WorldWideScience

Sample records for relativistic positioning systems

  1. Relativistic positioning systems: perspectives and prospects

    Science.gov (United States)

    Coll Bartolomé

    2013-11-01

    Relativistic positioning systems are interesting technical objects for applications around the Earth and in the Solar system. But above all else, they are basic scientific objects allowing developing relativity from its own concepts. Some past and future features of relativistic positioning sys- tems, with special attention to the developments that they suggest for an epistemic relativity (relativistic experimental approach to physics), are analyzed. This includes relativistic stereometry, which, together with relativistic positioning systems, allows to introduce the general relativistic notion of (finite) laboratory (space-time region able to perform experiments of finite size).

  2. Two-dimensional approach to relativistic positioning systems

    International Nuclear Information System (INIS)

    Coll, Bartolome; Ferrando, Joan Josep; Morales, Juan Antonio

    2006-01-01

    A relativistic positioning system is a physical realization of a coordinate system consisting in four clocks in arbitrary motion broadcasting their proper times. The basic elements of the relativistic positioning systems are presented in the two-dimensional case. This simplified approach allows to explain and to analyze the properties and interest of these new systems. The positioning system defined by geodesic emitters in flat metric is developed in detail. The information that the data generated by a relativistic positioning system give on the space-time metric interval is analyzed, and the interest of these results in gravimetry is pointed out

  3. The projective geometry of the spacetime yielded by relativistic positioning systems and relativistic location systems

    OpenAIRE

    Rubin , Jacques ,

    2014-01-01

    Version de travail de thèse d'habilitation à diriger des recherches; Preprint; Current positioning systems are not primary, relativistic systems. Nevertheless, genuine, relativistic and primary positioning systems have been proposed recently by Bahder, Coll et al. and Rovelli to remedy such prior defects. These new designs all have in common an equivariant conformal geometry featuring, as the most basic ingredient, the spacetime geometry. We show how this conformal aspect can be the four-dime...

  4. Relativistic positioning systems: Numerical simulations

    Science.gov (United States)

    Puchades Colmenero, Neus

    The position of users located on the Earth's surface or near it may be found with the classic positioning systems (CPS). Certain information broadcast by satellites of global navigation systems, as GPS and GALILEO, may be used for positioning. The CPS are based on the Newtonian formalism, although relativistic post-Newtonian corrections are done when they are necessary. This thesis contributes to the development of a different positioning approach, which is fully relativistic from the beginning. In the relativistic positioning systems (RPS), the space-time position of any user (ship, spacecraft, and so on) can be calculated with the help of four satellites, which broadcast their proper times by means of codified electromagnetic signals. In this thesis, we have simulated satellite 4-tuples of the GPS and GALILEO constellations. If a user receives the signals from four satellites simultaneously, the emission proper times read -after decoding- are the user "emission coordinates". In order to find the user "positioning coordinates", in an appropriate almost inertial reference system, there are two possibilities: (a) the explicit relation between positioning and emission coordinates (broadcast by the satellites) is analytically found or (b) numerical codes are designed to calculate the positioning coordinates from the emission ones. Method (a) is only viable in simple ideal cases, whereas (b) allows us to consider realistic situations. In this thesis, we have designed numerical codes with the essential aim of studying two appropriate RPS, which may be generalized. Sometimes, there are two real users placed in different positions, which receive the same proper times from the same satellites; then, we say that there is bifurcation, and additional data are needed to choose the real user position. In this thesis, bifurcation is studied in detail. We have analyzed in depth two RPS models; in both, it is considered that the satellites move in the Schwarzschild's space

  5. Relativistic quantum similarities in atoms in position and momentum spaces

    International Nuclear Information System (INIS)

    Maldonado, P.; Sarsa, A.; Buendia, E.; Galvez, F.J.

    2011-01-01

    A study of different quantum similarity measures and their corresponding quantum similarity indices is carried out for the atoms from H to Lr (Z=1-103). Relativistic effects in both position and momentum spaces have been studied by comparing the relativistic values to the non-relativistic ones. We have used the atomic electron density in both position and momentum spaces obtained within relativistic and non-relativistic numerical-parameterized optimized effective potential approximations. -- Highlights: → Quantum similarity measures and indices in electronic structure of atoms. → Position and momentum electronic densities. → Similarity of relativistic and non-relativistic densities. → Similarity of core and valence regions of different atoms. → Dependence with Z along the Periodic Table.

  6. Note of positions of particles in classical relativistic mechanics

    International Nuclear Information System (INIS)

    Pazma, V.

    1983-01-01

    The relation between world-lines and the position vector of a particle is studied from the point of view of gauge system theory. The expressions for the position vector of a free relativistic particle and of two interacting particles described by the Todorov-Komar model are derived under plausible assumptions. The relation between the physical meaning of basic canonical variables and the choice of a gauge is also discussed. (author)

  7. Relativistic positioning in Schwarzschild space-time

    International Nuclear Information System (INIS)

    Puchades, Neus; Sáez, Diego

    2015-01-01

    In the Schwarzschild space-time created by an idealized static spherically symmetric Earth, two approaches -based on relativistic positioning- may be used to estimate the user position from the proper times broadcast by four satellites. In the first approach, satellites move in the Schwarzschild space-time and the photons emitted by the satellites follow null geodesics of the Minkowski space-time asymptotic to the Schwarzschild geometry. This assumption leads to positioning errors since the photon world lines are not geodesics of any Minkowski geometry. In the second approach -the most coherent one- satellites and photons move in the Schwarzschild space-time. This approach is a first order one in the dimensionless parameter GM/R (with the speed of light c=1). The two approaches give different inertial coordinates for a given user. The differences are estimated and appropriately represented for users located inside a great region surrounding Earth. The resulting values (errors) are small enough to justify the use of the first approach, which is the simplest and the most manageable one. The satellite evolution mimics that of the GALILEO global navigation satellite system. (paper)

  8. Relativistic effects on complexity indexes in atoms in position and momentum spaces

    International Nuclear Information System (INIS)

    Maldonado, P.; Sarsa, A.; Buendia, E.; Galvez, F.J.

    2010-01-01

    Three different statistical measures of complexity are explored for the atoms He to Ra. The measures are analysed in both position and momentum spaces. Relativistic effects on the complexity indexes are systematically studied. These effects are discussed in terms of the information content factor and the disorder terms of the complexity indexes. Relativistic and non-relativistic complexity indexes are calculated from Optimized Effective Potential densities.

  9. Relativistic Jahn-Teller effect in tetrahedral systems

    International Nuclear Information System (INIS)

    Opalka, Daniel; Domcke, Wolfgang; Segado, Mireia; Poluyanov, Leonid V.

    2010-01-01

    It is shown that orbitally degenerate states in highly symmetric systems are split by Jahn-Teller forces which are of relativistic origin (that is, they arise from the spin-orbit coupling operator). For the example of tetrahedral systems, the relativistic Jahn-Teller Hamiltonians of orbitally degenerate electronic states with spin 1/2 are derived. While both electrostatic and relativistic forces contribute to the Jahn-Teller activity of vibrational modes of E and T 2 symmetry in 2 T 2 states of tetrahedral systems, the electrostatic and relativistic Jahn-Teller couplings are complementary for 2 E states: The E mode is Jahn-Teller active through electrostatic forces, while the T 2 mode is Jahn-Teller active through the relativistic forces. The relativistic Jahn-Teller parameters have been computed with ab initio relativistic electronic-structure methods. It is shown for the example of the tetrahedral cluster cations of the group V elements that the relativistic Jahn-Teller couplings can be of the same order of magnitude as the familiar electrostatic Jahn-Teller couplings for the heavier elements.

  10. Relativistic collective diffusion in one-dimensional systems

    Science.gov (United States)

    Lin, Gui-Wu; Lam, Yu-Yiu; Zheng, Dong-Qin; Zhong, Wei-Rong

    2018-05-01

    The relativistic collective diffusion in one-dimensional molecular system is investigated through nonequilibrium molecular dynamics with Monte Carlo methods. We have proposed the relationship among the speed, the temperature, the density distribution and the collective diffusion coefficient of particles in a relativistic moving system. It is found that the relativistic speed of the system has no effect on the temperature, but the collective diffusion coefficient decreases to zero as the velocity of the system approaches to the speed of light. The collective diffusion coefficient is modified as D‧ = D(1 ‑w2 c2 )3 2 for satisfying the relativistic circumstances. The present results may contribute to the understanding of the behavior of the particles transport diffusion in a high speed system, as well as enlighten the study of biological metabolism at relativistic high speed situation.

  11. Relativistic Descriptions of Few-Body Systems

    International Nuclear Information System (INIS)

    Karmanov, V. A.

    2011-01-01

    A brief review of relativistic effects in few-body systems, of theoretical approaches, recent developments and applications is given. Manifestations of relativistic effects in the binding energies, in the electromagnetic form factors and in three-body observables are demonstrated. The three-body forces of relativistic origin are also discussed. We conclude that relativistic effects in nuclei can be important in spite of small binding energy. At high momenta they clearly manifest themselves and are necessary to describe the deuteron e.m. form factors. At the same time, there is still a discrepancy in three-body observables which might be a result of less clarity in understanding the corresponding relativistic effects, the relativistic NN kernel and the three-body forces. Relativistic few-body physics remains to be a field of very intensive and fruitful researches. (author)

  12. Relativistic Quantum Transport in Graphene Systems

    Science.gov (United States)

    2015-07-09

    dimensional Dirac material systems. 2 List of Publications 1. X. Ni, L. Huang, Y.-C. Lai, and L. M. Pecora, “Effect of chaos on relativistic quantum...development of relativistic quantum devices based on graphene or alternative two-dimensional Dirac material systems. In the project period, we studied

  13. Relativistic Theory of Few Body Systems

    Energy Technology Data Exchange (ETDEWEB)

    Franz Gross

    2002-11-01

    Very significant advances have been made in the relativistic theory of few body systems since I visited Peter Sauer and his group in Hannover in 1983. This talk provides an opportunity to review the progress in this field since then. Different methods for the relativistic calculation of few nucleon systems are briefly described. As an example, seven relativistic calculations of the deuteron elastic structure functions, A, B, and T{sub 20}, are compared. The covariant SPECTATOR {copyright} theory, among the more successful and complete of these methods, is described in more detail.

  14. Regulative feedback in pattern formation: towards a general relativistic theory of positional information.

    Science.gov (United States)

    Jaeger, Johannes; Irons, David; Monk, Nick

    2008-10-01

    Positional specification by morphogen gradients is traditionally viewed as a two-step process. A gradient is formed and then interpreted, providing a spatial metric independent of the target tissue, similar to the concept of space in classical mechanics. However, the formation and interpretation of gradients are coupled, dynamic processes. We introduce a conceptual framework for positional specification in which cellular activity feeds back on positional information encoded by gradients, analogous to the feedback between mass-energy distribution and the geometry of space-time in Einstein's general theory of relativity. We discuss how such general relativistic positional information (GRPI) can guide systems-level approaches to pattern formation.

  15. Relativistic duality, and relativistic and radiative corrections for heavy-quark systems

    International Nuclear Information System (INIS)

    Durand, B.; Durand, L.

    1982-01-01

    We give a JWKB proof of a relativistic duality relation which relates an appropriate energy average of the physical cross section for e + e - →qq-bar bound states→hadrons to the same energy average of the perturbative cross section for e + e - →qq-bar. We show that the duality relation can be used effectively to estimate relativistic and radiative corrections for bound-quark systems to order α/sub s//sup ts2/. We also present a formula which relates the square of the ''large'' 3 S 1 Salpeter-Bethe-Schwinger wave function for zero space-time separation of the quarks to the square of the nonrelativistic Schroedinger wave function at the origin for an effective potential which reproduces the relativistic spectrum. This formula allows one to use the nonrelativistic wave functions obtained in potential models fitted to the psi and UPSILON spectra to calculate relativistic leptonic widths for qq-bar states via a relativistic version of the van Royen--Weisskopf formula

  16. Integrable relativistic Toda type lattice hierarchies, associated coupling systems and the Darboux transformation

    International Nuclear Information System (INIS)

    Yang Hongxiang; Xu Xixiang; Sun Yepeng; Ding Haiyong

    2006-01-01

    Starting from a discrete isospectral problem, integrable positive and negative relativistic Toda type lattice hierarchies are derived. The two lattice hierarchies are proven to have discrete zero-curvature representations associated with a discrete spectral problem, and the positive and negative lattice hierarchies correspond to positive and negative power expansions of Lax operators with respect to the spectral parameter, respectively. The integrable positive and negative coupling systems of the resulting hierarchies are constructed through enlarging Lax pairs. In addition, with the help of gauge transformations of spectral problems, a Darboux transformation is established for the relativistic Toda type lattice. As an application, an exact solution is explicitly presented

  17. Relativistic space-time positioning: principles and strategies

    Science.gov (United States)

    Tartaglia, Angelo

    2013-11-01

    Starting from the description of space- time as a curved four-dimensional manifold, null Gaussian coordinates systems as appropriate for relativistic positioning will be discussed. Different approaches and strategies will be reviewed, implementing the null coordinates with both continuous and pulsating electromagnetic signals. In particular, methods based on purely local measurements of proper time intervals between pulses will be expounded and the various possible sources of uncertainty will be analyzed. As sources of pulses both artificial and natural emitters will be considered. The latter will concentrate on either radio- or X ray-emitting pulsars, discussing advantages and drawbacks. As for artificial emitters, various solutions will be presented, from satellites orbiting the Earth to broadcasting devices carried both by spacecrafts and celestial bodies of the solar system. In general the accuracy of the positioning is expected to be limited, besides the instabilities and drift of the sources, by the precision of the local clock, but in any case in long journeys systematic cumulated errors will tend to become dominant. The problem can be kept under control properly using a high level of redundancy in the procedure for the calculation of the coordinates of the receiver and by mixing a number of different and complementary strategies. Finally various possibilities for doing fundamental physics experiments by means of space-time topography techniques will shortly be presented and discussed.

  18. Relativistic total energy and chemical potential of heavy atoms and positive ions

    International Nuclear Information System (INIS)

    Hill, S.H.; Grout, P.J.; March, N.H.

    1984-01-01

    The relativistic Thomas-Fermi theory, with a finite nucleus, is used to study the variation of the chemical potential μ with atomic number Z and number of electrons N (N <= Z). The difference between the total energy of positive ions and that of the corresponding neutral atom has been obtained. The scaling predictions are confirmed by numerical calculations. The first principles calculation of the relativistic Thomas-Fermi total energy of neutral atoms is also studied. (author)

  19. On the Velocity of Moving Relativistic Unstable Quantum Systems

    Directory of Open Access Journals (Sweden)

    K. Urbanowski

    2015-01-01

    Full Text Available We study properties of moving relativistic quantum unstable systems. We show that in contrast to the properties of classical particles and quantum stable objects the velocity of freely moving relativistic quantum unstable systems cannot be constant in time. We show that this new quantum effect results from the fundamental principles of the quantum theory and physics: it is a consequence of the principle of conservation of energy and of the fact that the mass of the quantum unstable system is not defined. This effect can affect the form of the decay law of moving relativistic quantum unstable systems.

  20. Thermodynamic equilibrium in relativistic rotating systems

    International Nuclear Information System (INIS)

    Suen, W.M.; Washington Univ., St. Louis, MO; Young, K.

    1988-01-01

    The thermodynamic equilibrium configurations of relativistic rotating stars are studied using the maximum entropy principle. It is shown that the heuristic arguments for the equilibrium conditions can be developed into a maximum entropy principle in which the variations are carried out in a fixed background spacetime. This maximum principle with the fixed background assumption is technically simpler than, but has to be justified by, a maximum entropy principle without the assumption. Such a maximum entropy principle is formulated in this paper, showing that the general relativistic system can be treated on the same footing as other long-range force systems. (author)

  1. Chaos and maps in relativistic rynamical systems

    Directory of Open Access Journals (Sweden)

    L. P. Horwitz

    2000-01-01

    Full Text Available The basic work of Zaslavskii et al showed that the classical non-relativistic electromagnetically kicked oscillator can be cast into the form of an iterative map on the phase space; the resulting evolution contains a stochastic flow to unbounded energy. Subsequent studies have formulated the problem in terms of a relativistic charged particle in interaction with the electromagnetic field. We review the structure of the covariant Lorentz force used to study this problem. We show that the Lorentz force equation can be derived as well from the manifestly covariant mechanics of Stueckelberg in the presence of a standard Maxwell field, establishing a connection between these equations and mass shell constraints. We argue that these relativistic generalizations of the problem are intrinsically inaccurate due to an inconsistency in the structure of the relativistic Lorentz force, and show that a reformulation of the relativistic problem, permitting variations (classically in both the particle mass and the effective “mass” of the interacting electromagnetic field, provides a consistent system of classical equations for describing such processes.

  2. Local supersymmetry in non-relativistic systems

    International Nuclear Information System (INIS)

    Urrutia, L.F.; Zanelli, J.

    1989-10-01

    Classical and quantum non-relativistic interacting systems invariant under local supersymmetry are constructed by the method of taking square roots of the bosonic constraints which generate timelike reparametrization, leaving the action unchanged. In particular, the square root of the Schroedinger constraint is shown to be the non-relativistic limit of the Dirac constraint. Contact is made with the standard models of Supersymmetric Quantum Mechanics through the reformulation of the locally invariant systems in terms of their true degrees of freedom. Contrary to the field theory case, it is shown that the locally invariant systems are completely equivalent to the corresponding globally invariant ones, the latter being the Heisenberg picture description of the former, with respect to some fermionic time. (author). 14 refs

  3. Relativistic many-body bound systems. Monograph report

    International Nuclear Information System (INIS)

    Danos, M.; Gillet, V.

    1975-04-01

    The principles and the mathematical details of a fully relativistic nuclear theory are given. Since the concept of nuclear forces is a strictly non-relativistic construct, it must be abandoned, and the forces must be replaced explicitly by their physical origin, i.e., by the interaction between nucleons and mesons. Thus, in this monograph the description of a nucleus has been formulated as a problem of relativistic quantum field theory which is solved by nuclear physics methods; to wit: the physics is described by specifying a Lagrangian which is a functional of the constituent fields (= of the parton fields); the solutions for the physical systems then are obtained in a time-independent treatment as expansions in the parton fields: both particles and nuclei are composite systems, made up of parton configurations, which define a representation of the Hamiltonian (associated with the specified Lagrangian)

  4. Fundamental problem in the relativistic approach to atomic structure theory

    International Nuclear Information System (INIS)

    Kagawa, Takashi

    1987-01-01

    It is known that the relativistic atomic structure theory contains a serious fundamental problem, so-called the Brown-Ravenhall (BR) problem or variational collapse. This problem arises from the fact that the energy spectrum of the relativistic Hamiltonian for many-electron systems is not bounded from below because the negative-energy solutions as well as the positive-energy ones are obtained from the relativistic equation. This report outlines two methods to avoid the BR problem in the relativistic calculation, that is, the projection operator method and the general variation method. The former method is described first. The use of a modified Hamiltonian containing a projection operator which projects the positive-energy solutions in the relativistic wave equation has been proposed to remove the BR difficulty. The problem in the use of the projection operator method is that the projection operator for the system cannot be determined uniquely. The final part of this report outlines the general variation method. This method can be applied to any system, such as relativistic ones whose Hamiltonian is not bounded from below. (Nogami, K.)

  5. Quadratic algebra approach to relativistic quantum Smorodinsky-Winternitz systems

    International Nuclear Information System (INIS)

    Marquette, Ian

    2011-01-01

    There exists a relation between the Klein-Gordon and the Dirac equations with scalar and vector potentials of equal magnitude and the Schroedinger equation. We obtain the relativistic energy spectrum for the four relativistic quantum Smorodinsky-Winternitz systems from their quasi-Hamiltonian and the quadratic algebras studied by Daskaloyannis in the nonrelativistic context. We also apply the quadratic algebra approach directly to the initial Dirac equation for these four systems and show that the quadratic algebras obtained are the same than those obtained from the quasi-Hamiltonians. We point out how results obtained in context of quantum superintegrable systems and their polynomial algebras can be applied to the quantum relativistic case.

  6. Symmetric low-voltage powering system for relativistic electronic devices

    International Nuclear Information System (INIS)

    Agafonov, A.V.; Lebedev, A.N.; Krastelev, E.G.

    2005-01-01

    A special driver for double-sided powering of relativistic magnetrons and several methods of localized electron flow forming in the interaction region of relativistic magnetrons are proposed and discussed. Two experimental installations are presented and discussed. One of them is designed for laboratory research and demonstration experiments at a rather low voltage. The other one is a prototype of a full-scale installation for an experimental research at relativistic levels of voltages on the microwave generation in the new integrated system consisting of a relativistic magnetron and symmetrical induction driver

  7. Relativistic magnetohydrodynamics as a Hamiltonian system

    International Nuclear Information System (INIS)

    Holm, D.D.; Kupershmidt, A.

    1985-01-01

    The equations of ideal relativistic magnetohydrodynamics in the laboratory frame form a noncanonical Hamiltonian system with the same Poisson bracket as for the nonrelativistic system, but with dynamical variables and Hamiltonian obtained via a regular deformation of their nonrelativistic counterparts [fr

  8. Relativistic corrections to the algebra of position variables and spin-orbital interaction

    Energy Technology Data Exchange (ETDEWEB)

    Deriglazov, Alexei A., E-mail: alexei.deriglazov@ufjf.edu.br [Departamento de Matemática, ICE, Universidade Federal de Juiz de Fora, MG (Brazil); Laboratory of Mathematical Physics, Tomsk Polytechnic University, 634050 Tomsk, Lenin Ave. 30 (Russian Federation); Pupasov-Maksimov, Andrey M., E-mail: pupasov.maksimov@ufjf.edu.br [Departamento de Matemática, ICE, Universidade Federal de Juiz de Fora, MG (Brazil)

    2016-10-10

    In the framework of vector model of spin, we discuss the problem of a covariant formalism [35] concerning the discrepancy between relativistic and Pauli Hamiltonians. We show how the spin-induced non-commutativity of a position accounts the discrepancy on the classical level, without appeal to the Dirac equation and Foldy–Wouthuysen transformation.

  9. Relativistic corrections to the algebra of position variables and spin-orbital interaction

    Directory of Open Access Journals (Sweden)

    Alexei A. Deriglazov

    2016-10-01

    Full Text Available In the framework of vector model of spin, we discuss the problem of a covariant formalism [35] concerning the discrepancy between relativistic and Pauli Hamiltonians. We show how the spin-induced non-commutativity of a position accounts the discrepancy on the classical level, without appeal to the Dirac equation and Foldy–Wouthuysen transformation.

  10. Relativistic equations

    International Nuclear Information System (INIS)

    Gross, F.

    1986-01-01

    Relativistic equations for two and three body scattering are discussed. Particular attention is paid to relativistic three body kinetics because of recent form factor measurements of the Helium 3 - Hydrogen 3 system recently completed at Saclay and Bates and the accompanying speculation that relativistic effects are important for understanding the three nucleon system. 16 refs., 4 figs

  11. Dissipative relativistic hydrodynamics

    International Nuclear Information System (INIS)

    Imshennik, V.S.; Morozov, Yu.I.

    1989-01-01

    Using the comoving reference frame in the general non-inertial case, the relativistic hydrodynamics equations are derived with an account for dissipative effects in the matter. From the entropy production equation, the exact from for the dissipative tensor components is obtained. As a result, the closed system of equations of dissipative relativistic hydrodynamics is obtained in the comoving reference frame as a relativistic generalization of the known Navier-Stokes equations for Lagrange coordinates. Equations of relativistic hydrodynamics with account for dissipative effects in the matter are derived using the assocoated reference system in general non-inertial case. True form of the dissipative tensor components is obtained from entropy production equation. Closed system of equations for dissipative relativistic hydrodynamics is obtained as a result in the assocoated reference system (ARS) - relativistic generalization of well-known Navier-Stokes equations for Lagrange coordinates. Equation system, obtained in this paper for ARS, may be effectively used in numerical models of explosive processes with 10 51 erg energy releases which are characteristic for flashes of supernovae, if white dwarf type compact target suggested as presupernova

  12. Wigner expansions for partition functions of nonrelativistic and relativistic oscillator systems

    Science.gov (United States)

    Zylka, Christian; Vojta, Guenter

    1993-01-01

    The equilibrium quantum statistics of various anharmonic oscillator systems including relativistic systems is considered within the Wigner phase space formalism. For this purpose the Wigner series expansion for the partition function is generalized to include relativistic corrections. The new series for partition functions and all thermodynamic potentials yield quantum corrections in terms of powers of h(sup 2) and relativistic corrections given by Kelvin functions (modified Hankel functions) K(sub nu)(mc(sup 2)/kT). As applications, the symmetric Toda oscillator, isotonic and singular anharmonic oscillators, and hindered rotators, i.e. oscillators with cosine potential, are addressed.

  13. Relativistic theory of electron-impact ionization

    International Nuclear Information System (INIS)

    Rosenberg, Leonard

    2010-01-01

    A relativistic version of an earlier, non-relativistic, formulation of the theory of ionization of an atomic system by electron impact is presented. With a time-independent resolvent operator taken as the basis for the dynamics, a wave equation is derived for a system with open channels consisting of two positive-energy electrons in an external field generated by the residual ion. Virtual intermediate states can be accounted for by the effective Hamiltonian that appears in the wave equation and which in principle may be constructed perturbatively. The asymptotic form of the wavefunction, modified by the effects of the long-range Coulomb interactions of the two electrons in the external field, is derived. These electrons are constrained, by projection operators which appear naturally in the theory, to propagate in positive-energy states only. The long-range Coulomb effects take the form of phase factors similar to those that are found in the non-relativistic version of the theory. With the boundary conditions established, an integral identity for the ionization amplitude is derived, and used to set up a distorted-wave Born expansion for the transition amplitude involving Coulomb-modified propagating waves.

  14. Causal localizations in relativistic quantum mechanics

    Science.gov (United States)

    Castrigiano, Domenico P. L.; Leiseifer, Andreas D.

    2015-07-01

    Causal localizations describe the position of quantum systems moving not faster than light. They are constructed for the systems with finite spinor dimension. At the center of interest are the massive relativistic systems. For every positive mass, there is the sequence of Dirac tensor-localizations, which provides a complete set of inequivalent irreducible causal localizations. They obey the principle of special relativity and are fully Poincaré covariant. The boosters are determined by the causal position operator and the other Poincaré generators. The localization with minimal spinor dimension is the Dirac localization. Thus, the Dirac equation is derived here as a mere consequence of the principle of causality. Moreover, the higher tensor-localizations, not known so far, follow from Dirac's localization by a simple construction. The probability of localization for positive energy states results to be described by causal positive operator valued (PO-) localizations, which are the traces of the causal localizations on the subspaces of positive energy. These causal Poincaré covariant PO-localizations for every irreducible massive relativistic system were, all the more, not known before. They are shown to be separated. Hence, the positive energy systems can be localized within every open region by a suitable preparation as accurately as desired. Finally, the attempt is made to provide an interpretation of the PO-localization operators within the frame of conventional quantum mechanics attributing an important role to the negative energy states.

  15. Relativistic non-Hamiltonian mechanics

    International Nuclear Information System (INIS)

    Tarasov, Vasily E.

    2010-01-01

    Relativistic particle subjected to a general four-force is considered as a nonholonomic system. The nonholonomic constraint in four-dimensional space-time represents the relativistic invariance by the equation for four-velocity u μ u μ + c 2 = 0, where c is the speed of light in vacuum. In the general case, four-forces are non-potential, and the relativistic particle is a non-Hamiltonian system in four-dimensional pseudo-Euclidean space-time. We consider non-Hamiltonian and dissipative systems in relativistic mechanics. Covariant forms of the principle of stationary action and the Hamilton's principle for relativistic mechanics of non-Hamiltonian systems are discussed. The equivalence of these principles is considered for relativistic particles subjected to potential and non-potential forces. We note that the equations of motion which follow from the Hamilton's principle are not equivalent to the equations which follow from the variational principle of stationary action. The Hamilton's principle and the principle of stationary action are not compatible in the case of systems with nonholonomic constraint and the potential forces. The principle of stationary action for relativistic particle subjected to non-potential forces can be used if the Helmholtz conditions are satisfied. The Hamilton's principle and the principle of stationary action are equivalent only for a special class of relativistic non-Hamiltonian systems.

  16. Relativistic Celestial Mechanics of the Solar System

    Science.gov (United States)

    Kopeikin, Sergei; Efroimsky, Michael; Kaplan, George

    2011-09-01

    The general theory of relativity was developed by Einstein a century ago. Since then, it has become the standard theory of gravity, especially important to the fields of fundamental astronomy, astrophysics, cosmology, and experimental gravitational physics. Today, the application of general relativity is also essential for many practical purposes involving astrometry, navigation, geodesy, and time synchronization. Numerous experiments have successfully tested general relativity to a remarkable level of precision. Exploring relativistic gravity in the solar system now involves a variety of high-accuracy techniques, for example, very long baseline radio interferometry, pulsar timing, spacecraft Doppler tracking, planetary radio ranging, lunar laser ranging, the global positioning system (GPS), torsion balances and atomic clocks. Over the last few decades, various groups within the International Astronomical Union have been active in exploring the application of the general theory of relativity to the modeling and interpretation of high-accuracy astronomical observations in the solar system and beyond. A Working Group on Relativity in Celestial Mechanics and Astrometry was formed in 1994 to define and implement a relativistic theory of reference frames and time scales. This task was successfully completed with the adoption of a series of resolutions on astronomical reference systems, time scales, and Earth rotation models by the 24th General Assembly of the IAU, held in Manchester, UK, in 2000. However, these resolutions only form a framework for the practical application of relativity theory, and there have been continuing questions on the details of the proper application of relativity theory to many common astronomical problems. To ensure that these questions are properly addressed, the 26th General Assembly of the IAU, held in Prague in August 2006, established the IAU Commission 52, "Relativity in Fundamental Astronomy". The general scientific goals of the new

  17. Self-focusing of nonlinear waves in a relativistic plasma with positive and negative ions

    International Nuclear Information System (INIS)

    Mukherjee, Joydeep; Chowdhury, A.R.

    1994-01-01

    The phenomenon of self-focusing of nonlinear waves was analysed in a relativistic plasma consisting of both positive and negative ions, which are assumed to be hot. The effect of the inertia of the relativistic electron is also considered by treating it dynamically. A modified form of reductive perturbation is used to deduce a nonlinear Schroedinger equation describing the purely spatial variation of the nonlinear wave. Self-focusing of the wave can be ascertained by analysing the transversal stability of the solitary wave. It is shown that the zones of stability of the wave may become wider due to the mutual influence of various factors present in the plasma, thus favouring the process of self-focusing. 10 refs., 2 figs

  18. In-medium relativistic kinetic theory and nucleon-meson systems

    International Nuclear Information System (INIS)

    Morawetz, K.; Kremp, D.

    1995-01-01

    Within the σ-ω model of coupled nucleonmeson systems, a generalized relativistic Lennard-Balescu-equation is presented resulting from a relativistic random phase approximation (RRPA). This provides a systematic derivation of relativistic transport equations in the frame of nonequilibrium Green's function technique including medium effects as well as fluctuation effects. It contains all possible processes due to one-meson exchange and special attention is kept to the off-shell character of the particles. As a new feature of many-particle effects, processes are possible, which can be interpreted as particle creation and annihilation due to in-medium one-meson exchange. In-medium cross sections are obtained from the generalized derivation of collision integrals, which possess complete crossing symmetries. (orig.)

  19. Approaches to relativistic positioning around Earth and error estimations

    Science.gov (United States)

    Puchades, Neus; Sáez, Diego

    2016-01-01

    In the context of relativistic positioning, the coordinates of a given user may be calculated by using suitable information broadcast by a 4-tuple of satellites. Our 4-tuples belong to the Galileo constellation. Recently, we estimated the positioning errors due to uncertainties in the satellite world lines (U-errors). A distribution of U-errors was obtained, at various times, in a set of points covering a large region surrounding Earth. Here, the positioning errors associated to the simplifying assumption that photons move in Minkowski space-time (S-errors) are estimated and compared with the U-errors. Both errors have been calculated for the same points and times to make comparisons possible. For a certain realistic modeling of the world line uncertainties, the estimated S-errors have proved to be smaller than the U-errors, which shows that the approach based on the assumption that the Earth's gravitational field produces negligible effects on photons may be used in a large region surrounding Earth. The applicability of this approach - which simplifies numerical calculations - to positioning problems, and the usefulness of our S-error maps, are pointed out. A better approach, based on the assumption that photons move in the Schwarzschild space-time governed by an idealized Earth, is also analyzed. More accurate descriptions of photon propagation involving non symmetric space-time structures are not necessary for ordinary positioning and spacecraft navigation around Earth.

  20. Recent development of relativistic molecular theory

    International Nuclear Information System (INIS)

    Takahito, Nakajima; Kimihiko, Hirao

    2005-01-01

    Today it is common knowledge that relativistic effects are important in the heavy-element chemistry. The continuing development of the relativistic molecular theory is opening up rows of the periodic table that are impossible to treat with the non-relativistic approach. The most straightforward way to treat relativistic effects on heavy-element systems is to use the four-component Dirac-Hartree-Fock approach and its electron-correlation methods based on the Dirac-Coulomb(-Breit) Hamiltonian. The Dirac-Hartree-Fock (DHF) or Dirac-Kohn-Sham (DKS) equation with the four-component spinors composed of the large- and small-components demands severe computational efforts to solve, and its applications to molecules including heavy elements have been limited to small- to medium-size systems. Recently, we have developed a very efficient algorithm for the four-component DHF and DKS approaches. As an alternative approach, several quasi-relativistic approximations have also been proposed instead of explicitly solving the four-component relativistic equation. We have developed the relativistic elimination of small components (RESC) and higher-order Douglas-Kroll (DK) Hamiltonians within the framework of the two-component quasi-relativistic approach. The developing four-component relativistic and approximate quasi-relativistic methods have been implemented into a program suite named REL4D. In this article, we will introduce the efficient relativistic molecular theories to treat heavy-atomic molecular systems accurately via the four-component relativistic and the two-component quasi-relativistic approaches. We will also show several chemical applications including heavy-element systems with our relativistic molecular approaches. (author)

  1. Motion of the relativistic charged particle in an axisymmetric toroidal system

    Energy Technology Data Exchange (ETDEWEB)

    Chiyoda, K; Sugimoto, H [Electrotechnical Labs., Sakura, Ibaraki (Japan)

    1980-01-01

    The relativistic theory of motion of one particle by Morozov and Solov'ev is summarized for convenience of the present study. Then, a drift equation is given and four constants of motion, E/sub 0/, J perpendicular, J and J parallel, are obtained. These constants of motion are used in analyzing the particle motion in an axisymmetric toroidal system. The displacement of the particle from the magnetic surface, ..delta..r, and the period of the banana motion, tau, are obtained. The relativistic expressions of the displacement, ..delta..r, and the period, tau, are obtained by multiplying the corresponding nonrelativistic expressions by (1 - v parallel/sup 2//c/sup 2/) - 1/2, where the relativistic expression of ..delta..r includes the relativistic mass in terms of Larmor radius r/sub L/.

  2. Relativistic formulations with Blankenbecler-Sugar reduction technique for the three-particle system

    International Nuclear Information System (INIS)

    Morioka, S.; Afnan, I.R.

    1980-05-01

    A critical comparison for two-types of three-dimensional covariant equations for the three-particle system obtained by the Blankenbecler-Sugar reduction technique with the Whitghtman-Garding momenta and the usual Jacobi variables is presented. The relations between the relativistic and non-relativistic equations in the low energy limit are discussed

  3. Relativistic quantum Darwinism in Dirac fermion and graphene systems

    Science.gov (United States)

    Ni, Xuan; Huang, Liang; Lai, Ying-Cheng; Pecora, Louis

    2012-02-01

    We solve the Dirac equation in two spatial dimensions in the setting of resonant tunneling, where the system consists of two symmetric cavities connected by a finite potential barrier. The shape of the cavities can be chosen to yield both regular and chaotic dynamics in the classical limit. We find that certain pointer states about classical periodic orbits can exist, which are signatures of relativistic quantum Darwinism (RQD). These localized states suppress quantum tunneling, and the effect becomes less severe as the underlying classical dynamics in the cavity is chaotic, leading to regularization of quantum tunneling. Qualitatively similar phenomena have been observed in graphene. A physical theory is developed to explain relativistic quantum Darwinism and its effects based on the spectrum of complex eigenenergies of the non-Hermitian Hamiltonian describing the open cavity system.

  4. Relativistic ''potential model'' for N-particle systems

    International Nuclear Information System (INIS)

    Noyes, H.P.

    1986-08-01

    Neither quantum field theory nor S-Matrix theory have a well defined procedure for going over to an approximation that can be reliably used in non-relativistic models for nuclear physics. We meet the problem here by constructing a finite particle number relativistic scattering theory for (scalar) particles and mesons using integral equations of the Faddeev-Yakubovsky type. Restricted to N particles and one meson, we can go from the relativistic theory to a ''potential theory'' in the integral equation formulation by using boundary states which do not contain the meson asymptotically. The meson-particle input amplitudes contain a pole at the particle mass, and the particle-particle input amplitudes are null. This gives unique definition (numerically calculable) to the particle-particle off-shell amplitude, and hence to the covariant ''scattering potential'' (but not to the noninvariant concept of ''potential energy''). As we have commented before, if we take these scattering amplitudes as iput for relativistic Faddeev equations, the results are identical to those obtained from the same model starting from three particles and one meson. In this paper we explore how far we can extend this relativistic ''potential model'' to higher numbers of particles and mesons. 10 refs

  5. Relativistic many-body theory of atomic transitions. The relativistic equation-of-motion approach

    International Nuclear Information System (INIS)

    Huang, K.

    1982-01-01

    An equation-of-motion approach is used to develop the relativistic many-body theory of atomic transitions. The relativistic equations of motion for transition matrices are formulated with the use of techniques of quantum-field theory. To reduce the equations of motion to a tractable form which is appropriate for numerical calculations, a graphical method to resolve the complication arising from the antisymmetrization and angular-momentum coupling is employed. The relativistic equation-of-motion method allows an ab initio treatment of correlation and relativistic effects in both closed- and open-shell many-body systems. A special case of the present formulation reduces to the relativistic random-phase approximation

  6. Relativistic many-body theory of atomic transitions: the relativistic equation-of-motion approach

    International Nuclear Information System (INIS)

    Huang, K.N.

    1981-01-01

    An equation-of-motion approach is used to develop the relativistic many-body theory of atomic transitions. The relativistic equations of motion for transition matrices are formulated using techniques of quantum field theory. To reduce the equation of motion to a tractable form which is appropriate for numerical calculations, a graphical method is employed to resolve the complication arising from the antisymmetrization and angular momentum coupling. The relativistic equation-of-motion method allows an ab initio treatment of correlation and relativistic effects in both closed- and open-shell many-body systems. A special case of the present formulation reduces to the relativistic random-phase approximation

  7. Astronomical relativistic reference systems with multipolar expansion: the global one

    International Nuclear Information System (INIS)

    Xie Yi

    2014-01-01

    With the rapid development of techniques for astronomical observations, the precision of measurements has been significantly increasing. Theories describing astronomical relativistic reference systems, which are the foundation for processing and interpreting these data now and in the future, may require extensions to satisfy the needs of these trends. Besides building a framework compatible with alternative theories of gravity and the pursuit of higher order post-Newtonian approximation, it will also be necessary to make the first order post-Newtonian multipole moments of celestial bodies be explicitly expressed in the astronomical relativistic reference systems. This will bring some convenience into modeling the observations and experiments and make it easier to distinguish different contributions in measurements. As a first step, the global solar system reference system is expressed as a multipolar expansion and the post-Newtonian mass and spin moments are shown explicitly in the metric which describes the coordinates of the system. The full expression of the global metric is given. (research papers)

  8. Nanosecond radar system based on repetitive pulsed relativistic BWO

    International Nuclear Information System (INIS)

    Bunkin, B.V.; Gaponov-Grekhov, A.V.; Eltchaninov, A.S.; Zagulov, F.Ya.; Korovin, S.D.; Mesyats, G.A.; Osipov, M.L.; Otlivantchik, E.A.; Petelin, M.I.; Prokhorov, A.M.

    1993-01-01

    The paper presents the results of studies of a nanosecond radar system based on repetitive pulsed relativistic BWO. A pulsed power repetitive accelerator producing electron beams of electron energy 500-700 keV and current 5 kA in pulses of duraction 10 ns with a repetition rate of 100 pps is described. The results of experiments with a high-voltage gas-filled spark gap and a cold-cathode vacuum diode under the conditions of high repetition rates are given. Also presented are the results of studies of a relativistic BWO operating with a wavelength of 3 cm. It is shown that for a high-current beam electron energy of 500-700 keV, the BWO efficiency can reach 35%, the microwave power being 10 9 W. A superconducting solenoid creating a magnetic field of 30 kOe was used for the formation and transportation of the high-current electron beam. In conclusion, the outcome of tests of a nanosecond radar station based on a pulsed power repetitive accelerator and a relativistic BWO is reported

  9. Relativistic decay widths of autoionization processes: The relativistic FanoADC-Stieltjes method

    Energy Technology Data Exchange (ETDEWEB)

    Fasshauer, Elke, E-mail: Elke.Fasshauer@uit.no [Centre for Theoretical and Computational Chemistry, Department of Chemistry, University of Tromsø–The Arctic University of Norway, N-9037 Tromsø (Norway); Theoretische Chemie, Universität Heidelberg, Im Neuenheimer Feld 229, D-69120 Heidelberg (Germany); Kolorenč, Přemysl [Institute of Theoretical Physics, Faculty of Mathematics and Physics, Charles University in Prague, V Holešovičkách 2, 180 00 Prague (Czech Republic); Pernpointner, Markus [Theoretische Chemie, Universität Heidelberg, Im Neuenheimer Feld 229, D-69120 Heidelberg (Germany)

    2015-04-14

    Electronic decay processes of ionized systems are, for example, the Auger decay or the Interatomic/ Intermolecular Coulombic Decay. In both processes, an energetically low lying vacancy is filled by an electron of an energetically higher lying orbital and a secondary electron is instantaneously emitted to the continuum. Whether or not such a process occurs depends both on the energetic accessibility and the corresponding lifetime compared to the lifetime of competing decay mechanisms. We present a realization of the non-relativistically established FanoADC-Stieltjes method for the description of autoionization decay widths including relativistic effects. This procedure, being based on the Algebraic Diagrammatic Construction (ADC), was adapted to the relativistic framework and implemented into the relativistic quantum chemistry program package Dirac. It is, in contrast to other existing relativistic atomic codes, not limited to the description of autoionization lifetimes in spherically symmetric systems, but is instead also applicable to molecules and clusters. We employ this method to the Auger processes following the Kr3d{sup −1}, Xe4d{sup −1}, and Rn5d{sup −1} ionization. Based on the results, we show a pronounced influence of mainly scalar-relativistic effects on the decay widths of autoionization processes.

  10. Contraint's theory and relativistic dynamics

    International Nuclear Information System (INIS)

    Longhi, G.; Lusanna, L.

    1987-01-01

    The purpose of this Workshop was to examine the current situation of relativistic dynamics. In particular, Dirac-Bergmann's theory of constraints, which lies at the heart of gauge theories, general relativity, relativistic mechanics and string theories, was chosen as the unifying theoretical framework best suited to investigate such a field. The papers discussed were on general relativity; relativistic mechanics; particle physics and mathematical physics. Also discussed were the problems of classical and quantum level, namely the identification of the classical observables of constrained systems, the equivalence of the nonequivalence of the various ways to quantize such systems; the problem of the anomalies; the best geometrical approach to the theory of constraints; the possibility of unifying all the treatments of relativistic mechanics. This book compiles the papers presented at proceedings of relativistic dynamics and constraints theory

  11. Notes on nonlocal projective measurements in relativistic systems

    International Nuclear Information System (INIS)

    Lin, Shih-Yuin

    2014-01-01

    In quantum mechanical bipartite systems, naive extensions of von Neumann’s projective measurement to nonlocal variables can produce superluminal signals and thus violate causality. We analyze the projective quantum nondemolition state-verification in a two-spin system and see how the projection introduces nonlocality without entanglement. For the ideal measurements of “R-nonlocal” variables, we argue that causality violation can be resolved by introducing further restrictions on the post-measurement states, which makes the measurement “Q-nonlocal”. After we generalize these ideas to quantum mechanical harmonic oscillators, we look into the projective measurements of the particle number of a single mode or a wave-packet of a relativistic quantum field in Minkowski space. It turns out that the causality-violating terms in the expectation values of the local operators, generated either by the ideal measurement of the “R-nonlocal” variable or the quantum nondemolition verification of a Fock state, are all suppressed by the IR and UV cutoffs of the theory. Thus relativistic quantum field theories with such projective measurements are effectively causal

  12. Relativistic and separable classical hamiltonian particle dynamics

    International Nuclear Information System (INIS)

    Sazdjian, H.

    1981-01-01

    We show within the Hamiltonian formalism the existence of classical relativistic mechanics of N scalar particles interacting at a distance which satisfies the requirements of Poincare invariance, separability, world-line invariance and Einstein causality. The line of approach which is adopted here uses the methods of the theory of systems with constraints applied to manifestly covariant systems of particles. The study is limited to the case of scalar interactions remaining weak in the whole phase space and vanishing at large space-like separation distances of the particles. Poincare invariance requires the inclusion of many-body, up to N-body, potentials. Separability requires the use of individual or two-body variables and the construction of the total interaction from basic two-body interactions. Position variables of the particles are constructed in terms of the canonical variables of the theory according to the world-line invariance condition and the subsidiary conditions of the non-relativistic limit and separability. Positivity constraints on the interaction masses squared of the particles ensure that the velocities of the latter remain always smaller than the velocity of light

  13. Relativistic Kinetic Theory

    Science.gov (United States)

    Vereshchagin, Gregory V.; Aksenov, Alexey G.

    2017-02-01

    Preface; Acknowledgements; Acronyms and definitions; Introduction; Part I. Theoretical Foundations: 1. Basic concepts; 2. Kinetic equation; 3. Averaging; 4. Conservation laws and equilibrium; 5. Relativistic BBGKY hierarchy; 6. Basic parameters in gases and plasmas; Part II. Numerical Methods: 7. The basics of computational physics; 8. Direct integration of Boltzmann equations; 9. Multidimensional hydrodynamics; Part III. Applications: 10. Wave dispersion in relativistic plasma; 11. Thermalization in relativistic plasma; 12. Kinetics of particles in strong fields; 13. Compton scattering in astrophysics and cosmology; 14. Self-gravitating systems; 15. Neutrinos, gravitational collapse and supernovae; Appendices; Bibliography; Index.

  14. Kadomtsev-Petviashvili solitons propagation in a plasma system with superthermal and weakly relativistic effects

    International Nuclear Information System (INIS)

    Hafeez-Ur-Rehman; Mahmood, S.; Shah, Asif; Haque, Q.

    2011-01-01

    Two dimensional (2D) solitons are studied in a plasma system comprising of relativistically streaming ions, kappa distributed electrons, and positrons. Kadomtsev-Petviashvili (KP) equation is derived through the reductive perturbation technique. Analytical solution of the KP equation has been studied numerically and graphically. It is noticed that kappa parameters of electrons and positrons as well as the ions relativistic streaming factor have an emphatic influence on the structural as well as propagation characteristics of two dimensional solitons in the considered plasma system. Our results may be helpful in the understanding of soliton propagation in astrophysical and laboratory plasmas, specifically the interaction of pulsar relativistic wind with supernova ejecta and the transfer of energy to plasma by intense electric field of laser beams producing highly energetic superthermal and relativistic particles [L. Arons, Astrophys. Space Sci. Lib. 357, 373 (2009); P. Blasi and E. Amato, Astrophys. Space Sci. Proc. 2011, 623; and A. Shah and R. Saeed, Plasma Phys. Controlled Fusion 53, 095006 (2011)].

  15. Relativistic description of atomic nuclei

    International Nuclear Information System (INIS)

    Krutov, V.A.

    1985-01-01

    Papers on the relativistic description of nuclei are reviewed. The Brown and Rho ''small'' bag'' model is accepted for hardrons. Meson exchange potentials of the nucleon-nucleon interaction have been considered. Then the transition from a system of two interacting nucleons has been performed to the relativistic nucleus description as a multinucleon system on the basis of OBEP (one-boson exchange potential). The proboem of OPEP (one-pion-exchange potential) inclusion to a relativistic scheme is discussed. Simplicity of calculations and attractiveness of the Walecka model for specific computations and calculations was noted. The relativistic model of nucleons interacting through ''effective'' scalar and vector boson fields was used in the Walacka model for describing neutronaand nuclear mater matters

  16. An introduction to relativistic hydrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Font, Jose A [Departamento de AstronomIa y AstrofIsica, Universidad de Valencia, Dr. Moliner 50, 46100 Burjassot (Valencia) (Spain)

    2007-11-15

    We review formulations of the equations of (inviscid) general relativistic hydrodynamics and (ideal) magnetohydrodynamics, along with methods for their numerical solution. Both systems can be cast as first-order, hyperbolic systems of conservation laws, following the explicit choice of an Eulerian observer and suitable fluid and magnetic field variables. During the last fifteen years, the so-called (upwind) high-resolution shock-capturing schemes based on Riemann solvers have been successfully extended from classical to relativistic fluid dynamics, both special and general. Nowadays, general relativistic hydrodynamical simulations in relativistic astrophysics are routinely performed, particularly within the test-fluid approximation but also for dynamical spacetimes. While such advances also hold true in the case of the MHD equations, the astrophysical applications investigated so far are still limited, yet the field is bound to witness major developments in the near future. The article also presents a brief overview of numerical techniques, providing state-of-the-art examples of their applicability to general relativistic fluids and magneto-fluids in characteristic scenarios of relativistic astrophysics.

  17. Relativistic instant-form approach to the structure of two-body composite systems

    International Nuclear Information System (INIS)

    Krutov, A.F.; Troitsky, V.E.

    2002-01-01

    An approach to the electroweak properties of two-particle composite systems is developed. The approach is based on the use of the instant form of relativistic Hamiltonian dynamics. The main feature of this approach is the method of construction of the matrix element of the electroweak current operator. The electroweak current matrix element satisfies the relativistic covariance conditions and in the case of the electromagnetic current also the conservation law automatically. The properties of the system as well as the approximations are formulated in terms of form factors. The approach makes it possible to formulate relativistic impulse approximation in such a way that the Lorentz covariance of the current is ensured. In the electromagnetic case the current conservation law is also ensured. Our approach gives good results for the pion electromagnetic form factor in the whole range of momentum transfers available for experiments at present time, as well as for the lepton decay constant of pions

  18. Relativistic ion acceleration by ultraintense laser interactions

    International Nuclear Information System (INIS)

    Nakajima, K.; Koga, J.K.; Nakagawa, K.

    2001-01-01

    There has been a great interest in relativistic particle generation by ultraintense laser interactions with matter. We propose the use of relativistically self-focused laser pulses for the acceleration of ions. Two dimensional PIC simulations are performed, which show the formation of a large positive electrostatic field near the front of a relativistically self-focused laser pulse. Several factors contribute to the acceleration including self-focusing distance, pulse depletion, and plasma density. Ultraintense laser-plasma interactions are capable of generating enormous electrostatic fields of ∼3 TV/m for acceleration of protons with relativistic energies exceeding 1 GeV

  19. Einstein Never Approved of Relativistic Mass

    Science.gov (United States)

    Hecht, Eugene

    2009-01-01

    During much of the 20th century it was widely believed that one of the significant insights of special relativity was "relativistic mass." Today there are two schools on that issue: the traditional view that embraces speed-dependent "relativistic mass," and the more modern position that rejects it, maintaining that there is only one mass and it's…

  20. Modeling terrestrial gamma ray flashes produced by relativistic feedback discharges

    Science.gov (United States)

    Liu, Ningyu; Dwyer, Joseph R.

    2013-05-01

    This paper reports a modeling study of terrestrial gamma ray flashes (TGFs) produced by relativistic feedback discharges. Terrestrial gamma ray flashes are intense energetic radiation originating from the Earth's atmosphere that has been observed by spacecraft. They are produced by bremsstrahlung interactions of energetic electrons, known as runaway electrons, with air atoms. An efficient physical mechanism for producing large fluxes of the runaway electrons to make the TGFs is the relativistic feedback discharge, where seed runaway electrons are generated by positrons and X-rays, products of the discharge itself. Once the relativistic feedback discharge becomes self-sustaining, an exponentially increasing number of relativistic electron avalanches propagate through the same high-field region inside the thundercloud until the electric field is partially discharged by the ionization created by the discharge. The modeling results indicate that the durations of the TGF pulses produced by the relativistic feedback discharge vary from tens of microseconds to several milliseconds, encompassing all durations of the TGFs observed so far. In addition, when a sufficiently large potential difference is available in thunderclouds, a self-propagating discharge known as the relativistic feedback streamer can be formed, which propagates like a conventional positive streamer. For the relativistic feedback streamer, the positive feedback mechanism of runaway electron production by the positrons and X-rays plays a similar role as the photoionization for the conventional positive streamer. The simulation results of the relativistic feedback streamer show that a sequence of TGF pulses with varying durations can be produced by the streamer. The relativistic streamer may initially propagate with a pulsed manner and turn into a continuous propagation mode at a later stage. Milliseconds long TGF pulses can be produced by the feedback streamer during its continuous propagation. However

  1. Form factor of relativistic two-particle system and covariant hamiltonian formulation of quantum field theory

    International Nuclear Information System (INIS)

    Skachkov, N.; Solovtsov, I.

    1979-01-01

    Based on the hamiltonian formulation of quantum field theory proposed by Kadyshevsky the three-dimensional relativistic approach is developed for describing the form factors of composite systems. The main features of the diagram technique appearing in the covariant hamiltonian formulation of field theory are discussed. The three-dimensional relativistic equation for the vertex function is derived and its connection with that for the quasipotential wave function is found. The expressions are obtained for the form factor of the system through equal-time two-particle wave functions both in momentum and relativistic configurational representations. An explicit expression for the form factor is found for the case of two-particle interaction through the Coulomb potential

  2. Novel probe for determining the size and position of a relativistic electron beam

    International Nuclear Information System (INIS)

    Orzechowski, T.J.; Koehler, H.; Edwards, W.; Nelson, M.; Marshall, B.

    1984-01-01

    In order to determine the size and position of a relativistic electron beam inside the wiggler magnetic field of a Free Electron Laser (FEL), we have developed a new probe which intercepts the electron beam on a high Z target and monitors the resulting bremsstrahlung radiation. The probe is designed to move along the entire three meters of the wiggler. This FEL is designed to operate in the microwave region (2 to 8 mm) and the interaction region is an oversized waveguide with a cross section 3 cm x 9.8 cm. The axial probe moves inside this waveguide. The probe stops the electron beam on a Tantalum target and the resulting x-rays are scattered in the forward direction. A scintillator behind the beam stop reacts to the x-rays and emits visible light in the region where the x-rays strike. An array of fiber optics behind the scintillator transmits the visible light to a Reticon camera system which images the visible pattern from the scintillator. Processing the optical image is done by digitizing and storing the image and/or recording the image on video tape. Resolution and performance of this probe will be discussed

  3. Chiral quark model with relativistic kinematics

    International Nuclear Information System (INIS)

    Garcilazo, H.; Valcarce, A.

    2003-01-01

    The nonstrange baryon spectrum is studied within a three-body model that incorporates relativistic kinematics. We found that the combined effect of relativistic kinematics together with the pion exchange between quarks is able to reverse the order of the first positive- and negative-parity nucleon excited states as observed experimentally. Including the chiral partner of the pion (the σ meson) leads to an overall good description of the spectrum

  4. Chiral quark model with relativistic kinematics

    OpenAIRE

    Garcilazo, H.; Valcarce, A.

    2003-01-01

    The non-strange baryon spectrum is studied within a three-body model that incorporates relativistic kinematics. We found that the combined effect of relativistic kinematics together with the pion exchange between quarks is able to reverse the order of the first positive- and negative-parity nucleon excited states as observed experimentally. Including the chiral partner of the pion (the $\\sigma$ meson) leads to an overall good description of the spectrum.

  5. Non-relativistic Limit of a Dirac Polaron in Relativistic Quantum Electrodynamics

    CERN Document Server

    Arai, A

    2006-01-01

    A quantum system of a Dirac particle interacting with the quantum radiation field is considered in the case where no external potentials exist. Then the total momentum of the system is conserved and the total Hamiltonian is unitarily equivalent to the direct integral $\\int_{{\\bf R}^3}^\\oplus\\overline{H({\\bf p})}d{\\bf p}$ of a family of self-adjoint operators $\\overline{H({\\bf p})}$ acting in the Hilbert space $\\oplus^4{\\cal F}_{\\rm rad}$, where ${\\cal F}_{\\rm rad}$ is the Hilbert space of the quantum radiation field. The fibre operator $\\overline{H({\\bf p})}$ is called the Hamiltonian of the Dirac polaron with total momentum ${\\bf p} \\in {\\bf R}^3$. The main result of this paper is concerned with the non-relativistic (scaling) limit of $\\overline{H({\\bf p})}$. It is proven that the non-relativistic limit of $\\overline{H({\\bf p})}$ yields a self-adjoint extension of a Hamiltonian of a polaron with spin $1/2$ in non-relativistic quantum electrodynamics.

  6. Relativistic (3+1) dimensional hydrodynamic simulations of compact interacting binary systems

    International Nuclear Information System (INIS)

    Mathews, G.J.; Evans, C.R.; Wilson, J.R.

    1986-09-01

    We discuss the development of a relativistic hydrodynamic code for describing the evolution of astrophysical systems in three spatial dimensions. The application of this code to several test problems is presented. Preliminary results from the simulation of the dynamics of accreting binary white dwarf and neutron star systems are discussed. 14 refs., 4 figs

  7. Application of Homotopy Analysis Method to Solve Relativistic Toda Lattice System

    International Nuclear Information System (INIS)

    Wang Qi

    2010-01-01

    In this letter, the homotopy analysis method is successfully applied to solve the Relativistic Toda lattice system. Comparisons are made between the results of the proposed method and exact solutions. Analysis results show that homotopy analysis method is a powerful and easy-to-use analytic tool to solve systems of differential-difference equations. (general)

  8. Internal-time observable of classical relativistic systems

    International Nuclear Information System (INIS)

    Ben-Ya'acov, Uri

    2006-01-01

    The relativistic framework with its symmetries offers a natural definition for the internal time of classical (non-quantum) physical systems as a Lorentz-invariant observable. The internal-time observable, measuring the system's aging or internal evolution, is identified with the proper time of the system derived from its centre-of-mass (CM) coordinate. For its definition as an observable it is required that the system be symmetric not only under Lorentz-Poincare transformations but also under uniform scaling, with the associated existence of a dilatation function D, and yet that D be a varying-not conserved-quantity. Two alternative definitions are discussed, and it is found that in order to maintain simultaneity of the CM time with the events that define it, it is necessary to split the dilatation function into a CM part and an internal part

  9. Plasma waves in hot relativistic beam-plasma systems: Pt. 1

    International Nuclear Information System (INIS)

    Magneville, A.

    1990-01-01

    Dispersion relations of plasma waves in a beam-plasma system are computed in the general case where the plasma and beam temperatures, and the velocity of the beam, may be relativistic. The two asymptotic temperature cases, and different contributions of plasma or beam particles to wave dispersion are considered. (author)

  10. Theoretical study of the relativistic molecular rotational g-tensor

    International Nuclear Information System (INIS)

    Aucar, I. Agustín; Gomez, Sergio S.; Giribet, Claudia G.; Ruiz de Azúa, Martín C.

    2014-01-01

    An original formulation of the relativistic molecular rotational g-tensor valid for heavy atom containing compounds is presented. In such formulation, the relevant terms of a molecular Hamiltonian for non-relativistic nuclei and relativistic electrons in the laboratory system are considered. Terms linear and bilinear in the nuclear rotation angular momentum and an external uniform magnetic field are considered within first and second order (relativistic) perturbation theory to obtain the rotational g-tensor. Relativistic effects are further analyzed by carrying out the linear response within the elimination of the small component expansion. Quantitative results for model systems HX (X=F, Cl, Br, I), XF (X=Cl, Br, I), and YH + (Y=Ne, Ar, Kr, Xe, Rn) are obtained both at the RPA and density functional theory levels of approximation. Relativistic effects are shown to be small for this molecular property. The relation between the rotational g-tensor and susceptibility tensor which is valid in the non-relativistic theory does not hold within the relativistic framework, and differences between both molecular parameters are analyzed for the model systems under study. It is found that the non-relativistic relation remains valid within 2% even for the heavy HI, IF, and XeH + systems. Only for the sixth-row Rn atom a significant deviation of this relation is found

  11. Theoretical study of the relativistic molecular rotational g-tensor

    Energy Technology Data Exchange (ETDEWEB)

    Aucar, I. Agustín, E-mail: agustin.aucar@conicet.gov.ar; Gomez, Sergio S., E-mail: ssgomez@exa.unne.edu.ar [Institute for Modeling and Technological Innovation, IMIT (CONICET-UNNE) and Faculty of Exact and Natural Sciences, Northeastern University of Argentina, Avenida Libertad 5400, W3404AAS Corrientes (Argentina); Giribet, Claudia G.; Ruiz de Azúa, Martín C. [Physics Department, Faculty of Exact and Natural Sciences, University of Buenos Aires and IFIBA CONICET, Ciudad Universitaria, Pab. I, 1428 Buenos Aires (Argentina)

    2014-11-21

    An original formulation of the relativistic molecular rotational g-tensor valid for heavy atom containing compounds is presented. In such formulation, the relevant terms of a molecular Hamiltonian for non-relativistic nuclei and relativistic electrons in the laboratory system are considered. Terms linear and bilinear in the nuclear rotation angular momentum and an external uniform magnetic field are considered within first and second order (relativistic) perturbation theory to obtain the rotational g-tensor. Relativistic effects are further analyzed by carrying out the linear response within the elimination of the small component expansion. Quantitative results for model systems HX (X=F, Cl, Br, I), XF (X=Cl, Br, I), and YH{sup +} (Y=Ne, Ar, Kr, Xe, Rn) are obtained both at the RPA and density functional theory levels of approximation. Relativistic effects are shown to be small for this molecular property. The relation between the rotational g-tensor and susceptibility tensor which is valid in the non-relativistic theory does not hold within the relativistic framework, and differences between both molecular parameters are analyzed for the model systems under study. It is found that the non-relativistic relation remains valid within 2% even for the heavy HI, IF, and XeH{sup +} systems. Only for the sixth-row Rn atom a significant deviation of this relation is found.

  12. Classical relativistic ideal gas in thermodynamic equilibrium in a uniformly accelerated reference frame

    International Nuclear Information System (INIS)

    Louis-Martinez, Domingo J

    2011-01-01

    A classical (non-quantum-mechanical) relativistic ideal gas in thermodynamic equilibrium in a uniformly accelerated frame of reference is studied using Gibbs's microcanonical and grand canonical formulations of statistical mechanics. Using these methods explicit expressions for the particle, energy and entropy density distributions are obtained, which are found to be in agreement with the well-known results of the relativistic formulation of Boltzmann's kinetic theory. Explicit expressions for the total entropy, total energy and rest mass of the gas are obtained. The position of the center of mass of the gas in equilibrium is found. The non-relativistic and ultrarelativistic approximations are also considered. The phase space volume of the system is calculated explicitly in the ultrarelativistic approximation.

  13. Relativistic Celestial Mechanics of the Solar System

    CERN Document Server

    Kopeikin, Sergei; Kaplan, George

    2011-01-01

    This authoritative book presents the theoretical development of gravitational physics as it applies to the dynamics of celestial bodies and the analysis of precise astronomical observations. In so doing, it fills the need for a textbook that teaches modern dynamical astronomy with a strong emphasis on the relativistic aspects of the subject produced by the curved geometry of four-dimensional spacetime. The first three chapters review the fundamental principles of celestial mechanics and of special and general relativity. This background material forms the basis for understanding relativistic r

  14. A relativistic extended Fermi-Thomas-like equation for a self-gravitating system of fermions

    International Nuclear Information System (INIS)

    Merloni, A.; Ruffini, R.; Torroni, V.

    1998-01-01

    The authors extend previous results of a Fermi-Thomas model, describing self-gravitating fermions in their ground state, to a relativistic gravitational theory in Minkowski space. In such a theory the source term of the gravitational potential depends both on the pressure and the density of the fluid. It is shown that, in correspondence of this relativistic treatment, still a Fermi-Thomas-like equation can be derived for the self-gravitating system, though the non-linearities are much more complex. No Fermi-Thomas-like equation can be obtained in the General Relativistic treatment. The canonical results for neutron stars and white dwarfs are recovered and also some erroneous statements in the scientific literature are corrected

  15. Perturbation to Unified Symmetry and Adiabatic Invariants for Relativistic Hamilton Systems

    International Nuclear Information System (INIS)

    Zhang Mingjiang; Fang Jianhui; Lu Kai; Pang Ting; Lin Peng

    2009-01-01

    Based on the concept of adiabatic invariant, the perturbation to unified symmetry and adiabatic invariants for relativistic Hamilton systems are studied. The definition of the perturbation to unified symmetry for the system is presented, and the criterion of the perturbation to unified symmetry is given. Meanwhile, the Noether adiabatic invariants, the generalized Hojman adiabatic invariants, and the Mei adiabatic invariants for the perturbed system are obtained. (general)

  16. Relativistic Spacecraft Propelled by Directed Energy

    Science.gov (United States)

    Kulkarni, Neeraj; Lubin, Philip; Zhang, Qicheng

    2018-04-01

    Achieving relativistic flight to enable extrasolar exploration is one of the dreams of humanity and the long-term goal of our NASA Starlight program. We derive a relativistic solution for the motion of a spacecraft propelled by radiation pressure from a directed energy (DE) system. Depending on the system parameters, low-mass spacecraft can achieve relativistic speeds, thus enabling interstellar exploration. The diffraction of the DE system plays an important role and limits the maximum speed of the spacecraft. We consider “photon recycling” as a possible method to achieving higher speeds. We also discuss recent claims that our previous work on this topic is incorrect and show that these claims arise from an improper treatment of causality.

  17. On classical solutions of the relativistic Vlasov-Klein-Gordon system

    Directory of Open Access Journals (Sweden)

    Michael Kunzinger

    2005-01-01

    Full Text Available We consider a collisionless ensemble of classical particles coupled with a Klein-Gordon field. For the resulting nonlinear system of partial differential equations, the relativistic Vlasov-Klein-Gordon system, we prove local-in-time existence of classical solutions and a continuation criterion which says that a solution can blow up only if the particle momenta become large. We also show that classical solutions are global in time in the one-dimensional case.

  18. Relativistic and non-relativistic studies of nuclear matter

    NARCIS (Netherlands)

    Banerjee, MK; Tjon, JA

    2002-01-01

    We point out that the differences between the results of the non-relativistic lowest order Brueckner theory (LOBT) and the relativistic Dirac-Brueckner analysis predominantly arise from two sources. Besides effects from a nucleon mass modification M* in nuclear medium we have in a relativistic

  19. Relativistic three-particle dynamical equations: II. Application to the trinucleon system

    International Nuclear Information System (INIS)

    Adhikari, S.K.; Tomio, L.

    1993-11-01

    The contribution of relativistic dynamics on the neutron-deuteron scattering length and triton binding energy is calculated employing five sets tri nucleon potential models and four types of three-dimensional relativistic three-body equations suggested in the preceding paper. The relativistic correction to binding energy may vary a lot and even change sign depending on the relativistic formulation employed. The deviations of these observables from those obtained in nonrelativistic models follow the general universal trend of deviations introduced by off- and on-shell variations of two- and three-nucleon potentials in a nonrelativistic model calculation. Consequently, it will be difficult to separate unambiguously the effect of off-and on-shell variations of two and three-nucleon potentials on low-energy three-nucleon observables from the effect of relativistic dynamics. (author)

  20. Relativistic BCS-BEC Crossover at Quark Level

    Directory of Open Access Journals (Sweden)

    Zhuang P.

    2010-10-01

    Full Text Available The non-relativistic G0G formalism of BCS-BEC crossover at finite temperature is extended to relativistic fermion systems. The theory recovers the BCS mean field approximation at zero temperature and the non-relativistic results in a proper limit. For massive fermions, when the coupling strength increases, there exist two crossovers from the weak coupling BCS superfluid to the non-relativistic BEC state and then to the relativistic BEC state. For color superconductivity at moderate baryon density, the matter is in the BCS-BEC crossover region, and the behavior of the pseudogap is quite similar to that found in high temperature superconductors.

  1. Leading order relativistic chiral nucleon-nucleon interaction

    Science.gov (United States)

    Ren, Xiu-Lei; Li, Kai-Wen; Geng, Li-Sheng; Long, Bingwei; Ring, Peter; Meng, Jie

    2018-01-01

    Motivated by the successes of relativistic theories in studies of atomic/molecular and nuclear systems and the need for a relativistic chiral force in relativistic nuclear structure studies, we explore a new relativistic scheme to construct the nucleon-nucleon interaction in the framework of covariant chiral effective field theory. The chiral interaction is formulated up to leading order with covariant power counting and a Lorentz invariant chiral Lagrangian. We find that the relativistic scheme induces all six spin operators needed to describe the nuclear force. A detailed investigation of the partial wave potentials shows a better description of the {}1S0 and {}3P0 phase shifts than the leading order Weinberg approach, and similar to that of the next-to-leading order Weinberg approach. For the other partial waves with angular momenta J≥slant 1, the relativistic results are almost the same as their leading order non-relativistic counterparts. )

  2. RANKINE-HUGONIOT RELATIONS IN RELATIVISTIC COMBUSTION WAVES

    International Nuclear Information System (INIS)

    Gao Yang; Law, Chung K.

    2012-01-01

    As a foundational element describing relativistic reacting waves of relevance to astrophysical phenomena, the Rankine-Hugoniot relations classifying the various propagation modes of detonation and deflagration are analyzed in the relativistic regime, with the results properly degenerating to the non-relativistic and highly relativistic limits. The existence of negative-pressure downstream flows is noted for relativistic shocks, which could be of interest in the understanding of the nature of dark energy. Entropy analysis for relativistic shock waves is also performed for relativistic fluids with different equations of state (EoS), denoting the existence of rarefaction shocks in fluids with adiabatic index Γ < 1 in their EoS. The analysis further shows that weak detonations and strong deflagrations, which are rare phenomena in terrestrial environments, are expected to exist more commonly in astrophysical systems because of the various endothermic reactions present therein. Additional topics of relevance to astrophysical phenomena are also discussed.

  3. Proper time axis of a closed relativistic system

    International Nuclear Information System (INIS)

    Chernikov, N.A.; Fadeev, N.G.; Shavokhina, N.S.

    1997-01-01

    The definition of a proper time axis of a closed relativistic system of colliding particles is given. The solution of the proper time axis problem is presented. If the light velocity c equals the imaginary unit i, then in the case of a plane motion of the system the problem about the proper time axis turns out to be equivalent to the known in engineering mechanics problem about the reduction of any system of forces, applied to a rigid body, to the dynamic screw. In the general case, when c=i, the problem about the proper time axis turns out to be equivalent to the problem about the reduction to the dynamic screw of a system of forces, applied to a rigid body in a four-dimensional Euclidean space

  4. Relativistic dynamics, Green function and pseudodifferential operators

    Energy Technology Data Exchange (ETDEWEB)

    Cirilo-Lombardo, Diego Julio [National Institute of Plasma Physics (INFIP), Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Buenos Aires 1428 (Argentina); Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation)

    2016-06-15

    The central role played by pseudodifferential operators in relativistic dynamics is known very well. In this work, operators like the Schrodinger one (e.g., square root) are treated from the point of view of the non-local pseudodifferential Green functions. Starting from the explicit construction of the Green (semigroup) theoretical kernel, a theorem linking the integrability conditions and their dependence on the spacetime dimensions is given. Relativistic wave equations with arbitrary spin and the causality problem are discussed with the algebraic interpretation of the radical operator and their relation with coherent and squeezed states. Also we perform by means of pure theoretical procedures (based in physical concepts and symmetry) the relativistic position operator which satisfies the conditions of integrability: it is a non-local, Lorentz invariant and does not have the same problems as the “local”position operator proposed by Newton and Wigner. Physical examples, as zitterbewegung and rogue waves, are presented and deeply analyzed in this theoretical framework.

  5. Dynamical symmetries of two-dimensional systems in relativistic quantum mechanics

    International Nuclear Information System (INIS)

    Zhang Fulin; Song Ci; Chen Jingling

    2009-01-01

    The two-dimensional Dirac Hamiltonian with equal scalar and vector potentials has been proved commuting with the deformed orbital angular momentum L. When the potential takes the Coulomb form, the system has an SO(3) symmetry, and similarly the harmonic oscillator potential possesses an SU(2) symmetry. The generators of the symmetric groups are derived for these two systems separately. The corresponding energy spectra are yielded naturally from the Casimir operators. Their non-relativistic limits are also discussed

  6. Local density approximations for relativistic exchange energies

    International Nuclear Information System (INIS)

    MacDonald, A.H.

    1986-01-01

    The use of local density approximations to approximate exchange interactions in relativistic electron systems is reviewed. Particular attention is paid to the physical content of these exchange energies by discussing results for the uniform relativistic electron gas from a new point of view. Work on applying these local density approximations in atoms and solids is reviewed and it is concluded that good accuracy is usually possible provided self-interaction corrections are applied. The local density approximations necessary for spin-polarized relativistic systems are discussed and some new results are presented

  7. Relativistic effects in a rotating coordinate system

    International Nuclear Information System (INIS)

    Chugreev, Y.V.

    1989-01-01

    The general approach to calculating various physical effects in a rotating, noninertial reference frame based on the tetrad formalism for observables is discussed. It is shown that the method based on the search for the ''true'' coordinate transformation from an inertial to the rotating frame is ill-founded. Most special relativistic effects in a rotating frame have been calculated without any nonrelativistic restrictions. It is shown how simple physical experiments can be used to determine whether a circle is at rest in the equatorial plane of a Kerr--Newman gravitational source in the relativistic theory of gravity or is rotating about an axis through its center

  8. Some problems in relativistic thermodynamics

    International Nuclear Information System (INIS)

    Veitsman, E. V.

    2007-01-01

    The relativistic equations of state for ideal and real gases, as well as for various interface regions, have been derived. These dependences help to eliminate some controversies in the relativistic thermodynamics based on the special theory of relativity. It is shown, in particular, that the temperature of system whose velocity tends to the velocity of light in vacuum varies in accordance with the Ott law T = T 0 /√1 - v 2 /c 2 . Relativistic dependences for heat and mass transfer, for Ohm's law, and for a viscous flow of a liquid have also been derived

  9. Thermodynamic laws and equipartition theorem in relativistic Brownian motion.

    Science.gov (United States)

    Koide, T; Kodama, T

    2011-06-01

    We extend the stochastic energetics to a relativistic system. The thermodynamic laws and equipartition theorem are discussed for a relativistic Brownian particle and the first and the second law of thermodynamics in this formalism are derived. The relation between the relativistic equipartition relation and the rate of heat transfer is discussed in the relativistic case together with the nature of the noise term.

  10. From Lattice Boltzmann to hydrodynamics in dissipative relativistic fluids

    Science.gov (United States)

    Gabbana, Alessandro; Mendoza, Miller; Succi, Sauro; Tripiccione, Raffaele

    2017-11-01

    Relativistic fluid dynamics is currently applied to several fields of modern physics, covering many physical scales, from astrophysics, to atomic scales (e.g. in the study of effective 2D systems such as graphene) and further down to subnuclear scales (e.g. quark-gluon plasmas). This talk focuses on recent progress in the largely debated connection between kinetic transport coefficients and macroscopic hydrodynamic parameters in dissipative relativistic fluid dynamics. We use a new relativistic Lattice Boltzmann method (RLBM), able to handle from ultra-relativistic to almost non-relativistic flows, and obtain strong evidence that the Chapman-Enskog expansion provides the correct pathway from kinetic theory to hydrodynamics. This analysis confirms recently obtained theoretical results, which can be used to obtain accurate calibrations for RLBM methods applied to realistic physics systems in the relativistic regime. Using this calibration methodology, RLBM methods are able to deliver improved physical accuracy in the simulation of the physical systems described above. European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie Grant Agreement No. 642069.

  11. Relativistic Outflows from ADAFs

    Science.gov (United States)

    Becker, Peter; Subramanian, Prasad; Kazanas, Demosthenes

    2001-04-01

    Advection-dominated accretion flows (ADAFs) have a positive Bernoulli parameter, and are therefore gravitationally bound. The Newtonian ADAF model has been generalized recently to obtain the ADIOS model that includes outflows of energy and angular momentum, thereby allowing accretion to proceed self-consistently. However, the utilization of a Newtonian gravitational potential limits the ability of this model to describe the inner region of the disk, where any relativistic outflows are likely to originate. In this paper we modify the ADIOS scenario to incorporate a seudo - Newtonian potential, which approximates the effects of general relativity. The analysis yields a unique, self - similar solution for the structure of the coupled disk/wind system. Interesting features of the new solution include the relativistic character of the outflow in the vicinity of the radius of marginal stability, which represents the inner edge of the quasi-Keplerian disk in our model. Our self - similar model may therefore help to explain the origin of relativistic jets in active galaxies. At large distances the radial dependence of the accretion rate approachs the unique form dot M ∝ r^1/2, with an associated density variation given by ρ ∝ r-1. This density variation agrees with that implied by the dependence of the X-ray hard time lags on the Fourier frequency for a number of accreting galactic black hole candidates. While intriguing, the results of our self-similar model need to be confirmed in the future by incorporating a detailed physical description of the energization mechanism that drives the outflow, which is likely to be powered by the shear of the underlying accretion disk.

  12. Nuclear chromodynamics: applications of QCD to relativistic multiquark systems

    International Nuclear Information System (INIS)

    Brodsky, S.J.; Ji, C.R.

    1984-07-01

    We review the applications of quantum chromodynamics to nuclear multiquark systems. In particular, predictions are given for the deuteron reduced form factor in the high momentum transfer region, hidden color components in nuclear wavefunctions, and the short distance effective force between nucleons. A new antisymmetrization technique is presented which allows a basis for relativistic multiquark wavefunctions and solutions to their evolution to short distances. Areas in which conventional nuclear theory conflicts with QCD are also briefly reviewed. 48 references

  13. Relativistic quantum theory of composite systems

    International Nuclear Information System (INIS)

    Sogami, I.

    1978-01-01

    A relativistic quantum theory free from the difficulties of tachyons and ghosts is formulated to describe the scattering processes between composite systems of spinless quarks. To evade the complication brewed by introducing gluon fields or strings, valence quarks are effectively assumed to be in the relative motion of harmonic oscillation correlating with the motion of the composite system as a whole. A quark-antiquark system is represented by a bilocal field describing a sequence of mesons and every meson is identified with the composite system in a definite eigenstate of relative motion. The quantization is performed in the interaction picture, so that the microcausal condition is satisfied by local fields which result from the decomposition of bilocal fields. Imposing a weakened macrocausal condition on the whole motion of the extended system, a causal bilocal propagator is defined and a consistent time ordering among bilocal fields is defined. The invariant S-matrix is obtained and the graphical method for the calculation of its elements is developed in parallel with the conventional local field theory. For the (bilocal field) 3 interaction any malignant divergence does not appear excepting those in the renormalizable local field theory. The theory provides one promising and comprehensive phenomenology of hadrons which is suitable especially to describe the hard structure of hadrons. (author)

  14. A signed particle formulation of non-relativistic quantum mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Sellier, Jean Michel, E-mail: jeanmichel.sellier@parallel.bas.bg

    2015-09-15

    A formulation of non-relativistic quantum mechanics in terms of Newtonian particles is presented in the shape of a set of three postulates. In this new theory, quantum systems are described by ensembles of signed particles which behave as field-less classical objects which carry a negative or positive sign and interact with an external potential by means of creation and annihilation events only. This approach is shown to be a generalization of the signed particle Wigner Monte Carlo method which reconstructs the time-dependent Wigner quasi-distribution function of a system and, therefore, the corresponding Schrödinger time-dependent wave-function. Its classical limit is discussed and a physical interpretation, based on experimental evidences coming from quantum tomography, is suggested. Moreover, in order to show the advantages brought by this novel formulation, a straightforward extension to relativistic effects is discussed. To conclude, quantum tunnelling numerical experiments are performed to show the validity of the suggested approach.

  15. Relativistic electron beams above thunderclouds

    DEFF Research Database (Denmark)

    Füellekrug, M.; Roussel-Dupre, R.; Symbalisty, E. M. D.

    2011-01-01

    Non-luminous relativistic electron beams above thunderclouds have been detected by the radio signals of low frequency similar to 40-400 kHz which they radiate. The electron beams occur similar to 2-9 ms after positive cloud-to-ground lightning discharges at heights between similar to 22-72 km above...... thunderclouds. Intense positive lightning discharges can also cause sprites which occur either above or prior to the electron beam. One electron beam was detected without any luminous sprite which suggests that electron beams may also occur independently of sprites. Numerical simulations show that beams...... of electrons partially discharge the lightning electric field above thunderclouds and thereby gain a mean energy of similar to 7MeV to transport a total charge of similar to-10mC upwards. The impulsive current similar to 3 x 10(-3) Am-2 associated with relativistic electron beams above thunderclouds...

  16. On the convexity of relativistic hydrodynamics

    International Nuclear Information System (INIS)

    Ibáñez, José M; Martí, José M; Cordero-Carrión, Isabel; Miralles, Juan A

    2013-01-01

    The relativistic hydrodynamic system of equations for a perfect fluid obeying a causal equation of state is hyperbolic (Anile 1989 Relativistic Fluids and Magneto-Fluids (Cambridge: Cambridge University Press)). In this report, we derive the conditions for this system to be convex in terms of the fundamental derivative of the equation of state (Menikoff and Plohr1989 Rev. Mod. Phys. 61 75). The classical limit is recovered. Communicated by L Rezzolla (note)

  17. Spinorial relativistic rotator: the transformation from quasi-Newtonian to Minkowski coordinates

    International Nuclear Information System (INIS)

    Biedenharn, L.C.; Bohm, A.; Tarlini, M.; van Dam, H.; Mukunda, N.

    1983-12-01

    There exists a remarkably close relationship between the operator algebra of the Dirac equation and the corresponding operators of the spinorial relativistic rotator (an indecomposable object lying on a mass-spin Regge trajectory). The analog of the Foldy-Wouthuysen transformation (more generally, the transformation between quasi-Newtonian and Minkowski coordinates) is constructed and explicit results are discussed for the spin and position operators. Zitterbewegung is shown to exist for a system having only positive energies. 31 references

  18. Nonlinear dynamics of the relativistic standard map

    International Nuclear Information System (INIS)

    Nomura, Y.; Ichikawa, Y.H.; Horton, W.

    1991-04-01

    Heating and acceleration of charged particles by RF fields have been extensively investigated by the standard map. The question arises as to how the relativistic effects change the nonlinear dynamical behavior described by the classical standard map. The relativistic standard map is a two parameter (K, Β = ω/kc) family of dynamical systems reducing to the standard map when Β → 0. For Β ≠ 0 the relativistic mass increase suppresses the onset of stochasticity. It shown that the speed of light limits the rate of advance of the phase in the relativistic standard map and introduces KAM surfaces persisting in the high momentum region. An intricate structure of mixing in the higher order periodic orbits and chaotic orbits is analyzed using the symmetry properties of the relativistic standard map. The interchange of the stability of the periodic orbits in the relativistic standard map is also observed and is explained by the local linear stability of the orbits. 12 refs., 16 figs

  19. Relativistic neoclassical transport coefficients with momentum correction

    International Nuclear Information System (INIS)

    Marushchenko, I.; Azarenkov, N.A.

    2016-01-01

    The parallel momentum correction technique is generalized for relativistic approach. It is required for proper calculation of the parallel neoclassical flows and, in particular, for the bootstrap current at fusion temperatures. It is shown that the obtained system of linear algebraic equations for parallel fluxes can be solved directly without calculation of the distribution function if the relativistic mono-energetic transport coefficients are already known. The first relativistic correction terms for Braginskii matrix coefficients are calculated.

  20. Electromagnetic interactions in relativistic infinite component wave equations

    International Nuclear Information System (INIS)

    Gerry, C.C.

    1979-01-01

    The electromagnetic interactions of a composite system described by relativistic infinite-component wave equations are considered. The noncompact group SO(4,2) is taken as the dynamical group of the systems, and its unitary irreducible representations, which are infinite dimensional, are used to find the energy spectra and to specify the states of the systems. First the interaction mechanism is examined in the nonrelativistic SO(4,2) formulation of the hydrogen atom as a heuristic guide. A way of making a minimal relativistic generalization of the minimal ineractions in the nonrelativistic equation for the hydrogen atom is proposed. In order to calculate the effects of the relativistic minimal interactions, a covariant perturbation theory suitable for infinite-component wave equations, which is an algebraic and relativistic version of the Rayleigh-Schroedinger perturbation theory, is developed. The electric and magnetic polarizabilities for the ground state of the hydrogen atom are calculated. The results have the correct nonrelativistic limits. Next, the relativistic cross section of photon absorption by the atom is evaluated. A relativistic expression for the cross section of light scattering corresponding to the seagull diagram is derived. The Born amplitude is combusted and the role of spacelike solutions is discussed. Finally, internal electromagnetic interactions that give rise to the fine structure splittings, the Lamb shifts and the hyperfine splittings are considered. The spin effects are introduced by extending the dynamical group

  1. Strong-coupling diffusion in relativistic systems

    Indian Academy of Sciences (India)

    hanced values needed to interpret the data at higher energies point towards the importance of strong-coupling effects. ... when all secondary particles have been created. For short times in the initial phase ... It is decisive for a proper representation of the available data for relativistic heavy-ion collisions at and beyond SPS.

  2. Recent progresses in relativistic beam-plasma instability theory

    Directory of Open Access Journals (Sweden)

    A. Bret

    2010-11-01

    Full Text Available Beam-plasma instabilities are a key physical process in many astrophysical phenomena. Within the fireball model of Gamma ray bursts, they first mediate a relativistic collisionless shock before they produce upstream the turbulence needed for the Fermi acceleration process. While non-relativistic systems are usually governed by flow-aligned unstable modes, relativistic ones are likely to be dominated by normally or even obliquely propagating waves. After reviewing the basis of the theory, results related to the relativistic kinetic regime of the poorly-known oblique unstable modes will be presented. Relevant systems besides the well-known electron beam-plasma interaction are presented, and it is shown how the concept of modes hierarchy yields a criterion to assess the proton to electron mass ratio in Particle in cell simulations.

  3. Relativistic Many-Body Theory A New Field-Theoretical Approach

    CERN Document Server

    Lindgren, Ingvar

    2011-01-01

    Relativistic Many-Body Theory treats — for the first time — the combination of relativistic atomic many-body theory with quantum-electrodynamics (QED) in a unified manner. This book can be regarded as a continuation of the book by Lindgren and Morrison, Atomic Many-Body Theory (Springer 1986), which deals with the non-relativistic theory of many-electron systems, describing several means of treating the electron correlation to essentially all orders of perturbation theory. The treatment of the present book is based upon quantum-field theory, and demonstrates that when the procedure is carried to all orders of perturbation theory, two-particle systems are fully compatible with the relativistically covariant Bethe-Salpeter equation. This procedure can be applied to arbitrary open-shell systems, in analogy with the standard many-body theory, and it is also applicable to systems with more than two particles. Presently existing theoretical procedures for treating atomic systems are, in several cases, insuffici...

  4. Chaos of the Relativistic Forced van der Pol Oscillator

    International Nuclear Information System (INIS)

    Ashkenazya, Y.; Gorma, C; Horwitz, L. P.

    1998-01-01

    A manifestly relativistically covariant form of the van der Pol oscillator in 1 + 1 dimensions is studied. We show that the driven relativistic equations, for which z and t are coupled, relax very quickly to a pair of identical decoupled equations, due to a rapid vanishing of the angular momentum (the boost in 1 + 1 dimensions). A similar effect occurs in the damped driven covariant Duffing oscillator previously treated. This effect is an example of entrainment, or synchronization (phase locking) , of coupled chaotic systems. The Lyapunov exponents are calculated using the very efficient method of Habib and Ryne. We show a Poincare map that demonstrates this effect and maintains remarkable stability in spite of the inevitable accumulation of computer error in the chaotic region. For our choice of parameters, the positive Lyapunov exponent is about 0.242 almost independently of the integration method

  5. Point form relativistic quantum mechanics and relativistic SU(6)

    Science.gov (United States)

    Klink, W. H.

    1993-01-01

    The point form is used as a framework for formulating a relativistic quantum mechanics, with the mass operator carrying the interactions of underlying constituents. A symplectic Lie algebra of mass operators is introduced from which a relativistic harmonic oscillator mass operator is formed. Mass splittings within the degenerate harmonic oscillator levels arise from relativistically invariant spin-spin, spin-orbit, and tensor mass operators. Internal flavor (and color) symmetries are introduced which make it possible to formulate a relativistic SU(6) model of baryons (and mesons). Careful attention is paid to the permutation symmetry properties of the hadronic wave functions, which are written as polynomials in Bargmann spaces.

  6. A unified treatment of the non-relativistic and relativistic hydrogen atom: Pt. 2

    International Nuclear Information System (INIS)

    Swainson, R.A.; Drake, G.W.F.

    1991-01-01

    This is the second in a series of three papers in which it is shown how the radial part of non-relativistic and relativistic hydrogenic bound-state calculations involving the Green functions can be presented in a unified manner. In this paper the non-relativistic Green function is examined in detail; new functional forms are presented and a clear mathematical progression is show to link these and most other known forms. A linear transformation of the four radial parts of the relativistic Green function is given which allows for the presentation of this function as a simple generalization of the non-relativistic Green function. Thus, many properties of the non-relativistic Green function are shown to have simple relativistic generalizations. In particular, new recursion relations of the radial parts of both the non-relativistic and relativistic Green functions are presented, along with new expressions for the double Laplace transforms and recursion relations between the radial matrix elements. (author)

  7. Comparison of two forms of Vlasov-type relativistic kinetic equations in hadrodynamics

    International Nuclear Information System (INIS)

    Mashnik, S.G.; Maino, G.

    1996-01-01

    A comparison of two methods in the relativistic kinetic theory of the Fermi systems is carried out assuming, as an example, the simplest σω-version of quantum hadrodynamics with allowance for strong mean meson fields. It is shown that the Vlasov-type relativistic kinetic equation (VRKE) obtained by means of the procedure of squaring at an intermediate step is responsible for unphysical features. A direct method of derivation of kinetic equations is proposed. This method does not contain such drawback and gives rise to VRKE in hydrodynamics of a non-contradictory form in which both spin degrees of freedom and states with positive and negative energies are taken into account. 17 refs

  8. Relativistic astrophysics

    CERN Document Server

    Demianski, Marek

    2013-01-01

    Relativistic Astrophysics brings together important astronomical discoveries and the significant achievements, as well as the difficulties in the field of relativistic astrophysics. This book is divided into 10 chapters that tackle some aspects of the field, including the gravitational field, stellar equilibrium, black holes, and cosmology. The opening chapters introduce the theories to delineate gravitational field and the elements of relativistic thermodynamics and hydrodynamics. The succeeding chapters deal with the gravitational fields in matter; stellar equilibrium and general relativity

  9. Relativistic description of nuclear systems in the Hartree-Fock approximation

    International Nuclear Information System (INIS)

    Bouyssy, A.; Mathiot, J.F.; Nguyen Van Giai; Marcos, S.

    1986-03-01

    The structure of infinite nuclear matter and finite nuclei is studied in the framework of the relativistic Hartree-Fock approximation. A particular attention is paid to the contribution of isovector mesons. (π,p). A satisfactory description of binding energies and densities can be obtained for light as well as heavy nuclei. The spin-orbit splittings are well reproduced. Connections with non-relativistic formulations are also discussed

  10. Anisotropic generalization of well-known solutions describing relativistic self-gravitating fluid systems. An algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Thirukkanesh, S. [Eastern University, Department of Mathematics, Chenkalady (Sri Lanka); Ragel, F.C. [Eastern University, Department of Physics, Chenkalady (Sri Lanka); Sharma, Ranjan; Das, Shyam [P.D. Women' s College, Department of Physics, Jalpaiguri (India)

    2018-01-15

    We present an algorithm to generalize a plethora of well-known solutions to Einstein field equations describing spherically symmetric relativistic fluid spheres by relaxing the pressure isotropy condition on the system. By suitably fixing the model parameters in our formulation, we generate closed-form solutions which may be treated as an anisotropic generalization of a large class of solutions describing isotropic fluid spheres. From the resultant solutions, a particular solution is taken up to show its physical acceptability. Making use of the current estimate of mass and radius of a known pulsar, the effects of anisotropic stress on the gross physical behaviour of a relativistic compact star is also highlighted. (orig.)

  11. Relativistic current sheets in electron-positron plasmas

    International Nuclear Information System (INIS)

    Zenitani, S.

    2008-01-01

    The current sheet structure with magnetic field reversal is one of the fundamental structure in space and astrophysical plasmas. It draws recent attention in high-energy astrophysical settings, where relativistic electron-positron plasmas are considered. In this talk we will review the recent progress of the physical processes in the relativistic current sheet. The kinetic stability of a single current sheet, the nonlinear behavior of these instabilities, and recent challenges on the multi current sheet systems are introduced. We will also introduce some problems of magnetic reconnection in these relativistic environments. (author)

  12. Relativistic quantum mechanics of bosons

    International Nuclear Information System (INIS)

    Ghose, P.; Home, D.; Sinha Roy, M.N.

    1993-01-01

    We show that it is possible to use the Klein-Gordon, Proca and Maxwell formulations to construct multi-component relativistic configuration space wavefunctions of spin-0 and spin-1 bosons in an external field. These wavefunctions satisfy the first-order Kemmer-Duffin equation. The crucial ingredient is the use of the future-causal normal n μ (n μ n μ =1, n 0 >0) to the space-like hypersurfaces foliating space-time, inherent in the concept of a relativistic wavefunction, to construct a conserved future-causal probability current four-vector from the second-rank energy-momentum tensor, following Holland's prescription. The existence of a Hermitian position operator, localized solutions, compatibility with the second quantized theories and the question of interpretation are discussed. (orig.)

  13. Positioning in a flat two-dimensional space-time: The delay master equation

    International Nuclear Information System (INIS)

    Coll, Bartolome; Ferrando, Joan Josep; Morales-Lladosa, Juan Antonio

    2010-01-01

    The basic theory on relativistic positioning systems in a two-dimensional space-time has been presented in two previous papers [B. Coll, J. J. Ferrando, and J. A. Morales, Phys. Rev. D 73, 084017 (2006); ibid.74, 104003 (2006)], where the possibility of making relativistic gravimetry with these systems has been analyzed by considering specific examples. Here, generic relativistic positioning systems in the Minkowski plane are studied. The information that can be obtained from the data received by a user of the positioning system is analyzed in detail. In particular, it is shown that the accelerations of the emitters and of the user along their trajectories are determined by the sole knowledge of the emitter positioning data and of the acceleration of only one of the emitters. Moreover, as a consequence of the so-called master delay equation, the knowledge of this acceleration is only required during an echo interval, i.e., the interval between the emission time of a signal by an emitter and its reception time after being reflected by the other emitter. These results are illustrated with the obtention of the dynamics of the emitters and of the user from specific sets of data received by the user.

  14. Nonlocal relativistic diffusion (NoRD) model of cosmic ray propagation

    International Nuclear Information System (INIS)

    Uchaikin, V V; Sibatov, R T

    2017-01-01

    The problem of physical interpretation of the nonlocal relativistic diffusion (NoRD model) for cosmic ray transport in the Galaxy is discussed. The model accounts for the turbulent character of the interstellar medium and the relativistic principle of the speed limitation. Involving fractional calculus and non-Gaussian Lévy statistics yields numerical results compatible with observation data. A special attention is paid to the knee problem. The relativistic speed limit requirement steepens theoretical background spectrum at certain energies, and the position of the break, its sharpness and slopes of asymptotes depend on D α ( E ) and α . (paper)

  15. Relativistic quantum logic

    International Nuclear Information System (INIS)

    Mittelstaedt, P.

    1983-01-01

    on the basis of the well-known quantum logic and quantum probability a formal language of relativistic quantum physics is developed. This language incorporates quantum logical as well as relativistic restrictions. It is shown that relativity imposes serious restrictions on the validity regions of propositions in space-time. By an additional postulate this relativistic quantum logic can be made consistent. The results of this paper are derived exclusively within the formal quantum language; they are, however, in accordance with well-known facts of relativistic quantum physics in Hilbert space. (author)

  16. Relativistic quantum mechanics; Mecanique quantique relativiste

    Energy Technology Data Exchange (ETDEWEB)

    Ollitrault, J.Y. [CEA Saclay, 91 - Gif-sur-Yvette (France). Service de Physique Theorique]|[Universite Pierre et Marie Curie, 75 - Paris (France)

    1998-12-01

    These notes form an introduction to relativistic quantum mechanics. The mathematical formalism has been reduced to the minimum in order to enable the reader to calculate elementary physical processes. The second quantification and the field theory are the logical followings of this course. The reader is expected to know analytical mechanics (Lagrangian and Hamiltonian), non-relativistic quantum mechanics and some basis of restricted relativity. The purpose of the first 3 chapters is to define the quantum mechanics framework for already known notions about rotation transformations, wave propagation and restricted theory of relativity. The next 3 chapters are devoted to the application of relativistic quantum mechanics to a particle with 0,1/5 and 1 spin value. The last chapter deals with the processes involving several particles, these processes require field theory framework to be thoroughly described. (A.C.) 2 refs.

  17. Causal dissipation for the relativistic dynamics of ideal gases.

    Science.gov (United States)

    Freistühler, Heinrich; Temple, Blake

    2017-05-01

    We derive a general class of relativistic dissipation tensors by requiring that, combined with the relativistic Euler equations, they form a second-order system of partial differential equations which is symmetric hyperbolic in a second-order sense when written in the natural Godunov variables that make the Euler equations symmetric hyperbolic in the first-order sense. We show that this class contains a unique element representing a causal formulation of relativistic dissipative fluid dynamics which (i) is equivalent to the classical descriptions by Eckart and Landau to first order in the coefficients of viscosity and heat conduction and (ii) has its signal speeds bounded sharply by the speed of light. Based on these properties, we propose this system as a natural candidate for the relativistic counterpart of the classical Navier-Stokes equations.

  18. Canonical quantization of spinning relativistic particle in external backgrounds

    Energy Technology Data Exchange (ETDEWEB)

    Gavrilov, S.P. [Universidade Federal de Sergipe (UFS), Aracaju, SE (Brazil); Gitman, D.M. [Sao Paulo Univ. (USP), SP (Brazil). Inst. de Fisica

    2000-07-01

    Full text follows: We revise the problem of the quantization of spinning relativistic particle pseudoclassical model, using a modified consistent canonical scheme. It allows one not only to include arbitrary electromagnetic and gravitational backgrounds in the consideration but to get in course of the quantization a consistent relativistic quantum mechanics, which reproduces literally the behavior of the one-particle sector of quantized spinor field. In particular, in a physical sector of the Hilbert space a complete positive spectrum of energies of relativistic particles and antiparticles is reproduced. Requirement to maintain all classical symmetries under the coordinate transformations and under U(1) transformations allows one to realize operator algebra without any ambiguities. (author)

  19. Liouville equation of relativistic charged fermion

    International Nuclear Information System (INIS)

    Wang Renchuan; Zhu Dongpei; Huang Zhuoran; Ko Che-ming

    1991-01-01

    As a form of density martrix, the Wigner function is the distribution in quantum phase space. It is a 2 X 2 matrix function when one uses it to describe the non-relativistic fermion. While describing the relativistic fermion, it is usually represented by 4 x 4 matrix function. In this paper authors obtain a Wigner function for the relativistic fermion in the form of 2 x 2 matrix, and the Liouville equation satisfied by the Wigner function. this equivalent to the Dirac equation of changed fermion in QED. The equation is also equivalent to the Dirac equation in the Walecka model applied to the intermediate energy nuclear collision while the nucleon is coupled to the vector meson only (or taking mean field approximation for the scalar meson). Authors prove that the 2 x 2 Wigner function completely describes the quantum system just the same as the relativistic fermion wave function. All the information about the observables can be obtained with above Wigner function

  20. Relativistic bound-state problem of a one-dimensional system

    International Nuclear Information System (INIS)

    Sato, T.; Niwa, T.; Ohtsubo, H.; Tamura, K.

    1991-01-01

    A Poincare-covariant description of the two-body bound-state problem in one-dimensional space is studied by using the relativistic Schrodinger equation. We derive the many-body Hamiltonian, electromagnetic current and generators of the Poincare group in the framework of one-boson exchange. Our theory satisfies Poincare algebra within the one-boson-exchange approximation. We numerically study the relativistic effects on the bound-state wavefunction and the elastic electromagnetic form factor. The Lorentz boost of the bound-state wavefunction and the two-body exchange current are shown to play an important role in guaranteeing the Lorentz invariance of the form factor. (author)

  1. Relativistic Binaries in Globular Clusters

    Directory of Open Access Journals (Sweden)

    Matthew J. Benacquista

    2013-03-01

    Full Text Available Galactic globular clusters are old, dense star systems typically containing 10^4 – 10^6 stars. As an old population of stars, globular clusters contain many collapsed and degenerate objects. As a dense population of stars, globular clusters are the scene of many interesting close dynamical interactions between stars. These dynamical interactions can alter the evolution of individual stars and can produce tight binary systems containing one or two compact objects. In this review, we discuss theoretical models of globular cluster evolution and binary evolution, techniques for simulating this evolution that leads to relativistic binaries, and current and possible future observational evidence for this population. Our discussion of globular cluster evolution will focus on the processes that boost the production of tight binary systems and the subsequent interaction of these binaries that can alter the properties of both bodies and can lead to exotic objects. Direct N-body integrations and Fokker–Planck simulations of the evolution of globular clusters that incorporate tidal interactions and lead to predictions of relativistic binary populations are also discussed. We discuss the current observational evidence for cataclysmic variables, millisecond pulsars, and low-mass X-ray binaries as well as possible future detection of relativistic binaries with gravitational radiation.

  2. Relativistic electron Wigner crystal formation in a cavity for electron acceleration

    CERN Document Server

    Thomas, Johannes; Pukhov, Alexander

    2014-01-01

    It is known that a gas of electrons in a uniform neutralizing background can crystallize and form a lattice if the electron density is less than a critical value. This crystallization may have two- or three-dimensional structure. Since the wake field potential in the highly-nonlinear-broken-wave regime (bubble regime) has the form of a cavity where the background electrons are evacuated from and only the positively charged ions remain, it is suited for crystallization of trapped and accelerated electron bunch. However, in this case, the crystal is moving relativistically and shows new three-dimensional structures that we call relativistic Wigner crystals. We analyze these structures using a relativistic Hamiltonian approach. We also check for stability and phase transitions of the relativistic Wigner crystals.

  3. Non-Noether Conserved Quantity for Relativistic Nonholonomic System with Variable Mass

    International Nuclear Information System (INIS)

    Qiao Yongfen; Li Renjie; Ma Yongsheng

    2005-01-01

    Using form invariance under special infinitesimal transformations in which time is not variable, the non-Noether conserved quantity of the relativistic nonholonomic system with variable mass is studied. The differential equations of motion of the system are established. The definition and criterion of the form invariance of the system under infinitesimal transformations are studied. The necessary and sufficient condition under which the form invariance is a Lie symmetry is given. The condition under which the form invariance can be led to a non-Noether conserved quantity and the form of the conserved quantity are obtained. Finally, an example is given to illustrate the application of the result.

  4. Relativistic kinetic theory with applications in astrophysics and cosmology

    CERN Document Server

    Vereshchagin, Gregory V

    2017-01-01

    Relativistic kinetic theory has widespread application in astrophysics and cosmology. The interest has grown in recent years as experimentalists are now able to make reliable measurements on physical systems where relativistic effects are no longer negligible. This ambitious monograph is divided into three parts. It presents the basic ideas and concepts of this theory, equations and methods, including derivation of kinetic equations from the relativistic BBGKY hierarchy and discussion of the relation between kinetic and hydrodynamic levels of description. The second part introduces elements of computational physics with special emphasis on numerical integration of Boltzmann equations and related approaches, as well as multi-component hydrodynamics. The third part presents an overview of applications ranging from covariant theory of plasma response, thermalization of relativistic plasma, comptonization in static and moving media to kinetics of self-gravitating systems, cosmological structure formation and neut...

  5. Relativistic quantum chaos-An emergent interdisciplinary field.

    Science.gov (United States)

    Lai, Ying-Cheng; Xu, Hong-Ya; Huang, Liang; Grebogi, Celso

    2018-05-01

    Quantum chaos is referred to as the study of quantum manifestations or fingerprints of classical chaos. A vast majority of the studies were for nonrelativistic quantum systems described by the Schrödinger equation. Recent years have witnessed a rapid development of Dirac materials such as graphene and topological insulators, which are described by the Dirac equation in relativistic quantum mechanics. A new field has thus emerged: relativistic quantum chaos. This Tutorial aims to introduce this field to the scientific community. Topics covered include scarring, chaotic scattering and transport, chaos regularized resonant tunneling, superpersistent currents, and energy level statistics-all in the relativistic quantum regime. As Dirac materials have the potential to revolutionize solid-state electronic and spintronic devices, a good understanding of the interplay between chaos and relativistic quantum mechanics may lead to novel design principles and methodologies to enhance device performance.

  6. Relativistic quantum chaos—An emergent interdisciplinary field

    Science.gov (United States)

    Lai, Ying-Cheng; Xu, Hong-Ya; Huang, Liang; Grebogi, Celso

    2018-05-01

    Quantum chaos is referred to as the study of quantum manifestations or fingerprints of classical chaos. A vast majority of the studies were for nonrelativistic quantum systems described by the Schrödinger equation. Recent years have witnessed a rapid development of Dirac materials such as graphene and topological insulators, which are described by the Dirac equation in relativistic quantum mechanics. A new field has thus emerged: relativistic quantum chaos. This Tutorial aims to introduce this field to the scientific community. Topics covered include scarring, chaotic scattering and transport, chaos regularized resonant tunneling, superpersistent currents, and energy level statistics—all in the relativistic quantum regime. As Dirac materials have the potential to revolutionize solid-state electronic and spintronic devices, a good understanding of the interplay between chaos and relativistic quantum mechanics may lead to novel design principles and methodologies to enhance device performance.

  7. The relativistic Brownian motion: Interdisciplinary applications

    International Nuclear Information System (INIS)

    Aragones-Munoz, A; Sandoval-Villalbazo, A

    2010-01-01

    Relativistic Brownian motion theory will be applied to the study of analogies between physical and economic systems, emphasizing limiting cases in which Gaussian distributions are no longer valid. The characteristic temperatures of the particles will be associated with the concept of variance, and this will allow us to choose whether the pertinent distribution is classical or relativistic, while working specific situations. The properties of particles can be interpreted as economic variables, in order to study the behavior of markets in terms of Levy financial processes, since markets behave as stochastic systems. As far as we know, the application of the Juettner distribution to the study of economic systems is a new idea.

  8. Relativistic few body calculations

    International Nuclear Information System (INIS)

    Gross, F.

    1988-01-01

    A modern treatment of the nuclear few-body problem must take into account both the quark structure of baryons and mesons, which should be important at short range, and the relativistic exchange of mesons, which describes the long range, peripheral interactions. A way to model both of these aspects is described. The long range, peripheral interactions are calculated using the spectator model, a general approach in which the spectators to nucleon interactions are put on their mass-shell. Recent numerical results for a relativistic OBE model of the NN interaction, obtained by solving a relativistic equation with one-particle on mass-shell, will be presented and discussed. Two meson exchange models, one with only four mesons (π,σ,/rho/,ω) but with a 25% admixture of γ 5 coupling for the pion, and a second with six mesons (π,σ,/rho/,ω,δ,/eta/) but pure γ 5 γ/sup μ/ pion coupling, are shown to give very good quantitative fits to the NN scattering phase shifts below 400 MeV, and also a good description of the /rvec p/ 40 Ca elastic scattering observables. Applications of this model to electromagnetic interactions of the two body system, with emphasis on the determination of relativistic current operators consistent with the dynamics and the exact treatment of current conservation in the presence of phenomenological form factors, will be described. 18 refs., 8 figs

  9. Relativistic gravitational potential and its relation to mass-energy

    International Nuclear Information System (INIS)

    Voracek, P.

    1979-01-01

    From the general theory of relativity a relation is deduced between the mass of a particle and the gravitational field at the position of the particle. For this purpose the fall of a particle of negligible mass in the gravitational field of a massive body is used. After establishing the relativistic potential and its relationship to the rest mass of the particle, we show, assuming conservation of mass-energy, that the difference between two potential-levels depends upon the value of the radial metric coefficient at the position of an observer. Further, it is proved that the relativistic potential is compatible with the general concept of the potential also from the standpoint of kinematics. In the third section it is shown that, although the mass-energy of a body is a function of the distance from it, this does not influence the relativistic potential of the body itself. From this conclusion it follows that the mass-energy of a particle in a gravitational field is anisotropic; isotropic is the mass only. Further, the possibility of an incidental feed-back between two masses is ruled out, and the law of the composition of the relativistic gravitational potentials is deduced. Finally, it is shown, by means of a simple model, that local inhomogeneities in the ideal fluid filling the Universe have negligible influence on the total potential in large regions. (orig.)

  10. Radiatively driven relativistic spherical winds under relativistic radiative transfer

    Science.gov (United States)

    Fukue, J.

    2018-05-01

    We numerically investigate radiatively driven relativistic spherical winds from the central luminous object with mass M and luminosity L* under Newtonian gravity, special relativity, and relativistic radiative transfer. We solve both the relativistic radiative transfer equation and the relativistic hydrodynamical equations for spherically symmetric flows under the double-iteration processes, to obtain the intensity and velocity fields simultaneously. We found that the momentum-driven winds with scattering are quickly accelerated near the central object to reach the terminal speed. The results of numerical solutions are roughly fitted by a relation of \\dot{m}=0.7(Γ _*-1)\\tau _* β _* β _out^{-2.6}, where \\dot{m} is the mass-loss rate normalized by the critical one, Γ* the central luminosity normalized by the critical one, τ* the typical optical depth, β* the initial flow speed at the central core of radius R*, and βout the terminal speed normalized by the speed of light. This relation is close to the non-relativistic analytical solution, \\dot{m} = 2(Γ _*-1)\\tau _* β _* β _out^{-2}, which can be re-expressed as β _out^2/2 = (Γ _*-1)GM/c^2 R_*. That is, the present solution with small optical depth is similar to that of the radiatively driven free outflow. Furthermore, we found that the normalized luminosity (Eddington parameter) must be larger than unity for the relativistic spherical wind to blow off with intermediate or small optical depth, i.e. Γ _* ≳ \\sqrt{(1+β _out)^3/(1-β _out)}. We briefly investigate and discuss an isothermal wind.

  11. Evolution system study of a generalized scheme of relativistic magnetohydrodynamic

    International Nuclear Information System (INIS)

    Mahjoub, Bechir.

    1977-01-01

    A generalized scheme of relativistic magnetohydrodynamics is studied with a thermodynamical differential relation proposed by Fokker; this scheme takes account of interaction between the fluid and the magnetic field. Taking account of an integrability condition of this relation, the evolution system corresponding to this scheme is identical to the one corresponding to the usual scheme; it has the same characteristics; it is non-strictly hyperbolic with the same hypothesis of compressibility and it has, with respect to the Cauchy problem, an unique solution in a Gevrey class of index α=3/2 [fr

  12. Handbook of relativistic quantum chemistry

    International Nuclear Information System (INIS)

    Liu, Wenjian

    2017-01-01

    This handbook focuses on the foundations of relativistic quantum mechanics and addresses a number of fundamental issues never covered before in a book. For instance: How can many-body theory be combined with quantum electrodynamics? How can quantum electrodynamics be interfaced with relativistic quantum chemistry? What is the most appropriate relativistic many-electron Hamiltonian? How can we achieve relativistic explicit correlation? How can we formulate relativistic properties? - just to name a few. Since relativistic quantum chemistry is an integral component of computational chemistry, this handbook also supplements the ''Handbook of Computational Chemistry''. Generally speaking, it aims to establish the 'big picture' of relativistic molecular quantum mechanics as the union of quantum electrodynamics and relativistic quantum chemistry. Accordingly, it provides an accessible introduction for readers new to the field, presents advanced methodologies for experts, and discusses possible future perspectives, helping readers understand when/how to apply/develop the methodologies.

  13. Heuristic models of two-fermion relativistic systems with field-type interaction

    International Nuclear Information System (INIS)

    Duviryak, A

    2002-01-01

    We use the chain of simple heuristic expedients for obtaining perturbative and exactly solvable relativistic spectra for a family of two-fermionic bound systems with Coulomb-like interaction. In the case of electromagnetic interaction the spectrum coincides up to the second order in a coupling constant with that following from the quantum electrodynamics. Discrepancy occurs only for S-states which is the well-known difficulty in the bound-state problem. The confinement interaction is considered too

  14. RELATIVISTIC MEASUREMENTS FROM TIMING THE BINARY PULSAR PSR B1913+16

    Energy Technology Data Exchange (ETDEWEB)

    Weisberg, J. M.; Huang, Y., E-mail: jweisber@carleton.edu [Department of Physics and Astronomy, Carleton College, Northfield, MN 55057 (United States)

    2016-09-20

    We present relativistic analyses of 9257 measurements of times-of-arrival from the first binary pulsar, PSR B1913+16, acquired over the last 35 years. The determination of the “Keplerian” orbital elements plus two relativistic terms completely characterizes the binary system, aside from an unknown rotation about the line of sight, leading to a determination of the masses of the pulsar and its companion: 1.438 ± 0.001 M {sub ☉} and 1.390 ± 0.001 M {sub ☉}, respectively. In addition, the complete system characterization allows for the creation of relativistic gravitation test by comparing measured and predicted sizes of various relativistic phenomena. We find that the ratio of the observed orbital period decrease caused by gravitational wave damping (corrected by a kinematic term) to the general relativistic prediction is 0.9983 ± 0.0016, thereby confirms the existence and strength of gravitational radiation as predicted by general relativity. For the first time in this system, we have also successfully measured the two parameters characterizing the Shapiro gravitational propagation delay, and found that their values are consistent with general relativistic predictions. For the first time in any system, we have also measured the relativistic shape correction to the elliptical orbit, δ {sub θ} , although its intrinsic value is obscured by currently unquantified pulsar emission beam aberration. We have also marginally measured the time derivative of the projected semimajor axis, which, when improved in combination with beam aberration modeling from geodetic precession observations, should ultimately constrain the pulsar’s moment of inertia.

  15. Handbook of relativistic quantum chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wenjian (ed.) [Peking Univ., Beijing (China). Center for Computational Science and Engineering

    2017-03-01

    This handbook focuses on the foundations of relativistic quantum mechanics and addresses a number of fundamental issues never covered before in a book. For instance: How can many-body theory be combined with quantum electrodynamics? How can quantum electrodynamics be interfaced with relativistic quantum chemistry? What is the most appropriate relativistic many-electron Hamiltonian? How can we achieve relativistic explicit correlation? How can we formulate relativistic properties? - just to name a few. Since relativistic quantum chemistry is an integral component of computational chemistry, this handbook also supplements the ''Handbook of Computational Chemistry''. Generally speaking, it aims to establish the 'big picture' of relativistic molecular quantum mechanics as the union of quantum electrodynamics and relativistic quantum chemistry. Accordingly, it provides an accessible introduction for readers new to the field, presents advanced methodologies for experts, and discusses possible future perspectives, helping readers understand when/how to apply/develop the methodologies.

  16. Delocalization of Relativistic Dirac Particles in Disordered One-Dimensional Systems and Its Implementation with Cold Atoms

    International Nuclear Information System (INIS)

    Zhu Shiliang; Zhang Danwei; Wang, Z. D.

    2009-01-01

    We study theoretically the localization of relativistic particles in disordered one-dimensional chains. It is found that the relativistic particles tend to delocalization in comparison with the nonrelativistic particles with the same disorder strength. More intriguingly, we reveal that the massless Dirac particles are entirely delocalized for any energy due to the inherent chiral symmetry, leading to a well-known result that particles are always localized in one-dimensional systems for arbitrary weak disorders to break down. Furthermore, we propose a feasible scheme to detect the delocalization feature of the Dirac particles with cold atoms in a light-induced gauge field.

  17. Initial data for the relativistic gravitational N-body problem

    International Nuclear Information System (INIS)

    Chrusciel, Piotr T; Corvino, Justin; Isenberg, James

    2010-01-01

    In general relativity, an initial data set for an isolated gravitational system takes the form of a solution of the Einstein constraint equations which is asymptotically Euclidean on a specified end. Given a collection of N such data sets with a subregion of interest (bounded away from the specified end) chosen in each, we show that there exists a family of new initial data sets, each of which contains exact copies of each of the N chosen subregions, positioned in a chosen array in a single asymptotic end. These composite initial data sets model isolated, relativistic gravitational systems containing N chosen bodies in specified initial configurations. (fast track communication)

  18. Relativistic dynamical reduction models and nonlocality

    International Nuclear Information System (INIS)

    Ghirardi, G.C.; Grassi, R.

    1990-09-01

    We discuss some features of continuous dynamical models yielding state vector reduction and we briefly sketch some recent attempts to get a relativistic generalization of them. Within the relativistic context we analyze in detail the local an nonlocal features of the reduction mechanism and we investigate critically the possibility of attributing objective properties to individual systems in the micro and macroscopic cases. At the nonrelativistic level, two physically equivalent versions of continuous reduction mechanisms have been presented. However, only one of them can be taken as a starting point for the above considered relativistic generalization. By resorting to counterfactual arguments we show that the reason for this lies in the fact that the stochasticity involved in the two approaches has different conceptual implications. (author). 7 refs, 4 figs

  19. Methods in relativistic nuclear physics

    International Nuclear Information System (INIS)

    Danos, M.; Gillet, V.; Cauvin, M.

    1984-01-01

    This book is intended to provide the methods and tools for performing actual calculations for finite many-body systems of bound relativistic constituent particles. The aim is to cover thoroughly the methodological aspects of the relativistic many-body problem for bound states while avoiding the presentation of specific models. The many examples contained in the later part of the work are meant to give concrete illustrations of how to actually apply the methods which are given in the first part. The basic framework of the approach is the lagrangian field theory solved in the time-independent Schroedinger picture. (Auth.)

  20. Relationship between quantum walks and relativistic quantum mechanics

    International Nuclear Information System (INIS)

    Chandrashekar, C. M.; Banerjee, Subhashish; Srikanth, R.

    2010-01-01

    Quantum walk models have been used as an algorithmic tool for quantum computation and to describe various physical processes. This article revisits the relationship between relativistic quantum mechanics and the quantum walks. We show the similarities of the mathematical structure of the decoupled and coupled forms of the discrete-time quantum walk to that of the Klein-Gordon and Dirac equations, respectively. In the latter case, the coin emerges as an analog of the spinor degree of freedom. Discrete-time quantum walk as a coupled form of the continuous-time quantum walk is also shown by transforming the decoupled form of the discrete-time quantum walk to the Schroedinger form. By showing the coin to be a means to make the walk reversible and that the Dirac-like structure is a consequence of the coin use, our work suggests that the relativistic causal structure is a consequence of conservation of information. However, decoherence (modeled by projective measurements on position space) generates entropy that increases with time, making the walk irreversible and thereby producing an arrow of time. The Lieb-Robinson bound is used to highlight the causal structure of the quantum walk to put in perspective the relativistic structure of the quantum walk, the maximum speed of walk propagation, and earlier findings related to the finite spread of the walk probability distribution. We also present a two-dimensional quantum walk model on a two-state system to which the study can be extended.

  1. Numerical solution of ordinary differential equations. For classical, relativistic and nano systems

    International Nuclear Information System (INIS)

    Greenspan, D.

    2006-01-01

    An up-to-date survey on numerical solutions with theory, intuition and applications. Ordinary differential equations (ODE) play a significant role in mathematics, physics and engineering sciences, and thus are part of relevant college and university courses. Many problems, however, both traditional and modern, do not possess exact solutions, and must be treated numerically. Usually this is done with software packages, but for this to be efficient requires a sound understanding of the mathematics involved. This work meets the need for an affordable textbook that helps in understanding numerical solutions of ODE. Carefully structured by an experienced textbook author, it provides a survey of ODE for various applications, both classical and modern, including such special applications as relativistic and nano systems. The examples are carefully explained and compiled into an algorithm, each of which is presented generically, independent of a specific programming language, while each chapter is rounded off with exercises. The text meets the demands of MA200 courses and of the newly created Numerical Solution of Differential Equations courses, making it ideal for both students and lecturers in physics, mathematics, mechanical engineering, electrical engineering, as well as for physicists, mathematicians, engineers, and electrical engineers. From the Contents - Euler's Method - Runge-Kutta Methods - The Method of Taylor Expansions - Large Second Order Systems with Application to Nano Systems - Completely Conservative, Covariant Numerical Methodology - Instability - Numerical Solution of Tridiagonal Linear Algebraic Systems and Related Nonlinear Systems - Approximate Solution of Boundary Value Problems - Special Relativistic Motion - Special Topics - Appendix: Basic Matrix Operations - Bibliography. (orig.) (orig.)

  2. Non-relativistic conformal symmetries and Newton-Cartan structures

    International Nuclear Information System (INIS)

    Duval, C; Horvathy, P A

    2009-01-01

    This paper provides us with a unifying classification of the conformal infinitesimal symmetries of non-relativistic Newton-Cartan spacetime. The Lie algebras of non-relativistic conformal transformations are introduced via the Galilei structure. They form a family of infinite-dimensional Lie algebras labeled by a rational 'dynamical exponent', z. The Schroedinger-Virasoro algebra of Henkel et al corresponds to z = 2. Viewed as projective Newton-Cartan symmetries, they yield, for timelike geodesics, the usual Schroedinger Lie algebra, for which z = 2. For lightlike geodesics, they yield, in turn, the Conformal Galilean Algebra (CGA) of Lukierski, Stichel and Zakrzewski (alias 'alt' of Henkel), with z = 1. Physical systems realizing these symmetries include, e.g. classical systems of massive and massless non-relativistic particles, and also hydrodynamics, as well as Galilean electromagnetism.

  3. Relativistic stellar dynamics

    International Nuclear Information System (INIS)

    Contopoulos, G.

    1983-01-01

    In this paper, three main areas of relativistic stellar dynamics are reviewed: (a) The dynamics of clusters, or nuclei of galaxies, of very high density; (b) The dynamics of systems containing a massive black hole; and (c) The dynamics of particles (and photons) in an expanding Universe. The emphasis is on the use of orbit perturbations. (Auth.)

  4. Viscous photons in relativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Dion, Maxime; Paquet, Jean-Francois; Young, Clint; Jeon, Sangyong; Gale, Charles; Schenke, Bjoern

    2011-01-01

    Theoretical studies of the production of real thermal photons in relativistic heavy ion collisions at the Relativistic Heavy Ion Collider (RHIC) are performed. The space-time evolution of the colliding system is modelled using music, a 3+1D relativistic hydrodynamic simulation, using both its ideal and viscous versions. The inclusive spectrum and its azimuthal angular anisotropy are studied separately, and the relative contributions of the different photon sources are highlighted. It is shown that the photon v 2 coefficient is especially sensitive to the details of the microscopic dynamics like the equation of state, the ratio of shear viscosity over entropy density, η/s, and to the morphology of the initial state.

  5. Isolating relativistic effects in large-scale structure

    Science.gov (United States)

    Bonvin, Camille

    2014-12-01

    We present a fully relativistic calculation of the observed galaxy number counts in the linear regime. We show that besides the density fluctuations and redshift-space distortions, various relativistic effects contribute to observations at large scales. These effects all have the same physical origin: they result from the fact that our coordinate system, namely the galaxy redshift and the incoming photons’ direction, is distorted by inhomogeneities in our Universe. We then discuss the impact of the relativistic effects on the angular power spectrum and on the two-point correlation function in configuration space. We show that the latter is very well adapted to isolate the relativistic effects since it naturally makes use of the symmetries of the different contributions. In particular, we discuss how the Doppler effect and the gravitational redshift distortions can be isolated by looking for a dipole in the cross-correlation function between a bright and a faint population of galaxies.

  6. Relativistic bound state wave functions

    International Nuclear Information System (INIS)

    Micu, L.

    2005-01-01

    A particular method of writing the bound state wave functions in relativistic form is applied to the solutions of the Dirac equation with confining potentials in order to obtain a relativistic description of a quark antiquark bound system representing a given meson. Concerning the role of the effective constituent in the present approach we first observe that without this additional constituent we couldn't expand the bound state wave function in terms of products of free states. Indeed, we notice that if the wave function depends on the relative coordinates only, all the expansion coefficients would be infinite. Secondly we remark that the effective constituent enabled us to give a Lorentz covariant meaning to the potential energy of the bound system which is now seen as the 4th component of a 4-momentum. On the other side, by relating the effective constituent to the quantum fluctuations of the background field which generate the binding, we provided a justification for the existence of some spatial degrees of freedom accompanying the interaction potential. These ones, which are quite unusual in quantum mechanics, in our model are the natural consequence of the the independence of the quarks and can be seen as the effect of the imperfect cancellation of the vector momenta during the quantum fluctuations. Related with all these we remark that the adequate representation for the relativistic description of a bound system is the momentum representation, because of the transparent and easy way of writing the conservation laws and the transformation properties of the wave functions. The only condition to be fulfilled is to find a suitable way to take into account the potential energy of the bound system. A particular feature of the present approach is that the confining forces are due to a kind of glue where both quarks are embedded. This recalls other bound state models where the wave function is factorized in terms of constituent wave functions and the confinement is

  7. The dispersion relation of charge and current compensated relativistic electron beam-plasma system

    International Nuclear Information System (INIS)

    Vrba, P.; Schroetter, J.; Jarosova, P.; Koerbel, S.

    1978-01-01

    The unstable regions of relativistic electron beam-plasma system were determined by analysing the general dispersion relation numerically. The external parameters were varied to ensure more effective instability excitations. The full charge- and current compensation presumptions lead to the new synchronism predictions. The slow space charge wave and slow cyclotron wave of the return current are synchronous with the plasma ion wave. (author)

  8. Computational derivation of quantum relativist electromagnetic systems with forward-backward space-time shifts

    International Nuclear Information System (INIS)

    Dubois, Daniel M.

    2000-01-01

    This paper is a continuation of our preceding paper dealing with computational derivation of the Klein-Gordon quantum relativist equation and the Schroedinger quantum equation with forward and backward space-time shifts. The first part introduces forward and backward derivatives for discrete and continuous systems. Generalized complex discrete and continuous derivatives are deduced. The second part deduces the Klein-Gordon equation from the space-time complex continuous derivatives. These derivatives take into account forward-backward space-time shifts related to an internal phase velocity u. The internal group velocity v is related to the speed of light u.v=c 2 and to the external group and phase velocities u.v=v g .v p . Without time shift, the Schroedinger equation is deduced, with a supplementary term, which could represent a reference potential. The third part deduces the Quantum Relativist Klein-Gordon equation for a particle in an electromagnetic field

  9. On the dynamics of relativistic multi-layer spherical shell systems

    Energy Technology Data Exchange (ETDEWEB)

    Gaspar, Merse E; Racz, Istvan, E-mail: merse@rmki.kfki.hu, E-mail: iracz@rmki.kfki.hu [RMKI, H-1121 Budapest, Konkoly Thege Miklos ut 29-33, Budapest (Hungary)

    2011-04-21

    The relativistic time evolution of multi-layer spherically symmetric shell systems-consisting of infinitely thin shells separated by vacuum regions-is examined. Whenever two shells collide the evolution is continued with the assumption that the collision is totally transparent. The time evolution of various multi-layer shell systems-comprising large number of shells thereby mimicking the behavior of a thick shell making it possible to study the formation of acoustic singularities-is analyzed numerically and compared in certain cases to the corresponding Newtonian time evolution. The analytic setup is chosen such that the developed code is capable of following the evolution even inside the black hole region. This, in particular, allowed us to investigate the mass inflation phenomenon in the chosen framework.

  10. Fermionic particles with position-dependent mass in the presence of ...

    Indian Academy of Sciences (India)

    2013-02-01

    Feb 1, 2013 ... Quantum mechanical systems with position-dependent mass are proved ... The relativistic energy eigenvalues of the Dirac equation with ... the exact eigenfunctions can be derived from the following wave function generator:.

  11. Relativistic actions for bound-states and applications in the meson spectroscopy

    International Nuclear Information System (INIS)

    Silva Carvalho, Hendly da.

    1991-08-01

    We study relativistic equations for bound states of two-body systems using Dirac's constraint formalism and supersymmetry. The two-body system can be of spinless particles, one of them spinning and the other one spinless, or both of them spinning. The interaction is described by scalar, timelike four-vector and spacelike four-vector potentials under Lorentz transformations. As an application we use the relativistic wave equation for two scalar particles and calculate the mass spectra of the mesons treating them as spinless quark-antiquark bound states. The interaction potential in this case is a convenient adaptation of the potential employed in non-relativistic calculations. Finally, we compare our results with more recent experimental data and with theoretical results obtained with the same potential used by us but with a non-relativistic wave equation. We also compare our results with results obtained with the relativistic wave equation but with a different interaction potential. (author). 38 refs, 9 figs, 8 tabs

  12. Propagation of a TE surface mode in a relativistic electron beam–quantum plasma system

    International Nuclear Information System (INIS)

    Abdel Aziz, M.

    2012-01-01

    The dispersion properties of a transverse electric (TE) surface waves propagating along the interface between a magneto-quantum plasma–relativistic beam system and vacuum are studied by using the quantum hydrodynamic model. The general dispersion relations are derived and analyzed in some special cases of interest. Moreover, the effects of density gradients for the beam and plasma on the dispersion properties of surface waves are investigated. The kind of dispersion relations depends strongly on the ambient magnetic field B o via the gyro-frequency ω c , the quantum parameters, and the width of the plasma layer as well as the relativistic factor for the electron beam. It is found that the quantum effects play a crucial role to facilitate the propagation of TE surface waves. -- Highlights: ► Propagation of TE surface waves on bounded magneto-quantum plasma by relativistic beam is studied. ► The quantum plasma consists of transitional layer adjacent to uniform layer. ► Influence of quantum effects on the propagation of TE surface waves are taken into account. ► Effects of homogeneity and inhomogeneity for beam on TE surface waves are considered. ► It is found that quantum effects facilitate the propagation of TE surface modes.

  13. Relativistic density matrix in the diagonal momentum representation. Bose-gas

    International Nuclear Information System (INIS)

    Makhlin, A.N.; Sinyukov, Yu.M.

    1984-01-01

    The relativistic-invariance treatment of the ideal Bose-system arising from the diagonal momentum representation for the density matrix is developed. The average occupation members and their correlators for statistical systems in arbitrary inertial frames are found on the equal-time hypersurfaces. The relativistic partition function method for the calculation of thermodynamic properties of gases moving as a whole is constructed

  14. Positioning with stationary emitters in a two-dimensional space-time

    International Nuclear Information System (INIS)

    Coll, Bartolome; Ferrando, Joan Josep; Morales, Juan Antonio

    2006-01-01

    The basic elements of the relativistic positioning systems in a two-dimensional space-time have been introduced in a previous work [Phys. Rev. D 73, 084017 (2006)] where geodesic positioning systems, constituted by two geodesic emitters, have been considered in a flat space-time. Here, we want to show in what precise senses positioning systems allow to make relativistic gravimetry. For this purpose, we consider stationary positioning systems, constituted by two uniformly accelerated emitters separated by a constant distance, in two different situations: absence of gravitational field (Minkowski plane) and presence of a gravitational mass (Schwarzschild plane). The physical coordinate system constituted by the electromagnetic signals broadcasting the proper time of the emitters are the so called emission coordinates, and we show that, in such emission coordinates, the trajectories of the emitters in both situations, the absence and presence of a gravitational field, are identical. The interesting point is that, in spite of this fact, particular additional information on the system or on the user allows us not only to distinguish both space-times, but also to complete the dynamical description of emitters and user and even to measure the mass of the gravitational field. The precise information under which these dynamical and gravimetric results may be obtained is carefully pointed out

  15. Relativistic Linear Restoring Force

    Science.gov (United States)

    Clark, D.; Franklin, J.; Mann, N.

    2012-01-01

    We consider two different forms for a relativistic version of a linear restoring force. The pair comes from taking Hooke's law to be the force appearing on the right-hand side of the relativistic expressions: d"p"/d"t" or d"p"/d["tau"]. Either formulation recovers Hooke's law in the non-relativistic limit. In addition to these two forces, we…

  16. On the time delay between ultra-relativistic particles

    Energy Technology Data Exchange (ETDEWEB)

    Fleury, Pierre, E-mail: pierre.fleury@uct.ac.za [Department of Mathematics and Applied Mathematics, University of Cape Town, Rondebosch 7701, Cape Town (South Africa); Department of Physics, University of the Western Cape, Robert Sobukwe Road, Bellville 7535 (South Africa)

    2016-09-10

    The time delay between the receptions of ultra-relativistic particles emitted simultaneously is a useful observable for both fundamental physics and cosmology. The expression of the delay when the particles travel through an arbitrary spacetime has been derived recently by Fanizza et al., using a particular coordinate system and self-consistent assumptions. The present article shows that this formula enjoys a simple physical interpretation: the relative velocity between two ultra-relativistic particles is constant. This result reveals an interesting kinematical property of general relativity, namely that the tidal forces experienced by ultra-relativistic particles in the direction of their motion are much smaller than those experienced orthogonally to their motion.

  17. On the time delay between ultra-relativistic particles

    International Nuclear Information System (INIS)

    Fleury, Pierre

    2016-01-01

    The time delay between the receptions of ultra-relativistic particles emitted simultaneously is a useful observable for both fundamental physics and cosmology. The expression of the delay when the particles travel through an arbitrary spacetime has been derived recently by Fanizza et al., using a particular coordinate system and self-consistent assumptions. The present article shows that this formula enjoys a simple physical interpretation: the relative velocity between two ultra-relativistic particles is constant. This result reveals an interesting kinematical property of general relativity, namely that the tidal forces experienced by ultra-relativistic particles in the direction of their motion are much smaller than those experienced orthogonally to their motion.

  18. Electronic structure of FeTiSb using relativistic and scalar-relativistic approaches

    Energy Technology Data Exchange (ETDEWEB)

    Sahariya, Jagrati [Department of Physics, Manipal University Jaipur, Jaipur-303007, Rajasthan (India); Mund, H. S., E-mail: hmoond@gmail.com [Department of Physics, M. L. Sukhadia University, Udaipur-313001, Rajasthan (India)

    2016-05-06

    Electronic and magnetic properties of FeTiSb have been reported. The calculations are performed using spin polarized relativistic Korringa-Kohn-Rostoker scheme based on Green’s function method. Within SPR-KKR a fully relativistic and scalar-relativistic approaches have been used to investigate electronic structure of FeTiSb. Energy bands, total and partial density of states, atom specific magnetic moment along with total moment of FeTiSb alloys are presented.

  19. Relativistic entanglement from relativistic quantum mechanics in the rest-frame instant form of dynamics

    International Nuclear Information System (INIS)

    Lusanna, Luca

    2011-01-01

    After a review of the problems induced by the Lorentz signature of Minkowski space-time, like the need of a clock synchronization convention for the definition of 3-space and the complexity of the notion of relativistic center of mass, there is the introduction of a new formulation of relativistic quantum mechanics compatible with the theory of relativistic bound states. In it the zeroth postulate of non-relativistic quantum mechanics is not valid and the physics is described in the rest frame by a Hilbert space containing only relative variables. The non-locality of the Poincare' generators imply a kinematical non-locality and non-separability influencing the theory of relativistic entanglement and not connected with the standard quantum non-locality.

  20. Possible Relativistic Definitions of Parallax, Proper Motion and Radial Velocity

    National Research Council Canada - National Science Library

    Klioner, S

    2000-01-01

    .... In this paper, the authors briefly describe a relativistic model of space-based optical positional observations valid at a high level of accuracy, and suggest definitions of parallax, proper motion...

  1. Intense relativistic electron beam injector system for tokamak current drive

    International Nuclear Information System (INIS)

    Bailey, V.L.; Creedon, J.M.; Ecker, B.M.; Helava, H.I.

    1983-01-01

    We report experimental and theoretical studies of an intense relativistic electron beam (REB) injection system designed for tokamak current drive experiments. The injection system uses a standard high-voltage pulsed REB generator and a magnetically insulated transmission line (MITL) to drive an REB-accelerating diode in plasma. A series of preliminary experiments has been carried out to test the system by injecting REBs into a test chamber with preformed plasma and applied magnetic field. REBs were accelerated from two types of diodes: a conventional vacuum diode with foil anode, and a plasma diode, i.e., an REB cathode immersed in the plasma. REB current was in the range of 50 to 100 kA and REB particle energy ranged from 0.1 to 1.0 MeV. MITL power density exceeded 10 GW/cm 2 . Performance of the injection system and REB transport properties is documented for plasma densities from 5 x 10 12 to 2 x 10 14 cm -3 . Injection system data are compared with numerical calculations of the performance of the coupled system consisting of the generator, MITL, and diode

  2. Relativistic studies in actinides

    International Nuclear Information System (INIS)

    Weinberger, P.; Gonis, A.

    1987-01-01

    In this review the theoretical background is given for a relativistic description for actinide systems. A short introduction is given of the density functional theory which forms the basis for a fully relativistic single-particle theory. A section on the Dirac Hamiltonian is followed by a brief summary on group theoretical concepts. Single site scattering is presented such that formal extensions to the case of the presence of an internal (external) magnetic field and/or anisotropic scattering are evident. Multiple scattering is discussed such that it can readily be applied also to the problem of dislocations. In connection with the problem of selfconsistency particular attention is drawn to the use of complex energies. Finally the various theoretical aspects discussed are illustrated through the results of numerical calculations. 101 refs.; 37 figs.; 5 tabs

  3. Relativistic quantum kinetic analysis of a pion--nucleon system

    International Nuclear Information System (INIS)

    Alonso, J.D.

    1985-01-01

    A relativistic plasma of nucleons interacting through pions via the usual isospin-invariant Yukawa coupling is analyzed in the framework of the covariant Wigner function technique. The method is manifestly covariant and the temperature effects are considered. The relativistic quantum BBGKY hierarchy for the pion--nucleon system is derived. By generalizing the Bogolioubov analysis of the classical BBGKY hierarchy a non-perturbative renormalizable method is elaborated which allows the solution of the kinetic problem in form of power series of two cluster parameters which measure the importance of correlations. In the lowest order of the cluster expansion (Hartree approximation of zero-order approximation) the quasi-nucleon Fock space is introduced, the fermion Wigner function in the thermodynamic equilibrium is obtained and the vacuum effects are renormalized. In this approximation the plasma behaves as a perfect Fermi gas of nucleons and antinucleons, but there exists an abnormal configuration with a uniform pion condensate which is unstable. In the next approximation (quadratic in the small parameters) the quasi-pion dispersion relation is obtained and the vacuum polarization tensor is renormalized. The quasi-pion rest-mass spectra (''plasma frequency'') and the effective-coupling behaviour as functions of the thermodynamic state are given. By estimating the size of the cluster parameters the self-consistency of the approximation scheme is proved. The quasi-pion Fock space is introduced and the quasi-pion equilibrium Wigner function is obtained. From these results the problem of the higher-order corrections to the Hartree thermodynamics is outlined

  4. Instability of the time splitting scheme for the one-dimensional and relativistic Vlasov-Maxwell system

    CERN Document Server

    Huot, F; Bertrand, P; Sonnendrücker, E; Coulaud, O

    2003-01-01

    The Time Splitting Scheme (TSS) has been examined within the context of the one-dimensional (1D) relativistic Vlasov-Maxwell model. In the strongly relativistic regime of the laser-plasma interaction, the TSS cannot be applied to solve the Vlasov equation. We propose a new semi-Lagrangian scheme based on a full 2D advection and study its advantages over the classical Splitting procedure. Details of the underlying integration of the Vlasov equation appear to be important in achieving accurate plasma simulations. Examples are given which are related to the relativistic modulational instability and the self-induced transparency of an ultra-intense electromagnetic pulse in the relativistic regime.

  5. The relativistic mean-field description of nuclei and nuclear dynamics

    International Nuclear Information System (INIS)

    Reinhard, P.G.

    1989-01-01

    The relativistic mean-field model of the nucleus is reviewed. It describes the nucleus as a system of Dirac-Nucleons which interact in a relativistic covariant manner via meson fields. The meson fields are treated as mean fields, i.e. as non quantal c-number fields. The effects of the Dirac sea of the nucleons is neglected. The model is interpreted as a phenomenological ansatz providing a selfconsistent relativistic description of nuclei and nuclear dynamics. It is viewed, so to say, as the relativistic generalisation of the Skyrme-Hartree-Fock ansatz. The capability and the limitations of the model to describe nuclear properties are discussed. Recent applications to spherical and deformed nuclei and to nuclear dynamics are presented. (orig.)

  6. Duality of two-point functions for confined non-relativistic quark-antiquark systems

    International Nuclear Information System (INIS)

    Fishbane, P.M.; Gasiorowicz, S.G.; Kaus, P.

    1985-01-01

    An analog to the scattering matrix describes the spectrum and high-energy behavior of confined systems. We show that for non-relativistic systems this S-matrix is identical to a two-point function which transparently describes the bound states for all angular momenta. Confined systems can thus be described in a dual fashion. This result makes it possible to study the modification of linear trajectories (originating in a long-range confining potential) due to short range forces which are unknown except for the way in which they modify the asymptotic behavior of the two point function. A type of effective range expansion is one way to calculate the energy shifts. 9 refs

  7. Regionally Implicit Discontinuous Galerkin Methods for Solving the Relativistic Vlasov-Maxwell System Submitted to Iowa State University

    Science.gov (United States)

    Guthrey, Pierson Tyler

    The relativistic Vlasov-Maxwell system (RVM) models the behavior of collisionless plasma, where electrons and ions interact via the electromagnetic fields they generate. In the RVM system, electrons could accelerate to significant fractions of the speed of light. An idea that is actively being pursued by several research groups around the globe is to accelerate electrons to relativistic speeds by hitting a plasma with an intense laser beam. As the laser beam passes through the plasma it creates plasma wakes, much like a ship passing through water, which can trap electrons and push them to relativistic speeds. Such setups are known as laser wakefield accelerators, and have the potential to yield particle accelerators that are significantly smaller than those currently in use. Ultimately, the goal of such research is to harness the resulting electron beams to generate electromagnetic waves that can be used in medical imaging applications. High-order accurate numerical discretizations of kinetic Vlasov plasma models are very effective at yielding low-noise plasma simulations, but are computationally expensive to solve because of the high dimensionality. In addition to the general difficulties inherent to numerically simulating Vlasov models, the relativistic Vlasov-Maxwell system has unique challenges not present in the non-relativistic case. One such issue is that operator splitting of the phase gradient leads to potential instabilities, thus we require an alternative to operator splitting of the phase. The goal of the current work is to develop a new class of high-order accurate numerical methods for solving kinetic Vlasov models of plasma. The main discretization in configuration space is handled via a high-order finite element method called the discontinuous Galerkin method (DG). One difficulty is that standard explicit time-stepping methods for DG suffer from time-step restrictions that are significantly worse than what a simple Courant-Friedrichs-Lewy (CFL

  8. Electromagnetic interactions in relativistic systems of many bodies

    International Nuclear Information System (INIS)

    Cook, A.H.

    1987-09-01

    In a previous report (Cook, 1986, 1987) on a formulation of a quasi-relativistic quantum mechanical equation of motion for many particles, little was said of the electromagnetic interactions that keep a set of particles in a bound state. That omission is to some extent repaired in this report. (author). 3 refs

  9. Under-the-barrier dynamics in laser-induced relativistic tunneling.

    Science.gov (United States)

    Klaiber, Michael; Yakaboylu, Enderalp; Bauke, Heiko; Hatsagortsyan, Karen Z; Keitel, Christoph H

    2013-04-12

    The tunneling dynamics in relativistic strong-field ionization is investigated with the aim to develop an intuitive picture for the relativistic tunneling regime. We demonstrate that the tunneling picture applies also in the relativistic regime by introducing position dependent energy levels. The quantum dynamics in the classically forbidden region features two time scales, the typical time that characterizes the probability density's decay of the ionizing electron under the barrier (Keldysh time) and the time interval which the electron spends inside the barrier (Eisenbud-Wigner-Smith tunneling time). In the relativistic regime, an electron momentum shift as well as a spatial shift along the laser propagation direction arise during the under-the-barrier motion which are caused by the laser magnetic field induced Lorentz force. The momentum shift is proportional to the Keldysh time, while the wave-packet's spatial drift is proportional to the Eisenbud-Wigner-Smith time. The signature of the momentum shift is shown to be present in the ionization spectrum at the detector and, therefore, observable experimentally. In contrast, the signature of the Eisenbud-Wigner-Smith time delay disappears at far distances for pure quasistatic tunneling dynamics.

  10. Relativistic Tsiolkovsky equation -- a case study in special relativity

    Science.gov (United States)

    Redd, Jeremy; Panin, Alexander

    2011-10-01

    A possibility of using antimatter in future space propulsion systems is seriously discussed in scientific literature. Annihilation of matter and antimatter is not only the energy source of ultimate density 9x10^16 J/kg (provided that antimatter fuel is available on board or can be collected along the journey) but also potentially allows to reach ultimate exhaust speed -- speed of light c. Using relativistic rocket equation we discuss the feasibility of achieving relativistic velocities with annihilation powered photon engine, as well as the advantages and disadvantages of interstellar travel with relativistic and ultrarelativistic velocities.

  11. Relativistic covariant wave equations and acausality in external fields

    International Nuclear Information System (INIS)

    Pijlgroms, R.B.J.

    1980-01-01

    The author considers linear, finite dimensional, first order relativistic wave equations: (βsup(μ)ideltasub(μ)-β)PSI(x) = 0 with βsup(μ) and β constant matrices. Firstly , the question of the relativistic covariance conditions on these equations is considered. Then the theory of these equations with β non-singular is summarized. Theories with βsup(μ), β square matrices and β singular are also discussed. Non-square systems of covariant relativistic wave equations for arbitrary spin > 1 are then considered. Finally, the interaction with external fields and the acausality problem are discussed. (G.T.H.)

  12. Double Relativistic Electron Accelerating Mirror

    Directory of Open Access Journals (Sweden)

    Saltanat Sadykova

    2013-02-01

    Full Text Available In the present paper, the possibility of generation of thin dense relativistic electron layers is shown using the analytical and numerical modeling of laser pulse interaction with ultra-thin layers. It was shown that the maximum electron energy can be gained by optimal tuning between the target width, intensity and laser pulse duration. The optimal parameters were obtained from a self-consistent system of Maxwell equations and the equation of motion of electron layer. For thin relativistic electron layers, the gaining of maximum electron energies requires a second additional overdense plasma layer, thus cutting the laser radiation off the plasma screen at the instant of gaining the maximum energy (DREAM-schema.

  13. Relativistic particle in a box: Klein-Gordon versus Dirac equations

    Science.gov (United States)

    Alberto, Pedro; Das, Saurya; Vagenas, Elias C.

    2018-03-01

    The problem of a particle in a box is probably the simplest problem in quantum mechanics which allows for significant insight into the nature of quantum systems and thus is a cornerstone in the teaching of quantum mechanics. In relativistic quantum mechanics this problem allows also to highlight the implications of special relativity for quantum physics, namely the effect that spin has on the quantised energy spectra. To illustrate this point, we solve the problem of a spin zero relativistic particle in a one- and three-dimensional box using the Klein-Gordon equation in the Feshbach-Villars formalism. We compare the solutions and the energy spectra obtained with the corresponding ones from the Dirac equation for a spin one-half relativistic particle. We note the similarities and differences, in particular the spin effects in the relativistic energy spectrum. As expected, the non-relativistic limit is the same for both kinds of particles, since, for a particle in a box, the spin contribution to the energy is a relativistic effect.

  14. On the influence of drag effect on acoustic modes in two-condensate relativistic superfluid systems

    International Nuclear Information System (INIS)

    Vil'chinskij, S.I.

    1999-01-01

    Equations of velocities of acoustic excitations in a relativistic two-condensate superfluid system are derived with due account of reciprocal drag of superfluid motion (drag effect). The influence of the drag effect on acoustic modes in the system is considered. It is shown that the effect does not influence the nature of acoustic excitation oscillations but produces changes in the velocities of the second, third and fourth sounds

  15. Thermal relaxation time of a mixture of relativistic electrons and neutrinos

    International Nuclear Information System (INIS)

    Herrera, M.A.; Hacyan, S.

    1987-01-01

    The interaction between the components of a relativistic binary mixture is studied by means of a fully covariant formalism. Assuming both components to differ slightly in temperature, an application of the relativistic Boltzmann equation yields general expressions for the energy transfer rate and for the relaxation time of the system. The resulting relation is then applied to a mixture of relativistic electrons and neutrinos to obtain numerical values of its relaxation time. (author)

  16. Non-thermal particle acceleration in collisionless relativistic electron-proton reconnection

    Science.gov (United States)

    Werner, G. R.; Uzdensky, D. A.; Begelman, M. C.; Cerutti, B.; Nalewajko, K.

    2018-02-01

    Magnetic reconnection in relativistic collisionless plasmas can accelerate particles and power high-energy emission in various astrophysical systems. Whereas most previous studies focused on relativistic reconnection in pair plasmas, less attention has been paid to electron-ion plasma reconnection, expected in black hole accretion flows and relativistic jets. We report a comprehensive particle-in-cell numerical investigation of reconnection in an electron-ion plasma, spanning a wide range of ambient ion magnetizations σi, from the semirelativistic regime (ultrarelativistic electrons but non-relativistic ions, 10-3 ≪ σi ≪ 1) to the fully relativistic regime (both species are ultrarelativistic, σi ≫ 1). We investigate how the reconnection rate, electron and ion plasma flows, electric and magnetic field structures, electron/ion energy partitioning, and non-thermal particle acceleration depend on σi. Our key findings are: (1) the reconnection rate is about 0.1 of the Alfvénic rate across all regimes; (2) electrons can form concentrated moderately relativistic outflows even in the semirelativistic, small-σi regime; (3) while the released magnetic energy is partitioned equally between electrons and ions in the ultrarelativistic limit, the electron energy fraction declines gradually with decreased σi and asymptotes to about 0.25 in the semirelativistic regime; and (4) reconnection leads to efficient non-thermal electron acceleration with a σi-dependent power-law index, p(σ _i)˜eq const+0.7σ _i^{-1/2}. These findings are important for understanding black hole systems and lend support to semirelativistic reconnection models for powering non-thermal emission in blazar jets, offering a natural explanation for the spectral indices observed in these systems.

  17. Sensitivity of relativistic impulse approximation proton-nucleus elastic scattering calculations on relativistic mean-field parameterizations

    International Nuclear Information System (INIS)

    Hojsik, M.; Gmuca, S.

    1998-01-01

    Relativistic microscopic calculations are presented for proton elastic scattering from 40 Ca at 500 MeV. The underlying target densities are calculated within the framework of the relativistic mean-field theory with several parameter sets commonly in use. The self consistency of the scalar and vector densities (and thus to relativistic mean-field parameters) is investigated. Recently, the relativistic impulse approximation (RIA) has been widely and repeatedly used for the calculations of proton-nucleus scattering at intermediate energies. These calculations have exhibited significant improvements over the nonrelativistic approaches. The relativistic impulse approximation calculations. in particular, provide a dramatically better description of the spin observables, namely the analyzing power, A y , and the spin-rotation function, Q, at least for energies higher than 400 MeV. In the relativistic impulse approximation, the Dirac optical potential is obtained by folding of the local Lorentz-invariant amplitudes with the corresponding nuclear densities. For the spin zero targets the scalar and vector terms give the dominant contributions. Thus the scalar and vector nuclear densities (both, proton and neutron ones) play the dominant role in the relativistic impulse approximation. While the proton vector densities can be obtained by unfolding from the empirically known charge densities, all other densities used rely to a great extent on theoretical models. The various recipes are used to construct the neutron vector densities and the scalar densities for both, neutrons and protons. In this paper we will study the sensitivity of the relativistic impulse approximation results on the various sets of relativistic mean-field parameters currently in use

  18. Beyond the hall effect: pratical engineering from relativistic quantum field theory

    International Nuclear Information System (INIS)

    Srivastava, Y.

    1986-01-01

    The author discusses the successful microscopic relativistic quantum field theory viz., quantum electrodynamic (QED) as applied to condensed matter systems. A circuit version of the Heisenberg argument is presented to show that the electric and magnetic flux cannot be measured simultaneously if the usual position/momentum uncertainty of a charged particle confined in a circuit is to be preserved. The author suggests that the electronic transport of a microchip itself obeys some of the same field equations for QED in particular. A comparative list is presented

  19. Relativistic calculations of one-photon bound-free transition amplitudes in hydrogenic atoms

    International Nuclear Information System (INIS)

    Simo, E.; Kwato Njock, M.G.

    2005-04-01

    Photoionization transition matrix of hydrogenic systems are investigated theoretically within the framework of the tensorial formalism with relativistic arguments. Calculations are carried out exactly, without approximation. We derive continuum second-order Dirac-Coulomb Sturmian functions. The numerical simulation of our results is performed in the dipole approximation. We test our theory on selected nucleus from the Periodic Table. The results of the fully relativistic calculations are compared with those of the quasi-relativistic calculations. A conclusion is drawn about the level of reliability of the quite simplified quasi-relativistic approach. (author)

  20. The relativistic virial theorem

    International Nuclear Information System (INIS)

    Lucha, W.; Schoeberl, F.F.

    1989-11-01

    The relativistic generalization of the quantum-mechanical virial theorem is derived and used to clarify the connection between the nonrelativistic and (semi-)relativistic treatment of bound states. 12 refs. (Authors)

  1. Relativistic band gaps in one-dimensional disordered systems

    International Nuclear Information System (INIS)

    Clerk, G.J.; McKellar, B.H.J.

    1992-01-01

    Conditions for the existence of band gaps in a one-dimensional disordered array of δ-function potentials possessing short range order are developed in a relativistic framework. Both Lorentz vector and scalar type potentials are treated. The relationship between the energy gaps and the transmission properties of the array are also discussed. 20 refs., 2 figs

  2. On quantization of relativistic string theory

    International Nuclear Information System (INIS)

    Isaev, A.P.

    1982-01-01

    Quantization of the relativistic string theory based on methods of the constrained Hamiltonian systems quantization is considered. Connections of this approach and Polyakov's quantization are looked. New representation of a loop heat kernel is obtained

  3. Simulating the dynamics of relativistic stars via a light-cone approach

    International Nuclear Information System (INIS)

    Siebel, Florian; Mueller, Ewald; Font, Jose A.; Papadopoulos, Philippos

    2002-01-01

    We present new numerical algorithms for the coupled Einstein-perfect-fluid system in axisymmetry. Our framework uses a foliation based on a family of light cones, emanating from a regular center, and terminating at future null infinity. This coordinate system is well adapted to the study of the dynamical spacetimes associated with isolated relativistic compact objects such as neutron stars. In particular, the approach allows the unambiguous extraction of gravitational waves at future null infinity and avoids spurious outer boundary reflections. The code can accurately maintain long-term stability of polytropic equilibrium models of relativistic stars. We demonstrate global energy conservation in a strongly perturbed neutron star spacetime, for which the total energy radiated away by gravitational waves corresponds to a significant fraction of the Bondi mass. As a first application we present results in the study of pulsations of axisymmetric relativistic stars, extracting the frequencies of the different fluid modes in fully relativistic evolutions of the Einstein-perfect-fluid system and making a first comparison between the gravitational news function and the predicted wave using the approximations of the quadrupole formula

  4. Multiwavelength Observations of Relativistic Jets from General Relativistic Magnetohydrodynamic Simulations

    Directory of Open Access Journals (Sweden)

    Richard Anantua

    2018-03-01

    Full Text Available This work summarizes a program intended to unify three burgeoning branches of the high-energy astrophysics of relativistic jets: general relativistic magnetohydrodynamic (GRMHD simulations of ever-increasing dynamical range, the microphysical theory of particle acceleration under relativistic conditions, and multiwavelength observations resolving ever-decreasing spatiotemporal scales. The process, which involves converting simulation output into time series of images and polarization maps that can be directly compared to observations, is performed by (1 self-consistently prescribing models for emission, absorption, and particle acceleration and (2 performing time-dependent polarized radiative transfer. M87 serves as an exemplary prototype for this investigation due to its prominent and well-studied jet and the imminent prospect of learning much more from Event Horizon Telescope (EHT observations this year. Synthetic observations can be directly compared with real observations for observational signatures such as jet instabilities, collimation, relativistic beaming, and polarization. The simplest models described adopt the standard equipartition hypothesis; other models calculate emission by relating it to current density or shear. These models are intended for application to the radio jet instead of the higher frequency emission, the disk and the wind, which will be subjects of future investigations.

  5. Low-momentum-transfer nonrelativistic limit of the relativistic impulse approximation expression for Compton-scattering doubly differential cross sections and characterization of their relativistic contributions

    International Nuclear Information System (INIS)

    LaJohn, L. A.

    2010-01-01

    The nonrelativistic (nr) impulse approximation (NRIA) expression for Compton-scattering doubly differential cross sections (DDCS) for inelastic photon scattering is recovered from the corresponding relativistic expression (RIA) of Ribberfors [Phys. Rev. B 12, 2067 (1975)] in the limit of low momentum transfer (q→0), valid even at relativistic incident photon energies ω 1 >m provided that the average initial momentum of the ejected electron i > is not too high, that is, i > b 1 >m using nr expressions when θ is small. For example, a 1% accuracy can be obtained when ω 1 =1 MeV if θ 1 increases into the MeV range, the maximum θ at which an accurate Compton peak can be obtained from nr expressions approaches closer to zero, because the θ at which the relativistic shift of CP to higher energy is greatest, which starts at 180 deg. when ω 1 min ,ρ rel ) (where p min is the relativistic version of the z component of the momentum of the initial electron and ρ rel is the relativistic charge density) and K(p min ) on p min . This characterization approach was used as a guide for making the nr QED S-matrix expression for the Compton peak kinematically relativistic. Such modified nr expressions can be more readily applied to large systems than the fully relativistic version.

  6. Status of quarkonia-like negative and positive parity states in a relativistic confinement scheme

    Science.gov (United States)

    Bhavsar, Tanvi; Shah, Manan; Vinodkumar, P. C.

    2018-03-01

    Properties of quarkonia-like states in the charm and bottom sector have been studied in the frame work of relativistic Dirac formalism with a linear confinement potential. We have computed the mass spectroscopy and decay properties (vector decay constant and leptonic decay width) of several quarkonia-like states. The present study is also intended to identify some of the unexplained states as mixed P-wave and mixed S-D-wave states of charmonia and bottomonia. The results indicate that the X(4140) state can be an admixture of two P states of charmonium. And the charmonium-like states X(4630) and X(4660) are the admixed state of S-D-waves. Similarly, the X(10610) state recently reported by Belle II can be mixed P-states of bottomonium. In the relativistic framework we have computed the vector decay constant and the leptonic decay width for S wave charmonium and bottomonium. The leptonic decay widths for the J^{PC} = 1^{-} mixed states are also predicted. Further, both the masses and the leptonic decay width are considered for the identification of the quarkonia-like states.

  7. Cyberinfrastructure for Computational Relativistic Astrophysics

    OpenAIRE

    Ott, Christian

    2012-01-01

    Poster presented at the NSF Office of Cyberinfrastructure CyberBridges CAREER PI workshop. This poster discusses the computational challenges involved in the modeling of complex relativistic astrophysical systems. The Einstein Toolkit is introduced. It is an open-source community infrastructure for numerical relativity and computational astrophysics.

  8. Plasma relativistic microwave electronics

    International Nuclear Information System (INIS)

    Kuzelev, M.V.; Loza, O.T.; Rukhadze, A.A.; Strelkov, P.S.; Shkvarunets, A.G.

    2001-01-01

    One formulated the principles of plasma relativistic microwave electronics based on the induced Cherenkov radiation of electromagnetic waves at interaction of a relativistic electron beam with plasma. One developed the theory of plasma relativistic generators and accelerators of microwave radiation, designed and studied the prototypes of such devices. One studied theoretically the mechanisms of radiation, calculated the efficiencies and the frequency spectra of plasma relativistic microwave generators and accelerators. The theory findings are proved by the experiment: intensity of the designed sources of microwave radiation is equal to 500 μW, the frequency of microwave radiation is increased by 7 times (from 4 up to 28 GHz), the width of radiation frequency band may vary from several up to 100%. The designed sources of microwave radiation are no else compared in the electronics [ru

  9. Relativistic Quantum Mechanics

    International Nuclear Information System (INIS)

    Antoine, J-P

    2004-01-01

    The aim of relativistic quantum mechanics is to describe the finer details of the structure of atoms and molecules, where relativistic effects become nonnegligible. It is a sort of intermediate realm, between the familiar nonrelativistic quantum mechanics and fully relativistic quantum field theory, and thus it lacks the simplicity and elegance of both. Yet it is a necessary tool, mostly for quantum chemists. Pilkuhn's book offers to this audience an up-to-date survey of these methods, which is quite welcome since most previous textbooks are at least ten years old. The point of view of the author is to start immediately in the relativistic domain, following the lead of Maxwell's equations rather than classical mechanics, and thus to treat the nonrelativistic version as an approximation. Thus Chapter 1 takes off from Maxwell's equations (in the noncovariant Coulomb gauge) and gradually derives the basic aspects of Quantum Mechanics in a rather pedestrian way (states and observables, Hilbert space, operators, quantum measurement, scattering,. Chapter 2 starts with the Lorentz transformations, then continues with the Pauli spin equation and the Dirac equation and some of their applications (notably the hydrogen atom). Chapter 3 is entitled 'Quantum fields and particles', but falls short of treating quantum field theory properly: only creation/annihilation operators are considered, for a particle in a box. The emphasis is on two-electron states (the Pauli principle, the Foldy--Wouthuysen elimination of small components of Dirac spinors, Breit projection operators. Chapter 4 is devoted to scattering theory and the description of relativistic bound states. Chapter 5, finally, covers hyperfine interactions and radiative corrections. As we said above, relativistic quantum mechanics is by nature limited in scope and rather inelegant and Pilkuhn's book is no exception. The notation is often heavy (mostly noncovariant) and the mathematical level rather low. The central topic

  10. Relativistic particle in a box

    OpenAIRE

    Alberto, P.; Fiolhais, Carlos; Gil, Victor

    1996-01-01

    The problem of a relativistic spin 1/2 particle confined to a one-dimensional box is solved in a way that resembles closely the solution of the well known quantum-mechanical textbook problem of a non-relativistic particle in a box. The energy levels and probability density are computed and compared with the non-relativistic case

  11. Relativistic hydrodynamics

    CERN Document Server

    Luciano, Rezzolla

    2013-01-01

    Relativistic hydrodynamics is a very successful theoretical framework to describe the dynamics of matter from scales as small as those of colliding elementary particles, up to the largest scales in the universe. This book provides an up-to-date, lively, and approachable introduction to the mathematical formalism, numerical techniques, and applications of relativistic hydrodynamics. The topic is typically covered either by very formal or by very phenomenological books, but is instead presented here in a form that will be appreciated both by students and researchers in the field. The topics covered in the book are the results of work carried out over the last 40 years, which can be found in rather technical research articles with dissimilar notations and styles. The book is not just a collection of scattered information, but a well-organized description of relativistic hydrodynamics, from the basic principles of statistical kinetic theory, down to the technical aspects of numerical methods devised for the solut...

  12. The incompressible non-relativistic Navier-Stokes equation from gravity

    International Nuclear Information System (INIS)

    Bhattacharyya, Sayantani; Minwalla, Shiraz; Wadia, Spenta R.

    2009-01-01

    We note that the equations of relativistic hydrodynamics reduce to the incompressible Navier-Stokes equations in a particular scaling limit. In this limit boundary metric fluctuations of the underlying relativistic system turn into a forcing function identical to the action of a background electromagnetic field on the effectively charged fluid. We demonstrate that special conformal symmetries of the parent relativistic theory descend to 'accelerated boost' symmetries of the Navier-Stokes equations, uncovering a conformal symmetry structure of these equations. Applying our scaling limit to holographically induced fluid dynamics, we find gravity dual descriptions of an arbitrary solution of the forced non-relativistic incompressible Navier-Stokes equations. In the holographic context we also find a simple forced steady state shear solution to the Navier-Stokes equations, and demonstrate that this solution turns unstable at high enough Reynolds numbers, indicating a possible eventual transition to turbulence.

  13. Quantization of a relativistic particle on the SL(2.R) manifold based on Hamiltonian reduction

    International Nuclear Information System (INIS)

    Jorjadze, G.; O'Raifeartaigh, L.; Tsutsui, I.

    1994-07-01

    A quantum theory is constructed for the system of a relativistic particle with mass m moving freely on the SL(2.R) group manifold. Applied to the cotangent bundle of SL(2.R). the method of Hamiltonian reduction allows us to split the reduced system into two coadjoint orbits of the group. We find that the Hilbert space consists of states given by the discrete series of the unitary irreducible representations of SL(2.R). and with a positive-definite, discrete spectrum. (author)

  14. Study of quantum spin correlations of relativistic electron pairs - Testing nonlocality of relativistic quantum mechanics

    International Nuclear Information System (INIS)

    Bodek, K.; Rozpędzik, D.; Zejma, J.; Caban, P.; Rembieliński, J.; Włodarczyk, M.; Ciborowski, J.; Enders, J.; Köhler, A.; Kozela, A.

    2013-01-01

    The Polish-German project QUEST aims at studying relativistic quantum spin correlations of the Einstein-Rosen-Podolsky-Bohm type, through measurement of the correlation function and the corresponding probabilities for relativistic electron pairs. The results will be compared to theoretical predictions obtained by us within the framework of relativistic quantum mechanics, based on assumptions regarding the form of the relativistic spin operator. Agreement or divergence will be interpreted in the context of non-uniqueness of the relativistic spin operator in quantum mechanics as well as dependence of the correlation function on the choice of observables representing the spin. Pairs of correlated electrons will originate from the Mo/ller scattering of polarized 15 MeV electrons provided by the superconducting Darmstadt electron linear accelerator S-DALINAC, TU Darmstadt, incident on a Be target. Spin projections will be determined using the Mott polarimetry technique. Measurements (starting 2013) are planned for longitudinal and transverse beam polarizations and different orientations of the beam polarization vector w.r.t. the Mo/ller scattering plane. This is the first project to study relativistic spin correlations for particles with mass

  15. A relativistic quarkonium potential model

    International Nuclear Information System (INIS)

    Klima, B.; Maor, U.

    1984-04-01

    We review a recently developed relativistic quark-antiquark bound state equation using the expansion in intermediate states. Using a QCD motivated potential we succeeded very well to fit both the heavy systems (banti b, canti c) and the light systems (santi s, uanti u and danti d). Here we emphasize our results on heavy-light sustems and on the possible (tanti t) family. (orig.)

  16. Relativistic viscoelastic fluid mechanics

    International Nuclear Information System (INIS)

    Fukuma, Masafumi; Sakatani, Yuho

    2011-01-01

    A detailed study is carried out for the relativistic theory of viscoelasticity which was recently constructed on the basis of Onsager's linear nonequilibrium thermodynamics. After rederiving the theory using a local argument with the entropy current, we show that this theory universally reduces to the standard relativistic Navier-Stokes fluid mechanics in the long time limit. Since effects of elasticity are taken into account, the dynamics at short time scales is modified from that given by the Navier-Stokes equations, so that acausal problems intrinsic to relativistic Navier-Stokes fluids are significantly remedied. We in particular show that the wave equations for the propagation of disturbance around a hydrostatic equilibrium in Minkowski space-time become symmetric hyperbolic for some range of parameters, so that the model is free of acausality problems. This observation suggests that the relativistic viscoelastic model with such parameters can be regarded as a causal completion of relativistic Navier-Stokes fluid mechanics. By adjusting parameters to various values, this theory can treat a wide variety of materials including elastic materials, Maxwell materials, Kelvin-Voigt materials, and (a nonlinearly generalized version of) simplified Israel-Stewart fluids, and thus we expect the theory to be the most universal description of single-component relativistic continuum materials. We also show that the presence of strains and the corresponding change in temperature are naturally unified through the Tolman law in a generally covariant description of continuum mechanics.

  17. Relativistic viscoelastic fluid mechanics.

    Science.gov (United States)

    Fukuma, Masafumi; Sakatani, Yuho

    2011-08-01

    A detailed study is carried out for the relativistic theory of viscoelasticity which was recently constructed on the basis of Onsager's linear nonequilibrium thermodynamics. After rederiving the theory using a local argument with the entropy current, we show that this theory universally reduces to the standard relativistic Navier-Stokes fluid mechanics in the long time limit. Since effects of elasticity are taken into account, the dynamics at short time scales is modified from that given by the Navier-Stokes equations, so that acausal problems intrinsic to relativistic Navier-Stokes fluids are significantly remedied. We in particular show that the wave equations for the propagation of disturbance around a hydrostatic equilibrium in Minkowski space-time become symmetric hyperbolic for some range of parameters, so that the model is free of acausality problems. This observation suggests that the relativistic viscoelastic model with such parameters can be regarded as a causal completion of relativistic Navier-Stokes fluid mechanics. By adjusting parameters to various values, this theory can treat a wide variety of materials including elastic materials, Maxwell materials, Kelvin-Voigt materials, and (a nonlinearly generalized version of) simplified Israel-Stewart fluids, and thus we expect the theory to be the most universal description of single-component relativistic continuum materials. We also show that the presence of strains and the corresponding change in temperature are naturally unified through the Tolman law in a generally covariant description of continuum mechanics.

  18. Relativistic Coulomb Fission

    Science.gov (United States)

    Norbury, John W.

    1992-01-01

    Nuclear fission reactions induced by the electromagnetic field of relativistic nuclei are studied for energies relevant to present and future relativistic heavy ion accelerators. Cross sections are calculated for U-238 and Pu-239 fission induced by C-12, Si-28, Au-197, and U-238 projectiles. It is found that some of the cross sections can exceed 10 b.

  19. Relativistic Shock Acceleration

    International Nuclear Information System (INIS)

    Duffy, P.; Downes, T.P.; Gallant, Y.A.; Kirk, J.G.

    1999-01-01

    In this paper we briefly review the basic theory of shock waves in relativistic hydrodynamics and magneto-hydrodynamics, emphasising some astrophysically interesting cases. We then present an overview of the theory of particle acceleration at such shocks describing the methods used to calculate the spectral indices of energetic particles. Recent results on acceleration at ultra-relativistic shocks are discussed. (author)

  20. Quantum theoretical physics is statistical and relativistic

    International Nuclear Information System (INIS)

    Harding, C.

    1980-01-01

    A new theoretical framework for the quantum mechanism is presented. It is based on a strict deterministic behavior of single systems. The conventional QM equation, however, is found to describe statistical results of many classical systems. It will be seen, moreover, that a rigorous synthesis of our theory requires relativistic kinematics. So, QM is not only a classical statistical theory, it is, of necessity, a relativistic theory. The equation of the theory does not just duplicate QM, it indicates an inherent nonlinearity in QM which is subject to experimental verification. It is shown, therefore, that conventional QM is a corollary of classical deterministic principles. It is suggested that this concept of nature conflicts with that prevalent in modern physics. (author)

  1. Spontaneous spin-polarization and phase transition in the relativistic approach

    International Nuclear Information System (INIS)

    Maruyama, Tomoyuki; Tatsumi, Toshitaka

    2001-01-01

    We study the spin-polarization mechanism in the highly dense nuclear matter with the relativistic mean-field approach. In the relativistic Hartree-Fock framework we find that there are two kinds of spin-spin interaction channels, which are the axial-vector and tensor exchange ones. If each interaction is strong and different sign, the system loses the spherical symmetry and holds the spin-polarization in the high-density region. When the axial-vector interaction is negative enough, the system holds ferromagnetism. (author)

  2. Analysis of experimental data on relativistic nuclear collisions in the Lobachevsky space

    International Nuclear Information System (INIS)

    Baldin, A.A.; Baldina, Eh.G.; Kladnitskaya, E.N.; Rogachevskij, O.V.

    2004-01-01

    Relativistic nuclear collisions are considered in terms of relative 4-velocity and rapidity space (the Lobachevsky space). The connection between geometric relations in the Lobachevsky space and measurable (experimentally determined) kinematic characteristics (transverse momentum, longitudinal rapidity, square relative 4-velocity b ik , etc.) is discussed. The experimental data obtained using the propane bubble chamber are analyzed on the basis of triangulation in the Lobachevsky space. General properties of relativistic invariants distributions characterizing the geometric position of particles in the Lobachevsky space are discussed. The transition energy region is considered on the basis of relativistic approach to experimental data on multiparticle processes. Possible applications of the obtained results for planning of experimental research and analysis of data on multiple particle production are discussed

  3. Electronic structure of molecules using relativistic effective core potentials

    International Nuclear Information System (INIS)

    Hay, P.J.

    1981-01-01

    Starting with one-component Cowan-Griffin relativistic Hartree-Fock orbitals, which successfully incorporate the mass-velocity and Darwin terms present in more complicated wavefunctions such as Dirac-Hartree-Fock, one can derive relativistic effective core potentials (RECP's) to carry out molecular calculations. These potentials implicitly include the dominant relativistic terms for molecules while allowing one to use the traditional quantum chemical techniques for studying the electronic structure of molecules. The effects of spin-orbit coupling can then be included using orbitals from such calculations using an effective 1-electron, 1-center spin-orbit operator. Applications to molecular systems involving heavy atoms, show good agreement with available spectroscopic data on molecular geometries and excitation energies

  4. Present status of the theoretical relativistic plasma SHF electronics

    International Nuclear Information System (INIS)

    Kuzelev, M.V.; Rukhadze, A.A.

    2000-01-01

    Paper presents a review of theoretical investigations into powerful sources of SHF waves grounded on the forced emission of relativistic electron beams in plasma wave guides and resonator. Emission sources operating under amplification of a certain inlet signal and under generation mode were studied. Two mechanisms of forced emission: resonance Cherenkov radiation of relativistic electron beams in plasma and nonresonance Pierce emission resulting from evolution of high-frequency Pierce instability, were studied. Paper discusses theoretical problems only, all evaluations and calculations are made for the parameters of the exact experiments, the theoretical results are compared with the available experimental data. Factors affecting formation of spectrum of waves excited by relativistic electron beam in plasma systems are discussed [ru

  5. Future relativistic heavy ion experiments

    International Nuclear Information System (INIS)

    Pugh, H.G.

    1980-12-01

    Equations of state for nuclear matter and ongoing experimental studies are discussed. Relativistic heavy ion physics is the only opportunity to study in the laboratory the properties of extended multiquark systems under conditions such that quarks might run together into new arrangements previously unobserved. Several lines of further study are mentioned

  6. Relativistic impulse dynamics.

    Science.gov (United States)

    Swanson, Stanley M

    2011-08-01

    Classical electrodynamics has some annoying rough edges. The self-energy of charges is infinite without a cutoff. The calculation of relativistic trajectories is difficult because of retardation and an average radiation reaction term. By reconceptuallizing electrodynamics in terms of exchanges of impulses rather than describing it by forces and potentials, we eliminate these problems. A fully relativistic theory using photonlike null impulses is developed. Numerical calculations for a two-body, one-impulse-in-transit model are discussed. A simple relationship between center-of-mass scattering angle and angular momentum was found. It reproduces the Rutherford cross section at low velocities and agrees with the leading term of relativistic distinguishable-particle quantum cross sections (Møller, Mott) when the distance of closest approach is larger than the Compton wavelength of the particle. Magnetism emerges as a consequence of viewing retarded and advanced interactions from the vantage point of an instantaneous radius vector. Radiation reaction becomes the local conservation of energy-momentum between the radiating particle and the emitted impulse. A net action is defined that could be used in developing quantum dynamics without potentials. A reinterpretation of Newton's laws extends them to relativistic motion.

  7. Localization of relativistic particles

    International Nuclear Information System (INIS)

    Omnes, R.

    1997-01-01

    In order to discuss localization experiments and also to extend the consistent history interpretation of quantum mechanics to relativistic properties, the techniques introduced in a previous paper [J. Math. Phys. 38, 697 (1997)] are applied to the localization of a photon in a given region of space. An essential requirement is to exclude arbitrarily large wavelengths. The method is valid for a particle with any mass and spin. Though there is no proper position operator for a photon, one never needs one in practice. Causality is valid up to exponentially small corrections. copyright 1997 American Institute of Physics

  8. Gauge invariance and relativistic effects in X-ray absorption and scattering by solids

    International Nuclear Information System (INIS)

    Bouldi, N.; Brouder, C.

    2017-01-01

    There is an incompatibility between gauge invariance and the semi-classical time-dependent perturbation theory commonly used to calculate light absorption and scattering cross-sections. There is an additional incompatibility between perturbation theory and the description of the electron dynamics by a semi-relativistic Hamiltonian. In this paper, the gauge-dependence problem of exact perturbation theory is described, the proposed solutions are reviewed and it is concluded that none of them seems fully satisfactory. The problem is finally solved by using the fully relativistic absorption and scattering cross-sections given by quantum electrodynamics. Then, a new general Foldy-Wouthuysen transformation is presented. It is applied to the many-body case to obtain correct semi-relativistic transition operators. This transformation considerably simplifies the calculation of relativistic corrections. In the process, a new light-matter interaction term emerges, called the spin-position interaction, that contributes significantly to the magnetic X-ray circular dichroism of transition metals. We compare our result with the ones obtained by using several semi-relativistic time-dependent Hamiltonians. In the case of absorption, the final formula agrees with the result obtained from one of them. However, the correct scattering cross-section is not given by any of the semi-relativistic Hamiltonians. (authors)

  9. Scattering in relativistic particle mechanics

    International Nuclear Information System (INIS)

    De Bievre, S.

    1986-01-01

    The problem of direct interaction in relativistic particle mechanics has been extensively studied and a variety of models has been proposed avoiding the conclusions of the so-called no-interaction theorems. In this thesis the authors studied scattering in the relativistic two-body problem. He uses the results to analyze gauge invariance in Hamiltonian constraint models and the uniqueness of the symplectic structure in manifestly covariant relativistic particle mechanics. A general geometric framework that underlies approaches to relativistic particle mechanics is presented and the kinematic properties of the scattering transformation, i.e., those properties that arise solely from the invariance of the theory under the Poincare group are studied. The second part of the analysis of the relativistic two-body scattering problem is devoted to the dynamical properties of the scattering process. Using general geometric arguments, gauge invariance of the scattering transformation in the Todorov-Komar Hamiltonian constraint model is proved. Finally, quantization of the models is discussed

  10. The relativistic feedback discharge model of terrestrial gamma ray flashes

    Science.gov (United States)

    Dwyer, Joseph R.

    2012-02-01

    As thunderclouds charge, the large-scale fields may approach the relativistic feedback threshold, above which the production of relativistic runaway electron avalanches becomes self-sustaining through the generation of backward propagating runaway positrons and backscattered X-rays. Positive intracloud (IC) lightning may force the large-scale electric fields inside thunderclouds above the relativistic feedback threshold, causing the number of runaway electrons, and the resulting X-ray and gamma ray emission, to grow exponentially, producing very large fluxes of energetic radiation. As the flux of runaway electrons increases, ionization eventually causes the electric field to discharge, bringing the field below the relativistic feedback threshold again and reducing the flux of runaway electrons. These processes are investigated with a new model that includes the production, propagation, diffusion, and avalanche multiplication of runaway electrons; the production and propagation of X-rays and gamma rays; and the production, propagation, and annihilation of runaway positrons. In this model, referred to as the relativistic feedback discharge model, the large-scale electric fields are calculated self-consistently from the charge motion of the drifting low-energy electrons and ions, produced from the ionization of air by the runaway electrons, including two- and three-body attachment and recombination. Simulation results show that when relativistic feedback is considered, bright gamma ray flashes are a natural consequence of upward +IC lightning propagating in large-scale thundercloud fields. Furthermore, these flashes have the same time structures, including both single and multiple pulses, intensities, angular distributions, current moments, and energy spectra as terrestrial gamma ray flashes, and produce large current moments that should be observable in radio waves.

  11. Status of quarkonia-like negative and positive parity states in a relativistic confinement scheme

    International Nuclear Information System (INIS)

    Bhavsar, Tanvi; Vinodkumar, P.C.; Shah, Manan

    2018-01-01

    Properties of quarkonia-like states in the charm and bottom sector have been studied in the frame work of relativistic Dirac formalism with a linear confinement potential. We have computed the mass spectroscopy and decay properties (vector decay constant and leptonic decay width) of several quarkonia-like states. The present study is also intended to identify some of the unexplained states as mixed P-wave and mixed S-D-wave states of charmonia and bottomonia. The results indicate that the X(4140) state can be an admixture of two P states of charmonium. And the charmonium-like states X(4630) and X(4660) are the admixed state of S-D-waves. Similarly, the X(10610) state recently reported by Belle II can be mixed P-states of bottomonium. In the relativistic framework we have computed the vector decay constant and the leptonic decay width for S wave charmonium and bottomonium. The leptonic decay widths for the J PC = 1 -- mixed states are also predicted. Further, both the masses and the leptonic decay width are considered for the identification of the quarkonia-like states. (orig.)

  12. Relativistic finite-temperature Thomas-Fermi model

    Science.gov (United States)

    Faussurier, Gérald

    2017-11-01

    We investigate the relativistic finite-temperature Thomas-Fermi model, which has been proposed recently in an astrophysical context. Assuming a constant distribution of protons inside the nucleus of finite size avoids severe divergence of the electron density with respect to a point-like nucleus. A formula for the nuclear radius is chosen to treat any element. The relativistic finite-temperature Thomas-Fermi model matches the two asymptotic regimes, i.e., the non-relativistic and the ultra-relativistic finite-temperature Thomas-Fermi models. The equation of state is considered in detail. For each version of the finite-temperature Thomas-Fermi model, the pressure, the kinetic energy, and the entropy are calculated. The internal energy and free energy are also considered. The thermodynamic consistency of the three models is considered by working from the free energy. The virial question is also studied in the three cases as well as the relationship with the density functional theory. The relativistic finite-temperature Thomas-Fermi model is far more involved than the non-relativistic and ultra-relativistic finite-temperature Thomas-Fermi models that are very close to each other from a mathematical point of view.

  13. Relativistic generalization and extension to the non-Abelian gauge theory of Feynman's proof of the Maxwell equations

    International Nuclear Information System (INIS)

    Tanimura, Shogo

    1992-01-01

    R. P. Feynman showed F. J. Dyson a proof of the Lorentz force law and the homogeneous Maxwell equations, which he obtained starting from Newton's law of motion and the commutation relations between position and velocity for a single nonrelativistic particle. The author formulate both a special relativistic and a general relativistic version of Feynman's derivation. Especially in the general relativistic version they prove that the only possible fields that can consistently act on a quantum mechanical particle are scalar, gauge, and gravitational fields. They also extend Feynman's scheme to the case of non-Abelian gauge theory in the special relativistic context. 8 refs

  14. The relativistic rocket

    Energy Technology Data Exchange (ETDEWEB)

    Antippa, Adel F [Departement de Physique, Universite du Quebec a Trois-Rivieres, Trois-Rivieres, Quebec G9A 5H7 (Canada)

    2009-05-15

    We solve the problem of the relativistic rocket by making use of the relation between Lorentzian and Galilean velocities, as well as the laws of superposition of successive collinear Lorentz boosts in the limit of infinitesimal boosts. The solution is conceptually simple, and technically straightforward, and provides an example of a powerful method that can be applied to a wide range of special relativistic problems of linear acceleration.

  15. Relativistic length agony continued

    Directory of Open Access Journals (Sweden)

    Redžić D.V.

    2014-01-01

    Full Text Available We made an attempt to remedy recent confusing treatments of some basic relativistic concepts and results. Following the argument presented in an earlier paper (Redžić 2008b, we discussed the misconceptions that are recurrent points in the literature devoted to teaching relativity such as: there is no change in the object in Special Relativity, illusory character of relativistic length contraction, stresses and strains induced by Lorentz contraction, and related issues. We gave several examples of the traps of everyday language that lurk in Special Relativity. To remove a possible conceptual and terminological muddle, we made a distinction between the relativistic length reduction and relativistic FitzGerald-Lorentz contraction, corresponding to a passive and an active aspect of length contraction, respectively; we pointed out that both aspects have fundamental dynamical contents. As an illustration of our considerations, we discussed briefly the Dewan-Beran-Bell spaceship paradox and the ‘pole in a barn’ paradox. [Projekat Ministarstva nauke Republike Srbije, br. 171028

  16. An investigation of relativistic microscopic optical potential in terms of relativistic Brueckner-Bethe-Goldstone equation

    International Nuclear Information System (INIS)

    Chen Baoqiu; Ma Zhongyu

    1992-01-01

    Relativistic microscopic optical potential of nucleon-nucleus is derived from the relativistic Brueckner-Bethe-Goldstone (RBBG) equation. The complex effective mass of a nucleon is determined by a fit to 200 MeV p- 40 Ca scattering data. The relativistic microscopic optical potentials with this effective mass are obtained from RBBG for p- 16O , 40 Ca, 90 Zr and 208 Pb scattering in energy range from 160 to 800 MeV. The microscopic optical potential is used to study the proton- 40 Ca scattering problem at 200 MeV. The results, such as differential cross section, analyzing power and spin rotation function are compared with those calculated from phenomenological relativistic optical potential

  17. Electron-deuteron scattering in a relativistic theory of hadrons

    International Nuclear Information System (INIS)

    Phillips, D.

    1998-11-01

    The author reviews a three-dimensional formalism that provides a systematic way to include relativistic effects including relativistic kinematics, the effects of negative-energy states, and the boosts of the two-body system in calculations of two-body bound-states. He then explains how to construct a conserved current within this relativistic three-dimensional approach. This general theoretical framework is specifically applied to electron-deuteron scattering both in impulse approximation and when the ρπγ meson-exchange current is included. The experimentally-measured quantities A, B, and T 20 are calculated over the kinematic range that is probed in Jefferson Lab experiments. The role of both negative-energy states and meson retardation appears to be small in the region of interest

  18. Relativistic quantum mechanics

    International Nuclear Information System (INIS)

    Ollitrault, J.Y.

    1998-12-01

    These notes form an introduction to relativistic quantum mechanics. The mathematical formalism has been reduced to the minimum in order to enable the reader to calculate elementary physical processes. The second quantification and the field theory are the logical followings of this course. The reader is expected to know analytical mechanics (Lagrangian and Hamiltonian), non-relativistic quantum mechanics and some basis of restricted relativity. The purpose of the first 3 chapters is to define the quantum mechanics framework for already known notions about rotation transformations, wave propagation and restricted theory of relativity. The next 3 chapters are devoted to the application of relativistic quantum mechanics to a particle with 0,1/5 and 1 spin value. The last chapter deals with the processes involving several particles, these processes require field theory framework to be thoroughly described. (A.C.)

  19. Relativistic Energy Density Functionals: Exotic modes of excitation

    International Nuclear Information System (INIS)

    Vretenar, D.; Paar, N.; Marketin, T.

    2008-01-01

    The framework of relativistic energy density functionals has been applied to the description of a variety of nuclear structure phenomena, not only in spherical and deformed nuclei along the valley of β-stability, but also in exotic systems with extreme isospin values and close to the particle drip-lines. Dynamical aspects of exotic nuclear structure have been investigated with the relativistic quasiparticle random-phase approximation. We present results for the evolution of low-lying dipole (pygmy) strength in neutron-rich nuclei, and charged-current neutrino-nucleus cross sections.

  20. Relativistic Quantum Revivals

    International Nuclear Information System (INIS)

    Strange, P.

    2010-01-01

    Quantum revivals are now a well-known phenomena within nonrelativistic quantum theory. In this Letter we display the effects of relativity on revivals and quantum carpets. It is generally believed that revivals do not occur within a relativistic regime. Here we show that while this is generally true, it is possible, in principle, to set up wave packets with specific mathematical properties that do exhibit exact revivals within a fully relativistic theory.

  1. Towards relativistic quantum geometry

    Energy Technology Data Exchange (ETDEWEB)

    Ridao, Luis Santiago [Instituto de Investigaciones Físicas de Mar del Plata (IFIMAR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mar del Plata (Argentina); Bellini, Mauricio, E-mail: mbellini@mdp.edu.ar [Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Funes 3350, C.P. 7600, Mar del Plata (Argentina); Instituto de Investigaciones Físicas de Mar del Plata (IFIMAR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mar del Plata (Argentina)

    2015-12-17

    We obtain a gauge-invariant relativistic quantum geometry by using a Weylian-like manifold with a geometric scalar field which provides a gauge-invariant relativistic quantum theory in which the algebra of the Weylian-like field depends on observers. An example for a Reissner–Nordström black-hole is studied.

  2. The Relativistic Heavy Ion Collider control system

    International Nuclear Information System (INIS)

    Clifford, T.S.; Barton, D.S.; Oerter, B.R.

    1997-01-01

    The Relativistic Heavy Ion Collider control system has been used in the commissioning of the AGS to RHIC transfer line and in the first RHIC sextant test. Much of the controls infrastructure for networks and links has been installed throughout the collider. All of the controls hardware modules needed to be built for early RHIC operations have been designed and tested. Many of these VME modules are already being used in normal AGS operations. Over 150 VME based front end computers and device controllers will be installed by the Summer of 1998 in order to be ready for Fall of 1998. A few features are being added to the front end computer core software. The bulk of the Accelerator Device Objects (ADOs) which are instantiated in the FECs, have been written and tested in the early commissioning. A configuration database has been designed. Generic control and display of ADO parameters via a spreadsheet like program on the console level computers was provided early on in the control system development. User interface tools that were developed for the AGS control system have been used in RHIC applications. Some of the basic operations programs, like alarm display and save/restore, that are used in the AGS operations have been or will be expanded to support RHIC operations. A model for application programs which involves a console level manager servicing ADOs have been verified with a few RHIC applications. More applications need to be written for the Fall of 1998 commissioning effort. A sequencer for automatic control of the fill is being written with the expectation that it will be useful in early commissioning

  3. Fully relativistic coupled cluster and DFT study of electric field gradients at Hg in 199Hg compounds

    DEFF Research Database (Denmark)

    Arcisauskaité, Vaida; Knecht, Stefan; Sauer, Stephan P. A.

    2012-01-01

    We investigate the magnitude and interplay of relativistic and electron correlation effects on the electric field gradient (EFG) at the position of Hg in linear and bent HgL2 (L=CH3, Cl, Br, I) and trigonal planar [HgCl3]- complexes using four-component relativistic Dirac-Coulomb (DC) and non...

  4. Properties of Doubly Heavy Baryons in the Relativistic Quark Model

    International Nuclear Information System (INIS)

    Ebert, D.; Faustov, R.N.; Galkin, V.O.; Martynenko, A.P.

    2005-01-01

    Mass spectra and semileptonic decay rates of baryons consisting of two heavy (b or c) and one light quark are calculated in the framework of the relativistic quark model. The doubly heavy baryons are treated in the quark-diquark approximation. The ground and excited states of both the diquark and quark-diquark bound systems are considered. The quark-diquark potential is constructed. The light quark is treated completely relativistically, while the expansion in the inverse heavy-quark mass is used. The weak transition amplitudes of heavy diquarks bb and bc going, respectively, to bc and cc are explicitly expressed through the overlap integrals of the diquark wave functions in the whole accessible kinematic range. The relativistic baryon wave functions of the quark-diquark bound system are used for the calculation of the decay matrix elements, the Isgur-Wise function, and decay rates in the heavy-quark limit

  5. Radiation dominated relativistic current sheets

    International Nuclear Information System (INIS)

    Jaroschek, C.H.

    2008-01-01

    Relativistic Current Sheets (RCS) feature plasma instabilities considered as potential key to magnetic energy dissipation and non-thermal particle generation in Poynting flux dominated plasma flows. We show in a series of kinetic plasma simulations that the physical nature of non-linear RCS evolution changes in the presence of incoherent radiation losses: In the ultra-relativistic regime (i.e. magnetization parameter sigma = 104 defined as the ratio of magnetic to plasma rest frame energy density) the combination of non-linear RCS dynamics and synchrotron emission introduces a temperature anisotropy triggering the growth of the Relativistic Tearing Mode (RTM). As direct consequence the RTM prevails over the Relativistic Drift Kink (RDK) Mode as competitive RCS instability. This is in contrast to the previously studied situation of weakly relativistic RCS (sigma ∼ 1) where the RDK is dominant and most of the plasma is thermalized. The simulations witness the typical life cycle of ultra-relativistic RCS evolving from a violent radiation induced collapse towards a radiation quiescent state in rather classical Sweet-Parker topology. Such a transition towards Sweet-Parker configuration in the late non-linear evolution has immediate consequences for the efficiency of magnetic energy dissipation and non-thermal particle generation. Ceasing dissipation rates directly affect our present understanding of non-linear RCS evolution in conventional striped wind scenarios. (author)

  6. Relativistic gas in a Schwarzschild metric

    International Nuclear Information System (INIS)

    Kremer, Gilberto M

    2013-01-01

    A relativistic gas in a Schwarzschild metric is studied within the framework of a relativistic Boltzmann equation in the presence of gravitational fields, where Marle’s model for the collision operator of the Boltzmann equation is employed. The transport coefficients of the bulk and shear viscosities and thermal conductivity are determined from the Chapman–Enskog method. It is shown that the transport coefficients depend on the gravitational potential. Expressions for the transport coefficients in the presence of weak gravitational fields in the non-relativistic (low temperature) and ultra-relativistic (high temperature) limiting cases are given. Apart from the temperature gradient the heat flux has two relativistic terms. The first one, proposed by Eckart, is due to the inertia of energy and represents an isothermal heat flux when matter is accelerated. The other, suggested by Tolman, is proportional to the gravitational potential gradient and indicates that—in the absence of an acceleration field—a state of equilibrium of a relativistic gas in a gravitational field can be attained only if the temperature gradient is counterbalanced by a gravitational potential gradient. (paper)

  7. Extended Galilean symmetries of non-relativistic strings

    Energy Technology Data Exchange (ETDEWEB)

    Batlle, Carles [Departament de Matemàtiques and IOC, Universitat Politècnica de Catalunya, EPSEVG,Av. V. Balaguer 1, E-08808 Vilanova i la Geltrú (Spain); Gomis, Joaquim; Not, Daniel [Departament de Física Quàntica i Astrofísica and Institut de Ciències del Cosmos (ICCUB),Universitat de Barcelona,Martí i Franquès 1, E-08028 Barcelona (Spain)

    2017-02-09

    We consider two non-relativistic strings and their Galilean symmetries. These strings are obtained as the two possible non-relativistic (NR) limits of a relativistic string. One of them is non-vibrating and represents a continuum of non-relativistic massless particles, and the other one is a non-relativistic vibrating string. For both cases we write the generator of the most general point transformation and impose the condition of Noether symmetry. As a result we obtain two sets of non-relativistic Killing equations for the vector fields that generate the symmetry transformations. Solving these equations shows that NR strings exhibit two extended, infinite dimensional space-time symmetries which contain, as a subset, the Galilean symmetries. For each case, we compute the associated conserved charges and discuss the existence of non-central extensions.

  8. Relativistic generalization of strong plasma turbulence

    International Nuclear Information System (INIS)

    Chian, A.C.-L.

    1982-01-01

    Two fundamental electrostatic modes of an unmagnetized plasma, namely, ion acoustic mode and Langumir mode are studied. Previous theories are generalized to include the effect of relativistic mass variations. The existence of relativistic ion acoustic solitons is demonstrated. In addition, it is shown that simple, relativistic Langumir solitons do not exist in a infinite plasma. (L.C.) [pt

  9. The Wigner function in the relativistic quantum mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Kowalski, K., E-mail: kowalski@uni.lodz.pl; Rembieliński, J.

    2016-12-15

    A detailed study is presented of the relativistic Wigner function for a quantum spinless particle evolving in time according to the Salpeter equation. - Highlights: • We study the Wigner function for a quantum spinless relativistic particle. • We discuss the relativistic Wigner function introduced by Zavialov and Malokostov. • We introduce relativistic Wigner function based on the standard definition. • We find analytic expressions for relativistic Wigner functions.

  10. New relativistic generalization of the Heisenberg commutation relations

    International Nuclear Information System (INIS)

    Bohm, A.; Loewe, M.; Magnollay, P.; Tarlini, M.; Aldinger, R.R.; Kielanowski, P.

    1984-01-01

    A relativistic generalization of the Heisenberg commutation relations is suggested which is different from the conventional ones used for the intrinsic coordinates and momenta in the relativistic oscillator model and the relativistic string. This new quantum relativistic oscillator model is determined by the requirement that it gives a unified description of relativistic vibrations and rotations and contracts in the nonrelativistic limit c -1 →0 into the usual nonrelativistic harmonic oscillator

  11. Relativistic nuclear reactions and the intranuclear cascade method

    International Nuclear Information System (INIS)

    Duarte, S.J.B.

    1983-01-01

    The intranuclear cascade (INC) procedure is analised as a method to describe the processes of relativistic heavy ions collisions. The effects caused by nucleon concentration during the collision are discussed. It is shown explicitly that the occurence of nonbinary collisions among particles is not at all negligible, in spite of the fact that the convencional INC only permits nucleon-nucleon binary collisions. The relativistic invariance of the results obtained by the INC method is discussed. This is especially important when the method is applied for much higher energies. Many of conventional procedures in the method will give certainly different predictions depending on what system of reference is used. The origin of such non-invariance nature of INC calculations is discussed and an alternative way of defining the INC procedure which presents a better credibility with respect to the relativistic invariance property is proposed. (Author) [pt

  12. Relativistic corrections for the conventional, classical Nyquist theorem

    International Nuclear Information System (INIS)

    Theimer, O.; Dirk, E.H.

    1983-01-01

    New expressions for the Nyquist theorem are derived under the condition in which the random thermal speed of electrons, in a system of charged particles, can approach the speed of light. Both the case in which, the electron have not drift velocity relative to the ions or neutral particles and the case in which drift occours are investigated. In both instances, the new expressions for the Nyquist theorem are found to contain relativistic correction terms; however for electron temperatures T approx. 10 9 K and drift velocity magnitudes w approx. 0.5c, where c is the speed of light, the effects of these correction terms are generally small. The derivation of these relativistic corrections is carried out by means of procedures developed in an earlier work. A relativistic distribution function, which incorporates a constant drift velocity with a random thermal velocity for a given particle species, is developed

  13. Relativistic three-particle dynamical equations: I. Theoretical development

    International Nuclear Information System (INIS)

    Adhikari, S.K.; Tomio, L.; Frederico, T.

    1993-11-01

    Starting from the two-particle Bethe-Salpeter equation in the ladder approximation and integrating over the time component of momentum, three dimensional scattering integral equations satisfying constrains of relativistic unitarity and covariance are rederived. These equations were first derived by Weinberg and by Blankenbecler and Sugar. These two-particle equations are shown to be related by a transformation of variables. Hence it is shown to perform and relate dynamical calculation using these two equations. Similarly, starting from the Bethe-Salpeter-Faddeev equation for the three-particle system and integrating over the time component of momentum, several three dimensional three-particle scattering equations satisfying constraints of relativistic unitary and covariance are derived. Two of these three-particle equations are related by a transformation of variables as in the two-particle case. The three-particle equations obtained are very practical and suitable for performing relativistic scattering calculations. (author)

  14. The Grover energy transfer algorithm for relativistic speeds

    International Nuclear Information System (INIS)

    Garcia-Escartin, Juan Carlos; Chamorro-Posada, Pedro

    2010-01-01

    Grover's algorithm for quantum search can also be applied to classical energy transfer. The procedure takes a system in which the total energy is equally distributed among N subsystems and transfers most of it to one marked subsystem. We show that in a relativistic setting the efficiency of this procedure can be improved. We will consider the transfer of relativistic kinetic energy in a series of elastic collisions. In this case, the number of steps of the energy transfer procedure approaches 1 as the initial velocities of the objects become closer to the speed of light. This is a consequence of introducing nonlinearities in the procedure. However, the maximum attainable transfer will depend on the particular combination of speed and number of objects. In the procedure, we will use N elements, as in the classical non-relativistic case, instead of the log 2 (N) states of the quantum algorithm.

  15. Causal dissipation and shock profiles in the relativistic fluid dynamics of pure radiation.

    Science.gov (United States)

    Freistühler, Heinrich; Temple, Blake

    2014-06-08

    CURRENT THEORIES OF DISSIPATION IN THE RELATIVISTIC REGIME SUFFER FROM ONE OF TWO DEFICITS: either their dissipation is not causal or no profiles for strong shock waves exist. This paper proposes a relativistic Navier-Stokes-Fourier-type viscosity and heat conduction tensor such that the resulting second-order system of partial differential equations for the fluid dynamics of pure radiation is symmetric hyperbolic. This system has causal dissipation as well as the property that all shock waves of arbitrary strength have smooth profiles. Entropy production is positive both on gradients near those of solutions to the dissipation-free equations and on gradients of shock profiles. This shows that the new dissipation stress tensor complies to leading order with the principles of thermodynamics. Whether higher order modifications of the ansatz are required to obtain full compatibility with the second law far from the zero-dissipation equilibrium is left to further investigations. The system has exactly three a priori free parameters χ , η , ζ , corresponding physically to heat conductivity, shear viscosity and bulk viscosity. If the bulk viscosity is zero (as is stated in the literature) and the total stress-energy tensor is trace free, the entire viscosity and heat conduction tensor is determined to within a constant factor.

  16. Random phase approximation in relativistic approach

    International Nuclear Information System (INIS)

    Ma Zhongyu; Yang Ding; Tian Yuan; Cao Ligang

    2009-01-01

    Some special issues of the random phase approximation(RPA) in the relativistic approach are reviewed. A full consistency and proper treatment of coupling to the continuum are responsible for the successful application of the RPA in the description of dynamical properties of finite nuclei. The fully consistent relativistic RPA(RRPA) requires that the relativistic mean filed (RMF) wave function of the nucleus and the RRPA correlations are calculated in a same effective Lagrangian and the consistent treatment of the Dirac sea of negative energy states. The proper treatment of the single particle continuum with scattering asymptotic conditions in the RMF and RRPA is discussed. The full continuum spectrum can be described by the single particle Green's function and the relativistic continuum RPA is established. A separable form of the paring force is introduced in the relativistic quasi-particle RPA. (authors)

  17. Relativistic mean field model for entrainment in general relativistic superfluid neutron stars

    International Nuclear Information System (INIS)

    Comer, G.L.; Joynt, R.

    2003-01-01

    General relativistic superfluid neutron stars have a significantly more intricate dynamics than their ordinary fluid counterparts. Superfluidity allows different superfluid (and superconducting) species of particles to have independent fluid flows, a consequence of which is that the fluid equations of motion contain as many fluid element velocities as superfluid species. Whenever the particles of one superfluid interact with those of another, the momentum of each superfluid will be a linear combination of both superfluid velocities. This leads to the so-called entrainment effect whereby the motion of one superfluid will induce a momentum in the other superfluid. We have constructed a fully relativistic model for entrainment between superfluid neutrons and superconducting protons using a relativistic σ-ω mean field model for the nucleons and their interactions. In this context there are two notions of 'relativistic': relativistic motion of the individual nucleons with respect to a local region of the star (i.e. a fluid element containing, say, an Avogadro's number of particles), and the motion of fluid elements with respect to the rest of the star. While it is the case that the fluid elements will typically maintain average speeds at a fraction of that of light, the supranuclear densities in the core of a neutron star can make the nucleons themselves have quite high average speeds within each fluid element. The formalism is applied to the problem of slowly rotating superfluid neutron star configurations, a distinguishing characteristic being that the neutrons can rotate at a rate different from that of the protons

  18. Quantum gates via relativistic remote control

    Energy Technology Data Exchange (ETDEWEB)

    Martín-Martínez, Eduardo, E-mail: emartinm@uwaterloo.ca [Institute for Quantum Computing, University of Waterloo, Waterloo, Ontario, N2L 3G1 (Canada); Dept. Applied Math., University of Waterloo, Ontario, N2L 3G1 (Canada); Perimeter Institute for Theoretical Physics, Waterloo, Ontario N2L 2Y5 (Canada); Sutherland, Chris [Institute for Quantum Computing, University of Waterloo, Waterloo, Ontario, N2L 3G1 (Canada)

    2014-12-12

    We harness relativistic effects to gain quantum control on a stationary qubit in an optical cavity by controlling the non-inertial motion of a different probe atom. Furthermore, we show that by considering relativistic trajectories of the probe, we enhance the efficiency of the quantum control. We explore the possible use of these relativistic techniques to build 1-qubit quantum gates.

  19. CONSERATION LAWS OF RELATIVISTIC VARLABLE MASS SYSTEM%相对论性变质量系统的守恒律

    Institute of Scientific and Technical Information of China (English)

    方建会

    2001-01-01

    研究相对论性变质量系统的守恒律. 给出相对论性变质量系统的 d'Alembert-Lagrange原理,利用其在无限小变换下的不变性条件,得到相对论性变质量 系统的守恒律存在的条件和形式,并举例说明结果的应用.%The conservation laws of relativistic variable mass system were studied. The d' Alembert-Lagrange principle of relativistic variable mass system are given. By using invariant condition of The d'Alembert-Lagrange principle under the infin itesimal transformations, the conditions and forms which the conserved quantities of the system do exist were obtained. An example is given to illustrate the ap plication of the result..

  20. Relativistic mechanics of two interacting particles and bilocal theory

    International Nuclear Information System (INIS)

    Takabayasi, Takehiko

    1975-01-01

    New relativistic mechanics of two-particle system is set forth, where the two constituent particles are interacting by an arbitrary (central) action-at-a-distance. The fundamental equations are presented in a form covariant under general transformation of parameters parametrizing the world lines of constituent particles. The theory represents the proper relativistic generalization of the usual Newtonian mechanics in the sense that it tends in the non-relativistic (and weak interaction) limit to the usual mechanics of two particles moving under a corresponding non-relativistic potential. For the analysis of theory it is convenient to choose a certain particular gauge (i.e., parametrization) fixed by two gauge relations. This brings the theory to a canonical formalism accompanied by two weak equations, and in this gauge quantization can be performed. The result verifies that the relativistic quantum mechanics for two particles interacting by an action-at-a-distance is just represented by a bilocal wave equation and a subsidiary condition, with the clarification of its correspondence-theoretical foundation and internal dynamics. As an example the case of Hooke-type force is illustrated, where the internal motions are elliptic oscillations in the center-of-mass frame. Its quantum theory just reproduces the original form of bilocal theory giving bound states lying on a straightly rising trajectory and on its daughter trajectories. (auth.)

  1. RELATIVISTIC CYCLOTRON INSTABILITY IN ANISOTROPIC PLASMAS

    Energy Technology Data Exchange (ETDEWEB)

    López, Rodrigo A.; Moya, Pablo S.; Muñoz, Víctor; Valdivia, J. Alejandro [Departamento de Física, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago (Chile); Navarro, Roberto E.; Araneda, Jaime A. [Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Concepción, Casilla 160-C, Concepción (Chile); Viñas, Adolfo F., E-mail: rlopez186@gmail.com [NASA Goddard Space Flight Center, Heliophysics Science Division, Geospace Physics Laboratory, Mail Code 673, Greenbelt, MD 20771 (United States)

    2016-11-20

    A sufficiently large temperature anisotropy can sometimes drive various types of electromagnetic plasma micro-instabilities, which can play an important role in the dynamics of relativistic pair plasmas in space, astrophysics, and laboratory environments. Here, we provide a detailed description of the cyclotron instability of parallel propagating electromagnetic waves in relativistic pair plasmas on the basis of a relativistic anisotropic distribution function. Using plasma kinetic theory and particle-in-cell simulations, we study the influence of the relativistic temperature and the temperature anisotropy on the collective and noncollective modes of these plasmas. Growth rates and dispersion curves from the linear theory show a good agreement with simulations results.

  2. Scaling for deuteron structure functions in a relativistic light-front model

    International Nuclear Information System (INIS)

    Polyzou, W.N.; Gloeckle, W.

    1996-01-01

    Scaling limits of the structure functions [B.D. Keister, Phys. Rev. C 37, 1765 (1988)], W 1 and W 2 , are studied in a relativistic model of the two-nucleon system. The relativistic model is defined by a unitary representation, U(Λ,a), of the Poincaracute e group which acts on the Hilbert space of two spinless nucleons. The representation is in Dirac close-quote s [P.A.M. Dirac, Rev. Mod. Phys. 21, 392 (1949)] light-front formulation of relativistic quantum mechanics and is designed to give the experimental deuteron mass and n-p scattering length. A model hadronic current operator that is conserved and covariant with respect to this representation is used to define the structure tensor. This work is the first step in a relativistic extension of the results of Hueber, Gloeckle, and Boemelburg. The nonrelativistic limit of the model is shown to be consistent with the nonrelativistic model of Hueber, Gloeckle, and Boemelburg. [D. Hueber et al. Phys. Rev. C 42, 2342 (1990)]. The relativistic and nonrelativistic scaling limits, for both Bjorken and y scaling are compared. The interpretation of y scaling in the relativistic model is studied critically. The standard interpretation of y scaling requires a soft wave function which is not realized in this model. The scaling limits in both the relativistic and nonrelativistic case are related to probability distributions associated with the target deuteron. copyright 1996 The American Physical Society

  3. Relativistic quantum mechanics

    CERN Document Server

    Horwitz, Lawrence P

    2015-01-01

    This book describes a relativistic quantum theory developed by the author starting from the E.C.G. Stueckelberg approach proposed in the early 40s. In this framework a universal invariant evolution parameter (corresponding to the time originally postulated by Newton) is introduced to describe dynamical evolution. This theory is able to provide solutions for some of the fundamental problems encountered in early attempts to construct a relativistic quantum theory. A relativistically covariant construction is given for which particle spins and angular momenta can be combined through the usual rotation group Clebsch-Gordan coefficients. Solutions are defined for both the classical and quantum two body bound state and scattering problems. The recently developed quantum Lax-Phillips theory of semigroup evolution of resonant states is described. The experiment of Lindner and coworkers on interference in time is discussed showing how the property of coherence in time provides a simple understanding of the results. Th...

  4. Apparent unambiguousness of relativistic time dilation

    International Nuclear Information System (INIS)

    Strel'tsov, V.N.

    1992-01-01

    It is indicated on the definite analogy between the dependence of visible sizes of relativistic objects and period of the wave, emitted by the moving source from the observation conditions ('retradition factor'). It is noted that the definition of time for moving extended objects, led to relativistic dilation, corresponds to the definition of the relativistic (radar) length led to the 'elongation formula'. 10 refs

  5. RF beam control system for the Brookhaven Relativistic Heavy Ion Collider, RHIC

    International Nuclear Information System (INIS)

    Brennan, J.M.; Campbell, A.; DeLong, J.; Hayes, T.; Onillon, E.; Rose, J.; Vetter, K.

    1998-01-01

    The Relativistic Heavy Ion Collider, RHIC, is two counter-rotating rings with six interaction points. The RF Beam Control system for each ring will control two 28 MHz cavities for acceleration, and five 197 MHz cavities for preserving the 5 ns bunch length during 10 hour beam stores. Digital technology is used extensively in: Direct Digital Synthesis of rf signals and Digital Signal Processing for, the realization of state-variable feedback loops, real-time calculation of rf frequency, and bunch-by-bunch phase measurement of the 120 bunches. DSP technology enables programming the parameters of the feedback loops in order to obtain closed-loop dynamics that are independent of synchrotron frequency

  6. RF Beam control system for the Brookhaven relativistic heavy ion collider, RHIC

    International Nuclear Information System (INIS)

    Brennan, J.M.; Campbell, A.; Delong, J.; Hayes, T.; Onillon, E.; Rose, J.; Vetter, K.

    1998-01-01

    The Relativistic Heavy Ion Collider, RHIC, is two counter-rotating rings with six interaction points. The RF Beam Control system for each ring will control two 28 MHz cavities for acceleration, and five 197 MHz cavities for preserving the 5 ns bunch length during 10 hour beam stores. Digital technology is used extensively in: Direct Digital Synthesis of rf signals and Digital Signal Processing for, the realization of state-variable feedback loops, real-time calculation of rf frequency, and bunch-by-bunch phase measurement of the 120 bunches. DSP technology enables programming the parameters of the feedback loops in order to obtain closed-loop dynamics that are independent of synchrotron frequency

  7. Relativistic quantum vorticity of the quadratic form of the Dirac equation

    International Nuclear Information System (INIS)

    Asenjo, Felipe A; Mahajan, Swadesh M

    2015-01-01

    We explore the fluid version of the quadratic form of the Dirac equation, sometimes called the Feynman–Gell-Mann equation. The dynamics of the quantum spinor field is represented by equations of motion for the fluid density, the velocity field, and the spin field. In analogy with classical relativistic and non-relativistic quantum theories, the fully relativistic fluid formulation of this equation allows a vortex dynamics. The vortical form is described by a total tensor field that is the weighted combination of the inertial, electromagnetic and quantum forces. The dynamics contrives the quadratic form of the Dirac equation as a total vorticity free system. (paper)

  8. Analysis of the EPR-experiment by relativistic quantum logic

    International Nuclear Information System (INIS)

    Mittelstaedt, P.

    1984-01-01

    The Einstein-Podolsky-Rosen-experiment is analysed in the framework of an abstract language for relativistic quantum physics, which can be founded on the most general possibilities of physical observations and without any recourse to the Hilbert-space formulation of relativistic quantum theory. -Within this approach one obtains nonlocal correlations between the two EPR-systems in accordance with recent experiments and with quantum theory. These correlations can, however, not be used in order to produce superluminal signals and thus to violate Einstein-causality and special relativity. (author)

  9. Relativistic magnetohydrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez, Juan; Kovtun, Pavel [Department of Physics and Astronomy, University of Victoria,Victoria, BC, V8P 5C2 (Canada)

    2017-05-02

    We present the equations of relativistic hydrodynamics coupled to dynamical electromagnetic fields, including the effects of polarization, electric fields, and the derivative expansion. We enumerate the transport coefficients at leading order in derivatives, including electrical conductivities, viscosities, and thermodynamic coefficients. We find the constraints on transport coefficients due to the positivity of entropy production, and derive the corresponding Kubo formulas. For the neutral state in a magnetic field, small fluctuations include Alfvén waves, magnetosonic waves, and the dissipative modes. For the state with a non-zero dynamical charge density in a magnetic field, plasma oscillations gap out all propagating modes, except for Alfvén-like waves with a quadratic dispersion relation. We relate the transport coefficients in the “conventional” magnetohydrodynamics (formulated using Maxwell’s equations in matter) to those in the “dual” version of magnetohydrodynamics (formulated using the conserved magnetic flux).

  10. Slowly rotating general relativistic superfluid neutron stars with relativistic entrainment

    International Nuclear Information System (INIS)

    Comer, G.L.

    2004-01-01

    Neutron stars that are cold enough should have two or more superfluids or supercondutors in their inner crusts and cores. The implication of superfluidity or superconductivity for equilibrium and dynamical neutron star states is that each individual particle species that forms a condensate must have its own, independent number density current and equation of motion that determines that current. An important consequence of the quasiparticle nature of each condensate is the so-called entrainment effect; i.e., the momentum of a condensate is a linear combination of its own current and those of the other condensates. We present here the first fully relativistic modeling of slowly rotating superfluid neutron stars with entrainment that is accurate to the second-order in the rotation rates. The stars consist of superfluid neutrons, superconducting protons, and a highly degenerate, relativistic gas of electrons. We use a relativistic σ-ω mean field model for the equation of state of the matter and the entrainment. We determine the effect of a relative rotation between the neutrons and protons on a star's total mass, shape, and Kepler, mass-shedding limit

  11. General relativistic chaos and nonlinear dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Barrow, J D [California Univ., Berkeley (USA). Dept. of Physics

    1982-06-01

    How new ideas in dynamical systems theory find application in the description of general relativistic systems is described. The concept of dynamical entropy is explained and the associated invariant evaluated for the Mixmaster cosmological model. The description of cosmological models as measure preserving dynamical systems leads to a number of interconnections with new ideas in non-linear dynamics. This may provide a new avenue of approach to ascertaining the nature of the general solution to Einstein's equations.

  12. General relativistic chaos and nonlinear dynamics

    International Nuclear Information System (INIS)

    Barrow, J.D.

    1982-01-01

    How new ideas in dynamical systems theory find application in the description of general relativistic systems is described. The concept of dynamical entropy is explained and the associated invariant evaluated for the Mixmaster cosmological model. The description of cosmological models as measure preserving dynamical systems leads to a number of interconnections with new ideas in non-linear dynamics. This may provide a new avenue of approach to ascertaining the nature of the general solution to Einstein's equations. (author)

  13. Balance equations for a relativistic plasma. Pt. 1

    International Nuclear Information System (INIS)

    Hebenstreit, H.

    1983-01-01

    Relativistic power moments of the four-momentum are decomposed according to a macroscopic four-velocity. The thus obtained quantities are identified as relativistic generalization of the nonrelativistic orthogonal moments, e.g. diffusion flow, heat flow, pressure, etc. From the relativistic Boltzmann equation we then derive balance equations for these quantities. Explicit expressions for the relativistic mass conservation, energy balance, pressure balance, heat flow balance are presented. The weak relativistic limit is discussed. The derivation of higher order balance equations is sketched. (orig.)

  14. Loading relativistic Maxwell distributions in particle simulations

    Science.gov (United States)

    Zenitani, S.

    2015-12-01

    In order to study energetic plasma phenomena by using particle-in-cell (PIC) and Monte-Carlo simulations, we need to deal with relativistic velocity distributions in these simulations. However, numerical algorithms to deal with relativistic distributions are not well known. In this contribution, we overview basic algorithms to load relativistic Maxwell distributions in PIC and Monte-Carlo simulations. For stationary relativistic Maxwellian, the inverse transform method and the Sobol algorithm are reviewed. To boost particles to obtain relativistic shifted-Maxwellian, two rejection methods are newly proposed in a physically transparent manner. Their acceptance efficiencies are 􏰅50% for generic cases and 100% for symmetric distributions. They can be combined with arbitrary base algorithms.

  15. Relativistic solitons and pulsars

    Energy Technology Data Exchange (ETDEWEB)

    Karpman, V I [Inst. of Terrestrial Magnetism, Ionosphere, and Radio-Wave Propagation, Moscow; Norman, C A; ter Haar, D; Tsytovich, V N

    1975-05-01

    A production mechanism for stable electron bunches or sheets of localized electric fields is investigated which may account for pulsar radio emission. Possible soliton phenomena in a one-dimensional relativistic plasma are analyzed, and it is suggested that the motion of a relativistic soliton, or ''relaton'', along a curved magnetic-field line may produce radio emission with the correct polarization properties. A general MHD solution is obtained for relatons, the radiation produced by a relativistic particle colliding with a soliton is evaluated, and the emission by a soliton moving along a curved field line is estimated. It is noted that due to a number of severe physical restrictions, curvature radiation is not a very likely solution to the problem of pulsar radio emission. (IAA)

  16. Relativistic elliptic matrix tops and finite Fourier transformations

    Science.gov (United States)

    Zotov, A.

    2017-10-01

    We consider a family of classical elliptic integrable systems including (relativistic) tops and their matrix extensions of different types. These models can be obtained from the “off-shell” Lax pairs, which do not satisfy the Lax equations in general case but become true Lax pairs under various conditions (reductions). At the level of the off-shell Lax matrix, there is a natural symmetry between the spectral parameter z and relativistic parameter η. It is generated by the finite Fourier transformation, which we describe in detail. The symmetry allows one to consider z and η on an equal footing. Depending on the type of integrable reduction, any of the parameters can be chosen to be the spectral one. Then another one is the relativistic deformation parameter. As a by-product, we describe the model of N2 interacting GL(M) matrix tops and/or M2 interacting GL(N) matrix tops depending on a choice of the spectral parameter.

  17. The Grover energy transfer algorithm for relativistic speeds

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Escartin, Juan Carlos; Chamorro-Posada, Pedro, E-mail: juagar@yllera.tel.uva.e [Dpto. de TeorIa de la Senal y Comunicaciones e Ingenieria Telematica, Universidad de Valladolid, ETSI de Telecomunicacion, Campus Miguel Delibes, Paseo Belen 15, 47011 Valladolid (Spain)

    2010-11-12

    Grover's algorithm for quantum search can also be applied to classical energy transfer. The procedure takes a system in which the total energy is equally distributed among N subsystems and transfers most of it to one marked subsystem. We show that in a relativistic setting the efficiency of this procedure can be improved. We will consider the transfer of relativistic kinetic energy in a series of elastic collisions. In this case, the number of steps of the energy transfer procedure approaches 1 as the initial velocities of the objects become closer to the speed of light. This is a consequence of introducing nonlinearities in the procedure. However, the maximum attainable transfer will depend on the particular combination of speed and number of objects. In the procedure, we will use N elements, as in the classical non-relativistic case, instead of the log{sub 2}(N) states of the quantum algorithm.

  18. Statistical thermodynamics of a two-dimensional relativistic gas.

    Science.gov (United States)

    Montakhab, Afshin; Ghodrat, Malihe; Barati, Mahmood

    2009-03-01

    In this paper we study a fully relativistic model of a two-dimensional hard-disk gas. This model avoids the general problems associated with relativistic particle collisions and is therefore an ideal system to study relativistic effects in statistical thermodynamics. We study this model using molecular-dynamics simulation, concentrating on the velocity distribution functions. We obtain results for x and y components of velocity in the rest frame (Gamma) as well as the moving frame (Gamma;{'}) . Our results confirm that Jüttner distribution is the correct generalization of Maxwell-Boltzmann distribution. We obtain the same "temperature" parameter beta for both frames consistent with a recent study of a limited one-dimensional model. We also address the controversial topic of temperature transformation. We show that while local thermal equilibrium holds in the moving frame, relying on statistical methods such as distribution functions or equipartition theorem are ultimately inconclusive in deciding on a correct temperature transformation law (if any).

  19. Meson spectra using relativistic quark models

    International Nuclear Information System (INIS)

    Eggers, M.C.

    1985-01-01

    The complexity of QCD has led to the use of simpler, phenomenological models for hadrons, notably potential models. A short overview of the origin, rationale, merits and demerits of such models is given. Nonrelativistic models and scaling laws are discussed using the WKB technique for illustrative purposes. The failure of nonrelativistic models to describe the lighter mesons motivates the introduction of relativistic equations. Relativistic kinematics are incorporated into a Schroedinger formalism using equations derived by A. Barut, while two-body kinematics are brought into a one-body form via a substitution related to the Todorov equation. The potential used involves a semi-analytic solution to a harmonic oscillator modified by a spin-spin interaction term. The results seem to indicate that such a harmonic oscillator is unsuitable to describe diquark systems adequately

  20. Symmetric and asymmetric nuclear matter in the relativistic approach

    International Nuclear Information System (INIS)

    Huber, H.; Weber, F.; Weigel, M.K.

    1995-01-01

    Symmetric and asymmetric nuclear matter is studied in the framework of the relativistic Brueckner-Hartree-Fock and in the relativistic version of the so-called Λ 00 approximation. The equations are solved self-consistently in the full Dirac space, so avoiding the ambiguities in the choice of the effective scattering amplitude in matter. The calculations were performed for some modern meson-exchange potentials constructed by Brockmann and Machleidt. In some cases we used also the Groningen potentials. First, we examine the outcome for symmetric matter with respect to other calculations, which restrict themselves to positive-energy states only. The main part is devoted to the properties of asymmetric matter. In this case we obtain additionally to the good agreement with the parameters of symmetric matter, also a quite satisfactory agreement with the semiempirical macroscopic coefficients of asymmetric matter. Furthermore, we tested the assumption of a quadratic dependence of the asymmetry energy for a large range of asymmetries. Included is also the dependence of nucleon self-energies on density and neutron excess. For the purpose of comparison we discuss further the similarities and differences with relativistic Hartree and Hartree-Fock calculations and nonrelativistic Skyrme calculations

  1. Studies of Ionic Photoionization Using Relativistic Random Phase Approximation and Relativistic Multichannel Quantum Defect Theory

    Science.gov (United States)

    Haque, Ghousia Nasreen

    The absorption of electromagnetic radiation by positive ions is one of the fundamental processes of nature which occurs in every intensely hot environment. Due to the difficulties in producing sufficient densities of ions in a laboratory, there are very few measurements of ionic photoabsorption parameters. On the theoretical side, some calculations have been made of a few major photoionization parameters, but generally speaking, most of the work done so far has employed rather simple single particle models and any theoretical work which has adequately taken into account intricate atomic many-body and relativistic effects is only scanty. In the present work, several complex aspects of atomic/ionic photoabsorption parameters have been studied. Non -resonant photoionization in neon and argon isonuclear as well as isoelectronic sequences has been studied using a very sophisticated technique, namely the relativistic random phase approximation (RRPA). This technique takes into account relativistic effects as well as an important class of major many-body effects on the same footing. The present calculations confirmed that gross features of photoionization parameters calculated using simpler models were not an artifact of the simple model. Also, the present RRPA calculations on K^+ ion and neutral Ar brought out the relative importance of various many-body effects such the inter-channel coupling. Inter-channel coupling between discrete bound state photoexcitation channels from an inner atomic/ionic level and photoionization continuum channels from an outer atomic/ionic level leads to the phenomena of autoionization resonances in the photoionization process. These resonances lead to very complex effects in the atomic/ionic photoabsorption spectra. These resonances have been calculated and studied in the present work in the neon and magnesium isoelectronic sequences using the relativistic multi-channel quantum defect theory (RMQDT) within the framework of the RRPA. The

  2. Relativistic predictive quantum potential: the N-body case

    International Nuclear Information System (INIS)

    Garuccio, A.; Kyprianidis, A.; Vigier, J.P.

    1984-01-01

    It is generalized to a system of N scalar particles the casual description with action at a distance already given for two-particle systems in EPR type of experiments. The many body quantum potential is shown to satisfy the predictivity constraints established by Droz-Vincent for relativistic mechanics

  3. How one can construct a consistent relativistic quantum mechanics on the base of a relativistic wave equation

    Energy Technology Data Exchange (ETDEWEB)

    Gavrilov, S.P. [Universidade Federal de Sergipe (UFS), Aracaju, SE (Brazil); Gitman, D.M. [Sao Paulo Univ. (USP), SP (Brazil). Inst. de Fisica

    2000-07-01

    Full text follows: There is a common opinion that the construction of a consistent relativistic quantum mechanics on the base of a relativistic wave equation meets well-known difficulties related to the existence of infinite number of negative energy levels, to the existence of negative vector norms, and so on, which may be only solved in a second-quantized theory, see, for example, two basic papers devoted to the problem L.Foldy, S.Wouthuysen, Phys. Rep.78 (1950) 29; H.Feshbach, F.Villars, Rev. Mod. Phys. 30 (1958) 24, whose arguments are repeated in all handbooks in relativistic quantum theory. Even Dirac trying to solve the problem had turned last years to infinite-component relativistic wave equations, see P.A.M. Dirac, Proc. R. Soc. London, A328 (1972) 1. We believe that a consistent relativistic quantum mechanics may be constructed on the base of an extended (charge symmetric) equation, which unite both a relativistic wave equation for a particle and for an antiparticle. We present explicitly the corresponding construction, see for details hep-th/0003112. We support such a construction by two demonstrations: first, in course of a careful canonical quantization of the corresponding classical action of a relativistic particle we arrive just to such a consistent quantum mechanics; second, we demonstrate that a reduction of the QFT of a corresponding field (scalar, spinor, etc.) to one-particle sector, if such a reduction may be done, present namely this quantum mechanics. (author)

  4. Magnetic Field Structure in Relativistic Jets

    Directory of Open Access Journals (Sweden)

    Jermak Helen

    2013-12-01

    Full Text Available Relativistic jets are ubiquitous when considering an accreting black hole. Two of the most extreme examples of these systems are blazars and gamma-ray bursts (GRBs, the jets of which are thought to be threaded with a magnetic field of unknown structure. The systems are made up of a black hole accreting matter and producing, as a result, relativistic jets of plasma from the poles of the black hole. Both systems are viewed as point sources from Earth, making it impossible to spatially resolve the jet. In order to explore the structure of the magnetic field within the jet we take polarisation measurements with the RINGO polarimeters on the world’s largest fully autonomous, robotic optical telescope: The Liverpool Telescope. Using the polarisation degree and angle measured by the RINGO polarimeters it is possible to distinguish between global magnetic fields created in the central engine and random tangled magnetic fields produced locally in shocks. We also monitor blazar sources regularly during quiescence with periods of flaring monitored more intensively. Reported here are the early polarisation results for GRBs 060418 and 090102, along with future prospects for the Liverpool Telescope and the RINGO polarimeters.

  5. Relativistic charged Bose gas

    International Nuclear Information System (INIS)

    Hines, D.F.; Frankel, N.E.

    1979-01-01

    The charged Bose has been previously studied as a many body problem of great intrinsic interest which can also serve as a model of some real physical systems, for example, superconductors, white dwarf stars and neutron stars. In this article the excitation spectrum of a relativistic spin-zero charged Bose gas is obtained in a dielectric response formulation. Relativity introduces a dip in the spectrum and consequences of this dip for the thermodynamic functions are discussed

  6. Polarization and Structure of Relativistic Parsec-Scale AGN Jets

    International Nuclear Information System (INIS)

    Lyutikov, M

    2004-01-01

    We consider the polarization properties of optically thin synchrotron radiation emitted by relativistically moving electron-positron jets carrying large-scale helical magnetic fields. In our model, the jet is cylindrical, and the emitting plasma moves parallel to the jet axis with a characteristic Lorentz factor Λ. We draw attention to the strong influence that the bulk relativistic motion of the emitting relativistic particles has on the observed polarization. Our computations predict and explain the following behavior. (1) For jets unresolved in the direction perpendicular to their direction of propagation, the position angle of the electric vector of the linear polarization has a bimodal distribution, being oriented either parallel or perpendicular to the jet. (2) If an ultra-relativistic jet with Λ >> 1 whose axis makes a small angle to the line of sight, θ ∼ 1/Λ, experiences a relatively small change in the direction of propagation, velocity or pitch angle of the magnetic fields, the polarization is likely to remain parallel or perpendicular; on the other hand, in some cases, the degree of polarization can exhibit large variations and the polarization position angle can experience abrupt 90 o changes. This change is more likely to occur in jets with flatter spectra. (3) In order for the jet polarization to be oriented along the jet axis, the intrinsic toroidal magnetic field (in the frame of the jet) should be of the order of or stronger than the intrinsic poloidal field; in this case, the highly relativistic motion of the jet implies that, in the observer's frame, the jet is strongly dominated by the toroidal magnetic field B φ /B z (ge) Λ. (4) The emission-weighted average pitch angle of the intrinsic helical field in the jet must not be too small to produce polarization along the jet axis. In force-free jets with a smooth distribution of emissivities, the emission should be generated in a limited range of radii not too close to the jet core. (5) For

  7. Relativistic Outflows from Advection-dominated Accretion Disks around Black Holes

    Science.gov (United States)

    Becker, Peter A.; Subramanian, Prasad; Kazanas, Demosthenes

    2001-05-01

    Advection-dominated accretion flows (ADAFs) have a positive Bernoulli parameter and are therefore gravitationally unbound. The Newtonian ADAF model has been generalized recently to obtain the ADIOS model that includes outflows of energy and angular momentum, thereby allowing accretion to proceed self-consistently. However, the utilization of a Newtonian gravitational potential limits the ability of this model to describe the inner region of the disk, where any relativistic outflows are likely to originate. In this paper we modify the ADIOS scenario to incorporate a pseudo-Newtonian potential, which approximates the effects of general relativity. The analysis yields a unique, self-similar solution for the structure of the coupled disk/wind system. Interesting features of the new solution include the relativistic character of the outflow in the vicinity of the radius of marginal stability, which represents the inner edge of the quasi-Keplerian disk in our model. Hence, our self-similar solution may help to explain the origin of relativistic jets in active galaxies. At large distances the radial dependence of the accretion rate approaches the unique form M~r1/2, with an associated density variation given by ρ~r-1. This density variation agrees with that implied by the dependence of the hard X-ray time lags on the Fourier frequency for a number of accreting galactic black hole candidates. While intriguing, the predictions made using our self-similar solution need to be confirmed in the future using a detailed model that includes a physical description of the energization mechanism that drives the outflow, which is likely to be powered by the shear of the underlying accretion disk.

  8. Calculating Relativistic Transition Matrix Elements for Hydrogenic Atoms Using Monte Carlo Methods

    Science.gov (United States)

    Alexander, Steven; Coldwell, R. L.

    2015-03-01

    The nonrelativistic transition matrix elements for hydrogen atoms can be computed exactly and these expressions are given in a number of classic textbooks. The relativistic counterparts of these equations can also be computed exactly but these expressions have been described in only a few places in the literature. In part, this is because the relativistic equations lack the elegant simplicity of the nonrelativistic equations. In this poster I will describe how variational Monte Carlo methods can be used to calculate the energy and properties of relativistic hydrogen atoms and how the wavefunctions for these systems can be used to calculate transition matrix elements.

  9. Quantum electrodynamics and the relativistic theory of many-electron atoms

    International Nuclear Information System (INIS)

    Sucher, J.

    1981-01-01

    The development of relativistic theories of many-electron atoms is reviewed, with emphasis on the fact that the Dirac-Coulomb Hamiltonian H/sub DC/ has no bound states. This fact implies that neither the Dirac-Hartree-Fock (DHF) equations nor the DHF wavefunction chi have a simple theoretical interpretation. A no-pair hamiltonian H/sub +/ is defined which does not have the fatal flaw of H/sub DC/ and hence can serve as a starting point for a systematic study of relativistic effects in many-electron atoms which can go beyond central-field approximations. H/sub +/ differs from H/sub DC/ by the presence of external-field positive-energy projection operators in the electron-electron interaction terms. Unlike H/sub DC/, H/sub +/ and its eigenfunctions psi have a clear-cut field-theoretic meaning, which is described. Similar remarks hold for a simpler no-pair Hamiltonian h/sub +/, which involves free positive-energy projection operators and for related Hamiltonians H/sub +/' and h/sup +/' which include the Breit operator. Relativistic Hartree-Fock equations are obtained from H/sub +/ and the relation between their solutions psi and the DHF solutions chi is discussed. The DHF equations may be reinterpreted as approximations to the new HF-type equations; this provides a rationale for their success in applications. It is argued that the Breit operator ought to be included even in the original DHF equations

  10. Description of width and spectra of two relativistic fermions bound states

    International Nuclear Information System (INIS)

    Sidorov, A.V.; Skachkov, N.B.

    1979-01-01

    The formalism for relativistic description of two particles with spin 1/2 is constructed. Used is the two-particle three-dimensional equation, obtained by quasipotential approach. Quasipotential equation in the relativistic configurational space with OBEP potential is reduced to the system of partial equations which is the analog of nonrelativistic Hamada-Jonston system. WKB approach is used to calculate mass spectra and leptonic width of mesons in quark model. The results of the study can be applied to the calculation of mass spectra and widths of electromagnetic decays of systems of e + e - , μ + μ - , c anti c, b anti b, N anti N type

  11. Relativistic electron kinetic effects on laser diagnostics in burning plasmas

    Science.gov (United States)

    Mirnov, V. V.; Den Hartog, D. J.

    2018-02-01

    Toroidal interferometry/polarimetry (TIP), poloidal polarimetry (PoPola), and Thomson scattering systems (TS) are major optical diagnostics being designed and developed for ITER. Each of them relies upon a sophisticated quantitative understanding of the electron response to laser light propagating through a burning plasma. Review of the theoretical results for two different applications is presented: interferometry/polarimetry (I/P) and polarization of Thomson scattered light, unified by the importance of relativistic (quadratic in vTe/c) electron kinetic effects. For I/P applications, rigorous analytical results are obtained perturbatively by expansion in powers of the small parameter τ = Te/me c2, where Te is electron temperature and me is electron rest mass. Experimental validation of the analytical models has been made by analyzing data of more than 1200 pulses collected from high-Te JET discharges. Based on this validation the relativistic analytical expressions are included in the error analysis and design projects of the ITER TIP and PoPola systems. The polarization properties of incoherent Thomson scattered light are being examined as a method of Te measurement relevant to ITER operational regimes. The theory is based on Stokes vector transformation and Mueller matrices formalism. The general approach is subdivided into frequency-integrated and frequency-resolved cases. For each of them, the exact analytical relativistic solutions are presented in the form of Mueller matrix elements averaged over the relativistic Maxwellian distribution function. New results related to the detailed verification of the frequency-resolved solutions are reported. The precise analytic expressions provide output much more rapidly than relativistic kinetic numerical codes allowing for direct real-time feedback control of ITER device operation.

  12. Particle Acceleration, Magnetic Field Generation and Emission from Relativistic Jets

    Science.gov (United States)

    Nishikawa, K.-I.; Hardee, P.; Hededal, C.; Mizuno, Yosuke; Fishman, G. Jerry; Hartmann, D. H.

    2006-01-01

    Nonthermal radiation observed from astrophysical systems containing relativistic jets and shocks, e.g., active galactic nuclei (AGNs), gamma-ray bursts (GRBs), supernova remnants, and Galactic microquasar systems usually have power-law emission spectra. Fermi acceleration is the mechanism usually assumed for the acceleration of particles in astrophysical environments. Recent PIC simulations using injected relativistic electron-ion (electro-positron) jets show that particle acceleration occurs within the downstream jet, rather than by the scattering of particles back and forth across the shock as in Fermi acceleration. Shock acceleration' is a ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., the Buneman instability, other two-streaming instability, and the Weibel instability) created in the shocks are responsible for particle (electron, positron, and ion) acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields. These magnetic fields contribute to the electron's transverse deflection behind the jet head. The "jitter" radiation from deflected electrons has different spectral properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants. We will review recent PIC simulations of relativistic jets and try to make a connection with observations.

  13. Exchange effects in Relativistic Schroedinger Theory

    International Nuclear Information System (INIS)

    Sigg, T.; Sorg, M.

    1998-01-01

    The Relativistic Schroedinger Theory predicts the occurrence of exchange and overlap effects in many-particle systems. For a 2-particle system, the interaction energy of the two particles consists of two contributions: Coulomb energy and exchange energy, where the first one is revealed to be the same as in standard quantum theory. However the exchange energy is mediated by an exchange potential, contrary to the kinematical origin of the exchange term in the standard theory

  14. Relativistic two-fermion equations with form factors and anomalous magnetic moment interactions

    International Nuclear Information System (INIS)

    Ahmed, S.

    1977-04-01

    Relativistic equations for two-fermion systems are derived from quantum field theory taking into account the form factors of the particles. When the q 2 dependence of the form factors is disregarded, in the static approximation, the two-fermion equations with Coulomb and anomalous magnetic moment interactions are obtained. Separating the angular variables, a sixteen-component relativistic radial equation are finally given

  15. Decoherence and discrete symmetries in deformed relativistic kinematics

    Science.gov (United States)

    Arzano, Michele

    2018-01-01

    Models of deformed Poincaré symmetries based on group valued momenta have long been studied as effective modifications of relativistic kinematics possibly capturing quantum gravity effects. In this contribution we show how they naturally lead to a generalized quantum time evolution of the type proposed to model fundamental decoherence for quantum systems in the presence of an evaporating black hole. The same structures which determine such generalized evolution also lead to a modification of the action of discrete symmetries and of the CPT operator. These features can in principle be used to put phenomenological constraints on models of deformed relativistic symmetries using precision measurements of neutral kaons.

  16. Relativistic conformal magneto-hydrodynamics from holography

    International Nuclear Information System (INIS)

    Buchbinder, Evgeny I.; Buchel, Alex

    2009-01-01

    We use the AdS/CFT correspondence to study first-order relativistic viscous magneto-hydrodynamics of (2+1)-dimensional conformal magnetic fluids. It is shown that the first order magneto-hydrodynamics constructed following Landau and Lifshitz from the positivity of the entropy production is inconsistent. We propose additional contributions to the entropy motivated dissipative current and, correspondingly, new dissipative transport coefficients. We use the strongly coupled M2-brane plasma in external magnetic field to show that the new magneto-hydrodynamics leads to self-consistent results in the shear and sound wave channels.

  17. Uncertainty dimension and basin entropy in relativistic chaotic scattering

    Science.gov (United States)

    Bernal, Juan D.; Seoane, Jesús M.; Sanjuán, Miguel A. F.

    2018-04-01

    Chaotic scattering is an important topic in nonlinear dynamics and chaos with applications in several fields in physics and engineering. The study of this phenomenon in relativistic systems has received little attention as compared to the Newtonian case. Here we focus our work on the study of some relevant characteristics of the exit basin topology in the relativistic Hénon-Heiles system: the uncertainty dimension, the Wada property, and the basin entropy. Our main findings for the uncertainty dimension show two different behaviors insofar as we change the relativistic parameter β , in which a crossover behavior is uncovered. This crossover point is related with the disappearance of KAM islands in phase space, which happens for velocity values above the ultrarelativistic limit, v >0.1 c . This result is supported by numerical simulations and by qualitative analysis, which are in good agreement. On the other hand, the computation of the exit basins in the phase space suggests the existence of Wada basins for a range of β relevant in galactic dynamics, and it also has important implications in other topics in physics such as as in the Störmer problem, among others.

  18. A wavelet-MRA-based adaptive semi-Lagrangian method for the relativistic Vlasov-Maxwell system

    International Nuclear Information System (INIS)

    Besse, Nicolas; Latu, Guillaume; Ghizzo, Alain; Sonnendruecker, Eric; Bertrand, Pierre

    2008-01-01

    In this paper we present a new method for the numerical solution of the relativistic Vlasov-Maxwell system on a phase-space grid using an adaptive semi-Lagrangian method. The adaptivity is performed through a wavelet multiresolution analysis, which gives a powerful and natural refinement criterion based on the local measurement of the approximation error and regularity of the distribution function. Therefore, the multiscale expansion of the distribution function allows to get a sparse representation of the data and thus save memory space and CPU time. We apply this numerical scheme to reduced Vlasov-Maxwell systems arising in laser-plasma physics. Interaction of relativistically strong laser pulses with overdense plasma slabs is investigated. These Vlasov simulations revealed a rich variety of phenomena associated with the fast particle dynamics induced by electromagnetic waves as electron trapping, particle acceleration, and electron plasma wavebreaking. However, the wavelet based adaptive method that we developed here, does not yield significant improvements compared to Vlasov solvers on a uniform mesh due to the substantial overhead that the method introduces. Nonetheless they might be a first step towards more efficient adaptive solvers based on different ideas for the grid refinement or on a more efficient implementation. Here the Vlasov simulations are performed in a two-dimensional phase-space where the development of thin filaments, strongly amplified by relativistic effects requires an important increase of the total number of points of the phase-space grid as they get finer as time goes on. The adaptive method could be more useful in cases where these thin filaments that need to be resolved are a very small fraction of the hyper-volume, which arises in higher dimensions because of the surface-to-volume scaling and the essentially one-dimensional structure of the filaments. Moreover, the main way to improve the efficiency of the adaptive method is to

  19. Relativistic quarkonium dynamics

    International Nuclear Information System (INIS)

    Sazdjian, H.

    1985-06-01

    We present, in the framework of relativistic quantum mechanics of two interacting particles, a general model for quarkonium systems satisfying the following four requirements: confinement, spontaneous breakdown of chiral symmetry, soft explicit chiral symmetry breaking, short distance interactions of the vector type. The model is characterized by two arbitrary scalar functions entering in the large and short distance interaction potentials, respectively. Using relationships with corresponding quantities of the Bethe-Salpeter equation, we also present the normalization condition of the wave functions, as well as the expressions of the meson decay coupling constants. The quark masses appear in this model as free parameters

  20. Three-body forces, relativistic effects, isobars, and pions in nuclear systems

    International Nuclear Information System (INIS)

    Wiringa, R.B.

    1983-01-01

    Conventional microscopic calculations in nuclear physics start from a nonrelativistic Hamiltonian. The many-body Schroedinger equation is then solved to obtain the ground state energy, wave function, and expectation values of other quantities of interest. Such a procedure gives a qualitative description of nuclear saturation properties, but it is now well established that the simple H is quantitatively inadequate. For example, the light nuclei are underbound with too large a charge radius, while nuclear matter is overbound at far too high a density. This note reviews recent studies that go beyond the simple H. These include 1) the introduction of three-nucleon potentials, 2) estimates of relativistic effects, 3) the introduction of isobar degrees of freedom in the two-body potential, and 4) probing the influence of pion degrees of freedom on nuclear systems

  1. Pythagoras Theorem and Relativistic Kinematics

    Science.gov (United States)

    Mulaj, Zenun; Dhoqina, Polikron

    2010-01-01

    In two inertial frames that move in a particular direction, may be registered a light signal that propagates in an angle with this direction. Applying Pythagoras theorem and principles of STR in both systems, we can derive all relativistic kinematics relations like the relativity of simultaneity of events, of the time interval, of the length of objects, of the velocity of the material point, Lorentz transformations, Doppler effect and stellar aberration.

  2. Exact Relativistic `Antigravity' Propulsion

    Science.gov (United States)

    Felber, Franklin S.

    2006-01-01

    The Schwarzschild solution is used to find the exact relativistic motion of a payload in the gravitational field of a mass moving with constant velocity. At radial approach or recession speeds faster than 3-1/2 times the speed of light, even a small mass gravitationally repels a payload. At relativistic speeds, a suitable mass can quickly propel a heavy payload from rest nearly to the speed of light with negligible stresses on the payload.

  3. Relativistic Boltzmann theory for a plasma

    International Nuclear Information System (INIS)

    Erkelens, H. van.

    1984-01-01

    This thesis gives a self-contained treatment of the relativistic Boltzmann theory for a plasma. Here plasma means any mixture containing electrically charged particles. The relativistic Boltzmann equation is linearized for the case of a plasma. The Chapman-Enskog method is elaborated further for transport phenomena. Linear laws for viscous phenomena are derived. Then the collision term in the Boltzmann theory is dealt with. Using the transport equation, a kinetic theory of wave phenomena is developed and the dissipation of hydromagnetic waves in a relativistic plasma is investigated. In the final chapter, it is demonstrated how the relativistic Boltzmann theory can be applied in cosmology. In doing so, expressions are derived for the electric conductivity of the cosmological plasma in the lepton era, the plasma era and the annihilation era. (Auth.)

  4. Radio Ranging Techniques to test Relativistic Gravitation

    OpenAIRE

    Cowsik, R.

    1999-01-01

    It is suggested that modern techniques of radio ranging when applied to study the motion of the Moon, can improve the accuracy of tests of relativistic gravitation obtained with currently operating laser ranging techniques. Other auxillary information relevant to the Solar system would also emerge from such a study.

  5. Self-focusing of laser beams in magnetized relativistic electron beams

    International Nuclear Information System (INIS)

    Whang, M.H.; Ho, A.Y.; Kuo, S.P.

    1989-01-01

    Recently, there is considerable interest in radiation focusing and optical guiding using the resonant interaction between the radiation field and electron beam. The result of radiation focusing has been shown to play a central role in the practical utilization of the FEL. This result allows the device to use longer interaction length for achieving higher output power. Likewise, the possibility of self-focusing of the laser beam in cyclotron resonance with a relativistic electron beam is also an important issue in the laser acceleration concepts for achieving high-gradient electron acceleration. The effectiveness of the acceleration process relies strongly on whether the laser intensity can be maintained at the desired level throughout the interaction. In this work, the authors study the problem concerning the self-focusing of laser beam in the relativistic electron beams under the cyclotron auto-resonance interaction. They assume that there is no electron density perturbation prohibited from the background magnetic field for the time scale of interest. The nonlinearity responsible for self-focusing process is introduced by the energy dependence of the relativistic mass of electrons. The plasma frequency varies with the electron energy which is proportional to the radiation amplitude. They then examine such a relativistic nonlinear effect on the propagation of a Gaussian beam in the electron beam. A parametric study of the dependence of the laser beam width on the axial position for various electron beam density has been performed

  6. Relativistic effects in the Thomas--Fermi atom

    International Nuclear Information System (INIS)

    Waber, J.T.; Canfield, J.M.

    1975-01-01

    Two methods of applying relativistic corrections to the Thomas--Fermi atom are considered, and numerical calculations are discussed. Radial charge distributions calculated from a relativistic Thomas--Fermi equation agree in gross form with those from more complicated self-consistent calculations. Energy eigenvalues for mercury, as determined from the relativistic Thomas--Fermi solution, are compared with other calculated and experimental values

  7. The relativistic rotation of spin and asymptotic behaviour of the form factor of the composite system

    International Nuclear Information System (INIS)

    Trubnikov, S.V.

    1984-01-01

    The relativistic rotation of nucleon spin in addition to deuteron spin leads to the appearance of the new term in the deuteron charge form factor (DCFF). This term is absent in the traditional approaches and essentially influences the asymptotic behaviour of DCFF. General formulae are obtained for the DCFF asymptotics in the relativistic and nonrelativistic impulse approximation

  8. Relativistic klystron research for linear colliders

    International Nuclear Information System (INIS)

    Allen, M.A.; Callin, R.S.; Deruyter, H.; Eppley, K.R.; Fant, K.S.; Fowkes, W.R.; Herrmannsfeldt, W.B.; Hoag, H.A.; Koontz, R.F.; Lavine, T.L.; Lee, T.G.; Loew, G.A.; Miller, R.H.; Morton, P.L.; Palmer, R.B.; Paterson, J.M.; Ruth, R.D.; Schwarz, H.D.; Vlieks, A.E.; Wilson, P.B.

    1989-01-01

    Relativistic klystrons are being developed as a power source for high gradient accelerator applications which include large linear electron-positron colliders, compact accelerators, and FEL sources. The authors have attained 200 MW peak power at 11.4 GHz from a relativistic klystron, and 140 MV/m longitudinal gradient in a short 11.4 GHz accelerator section. In this paper the authors report on the design of our relativistic klystrons, the results of our experiments so far, and some of our plans for the near future

  9. Relativistic klystron research for linear colliders

    International Nuclear Information System (INIS)

    Allen, M.A.; Callin, R.S.; Deruyter, H.

    1988-09-01

    Relativistic klystrons are being developed as a power source for high gradient accelerator applications which include large linear electron-positron colliders, compact accelerators, and FEL sources. We have attained 200 MW peak power at 11.4 GHz from a relativistic klystron, and 140 MV/m longitudinal gradient in a short 11.4 GHz accelerator section. We report here on the design of our relativistic klystrons, the results of our experiments so far, and some of our plans for the near future. 5 refs., 9 figs., 1 tab

  10. Relativistic approach to nuclear structure

    International Nuclear Information System (INIS)

    Nguyen Van Giai; Bouyssy, A.

    1987-03-01

    Some recent works related with relativistic models of nuclear structure are briefly reviewed. The Dirac-Hartree-Fock and Dirac-Brueckner-Hartree-Fock are recalled and illustrated by some examples. The problem of isoscalar current and magnetic moments of odd nuclei is discussed. The application of the relativistic model to the nuclear response function is examined

  11. Relativistic many-body theory a new field-theoretical approach

    CERN Document Server

    Lindgren, Ingvar

    2016-01-01

    This revised second edition of the author’s classic text offers readers a comprehensively updated review of relativistic atomic many-body theory, covering the many developments in the field since the publication of the original title.  In particular, a new final section extends the scope to cover the evaluation of QED effects for dynamical processes. The treatment of the book is based upon quantum-field theory, and demonstrates that when the procedure is carried to all orders of perturbation theory, two-particle systems are fully compatible with the relativistically covariant Bethe-Salpeter equation. This procedure can be applied to arbitrary open-shell systems, in analogy with the standard many-body theory, and it is also applicable to systems with more than two particles. Presently existing theoretical procedures for treating atomic systems are, in several cases, insufficient to explain the accurate experimental data recently obtained, particularly for highly charged ions. The main text is divided into...

  12. A Comprehensive Comparison of Relativistic Particle Integrators

    Science.gov (United States)

    Ripperda, B.; Bacchini, F.; Teunissen, J.; Xia, C.; Porth, O.; Sironi, L.; Lapenta, G.; Keppens, R.

    2018-03-01

    We compare relativistic particle integrators commonly used in plasma physics, showing several test cases relevant for astrophysics. Three explicit particle pushers are considered, namely, the Boris, Vay, and Higuera–Cary schemes. We also present a new relativistic fully implicit particle integrator that is energy conserving. Furthermore, a method based on the relativistic guiding center approximation is included. The algorithms are described such that they can be readily implemented in magnetohydrodynamics codes or Particle-in-Cell codes. Our comparison focuses on the strengths and key features of the particle integrators. We test the conservation of invariants of motion and the accuracy of particle drift dynamics in highly relativistic, mildly relativistic, and non-relativistic settings. The methods are compared in idealized test cases, i.e., without considering feedback onto the electrodynamic fields, collisions, pair creation, or radiation. The test cases include uniform electric and magnetic fields, {\\boldsymbol{E}}× {\\boldsymbol{B}} fields, force-free fields, and setups relevant for high-energy astrophysics, e.g., a magnetic mirror, a magnetic dipole, and a magnetic null. These tests have direct relevance for particle acceleration in shocks and in magnetic reconnection.

  13. Relativistic Hartree-Fock theory. Part I: density-dependent effective Lagrangians

    Energy Technology Data Exchange (ETDEWEB)

    LongWen Hui [School of Physics, Peking University, 100871 Beijing (China)]|[CNRS-IN2P3, UMR 8608, F-91406 Orsay Cedex (France)]|[Univ Paris-Sud, F-91405 Orsay (France); Giai, Nguyen Van [CNRS-IN2P3, UMR 8608, F-91406 Orsay Cedex (France)]|[Univ Paris-Sud, F-91405 Orsay (France); Meng, Jie [School of Physics, Peking University, 100871 Beijing (China)]|[Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing (China)]|[Center of Theoretical Nuclear Physics, National Laboratory of Heavy Ion Accelerator, 730000 Lanzhou (China)

    2006-10-15

    Effective Lagrangians suitable for a relativistic Hartree-Fock description of nuclear systems are presented. They include the 4 effective mesons {sigma}, {omega}, {rho} and {pi} with density-dependent meson-nucleon couplings. The criteria for determining the model parameters are the reproduction of the binding energies in a number of selected nuclei, and the bulk properties of nuclear matter (saturation point, compression modulus, symmetry energy). An excellent description of nuclear binding energies and radii is achieved for a range of nuclei encompassing light and heavy systems. The predictions of the present approach compare favorably with those of existing relativistic mean field models, with the advantage of incorporating the effects of pion-nucleon coupling. (authors)

  14. Relativistic heavy-ion physics

    CERN Document Server

    Herrera Corral, G

    2010-01-01

    The study of relativistic heavy-ion collisions is an important part of the LHC research programme at CERN. This emerging field of research focuses on the study of matter under extreme conditions of temperature, density, and pressure. Here we present an introduction to the general aspects of relativistic heavy-ion physics. Afterwards we give an overview of the accelerator facility at CERN and then a quick look at the ALICE project as a dedicated experiment for heavy-ion collisions.

  15. Relativistic theories of materials

    CERN Document Server

    Bressan, Aldo

    1978-01-01

    The theory of relativity was created in 1905 to solve a problem concerning electromagnetic fields. That solution was reached by means of profound changes in fundamental concepts and ideas that considerably affected the whole of physics. Moreover, when Einstein took gravitation into account, he was forced to develop radical changes also in our space-time concepts (1916). Relativistic works on heat, thermodynamics, and elasticity appeared as early as 1911. However, general theories having a thermodynamic basis, including heat conduction and constitutive equations, did not appear in general relativity until about 1955 for fluids and appeared only after 1960 for elastic or more general finitely deformed materials. These theories dealt with materials with memory, and in this connection some relativistic versions of the principle of material indifference were considered. Even more recently, relativistic theories incorporating finite deformations for polarizable and magnetizable materials and those in which couple s...

  16. Relativistic dynamics without conservation laws

    OpenAIRE

    Rothenstein, Bernhard; Popescu, Stefan

    2006-01-01

    We show that relativistic dynamics can be approached without using conservation laws (conservation of momentum, of energy and of the centre of mass). Our approach avoids collisions that are not easy to teach without mnemonic aids. The derivations are based on the principle of relativity and on its direct consequence, the addition law of relativistic velocities.

  17. Time Operator in Relativistic Quantum Mechanics

    Science.gov (United States)

    Khorasani, Sina

    2017-07-01

    It is first shown that the Dirac’s equation in a relativistic frame could be modified to allow discrete time, in agreement to a recently published upper bound. Next, an exact self-adjoint 4 × 4 relativistic time operator for spin-1/2 particles is found and the time eigenstates for the non-relativistic case are obtained and discussed. Results confirm the quantum mechanical speculation that particles can indeed occupy negative energy levels with vanishingly small but non-zero probablity, contrary to the general expectation from classical physics. Hence, Wolfgang Pauli’s objection regarding the existence of a self-adjoint time operator is fully resolved. It is shown that using the time operator, a bosonic field referred here to as energons may be created, whose number state representations in non-relativistic momentum space can be explicitly found.

  18. Relativistic klystron research for linear colliders

    International Nuclear Information System (INIS)

    Allen, M.A.; Callin, R.S.; Deruyter, H.; Eppley, K.R.; Fant, K.S.; Fowkes, W.R.; Herrmannesfeldt, W.B.; Higo, T.; Hoag, H.A.; Koontz, R.F.; Lavine, T.L.; Lee, T.G.; Loew, G.A.; Miller, R.H.; Morton, P.L.; Palmer, R.B.; Paterson, J.M.; Ruth, R.D.; Schwarz, H.D.; Takeuchi, Y.; Vlieks, A.E.; Wang, J.W.; Wilson, P.B.; Hopkins, D.B.; Sessler, A.M.; Ryne, R.D.; Westenskow, G.A.; Yu, S.S.

    1989-01-01

    Relativistic klystrons are being developed as a power source for high gradient accelerator applications which include large linear electron-positron colliders, compact accelerators, and FEL sources. The authors have attained 200MW peak power at 11.4 GHz from a relativistic klystron, and 140 MV/m longitudinal gradient in a short 11.4 GHz accelerator section. They report here on the design of our relativistic klystrons, the results of our experiments so far, and some of our plans for the near future. 5 refs., 9 figs., 1 tab

  19. Modelling early stages of relativistic heavy-ion collisions

    Directory of Open Access Journals (Sweden)

    Ruggieri M.

    2016-01-01

    Full Text Available In this study we model early time dynamics of relativistic heavy ion collisions by an initial color-electric field which then decays to a plasma by the Schwinger mechanism. The dynamics of the many particles system produced by the decay is described by relativistic kinetic theory, taking into account the backreaction on the color field by solving self-consistently the kinetic and the field equations. Our main results concern isotropization and thermalization for a 1+1D expanding geometry. In case of small η/s (η/s ≲ 0.3 we find τisotropization ≈ 0.8 fm/c and τthermalization ≈ 1 fm/c in agreement with the common lore of hydrodynamics.

  20. Production of spectator hypermatter in relativistic heavy-ion collisions

    International Nuclear Information System (INIS)

    Botvina, A. S.; Gudima, K. K.; Steinheimer, J.; Bleicher, M.; Mishustin, I. N.

    2011-01-01

    Possible formation of large hyperfragments in relativistic heavy-ion collisions is studied within two transport models, the Dubna cascade model and UrQMD model. Our goal is to explore a new mechanism for the formation of strange nuclear systems via capture of hyperons by relatively cold spectator matter produced in semiperipheral collisions. We investigate basic characteristics of the produced hyperspectators and estimate the production probabilities of multistrange systems. Advantages of the proposed mechanisms over an alternative coalescence process are analyzed. We also discuss how such hyperfragments can be detected by taking into account the background of free hyperons. This investigation is important for the development of new experimental methods for producing hypernuclei in peripheral relativistic nucleus-nucleus collisions, which are now underway at GSI and are planned for the future FAIR and NICA facilities.

  1. Relativistic Gas Drag on Dust Grains and Implications

    Energy Technology Data Exchange (ETDEWEB)

    Hoang, Thiem, E-mail: thiemhoang@kasi.re.kr [Korea Astronomy and Space Science Institute, Daejeon 34055 (Korea, Republic of); Korea University of Science and Technology, Daejeon, 34113 (Korea, Republic of)

    2017-09-20

    We study the drag force on grains moving at relativistic velocities through interstellar gas and explore its application. First, we derive a new analytical formula of the drag force at high energies and find that it is significantly reduced compared to the classical model. Second, we apply the obtained drag force to calculate the terminal velocities of interstellar grains by strong radiation sources such as supernovae and active galactic nuclei (AGNs). We find that grains can be accelerated to relativistic velocities by very luminous AGNs. We then quantify the deceleration of relativistic spacecraft proposed by the Breakthrough Starshot initiative due to gas drag on a relativistic lightsail. We find that the spacecraft’s decrease in speed is negligible because of the suppression of gas drag at relativistic velocities, suggesting that the lightsail may be open for communication during its journey to α Centauri without causing a considerable delay. Finally, we show that the damage to relativistic thin lightsails by interstellar dust is a minor effect.

  2. Modular TPCs for relativistic heavy-ion experiments

    International Nuclear Information System (INIS)

    Etkin, A.; Eiseman, S.E.; Foley, K.J.; Hackenburg, R.W.; Longacre, R.S.; Love, W.A.; Morris, T.W.; Platner, E.D.; Saulys, A.C.; Lindenbaum, S.J.; Chan, C.S.; Kramer, M.A.; Hallman, T.J.; Madansky, L.; Bonner, B.E.; Buchanan, J.A.; Chiou, C.N.; Clement, J.M.; Corcoran, M.D.; Krishna, N.; Kruk, J.W.; Miettinen, H.E.; Mutchler, G.S.; Nessi-Tedaldi, F.; Nessi, M.; Phillips, G.C.; Roberts, J.B.

    1989-01-01

    A description is given of a TPC system that operates in a relativistic heavy-ion beam and yields good track reconstruction efficiency in very-high-multiplicity events. The mechanical construction of the chamber is discussed. A set of custom hybrid circuits are used to build a very compact, cost-effective electronics system mounted directly on the chamber. Results from running in test beams and from preliminary experimental runs are given. (orig.)

  3. Relativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Barz, H.W.; Kaempfer, B.; Schulz, H.

    1984-12-01

    An elementary introduction is given into the scenario of relativistic heavy ion collisions. It deals with relativistic kinematics and estimates of energy densities, extrapolations of the present knowledge of hadron-hadron and hadron-nuleus to nucleus-nucleus collisions, the properties of the quark-gluon plasma and the formation of the plasma and possible experimental signatures. Comments are made on a cosmic ray experiment which could be interpreted as a first indication of the quark-gluon phase of the matter. (author)

  4. A family of solutions to the Einstein-Maxwell system of equations describing relativistic charged fluid spheres

    Science.gov (United States)

    Komathiraj, K.; Sharma, Ranjan

    2018-05-01

    In this paper, we present a formalism to generate a family of interior solutions to the Einstein-Maxwell system of equations for a spherically symmetric relativistic charged fluid sphere matched to the exterior Reissner-Nordström space-time. By reducing the Einstein-Maxwell system to a recurrence relation with variable rational coefficients, we show that it is possible to obtain closed-form solutions for a specific range of model parameters. A large class of solutions obtained previously are shown to be contained in our general class of solutions. We also analyse the physical viability of our new class of solutions.

  5. Cooling rates and intensity limitations for laser-cooled ions at relativistic energies

    Science.gov (United States)

    Eidam, Lewin; Boine-Frankenheim, Oliver; Winters, Danyal

    2018-04-01

    The ability of laser cooling for relativistic ion beams is investigated. For this purpose, the excitation of relativistic ions with a continuous wave and a pulsed laser is analyzed, utilizing the optical Bloch equations. The laser cooling force is derived in detail and its scaling with the relativistic factor γ is discussed. The cooling processes with a continuous wave and a pulsed laser system are investigated. Optimized cooling scenarios and times are obtained in order to determine the required properties of the laser and the ion beam for the planed experiments. The impact of beam intensity effects, like intrabeam scattering and space charge are analyzed. Predictions from simplified models are compared to particle-in-cell simulations and are found to be in good agreement. Finally two realistic example cases of Carbon ions in the ESR and relativistic Titanium ions in SIS100 are compared in order to discuss prospects for future laser cooling experiments.

  6. Thermodynamics and relativistic kinetic theory for q-generalized Bose-Einstein and Fermi-Dirac systems

    Science.gov (United States)

    Mitra, Sukanya

    2018-01-01

    The thermodynamics and covariant kinetic theory are elaborately investigated in a non-extensive environment considering the non-extensive generalization of Bose-Einstein (BE) and Fermi-Dirac (FD) statistics. Starting with Tsallis' entropy formula, the fundamental principles of thermostatistics are established for a grand canonical system having q-generalized BE/FD degrees of freedom. Many particle kinetic theory is set up in terms of the relativistic transport equation with q-generalized Uehling-Uhlenbeck collision term. The conservation laws are realized in terms of appropriate moments of the transport equation. The thermodynamic quantities are obtained in a weak non-extensive environment for a massive pion-nucleon and a massless quark-gluon system with non-zero baryon chemical potential. In order to get an estimate of the impact of non-extensivity on the system dynamics, the q-modified Debye mass and hence the q-modified effective coupling are estimated for a quark-gluon system.

  7. Mode control in a high-gain relativistic klystron amplifier

    Science.gov (United States)

    Li, Zheng-Hong; Zhang, Hong; Ju, Bing-Quan; Su, Chang; Wu, Yang

    2010-05-01

    Middle cavities between the input and output cavity can be used to decrease the required input RF power for the relativistic klystron amplifier. Meanwhile higher modes, which affect the working mode, are also easy to excite in a device with more middle cavities. In order for the positive feedback process for higher modes to be excited, a special measure is taken to increase the threshold current for such modes. Higher modes' excitation will be avoided when the threshold current is significantly larger than the beam current. So a high-gain S-band relativistic klystron amplifier is designed for the beam of current 5 kA and beam voltage 600 kV. Particle in cell simulations show that the gain is 1.6 × 105 with the input RF power of 6.8 kW, and that the output RF power reaches 1.1 GW.

  8. Relativistic heavy-atom effects on heavy-atom nuclear shieldings

    Science.gov (United States)

    Lantto, Perttu; Romero, Rodolfo H.; Gómez, Sergio S.; Aucar, Gustavo A.; Vaara, Juha

    2006-11-01

    The principal relativistic heavy-atom effects on the nuclear magnetic resonance (NMR) shielding tensor of the heavy atom itself (HAHA effects) are calculated using ab initio methods at the level of the Breit-Pauli Hamiltonian. This is the first systematic study of the main HAHA effects on nuclear shielding and chemical shift by perturbational relativistic approach. The dependence of the HAHA effects on the chemical environment of the heavy atom is investigated for the closed-shell X2+, X4+, XH2, and XH3- (X =Si-Pb) as well as X3+, XH3, and XF3 (X =P-Bi) systems. Fully relativistic Dirac-Hartree-Fock calculations are carried out for comparison. It is necessary in the Breit-Pauli approach to include the second-order magnetic-field-dependent spin-orbit (SO) shielding contribution as it is the larger SO term in XH3-, XH3, and XF3, and is equally large in XH2 as the conventional, third-order field-independent spin-orbit contribution. Considering the chemical shift, the third-order SO mechanism contributes two-thirds of the difference of ˜1500ppm between BiH3 and BiF3. The second-order SO mechanism and the numerically largest relativistic effect, which arises from the cross-term contribution of the Fermi contact hyperfine interaction and the relativistically modified spin-Zeeman interaction (FC/SZ-KE), are isotropic and practically independent of electron correlation effects as well as the chemical environment of the heavy atom. The third-order SO terms depend on these factors and contribute both to heavy-atom shielding anisotropy and NMR chemical shifts. While a qualitative picture of heavy-atom chemical shifts is already obtained at the nonrelativistic level of theory, reliable shifts may be expected after including the third-order SO contributions only, especially when calculations are carried out at correlated level. The FC/SZ-KE contribution to shielding is almost completely produced in the s orbitals of the heavy atom, with values diminishing with the principal

  9. Kinetic analysis of thermally relativistic flow with dissipation

    International Nuclear Information System (INIS)

    Yano, Ryosuke; Suzuki, Kojiro

    2011-01-01

    Nonequilibrium flow of thermally relativistic matter with dissipation is considered in the framework of the relativistic kinetic theory. As an object of the analysis, the supersonic rarefied flow of thermally relativistic matter around the triangle prism is analyzed using the Anderson-Witting model. Obtained numerical results indicate that the flow field changes in accordance with the flow velocity and temperature of the uniform flow owing to both effects derived from the Lorentz contraction and thermally relativistic effects, even when the Mach number of the uniform flow is fixed. The profiles of the heat flux along the stagnation streamline can be approximated on the basis of the relativistic Navier-Stokes-Fourier (NSF) law except for a strong nonequilibrium regime such as the middle of the shock wave and the vicinity of the wall, whereas the profile of the heat flux behind the triangle prism cannot be approximated on the basis of the relativistic NSF law owing to rarefied effects via the expansion behind the triangle prism. Additionally, the heat flux via the gradient of the static pressure is non-negligible owing to thermally relativistic effects. The profile of the dynamic pressure is different from that approximated on the basis of the NSF law, which is obtained by the Eckart decomposition. Finally, variations of convections of the mass and momentum owing to the effects derived from the Lorentz contraction and thermally relativistic effects are numerically confirmed.

  10. Chaos in Dirac Electron Optics: Emergence of a Relativistic Quantum Chimera.

    Science.gov (United States)

    Xu, Hong-Ya; Wang, Guang-Lei; Huang, Liang; Lai, Ying-Cheng

    2018-03-23

    We uncover a remarkable quantum scattering phenomenon in two-dimensional Dirac material systems where the manifestations of both classically integrable and chaotic dynamics emerge simultaneously and are electrically controllable. The distinct relativistic quantum fingerprints associated with different electron spin states are due to a physical mechanism analogous to a chiroptical effect in the presence of degeneracy breaking. The phenomenon mimics a chimera state in classical complex dynamical systems but here in a relativistic quantum setting-henceforth the term "Dirac quantum chimera," associated with which are physical phenomena with potentially significant applications such as enhancement of spin polarization, unusual coexisting quasibound states for distinct spin configurations, and spin selective caustics. Experimental observations of these phenomena are possible through, e.g., optical realizations of ballistic Dirac fermion systems.

  11. Chaos in Dirac Electron Optics: Emergence of a Relativistic Quantum Chimera

    Science.gov (United States)

    Xu, Hong-Ya; Wang, Guang-Lei; Huang, Liang; Lai, Ying-Cheng

    2018-03-01

    We uncover a remarkable quantum scattering phenomenon in two-dimensional Dirac material systems where the manifestations of both classically integrable and chaotic dynamics emerge simultaneously and are electrically controllable. The distinct relativistic quantum fingerprints associated with different electron spin states are due to a physical mechanism analogous to a chiroptical effect in the presence of degeneracy breaking. The phenomenon mimics a chimera state in classical complex dynamical systems but here in a relativistic quantum setting—henceforth the term "Dirac quantum chimera," associated with which are physical phenomena with potentially significant applications such as enhancement of spin polarization, unusual coexisting quasibound states for distinct spin configurations, and spin selective caustics. Experimental observations of these phenomena are possible through, e.g., optical realizations of ballistic Dirac fermion systems.

  12. The Gaussian formula and spherical aberrations of static and relativistic curved mirrors from Fermat's principle

    International Nuclear Information System (INIS)

    Sutanto, Sylvia H; Tjiang, Paulus C

    2011-01-01

    The Gaussian formula and spherical aberrations of static and relativistic curved mirrors are analyzed using the optical path length (OPL) and Fermat's principle. The geometrical figures generated by the rotation of conic sections about their symmetry axes are considered for the shapes of the mirrors. By comparing the results in static and relativistic cases, it is shown that the focal lengths and the spherical aberration relations of the relativistic mirrors obey the Lorentz contraction. Further analysis of the spherical aberrations for both static and relativistic cases have resulted in information about the limits for the paraxial approximation, as well as for the minimum speed of the systems to reduce the spherical aberrations

  13. Positioning performance of a maglev fine positioning system

    Energy Technology Data Exchange (ETDEWEB)

    Wronosky, J.B.; Smith, T.G.; Jordan, J.D.; Darnold, J.R.

    1996-12-01

    A wafer positioning system was recently developed by Sandia National Laboratories for an Extreme Ultraviolet Lithography (EUVL) research tool. The system, which utilizes a magnetically levitated fine stage to provide ultra-precise positioning in all six degrees of freedom, incorporates technological improvements resulting from four years of prototype development experience. System enhancements, implemented on a second generation design for an ARPA National Center for Advanced Information Component Manufacturing (NCAICM) project, introduced active structural control for the levitated structure of the system. Magnetic levitation (maglev) is emerging as an important technology for wafer positioning systems in advanced lithography applications. The advantages of maglev stem from the absence of physical contact. The resulting lack of friction enables accurate, fast positioning. Maglev systems are mechanically simple, accomplishing full six degree-of-freedom suspension and control with a minimum of moving parts. Power-efficient designs, which reduce the possibility of thermal distortion of the platen, are achievable. Manufacturing throughput will be improved in future systems with the addition of active structural control of the positioning stages. This paper describes the design, implementation, and functional capability of the maglev fine positioning system. Specifics regarding performance design goals and test results are presented.

  14. Relativistic stability of interacting Fermi gas in a strong magnetic field

    International Nuclear Information System (INIS)

    Wang Lilin; Tian Jincheng; Men Fudian; Zhang Yipeng

    2013-01-01

    By means of the single particle energy spectrum of weak interaction between fermions and Poisson formula, the thermodynamic potential function of relativistic Fermi gas in a strong magnetic field is derived. Based on this, we obtained the criterion of stability for the system. The results show that the mechanics stability of a Fermi gas with weak interacting is influenced by the interacting. While the magnetic field is able to regulate the influence and the relativistic effect has almost no effect on it. (authors)

  15. SDRC I-DEAS and RHIC (Relativistic Heavy Ion Collider)

    International Nuclear Information System (INIS)

    Goggin, C.M.

    1989-01-01

    In August 1984, Brookhaven National Laboratory submitted a proposal to the Department of Energy (DOE) for the construction of a Relativistic Heavy Ion Collider (RHIC). Since then funding has continued for the detailed design of RHIC. The hardware for RHIC consists of two concentric rings of superconducting magnets in a 2.4 mile circumference with six intersections. Bunches of ions will travel in opposite directions in each of the two rings and eventually collide head on at one of the six intersections. The hardware design involves complicated facilities for liquid helium cryogens, cryostat design, and pipe systems. The greatest challenge however is the ion beam position relative to the geometric center of the rings. There are three hundred and seventy-two dipole magnets that are ten meters long and weigh 4300 Kg (4.5 tons) each. Each dipole must be positioned in the ring to ± 0.5 mm. In addition, there are four hundred and ninety-two quadrupole magnets that must be positioned to ± 0.1 mm which is a total position error. This total position error includes all the surveying and part tolerance. To accomplish this task requires detailed planning and design of the cryostats which contain each magnet and the tunnel assembly throughout the 2.4 mile circumference. The IDEAS' software package provides a way to analyze this large scale problem. 11 figs

  16. Loading relativistic Maxwell distributions in particle simulations

    Energy Technology Data Exchange (ETDEWEB)

    Zenitani, Seiji, E-mail: seiji.zenitani@nao.ac.jp [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan)

    2015-04-15

    Numerical algorithms to load relativistic Maxwell distributions in particle-in-cell (PIC) and Monte-Carlo simulations are presented. For stationary relativistic Maxwellian, the inverse transform method and the Sobol algorithm are reviewed. To boost particles to obtain relativistic shifted-Maxwellian, two rejection methods are proposed in a physically transparent manner. Their acceptance efficiencies are ≈50% for generic cases and 100% for symmetric distributions. They can be combined with arbitrary base algorithms.

  17. Loading relativistic Maxwell distributions in particle simulations

    International Nuclear Information System (INIS)

    Zenitani, Seiji

    2015-01-01

    Numerical algorithms to load relativistic Maxwell distributions in particle-in-cell (PIC) and Monte-Carlo simulations are presented. For stationary relativistic Maxwellian, the inverse transform method and the Sobol algorithm are reviewed. To boost particles to obtain relativistic shifted-Maxwellian, two rejection methods are proposed in a physically transparent manner. Their acceptance efficiencies are ≈50% for generic cases and 100% for symmetric distributions. They can be combined with arbitrary base algorithms

  18. New relativistic particle-in-cell simulation studies of prompt and early afterglows from GRBs

    International Nuclear Information System (INIS)

    Ken-Ichi Nishikawa

    2008-01-01

    Nonthermal radiation observed from astrophysical systems containing relativistic jets and shocks, e.g., gamma-ray bursts (GRBs), active galactic nuclei (AGNs), and Galactic microquasar systems usually have power-law emission spectra. Recent PIC simulations of relativistic electron-ion (electro-positron) jets injected into a stationary medium show that particle acceleration occurs within the downstream jet. In the collisionless relativistic shock particle acceleration is due to plasma waves and their associated instabilities (e.g., the Buneman instability, other two-streaming instability, and the Weibel (filamentation) instability) created in the shocks are responsible for particle (electron, positron, and ion) acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields. These magnetic fields contribute to the electrons' transverse deflection behind the jet head. The '' jitter '' radiation from deflected electrons has different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants. (author)

  19. Probabilistic solutions of generalized birth and death equations and application to non-relativistic electrodynamics

    International Nuclear Information System (INIS)

    Serva, M.

    1986-01-01

    In this paper we give probabilistic solutions to the equations describing non-relativistic quantum electrodynamical systems. These solutions involve, besides the usual diffusion processes, also birth and death processes corresponding to the 'photons number' variables. We state some inequalities and in particular we establish bounds to the ground state energy of systems composed by a non relativistic particle interacting with a field. The result is general and it is applied as an example to the polaron problem. (orig.)

  20. The de Sitter relativistic top theory

    International Nuclear Information System (INIS)

    Armenta, J.; Nieto, J.A.

    2005-01-01

    We discuss the relativistic top theory from the point of view of the de Sitter (or anti-de Sitter) group. Our treatment rests on the Hanson-Regge spherical relativistic top Lagrangian formulation. We propose an alternative method for studying spinning objects via Kaluza-Klein theory. In particular, we derive the relativistic top equations of motion starting with the geodesic equation for a point particle in 4+N dimensions. We compare our approach with Fukuyama's formulation of spinning objects, which is also based on Kaluza-Klein theory. We also report a generalization of our approach to a 4+N+D dimensional theory

  1. Modular TPC's for relativistic heavy ion experiments

    International Nuclear Information System (INIS)

    Etkin, A.; Eiseman, S.E.; Foley, K.J.

    1989-01-01

    We have developed a TPC system for use in relativistic heavy ion experiments that permits the efficient reconstruction of high multiplicity events including events with decay vertices. It operates with the beam through the middle of the chamber giving good efficiency, two-track separation and spatial resolution. The three-dimensional points in this system allow the reconstruction of the complex events of interest. The use of specially developed hybrid electronics allows us to build a compact and cost-effective system. 11 figs

  2. Biquaternions and relativistic kinematics

    International Nuclear Information System (INIS)

    Bogush, A.A.; Kurochkin, Yu.A.; Fedorov, F.I.

    1979-01-01

    The problems concerning the use of quaternion interpretation of the Lorentz group vector parametrization are considered for solving relativistic kinematics problems. A vector theory convenient for describing the characteristic features of the Lobachevsky space is suggested. The kinematics of elementary particle scattering is investigated on the basis of this theory. A synthesis of vector parametrization and of quaternion calculation has been shown to lead to natural formulation of the theory of vectors in the three-dimensional Lobachevsky space, realized on mass hyperboloids of relativistic particles

  3. Noncommutativity into Dirac Equation with mass dependent on the position

    International Nuclear Information System (INIS)

    Bastos, Samuel Batista; Almeida, Carlos Alberto Santos; Nunes, Luciana Angelica da Silva

    2013-01-01

    Full text: In recent years, there is growing interest in the study of theories in non-commutative spaces. Non-commutative fields theories are related with compactifications of M theory, string theory and the quantum Hall effect. Moreover, the role of the non-commutativity of theories of a particle finds large applications when analyzed in scenarios of quantum mechanics and relativistic quantum mechanics. In these contexts investigations on the Schrodinger and Dirac equations with mass depending on the position (MDP) has attracted much attention in the literature. Systems endowed with MDP models are useful for the study of many physical problems. In particular, they are used to study the energy density in problems of many bodies, determining the electronic properties of semiconductor heterostructures and also to describe the properties of heterojunctions and quantum dots. In particular, the investigation of relativistic effects it is important for systems containing heavy atoms or doping by heavy ions. For these types of materials, the study of the properties of the Dirac equation, in the case where the mass becomes variable is of great interest. In this paper, we seek for the non-relativistic limit of the Dirac Hamiltonian in the context of a theory of effective mass, through a Foldy-Wouthuysen transformation. We analyse the Dirac equation with mass dependent on the position, in a smooth step shape mass distribution, in non-commutative space (NC). This potential type kink was recently discussed by several authors in the commutative context and now we present our results in the non-commutative context. (author)

  4. The cosmic-ray shock structure problem for relativistic shocks

    Science.gov (United States)

    Webb, G. M.

    1985-01-01

    The time asymptotic behaviour of a relativistic (parallel) shock wave significantly modified by the diffusive acceleration of cosmic-rays is investigated by means of relativistic hydrodynamical equations for both the cosmic-rays and thermal gas. The form of the shock structure equation and the dispersion relation for both long and short wavelength waves in the system are obtained. The dependence of the shock acceleration efficiency on the upstream fluid spped, long wavelength Mach number and the ratio N = P sub co/cP sub co+P sub go)(Psub co and P sub go are the upstream cosmic-ray and thermal gas pressures respectively) are studied.

  5. Relativistic mechanics with reduced fields

    International Nuclear Information System (INIS)

    Sokolov, S.N.

    1996-01-01

    A new relativistic classical mechanics of interacting particles using a concept of a reduced field (RF) os proposed. RF is a mediator of interactions, the state of which is described by a finite number of two-argument functions. Ten of these functions correspond to the generators of the Poincare group. Equations of motion contain the retardation of interactions required by the causality principle and have form of a finite system of ordinary hereditary differential equations [ru

  6. Relativistic dynamical reduction models: General framework and examples

    International Nuclear Information System (INIS)

    Ghirardi, G.C.; Grassi, R.

    1990-04-01

    The formulation of a relativistic theory of statevector reduction is proposed and analyzed, and its conceptual consequences are elucidated. In particular, a detailed discussion of stochastic invariance and of local and nonlocal aspects at the level of individual systems is presented. (author). 35 refs, 5 figs

  7. An energy principle for two-dimensional collisionless relativistic plasmas

    International Nuclear Information System (INIS)

    Otto, A.; Schindler, K.

    1984-01-01

    Using relativistic Vlasov theory an energy principle for two-dimensional plasmas is derived, which provides a sufficient and necessary criterion for the stability of relativistic plasma equilibria. This energy principle includes charge separating effects since the exact Poisson equation was taken into consideration. Applying the variational principle to the case of the relativistic plane plasma sheet, the same marginal wave length is found as in the non-relativistic case. (author)

  8. Penetration of relativistic heavy ions through matter

    International Nuclear Information System (INIS)

    Scheidenberger, C.; Geissel, H.

    1997-07-01

    New heavy-ion accelerators covering the relativistic and ultra-relativistic energy regime allow to study atomic collisions with bare and few-electron projectiles. High-resolution magnetic spectrometers are used for precise stopping-power and energy-loss straggling measurements. Refined theories beyond the Born approximation have been developed and are confirmed by experiments. This paper summarizes the large progress in the understanding of relativistic heavy-ion penetration through matter, which has been achieved in the last few years. (orig.)

  9. Relativistic Kinematics

    OpenAIRE

    Sahoo, Raghunath

    2016-01-01

    This lecture note covers Relativistic Kinematics, which is very useful for the beginners in the field of high-energy physics. A very practical approach has been taken, which answers "why and how" of the kinematics useful for students working in the related areas.

  10. Relativistic electromagnetic waves in an electron-ion plasma

    Science.gov (United States)

    Chian, Abraham C.-L.; Kennel, Charles F.

    1987-01-01

    High power laser beams can drive plasma particles to relativistic energies. An accurate description of strong waves requires the inclusion of ion dynamics in the analysis. The equations governing the propagation of relativistic electromagnetic waves in a cold electron-ion plasma can be reduced to two equations expressing conservation of energy-momentum of the system. The two conservation constants are functions of the plasma stream velocity, the wave velocity, the wave amplitude, and the electron-ion mass ratio. The dynamic parameter, expressing electron-ion momentum conversation in the laboratory frame, can be regarded as an adjustable quantity, a suitable choice of which will yield self-consistent solutions when other plasma parameters were specified. Circularly polarized electromagnetic waves and electrostatic plasma waves are used as illustrations.

  11. Relativistic electron-beam transport in curved channels

    International Nuclear Information System (INIS)

    Vittitoe, C.N.; Morel, J.E.; Wright, T.P.

    1982-01-01

    Collisionless single particle trajectories are modeled for a single plasma channel having one section curved in a circular arc. The magnetic field is developed by superposition of straight and curved channel segments. The plasma density gives charge and beam-current neutralization. High transport efficiencies are found for turning a relativistic electron beam 90 0 under reasonable conditions of plasma current, beam energy, arc radius, channel radius, and injection distributions in velocity and in position at the channel entrance. Channel exit distributions in velocity and position are found consistent with those for a straight plasma channel of equivalent length. Such transport problems are important in any charged particle-beam application constrained by large diode-to-target distance or by requirements of maximum power deposition in a confined area

  12. Integrable couplings of relativistic Toda lattice systems in polynomial form and rational form, their hierarchies and bi-Hamiltonian structures

    Energy Technology Data Exchange (ETDEWEB)

    Xu Xixiang [College of Science, Shandong University of Science and Technology, Qingdao 266510 (China)], E-mail: xixiang_xu@yahoo.com.cn

    2009-10-02

    Integrable couplings of relativistic Toda lattice systems in polynomial form and rational form, and their hierarchies, are derived from a four-by-four discrete matrix eigenvalue problem. The bi-Hamiltonian structure for every integrable coupling in the two hierarchies obtained is established by means of the discrete variational identity. Ultimately, Liouvolle integrability of the obtained integrable couplings is demonstrated.

  13. Fully nonlinear heavy ion-acoustic solitary waves in astrophysical degenerate relativistic quantum plasmas

    Science.gov (United States)

    Sultana, S.; Schlickeiser, R.

    2018-05-01

    Fully nonlinear features of heavy ion-acoustic solitary waves (HIASWs) have been investigated in an astrophysical degenerate relativistic quantum plasma (ADRQP) containing relativistically degenerate electrons and non-relativistically degenerate light ion species, and non-degenerate heavy ion species. The pseudo-energy balance equation is derived from the fluid dynamical equations by adopting the well-known Sagdeev-potential approach, and the properties of arbitrary amplitude HIASWs are examined. The small amplitude limit for the propagation of HIASWs is also recovered. The basic features (width, amplitude, polarity, critical Mach number, speed, etc.) of HIASWs are found to be significantly modified by the relativistic effect of the electron species, and also by the variation of the number density of electron, light ion, and heavy ion species. The basic properties of HIASWs, that may propagated in some realistic astrophysical plasma systems (e.g., in white dwarfs), are briefly discussed.

  14. Relativistic klystrons

    International Nuclear Information System (INIS)

    Allen, M.A.; Azuma, O.; Callin, R.S.

    1989-03-01

    Experimental work is underway by a SLAC-LLNL-LBL collaboration to investigate the feasibility of using relativistic klystrons as a power source for future high gradient accelerators. Two different relativistic klystron configurations have been built and tested to date: a high grain multicavity klystron at 11.4 GHz and a low gain two cavity subharmonic buncher driven at 5.7 GHz. In both configurations power is extracted at 11.4 GHz. In order to understand the basic physics issues involved in extracting RF from a high power beam, we have used both a single resonant cavity and a multi-cell traveling wave structure for energy extraction. We have learned how to overcome our previously reported problem of high power RF pulse shortening, and have achieved peak RF power levels of 170 MW with the RF pulse of the same duration as the beam current pulse. 6 refs., 3 figs., 3 tabs

  15. Relativistic Astronomy

    Science.gov (United States)

    Zhang, Bing; Li, Kunyang

    2018-02-01

    The “Breakthrough Starshot” aims at sending near-speed-of-light cameras to nearby stellar systems in the future. Due to the relativistic effects, a transrelativistic camera naturally serves as a spectrograph, a lens, and a wide-field camera. We demonstrate this through a simulation of the optical-band image of the nearby galaxy M51 in the rest frame of the transrelativistic camera. We suggest that observing celestial objects using a transrelativistic camera may allow one to study the astronomical objects in a special way, and to perform unique tests on the principles of special relativity. We outline several examples that suggest transrelativistic cameras may make important contributions to astrophysics and suggest that the Breakthrough Starshot cameras may be launched in any direction to serve as a unique astronomical observatory.

  16. A Primer to Relativistic MOND Theory

    NARCIS (Netherlands)

    Bekenstein, J.D..; Sanders, R.H.

    2005-01-01

    Abstract: We first review the nonrelativistic lagrangian theory as a framework for the MOND equation. Obstructions to a relativistic version of it are discussed leading up to TeVeS, a relativistic tensor-vector-scalar field theory which displays both MOND and Newtonian limits. The whys for its

  17. Relativistic astrophysics and theory of gravity

    International Nuclear Information System (INIS)

    Zel'dovich, Ya.B.

    1982-01-01

    A brief historical review of the development of astrophysical science in the State Astrophysical Institute named after Shternberg (SAISh) has been given in a popular form. The main directions of the SAISh astrophysical investigations have been presented: relativistic theory of gravity, relativistic astrophysics of interplanetary medium and cosmology

  18. Thermodynamics and relativistic kinetic theory for q-generalized Bose-Einstein and Fermi-Dirac systems

    Energy Technology Data Exchange (ETDEWEB)

    Mitra, Sukanya [Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat (India)

    2018-01-15

    The thermodynamics and covariant kinetic theory are elaborately investigated in a non-extensive environment considering the non-extensive generalization of Bose-Einstein (BE) and Fermi-Dirac (FD) statistics. Starting with Tsallis' entropy formula, the fundamental principles of thermostatistics are established for a grand canonical system having q-generalized BE/FD degrees of freedom. Many particle kinetic theory is set up in terms of the relativistic transport equation with q-generalized Uehling-Uhlenbeck collision term. The conservation laws are realized in terms of appropriate moments of the transport equation. The thermodynamic quantities are obtained in a weak non-extensive environment for a massive pion-nucleon and a massless quark-gluon system with non-zero baryon chemical potential. In order to get an estimate of the impact of non-extensivity on the system dynamics, the q-modified Debye mass and hence the q-modified effective coupling are estimated for a quark-gluon system. (orig.)

  19. Non-relativistic Bondi-Metzner-Sachs algebra

    Science.gov (United States)

    Batlle, Carles; Delmastro, Diego; Gomis, Joaquim

    2017-09-01

    We construct two possible candidates for non-relativistic bms4 algebra in four space-time dimensions by contracting the original relativistic bms4 algebra. bms4 algebra is infinite-dimensional and it contains the generators of the Poincaré algebra, together with the so-called super-translations. Similarly, the proposed nrbms4 algebras can be regarded as two infinite-dimensional extensions of the Bargmann algebra. We also study a canonical realization of one of these algebras in terms of the Fourier modes of a free Schrödinger field, mimicking the canonical realization of relativistic bms4 algebra using a free Klein-Gordon field.

  20. Whispering gallery effect in relativistic optics

    Science.gov (United States)

    Abe, Y.; Law, K. F. F.; Korneev, Ph.; Fujioka, S.; Kojima, S.; Lee, S.-H.; Sakata, S.; Matsuo, K.; Oshima, A.; Morace, A.; Arikawa, Y.; Yogo, A.; Nakai, M.; Norimatsu, T.; d'Humières, E.; Santos, J. J.; Kondo, K.; Sunahara, A.; Gus'kov, S.; Tikhonchuk, V.

    2018-03-01

    relativistic laser pulse, confined in a cylindrical-like target, under specific conditions may perform multiple scattering along the internal target surface. This results in the confinement of the laser light, leading to a very efficient interaction. The demonstrated propagation of the laser pulse along the curved surface is just yet another example of the "whispering gallery" effect, although nonideal due to laser-plasma coupling. In the relativistic domain its important feature is a gradual intensity decrease, leading to changes in the interaction conditions. The proccess may pronounce itself in plenty of physical phenomena, including very efficient electron acceleration and generation of relativistic magnetized plasma structures.

  1. Relativistic bound states: a mass formula for vector mesons

    International Nuclear Information System (INIS)

    Richard, J.L.; Sorba, P.

    1975-07-01

    In the framework of a relativistic description of two particles bound states, a mass formula for vector mesons considered as quark-antiquark systems bound by harmonic oscillator like forces is proposed. Results in good agreement with experimental values are obtained [fr

  2. Lagrangian formulation of the general relativistic Poynting-Robertson effect

    Science.gov (United States)

    De Falco, Vittorio; Battista, Emmanuele; Falanga, Maurizio

    2018-04-01

    We propose the Lagrangian formulation for describing the motion of a test particle in a general relativistic, stationary, and axially symmetric spacetime. The test particle is also affected by a radiation field, modeled as a coherent flux of photons traveling along the null geodesics of the background spacetime, including the general relativistic Poynting-Robertson effect. The innovative part of this work is to prove the existence of the potential linked to the dissipative action caused by the Poynting-Robertson effect in general relativity through the help of an integrating factor, depending on the energy of the system. Generally, such kinds of inverse problems involving dissipative effects might not admit a Lagrangian formulation; especially, in general relativity, there are no examples of such attempts in the literature so far. We reduce this general relativistic Lagrangian formulation to the classic case in the weak-field limit. This approach facilitates further studies in improving the treatment of the radiation field, and it contains, for example, some implications for a deeper comprehension of the gravitational waves.

  3. Relativistic quantum mechanics and introduction to field theory

    Energy Technology Data Exchange (ETDEWEB)

    Yndurain, F.J. [Universidad Autonoma de Madrid (Spain). Dept. de Fisica Teorica

    1996-12-01

    The following topics were dealt with: relativistic transformations, the Lorentz group, Klein-Gordon equation, spinless particles, spin 1/2 particles, Dirac particle in a potential, massive spin 1 particles, massless spin 1 particles, relativistic collisions, S matrix, cross sections, decay rates, partial wave analysis, electromagnetic field quantization, interaction of radiation with matter, interactions in quantum field theory and relativistic interactions with classical sources.

  4. Relativistic quantum mechanics and introduction to field theory

    International Nuclear Information System (INIS)

    Yndurain, F.J.

    1996-01-01

    The following topics were dealt with: relativistic transformations, the Lorentz group, Klein-Gordon equation, spinless particles, spin 1/2 particles, Dirac particle in a potential, massive spin 1 particles, massless spin 1 particles, relativistic collisions, S matrix, cross sections, decay rates, partial wave analysis, electromagnetic field quantization, interaction of radiation with matter, interactions in quantum field theory and relativistic interactions with classical sources

  5. Relativistic corrections to the Cooperon mass: BCS versus BEC picture

    Energy Technology Data Exchange (ETDEWEB)

    Lipavský, P., E-mail: lipavsky@karlov.mff.cuni.cz

    2017-02-15

    Highlights: • Tate's measurement of relativistic effects on the Cooper pair mass show the increase while a decrease was expected. • This disagreement raised a question whether it has fundamental significance or is due to the details of the particular physical system being studied. • The most fundamental were speculations about gravitomagnetic forces enhanced by the Higgs mechanism. • These were recently disproved experimentally. • This paper shows that the relativistic mass corrections might be sensitive to the pairing scenario: the predicted mass decrease corresponds to the Bose–Einstein condensation of preformed Cooper pairs, while the pairing in the Bardeen–Cooper–Schrieffer condensate leads to an increase of experimentally observed magnitude. - Abstract: Relativistic corrections to the Cooperon mass are discussed for preformed Cooper pairs that become superconductive via the Bose–Einstein condensation (BEC) and for Cooperons in the Bardeen–Copper–Schrieffer (BCS) condensate. The distinction explains experimental results of Tate et al. (1989).

  6. On the relativistic quantum mechanics of two interacting spinless particles

    International Nuclear Information System (INIS)

    Rizov, V.A.; Sazdjian, H.; Todorov, I.T.

    1984-05-01

    The L 2 -scalar product ∫ PHI*(x)PSI(x) d 3 x is not appropriate for the space of states describing the center-of-mass relative motion of two relativistic particles whose interaction is given by an energy dependent quasipotential. The problem already appears in the relativistic quantum mechanics of a Klein-Gordon charged particle in an external field. We extend the methods developed for that case to study a two-particle system with an energy independent scalar interaction as well as the relativistic Coulomb problem. We write down a Poincare invariant inner product for which the eigenfunctions corresponding to different energy eigenvalues are orthogonal. We also construct a perturbative expansion for bound-state energy eigenvalues corresponding to an arbitrary energy dependent (quasipotential) correction to an unperturbed Hamiltonian with a known spectrum. The description of observables and transition probabilities for eigenvalue problems with a polynomial dependence on the spectral parameter is also discussed

  7. Effects of relativistic small radial component on atomic photoionization cross sections

    International Nuclear Information System (INIS)

    Liu Xiaobin; Xing Yongzhong; Sun Xiaowei

    2008-01-01

    The effects of relativistic small radial component on atomic photoionization cross sections have been studied within relativistic average self-consistent field theory. Relativistic effects are relatively unimportant for low photon energy, along with a review of high-energy photoionization the relativistic effects are quite important. The effects of relativistic small radial component on photoionization process should show breakdown when the nuclear finite-size effects is taken into account. The compression of wavefunction into the space near nucleus is so strong in highly charged ions that the electronic radius greatly decreases, and the effects of relativistic small radial component on photoionization cross sections turn to stronger than ordinary atoms. Since relativistic effects are extremely sensitive to the behavior of small radial component, the results are in good agreement with relativistic effects on photoionization cross section. (authors)

  8. The ionisation equation in a relativistic gas

    International Nuclear Information System (INIS)

    Kichenassamy, S.; Krikorian, R.A.

    1983-01-01

    By deriving the relativistic form of the ionisation equation for a perfect gas it is shown that the usual Saha equation is valid to 3% for temperatures below one hundred million Kelvin. Beyond 10 9 K, the regular Saha equation is seriously incorrect and a relativistic distribution function for electrons must be taken into account. Approximate forms are derived when only the electrons are relativistic (appropriate up to 10 12 K) and also for the ultrarelativistic case (temperatures greater than 10 15 K). (author)

  9. Effectively semi-relativistic Hamiltonians of nonrelativistic form

    International Nuclear Information System (INIS)

    Lucha, W.; Schoeberl, F.F.; Moser, M.

    1993-12-01

    We construct effective Hamiltonians which despite their apparently nonrelativistic form incorporate relativistic effects by involving parameters which depend on the relevant momentum. For some potentials the corresponding energy eigenvalues may be determined analytically. Applied to two-particle bound states, it turns out that in this way a nonrelativistic treatment may indeed be able to simulate relativistic effects. Within the framework of hadron spectroscopy, this lucky circumstance may be an explanation for the sometimes extremely good predictions of nonrelativistic potential models even in relativistic regions. (authors)

  10. Relativistic Astrophysics

    International Nuclear Information System (INIS)

    Font, J. A.

    2015-01-01

    The relativistic astrophysics is the field of astrophysics employing the theory of relativity Einstein as physical-mathematical model is to study the universe. This discipline analyzes astronomical contexts in which the laws of classical mechanics of Newton's law of gravitation are not valid. (Author)

  11. Frame dependence of world lines for directly interacting classical relativistic particles

    International Nuclear Information System (INIS)

    Molotkov, V.V.; Todorov, I.T.

    1979-06-01

    The motion of world lines is studied in the constraint Hamiltonian formulation of relativistic point particle dynamics. The particle world lines are shown to depend, in general (in the presence of interaction) on the choice of the equal time hyperplane (the only exception being the elastic scattering of rigid balls). However, the relative motion of a 2-particle system and the (classical) S-matrix are independent of this choice. This inferred that particle trajectories should not be regarded as frame independent observables in the classical theory of relativistic particles. (author)

  12. Relativistic radiative transfer in a moving stratus irradiated by a luminous flat source

    Science.gov (United States)

    Fukue, Jun

    2015-06-01

    Relativistic radiative transfer in a geometrically thin stratus (sheet-like gaseous cloud with finite optical depth), which is moving at a relativistic speed around a luminous flat source, such as accretion disks, and is irradiated by the source, is examined under the special relativistic treatment. Incident radiation is aberrated and Doppler-shifted when it is received by the stratus, and emitted radiation is also aberrated and Doppler-shifted when it leaves the stratus. Considering these relativistic effects, we analytically obtain the emergent intensity as well as other radiative quantities in the purely scattering case for both infinite and finite strati. We mainly consider the frequency-integrated case, but also briefly show the frequency-dependent one. We also solve the relativistic radiative transfer equation numerically, and compare the results with the analytical solutions. In the infinite stratus, the mean intensity in the comoving and inertial frames decreases and becomes constant, as the stratus speed increases. The flux in the comoving frame decreases exponentially with the optical depth. The emergent intensity decreases as the speed increases, since the incident photons are redshifted at the bottom-side of the stratus. In the finite stratus, the mean intensity in the comoving and inertial frames quickly increases in the top-side region due to the aberrated photons. The flux in the comoving frame is positive in the range of 0 negative for β ≳ 0.5. The behavior of the emergent intensity is similar to that of the infinite case, although there is an irradiation effect caused by the aberrated photons.

  13. Relativistic description of directly interacting pions and nucleons

    International Nuclear Information System (INIS)

    Heller, L.

    1976-01-01

    The expected magnitudes of the leading relativistic effects on an off-energy-shell T matrix element are estimated using the Bakamjian--Thomas formulation of relativistic potential theory. For pion-nucleon scattering at medium energy, the two largest corrections are expected to result from the use of relativistic relative momenta rather than nonrelativistic values. The importance of additional terms depends upon the detailed behavior of the T matrix

  14. Relativistic and non-relativistic electronic molecular-structure calculations for dimers of 4p-, 5p-, and 6p-block elements.

    Science.gov (United States)

    Höfener, Sebastian; Ahlrichs, Reinhart; Knecht, Stefan; Visscher, Lucas

    2012-12-07

    We report results of non-relativistic and two-component relativistic single-reference coupled-cluster with single and double and perturbative triple excitations [CCSD(T)] treatments for the 4p-block dimers Ga(2) to Br(2) , the 5p-block dimers In(2) to I(2) , and their atoms. Extended basis sets up to pentuple zeta are employed and energies extrapolated to the complete basis-set limit. Relativistic and non-relativistic results for the dissociation energy D(e) are in close agreement with each other and previously published data, provided non-relativistic or scalar-relativistic results are corrected for spin-orbit contributions taken from the literature. An exception is Te(2) where theoretical results scatter by 0.085 eV. By virtue of this agreement it is unexpected that comparison with the experimental D(0) or D(e) dissociation energies (zero-point vibrational effects are negligible in this context) reveal errors larger than 0.1 eV for Ga(2), Ge(2), and Sb(2). Only relativistic treatments are presented for the 6p-block cases Tl(2) to At(2). Sufficient agreement with experimental data is found only for Pb(2) and Bi(2), the deviation of the computed and experimental D(0) values for Po(2) is again larger than 0.1 eV. Deviations of 0.1 eV between the computed and experimental D(0) values are a major reason for concern and call for additional investigations in both fields to clarify the situation. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Spinning relativistic particles in external fields

    International Nuclear Information System (INIS)

    Pomeranskii, Andrei A; Sen'kov, Roman A; Khriplovich, Iosif B

    2000-01-01

    The motion of spinning relativistic particles in external electromagnetic and gravitational fields is considered. The self-consistent equations of motion are built with the noncovariant description of spin and with the usual, 'naive' definition of the coordinate of a relativistic particle. A simple derivation of the gravitational interaction of first order in spin is presented for a relativistic particle. The approach developed allows one to consider effects of higher order in spin. Concrete calculations are performed for the second order. The gravimagnetic moment is discussed, a special spin effect in general relativity. We also consider the contributions of the spin interactions of first and second order to the gravitational radiation of compact binary stars. (from the current literature)

  16. Relativistic nuclear physics with the spectator model

    International Nuclear Information System (INIS)

    Gross, F.

    1988-01-01

    The spectator model, a general approach to the relativistic treatment of nuclear physics problems in which spectators to nuclear interactions are put on their mass-shell, will be defined nd described. The approach grows out of the relativistic treatment of two and three body systems in which one particle is off-shell, and recent numerical results for the NN interaction will be presented. Two meson-exchange models, one with only 4 mesons (π, σ, /rho/, ω) but with a 25% admixture of γ 5 coupling for the pion, and a second with 6 mesons (π, σ, /rho/, ω, δ, and /eta/) but a pure γ 5 γ/sup mu/ pion coupling, are shown to give very good quantitative fits to NN scattering phase shifts below 400 MeV, and also a good description of the /rho/ 40 Cα elastic scattering observables. 19 refs., 6 figs., 1 tab

  17. Beam dynamics issues in an extended relativistic klystron

    International Nuclear Information System (INIS)

    Giordano, G.; Li, H.; Goffeney, N.; Henestroza, E.; Sessler, A.; Yu, S.

    1995-04-01

    Preliminary studies of beam dynamics in a relativistic klystron were done to support a design study for a 1 TeV relativistic klystron two-beam accelerator (RK-TBA), 11.424 GHz microwave power source. This paper updates those studies. An induction accelerator beam is modulated, accelerated to 10 MeV, and injected into the RK with a rf current of about 1.2 kA. The main portion of the RK is the 300-m long extraction section comprise of 150 traveling-wave output structures and 900 induction accelerator cells. A periodic system of permanent quadrupole magnets is used for focusing. One and two dimensional numerical studies of beam modulation, injection into the main RK, transport and longitudinal equilibrium are presented. Transverse beam instability studies including Landau damping and the ''Betatron Node Scheme'' are presented

  18. New derivation of relativistic dissipative fluid dynamics

    International Nuclear Information System (INIS)

    Jaiswal, Amaresh; Bhalerao, Rajeev S.; Pal, Subrata

    2012-01-01

    Relativistic dissipative hydrodynamics has been quite successful in explaining the spectra and azimuthal anisotropy of particles produced in heavy-ion collisions at the RHIC and recently at the LHC. The first-order dissipative fluid dynamics or the relativistic Navier-Stokes (NS) theory involves parabolic differential equations and suffers from a causality and instability. The second-order or Israel-Stewart (IS) theory with its hyperbolic equations restores causality but may not guarantee stability. The correct formulation of relativistic viscous fluid dynamics is far from settled and is under intense investigation

  19. Relativistic astrophysics

    CERN Document Server

    Price, R H

    1993-01-01

    Work reported in the workshop on relativistic astrophysics spanned a wide varicy of topics. Two specific areas seemed of particular interest. Much attention was focussed on gravitational wave sources, especially on the waveforms they produce, and progress was reported in theoretical and observational aspects of accretion disks.

  20. Correlation function and electronic spectral line broadening in relativistic plasmas

    Directory of Open Access Journals (Sweden)

    Douis S.

    2013-01-01

    Full Text Available The electrons dynamics and the time autocorrelation function Cee(t for the total electric microfield of the electrons on positive charge impurity embedded in a plasma are considered when the relativistic dynamic of the electrons is taken into account. We have, at first, built the effective potential governing the electrons dynamics. This potential obeys a nonlinear integral equation that we have solved numerically. Regarding the electron broadening of the line in plasma, we have found that when the plasma parameters change, the amplitude of the collision operator changes in the same way as the time integral of Cee(t. The electron-impurity interaction is taken at first time as screened Deutsh interaction and at the second time as Kelbg interaction. Comparisons of all interesting quantities are made with respect to the previous interactions as well as between classical and relativistic dynamics of electrons.

  1. Pion correlations in relativistic heavy ion collisions at Heavy Ion Spectrometer Systems (HISS)

    International Nuclear Information System (INIS)

    Christie, W.B. Jr.

    1990-05-01

    This thesis contains the setup, analysis and results of experiment E684H ''Multi-Pion Correlations in Relativistic Heavy Ion Collisions''. The goals of the original proposal were: (1) To initiate the use of the HISS facility in the study of central Relativistic Heavy Ion Collisions (RHIC). (2) To perform a second generation experiment for the detailed study of the pion source in RHIC. The first generation experiments, implied by the second goal above, refer to pion correlation studies which the Riverside group had performed at the LBL streamer chamber. The major advantage offered by moving the pion correlation studies to HISS is that, being an electronic detector system, as opposed to the Streamer Chamber which is a visual detector, one can greatly increase the statistics for a study of this sort. An additional advantage is that once one has written the necessary detector and physics analysis code to do a particular type of study, the study may be extended to investigate the systematics, with much less effort and in a relatively short time. This paper discusses the Physics motivation for this experiment, the experimental setup and detectors used, the pion correlation analysis, the results, and the conclusions possible future directions for pion studies at HISS. If one is not interested in all the details of the experiment, I believe that by reading the sections on intensity interferometry, the section the fitting of the correlation function and the systematic corrections applied, and the results section, one will get a fairly complete synopsis of the experiment

  2. Pion correlations in relativistic heavy ion collisions at Heavy Ion Spectrometer Systems (HISS)

    Energy Technology Data Exchange (ETDEWEB)

    Christie, W.B. Jr.

    1990-05-01

    This thesis contains the setup, analysis and results of experiment E684H Multi-Pion Correlations in Relativistic Heavy Ion Collisions''. The goals of the original proposal were: (1) To initiate the use of the HISS facility in the study of central Relativistic Heavy Ion Collisions (RHIC). (2) To perform a second generation experiment for the detailed study of the pion source in RHIC. The first generation experiments, implied by the second goal above, refer to pion correlation studies which the Riverside group had performed at the LBL streamer chamber. The major advantage offered by moving the pion correlation studies to HISS is that, being an electronic detector system, as opposed to the Streamer Chamber which is a visual detector, one can greatly increase the statistics for a study of this sort. An additional advantage is that once one has written the necessary detector and physics analysis code to do a particular type of study, the study may be extended to investigate the systematics, with much less effort and in a relatively short time. This paper discusses the Physics motivation for this experiment, the experimental setup and detectors used, the pion correlation analysis, the results, and the conclusions possible future directions for pion studies at HISS. If one is not interested in all the details of the experiment, I believe that by reading the sections on intensity interferometry, the section the fitting of the correlation function and the systematic corrections applied, and the results section, one will get a fairly complete synopsis of the experiment.

  3. A Universal Scaling for the Energetics of Relativistic Jets From Black Hole Systems

    Science.gov (United States)

    Nemmen, R. S.; Georganopoulos, M.; Guiriec, S.; Meyer, E. T.; Gehrels, N.; Sambruna, R. M.

    2013-01-01

    Black holes generate collimated, relativistic jets which have been observed in gamma-ray bursts (GRBs), microquasars, and at the center of some galaxies (active galactic nuclei; AGN). How jet physics scales from stellar black holes in GRBs to the supermassive ones in AGNs is still unknown. Here we show that jets produced by AGNs and GRBs exhibit the same correlation between the kinetic power carried by accelerated particles and the gamma-ray luminosity, with AGNs and GRBs lying at the low and high-luminosity ends, respectively, of the correlation. This result implies that the efficiency of energy dissipation in jets produced in black hole systems is similar over 10 orders of magnitude in jet power, establishing a physical analogy between AGN and GRBs.

  4. Particle Acceleration, Magnetic Field Generation and Associated Emission in Collisionless Relativistic Jets

    Science.gov (United States)

    Nishikawa, K. I.; Ramirez-Ruiz, E.; Hardee, P.; Mizuno, Y.; Fishman. G. J.

    2007-01-01

    Nonthermal radiation observed from astrophysical systems containing relativistic jets and shocks, e.g., active galactic nuclei (AGNs), gamma-ray bursts (GRBs), and Galactic microquasar systems usually have power-law emission spectra. Recent PIC simulations using injected relativistic electron-ion (electro-positron) jets show that acceleration occurs within the downstream jet. Shock acceleration is a ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., the Buneman instability, other two-streaming instability, and the Weibel instability) created in the shocks are responsible for particle (electron, positron, and ion) acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields. These magnetic fields contribute to the electron's transverse deflection behind the jet head. The "jitter" radiation from deflected electrons has different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants.

  5. Electron correlation within the relativistic no-pair approximation

    Energy Technology Data Exchange (ETDEWEB)

    Almoukhalalati, Adel; Saue, Trond, E-mail: trond.saue@irsamc.ups-tlse.fr [Laboratoire de Chimie et Physique Quantique, UMR 5626 CNRS — Université Toulouse III-Paul Sabatier, 118 route de Narbonne, F-31062 Toulouse (France); Knecht, Stefan [ETH Zürich, Laboratorium für Physikalische Chemie, Vladimir-Prelog-Weg 2, 8093 Zürich (Switzerland); Jensen, Hans Jørgen Aa. [Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense M (Denmark); Dyall, Kenneth G. [Dirac Solutions, 10527 NW Lost Park Drive, Portland, Oregon 97229 (United States)

    2016-08-21

    This paper addresses the definition of correlation energy within 4-component relativistic atomic and molecular calculations. In the nonrelativistic domain the correlation energy is defined as the difference between the exact eigenvalue of the electronic Hamiltonian and the Hartree-Fock energy. In practice, what is reported is the basis set correlation energy, where the “exact” value is provided by a full Configuration Interaction (CI) calculation with some specified one-particle basis. The extension of this definition to the relativistic domain is not straightforward since the corresponding electronic Hamiltonian, the Dirac-Coulomb Hamiltonian, has no bound solutions. Present-day relativistic calculations are carried out within the no-pair approximation, where the Dirac-Coulomb Hamiltonian is embedded by projectors eliminating the troublesome negative-energy solutions. Hartree-Fock calculations are carried out with the implicit use of such projectors and only positive-energy orbitals are retained at the correlated level, meaning that the Hartree-Fock projectors are frozen at the correlated level. We argue that the projection operators should be optimized also at the correlated level and that this is possible by full Multiconfigurational Self-Consistent Field (MCSCF) calculations, that is, MCSCF calculations using a no-pair full CI expansion, but including orbital relaxation from the negative-energy orbitals. We show by variational perturbation theory that the MCSCF correlation energy is a pure MP2-like correlation expression, whereas the corresponding CI correlation energy contains an additional relaxation term. We explore numerically our theoretical analysis by carrying out variational and perturbative calculations on the two-electron rare gas atoms with specially tailored basis sets. In particular, we show that the correlation energy obtained by the suggested MCSCF procedure is smaller than the no-pair full CI correlation energy, in accordance with the

  6. Lectures on relativistic quantum mechanics and path integration

    International Nuclear Information System (INIS)

    Gunn, J.M.F.

    1989-02-01

    The question posed is why bother with relativistic quantum mechanics? Three reasons are given: First that there are many experimental phenomena which cannot be explained in non-relativistic terms. Secondly it would be unsatisfactory if relativity and quantum mechanics could not be united. Thirdly, there are theoretical reasons why new effects can be expected at relativistic velocities. The objectives of the course are to set up relativistic analogues of the Schroedinger equation and to understand their consequences. In doing so there are some questions which are raised and discussed such as can a first order equation be used to describe spin 0 particles and a second order equation be used to describe spin 1/ 2 (author)

  7. Relativistic and Non-Relativistic Electronic Molecular-Structure Calculations for Dimers of 4p-, 5p-, and 6p-Block Elements

    NARCIS (Netherlands)

    Hoefener, S.; Ahlrichs, R.; Knecht, S.; Visscher, L.

    2012-01-01

    We report results of non-relativistic and two-component relativistic single-reference coupled-cluster with single and double and perturbative triple excitations [CCSD(T)] treatments for the 4p-block dimers Ga

  8. Lagrangian formulation of a consistent relativistic guiding center theory

    International Nuclear Information System (INIS)

    Wimmel, H.K.

    1983-02-01

    A new relativistic guiding center mechanics is presented that conserves energy (in time-independent fields) and satisfies a Liouville's theorem. The theory reduces to Littlejohn's theory in the non-relativistic limit and agrees to leading orders in epsilon identical rsub(g)/L with the relativistic theory by Morozov and Solov'ev (which generally lacks a Liouville's theorem). The new theory is developed from an appropriate Lagrangian and is supplemented by a collisionless relativistic kinetic equation for the guiding centers. Moment equations for guiding center density and energy density are also derived. (orig.)

  9. Relativistic jets without large-scale magnetic fields

    Science.gov (United States)

    Parfrey, K.; Giannios, D.; Beloborodov, A.

    2014-07-01

    The canonical model of relativistic jets from black holes requires a large-scale ordered magnetic field to provide a significant magnetic flux through the ergosphere--in the Blandford-Znajek process, the jet power scales with the square of the magnetic flux. In many jet systems the presence of the required flux in the environment of the central engine is questionable. I will describe an alternative scenario, in which jets are produced by the continuous sequential accretion of small magnetic loops. The magnetic energy stored in these coronal flux systems is amplified by the differential rotation of the accretion disc and by the rotating spacetime of the black hole, leading to runaway field line inflation, magnetic reconnection in thin current layers, and the ejection of discrete bubbles of Poynting-flux-dominated plasma. For illustration I will show the results of general-relativistic force-free electrodynamic simulations of rotating black hole coronae, performed using a new resistivity model. The dissipation of magnetic energy by coronal reconnection events, as demonstrated in these simulations, is a potential source of the observed high-energy emission from accreting compact objects.

  10. Relativistic gravitational instabilities

    International Nuclear Information System (INIS)

    Schutz, B.F.

    1987-01-01

    The purpose of these lectures is to review and explain what is known about the stability of relativistic stars and black holes, with particular emphases on two instabilities which are due entirely to relativistic effects. The first of these is the post-Newtonian pulsational instability discovered independently by Chandrasekhar (1964) and Fowler (1964). This effectively ruled out the then-popular supermassive star model for quasars, and it sets a limit to the central density of white dwarfs. The second instability was also discovered by Chandrasekhar (1970): the gravitational wave induced instability. This sets an upper bound on the rotation rate of neutron stars, which is near that of the millisecond pulsar PSR 1937+214, and which is beginning to constrain the equation of state of neutron matter. 111 references, 5 figures

  11. On the basis of molecular orbitals for relativistic bound systems of many bodies

    International Nuclear Information System (INIS)

    Cook, A.H.

    1987-09-01

    The quasi-relativistic Hamiltonian for bound states of many bodies proposed in previous articles (Cook, 1986, 1987a) is shown to provide a basis for the molecular orbital scheme of constructing wavefunctions and calculating eigenenergies. (author). 5 refs

  12. Second quantization of a covariant relativistic spacetime string in Steuckelberg-Horwitz-Piron theory

    Science.gov (United States)

    Suleymanov, Michael; Horwitz, Lawrence; Yahalom, Asher

    2017-06-01

    A relativistic 4D string is described in the framework of the covariant quantum theory first introduced by Stueckelberg [ Helv. Phys. Acta 14, 588 (1941)], and further developed by Horwitz and Piron [ Helv. Phys. Acta 46, 316 (1973)], and discussed at length in the book of Horwitz [Relativistic Quantum Mechanics, Springer (2015)]. We describe the space-time string using the solutions of relativistic harmonic oscillator [ J. Math. Phys. 30, 66 (1989)]. We first study the problem of the discrete string, both classically and quantum mechanically, and then turn to a study of the continuum limit, which contains a basically new formalism for the quantization of an extended system. The mass and energy spectrum are derived. Some comparison is made with known string models.

  13. Relativistic transport theory for cosmic-rays

    International Nuclear Information System (INIS)

    Webb, G.M.

    1985-01-01

    Various aspects of the transport of cosmic-rays in a relativistically moving magnetized plasma supporting a spectrum of hydromagnetic waves that scatter the cosmic-rays are presented. A local Lorentz frame moving with the waves or turbulence scattering the cosmic-rays is used to specify the individual particle momentum. The comoving frame is in general a noninertial frame in which the observer's volume element is expanding and shearing, geometric energy change terms appear in the cosmic-ray transport equation which consist of the relativistic generalization of the adiabatic deceleration term and a further term involving the acceleration vector of the scatterers. A relativistic version of the pitch angle evolution equation, including the effects of adiabatic focussing, pitch angle scattering, and energy changes is presented

  14. Gravitationally confined relativistic neutrinos

    Science.gov (United States)

    Vayenas, C. G.; Fokas, A. S.; Grigoriou, D.

    2017-09-01

    Combining special relativity, the equivalence principle, and Newton’s universal gravitational law with gravitational rather than rest masses, one finds that gravitational interactions between relativistic neutrinos with kinetic energies above 50 MeV are very strong and can lead to the formation of gravitationally confined composite structures with the mass and other properties of hadrons. One may model such structures by considering three neutrinos moving symmetrically on a circular orbit under the influence of their gravitational attraction, and by assuming quantization of their angular momentum, as in the Bohr model of the H atom. The model contains no adjustable parameters and its solution, using a neutrino rest mass of 0.05 eV/c2, leads to composite state radii close to 1 fm and composite state masses close to 1 GeV/c2. Similar models of relativistic rotating electron - neutrino pairs give a mass of 81 GeV/c2, close to that of W bosons. This novel mechanism of generating mass suggests that the Higgs mass generation mechanism can be modeled as a latent gravitational field which gets activated by relativistic neutrinos.

  15. Relativistic corrections to molecular dynamic dipole polarizabilities

    DEFF Research Database (Denmark)

    Kirpekar, Sheela; Oddershede, Jens; Jensen, Hans Jørgen Aagaard

    1995-01-01

    obtained from the use of the Darwin and mass-velocity operators to first order are included at both levels of approximation. We find that correlation and relativistic contributions are not even approximately additive for the two molecules. The importance of the relativistic corrections is smallest...

  16. Scalar Relativistic Study of the Structure of Rhodium Acetate

    Directory of Open Access Journals (Sweden)

    Emily E. Edwards

    2004-01-01

    Full Text Available Abstract: Rhodium acetate, related rhodium carboxylates, and rhodium amide complexes are powerful catalysts for carbene chemistry. They readily promote the decomposition of diazo compounds and transfer the resulting carbene to a variety of substrates. There have been several quantum chemistry studies of these compounds, particularly of the acetate. These have all used non-relativistic methods, and all have shown optimized Rh-Rh bond lengths significantly longer than the experimental value. In this study we have surveyed several scalar relativistic DFT methods using Gaussian, Slater, and numerical basis functions (in DGAUSS, ADF, and DMOL3. Several combinations of exchange-correlation functionals with relativistic and non-relativistic effective core potentials (ECP were investigated, as were non-relativistic and all electron scalar relativistic methods. The combination of the PW91 exchange and PW91 correlation functional with the Christiansen-Ermler ECP gave the best results: 2.3918 Å compared to the experimental value of 2.3855±0.0005 Å.

  17. Quantum ion-acoustic solitary waves in weak relativistic plasma

    Indian Academy of Sciences (India)

    Abstract. Small amplitude quantum ion-acoustic solitary waves are studied in an unmagnetized two- species relativistic quantum plasma system, comprised of electrons and ions. The one-dimensional quantum hydrodynamic model (QHD) is used to obtain a deformed Korteweg–de Vries (dKdV) equation by reductive ...

  18. Holographic Aspects of a Relativistic Nonconformal Theory

    Directory of Open Access Journals (Sweden)

    Chanyong Park

    2013-01-01

    Full Text Available We study a general D-dimensional Schwarzschild-type black brane solution of the Einstein-dilaton theory and derive, by using the holographic renormalization, its thermodynamics consistent with the geometric results. Using the membrane paradigm, we calculate the several hydrodynamic transport coefficients and compare them with the results obtained by the Kubo formula, which shows the self-consistency of the gauge/gravity duality in the relativistic nonconformal theory. In order to understand more about the relativistic non-conformal theory, we further investigate the binding energy, drag force, and holographic entanglement entropy of the relativistic non-conformal theory.

  19. On the physics of relativistic double layers

    International Nuclear Information System (INIS)

    Carlqvist, P.

    1982-06-01

    A model of a strong, time-independent, and relativistic double layer is studied. Besides double layers having the electric field parallel to the current the model also describes a certain type of oblique double layers. The 'Langmuir condition' (ratio of ion current density to electron current density) as well as an expression for the potential drop of the double layer are derived. Furthermore, the distribution of charged particles, electric field, and potential within the double layer are clarified and discussed. It is found that the properties of relativistic double layers differ substantially from the properties of corresponding non-relativistic double layers. (Author)

  20. Beyond ideal magnetohydrodynamics: resistive, reactive and relativistic plasmas

    International Nuclear Information System (INIS)

    Andersson, N; Dionysopoulou, K; Hawke, I; Comer, G L

    2017-01-01

    We develop a new framework for the modelling of charged fluid dynamics in general relativity. The model, which builds on a recently developed variational multi-fluid framework for dissipative fluids, accounts for relevant effects like the inertia of both charge currents and heat and, for mature systems, the decoupling of superfluid components. We discuss how the model compares to standard relativistic magnetohydronamics and consider the connection between the fluid dynamics, the microphysics and the underlying equation of state. As illustrations of the formalism, we consider three distinct two-fluid models describing (i) an Ohm’s law for resistive charged flows, (ii) a relativistic heat equation, and (iii) an equation representing the momentum of a decoupled superfluid component. As a more complex example, we also formulate a three-fluid model which demonstrates the thermo-electric effect. The new framework allows us to model neutron stars (and related systems) at a hierarchy of increasingly complex levels, and should enable us to make progress on a range of exciting problems in astrophysics and cosmology. (paper)

  1. Using MUSIC to study relativistic nuclear collisions

    International Nuclear Information System (INIS)

    1983-01-01

    A large Multiple Sampling Ionization Chamber (MUSIC) has been developed as a part of the Heavy Ion Spectrometer System (HISS). This facility is being used for the study of relativistic nuclear collisions at the Bevalac of Lawrence Berkeley Laboratory. Preliminary data from MUSIC indicate that a charge resolution of one unit should be achieved from Z approximately equal to 7 to Z approximately equal to 100. (author)

  2. Exploring the propagation of relativistic quantum wavepackets in the trajectory-based formulation

    Science.gov (United States)

    Tsai, Hung-Ming; Poirier, Bill

    2016-03-01

    In the context of nonrelativistic quantum mechanics, Gaussian wavepacket solutions of the time-dependent Schrödinger equation provide useful physical insight. This is not the case for relativistic quantum mechanics, however, for which both the Klein-Gordon and Dirac wave equations result in strange and counterintuitive wavepacket behaviors, even for free-particle Gaussians. These behaviors include zitterbewegung and other interference effects. As a potential remedy, this paper explores a new trajectory-based formulation of quantum mechanics, in which the wavefunction plays no role [Phys. Rev. X, 4, 040002 (2014)]. Quantum states are represented as ensembles of trajectories, whose mutual interaction is the source of all quantum effects observed in nature—suggesting a “many interacting worlds” interpretation. It is shown that the relativistic generalization of the trajectory-based formulation results in well-behaved free-particle Gaussian wavepacket solutions. In particular, probability density is positive and well-localized everywhere, and its spatial integral is conserved over time—in any inertial frame. Finally, the ensemble-averaged wavepacket motion is along a straight line path through spacetime. In this manner, the pathologies of the wave-based relativistic quantum theory, as applied to wavepacket propagation, are avoided.

  3. Laplace-transformed atomic orbital-based Møller–Plesset perturbation theory for relativistic two-component Hamiltonians

    Energy Technology Data Exchange (ETDEWEB)

    Helmich-Paris, Benjamin, E-mail: b.helmichparis@vu.nl; Visscher, Lucas, E-mail: l.visscher@vu.nl [Section of Theoretical Chemistry, VU University Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam (Netherlands); Repisky, Michal, E-mail: michal.repisky@uit.no [CTCC, Department of Chemistry, UIT The Arctic University of Norway, N-9037 Tromø (Norway)

    2016-07-07

    We present a formulation of Laplace-transformed atomic orbital-based second-order Møller–Plesset perturbation theory (MP2) energies for two-component Hamiltonians in the Kramers-restricted formalism. This low-order scaling technique can be used to enable correlated relativistic calculations for large molecular systems. We show that the working equations to compute the relativistic MP2 energy differ by merely a change of algebra (quaternion instead of real) from their non-relativistic counterparts. With a proof-of-principle implementation we study the effect of the nuclear charge on the magnitude of half-transformed integrals and show that for light elements spin-free and spin-orbit MP2 energies are almost identical. Furthermore, we investigate the effect of separation of charge distributions on the Coulomb and exchange energy contributions, which show the same long-range decay with the inter-electronic/atomic distance as for non-relativistic MP2. A linearly scaling implementation is possible if the proper distance behavior is introduced to the quaternion Schwarz-type estimates as for non-relativistic MP2.

  4. Laplace-transformed atomic orbital-based Møller–Plesset perturbation theory for relativistic two-component Hamiltonians

    International Nuclear Information System (INIS)

    Helmich-Paris, Benjamin; Visscher, Lucas; Repisky, Michal

    2016-01-01

    We present a formulation of Laplace-transformed atomic orbital-based second-order Møller–Plesset perturbation theory (MP2) energies for two-component Hamiltonians in the Kramers-restricted formalism. This low-order scaling technique can be used to enable correlated relativistic calculations for large molecular systems. We show that the working equations to compute the relativistic MP2 energy differ by merely a change of algebra (quaternion instead of real) from their non-relativistic counterparts. With a proof-of-principle implementation we study the effect of the nuclear charge on the magnitude of half-transformed integrals and show that for light elements spin-free and spin-orbit MP2 energies are almost identical. Furthermore, we investigate the effect of separation of charge distributions on the Coulomb and exchange energy contributions, which show the same long-range decay with the inter-electronic/atomic distance as for non-relativistic MP2. A linearly scaling implementation is possible if the proper distance behavior is introduced to the quaternion Schwarz-type estimates as for non-relativistic MP2.

  5. Relativistic-klystron two-beam-accelerator as a power source for a 1 TeV next linear collider: A systems study

    International Nuclear Information System (INIS)

    Yu, S.; Goffeney, N.; Deadrick, F.

    1994-10-01

    A physics, engineering, and costing study has been conducted to explore the feasibility of a relativistic-klystron two-beam-accelerator system as a power source candidate for a 1 TeV linear collider. We present a point design example which has acceptable transverse and longitudinal beam stability properties. Preliminary ''bottom-up'' cost estimate yields the full power source system at less than 1 billion dollars. The overall efficiency for rf production is estimated to be 36%

  6. Nonlinear analysis of a relativistic beam-plasma cyclotron instability

    Science.gov (United States)

    Sprangle, P.; Vlahos, L.

    1986-01-01

    A self-consistent set of nonlinear and relativistic wave-particle equations are derived for a magnetized beam-plasma system interacting with electromagnetic cyclotron waves. In particular, the high-frequency cyclotron mode interacting with a streaming and gyrating electron beam within a background plasma is considered in some detail. This interaction mode may possibly find application as a high-power source of coherent short-wavelength radiation for laboratory devices. The background plasma, although passive, plays a central role in this mechanism by modifying the dielectric properties in which the magnetized electron beam propagates. For a particular choice of the transverse beam velocity (i.e., the speed of light divided by the relativistic mass factor), the interaction frequency equals the nonrelativistic electron cyclotron frequency times the relativistic mass factor. For this choice of transverse beam velocity the detrimental effects of a longitudinal beam velocity spread is virtually removed. Power conversion efficiencies in excess of 18 percent are both analytically calculated and obtained through numerical simulations of the wave-particle equations. The quality of the electron beam, degree of energy and pitch angle spread, and its effect on the beam-plasma cyclotron instability is studied.

  7. From laser cooling of non-relativistic to relativistic ion beams

    International Nuclear Information System (INIS)

    Schramm, U.; Bussmann, M.; Habs, D.

    2004-01-01

    Laser cooling of stored 24 Mg + ion beams recently led to the long anticipated experimental realization of Coulomb-ordered 'crystalline' ion beams in the low-energy RF-quadrupole storage ring PAul Laser CooLing Acceleration System (Munich). Moreover, systematic studies revealed severe constraints on the cooling scheme and the storage ring lattice for the attainment and maintenance of the crystalline state of the beam, which will be summarized. With the envisaged advent of high-energy heavy ion storage rings like SIS 300 at GSI (Darmstadt), which offer favourable lattice conditions for space-charge-dominated beams, we here discuss the general scaling of laser cooling of highly relativistic beams of highly charged ions and present a novel idea for direct three-dimensional beam cooling by forcing the ions onto a helical path

  8. System for detecting neutrons in the harsh radiation environment of a relativistic electron beam

    International Nuclear Information System (INIS)

    Kruse, L.W.

    1978-06-01

    Newly developed detectors and procedures allow measurement of neutron yield and energy in the harsh radiation environment of a relativistic electron beam source. A new photomultiplier tube design and special gating methods provide the basis for novel time-of-flight and total-yield detectors. The technique of activation analysis is expanded to provide a neutron energy spectrometer. There is a demonstrated potential in the use of the integrated system as a valuable diagnostic tool to study particle-beam fusion, intense ion-beam interactions, and pulsed neutron sources for simulating weapons effects. A physical lower limit of 10 8 neutrons into 4π is established for accurate and meaningful measurements in the REB environment

  9. Relativistic calculations of coalescing binary neutron stars

    Indian Academy of Sciences (India)

    We have designed and tested a new relativistic Lagrangian hydrodynamics code, which treats gravity in the conformally flat approximation to general relativity. We have tested the resulting code extensively, finding that it performs well for calculations of equilibrium single-star models, collapsing relativistic dust clouds, and ...

  10. Deep processes in non-relativistic confining potentials

    International Nuclear Information System (INIS)

    Fishbane, P.M.; Grisaru, M.T.

    1978-01-01

    The authors study deep inelastic and hard scattering processes for non-relativistic particles confined in deep potentials. The mechanisms by which the effects of confinement disappear and the particles scatter as if free are useful in understanding the analogous results for a relativistic field theory. (Auth.)

  11. Auxiliary fields in the geometrical relativistic particle dynamics

    International Nuclear Information System (INIS)

    Amador, A; Bagatella, N; Rojas, E; Cordero, R

    2008-01-01

    We describe how to construct the dynamics of relativistic particles, following either timelike or null curves, by means of an auxiliary variables method instead of the standard theory of deformations for curves. There are interesting physical particle models governed by actions that involve higher order derivatives of the embedding functions of the worldline. We point out that the mechanical content of such models can be extracted wisely from a lower order action, which can be performed by implementing in the action a finite number of constraints that involve the geometrical relationship structures inherent to a curve and by using a covariant formalism. We emphasize our approach for null curves. For such systems, the natural time parameter is a pseudo-arclength whose properties resemble those of the standard proper time. We illustrate the formalism by applying it to some models for relativistic particles

  12. Auxiliary fields in the geometrical relativistic particle dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Amador, A; Bagatella, N; Rojas, E [Departamento de Fisica, Facultad de Fisica e Inteligencia Artificial, Universidad Veracruzana, 91000 Xalapa, Veracruz (Mexico); Cordero, R [Departamento de Fisica, Escuela Superior de Fisica y Matematicas del I.P.N, Edificio 9, 07738 Mexico D.F (Mexico)], E-mail: aramador@gmail.com, E-mail: nbagatella@uv.mx, E-mail: cordero@esfm.ipn.mx, E-mail: efrojas@uv.mx

    2008-03-21

    We describe how to construct the dynamics of relativistic particles, following either timelike or null curves, by means of an auxiliary variables method instead of the standard theory of deformations for curves. There are interesting physical particle models governed by actions that involve higher order derivatives of the embedding functions of the worldline. We point out that the mechanical content of such models can be extracted wisely from a lower order action, which can be performed by implementing in the action a finite number of constraints that involve the geometrical relationship structures inherent to a curve and by using a covariant formalism. We emphasize our approach for null curves. For such systems, the natural time parameter is a pseudo-arclength whose properties resemble those of the standard proper time. We illustrate the formalism by applying it to some models for relativistic particles.

  13. Photons from the early stages of relativistic heavy-ion collisions

    Science.gov (United States)

    Oliva, L.; Ruggieri, M.; Plumari, S.; Scardina, F.; Peng, G. X.; Greco, V.

    2017-07-01

    We present results about photon-production in relativistic heavy-ion collisions. The main novelty of our study is the calculation of the contribution of the early-stage photons to the photon spectrum. The initial stage is modeled by an ensemble of classical gluon fields which decay to a quark-gluon plasma via the Schwinger mechanism, and the evolution of the system is studied by coupling classical field equations to relativistic kinetic theory; photon production is then computed by including the pertinent collision processes into the collision integral. We find that the contribution of the early-stage photons to the direct photon spectrum is substantial for pT≈2 GeV and higher, the exact value depending on the collision energy; therefore, we identify this part of the photon spectrum as the sign of the early stage. Moreover, the amount of photons produced during the early stage is not negligible with respect to those produced by a thermalized quark-gluon plasma: We support the idea that there is no dark age in relativistic heavy-ion collisions.

  14. Multi-time Lagrangian 1-forms for families of Bäcklund transformations. Relativistic Toda-type systems

    International Nuclear Information System (INIS)

    Boll, Raphael; Petrera, Matteo; Suris, Yuri B

    2015-01-01

    We establish the pluri-Lagrangian structure for families of Bäcklund transformations of relativistic Toda-type systems. The key idea is a novel embedding of these discrete-time (one-dimensional) systems into certain two-dimensional (2D) pluri-Lagrangian lattice systems. This embedding allows us to identify the corner equations (which are the main building blocks of the multi-time Euler–Lagrange equations) with local superposition formulae for Bäcklund transformations. These superposition formulae, in turn, are key ingredients necessary to understand and to prove commutativity of the multi-valued Bäcklund transformations. Furthermore, we discover a 2D generalization of the spectrality property known for families of Bäcklund transformations. This result produces a family of local conservations laws for 2D pluri-Lagrangian lattice systems, with densities being derivatives of the discrete 2-form with respect to the Bäcklund (spectral) parameter. Thus, a relation of the pluri-Lagrangian structure with more traditional integrability notions is established. (paper)

  15. Report of seminar on relativistic approach to nuclear reaction and nuclear structure

    International Nuclear Information System (INIS)

    1986-05-01

    A seminar on 'Relativistic Approach to Nuclear Reaction and Nuclear Structure' was held in 1985 at Osaka University. This booklet includes twenty-four reports given at the seminar, which deal with: Conventional Nonrelativistic Description of Nuclear Matter and Nuclear Spin-Orbit Interactions; Relativistic Approach to Nuclear Structure; Atomic and Molecular Structure Calculations; Electromagnetic Interaction in Nucleus and Relativistic Effect; Nuclear Magnetic Moment in the Relativistic Mean Field Theory, Effective Mass and Particle-Vibration Coupling in the Relativistic σ-ω Model; Gauge Invariance in Relativistic Many-Body Theory; Relativistic Description of Nucleon-Nucleon Interaction in Review; σ-Particle in NN Interaction; Nuclear Optical Potentials Based on the Brueckner-Hartree-Fock Approach; Elastic Backscattering and Optical Potential; Description of Intermediate-Energy Nuclear Reactions; Dirac Phenomenology at E(p) = 65 MeV; Relativistic Impulse Approximation; Reaction Studies with Intermediate Energy Deuterons at SATURNE; Folding Model for Intermediate-Energy Deutron Scattering; Folding Model for Polarized Deutron Scattering at 700 MeV; Dirac Approach Problems and a Different Viewpoint; Relativistic Approach and EMC Effect; Quasielastic Electron Scattering; Response Function of Quasielastic Electron Scattering; Relativistic Hartree Response Function for Quasielastic Electron Scattering on 12 C and 40 Ca; Backflow-, Retardation- and Relativistic Effects on the Longitudinal Response Function of Nuclear Matter; Pion-Photoproduction in the σ-ω Model. (Nogami, K.)

  16. Is a Relativistic Thermodynamics possible?; Es posible una Termodinamica Relativista?

    Energy Technology Data Exchange (ETDEWEB)

    Guemez, J.

    2010-07-01

    A brief historical review the literature on developing the concept of Thermodynamics Relativistic. We analyze two examples of application of the Galilean and Relativistic Thermodynamics discussed under what circumstances could build a relativistic Thermodynamics Lorentz covariant with physical sense. (Author) 19 refs.

  17. Study of the O-mode in a relativistic degenerate electron plasma

    Science.gov (United States)

    Azra, Kalsoom; Ali, Muddasir; Hussain, Azhar

    2017-03-01

    Using the linearized relativistic Vlasov-Maxwell equations, a generalized expression for the plasma conductivity tensor is derived. The dispersion relation for the O-mode in a relativistic degenerate electron plasma is investigated by employing the Fermi-Dirac distribution function. The propagation characteristics of the O-mode (cut offs, resonances, propagation regimes, harmonic structure) are examined by using specific values of the density and the magnetic field that correspond to different relativistic dense environments. Further, it is observed that due to the relativistic effects the cut off and the resonance points are shifted to low frequency values, as a result the propagation regime is reduced. The dispersion relations for the non-relativistic and the ultra-relativistic limits are also presented.

  18. Relativistic Calculations for Be-like Iron

    International Nuclear Information System (INIS)

    Yang Jianhui; Zhang Jianping; Li Ping; Li Huili

    2008-01-01

    Relativistic configuration interaction calculations for the states of 1s 2 2s 2 , 1s 2 2s3l (l = s,p,d) and 1s 2 2p3l (l = s,p,d) configurations of iron are carried out using relativistic configuration interaction (RCI) and multi-configuration Dirac-Fock (MCDF) method in the active interaction approach. In the present calculation, a large-scale configuration expansion was used in describing the target states. These results are extensively compared with other available calculative and experimental and observed values, the corresponding present results are in good agreement with experimental and observed values, and some differences are found with other available calculative values. Because more relativistic effects are considered than before, the present results should be more accurate and reliable

  19. Relativistic effects in bonding and dipole moments for the diatomic hydrides of the sixth-row heavy elements

    International Nuclear Information System (INIS)

    Ramos, A.F.; Pyper, N.C.; Malli, G.L.

    1988-01-01

    Ab initio Dirac-Fock (DF) and nonrelativistic-limit (NRL) wave functions and dipole moments are calculated to investigate the bonding characteristics and the relativistic effects in the systems HgH + , TlH, PbH + , and BiH. The dipole moment of AuH is evaluated using the DF self-consistent field and relativistic configuration-interaction wave functions obtained by G. L. Malli and N. C. Pyper [Proc. R. Soc. London, Ser. A 407, 377 (1986)]. Contour plots of relativistic molecular orbital densities and difference density maps are presented to illustrate the arrangement of electronic charge in these systems. It is found that the 5d orbitals are involved in the bonding of HgH + , whereas they do not play a significant role in TlH and PbH + . The relativistic calculations predict HgH + , TlH, and PbH + to be bound. The nonrelativistic-limit wave functions predict HgH + and BiH to be unbound but TlH and PbH + to be bound. It is also found that the calculated dipole moments using the DF and the NRL wave functions for these heavy systems differ significantly in magnitude, and in some cases even in the sign

  20. Rayleigh-Brillouin spectrum in special relativistic hydrodynamics

    International Nuclear Information System (INIS)

    Garcia-Perciante, A. L.; Garcia-Colin, L. S.; Sandoval-Villalbazo, A.

    2009-01-01

    In this paper we calculate the Rayleigh-Brillouin spectrum for a relativistic simple fluid according to three different versions available for a relativistic approach to nonequilibrium thermodynamics. An outcome of these calculations is that Eckart's version predicts that such spectrum does not exist. This provides an argument to question its validity. The remaining two results, which differ one from another, do provide a finite form for such spectrum. This raises the rather intriguing question as to which of the two theories is a better candidate to be taken as a possible version of relativistic nonequilibrium thermodynamics. The answer will clearly require deeper examination of this problem.

  1. Existence condition of the relativistic ion-acoustic soliton in plasma

    International Nuclear Information System (INIS)

    Chian, A.C.-L.

    1981-07-01

    Stationary solutions which descrite longitudinal waves in a hot ion-electron plasma, taking in account the relativistic effect of the particle dynamics, are investigated. The solution of the problem can be reduced to two equations related with energy-momentum conservation of the system. Particular attention to the existence condition of the solitary wave solution is given. It is shown that the Langmuir mode (Te=Ti) only admits infinite train-like wave solutions, the existence of solitary-like wave solutions being not possible. On the other hand, in the case of hot electrons and cold ions, an appropriate choice of the boundary conditions produces localized wave solutions, which describe relativistic ion-acoustic solitons. (L.C.) [pt

  2. Frontiers in relativistic celestial mechanics

    CERN Document Server

    2014-01-01

    Relativistic celestial mechanics – investigating the motion celestial bodies under the influence of general relativity – is a major tool of modern experimental gravitational physics. With a wide range of prominent authors from the field, this two-volume series consists of reviews on a multitude of advanced topics in the area of relativistic celestial mechanics – starting from more classical topics such as the regime of asymptotically-flat spacetime, light propagation and celestial ephemerides, but also including its role in cosmology and alternative theories of gravity as well as modern experiments in this area.

  3. Acoustic geometry for general relativistic barotropic irrotational fluid flow

    International Nuclear Information System (INIS)

    Visser, Matt; Molina-ParIs, Carmen

    2010-01-01

    'Acoustic spacetimes', in which techniques of differential geometry are used to investigate sound propagation in moving fluids, have attracted considerable attention over the last few decades. Most of the models currently considered in the literature are based on non-relativistic barotropic irrotational fluids, defined in a flat Newtonian background. The extension, first to special relativistic barotropic fluid flow and then to general relativistic barotropic fluid flow in an arbitrary background, is less straightforward than it might at first appear. In this paper, we provide a pedagogical and simple derivation of the general relativistic 'acoustic spacetime' in an arbitrary (d+1)-dimensional curved-space background.

  4. Electromagnetic excitation of 136Xe in relativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Schmidt, R.D.

    1991-11-01

    In the framework of the experimental program at the accelerator facilities SIS/ESR at the Society for Heavy Ion Research in Darmstadt a detector system for relativistic neutrons was developed, constructed, and applied in first experiments. An essential research aim is the study of collective states after electromagnetic excitation in relativistic heavy ion collisions. In peripheral collisions high-energy virtual photons are exchanged. This leads to the excitation of giant resonances, especially of the giant dipole and quadrupole resonance. An essential decay channel of giant resonances in heavy nuclei is the emission of neutrons, followed by the emission of γ radiation below the particle threshold. These decay channels were studied with the detector system developed by the LAND collaboration. A first experiment on the electromagnetic excitation was performed with a 136 Xe beam at an energy of 700 MeV/u and Pb respectively C targets. (orig./HSI) [de

  5. Non-relativistic spinning particle in a Newton-Cartan background

    Science.gov (United States)

    Barducci, Andrea; Casalbuoni, Roberto; Gomis, Joaquim

    2018-01-01

    We construct the action of a non-relativistic spinning particle moving in a general torsionless Newton-Cartan background. The particle does not follow the geodesic equations, instead the motion is governed by the non-relativistic analog of Papapetrou equation. The spinning particle is described in terms of Grassmann variables. In the flat case the action is invariant under the non-relativistic analog of space-time vector supersymmetry.

  6. Fully relativistic free-electron laser in a completely filled waveguide

    International Nuclear Information System (INIS)

    Farokhi, B.; Abdykian, A.

    2005-01-01

    An analysis of the azimuthally symmetrical, high frequency eigenmodes of a cylindrical metallic waveguide completely filled with a relativistic magnetized plasma is presented. A relativistic nonlinear wave equation is derived in a form which includes the coupling of EH and HE modes due to the finite axial magnetic field. Relativistic equations that permit calculation of the dispersion curves for four families of electromagnetic and electrostatic modes are derived. Numerical analysis is conducted to study the relativistic dispersion curves of various modes as a function of axial magnetic field B 0 . This treatment is shown that the dispersion curves dependent to γ in low frequency which is ignored in previous work. It is found that in drawn figures shown difference between relativistic and non-relativistic cases. The former each figure is treated for two orbit groups. This study is benefiting to facilities the development of devices for generation of high-power electromagnetic radiation, charged particle acceleration, and other applications of plasma waveguide. (author)

  7. Relativistic modeling capabilities in PERSEUS extended MHD simulation code for HED plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Hamlin, Nathaniel D., E-mail: nh322@cornell.edu [438 Rhodes Hall, Cornell University, Ithaca, NY, 14853 (United States); Seyler, Charles E., E-mail: ces7@cornell.edu [Cornell University, Ithaca, NY, 14853 (United States)

    2014-12-15

    We discuss the incorporation of relativistic modeling capabilities into the PERSEUS extended MHD simulation code for high-energy-density (HED) plasmas, and present the latest hybrid X-pinch simulation results. The use of fully relativistic equations enables the model to remain self-consistent in simulations of such relativistic phenomena as X-pinches and laser-plasma interactions. By suitable formulation of the relativistic generalized Ohm’s law as an evolution equation, we have reduced the recovery of primitive variables, a major technical challenge in relativistic codes, to a straightforward algebraic computation. Our code recovers expected results in the non-relativistic limit, and reveals new physics in the modeling of electron beam acceleration following an X-pinch. Through the use of a relaxation scheme, relativistic PERSEUS is able to handle nine orders of magnitude in density variation, making it the first fluid code, to our knowledge, that can simulate relativistic HED plasmas.

  8. DISCOVERY OF A PSEUDOBULGE GALAXY LAUNCHING POWERFUL RELATIVISTIC JETS

    Energy Technology Data Exchange (ETDEWEB)

    Kotilainen, Jari K.; Olguín-Iglesias, Alejandro [Finnish Centre for Astronomy with ESO (FINCA), University of Turku, Väisäläntie 20, FI-21500 Piikkiö (Finland); León-Tavares, Jonathan; Baes, Maarten [Sterrenkundig Observatorium, Universiteit Gent, Krijgslaan 281-S9, B-9000 Gent (Belgium); Anórve, Christopher [Facultad de Ciencias de la Tierra y del Espacio de la Universidad Autónoma de Sinaloa, Blvd. de la Americas y Av. Universitarios S/N, Ciudad Universitaria, C.P. 80010, Culiacán Sinaloa, México (Mexico); Chavushyan, Vahram; Carrasco, Luis, E-mail: jarkot@utu.fi [Instituto Nacional de Astrofísica Óptica y Electrónica (INAOE), Apartado Postal 51 y 216, 72000 Puebla (Mexico)

    2016-12-01

    Supermassive black holes launching plasma jets at close to the speed of light, producing gamma-rays, have ubiquitously been found to be hosted by massive elliptical galaxies. Since elliptical galaxies are generally believed to be built through galaxy mergers, active galactic nuclei (AGN) launching relativistic jets are associated with the latest stages of galaxy evolution. We have discovered a pseudobulge morphology in the host galaxy of the gamma-ray AGN PKS 2004-447. This is the first gamma-ray emitter radio-loud AGN found to have been launched from a system where both the black hole and host galaxy have been actively growing via secular processes. This is evidence of an alternative black hole–galaxy co-evolutionary path to develop powerful relativistic jets, which is not merger driven.

  9. RELATIVISTIC DOPPLER BEAMING AND MISALIGNMENTS IN AGN JETS

    International Nuclear Information System (INIS)

    Singal, Ashok K.

    2016-01-01

    Radio maps of active galactic nuclei often show linear features, called jets, on both parsec and kiloparsec scales. These jets supposedly possess relativistic motion and are oriented close to the line of sight of the observer, and accordingly the relativistic Doppler beaming makes them look much brighter than they really are in their respective rest frames. The flux boosting due to the relativistic beaming is a very sensitive function of the jet orientation angle, as seen by the observer. Sometimes, large bends are seen in these jets, with misalignments being 90° or more, which might imply a change in the orientation angle that should cause a large change in the relativistic beaming factor. Hence, if relativistic beaming does play an important role in these jets such large bends should usually show high contrast in the brightness of the jets before and after the bend. It needs to be kept in mind that sometimes a small intrinsic change in the jet angle might appear as a much larger misalignment due to the effects of geometrical projection, especially when seen close to the line of sight. What really matters are the initial and final orientation angles of the jet with respect to the observer’s line of sight. Taking the geometrical projection effects properly into account, we calculate the consequences of the presumed relativistic beaming and demonstrate that there ought to be large brightness ratios in jets before and after the observed misalignments.

  10. Relativistic Doppler Beaming and Misalignments in AGN Jets

    Science.gov (United States)

    Singal, Ashok K.

    2016-08-01

    Radio maps of active galactic nuclei often show linear features, called jets, on both parsec and kiloparsec scales. These jets supposedly possess relativistic motion and are oriented close to the line of sight of the observer, and accordingly the relativistic Doppler beaming makes them look much brighter than they really are in their respective rest frames. The flux boosting due to the relativistic beaming is a very sensitive function of the jet orientation angle, as seen by the observer. Sometimes, large bends are seen in these jets, with misalignments being 90° or more, which might imply a change in the orientation angle that should cause a large change in the relativistic beaming factor. Hence, if relativistic beaming does play an important role in these jets such large bends should usually show high contrast in the brightness of the jets before and after the bend. It needs to be kept in mind that sometimes a small intrinsic change in the jet angle might appear as a much larger misalignment due to the effects of geometrical projection, especially when seen close to the line of sight. What really matters are the initial and final orientation angles of the jet with respect to the observer’s line of sight. Taking the geometrical projection effects properly into account, we calculate the consequences of the presumed relativistic beaming and demonstrate that there ought to be large brightness ratios in jets before and after the observed misalignments.

  11. Relativistic Polarizable Embedding

    DEFF Research Database (Denmark)

    Hedegård, Erik Donovan; Bast, Radovan; Kongsted, Jacob

    2017-01-01

    Most chemistry, including chemistry where relativistic effects are important, occurs in an environment, and in many cases, this environment has a significant effect on the chemistry. In nonrelativistic quantum chemistry, a lot of progress has been achieved with respect to including environments s...

  12. On the relativistic partition function of ideal gases

    International Nuclear Information System (INIS)

    Sinyukov, Yu.M.

    1983-01-01

    The covariant partition function method for ideal Boltzmann and Bose gases is developed within quantum field theory. This method is a basis to describe the statistical and thermodynamical properties of the gases in canonical, grand canonical and pressure ensembles in an arbitrary inertial system. It is shown that when statistical systems are described relativistically it is very important to take into account the boundary conditions. This is due to the fact that an equilibrium system is not closed mechanically. The results may find application in hadron physics. (orig.)

  13. A parallel plate avalanche chamber for relativistic heavy ions

    International Nuclear Information System (INIS)

    Burgei, R.

    1989-01-01

    In order to determine the interaction point of relativistic heavy ions in the Diogene target, we have built and tested an X-Y low pressure parallel plate avalanche chamber. It uses three thin metallized foils and is filled with isobutane. A preliminary study shows that it is the only detector with the required specifications: efficiency, accurate position determination and a small uniform amount of material for the particle beam to go through. The electronics system is designed for reliability, easy adjustments and high stability. The interaction point is given on delay-line read-out. This represents the optimum compromise between low price and good performance. Laboratory measurements of gain, efficiency and position accuracy are done with an alpha-particle source. Two of these detectors are working at the Saturne National Laboratory. They allow the trajectory of several tens of particles (among a million per second) to be reconstructed. With an argon beam at 400 MeV per nucleon, the position uncertainty in the target has been measured to be 0.5 mm (standard deviation). This uncertainty is 0.3 mm for each detector, with an efficiency of 94 per cent. Our set-up, which is now operational, improves the accuracy of the results and speed of analysis of Diogene experiments devoted to the study of central collisions between heavy ions [fr

  14. A new perspective on relativistic transformation for Maxwell's equations of electrodynamics

    International Nuclear Information System (INIS)

    Huang, Y.-S.

    2009-01-01

    A new scheme for relativistic transformation of the electromagnetic fields is formulated through relativistic transformation in the wavevector space, instead of the space-time space. Maxwell's equations of electrodynamics are shown to be form-invariant among inertial frames in accordance with this new scheme of relativistic transformation. This new perspective on relativistic transformation not only fulfills the principle of relativity, but is also compatible with quantum theory.

  15. Relativistic laser channeling in plasmas for fast ignition

    Science.gov (United States)

    Lei, A. L.; Pukhov, A.; Kodama, R.; Yabuuchi, T.; Adumi, K.; Endo, K.; Freeman, R. R.; Habara, H.; Kitagawa, Y.; Kondo, K.; Kumar, G. R.; Matsuoka, T.; Mima, K.; Nagatomo, H.; Norimatsu, T.; Shorokhov, O.; Snavely, R.; Yang, X. Q.; Zheng, J.; Tanaka, K. A.

    2007-12-01

    We report an experimental observation suggesting plasma channel formation by focusing a relativistic laser pulse into a long-scale-length preformed plasma. The channel direction coincides with the laser axis. Laser light transmittance measurement indicates laser channeling into the high-density plasma with relativistic self-focusing. A three-dimensional particle-in-cell simulation reproduces the plasma channel and reveals that the collimated hot-electron beam is generated along the laser axis in the laser channeling. These findings hold the promising possibility of fast heating a dense fuel plasma with a relativistic laser pulse.

  16. Limits and signatures of relativistic spaceflight

    Science.gov (United States)

    Yurtsever, Ulvi; Wilkinson, Steven

    2018-01-01

    While special relativity imposes an absolute speed limit at the speed of light, our Universe is not empty Minkowski spacetime. The constituents that fill the interstellar/intergalactic vacuum, including the cosmic microwave background photons, impose a lower speed limit on any object travelling at relativistic velocities. Scattering of cosmic microwave photons from an ultra-relativistic object may create radiation with a characteristic signature allowing the detection of such objects at large distances.

  17. Angular analyses in relativistic quantum mechanics; Analyses angulaires en mecanique quantique relativiste

    Energy Technology Data Exchange (ETDEWEB)

    Moussa, P [Commissariat a l' Energie Atomique, 91 - Saclay (France). Centre d' Etudes Nucleaires

    1968-06-01

    This work describes the angular analysis of reactions between particles with spin in a fully relativistic fashion. One particle states are introduced, following Wigner's method, as representations of the inhomogeneous Lorentz group. In order to perform the angular analyses, the reduction of the product of two representations of the inhomogeneous Lorentz group is studied. Clebsch-Gordan coefficients are computed for the following couplings: l-s coupling, helicity coupling, multipolar coupling, and symmetric coupling for more than two particles. Massless and massive particles are handled simultaneously. On the way we construct spinorial amplitudes and free fields; we recall how to establish convergence theorems for angular expansions from analyticity hypothesis. Finally we substitute these hypotheses to the idea of 'potential radius', which gives at low energy the usual 'centrifugal barrier' factors. The presence of such factors had never been deduced from hypotheses compatible with relativistic invariance. (author) [French] On decrit un formalisme permettant de tenir compte de l'invariance relativiste, dans l'analyse angulaire des amplitudes de reaction entre particules de spin quelconque. Suivant Wigner, les etats a une particule sont introduits a l'aide des representations du groupe de Lorentz inhomogene. Pour effectuer les analyses angulaires, on etudie la reduction du produit de deux representations du groupe de Lorentz inhomogene. Les coefficients de Clebsch-Gordan correspondants sont calcules dans les couplages suivants: couplage l-s couplage d'helicite, couplage multipolaire, couplage symetrique pour plus de deux particules. Les particules de masse nulle et de masse non nulle sont traitees simultanement. Au passage, on introduit les amplitudes spinorielles et on construit les champs libres, on rappelle comment des hypotheses d'analyticite permettent d'etablir des theoremes de convergence pour les developpements angulaires. Enfin on fournit un substitut a la

  18. Gravitation relativiste

    CERN Document Server

    Hakim, Rémi

    1994-01-01

    Il existe à l'heure actuelle un certain nombre de théories relativistes de la gravitation compatibles avec l'expérience et l'observation. Toutefois, la relativité générale d'Einstein fut historiquement la première à fournir des résultats théoriques corrects en accord précis avec les faits.

  19. Relativistic klystron

    International Nuclear Information System (INIS)

    Marks, R.

    1985-09-01

    Theoretical analysis is presented of a relativisic klystron; i.e. a high-relativistic bunched electron beam which is sent through a succession of tuned cavities and has its energy replenished by periodic induction accelerator units. Parameters are given for a full-size device and for an experimental device using the FEL at the ETA; namely the ELF Facility. 6 refs., 2 figs

  20. Quasi-relativistic fermions and dynamical flavour oscillations

    CERN Document Server

    Alexandre, Jean; Mavromatos, Nick E.

    2014-01-01

    We introduce new Lorentz-symmetry violating kinematics for a four-fermion interaction model, where dynamical mass generation is allowed, irrespectively of the strength of the coupling. In addition, these kinematics lead to a quasi-relativistic dispersion relation, in the sense that it is relativistic in both the infrared and the ultraviolet, but not in an intermediate regime, characterized by the mass $M$. For two fermions, we show that a flavour-mixing mass matrix is generated dynamically, and the Lorentz symmetric limit $M\\to\\infty$ leads to two free relativistic fermions, with flavour oscillations. This model, valid for either Dirac or Majorana fermions, can describe any set of phenomenological values for the eigen masses and the mixing angle.

  1. Relativistic magnetic reconnection driven by a moderately intense laser interacting with a micro-plasma-slab

    Science.gov (United States)

    Yi, Longqing; Shen, Baifei; Pukhov, Alexander; Fülöp, Tünde

    2017-10-01

    Magnetic reconnection (MR) in the relativistic regime is generally thought to be responsible for powering rapid bursts of non-thermal radiation in astrophysical events. It is therefore of significant importance to study how the field energy is transferred to the plasma to power the observed emission. However, due to the difficulty in making direct measurements in astrophysical systems or achieving relativistic MR in laboratory environments, the particle acceleration is usually studied using fully kinetic PIC simulations. Here we present a numerical study of a readily available (TW-mJ-class) laser interacting with a micro-scale plasma slab. The simulations show when the electron beams excited on both sides of the slab approach the end of the plasma structure, ultrafast relativistic MR occurs. As the field topology changes, the explosive release of magnetic energy results in emission of relativistic electron jets with cut-off energy 12 MeV. The proposed novel scenario can be straightforwardly implemented in experiments, and might significantly improve the understanding of fundamental questions such as field dissipation and particle acceleration in relativistic MR. This work is supported by the Knut and Alice Wallenberg Foundation and the European Research Council (ERC-2014-CoG Grant 64712).

  2. Relativistic theory of the Lamb shift based on self energy

    International Nuclear Information System (INIS)

    Barut, A.O.; Salamin, Y.I.

    1987-07-01

    A study is made to evaluate the Lamb shift to all orders in (Zα) using relativistic Dirac Coulomb wavefunctions and without resorting to the dipole approximation. Use is made of the angular integrals and spins sums performed elsewhere exactly. A regularization procedure is given that makes the sum over the positive and negative energy states finite. Finally, the energy shift ΔE n LS is given in terms of an integral that may be done numerically. (author). 19 refs

  3. General relativistic hydrodynamics with Adaptive-Mesh Refinement (AMR) and modeling of accretion disks

    Science.gov (United States)

    Donmez, Orhan

    We present a general procedure to solve the General Relativistic Hydrodynamical (GRH) equations with Adaptive-Mesh Refinement (AMR) and model of an accretion disk around a black hole. To do this, the GRH equations are written in a conservative form to exploit their hyperbolic character. The numerical solutions of the general relativistic hydrodynamic equations is done by High Resolution Shock Capturing schemes (HRSC), specifically designed to solve non-linear hyperbolic systems of conservation laws. These schemes depend on the characteristic information of the system. We use Marquina fluxes with MUSCL left and right states to solve GRH equations. First, we carry out different test problems with uniform and AMR grids on the special relativistic hydrodynamics equations to verify the second order convergence of the code in 1D, 2 D and 3D. Second, we solve the GRH equations and use the general relativistic test problems to compare the numerical solutions with analytic ones. In order to this, we couple the flux part of general relativistic hydrodynamic equation with a source part using Strang splitting. The coupling of the GRH equations is carried out in a treatment which gives second order accurate solutions in space and time. The test problems examined include shock tubes, geodesic flows, and circular motion of particle around the black hole. Finally, we apply this code to the accretion disk problems around the black hole using the Schwarzschild metric at the background of the computational domain. We find spiral shocks on the accretion disk. They are observationally expected results. We also examine the star-disk interaction near a massive black hole. We find that when stars are grounded down or a hole is punched on the accretion disk, they create shock waves which destroy the accretion disk.

  4. Heavy flavours in ultra-relativistic heavy ions collisions; Les saveurs lourdes dans les collisions d'ions lourds ultra-relativistes

    Energy Technology Data Exchange (ETDEWEB)

    Rosnet, Ph

    2008-01-15

    The ultra-relativistic collisions of heavy ions are the today's only means to tackle in laboratory conditions the phase diagram in quantum chromodynamics and the strong interaction. The most recent theoretical studies predict a phase transition between the cold nuclear matter (a hadronic gas) and a plasma of quarks and gluons. Heavy flavour can characterize the nuclear matter produced in a heavy ion collision as well as its spatial-temporal evolution. Their study can be made through their decay into muons. The first part of this work presents the issue of ultra-relativistic heavy ion collisions and the role of heavy flavours. In the second part the author reviews the results of experiments performed at RHIC and particularly presents the analysis of the mass spectrum of dimuons in the Phenix experiment. The third part describes the muon trigger system of the Alice experiment at CERN and the expected performances for the study of di-muons.

  5. On the relativistic extended Thomas-Fermi method

    International Nuclear Information System (INIS)

    Centelles, M.; Vinas, X.; Barranco, M.; Schuck, P.

    1990-01-01

    We have derived the semiclassical relativistic energy functional for a set of fermions moving in the mean field arising from scalar and vector fields, including up to ℎ 2 corrective terms. The method is applied to a relativistic harmonic oscillator model for which the semiclassical result can be compared with the exact solution of the Dirac equation. (orig.)

  6. On the relativistic extended Thomas-Fermi method

    International Nuclear Information System (INIS)

    Centelles, M.; Vinas, X.; Barranco, M.; Schuck, P.

    1990-01-01

    We have derived the semiclassical relativistic energy functional for a set of fermions moving in the mean field arising from scalar and vector fields, including up to ℎ 2 corrective terms. The method is applied to a relativistic harmonic oscillator model for which the semiclassical result can be compared with the exact solution of the Dirac equation

  7. Relativistic Coulomb excitation

    International Nuclear Information System (INIS)

    Winther, A.; Alder, K.

    1979-01-01

    Coulomb excitation of both target and projectile in relativistic heavy ion collisions is evaluated including the lowest order correction for the deviation from a straight line trajectory. Explicit results for differential and total cross sections are given in the form of tables and figures. (Auth.)

  8. Radiative electron capture studied in relativistic heavy-ion atom collisions

    International Nuclear Information System (INIS)

    Stoehlker, T.; Kozhuharov, C.; Mokler, P.H.; Warczak, A.; Bosch, F.; Geissel, H.; Moshammer, R.; Scheidenberger, C.; Eichler, J.; Shirai, T.; Stachura, Z.; Rymuza, P.

    1994-08-01

    The process of Radiative Electron Capture (REC) in relativistic collisions of high-Z ions with low-Z gaseous and solid targets is studied experimentally and theoretically. The observed X-ray spectra are analysed with respect to photon angular distributions as well as to total K-REC cross sections. The experimental results for angle-differential cross sections are well-reproduced by exact relativistic calculations which yield significant deviations from standard sin 2 θ distributions. Total cross sections for K-REC are shown to follow a simple scaling rule obtained from exact relativistic calculations as well as from a non-relativistic dipole approximation. The agreement between these different theoretical approaches must be regarded as fortuitous, but it lends support to the use of the non-relativistic approach for practical purposes. (orig.)

  9. Canonical analysis of non-relativistic particle and superparticle

    Energy Technology Data Exchange (ETDEWEB)

    Kluson, Josef [Masaryk University, Department of Theoretical Physics and Astrophysics, Faculty of Science, Brno (Czech Republic)

    2018-02-15

    We perform canonical analysis of non-relativistic particle in Newton-Cartan Background. Then we extend this analysis to the case of non-relativistic superparticle in the same background. We determine constraints structure of this theory and find generator of κ-symmetry. (orig.)

  10. Relativistic simulation of the Vlasov equation for plasma expansion into vacuum

    Directory of Open Access Journals (Sweden)

    H Abbasi

    2012-12-01

    Full Text Available   In this study, relativistic Vlasov simulation of plasma for expansion of collisionless plasma for into vacuum is presented. The model is based on 1+1 dimensional phase space and electrostatic approximation. For this purpose, the electron dynamics is studied by the relativistic Vlasov equation. Regardless of the ions temperature, fluid equations are used for their dynamics. The initial electrons distribution function is the relativistic Maxwellian. The results show that due to the electrons relativistic temperature, the process of the plasma expansion takes place faster, the resulting electric field is stronger and the ions are accelerated to higher velocities, in comparison to the non-relativistic case.

  11. Relativistic thermodynamics and kinetic theory, with applications to cosmology

    International Nuclear Information System (INIS)

    Stewart, J.M.

    1973-01-01

    The discussion of relativistic thermodynamics and kinetic theory with applications to cosmology also covers the fundamentals and nonequilibrium relativistic kinetic theory and applications to cosmology and astrophysics. (U.S.)

  12. Observational and theoretical aspects of relativistic astrophysics and cosmology

    International Nuclear Information System (INIS)

    Sanz, J.L.; Goicoechea, L.J.

    1985-01-01

    The studies of relativistic astrophysics and cosmology in these proceedings include primordial nucleosynthesis, nonluminous matter, star and galaxy evolution, cosmic microwave background, and general relativistic models of the universe

  13. Analytic properties of the relativistic Thomas-Fermi equation and the total energy of atomic ions

    International Nuclear Information System (INIS)

    March, N.H.; Senatore, G.

    1985-06-01

    The analytic properties of solutions of the relativistic Thomas-Fermi equation which tend to zero at infinity are first examined, the neutral atom solution being a member of this class. A new length is shown to enter the theory, proportional to the square root of the fine structure constant. This information is used to develop a perturbation expansion around the neutral atom solution, corresponding to positive atomic ions with finite but large radii. The limiting law relating ionic radius to the degree of ionization is thereby displayed in functional form, and solved explicitly to lowest order in the fine structure constant. To embrace this knowledge of heavy positive ions, as well as results from the one-electron Dirac equation, a proposal is then advanced as to the analytic form of the relativistic total energy E(Z,N) of an atomic ion with nuclear charge Ze and total number of electrons N. The fact that, for N>1, the nucleus is known only to bind Z+n electrons, where n is 1 or 2, indicates non-analyticity in the complex Z plane, represented by a circle of radius Z approx.= N. Such non-analyticity is also a property of the non-relativistic energy derived from the many-electron Schroedinger equation. The relativistic theory, however, must also embody a second type of non-analyticity associated with the known property for N=1 that the Dirac equation predicts electron-positron pair production when the electronic binding energy becomes equal to twice the electron rest mass energy. This corresponds to a second circle of non-analyticity in E(Z,N), and hence to a Taylor-Laurent expansion of this quantity in the atomic number Z. The relation of this expansion to the Layzer-Bahcall series is finally discussed. (author)

  14. N-body bound state relativistic wave equations

    International Nuclear Information System (INIS)

    Sazdjian, H.

    1988-06-01

    The manifestly covariant formalism with constraints is used for the construction of relativistic wave equations to describe the dynamics of N interacting spin 0 and/or spin 1/2 particles. The total and relative time evolutions of the system are completely determined by means of kinematic type wave equations. The internal dynamics of the system is 3 N-1 dimensional, besides the contribution of the spin degrees of freedom. It is governed by a single dynamical wave equation, that determines the eigenvalue of the total mass squared of the system. The interaction is introduced in a closed form by means of two-body potentials. The system satisfies an approximate form of separability

  15. Relativistic stars in vector-tensor theories

    Science.gov (United States)

    Kase, Ryotaro; Minamitsuji, Masato; Tsujikawa, Shinji

    2018-04-01

    We study relativistic star solutions in second-order generalized Proca theories characterized by a U (1 )-breaking vector field with derivative couplings. In the models with cubic and quartic derivative coupling, the mass and radius of stars become larger than those in general relativity for negative derivative coupling constants. This phenomenon is mostly attributed to the increase of star radius induced by a slower decrease of the matter pressure compared to general relativity. There is a tendency that the relativistic star with a smaller mass is not gravitationally bound for a low central density and hence is dynamically unstable, but that with a larger mass is gravitationally bound. On the other hand, we show that the intrinsic vector-mode couplings give rise to general relativistic solutions with a trivial field profile, so the mass and radius are not modified from those in general relativity.

  16. Localization and Entanglement in Relativistic Quantum Physics

    Science.gov (United States)

    Yngvason, Jakob

    These notes are a slightly expanded version of a lecture presented in February 2012 at the workshop "The Message of Quantum Science—Attempts Towards a Synthesis" held at the ZIF in Bielefeld. The participants were physicists with a wide range of different expertise and interests. The lecture was intended as a survey of a small selection of the insights into the structure of relativistic quantum physics that have accumulated through the efforts of many people over more than 50 years. (Including, among many others, R. Haag, H. Araki, D. Kastler, H.-J. Borchers, A. Wightman, R. Streater, B. Schroer, H. Reeh, S. Schlieder, S. Doplicher, J. Roberts, R. Jost, K. Hepp, J. Fröhlich, J. Glimm, A. Jaffe, J. Bisognano, E. Wichmann, D. Buchholz, K. Fredenhagen, R. Longo, D. Guido, R. Brunetti, J. Mund, S. Summers, R. Werner, H. Narnhofer, R. Verch, G. Lechner, ….) This contribution discusses some facts about relativistic quantum physics, most of which are quite familiar to practitioners of Algebraic Quantum Field Theory (AQFT) [Also known as Local Quantum Physics (Haag, Local quantum physics. Springer, Berlin, 1992).] but less well known outside this community. No claim of originality is made; the goal of this contribution is merely to present these facts in a simple and concise manner, focusing on the following issues: Explaining how quantum mechanics (QM) combined with (special) relativity, in particular an upper bound on the propagation velocity of effects, leads naturally to systems with an infinite number of degrees of freedom (relativistic quantum fields).

  17. Imaging of Nuclear Fragmentation in Nuclear Track Emulsion Relativistic Nuclei

    International Nuclear Information System (INIS)

    Zarubina, I.G. JINR

    2011-01-01

    The method of nuclear track emulsion provides a uniquely complete observation of multiple fragment systems produced in dissociation of relativistic nuclei. The most valuable events of coherent dissociation of nuclei in narrow jets of light and the lightest nuclei with a net charge as in the initial nucleus, occurring without the production of fragments of the target nuclei and mesons (the so-called w hite s tars), comprise a few percent among the observed interactions. The data on this phenomenon are fragmented, and the interpretation is not offered. The dissociation degree of light O, Ne, Mg and Si, and as well as heavy Au, Pb and U nuclei may reach a complete destruction to light and the lightest nuclei and nucleons, resulting in cluster systems of an unprecedented complexity. Studies with relativistic neutron-deficient nuclei have special advantages due to more complete observations. An extensive collection of macro videos of such interactions in nuclear track emulsion gathered by the Becquerel collaboration is presented

  18. Relativistic Wigner functions

    Directory of Open Access Journals (Sweden)

    Bialynicki-Birula Iwo

    2014-01-01

    Full Text Available Original definition of the Wigner function can be extended in a natural manner to relativistic domain in the framework of quantum field theory. Three such generalizations are described. They cover the cases of the Dirac particles, the photon, and the full electromagnetic field.

  19. Two-body relativistic scattering with an O(1,1)-symmetric square-well potential

    International Nuclear Information System (INIS)

    Arshansky, R.; Horwitz, L.P.

    1984-01-01

    Scattering theory in the framework of a relativistic manifestly covariant quantum mechanics is applied to the relativistic analog of the nonrelativistic one-dimensional square-well potential, a two-body O(1,1)-symmetric hyperbolic square well in one space and one time dimension. The unitary S matrix is explicitly obtained. For well sizes large compared to the de Broglie wavelength of the reduced motion system, simple formulas are obtained for the associated sequence of resonances. This sequence has equally spaced levels and constant widths for higher resonances, and linearly increasing widths for lower-lying levels

  20. Relativistic centrifugal instability

    Science.gov (United States)

    Gourgouliatos, Konstantinos N.; Komissarov, Serguei S.

    2018-03-01

    Near the central engine, many astrophysical jets are expected to rotate about their axis. Further out they are expected to go through the processes of reconfinement and recollimation. In both these cases, the flow streams along a concave surface and hence, it is subject to the centrifugal force. It is well known that such flows may experience the centrifugal instability (CFI), to which there are many laboratory examples. The recent computer simulations of relativistic jets from active galactic nuclei undergoing the process of reconfinement show that in such jets CFI may dominate over the Kelvin-Helmholtz instability associated with velocity shear (Gourgouliatos & Komissarov). In this letter, we generalize the Rayleigh criterion for CFI in rotating fluids to relativistic flows using a heuristic analysis. We also present the results of computer simulations which support our analytic criterion for the case of an interface separating two uniformly rotating cylindrical flows. We discuss the difference between CFI and the Rayleigh-Taylor instability in flows with curved streamlines.

  1. Studying extremely peripheral collisions of relativistic heavy ions

    International Nuclear Information System (INIS)

    Fatyga, M.

    1990-01-01

    Relativistic heavy ion facilities have been proposed (and in some cases constructed) with an intent to search for a new state of matter, a quark gluon plasma. As with all tools in the experimental physics, one should always search for ways in which relativistic heavy ions can be used to study physical phenomena beyond this original goal. New possibilities for a study of higher order photonuclear excitations in extremely peripheral collisions of relativistic heavy ions are discussed in this contribution. Data on the electromagnetic and nuclear fragmentation of a 14.6Gev/nucleon 28 Si projectile are presented

  2. Magnetic resonance phenomena in dynamics of relativistic particles

    International Nuclear Information System (INIS)

    Ternov, I.M.; Bordovitsyn, V.A.

    1987-01-01

    A relativistic generalization of Rabi's formula for magnetic resonance is given. On this basis, we consider fast and slow passage through resonance. We define a magnetic resonance exterior field as usual, using unit vectors of a Cartesian coordinate system, a homogeneous magnetic field, and the amplitude of a rotating magnetic field. For the description of spin dynamics we use the Bargmann-Michel-Telegdi equation

  3. Neutron relativistic phenomenological and microscopic optical potential

    International Nuclear Information System (INIS)

    Shen Qing-biao; Feng Da-chun; Zhuo Yi-zhong

    1991-01-01

    In this paper, both the phenomenological and microscopic neutron relativistic optical potentials are presented. The global neutron relativistic phenomenological optical potential (RPOP) based on the available experimental data for various nuclei ranging from C to U with incident energies E n =20--1000 MeV has been obtained through an automatic search of the best parameters by computer. Then the nucleon relativistic microscopic optical potential (RMOP) is studied by utilizing the effective Lagrangian based on the popular Walecka model. Through comparison between the theoretical results and experimental data we shed some insight into both the RMOP and RPOP. Further improvement concerning how to combine the phenomenological potential with the microscopic one in order to reduce the number of free parameters appearing in the RPOP is suggested

  4. A relativistic, meson exchange model of pion-nucleon scattering

    International Nuclear Information System (INIS)

    Pearces, B.C.; Jennings, B.K.

    1990-06-01

    A relativistic meson exchange approach to the pion-nucleon interaction is developed using a three-dimensional relativistic two-body propagator, and the results using different propagators are compared. The relativistic approach is able to describe low energy scattering up to 400 MeV above threshold, while preserving the soft pion theorems. The different propagators give similar results, as the form factors necessary to get a fit suppress much of the multiple scattering. (Author) (24 refs., 4 tabs., 6 figs.)

  5. Relativistic actions for bound-states and applications in the meson spectroscopy; Acoes relativisticas para estados ligados e aplicacoes na espectroscopia de mesons

    Energy Technology Data Exchange (ETDEWEB)

    Silva Carvalho, Hendly da

    1991-08-01

    We study relativistic equations for bound states of two-body systems using Dirac`s constraint formalism and supersymmetry. The two-body system can be of spinless particles, one of them spinning and the other one spinless, or both of them spinning. The interaction is described by scalar, timelike four-vector and spacelike four-vector potentials under Lorentz transformations. As an application we use the relativistic wave equation for two scalar particles and calculate the mass spectra of the mesons treating them as spinless quark-antiquark bound states. The interaction potential in this case is a convenient adaptation of the potential employed in non-relativistic calculations. Finally, we compare our results with more recent experimental data and with theoretical results obtained with the same potential used by us but with a non-relativistic wave equation. We also compare our results with results obtained with the relativistic wave equation but with a different interaction potential. (author). 38 refs, 9 figs, 8 tabs.

  6. Semiclassical expansions of the nuclear relativistic Hartree-Fock theory

    International Nuclear Information System (INIS)

    Weigel, M.K.; Haddad, S.

    1991-01-01

    Semiclassical expansions for Green functions, self-energy, phase-space density and density are given and discussed. The many-body problem was treated in the relativistic Hartree-Fock approximation with a Lagrangian with a standard OBE potential structure including the possibility of space-dependent couplings. The expansions are obtained by formulating the many-body problem in the mixed position-momentum (Wigner) representation and application of the (h/2π)-Wigner-Kirkwood expansion scheme. The resulting self-consistency problems for the zeroth and second order are formulated in three versions. (author)

  7. On the dispersion characteristics of extraordinary mode in a relativistic fully degenerate electron plasma

    Science.gov (United States)

    Noureen, S.; Abbas, G.; Sarfraz, M.

    2018-01-01

    The study of relativistic degenerate plasmas is important in many astrophysical and laboratory environments. Using linearized relativistic Vlasov-Maxwell equations, a generalized expression for the plasma conductivity tensor is derived. Employing Fermi-Dirac distribution at zero temperature, the dispersion relation of the extraordinary mode in a relativistic degenerate electron plasma is investigated. The propagation characteristics are examined in different relativistic density ranges. The shifting of cutoff points due to relativistic effects is observed analytically and graphically. Non-relativistic and ultra-relativistic limiting cases are also presented.

  8. Front-End Light Source for aWaveform-Controlled High-Contrast Few-Cycle Laser System for High-Repetition Rate Relativistic Optics

    Directory of Open Access Journals (Sweden)

    Rodrigo Lopez-Martens

    2013-03-01

    Full Text Available We present the current development of an injector for a high-contrast, ultrashort laser system devoted to relativistic laser-plasma interaction in the few-cycle regime. The front-end is based on CEP-stabilized Ti:Sa CPA followed by XPW filter designed at the mJ level for temporal cleaning and shortening. Accurate characterization highlights the fidelity of the proposed injector. Measured CEP drift is 170 mrad rms.

  9. Analytic study of 1D diffusive relativistic shock acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Keshet, Uri, E-mail: ukeshet@bgu.ac.il [Physics Department, Ben-Gurion University of the Negev, POB 653, Be' er-Sheva 84105 (Israel)

    2017-10-01

    Diffusive shock acceleration (DSA) by relativistic shocks is thought to generate the dN / dE ∝ E{sup −p} spectra of charged particles in various astronomical relativistic flows. We show that for test particles in one dimension (1D), p {sup −1}=1−ln[γ{sub d}(1+β{sub d})]/ln[γ{sub u}(1+β{sub u})], where β{sub u}(β{sub d}) is the upstream (downstream) normalized velocity, and γ is the respective Lorentz factor. This analytically captures the main properties of relativistic DSA in higher dimensions, with no assumptions on the diffusion mechanism. Unlike 2D and 3D, here the spectrum is sensitive to the equation of state even in the ultra-relativistic limit, and (for a J(üttner-Synge equation of state) noticeably hardens with increasing 1<γ{sub u}<57, before logarithmically converging back to p (γ{sub u→∞})=2. The 1D spectrum is sensitive to drifts, but only in the downstream, and not in the ultra-relativistic limit.

  10. Heavy flavours in ultra-relativistic heavy ions collisions

    International Nuclear Information System (INIS)

    Rosnet, Ph.

    2008-01-01

    The ultra-relativistic collisions of heavy ions are the today's only means to tackle in laboratory conditions the phase diagram in quantum chromodynamics and the strong interaction. The most recent theoretical studies predict a phase transition between the cold nuclear matter (a hadronic gas) and a plasma of quarks and gluons. Heavy flavour can characterize the nuclear matter produced in a heavy ion collision as well as its spatial-temporal evolution. Their study can be made through their decay into muons. The first part of this work presents the issue of ultra-relativistic heavy ion collisions and the role of heavy flavours. In the second part the author reviews the results of experiments performed at RHIC and particularly presents the analysis of the mass spectrum of dimuons in the Phenix experiment. The third part describes the muon trigger system of the Alice experiment at CERN and the expected performances for the study of di-muons

  11. Relativistic classical limit of quantum theory

    International Nuclear Information System (INIS)

    Shin, G.R.; Rafelski, J.

    1993-01-01

    We study the classical limit of the equal-time relativistic quantum transport theory. We discuss in qualitative terms the need to fold first the Wigner function with a coarse-graining function. Only then does the singularity at ℎ→0 seem to be manageable. In the limit ℎ→0, we obtain the relativistic Vlasov equations for the particle and the antiparticle sector of the Fock space. Similarly, we address the evolution equations of the spin and the magnetic-moment density

  12. Relativistic effects on inner-shell electron properties

    International Nuclear Information System (INIS)

    Desclaux, J.P.

    1976-01-01

    The influence of relativistic effects on hydrogen-like systems is first reviewed. After having considered one-electron systems, the influence of the other electrons is to be taken into account when considering inner ionization energy and ionization cross sections. Two-hole states in inner shells being then dealt with, the problem of angular momentum coupling among electrons can no longer be neglected. In an other way, this implies that wave functions are to be built on a jj basis instead of a ls one. Ksub(α)sup(h) hypersatellite spectra and KLL Auger transition energies are successively discussed

  13. Relativistic and Non-Relativistic Electronic Molecular-Structure Calculations for Dimers of 4p-, 5p-, and 6p-Block Elements

    DEFF Research Database (Denmark)

    Hofener, S.; Ahlrichs, R.; Knecht, S.

    2012-01-01

    We report results of non-relativistic and two-component relativistic single-reference coupled-cluster with single and double and perturbative triple excitations [CCSD(T)] treatments for the 4p-block dimers Ga2 to Br2, the 5p-block dimers In2 to I2, and their atoms. Extended basis sets up...

  14. Pion production in relativistic collisions of nuclear drops

    International Nuclear Information System (INIS)

    Alonso, C.T.; Wilson, J.R.; McAbee, T.L.; Zingman, J.A.

    1988-09-01

    In a continuation of the long-standing effort of the nuclear physics community to model atomic nuclei as droplets of a specialized nuclear fluid, we have developed a hydrodynamic model for simulating the collisions of heavy nuclei at relativistic speeds. Our model couples ideal relativistic hydrodynamics with a new Monte Carlo treatment of dynamic pion production and tracking. The collective flow for low-energy (200 MeV/N) collisions predicted by this model compares favorably with results from earlier hydrodynamic calculations which used quite different numerical techniques. Our pion predictions at these lower energies appear to differ, however, from the experimental data on pion multiplicities. In this case of ultra-relativistic (200 GeV/N) collisions, our hydrodynamic model has produced baryonic matter distributions which are in reasonable agreement with recent experimental data. These results may shed some light on the sensitivity of relativistic collision data to the nuclear equation of state. 20 refs., 12 figs

  15. Electrodisintegration of relativistic nuclei by a periodic crystal field in channeling

    International Nuclear Information System (INIS)

    Pivovarov, Yu.L.; Vorob'ev, S.A.

    1981-01-01

    Processes on channeled relativistic nuclei with transition into a continuous spectrum (electrodisintegration of nuclei with emission of neutron, proton, photon and etc.) are considered. A case of plane channeling is considered. The equivalent photon method is used for calculating the disintegration cross section. The beryllium disintegration cross section in the system of tungsten crystal (100) planes is calculated. At the γ=10 2 Lorentz factor the cross section value is 5.27 mb. The process considered is of interest from the viewpoint of production of monoenergy neutrons of high energies and γ quanta of excited nuclei. The channeling effect gives the possibility to study electromagnetic interactions of relativistic nuclei under suppre--ssion conditions of the nuclear interaction channel [ru

  16. Nucleation of relativistic first-order phase transitions

    International Nuclear Information System (INIS)

    Csernai, L.P.; Kapusta, J.I.

    1992-01-01

    The authors apply the general formalism of Langer to compute the nucleation rate for systems of relativistic particles with zero or small baryon number density and which undergo first-order phase transitions. In particular, the pre-exponential factor is computed and it is proportional to the viscosity. The initial growth rate of a critical size bubble or droplet is limited by the ability of dissipative processes to transport latent heat away from the surface. 30 refs., 4 figs

  17. Relativistic beaming and quasar statistics

    International Nuclear Information System (INIS)

    Orr, M.J.L.; Browne, I.W.A.

    1982-01-01

    The statistical predictions of a unified scheme for the radio emission from quasars are explored. This scheme attributes the observed differences between flat- and steep-spectrum quasars to projection and the effects of relativistic beaming of the emission from the nuclear components. We use a simple quasar model consisting of a compact relativistically beamed core with spectral index zero and unbeamed lobes, spectral index - 1, to predict the proportion of flat-spectrum sources in flux-limited samples selected at different frequencies. In our model this fraction depends on the core Lorentz factor, γ and we find that a value of approximately 5 gives satisfactory agreement with observation. In a similar way the model is used to construct the expected number/flux density counts for flat-spectrum quasars from the observed steep-spectrum counts. Again, good agreement with the observations is obtained if the average core Lorentz factor is about 5. Independent estimates of γ from observations of superluminal motion in quasars are of the same order of magnitude. We conclude that the statistical properties of quasars are entirely consistent with the predictions of simple relativistic-beam models. (author)

  18. Newtonian self-gravitating system in a relativistic huge void universe model

    Energy Technology Data Exchange (ETDEWEB)

    Nishikawa, Ryusuke; Nakao, Ken-ichi [Department of Mathematics and Physics, Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi, Osaka 558-8585 (Japan); Yoo, Chul-Moon, E-mail: ryusuke@sci.osaka-cu.ac.jp, E-mail: knakao@sci.osaka-cu.ac.jp, E-mail: yoo@gravity.phys.nagoya-u.ac.jp [Division of Particle and Astrophysical Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602 (Japan)

    2016-12-01

    We consider a test of the Copernican Principle through observations of the large-scale structures, and for this purpose we study the self-gravitating system in a relativistic huge void universe model which does not invoke the Copernican Principle. If we focus on the the weakly self-gravitating and slowly evolving system whose spatial extent is much smaller than the scale of the cosmological horizon in the homogeneous and isotropic background universe model, the cosmological Newtonian approximation is available. Also in the huge void universe model, the same kind of approximation as the cosmological Newtonian approximation is available for the analysis of the perturbations contained in a region whose spatial size is much smaller than the scale of the huge void: the effects of the huge void are taken into account in a perturbative manner by using the Fermi-normal coordinates. By using this approximation, we derive the equations of motion for the weakly self-gravitating perturbations whose elements have relative velocities much smaller than the speed of light, and show the derived equations can be significantly different from those in the homogeneous and isotropic universe model, due to the anisotropic volume expansion in the huge void. We linearize the derived equations of motion and solve them. The solutions show that the behaviors of linear density perturbations are very different from those in the homogeneous and isotropic universe model.

  19. Relativistic supersymmetric quantum mechanics based on Klein-Gordon equation

    International Nuclear Information System (INIS)

    Znojil, Miloslav

    2004-01-01

    Witten's the non-relativistic formalism of supersymmetric quantum mechanics was based on a factorization and partnership between Schroedinger equations. We show how it accommodates a transition to the partnership between relativistic Klein-Gordon equations

  20. Ionization of hydrogen by a relativistic heavy projectile

    International Nuclear Information System (INIS)

    Hofstetter, S.; Hofmann, C.; Soff, G.

    1991-10-01

    Using a relativistic analogue of the classical trajectory Monte-Carlo method we investigate the influence of the magnetic field of a relativistic heavy projectile on the ionization cross section of hydrogen. In particular we focus our attention on the angular and energy distribution of the emitted delta electrons. (orig.)

  1. Particle Acceleration and Radiative Losses at Relativistic Shocks

    Science.gov (United States)

    Dempsey, P.; Duffy, P.

    A semi-analytic approach to the relativistic transport equation with isotropic diffusion and consistent radiative losses is presented. It is based on the eigenvalue method first introduced in Kirk & Schneider [5]and Heavens & Drury [3]. We demonstrate the pitch-angle dependence of the cut-off in relativistic shocks.

  2. SPECIAL RELATIVISTIC HYDRODYNAMICS WITH GRAVITATION

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Jai-chan [Department of Astronomy and Atmospheric Sciences, Kyungpook National University, Daegu (Korea, Republic of); Noh, Hyerim [Korea Astronomy and Space Science Institute, Daejon (Korea, Republic of)

    2016-12-20

    Special relativistic hydrodynamics with weak gravity has hitherto been unknown in the literature. Whether such an asymmetric combination is possible has been unclear. Here, the hydrodynamic equations with Poisson-type gravity, considering fully relativistic velocity and pressure under the weak gravity and the action-at-a-distance limit, are consistently derived from Einstein’s theory of general relativity. An analysis is made in the maximal slicing, where the Poisson’s equation becomes much simpler than our previous study in the zero-shear gauge. Also presented is the hydrodynamic equations in the first post-Newtonian approximation, now under the general hypersurface condition. Our formulation includes the anisotropic stress.

  3. Pivotal issues on relativistic electrons in ITER

    Science.gov (United States)

    Boozer, Allen H.

    2018-03-01

    The transfer of the plasma current from thermal to relativistic electrons is a threat to ITER achieving its mission. This danger is significantly greater in the nuclear than in the non-nuclear phase of ITER operations. Two issues are pivotal. The first is the extent and duration of magnetic surface breaking in conjunction with the thermal quenches. The second is the exponential sensitivity of the current transfer to three quantities: (1) the poloidal flux change required to e-fold the number of relativistic electrons, (2) the time τa after the beginning of the thermal quench before the accelerating electric field exceeds the Connor-Hastie field for runaway, and (3) the duration of the period τ_op in which magnetic surfaces remain open. Adequate knowledge does not exist to devise a reliable strategy for the protection of ITER. Uncertainties are sufficiently large that a transfer of neither a negligible nor the full plasma current to relativistic electrons can be ruled out during the non-nuclear phase of ITER. Tritium decay can provide a sufficiently strong seed for a dangerous relativistic-electron current even if τa and τ_op are sufficiently long to avoid relativistic electrons during non-nuclear operations. The breakup of magnetic surfaces that is associated with thermal quenches occurs on a time scale associated with fast magnetic reconnection, which means reconnection at an Alfvénic rather than a resistive rate. Alfvénic reconnection is well beyond the capabilities of existing computational tools for tokamaks, but its effects can be studied using its property of conserving magnetic helicity. Although the dangers to ITER from relativistic electrons have been known for twenty years, the critical issues have not been defined with sufficient precision to formulate an effective research program. Studies are particularly needed on plasma behavior in existing tokamaks during thermal quenches, behavior which could be clarified using methods developed here.

  4. Platform Architecture for Decentralized Positioning Systems

    Directory of Open Access Journals (Sweden)

    Zakaria Kasmi

    2017-04-01

    Full Text Available A platform architecture for positioning systems is essential for the realization of a flexible localization system, which interacts with other systems and supports various positioning technologies and algorithms. The decentralized processing of a position enables pushing the application-level knowledge into a mobile station and avoids the communication with a central unit such as a server or a base station. In addition, the calculation of the position on low-cost and resource-constrained devices presents a challenge due to the limited computing, storage capacity, as well as power supply. Therefore, we propose a platform architecture that enables the design of a system with the reusability of the components, extensibility (e.g., with other positioning technologies and interoperability. Furthermore, the position is computed on a low-cost device such as a microcontroller, which simultaneously performs additional tasks such as data collecting or preprocessing based on an operating system. The platform architecture is designed, implemented and evaluated on the basis of two positioning systems: a field strength system and a time of arrival-based positioning system.

  5. Selectivity of the nucleon-induced deuteron breakup and relativistic effects

    OpenAIRE

    Witała, H.; Golak, J.; Skibiński, R.

    2006-01-01

    Theoretical predictions for the nucleon induced deuteron breakup process based on solutions of the three-nucleon Faddeev equation including such relativistic features as the relativistic kinematics and boost effects are presented. Large changes of the breakup cross section in some complete configurations are found at higher energies. The predicted relativistic effects, which are mostly of dynamical origin, seem to be supported by existing data.

  6. Relativistic spin precession in the double pulsar.

    Science.gov (United States)

    Breton, Rene P; Kaspi, Victoria M; Kramer, Michael; McLaughlin, Maura A; Lyutikov, Maxim; Ransom, Scott M; Stairs, Ingrid H; Ferdman, Robert D; Camilo, Fernando; Possenti, Andrea

    2008-07-04

    The double pulsar PSR J0737-3039A/B consists of two neutron stars in a highly relativistic orbit that displays a roughly 30-second eclipse when pulsar A passes behind pulsar B. Describing this eclipse of pulsar A as due to absorption occurring in the magnetosphere of pulsar B, we successfully used a simple geometric model to characterize the observed changing eclipse morphology and to measure the relativistic precession of pulsar B's spin axis around the total orbital angular momentum. This provides a test of general relativity and alternative theories of gravity in the strong-field regime. Our measured relativistic spin precession rate of 4.77 degrees (-0 degrees .65)(+0 degrees .66) per year (68% confidence level) is consistent with that predicted by general relativity within an uncertainty of 13%.

  7. Relativistic two-body forces in many-body systems

    International Nuclear Information System (INIS)

    Namyslowski, J.M.

    1979-01-01

    For the fully off-shell extension in the relativistic dynamics, based on a covariant light-front field theory, we define the relative momenta and their proper angular variables such that -1 < cos theta/sub α/ < 1. In terms of these variables and the timelike total momenta we write explicitly the Weinberg interaction, corresponding to the exchange of a spinless particle of mass μ. The total momentum dependence and the cluster decomposition property of the Weinberg interaction are presented in detail, together with its energy dependence and other nonlocal features. In the nonrelativistic limit we recover the Yukawa interaction, while for the finite masses the Weinberg interaction is a product of the Yukawa interaction and a form factor. The Weinberg two-body force goes to zero at large energies and is truly nonlocal, in spite of the fact that the underlying field theory has a local Lagrangian

  8. Equilibrium and stability properties of relativistic electron rings and E-layers

    International Nuclear Information System (INIS)

    Uhm, H.

    1976-01-01

    Equilibrium and stability properties of magnetically confined partially-neutralized thin electron ring and E-layer are investigated using the Vlasov-Maxwell equations. The analysis is carried out within the context of the assumption that the minor dimensions (a,b) of the system are much less than the collisionless skin depth (c/antiω/sub p/). The equilibrium configuration of the E-layer is assumed to be an infinitely long, azimuthally symmetric hollow electron beam which is aligned parallel to a uniform axial magnetic field. On the other hand, the electron ring is located at the midplane of an externally imposed mirror field which acts to confine the ring both axially and radially. The equilibrium properties of the E-layer and electron ring are obtained self-consistently for several choices of equilibrium electron distribution function. The negative-mass instability analysis is carried out for the relativistic E-layer equilibrium in which all of the electrons have the same transverse energy and a spread in canonical angular momentum, assuming a fixed ion background. The ion resonance instability properties are investigated for a relativistic nonneutral E-layer aligned parallel to a uniform magnetic field and located between two ground coaxial cylindrical conductors. The stability properties of a nonrelativistic electron ring is investigated within the framework of the linearized Vlasov-Poisson equations. The dispersion relation is obtained for the self-consistent electron distribution function in which all electrons have the same value of energy an the same value of canonical angular momentum. The positive ions in the electron ring are assumed to form an immobile partially neutralizing background. The stability criteria as well as the instability growth rates are derived and discussed including the effect of geometrical configuration of the system. Equilibrium space-charge effects play a significant role in stability behavior

  9. Origin of constraints in relativistic classical Hamiltonian dynamics

    International Nuclear Information System (INIS)

    Mallik, S.; Hugentobler, E.

    1979-01-01

    We investigate the null-plane or the front form of relativistic classical Hamiltonian dynamics as proposed by Dirac and developed by Leutwyler and Stern. For systems of two spinless particles we show that the algebra of Poincare generators is equivalent to describing dynamics in terms of two covariant constraint equations, the Poisson bracket of the two constraints being weakly zero. The latter condition is solved for certain simple forms of constraints

  10. Similarity flows in relativistic hydrodynamics

    International Nuclear Information System (INIS)

    Blaizot, J.P.; Ollitrault, J.Y.

    1986-01-01

    In ultra-relativistic heavy ion collisions, one expects in particular to observe a deconfinement transition leading to a formation of quark gluon plasma. In the framework of the hydrodynamic model, experimental signatures of such a plasma may be looked for as observable consequences of a first order transition on the evolution of the system. In most of the possible scenario, the phase transition is accompanied with discontinuities in the hydrodynamic flow, such as shock waves. The method presented in this paper has been developed to treat without too much numerical effort such discontinuous flow. It relies heavily on the use of similarity solutions of the hydrodynamic equations

  11. Non-relativistic supersymmetry

    International Nuclear Information System (INIS)

    Clark, T.E.; Love, S.T.

    1984-01-01

    The most general one- and two-body hamiltonian invariant under galilean supersymmetry is constructed in superspace. The corresponding Feynman rules are given for the superfield Green functions. As demonstrated by a simple example, it is straightforward to construct models in which the supersymmetry is spontaneously broken by the non-relativistic vacuum. (orig.)

  12. The Relativistic Rocket

    Science.gov (United States)

    Antippa, Adel F.

    2009-01-01

    We solve the problem of the relativistic rocket by making use of the relation between Lorentzian and Galilean velocities, as well as the laws of superposition of successive collinear Lorentz boosts in the limit of infinitesimal boosts. The solution is conceptually simple, and technically straightforward, and provides an example of a powerful…

  13. Relativistic few quark dynamics for hadrons

    International Nuclear Information System (INIS)

    Mitra, A.N.

    1983-07-01

    A microscopic confinement approach is presented to a few quarks systems through an effective (harmonic) kernel inserted at the level of q-q-bar and q-q pairs, using the vehicle of the Bethe-Salpeter equation for each such system. The formalism, which is realistic for light quark systems (which require an intrinsically relativistic treatment), has been developed in a simple enough form so as to be applicable in practice to a large class of phenomena amenable to experimental test. The comparison over a wide range of hadronic properties (from mass spectra to current matrix elements), all within a single integrated framework, would seem to strongly support the ansatz of universality of the reduced spring constant (ω-tilde) which plays a role analogous to the bag radius, but at a far more microscopic level

  14. Relativistic klystron research at SLAC and LLNL

    International Nuclear Information System (INIS)

    Allen, M.A.; Callin, R.S.; Deruyter, H.

    1988-06-01

    We are developing relativistic klystrons as a power source for high gradient accelerator applications such as large linear electron-positron colliders and compact accelerators. We have attained 200 MW peak power at 11.4 GHz from a relativistic klystron, and 140 MV/m longitudinal gradient in a short 11.4 GHz accelerator section. We report here briefly on our experiments so far. 5 refs., 1 fig., 1 tab

  15. Dechanneling function for relativistic axially channeled electrons

    International Nuclear Information System (INIS)

    Muralev, V.A.; Telegin, V.I.

    1981-01-01

    Behaviour of the x(t) dechanneling function depending on the depth is theoretically studied. Theoretical consideration of x(t) for axial channeled relativistic electrons in anisotropic medium results in two-dimensional kinetic equation with mixed derivatives of the parabolic type. The kinetic equation in the approximation of the continuous Lindchard model for relativistic axial channeled electrons is numerically solved. The depth dependence of the x(t) dechanneling function is obtained [ru

  16. Relativistic quantum mechanics an introduction to relativistic quantum fields

    CERN Document Server

    Maiani, Luciano

    2016-01-01

    Written by two of the world's leading experts on particle physics and the standard model - including an award-winning former Director General of CERN - this textbook provides a completely up-to-date account of relativistic quantum mechanics and quantum field theory. It describes the formal and phenomenological aspects of the standard model of particle physics, and is suitable for advanced undergraduate and graduate students studying both theoretical and experimental physics.

  17. A raster scanning power supply system for controlling relativistic heavy ion beams at the Bevalac Biomedical Facility

    International Nuclear Information System (INIS)

    Stover, G.; Nyman, M.; Halliwell, J.; Lutz, I.; Dwinell, R.

    1987-03-01

    A power supply system is currently being designed and constructed to sweep an 8.0 Tesla-meter relativistic heavy ion beam in a raster scanning mode for radiotherapy use. Two colinear dipole magnets with orthogonally oriented magnetic fields are driven by the system to produce a rectangular field (40 x 40 cm max.) with a uniform dose (+-2.5%) to a target volume 6 meters away. The ''fast'' horizontal scanning magnet is driven by a single power supply which in conjunction with a triac bridge network and a current regulated linear actuator will produce a 1200 cm/sec max. sweep rate. The ''slow'' (40 cm/sec) vertical scanning magnet will be controlled by dual current regulated linear actuators in a push-pull configuration. The scanner system can provide off-axis treatment profiles with large aspect ratios and unusual dimensions

  18. Relativistic beaming and orientation effects in core-dominated quasars

    International Nuclear Information System (INIS)

    Ubachukwu, A.A.; Chukwude, A.E.

    2002-07-01

    In this paper, we investigate the relativistic beaming effects in a well-defined sample of core- dominated quasars using the correlation between the relative prominence of the core with respect to the extended emission (defined as the ratio of the core- to the lobe- flux density measured in the rest frame of the source) and the projected linear size as an indicator of relativistic beaming and source orientation. Based on the orientation-dependent relativistic beaming and unification paradigm for high luminosity sources in which the Fanaroff-Riley class-ll radio galaxies form the unbeamed parent population of both the lobe- and core-dominated quasars which are expected to lie at successively smaller angles to the line of sight, we find that the flows in the cores of these core-dominated quasars are highly relativistic, with optimum bulk Lorentz factor, γ opt ∼6-16, and also highly anisotropic, with an average viewing angle, ∼ 9 deg. - 16 deg. Furthermore, the largest boosting occurs within a critical cone angle of ∼ 4 deg. - 10 deg. The results suggest that relativistic bulk flow appears to extend to kilo-parsec scales in these sources. (author)

  19. Ion-acoustic envelope modes in a degenerate relativistic electron-ion plasma

    Energy Technology Data Exchange (ETDEWEB)

    McKerr, M.; Kourakis, I. [Centre for Plasma Physics, School of Mathematics and Physics, Queen' s University Belfast, BT7 1NN Belfast, Northern Ireland (United Kingdom); Haas, F. [Instituto de Física, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, Porto Alegre, RS (Brazil)

    2016-05-15

    A self-consistent relativistic two-fluid model is proposed for one-dimensional electron-ion plasma dynamics. A multiple scales perturbation technique is employed, leading to an evolution equation for the wave envelope, in the form of a nonlinear Schrödinger type equation (NLSE). The inclusion of relativistic effects is shown to introduce density-dependent factors, not present in the non-relativistic case—in the conditions for modulational instability. The role of relativistic effects on the linear dispersion laws and on envelope soliton solutions of the NLSE is discussed.

  20. Quasi-periodic oscillations and the global modes of relativistic, MHD accretion discs

    Science.gov (United States)

    Dewberry, Janosz W.; Latter, Henrik N.; Ogilvie, Gordon I.

    2018-05-01

    The high-frequency quasi-periodic oscillations that punctuate the light curves of X-ray binary systems present a window on to the intrinsic properties of stellar-mass black holes and hence a testbed for general relativity. One explanation for these features is that relativistic distortion of the accretion disc's differential rotation creates a trapping region in which inertial waves (r-modes) might grow to observable amplitudes. Local analyses, however, predict that large-scale magnetic fields push this trapping region to the inner disc edge, where conditions may be unfavourable for r-mode growth. We revisit this problem from a pseudo-Newtonian but fully global perspective, deriving linearized equations describing a relativistic, magnetized accretion flow, and calculating normal modes with and without vertical density stratification. In an unstratified model we confirm that vertical magnetic fields drive r-modes towards the inner edge, though the effect depends on the choice of vertical wavenumber. In a global model we better quantify this susceptibility, and its dependence on the disc's vertical structure and thickness. Our calculations suggest that in thin discs, r-modes may remain independent of the inner disc edge for vertical magnetic fields with plasma betas as low as β ≈ 100-300. We posit that the appearance of r-modes in observations may be more determined by a competition between excitation and damping mechanisms near the ISCO than by the modification of the trapping region by magnetic fields.

  1. Relativistic multiple scattering X-alpha calculations

    International Nuclear Information System (INIS)

    Chermette, H.; Goursot, A.

    1986-01-01

    The necessity to include self-consistent relativistic corrections in molecular calculations has been pointed out for all compounds involving heavy atoms. Most of the changes in the electronic properties are due to the mass-velocity and the so-called Darwin terms so that the use of Wood and Boring's Hamiltonian is very convenient for this purpose as it can be easily included in MSXalpha programs. Although the spin orbit operator effects are only obtained by perturbation theory, the results compare fairly well with experiment and with other relativistic calculations, namely Hartree-Fock-Slater calculations

  2. Cosmic anisotropy with reduced relativistic gas

    Energy Technology Data Exchange (ETDEWEB)

    Castardelli dos Reis, Simpliciano [Universidade Federal de Juiz de Fora, Departamento de Fisica, ICE, Juiz de Fora, MG (Brazil); Shapiro, Ilya L. [Universidade Federal de Juiz de Fora, Departamento de Fisica, ICE, Juiz de Fora, MG (Brazil); Tomsk State Pedagogical University, Tomsk (Russian Federation); Tomsk State University, Tomsk (Russian Federation)

    2018-02-15

    The dynamics of cosmological anisotropies is investigated for Bianchi type I universe filled by a relativistic matter represented by the reduced relativistic gas model (RRG), with equation of state interpolating between radiation and matter. Previously it was shown that the interpolation is observed in the background cosmological solutions for homogeneous and isotropic universe and also for the linear cosmological perturbations. We extend the application of RRG to the Bianchi type I anisotropic model and find that the solutions evolve to the isotropic universe with the pressureless matter contents. (orig.)

  3. Relativistic n-body wave equations in scalar quantum field theory

    International Nuclear Information System (INIS)

    Emami-Razavi, Mohsen

    2006-01-01

    The variational method in a reformulated Hamiltonian formalism of Quantum Field Theory (QFT) is used to derive relativistic n-body wave equations for scalar particles (bosons) interacting via a massive or massless mediating scalar field (the scalar Yukawa model). Simple Fock-space variational trial states are used to derive relativistic n-body wave equations. The equations are shown to have the Schroedinger non-relativistic limits, with Coulombic interparticle potentials in the case of a massless mediating field and Yukawa interparticle potentials in the case of a massive mediating field. Some examples of approximate ground state solutions of the n-body relativistic equations are obtained for various strengths of coupling, for both massive and massless mediating fields

  4. The relativistic gravity train

    Science.gov (United States)

    Seel, Max

    2018-05-01

    The gravity train that takes 42.2 min from any point A to any other point B that is connected by a straight-line tunnel through Earth has captured the imagination more than most other applications in calculus or introductory physics courses. Brachystochron and, most recently, nonlinear density solutions have been discussed. Here relativistic corrections are presented. It is discussed how the corrections affect the time to fall through Earth, the Sun, a white dwarf, a neutron star, and—the ultimate limit—the difference in time measured by a moving, a stationary and the fiducial observer at infinity if the density of the sphere approaches the density of a black hole. The relativistic gravity train can serve as a problem with approximate and exact analytic solutions and as numerical exercise in any introductory course on relativity.

  5. Relativistic electron mirrors from high intensity laser nanofoil interactions

    International Nuclear Information System (INIS)

    Kiefer, Daniel

    2012-01-01

    The reflection of a laser pulse from a mirror moving close to the speed of light could in principle create an X-ray pulse with unprecedented high brightness owing to the increase in photon energy and accompanying temporal compression by a factor of 4γ 2 , where γ is the Lorentz factor of the mirror. While this scheme is theoretically intriguingly simple and was first discussed by A. Einstein more than a century ago, the generation of a relativistic structure which acts as a mirror is demanding in many different aspects. Recently, the interaction of a high intensity laser pulse with a nanometer thin foil has raised great interest as it promises the creation of a dense, attosecond short, relativistic electron bunch capable of forming a mirror structure that scatters counter-propagating light coherently and shifts its frequency to higher photon energies. However, so far, this novel concept has been discussed only in theoretical studies using highly idealized interaction parameters. This thesis investigates the generation of a relativistic electron mirror from a nanometer foil with current state-of-the-art high intensity laser pulses and demonstrates for the first time the reflection from those structures in an experiment. To achieve this result, the electron acceleration from high intensity laser nanometer foil interactions was studied in a series of experiments using three inherently different high power laser systems and free-standing foils as thin as 3nm. A drastic increase in the electron energies was observed when reducing the target thickness from the micrometer to the nanometer scale. Quasi-monoenergetic electron beams were measured for the first time from ultrathin (≤5nm) foils, reaching energies up to ∝35MeV. The acceleration process was studied in simulations well-adapted to the experiments, indicating the transition from plasma to free electron dynamics as the target thickness is reduced to the few nanometer range. The experience gained from those

  6. Relativistic helicity and link in Minkowski space-time

    International Nuclear Information System (INIS)

    Yoshida, Z.; Kawazura, Y.; Yokoyama, T.

    2014-01-01

    A relativistic helicity has been formulated in the four-dimensional Minkowski space-time. Whereas the relativistic distortion of space-time violates the conservation of the conventional helicity, the newly defined relativistic helicity conserves in a barotropic fluid or plasma, dictating a fundamental topological constraint. The relation between the helicity and the vortex-line topology has been delineated by analyzing the linking number of vortex filaments which are singular differential forms representing the pure states of Banach algebra. While the dimension of space-time is four, vortex filaments link, because vorticities are primarily 2-forms and the corresponding 2-chains link in four dimension; the relativistic helicity measures the linking number of vortex filaments that are proper-time cross-sections of the vorticity 2-chains. A thermodynamic force yields an additional term in the vorticity, by which the vortex filaments on a reference-time plane are no longer pure states. However, the vortex filaments on a proper-time plane remain to be pure states, if the thermodynamic force is exact (barotropic), thus, the linking number of vortex filaments conserves

  7. Solution of relativistic quantum optics problems using clusters of graphical processing units

    Energy Technology Data Exchange (ETDEWEB)

    Gordon, D.F., E-mail: daviel.gordon@nrl.navy.mil; Hafizi, B.; Helle, M.H.

    2014-06-15

    Numerical solution of relativistic quantum optics problems requires high performance computing due to the rapid oscillations in a relativistic wavefunction. Clusters of graphical processing units are used to accelerate the computation of a time dependent relativistic wavefunction in an arbitrary external potential. The stationary states in a Coulomb potential and uniform magnetic field are determined analytically and numerically, so that they can used as initial conditions in fully time dependent calculations. Relativistic energy levels in extreme magnetic fields are recovered as a means of validation. The relativistic ionization rate is computed for an ion illuminated by a laser field near the usual barrier suppression threshold, and the ionizing wavefunction is displayed.

  8. Higher-order relativistic periastron advances and binary pulsars

    International Nuclear Information System (INIS)

    Damour, T.; Schafer, G.

    1988-01-01

    The contributions to the periastron advance of a system of two condensed bodies coming from relativistic dynamical effects of order higher than the usual first post-Newtonian (1PN) equations of motion are investigated. The structure of the solution of the orbital second post-Newtonian (2PN) equations of motion is given in a simple parametrized form. The contributions to the secular pariastron advance, and the period, of orbital 2PN effects are then explicitly worked out by using the Hamilton-Jacobi method. The spin-orbit contribution to the secular precession of the orbit in space is rederived in a streamlined way by making full use of Hamiltonian methods. These results are then applied to the theoretical interpretation of the observational data of pulsars in close eccentric binary systems. It is shown that the higher-order relativistic contributions are already of theoretical and astophysical significance for interpreting the high-precision measurement of the secular periastron advance of PSR 1913+16 achived by Taylor and coworkers. The case of extremely fast spinning (millisecond) binary pulsars is also discussed, and shown to offer an easier ground for getting new tests of general relativity, and/or, a direct measurement of the moment of inertia of a neutron star

  9. Correlated relativistic dynamics and nuclear effects in dielectronic and visible spectra of highly charged ions

    International Nuclear Information System (INIS)

    Harman, Z.; Artemyev, A.N.; Crespo Lopez-Urrutia, J.R.

    2008-01-01

    Dielectronic recombination and visible emission spectra are investigated theoretically and experimentally. Spectra of x-rays emitted from electron beam ion trap plasmas allow the study of correlation and quantum electrodynamic effects in relativistic few-body systems. In the visible range, exploring the forbidden M1 transitions in Be- and B-like argon ions provides one new insights into the relativistic modelling of isotope shift effects and extend the scope of bound-electron g factor measurements to few-electron ions. (author)

  10. Causality and relativistic effects in intranuclear cascade calculations

    International Nuclear Information System (INIS)

    Kodama, T.; Duarte, S.B.; Chung, K.C.; Donangelo, R.J.; Nazareth, R.A.M.S.

    1983-01-01

    Relativistic effects in high energy nuclear collisions, when non-invariance of simultaneity is taken into account, are studied. It is shown that the time ordering of nucleon-nucleon collisions is quite different for different observers, giving in some cases non-invariant final results for intranuclear cascade (INC) calculations. In particular, an example of such a case is shown, in which the INC simulation, depending on the reference frame, presents a kind of density instability caused by a specific time ordering of collision events. A new INC calculation, using a causality preserving scheme, which minimizes this kind of relativistic effect is proposed. It is verified that the causality preserving INC prescription essentially recovers the relativistic invariance. (Author) [pt

  11. The relativistic electron wave equation

    International Nuclear Information System (INIS)

    Dirac, P.A.M.

    1977-08-01

    The paper was presented at the European Conference on Particle Physics held in Budapest between the 4th and 9th July of 1977. A short review is given on the birth of the relativistic electron wave equation. After Schroedinger has shown the equivalence of his wave mechanics and the matrix mechanics of Heisenberg, a general transformation theory was developed by the author. This theory required a relativistic wave equation linear in delta/delta t. As the Klein--Gordon equation available at this time did not satisfy this condition the development of a new equation became necessary. The equation which was found gave the value of the electron spin and magnetic moment automatically. (D.P.)

  12. Relativistic shocks and particle acceleration

    International Nuclear Information System (INIS)

    Heavens, A.F.

    1988-01-01

    In this paper, we investigate the fluid dynamics of relativistic shock waves, and use the results to calculate the spectral index of particles accelerated by the Fermi process in such shocks. We have calculated the distributions of Fermi-accelerated particles at shocks propagating into cold proton-electron plasma and also cold electron-positron plasma. We have considered two different power spectra for the scattering waves, and find, in contrast to the non-relativistic case, that the spectral index of the accelerated particles depends on the wave power spectrum. On the assumption of thermal equilibrium both upstream and downstream, we present some useful fits for the compression ratio of shocks propagating at arbitrary speeds into gas of any temperature. (author)

  13. Second quantization of classical nonlinear relativistic field theory. Pt. 2

    International Nuclear Information System (INIS)

    Balaban, T.

    1976-01-01

    The construction of a relativistic interacting local quantum field is given in two steps: first the classical nonlinear relativistic field theory is written down in terms of Poisson brackets, with initial conditions as canonical variables: next a representation of Poisson bracket Lie algebra by means of linear operators in the topological vector space is given and an explicit form of a local interacting relativistic quantum field PHI is obtained. (orig./BJ) [de

  14. Fundamental laws of relativistic classical dynamics revisited

    International Nuclear Information System (INIS)

    Blaquiere, Augustin

    1977-01-01

    By stating that a linear differential form, whose coefficients are the components of the momentum and the energy of a particle, has an antiderivative, the basic equations of the dynamics of points are obtained, in the relativistic case. From the point of view of optimization theory, a connection between our condition and the Bellman-Isaacs equation of dynamic programming is discussed, with a view to extending the theory to relativistic wave mechanics [fr

  15. Relativistic extension of a charge-conservative finite element solver for time-dependent Maxwell-Vlasov equations

    Science.gov (United States)

    Na, D.-Y.; Moon, H.; Omelchenko, Y. A.; Teixeira, F. L.

    2018-01-01

    Accurate modeling of relativistic particle motion is essential for physical predictions in many problems involving vacuum electronic devices, particle accelerators, and relativistic plasmas. A local, explicit, and charge-conserving finite-element time-domain (FETD) particle-in-cell (PIC) algorithm for time-dependent (non-relativistic) Maxwell-Vlasov equations on irregular (unstructured) meshes was recently developed by Moon et al. [Comput. Phys. Commun. 194, 43 (2015); IEEE Trans. Plasma Sci. 44, 1353 (2016)]. Here, we extend this FETD-PIC algorithm to the relativistic regime by implementing and comparing three relativistic particle-pushers: (relativistic) Boris, Vay, and Higuera-Cary. We illustrate the application of the proposed relativistic FETD-PIC algorithm for the analysis of particle cyclotron motion at relativistic speeds, harmonic particle oscillation in the Lorentz-boosted frame, and relativistic Bernstein modes in magnetized charge-neutral (pair) plasmas.

  16. General-relativistic celestial mechanics. II. Translational equations of motion

    International Nuclear Information System (INIS)

    Damour, T.; Soffel, M.; Xu, C.

    1992-01-01

    The translational laws of motion for gravitationally interacting systems of N arbitrarily composed and shaped, weakly self-gravitating, rotating, deformable bodies are obtained at the first post-Newtonian approximation of general relativity. The derivation uses our recently introduced multi-reference-system method and obtains the translational laws of motion by writing that, in the local center-of-mass frame of each body, relativistic inertial effects combine with post-Newtonian self- and externally generated gravitational forces to produce a global equilibrium (relativistic generalization of d'Alembert's principle). Within the first post-Newtonian approximation [i.e., neglecting terms of order (v/c) 4 in the equations of motion], our work is the first to obtain complete and explicit results, in the form of infinite series, for the laws of motion of arbitrarily composed and shaped bodies. We first obtain the laws of motion of each body as an infinite series exhibiting the coupling of all the (Blanchet-Damour) post-Newtonian multipole moments of this body to the post-Newtonian tidal moments (recently defined by us) felt by this body. We then give the explicit expression of these tidal moments in terms of post-Newtonian multipole moments of the other bodies

  17. Standard map in magnetized relativistic systems: fixed points and regular acceleration.

    Science.gov (United States)

    de Sousa, M C; Steffens, F M; Pakter, R; Rizzato, F B

    2010-08-01

    We investigate the concept of a standard map for the interaction of relativistic particles and electrostatic waves of arbitrary amplitudes, under the action of external magnetic fields. The map is adequate for physical settings where waves and particles interact impulsively, and allows for a series of analytical result to be exactly obtained. Unlike the traditional form of the standard map, the present map is nonlinear in the wave amplitude and displays a series of peculiar properties. Among these properties we discuss the relation involving fixed points of the maps and accelerator regimes.

  18. Limitation of accelerating process in the partly neutralized relativistic electron hollow beam

    International Nuclear Information System (INIS)

    Chen, H.C.

    1984-01-01

    A fluid-Maxwell theory of the diocotron instability is developed for a relativistic electron hollow beam which is assumed in rigid-rotor and cold laminar flow equilibria. Stability analysis is performed for a sharp boundary electron density profile including the influence of positive ions which can accumulate in a long pulse device, and which form a partially neutralizing background. In the case of the strong magnetic field and tenuous electron beam (plasma frequency ω/sub p/b 1 2 ) has a stabilizing effect on the diocotron instability, R 1 and R 2 are the inner and outer radius of the annular hollow beam, respectively. However, the ions accumulating in the center of the beam (0 1 ) have a destabilizing effect on the diocotron instability. Most importantly the kink mode becomes unstable with a growth rate several tenths of the diocotron frequency ω/sub D/ equivalent ω 2 /sub p/b/2γ 2 ω/sub c/, where γ is the relativistic scaling factor

  19. ρ - ω Mixing Effects in Relativistic Heavy-Ion Collisions

    International Nuclear Information System (INIS)

    Broniowski, W.; Florkowski, W.

    1999-01-01

    Full text: We have shown that even moderate excess of neutrons over protons in nuclear matter, such as in 208 Pb, can lead to large ρ - ω mixing at densities of the order of twice the nuclear saturation density and higher. The typical mixing angle is of the order of 10 o . The mixing may result in noticeable shifts of the positions and widths of resonances. We also analyze temperature effects and find that temperatures up to 50 MeV have practically no effect on the mixing. The results have relevance for the explanation of dilepton production in relativistic heavy-ion collisions. (author)

  20. Relativistic implications of the quantum phase

    International Nuclear Information System (INIS)

    Low, Stephen G

    2012-01-01

    The quantum phase leads to projective representations of symmetry groups in quantum mechanics. The projective representations are equivalent to the unitary representations of the central extension of the group. A celebrated example is Wigner's formulation of special relativistic quantum mechanics as the projective representations of the inhomogeneous Lorentz group. However, Wigner's formulation makes no mention of the Weyl-Heisenberg group and the hermitian representation of its algebra that are the Heisenberg commutation relations fundamental to quantum physics. We put aside the relativistic symmetry and show that the maximal quantum symmetry that leaves the Heisenberg commutation relations invariant is the projective representations of the conformally scaled inhomogeneous symplectic group. The Weyl-Heisenberg group and noncommutative structure arises directly because the quantum phase requires projective representations. We then consider the relativistic implications of the quantum phase that lead to the Born line element and the projective representations of an inhomogeneous unitary group that defines a noninertial quantum theory. (Understanding noninertial quantum mechanics is a prelude to understanding quantum gravity.) The remarkable properties of this symmetry and its limits are studied.