an excellent zeroth order approximation for further quantum corrections, while the Walecka's MFA does not.We suggest to fix the parameter Φ at the end of the whole calculation by minimizing the total energy per-nucleon for the nuclear matter or the total energy for the finite nucleus, to make the quantized relativistic mean field theory (QRMFT) a variational method.
Going beyond "no-pair relativistic quantum chemistry".
Liu, Wenjian; Lindgren, Ingvar
2013-07-07
The current field of relativistic quantum chemistry (RQC) has been built upon the no-pair and no-retardation approximations. While retardation effects must be treated in a time-dependent manner through quantum electrodynamics (QED) and are hence outside RQC, the no-pair approximation (NPA) has to be removed from RQC for it has some fundamental defects. Both configuration space and Fock space formulations have been proposed in the literature to do this. However, the former is simply wrong, whereas the latter is still incomplete. To resolve the old problems pertinent to the NPA itself and new problems beyond the NPA, we propose here an effective many-body (EMB) QED approach that is in full accordance with standard methodologies of electronic structure. As a first application, the full second order energy E2 of a closed-shell many-electron system subject to the instantaneous Coulomb-Breit interaction is derived, both algebraically and diagrammatically. It is shown that the same E2 can be obtained by means of 3 Goldstone-like diagrams through the standard many-body perturbation theory or 28 Feynman diagrams through the S-matrix technique. The NPA arises naturally by retaining only the terms involving the positive energy states. The potential dependence of the NPA can be removed by adding in the QED one-body counter terms involving the negative energy states, thereby leading to a "potential-independent no-pair approximation" (PI-NPA). The NPA, PI-NPA, EMB-QED, and full QED then span a continuous spectrum of relativistic molecular quantum mechanics.
Mesoscopic effects in the quantum Hall regime
R N Bhatt; Xin Wan
2002-02-01
We report results of a study of (integer) quantum Hall transitions in a single or multiple Landau levels for non-interacting electrons in disordered two-dimensional systems, obtained by projecting a tight-binding Hamiltonian to the corresponding magnetic subbands. In ﬁnite-size systems, we ﬁnd that mesoscopic effects often dominate, leading to apparent non-universal scaling behavior in higher Landau levels. This is because localization length, which grows exponentially with Landau level index, exceeds the system sizes amenable to the numerical study at present. When band mixing between multiple Landau levels is present, mesoscopic effects cause a crossover from a sequence of quantum Hall transitions for weak disorder to classical behavior for strong disorder. This behavior may be of relevance to experimentally observed transitions between quantum Hall states and the insulating phase at low magnetic ﬁelds.
Simulation of an optomechanical quantum memory in the nonlinear regime
Teh, R. Y.; Kiesewetter, S.; Reid, M. D.; Drummond, P. D.
2017-07-01
Optomechanical systems cooled to the quantum level provide a promising mechanism for a high-fidelity quantum memory that is faithful to a given temporal mode structure, and can be recovered synchronously. We carry out full, probabilistic quantum simulation of a quantum optomechanical memory, including nonlinear effects that are usually ignored. This is achieved using both the approximate truncated Wigner and the exact positive P phase-space representations. By considering the nonlinear quantum optomechanical Hamiltonian, our simulations allow us to probe the regime where the linearization approximation fails to hold. We show evidence for large spectral overlap between the quantum signal and the transfer field in typical optomechanical quantum memory experiments. Methods for eliminating this overlap to accurately recover the quantum signal are discussed. This allows us to give a complete model for the quantum storage of a coherent state. We treat the mode matching that is necessary to accurately retrieve the stored quantum state, by including the internal dynamics of the mechanical system as well as the optical system. We also include the finite switching time of the control transfer field. The fidelity for the storage of a coherent state is computed numerically using currently realistic experimental parameters in the electromechanical case. We find the expected fidelity is lower than required to demonstrate true quantum state transfers. Significant improvements in the quality factor of the cavity and mechanical systems will, however, increase the fidelity beyond the quantum threshold.
Nonlinear double Compton scattering in the full quantum regime
Mackenroth, F
2012-01-01
A detailed analysis of the process of two photon emission by an electron scattered from a high-intensity laser pulse is presented. The calculations are performed in the framework of strong-field QED and include exactly the presence of the laser field, described as a plane wave. We investigate the full quantum regime of interaction, where photon recoil plays an essential role in the emission process, and substantially alters the emitted photon spectra as compared to those in previously-studied regimes. We provide a semiclassical explanation for such differences, based on the possibility of assigning a trajectory to the electron in the laser field before and after each quantum photon emission. Our numerical results indicate the feasibility of investigating experimentally the full quantum regime of nonlinear double Compton scattering with already available plasma-based electron accelerator and laser technology.
Spectral classification of coupling regimes in the quantum Rabi model
Rossatto, Daniel Z.; Villas-Bôas, Celso J.; Sanz, Mikel; Solano, Enrique
2017-07-01
The quantum Rabi model is in the scientific spotlight due to the recent theoretical and experimental progress. Nevertheless, a full-fledged classification of its coupling regimes remains as a relevant open question. We propose a spectral classification dividing the coupling regimes into three regions based on the validity of perturbative criteria on the quantum Rabi model, which allows us the use of exactly solvable effective Hamiltonians. These coupling regimes are (i) the perturbative ultrastrong coupling regime which comprises the Jaynes-Cummings model, (ii) a region where nonperturbative ultrastrong and nonperturbative deep strong coupling regimes coexist, and (iii) the perturbative deep strong coupling regime. We show that this spectral classification depends not only on the ratio between the coupling strength and the natural frequencies of the unperturbed parts, but also on the energy to which the system can access. These regimes additionally discriminate the completely different behaviors of several static physical properties, namely the total number of excitations, the photon statistics of the field, and the cavity-qubit entanglement. Finally, we explain the dynamical properties which are traditionally associated with the deep strong coupling regime, such as the collapses and revivals of the state population, in the frame of the proposed spectral classification.
Supersymmetry in the Fractional Quantum Hall Regime
Sagi, Eran
2016-01-01
Supersymmetry (SUSY) is a symmetry transforming bosons to fermions and vice versa. Indications of its existence have been extensively sought after in high-energy experiments. However, signatures of SUSY have yet to be detected. In this manuscript we propose a condensed matter realization of SUSY on the edge of a Read-Rezayi quantum Hall state, given by filling factors of the form $\
The Semiclassical Regime of the Chaotic Quantum-Classical Transition
Greenbaum, B D; Shizume, K; Sundaram, B; Greenbaum, Benjamin D.; Habib, Salman; Shizume, Kosuke; Sundaram, Bala
2004-01-01
An analysis of the semiclassical regime of the quantum-classical transition is given for open, bounded, one dimensional chaotic dynamical systems. Previous numerical work has shown that in this regime, the results from a quantum master equation are very close to those obtained from a classical Fokker-Planck equation. We provide an explanation of these results by demonstrating that environmental noise plays the dual roles of suppressing the development of fine structure in classical phase space and damping nonlocal contributions to the semiclassical Wigner function. A numerical investigation of the chaotic Duffing oscillator supports these conclusions.
Photon mirror acceleration in the quantum regime
Mendonça, J. T., E-mail: josetitomend@gmail.com [Instituto de Física, Universidade de São Paulo, São Paulo, SP 05508-090 (Brazil); Fedele, R., E-mail: renato.fedele@na.infn.it [Dipartimento di Fisica, Universitá di Napoli Federico II and INFN Sezione di Napoli, Napoli (Italy)
2014-12-15
Reflection of an electron beam by an intense laser pulse is considered. This is the so-called photon mirror configuration for laser acceleration in vacuum, where the energy of the incident electron beam is nearly double-Doppler shifted due to reflection on the laser pulse front. A wave-electron optical description for electron reflection and resonant backscattering, due to both linear electric field force and quadratic ponderomotive force, is provided beyond the paraxial approximation. This is done by assuming that the single electron of the beam is spin-less and therefore its motion can be described by a quantum scalar field whose spatiotemporal evolution is governed by the Klein-Gordon equation (Klein-Gordon field). Our present model, not only confirms the classical results but also shows the occurrence of purely quantum effects, such as partial reflection of the incident electron beam and enhanced backscattering due to Bragg resonance.
Spacetime Dependence of Local Temperature in Relativistic Quantum Field Theory
Gransee, Michael
2016-01-01
The spacetime dependence of the inverse temperature four-vector $\\boldsymbol{\\beta}$ for certain states of the quantized Klein-Gordon field on (parts of) Minkowski spacetime is discussed. These states fulfill a recently proposed version of the Kubo-Martin-Schwinger (KMS) boundary value condition, the so-called "local KMS (LKMS) condition". It turns out that, depending on the mass parameter $m\\geq 0$, any such state can be extended either (i) to a LKMS state on some forward or backward lightcone, with $\\boldsymbol{\\beta}$ depending linearily on spacetime, or (ii) to a thermal equilibrium (KMS) state on all of Minkowski space with constant $\\boldsymbol{\\beta}$. This parallels previously known results for local thermal equilibrium (LTE) states of the quantized Klein-Gordon field. Furthermore, in the case of a massless field our results point to a discrepancy with some classic results in general approaches to (non-quantum) relativistic thermodynamics.
Ultracold Molecules: Physics in the Quantum Regime
Doyle, John [Harvard Univ., Cambridge, MA (United States). Dept. of Physics
2014-11-17
Our research encompasses approaches to the trapping of diatomic molecules at low temperature plus the cooling and detection of polyatomic molecules in the kelvin temperature regime. We have cooled and trapped CaF and/or CaH molecules, loaded directly from a molecular beam. As part of this work, we are continuing to develop an important trapping technique, optical loading from a buffer-gas beam. This method was invented in our lab. We are also studying cold polyatomic molecules and their interactions with cold atoms.
Quadratic relativistic invariant and metric form in quantum mechanics
Pissondes, Jean-Claude [DAEC, Observatoire de Paris-Meudon, Meudon (France)
1999-04-16
The Klein-Gordon equation is recovered in the framework of the theory of scale-relativity, first in the absence, then in the presence of an electromagnetic field. In this framework, spacetime at quantum scales is characterized by non-differentiability and continuity, which involves the introduction of explicit resolution-dependent fractal coordinates. Such a description leads to the notion of scale-covariance and its corresponding tool, a scale-covariant; derivative operator {theta}/ds. Due to it, the Klein-Gordon equation is written as an equation of free motion and interpreted as a geodesic equation in fractal spacetime. However, we obtain a new form for the corresponding relativistic invariant, which differs from that of special and general relativity. Characterizing quantum mechanics in the present approach, it is not simply quadratic in terms of velocities, but contains an extra term of divergence, which is intrinsically present in its expression. Moreover, in spite of the scale-covariance statements of the present theory, we find an extra term of current in addition to the Lorentz force, within the equations of motion with electromagnetic field written in this framework. Finally, we introduce another tool - a 'symmetric product' - from the requirement of recovering the usual form of the Leibniz rule written with the operator {theta}/ds. This tool allows us to write most equations in this framework in their usual classical form; in particular the simple rules of differentiation, the equations of motion with field and also our new relativistic invariant. (author)
Solved and unsolved problems in relativistic quantum chemistry
Kutzelnigg, Werner, E-mail: werner.kutzelnigg@rub.de [Lehrstuhl fuer Theoretische Chemie, Ruhr-Universitaet Bochum, D-44780 Bochum (Germany)
2012-02-20
Graphical abstract: The graphical abstract represents the Dirac-Coulomb Hamiltonian in Fock space in a diagrammatic notation. A line (vertical or slanted) with an upgoing arrow represents an eletron, with a downgoing arrow a positron. A cross in the first line means the potential created by a nucleus, a broken line represents the Coulomb interaction between electrons and positrons. Highlights: Black-Right-Pointing-Pointer Relativistic many-electron theory needs a Fock space and a field-dependent vacuum. Black-Right-Pointing-Pointer A good starting point is QED in Coulomb gauge without transversal photons. Black-Right-Pointing-Pointer The Dirac underworld picture is obsolete. Black-Right-Pointing-Pointer A kinetically balanced even-tempered Gaussian basis is complete. Black-Right-Pointing-Pointer 'Quantum chemistry in Fock space is preferable over QED. - Abstract: A hierarchy of approximations in relativistic many-electron theory is discussed that starts with the Dirac equation and its expansion in a kinetically balanced basis, via a formulation of non-interacting electrons in Fock space (which is the only consistent way to deal with negative-energy states). The most straightforward approximate Hamiltonian for interacting electrons is derived from quantum electrodynamics (QED) in Coulomb gauge with the neglect of transversal photons. This allows an exact (non-perturbative) decoupling of the electromagnetic field from the fermionic field. The electric interaction of the fermions is non-retarded and non-quantized. The quantization of the fermionic field leads to a polarizable vacuum. The simplest (but somewhat problematic) approximation is a no-pair projected theory with external-field projectors. The Dirac-Coulomb operator in configuration space (first quantization) is not acceptable, even if the Brown-Ravenhall disease is much less virulent than often claimed. Effects of transversal photons, such as the Breit interaction and renormalized self-interaction can be
Lorentz covariant reduced-density-operator theory for relativistic quantum information processing
Ahn, D; Hwang, S W; Ahn, Doyeol; Lee, Hyuk-jae; Hwang, Sung Woo
2003-01-01
In this paper, we derived Lorentz covariant quantum Liouville equation for the density operator which describes the relativistic quantum information processing from Tomonaga-Schwinger equation and an exact formal solution for the reduced-density-operator is obtained using the projector operator technique and the functional calculus. When all the members of the family of the hypersurfaces become flat hyperplanes, it is shown that our results agree with those of non-relativistic case which is valid only in some specified reference frame. The formulation presented in this work is general and might be applied to related fields such as quantum electrodynamics and relativistic statistical mechanics.
Semi-relativistic hydrodynamics of three-dimensional and low-dimensional quantum plasma
Andreev, Pavel; Kuz'menkov, Leonid
2014-01-01
Contributions of the current-current and Darwin interactions and weak-relativistic addition to kinetic energy in the quantum hydrodynamic equations are considered. Features of hydrodynamic equations for two-dimensional layer of plasma (two-dimensional electron gas for instance) are described. It is shown that the force fields caused by the Darwin interaction and weak-relativistic addition to kinetic energy are partially reduced. Dispersion of three- and two-dimensional semi-relativistic Langmuir waves is calculated.
Local thermodynamical equilibrium and the β frame for a quantum relativistic fluid
Becattini, Francesco; Bucciantini, Leda; Grossi, Eduardo; Tinti, Leonardo
2015-01-01
We discuss the concept of local thermodynamical equilibrium in relativistic hydrodynamics in flat spacetime in a quantum statistical framework without an underlying kinetic description, suitable for strongly interacting fluids. We show that the appropriate definition of local equilibrium naturally leads to the introduction of a relativistic hydrodynamical frame in which the four-velocity vector is the one of a relativistic thermometer at equilibrium with the fluid, parallel to the inverse tem...
Quantum Error Correction in the Zeno Regime
Erez, N; Reznik, B; Vaidman, L; Erez, Noam; Aharonov, Yakir; Reznik, Benni; Vaidman, Lev
2003-01-01
In order to reduce errors, error correction codes (ECCs) need to be implemented fast. They can correct the errors corresponding to the first few orders in the Taylor expansion of the Hamiltonian of the interaction with the environment. If implemented fast enough, the zeroth order error predominates and the dominant effect is of error prevention by measurement (Zeno Effect) rather than correction. In this ``Zeno Regime'', codes with less redundancy are sufficient for protection. We describe such a simple scheme, which uses two ``noiseless'' qubits to protect a large number, $n$, of information qubits from noise from the environment. The ``noisless qubits'' can be realized by treating them as logical qubits to be encoded by one of the previously introduced encoding schemes.
Generalized One-Dimensional Point Interaction in Relativistic and Non-relativistic Quantum Mechanics
Shigehara, T; Mishima, T; Cheon, T; Cheon, Taksu
1999-01-01
We first give the solution for the local approximation of a four parameter family of generalized one-dimensional point interactions within the framework of non-relativistic model with three neighboring $\\delta$ functions. We also discuss the problem within relativistic (Dirac) framework and give the solution for a three parameter family. It gives a physical interpretation for so-called high energy substantially differ between non-relativistic and relativistic cases.
Stimulated Raman scattering in the relativistic regime in near-critical plasmas
Moreau, J G; Nuter, R; Tikhonchuk, V T
2016-01-01
Interaction of a high intensity short laser pulse with near-critical plasmas allows to achieve extremely high coupling efficiency and transfer laser energy to energetic ions. One dimensional Particle-In-Cell (PIC) simulations are considered to detail the processes involved in the energy transfer. A confrontation of the numerical results with the theory highlights a key role played by the process of stimulated Raman scattering in the relativistic regime. The interaction of a 1 ps laser pulse (I $\\sim$ 6.10$^{18}$ W.cm$^2$) with an under-critical (0.5 $n_c$) homogeneous plasma leads to a very high plasma absorption reaching 68 % of the laser pulse energy. This permits a homogeneous electron heating all along the plasma and an efficient ion acceleration at the plasma edges and in cavities.
Experimental investigations of synchrotron radiation at the onset of the quantum regime
Andersen, Kristoffer K; Knudsen, H; Thomsen, H D; Uggerhøj, U I; Sona, P; Mangiarotti, A; Ketel, T J; Dizdar, A; Ballestrero, S
2012-01-01
The classical description of synchrotron radiation fails at large Lorentz factors, $\\gamma$, for relativistic electrons crossing strong transverse magnetic fields $B$. In the rest frame of the electron this field is comparable to the so-called critical field $B_0 = 4.414\\cdot10^9$ T. For $\\chi = \\gamma B/B_0 \\simeq 1$ quantum corrections are essential for the description of synchrotron radiation to conserve energy. With electrons of energies 10-150 GeV penetrating a germanium single crystal along the $$ axis, we have experimentally investigated the transition from the regime where classical synchrotron radiation is an adequate description, to the regime where the emission drastically changes character; not only in magnitude, but also in spectral shape. The spectrum can only be described by quantum synchrotron radiation formulas. Apart from being a test of strong-field quantum electrodynamics, the experimental results are also relevant for the design of future linear colliders where beamstrahlung - a closely r...
Introduction to relativistic statistical mechanics classical and quantum
Hakim, Rémi
2011-01-01
This is one of the very few books focusing on relativistic statistical mechanics, and is written by a leading expert in this special field. It started from the notion of relativistic kinetic theory, half a century ago, exploding into relativistic statisti
Quantum mechanics in noninertial reference frames: Relativistic accelerations and fictitious forces
Klink, W.H., E-mail: william-klink@uiowa.edu [Department of Physics and Astronomy, University of Iowa, Iowa City, IA 52242 (United States); Wickramasekara, S., E-mail: wickrama@grinnell.edu [Department of Physics, Grinnell College, Grinnell, IA 50112 (United States)
2016-06-15
One-particle systems in relativistically accelerating reference frames can be associated with a class of unitary representations of the group of arbitrary coordinate transformations, an extension of the Wigner–Bargmann definition of particles as the physical realization of unitary irreducible representations of the Poincaré group. Representations of the group of arbitrary coordinate transformations become necessary to define unitary operators implementing relativistic acceleration transformations in quantum theory because, unlike in the Galilean case, the relativistic acceleration transformations do not themselves form a group. The momentum operators that follow from these representations show how the fictitious forces in noninertial reference frames are generated in quantum theory.
Direct Observation of Spatial Quantum Correlations in the Macroscopic Regime
Kumar, Ashok; Marino, A M
2016-01-01
Spatial quantum correlations in the transverse degree of freedom promise to enhance optical resolution, image detection, and quantum communications through parallel quantum information encoding. In particular, the ability to observe these spatial quantum correlations in a single shot will enable such enhancements in applications that require real time imaging, such as particle tracking and in-situ imaging of atomic systems. Here, we report on the direct measurement of spatial quantum correlations in the macroscopic regime in single images using an electron-multiplying charge-coupled device camera. A four-wave mixing process in hot rubidium atoms is used to generate narrowband-bright-entangled pulsed twin-beams of light with $\\sim10^8$ photons in each beam. Owing to momentum conservation in this process, the twin-beams are momentum correlated, which leads to spatial quantum correlations in far field. We show around 2 dB of spatial quantum noise reduction with respect to the shot noise limit. The spatial squeez...
Disorder-assisted quantum transport in suboptimal decoherence regimes.
Novo, Leonardo; Mohseni, Masoud; Omar, Yasser
2016-01-04
We investigate quantum transport in binary tree structures and in hypercubes for the disordered Frenkel-exciton Hamiltonian under pure dephasing noise. We compute the energy transport efficiency as a function of disorder and dephasing rates. We demonstrate that dephasing improves transport efficiency not only in the disordered case, but also in the ordered one. The maximal transport efficiency is obtained when the dephasing timescale matches the hopping timescale, which represent new examples of the Goldilocks principle at the quantum scale. Remarkably, we find that in weak dephasing regimes, away from optimal levels of environmental fluctuations, the average effect of increasing disorder is to improve the transport efficiency until an optimal value for disorder is reached. Our results suggest that rational design of the site energies statistical distributions could lead to better performances in transport systems at nanoscale when their natural environments are far from the optimal dephasing regime.
Strong Coulomb Coupling in Relativistic Quantum Constraint Dynamics
Bawin, M.; Cugnon, J.; Sazdjian, H.
We study, in the framework of relativistic quantum constraint dynamics, the bound state problem of two oppositely charged spin 1/2 particles, with masses m1 and m2, in mutual electromagnetic interaction. We search for the critical value of the coupling constant α for which the bound state energy reaches the lower continuum, thus indicating the instability of the heavier particle or of the strongly coupled QED vacuum in the equal mass case. Two different choices of the electromagnetic potential are considered, corresponding to different extensions of the substitution rule into the nonperturbative region of α: (i) the Todorov potential, already introduced in the quasipotential approach and used by Crater and Van Alstine in Constraint Dynamics; (ii) a second potential (potential II), characterized by a regular behavior at short distances. For the Todorov potential we find that for m2>m1 there is always a critical value αc of α, depending on m2/m1, for which instability occurs. In the equal mass case, instability is reached at αc=1/2 with a vanishing value of the cutoff radius, generally needed for this potential at short distances. For potential II, on the other hand, we find that instability occurs only for m2>2.16 m1.
On kaonic deuterium. Quantum field theoretic and relativistic covariant approach
Ivanov, A N; Faber, M; Fuhrmann, H; Ivanova, V A; Marton, J; Troitskaya, N I; Zmeskal, J
2004-01-01
We study kaonic deuterium, the bound K^-d state A_{K d}. Within a quantum field theoretic and relativistic covariant approach we derive the energy level displacement of the ground state of kaonic deuterium in terms of the amplitude of K^-d scattering for arbitrary relative momenta. Near threshold our formula reduces to the well-known DGBT formula. The S-wave amplitude of K^-d scattering near threshold is defined by the resonances Lambda(1405), Sigma(1750) and a smooth elastic background, and the inelastic channels K^- d -> NY and K^- d -> NY pion, with Y = Sigma^{+/-}, Sigma^0 and Lambda^0, where the final-state interactions play an important role. The Ericson-Weise formula for the S-wave scattering length of K^-d scattering is derived. The total width of the energy level of the ground state of kaonic deuterium is estimated using the theoretical predictions of the partial widths of the two-body decays A_{Kd} -> NY and experimental data on the rates of the NY-pair production in the reactions K^-d -> NY. We obt...
On kaonic hydrogen. Quantum field theoretic and relativistic covariant approach
Ivanov, A N; Faber, M; Marton, J; Troitskaya, N I; Zmeskal, J
2003-01-01
We study kaonic hydrogen, the bound K^-p state A_(Kp). Within a quantum field theoretic and relativistic covariant approach we derive the energy level displacement of the ground state of kaonic hydrogen in terms of the amplitude of K^-p scattering for arbitrary energies. The amplitude of low-energy K^-p scattering near threshold is defined by the contributions of three resonances Lambda(1405), Lambda(1800) and Sigma^0(1750) and a smooth elastic background. The amplitudes of inelastic channels of low-energy K^-p scattering fit experimental data on near threshold behaviour of the cross sections and the experimental data by the DEAR Collaboration. We use the soft-pion technique (leading order in Chiral Perturbation Theory) for the calculate of the partial width of the radiative decay of pionic hydrogen A_(pi p) -> n + gamma and the Panofsky ratio. The theoretical prediction for the Panofsky ratio agrees well with experimental data. We apply the soft-kaon technique (leading order in Chiral Perturbation Theory) to...
On kaonic hydrogen. Quantum field theoretic and relativistic covariant approach
Ivanov, A. N.; Cargnelli, M.; Faber, M.; Marton, J.; Troitskaya, N. I.; Zmeskal, J.
2004-07-01
We study kaonic hydrogen, the bound K - p state A K p . Within a quantum field theoretic and relativistic covariant approach we derive the energy level displacement of the ground state of kaonic hydrogen in terms of the amplitude of K - p scattering for arbitrary relative momenta. The amplitude of low-energy K - p scattering near threshold is defined by the contributions of three resonances Λ(1405), Λ(1800) and Σ^0(1750) and a smooth elastic background. The amplitudes of inelastic channels of low-energy K - p scattering fit experimental data on the near-threshold behaviour of the cross-sections and the experimental data by the DEAR Collaboration. We use the soft-pion technique (leading order in Chiral Perturbation Theory) for the calculation of the partial width of the radiative decay of pionic hydrogen A_{π p} to n + γ and the Panofsky ratio. The theoretical prediction for the Panofsky ratio agrees well with experimental data. We apply the soft-kaon technique (leading order in Chiral Perturbation Theory) to the calculation of the partial widths of radiative decays of kaonic hydrogen A_{Kp} to Λ^0 + γ and A_{K p} to Σ^0 + γ. We show that the contribution of these decays to the width of the energy level of the ground state of kaonic hydrogen is less than 1%.
Quantum Zeno Effect in the Strong Measurement Regime of Circuit Quantum Electrodynamics
2016-05-17
we report the direct observation of theQZE in a superconducting qubit undergoing continuous strongmeasurement with simultaneous qubit driving...New J. Phys. 18 (2016) 053031 doi:10.1088/1367-2630/18/5/053031 PAPER Quantum Zeno effect in the strongmeasurement regime of circuit quantum...of quantum jumps between states for a qubit beingmeasured continuously at rate Gm is the same as that for a qubit undergoing discretemeasurements at
董宇兵; 王翼展
2011-01-01
The transverse charge density of pions is calculated based on relativistic quantum mechanics, where the pion is regarded as a quark-antiquark bound state. Corrections from the two spin-1/2 constituents and from the wave function of a quark and antiquark i
Acceleration of positrons by a relativistic electron beam in the presence of quantum effects
Niknam, A. R. [Laser and Plasma Research Institute, Shahid Beheshti University, G.C., Tehran (Iran, Islamic Republic of); Aki, H.; Khorashadizadeh, S. M. [Physics Department, Birjand University, Birjand (Iran, Islamic Republic of)
2013-09-15
Using the quantum magnetohydrodynamic model and obtaining the dispersion relation of the Cherenkov and cyclotron waves, the acceleration of positrons by a relativistic electron beam is investigated. The Cherenkov and cyclotron acceleration mechanisms of positrons are compared together. It is shown that growth rate and, therefore, the acceleration of positrons can be increased in the presence of quantum effects.
Fernandez, Juan C.
2016-10-01
Laser-plasma interactions in the novel regime of relativistically-induced transparency have been harnessed to generate efficiently intense ion beams with average energies exceeding 10 MeV/nucleon (>100 MeV for protons) at ``table-top'' scales. We have discovered and utilized a self-organizing scheme that exploits persisting self-generated plasma electric ( 0.1 TV/m) and magnetic ( 104 Tesla) fields to reduce the ion-energy (Ei) spread after the laser exits the plasma, thus separating acceleration from spread reduction. In this way we routinely generate aluminum and carbon beams with narrow spectral peaks at Ei up to 310 MeV and 220 MeV, respectively, with high efficiency ( 5%). The experimental demonstration has been done at the LANL Trident laser with 0.12 PW, high-contrast, 0.65 ps Gaussian laser pulses irradiating planar foils up to 250 nm thick. In this regime, Ei scales empirically with laser intensity (I) as I 1 / 2. Our progress is enabled by high-fidelity, massive computer simulations of the experiments. This work advances next-generation compact accelerators suitable for new applications. E . g ., a carbon beam with Ei 400 MeV and 10% energy spread is suitable for fast ignition (FI) of compressed DT. The observed scaling suggests that is feasible with existing target fabrication and PW-laser technologies, using a sub-ps laser pulse with I 2.5 ×1021 W/cm2. These beams have been used on Trident to generate warm-dense matter at solid-densities, enabling us to investigate its equation of state and mixing of heterogeneous interfaces purely by plasma effects distinct from hydrodynamics. They also drive an intense neutron-beam source with great promise for important applications such as active interrogation of shielded nuclear materials. Considerations on controlling ion-beam divergence for their increased utility are discussed. Funded by the LANL LDRD program.
Laser-plasmas in the relativistic-transparency regime: Science and applications
Fernández, Juan C.; Cort Gautier, D.; Huang, Chengkung; Palaniyappan, Sasikumar; Albright, Brian J.; Bang, Woosuk; Dyer, Gilliss; Favalli, Andrea; Hunter, James F.; Mendez, Jacob; Roth, Markus; Swinhoe, Martyn; Bradley, Paul A.; Deppert, Oliver; Espy, Michelle; Falk, Katerina; Guler, Nevzat; Hamilton, Christopher; Hegelich, Bjorn Manuel; Henzlova, Daniela; Ianakiev, Kiril D.; Iliev, Metodi; Johnson, Randall P.; Kleinschmidt, Annika; Losko, Adrian S.; McCary, Edward; Mocko, Michal; Nelson, Ronald O.; Roycroft, Rebecca; Santiago Cordoba, Miguel A.; Schanz, Victor A.; Schaumann, Gabriel; Schmidt, Derek W.; Sefkow, Adam; Shimada, Tsutomu; Taddeucci, Terry N.; Tebartz, Alexandra; Vogel, Sven C.; Vold, Erik; Wurden, Glen A.; Yin, Lin
2017-05-01
Laser-plasma interactions in the novel regime of relativistically induced transparency (RIT) have been harnessed to generate intense ion beams efficiently with average energies exceeding 10 MeV/nucleon (>100 MeV for protons) at "table-top" scales in experiments at the LANL Trident Laser. By further optimization of the laser and target, the RIT regime has been extended into a self-organized plasma mode. This mode yields an ion beam with much narrower energy spread while maintaining high ion energy and conversion efficiency. This mode involves self-generation of persistent high magnetic fields (˜104 T, according to particle-in-cell simulations of the experiments) at the rear-side of the plasma. These magnetic fields trap the laser-heated multi-MeV electrons, which generate a high localized electrostatic field (˜0.1 T V/m). After the laser exits the plasma, this electric field acts on a highly structured ion-beam distribution in phase space to reduce the energy spread, thus separating acceleration and energy-spread reduction. Thus, ion beams with narrow energy peaks at up to 18 MeV/nucleon are generated reproducibly with high efficiency (≈5%). The experimental demonstration has been done with 0.12 PW, high-contrast, 0.6 ps Gaussian 1.053 μm laser pulses irradiating planar foils up to 250 nm thick at 2-8 × 1020 W/cm2. These ion beams with co-propagating electrons have been used on Trident for uniform volumetric isochoric heating to generate and study warm-dense matter at high densities. These beam plasmas have been directed also at a thick Ta disk to generate a directed, intense point-like Bremsstrahlung source of photons peaked at ˜2 MeV and used it for point projection radiography of thick high density objects. In addition, prior work on the intense neutron beam driven by an intense deuterium beam generated in the RIT regime has been extended. Neutron spectral control by means of a flexible converter-disk design has been demonstrated, and the neutron beam has
KRISHNA KUMAR SONI; K P MAHESHWARI
2016-11-01
We present a study of the effect of laser pulse temporal profile on the energy/momentum acquired by the ions as a result of the ultraintense laser pulse focussed on a thin plasma layer in the radiation pressuredominant(RPD) regime. In the RPD regime, the plasma foil is pushed by ultraintense laser pulse when the radiation cannot propagate through the foil, while the electron and ion layers move together. The nonlinear character of laser–matter interaction is exhibited in the relativistic frequency shift, and also change in the wave amplitude as the EM wave gets reflected by the relativistically moving thin dense plasma layer. Relativistic effects in a highenergy plasma provide matching conditions that make it possible to exchange very effectively ordered kineticenergy and momentum between the EM fields and the plasma. When matter moves at relativistic velocities, the efficiency of the energy transfer from the radiation to thin plasma foil is more than 30% and in ultrarelativisticcase it approaches one. The momentum/energy transfer to the ions is found to depend on the temporal profile of the laser pulse. Our numerical results show that for the same laser and plasma parameters, a Lorentzian pulse canaccelerate ions upto 0.2 GeV within 10 fs which is 1.5 times larger than that a Gaussian pulse can.
Quantum Geometry: Relativistic energy approach to cooperative electron-nucleary-transition spectrum
Ольга Юрьевна Хецелиус
2014-11-01
Full Text Available An advanced relativistic energy approach is presented and applied to calculating parameters of electron-nuclear 7-transition spectra of nucleus in the atom. The intensities of the spectral satellites are defined in the relativistic version of the energy approach (S-matrix formalism, and gauge-invariant quantum-electrodynamical perturbation theory with the Dirac-Kohn-Sham density-functional zeroth approximation.
Donker, H. C.; Katsnelson, M. I.; De Raedt, H.; Michielsen, K.
2016-09-01
The logical inference approach to quantum theory, proposed earlier De Raedt et al. (2014), is considered in a relativistic setting. It is shown that the Klein-Gordon equation for a massive, charged, and spinless particle derives from the combination of the requirements that the space-time data collected by probing the particle is obtained from the most robust experiment and that on average, the classical relativistic equation of motion of a particle holds.
Salazar-Ramírez, M.; Ojeda-Guillén, D.; Mota, R. D.
2016-09-01
We study a relativistic quantum particle in cosmic string spacetime in the presence of a magnetic field and a Coulomb-type scalar potential. It is shown that the radial part of this problem possesses the su(1 , 1) symmetry. We obtain the energy spectrum and eigenfunctions of this problem by using two algebraic methods: the Schrödinger factorization and the tilting transformation. Finally, we give the explicit form of the relativistic coherent states for this problem.
Quantum Monte Carlo studies of relativistic effects in light nuclei
Forest, J. L.; Pandharipande, V. R.; Arriaga, A.
1999-07-01
Relativistic Hamiltonians are defined as the sum of relativistic one-body kinetic energy, two- and three-body potentials, and their boost corrections. In this work we use the variational Monte Carlo method to study two kinds of relativistic effects in 3H and 4He, using relativistic Hamiltonians. The first is due to the nonlocalities in the relativistic kinetic energy and relativistic one-pion exchange potential (OPEP), and the second is from boost interaction. The OPEP contribution is reduced by ~15% by the relativistic nonlocality, which may also have significant effects on pion exchange currents. However, almost all of this reduction is canceled by changes in the kinetic energy and other interaction terms, and the total effect of the nonlocalities on the binding energy is very small. The boost interactions, on the other hand, give repulsive contributions of ~0.4 (1.9) MeV in 3H (4He) and account for ~37% of the phenomenological part of the three-nucleon interaction needed in the nonrelativistic Hamiltonians. The wave functions of nuclei are not significantly changed by these effects.
Relativistic (SR-ZORA) quantum theory of atoms in molecules properties.
Anderson, James S M; Rodríguez, Juan I; Ayers, Paul W; Götz, Andreas W
2017-01-15
The Quantum Theory of Atoms in Molecules (QTAIM) is used to elucidate the effects of relativity on chemical systems. To do this, molecules are studied using density-functional theory at both the nonrelativistic level and using the scalar relativistic zeroth-order regular approximation. Relativistic effects on the QTAIM properties and topology of the electron density can be significant for chemical systems with heavy atoms. It is important, therefore, to use the appropriate relativistic treatment of QTAIM (Anderson and Ayers, J. Phys. Chem. 2009, 115, 13001) when treating systems with heavy atoms. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Generalized quantum similarity in atomic systems: A quantifier of relativistic effects
Martín, A. L.; Angulo, J. C.; Antolín, J.; López-Rosa, S.
2017-02-01
Quantum similarity between Hartree-Fock and Dirac-Fock electron densities reveals the depth of relativistic effects on the core and valence regions in atomic systems. The results emphasize the relevance of differences in the outermost subshells, as pointed out in recent studies by means of Shannon-like functionals. In this work, a generalized similarity functional allows us to go far beyond the Shannon-based analyses. The numerical results for systems throughout the Periodic Table show that discrepancies between the relativistic and non-relativistic descriptions are patently governed by shell-filling patterns.
Conductance of a quantum wire in the Wigner crystal regime
Matveev, K. A.
2003-01-01
We study the effect of Coulomb interactions on the conductance of a single-mode quantum wire connecting two bulk leads. When the density of electrons in the wire is very low, they arrange in a finite-length Wigner crystal. In this regime the electron spins form an antiferromagnetic Heisenberg chain with exponentially small coupling J. An electric current in the wire perturbs the spin chain and gives rise to a temperature-dependent contribution of the spin subsystem to the resistance. At low t...
Quantum tunneling at zero temperature in the strong friction regime.
Bolivar, A O
2005-01-21
In the large damping limit we derive a Fokker-Planck equation in configuration space (the so-called Smoluchowski equation) describing a Brownian particle immersed into a thermal environment and subjected to a nonlinear external force. We quantize this stochastic system and survey the problem of escape over a double-well potential barrier. Our finding is that the quantum Kramers rate does not depend on the friction coefficient at low temperatures; i.e., we predict a superfluidity phenomenon in overdamped open systems. Moreover, at zero temperature we show that the quantum escape rate does not vanish in the strong friction regime. This result, therefore, is in contrast with the work by Ankerhold et al. [Phys. Rev. Lett. 87, 086802 (2001)
Quantum resonances in reflection of relativistic electrons and positrons
Eykhorn, Yu.L.; Korotchenko, K.B. [National Research Tomsk Polytechnic University, 30, Lenin Avenue, Tomsk 634050 (Russian Federation); Pivovarov, Yu.L. [National Research Tomsk Polytechnic University, 30, Lenin Avenue, Tomsk 634050 (Russian Federation); Tomsk State University, 36, Lenin Avenue, Tomsk 634050 (Russian Federation); Takabayashi, Y. [SAGA Light Source, 8-7 Yayoigaoka, Tosu, Saga 841-0005 (Japan)
2015-07-15
Calculations based on the use of realistic potential of the system of crystallographic planes confirm earlier results on existence of resonances in reflection of relativistic electrons and positrons by the crystal surface, if the crystallographic planes are parallel to the surface.The physical reason of predicted phenomena, similar to the band structure of transverse energy levels, is connected with the Bloch form of the wave functions of electrons (positrons) near the crystallographic planes, which appears both in the case of planar channeling of relativistic electrons (positrons) and in reflection by a crystal surface. Calculations show that positions of maxima in reflection of relativistic electrons and positrons by crystal surface specifically depend on the angle of incidence with respect to the crystal surface and relativistic factor of electrons/positrons. These maxima form the Darwin tables similar to that in ultra-cold neutron diffraction.
Relativistic Quantum Thermodynamics of Ideal Gases in 2 Dimensions
Blas, H.; Pimentel, B. M.; Tomazelli, J. L.
1999-01-01
In this work we study the behavior of relativistic ideal Bose and Fermi gases in two space dimensions. Making use of polylogarithm functions we derive a closed and unified expression for their densities. It is shown that both type of gases are essentially inequivalent, and only in the non-relativistic limit the spinless and equal mass Bose and Fermi gases are equivalent as known in the literature.
Relativistic quantum thermodynamics of ideal gases in two dimensions.
Blas, H; Pimentel, B M; Tomazelli, J L
1999-11-01
In this work we study the behavior of relativistic ideal Bose and Fermi gases in two space dimensions. Making use of polylogarithm functions we derive a closed and unified expression for their densities. It is shown that both type of gases are essentially inequivalent, and only in the non-relativistic limit the spinless and equal mass Bose and Fermi gases are equivalent as known in the literature.
Exploring the propagation of relativistic quantum wavepackets in the trajectory-based formulation
Tsai, Hung-Ming
2016-01-01
In the context of nonrelativistic quantum mechanics, Gaussian wavepacket solutions of the time-dependent Schr\\"odinger equation provide useful physical insight. This is not the case for relativistic quantum mechanics, however, for which both the Klein-Gordon and Dirac wave equations result in strange and counterintuitive wavepacket behaviors, even for free-particle Gaussians. These behaviors include zitterbewegung and other interference effects. As a potential remedy, this paper explores a new trajectory-based formulation of quantum mechanics, in which the wavefunction plays no role [Phys. Rev. X, 4, 040002 (2014)]. Quantum states are represented as ensembles of trajectories, whose mutual interaction is the source of all quantum effects observed in nature---suggesting a "many interacting worlds" interpretation. It is shown that the relativistic generalization of the trajectory-based formulation results in well-behaved free-particle Gaussian wavepacket solutions. In particular, probability density is positive ...
Quantum Monte Carlo Studies of Relativistic Effects in Light Nuclei
Forest, J L; Arriaga, A
1999-01-01
Relativistic Hamiltonians are defined as the sum of relativistic one-body kinetic energy, two- and three-body potentials and their boost corrections. In this work we use the variational Monte Carlo method to study two kinds of relativistic effects in the binding energy of 3H and 4He. The first is due to the nonlocalities in the relativistic kinetic energy and relativistic one-pion exchange potential (OPEP), and the second is from boost interaction. The OPEP contribution is reduced by about 15% by the relativistic nonlocality, which may also have significant effects on pion exchange currents. However, almost all of this reduction is canceled by changes in the kinetic energy and other interaction terms, and the total effect of the nonlocalities on the binding energy is very small. The boost interactions, on the other hand, give repulsive contributions of 0.4 (1.9) MeV in 3H (4He) and account for 37% of the phenomenological part of the three-nucleon interaction needed in the nonrelativistic Hamiltonians.
Gharbi, A.; Touloum, S.; Bouda, A.
2015-04-01
We study the Klein-Gordon equation with noncentral and separable potential under the condition of equal scalar and vector potentials and we obtain the corresponding relativistic quantum Hamilton-Jacobi equation. The application of the quantum Hamilton-Jacobi formalism to the double ring-shaped Kratzer potential leads to its relativistic energy spectrum as well as the corresponding eigenfunctions.
Relativistic quantum effects of confining potentials on the Klein-Gordon oscillator
Vitória, R. L. L.; Bakke, K.
2016-02-01
The behaviour of the Klein-Gordon oscillator under the influence of linear and Coulomb-type potentials is investigated. The introduction of the scalar potentials is made by modifying the mass term of the Klein-Gordon equation, then, by searching for relativistic bound states, a particular quantum effect can be observed: a dependence of the angular frequency of the Klein-Gordon oscillator on the quantum numbers associated with the radial modes and the angular momentum. As an example, we analyse the angular frequency and the energy level associated with the ground state of the relativistic system.
Deconstructing non-dissipative non-Dirac-hermitian relativistic quantum systems
Ghosh, Pijush K
2011-01-01
A method to construct non-dissipative non-Dirac-hermitian relativistic quantum system that is isospectral with a Dirac-hermitian Hamiltonian is presented. The general technique involves a realization of the basic canonical (anti-)commutation relations involving the Dirac matrices and the bosonic degrees of freedom in terms of non-Dirac-hermitian operators, which are hermitian in a Hilbert space that is endowed with a pre-determined positive-definite metric. Several examples of exactly solvable non-dissipative non-Dirac-hermitian relativistic quantum systems are presented by establishing/employing a connection between Dirac equation and supersymmetry
Deconstructing non-dissipative non-Dirac-Hermitian relativistic quantum systems
Ghosh, Pijush K.
2011-08-01
A method to construct non-dissipative non-Dirac-Hermitian relativistic quantum system that is isospectral with a Dirac-Hermitian Hamiltonian is presented. The general technique involves a realization of the basic canonical (anti-)commutation relations involving the Dirac matrices and the bosonic degrees of freedom in terms of non-Dirac-Hermitian operators, which are Hermitian in a Hilbert space that is endowed with a pre-determined positive-definite metric. Several examples of exactly solvable non-dissipative non-Dirac-Hermitian relativistic quantum systems are presented by establishing/employing a connection between Dirac equation and supersymmetry.
Free space relativistic quantum cryptography with faint laser pulses
Molotkov, S. N.; Potapova, T. A.
2013-07-01
A new protocol for quantum key distribution through empty space is proposed. Apart from the quantum mechanical restrictions on distinguishability of non-orthogonal states, the protocol employs additional restrictions imposed by special relativity. The protocol ensures generation of a secure key even for the source generating non-strictly single-photon quantum states and for arbitrary losses in quantum communication channel.
Gate-defined graphene quantum point contact in the quantum Hall regime.
Nakaharai, S; Williams, J R; Marcus, C M
2011-07-15
We investigate transport in a gate-defined graphene quantum point contact in the quantum Hall regime. Edge states confined to the interface of p and n regions in the graphene sheet are controllably brought together from opposite sides of the sample and allowed to mix in this split-gate geometry. Among the expected quantum Hall features, an unexpected additional plateau at 0.5h/e2 is observed. We propose that chaotic mixing of edge channels gives rise to the extra plateau.
Loop Quantum Gravity and the The Planck Regime of Cosmology
Ashtekar, Abhay
2013-01-01
The very early universe provides the best arena we currently have to test quantum gravity theories. The success of the inflationary paradigm in accounting for the observed inhomogeneities in the cosmic microwave background already illustrates this point to a certain extent because the paradigm is based on quantum field theory on the curved cosmological space-times. However, this analysis excludes the Planck era because the background space-time satisfies Einstein's equations all the way back to the big bang singularity. Using techniques from loop quantum gravity, the paradigm has now been extended to a self-consistent theory from the Planck regime to the onset of inflation, covering some 11 orders of magnitude in curvature. In addition, for a narrow window of initial conditions, there are departures from the standard paradigm, with novel effects, such as a modification of the consistency relation involving the scalar and tensor power spectra and a new source for non-Gaussianities. Thus, the genesis of the lar...
Classical simulation of relativistic Zitterbewegung in photonic lattices.
Dreisow, Felix; Heinrich, Matthias; Keil, Robert; Tünnermann, Andreas; Nolte, Stefan; Longhi, Stefano; Szameit, Alexander
2010-10-01
We present the first experimental realization of an optical analog for relativistic quantum mechanics by simulating the Zitterbewegung (trembling motion) of a free Dirac electron in an optical superlattice. Our photonic setting enables a direct visualization of Zitterbewegung as a spatial oscillatory motion of an optical beam. Direct measurements of the wave packet expectation values in superlattices with tuned miniband gaps clearly show the transition from weak-relativistic to relativistic and far-relativistic regimes.
Relativistic n-body wave equations in scalar quantum field theory
Emami-Razavi, Mohsen [Centre for Research in Earth and Space Science, York University, Toronto, Ontario, M3J 1P3 (Canada)]. E-mail: mohsen@yorku.ca
2006-09-21
The variational method in a reformulated Hamiltonian formalism of Quantum Field Theory (QFT) is used to derive relativistic n-body wave equations for scalar particles (bosons) interacting via a massive or massless mediating scalar field (the scalar Yukawa model). Simple Fock-space variational trial states are used to derive relativistic n-body wave equations. The equations are shown to have the Schroedinger non-relativistic limits, with Coulombic interparticle potentials in the case of a massless mediating field and Yukawa interparticle potentials in the case of a massive mediating field. Some examples of approximate ground state solutions of the n-body relativistic equations are obtained for various strengths of coupling, for both massive and massless mediating fields.
Role of causality in ensuring unconditional security of relativistic quantum cryptography
Molotkov, S N
2001-01-01
The problem of unconditional security of quantum cryptography (i.e. the security which is guaranteed by the fundamental laws of nature rather than by technical limitations) is one of the central points in quantum information theory. We propose a relativistic quantum cryptosystem and prove its unconditional security against any eavesdropping attempts. Relativistic causality arguments allow to demonstrate the security of the system in a simple way. Since the proposed protocol does not employ collective measurements and quantum codes, the cryptosystem can be experimentally realized with the present state-of-art in fiber optics technologies. The proposed cryptosystem employs only the individual measurements and classical codes and, in addition, the key distribution problem allows to postpone the choice of the state encoding scheme until after the states are already received instead of choosing it before sending the states into the communication channel (i.e. to employ a sort of ``antedate'' coding).
Quantum-mechanical description of Lense-Thirring effect for relativistic scalar particles
Silenko, Alexander J
2014-01-01
Exact expression for the Foldy-Wouthuysen Hamiltonian of scalar particles is used for a quantum-mechanical description of the relativistic Lense-Thirring effect. The exact evolution of the angular momentum operator in the Kerr field approximated by a spatially isotropic metric is found. The quantum-mechanical description of the full Lense-Thirring effect based on the Laplace-Runge-Lenz vector is given in the nonrelativistic and weak-field approximation. Relativistic quantum-mechanical equations for the velocity and acceleration operators are obtained. The equation for the acceleration defines the Coriolis-like and centrifugal-like accelerations and presents the quantum-mechanical description of the frame-dragging effect.
Ds and relativistic quantum mechanics in one dimension
Ruijgrok, TW
2003-01-01
It is recalled that a ten year old calculation of all meson masses may explain the low value of the recently discovered Ds(2317) meson. This calculation was based on a fully relativistic quasiparticle theory, which has been applied to a large number of bound state problems and scattering processes.
Losing energy in classical, relativistic and quantum mechanics
Atkinson, David
2007-01-01
A Zenonian supertask involving an infinite number of colliding balls is considered, under the restriction that the total mass of all the balls is finite. Classical mechanics leads to the conclusion that momentum, but not necessarily energy, must be conserved. In relativistic mechanics, however, neit
Montero, M
2011-01-01
We provide a simple argument showing that, in the limit of infinite acceleration, the entanglement in a fermionic field bipartite system must be independent of the choice of Unruh modes. This implies that most tensor product structures used previously to compute field entanglement in relativistic quantum information cannot give rise to physical results.
Harder, T Mark
2016-01-01
It is shown how Fermionic material particles can emerge from a covariant formulation of the de Broglie-Bohm theory. Material particles are continuous fields, formed as the eigenvalue of the Schrodinger field operator, evaluated along a Bohmian trajectory. The motivation for this work is due to a theorem proved by Malament that states there cannot be a relativistic quantum mechanics of localizable particles.
Donker, H. C.; Katsnelson, M. I.; De Raedt, H.; Michielsen, K.
The logical inference approach to quantum theory, proposed earlier De Raedt et al. (2014), is considered in a relativistic setting. It is shown that the Klein-Gordon equation for a massive, charged, and spinless particle derives from the combination of the requirements that the space-time data
Donker, H. C.; Katsnelson, M. I.; De Raedt, H.; Michielsen, K.
2016-01-01
The logical inference approach to quantum theory, proposed earlier De Raedt et al. (2014), is considered in a relativistic setting. It is shown that the Klein-Gordon equation for a massive, charged, and spinless particle derives from the combination of the requirements that the space-time data colle
B. Julia-Diaz, H. Kamano, T.-S. H. Lee, A. Matsuyama, T. Sato, N. Suzuki
2009-04-01
Within the relativistic quantum field theory, we analyze the differences between the $\\pi N$ reaction models constructed from using (1) three-dimensional reductions of Bethe-Salpeter Equation, (2) method of unitary transformation, and (3) time-ordered perturbation theory. Their relations with the approach based on the dispersion relations of S-matrix theory are dicusssed.
Exploring the propagation of relativistic quantum wavepackets in the trajectory-based formulation
Tsai, Hung-Ming; Poirier, Bill
2016-03-01
In the context of nonrelativistic quantum mechanics, Gaussian wavepacket solutions of the time-dependent Schrödinger equation provide useful physical insight. This is not the case for relativistic quantum mechanics, however, for which both the Klein-Gordon and Dirac wave equations result in strange and counterintuitive wavepacket behaviors, even for free-particle Gaussians. These behaviors include zitterbewegung and other interference effects. As a potential remedy, this paper explores a new trajectory-based formulation of quantum mechanics, in which the wavefunction plays no role [Phys. Rev. X, 4, 040002 (2014)]. Quantum states are represented as ensembles of trajectories, whose mutual interaction is the source of all quantum effects observed in nature—suggesting a “many interacting worlds” interpretation. It is shown that the relativistic generalization of the trajectory-based formulation results in well-behaved free-particle Gaussian wavepacket solutions. In particular, probability density is positive and well-localized everywhere, and its spatial integral is conserved over time—in any inertial frame. Finally, the ensemble-averaged wavepacket motion is along a straight line path through spacetime. In this manner, the pathologies of the wave-based relativistic quantum theory, as applied to wavepacket propagation, are avoided.
A non-perturbative approach to relativistic quantum communication channels
Landulfo, Andre G S
2016-01-01
We investigate the transmission of both classical and quantum information between two arbitrary observers in globally hyperbolic spacetimes using a quantum field as a communication channel. The field is supposed to be in some arbitrary quasifree state and no choice of representation of its canonical commutation relations is made. Both sender and receiver posses some localized two-level quantum system with which they can interact with the quantum field to prepare the input and receive the output of the channel, respectively. The interaction between the two-level systems and the quantum field is such that one can trace out the field degrees of freedom exactly and thus obtain the quantum channel in a non-perturbative way. We end the paper determining the unassisted as well as the entanglement-assisted classical and quantum channel capacities.
Admittance measurements in the quantum Hall effect regime
Hernández, C., E-mail: carlos.hernandezr@unimilitar.edu.co [Departamento de Física, Universidad Militar Nueva Granada, Carrera 11 # 101-80, Bogotá D.C. (Colombia); Laboratorio de Magnetismo, Departamento de Física, Universidad de los Andes, A.A. 4976, Bogotá D.C. (Colombia); Consejo, C.; Chaubet, C. [Laboratoire Charles Coulomb L2C, Université Montpellier II, Pl. E. Bataillon, 34095 Montpellier Cedex 5 (France)
2014-11-15
In this work we present an admittance study of a two-dimensional electron gas (2DEG) in the quantum Hall effect (QHE) regime. We have studied several Hall bars in different contacts configurations in the frequency range 100 Hz–1 MHz. Our interpretation is based on the Landauer–Büttiker theory and takes into account both the capacitance and the topology of the coaxial cables which are connected to the sample holder. We show that we always observe losses through the capacitive impedance of the coaxial cables, except in the two contacts configuration in which the cable capacitance does not influence the admittance measurement of the sample. In this case, we measure the electrochemical capacitance of the 2DEG and show its dependence with the filling factor ν.
Lin, M. C.; Chang, P. C.; Lu, P. S.; Verboncoeur, J. P.
2011-10-01
Influence of ion effects on a space charge limited field emission flow has been studied systematically, by employing both analytical and numerical approaches. In our model, the field emission of electrons is described by the Fowler-Nordheim equation. The cathode plasma and surface properties are considered within the framework of an effective work function approximation. Ionization effects at the anode as well as electron space-charge effects are described by Poisson's equation coupled with the energy conservation equation including the relativistic effects. The calculations are carried out self-consistently to yield the steady states of the bipolar flow. The electric field on the cathode surface is found to be saturated due to space charge effects and is determined by the effective work function approximately. In addition, the upstream ion current bas been treated as a tuning parameter. It is found that the field emission currents in the presence of saturated ion currents can be enhanced to be nearly 1.8, 1.5, and 1.4 times of the cases with no upstream ion current in non-relativistic, intermediate, and ultra-relativistic regimes, respectively. The solutions have also been verified using 1D PIC simulations, as implemented in the OOPD1 code developed by PTSG of UC Berkeley. Work supported by the National Science Council, Taiwan, R.O.C. under Grant No. NSC 96-2112-M-030-004-MY3, National Center for Theoretical Sciences, and National Center for High-Performance Computing, Taiwan, ROC which provides the computing resources.
Moussa, P. [Commissariat a l' Energie Atomique, 91 - Saclay (France). Centre d' Etudes Nucleaires
1968-06-01
This work describes the angular analysis of reactions between particles with spin in a fully relativistic fashion. One particle states are introduced, following Wigner's method, as representations of the inhomogeneous Lorentz group. In order to perform the angular analyses, the reduction of the product of two representations of the inhomogeneous Lorentz group is studied. Clebsch-Gordan coefficients are computed for the following couplings: l-s coupling, helicity coupling, multipolar coupling, and symmetric coupling for more than two particles. Massless and massive particles are handled simultaneously. On the way we construct spinorial amplitudes and free fields; we recall how to establish convergence theorems for angular expansions from analyticity hypothesis. Finally we substitute these hypotheses to the idea of 'potential radius', which gives at low energy the usual 'centrifugal barrier' factors. The presence of such factors had never been deduced from hypotheses compatible with relativistic invariance. (author) [French] On decrit un formalisme permettant de tenir compte de l'invariance relativiste, dans l'analyse angulaire des amplitudes de reaction entre particules de spin quelconque. Suivant Wigner, les etats a une particule sont introduits a l'aide des representations du groupe de Lorentz inhomogene. Pour effectuer les analyses angulaires, on etudie la reduction du produit de deux representations du groupe de Lorentz inhomogene. Les coefficients de Clebsch-Gordan correspondants sont calcules dans les couplages suivants: couplage l-s couplage d'helicite, couplage multipolaire, couplage symetrique pour plus de deux particules. Les particules de masse nulle et de masse non nulle sont traitees simultanement. Au passage, on introduit les amplitudes spinorielles et on construit les champs libres, on rappelle comment des hypotheses d'analyticite permettent d'etablir des theoremes de convergence pour les
Interacting relativistic quantum dynamics for multi-time wave functions
Lienert Matthias
2016-01-01
Full Text Available In this paper, we report on recent progress about a rigorous and manifestly covariant interacting model for two Dirac particles in 1+1 dimensions [9, 10]. It is formulated using the multi-time formalism of Dirac, Tomonaga and Schwinger. The mechanism of interaction is a relativistic generalization of contact interactions, and it is achieved going beyond the usual functional-analytic Hamiltonian method.
Interacting relativistic quantum dynamics for multi-time wave functions
Lienert, Matthias
2016-11-01
In this paper, we report on recent progress about a rigorous and manifestly covariant interacting model for two Dirac particles in 1+1 dimensions [9, 10]. It is formulated using the multi-time formalism of Dirac, Tomonaga and Schwinger. The mechanism of interaction is a relativistic generalization of contact interactions, and it is achieved going beyond the usual functional-analytic Hamiltonian method.
Weakly nonlinear ion-acoustic excitations in a relativistic model for dense quantum plasma.
Behery, E E; Haas, F; Kourakis, I
2016-02-01
The dynamics of linear and nonlinear ionic-scale electrostatic excitations propagating in a magnetized relativistic quantum plasma is studied. A quantum-hydrodynamic model is adopted and degenerate statistics for the electrons is taken into account. The dispersion properties of linear ion acoustic waves are examined in detail. A modified characteristic charge screening length and "sound speed" are introduced, for relativistic quantum plasmas. By employing the reductive perturbation technique, a Zakharov-Kuznetzov-type equation is derived. Using the small-k expansion method, the stability profile of weakly nonlinear slightly supersonic electrostatic pulses is also discussed. The effect of electron degeneracy on the basic characteristics of electrostatic excitations is investigated. The entire analysis is valid in a three-dimensional as well as in two-dimensional geometry. A brief discussion of possible applications in laboratory and space plasmas is included.
Certified Randomness from a Two-Level System in a Relativistic Quantum Field
Thinh, Le Phuc; Martin-Martinez, Eduardo
2016-01-01
Randomness is an indispensable resource in modern science and information technology. Fortunately, an experimentally simple procedure exists to generate randomness with well-characterized devices: measuring a quantum system in a basis complementary to its preparation. Towards realizing this goal one may consider using atoms or superconducting qubits, promising candidates for quantum information processing. However, their unavoidable interaction with the electromagnetic field affects their dynamics. At large time scales, this can result in decoherence. Smaller time scales in principle avoid this problem, but may not be well analysed under the usual rotating wave and single-mode approximation (RWA and SMA) which break the relativistic nature of quantum field theory. Here, we use a fully relativistic analysis to quantify the information that an adversary with access to the field could get on the result of an atomic measurement. Surprisingly, we find that the adversary's guessing probability is not minimized for ...
Superpersistent currents and whispering gallery modes in relativistic quantum chaotic systems.
Xu, Hongya; Huang, Liang; Lai, Ying-Cheng; Grebogi, Celso
2015-03-11
Persistent currents (PCs), one of the most intriguing manifestations of the Aharonov-Bohm (AB) effect, are known to vanish for Schrödinger particles in the presence of random scatterings, e.g., due to classical chaos. But would this still be the case for Dirac fermions? Addressing this question is of significant value due to the tremendous recent interest in two-dimensional Dirac materials. We investigate relativistic quantum AB rings threaded by a magnetic flux and find that PCs are extremely robust. Even for highly asymmetric rings that host fully developed classical chaos, the amplitudes of PCs are of the same order of magnitude as those for integrable rings, henceforth the term superpersistent currents (SPCs). A striking finding is that the SPCs can be attributed to a robust type of relativistic quantum states, i.e., Dirac whispering gallery modes (WGMs) that carry large angular momenta and travel along the boundaries. We propose an experimental scheme using topological insulators to observe and characterize Dirac WGMs and SPCs, and speculate that these features can potentially be the base for a new class of relativistic qubit systems. Our discovery of WGMs in relativistic quantum systems is remarkable because, although WGMs are common in photonic systems, they are relatively rare in electronic systems.
Radiative decays $V\\rightarrow P\\gamma^{*}$ in the instant form of relativistic quantum mechanics
Krutov, Alexander; Troitsky, Vadim
2016-01-01
Calculations of form factor for the radiative decays $V\\rightarrow P\\gamma^{*}$ process are performed in the framework of an instant form of relativistic quantum mechanics. The electromagnetic current operator for this decay is constructed. The transition form factor is obtained in the so called relativistic modified impulse approximation (MIA). The current operator satisfies the conditions of Lorentz-covariance and current conservation in MIA. The results of the calculations are compared with the analogous results in the light-front dynamics and in the model of vector meson dominance
Relativistic regimes for dispersive shock-waves in non-paraxial nonlinear optics
Gentilini, Silvia; Conti, Claudio
2014-01-01
We investigate the effect of non-paraxiality in the dynamics of dispersive shock waves in the defocusing nonlinear Schroedinger equation. We show that the problem can be described in terms of a relativistic particle moving in a potential. Lowest order corrections enhance the wave-breaking and impose a limit to the highest achievable spectrum in an amount experimentally testable.
Tachyonic quantum densities of relativistic electron plasmas: Cherenkov spectra of γ-ray pulsars
Tomaschitz, Roman, E-mail: tom@geminga.org
2014-06-27
Tachyonic Cherenkov radiation in second quantization can explain the subexponential spectral tails of GeV γ-ray pulsars (Crab pulsar, PSR J1836+5925, PSR J0007+7303, PSR J2021+4026) recently observed with the Fermi-LAT, VERITAS and MAGIC telescopes. The radiation is emitted by a thermal ultra-relativistic electron plasma. The Cherenkov effect is derived from a Maxwell–Proca field with negative mass-square in a dispersive spacetime. The frequency variation of the tachyon mass results in exp(−β{sup ^}ω{sup 1−ρ}) attenuation of the asymptotic Cherenkov energy flux, where β{sup ^} is a decay constant related to the electron temperature and ρ is the frequency scaling exponent of the tachyon mass. An exponent in the range 0<ρ<1 can reproduce the observed subexponential decay of the energy flux. For the Crab pulsar, we find ρ=0.81±0.02, inferred from the substantially weaker-than-exponential decay of its spectral tail measured by MAGIC over an extended energy range. The scaling exponent ρ determines whether the group velocity of the tachyonic γ-rays is sub- or superluminal. - Highlights: • Quantized tachyonic Cherenkov densities lead to subexponential spectral decay. • γ-Ray spectral fits to Crab pulsar, PSR J1836+5925, PSR J0007+7303, PSR J2021+4026. • The polarization of γ-rays is analyzed in the quasiclassical regime and quantum limit. • Three degrees of polarization due to the negative mass-square of the Maxwell–Proca field. • Weibull decay of spectral tails caused by frequency scaling of the tachyon mass.
Ionization and bound-state relativistic quantum dynamics in laser-driven multiply charged ions
Hetzheim, Henrik
2009-01-14
The interaction of ultra-strong laser fields with multiply charged hydrogen-like ions can be distinguished in an ionization and a bound dynamics regime. Both are investigated by means of numerically solving the Dirac equation in two dimensions and by a classical relativistic Monte-Carlo simulation. For a better understanding of highly nonlinear physical processes the development of a well characterized ultra-intense relativistic laser field strength has been driven forward, capable of studying e.g. the magnetic field effects of the laser resulting in an additional electron motion in the laser propagation direction. A novel method to sensitively measure these ultra-strong laser intensities is developed and employed from the optical via the UV towards the XUV frequency regime. In the bound dynamics field, the determination of multiphoton transition matrixelements has been investigated between different bound states via Rabi oscillations. (orig.)
Local Thermal Equilibrium States in Relativistic Quantum Field Theory
Gransee, Michael
2016-01-01
It is well-known that thermal equilibrium states in quantum statistical mechanics and quantum field theory can be described in a mathematically rigorous manner by means of the so-called Kubo-Martin-Schwinger (KMS) condition, which is based on certain analyticity and periodicity properties of correlation functions. On the other hand, the characterization of non-equilibrium states which only locally have thermal properties still constitutes a challenge in quantum field theory. We discuss a recent proposal for characterization of such states by a generalized KMS condition. The connection of this proposal to a proposal by D. Buchholz, I. Ojima and H.-J. Roos for characterizing local thermal equilibrium states in quantum field theory is discussed.
Construction of relativistic quantum theory: a progress report
Noyes, H.P.
1986-06-01
We construct the particulate states of quantum physics using a recursive computer program that incorporates non-determinism by means of locally arbitrary choices. Quantum numbers and coupling constants arise from the construction via the unique 4-level combinatorial hierarchy. The construction defines indivisible quantum events with the requisite supraluminal correlations, yet does not allow supraluminal communication. Measurement criteria incorporate c, h-bar and m/sub p/ or (not ''and'') G, connected to laboratory events via finite particle number scattering theory and the counter paradigm. The resulting theory is discrete throughout, contains no infinities, and, as far as we have developed it, is in agreement with quantum mechanical and cosmological fact.
Quantum interferometric visibility as a witness of general relativistic proper time.
Zych, Magdalena; Costa, Fabio; Pikovski, Igor; Brukner, Časlav
2011-10-18
Current attempts to probe general relativistic effects in quantum mechanics focus on precision measurements of phase shifts in matter-wave interferometry. Yet, phase shifts can always be explained as arising because of an Aharonov-Bohm effect, where a particle in a flat space-time is subject to an effective potential. Here we propose a quantum effect that cannot be explained without the general relativistic notion of proper time. We consider interference of a 'clock'-a particle with evolving internal degrees of freedom-that will not only display a phase shift, but also reduce the visibility of the interference pattern. According to general relativity, proper time flows at different rates in different regions of space-time. Therefore, because of quantum complementarity, the visibility will drop to the extent to which the path information becomes available from reading out the proper time from the 'clock'. Such a gravitationally induced decoherence would provide the first test of the genuine general relativistic notion of proper time in quantum mechanics.
Local thermodynamical equilibrium and the β frame for a quantum relativistic fluid
Becattini, Francesco; Grossi, Eduardo [Universita di Firenze, Florence (Italy); INFN, Florence (Italy); Bucciantini, Leda [Dipartimento di Fisica, Universita di Pisa (Italy); INFN, Pisa (Italy); Tinti, Leonardo [Jan Kochanowski University, Kielce (Poland)
2015-05-15
We discuss the concept of local thermodynamical equilibrium in relativistic hydrodynamics in flat spacetime in a quantum statistical framework without an underlying kinetic description, suitable for strongly interacting fluids. We show that the appropriate definition of local equilibrium naturally leads to the introduction of a relativistic hydrodynamical frame in which the four-velocity vector is the one of a relativistic thermometer at equilibrium with the fluid, parallel to the inverse temperature four-vector β, which then becomes a primary quantity. We show that this frame is the most appropriate for the expansion of the stress-energy tensor from local thermodynamical equilibrium and that therein the local laws of thermodynamics take on their simplest form. We discuss the difference between the β frame and Landau frame and present an instance where they differ. (orig.)
Local thermodynamical equilibrium and the β frame for a quantum relativistic fluid
Becattini, Francesco, E-mail: becattini@fi.infn.it [Università di Firenze and INFN Sezione di Firenze, Florence (Italy); Bucciantini, Leda, E-mail: leda.bucciantini@df.unipi.it [Dipartimento di Fisica dell’Università di Pisa and INFN, 56127, Pisa (Italy); Grossi, Eduardo, E-mail: grossi@fi.infn.it [Università di Firenze and INFN Sezione di Firenze, Florence (Italy); Tinti, Leonardo, E-mail: dr.leonardo.tinti@gmail.com [Jan Kochanowski University, Kielce (Poland)
2015-05-05
We discuss the concept of local thermodynamical equilibrium in relativistic hydrodynamics in flat spacetime in a quantum statistical framework without an underlying kinetic description, suitable for strongly interacting fluids. We show that the appropriate definition of local equilibrium naturally leads to the introduction of a relativistic hydrodynamical frame in which the four-velocity vector is the one of a relativistic thermometer at equilibrium with the fluid, parallel to the inverse temperature four-vector β, which then becomes a primary quantity. We show that this frame is the most appropriate for the expansion of the stress-energy tensor from local thermodynamical equilibrium and that therein the local laws of thermodynamics take on their simplest form. We discuss the difference between the β frame and Landau frame and present an instance where they differ.
Proximity semiconducting nanowire junctions from Josephson to quantum dot regimes
Gharavi, Kaveh; Holloway, Gregory; Baugh, Jonathan
Experimental low-temperature transport results are presented on proximity-effect Josephson junctions made from low bandgap III-V semiconductor nanowires contacted with Nb. Two regimes are explored in terms of the Nb/nanowire interface transparency t. (i) High t allows a supercurrent to flow across the junction with magnitude Ic, which can be modulated using the voltage Vg on a global back gate or a local gate. Relatively high values are obtained for the figure-of-merit parameter IcRN / (eΔ) ~ 0 . 5 , and t ~ 0 . 75 , where RN is the normal state resistance and Δ the superconducting gap of the Nb leads. With the application of an axial magnetic field, Ic decays but exhibits oscillations before being fully suppressed. The period and amplitude of the oscillations depend on Vg. Possible explanations for this behaviour are presented, including Josephson interference of the orbital subbands in the nanowire. (ii) Lower transparency correlates with a spontaneous quantum dot (QD) formed in the nanowire channel. Pairs of Andreev Bound States (ABS) appear at energies | E | < Δ , with one pair unexpectedly pinned at E = 0 for a wide range of Vg. A description of the QD-ABS system beyond the Anderson model is presented to explain the latter results.
Spin, angular momentum and spin-statistics for a relativistic quantum many body system
Horwitz, Lawrence
2012-01-01
The adaptation of Wigner's induced representation for a relativistic quantum theory making possible the construction of wavepackets and admitting covariant expectation values for the coordinate operator x^\\mu introduces a foliation on the Hilbert space of states. The spin-statistics relation for fermions and bosons implies the universality of the parametrization of orbits of the induced representation, implying that all particles within the identical particle sets transform under the same SU(2) subgroup of the Lorentz group, and therefore their spins and angular momentum states can be computed using the usual Clebsch-Gordon coefficients associated with angular momentum. Important consequences, such as entanglement for subsystems at unequal times, covariant statistical correlations in many body systems, and the construction of relativistic boson and fermion statistical ensembles, as well as implications for the foliation of the Fock space and for quantum field theory are discussed.
Non-relativistic Limit of Dirac Equations in Gravitational Field and Quantum Effects of Gravity
无
2006-01-01
Based on unified theory of electromagnetic interactions and gravitational interactions, the non-relativistic limit of the equation of motion of a charged Dirac particle in gravitational field is studied. From the Schrodinger equation obtained from this non-relativistic limit, we can see that the classical Newtonian gravitational potential appears as a part of the potential in the Schrodinger equation, which can explain the gravitational phase effects found in COW experiments.And because of this Newtonian gravitational potential, a quantum particle in the earth's gravitational field may form a gravitationally bound quantized state, which has already been detected in experiments. Three different kinds of phase effects related to gravitational interactions are studied in this paper, and these phase effects should be observable in some astrophysical processes. Besides, there exists direct coupling between gravitomagnetic field and quantum spin, and radiation caused by this coupling can be used to directly determine the gravitomagnetic field on the surface of a star.
Quantum correlation with moving beamsplitters in relativistic conﬁguration
André Stefanov; Hugo Zbinden; Nicolas Gisin; Antoine Suarez
2002-08-01
We present a recent experiment [1] using space-like beamsplitters in motion revealing a new feature of quantum nonlocality: The correlations caused by two-particle quantum entanglement are not only independent of distance (as we already know from the conventional Bell-type experiments) but also independent of the time-ordering between the two single-photon measurements. Hence, it seems impossible to cast them in any real time ordering and maintain a causal explanation in which an earlier event inﬂuences a later one by arbitrarily fast communication.
Effect of relativistic acceleration on continuous variable quantum teleportation and dense coding
Grochowski, Piotr T.; Rajchel, Grzegorz; Kiałka, Filip; Dragan, Andrzej
2017-01-01
We investigate how relativistic acceleration of the observers can affect the performance of the quantum teleportation and dense coding for continuous variable states of localized wavepackets. Such protocols are typically optimized for symmetric resources prepared in an inertial frame of reference. A mismatch of the sender and the receiver's accelerations can introduce asymmetry to the shared entanglement, which has an effect on the efficiency of the protocol that goes beyond entanglement degr...
Geometric back-reaction in pre-inflation from relativistic quantum geometry
Arcodia, Marcos R.A. [Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Instituto de Investigaciones Fisicas de Mar del Plata (IFIMAR), Mar del Plata (Argentina); Bellini, Mauricio [Universidad Nacional de Mar del Plata, Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Mar del Plata (Argentina); Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Instituto de Investigaciones Fisicas de Mar del Plata (IFIMAR), Mar del Plata (Argentina)
2016-06-15
The pre-inflationary evolution of the universe describes the beginning of the expansion from a static initial state, such that the Hubble parameter is initially zero, but increases to an asymptotic constant value, in which it could achieve a de Sitter (inflationary) expansion. The expansion is driven by a background phantom field. The back-reaction effects at this moment should describe vacuum geometrical excitations, which are studied in detail in this work using relativistic quantum geometry. (orig.)
Deconstructing non-dissipative non-Dirac-hermitian relativistic quantum systems
2011-01-01
A method to construct non-dissipative non-Dirac-hermitian relativistic quantum system that is isospectral with a Dirac-hermitian Hamiltonian is presented. The general technique involves a realization of the basic canonical (anti-)commutation relations involving the Dirac matrices and the bosonic degrees of freedom in terms of non-Dirac-hermitian operators, which are hermitian in a Hilbert space that is endowed with a pre-determined positive-definite metric. Several examples of exactly solvabl...
Model of Quantum Computing in the Cloud: The Relativistic Vision Applied in Corporate Networks
Chau Sen Shia
2016-08-01
Full Text Available Cloud computing has is one of the subjects of interest to information technology professionals and to organizations when the subject covers financial economics and return on investment for companies. This work aims to present as a contribution proposing a model of quantum computing in the cloud using the relativistic physics concepts and foundations of quantum mechanics to propose a new vision in the use of virtualization environment in corporate networks. The model was based on simulation and testing of connection with providers in virtualization environments with Datacenters and implementing the basics of relativity and quantum mechanics in communication with networks of companies, to establish alliances and resource sharing between the organizations. The data were collected and then were performed calculations that demonstrate and identify connections and integrations that establish relations of cloud computing with the relativistic vision, in such a way that complement the approaches of physics and computing with the theories of the magnetic field and the propagation of light. The research is characterized as exploratory, because searches check physical connections with cloud computing, the network of companies and the adhesion of the proposed model. Were presented the relationship between the proposal and the practical application that makes it possible to describe the results of the main features, demonstrating the relativistic model integration with new technologies of virtualization of Datacenters, and optimize the resource with the propagation of light, electromagnetic waves, simultaneity, length contraction and time dilation.
Comments on a Discrepancy Between the Relativistic and the Quantum Concepts of Light
Pombo, Claudia
2007-12-01
The realist point of view of a physical theory assumes that physical concepts must have a correspondent in the phenomenological world. We adopt a slightly modified form of realism, based on Carnap's separation of languages, in which only the observational concepts, belonging to the observational language, have a phenomenological correspondent. Other physical concepts, belonging to a theoretical language, do not correspond to entities in the physical world. This point of view is named observational realism. Based on these ideas, we review the notions of relativistic and quantum observation, independently from measurement, and show that there is a discrepancy between the concepts of wave light in relativity and in quantum mechanics.
Superluminal Neutrinos and a Curious Phenomenon in the Relativistic Quantum Hamilton-Jacobi Equation
Matone, Marco
2011-01-01
OPERA's results, if confirmed, pose the question of superluminal neutrinos. We investigate the kinematics defined by the quantum version of the relativistic Hamilton-Jacobi equation, i.e. E^2=p^2c^2+m^2c^4+2mQc^2, with Q the quantum potential of the free particle. The key point is that the quantum version of the Hamilton-Jacobi equation is a third-order differential equation, so that it has integration constants which are missing in the Schr\\"odinger and Klein-Gordon equations. In particular, a non-vanishing imaginary part of an integration constant leads to a quantum correction to the expression of the velocity which is curiously in agreement with OPERA's results.
Quantum And Relativistic Protocols For Secure Multi-Party Computation
Colbeck, Roger
2009-01-01
After a general introduction, the thesis is divided into four parts. In the first, we discuss the task of coin tossing, principally in order to highlight the effect different physical theories have on security in a straightforward manner, but, also, to introduce a new protocol for non-relativistic strong coin tossing. This protocol matches the security of the best protocol known to date while using a conceptually different approach to achieve the task. In the second part variable bias coin tossing is introduced. This is a variant of coin tossing in which one party secretly chooses one of two biased coins to toss. It is shown that this can be achieved with unconditional security for a specified range of biases, and with cheat-evident security for any bias. We also discuss two further protocols which are conjectured to be unconditionally secure for any bias. The third section looks at other two-party secure computations for which, prior to our work, protocols and no-go theorems were unknown. We introduce a gene...
H. Yoshitama; WEN Xian-Lun; WEN Tian-Shu; WU Yu-Chi; ZHANG Bao-San; ZHU Qi-Hua; HUANG Xiao-Jun; AN Wei-Min; HUNG Wen-Hui; TANG Chuan-Xiang; LIN Yu-Zheng; T. Kameshima; WANG Xiao-Dong; CHEN Li-Ming; H. Kotaki; M. Kando; K. Nakajima; GU Yu-Qiu; GUO Yi; JIAO Chun-Ye; LIU Hong-Jie; PENG Han-Sheng; TANG Chuan-Ming; WANG Xiao-Dong
2008-01-01
@@ Self-injection and acceleration of monoenergetic electron beams from laser wakefield accelerators are first in-vestigated in the highly relativistic regime, using 100 TW class, 27 fs laser pulses. Quasi-monoenergetic multi-bunched beams with energies as high as multi-hundredMeV are observed with simultaneous measurements of side-scattering emissions that indicate the formation of self-channelling and self-injection of electrons into a plasma wake, referred to as a 'bubble'. The three-dimensional particle-in-cell simulations confirmed multiple self-injection of electron bunches into the bubble and their beam acceleration with gradient of 1.5 GeV/cm.
Ceccotti, T; Sgattoni, A; Bigongiari, A; Raynaud, M; Riconda, C; Heron, A; Baffigi, F; Labate, L; Gizzi, L A; Vassura, L; Fuchs, J; Passoni, M; Kveton, M; Novotny, F; Possolt, M; Prokupek, J; Proska, J; Psikal, J; Stolcova, L; Velyhan, A; Bougeard, M; D'Oliveira, P; Tcherbakoff, O; Reau, F; Martin, P; Macchi, A
2013-01-01
The interaction of laser pulses with thin grating targets, having a periodic groove at the irradiated surface, has been experimentally investigated. Ultrahigh contrast ($\\sim 10^{12}$) pulses allowed to demonstrate an enhanced laser-target coupling for the first time in the relativistic regime of ultra-high intensity $>10^{19} \\mbox{W/cm}^{2}$. A maximum increase by a factor of 2.5 of the cut-off energy of protons produced by Target Normal Sheath Acceleration has been observed with respect to plane targets, around the incidence angle expected for resonant excitation of surface waves. A significant enhancement is also observed for small angles of incidence, out of resonance.
Computer-automated tuning of semiconductor double quantum dots into the single-electron regime
Baart, T. A.; Eendebak, P. T.; Reichl, C.; Wegscheider, W.; Vandersypen, L. M. K.
2016-05-01
We report the computer-automated tuning of gate-defined semiconductor double quantum dots in GaAs heterostructures. We benchmark the algorithm by creating three double quantum dots inside a linear array of four quantum dots. The algorithm sets the correct gate voltages for all the gates to tune the double quantum dots into the single-electron regime. The algorithm only requires (1) prior knowledge of the gate design and (2) the pinch-off value of the single gate T that is shared by all the quantum dots. This work significantly alleviates the user effort required to tune multiple quantum dot devices.
Nielsen, Per; Nielsen, Henri; Mørk, Jesper;
2006-01-01
The interaction of optical pulses in a quantum dot waveguide in the slow-light regime is investigated. Dipole oscillations lead to strong interactions between the two pulses, implying a minimum pulse separation for optical buffer applications....
Scaling of a driven atomic gas from the weakly-dressed to the quantum critical regime
Helmrich, S; Whitlock, S
2016-01-01
The emergence of correlations in complex many-body systems can be accompanied by unexpectedly simple scaling laws which signal new physical regimes or universal relations between otherwise very different physical systems. We demonstrate that non-equilibrium scaling laws can reveal the different regimes of strongly-interacting quantum systems driven to highly excited states. For weak or far off-resonant driving we find that the dependence of the excitation rate on coupling strength is well described by power laws characteristic of the dissipative or weakly-dressed regimes, while for strong near-resonant driving we observe a crossover to the quantum critical regime. For intermediate detunings we discover superlinear intensity scaling in a new regime, indicative of cooperative excitation processes, which extends the domain where scale-invariant behavior can be found in driven quantum systems.
Quantum corrections to the Relativistic mean-field theory
Maydanyuk, Sergei P; Bakry, Ahmed
2016-01-01
In this paper, we compare the RMF theory and the model of deformed oscillator shells (DOS) in description of the quantum properties of the bound states of the spherically symmetric light nuclei. We obtain an explicit analytical relation between differential equations for the RMF theory and DOS model, which determine wave functions for nucleons. On such a basis we perform analysis of correspondence of quantum properties of nuclei. We find: (1) Potential $V_{RMF}$ of the RMF theory for nucleons has the wave functions $f$ and $g$ with joint part $h$ coincident exactly with the nucleon wave function of DOS model with potential $V_{\\rm shell}$. But, a difference between $V_{RMF}$ and $V_{\\rm shell}$ is essential for any nucleus. (2) The nucleon wave functions and densities obtained by the DOS and RMF theories are essentially different. The nucleon densities of the RMF theory contradict to knowledge about distribution of the proton and neutron densities inside the nuclei obtained from experimental data. This indica...
Huang, Chun Yu; Ma, Wenchao; Wang, Dong; Ye, Liu
2017-02-01
In this work, the quantum fisher information (QFI) and Bell non-locality of a multipartite fermionic system are investigated. Unlike the currently existing research of QFI, we focus our attention on the differences between quantum fisher information and Bell non-locality under the relativistic framework. The results show that although the relativistic motion affects the strength of the non-locality, it does not change the physical structure of non-locality. However, unlike the case of non-locality, the relativistic motion not only influence the precision of the QFI Fϕ but also broke the symmetry of the function Fϕ. The results also show that for a special multipartite system, , the number of particles of a initial state do not affect the Fθ. Furthermore, we also find that Fθ is completely unaffected in non-inertial frame if there are inertial observers. Finally, in view of the decay behavior of QFI and non-locality under the non-inertial frame, we proposed a effective scheme to battle against Unruh effect.
Relationship of quantum mechanics to classical electromagnetism and classical relativistic mechanics
Field, J H [Departement de Physique Nucleaire et Corpusculaire, Universite de Geneve, 24, quai Ernest-Ansermet CH-1211 Geneva 4 (Switzerland)
2004-05-14
Some connections between quantum mechanics and classical physics are explored. The Planck-Einstein and De Broglie relations, the wavefunction and its probabilistic interpretation, the canonical commutation relations and the Maxwell-Lorentz equation may be understood in a simple way by comparing classical electromagnetism and the photonic description of light provided by classical relativistic kinematics. The method used may be described as 'inverse correspondence' since quantum phenomena become apparent on considering the low photon number density limit of classical electromagnetism. Generalization to massive particles leads to the Klein-Gordon and Schroedinger equations. The difference between the quantum wavefunction of the photon and a classical electromagnetic wave is discussed in some detail.
Vera, Carlos A; Quesada M, Nicolas; Vinck-Posada, Herbert; Rodriguez, Boris A, E-mail: nquesada@pegasus.udea.edu.c [Instituto de Fisica, Universidad de Antioquia, Medellin, AA 1226 Medellin (Colombia)
2009-09-30
The relation between the dynamical regimes (weak and strong coupling) and entanglement for a dissipative quantum dot microcavity system is studied. In the framework of a phenomenological temperature model an analysis in both temporal (population dynamics) and frequency domain (photoluminescence) is carried out in order to identify the associated dynamical behavior. The Wigner function and concurrence are employed to quantify the entanglement in each regime. We find that sudden death of entanglement is a typical characteristic of the strong coupling regime.
Thermal right-handed neutrino self-energy in the non-relativistic regime
Laine, M
2012-01-01
Recently the issue of radiative corrections to leptogenesis has been raised. Considering the "strong washout" regime, in which OPE-techniques permit to streamline the setup, we report the thermal self-energy matrix of heavy right-handed neutrinos at NLO (resummed 2-loop level) in Standard Model couplings. The renormalized expression describes flavour transitions and "inclusive" decays of chemically decoupled right-handed neutrinos. Although CP-violation is not addressed, the result may find use in existing leptogenesis frameworks.
Poles in the $S$-Matrix of Relativistic Chern-Simons Matter theories from Quantum Mechanics
Dandekar, Yogesh; Minwalla, Shiraz
2014-01-01
An all orders formula for the $S$-matrix for 2 $\\rightarrow$ 2 scattering in large N Chern-Simons theory coupled to a fundamental scalar has recently been conjectured. We find a scaling limit of the theory in which the pole in this $S$-matrix is near threshold. We argue that the theory must be well described by non-relativistic quantum mechanics in this limit, and determine the relevant Schroedinger equation. We demonstrate that the $S$-matrix obtained from this Schroedinger equation agrees perfectly with this scaling limit of the relativistic $S$-matrix; in particular the pole structures match exactly. We view this matching as a nontrivial consistency check of the conjectured field theory $S$-matrix.
Alam, M. S.; Hafez, M. G.; Talukder, M. R.; Hossain Ali, M.
2017-07-01
A comparative study of the interactions between nonlinear ion acoustic solitary waves (IASWs) propagating toward each other, and the electrostatic nonlinear propagation of IASWs, both for the weakly and relativistic regimes consisting of relativistic warm ions, nonthermal electrons, and positrons, is carried out. Two-sided Korteweg-de Vries (KdV) equations are derived using the extended Poincaré-Lighthill-Kuo (PLK) method to reveal the physical issues concerned. The effects of positron concentration, ion-electron temperature ratio, electron-positron temperature ratio, relativistic streaming factor, the population of electron, and positron nonthermality on the electrostatic resonances and their phase shifts are investigated for both regimes. It is found that the plasma parameters significantly modify the phase shifts, electrostatic resonances, hump-shaped electrostatic potential profiles, and the electric fields on the nonlinear propagation characteristics of IASWs. The results obtained may be useful for clarifications of interaction between IASWs in astrophysical and laboratory plasmas, especially in pulsar magnetosphere, laser produced, inertial confinement plasmas, and pulsar relativistic winds with supernova ejecta that produce nonthermal electrons, positrons, and relativistic ions.
Certified randomness from a two-level system in a relativistic quantum field
Thinh, Le Phuc; Bancal, Jean-Daniel; Martín-Martínez, Eduardo
2016-08-01
Randomness is an indispensable resource in modern science and information technology. Fortunately, an experimentally simple procedure exists to generate randomness with well-characterized devices: measuring a quantum system in a basis complementary to its preparation. Towards realizing this goal one may consider using atoms or superconducting qubits, promising candidates for quantum information processing. However, their unavoidable interaction with the electromagnetic field affects their dynamics. At large time scales, this can result in decoherence. Smaller time scales in principle avoid this problem, but may not be well analyzed under the usual rotating wave and single mode approximation (RWA and SMA) which break the relativistic nature of quantum field theory. Here, we use a fully relativistic analysis to quantify the information that an adversary with access to the field could get on the result of an atomic measurement. Surprisingly, we find that the adversary's guessing probability is not minimized for atoms initially prepared in the ground state (an intuition derived from the RWA and SMA model).
The transition from the classical to the quantum regime in nonlinear Landau damping
Brodin, G; Mendonca, J T
2015-01-01
Starting from the Wigner-Moyal equation coupled to Poisson's equation, a simplified set of equations describing nonlinear Landau damping of Langmuir waves is derived. This system is studied numerically, with a particular focus on the transition from the classical to the quantum regime. In the quantum regime several new features are found. This includes a quantum modified bounce frequency, and the discovery that bounce-like amplitude oscillations can take place even in the absence of trapped particles. The implications of our results are discussed.
Fraunhofer regime of operation for superconducting quantum interference filters
Shadrin, A.V.; Constantinian, K.Y.; Ovsyannikov, G.A.;
2008-01-01
Series arrays of superconducting quantum interference devices (SQUIDs) with incommensurate loop areas, so-called superconducting quantum interference filters (SQIFs), are investigated in the kilohertz and the gigahertz frequency range. In SQIFs made of high-T-c bicrystal junctions the flux-to-vol...
Avella, A; Ruo-Berchera, I; Degiovanni, I P; Brida, G; Genovese, M
2016-04-15
We show how the same setup and procedure, exploiting spatially multimode quantum correlations, allows the absolute calibration of an electron-multiplying charge-coupled (EMCCD) camera from the analog regime down to the single-photon-counting level, just by adjusting the brightness of the quantum source. At the single-photon level, an EMCCD can be operated as an on-off detector, where quantum efficiency depends on the discriminating threshold. We develop a simple model to explain the connection of the two different regimes demonstrating that the efficiency estimated in the analog (bright) regime allows us to accurately predict the detector behavior in the photocounting regime and vice versa. This work establishes a bridge between two regions of the optical measurements that up to now have been based on completely different standards, detectors, and measurement techniques.
Hayata, Tomoya; Hongo, Masaru; Noumi, Toshifumi
2015-01-01
We derive relativistic hydrodynamics from quantum field theories by assuming that the density operator is given by a local Gibbs distribution at initial time. We decompose the energy-momentum tensor and particle current into nondissipative and dissipative parts, and analyze their time-evolution in detail. Performing the path-integral formulation of the local Gibbs distribution, we microscopically derive the generating functional for the nondissipative hydrodynamics. We also construct a basis to study dissipative corrections. In particular, we derive the first-order dissipative hydrodynamic equations without choice of frame such as the Landau-Lifshitz or Eckart frame.
Relativistic quantum mechanical spin-1 wave equation in 2+1 dimensional spacetime
Dernek, Mustafa; Sucu, Yusuf; Unal, Nuri
2016-01-01
In the study, we introduce a relativistic quantum mechanical wave equation of the spin-1 particle as an excited state of the zitterbewegung and show that it is consistent with the 2+1 dimensional Proca theory. At the same time, we see that this equation has two eigenstates, particle and antiparticle states or negative and positive energy eigenstates, respectively, in the rest frame and the spin-1 matrices satisfy $SO(2,1)$ spin algebra. As practical applications, we derive the exact solutions of the equation in the presence of a constant magnetic field and a curved spacetime. From these solutions, we construct the current components of the spin-1 particle.
A study of transverse charge density of pions in relativistic quantum mechanics
DONG Yu-Bing; WANG Yi-Zhan
2011-01-01
The transverse charge density of pions is calculated based on relativistic quantum mechanics,where the pion is regarded as a quark-antiquark bound state. Corrections from the two spin-1/2 constituents and from the wave function of a quark and antiquark inside the bound system are discussed. The calculated results are compared to the results with a realistic effective Lagrangian approach as well as to that with a simple covariant model where the pion is regarded as a composite system with two scalar particles.
Mantile, Andrea, E-mail: andrea.mantile@univ-reims.fr [Laboratoire de Mathématiques de Reims, EA-4535 and FR ARC CNRS-3399, Université de Reims Champagne-Ardenne, Moulin de la Housse, BP 1039, 51687 Reims Cedex 2 (France)
2014-09-15
We introduce a modified Schrödinger operator where the semiclassical Laplacian is perturbed by artificial interface conditions occurring at the boundaries of the potential's support. The corresponding dynamics is analyzed in the regime of quantum wells in a semiclassical island. Under a suitable energy constraint for the initial states, we show that the time propagator is stable with respect to the non-self-adjont perturbation, provided that this is parametrized through infinitesimal functions of the semiclassical parameter “h.” It has been recently shown that h-dependent artificial interface conditions allow a new approach to the adiabatic evolution problem for the shape resonances in models of resonant heterostructures. Our aim is to provide with a rigorous justification of this method.
Photon emission by ultra-relativistic positrons in crystalline undulators: the high-energy regime
Krause, W; Solov'yov, A V; Greiner, W
2015-01-01
This paper discusses the undulator radiation emitted by high-energy positrons during planar channeling in periodically bent crystals. We demonstrate that the construction of the undulator for positrons with energies of 10 GeV and above is only possible if one takes into account the radiative energy losses. The frequency of the undulator radiation depends on the energy of the particle. Thus the decrease of the particle's energy during the passage of the crystal should result in the destruction of the undulator radiation regime. However, we demonstrate that it is possible to avoid the destructive influence of the radiative losses on the frequency of the undulator radiation by the appropriate variation of the shape of the crystal channels. We also discuss a method by which, to our mind, it would be possible to prepare the crystal with the desired properties of its channels.
Cavity quantum electrodynamics in the Anderson-localized regime
Sapienza, Luca; Nielsen, Henri Thyrrestrup; Stobbe, Søren
2010-01-01
We experimentally measure, by means of time-resolved photoluminescence spectroscopy, a 15-fold enhancement of the spontaneous emission decay rate of single semiconductor quantum dots coupled to disorder-induced Anderson-localized modes with efficiencies reaching 94%.......We experimentally measure, by means of time-resolved photoluminescence spectroscopy, a 15-fold enhancement of the spontaneous emission decay rate of single semiconductor quantum dots coupled to disorder-induced Anderson-localized modes with efficiencies reaching 94%....
Experimental investigations of synchrotron radiation at the onset of the quantum regime
Andersen, Kristoffer; Uggerhøj, Ulrik Ingerslev
The classical description of synchrotron radiation fails at large Lorentz factors for relativistic electrons crossing strong transverse magnetic fields. In the rest frame of the electron this field is comparable to the so-called critical field of 4.414*109 T. When the Lorentz factor times the mag......-field quantum electrodynamics, the experimental results are also relevant for the design of future linear colliders where beamstrahlung - a closely related process - may limit the achievable luminosity....
Experimental investigations of synchrotron radiation at the onset of the quantum regime
Andersen, Kristoffer; Knudsen, Helge; Uggerhøj, Ulrik Ingerslev;
2012-01-01
The classical description of synchrotron radiation fails at large Lorentz factors, $\\gamma$, for relativistic electrons crossing strong transverse magnetic fields $B$. In the rest frame of the electron this field is comparable to the so-called critical field $B_0 = 4.414\\cdot10^9$ T. For $\\chi = ......-field quantum electrodynamics, the experimental results are also relevant for the design of future linear colliders where beamstrahlung - a closely related process - may limit the achievable luminosity....
Quantum resource theories in the single-shot regime
Gour, Gilad
2017-06-01
One of the main goals of any resource theory such as entanglement, quantum thermodynamics, quantum coherence, and asymmetry, is to find necessary and sufficient conditions that determine whether one resource can be converted to another by the set of free operations. Here we find such conditions for a large class of quantum resource theories which we call affine resource theories. Affine resource theories include the resource theories of athermality, asymmetry, and coherence, but not entanglement. Remarkably, the necessary and sufficient conditions can be expressed as a family of inequalities between resource monotones (quantifiers) that are given in terms of the conditional min-entropy. The set of free operations is taken to be (1) the maximal set (i.e., consists of all resource nongenerating quantum channels) or (2) the self-dual set of free operations (i.e., consists of all resource nongenerating maps for which the dual map is also resource nongenerating). As an example, we apply our results to quantum thermodynamics with Gibbs preserving operations, and several other affine resource theories. Finally, we discuss the applications of these results to resource theories that are not affine and, along the way, provide the necessary and sufficient conditions that a quantum resource theory consists of a resource destroying map.
Generalized Lagrangian-Path Representation of Non-Relativistic Quantum Mechanics
Tessarotto, Massimo; Cremaschini, Claudio
2016-08-01
In this paper a new trajectory-based representation to non-relativistic quantum mechanics is formulated. This is ahieved by generalizing the notion of Lagrangian path (LP) which lies at the heart of the deBroglie-Bohm " pilot-wave" interpretation. In particular, it is shown that each LP can be replaced with a statistical ensemble formed by an infinite family of stochastic curves, referred to as generalized Lagrangian paths (GLP). This permits the introduction of a new parametric representation of the Schrödinger equation, denoted as GLP-parametrization, and of the associated quantum hydrodynamic equations. The remarkable aspect of the GLP approach presented here is that it realizes at the same time also a new solution method for the N-body Schrödinger equation. As an application, Gaussian-like particular solutions for the quantum probability density function (PDF) are considered, which are proved to be dynamically consistent. For them, the Schrödinger equation is reduced to a single Hamilton-Jacobi evolution equation. Particular solutions of this type are explicitly constructed, which include the case of free particles occurring in 1- or N-body quantum systems as well as the dynamics in the presence of suitable potential forces. In all these cases the initial Gaussian PDFs are shown to be free of the spreading behavior usually ascribed to quantum wave-packets, in that they exhibit the characteristic feature of remaining at all times spatially-localized.
Bartley, David L
2016-01-01
The Bohm/de Broglie theory of deterministic non-relativistic quantum mechanics is broadened to accommodate the free-particle Dirac equation. As with the spin-0 theory, an effective particle rest-mass scalar field in the presence of the spin-1/2 pilot wave is allowed, together with the assumption that the convective current component describes ensemble dynamics. Non-positive excursions of the ensemble density for extreme cases of positive-energy solutions of the Dirac equation are interpreted in terms of virtual-like pair creation and annihilation beneath the Compton wavelength. A specific second-rank tensor is defined in terms of the Dirac spinors for generalizing from simply a quantum potential to a stress tensor required to account for the force of pilot wave on particle. A simple dependence of the stress tensor on a two-component spin pseudovector field is determined. Consistency is found with an earlier non-relativistic theory of objects with spin.
Rahmani Faramarz; Golshani Mehdi; Sarbishei Mohsen
2016-04-01
In this paper we shall argue that conformal transformations give some new aspects to a metric and changes the physics that arises from the classical metric. It is equivalent to adding a new potential to relativistic Hamilton–Jacobi equation. We start by using conformal transformations on a metric and obtain modified geodesics. Then, we try to show that extra terms in the modified geodesics are indications of a background force. We obtain this potential by using variational method. Then, we see that this background potential is the same as the Bohmian non-local quantum potential. This approach gives a method stronger than Bohm’s original method in deriving Bohmian quantumpotential. We do not use any quantum mechanical postulates in this approach.
The Schrödinger problem, Levy processes noise in relativistic quantum mechanics
Garbaczewski, P; Olkiewicz, R
1995-01-01
The main purpose of the paper is an essentially probabilistic analysis of relativistic quantum mechanics. It is based on the assumption that whenever probability distributions arise, there exists a stochastic process that is either responsible for temporal evolution of a given measure or preserves the measure in the stationary case. Our departure point is the so-called Schr\\"{o}dinger problem of probabilistic evolution, which provides for a unique Markov stochastic interpolation between any given pair of boundary probability densities for a process covering a fixed, finite duration of time, provided we have decided a priori what kind of primordial dynamical semigroup transition mechanism is involved. In the nonrelativistic theory, including quantum mechanics, Feyman-Kac-like kernels are the building blocks for suitable transition probability densities of the process. In the standard "free" case (Feynman-Kac potential equal to zero) the familiar Wiener noise is recovered. In the framework of the Schr\\"{o}dinge...
Description of Unstable Systems in Relativistic Quantum Mechanics in the Lax-Phillips Theory
Horwitz, L P
1998-01-01
We discuss some of the experimental motivation for the need for semigroup decay laws, and the quantum Lax-Phillips theory of scattering and unstable systems. In this framework, the decay of an unstable system is described by a semigroup. The spectrum of the generator of the semigroup corresponds to the singularities of the Lax-Phillips $S$-matrix. In the case of discrete (complex) spectrum of the generator of the semigroup, associated with resonances, the decay law is exactly exponential. The states corresponding to these resonances (eigenfunctions of the generator of the semigroup) lie in the Lax-Phillips Hilbert space, and therefore all physical properties of the resonant states can be computed. We show that the parametrized relativistic quantum theory is a natural setting for the realization of the Lax-Phillips theory.
Spin-flavor oscillations of Dirac neutrinos described by relativistic quantum mechanics
Dvornikov, Maxim
2010-01-01
We study spin-flavor oscillations of Dirac neutrinos in matter and magnetic field using the method of relativistic quantum mechanics. We start from the exact solution of the wave equation for a massive neutrino, taking into account external fields. Then we derive an effective Hamiltonian governing neutrino spin-flavor oscillations. We demonstrate the consistency of our approach with the commonly used quantum mechanical method. Our correction to the usual effective Hamiltonian results in the appearance of a new resonance in neutrino oscillations. We discuss applications to spin-flavor neutrino oscillations in the expanding envelope of a supernova. In particular, transitions between right-handed electron neutrinos and sterile neutrinos are studied for a realistic background matter and magnetic field distributions. We also analyze the influence of other factors such as a longitudinal magnetic field, matter polarization, and the non-standard contributions to the neutrino effective potential.
Strauss, Y
1999-01-01
We apply the quantum Lax-Phillips scattering theory to a relativistically covariant quantum field theoretical form of the (soluble) Lee model. We construct the translation representations with the help of the wave operators, and show that the resulting Lax-Phillips $S$-matrix is an inner function (the Lax-Phillips theory is essentially a theory of translation invariant subspaces). We then discuss the non-relativistic limit of this theory, and show that the resulting kinematic relations coincide with the conditions required for the Galilean description of a decaying system.
Exotic dense matter states pumped by relativistic laser plasma in the radiation dominant regime
Colgan, J; Jr.,; Faenov, A Ya; Pikuz, S A; Wagenaars, E; Booth, N; Brown, C R D; Culfa, O; Dance, R J; Evans, R G; Gray, R J; Hoarty, D J; Kaempfer, T; Lancaster, K L; McKenna, P; Rossall, A L; Skobelev, I Yu; Schulze, K S; Uschmann, I; Zhidkov, A G; Woolsey, N C
2012-01-01
The properties of high energy density plasma are under increasing scrutiny in recent years due to their importance to our understanding of stellar interiors, the cores of giant planets$^{1}$, and the properties of hot plasma in inertial confinement fusion devices$^2$. When matter is heated by X-rays, electrons in the inner shells are ionized before the valence electrons. Ionization from the inside out creates atoms or ions with empty internal electron shells, which are known as hollow atoms (or ions)$^{3,4,5}$. Recent advances in free-electron laser (FEL) technology$^{6,7,8,9}$ have made possible the creation of condensed matter consisting predominantly of hollow atoms. In this Letter, we demonstrate that such exotic states of matter, which are very far from equilibrium, can also be formed by more conventional optical laser technology when the laser intensity approaches the radiation dominant regime$^{10}$. Such photon-dominated systems are relevant to studies of photoionized plasmas found in active galactic ...
Novel aspects of radiation reaction in the classical and the quantum regime
Neitz, Norman; Mackenroth, Felix; Hatsagortsyan, Karen Z; Keitel, Christoph H; Di Piazza, Antonino
2014-01-01
This work is dedicated to the study of radiation reaction signatures in the framework of classical and quantum electrodynamics. Since there has been no distinct experimental validation of radiation reaction and its underlying equations so far and its impact is expected to be substantial for the construction of new experimental devices, e.g., quantum x-free electron lasers, a profound understanding of radiation reaction effects is of special interest. Here, we describe how the inclusion of quantum radiation reaction effects changes the dynamics of ultra-relativistic electron beams colliding with intense laser pulses significantly. Thereafter, the angular distribution of emitted radiation is demonstrated to be strongly altered in the quantum framework, if in addition to single photon emission also higher order photon emissions are considered. Furthermore, stimulated Raman scattering of an ultra-intense laser pulse in plasmas is examined and forward Raman scattering is found to be significantly increased by the ...
Quantum Exact Non-Abelian Vortices in Non-relativistic Theories
Nitta, Muneto; Vinci, Walter
2014-01-01
Non-Abelian vortices arise when a non-Abelian global symmetry is exact in the ground state but spontaneously broken in the vicinity of their cores. In this case, there appear (non-Abelian) Nambu-Goldstone (NG) modes confined and propagating along the vortex. In relativistic theories, the Coleman-Mermin-Wagner theorem forbids the existence of a spontaneous symmetry breaking, or a long-range order, in 1+1 dimensions: quantum corrections restore the symmetry along the vortex and the NG modes acquire a mass gap. We show that in non-relativistic theories NG modes with quadratic dispersion relation confined on a vortex can remain gapless at quantum level. We provide a concrete and experimentally realizable example of a three-component Bose-Einstein condensate with U(1) x U(2) symmetry. We first show, at the classical level, the existence of S^3 = S^1 |x S^2 (S^1 fibered over S^2) NG modes associated to the breaking U(2) -> U(1) on vortices, where S^1 and S^2 correspond to type I and II NG modes, respectively. We th...
Pseudo-unitary dynamics of free relativistic quantum mechanical twofold systems
Cardoso, J. G.
2012-05-01
A finite-dimensional pseudo-unitary framework is set up for describing the dynamics of free elementary particles in a purely relativistic quantum mechanical way. States of any individual particles or antiparticles are defined as suitably normalized vectors belonging to the two-complex-dimensional spaces that occur in local orthogonal decompositions of isomorphic copies of Cartan's space. The corresponding dynamical variables thus show up as bounded pseudo-Hermitian operator restrictions that possess real discrete spectra. Any measurement processes have to be performed locally in orthocronous proper Lorentz frames, but typical observational correlations are expressed in terms of symbolic configurations which come from the covariant action on spaces of state vectors of the Poincaré subgroup of an adequate realization of SU(2,2). The overall approach turns out to supply a supposedly natural description of the dynamics of free twofold systems in flat spacetime. One of the main outlooks devised here brings forward the possibility of carrying out methodically the construction of a background to a new relativistic theory of quantum information.
Quantum extremal surfaces: holographic entanglement entropy beyond the classical regime
Engelhardt, Netta; Wall, Aron C.
2015-01-01
We propose that holographic entanglement entropy can be calculated at arbitrary orders in the bulk Planck constant using the concept of a "quantum extremal surface": a surface which extremizes the generalized entropy, i.e. the sum of area and bulk entanglement entropy. At leading order in bulk quantum corrections, our proposal agrees with the formula of Faulkner, Lewkowycz, and Maldacena, which was derived only at this order; beyond leading order corrections, the two conjectures diverge. Quantum extremal surfaces lie outside the causal domain of influence of the boundary region as well as its complement, and in some spacetimes there are barriers preventing them from entering certain regions. We comment on the implications for bulk reconstruction.
Quantum extremal surfaces: holographic entanglement entropy beyond the classical regime
Engelhardt, Netta; Wall, Aron C. [Department of Physics, University of California, Santa Barbara,Santa Barbara, CA 93106 (United States)
2015-01-14
We propose that holographic entanglement entropy can be calculated at arbitrary orders in the bulk Planck constant using the concept of a “quantum extremal surface”: a surface which extremizes the generalized entropy, i.e. the sum of area and bulk entanglement entropy. At leading order in bulk quantum corrections, our proposal agrees with the formula of Faulkner, Lewkowycz, and Maldacena, which was derived only at this order; beyond leading order corrections, the two conjectures diverge. Quantum extremal surfaces lie outside the causal domain of influence of the boundary region as well as its complement, and in some spacetimes there are barriers preventing them from entering certain regions. We comment on the implications for bulk reconstruction.
Quantum Extremal Surfaces: Holographic Entanglement Entropy beyond the Classical Regime
Engelhardt, Netta
2014-01-01
We propose that holographic entanglement entropy can be calculated at arbitrary orders in the bulk Planck constant using the concept of a "quantum extremal surface": a surface which extremizes the generalized entropy, i.e. the sum of area and bulk entanglement entropy. At leading order in bulk quantum corrections, our proposal agrees with the formula of Faulkner, Lewkowycz, and Maldacena, which was derived only at this order; beyond leading order corrections, the two conjectures diverge. Quantum extremal surfaces lie outside the causal domain of influence of the boundary region as well as its complement, and in some spacetimes there are barriers preventing them from entering certain regions. We comment on the implications for bulk reconstruction.
de Martini, Francesco; Santamato, Enrico
2016-04-01
The traditional standard theory of quantum mechanics is unable to solve the spin-statistics problem, i.e. to justify the utterly important “Pauli Exclusion Principle” but by the adoption of the complex standard relativistic quantum field theory. In a recent paper [E. Santamato and F. D. De Martini, Found. Phys. 45 (2015) 858] we presented a complete proof of the spin-statistics problem in the nonrelativistic approximation on the basis of the “Conformal Quantum Geometrodynamics” (CQG). In this paper, by the same theory, the proof of the spin-statistics theorem (SST) is extended to the relativistic domain in the scenario of curved spacetime. No relativistic quantum field operators are used in the present proof and the particle exchange properties are drawn from rotational invariance rather than from Lorentz invariance. Our relativistic approach allows to formulate a manifestly step-by-step Weyl gauge invariant theory and to emphasize some fundamental aspects of group theory in the demonstration. As in the nonrelativistic case, we find once more that the “intrinsic helicity” of the elementary particles enters naturally into play. It is therefore this property, not considered in the standard quantum mechanics (SQM), which determines the correct spin-statistics connection observed in Nature.
Abdikian, A.; Mahmood, S.
2016-12-01
The obliquely nonlinear acoustic solitary propagation in a relativistically quantum magnetized electron-positron (e-p) plasma in the presence of the external magnetic field as well as the stationary ions for neutralizing the plasma background was studied. By considering the dynamic of the fluid e-p quantum and by using the quantum hydrodynamics model and the standard reductive perturbation technique, the Zakharov-Kuznetsov (ZK) equation is derived for small but finite amplitude waves and the solitary wave solution for the parameters relevant to dense astrophysical objects such as white dwarf stars is obtained. The numerical results show that the relativistic effects lead to propagate the electrostatic bell shape structures in quantum e-p plasmas like those in classical pair-ion or pair species for relativistic plasmas. It is also observed that by increasing the relativistic effects, the amplitude and width of the e-p acoustic solitary wave will decrease. In addition, the wave amplitude increases as positron density decreases in magnetized e-p plasmas. It is indicated that by increasing the strength of the magnetic field, the width of the soliton reduces and it becomes sharper. At the end, we have analytically and numerically shown that the pulse soliton solution of the ZK equation is unstable and have traced the dependence of the instability growth rate on electron density. It is found that by considering the relativistic pressure, the instability of the soliton pulse can be reduced. The results can be useful to study the obliquely nonlinear propagation of small amplitude localized structures in magnetized quantum e-p plasmas and be applicable to understand the particle and energy transport mechanism in compact stars such as white dwarfs, where the effects of relativistic electron degeneracy become important.
Brask, Jonatan Bohr; Brunner, Nicolas
2015-12-01
A small quantum absorption refrigerator, consisting of three qubits, is discussed in the transient regime. We discuss time scales for coherent dynamics, damping, and approach to the steady state, and we study cooling and entanglement. We observe that cooling can be enhanced in the transient regime, in the sense that lower temperatures can be achieved compared to the steady-state regime. This is a consequence of coherent dynamics but can occur even when this dynamics is strongly damped by the dissipative thermal environment, and we note that precise control over couplings or timing is not needed to achieve enhanced cooling. We also show that the amount of entanglement present in the refrigerator can be much larger in the transient regime compared to the steady state. These results are of relevance to future implementations of quantum thermal machines.
Optically Levitating Dielectrics in the Quantum Regime: Theory and Protocols
Romero-Isart, Oriol; Juan, Mathieu L; Quidant, Romain; Kiesel, Nikolai; Aspelmeyer, Markus; Cirac, J Ignacio
2010-01-01
We provide a general quantum theory to describe the coupling of light with the motion of a dielectric object inside a high finesse optical cavity. In particular, we derive the total Hamiltonian of the system as well as a master equation describing the state of the center of mass mode of the dielectric and the cavity field mode. In addition, a quantum theory of elasticity is used in order to study the coupling of the center of mass motion with internal vibrational excitations of the dielectric. This general theory is applied to the recent proposal of using an optically levitating nanodielectric as a cavity optomechanical system [Romero-Isart et al. NJP 12, 033015 (2010), Chang et al. PNAS 107, 1005 (2010)]. On this basis, we also design a light-mechanics interface to prepare non-Gaussian states of the mechanical motion, such as quantum superpositions of Fock states. Finally, we introduce a direct mechanical tomography scheme to probe these genuine quantum states by time of flight experiments.
Wave theories of non-laminar charged particle beams: from quantum to thermal regime
Fedele, Renato; Tanjia, Fatema; Jovanović, Dusan; de Nicola, Sergio; Ronsivalle, Concetta; Ronsivalle
2014-04-01
The standard classical description of non-laminar charged particle beams in paraxial approximation is extended to the context of two wave theories. The first theory that we discuss (Fedele R. and Shukla, P. K. 1992 Phys. Rev. A 45, 4045. Tanjia, F. et al. 2011 Proceedings of the 38th EPS Conference on Plasma Physics, Vol. 35G. Strasbourg, France: European Physical Society) is based on the Thermal Wave Model (TWM) (Fedele, R. and Miele, G. 1991 Nuovo Cim. D 13, 1527.) that interprets the paraxial thermal spreading of beam particles as the analog of quantum diffraction. The other theory is based on a recently developed model (Fedele, R. et al. 2012a Phys. Plasmas 19, 102106; Fedele, R. et al. 2012b AIP Conf. Proc. 1421, 212), hereafter called Quantum Wave Model (QWM), that takes into account the individual quantum nature of single beam particle (uncertainty principle and spin) and provides collective description of beam transport in the presence of quantum paraxial diffraction. Both in quantum and quantum-like regimes, the beam transport is governed by a 2D non-local Schrödinger equation, with self-interaction coming from the nonlinear charge- and current-densities. An envelope equation of the Ermakov-Pinney type, which includes collective effects, is derived for both TWM and QWM regimes. In TWM, such description recovers the well-known Sacherer's equation (Sacherer, F. J. 1971 IEEE Trans. Nucl. Sci. NS-18, 1105). Conversely, in the quantum regime and in Hartree's mean field approximation, one recovers the evolution equation for a single-particle spot size, i.e. for a single quantum ray spot in the transverse plane (Compton regime). We demonstrate that such quantum evolution equation contains the same information as the evolution equation for the beam spot size that describes the beam as a whole. This is done heuristically by defining the lowest QWM state accessible by a system of non-overlapping fermions. The latter are associated with temperature values that are
Kent, Adrian; Munro, William J.; Spiller, Timothy P. [Centre for Quantum Information and Foundations, DAMTP, University of Cambridge, Cambridge, United Kingdom and Perimeter Institute for Theoretical Physics, Waterloo, Ontario (Canada); NTT Basic Research Laboratories, NTT Corporation, 3-1 Morinosato-Wakamiya, Atsugi-shi, Kanagawa 243-0198 (Japan); Quantum Information Science, School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT (United Kingdom)
2011-07-15
We define the task of quantum tagging, that is, authenticating the classical location of a classical tagging device by sending and receiving quantum signals from suitably located distant sites, in an environment controlled by an adversary whose quantum information processing and transmitting power is unbounded. We define simple security models for this task and briefly discuss alternatives. We illustrate the pitfalls of naive quantum cryptographic reasoning in this context by describing several protocols which at first sight appear unconditionally secure but which, as we show, can in fact be broken by teleportation-based attacks. We also describe some protocols which cannot be broken by these specific attacks, but do not prove they are unconditionally secure. We review the history of quantum tagging protocols, and show that protocols previously proposed by Malaney and Chandran et al. are provably insecure.
Nonlinear transport of graphene in the quantum Hall regime
Tian, Shibing; Wang, Pengjie; Liu, Xin; Zhu, Junbo; Fu, Hailong; Taniguchi, Takashi; Watanabe, Kenji; Chen, Jian-Hao; Lin, Xi
2017-03-01
We have studied the breakdown of the integer quantum Hall (QH) effect with fully broken symmetry, in an ultra-high mobility graphene device sandwiched between two single crystal hexagonal boron nitride substrates. The evolution and stabilities of the QH states are studied quantitatively through the nonlinear transport with dc Hall voltage bias. The mechanism of the QH breakdown in graphene and the movement of the Fermi energy with the electrical Hall field are discussed. This is the first study in which the stabilities of fully symmetry broken QH states are probed all together. Our results raise the possibility that the ν = ±6 states might be a better target for the quantum resistance standard.
Origin of the hysteresis in bilayer 2D systems in the quantum Hall regime
Ho, L. H.; Taskinen, L. J.; Micolich, A.P.; Hamilton, A. R.; Atkinson, P.; Ritchie, D. A.
2010-01-01
The hysteresis observed in the magnetoresistance of bilayer 2D systems in the quantum Hall regime is generally attributed to the long time constant for charge transfer between the 2D systems due to the very low conductivity of the quantum Hall bulk states. We report electrometry measurements of a bilayer 2D system that demonstrate that the hysteresis is instead due to non-equilibrium induced current. This finding is consistent with magnetometry and electrometry measurements of single 2D syste...
Stefanov, Stefan Z
2011-01-01
The realization of Daily Artificial Dispatcher as a quantum/relativistic computation consists of perturbative renormalization of the Electrical Power System (EPS), generating the flowcharts of computation, verification, validation, description and help. Perturbative renormalization of EPS energy and time has been carried out in this paper for a day ahead via virtual thermalization of the EPS for a day ahead.
Minimal Excitations in the Fractional Quantum Hall Regime
Rech, J.; Ferraro, D.; Jonckheere, T.; Vannucci, L.; Sassetti, M.; Martin, T.
2017-02-01
We study the minimal excitations of fractional quantum Hall edges, extending the notion of levitons to interacting systems. Using both perturbative and exact calculations, we show that they arise in response to a Lorentzian potential with quantized flux. They carry an integer charge, thus involving several Laughlin quasiparticles, and leave a Poissonian signature in a Hanbury Brown-Twiss partition noise measurement at low transparency. This makes them readily accessible experimentally, ultimately offering the opportunity to study real-time transport of Abelian and non-Abelian excitations.
Modelling radiation emission in the transition from the classical to the quantum regime
Martins, J L; Grismayer, T; Vieira, J; Fonseca, R A; Silva, L O
2015-01-01
An emissivity formula is derived using the generalised Fermi-Weizacker-Williams method of virtual photons which accounts for the recoil the charged particle experiences as it emits radiation. It is found that through this derivation the formula obtained by Sokolov et al using QED perturbation theory is recovered. The corrected emissivity formula is applied to nonlinear Thomson scattering scenarios in the transition from the classical to the quantum regime, for small values of the nonlinear quantum parameter \\chi. Good agreement is found between this method and a QED probabilistic approach for scenarios where both are valid. In addition, signatures of the quantum corrections are identified and explored.
Non-Hermitian ${\\cal PT}$-symmetric relativistic quantum theory in an intensive magnetic field
Rodionov, V N
2016-01-01
We develop relativistic non-Hermitian quantum theory and its application to neutrino physics in a strong magnetic field. It is well known, that one of the fundamental postulates of quantum theory is the requirement of Hermiticity of physical parameters. This condition not only guarantees the reality of the eigenvalues of Hamiltonian operators, but also implies the preservation of the probabilities of the considered quantum processes. However as it was shown relatively recently (Bender, Boettcher 1998), Hermiticity is a sufficient but it is not a necessary condition. It turned out that among non-Hermitian Hamiltonians it is possible to allocate a number of such which have real energy spectra and can ensure the development of systems over time with preserving unitarity. This type of Hamiltonians includes so-called parity-time (${\\cal PT}$) symmetric models which is already used in various fields of modern physics. The most developed in this respect are models, which used in the field of ${\\cal PT}$-symmetric op...
Velocity operator and velocity field for spinning particles in (non-relativistic) quantum mechanics
Recami, E. [Bergamo Univ. (Italy). Facolta` di Ingegneria]|[INFN, Milan (Italy)]|[Campinas State Univ., SP (Brazil). Dept. of Applied Math.; Salesi, G. [Catania Univ. (Italy). Dip. di Fisica
1995-06-01
Starting from the formal expressions of the hydrodynamical (or local) quantities employed in the applications of Clifford Algebras to quantum mechanics, the paper introduces - in terms of the ordinary tensorial framework - a new definition for the field of a generic quantity. By translating from Clifford into tensor algebra, a new (non-relativistic) velocity operator for a spin 1/2 particle is also proposed. This operator is the sum of the ordinary part p/m describing the mean motion (the motion of the center-of-mass), and of a second part associated with the so-called Zitterbewegung, which is the spin internal motion observed in the center-of- mass frame. This spin component of the velocity operator is non-zero not only in the Pauli theoretical framework, i.e. in presence of external magnetic fields and spin precession, but also in the Schroedinger case, when the wave-function is a spin eigenstate. In the latter case, one gets a decomposition of the velocity field for the Madelueng fluid into two distinct parts: which the constitutes the non-relativistic analogue of the Gordon decomposition for the Dirac current.
On quantum effects in spontaneous emission by a relativistic electron beam in an undulator
Geloni, Gianluca; Saldin, Evgeni
2012-01-01
Robb and Bonifacio (2011) claimed that a previously neglected quantum effect results in noticeable changes in the evolution of the energy distribution associated with spontaneous emission in long undulators. They revisited theoretical models used to describe the emission of radiation by relativistic electrons as a continuous diffusive process, and claimed that in the asymptotic limit for a large number of undulator periods the evolution of the electron energy distribution occurs as discrete energy groups according to Poisson distribution. We show that these novel results have no physical sense, because they are based on a one-dimensional model of spontaneous emission and assume that electrons are sheets of charge. However, electrons are point-like particles and, as is well-known, the bandwidth of the angular-integrated spectrum of undulator radiation is independent of the number of undulator periods. If we determine the evolution of the energy distribution using a three-dimensional theory we find the well-kno...
Calculations of Bose-Einstein correlations from Relativistic Quantum Molecular Dynamics
Sullivan, J.P.; Berenguer, M.; Fields, D.E.; Jacak, B.V.; Sarabura, M.; Simon-Gillo, J.; Sorge, H.; van Hecke, H. [Los Alamos National Lab., NM (United States); Pratt, S. [Michigan State Univ., East Lansing, MI (United States)
1993-10-01
Bose-Einstein correlation functions which are in good agreement with pion data can be calculated from an event generator. Here pion and (preliminary) kaon data from CERN experiment NA44 are compared to the calculations. The dynamics of 200 GeV/nucleon {sup 32}S + Pb collisions are calculated, without correlations due to interference patterns of a many-body wavefunction for identical particles, using the Relativistic Quantum Molecular Dynamics model (RQMD). The model is used to generate the phase-space coordinates of the emitted hadrons at the time they suffer their last strong interaction (freeze-out). Using the freeze-out position and momentum of pairs of randomly selected identical particles, a two-particle symmetrized wave-function is calculated and used to add two-body correlations. Details of the technique have been described previously. The method is similar to that used in the Spacer program.
Brown, Natalie
In this thesis we solve the Feshbach-Villars equations for spin-zero particles through use of matrix continued fractions. The Feshbach-Villars equations are derived from the Klein-Gordon equation and admit, for the Coulomb potential on an appropriate basis, a Hamiltonian form that has infinite symmetric band-matrix structure. The corresponding representation of the Green's operator of such a matrix can be given as a matrix continued fraction. Furthermore, we propose a finite dimensional representation for the potential operator such that it retains some information about the whole Hilbert space. Combining these two techniques, we are able to solve relativistic quantum mechanical problems of a spin-zero particle in a Coulomb-like potential with a high level of accuracy.
Virial Theorem for Non-relativistic Quantum Fields in D Spatial Dimensions
Lin, Chris L
2015-01-01
The virial theorem for non-relativistic complex fields in $D$ spatial dimensions and with arbitrary many-body potential is derived, using path-integral methods and scaling arguments recently developed to analyze quantum anomalies in lower-dimensional systems. The potential appearance of a Jacobian $J$ due to a change of variables in the path-integral expression for the partition function of the system is pointed out, although in order to make contact with the literature most of the analysis deals with the $J=1$ case. The virial theorem is recast into a form that displays the effect of microscopic scales on the thermodynamics of the system. From the point of view of this paper the case usually considered, $J=1$, is not natural, and the generalization to the case $J\
Non-relativistic Schroedinger theory on q-deformed quantum spaces III, Scattering theory
Wachter, H
2007-01-01
This is the third part of a paper about non-relativistic Schroedinger theory on q-deformed quantum spaces like the braided line or the three-dimensional q-deformed Euclidean space. Propagators for the free q-deformed particle are derived and their basic properties are discussed. A time-dependent formulation of scattering is proposed. In this respect, q-analogs of the Lippmann-Schwinger equation are given. Expressions for their iterative solutions are written down. It is shown how to calculate S-matrices and transition probabilities. Furthermore, attention is focused on the question what becomes of unitarity of S-matrices in a q-deformed setting. The examinations are concluded by a discussion of the interaction picture and its relation to scattering processes.
Cavity QED and quantum computation in the weak coupling regime
Fujii, Kazuyuki; Higashida, Kyoko; Kato, Ryosuke; Wada, Yukako
2004-12-01
In this paper we consider a model of quantum computation based on n atoms, laser cooled and trapped linearly in a cavity, and realize it as the n-atom Tavis-Cummings Hamiltonian interacting with n external (laser) fields. We solve the Schrödinger equation of the model in the case of n = 2 and construct the controlled NOT gate by making use of a resonance condition and the rotating wave approximation associated with it. Our method is not heuristic but completely mathematical, and the significant feature is the consistent use of Rabi oscillations. We also present an idea for the construction of three controlled NOT gates in the case of n = 3 which gives a controlled-controlled NOT gate.
Cavity QED and Quantum Computation in the Weak Coupling Regime
Fujii, K; Kato, R; Wada, Y; Fujii, Kazuyuki; Higashida, Kyoko; Kato, Ryosuke; Wada, Yukako
2004-01-01
In this paper we consider a model of quantum computation based on n atoms of laser--cooled and trapped linearly in a cavity and realize it as the n atoms Tavis--Cummings Hamiltonian interacting with n external (laser) fields. We solve the Schr{\\" o}dinger equation of the model in the case of n=2 and construct the controlled NOT gate by making use of a resonance condition and rotating wave approximation associated to it. Our method is not heuristic but completely mathematical, and the significant feature is a consistent use of Rabi oscillations. We also present a problem related to the construction of (three) controlled NOT gates in the case of n=3 which gives the controlled-controlled NOT gate.
Cavity QED and quantum computation in the weak coupling regime
Fujii, Kazuyuki; Higashida, Kyoko; Kato, Ryosuke; Wada, Yukako [Department of Mathematical Sciences, Yokohama City University, Yokohama 236-0027 (Japan)
2004-12-01
In this paper we consider a model of quantum computation based on n atoms, laser cooled and trapped linearly in a cavity, and realize it as the n-atom Tavis-Cummings Hamiltonian interacting with n external (laser) fields. We solve the Schroedinger equation of the model in the case of n = 2 and construct the controlled NOT gate by making use of a resonance condition and the rotating wave approximation associated with it. Our method is not heuristic but completely mathematical, and the significant feature is the consistent use of Rabi oscillations. We also present an idea for the construction of three controlled NOT gates in the case of n = 3 which gives a controlled-controlled NOT gate.
A quantum gas microscope for detecting single atoms in a Hubbard-regime optical lattice.
Bakr, Waseem S; Gillen, Jonathon I; Peng, Amy; Fölling, Simon; Greiner, Markus
2009-11-05
Recent years have seen tremendous progress in creating complex atomic many-body quantum systems. One approach is to use macroscopic, effectively thermodynamic ensembles of ultracold atoms to create quantum gases and strongly correlated states of matter, and to analyse the bulk properties of the ensemble. For example, bosonic and fermionic atoms in a Hubbard-regime optical lattice can be used for quantum simulations of solid-state models. The opposite approach is to build up microscopic quantum systems atom-by-atom, with complete control over all degrees of freedom. The atoms or ions act as qubits and allow the realization of quantum gates, with the goal of creating highly controllable quantum information systems. Until now, the macroscopic and microscopic strategies have been fairly disconnected. Here we present a quantum gas 'microscope' that bridges the two approaches, realizing a system in which atoms of a macroscopic ensemble are detected individually and a complete set of degrees of freedom for each of them is determined through preparation and measurement. By implementing a high-resolution optical imaging system, single atoms are detected with near-unity fidelity on individual sites of a Hubbard-regime optical lattice. The lattice itself is generated by projecting a holographic mask through the imaging system. It has an arbitrary geometry, chosen to support both strong tunnel coupling between lattice sites and strong on-site confinement. Our approach can be used to directly detect strongly correlated states of matter; in the context of condensed matter simulation, this corresponds to the detection of individual electrons in the simulated crystal. Also, the quantum gas microscope may enable addressing and read-out of large-scale quantum information systems based on ultracold atoms.
In search of a primitive ontology for relativistic quantum field theory
Lam, Vincent [University of Lausanne, CH-1015 Lausanne (Switzerland)
2014-07-01
There is a recently much discussed approach to the ontology of quantum mechanics according to which the theory is ultimately about entities in 3-dimensional space and their temporal evolution. Such an ontology postulating from the start matter localized in usual physical space or spacetime, by contrast to an abstract high-dimensional space such as the configuration space of wave function realism, is called primitive ontology in the recent literature on the topic and finds its roots in Bell's notion of local beables. The main motivation for a primitive ontology lies in its explanatory power: the primitive ontology allows for a direct account of the behaviour and properties of familiar macroscopic objects. In this context, it is natural to look for a primitive ontology for relativistic quantum field theory (RQFT). The aim of this talk is to critically discuss this interpretative move within RQFT, in particular with respect to the foundational issue of the existence of unitarily inequivalent representations. Indeed the proposed primitive ontologies for RQFT rely either on a Fock space representation or a wave functional representation, which are strictly speaking only unambiguously available for free systems in flat spacetime. As a consequence, it is argued that these primitive ontologies constitute only effective ontologies and are hardly satisfying as a fundamental ontology for RQFT.
Seto, Keita; Nagatomo, Hideo; Koga, James; Mima, Kunioki
In the near future, the intensity of the ultra-short pulse laser will reach to 1022 W/cm2. When an electron is irradiated by this laser, the electron's behavior is relativistic with significant bremsstrahlung. This radiation from the electron is regarded as the energy loss of electron. Therefore, the electron's motion changes because of the kinetic energy changing. This radiation effect on the charged particle is the self-interaction, called the “radiation reaction” or the “radiation damping”. For this reason, the radiation reaction appears in laser electron interactions with an ultra-short pulse laser whose intensity becomes larger than 1022 W/cm2. In the classical theory, it is described by the Lorentz-Abraham-Dirac (LAD) equation. But, this equation has a mathematical difficulty, which we call the “run-away”. Therefore, there are many methods for avoiding this problem. However, Dirac's viewpoint is brilliant, based on the idea of quantum electrodynamics. We propose a new equation of motion in the quantum theory with radiation reaction in this paper.
On quantum effects in spontaneous emission by a relativistic electron beam in an undulator
Geloni, Gianluca [European XFEL GmbH, Hamburg (Germany); Kocharyan, Vitali; Saldin, Evgeni [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
2012-02-15
Robb and Bonifacio (2011) claimed that a previously neglected quantum effect results in noticeable changes in the evolution of the energy distribution associated with spontaneous emission in long undulators. They revisited theoretical models used to describe the emission of radiation by relativistic electrons as a continuous diffusive process, and claimed that in the asymptotic limit for a large number of undulator periods the evolution of the electron energy distribution occurs as discrete energy groups according to Poisson distribution. We show that these novel results have no physical sense, because they are based on a one-dimensional model of spontaneous emission and assume that electrons are sheets of charge. However, electrons are point-like particles and, as is well-known, the bandwidth of the angular-integrated spectrum of undulator radiation is independent of the number of undulator periods. If we determine the evolution of the energy distribution using a three-dimensional theory we find the well-known results consistent with a continuous diffusive process. The additional pedagogical purpose of this paper is to review how quantum diffusion of electron energy in an undulator with small undulator parameter can be simply analyzed using the Thomson cross-section expression, unlike the conventional treatment based on the expression for the Lienard-Wiechert fields. (orig.)
Monte Carlo modeling of the dual-mode regime in quantum-well and quantum-dot semiconductor lasers.
Chusseau, Laurent; Philippe, Fabrice; Disanto, Filippo
2014-03-10
Monte Carlo markovian models of a dual-mode semiconductor laser with quantum well (QW) or quantum dot (QD) active regions are proposed. Accounting for carriers and photons as particles that may exchange energy in the course of time allows an ab initio description of laser dynamics such as the mode competition and intrinsic laser noise. We used these models to evaluate the stability of the dual-mode regime when laser characteristics are varied: mode gains and losses, non-radiative recombination rates, intraband relaxation time, capture time in QD, transfer of excitation between QD via the wetting layer... As a major result, a possible steady-state dual-mode regime is predicted for specially designed QD semiconductor lasers thereby acting as a CW microwave or terahertz-beating source whereas it does not occur for QW lasers.
Variable-Range Hopping Conductivity in Quantum Hall Regime for HgTe-Based Heterostructure
Arapov, Yu. G.; Gudina, S. V.; Neverov, V. N.; Podgornykh, S. M.; Popov, M. R.; Harus, G. I.; Shelushinina, N. G.; Yakunin, M. V.; Dvoretsky, S. A.; Mikhailov, N. N.
2016-12-01
We have measured the longitudinal and Hall resistivities in the quantum Hall regime at magnetic fields B up to 9 T and temperatures T =(2.9div 50) K for the HgCdTe/HgTe/HgCdTe heterostructure with a wide HgTe quantum well. The temperature-induced transport at the resistivity minima corresponding to the quantum Hall plateaus has been studied within the concept of hopping conduction in a strongly localized electron system. An analysis of the variable-range hopping conductivity in the regions of the first and second quantum Hall plateaus provided an opportunity to determine the value and the magnetic-field dependence of the localization length with the experimental estimation of the critical indices.
Photodissociation of a diatomic molecule in the quantum regime reveals ultracold chemistry
McDonald, M; Apfelbeck, F; Lee, C -H; Majewska, I; Moszynski, R; Zelevinsky, T
2015-01-01
Chemical reactions at temperatures near absolute zero require a full quantum description of the reaction pathways and enable enhanced control of the products via quantum state selection. Ultracold molecule experiments have provided initial insight into the quantum nature of basic chemical processes involving diatomic molecules, for example from studies of bimolecular reactions, but complete control over the reactants and products has remained elusive. The "half-collision" process of photodissociation is an indispensable tool in molecular physics and offers significantly more control than the reverse process of photoassociation. Here we reach a fully quantum regime with photodissociation of ultracold $^{88}$Sr$_2$ molecules where the initial bound state of the molecule and the target continuum state of the fragments are strictly controlled. Detection of the photodissociation products via optical absorption imaging reveals the hallmarks of ultracold chemistry: resonant and nonresonant barrier tunneling, importa...
Considerations for the extension of coherent optical processors into the quantum computing regime
Young, Rupert C. D.; Birch, Philip M.; Chatwin, Chris R.
2016-04-01
Previously we have examined the similarities of the quantum Fourier transform to the classical coherent optical implementation of the Fourier transform (R. Young et al, Proc SPIE Vol 87480, 874806-1, -11). In this paper, we further consider how superposition states can be generated on coherent optical wave fronts, potentially allowing coherent optical processing hardware architectures to be extended into the quantum computing regime. In particular, we propose placing the pixels of a Spatial Light Modulator (SLM) individually in a binary superposition state and illuminating them with a coherent wave front from a conventional (but low intensity) laser source in order to make a so-called `interaction free' measurement. In this way, the quantum object, i.e. the individual pixels of the SLM in their superposition states, and the illuminating wavefront would become entangled. We show that if this were possible, it would allow the extension of coherent processing architectures into the quantum computing regime and we give an example of such a processor configured to recover one of a known set of images encrypted using the well-known coherent optical processing technique of employing a random Fourier plane phase encryption mask which classically requires knowledge of the corresponding phase conjugate key to decrypt the image. A quantum optical computer would allow interrogation of all possible phase masks in parallel and so immediate decryption.
Landau–Zener–Stueckelberg interferometry with driving fields in the quantum regime
Ashhab, S.
2017-03-01
We analyze the dynamics of a two-level quantum system (TLS) under the influence of a strong sinusoidal driving signal whose origin is the interaction of the two-level system with a quantum field. In this approach the driving field is replaced by a harmonic oscillator that is either strongly coupled to the TLS or populated with a large number of photons. Starting from the Rabi model, we derive expressions for the TLS’s oscillation frequencies and compare the results with those obtained from the model where the driving signal is treated classically. We show that in the limits of weak coupling and large photon number, the well-known expression for the Rabi frequency in the strong driving regime is recovered. In the opposite limit of strong coupling and small photon number, we find differences between the predictions of the semiclassical and quantum models. The results of the quantum picture can therefore be understood as Landau–Zener–Stueckelberg interferometry in the fully quantum regime.
Robb, G R M
2012-01-01
In arXiv:1202.0691, Geloni et al. criticise our recent work describing the spontaneous emission by a relativistic, undulating electron beam. In particular they claim that our prediction of a quantum regime in which evolution of the electron momentum distribution occurs as a sequential population of discrete momentum groups rather than in terms of a drift-diffusion process is unphysical and artificial. We show that the criticism of our model contained in arXiv:1202.0691 is unfounded.
Analytic Characterization of the Dynamic Regimes of Quantum-Dot Lasers
Benjamin Lingnau
2015-04-01
Full Text Available We present analytic treatment of the three different dynamic regimes found in quantum-dot laser turn-on and modulation dynamics. A dynamic coupling, and thus density-dependent scattering lifetimes between dots and reservoir, are identified to be crucial for a realistic modeling. We derive a minimal model for the quantum-dot laser dynamics that can be seeded with experimentally accessible parameters, and give explicit analytic equations that are able to predict relaxation-oscillation frequency and damping rate.
Bakke, K., E-mail: kbakke@fisica.ufpb.br [Departamento de Física, Universidade Federal da Paraíba, Caixa Postal 5008, 58051-900, João Pessoa-PB (Brazil); Furtado, C., E-mail: furtado@fisica.ufpb.br [Departamento de Física, Universidade Federal da Paraíba, Caixa Postal 5008, 58051-900, João Pessoa-PB (Brazil); Belich, H., E-mail: belichjr@gmail.com [Departamento de Física e Química, Universidade Federal do Espírito Santo, Av. Fernando Ferrari, 514, Goiabeiras, 29060-900, Vitória, ES (Brazil)
2016-09-15
From the modified Maxwell theory coupled to gravity, we establish a possible scenario of the violation of the Lorentz symmetry and write an effective metric for the cosmic string spacetime. Then, we investigate the arising of an analogue of the Anandan quantum phase for a relativistic Dirac neutral particle with a permanent magnetic dipole moment in the cosmic string spacetime under Lorentz symmetry breaking effects. Besides, we analyse the influence of the effects of the Lorentz symmetry violation and the topology of the defect on the Aharonov–Casher geometric quantum phase in the nonrelativistic limit.
Bakke, K.; Furtado, C.; Belich, H.
2016-09-01
From the modified Maxwell theory coupled to gravity, we establish a possible scenario of the violation of the Lorentz symmetry and write an effective metric for the cosmic string spacetime. Then, we investigate the arising of an analogue of the Anandan quantum phase for a relativistic Dirac neutral particle with a permanent magnetic dipole moment in the cosmic string spacetime under Lorentz symmetry breaking effects. Besides, we analyse the influence of the effects of the Lorentz symmetry violation and the topology of the defect on the Aharonov-Casher geometric quantum phase in the nonrelativistic limit.
Mekhov, Igor B.; Ritsch, Helmut
2012-05-01
Although the study of ultracold quantum gases trapped by light is a prominent direction of modern research, the quantum properties of light were widely neglected in this field. Quantum optics with quantum gases closes this gap and addresses phenomena where the quantum statistical natures of both light and ultracold matter play equally important roles. First, light can serve as a quantum nondemolition probe of the quantum dynamics of various ultracold particles from ultracold atomic and molecular gases to nanoparticles and nanomechanical systems. Second, due to the dynamic light-matter entanglement, projective measurement-based preparation of the many-body states is possible, where the class of emerging atomic states can be designed via optical geometry. Light scattering constitutes such a quantum measurement with controllable measurement back-action. As in cavity-based spin squeezing, the atom number squeezed and Schrödinger cat states can be prepared. Third, trapping atoms inside an optical cavity, one creates optical potentials and forces, which are not prescribed but quantized and dynamical variables themselves. Ultimately, cavity quantum electrodynamics with quantum gases requires a self-consistent solution for light and particles, which enriches the picture of quantum many-body states of atoms trapped in quantum potentials. This will allow quantum simulations of phenomena related to the physics of phonons, polarons, polaritons and other quantum quasiparticles.
Single electron relativistic clock interferometer
Bushev, P. A.; Cole, J. H.; Sholokhov, D.; Kukharchyk, N.; Zych, M.
2016-09-01
Although time is one of the fundamental notions in physics, it does not have a unique description. In quantum theory time is a parameter ordering the succession of the probability amplitudes of a quantum system, while according to relativity theory each system experiences in general a different proper time, depending on the system's world line, due to time dilation. It is therefore of fundamental interest to test the notion of time in the regime where both quantum and relativistic effects play a role, for example, when different amplitudes of a single quantum clock experience different magnitudes of time dilation. Here we propose a realization of such an experiment with a single electron in a Penning trap. The clock can be implemented in the electronic spin precession and its time dilation then depends on the radial (cyclotron) state of the electron. We show that coherent manipulation and detection of the electron can be achieved already with present day technology. A single electron in a Penning trap is a technologically ready platform where the notion of time can be probed in a hitherto untested regime, where it requires a relativistic as well as quantum description.
Full control of quadruple quantum dot circuit charge states in the single electron regime
Delbecq, M. R., E-mail: matthieu.delbecq@riken.jp; Nakajima, T.; Otsuka, T.; Amaha, S. [RIKEN, Center for Emergent Matter Science, 3-1 Wako-shi, Saitama 351-0198 (Japan); Watson, J. D. [Department of Physics, Purdue University, West Lafayette, Indiana 47907 (United States); Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907 (United States); Manfra, M. J. [Department of Physics, Purdue University, West Lafayette, Indiana 47907 (United States); Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907 (United States); School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907 (United States); School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907 (United States); Tarucha, S. [RIKEN, Center for Emergent Matter Science, 3-1 Wako-shi, Saitama 351-0198 (Japan); Department of Applied Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)
2014-05-05
We report the realization of an array of four tunnel coupled quantum dots in the single electron regime, which is the first required step toward a scalable solid state spin qubit architecture. We achieve an efficient tunability of the system but also find out that the conditions to realize spin blockade readout are not as straightforwardly obtained as for double and triple quantum dot circuits. We use a simple capacitive model of the series quadruple quantum dots circuit to investigate its complex charge state diagrams and are able to find the most suitable configurations for future Pauli spin blockade measurements. We then experimentally realize the corresponding charge states with a good agreement to our model.
Quantum Key Distribution Based on a Weak-Coupling Cavity QED Regime
李春燕; 李岩松
2011-01-01
We present a quantum key distribution scheme using a weak-coupling cavity QED regime based on quantum dense coding.Hybrid entanglement states of photons and electrons are used to distribute information.We just need to transmit photons without storing them in the scheme.The electron confined in a quantum dot,which is embedded in a microcavity,is held by one of the legitimate users throughout the whole communication process.Only the polarization of a single photon and spin of electron measurements are applied in this protocol,which are easier to perform than collective-Bell state measurements.Linear optical apparatus,such as a special polarizing beam splitter in a circular basis and single photon operations,make it more flexible to realize under current technology.Its efficiency will approach 100％ in the ideal case.The security of the scheme is also discussed.%We present a quantum key distribution scheme using a weak-coupling cavity QED regime based on quantum dense coding. Hybrid entanglement states of photons and electrons are used to distribute information. We just need to transmit photons without storing them in the scheme. The electron confined in a quantum dot, which is embedded in a microcavity, is held by one of the legitimate users throughout the whole communication process. Only the polarization of a single photon and spin of electron measurements are applied in this protocol, which are easier to perform than collective-Bell state measurements. Linear optical apparatus, such as a speciai polarizing beam splitter in a circular basis and single photon operations, make it more flexible to realize under current technology. Its efficiency will approach 100% in the ideal case. The security of the scheme is also discussed.
On Relativistic Quantum Information Properties of Entangled Wave Vectors of Massive Fermions
Cafaro, C; Mancini, S
2011-01-01
We study special relativistic effects on the entanglement between either spins or momenta of composite quantum systems of two spin-1/2 massive particles, either indistinguishable or distinguishable, in inertial reference frames in relative motion. For the case of indistinguishable particles, we consider a balanced scenario where the momenta of the pair are well-defined but not maximally entangled in the rest frame while the spins of the pair are described by a one-parameter ($\\eta$) family of entangled bipartite states. For the case of distinguishable particles, we consider an unbalanced scenario where the momenta of the pair are well-defined and maximally entangled in the rest frame while the spins of the pair are described by a one-parameter ($\\xi$) family of non-maximally entangled bipartite states. In both cases, we show that neither the spin-spin ($ss$) nor the momentum-momentum ($mm$) entanglements quantified by means of Wootters' concurrence are Lorentz invariant quantities: the total amount of entangl...
Relativistic quantum dynamics of scalar bosons under a full vector Coulomb interaction
Castro, Luis B. [Universidade Federal do Maranhao (UFMA), Departamento de Fisica, Sao Luis, MA (Brazil); Oliveira, Luiz P. de [Universidade de Sao Paulo (USP), Instituto de Fisica, Sao Paulo, SP (Brazil); Garcia, Marcelo G. [Instituto Tecnologico de Aeronautica (ITA), Departamento de Fisica, Sao Jose dos Campos, SP (Brazil); Universidade Estadual de Campinas (UNICAMP), IMECC, Departamento de Matematica Aplicada, Campinas, SP (Brazil); Castro, Antonio S. de [Universidade Estadual Paulista (UNESP), Departamento de Fisica e Quimica, Guaratingueta, SP (Brazil)
2017-05-15
The relativistic quantum dynamics of scalar bosons in the background of a full vector coupling (minimal plus nonminimal vector couplings) is explored in the context of the Duffin-Kemmer-Petiau formalism. The Coulomb phase shift is determined for a general mixing of couplings and it is shown that the space component of the nonminimal coupling is a sine qua non condition for the exact closed-form scattering amplitude. It follows that the Rutherford cross section vanishes in the absence of the time component of the minimal coupling. Bound-state solutions obtained from the poles of the partial scattering amplitude show that the time component of the minimal coupling plays an essential role. The bound-state solutions depend on the nonminimal coupling and the spectrum consists of particles or antiparticles depending on the sign of the time component of the minimal coupling without chance for pair production even in the presence of strong couplings. It is also shown that an accidental degeneracy appears for a particular mixing of couplings. (orig.)
Kovács, Attila
2017-03-17
Actinide trioxide (AnO3, An = U, Np, Pu, Am, Cm) molecules have been investigated by relativistic multireference quantum chemical calculations with the goal to elucidate their electronic structures. The molecular geometries of the ground and selected excited electronic states have been optimized at the spin-orbit-free complete active space second-order perturbation theory (SF-CASPT2) level. The low-lying vertical excitation states have been computed and characterized by CASPT2 calculations taking into account spin-orbit coupling. The reason for the considerable lengthening of the equatorial An-O bond in AmO3 and CmO3 with respect to the other trioxides has been analyzed on the basis of valence molecular orbitals of the SF ground electronic states. For the bond in question a singly occupied π orbital has been identified, this orbital is doubly occupied in the other (An = U, Np, Pu) trioxides. The clarified electronic structures of the investigated AnO3 molecules confirmed the pentavalent character of Am and Cm in their trioxides in contrast to the hexavalent character of U, Np, and Pu.
An efficient solver for large structured eigenvalue problems in relativistic quantum chemistry
Shiozaki, Toru
2015-01-01
We report an efficient program for computing the eigenvalues and symmetry-adapted eigenvectors of very large quaternionic (or Hermitian skew-Hamiltonian) matrices, using which structure-preserving diagonalization of matrices of dimension N > 10000 is now routine on a single computer node. Such matrices appear frequently in relativistic quantum chemistry owing to the time-reversal symmetry. The implementation is based on a blocked version of the Paige-Van Loan algorithm [D. Kressner, BIT 43, 775 (2003)], which allows us to use the Level 3 BLAS subroutines for most of the computations. Taking advantage of the symmetry, the program is faster by up to a factor of two than state-of-the-art implementations of complex Hermitian diagonalization; diagonalizing a 12800 x 12800 matrix took 42.8 (9.5) and 85.6 (12.6) minutes with 1 CPU core (16 CPU cores) using our symmetry-adapted solver and Intel MKL's ZHEEV that is not structure-preserving, respectively. The source code is publicly available under the FreeBSD license.
On the disorder-driven quantum transition in three-dimensional relativistic metals
Louvet, T.; Carpentier, D.; Fedorenko, A. A.
2016-12-01
The Weyl semimetals are topologically protected from a gap opening against weak disorder in three dimensions. However, a strong disorder drives this relativistic semimetal through a quantum transition towards a diffusive metallic phase characterized by a finite density of states at the band crossing. This transition is usually described by a perturbative renormalization group in d =2 +ɛ of a U (N ) Gross-Neveu model in the limit N →0 . Unfortunately, this model is not multiplicatively renormalizable in 2 +ɛ dimensions: An infinite number of relevant operators are required to describe the critical behavior. Hence its use in a quantitative description of the transition beyond one loop is at least questionable. We propose an alternative route, building on the correspondence between the Gross-Neveu and Gross-Neveu-Yukawa models developed in the context of high-energy physics. It results in a model of Weyl fermions with a random non-Gaussian imaginary potential which allows one to study the critical properties of the transition within a d =4 -ɛ expansion. We also discuss the characterization of the transition by the multifractal spectrum of wave functions.
Bernád, J Z
2012-01-01
In generalization of the hydbrid quantum repeater model of van Loock et al. \\cite{vanLoock1} we explore possibilities of entangling two distant material qubits with the help of a single-mode optical radiation field in the strong quantum electrodynamical coupling regime of almost resonant interaction. The optimum generalized field measurements are determined which are capable of preparing a two-qubit Bell state by postselection with minimum error. It is demonstrated that in the strong coupling regime some of the recently found limitations of the non-resonant weak coupling regime can be circumvented successfully due to characteristic quantum electrodynamical quantum interference effects. In particular, in the absence of photon loss it is possible to postselect two-qubit Bell states with fidelities close to unity by a proper choice of the relevant interaction time. Even in the presence of photon loss this strong coupling regime offers interesting perspectives for creating spatially well separated Bell pairs with...
Arapov, Yu. G.; Gudina, S. V.; Neverov, V. N.; Podgornykh, S. M.; Popov, M. R., E-mail: rafaelp@yandex.ru; Harus, G. I.; Shelushinina, N. G.; Yakunin, M. V. [Russian Academy of Sciences, Mikheev Institute of Metal Physics, Ural Branch (Russian Federation); Mikhailov, N. N.; Dvoretsky, S. A. [Russian Academy of Sciences, Rzhanov Institute of Semiconductor Physics, Siberian Branch (Russian Federation)
2015-12-15
The longitudinal and Hall magnetoresistances of HgTe/HgCdTe heterostructures with an inverted energy spectrum (the HgTe quantum well width is d = 20.3 nm) are measured in the quantum-Hall-effect regime at T = 2–50 K in magnetic fields up to B = 9 T. Analysis of the temperature dependences of conductivity in the transition region between the first and second plateaus of the quantum Hall effect shows the feasibility of the scaling regime for a plateau–plateau quantum phase transition in 2D-structures on the basis of mercury telluride.
Field effect in the quantum Hall regime of a high mobility graphene wire
Barraud, C., E-mail: cbarraud@phys.ethz.ch, E-mail: clement.barraud@univ-paris-diderot.fr; Choi, T.; Ihn, T.; Ensslin, K. [Solid State Physics Laboratory, ETH Zürich, CH-8093 Zürich (Switzerland); Butti, P.; Shorubalko, I. [Swiss Federal Laboratories of Materials Science and Technologies, EMPA Elect. Metrol. Reliabil. Lab., CH-8600 Dübendorf (Switzerland); Taniguchi, T.; Watanabe, K. [National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044 (Japan)
2014-08-21
In graphene-based electronic devices like in transistors, the field effect applied thanks to a gate electrode allows tuning the charge density in the graphene layer and passing continuously from the electron to the hole doped regime across the Dirac point. Homogeneous doping is crucial to understand electrical measurements and for the operation of future graphene-based electronic devices. However, recently theoretical and experimental studies highlighted the role of the electrostatic edge due to fringing electrostatic field lines at the graphene edges [P. Silvestrov and K. Efetov, Phys. Rev. B 77, 155436 (2008); F. T. Vasko and I. V. Zozoulenko, Appl. Phys. Lett. 97, 092115 (2010)]. This effect originates from the particular geometric design of the samples. A direct consequence is a charge accumulation at the graphene edges giving a value for the density, which deviates from the simple picture of a plate capacitor and also varies along the width of the graphene sample. Entering the quantum Hall regime would, in principle, allow probing this accumulation thanks to the extreme sensitivity of this quantum effect to charge density and the charge distribution. Moreover, the presence of an additional and counter-propagating edge channel has been predicted [P. Silvestrov and K. Efetov, Phys. Rev. B 77, 155436 (2008)] giving a fundamental aspect to this technological issue. In this article, we investigate this effect by tuning a high mobility graphene wire into the quantum Hall regime in which charge carriers probe the electrostatic potential at high magnetic field close to the edges. We observe a slight deviation to the linear shift of the quantum Hall plateaus with magnetic field and we study its evolution for different filling factors, which correspond to different probed regions in real space. We discuss the possible origins of this effect including an increase of the charge density towards the edges.
Field effect in the quantum Hall regime of a high mobility graphene wire
Barraud, C.; Choi, T.; Butti, P.; Shorubalko, I.; Taniguchi, T.; Watanabe, K.; Ihn, T.; Ensslin, K.
2014-08-01
In graphene-based electronic devices like in transistors, the field effect applied thanks to a gate electrode allows tuning the charge density in the graphene layer and passing continuously from the electron to the hole doped regime across the Dirac point. Homogeneous doping is crucial to understand electrical measurements and for the operation of future graphene-based electronic devices. However, recently theoretical and experimental studies highlighted the role of the electrostatic edge due to fringing electrostatic field lines at the graphene edges [P. Silvestrov and K. Efetov, Phys. Rev. B 77, 155436 (2008); F. T. Vasko and I. V. Zozoulenko, Appl. Phys. Lett. 97, 092115 (2010)]. This effect originates from the particular geometric design of the samples. A direct consequence is a charge accumulation at the graphene edges giving a value for the density, which deviates from the simple picture of a plate capacitor and also varies along the width of the graphene sample. Entering the quantum Hall regime would, in principle, allow probing this accumulation thanks to the extreme sensitivity of this quantum effect to charge density and the charge distribution. Moreover, the presence of an additional and counter-propagating edge channel has been predicted [P. Silvestrov and K. Efetov, Phys. Rev. B 77, 155436 (2008)] giving a fundamental aspect to this technological issue. In this article, we investigate this effect by tuning a high mobility graphene wire into the quantum Hall regime in which charge carriers probe the electrostatic potential at high magnetic field close to the edges. We observe a slight deviation to the linear shift of the quantum Hall plateaus with magnetic field and we study its evolution for different filling factors, which correspond to different probed regions in real space. We discuss the possible origins of this effect including an increase of the charge density towards the edges.
Potylitsyn, A. P.; Kolchuzhkin, A. M.; Strokov, S. A.
2016-07-01
A photon spectrum of undulator radiation (UR) is calculated in the semi-classical approach. The UR intensity spectrum is determined by an electron trajectory in the undulator neglecting by energy losses for radiation. Using the Planck's law, the UR photon spectrum can be calculated from the classical intensity spectrum both for linear and nonlinear regimes. The radiation of an electron in a field of strong electromagnetic wave (radiation in the "light" undulator) is considered in the quantum electromagnetic frame. Comparison of results obtained by both approaches has been shown that UR spectra in the whole cone coincide with high accuracy for the case xbeam were simulated with taking into account the discrete process of photon emission along an electron trajectory in both kinds of undulators.
Wachter, H
2007-01-01
This is the second part of a paper about a q-deformed analog of non-relativistic Schroedinger theory. It applies the general ideas of part I and tries to give a description of one-particle states on q-deformed quantum spaces like the braided line or the q-deformed Euclidean space in three dimensions. Hamiltonian operators for the free q-deformed particle in one as well as three dimensions are introduced. Plane waves as solutions to the corresponding Schroedinger equations are considered. Their completeness and orthonormality relations are written down. Expectation values of position and momentum observables are taken with respect to one-particle states and their time-dependence is discussed. A potential is added to the free-particle Hamiltonians and q-analogs of the Ehrenfest theorem are derived from the Heisenberg equations of motion. The conservation of probability is proved.
Quantum simulation of the Dirac equation.
Gerritsma, R; Kirchmair, G; Zähringer, F; Solano, E; Blatt, R; Roos, C F
2010-01-07
The Dirac equation successfully merges quantum mechanics with special relativity. It provides a natural description of the electron spin, predicts the existence of antimatter and is able to reproduce accurately the spectrum of the hydrogen atom. The realm of the Dirac equation-relativistic quantum mechanics-is considered to be the natural transition to quantum field theory. However, the Dirac equation also predicts some peculiar effects, such as Klein's paradox and 'Zitterbewegung', an unexpected quivering motion of a free relativistic quantum particle. These and other predicted phenomena are key fundamental examples for understanding relativistic quantum effects, but are difficult to observe in real particles. In recent years, there has been increased interest in simulations of relativistic quantum effects using different physical set-ups, in which parameter tunability allows access to different physical regimes. Here we perform a proof-of-principle quantum simulation of the one-dimensional Dirac equation using a single trapped ion set to behave as a free relativistic quantum particle. We measure the particle position as a function of time and study Zitterbewegung for different initial superpositions of positive- and negative-energy spinor states, as well as the crossover from relativistic to non-relativistic dynamics. The high level of control of trapped-ion experimental parameters makes it possible to simulate textbook examples of relativistic quantum physics.
Quantum Monte Carlo studies of relativistic effects in 3H and 4He
Arriaga, A.
2000-03-01
Relativistic effects in 3H and 4He have been studied in the context of Relativistic Hamiltonian Dynamics, using Variational Monte Carlo Methods. Relativistic invariance is achieved through Poincaré group algebra, which introduces a boost interaction term defining the first relativistic effect considered. The second consists in the nonlocalities associated with the relativistic kinetic energy operator and with the relativistic one-pion exchange potential (OPEP). These nonlocalities tend to cancel, being the total effect on the binding energy attractive and very small, of the order of 1%. The dominant relativistic effect is due to the boost interaction, whose contribution is repulsive and of the order of 5%. The repulsive term of the nonrelativistic 3-body interaction has to be reduced by 37% so that the optimal triton binding energy is recovered, meaning that around 1/3 of this phenomenological term accounts for relativisitic effects. The changes induced on the wave functions of nuclei by these relativistic effetcs are very small and short ranged. Although the nonlocalities of OPEP, resulting in a reduction of 15%, are cancelled by other relativistic contributions, they may have significant effects on pion exchange currents in nuclei.
A quantitative examination of the collapse of spin splitting in the quantum Hall regime
Pan, W.; Baldwin, K. W.; West, K. W.; Pfeiffer, L. N.; Tsui, D. C.
2012-02-01
There is a great deal of current interest in understanding electron spin physics in semiconductors for potential quantum computation applications. The quantum Hall effect in the two-dimensional electron system (2DES) has proved to be a unique system in this avenue due to a tunability in the difference of spin population and thus the strength of exchange interaction provided by the formation of Landau levels. In this talk, we want to present our experimental results to quantitatively examine the theoretical model of spin splitting collapse in the quantum Hall regime [by Fogler and Shklovskii, Phys. Rev. B 52, 17366 (1995)] at fixed magnetic fields as a function of electron density in a high quality heterojunction insulated-gate field effect transistor. In the density range between n = 2x10^10 and 2x10^11 cm-2, the Landau level number N follows a power-law dependence on the critical electron density nc, where the spin splitting collapses, and N=11.47xnc^0.64±0.01. This power law dependence is in good agreement with the theoretical prediction in the low density regime.
Fast Rydberg antiblockade regime and its applications in quantum logic gates
Su, Shi-Lei; Gao, Ya; Liang, Erjun; Zhang, Shou
2017-02-01
Unlike the Rydberg blockade regime, the Rydberg antiblockade regime (RABR) allows more than one Rydberg atom to be excited, which can bring other interesting phenomena and applications. We propose an alternative scheme to quickly achieve the RABR. The proposed RABR can be implemented by adjusting the detuning of the classical driving field, which is, in turn, based on the former numbers of the excited Rydberg atoms. In contrast to the former schemes, the current one enables more than two atoms to be excited to Rydberg states in a short period of time and thus is useful for large-scale quantum information processing. The proposed RABR can be used to construct two- and multiqubit quantum logic gates. In addition, a Rydberg excitation superatom, which can decrease the blockade error and enlarge the blockade radius for Rydberg blockade-based schemes, is constructed based on the suggested RABR and used to realize a more robust quantum logic gate. The mechanical effect and the ionization are discussed, and the performance is investigated using the master-equation method. Finally, other possible applications of the present RABR are also given.
Transport across two interacting quantum dots: bulk Kondo, Kondo box and molecular regimes
Costa Ribeiro, Laercio; Hamad, Ignacio; Chiappe, Guillermo; Victoriano Anda, Enrique
2014-03-01
We analyze the transport properties of a double quantum dot device with both dots coupled to perfect conducting leads and to a finite chain of N non-interacting sites connecting both of them. The inter-dot chain strongly influences the transport across the system and the local density of states of the dots. We study the case of small number of sites, so that Kondo box effects are present. For odd N and small coupling between the inter-dot chain and the dots, a state with two coexisting Kondo regimes develops: the bulk Kondo due to the quantum dots connected to leads and the one produced by the screening of the quantum dots spins by the spin in the finite chain. As the coupling to the inter-dot chain increases, there is a crossover to a molecular Kondo effect, due to the screening of the molecule spin by the leads. For even N the two-Kondo temperatures regime does not develop and the physics is dominated by the usual competition between Kondo and antiferromagnetism. We finally study how the transport properties are affected as N is increased. We used exact multi-configurational Lanczos calculations and finite U slave-boson mean-field theory. The results obtained with both methods describe qualitatively and also quantitatively the same physics.
Bethe ansatz matrix elements as non-relativistic limits of form factors of quantum field theory
Kormos, M.; Mussardo, G.; Pozsgay, B.
2010-01-01
We show that the matrix elements of integrable models computed by the algebraic Bethe ansatz (BA) can be put in direct correspondence with the form factors of integrable relativistic field theories. This happens when the S-matrix of a Bethe ansatz model can be regarded as a suitable non-relativistic
Quantitative examination of the collapse of spin splitting in the quantum Hall regime
Pan, W.; Baldwin, K. W.; West, K. W.; Pfeiffer, L. N.; Tsui, D. C.
2011-10-01
We have quantitatively tested the theoretical model on the collapse of spin slitting in the quantum Hall effect regime proposed by Fogler and Shklovskii [Phys. Rev. BPLRBAQ0556-280510.1103/PhysRevB.52.17366 52, 17366 (1995)] in a high-mobility two-dimensional electron system (2DES) realized in a heterojunction insulated-gate field-effect transistor. In the 2DES density range between n = 2 × 1010 and 2 × 1011 cm-2, the Landau level number N displays a power-law dependence on the critical electron density nc where the spin splitting collapses and N = 11.47 × nc0.64±0.01 (nc is in units of 1011 cm-2). This power-law dependence is in good agreement with the theoretical prediction in the low-density regime.
Dupuy, John L.; Singh, Parampreet
2017-01-01
The spatially closed Friedmann-Lemaître-Robertson-Walker model in loop quantum cosmology admits two inequivalent consistent quantizations: one based on expressing the field strength in terms of the holonomies over closed loops and another using a connection operator and open holonomies. Using the effective dynamics, we investigate the phenomenological differences between the two quantizations for the single-fluid and the two-fluid scenarios with various equations of state, including the phantom matter. We show that a striking difference between the two quantizations is the existence of two distinct quantum turnarounds, either bounces or recollapses, in the connection quantization, in contrast to a single distinct quantum bounce or a recollapse in the holonomy quantization. These results generalize an earlier result on the existence of two distinct quantum bounces for stiff matter by Corichi and Karami. However, we find that in certain situations two distinct quantum turnarounds can become virtually indistinguishable. And depending on the initial conditions, a pure quantum cyclic universe can also exist undergoing a quantum bounce and a quantum recollapse. We show that for various equations of states, connection-based quantization leads to super-Planckian values of the energy density and the expansion scalar at quantum turnarounds. Interestingly, we find that very extreme energy densities can also occur for the holonomy quantization, breaching the maximum allowed density in the spatially flat loop quantized model. However, the expansion scalar in all these cases is bounded by a universal value.
On Relativistic Quantum Information Properties of Entangled Wave Vectors of Massive Fermions
Cafaro, Carlo; Capozziello, Salvatore; Mancini, Stefano
2012-08-01
We study special relativistic effects on the entanglement between either spins or momenta of composite quantum systems of two spin-1/2 massive particles, either indistinguishable or distinguishable, in inertial reference frames in relative motion. For the case of indistinguishable particles, we consider a balanced scenario where the momenta of the pair are well-defined but not maximally entangled in the rest frame while the spins of the pair are described by a one-parameter ( η) family of entangled bipartite states. For the case of distinguishable particles, we consider an unbalanced scenario where the momenta of the pair are well-defined and maximally entangled in the rest frame while the spins of the pair are described by a one-parameter ( ξ) family of non-maximally entangled bipartite states. In both cases, we show that neither the spin-spin ( ss) nor the momentum-momentum ( mm) entanglements quantified by means of Wootters' concurrence are Lorentz invariant quantities: the total amount of entanglement regarded as the sum of these entanglements is not the same in different inertial moving frames. In particular, for any value of the entangling parameters, both ss and mm-entanglements are attenuated by Lorentz transformations and their parametric rates of change with respect to the entanglements observed in a rest frame have the same monotonic behavior. However, for indistinguishable (distinguishable) particles, the change in entanglement for the momenta is (is not) the same as the change in entanglement for spins. As a consequence, in both cases, no entanglement compensation between spin and momentum degrees of freedom occurs.
Quantum fields in the non-perturbative regime. Yang-Mills theory and gravity
Eichhorn, Astrid
2011-09-06
In this thesis we study candidates for fundamental quantum field theories, namely non-Abelian gauge theories and asymptotically safe quantum gravity. Whereas the first ones have a stronglyinteracting low-energy limit, the second one enters a non-perturbative regime at high energies. Thus, we apply a tool suited to the study of quantum field theories beyond the perturbative regime, namely the Functional Renormalisation Group. In a first part, we concentrate on the physical properties of non-Abelian gauge theories at low energies. Focussing on the vacuum properties of the theory, we present an evaluation of the full effective potential for the field strength invariant F{sub {mu}}{sub {nu}}F{sup {mu}}{sup {nu}} from non-perturbative gauge correlation functions and find a non-trivial minimum corresponding to the existence of a dimension four gluon condensate in the vacuum. We also relate the infrared asymptotic form of the {beta} function of the running background-gauge coupling to the asymptotic behavior of Landau-gauge gluon and ghost propagators and derive an upper bound on their scaling exponents. We then consider the theory at finite temperature and study the nature of the confinement phase transition in d = 3+1 dimensions in various non-Abelian gauge theories. For SU(N) with N= 3,..,12 and Sp(2) we find a first-order phase transition in agreement with general expectations. Moreover our study suggests that the phase transition in E(7) Yang-Mills theory also is of first order. Our studies shed light on the question which property of a gauge group determines the order of the phase transition. In a second part we consider asymptotically safe quantum gravity. Here, we focus on the Faddeev-Popov ghost sector of the theory, to study its properties in the context of an interacting UV regime. We investigate several truncations, which all lend support to the conjecture that gravity may be asymptotically safe. In a first truncation, we study the ghost anomalous dimension
Injection locking of quantum dot microlasers operating in the few photon regime
Schlottmann, Elisabeth; Lingnau, Benjamin; Lüdge, Kathy; Schneider, Christian; Kamp, Martin; Höfling, Sven; Wolters, Janik; Reitzenstein, Stephan
2016-01-01
We experimentally and theoretically investigate injection locking of quantum dot (QD) microlasers in the regime of cavity quantum electrodynamics (cQED). We observe frequency locking and phase-locking where cavity enhanced spontaneous emission enables simultaneous stable oscillation at the master frequency and at the solitary frequency of the slave microlaser. Measurements of the second-order autocorrelation function prove this simultaneous presence of both master and slave-like emission, where the former has coherent character with $g^{(2)}(0)=1$ while the latter one has thermal character with $g^{(2)}(0)=2$. Semi-classical rate-equations explain this peculiar behavior by cavity enhanced spontaneous emission and a low number of photons in the laser mode.
Low-temperature transport in ac-driven quantum dots in the Kondo regime
Lopez, Rosa; Aguado, Ramon; Platero, Gloria; Tejedor, Carlos
2001-08-15
We present a fully nonequilibrium calculation of the low-temperature transport properties of a quantum dot in the Kondo regime when an ac potential is applied to the gate. We solve a time-dependent Anderson model with finite on-site Coulomb interaction. The interaction self-energy is calculated up to second order in perturbation theory in the on-site interaction, in the context of the Keldysh nonequilibrium technique, and the effect of the ac voltage is taken into account exactly for all ranges of ac frequencies and ac intensities. The obtained linear conductance and time-averaged density of states of the quantum dot evolve in a nontrivial way as a function of the ac frequency and ac intensity of the harmonic modulation.
Chen, Xing; Moore, Justin E; Zekarias, Meserret; Jensen, Lasse
2015-11-10
The optical properties of metallic nanoparticles with nanometre dimensions exhibit features that cannot be described by classical electrodynamics. In this quantum size regime, the near-field properties are significantly modified and depend strongly on the geometric arrangements. However, simulating realistically sized systems while retaining the atomistic description remains computationally intractable for fully quantum mechanical approaches. Here we introduce an atomistic electrodynamics model where the traditional description of nanoparticles in terms of a macroscopic homogenous dielectric constant is replaced by an atomic representation with dielectric properties that depend on the local chemical environment. This model provides a unified description of bare and ligand-coated nanoparticles, as well as strongly interacting nanoparticle dimer systems. The non-local screening owing to an inhomogeneous ligand layer is shown to drastically modify the near-field properties. This will be important to consider in optimization of plasmonic nanostructures for near-field spectroscopy and sensing applications.
Engineering colloidal quantum dot solids within and beyond the mobility-invariant regime
Zhitomirsky, David
2014-05-06
© 2014 Macmillan Publishers Limited. Colloidal quantum dots are attractive materials for efficient, low-cost and facile implementation of solution-processed optoelectronic devices. Despite impressive mobilities (1-30 cm2V-1 s-1) reported for new classes of quantum dot solids, it is-surprisingly-the much lower-mobility (10-3-10-2 cm2V-1 s-1) solids that have produced the best photovoltaic performance. Here we show that it is not mobility, but instead the average spacing among recombination centres that governs the diffusion length of charges in today\\'s quantum dot solids. In this regime, colloidal quantum dot films do not benefit from further improvements in charge carrier mobility. We develop a device model that accurately predicts the thickness dependence and diffusion length dependence of devices. Direct diffusion length measurements suggest the solid-state ligand exchange procedure as a potential origin of the detrimental recombination centres. We then present a novel avenue for in-solution passivation with tightly bound chlorothiols that retain passivation from solution to film, achieving an 8.5% power conversion efficiency.
Dupuy, John L
2016-01-01
The spatially closed Friedmann-Lemaitre-Robertson-Walker model in loop quantum cosmology admits two inequivalent consistent quantizations: one based on expressing field strength in terms of holonomies over closed loops, and, another using a connection operator and open holonomies. Using effective dynamics, we investigate the phenomenological differences between the two quantizations for single fluid and two fluid scenarios with various equations of state, including phantom matter. We show that a striking difference between the two quantizations is the existence of two distinct quantum turnarounds, either bounces or recollapses, in the connection quantization, in contrast to a single distinct quantum bounce or recollapse in the holonomy quantization. These results generalize an earlier result on two distinct quantum bounces for stiff matter by Corichi and Karami. However, we find that in certain situations two distinct quantum turnarounds can become virtually indistinguishable. And depending on initial conditi...
ZHANG Peng-Fei; RUAN Tu-Nan
2001-01-01
A systematic theory on the appropriate spin operators for the relativistic states is developed. For a massive relativistic particle with arbitrary nonzero spin, the spin operator should be replaced with the relativistic one, which is called in this paper as moving spin. Further the concept of moving spin is discussed in the quantum field theory. A new is constructed. It is shown that, in virtue of the two operators, problems in quantum field concerned spin can be neatly settled.
Bonnaud, G.; Dussy, S.; Lefebvre, E. [CEA Bruyeres-le-Chatel, 91 (France). Dept. de Physique Theorique et Appliquee; Bouchut, F. [Orleans Univ., 45 (France). Dept. de Mathematiques, UMR CNRS
1998-12-31
This report presents a numerical model to simulate the electromagnetic processes involved by electrically-charged relativistic fluids. The physical model is first given. Second, the numerical methods are explained with the various packages of the code RHEA, with indication methods are explained with the various packages of the code RHEA, with indication of its performances, within a 1.5.- dimensional framework. Results from test-simulations are shown to validate the use of the code, for both academic situations and realistic context of laser-plasma interaction, for which the code has been designed: the non-linear phenomena in the context of inertial confinement fusion and the ultra-intense laser pulses. (author) 25 refs.
Bonnaud, G.; Dussy, S.; Lefebvre, E. [CEA Bruyeres-le-Chatel, 91 (France). Dept. de Physique Theorique et Appliquee; Bouchut, F. [Orleans Univ., 45 (France). Dept. de Mathematiques, UMR CNRS
1998-12-31
This report presents a numerical model to simulate the electromagnetic processes involved by electrically-charged relativistic fluids. The physical model is first given. Second, the numerical methods are explained with the various packages of the code RHEA, with indication methods are explained with the various packages of the code RHEA, with indication of its performances, within a 1.5.- dimensional framework. Results from test-simulations are shown to validate the use of the code, for both academic situations and realistic context of laser-plasma interaction, for which the code has been designed: the non-linear phenomena in the context of inertial confinement fusion and the ultra-intense laser pulses. (author) 25 refs.
Quantum simulation of the Dirac equation
Gerritsma, R; Zähringer, F; Solano, E; Blatt, R; Roos, C F
2009-01-01
The Dirac equation is a cornerstone in the history of physics, merging successfully quantum mechanics with special relativity, providing a natural description of the electron spin and predicting the existence of anti-matter. Furthermore, it is able to reproduce accurately the spectrum of the hydrogen atom and its realm, relativistic quantum mechanics, is considered as the natural transition to quantum field theory. However, the Dirac equation also predicts some peculiar effects such as Klein's paradox and Zitterbewegung, an unexpected quivering motion of a free relativistic quantum particle first examined by Schr\\"odinger. These and other predictions would be difficult to observe in real particles, while constituting key fundamental examples to understand relativistic quantum effects. Recent years have seen an increased interest in simulations of relativistic quantum effects in different physical setups, where parameter tunability allows accessibility to different physical regimes. Here, we perform a proof-of...
Morales Villasevil, A.
1965-07-01
A method is introduced ta deal with relativistic quantum field theory for particles with m=0. Two mappings I and J, giving rise respectively to particle and anti particle states, are defined between a test space and the physical Hilbert space. The intrinsic field operator is then defined as the minimal causal linear combinations of operators belonging to the annihilation-creation algebra associated to the germ and antigerm parts of the element. Local elements are introduced as improper test elements and local field operators are constructed in the same way as the intrinsic ones. Commutation rules are given. (Author) 17 refs.
Quantum algorithms for quantum field theories.
Jordan, Stephen P; Lee, Keith S M; Preskill, John
2012-06-01
Quantum field theory reconciles quantum mechanics and special relativity, and plays a central role in many areas of physics. We developed a quantum algorithm to compute relativistic scattering probabilities in a massive quantum field theory with quartic self-interactions (φ(4) theory) in spacetime of four and fewer dimensions. Its run time is polynomial in the number of particles, their energy, and the desired precision, and applies at both weak and strong coupling. In the strong-coupling and high-precision regimes, our quantum algorithm achieves exponential speedup over the fastest known classical algorithm.
Horwitz, L. P.; Land, Martin C.; Gill, Tepper; Lusanna, Luca; Salucci, Paolo
2013-04-01
Although the subject of relativistic dynamics has been explored, from both classical and quantum mechanical points of view, since the work of Einstein and Dirac, its most striking development has been in the framework of quantum field theory. The very accurate calculations of spectral and scattering properties, for example, of the anomalous magnetic moment of the electron and the Lamb shift in quantum electrodynamics, and many qualitative features of the strong and electroweak interactions, demonstrate the very great power of description achieved in this framework. Yet, many fundamental questions remain to be clarified, such as the structure of classical relativistic dynamical theories on the level of Hamilton and Lagrange in Minkowski space as well as on the curved manifolds of general relativity. There moreover remains the important question of the covariant classical description of systems at high energy for which particle production effects are not large, such as discussed in Synge's book, The Relativistic Gas, and in Balescu's book on relativistic statistical mechanics. In recent years, the study of high energy plasmas and heavy ion collisions has emphasized the importance of developing the techniques of relativistic mechanics. The results of Lindner et al [Physical Review Letters 95 0040401 (2005)] as well as the more recent proposal of Palacios et al [Phys. Rev. Lett. 103 253001 (2009)] and others, have shown that there must be a quantum theory with coherence in time. Such a theory, manifestly covariant under the transformations of special relativity with an invariant evolution parameter, such as that of Stueckelberg [Helv. Phys. Acta 14 322, 588 (1941); 15 23 (1942); see also R P Feynman Phys. Rev. 80 4401 and J S Schwinger Phys. Rev. 82 664 (1951)] could provide a suitable basis for the study of such questions, as well as many others for which the application of the standard methods of quantum field theory are difficult to manage, involving, in particular
Role of quantum trajectory in high-order harmonic generation in the Keldysh multiphoton regime.
Li, Peng-Cheng; Jiao, Yuan-Xiang; Zhou, Xiao-Xin; Chu, Shih-I
2016-06-27
We present a systematic study of spectral and temporal structure of high-order harmonic generation (HHG) by solving accurately the time-dependent Schrödinger equation for a hydrogen atom in the multiphoton regime where the Keldysh parameter is greater unity. Combining with a time-frequency transform and an extended semiclassical analysis, we explore the role of quantum trajectory in HHG. We find that the time-frequency spectra of the HHG plateau near cutoff exhibit a decrease in intensity associated with the short- and long-trajectories when the ionization process is pushed from the multiphoton regime into the tunneling regime. This implies that the harmonic emission spectra in the region of the HHG plateau near and before the cutoff are suppressed. To see the generality of this prediction, we also present a time-dependent density-functional theoretical study of the effect of correlated multi-electron responses on the spectral and temporal structure of the HHG plateau of the Ar atom.
Recurrence relation for relativistic atomic matrix elements
Martínez y Romero, R P; Salas-Brito, A L
2000-01-01
Recurrence formulae for arbitrary hydrogenic radial matrix elements are obtained in the Dirac form of relativistic quantum mechanics. Our approach is inspired on the relativistic extension of the second hypervirial method that has been succesfully employed to deduce an analogous relationship in non relativistic quantum mechanics. We obtain first the relativistic extension of the second hypervirial and then the relativistic recurrence relation. Furthermore, we use such relation to deduce relativistic versions of the Pasternack-Sternheimer rule and of the virial theorem.
Horwitz, Lawrence; Hu, Bei-Lok; Lee, Da-Shin; Gill, Tepper; Land, Martin
2011-12-01
Although the subject of relativistic dynamics has been explored from both classical and quantum mechanical points of view since the work of Einstein and Dirac, its most striking development has been in the framework of quantum field theory. The very accurate calculations of spectral and scattering properties, for example, of the anamolous magnetic moment of the electron and the Lamb shift in quantum electrodynamics, and many qualitative features of the strong and electroweak interactions, demonstrate the very great power of description achieved in this framework. Yet, many fundamental questions remain to be clarified, such as the structure of classical realtivistic dynamical theories on the level of Hamilton and Lagrange in Minkowski space as well as on the curved manifolds of general relativity. There moreover remains the important question of the covariant classical description of systems at high energy for which particle production effects are not large, such as discussed in Synge's book, The Relativistic Gas, and in Balescu's book on relativistic statistical mechanics. In recent years, the study of high energy plasmas and heavy ion collisions has emphasized the importance of developing the techniques of relativistic mechanics. The results of Linder et al (Phys. Rev. Lett. 95 0040401 (2005)) as well as the more recent work of Palacios et al (Phys. Rev. Lett. 103 253001 (2009)) and others, have shown that there must be a quantum theory with coherence in time. Such a theory, manifestly covariant under the transformations of special relativity with an invariant evolution parameter, such as that of Stueckelberg (Helv. Phys. Acta 14 322, 588 (1941); 15 23 (1942); see also R P Feynman Phys. Rev. 80 4401 and J S Schwinger Phys. Rev. 82 664 (1951)) could provide a suitable basis for the study of such questions, as well as many others for which the application of the standard methods of quantum field theory are difficult to manage, involving, in particular, local
Vitória, R. L. L.; Belich, H.; Bakke, K.
2017-01-01
We consider a background of the violation of the Lorentz symmetry determined by the tensor (KF)_{μναβ} which governs the Lorentz symmetry violation out of the Standard Model Extension, where this background gives rise to a Coulomb-type potential, and then, we analyse its effects on a relativistic quantum oscillator. Furthermore, we analyse the behaviour of the relativistic quantum oscillator under the influence of a linear scalar potential and this background of the Lorentz symmetry violation. We show in both cases that analytical solutions to the Klein-Gordon equation can be achieved.
Al-Hashimi, M H; Wiese, U -J
2014-01-01
We consider the Schr\\"odinger equation for a relativistic point particle in an external 1-dimensional $\\delta$-function potential. Using dimensional regularization, we investigate both bound and scattering states, and we obtain results that are consistent with the abstract mathematical theory of self-adjoint extensions of the pseudo-differential operator $H = \\sqrt{p^2 + m^2}$. Interestingly, this relatively simple system is asymptotically free. In the massless limit, it undergoes dimensional transmutation and it possesses an infra-red conformal fixed point. Thus it can be used to illustrate non-trivial concepts of quantum field theory in the simpler framework of relativistic quantum mechanics.
Zare, S.; Yazdani, E.; Rezaee, S.; Anvari, A.; Sadighi-Bonabi, R.
2015-04-01
Propagation of a Gaussian x-ray laser beam has been analyzed in collisionless thermal quantum plasma with considering a ramped density profile. In this density profile due to the increase in the plasma density, an earlier and stronger self-focusing effect is noticed where the beam width oscillates with higher frequency and less amplitude. Moreover, the effect of the density profile slope and the initial plasma density on the laser propagation has been studied. It is found that, by increasing the initial density and the ramp slope, the laser beam focuses faster with less oscillation amplitude, smaller laser spot size and more oscillations. Furthermore, a comparison is made among the laser self-focusing in thermal quantum plasma, cold quantum plasma and classical plasma. It is realized that the laser self-focusing in the quantum plasma becomes stronger in comparison with the classical regime.
Purohit, Gunjan, E-mail: gunjan75@gmail.com; Rawat, Priyanka [Department of Physics, Laser-Plasma Computational Laboratory, DAV PG College, Dehradun, Uttarakhand (India); Chauhan, Prashant [Department of Physics and Material Science and Engineering, Jaypee Institute of Information Technology, Uttar Pradesh (India); Mahmoud, Saleh T. [Department of Physics, College of Science, UAE University, PO Box 17551 Al-Ain (United Arab Emirates)
2015-05-15
This article presents higher-order paraxial theory (non-paraxial theory) for the ring ripple formation on an intense Gaussian laser beam and its propagation in plasma, taking into account the relativistic-ponderomotive nonlinearity. The intensity dependent dielectric constant of the plasma has been determined for the main laser beam and ring ripple superimposed on the main laser beam. The dielectric constant of the plasma is modified due to the contribution of the electric field vector of ring ripple. Nonlinear differential equations have been formulated to examine the growth of ring ripple in plasma, self focusing of main laser beam, and ring rippled laser beam in plasma using higher-order paraxial theory. These equations have been solved numerically for different laser intensities and plasma frequencies. The well established experimental laser and plasma parameters are used in numerical calculation. It is observed that the focusing of the laser beams (main and ring rippled) becomes fast in the nonparaxial region by expanding the eikonal and other relevant quantities up to the fourth power of r. The splitted profile of laser beam in the plasma is observed due to uneven focusing/defocusing of the axial and off-axial rays. The growths of ring ripple increase when the laser beam intensity increases. Furthermore, the intensity profile of ring rippled laser beam gets modified due to the contribution of growth rate.
Gate-controlled spin splitting in quantum dots with ferromagnetic leads in the Kondo regime
Martinek, J.; Sindel, M.; Borda, L.; Barnaś, J.; Bulla, R.; König, J.; Schön, G.; Maekawa, S.; von Delft, J.
2005-09-01
The effect of a gate voltage ( Vg ) on the spin splitting of an electronic level in a quantum dot (QD) attached to ferromagnetic leads is studied in the Kondo regime using a generalized numerical renormalization group technique. We find that the Vg dependence of the QD level spin splitting strongly depends on the shape of the density of states (DOS). For one class of DOS shapes there is nearly no Vg dependence; for another, Vg can be used to control the magnitude and sign of the spin splitting, which can be interpreted as a local exchange magnetic field. We find that the spin splitting acquires a new type of logarithmic divergence. We give an analytical explanation for our numerical results and explain how they arise due to spin-dependent charge fluctuations.
Geometry effect on energy transfer rate in a coupled-quantum-well structure: nonlinear regime
Salavati-fard, T.; Vazifehshenas, T.
2014-12-01
We study theoretically the effect of geometry on the energy transfer rate at nonlinear regime in a coupled-quantum-well system using the balance equation approach. To investigate comparatively the effect of both symmetric and asymmetric geometry, different structures are considered. The random phase approximation dynamic dielectric function is employed to include the contributions from both quasiparticle and plasmon excitations. Also, the short-range exchange interaction is taken into account through the Hubbard approximation. Our numerical results show that the energy transfer rate increases by increasing the well thicknesses in symmetric structures. Furthermore, by increasing spatial asymmetry, the energy transfer rate decreases for the electron temperature range of interest. From numerical calculations, it is obtained that the nonlinear energy transfer rate is proportional to the square of electron drift velocity in all structures and also, found that the influence of Hubbard local field correction on the energy transfer rate gets weaker by increasing the strength of applied electric field.
Effects of van Hove Singularities on Transport of Quantum Dot Systems in Kondo Regime
无
2005-01-01
In the present paper, we study the effect of van Hove singularities of conduction electron on the transport of a single quantum dot system in the Kondo regime. By using both the equation-of-motion and the noncrossing approximation techniques, we show that the corrections caused by these singularities are actually minor. It can be explained by observing that the singularities in the equations, which determine the electronic DOS on the dot, are integrable. Furthermore, we find that, although each line width function is divergent at van Hove singular points, the total divergence is canceled out in the final formula to calculate the current through the system. Therefore, as far as the qualitative properties of the system is concerned, these singularities can be ignored and the wide-band approximation can be safely used in calculation.
Method of computation of energies in the fractional quantum Hall effect regime
M.A. Ammar
2016-09-01
Full Text Available In a previous work, we reported exact results of energies of the ground state in the fractional quantum Hall effect (FQHE regime for systems with up to N_{e}=6 electrons at the filling factor ν=1/3 by using the method of complex polar coordinates. In this work, we display interesting computational details of the previous calculation and extend the calculation to N_{e}=7 electrons at ν=1/3. Moreover, similar exact results are derived at the filling ν=1/5 for systems with up to N_{e}=6 electrons. The results that we obtained by analytical calculation are in good agreement with their analogues ones derived by the method of Monte Carlo in a precedent work.
Glorieux, Quentin; Guibal, Samuel; Likforman, Jean-Pierre; Coudreau, Thomas; 10.1103/PhysRevA.84.053826
2011-01-01
We study the generation of intensity quantum correlations using four-wave mixing in a rubidium vapor. The absence of cavity in these experiments allows to deal with several spatial modes simultaneously. In the standard, amplifying, configuration, we measure relative intensity squeezing up to 9.2 dB below the standard quantum limit. We also theoretically identify and experimentally demonstrate an original regime where, despite no overall amplification, quantum correlations are generated. In this regime a four-wave mixing set-up can therefore play the role of a photonic beam splitter with non--classical properties, i.e. a device that splits a coherent state input into two quantum correlated beams.
Relativistic Harmonic Oscillators and Hadronic Structures in the Quantum-Mechanics Curriculum
Kim, Y. S.; Noz, Marilyn E.
1978-01-01
A relativistic harmonic-oscillator formalism which is mathematically simple as the nonrelativistic harmonic oscillator is given. In view of its effectiveness in describing Lorentz-deformed hadrons, the inclusion of this formalism in a first-year graduate course will make the results of high-energy experiments more understandable. (BB)
Huebner, Marc C.
2009-10-15
Recently, the public has become aware of keywords like ''Quantum computer'' or ''Quantum cryptography''. Regarding their potential application in solid state based quantum information processing and their overall benefit in fundamental research quantum dots have gained more and more public interest. In this context, quantum dots are often referred to as ''artificial atoms'', a term subsuming their physical properties quite nicely and emphasizing the huge potential for further investigations. The basic mechanism to be considered is the theoretical model of a two-level system. A quantum dot itself represents this kind of system quite nicely, provided that only the presence or absence of a single exciton in the ground state of that structure is regarded. This concept can also be expanded to the presence of two excitons (bi-exciton). Transitions between the relevant levels can be induced by optical stimulation. When integrating quantum dots in diode like structures measurements of this phenomena can be accomplished regarding photo currents. This means of detection is highly sensitive and allows for tuning of the energy levels with respect to the energy of an exciting laser utilizing the Stark effect (via an external electric field). The photo current then shows narrow resonances representing those transitions. By this, the system can be used as a highly sensitive nano-spectrometer. The examination of coherent interactions between quantum dots and an electromagnetic field uses laser pulses that are much shorter than the dephasing time of the system (2 ps). The basic study to be done on two level systems is the measurement of Rabi oscillations allowing for the selection of an arbitrary superposition of states. In this work, the existing setup was improved regarding the possibility to control the temperature of the sample. Up to now, only investigations at 4,2 K have been possible. Even at 70 K Rabi oscillations
Postnikov, Sergey
2013-01-01
This work extends the seminal work of Gottfried on the two-body quantum physics of particles interacting through a delta-shell potential to many-body physics by studying a system of non-relativistic particles when the thermal De-Broglie wavelength of a particle is smaller than the range of the potential and the density is such that average distance between particles is smaller than the range. The ability of the delta-shell potential to reproduce some basic properties of the deuteron are examined. Relations for moments of bound states are derived. The virial expansion is used to calculate the first quantum correction to the ideal gas pressure in the form of the second virial coefficient. Additionally, all thermodynamic functions are calculated up to the first order quantum corrections. For small departures from equilibrium, the net flows of mass, energy and momentum, characterized by the coefficients of diffusion, thermal conductivity and shear viscosity, respectively, are calculated. Properties of the gas are...
Wundt, B J; 10.1103/PhysRevA.80.022505
2009-01-01
We calculate the relativistic corrections of relative order (Z alpha)^2$ to the two-photon decay rate of higher excited S and D states in ionic atomic systems, and we also evaluate the leading radiative corrections of relative order alpha (Z alpha)^2 ln[(Z alpha)^(-2)]. We thus complete the theory of the two-photon decay rates up to relative order alpha^3 ln(alpha). An approach inspired by nonrelativistic quantum electrodynamics is used. We find that the corrections of relative order (Z alpha)^2 to the two-photon decay are given by the zitterbewegung, the spin-orbit coupling and by relativistic corrections to the electron mass, and by quadrupole interactions. We show that all corrections are separately gauge-invariant with respect to a "hybrid" transformation from velocity to length gauge, where the gauge transformation of the wave function is neglected. The corrections are evaluated for the two-photon decay from 2S, 3S, 3D, and 4S states in one-electron (hydrogenlike) systems, with 1S and 2S final states.
Contribution of relativistic quantum chemistry to electron’s electric dipole moment for CP violation
Abe, M., E-mail: minoria@tmu.ac.jp; Gopakumar, G., E-mail: gopakumargeetha@gmail.com; Hada, M., E-mail: hada@tmu.ac.jp [Tokyo Metropolitan University, 1-1, Minami-Osawa, Hachioji-city, Tokyo 192-0397 (Japan); JST, CREST, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012 (Japan); Das, B. P., E-mail: das@iiap.ernet.in [Indian Institute of Astrophysics, Bangalore 560 034 (India); Tatewaki, H., E-mail: htatewak@nsc.nagoya-cu.ac.jp [Graduate School of Natural Sciences, Nagoya City University, Nagoya, Aichi 467-8501 (Japan); Mukherjee, D., E-mail: pcdm@iacs.res.in [Raman Center of Atomic, Molecular and Optical Sciences, IACS, Kolkata 700 032 (India)
2015-12-31
The search for the electric dipole moment of the electron (eEDM) is important because it is a probe of Charge Conjugation-Parity (CP) violation. It can also shed light on new physics beyond the standard model. It is not possible to measure the eEDM directly. However, the interaction energy involving the effective electric field (E{sub eff}) acting on an electron in a molecule and the eEDM can be measured. This quantity can be combined with E{sub eff}, which is calculated by relativistic molecular orbital theory to determine eEDM. Previous calculations of E{sub eff} were not sufficiently accurate in the treatment of relativistic or electron correlation effects. We therefore developed a new method to calculate E{sub eff} based on a four-component relativistic coupled-cluster theory. We demonstrated our method for YbF molecule, one of the promising candidates for the eEDM search. Using very large basis set and without freezing any core orbitals, we obtain a value of 23.1 GV/cm for E{sub eff} in YbF with an estimated error of less than 10%. The error is assessed by comparison of our calculations and experiments for two properties relevant for E{sub eff}, permanent dipole moment and hyperfine coupling constant. Our method paves the way to calculate properties of various kinds of molecules which can be described by a single-reference wave function.
Haba, Z
2009-02-01
We discuss relativistic diffusion in proper time in the approach of Schay (Ph.D. thesis, Princeton University, Princeton, NJ, 1961) and Dudley [Ark. Mat. 6, 241 (1965)]. We derive (Langevin) stochastic differential equations in various coordinates. We show that in some coordinates the stochastic differential equations become linear. We obtain momentum probability distribution in an explicit form. We discuss a relativistic particle diffusing in an external electromagnetic field. We solve the Langevin equations in the case of parallel electric and magnetic fields. We derive a kinetic equation for the evolution of the probability distribution. We discuss drag terms leading to an equilibrium distribution. The relativistic analog of the Ornstein-Uhlenbeck process is not unique. We show that if the drag comes from a diffusion approximation to the master equation then its form is strongly restricted. The drag leading to the Tsallis equilibrium distribution satisfies this restriction whereas the one of the Jüttner distribution does not. We show that any function of the relativistic energy can be the equilibrium distribution for a particle in a static electric field. A preliminary study of the time evolution with friction is presented. It is shown that the problem is equivalent to quantum mechanics of a particle moving on a hyperboloid with a potential determined by the drag. A relation to diffusions appearing in heavy ion collisions is briefly discussed.
An Introduction to Relativistic Quantum Mechanics. I. From Relativity to Dirac Equation
De Sanctis, M
2007-01-01
By using the general concepts of special relativity and the requirements of quantum mechanics, Dirac equation is derived and studied. Only elementary knowledge of spin and rotations in quantum mechanics and standard handlings of linear algebra are employed for the development of the present work.
Quantum and classical theories of scattering of relativistic electrons in ultrathin crystals
Shulga, N F
2016-01-01
Quantum and classical theories are proposed of scattering of high energy electrons in ultrathin crystals. The quantum theory is based upon a special representation of the scattering amplitude in the form of the integral over the surface surrounding the crystal, and on the spectral method of determination of the wave function. The classical theory is based upon the solution of the equation of motion by numerical methods. The comparison is performed of quantum and classical differential cross-sections of scattering in the transitional range of crystal thicknesses, from those at which the channeling phenomenon is not developed up to those at which it is realized. It is shown that in this range of crystal thicknesses substantial difference of quantum and classical scattering cross-sections takes place for the electrons with the energy up to tens of MeV. With the energy increase such difference decreases but some quantum effects in scattering still remain.
Kurian, Pushpa Ann; Vijayan, C.; Nag, Amit; Goswami, Debabrata
2013-01-01
Devices based on optical technology for high speed communication networks require materials with large nonlinear optical response in the ultrafast regime. Nonlinear optical materials have also attracted wide attention as potential candidates for the protection of optical sensors and eyes while handling lasers. Optical limiters have a constant transmittance at low input influence and a decrease in transmittance at higher fluences and are based on a variety of mechanisms such as nonlinear refraction, nonlinear scattering, multiphoton absorption and free carrier absorption. As we go from bulk to nanosized materials especially in the strong quantum confinement regime where radius of the nanoparticle is less than the bulk exciton Bohr radius, the optical nonlinearity is enhanced due to quantum confinement effect. This paper is on the ultrafast nonresonant nonlinearity in free standing films of PbS quantum dots stabilized in a synthetic glue matrix by a simple chemical route which provides flexibility of processing in a variety of physical forms. Optical absorption spectrum shows significant blue shift from the bulk absorption onset indicating strong quantum confinement. PbS quantumdots of mean size 3.3nm are characterized by X-ray diffraction and transmission electron microscopy. The mechanism of nonlinear absorption giving rise to optical limiting is probed using open z-scan technique with laser pulses of 150 fs pulse duration at 780 nm and the results are presented in the nonresonant femtosecond regime. Irradiance dependence on nonlinear absorption are discussed. PMID:24143059
Kurian, Pushpa Ann; Vijayan, C; Nag, Amit; Goswami, Debabrata
2007-09-17
Devices based on optical technology for high speed communication networks require materials with large nonlinear optical response in the ultrafast regime. Nonlinear optical materials have also attracted wide attention as potential candidates for the protection of optical sensors and eyes while handling lasers. Optical limiters have a constant transmittance at low input influence and a decrease in transmittance at higher fluences and are based on a variety of mechanisms such as nonlinear refraction, nonlinear scattering, multiphoton absorption and free carrier absorption. As we go from bulk to nanosized materials especially in the strong quantum confinement regime where radius of the nanoparticle is less than the bulk exciton Bohr radius, the optical nonlinearity is enhanced due to quantum confinement effect. This paper is on the ultrafast nonresonant nonlinearity in free standing films of PbS quantum dots stabilized in a synthetic glue matrix by a simple chemical route which provides flexibility of processing in a variety of physical forms. Optical absorption spectrum shows significant blue shift from the bulk absorption onset indicating strong quantum confinement. PbS quantumdots of mean size 3.3nm are characterized by X-ray diffraction and transmission electron microscopy. The mechanism of nonlinear absorption giving rise to optical limiting is probed using open z-scan technique with laser pulses of 150 fs pulse duration at 780 nm and the results are presented in the nonresonant femtosecond regime. Irradiance dependence on nonlinear absorption are discussed.
Bruce, Adam L
2015-01-01
We show the traditional rocket problem, where the ejecta velocity is assumed constant, can be reduced to an integral quadrature of which the completely non-relativistic equation of Tsiolkovsky, as well as the fully relativistic equation derived by Ackeret, are limiting cases. By expanding this quadrature in series, it is shown explicitly how relativistic corrections to the mass ratio equation as the rocket transitions from the Newtonian to the relativistic regime can be represented as products of exponential functions of the rocket velocity, ejecta velocity, and the speed of light. We find that even low order correction products approximate the traditional relativistic equation to a high accuracy in flight regimes up to $0.5c$ while retaining a clear distinction between the non-relativistic base-case and relativistic corrections. We furthermore use the results developed to consider the case where the rocket is not moving relativistically but the ejecta stream is, and where the ejecta stream is massless.
Manifestation of many-body interactions in the integer quantum Hall effect regime
Oswald, Josef; Römer, Rudolf A.
2017-09-01
We use the self-consistent Hartree-Fock approximation for numerically addressing the integer quantum Hall (IQH) regime in terms of many-body physics at higher Landau levels (LL). The results exhibit a strong tendency to avoid the simultaneous existence of partly filled spin-up and spin-down LLs. Partly filled LLs appear as a mixture of coexisting regions of full and empty LLs. We obtain edge stripes with approximately constant filling factor ν close to half-odd filling at the boundaries between the regions of full and empty LLs, which we explain in terms of the g -factor enhancement as a function of a locally varying ν across the compressible stripes. The many-particle interactions follow a behavior as it would result from applying Hund's rule for the occupation of the spin split LLs. The screening of the disorder and edge potential appears significantly reduced as compared to screening based on a Thomas-Fermi approximation. For addressing carrier transport, we use a nonequilibrium network model (NNM) that handles the lateral distribution of the experimentally injected nonequilibrium chemical potentials μ .
Quantum dissipative dynamics of a bistable system in the sub-Ohmic to super-Ohmic regime
Magazzù, Luca; Carollo, Angelo; Spagnolo, Bernardo; Valenti, Davide
2016-05-01
We investigate the quantum dynamics of a multilevel bistable system coupled to a bosonic heat bath beyond the perturbative regime. We consider different spectral densities of the bath, in the transition from sub-Ohmic to super-Ohmic dissipation, and different cutoff frequencies. The study is carried out by using the real-time path integral approach of the Feynman-Vernon influence functional. We find that, in the crossover dynamical regime characterized by damped intrawell oscillations and incoherent tunneling, the short time behavior and the time scales of the relaxation starting from a nonequilibrium initial condition depend nontrivially on the spectral properties of the heat bath.
The relativistic invariant Lie algebra for the kinematical observables in quantum space-time
Khrushchov, V V
2003-01-01
The deformation of the canonical algebra for the kinematical observables in Minkowski space has been considered under the condition of Lorentz invariance. A new relativistic invariant algebra depends on the fundamental constants $M$, $L$ and $H$ with the dimensionality of mass, length and action, respectively. In some limit cases the algebra obtained goes over into the well-known Snyder or Yang algebras. In general case the algebra represents a class of Lie algebras, which are either simple algebras, or semidirect sums of simple algebras integrable ones. T and C noninvariance for certain algebras of this class have been elucidated.
Rokhinson, Leonid; Kazakov, Aleksandr; Simion, George; Lyanda-Geller, Yuli; Kolkovsky, Valery; Karczewski, Grzegorz; Adamus, Zbigniew; Wojtowicz, Tomasz
2016-10-01
Several experiments in nanowires detected signatures of Majorana fermions, building block for topologicaly protected quantum computer. Now the focus of research is shifting toward systems where non-Abelian statistics of excitations can be demonstrated. To achieve this goal we are developing a new dilute magnetic semiconductor-based platform where non-Abelian excitations can be created and manipulated in a two-dimensional plane, with support for Majorana and higher order non-Abelian excitations. Here we report development of heterostructures where spin polarization of a two-dimensional electron gas in a quantum Hall regime can be controlled locally by electrostatic gating. This is demonstrated via voltage induced shift of quantum Hall ferromagnetic transition in the CdTe quantum wells with engineered placement of paramagnetic Mn impurities. The structures can be used to form helical domain walls in integer quantum Hall regime which, coupled to an s-wave superconductor, are expected to support Majorana zero modes. These heterostructures can be used as a testbed to study gate-reconfigurable domain walls networks.
Fujii, K; Kato, R; Wada, Y; Fujii, Kazuyuki; Higashida, Kyoko; Kato, Ryosuke; Wada, Yukako
2005-01-01
In this paper we treat a cavity QED quantum computation. Namely, we consider a model of quantum computation based on n atoms of laser-cooled and trapped linearly in a cavity and realize it as the n atoms Tavis-Cummings Hamiltonian interacting with n external (laser) fields. We solve the Schr{\\" o}dinger equation of the model in the weak coupling regime to construct the controlled NOT gate in the case of n=2, and to construct the controlled-controlled NOT gate in the case of n=3 by making use of several resonance conditions and rotating wave approximation associated to them. We also present an idea to construct general quantum circuits. The approach is more sophisticated than that of the paper [K. Fujii, Higashida, Kato and Wada, Cavity QED and Quantum Computation in the Weak Coupling Regime, J. Opt. B : Quantum Semiclass. Opt. {\\bf 6} (2004), 502]. Our method is not heuristic but completely mathematical, and the significant feature is based on a consistent use of Rabi oscillations.
刘铁路; 王云良; 路彦珍
2015-01-01
The nonlinear propagation of quantum ion acoustic wave (QIAW) is investigated in a four-component plasma com-posed of warm classical positive ions and negative ions, as well as inertialess relativistically degenerate electrons and positrons. A nonlinear Schr ¨odinger equation is derived by using the reductive perturbation method, which governs the dynamics of QIAW packets. The modulation instability analysis of QIAWs is considered based on the typical parameters of the white dwarf. The results exhibit that both in weakly relativistic limit and in ultrarelativistic limit, the modulational instability regions are sensitively dependent on the ratios of temperature and number density of negative ions to those of positive ions respectively, and on relativistically degenerate effect as well.
Meinert, F; Mark, M J; Kirilov, E; Lauber, K; Weinmann, P; Gröbner, M; Nägerl, H-C
2014-05-16
We study atomic Bloch oscillations in an ensemble of one-dimensional tilted superfluids in the Bose-Hubbard regime. For large values of the tilt, we observe interaction-induced coherent decay and matter-wave quantum phase revivals of the Bloch oscillating ensemble. We analyze the revival period dependence on interactions by means of a Feshbach resonance. When reducing the value of the tilt, we observe the disappearance of the quasiperiodic phase revival signature towards an irreversible decay of Bloch oscillations, indicating the transition from regular to quantum chaotic dynamics.
Quantum Potential Via General Hamilton - Jacobi Equation
Mollai, Maedeh; Jami, Safa; Ahanj, Ali
2011-01-01
In this paper, we sketch and emphasize the automatic emergence of a quantum potential (QP) in general Hamilton-Jacobi equation via commuting relations, quantum canonical transformations and without the straight effect of wave function. The interpretation of QP in terms of independent entity is discussed along with the introduction of quantum kinetic energy. The method has been extended to relativistic regime, and same results have been concluded.
Under-the-barrier dynamics in laser-induced relativistic tunneling
Klaiber, Michael; Bauke, Heiko; Hatsagortsyan, Karen Z; Keitel, Christoph H
2012-01-01
The tunneling dynamics in relativistic strong-field ionization is investigated with the aim to develop an intuitive picture for the relativistic tunneling regime. We demonstrate that the tunneling picture applies also in the relativistic regime by introducing position dependent energy levels. The relativistic quantum dynamics in the classically forbidden region features two characteristic time scales: the time for the formation of momentum components of the ionized electron wave packet (Keldysh time) and the time interval which the electron wave packet spends inside the barrier (Eisenbud-Wigner-Smith time delay). While the Keldysh time determines an electron momentum shift under the barrier along the laser propagation direction, the Eisenbud-Wigner-Smith time delay governs the corresponding wave-packet's spatial drift. The signature of the momentum shift is shown to be present in the ionization spectrum at the detector and, therefore, observable experimentally. In contrast, the signature of the Eisenbud-Wigne...
Yoshihara, F.; Fuse, T.; Ashhab, S.; Kakuyanagi, K.; Saito, S.; Semba, K.
2017-05-01
We report on spectra of circuit-quantum-electrodynamics (QED) systems in an intermediate regime that lies between the ultrastrong- and the deep-strong-coupling regimes, which have been reported previously in the literature. Our experimental results, along with numerical simulations, demonstrate that as the coupling strength increases, the spectrum of a circuit-QED system undergoes multiple qualitative transformations, such that several coupling regimes are identified, each with its own unique spectral features. The different spectral transformations can be related to crossings between energy level differences and to changes in the symmetries of the energy eigenstates. These results allow us to use qualitative spectral features to infer certain properties and parameters of the system.
Bliokh, Konstantin Y
2011-01-01
We consider the relativistic deformation of quantum waves and mechanical bodies carrying intrinsic angular momentum (AM). When observed in a moving reference frame, the centroid of the object undergoes an AM-dependent transverse shift. This is the relativistic analogue of the spin Hall effect, which occurs in free space without any external fields. Remarkably, the shifts of the geometric and energy centroids differ by a factor of 2, and both centroids are crucial for the correct Lorentz transformations of the AM tensor. We examine manifestations of the relativistic Hall effect in quantum vortices, mechanical flywheel, and discuss various fundamental aspects of the phenomenon. The perfect agreement of quantum and relativistic approaches allows applications at strikingly different scales: from elementary spinning particles, through classical light, to rotating black-holes.
Enhanced circular photogalvanic effect in HgTe quantum wells in the heavily inverted regime
Li, Jun; Yang, Wen; Liu, Jiang-Tao; Huang, Wei; Li, Cheng; Chen, Song-Yan
2017-01-01
HgTe-based quantum wells (QWs) possess very strong spin-orbit interaction (SOI) and have become an ideal platform for the study of fundamental SOI-dependent phenomena and the topological insulator phase. Circular photogalvanic effect (CPGE) in HgTe QWs is of great interest because it provides an effective optical access to probe the spin-related information of HgTe systems. However, the complex band structure and large spin splitting of HgTe QWs makes it inadequate to analyze the experimental results of CPGE in HgTe QWs [B. Wittmann et al., Semicond. Sci. Technol. 25, 095005 (2010), 10.1088/0268-1242/25/9/095005] with reduced band models. Here, based on the realistic eight-band k .p Hamiltonian and combined with the density-matrix formalism, we present a detailed theoretical investigation of CPGE in (001)-oriented Hg0.3Cd0.7Te /HgTe /Hg0.3Cd0.7Te QWs. We find the CPGE currents in HgTe QWs in the heavily inverted regime are significantly enhanced due to the strong distortion of band dispersion at a certain range of the energy spectrum. This enhancement effect could offer an experimental certificate that the HgTe QW is in the heavily inverted phase (usually accompanied with the emergence of two-dimensional topological edge states), and could also be utilized in engineering the high efficiency ellipticity detector of infrared and terahertz radiation [S. N. Danilov et al., J. Appl. Phys. 105, 013106 (2009), 10.1063/1.3056393]. Additionally, within the same theoretical framework, we also investigate the interplay effect of structure inversion asymmetry and bulk inversion asymmetry and the pure spin currents driven by linearly polarized light in HgTe QWs.
Non-Hermitian interaction representation and its use in relativistic quantum mechanics
Znojil, Miloslav
2017-10-01
The textbook interaction-picture formulation of quantum mechanics is extended to cover the unitarily evolving systems in which the Hermiticity of the observables is guaranteed via an ad hoc amendment of the inner product in Hilbert space. These systems are sampled by the Klein-Gordon equation with a space- and time-dependent mass term.
Kaldewey, Timo; Lüker, Sebastian; Kuhlmann, Andreas V.; Valentin, Sascha R.; Chauveau, Jean-Michel; Ludwig, Arne; Wieck, Andreas D.; Reiter, Doris E.; Kuhn, Tilmann; Warburton, Richard J.
2017-06-01
Excitation of a semiconductor quantum dot with a chirped laser pulse allows excitons to be created by rapid adiabatic passage. In quantum dots this process can be greatly hindered by the coupling to phonons. Here we add a high chirp rate to ultrashort laser pulses and use these pulses to excite a single quantum dot. We demonstrate that we enter a regime where the exciton-phonon coupling is effective for small pulse areas, while for higher pulse areas a decoupling of the exciton from the phonons occurs. We thus discover a reappearance of rapid adiabatic passage, in analogy to the predicted reappearance of Rabi rotations at high pulse areas. The measured results are in good agreement with theoretical calculations.
Kotikov, A V
2013-01-01
We compute the two-loop fermion self-energy in massless reduced quantum electrodynamics for an arbitrary gauge using the method of integration by parts. Focusing on the limit where the photon field is four-dimensional, our formula involves only recursively one-loop integrals and can therefore be evaluated exactly. From this formula, we deduce the anomalous scaling dimension of the fermion field as well as the renormalized fermion propagator up to two loops. The results are then applied to the ultra-relativistic limit of graphene and compared with similar results obtained for four-dimensional and three-dimensional quantum electrodynamics.
Computer-automated tuning of semiconductor double quantum dots into the single-electron regime
Baart, T.A.; Eendebak, P.T.; Reichl, C.; Wegscheider, W.; Vandersypen, L.M.K.
2016-01-01
We report the computer-automated tuning of gate-defined semiconductor double quantum dots in GaAs heterostructures. We benchmark the algorithm by creating three double quantum dots inside a linear array of four quantum dots. The algorithm sets the correct gate voltages for all the gates to tune the
Quantum heat engine in the relativistic limit: The case of a Dirac particle
Muñoz, Enrique; Peña, Francisco J.
2012-12-01
We studied the efficiency of two different schemes for a quantum heat engine, by considering a single Dirac particle trapped in an infinite one-dimensional potential well as the “working substance.” The first scheme is a cycle, composed of two adiabatic and two isoenergetic reversible trajectories in configuration space. The trajectories are driven by a quasistatic deformation of the potential well due to an external applied force. The second scheme is a variant of the former, where isoenergetic trajectories are replaced by isothermal ones, along which the system is in contact with macroscopic thermostats. This second scheme constitutes a quantum analog of the classical Carnot cycle. Our expressions, as obtained from the Dirac single-particle spectrum, converge in the nonrelativistic limit to some of the existing results in the literature for the Schrödinger spectrum.
An origin of the Universe determined by quantum physics and relativistic gravity
Unnikrishnan, C. S.; Gillies, G. T.; Ritter, R. C.
2001-01-01
We discuss the evolution of the Universe from what might be called its quantum origin. We apply the uncertainty principle to the origin of the Universe with characteristic time scale equal to the Planck time to obtain its initial temperature and density. We establish that the subsequent evolution obeying the Einstein equation gives the present temperature of the microwave background close to the observed value. The same origin allows the possibility that the Universe started with exactly the ...
Horwitz, L. P.
2015-05-01
The most recent meeting took place at the University of Connecticut, Storrs, on June 9-13, 2014. This meeting forms the basis for the Proceedings that are recorded in this issue of the Journal of Physics: Conference Series. Along with the work of some of the founding members of the Association, we were fortunate to have lecturers from application areas that provided strong challenges for further developments in quantum field theory, cosmological problems, and in the dynamics of systems subject to accelerations and the effects of general relativity. Topics treated in this issue include studies of the dark matter problem, rotation curves, and, in particular, for the (relatively accessible) Milky Way galaxy, compact stellar objects, a composite particle model, and the properties of a conformally invariant theory with spontaneous symmetry breaking. The Stueckelberg theory is further investigated for its properties in producing bremsstrahlung and pair production and apparent superluminal effects, and, as mentioned above, the implications of low energy nuclear reactions for such off-shell theories. Other "proper time" theories are investigated as well, and a study of the clock synchronization problem is presented. A mathematical study of to quantum groupo associated with the Toda lattice and its implications for quantum field theory, as well as a phenomenological discussion of supernova mechanics as well as a semiclassical discussion of electron spin and the question of the compatibility of special relativity and the quantum theory. A careful analysis of the covariant Aharonov-Bohm effect is given as well. The quantization of massless fields and the relation to the Maxwell theory is also discussed. We wish to thank the participants who contributed very much through their lectures, personal discussions, and these papers, to the advancement of the subject and our understanding.
Non relativistic diffeomorphism and the geometry of the fractional quantum Hall effect
Banerjee, Rabin
2015-01-01
We show that our recently proposed method\\cite{BMM1,BMM2,BMM3,BM4} of constructing nonrelativistic diffeomorphism invariant field theories by gauging the Galilean symmetry provides a natural connection with the geometry of the fractional quantum Hall effect (FQHE). Specifically, the covariant derivative that appears on gauging, exactly reproduces the form that yields the Hall viscosity and Wen-Zee shift \\cite{CYF}.
Razavy, Mohsen
2014-01-01
In this revised and expanded edition, in addition to a comprehensible introduction to the theoretical foundations of quantum tunneling based on different methods of formulating and solving tunneling problems, different semiclassical approximations for multidimensional systems are presented. Particular attention is given to the tunneling of composite systems, with examples taken from molecular tunneling and also from nuclear reactions. The interesting and puzzling features of tunneling times are given extensive coverage, and the possibility of measurement of these times with quantum clocks are critically examined. In addition by considering the analogy between evanescent waves in waveguides and in quantum tunneling, the times related to electromagnetic wave propagation have been used to explain certain aspects of quantum tunneling times. These topics are treated in both non-relativistic as well as relativistic regimes. Finally, a large number of examples of tunneling in atomic, molecular, condensed matter and ...
The Anomalous Nambu-Goldstone Theorem in Relativistic/Nonrelativistic Quantum Field Theory
Ohsaku, Tadafumi
2013-01-01
The anomalous Nambu-Goldstone (NG) theorem which is found as a violation of counting law of the number of NG bosons of the normal NG theorem in nonrelativistic and Lorentz-symmetry-violated relativistic theories is studied in detail, with emphasis on its mathematical aspect from Lie algebras, geometry to number theory. The basis of counting law of NG bosons in the anomalous NG theorem is examined by Lie algebras (local) and Lie groups (global). A quasi-Heisenberg algebra is found generically in various symmetry breaking schema of the anomalous NG theorem, and it indicates that it causes a violation/modification of the Heisenberg uncertainty relation in an NG sector which can be experimentally confirmed. The formalism of effective potential is presented for understanding the mechanism of anomalous NG theorem with the aid of our result of Lie algebras. After an investigation on a bosonic kaon condensation model with a finite chemical potential as an explicit Lorentz-symmetry-breaking parameter, a model Lagrangi...
Scott, Tony C.
It has been shown that the Fokker-Wheeler-Feynman (FWF) model could be rewritten to yield a physically acceptable relativistic many-particle Lagrangian. Contrary to Wheeler and Feynman's postulates, the model satisfies causality and can be generalised to include arbitrary forces. The 1/c power series of the FWF Lagrangian to order (1/c) ^4 contains accelerations. A procedure of quantizing the theory for such a Lagrangian is presented and it is then found that the accelerations approximately introduce an independent harmonic mode which is in agreement with resonances recently observed in Positronium collisions processes. This result may be of fundamental physical importance and requires further investigation. However, the refinement of this calculation requires the creation of new computational tools. To this end, a new method is presented in which both the eigenfunctions and eigenenergies are determined algebraically as power series in the order parameter, where each coefficient of the series is obtained in closed form. This method avoids the complications of a basis set and makes extensive use of symbolic computation. It is then applied to two model problems, namely the one-body Dirac equation for testing purposes and a special case of the two-body Dirac equation for which one obtains previously unknown closed form solutions.
Electromagnetic rho-meson form factors in point-form relativistic quantum mechanics
Biernat, Elmar P
2014-01-01
The relativistic point-form formalism which we proposed for the study of the electroweak structure of few-body bound states is applied to calculate the elastic form factors of spin-1 mesons, such as the rho, within constituent-quark models. We treat electron-meson scattering as a Poincare-invariant coupled-channel problem for a Bakamjian-Thomas mass operator and extract the meson current from the resulting invariant 1-photon-exchange amplitude. Wrong cluster properties inherent in the Bakamjian-Thomas framework are seen to cause spurious contributions in the current. These contributions, however, can be separated unambiguously from the physical ones and we end up with a meson current with all required properties. Numerical results for the rho-meson form factors are presented assuming a simple harmonic-oscillator bound-state wave function. The comparison with other approaches reveals a remarkable agreement of our results with those obtained within the covariant light-front scheme proposed by Carbonell et al.
Wuthrich, Christian
2014-01-01
There exists a growing literature on the so-called physical Church-Turing thesis in a relativistic spacetime setting. The physical Church-Turing thesis is the conjecture that no computing device that is physically realizable (even in principle) can exceed the computational barriers of a Turing machine. By suggesting a concrete implementation of a beyond-Turing computer in a spacetime setting, Istv\\'an N\\'emeti and Gyula D\\'avid (2006) have shown how an appreciation of the physical Church-Turing thesis necessitates the confluence of mathematical, computational, physical, and indeed cosmological ideas. In this essay, I will honour Istv\\'an's seventieth birthday, as well as his longstanding interest in, and his seminal contributions to, this field going back to as early as 1987 by modestly proposing how the concrete implementation in N\\'emeti and D\\'avid (2006) might be complemented by a quantum-information-theoretic communication protocol between the computing device and the logician who sets the beyond-Turing ...
Qubit-flip-induced cavity mode squeezing in the strong dispersive regime of the quantum Rabi model
Joshi, Chaitanya; Irish, Elinor K.; Spiller, Timothy P.
2017-01-01
Squeezed states of light are a set of nonclassical states in which the quantum fluctuations of one quadrature component are reduced below the standard quantum limit. With less noise than the best stabilised laser sources, squeezed light is a key resource in the field of quantum technologies and has already improved sensing capabilities in areas ranging from gravitational wave detection to biomedical applications. In this work we propose a novel technique for generating squeezed states of a confined light field strongly coupled to a two-level system, or qubit, in the dispersive regime. Utilising the dispersive energy shift caused by the interaction, control of the qubit state produces a time-dependent change in the frequency of the light field. An appropriately timed sequence of sudden frequency changes reduces the quantum noise fluctuations in one quadrature of the field well below the standard quantum limit. The degree of squeezing and the time of generation are directly controlled by the number of frequency shifts applied. Even in the presence of realistic noise and imperfections, our protocol promises to be capable of generating a useful degree of squeezing with present experimental capabilities. PMID:28358025
On the Origins of the Planck Zero Point Energy in Relativistic Quantum Field Theory
Widom, A; Srivastava, Y N
2015-01-01
It is argued that the zero point energy in quantum field theory is a reflection of the particle anti-particle content of the theory. This essential physical content is somewhat disguised in electromagnetic theory wherein the photon is its own anti-particle. To illustrate this point, we consider the case of a charged Boson theory $(\\pi^+,\\pi^-)$ wherein the particle and anti-particle can be distinguished by the charge $\\pm e$. Starting from the zero point energy, we derive the Boson pair production rate per unit time per unit volume from the vacuum in a uniform external electric field. The result is further generalized for arbitrary spin $s$.
Marcos Moshinsky
2007-11-01
Full Text Available A direct procedure for determining the propagator associated with a quantum mechanical problem was given by the Path Integration Procedure of Feynman. The Green function, which is the Fourier Transform with respect to the time variable of the propagator, can be derived later. In our approach, with the help of a Laplace transform, a direct way to get the energy dependent Green function is presented, and the propagator can be obtained later with an inverse Laplace transform. The method is illustrated through simple one dimensional examples and for time independent potentials, though it can be generalized to the derivation of more complicated propagators.
Nonlinear relativistic and quantum equations with a common type of solution.
Nobre, F D; Rego-Monteiro, M A; Tsallis, C
2011-04-08
Generalizations of the three main equations of quantum physics, namely, the Schrödinger, Klein-Gordon, and Dirac equations, are proposed. Nonlinear terms, characterized by exponents depending on an index q, are considered in such a way that the standard linear equations are recovered in the limit q→1. Interestingly, these equations present a common, solitonlike, traveling solution, which is written in terms of the q-exponential function that naturally emerges within nonextensive statistical mechanics. In all cases, the well-known Einstein energy-momentum relation is preserved for arbitrary values of q.
Maruyama Tomoyuki
2016-01-01
Full Text Available We study pion production from proton synchrotron radiation in the presence of strong magnetic fields by using the exact proton propagator in a strong magnetic field and explicitly including the anomalous magnetic moment. Results in this exact quantum approach do not agree with those obtained in the semi-classical approach. Then, we find that the anomalous magnetic moment of the proton greatly enhances the production rate by about two orders magnitude, and that the decay width satisfies a robust scaling law.
Repin, E. V.; Burmistrov, I. S.
2016-04-01
We explore the inelastic electron-scattering cross section off a metallic quantum dot close to the Stoner instability. We focus on the regime of strong Coulomb blockade in which the scattering cross section is dominated by the cotunneling processes. For large enough exchange interaction, the quantum dot acquires a finite total spin in the ground state. In this so-called mesoscopic Stoner instability regime, we find that at low enough temperatures, the inelastic scattering cross section (including the contribution due to an elastic electron spin flip) for an electron with an energy close to the chemical potential is different from the case of a magnetic impurity with the same spin. This difference stems from (i) the presence of low-lying many-body states of a quantum dot and (ii) the correlations of the tunneling amplitudes. Our results provide a possible explanation for the absence of the dephasing rate saturation at low temperatures in a recent experiment [N. Teneh, A. Yu. Kuntsevich, V. M. Pudalov, and M. Reznikov, Phys. Rev. Lett. 109, 226403 (2012), 10.1103/PhysRevLett.109.226403] in which the existence of local spin droplets in disordered electron liquid has been unraveled.
Cencek, Wojciech; Przybytek, Michał; Komasa, Jacek; Mehl, James B; Jeziorski, Bogumił; Szalewicz, Krzysztof
2012-06-14
The adiabatic, relativistic, and quantum electrodynamics (QED) contributions to the pair potential of helium were computed, fitted separately, and applied, together with the nonrelativistic Born-Oppenheimer (BO) potential, in calculations of thermophysical properties of helium and of the properties of the helium dimer. An analysis of the convergence patterns of the calculations with increasing basis set sizes allowed us to estimate the uncertainties of the total interaction energy to be below 50 ppm for interatomic separations R smaller than 4 bohrs and for the distance R = 5.6 bohrs. For other separations, the relative uncertainties are up to an order of magnitude larger (and obviously still larger near R = 4.8 bohrs where the potential crosses zero) and are dominated by the uncertainties of the nonrelativistic BO component. These estimates also include the contributions from the neglected relativistic and QED terms proportional to the fourth and higher powers of the fine-structure constant α. To obtain such high accuracy, it was necessary to employ explicitly correlated Gaussian expansions containing up to 2400 terms for smaller R (all R in the case of a QED component) and optimized orbital bases up to the cardinal number X = 7 for larger R. Near-exact asymptotic constants were used to describe the large-R behavior of all components. The fitted potential, exhibiting the minimum of -10.996 ± 0.004 K at R = 5.608 0 ± 0.000 1 bohr, was used to determine properties of the very weakly bound (4)He(2) dimer and thermophysical properties of gaseous helium. It is shown that the Casimir-Polder retardation effect, increasing the dimer size by about 2 Å relative to the nonrelativistic BO value, is almost completely accounted for by the inclusion of the Breit-interaction and the Araki-Sucher contributions to the potential, of the order α(2) and α(3), respectively. The remaining retardation effect, of the order of α(4) and higher, is practically negligible for the bound
Gestrina, G N
2005-01-01
The relativistic effect of energy increase in a particle freely moving in vacuum is discussed on the basis of quantum field theory and probability theory using some ideas of super-symmetrical theories. The particle is assumed to consist of a "seed" whose energy is equal to the particle rest energy and whose pulse is equal to the product of the particle mass by its velocity and of a "fur coat" - the system of virtual quanta of the material field - vacuum. Each of these quanta possesses the same energy and pulse as the "seed" but have no mass. The system of the quanta is in a state being the superposition of quantum states with energies and pulses multiple of the "seed" energy and pulse. The virtual quanta is created (or destroyed) in of such states. The probability of creating a quanta in any state is the inverse of the relativistic factor, and the average number of the quanta making up the "fur coat" with a "seed" is equal to this particular factor. The kinetic energy and the relativistic addition to the part...
Relativistic Quantum Mechanics of N Particles - The Clebsch-Gordan Method
Polyzou, W N
2002-01-01
A general technique is presented for constructing quantum mechanical theories of a finite number of interacting particles satisfying Poincar\\'e invariance, cluster separability, and the spectral condition. It is distinguished from other solutions of this problem because it does not utilize the existence of kinematic subgroups that arise in Dirac's forms of dynamics. In the generic construction all Poincar\\'e generators have interactions. The central elements of the construction are the representation theory of the Poincar\\'e group, the theory of Birkhoff lattices, and the algebra of asymptotic constants. The role of the dynamics depends on the choice of basis used to label vectors in Poincar\\'e irreducible subspaces. The scattering equivalence and cluster equivalence of the different constructions are established. The dynamical consequences of requiring cluster properties and Poincar\\'e invariance are discussed.
Azevedo, F S; Castro, Luis B; Filgueiras, Cleverson; Cogollo, D
2015-01-01
The planar quantum dynamics of spin-1/2 neutral particle interacting with electrical fields is considered. A set of first order differential equations are obtained directly from the planar Dirac equation with nonminimum coupling. New solutions of this system, in particular, for the Aharonov-Casher effect, are found and discussed in detail. Pauli equation is also obtained by studying the motion of the particle when it describes a circular path of constant radius. We also analyze the planar dynamics in the full space, including the $r=0$ region. The self-adjoint extension method is used to obtain the energy levels and wave functions of the particle for two particular values for the self-adjoint extension parameter. The energy levels obtained are analogous to the Landau levels and explicitly depend on the spin projection parameter.
Extraction of work from a single thermal bath in the quantum regime
Allahverdyan, A.
2000-01-01
The stationary state of a quantum particle strongly coupled to a quantum thermal bath is known to be non-Gibbsian, due to entanglement with the bath. For harmonic potentials, where the system can be described by effective temperatures, thermodynamic relations are shown to take a generalized Gibbsian
Noether Symmetries and Covariant Conservation Laws in Classical, Relativistic and Quantum Physics
Lorenzo Fatibene
2010-04-01
Full Text Available We review the Lagrangian formulation of (generalised Noether symmetries in the framework of Calculus of Variations in Jet Bundles, with a special attention to so-called “Natural Theories” and “Gauge-Natural Theories” that include all relevant Field Theories and physical applications (from Mechanics to General Relativity, to Gauge Theories, Supersymmetric Theories, Spinors, etc.. It is discussed how the use of Poincar´e–Cartan forms and decompositions of natural (or gauge-natural variational operators give rise to notions such as “generators of Noether symmetries”, energy and reduced energy flow, Bianchi identities, weak and strong conservation laws, covariant conservation laws, Hamiltonian-like conservation laws (such as, e.g., so-calledADMlaws in General Relativity with emphasis on the physical interpretation of the quantities calculated in specific cases (energy, angular momentum, entropy, etc.. A few substantially new and very recent applications/examples are presented to better show the power of the methods introduced: one in Classical Mechanics (definition of strong conservation laws in a frame-independent setting and a discussion on the way in which conserved quantities depend on the choice of an observer; one in Classical Field Theories (energy and entropy in General Relativity, in its standard formulation, in its spin-frame formulation, in its first order formulation “à la Palatini” and in its extensions to Non-Linear Gravity Theories; one in Quantum Field Theories (applications to conservation laws in Loop Quantum Gravity via spin connections and Barbero–Immirzi connections.
Heating process in the pre-Breakdown regime of the Quantum Hall Efect : a size dependent effect
Meziani, Y. M.; Chaubet, C.; Jouault, B; Bonifacie, S.; Raymond, A; Poirier, W; Piquemal, F.
2003-01-01
Our study presents experimental measurements of the contact and longitudinal voltage drops in Hall bars, as a function of the current amplitude. We are interested in the heating phenomenon which takes place before the breakdown of the quantum Hall effect, i.e. the pre-breakdown regime. Two types of samples has been investigated, at low temperature (4.2 and 1.5K) and high magnetic field (up to 13 T). The Hall bars have several different widths, and our observations clearly demonstrate that the...
Imran, Muhammad; Dang, Zhiya; Canale, Claudio; Khan, Ali Hossain; Shamsi, Javad; Brescia, Rosaria; Prato, Mirko; Manna, Liberato
2016-01-01
We report the colloidal synthesis of strongly fluorescent CsPbBr3 perovskite nanowires (NWs) with rectangular section and with tuneable width, from 20 nm (exhibiting no quantum confinement, hence emitting in the green) down to around 3 nm (in the strong quan-tum-confinement regime, emitting in the blue), by introducing in the synthesis a short acid (octanoic acid or hexanoic acid) together with alkyl amines (octylamine and oleylamine). Temperatures below 70 {\\deg}C promoted the formation of monodisperse, few unit cell thick NWs that were free from byproducts. The photoluminescence quantum yield of the NW samples went from 12% for non-confined NWs emitting at 524 nm to a maximum of 77% for the 5 nm diameter NWs emitting at 497 nm, down to 30% for the thinnest NWs (diameter ~ 3nm), in the latter sample most likely due to aggregation occurring in solution.
Mohammadi, Vahid; Chenaghlou, Alireza
2017-09-01
The two-dimensional Dirac equation with spin and pseudo-spin symmetries is investigated in the presence of the maximally superintegrable potentials. The integrals of motion and the quadratic algebras of the superintegrable quantum E3‧, anisotropic oscillator and the Holt potentials are studied. The corresponding Casimir operators and the structure functions of the mentioned superintegrable systems are found. Also, we obtain the relativistic energy spectra of the corresponding superintegrable systems. Finally, the relativistic energy eigenvalues of the generalized Yang-Coulomb monopole (YCM) superintegrable system (a SU(2) non-Abelian monopole) are calculated by the energy spectrum of the eight-dimensional oscillator which is dual to the former system by Hurwitz transformation.
Elliott, T. J.; Vedral, V.
2016-07-01
Frequent observation of a quantum system leads to quantum Zeno physics, where the system evolution is constrained to states commensurate with the measurement outcome. We show that, more generally, the system can evolve between such states through higher-order virtual processes that pass through states outside the measurement subspace. We derive effective Hamiltonians to describe this evolution, and the dependence on the time between measurements. We demonstrate application of this phenomena to prototypical quantum many-body system examples, spin chains and atoms in optical lattices, where it facilitates correlated dynamical effects.
Kumar, Asutosh; Dhar, Himadri Shekhar; Prabhu, R.; Sen(De), Aditi; Sen, Ujjwal
2017-05-01
Monogamy is a nonclassical property that limits the distribution of quantum correlation among subparts of a multiparty system. We show that monogamy scores for different quantum correlation measures are bounded above by functions of genuine multipartite entanglement for a large majority of pure multiqubit states. The bound is universal for all three-qubit pure states. We derive necessary conditions to characterize the states that violate the bound, which can also be observed by numerical simulation for a small set of states, generated Haar uniformly. The results indicate that genuine multipartite entanglement restricts the distribution of bipartite quantum correlations in a multiparty system.
Relativistic geodesy and gravimetry with quantum sensors - on Earth and in Space
Flury, Jakob
2016-07-01
Quantum metrology and precision optical metrology enable new measurement techniques on the fields of inertial sensors, extremely precise ranging, atomic frequency standards and optical frequency transfer. Their precision level is highly relevant both for fundamental physics and for geodetic applications, including the monitoring of global and regional change processes in the frame of the Global Geodetic Observing System (GGOS). The Hannover Collaborative Research Center geo-Q focuses on the development of such techniques. We investigate laser interferometry in space - originally developed for gravitational wave astronomy - that can be used for inter-satellite ranging and for optical gravity gradiometry using multiple macroscopic testmasses in order to increase the resolution in satellite gravimetry. Prototypes for these techniques are flown on the LISA pathfinder and GRACE Follow-On missions. Complementarily, sensors based on atom interferometry are promising for accelerometry and gradiometry in terms of sensitivity, versatility and low systematic errors. Optical atomic clocks and optical frequency transfer allow tying gravitational measurements to an atomic reference, which could improve fundamental geodetic reference frames.
Aerts, Patrick Johan Coenraad
1986-01-01
Computational Theoretical Chemnistry is a research area which, as far as electronic structure problems are concerned, encompasses essentially the development of theoretically sound, yet computionally feasable quantum mechanical models for atoms melecules and the solid state. ... Zie: Introduction
Schroedinger’s Mirrors - exploring mechanical motion in the quantum regime
CERN. Geneva
2017-01-01
The quantum optical control of solid-state mechanical devices, quantum optomechanics, has emerged as a new frontier of light-matter interactions. Devices currently under investigation cover a mass range of more than 17 orders of magnitude - from nanomechanical waveguides of some picograms to macroscopic, kilogram-weight mirrors of gravitational wave detectors. This development has been enabled by the insight that quantum optics provides a powerful toolbox to generate, manipulate and detect quantum states of mechanical motion, in particular by coupling the mechanics to an optical or microwave cavity field. Originally, such cavity optomechanical systems have been studied from the early 1970s on in the context of gravitational wave antennas. Advancements in micro-fabrication and micro-cavities, however, have resulted in the development of a completely new generation of nano- and micro-optomechanical devices. Today, 10 years after the first demonstrations of laser cooling of micromechanical resonators, the quantu...
Two-phonon scattering in graphene in the quantum Hall regime
Alexeev, A. M.; Hartmann, R. R.; Portnoi, M. E.
2015-01-01
One of the most distinctive features of graphene is its huge inter-Landau-level splitting in experimentally attainable magnetic fields which results in the room-temperature quantum Hall effect. In this paper we calculate the longitudinal conductivity induced by two-phonon scattering in graphene in a quantizing magnetic field at elevated temperatures. It is concluded that the purely phonon-induced scattering, negligible for conventional semiconductor heterostructures under quantum Hall conditi...
Weberszpil, J; Cherman, A; Helayël-Neto, J A
2012-01-01
The main goal of this paper is to set up the coarse-grained formulation of a fractional Schr\\"odinger equation that incorporates a higher (spatial) derivative term which accounts for relativistic effects at a lowest order. The corresponding continuity equation is worked out and we also identify the contribution of the relativistic correction the quantum potential in the coarse-grained treatment. As a consequence, in the classical regime, we derive the sort of fractional Newtonian law with the quantum potential included and the fractional conterparts of the De Broglies's energy and momentum relations.
Palge, Veiko; Dunningham, Jacob; Hasegawa, Yuji
2016-01-01
In quantum physics Wigner's rotation is commonly regarded as confirmed by the Thomas precession in a hydrogen like atom. In this paper we show that a direct experimental verification of Wigner's rotation is in principle accessible in the regime of non-relativistic velocities at $2 \\cdot 10^3\\,$m/s and propose an experiment using thermal neutrons. The experiment can be carried out in a laboratory and it provides a test of relativity in the quantum domain.
Quantum cellular automata and free quantum field theory
D'Ariano, Giacomo Mauro; Perinotti, Paolo
2017-02-01
In a series of recent papers [1-4] it has been shown how free quantum field theory can be derived without using mechanical primitives (including space-time, special relativity, quantization rules, etc.), but only considering the easiest quantum algorithm encompassing a countable set of quantum systems whose network of interactions satisfies the simple principles of unitarity, homogeneity, locality, and isotropy. This has opened the route to extending the axiomatic information-theoretic derivation of the quantum theory of abstract systems [5, 6] to include quantum field theory. The inherent discrete nature of the informational axiomatization leads to an extension of quantum field theory to a quantum cellular automata theory, where the usual field theory is recovered in a regime where the discrete structure of the automata cannot be probed. A simple heuristic argument sets the scale of discreteness to the Planck scale, and the customary physical regime where discreteness is not visible is the relativistic one of small wavevectors. In this paper we provide a thorough derivation from principles that in the most general case the graph of the quantum cellular automaton is the Cayley graph of a finitely presented group, and showing how for the case corresponding to Euclidean emergent space (where the group resorts to an Abelian one) the automata leads to Weyl, Dirac and Maxwell field dynamics in the relativistic limit. We conclude with some perspectives towards the more general scenario of non-linear automata for interacting quantum field theory.
Wave theories of non-laminar charged particle beams: from quantum to thermal regime
Fedele, Renato; Jovanovic, Dusan; De Nicola, Sergio; Ronsivalle, Concetta
2013-01-01
The standard classical description of non-laminar charge particle beams in paraxial approximation is extended to the context of two wave theories. The first theory is the so-called Thermal Wave Model (TWM) that interprets the paraxial thermal spreading of the beam particles as the analog of the quantum diffraction. The other theory, hereafter called Quantum Wave Model (QWM), that takes into account the individual quantum nature of the single beam particle (uncertainty principle and spin) and provides the collective description of the beam transport in the presence of the quantum paraxial diffraction. QWM can be applied to beams that are sufficiently cold to allow the particles to manifest their individual quantum nature but sufficiently warm to make overlapping-less the single-particle wave functions. In both theories, the propagation of the beam transport in plasmas or in vacuo is provided by fully similar set of nonlinear and nonlocal governing equations, where in the case of TWM the Compton wavelength (fun...
Quantum chaos inside space-temporal Sinai billiards
Addazi, Andrea
2016-01-01
We discuss general aspects of non-relativistic quantum chaos theory of scattering of a quantum particle on a system of a large number of naked singularities. We define such a system space-temporal Sinai billiard We dis- cuss the problem in semiclassical approach. We show that in semiclassical regime the formation of trapped periodic semiclassical orbits inside the sys- tem is unavoidable. This leads to general expression of survival probabilities and scattering time delays, expanded to the chaotic Pollicott-Ruelle reso- nances. Finally, we comment on possible generalizations of these aspects to relativistic quantum field theory.
A Simple Relativistic Bohr Atom
Terzis, Andreas F.
2008-01-01
A simple concise relativistic modification of the standard Bohr model for hydrogen-like atoms with circular orbits is presented. As the derivation requires basic knowledge of classical and relativistic mechanics, it can be taught in standard courses in modern physics and introductory quantum mechanics. In addition, it can be shown in a class that…
A Simple Relativistic Bohr Atom
Terzis, Andreas F.
2008-01-01
A simple concise relativistic modification of the standard Bohr model for hydrogen-like atoms with circular orbits is presented. As the derivation requires basic knowledge of classical and relativistic mechanics, it can be taught in standard courses in modern physics and introductory quantum mechanics. In addition, it can be shown in a class that…
“Fast Atom Diffraction” IBA in the regime of quantum scattering
Winter, H., E-mail: winter@physik.hu-berlin.de
2014-08-01
Recently, quantum effects were observed for the scattering of fast atoms from surfaces under a grazing angle of incidence. We discuss basic features of Fast Atom Diffraction (FAD) which adds a further powerful method to the established tools in ion beam analysis. Attractive features of FAD in studies on the structure of surfaces comprise negligible radiation damage, no charging effects, and an extreme sensitivity to the topmost layer of surface atoms. Scanning the quantum wavelength associated with the motion of a massive particle by the variation of its kinetic energy allows one to apply interferometric concepts to surface analysis based on the scattering of fast atoms.
Visualization of wave function of quantum dot at Fermi-edge singularity regime
Larkin, I. A.; Khanin, Yu N.; Vdovin, E. E.; Ujevic, Sebastian; Henini, M.
2013-08-01
We consider in this work many-body enhanced electron tunneling through an InAs quantum dot in a magnetic field applied perpendicular to the tunneling direction. We have examined in details the anisotropic behavior of the amplitude and shape of the resonant peaks.
Abdelmadjid MAIRECHE
2015-09-01
Full Text Available We obtain here the modified bound-states solutions for central fraction power singular potential (C.F.P.S. in noncommutative 3-dimensional non relativistic quantum mechanics (NC-3D NRQM. It has been observed that the commutative energy spectra was changed, and replaced degenerate new states, depending on four quantum numbers: j, l and sz=±1/2 corresponding to the two spins states of electron by (up and down and the deformed Hamiltonian formed by two new operators: the first describes the spin-orbit interaction , while the second obtained Hamiltonian describes the modified Zeeman effect (containing ordinary Zeeman effect in addition to the usual commutative Hamiltonian. We showed that the isotropic commutative Hamiltonian HCFPS will be in non commutative space anisotropic Hamiltonian HNC-CFPS.
Electronic transport in two-dimensional systems in the quantum hall regime
Tarquini, Vinicio
The integer and the fractional quantum Hall effects are essential to the exploration of quantum matters characterized by topological phases. A quantum Hall system hosts one-dimensional (1D) chiral edge channels that manifest zero magnetoresistance, dissipationless due to the broken time reversal symmetry, and quantized Hall resistance vhe2 with v being the topological invariant (or Chern number). The 1-1 correspondence between the conducting gapless edge channels to the gapped incompressible bulk states is a defining character of a topological insulator (TI). Understanding this correspondence in real systems, especially the origin of its robustness (in terms of the limit of breakdown), is important both fundamentally and practically (i.e. in relation to spintronics). However, the breakdown mechanism, especially in light of the edge-bulk correlation, is still an open question. We adopt GaAs two-dimensional (2D) high-mobility hole systems confined in a 20 nm wide (100)-GaAs quantum wells and have perform transport measurement for a range of charge densities between 4 and 5 x 1010 cm -2 with a carrier mobility of 2 - 4 x 106 cm 2/V·s down to millikelvin temperatures. Systematic characterization of the 2D systems through Shubnikov-de Haas (SdH) oscillations yields an effective mass between 0.30 and 0.50me, in good agreement with the cyclotron resonance results. We then modify a regular Hall bar system into a unique anti-Hall bar geometry that provides an extra set of independent chiral edge channels without altering the topological invariant. We perform systematic measurement of quantum oscillations via chiral edges while simultaneously probing the bulk dynamics, through measuring across independent edges, in respond to the edge excitations. The edge-bulk correspondence reveals a non-equilibrium dynamical development of the incompressible bulk states that leads to a novel asymmetrical 1-0 Hall potential distribution. Moreover, probing the breakdown via inner and outer
Dynamics of the quantum Duffing oscillator in the driving induced bistable regime
Peano, V. [Institut fuer Theoretische Physik IV, Universitaet Duesseldorf, Universitaetsstr. 1, 40225 Duesseldorf (Germany); Thorwart, M. [Institut fuer Theoretische Physik IV, Universitaet Duesseldorf, Universitaetsstr. 1, 40225 Duesseldorf (Germany)], E-mail: thorwart@thphy.uni-duesseldorf.de
2006-03-06
We investigate the non-linear response of an anharmonic monostable quantum mechanical resonator to strong external periodic driving. The driving thereby induces an effective bistability in which resonant tunneling can be identified. Within the framework of a Floquet analysis, an effective Floquet-Born-Markovian master equation with time-independent coefficients can be established which can be solved straightforwardly. Various effects including resonant tunneling and multi-photon transitions will be described. Our model finds applications in nano-electromechanical devices such as vibrating suspended nano-wires as well as in non-destructive read-out procedures for superconducting quantum bits involving the non-linear response of the read-out SQUID.
Detecting Current Noise with a Josephson Junction in the Macroscopic Quantum Tunneling Regime
Peltonen, J. T.; Timofeev, A. V.; Meschke, M.; Pekola, J.P.
2006-01-01
We discuss the use of a hysteretic Josephson junction to detect current fluctuations with frequencies below the plasma frequency of the junction. These adiabatic fluctuations are probed by switching measurements observing the noise-affected average rate of macroscopic quantum tunneling of the detector junction out of its zero-voltage state. In a proposed experimental scheme, frequencies of the noise are limited by an on-chip filtering circuit. The third cumulant of current fluctuations at the...
Quantum properties of the radiation emitted by a conductor in the Coulomb blockade regime
Mora, C.; Altimiras, C.; Joyez, P.; Portier, F.
2017-03-01
We present an input-output formalism describing a tunnel junction strongly coupled to its electromagnetic environment. We exploit it in order to investigate the dynamics of the radiation being emitted and scattered by the junction. We find that the nonlinearity imprinted in the electronic transport by a properly designed environment generates strongly squeezed radiation. Our results show that the interaction between a quantum conductor and electromagnetic fields can be exploited as a resource to design simple sources of nonclassical radiation.
Time-dependent density functional theory of open quantum systems in the linear-response regime.
Tempel, David G; Watson, Mark A; Olivares-Amaya, Roberto; Aspuru-Guzik, Alán
2011-02-21
Time-dependent density functional theory (TDDFT) has recently been extended to describe many-body open quantum systems evolving under nonunitary dynamics according to a quantum master equation. In the master equation approach, electronic excitation spectra are broadened and shifted due to relaxation and dephasing of the electronic degrees of freedom by the surrounding environment. In this paper, we develop a formulation of TDDFT linear-response theory (LR-TDDFT) for many-body electronic systems evolving under a master equation, yielding broadened excitation spectra. This is done by mapping an interacting open quantum system onto a noninteracting open Kohn-Sham system yielding the correct nonequilibrium density evolution. A pseudoeigenvalue equation analogous to the Casida equations of the usual LR-TDDFT is derived for the Redfield master equation, yielding complex energies and Lamb shifts. As a simple demonstration, we calculate the spectrum of a C(2 +) atom including natural linewidths, by treating the electromagnetic field vacuum as a photon bath. The performance of an adiabatic exchange-correlation kernel is analyzed and a first-order frequency-dependent correction to the bare Kohn-Sham linewidth based on the Görling-Levy perturbation theory is calculated.
Fate of extended states and origin of localized states in quantum Hall regime
Ana Luiza Cardoso Pereira
2005-01-01
Resumo: Esse trabalho é dedicado ao estudo de dois problemas de interesse atual em sistemas quânticos de baixa dimensionalidade. Ambos são relacionados ao processo de localização eletrônica no regime Hall quântico. O primeiro problema diz respeito ao destino dos estados estendidos no limite de baixos campos magnéticos ou forte desordem, onde ocorre a transição de líquido de Hall para o isolante de Hall. O problema é abordado através de simulações numéricas, com um modelo de rede bidimensional...
Quantum frequency translation by four-wave mixing in a fiber: low-conversion regime
Andersen, Lasse Mejling; McKinstrie, C. J.; Raymer, M. G.
2012-01-01
In this paper we consider frequency translation enabled by Bragg scattering, a four-wave mixing process. First we introduce the theoretical background of the Green function formalism and the Schmidt decomposition. Next the Green functions for the low-conversion regime are derived perturbatively...... in the frequency domain, using the methods developed for three-wave mixing, then transformed to the time domain. These results are also derived and verified using an alternative time-domain method, the results of which are more general. For the first time we include the effects of convecting pumps, a more...
Rimberg, A. J.; Blencowe, M. P.; Armour, A. D.; Nation, P. D.
2014-05-01
We propose a scheme involving a Cooper pair transistor (CPT) embedded in a superconducting microwave cavity, where the CPT serves as a charge tunable quantum inductor to facilitate ultra-strong coupling between photons in the cavity and a nano- to meso-scale mechanical resonator. The mechanical resonator is capacitively coupled to the CPT, such that mechanical displacements of the resonator cause a shift in the CPT inductance and hence the cavity's resonant frequency. The amplification provided by the CPT is sufficient for the zero point motion of the mechanical resonator alone to cause a significant change in the cavity resonance. Conversely, a single photon in the cavity causes a shift in the mechanical resonator position on the order of its zero point motion. As a result, the cavity-Cooper pair transistor coupled to a mechanical resonator will be able to access a regime in which single photons can affect single phonons and vice versa. Realizing this ultra-strong coupling regime will facilitate the creation of non-classical states of the mechanical resonator, as well as the means to accurately characterize such states by measuring the cavity photon field.
Kappler, S.; Hölzer, S.; Kraft, E.; Stierstorfer, K.; Flohr, T.
2011-03-01
The application of quantum-counting detectors in clinical Computed Tomography (CT) is challenged by extreme X-ray fluxes provided by modern high-power X-ray tubes. Scanning of small objects or sub-optimal patient positioning may lead to situations where those fluxes impinge on the detector without attenuation. Even in operation modes optimized for high-rate applications, with small pixels and high bias voltage, CdTe/CdZnTe detectors deliver pulses in the range of several nanoseconds. This can result in severe pulse pile-up causing detector paralysis and ambiguous detector signals. To overcome this problem we introduce the pile-up trigger, a novel method that provides unambiguous detector signals in rate regimes where classical rising-edge counters run into count-rate paralysis. We present detailed CT image simulations assuming ideal sensor material not suffering from polarization effects at high X-ray fluxes. This way we demonstrate the general feasibility of the pile-up trigger method and quantify resulting imaging properties such as contrasts, image noise and dual-energy performance in the high-flux regime of clinical CT devices.
Vazifehshenas, T.; Bahrami, B. [Department of Physics, Shahid Beheshti University, G.C., Evin, 1983963113 Tehran (Iran, Islamic Republic of); Salavati-fard, T., E-mail: taha@udel.edu [Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 (United States)
2012-12-15
We investigate theoretically the dependence of energy transfer rate in Double-Quantum-Well system on the well thickness by using the balance equation formalism. Also, by including the local field correction in our calculations through the zero- and finite-temperature Hubbard approximations, we study the effect of the short-range interactions on the energy transfer phenomenon. Calculations consider both the static and dynamic screening approximations. Our numerical results predict that the energy transfer rate increases considerably by increasing the layers' thicknesses and by taking into account the short-range interactions, as well.
Gate Bias Effects on Samples with Edge Gates in the Quantum Hall Regime
若林 淳一; 風間 重雄; 長嶋 登志夫
2001-01-01
We have fabricated GaAs/AlGaAs heterostructure Hall samples that have edge gate with several widths along both sides of the sample. The gate width dependence of an effect of the gate voltage to the Hall resistance was measured at the middle of a transition region between the adjacent quantum Hall plateaus. The results have been analyzed based on two model functions of current distribution;an exponential type and the modified Beenakker type. The results of the former have shown qualitative agr...
Strong-field relativistic processes in highly charged ions
Postavaru, Octavian
2010-12-08
In this thesis we investigate strong-field relativistic processes in highly charged ions. In the first part, we study resonance fluorescence of laser-driven highly charged ions in the relativistic regime by solving the time-dependent master equation in a multi-level model. Our ab initio approach based on the Dirac equation allows for investigating highly relativistic ions, and, consequently, provides a sensitive means to test correlated relativistic dynamics, bound-state quantum electrodynamic phenomena and nuclear effects by applying coherent light with x-ray frequencies. Atomic dipole or multipole moments may be determined to unprecedented accuracy by measuring the interference-narrowed fluorescence spectrum. Furthermore, we investigate the level structure of heavy hydrogenlike ions in laser beams. Interaction with the light field leads to dynamic shifts of the electronic energy levels, which is relevant for spectroscopic experiments. We apply a fully relativistic description of the electronic states by means of the Dirac equation. Our formalism goes beyond the dipole approximation and takes into account non-dipole effects of retardation and interaction with the magnetic field components of the laser beam. We predicted cross sections for the inter-shell trielectronic recombination (TR) and quadruelectronic recombination processes which have been experimentally confirmed in electron beam ion trap measurements, mainly for C-like ions, of Ar, Fe and Kr. For Kr{sup 30}+, inter-shell TR contributions of nearly 6% to the total resonant photorecombination rate were found. (orig.)
Cohen, Doron
2000-08-01
We make the first steps toward a generic theory for energy spreading and quantum dissipation. The Wall formula for the calculation of friction in nuclear physics and the Drude formula for the calculation of conductivity in mesoscopic physics can be regarded as two special results of the general formulation. We assume a time-dependent Hamiltonian H(Q, P; x(t)) with x(t)=Vt, where V is slow in a classical sense. The rate-of-change V is not necessarily slow in the quantum-mechanical sense. The dynamical variables (Q, P) may represent some "bath" which is being parametrically driven by x. This bath may consist of just a few degrees of freedom, but it is assumed to be classically chaotic. In the case of either the Wall or Drude formula, the dynamical variables (Q, P) may represent a single particle. In any case, dissipation means an irreversible systematic growth of the (average) energy. It is associated with the stochastic spreading of energy across levels. The latter can be characterized by a transition probability kernel Pt(n ∣ m), where n and m are level indices. This kernel is the main object of the present study. In the classical limit, due to the (assumed) chaotic nature of the dynamics, the second moment of Pt(n ∣ m) exhibits a crossover from ballistic to diffusive behavior. In order to capture this crossover within quantum mechanics, a proper theory for the quantal Pt(n ∣ m) should be constructed. We define the V regimes where either perturbation theory or semiclassical considerations are applicable in order to establish this crossover. In the limit ℏ→0 perturbation theory does not apply but semiclassical considerations can be used in order to argue that there is detailed correspondence, during the crossover time, between the quantal and the classical Pt(n ∣ m). In the perturbative regime there is a lack of such correspondence. Namely, Pt(n ∣ m) is characterized by a perturbative core-tail structure that persists during the crossover time. In
Zhou, Ning; Yuan, Meng; Gao, Yuhan; Li, Dongsheng; Yang, Deren
2016-04-26
Strong coupling between semiconductor excitons and localized surface plasmons (LSPs) giving rise to hybridized plexciton states in which energy is coherently and reversibly exchanged between the components is vital, especially in the area of quantum information processing from fundamental and practical points of view. Here, in photoluminescence spectra, rather than from common extinction or reflection measurements, we report on the direct observation of Rabi splitting of approximately 160 meV as an indication of strong coupling between excited states of CdSe/ZnS quantum dots (QDs) and LSP modes of silver nanoshells under nonresonant nanosecond pulsed laser excitation at room temperature. The strong coupling manifests itself as an anticrossing-like behavior of the two newly formed polaritons when tuning the silver nanoshell plasmon energies across the exciton line of the QDs. Further analysis substantiates the essentiality of high pump energy and collective strong coupling of many QDs with the radiative dipole mode of the metallic nanoparticles for the realization of strong coupling. Our finding opens up interesting directions for the investigation of strong coupling between LSPs and excitons from the perspective of radiative recombination under easily accessible experimental conditions.
Perspectives for quantum state engineering via high non-linearity in a double-EIT regime
Paternostro, M; Ham, B S
2003-01-01
We analyse the possibilities for quantum state engineering offered by a model for Kerr-type non-linearity enhanced by electromagnetically induced transparency (EIT), which was recently proposed by Petrosyan and Kurizki [{\\sl Phys. Rev. A} {\\bf 65}, 33833 (2002)]. We go beyond the semiclassical treatment and derive a quantum version of the model with both a full Hamiltonian approach and an analysis in terms of dressed states. The preparation of an entangled coherent state via a cross-phase modulation effect is demonstrated. We briefly show that the violation of locality for such an entangled coherent state is robust against low detection efficiency. Finally, we investigate the possibility of a bi-chromatic photon blockade realized via the interaction of a low density beam of atoms with a bi-modal electromagnetic cavity which is externally driven. We show the effectiveness of the blockade effect even when more than a single atom is inside the cavity. The possibility to control two different cavity modes allows ...
Prediction of femtosecond oscillations in the transient current of a quantum dot in the Kondo regime
Goker, A.
2010-10-11
We invoke the time-dependent noncrossing approximation in order to study the effects of the density of states of gold contacts on the instantaneous conductance of a single electron transistor which is abruptly moved into the Kondo regime by means of a gate voltage. For an asymmetrically coupled system, we observe that the instantaneous conductance in the Kondo time scale exhibits beating with distinct frequencies, which are proportional to the separation between the Fermi level and the sharp features in the density of states of gold. Increasing the ambient temperature or bias quenches the amplitude of the oscillations. We attribute the oscillations to interference between the emerging Kondo resonance and van-Hove singularities in the density of state. In addition, we propose an experimental realization of this model.
Maize, M A
2002-01-01
In a paper published in A.J.P. by Coutinho, Nogami and Tomio, two definitions of the relativistic electric polarizability were introduced and discussed. The analyses and conclusions of the authors contain a fair number of serious mistakes. It is our purpose to correct any misunderstanding that might result from the errors appearing in their paper.
Jizan, Iman; Xiong, Chunle; Collins, Matthew J; Choi, Duk-Yong; Chae, Chang Joon; Liscidini, Marco; Steel, M J; Eggleton, Benjamin J; Clark, Alex S
2014-01-01
The growing requirement for photon pairs with specific spectral correlations in quantum optics experiments has created a demand for fast, high resolution and accurate source characterization. A promising tool for such characterization uses the classical stimulated process, in which an additional seed laser stimulates photon generation yielding much higher count rates, as recently demonstrated for a $\\chi^{(2)}$ integrated source in A.~Eckstein \\emph{et al.}, Laser Photon. Rev. \\textbf{8}, L76 (2014). In this work we extend these results to $\\chi^{(3)}$ sources, demonstrating spectral correlation measurements via stimulated four-wave mixing for the first time in a integrated optical waveguide, namely a silicon nanowire. We directly confirm the speed-up due to higher count rates and demonstrate that additional resolution can be gained when compared to traditional coincidence measurements. As pump pulse duration can influence the degree of spectral entanglement, all of our measurements are taken for two differen...
Domain walls, fusion rules, and conformal field theory in the quantum Hall regime.
Ardonne, Eddy
2009-05-08
We provide a simple way to obtain the fusion rules associated with elementary quasiholes over quantum Hall wave functions, in terms of domain walls. The knowledge of the fusion rules is helpful in the identification of the underlying conformal field theory describing the wave functions. We show that, for a certain two-parameter family (k,r) of wave functions, the fusion rules are those of su(r)k. In addition, we give an explicit conformal field theory construction of these states, based on the Mk(k+1,k+r) "minimal" theories. For r=2, these states reduce to the Read-Rezayi states. The "Gaffnian" wave function is the prototypical example for r>2, in which case the conformal field theory is nonunitary.
One-step quantum phase gate in the ultrastrong coupling regime of circuit QED
Xu, Xuexin; Liu, Xin; Liao, Qinghong; Zhou, Keya; Liu, Shutian
2017-09-01
In a previous publication (Phys Rev Lett 108: 120501, 2012), Romero et al. proposed an ultrastrong coupling circuit QED system that can implement a two-qubit quantum phase gate with four controlling pulses. Based on this architecture, we demonstrate that an ultrafast two-qubit phase gate can also be realized with only one oscillation and lower coupling strengths. In our operation scheme, two identical qubits evolve synchronously under a single pulse with a duration determined by a specific coupling strength. The phase gate can also be obtained periodically. The influences of parameter fluctuations are estimated. We demonstrate that the fidelities can be greater than 99% if the parameter fluctuations are controlled within 5%.
Relativistic heat conduction and thermoelectric properties of nonuniform plasmas
Honda, M
2003-01-01
Relativistic heat transport in electron-two-temperature plasmas with density gradients has been investigated. The Legendre expansion analysis of relativistically modified kinetic equations shows that strong inhibition of heat flux appears in relativistic temperature regimes, suppressing the classical Spitzer-H{\\"a}rm conduction. The Seebeck coefficient, the Wiedemann-Franz law, and the thermoelectric figure of merit are derived in the relativistic regimes.
Structural and quantum properties of van der Waals cluster near the unitary regime
Lekala, M. L.; Chakrabarti, B.; Haldar, S. K.; Roy, R.; Rampho, G. J.
2017-07-01
We study the structural and several quantum properties of three-dimensional bosonic cluster interacting through van der Waals potential at large scattering length. We use Faddeev-type decomposition of the many-body wave function which includes all possible two-body correlations. At large scattering length, we observe spatially extended states which exhibit the exponential dependence on the state number. The cluster ground state energy shows universal nature at large negative scattering length. We also find the existence of generalized Tjon lines for N-body clusters. Signature of universal behaviour of weakly bound clusters can be observed in experiments of ultracold Bose gases. We also study the spectral statistics of the system. We calculate both the short-range fluctuation and long-range correlation and observe semi-Poisson distribution which interpolates the Gaussian Orthogonal Ensemble (GOE) and Poisson statistics of random matrix theory. It indicates that the van der Waal cluster near the unitary becomes highly complex and correlated. However additional study of P (r) distribution (without unfolding of energy spectrum) reveals the possibility of chaos for larger cluster.
LETTER TO THE EDITOR: Recurrence relations for relativistic atomic matrix elements
Martínez-y-Romero, R. P.; Núñez-Yépez, H. N.; Salas-Brito, A. L.
2000-05-01
Recurrence formulae for arbitrary hydrogenic radial matrix elements are obtained in the Dirac form of relativistic quantum mechanics. Our approach is inspired by the relativistic extension of the second hypervirial method that has been succesfully employed to deduce an analogous relationship in non-relativistic quantum mechanics. We first obtain the relativistic extension of the second hypervirial and then the relativistic recurrence relation. Furthermore, we use this relation to deduce relativistic versions of the Pasternack-Sternheimer rule and of the virial theorem.
Demianski, Marek
2013-01-01
Relativistic Astrophysics brings together important astronomical discoveries and the significant achievements, as well as the difficulties in the field of relativistic astrophysics. This book is divided into 10 chapters that tackle some aspects of the field, including the gravitational field, stellar equilibrium, black holes, and cosmology. The opening chapters introduce the theories to delineate gravitational field and the elements of relativistic thermodynamics and hydrodynamics. The succeeding chapters deal with the gravitational fields in matter; stellar equilibrium and general relativity
Quantum contextuality emerging from relativity
Chen, Jing-Ling; Wu, Chunfeng; Deng, Dong-Ling; Cabello, Adan; Kwek, L C; Oh, C H
2012-01-01
The quantum predictions for a single nonrelativistic spin-1/2 particle can be reproduced by noncontextual hidden variables. Here we show that quantum contextuality naturally emerges if relativistic effects are taken into account. Specifically, we show that the contextuality of a free relativistic electron and of a relativistic electron moving in a Coulomb potential (a relativistic hydrogen atom) can be observed through the violation of noncontextual inequalities. We discuss how to experimentally observe quantum contextuality on a free relativistic electron.
Some remarks on Relativistic Diffusion and the Spectral Dimension Criterion
Muniz, C R; Filho, R N Costa; Bezerra, V B
2014-01-01
The spectral dimension $d_s$ for high energies is calculated using the Relativistic Schr\\"{o}dinger Equation Analytically Continued (RSEAC) instead of the so-called Telegraph's Equation (TE), in both ultraviolet (UV) and infrared (IR) regimens. Regarding the TE, the recent literature presents difficulties related to its stochastic derivation and interpretation, advocating the use of the RSEAC to properly describe the relativistic diffusion phenomena. Taking into account that the Lorentz symmetry is broken in UV regime at Lifshitz point, we show that there exists a degeneracy in very high energies, meaning that both the RSEAC and the TE correctly describe the diffusion processes at these energy scales, at least under the spectral dimension criterion. In fact, both the equations yield the same result, namely, $d_s = 2$, a dimensional reduction that is compatible with several theories of quantum gravity. This result is reached even when one takes into account a cosmological model - the De Sitter one - for a flat...
Quantum cellular automaton theory of light
Bisio, Alessandro; D'Ariano, Giacomo Mauro; Perinotti, Paolo
2016-05-01
We present a quantum theory of light based on the recent derivation of Weyl and Dirac quantum fields from general principles ruling the interactions of a countable set of abstract quantum systems, without using space-time and mechanics (D'Ariano and Perinotti, 2014). In a Planckian interpretation of the discreteness, the usual quantum field theory corresponds to the so-called relativistic regime of small wave-vectors. Within the present framework the photon is a composite particle made of an entangled pair of free Weyl Fermions, and the usual Bosonic statistics is recovered in the low photon density limit, whereas the Maxwell equations describe the relativistic regime. We derive the main phenomenological features of the theory in the ultra-relativistic regime, consisting in a dispersive propagation in vacuum, and in the occurrence of a small longitudinal polarization, along with a saturation effect originated by the Fermionic nature of the photon. We then discuss whether all these effects can be experimentally tested, and observe that only the dispersive effects are accessible to the current technology via observations of gamma-ray bursts.
Quantum cellular automaton theory of light
Bisio, Alessandro, E-mail: alessandro.bisio@unipv.it; D’Ariano, Giacomo Mauro; Perinotti, Paolo
2016-05-15
We present a quantum theory of light based on the recent derivation of Weyl and Dirac quantum fields from general principles ruling the interactions of a countable set of abstract quantum systems, without using space–time and mechanics (D’Ariano and Perinotti, 2014). In a Planckian interpretation of the discreteness, the usual quantum field theory corresponds to the so-called relativistic regime of small wave-vectors. Within the present framework the photon is a composite particle made of an entangled pair of free Weyl Fermions, and the usual Bosonic statistics is recovered in the low photon density limit, whereas the Maxwell equations describe the relativistic regime. We derive the main phenomenological features of the theory in the ultra-relativistic regime, consisting in a dispersive propagation in vacuum, and in the occurrence of a small longitudinal polarization, along with a saturation effect originated by the Fermionic nature of the photon. We then discuss whether all these effects can be experimentally tested, and observe that only the dispersive effects are accessible to the current technology via observations of gamma-ray bursts.
Relativistic impulse dynamics.
Swanson, Stanley M
2011-08-01
Classical electrodynamics has some annoying rough edges. The self-energy of charges is infinite without a cutoff. The calculation of relativistic trajectories is difficult because of retardation and an average radiation reaction term. By reconceptuallizing electrodynamics in terms of exchanges of impulses rather than describing it by forces and potentials, we eliminate these problems. A fully relativistic theory using photonlike null impulses is developed. Numerical calculations for a two-body, one-impulse-in-transit model are discussed. A simple relationship between center-of-mass scattering angle and angular momentum was found. It reproduces the Rutherford cross section at low velocities and agrees with the leading term of relativistic distinguishable-particle quantum cross sections (Møller, Mott) when the distance of closest approach is larger than the Compton wavelength of the particle. Magnetism emerges as a consequence of viewing retarded and advanced interactions from the vantage point of an instantaneous radius vector. Radiation reaction becomes the local conservation of energy-momentum between the radiating particle and the emitted impulse. A net action is defined that could be used in developing quantum dynamics without potentials. A reinterpretation of Newton's laws extends them to relativistic motion.
Soliton propagation in relativistic hydrodynamics
Fogaça, D A; 10.1016/j.nuclphysa.2007.03.104
2013-01-01
We study the conditions for the formation and propagation of Korteweg-de Vries (KdV) solitons in nuclear matter. In a previous work we have derived a KdV equation from Euler and continuity equations in non-relativistic hydrodynamics. In the present contribution we extend our formalism to relativistic fluids. We present results for a given equation of state, which is based on quantum hadrodynamics (QHD).
Bubin, Sergiy; Komasa, Jacek; Stanke, Monika; Adamowicz, Ludwik
2010-03-01
We present very accurate quantum mechanical calculations of the three lowest S-states [1s22s2(S10), 1s22p2(S10), and 1s22s3s(S10)] of the two stable isotopes of the boron ion, B10+ and B11+. At the nonrelativistic level the calculations have been performed with the Hamiltonian that explicitly includes the finite mass of the nucleus as it was obtained by a rigorous separation of the center-of-mass motion from the laboratory frame Hamiltonian. The spatial part of the nonrelativistic wave function for each state was expanded in terms of 10 000 all-electron explicitly correlated Gaussian functions. The nonlinear parameters of the Gaussians were variationally optimized using a procedure involving the analytical energy gradient determined with respect to the nonlinear parameters. The nonrelativistic wave functions of the three states were subsequently used to calculate the leading α2 relativistic corrections (α is the fine structure constant; α =1/c, where c is the speed of light) and the α3 quantum electrodynamics (QED) correction. We also estimated the α4 QED correction by calculating its dominant component. A comparison of the experimental transition frequencies with the frequencies obtained based on the energies calculated in this work shows an excellent agreement. The discrepancy is smaller than 0.4 cm-1.
Bubin, Sergiy; Komasa, Jacek; Stanke, Monika; Adamowicz, Ludwik
2010-03-21
We present very accurate quantum mechanical calculations of the three lowest S-states [1s(2)2s(2)((1)S(0)), 1s(2)2p(2)((1)S(0)), and 1s(2)2s3s((1)S(0))] of the two stable isotopes of the boron ion, (10)B(+) and (11)B(+). At the nonrelativistic level the calculations have been performed with the Hamiltonian that explicitly includes the finite mass of the nucleus as it was obtained by a rigorous separation of the center-of-mass motion from the laboratory frame Hamiltonian. The spatial part of the nonrelativistic wave function for each state was expanded in terms of 10,000 all-electron explicitly correlated Gaussian functions. The nonlinear parameters of the Gaussians were variationally optimized using a procedure involving the analytical energy gradient determined with respect to the nonlinear parameters. The nonrelativistic wave functions of the three states were subsequently used to calculate the leading alpha(2) relativistic corrections (alpha is the fine structure constant; alpha=1/c, where c is the speed of light) and the alpha(3) quantum electrodynamics (QED) correction. We also estimated the alpha(4) QED correction by calculating its dominant component. A comparison of the experimental transition frequencies with the frequencies obtained based on the energies calculated in this work shows an excellent agreement. The discrepancy is smaller than 0.4 cm(-1).
Cerrillo, Javier; Buser, Maximilian; Brandes, Tobias
2016-12-01
Nonequilibrium transport properties of quantum systems have recently become experimentally accessible in a number of platforms in so-called full-counting experiments that measure transient and steady-state nonequilibrium transport dynamics. We show that the effect of the measurement back-action can be exploited to establish general relationships between transport coefficients in the transient regime which take the form of fluctuation-dissipation theorems in the steady state. This result becomes most conspicuous in the transient dynamics of open quantum systems under strong-coupling to non-Markovian environments in nonequilibrium settings. In order to explore this regime, a new simulation method based in a hierarchy of equations of motion has been developed. We instantiate our proposal with the study of energetic conductance between two baths connected via a few level system.
The quantum mechanics of cosmology.
Hartle, James B.
The following sections are included: * INTRODUCTION * POST-EVERETT QUANTUM MECHANICS * Probability * Probabilities in general * Probabilities in Quantum Mechanics * Decoherent Histories * Fine and Coarse Grained Histories * Decohering Sets of Coarse Grained Histories * No Moment by Moment Definition of Decoherence * Prediction, Retrodiction, and History * Prediction and Retrodiction * The Reconstruction of History * Branches (Illustrated by a Pure ρ) * Sets of Histories with the Same Probabilities * The Origins of Decoherence in Our Universe * On What Does Decoherence Depend? * Two Slit Model * The Caldeira-Leggett Oscillator Model * The Evolution of Reduced Density Matrices * Towards a Classical Domain * The Branch Dependence of Decoherence * Measurement * The Ideal Measurement Model and the Copenhagen Approximation to Quantum Mechanics * Approximate Probabilities Again * Complex Adaptive Systems * Open Questions * GENERALIZED QUANTUM MECHANICS * General Features * Hamiltonian Quantum Mechanics * Sum-Over-Histories Quantum Mechanics for Theories with a Time * Differences and Equivalences between Hamiltonian and Sum-Over-Histories Quantum Mechanics for Theories with a Time * Classical Physics and the Classical Limit of Quantum Mechanics * Generalizations of Hamiltonian Quantum Mechanics * TIME IN QUANTUM MECHANICS * Observables on Spacetime Regions * The Arrow of Time in Quantum Mechanics * Topology in Time * The Generality of Sum Over Histories Quantum Mechanics * THE QUANTUM MECHANICS OF SPACETIME * The Problem of Time * General Covariance and Time in Hamiltonian Quantum Mechanics * The "Marvelous Moment" * A Quantum Mechanics for Spacetime * What we Need * Sum-Over-Histories Quantum Mechanics for Theories Without a Time * Sum-Over-Spacetime-Histories Quantum Mechanics * Extensions and Contractions * The Construction of Sums Over Spacetime Histories * Some Open Questions * PRACTICAL QUANTUM COSMOLOGY * The Semiclassical Regime * The Semiclassical Approximation
What is "Relativistic Canonical Quantization"?
Arbatsky, D. A.
2005-01-01
The purpose of this review is to give the most popular description of the scheme of quantization of relativistic fields that was named relativistic canonical quantization (RCQ). I do not give here the full exact account of this scheme. But with the help of this review any physicist, even not a specialist in the relativistic quantum theory, will be able to get a general view of the content of RCQ, of its connection with other known approaches, of its novelty and of its fruitfulness.
Ion waves driven by shear flow in a relativistic degenerate astrophysical plasma
KHAN SHABBIR A; BAKHTIAR-UD-DIN; ILYAS MUHAMMAD; WAZIR ZAFAR
2016-05-01
We investigate the existence and propagation of low-frequency (in comparison to ion cyclotron frequency) electrostatic ion waves in highly dense inhomogeneous astrophysical magnetoplasma comprising relativistic degenerate electrons and non-degenerate ions. The dispersion equation is obtained by Fourier analysis under mean-field quantum hydrodynamics approximationfor various limits of the ratio of rest mass energy to Fermi energy of electrons, relevant to ultrarelativistic, weakly-relativistic and non-relativistic regimes. It is found that the system admits an oscillatory instability under certain condition in the presence of velocity shear parallel to ambient magnetic field. The dispersive role of plasma density and magnetic field is also discussed parametrically in the scenario of dense and degenerate astrophysical plasmas.
Under-the-barrier dynamics in laser-induced relativistic tunneling.
Klaiber, Michael; Yakaboylu, Enderalp; Bauke, Heiko; Hatsagortsyan, Karen Z; Keitel, Christoph H
2013-04-12
The tunneling dynamics in relativistic strong-field ionization is investigated with the aim to develop an intuitive picture for the relativistic tunneling regime. We demonstrate that the tunneling picture applies also in the relativistic regime by introducing position dependent energy levels. The quantum dynamics in the classically forbidden region features two time scales, the typical time that characterizes the probability density's decay of the ionizing electron under the barrier (Keldysh time) and the time interval which the electron spends inside the barrier (Eisenbud-Wigner-Smith tunneling time). In the relativistic regime, an electron momentum shift as well as a spatial shift along the laser propagation direction arise during the under-the-barrier motion which are caused by the laser magnetic field induced Lorentz force. The momentum shift is proportional to the Keldysh time, while the wave-packet's spatial drift is proportional to the Eisenbud-Wigner-Smith time. The signature of the momentum shift is shown to be present in the ionization spectrum at the detector and, therefore, observable experimentally. In contrast, the signature of the Eisenbud-Wigner-Smith time delay disappears at far distances for pure quasistatic tunneling dynamics.
Relativistic heavy ion reactions
Brink, D.M.
1989-08-01
The theory of quantum chromodynamics predicts that if nuclear matter is heated to a sufficiently high temperature then quarks might become deconfined and a quark-gluon plasma could be produced. One of the aims of relativistic heavy ion experiments is to search for this new state of matter. These lectures survey some of the new experimental results and give an introduction to the theories used to interpret them. 48 refs., 4 tabs., 11 figs.
Dynamical localization of coupled relativistic kicked rotors
Rozenbaum, Efim B.; Galitski, Victor
2017-02-01
A periodically driven rotor is a prototypical model that exhibits a transition to chaos in the classical regime and dynamical localization (related to Anderson localization) in the quantum regime. In a recent work [Phys. Rev. B 94, 085120 (2016), 10.1103/PhysRevB.94.085120], A. C. Keser et al. considered a many-body generalization of coupled quantum kicked rotors, and showed that in the special integrable linear case, dynamical localization survives interactions. By analogy with many-body localization, the phenomenon was dubbed dynamical many-body localization. In the present work, we study nonintegrable models of single and coupled quantum relativistic kicked rotors (QRKRs) that bridge the gap between the conventional quadratic rotors and the integrable linear models. For a single QRKR, we supplement the recent analysis of the angular-momentum-space dynamics with a study of the spin dynamics. Our analysis of two and three coupled QRKRs along with the proved localization in the many-body linear model indicate that dynamical localization exists in few-body systems. Moreover, the relation between QRKR and linear rotor models implies that dynamical many-body localization can exist in generic, nonintegrable many-body systems. And localization can generally result from a complicated interplay between Anderson mechanism and limiting integrability, since the many-body linear model is a high-angular-momentum limit of many-body QRKRs. We also analyze the dynamics of two coupled QRKRs in the highly unusual superballistic regime and find that the resonance conditions are relaxed due to interactions. Finally, we propose experimental realizations of the QRKR model in cold atoms in optical lattices.
Davydov, Alexander
2010-01-01
It is accepted wisdom that language and formalism of classical physics are inadequate for description of quantum phenomena. Here I confront this point of view by showing that there exists a surprisingly accurate mapping between representation of some quantum phenomena in one dimension and behavior of a classical time-dependent harmonic oscillator. For the first time, I demonstrate that such quintessentially quantum effect as tunneling through a potential barrier can be described in terms of classical physics without violating the energy conservation law at any time instance. A formula is presented that generates a wide class of one-dimensional potential barrier shapes in analytic form with the desired reflection (transmission) coefficient and transmission phase shift along with the corresponding exact solutions of the time-independent Schr\\"odinger's equation. Based on these results and numerical evidence, I put forward a conjecture that a classical (macroscopic) harmonic oscillator disturbed by a parametric ...
Davydov, Alexander
2010-01-01
It is accepted wisdom that language and formalism of classical physics are inadequate for description of quantum phenomena. Here I confront this point of view by showing that there exists a surprisingly accurate mapping between representation of some quantum phenomena in one dimension and behavior of a classical time-dependent harmonic oscillator. For the first time, I demonstrate that such quintessentially quantum effect as tunneling through a potential barrier can be described in terms of classical physics without violating the energy conservation law at any time instance. A formula is presented that generates a wide class of one-dimensional potential barrier shapes in analytic form with the desired reflection (transmission) coefficient and transmission phase shift along with the corresponding exact solutions of the time-independent Schr\\"odinger's equation. Based on these results and numerical evidence, I put forward a conjecture that a classical (macroscopic) harmonic oscillator disturbed by a parametric ...
Radożycki, Tomasz
2016-11-01
The probability density distributions for the ground states of certain model systems in quantum mechanics and for their classical counterparts are considered. It is shown, that classical distributions are remarkably improved by incorporating into them the Heisenberg uncertainty relation between position and momentum. Even the crude form of this incorporation makes the agreement between classical and quantum distributions unexpectedly good, except for the small area, where classical momenta are large. It is demonstrated that the slight improvement of this form, makes the classical distribution very similar to the quantum one in the whole space. The obtained results are much better than those from the WKB method. The paper is devoted to ground states, but the method applies to excited states too.
Howl, Richard; Bruschi, David Edward; Fuentes, Ivette
2016-01-01
At the beginning of the previous century, Newtonian mechanics fell victim to two new revolutionary theories, Quantum Mechanics (QM) and General Relativity (GR). Both theories have transformed our view of physical phenomena, with QM accurately predicting the results of experiments taking place at small length scales, and GR correctly describing observations at larger length scales. However, despite the impressive predictive power of each theory in their respective regimes, their unification still remains unresolved. Theories and proposals for their unification exist but we are lacking experimental guidance towards the true unifying theory. Probing GR at small length scales where quantum effects become relevant is particularly problematic but recently there has been a growing interest in probing the opposite regime, QM at large scales where relativistic effects are important. This is principally due to the fact that experimental techniques in quantum physics have developed rapidly in recent years with the promi...
Wachter, H
2007-01-01
The aim of these three papers (I, II, and III) is to develop a q-deformed version of non-relativistic Schroedinger theory. Paper I introduces the fundamental mathematical and physical concepts. The braided line and the three-dimensional q-deformed Euclidean space play the role of position space. For both cases the algebraic framework is extended by a time element. A short review of the elements of q-deformed analysis on the spaces under consideration is given. The time evolution operator is introduced in a consistent way and its basic properties are discussed. These reasonings are continued by proposing q-deformed analogs of the Schroedinger and the Heisenberg picture.
Medrano, Marina Ramon
2007-01-01
An effective string theory in physically relevant cosmological and black hole space times is reviewed. Explicit computations of the quantum string entropy, partition function and quantum string emission by black holes (Schwarzschild, rotating, charged, asymptotically flat, de Sitter dS and AdS space times) in the framework of effective string theory in curved backgrounds provide an amount of new quantum gravity results as: (i) gravitational phase transitions appear with a distinctive universal feature: a square root branch point singularity in any space time dimensions. This is of the type of the de Vega - Sanchez transition for the thermal self-gravitating gas of point particles. (ii) There are no phase transitions in AdS alone. (iii) For $dS$ background, upper bounds of the Hubble constant H are found, dictated by the quantum string phase transition.(iv) The Hawking temperature and the Hagedorn temperature are the same concept but in different (semiclassical and quantum) gravity regimes respectively. (v) Th...
Amaku, Marcos; Coutinho, Francisco A. B.; Masafumi Toyama, F.
2017-09-01
The usual definition of the time evolution operator e-i H t /ℏ=∑n=0∞1/n ! (-i/ℏHt ) n , where H is the Hamiltonian of the system, as given in almost every book on quantum mechanics, causes problems in some situations. The operators that appear in quantum mechanics are either bounded or unbounded. Unbounded operators are not defined for all the vectors (wave functions) of the Hilbert space of the system; when applied to some states, they give a non-normalizable state. Therefore, if H is an unbounded operator, the definition in terms of the power series expansion does not make sense because it may diverge or result in a non-normalizable wave function. In this article, we explain why this is so and suggest, as an alternative, another definition used by mathematicians.
Redkov, V M
1998-01-01
Some attention in the literature has been given to the case of a particle of spin 1/2 on the background of the external monopole potential. Some aspects of this problem are reexamined here. The primary technical novelty is that the tetrad generally relativistic method of Tetrode-Weyl-Fock-Ivanenko for describing a spinor particle is exploited. The choice of the formalism has turned out to be of great fruitfulness for examining the system. It is matter that, as known, the use of a special spherical tetrad in the theory of a spin 1/2 particle had led Schrodinger to a basis of remarkable features. The basis has been used with great efficiency by Pauli in his investigation on the pro- blem of allowed spherically symmetric wave functions in quantum mechanics. For our purposes, just several simple rules extracted from the much more com- prehensive Pauli's analysis will be quite sufficient; those are almost mnemo- nic working regulations. So, one may remember some very primary facts of D- functions theory and then p...
Relativistic effects in atom gravimeters
Tan, Yu-Jie; Shao, Cheng-Gang; Hu, Zhong-Kun
2017-01-01
Atom interferometry is currently developing rapidly, which is now reaching sufficient precision to motivate laboratory tests of general relativity. Thus, it is extremely significant to develop a general relativistic model for atom interferometers. In this paper, we mainly present an analytical derivation process and first give a complete vectorial expression for the relativistic interferometric phase shift in an atom interferometer. The dynamics of the interferometer are studied, where both the atoms and the light are treated relativistically. Then, an appropriate coordinate transformation for the light is performed crucially to simplify the calculation. In addition, the Bordé A B C D matrix combined with quantum mechanics and the "perturbation" approach are applied to make a methodical calculation for the total phase shift. Finally, we derive the relativistic phase shift kept up to a sensitivity of the acceleration ˜1 0-14 m/s 2 for a 10 -m -long atom interferometer.
Geometric Models of the Relativistic Harmonic Oscillator
Cotaescu, I I
1997-01-01
A family of relativistic geometric models is defined as a generalization of the actual anti-de Sitter (1+1) model of the relativistic harmonic oscillator. It is shown that all these models lead to the usual harmonic oscillator in the non-relativistic limit, even though their relativistic behavior is quite different. Among quantum models we find a set of models with countable energy spectra, and another one having only a finite number of energy levels and in addition a continuous spectrum.
Luciano, Rezzolla
2013-01-01
Relativistic hydrodynamics is a very successful theoretical framework to describe the dynamics of matter from scales as small as those of colliding elementary particles, up to the largest scales in the universe. This book provides an up-to-date, lively, and approachable introduction to the mathematical formalism, numerical techniques, and applications of relativistic hydrodynamics. The topic is typically covered either by very formal or by very phenomenological books, but is instead presented here in a form that will be appreciated both by students and researchers in the field. The topics covered in the book are the results of work carried out over the last 40 years, which can be found in rather technical research articles with dissimilar notations and styles. The book is not just a collection of scattered information, but a well-organized description of relativistic hydrodynamics, from the basic principles of statistical kinetic theory, down to the technical aspects of numerical methods devised for the solut...
Petersen, Christian Leth; Hansen, Ole Per
1996-01-01
We have investigated the AC conductivity elements in the quantum Hall regime of two-dimensional electron gases coupled capacitively to electrodes with Corbino geometry. The samples are GaAlAs/GaAs single heterostructures, and the measurements are made at low frequencies, up to 20 kHz. The diagonal...... conductivity is derived from magnetocapacitance measurements. It increases with increasing frequency according to a power law at integer filling factors. The exponent of the power law depends on both temperature and filling factor. Ratios between Hall conductivities at different filling factors are obtained...
Goussev, Arseni; Dorfman, J. Robert
2006-01-01
We consider the time evolution of a wave packet representing a quantum particle moving in a geometrically open billiard that consists of a number of fixed hard-disk or hard-sphere scatterers. Using the technique of multiple collision expansions we provide a first-principle analytical calculation of the time-dependent autocorrelation function for the wave packet in the high-energy diffraction regime, in which the particle's de Broglie wave length, while being small compared to the size of the ...
Laurat, J; Treps, N; Maitre, A; Fabre, C; Laurat, Julien; Coudreau, Thomas; Treps, Nicolas; Maitre, Agnes; Fabre, Claude
2003-01-01
We report the first experimental demonstration of conditional preparation of a non classical state of light in the continuous variable regime. Starting from a non degenerate OPO which generates above threshold quantum intensity correlated signal and idler "twin beams", we keep the recorded values of the signal intensity only when the idler falls inside a band of values narrower than its standard deviation. By this very simple technique, we generate a sub-Poissonian state 4.4dB below shot noise from twin beams exhibiting 7.5dB of noise reduction in the intensity difference.
Gloos, K.; Utko, P.; Aagesen, M.;
2006-01-01
We investigate the I(V) characteristics (current versus bias voltage) of side-gated quantum-point contacts, defined in GaAs/AlxGa1-xAs heterostructures. These point contacts are operated in the closed-channel regime, that is, at fixed gate voltages below zero-bias pinch-off for conductance. Our...... analysis is based on a single scaling factor, extracted from the experimental I(V) characteristics. For both polarities, this scaling factor transforms the change of bias voltage into a change of electron energy. The latter is determined with respect to the top of the potential barrier of the contact....... Such a built-in energy-voltage calibration allows us to distinguish between the different contributions to the electron transport across the pinched-off contact due to thermal activation or quantum tunneling. The first involves the height of the barrier, and the latter also its length. In the model that we...
Azevedo, F. S.; Silva, Edilberto O.; Castro, Luis B.; Filgueiras, Cleverson; Cogollo, D.
2015-11-01
The planar quantum dynamics of a spin-1/2 neutral particle interacting with electrical fields is considered. A set of first order differential equations is obtained directly from the planar Dirac equation with nonminimum coupling. New solutions of this system, in particular, for the Aharonov-Casher effect, are found and discussed in detail. Pauli equation is also obtained by studying the motion of the particle when it describes a circular path of constant radius. We also analyze the planar dynamics in the full space, including the r = 0 region. The self-adjoint extension method is used to obtain the energy levels and wave functions of the particle for two particular values for the self-adjoint extension parameter. The energy levels obtained are analogous to the Landau levels and explicitly depend on the spin projection parameter.
Azadegan, B.
2013-03-01
The presented Mathematica code is an efficient tool for simulation of planar channeling radiation spectra of relativistic electrons channeled along major crystallographic planes of a diamond-structure single crystal. The program is based on the quantum theory of channeling radiation which has been successfully applied to study planar channeling at electron energies between 10 and 100 MeV. Continuum potentials for different planes of diamond, silicon and germanium single crystals are calculated using the Doyle-Turner approximation to the atomic scattering factor and taking thermal vibrations of the crystal atoms into account. Numerical methods are applied to solve the one-dimensional Schrödinger equation. The code is designed to calculate the electron wave functions, transverse electron states in the planar continuum potential, transition energies, line widths of channeling radiation and depth dependencies of the population of quantum states. Finally the spectral distribution of spontaneously emitted channeling radiation is obtained. The simulation of radiation spectra considerably facilitates the interpretation of experimental data. Catalog identifier: AEOH_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEOH_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 446 No. of bytes in distributed program, including test data, etc.: 209805 Distribution format: tar.gz Programming language: Mathematica. Computer: Platforms on which Mathematica is available. Operating system: Operating systems on which Mathematica is available. RAM: 1 MB Classification: 7.10. Nature of problem: Planar channeling radiation is emitted by relativistic charged particles during traversing a single crystal in direction parallel to a crystallographic plane. Channeling is modeled as the motion
Scattering in Relativistic Particle Mechanics.
de Bievre, Stephan
Fokker's action principle. To study the Moller operators in the manifestly covariant approach, we extend techniques developed for dealing with non-relativistic two-body scattering and determine precise conditions on the dynamical vectorfields under which the Moller operators can be proven to exist. We then show how Moller operators can be used to construct the Hamiltonian structure in the manifestly covariant approach. Finally, we turn our attention to the quantization of the models discussed. We determine a notion of position in a model for the quantum mechanical treatment of the free relativistic particle that does not violate causality. This result must be compared to recent proofs of the fact that the notions of strict localization and of causality are not mutually compatible in relativistic quantum mechanics. (Abstract shortened with permission of author.).
Frontiers in relativistic celestial mechanics
2014-01-01
Relativistic celestial mechanics – investigating the motion celestial bodies under the influence of general relativity – is a major tool of modern experimental gravitational physics. With a wide range of prominent authors from the field, this two-volume series consists of reviews on a multitude of advanced topics in the area of relativistic celestial mechanics – starting from more classical topics such as the regime of asymptotically-flat spacetime, light propagation and celestial ephemerides, but also including its role in cosmology and alternative theories of gravity as well as modern experiments in this area.
Sahoo, Raghunath
2016-01-01
This lecture note covers Relativistic Kinematics, which is very useful for the beginners in the field of high-energy physics. A very practical approach has been taken, which answers "why and how" of the kinematics useful for students working in the related areas.
Corinaldesi, Ernesto
1963-01-01
Geared toward advanced undergraduate and graduate students of physics, this text provides readers with a background in relativistic wave mechanics and prepares them for the study of field theory. The treatment originated as a series of lectures from a course on advanced quantum mechanics that has been further amplified by student contributions.An introductory section related to particles and wave functions precedes the three-part treatment. An examination of particles of spin zero follows, addressing wave equation, Lagrangian formalism, physical quantities as mean values, translation and rotat
Goussev, Arseni; Dorfman, J R
2006-07-01
We consider the time evolution of a wave packet representing a quantum particle moving in a geometrically open billiard that consists of a number of fixed hard-disk or hard-sphere scatterers. Using the technique of multiple collision expansions we provide a first-principle analytical calculation of the time-dependent autocorrelation function for the wave packet in the high-energy diffraction regime, in which the particle's de Broglie wavelength, while being small compared to the size of the scatterers, is large enough to prevent the formation of geometric shadow over distances of the order of the particle's free flight path. The hard-disk or hard-sphere scattering system must be sufficiently dilute in order for this high-energy diffraction regime to be achievable. Apart from the overall exponential decay, the autocorrelation function exhibits a generally complicated sequence of relatively strong peaks corresponding to partial revivals of the wave packet. Both the exponential decay (or escape) rate and the revival peak structure are predominantly determined by the underlying classical dynamics. A relation between the escape rate, and the Lyapunov exponents and Kolmogorov-Sinai entropy of the counterpart classical system, previously known for hard-disk billiards, is strengthened by generalization to three spatial dimensions. The results of the quantum mechanical calculation of the time-dependent autocorrelation function agree with predictions of the semiclassical periodic orbit theory.
Hakim, Rémi
1994-01-01
Il existe à l'heure actuelle un certain nombre de théories relativistes de la gravitation compatibles avec l'expérience et l'observation. Toutefois, la relativité générale d'Einstein fut historiquement la première à fournir des résultats théoriques corrects en accord précis avec les faits.
Jones, Bernard J. T.; Markovic, Dragoljub
1997-06-01
Preface; Prologue: Conference overview Bernard Carr; Part I. The Universe At Large and Very Large Redshifts: 2. The size and age of the Universe Gustav A. Tammann; 3. Active galaxies at large redshifts Malcolm S. Longair; 4. Observational cosmology with the cosmic microwave background George F. Smoot; 5. Future prospects in measuring the CMB power spectrum Philip M. Lubin; 6. Inflationary cosmology Michael S. Turner; 7. The signature of the Universe Bernard J. T. Jones; 8. Theory of large-scale structure Sergei F. Shandarin; 9. The origin of matter in the universe Lev A. Kofman; 10. New guises for cold-dark matter suspects Edward W. Kolb; Part II. Physics and Astrophysics Of Relativistic Compact Objects: 11. On the unification of gravitational and inertial forces Donald Lynden-Bell; 12. Internal structure of astrophysical black holes Werner Israel; 13. Black hole entropy: external facade and internal reality Valery Frolov; 14. Accretion disks around black holes Marek A. Abramowicz; 15. Black hole X-ray transients J. Craig Wheeler; 16. X-rays and gamma rays from active galactic nuclei Roland Svensson; 17. Gamma-ray bursts: a challenge to relativistic astrophysics Martin Rees; 18. Probing black holes and other exotic objects with gravitational waves Kip Thorne; Epilogue: the past and future of relativistic astrophysics Igor D. Novikov; I. D. Novikov's scientific papers and books.
Deng-Fan Potential for Relativistic Spinless Particles -- an Ansatz Solution
H. Hassanabadi; B.H. Yazarloo; S. Zarrinkamar; H. Rahimov
2012-01-01
Deng-Fan potential originally appeared many years ago as an attractive proposition for molecular systems. On the contrary to the ground state of one-dimensional Schr6dinger equation, this potential fails to admit exact analytical solutions for arbitrary quantum number in both relativistic and nonrelativistic regime. Because of this complexity, there exists only few papers, which discuss this interesting problem. Here, using an elegant ansatz, we have calculated the system spectra as well as the eigenfunctions in the general case of unequal vector and scalar potentials under Klein-Gordon equation.
Rukhlenko, Ivan D; Fedorov, Anatoly V; Baymuratov, Anvar S; Premaratne, Malin
2011-08-01
We develop a low-temperature theory of quasi-elastic secondary emission from a semiconductor quantum dot, the electronic subsystem of which is resonant with the confined longitudinal-optical (LO) phonon modes. Our theory employs a generalized model for renormalization of the quantum dot's energy spectrum, which is induced by the polar electron-phonon interaction. The model takes into account the degeneration of electronic states and allows for several LO-phonon modes to be involved in the vibrational resonance. We give solutions to three fundamental problems of energy-spectrum renormalization--arising if one, two, or three LO-phonon modes resonantly couple a pair of electronic states--and discuss the most general problem of this kind that admits an analytical solution. With these results, we solve the generalized master equation for the reduced density matrix, in order to derive an expression for the differential cross section of secondary emission from a single quantum dot. The obtained expression is then analyzed to establish the basics of optical spectroscopy for measuring fundamental parameters of the quantum dot's polaron-like states.
Cresti, Alessandro; Ortmann, Frank; Louvet, Thibaud; Van Tuan, Dinh; Roche, Stephan
2013-05-10
The role of defect-induced zero-energy modes on charge transport in graphene is investigated using Kubo and Landauer transport calculations. By tuning the density of random distributions of monovacancies either equally populating the two sublattices or exclusively located on a single sublattice, all conduction regimes are covered from direct tunneling through evanescent modes to mesoscopic transport in bulk disordered graphene. Depending on the transport measurement geometry, defect density, and broken sublattice symmetry, the Dirac-point conductivity is either exceptionally robust against disorder (supermetallic state) or suppressed through a gap opening or by algebraic localization of zero-energy modes, whereas weak localization and the Anderson insulating regime are obtained for higher energies. These findings clarify the contribution of zero-energy modes to transport at the Dirac point, hitherto controversial.
Kurian, Pushpa Ann; Vijayan, C.; Nag, Amit; Goswami, Debabrata
2007-01-01
Devices based on optical technology for high speed communication networks require materials with large nonlinear optical response in the ultrafast regime. Nonlinear optical materials have also attracted wide attention as potential candidates for the protection of optical sensors and eyes while handling lasers. Optical limiters have a constant transmittance at low input influence and a decrease in transmittance at higher fluences and are based on a variety of mechanisms such as nonlinear refra...
Lewin, Mathieu
2011-01-01
In a recent paper published in Nonlinear Analysis: Theory, Methods & Applications, C. Argaez and M. Melgaard studied excited states for pseudo-relativistic multi-configuration methods. Their paper follows a previous work of mine in the non-relativistic case (Arch. Rat. Mech. Anal., 171, 2004). The main results of the paper of C. Argaez and M. Melgaard are correct, but the proofs are both wrong and incomplete.
Pašteka, L. F.; Eliav, E.; Borschevsky, A.; Kaldor, U.; Schwerdtfeger, P.
2017-01-01
The first ionization potential (IP) and electron affinity (EA) of the gold atom have been determined to an unprecedented accuracy using relativistic coupled cluster calculations up to the pentuple excitation level including the Breit and QED contributions. We reach meV accuracy (with respect to the experimental values) by carefully accounting for all individual contributions beyond the standard relativistic coupled cluster approach. Thus, we are able to resolve the long-standing discrepancy between experimental and theoretical IP and EA of gold.
Non-Fermi liquid regimes with and without quantum criticality in Ce(1-x)Yb(x)CoIn5.
Hu, Tao; Singh, Yogesh P; Shu, Lei; Janoschek, Marc; Dzero, Maxim; Maple, M Brian; Almasan, Carmen C
2013-04-30
One of the greatest challenges to Landau's Fermi liquid theory--the standard theory of metals--is presented by complex materials with strong electronic correlations. In these materials, non-Fermi liquid transport and thermodynamic properties are often explained by the presence of a continuous quantum phase transition that happens at a quantum critical point (QCP). A QCP can be revealed by applying pressure, magnetic field, or changing the chemical composition. In the heavy-fermion compound CeCoIn5, the QCP is assumed to play a decisive role in defining the microscopic structure of both normal and superconducting states. However, the question of whether a QCP must be present in the material's phase diagram to induce non-Fermi liquid behavior and trigger superconductivity remains open. Here, we show that the full suppression of the field-induced QCP in CeCoIn5 by doping with Yb has surprisingly little impact on both unconventional superconductivity and non-Fermi liquid behavior. This implies that the non-Fermi liquid metallic behavior could be a new state of matter in its own right rather than a consequence of the underlying quantum phase transition.
Relativistic recursion relations for transition matrix elements
Martínez y Romero, R P; Salas-Brito, A L
2004-01-01
We review some recent results on recursion relations which help evaluating arbitrary non-diagonal, radial hydrogenic matrix elements of $r^\\lambda$ and of $\\beta r^\\lambda$ ($\\beta$ a Dirac matrix) derived in the context of Dirac relativistic quantum mechanics. Similar recursion relations were derived some years ago by Blanchard in the non relativistic limit. Our approach is based on a generalization of the second hypervirial method previously employed in the non-relativistic Schr\\"odinger case. An extension of the relations to the case of two potentials in the so-called unshifted case, but using an arbitrary radial function instead of a power one, is also given. Several important results are obtained as special instances of our recurrence relations, such as a generalization to the relativistic case of the Pasternack-Sternheimer rule. Our results are useful in any atomic or molecular calculation which take into account relativistic corrections.
Marcelo Gonçalves Vivas
2017-03-01
Full Text Available We report here on the direct observation of distinct two-photon transition channels in glutathione-capped (GSH CdTe quantum dots (QDs in a very strong confinement regime. CdTe-GSH QDs with different average diameters (2.5, 3.0, and 3.3 nm were synthesized through the one-pot method and their two-photon absorption (2PA spectrum determined by a femtosecond wavelength-tunable Z-scan. Our results show that the two lower-energy one-photon-allowed excitonic transitions, 1S3/2(h → 1S(e and 2S3/2(h → 1S(e, are also accessed via 2PA. These results were ascribed to the relaxation of the parity selection rules due to the noncentrosymmetric structure of the CdTe QDs (zinc-blended structure, whose magnitude are determined by surface defects and structural irregularities present in CdTe-GSH QDs, in the strong confinement regime.
Fine-grained uncertainty relation under the relativistic motion
Feng, Jun; Gould, Mark D; Fan, Heng
2014-01-01
One of the most important features of quantum theory is the uncertainty principle. Amount various uncertainty relations, the profound Fine-Grained Uncertainty Relation (FGUR) is used to distinguish the uncertainty inherent in obtaining any combination of outcomes for different measurements. In this paper, we explore this uncertainty relation in relativistic regime. For observer undergoes an uniform acceleration who immersed in an Unruh thermal bath, we show that the uncertainty bound is dependent on the acceleration parameter and choice of Unruh modes. Dramatically, we find that the measurements in Mutually Unbiased Bases (MUBs), sharing same uncertainty bound in inertial frame, could be distinguished from each other for a noninertial observer. On the other hand, once the Unruh decoherence is prevented by utilizing the cavity, the entanglement could be generated from nonuniform motion. We show that, for the observer restricted in a single rigid cavity, the uncertainty exhibits a periodic evolution with respec...
Relativistic and non-relativistic geodesic equations
Giambo' , R.; Mangiarotti, L.; Sardanashvily, G. [Camerino Univ., Camerino, MC (Italy). Dipt. di Matematica e Fisica
1999-07-01
It is shown that any dynamic equation on a configuration space of non-relativistic time-dependent mechanics is associated with connections on its tangent bundle. As a consequence, every non-relativistic dynamic equation can be seen as a geodesic equation with respect to a (non-linear) connection on this tangent bundle. Using this fact, the relationships between relativistic and non-relativistic equations of motion is studied.
Thermodynamic and relativistic uncertainty relations
Artamonov, A. A.; Plotnikov, E. M.
2017-01-01
Thermodynamic uncertainty relation (UR) was verified experimentally. The experiments have shown the validity of the quantum analogue of the zeroth law of stochastic thermodynamics in the form of the saturated Schrödinger UR. We have also proposed a new type of UR for the relativistic mechanics. These relations allow us to consider macroscopic phenomena within the limits of the ratio of the uncertainty relations for different physical quantities.
Lusanna, Luca
2012-01-01
(abridged)If the space-time is presupposed, the coordinate representation of the solutions $\\psi(\\vec x, t)$ of the Schroedinger equation of a quantum system containing one massive scalar particle has a {\\it preferred status}. It is then possible to perform a multipolar expansion of the density matrix $\\rho(\\vec x, t) = |\\psi(\\vec x, t)|^2$ (and more generally of the Wigner function) around a space-time trajectory ${\\vec x}_c(t)$ to be properly selected. A special set of solutions $\\psi_{EMWF}(\\vec x, t)$, named {\\it Ehrenfest monopole wave functions}(EMWF), is characterized by the conditions that: (i) the quantum expectation value of the position operator coincides at any time with the searched classical trajectory, $ = {\\vec x}_c(t)$: this is possible only when the dipole vanishes; (ii) Ehrenfest's theorem holds for the expectation values of the position and momentum operator: its application to EMWF leads then to a {\\it closed Newton equation of motion for the classical trajectory, where the effective forc...
Parallel, grid-adaptive approaches for relativistic hydro and magnetohydrodynamics
Keppens, R.; Meliani, Z.; van Marle, A. J.; Delmont, P.; Vlasis, A.; van der Holst, B.
2012-01-01
Relativistic hydro and magnetohydrodynamics provide continuum fluid descriptions for gas and plasma dynamics throughout the visible universe. We present an overview of state-of-the-art modeling in special relativistic regimes, targeting strong shock-dominated flows with speeds approaching the speed
Maroof, R. [Department of Physics, Abdul Wali Khan University, Mardan 23200 (Pakistan); Department of Physics, University of Peshawar, Peshawar 25000 (Pakistan); National Center for Physics (NCP) at QAU Campus, Shahdra Valley Road, Islamabad 44000 (Pakistan); Ali, S. [National Center for Physics (NCP) at QAU Campus, Shahdra Valley Road, Islamabad 44000 (Pakistan); Mushtaq, A. [Department of Physics, Abdul Wali Khan University, Mardan 23200 (Pakistan); National Center for Physics (NCP) at QAU Campus, Shahdra Valley Road, Islamabad 44000 (Pakistan); Qamar, A. [Department of Physics, University of Peshawar, Peshawar 25000 (Pakistan)
2015-11-15
Linear properties of high and low frequency waves are studied in an electron-positron-ion (e-p-i) dense plasma with spin and relativity effects. In a low frequency regime, the magnetohydrodynamic (MHD) waves, namely, the magnetoacoustic and Alfven waves are presented in a magnetized plasma, in which the inertial ions are taken as spinless and non-degenerate, whereas the electrons and positrons are treated quantum mechanically due to their smaller mass. Quantum corrections associated with the spin magnetization and density correlations for electrons and positrons are re-considered and a generalized dispersion relation for the low frequency MHD waves is derived to account for relativistic degeneracy effects. On the basis of angles of propagation, the dispersion relations of different modes are discussed analytically in a degenerate relativistic plasma. Numerical results reveal that electron and positron relativistic degeneracy effects significantly modify the dispersive properties of MHD waves. Our present analysis should be useful for understanding the collective interactions in dense astrophysical compact objects, like, the white dwarfs and in atmosphere of neutron stars.
Reimers, Jeffrey R; McKemmish, Laura K; McKenzie, Ross H; Mark, Alan E; Hush, Noel S
2009-03-17
In 1968, Fröhlich showed that a driven set of oscillators can condense with nearly all of the supplied energy activating the vibrational mode of lowest frequency. This is a remarkable property usually compared with Bose-Einstein condensation, superconductivity, lasing, and other unique phenomena involving macroscopic quantum coherence. However, despite intense research, no unambiguous example has been documented. We determine the most likely experimental signatures of Fröhlich condensation and show that they are significant features remote from the extraordinary properties normally envisaged. Fröhlich condensates are classified into 3 types: weak condensates in which profound effects on chemical kinetics are possible, strong condensates in which an extremely large amount of energy is channeled into 1 vibrational mode, and coherent condensates in which this energy is placed in a single quantum state. Coherent condensates are shown to involve extremely large energies, to not be produced by the Wu-Austin dynamical Hamiltonian that provides the simplest depiction of Fröhlich condensates formed using mechanically supplied energy, and to be extremely fragile. They are inaccessible in a biological environment. Hence the Penrose-Hameroff orchestrated objective-reduction model and related theories for cognitive function that embody coherent Fröhlich condensation as an essential element are untenable. Weak condensates, however, may have profound effects on chemical and enzyme kinetics, and may be produced from biochemical energy or from radio frequency, microwave, or terahertz radiation. Pokorný's observed 8.085-MHz microtubulin resonance is identified as a possible candidate, with microwave reactors (green chemistry) and terahertz medicine appearing as other feasible sources.
Tang, Jiang
2010-02-23
We report colloidal quantum dot (CQDs) photovoltaics having a ∼930 nm bandgap. The devices exhibit AM1.5G power conversion efficiencies in excess of 2%. Remarkably, the devices are stable in air under many tens of hours of solar illumination without the need for encapsulation. We explore herein the origins of this ordersof-magnitude improvement in air stability compared to larger PbS dots. We find that small and large dots form dramatically different oxidation products, with small dots forming lead sulfite primarily and large dots, lead sulfate. The lead sulfite produced on small dots results in shallow electron traps that are compatible with excellent device performance; whereas the sulfates formed on large dots lead to deep traps, midgap recombination, and consequent catastrophic loss of performance. We propose and offer evidence in support of an explanation based on the high rate of oxidation of sulfur-rich surfaces preponderant in highly faceted large-diameter PbS colloidal quantum dots. © 2010 American Chemical Society.
Relativistic magnetohydrodynamics
Hernandez, Juan; Kovtun, Pavel
2017-05-01
We present the equations of relativistic hydrodynamics coupled to dynamical electromagnetic fields, including the effects of polarization, electric fields, and the derivative expansion. We enumerate the transport coefficients at leading order in derivatives, including electrical conductivities, viscosities, and thermodynamic coefficients. We find the constraints on transport coefficients due to the positivity of entropy production, and derive the corresponding Kubo formulas. For the neutral state in a magnetic field, small fluctuations include Alfvén waves, magnetosonic waves, and the dissipative modes. For the state with a non-zero dynamical charge density in a magnetic field, plasma oscillations gap out all propagating modes, except for Alfvén-like waves with a quadratic dispersion relation. We relate the transport coefficients in the "conventional" magnetohydrodynamics (formulated using Maxwell's equations in matter) to those in the "dual" version of magnetohydrodynamics (formulated using the conserved magnetic flux).
Leardini, Fabrice
2013-01-01
This manuscript presents a problem on special relativity theory (SRT) which embodies an apparent paradox relying on the concept of simultaneity. The problem is represented in the framework of Greek epic poetry and structured in a didactic way. Owing to the characteristic properties of Lorenz transformations, three events which are simultaneous in a given inertial reference system, occur at different times in the other two reference frames. In contrast to the famous twin paradox, in the present case there are three, not two, different inertial observers. This feature provides a better framework to expose some of the main characteristics of SRT, in particular, the concept of velocity and the relativistic rule of addition of velocities.
Ponderomotive Acceleration by Relativistic Waves
Lau, Calvin; Yeh, Po-Chun; Luk, Onnie; McClenaghan, Joseph; Ebisuzaki, Toshikazu; Tajima, Toshiki
2014-01-01
In the extreme high intensity regime of electromagnetic (EM) waves in plasma, the acceleration process is found to be dominated by the ponderomotive acceleration (PA). While the wakefields driven by the ponderomotive force of the relativistic intensity EM waves are important, they may be overtaken by the PA itself in the extreme high intensity regime when the dimensionless vector potential $a_0$ of the EM waves far exceeds unity. The energy gain by this regime (in 1D) is shown to be (approximately) proportional to $a_0^2$. Before reaching this extreme regime, the coexistence of the PA and the wakefield acceleration (WA) is observed where the wave structures driven by the wakefields show the phenomenon of multiple and folded wave-breakings. Investigated are various signatures of the acceleration processes such as the dependence on the mass ratio for the energy gain as well as the energy spectral features. The relevance to high energy cosmic ray acceleration and to the relativistic laser acceleration is conside...
Robust relativistic bit commitment
Chakraborty, Kaushik; Chailloux, André; Leverrier, Anthony
2016-12-01
Relativistic cryptography exploits the fact that no information can travel faster than the speed of light in order to obtain security guarantees that cannot be achieved from the laws of quantum mechanics alone. Recently, Lunghi et al. [Phys. Rev. Lett. 115, 030502 (2015), 10.1103/PhysRevLett.115.030502] presented a bit-commitment scheme where each party uses two agents that exchange classical information in a synchronized fashion, and that is both hiding and binding. A caveat is that the commitment time is intrinsically limited by the spatial configuration of the players, and increasing this time requires the agents to exchange messages during the whole duration of the protocol. While such a solution remains computationally attractive, its practicality is severely limited in realistic settings since all communication must remain perfectly synchronized at all times. In this work, we introduce a robust protocol for relativistic bit commitment that tolerates failures of the classical communication network. This is done by adding a third agent to both parties. Our scheme provides a quadratic improvement in terms of expected sustain time compared with the original protocol, while retaining the same level of security.
Isotropic Forms of Dynamics in the Relativistic Direct Interaction Theory
Duviryak, A A; Tretyak, V I
1998-01-01
The Lagrangian relativistic direct interaction theory in the various forms of dynamics is formulated and its connections with the Fokker-type action theory and with the constrained Hamiltonian mechanics are established. The motion of classical two-particle system with relativistic direct interaction is analysed within the framework of isotropic forms of dynamics in the two- and four-dimensional space-time. Some relativistic exactly solvable quantum-mechanical models are also discussed.
Higher-order perturbative relativistic corrections to energies and properties
Stopkowicz, Stella
2011-01-01
Relativistic effects need to be considered in quantum-chemical calculations on systems including heavy elements or when aiming at high accuracy for molecules containing only lighter elements. In the latter case, consideration of relativistic effects via perturbation theory is an attractive option. Among the available techniques, Direct Perturbation Theory (DPT) in its lowest order (DPT2) has become a standard tool for the calculation of relativistic corrections to energies and properties.In t...
Yu, Zhizhou; Chen, Jian; Zhang, Lei; Wang, Jian
2013-12-11
We report an investigation of Coulomb blockade transport through an endohedral N@C60 weakly coupled with aluminum leads, employing the first-principles method combined with the Keldysh non-equilibrium Green's function derived from the equation of motion beyond the Hartree-Fock approximation. The differential conductance characteristics of the molecular device are calculated within the Coulomb blockade regime, which shows the Coulomb diamond as observed experimentally. When the gate voltage is less than that of the degeneracy point, there are two peaks in the differential conductance with an excited state induced by the change of the exchange interaction between the spin of C60 and the encapsulated nitrogen atom due to the transition from N@C(1-)(60) to N@C(2-)(60), while for a gate voltage larger than that of the degeneracy point, no excited state is available due to the quenching of exchange energy. As a result, there is only one Coulomb blockade peak in the differential conductance from the electron tunneling through the highest energy level below the Fermi level. Our first-principles results are in good agreement with experimental data obtained by an endohedral N@C60 molecular device.
Relativistic Landau Models and Generation of Fuzzy Spheres
Hasebe, Kazuki
2015-01-01
Non-commutative geometry naturally emerges in low energy physics of Landau models as a consequence of level projection. In this work, we proactively utilize the level projection as an effective tool to generate fuzzy geometry. The level projection is specifically applied to the relativistic Landau models. In one-half of the paper, a detail analysis of the relativistic Landau problems on a sphere is presented, where a concise expression of the Dirac-Landau operator eigenstates is obtained based on algebraic methods. We establish $SU(2)$ "gauge" transformation between the relativistic Landau model and the Pauli-Schr\\"odinger non-relativistic quantum mechanics. In the other half, the fuzzy geometries generated from the relativistic Landau levels are elucidated, where unique properties of the relativistic fuzzy geometries are clarified. We consider mass deformation of the relativistic Landau models and demonstrate its geometrical effects to fuzzy geometry. Super fuzzy geometry is also constructed from a supersymm...
Quantum thermodynamics for a model of an expanding universe
Liu, Nana; Fuentes, Ivette; Vedral, Vlatko; Modi, Kavan; Bruschi, David Edward
2016-01-01
We investigate the thermodynamical properties of quantum fields in curved spacetime. Our approach is to consider quantum fields in curved spacetime as a quantum system undergoing an out-of-equilibrium transformation. The non-equilibrium features are studied by using a formalism which has been developed to derive fluctuation relations and emergent irreversible features beyond the linear response regime. We apply these ideas to an expanding universe scenario, therefore avoiding assumptions on the relation between entropy and quantum matter. We provide a fluctuation theorem which allows us to understand particle production due to the expansion of the universe as an entropic increase. Our results pave the way towards a different understanding of the thermodynamics of relativistic and quantum systems in our universe.
Thermodynamics of Relativistic Fermions with Chern-Simons Coupling
Bralic, N; Schaposnik, F A
1994-01-01
We study the thermodynamics of the relativistic Quantum Field Theory of massive fermions in three space-time dimensions coupled to an Abelian Maxwell-Chern-Simons gauge field. We evaluate the specific heat at finite temperature and density and find that the variation with the statistical angle is consistent with the non-relativistic ideas on generalized statistics.
Longitudinal and transverse cooling of relativistic electron beams in intense laser pulses
Yoffe, Samuel R; Noble, Adam; Jaroszynski, Dino A
2015-01-01
With the emergence in the next few years of a new breed of high power laser facilities, it is becoming increasingly important to understand how interacting with intense laser pulses affects the bulk properties of a relativistic electron beam. A detailed analysis of the radiative cooling of electrons indicates that, classically, equal contributions to the phase space contraction occur in the transverse and longitudinal directions. In the weakly quantum regime, in addition to an overall reduction in beam cooling, this symmetry is broken, leading to significantly less cooling in the longitudinal than the transverse directions. By introducing an efficient new technique for studying the evolution of a particle distribution, we demonstrate the quantum reduction in beam cooling, and find that it depends on the distribution of energy in the laser pulse, rather than just the total energy as in the classical case.
The relativistic virial theorem and scale invariance
Gaite, Jose
2013-01-01
The virial theorem is related to the dilatation properties of bound states. This is realized, in particular, by the Landau-Lifshitz formulation of the relativistic virial theorem, in terms of the trace of the energy-momentum tensor. We construct a Hamiltonian formulation of dilatations in which the relativistic virial theorem naturally arises as the condition of stability against dilatations. A bound state becomes scale invariant in the ultrarelativistic limit, in which its energy vanishes. However, for very relativistic bound states, scale invariance is broken by quantum effects and the virial theorem must include the energy-momentum tensor trace anomaly. This quantum field theory virial theorem is directly related to the Callan-Symanzik equations. The virial theorem is applied to QED and then to QCD, focusing on the bag model of hadrons. In massless QCD, according to the virial theorem, 3/4 of a hadron mass corresponds to quarks and gluons and 1/4 to the trace anomaly.
q-Deformed Relativistic Fermion Scattering
Hadi Sobhani
2017-01-01
Full Text Available In this article, after introducing a kind of q-deformation in quantum mechanics, first, q-deformed form of Dirac equation in relativistic quantum mechanics is derived. Then, three important scattering problems in physics are studied. All results have satisfied what we had expected before. Furthermore, effects of all parameters in the problems on the reflection and transmission coefficients are calculated and shown graphically.
Relativistic Hydrodynamics on Graphic Cards
Gerhard, Jochen; Bleicher, Marcus
2012-01-01
We show how to accelerate relativistic hydrodynamics simulations using graphic cards (graphic processing units, GPUs). These improvements are of highest relevance e.g. to the field of high-energetic nucleus-nucleus collisions at RHIC and LHC where (ideal and dissipative) relativistic hydrodynamics is used to calculate the evolution of hot and dense QCD matter. The results reported here are based on the Sharp And Smooth Transport Algorithm (SHASTA), which is employed in many hydrodynamical models and hybrid simulation packages, e.g. the Ultrarelativistic Quantum Molecular Dynamics model (UrQMD). We have redesigned the SHASTA using the OpenCL computing framework to work on accelerators like graphic processing units (GPUs) as well as on multi-core processors. With the redesign of the algorithm the hydrodynamic calculations have been accelerated by a factor 160 allowing for event-by-event calculations and better statistics in hybrid calculations.
A relativistic symmetry in nuclei
Ginocchio, J N [MS B283, Theoretical Division, Los Alamos National Laboratory Los Alamos, New Mexico 87545 (Mexico)
2007-11-15
We review some of the empirical and theoretical evidence supporting pseudospin symmetry in nuclei as a relativistic symmetry. We review the case that the eigenfunctions of realistic relativistic nuclear mean fields approximately conserve pseudospin symmetry in nuclei. We discuss the implications of pseudospin symmetry for magnetic dipole transitions and Gamow-Teller transitions between states in pseudospin doublets. We explore a more fundamental rationale for pseudospin symmetry in terms of quantum chromodynamics (QCD), the basic theory of the strong interactions. We show that pseudospin symmetry in nuclei implies spin symmetry for an anti-nucleon in a nuclear environment. We also discuss the future and what role pseudospin symmetry may be expected to play in an effective field theory of nucleons.
Relativistic Runaway Electrons
Breizman, Boris
2014-10-01
This talk covers recent developments in the theory of runaway electrons in a tokamak with an emphasis on highly relativistic electrons produced via the avalanche mechanism. The rapidly growing population of runaway electrons can quickly replace a large part of the initial current carried by the bulk plasma electrons. The magnetic energy associated with this current is typically much greater than the particle kinetic energy. The current of a highly relativistic runaway beam is insensitive to the particle energy, which separates the description of the runaway current evolution from the description of the runaway energy spectrum. A strongly anisotropic distribution of fast electrons is generally prone to high-frequency kinetic instabilities that may cause beneficial enhancement of runaway energy losses. The relevant instabilities are in the frequency range of whistler waves and electron plasma waves. The instability thresholds reported in earlier work have been revised considerably to reflect strong dependence of collisional damping on the wave frequency and the role of plasma non-uniformity, including radial trapping of the excited waves in the plasma. The talk also includes a discussion of enhanced scattering of the runaways as well as the combined effect of enhanced scattering and synchrotron radiation. A noteworthy feature of the avalanche-produced runaway current is a self-sustained regime of marginal criticality: the inductive electric field has to be close to its critical value (representing avalanche threshold) at every location where the runaway current density is finite, and the current density should vanish at any point where the electric field drops below its critical value. This nonlinear Ohm's law enables complete description of the evolving current profile. Work supported by the U.S. Department of Energy Contract No. DEFG02-04ER54742 and by ITER contract ITER-CT-12-4300000273. The views and opinions expressed herein do not necessarily reflect those of
Tunable few-electron double quantum dots and Klein tunnelling in ultraclean carbon nanotubes.
Steele, G A; Gotz, G; Kouwenhoven, L P
2009-06-01
Quantum dots defined in carbon nanotubes are a platform for both basic scientific studies and research into new device applications. In particular, they have unique properties that make them attractive for studying the coherent properties of single-electron spins. To perform such experiments it is necessary to confine a single electron in a quantum dot with highly tunable barriers, but disorder has prevented tunable nanotube-based quantum-dot devices from reaching the single-electron regime. Here, we use local gate voltages applied to an ultraclean suspended nanotube to confine a single electron in both a single quantum dot and, for the first time, in a tunable double quantum dot. This tunability is limited by a novel type of tunnelling that is analogous to the tunnelling in the Klein paradox of relativistic quantum mechanics.
Al-Hashimi, M H
2012-01-01
We consider a 1-parameter family of self-adjoint extensions of the Hamiltonian for a particle confined to a finite interval with perfectly reflecting boundary conditions. In some cases, one obtains negative energy states which seems to violate the Heisenberg uncertainty relation. We use this as a motivation to derive a generalized uncertainty relation valid for an arbitrarily shaped quantum dot with general perfectly reflecting walls in $d$ dimensions. In addition, a general uncertainty relation for non-Hermitean operators is derived and applied to the non-Hermitean momentum operator in a quantum dot. We also consider minimal uncertainty wave packets in this situation, and we prove that the spectrum depends monotonically on the self-adjoint extension parameter. In addition, we construct the most general boundary conditions for semiconductor heterostructures such as quantum dots, quantum wires, and quantum wells, which are characterized by a 4-parameter family of self-adjoint extensions. Finally, we consider p...
Quantum Mechanics and Quantum Field Theory
Dimock, Jonathan
2011-02-01
Introduction; Part I. Non-relativistic: 1. Mathematical prelude; 2. Classical mechanics; 3. Quantum mechanics; 4. Single particle; 5. Many particles; 6. Statistical mechanics; Part II. Relativistic: 7. Relativity; 8. Scalar particles and fields; 9. Electrons and photons; 10. Field theory on a manifold; Part III. Probabilistic Methods: 11. Path integrals; 12. Fields as random variables; 13. A nonlinear field theory; Appendices; References; Index.
Is there a "most perfect fluid" consistent with quantum field theory?
Cohen, Thomas D
2007-07-13
It was recently conjectured that the ratio of the shear viscosity to entropy density eta/s for any fluid always exceeds [formula: see text]. A theoretical counterexample to this bound can be constructed from a nonrelativistic gas by increasing the number of species in the fluid while keeping the dynamics essentially independent of the species type. The question of whether the underlying structure of relativistic quantum field theory generically inhibits the realization of such a system and thereby preserves the possibility of a universal bound is considered here. Using rather conservative assumptions, it is shown here that a metastable gas of heavy mesons in a particular controlled regime of QCD provides a realization of the counterexample and is consistent with a well-defined underlying relativistic quantum field theory. Thus, quantum field theory appears to impose no lower bound on eta/s, at least for metastable fluids.
Covariant geometric quantization of non-relativistic Hamiltonian mechanics
Giachetta, G; Sardanashvily, G
2000-01-01
We provide geometric quantization of the vertical cotangent bundle V^*Q equipped with the canonical Poisson structure. This is a momentum phase space of non-relativistic mechanics with the configuration bundle Q -> R. The goal is the Schrodinger representation of V^*Q. We show that this quantization is equivalent to the fibrewise quantization of symplectic fibres of V^*Q -> R, that makes the quantum algebra of non-relativistic mechanics an instantwise algebra. Quantization of the classical evolution equation defines a connection on this instantwise algebra, which provides quantum evolution in non-relativistic mechanics as a parallel transport along time.