WorldWideScience

Sample records for relativistic plasma wakefields

  1. Excitation of wakefields in a relativistically hot plasma created by dying non-linear plasma wakefields

    Energy Technology Data Exchange (ETDEWEB)

    Sahai, A. A.; Katsouleas, T. C.; Gessner, S.; Hogan, M.; Joshi, C.; Mori, W. B. [Electrical and Computer Engineering, Duke University, Durham, NC 27708 (United States); SLAC National Accelerator Laboratory, Menlo Park, CA 90309 (United States); University of California Los Angeles, Los Angeles, CA 90095 (United States)

    2012-12-21

    We study the various physical processes and their timescales involved in the excitation of wakefields in relativistically hot plasma. This has relevance to the design of a high repetition-rate plasma wakefield collider in which the plasma has not had time to cool between bunches in addition to understanding the physics of cosmic jets in relativistically hot astrophysical plasmas. When the plasma is relativistically hot (plasma temperature near m{sub e}c{sup 2}), the thermal pressure competes with the restoring force of ion space charge and can reduce or even eliminate the accelerating field of a wake. We will investigate explicitly the case where the hot plasma is created by a preceding Wakefield drive bunch 10's of picoseconds to many nanoseconds ahead of the next drive bunch. The relativistically hot plasma is created when the excess energy (not coupled to the driven e{sup -} bunch) in the wake driven by the drive e{sup -} bunch is eventually converted into thermal energy on 10's of picosecond timescale. We will investigate the thermalization and diffusion processes of this non-equilibrium plasma on longer time scales, including the effects of ambi-polar diffusion of ions driven by hot electron expansion, possible Columbic explosion of ions producing higher ionization states and ionization of surrounding neutral atoms via collisions with hot electrons. Preliminary results of the transverse and longitudinal wakefields at different timescales of separation between a first and second bunch are presented and a possible experiment to study this topic at the FACET facility is described.

  2. Radial equilibrium of relativistic particle bunches in plasma wakefield accelerators

    CERN Document Server

    Lotov, K V

    2016-01-01

    Drive particle beams in linear or weakly nonlinear regimes of the plasma wakefield accelerator quickly reach a radial equilibrium with the wakefield, which is described in detail for the first time. The equilibrium beam state and self-consistent wakefields are obtained by combining analytical relationships, numerical integration, and first-principle simulations. In the equilibrium state, the beam density is strongly peaked near the axis, the beam radius is constant along the beam, and longitudinal variation of the focusing strength is balanced by varying beam emittance. The transverse momentum distribution of beam particles depends on the observation radius and is neither separable, nor Gaussian.

  3. Femtosecond probing of light-speed plasma wakefields by using a relativistic electron bunch

    CERN Document Server

    Zhang, C J; Wan, Y; Guo, B; Wu, Y P; Pai, C -H; Li, F; Chu, H -H; Gu, Y Q; Xu, X L; Mori, W B; Joshi, C; Wang, J; Lu, W

    2016-01-01

    Relativistic wakes produced by intense laser or particle beams propagating through plasmas are being considered as accelerators for next generation of colliders and coherent light sources. Such wakes have been shown to accelerate electrons and positrons to several gigaelectronvolts (GeV), with a few percent energy spread and a high wake-to-beam energy transfer efficiency. However, complete mapping of electric field structure of the wakes has proven elusive. Here we show that a high-energy electron bunch can be used to probe the fields of such light-speed wakes with femtosecond resolution. The highly transient, microscopic wakefield is reconstructed from the density modulated ultra-short probe bunch after it has traversed the wake. This technique enables visualization of linear wakefields in low-density plasmas that can accelerate electrons and positrons beams. It also allows characterization of wakes in plasma density ramps critical for maintaining the beam emittance, improving the energy transfer efficiency ...

  4. Capturing relativistic wakefield structures in plasmas using ultrashort high-energy electrons as a probe.

    Science.gov (United States)

    Zhang, C J; Hua, J F; Xu, X L; Li, F; Pai, C-H; Wan, Y; Wu, Y P; Gu, Y Q; Mori, W B; Joshi, C; Lu, W

    2016-07-11

    A new method capable of capturing coherent electric field structures propagating at nearly the speed of light in plasma with a time resolution as small as a few femtoseconds is proposed. This method uses a few femtoseconds long relativistic electron bunch to probe the wake produced in a plasma by an intense laser pulse or an ultra-short relativistic charged particle beam. As the probe bunch traverses the wake, its momentum is modulated by the electric field of the wake, leading to a density variation of the probe after free-space propagation. This variation of probe density produces a snapshot of the wake that can directly give many useful information of the wake structure and its evolution. Furthermore, this snapshot allows detailed mapping of the longitudinal and transverse components of the wakefield. We develop a theoretical model for field reconstruction and verify it using 3-dimensional particle-in-cell (PIC) simulations. This model can accurately reconstruct the wakefield structure in the linear regime, and it can also qualitatively map the major features of nonlinear wakes. The capturing of the injection in a nonlinear wake is demonstrated through 3D PIC simulations as an example of the application of this new method.

  5. Capturing relativistic wakefield structures in plasmas using ultrashort high-energy electrons as a probe

    Science.gov (United States)

    Zhang, C. J.; Hua, J. F.; Xu, X. L.; Li, F.; Pai, C.-H.; Wan, Y.; Wu, Y. P.; Gu, Y. Q.; Mori, W. B.; Joshi, C.; Lu, W.

    2016-07-01

    A new method capable of capturing coherent electric field structures propagating at nearly the speed of light in plasma with a time resolution as small as a few femtoseconds is proposed. This method uses a few femtoseconds long relativistic electron bunch to probe the wake produced in a plasma by an intense laser pulse or an ultra-short relativistic charged particle beam. As the probe bunch traverses the wake, its momentum is modulated by the electric field of the wake, leading to a density variation of the probe after free-space propagation. This variation of probe density produces a snapshot of the wake that can directly give many useful information of the wake structure and its evolution. Furthermore, this snapshot allows detailed mapping of the longitudinal and transverse components of the wakefield. We develop a theoretical model for field reconstruction and verify it using 3-dimensional particle-in-cell (PIC) simulations. This model can accurately reconstruct the wakefield structure in the linear regime, and it can also qualitatively map the major features of nonlinear wakes. The capturing of the injection in a nonlinear wake is demonstrated through 3D PIC simulations as an example of the application of this new method.

  6. Effects of Higher-Order Relativistic Nonlinearity and Wakefield During a Moderately Intense Laser Pulse Propagation in a Plasma Channel

    Institute of Scientific and Technical Information of China (English)

    LIU Ming-Ping; LIU Bing-Bing; LIU San-Qiu; ZHANG Fu-Yang; LIU Jie

    2013-01-01

    Using a variational approach,the propagation of a moderately intense laser pulse in a parabolic preformed plasma channel is investigated.The effects of higher-order relativistic nonlinearity (HRN) and wakefield are included.The effect of HRN serves as an additional defocusing mechanism and has the same order of magnitude in the spot size as that of the transverse wakefield (TWF).The effect of longitudinal wakefield is much larger than those of HRN and TWF for an intense laser pulse with the pulse length equaling the plasma wavelength.The catastrophic focusing of the laser spot size would be prevented in the present of HRN and then it varies with periodic focusing oscillations.

  7. Cosmic Plasma Wakefield Acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Chen, P

    2004-04-26

    Recently we proposed a new cosmic acceleration mechanism which was based on the wakefields excited by the Alfven shocks in a relativistically owing plasma. In this paper we include some omitted details, and show that there exists a threshold condition for transparency below which the accelerating particle is collision-free and suffers little energy loss in the plasma medium. The stochastic encounters of the random accelerating-decelerating phases results in a power-law energy spectrum: f({epsilon}) {proportional_to} 1/{epsilon}{sup 2}. As an example, we discuss the possible production of super-GZK ultra high energy cosmic rays (UHECR) in the atmosphere of gamma ray bursts. The estimated event rate in our model agrees with that from UHECR observations.

  8. High field terahertz emission from relativistic laser-driven plasma wakefields

    CERN Document Server

    Chen, Zi-Yu

    2015-01-01

    We propose a method to generate high field terahertz (THz) radiation with peak strength of GV/cm level in the THz frequency gap range 1-10 THz using a relativistic laser interaction with a gaseous plasma target. Due to the effect of local pump depletion, an initially Gaussian laser pulse undergoes leading edge erosion and eventually evolves to a state with leading edge being step function. Interacting with such a pulse, electrons gain transverse residual momentum and excite net transverse currents modulated by the relativistic plasma frequency. These currents give rise to the low frequency THz emission. We demonstrate this process with one and two dimensional particle-in-cell simulations.

  9. High field terahertz emission from relativistic laser-driven plasma wakefields

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Zi-Yu, E-mail: Ziyu.Chen@uni-duesseldorf.de [Institut für Theoretische Physik I, Heinrich-Heine-Universität Düsseldorf, Düsseldorf 40225 (Germany); LSD, Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang 621999 (China); Pukhov, Alexander [Institut für Theoretische Physik I, Heinrich-Heine-Universität Düsseldorf, Düsseldorf 40225 (Germany)

    2015-10-15

    We propose a method to generate high field terahertz (THz) radiation with peak strength of GV/cm level in the THz frequency gap range of 1–10 THz using a relativistic laser interaction with a gaseous plasma target. Due to the effect of local pump depletion, an initially Gaussian laser pulse undergoes leading edge erosion and eventually evolves to a state with leading edge being step function. Interacting with such a pulse, electrons gain transverse residual momentum and excite net transverse currents modulated by the relativistic plasma frequency. These currents give rise to the low frequency THz emission. We demonstrate this process with one and two dimensional particle-in-cell simulations.

  10. Transverse self-modulation of ultra-relativistic lepton beams in the plasma wakefield accelerator

    CERN Document Server

    Vieira, J; Mori, W B; Silva, L O; Muggli, P

    2015-01-01

    The transverse self-modulation of ultra-relativistic, long lepton bunches in high-density plasmas is explored through full-scale particle-in-cell simulations. We demonstrate that long SLAC-type electron and positron bunches can become strongly self-modulated over centimeter distances, leading to wake excitation in the blowout regime with accelerating fields in excess of 20 GV/m. We show that particles energy variations exceeding 10 GeV can occur in meter-long plasmas. We find that the self-modulation of positively and negatively charged bunches differ when the blowout is reached. Seeding the self-modulation instability suppresses the competing hosing instability. This work reveals that a proof-of-principle experiment to test the physics of bunch self-modulation can be performed with available lepton bunches and with existing experimental apparatus and diagnostics.

  11. Long Term Evolution of Plasma Wakefields

    CERN Document Server

    Sahai, Aakash A; Tsung, F S; Mori, W B

    2014-01-01

    We study the long-term evolution (LTE) of plasma wakefields over multiple plasma-electron periods and few plasma-ion periods, much less than a recombination time. The evolution and relaxation of such a wakefield-perturbed plasma over these timescales has important implications for the upper limits of repetition-rates in plasma colliders. Intense fields in relativistic lasers (or intense beams) create plasma wakefields (modes around {\\omega}pe) by transferring energy to the plasma electrons. Charged-particle beams in the right phase may be accelerated with acceleration/focusing gradients of tens of GeV/m. However, wakefields leave behind a plasma not in equilibrium, with a relaxation time of multiple plasma-electron periods. Ion motion over ion timescales, caused by energy transfer from the driven plasma-electrons to the plasma-ions can create interesting plasma states. Eventually during LTE, the dynamics of plasma de-coheres (multiple modes through instability driven mixing), thermalizing into random motion (...

  12. A plasma wakefield acceleration experiment using CLARA beam

    Energy Technology Data Exchange (ETDEWEB)

    Xia, G., E-mail: guoxing.xia@cockcroft.ac.uk [School of Physics and Astronomy, University of Manchester, Manchester (United Kingdom); The Cockcroft Institute, Sci-Tech Daresbury, Daresbury, Warrington (United Kingdom); Angal-Kalinin, D.; Clarke, J. [STFC/ASTeC, Daresbury, Warrington (United Kingdom); Smith, J. [Tech-X UK Corporation, Daresbury Innovation Centre, Warrington (United Kingdom); Cormier-Michel, E. [Tech-X Corporation, Boulder, CO (United States); Jones, J.; Williams, P.H.; Mckenzie, J.W.; Militsyn, B.L. [STFC/ASTeC, Daresbury, Warrington (United Kingdom); Hanahoe, K.; Mete, O. [School of Physics and Astronomy, University of Manchester, Manchester (United Kingdom); The Cockcroft Institute, Sci-Tech Daresbury, Daresbury, Warrington (United Kingdom); Aimidula, A.; Welsch, C.P. [The Cockcroft Institute, Sci-Tech Daresbury, Daresbury, Warrington (United Kingdom); The University of Liverpool, Liverpool (United Kingdom)

    2014-03-11

    We propose a Plasma Accelerator Research Station (PARS) based at proposed FEL test facility CLARA (Compact Linear Accelerator for Research and Applications) at Daresbury Laboratory. The idea is to use the relativistic electron beam from CLARA, to investigate some key issues in electron beam transport and in electron beam driven plasma wakefield acceleration, e.g. high gradient plasma wakefield excitation driven by a relativistic electron bunch, two bunch experiment for CLARA beam energy doubling, high transformer ratio, long bunch self-modulation and some other advanced beam dynamics issues. This paper presents the feasibility studies of electron beam transport to meet the requirements for beam driven wakefield acceleration and presents the plasma wakefield simulation results based on CLARA beam parameters. Other possible experiments which can be conducted at the PARS beam line are also discussed.

  13. A plasma wakefield acceleration experiment using CLARA beam

    CERN Document Server

    Xia, G; Clarke, J; Smith, J; Cormier-Michel, E; Jones, J; Williams, P H; Mckenzie, J W; Militsyn, B L; Hanahoe, K; Mete, O; Aimidula, A; Welsch, C P

    2014-01-01

    We propose a Plasma Accelerator Research Station (PARS) based at proposed FEL test facility CLARA (Compact Linear Accelerator for Research and Applications) at Daresbury Laboratory. The idea is to use the relativistic electron beam from CLARA, to investigate some key issues in electron beam transport and in electron beam driven plasma wakefield acceleration, e.g. high gradient plasma wakefield excitation driven by a relativistic electron bunch, two bunch experiment for CLARA beam energy doubling, high transformer ratio, long bunch self-modulation and some other advanced beam dynamics issues. This paper presents the feasibility studies of electron beam transport to meet the requirements for beam driven wakefield acceleration and presents the plasma wakefield simulation results based on CLARA beam parameters. Other possible experiments which can be conducted at the PARS beam line are also discussed.

  14. Axionic suppression of plasma wakefield acceleration

    Science.gov (United States)

    Burton, D. A.; Noble, A.; Walton, T. J.

    2016-09-01

    Contemporary attempts to explain the existence of ultra-high energy cosmic rays using plasma-based wakefield acceleration deliberately avoid non-standard model particle physics. However, such proposals exploit some of the most extreme environments in the Universe and it is conceivable that hypothetical particles outside the standard model have significant implications for the effectiveness of the acceleration process. Axions solve the strong CP problem and provide one of the most important candidates for cold dark matter, and their potential significance in the present context should not be overlooked. Our analysis of the field equations describing a plasma augmented with axions uncovers a dramatic axion-induced suppression of the energy gained by a test particle in the wakefield driven by a particle bunch, or an intense pulse of electromagnetic radiation, propagating at ultra-relativistic speeds within the strongest magnetic fields in the Universe.

  15. Electromagnetic Emission from Laser Wakefields in Magnetized Underdense Plasmas

    Institute of Scientific and Technical Information of China (English)

    胡志丹; 盛政明; 丁文君; 王伟民; 董全力; 张杰

    2012-01-01

    A wakefield driven by a short intense laser pulse in a perpendicularly magnetized underdense plasma is studied analytically and numerically for both weakly relativistic and highly relativistic situations. Owing to the DC magnetic field, a transverse component of the electric fields associated with the wakefield appears, while the longitudinal wave is not greatly affected by the magnetic field up to 22 Tesla. Moreover, the scaling law of the transverse field versus the longitudinal field is derived. One-dimensional particle-in-cell simulation results confirm the analytical results. Wakefield transmission through the plasma-vacuum boundary, where electromagnetic emission into vacuum occurs, is also investigated numerically. These results are useful for the generation of terahertz radiation and the diagnosis of laser wakefields.

  16. Pump depletion limited evolution of the relativistic plasma wave-front in a forced laser-wakefield accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Fang, F; Clayton, C E; Marsh, K A; Pak, A E; Ralph, J E; Joshi, C [Department of Electrical Engineering, University of California, Los Angeles, CA 90095 (United States); Lopes, N C [Grupo de Lasers e Plasmas, Instituto Superior Tecnico, Lisbon (Portugal)], E-mail: cclayton@ucla.edu

    2009-02-15

    In a forced laser-wakefield accelerator experiment (Malka et al 2002 Science 298 1596) where the length of the pump laser pulse is a few plasma periods long, the leading edge of the laser pulse undergoes frequency downshifting and head erosion as the laser energy is transferred to the wake. Therefore, after some propagation distance, the group velocity of the leading edge of the pump pulse-and thus of the driven electron plasma wave-will slow down. This can have implications for the dephasing length of the accelerated electrons and therefore needs to be understood experimentally. We have carried out an experimental investigation where we have measured the velocity v{sub f} of the 'wave-front' of the plasma wave driven by a nominally 50 fs (full width half maximum), intense (a{sub 0} {approx_equal} 1), 0.815 {mu}m laser pulse. To determine the speed of the wave front, time- and space-resolved refractometry, interferometry and Thomson scattering were used. Although a laser pulse propagating through a relatively low-density plasma (n{sub e} = 1.3 x 10{sup 19} cm{sup -3}) showed no measurable changes in v{sub f} over 1.3 mm (and no accelerated electrons), a high-density plasma (n{sub e} = 5 x 10{sup 19} cm{sup -3}) generated accelerated electrons and showed a continuous change in v{sub f} as the laser pulse propagated through the plasma. Possible causes and consequences of the observed v{sub f} evolution are discussed.

  17. A Multibunch Plasma Wakefield Accelerator

    CERN Document Server

    Kallos, Efthymios; Ben-Zvi, Ilan; Katsouleas, Thomas C; Kimura, Wayne D; Kusche, Karl; Muggli, Patric; Pavlishin, Igor; Pogorelsky, Igor; Yakimenko, Vitaly; Zhou, Feng

    2005-01-01

    We investigate a plasma wakefield acceleration scheme where a train of electron microbunches feeds into a high density plasma. When the microbunch train enters such a plasma that has a corresponding plasma wavelength equal to the microbunch separation distance, a strong wakefield is expected to be resonantly driven to an amplitude that is at least one order of magnitude higher than that using an unbunched beam. PIC simulations have been performed using the beamline parameters of the Brookhaven National Laboratory Accelerator Test Facility operating in the configuration of the STELLA inverse free electron laser (IFEL) experiment. A 65 MeV electron beam is modulated by a 10.6 um CO2 laser beam via an IFEL interaction. This produces a train of ~90 microbunches separated by the laser wavelength. In this paper, we present both a simple theoretical treatment and simulation results that demonstrate promising results for the multibunch technique as a plasma-based accelerator.

  18. Generation of ultra-short relativistic-electron-bunch by a laser wakefield

    NARCIS (Netherlands)

    Khachatryan, A.G.; Boller, K.-J.; Goor, van F.A.

    2003-01-01

    The possibility of the generation of an ultra-short (about one micron long) relativistic (up to a few GeVs) electron-bunch in a moderately nonlinear laser wakefield excited in an underdense plasma by an intense laser pulse is investigated. The ultra-short bunch is formed by trapping, effective compr

  19. Demonstration of the hollow channel plasma wakefield accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Gessner, Spencer J.

    2016-09-17

    A plasma wakefield accelerator is a device that converts the energy of a relativistic particle beam into a large-amplitude wave in a plasma. The plasma wave, or wakefield, supports an enormous electricfield that is used to accelerate a trailing particle beam. The plasma wakefield accelerator can therefore be used as a transformer, transferring energy from a high-charge, low-energy particle beam into a high-energy, low-charge particle beam. This technique may lead to a new generation of ultra-compact, high-energy particle accelerators. The past decade has seen enormous progress in the field of plasma wakefield acceleration with experimental demonstrations of the acceleration of electron beams by several gigaelectron-volts. The acceleration of positron beams in plasma is more challenging, but also necessary for the creation of a high-energy electron-positron collider. Part of the challenge is that the plasma responds asymmetrically to electrons and positrons, leading to increased disruption of the positron beam. One solution to this problem, first proposed over twenty years ago, is to use a hollow channel plasma which symmetrizes the response of the plasma to beams of positive and negative charge, making it possible to accelerate positrons in plasma without disruption. In this thesis, we describe the theory relevant to our experiment and derive new results when needed. We discuss the development and implementation of special optical devices used to create long plasma channels. We demonstrate for the first time the generation of meter-scale plasma channels and the acceleration of positron beams therein.

  20. Proton driven plasma wakefield generation in a parabolic plasma channel

    Science.gov (United States)

    Golian, Y.; Dorranian, D.

    2016-11-01

    An analytical model for the interaction of charged particle beams and plasma for a wakefield generation in a parabolic plasma channel is presented. In the suggested model, the plasma density profile has a minimum value on the propagation axis. A Gaussian proton beam is employed to excite the plasma wakefield in the channel. While previous works investigated on the simulation results and on the perturbation techniques in case of laser wakefield accelerations for a parabolic channel, we have carried out an analytical model and solved the accelerating field equation for proton beam in a parabolic plasma channel. The solution is expressed by Whittaker (hypergeometric) functions. Effects of plasma channel radius, proton bunch parameters and plasma parameters on the accelerating processes of proton driven plasma wakefield acceleration are studied. Results show that the higher accelerating fields could be generated in the PWFA scheme with modest reductions in the bunch size. Also, the modest increment in plasma channel radius is needed to obtain maximum accelerating gradient. In addition, the simulations of longitudinal and total radial wakefield in parabolic plasma channel are presented using LCODE. It is observed that the longitudinal wakefield generated by the bunch decreases with the distance behind the bunch while total radial wakefield increases with the distance behind the bunch.

  1. Magnetowave Induced Plasma Wakefield Acceleration for Ultra High Energy Cosmic Rays

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Feng-Yin; /Taiwan, Natl. Chiao Tung U. /Taiwan, Natl. Taiwan U.; Chen, Pisin; /Taiwan, Natl. Taiwan U. /KIPAC, Menlo Park /SLAC; Lin, Guey-Lin; /Taiwan, Natl. Chiao Tung U. /Taiwan, Natl. Taiwan U.; Noble, Robert; /SLAC; Sydora, Richard; /Alberta U.

    2009-10-17

    Magnetowave induced plasma wakefield acceleration (MPWA) in a relativistic astrophysical outflow has been proposed as a viable mechanism for the acceleration of cosmic particles to ultrahigh energies. Here we present simulation results that clearly demonstrate the viability of this mechanism for the first time. We invoke the high frequency and high speed whistler mode for the driving pulse. The plasma wakefield obtained in the simulations compares favorably with our newly developed relativistic theory of the MPWA. We show that, under appropriate conditions, the plasma wakefield maintains very high coherence and can sustain high-gradient acceleration over hundreds of plasma skin depths. Invoking active galactic nuclei as the site, we show that MPWA production of ultrahigh energy cosmic rays beyond ZeV (10{sup 21} eV) is possible.

  2. Quantitative single shot and spatially resolved plasma wakefield diagnostics

    CERN Document Server

    Kasim, Muhammad Firmansyah; Ceurvorst, Luke; Levy, Matthew C; Ratan, Naren; Sadler, James; Bingham, Robert; Burrows, Philip N; Trines, Raoul; Wing, Matthew; Norreys, Peter

    2015-01-01

    Diagnosing plasma conditions can give great advantages in optimizing plasma wakefield accelerator experiments. One possible method is that of photon acceleration. By propagating a laser probe pulse through a plasma wakefield and extracting the imposed frequency modulation, one can obtain an image of the density modulation of the wakefield. In order to diagnose the wakefield parameters at a chosen point in the plasma, the probe pulse crosses the plasma at oblique angles relative to the wakefield. In this paper, mathematical expressions relating the frequency modulation of the laser pulse and the wakefield density profile of the plasma for oblique crossing angles are derived. Multidimensional particle-in-cell simulation results presented in this paper confirm that the frequency modulation profiles and the density modulation profiles agree to within 10%. Limitations to the accuracy of the measurement are discussed in this paper. This technique opens new possibilities to quantitatively diagnose the plasma wakefie...

  3. Study of ultra-high gradient wakefield excitation by intense ultrashort laser pulses in plasma

    Science.gov (United States)

    Kotaki, Hideyuki; Kando, Masaki; Oketa, Takatsugu; Masuda, Shinichi; Koga, James K.; Kondo, Shuji; Kanazawa, Shuhei; Yokoyama, Takashi; Matoba, Toru; Nakajima, Kazuhisa

    2002-10-01

    We investigate a laser wakefield excited by intense laser pulses, and the possibility of generating an intense bright electron source by an intense laser pulse. The coherent wakefield excited by 2 TW, 50 fs laser pulses in a gas-jet plasma around 1018 cm-3 is measured with a time-resolved frequency domain interferometer (FDI). The results show an accelerating wakefield excitation of 20 GeV/m with good coherency. This is the first time-resolved measurement of laser wakefield excitation in a gas-jet plasma. The experimental results agree with the simulation results and linear theory. The pump-probe interferometer system of FDI will be modified to the optical injection system as a relativistic electron beam injector. In 1D particle in cell simulation we obtain results of high quality intense electron beam generation.

  4. Wakefields generated by collisional neutrinos in neutral-electron-positron-ion plasma

    Energy Technology Data Exchange (ETDEWEB)

    Tinakiche, Nouara [Faculty of Sciences, Department of Physics, University of Boumeredes U.M.B.B., Boumerdes 35000 (Algeria)

    2015-12-15

    A classical fluid description is adopted to investigate nonlinear interaction between an electron-type neutrino beam and a relativistic collisionless unmagnetized neutral-electron-positron-ion plasma. In this work, we consider the collisions of the neutrinos with neutrals in the plasma and study their effect on the generation of wakefields in presence of a fraction of ions in a neutral-electron-positron plasma. The results obtained in the present work are interpreted and compared with previous studies.

  5. Plasma Density Tapering for Laser Wakefield Acceleration of Electrons and Protons

    Science.gov (United States)

    Ting, A.; Gordon, D.; Helle, M.; Kaganovich, D.; Sprangle, P.; Hafizi, B.

    2010-11-01

    Extended acceleration in a Laser Wakefield Accelerator can be achieved by tailoring the phase velocity of the accelerating plasma wave, either through profiling of the density of the plasma or direct manipulation of the phase velocity. Laser wakefield acceleration has also reached a maturity that proton acceleration by wakefield could be entertained provided we begin with protons that are substantially relativistic, ˜1 GeV. Several plasma density tapering schemes are discussed. The first scheme is called "bucket jumping" where the plasma density is abruptly returned to the original density after a conventional tapering to move the accelerating particles to a neighboring wakefield period (bucket). The second scheme is designed to specifically accelerate low energy protons by generating a nonlinear wakefield in a plasma region with close to critical density. The third scheme creates a periodic variation in the phase velocity by beating two intense laser beams with laser frequency difference equal to the plasma frequency. Discussions and case examples with simulations are presented where substantial acceleration of electrons or protons could be obtained.

  6. Magnetowave Induced Plasma Wakefield Acceleration for Ultra High Energy Cosmic Rays

    CERN Document Server

    Chang, Feng-Yin; Lin, Guey-Lin; Reil, Kevin; Sydora, Richard

    2007-01-01

    Magnetowave induced plasma wakefield acceleration (MPWA) in a relativistic astrophysical outflow has been proposed as a viable mechanism for the acceleration of cosmic particles to ultra high energies. Here we present simulation results that clearly demonstrate the viability of this mechanism for the first time. We invoke the high frequency and high speed whistler mode for the driving pulse. The plasma wakefield so induced validates precisely the theoretical prediction. We show that under appropriate conditions, the plasma wakefield maintains very high coherence and can sustain high-gradient acceleration over a macroscopic distance. Invoking gamma ray burst (GRB) as the source, we show that MPWA production of ultra high energy cosmic rays (UHECR) beyond ZeV 10^21 eV is possible.

  7. Plasma wakefield acceleration at CLARA facility in Daresbury Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Xia, G., E-mail: guoxing.xia@manchester.ac.uk [School of Physics and Astronomy, University of Manchester, Manchester (United Kingdom); The Cockcroft Institute, Sci-Tech Daresbury, Daresbury, Warrington (United Kingdom); Nie, Y. [Deutsche Elektronen-Synchrotron DESY, Hamburg (Germany); Mete, O.; Hanahoe, K. [School of Physics and Astronomy, University of Manchester, Manchester (United Kingdom); The Cockcroft Institute, Sci-Tech Daresbury, Daresbury, Warrington (United Kingdom); Dover, M.; Wigram, M.; Wright, J.; Zhang, J. [School of Physics and Astronomy, University of Manchester, Manchester (United Kingdom); Smith, J. [Tech-X UK Corporation, Daresbury Innovation Centre, Warrington (United Kingdom); Pacey, T.; Li, Y. [School of Physics and Astronomy, University of Manchester, Manchester (United Kingdom); The Cockcroft Institute, Sci-Tech Daresbury, Daresbury, Warrington (United Kingdom); Wei, Y.; Welsch, C. [The Cockcroft Institute, Sci-Tech Daresbury, Daresbury, Warrington (United Kingdom); University of Liverpool, Liverpool (United Kingdom)

    2016-09-01

    A plasma accelerator research station (PARS) has been proposed to study the key issues in electron driven plasma wakefield acceleration at CLARA facility in Daresbury Laboratory. In this paper, the quasi-nonlinear regime of beam driven plasma wakefield acceleration is analysed. The wakefield excited by various CLARA beam settings are simulated by using a 2D particle-in-cell (PIC) code. For a single drive beam, an accelerating gradient up to 3 GV/m can be achieved. For a two bunch acceleration scenario, simulation shows that a witness bunch can achieve a significant energy gain in a 10–50 cm long plasma cell.

  8. Relativistic spherical plasma waves

    Science.gov (United States)

    Bulanov, S. S.; Maksimchuk, A.; Schroeder, C. B.; Zhidkov, A. G.; Esarey, E.; Leemans, W. P.

    2012-02-01

    Tightly focused laser pulses that diverge or converge in underdense plasma can generate wake waves, having local structures that are spherical waves. Here we study theoretically and numerically relativistic spherical wake waves and their properties, including wave breaking.

  9. Optical plasma torch electron bunch generation in plasma wakefield accelerators

    Directory of Open Access Journals (Sweden)

    G. Wittig

    2015-08-01

    Full Text Available A novel, flexible method of witness electron bunch generation in plasma wakefield accelerators is described. A quasistationary plasma region is ignited by a focused laser pulse prior to the arrival of the plasma wave. This localized, shapeable optical plasma torch causes a strong distortion of the plasma blowout during passage of the electron driver bunch, leading to collective alteration of plasma electron trajectories and to controlled injection. This optically steered injection is more flexible and faster when compared to hydrodynamically controlled gas density transition injection methods.

  10. Energy loss and longitudinal wakefield of relativistic short proton bunches in electron clouds

    Directory of Open Access Journals (Sweden)

    O. Boine-Frankenheim

    2012-05-01

    Full Text Available The aim of our study is the numerical computation of the wakefield and energy loss per unit length for relativistic, short (<10  ns proton bunches interacting with an electron cloud inside the beam pipe. We present analytical expressions for the energy loss in the impulse kick approximation. For the simulation of the wakefields a 2D self-consistent, electrostatic particle-in-cell (PIC code is employed. Results for the energy loss and for the wakefields are presented for the parameter scope of the CERN LHC and SPS. For selected parameters the results are compared to a three-dimensional (3D electromagnetic PIC code.

  11. Generation of Ramped Current Profiles in Relativistic Electron Beams Using Wakefields in Dielectric Structures.

    Science.gov (United States)

    Andonian, G; Barber, S; O'Shea, F H; Fedurin, M; Kusche, K; Swinson, C; Rosenzweig, J B

    2017-02-03

    Temporal pulse tailoring of charged-particle beams is essential to optimize efficiency in collinear wakefield acceleration schemes. In this Letter, we demonstrate a novel phase space manipulation method that employs a beam wakefield interaction in a dielectric structure, followed by bunch compression in a permanent magnet chicane, to longitudinally tailor the pulse shape of an electron beam. This compact, passive, approach was used to generate a nearly linearly ramped current profile in a relativistic electron beam experiment carried out at the Brookhaven National Laboratory Accelerator Test Facility. Here, we report on these experimental results including beam and wakefield diagnostics and pulse profile reconstruction techniques.

  12. Generation of Ramped Current Profiles in Relativistic Electron Beams Using Wakefields in Dielectric Structures

    Science.gov (United States)

    Andonian, G.; Barber, S.; O'Shea, F. H.; Fedurin, M.; Kusche, K.; Swinson, C.; Rosenzweig, J. B.

    2017-02-01

    Temporal pulse tailoring of charged-particle beams is essential to optimize efficiency in collinear wakefield acceleration schemes. In this Letter, we demonstrate a novel phase space manipulation method that employs a beam wakefield interaction in a dielectric structure, followed by bunch compression in a permanent magnet chicane, to longitudinally tailor the pulse shape of an electron beam. This compact, passive, approach was used to generate a nearly linearly ramped current profile in a relativistic electron beam experiment carried out at the Brookhaven National Laboratory Accelerator Test Facility. Here, we report on these experimental results including beam and wakefield diagnostics and pulse profile reconstruction techniques.

  13. Simulation of density measurements in plasma wakefields using photo acceleration

    CERN Document Server

    Kasim, Muhammad Firmansyah; Ceurvorst, Luke; Sadler, James; Burrows, Philip N; Trines, Raoul; Holloway, James; Wing, Matthew; Bingham, Robert; Norreys, Peter

    2015-01-01

    One obstacle in plasma accelerator development is the limitation of techniques to diagnose and measure plasma wakefield parameters. In this paper, we present a novel concept for the density measurement of a plasma wakefield using photon acceleration, supported by extensive particle in cell simulations of a laser pulse that copropagates with a wakefield. The technique can provide the perturbed electron density profile in the laser’s reference frame, averaged over the propagation length, to be accurate within 10%. We discuss the limitations that affect the measurement: small frequency changes, photon trapping, laser displacement, stimulated Raman scattering, and laser beam divergence. By considering these processes, one can determine the optimal parameters of the laser pulse and its propagation length. This new technique allows a characterization of the density perturbation within a plasma wakefield accelerator.

  14. Synchrotron radiation from a curved plasma channel laser wakefield accelerator

    CERN Document Server

    Palastro, J P; Hafizi, B; Chen, Y -H; Johnson, L A; Penano, J R; Helle, M H; Mamonau, A A

    2016-01-01

    A laser pulse guided in a curved plasma channel can excite wakefields that steer electrons along an arched trajectory. As the electrons are accelerated along the curved channel, they emit synchrotron radiation. We present simple analytical models and simulations examining laser pulse guiding, wakefield generation, electron steering, and synchrotron emission in curved plasma channels. For experimentally realizable parameters, a ~2 GeV electron emits 0.1 photons per cm with an average photon energy of multiple keV.

  15. Final Report: Experimental Investigation of Nonlinear Plasma Wake-Fields

    Energy Technology Data Exchange (ETDEWEB)

    Rosenzweig, J.

    1997-10-31

    We discuss the exploration of the newly proposed blowout regime of the plasma wakefield accelerator and advanced photoinjector technology for linear collider applications. The plasma wakefield experiment at ANL produced several ground-breaking results in the physics of the blowout regime. The photoinjector R and D effort produced breakthroughs in theoretical, computational, and experimental methods in high brightness beam physics. Results have been published.

  16. Final Report: Experimental Investigation of Nonlinear Plasma Wake-Fields

    Energy Technology Data Exchange (ETDEWEB)

    Rosenzweig, J.

    1997-10-31

    We discuss the exploration of the newly proposed blowout regime of the plasma wakefield accelerator and advanced photoinjector technology for linear collider applications. The plasma wakefield experiment at ANL produced several ground-breaking results in the physics of the blowout regime. The photoinjector R and D effort produced breakthroughs in theoretical, computational, and experimental methods in high brightness beam physics. Results have been published.

  17. Plasma Dark Current in Self-Ionized Plasma Wakefield Accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Oz, E.; Deng, S.; Katsouleas, T.; Muggli, P.; /Southern California U.; Iverson, R.; Johnson, D.K.; Krejcik, P.; O' Connell, C.; Siemann, R.H.; Walz, D.; /SLAC; Clayton,; Huang, C.; Joshi, C.; Lu, W.; Marsh, K.A.; Mori, W.B.; Zhou, M.; /UCLA

    2006-01-30

    Evidence of particle trapping has been observed in a beam driven Plasma Wake Field Accelerator (PWFA) experiment, E164X, conducted at the Stanford Linear Accelerator Center by a collaboration which includes USC, UCLA and SLAC. Such trapping produces plasma dark current when the wakefield amplitude is above a threshold value and may place a limit on the maximum acceleration gradient in a PWFA. Trapping and dark current are enhanced when in an ionizing plasma, that is self-ionized by the beam. Here we present experimental results.

  18. Generation of stable ultra-relativistic attosecond electron bunches via the laser wakefield acceleration mechanism

    NARCIS (Netherlands)

    Luttikhof, M.J.H.; Khachatryan, A.G.; Goor, van F.A.; Boller, K.-J.

    2009-01-01

    In recent experiments ultra-relativistic femtosecond electron bunches were generated by a Laser Wakefield Accelerator (LWFA) in different regimes. Here we predict that even attosecond bunches can be generated by an LWFA due to the fast betatron phase mixing within a femtosecond electron bunch. The a

  19. Hollow plasma channel for positron plasma wakefield acceleration

    Directory of Open Access Journals (Sweden)

    W. D. Kimura

    2011-04-01

    Full Text Available Plasma wakefield acceleration (PWFA has demonstrated the ability to produce very high gradients to accelerate electrons and positrons. In PWFA, a drive bunch of charged particles passes through a uniform plasma, thereby generating a wakefield that accelerates a witness bunch traveling behind the drive bunch. This process works well for electrons, but much less so for positrons due to the positive charge attracting rather than repealing the plasma electrons, which leads to reduced acceleration gradient, halo formation, and emittance growth. This problem can be alleviated by having the positron beam travel through a hollow plasma channel. Presented are modeling results for producing 10–100 cm long hollow plasma channels suitable for positron PWFA. These channels are created utilizing laser-induced gas breakdown in hydrogen gas. The results show that hollow channels with plasma densities of order 10^{16}  cm^{-3} and inner channel radii of order 20  μm are possible using currently available terawatt-level lasers. At these densities and radii, preliminary positron PWFA modeling indicates that longitudinal electric fields on axis can exceed 3  GV/m.

  20. Plasma wakefield excitation by incoherent laser pulses: a path towards high-average power laser-plasma accelerators

    CERN Document Server

    Benedetti, C; Esarey, E; Leemans, W P

    2014-01-01

    In a laser plasma accelerator (LPA), a short and intense laser pulse propagating in a plasma drives a wakefield (a plasma wave with a relativistic phase velocity) that can sustain extremely large electric fields, enabling compact accelerating structures. Potential LPA applications include compact radiation sources and high energy linear colliders. We propose and study plasma wave excitation by an incoherent combination of a large number of low energy laser pulses (i.e., without constraining the pulse phases). We show that, in spite of the incoherent nature of electromagnetic fields within the volume occupied by the pulses, the excited wakefield is regular and its amplitude is comparable or equal to that obtained using a single, coherent pulse with the same energy. These results provide a path to the next generation of LPA-based applications, where incoherently combined multiple pulses may enable high repetition rate, high average power LPAs.

  1. Wakefield Resonant Excitation by Intense Laser Pulse in Capillary Plasma%Wakefield Resonant Excitation by Intense Laser Pulse in Capillary Plasma

    Institute of Scientific and Technical Information of China (English)

    周素云; 袁孝; 刘明萍

    2012-01-01

    The laser-induced plasma wakefield in a capillary is investigated on the basis of a simple two-dimensional analytical model. It is shown that as an intense laser pulse reshaped by the capillary wall propagates in capillary plasma, it resonantly excites a strong wakefield if a suitable laser pulse width and capillary radius are chosen for a certain plasma density. The dependence of the laser width and capillary radius on the plasma density for resonance conditions is considered. The wakefield amplitude and longitudinal scale of bubbles in capillary plasma are much larger than those in unbounded plasma, so the capillary guided plasma wakefield is more favorable to electron acceleration.

  2. Progress of plasma wakefield self-modulation experiments at FACET

    Energy Technology Data Exchange (ETDEWEB)

    Adli, E., E-mail: Erik.Adli@fys.uio.no [Department of Physics, University of Oslo, N-0316 Oslo (Norway); SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Berglyd Olsen, V.K.; Lindstrøm, C.A. [Department of Physics, University of Oslo, N-0316 Oslo (Norway); SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Muggli, P.; Reimann, O. [Max Planck Institute for Physics, Munich (Germany); Vieira, J.M.; Amorim, L.D. [GoLP/Instituto de Plasmas e Fusão Nuclear, Instituto Superior Téchnico, Universidade de Lisboa, 1049-001 Lisbon (Portugal); Clarke, C.I.; Gessner, S.J.; Green, S.Z.; Hogan, M.J.; Litos, M.D.; O' Shea, B.D.; Yakimenko, V. [SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Clayton, C.; Marsh, K.A.; Mori, W.B.; Joshi, C.; Vafaei-Najafabadi, N.; Williams, O. [University of California Los Angeles, Los Angeles, CA 90095 (United States)

    2016-09-01

    Simulations and theory predict that long electron and positron beams may under favorable conditions self-modulate in plasmas. We report on the progress of experiments studying the self-modulation instability in plasma wakefield experiments at FACET. The experimental results obtained so far, while not being fully conclusive, appear to be consistent with the presence of the self-modulation instability.

  3. Transverse oscillations in plasma wakefield experiments at FACET

    Energy Technology Data Exchange (ETDEWEB)

    Adli, E., E-mail: Erik.Adli@fys.uio.no [Department of Physics, University of Oslo, N-0316 Oslo (Norway); SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Lindstrøm, C.A. [Department of Physics, University of Oslo, N-0316 Oslo (Norway); SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Allen, J.; Clarke, C.I.; Frederico, J.; Gessner, S.J.; Green, S.Z.; Hogan, M.J.; Litos, M.D.; White, G.R.; Yakimenko, V. [SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); An, W.; Clayton, C.E.; Marsh, K.A.; Mori, W.B.; Joshi, C.; Vafaei-Najafabadi, N. [University of California Los Angeles, Los Angeles, CA 90095 (United States); Corde, S. [LOA, ENSTA ParisTech, CNRS, Ecole Polytechnique, Université Paris-Saclay, 91762 Palaiseau (France); SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA 94025 (United States); Lu, W. [Department of Engineering Physics, Tsinghua University, Beijing 100084 (China)

    2016-09-01

    We study transverse effects in a plasma wakefield accelerator. Experimental data from FACET with asymmetry in the beam-plasma system is presented. Energy dependent centroid oscillations are observed on the accelerated part of the charge. The experimental results are compared to PIC simulations and theoretical estimates.

  4. Relativistic spherical plasma waves

    CERN Document Server

    Bulanov, S S; Schroeder, C B; Zhidkov, A G; Esarey, E; Leemans, W P

    2011-01-01

    Tightly focused laser pulses as they diverge or converge in underdense plasma can generate wake waves, having local structures that are spherical waves. Here we report on theoretical study of relativistic spherical wake waves and their properties, including wave breaking. These waves may be suitable as particle injectors or as flying mirrors that both reflect and focus radiation, enabling unique X-ray sources and nonlinear QED phenomena.

  5. AWAKE: Advanced Proton Driven Plasma Wakefield Acceleration Experiment at CERN

    CERN Document Server

    Gschwendtner, E

    2014-01-01

    Plasma wakefield acceleration is a promising alternative reaching accelerating fields a magnitude of up to 3 higher (GV/m) when compared to conventional RF acceleration. AWAKE, world’s first proton-driven plasma wakefield experiment, was launched at CERN to verify this concept. In this experiment proton bunches at 400 GeV/c will be extracted from the CERN SPS and sent to the plasma cell, where the proton beam drives the plasma wakefields and creates a large accelerating field. This large gradient of ~GV/m can be achieved by relying on the self-modulation instability (SMI) of the proton beam; when seeded by ionization through a short laser pulse, a train of micro-bunches with a period on the order of the plasma wavelength (~mm) develops, which can drive such a large amplitude wake from a long proton bunch (~12 cm). An electron beam will be injected into the plasma to probe the accelerating wakefield. The AWAKE experiment is being installed at CERN in the former CNGS facility, which must be modified to mat...

  6. Electromagnetic radiation from laser wakefields in underdense plasma

    Institute of Scientific and Technical Information of China (English)

    Yue; Liu; Wei-Min; Wang; Zheng-Ming; Sheng

    2014-01-01

    It is demonstrated by simulations and analysis that a wakefield driven by an ultrashort intense laser pulse in underdense plasma can emit tunable electromagnetic radiation along the laser propagation direction. The profile of such a kind of radiation is closely associated with the structure of the laser wakefield. In general, electromagnetic radiation in the terahertz range with its frequency a few times the electron plasma frequency can be generated in the moderate intensity regime. In the highly nonlinear case, a chain of radiation pulses is formed corresponding to the nonlinear structure of the wake. Study shows that the radiation is associated with the self-modulation process of the laser pulse in the wakefield and resulting transverse electron momenta from modulated asymmetric laser fields.

  7. Emission of strong Terahertz pulses from laser wakefields in weakly coupled plasma

    Science.gov (United States)

    Singh, Divya; Malik, Hitendra K.

    2016-09-01

    The present paper discusses the laser plasma interaction for the wakefield excitation and the role of external magnetic field for the emission of Terahertz radiation in a collisional plasma. Flat top lasers are shown to be more appropriate than the conventional Gaussian lasers for the effective excitation of wakefields and hence, the generation of strong Terahertz radiation through the transverse component of wakefield.

  8. External injection and acceleration of electron bunch in front of the plasma wakefield produced by a periodic chirped laser pulse

    Science.gov (United States)

    Eslami, Esmaeil; Afhami, Saeedeh

    2017-01-01

    Herein, we present the analytical results on the behavior of the electron bunch injected in front of the plasma wakefield produced by a chirped laser pulse. In particular, a periodic chirped pulse may produce an ultra-relativistic electron bunch with a relatively small energy spread. The electrons are trapped near the region of the first accelerating maximum of the wakefield and are compressed in both the longitudinal and transverse directions (betatron oscillation). Our results are in good agreement with the one-dimensional results recently published.

  9. Time-resolved measurements with streaked diffraction patterns from electrons generated in laser plasma wakefield

    Science.gov (United States)

    He, Zhaohan; Nees, John; Hou, Bixue; Krushelnick, Karl; Thomas, Alec; Beaurepaire, Benoît; Malka, Victor; Faure, Jérôme

    2013-10-01

    Femtosecond bunches of electrons with relativistic to ultra-relativistic energies can be robustly produced in laser plasma wakefield accelerators (LWFA). Scaling the electron energy down to sub-relativistic and MeV level using a millijoule laser system will make such electron source a promising candidate for ultrafast electron diffraction (UED) applications due to the intrinsic short bunch duration and perfect synchronization with the optical pump. Recent results of electron diffraction from a single crystal gold foil, using LWFA electrons driven by 8-mJ, 35-fs laser pulses at 500 Hz, will be presented. The accelerated electrons were collimated with a solenoid magnetic lens. By applying a small-angle tilt to the magnetic lens, the diffraction pattern can be streaked such that the temporal evolution is separated spatially on the detector screen after propagation. The observable time window and achievable temporal resolution are studied in pump-probe measurements of photo-induced heating on the gold foil.

  10. Long-term evolution of broken wakefields in finite radius plasmas

    CERN Document Server

    Lotov, Konstantin; Petrenko, Alexey

    2014-01-01

    A novel effect of fast heating and charging a finite-radius plasma is discovered in the context of plasma wakefield acceleration. As the plasma wave breaks, the most of its energy is transferred to plasma electrons which create strong charge-separation electric field and azimuthal magnetic field around the plasma. The slowly varying field structure is preserved for hundreds of wakefield periods and contains (together with hot electrons) up to 80% of the initial wakefield energy.

  11. Optical diagnostics for laser wakefields in plasma channels

    Science.gov (United States)

    Gaul, E. W.; Le Blanc, S. P.; Downer, M. C.

    1998-11-01

    Laser wakefield accelerators can excite large amplitude electrostatic fields (E >= 100 GV/m) which are potentially suitable for compact accelerators and advanced high energy colliders. An accurate diagnostic tool is necessary to test the physical effects in the wakefield predicted by theory and numerical simulations, and to have control over experiments. Frequency domain interferometry (FDI) (C. W. Siders et. al.), Phys. Rev. Lett. 76, 3570 (1995) has been developed in previous work. We experimentally demonstrate single-shot FDI as a sensitive diagnostic technique for probing laser wakefields. To generate wakefields longer than the diffraction limit, optical guiding of the laser pulse is necessary. An optical guide is formed by the hydrodynamic expansion of a cylindrical shock wave driven by a laser heated plasma, which is generated by laser pulse focused with an axicon lens (C. G. Durfee and H. M. Milchberg, Phys. Rev. Lett. 71, 2409 (1993)) to intensities of ~= 10^13 W/cm^2. These are too low to reach multi-photon ionization or significant collisional ionization in <= 1 atm helium. We preionize Helium gas with an electrical discharge for efficient inverse bremsstrahlung absorption of the laser pulse and formation of a plasma channel. Spatially resolved chirped pulse interferometry is used to measure the radial electron density profile of the channel.

  12. Plasma wakefield acceleration studies using the quasi-static code WAKE

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Neeraj [Max Planck Institute for Solar System Research, Justus-von-Liebig-Weg 3, 37077 Göttingen (Germany); Palastro, John [Icarus Research Inc., P.O. Box 30780, Bethesda, Maryland 20824-0780 (United States); Antonsen, T. M. [Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, Maryland 20742 (United States); Mori, Warren B.; An, Weiming [University of California, Los Angeles, California 90095 (United States)

    2015-02-15

    The quasi-static code WAKE [P. Mora and T. Antonsen, Phys. Plasmas 4, 217 (1997)] is upgraded to model the propagation of an ultra-relativistic charged particle beam through a warm background plasma in plasma wakefield acceleration. The upgraded code is benchmarked against the full particle-in-cell code OSIRIS [Hemker et al., Phys. Rev. Spec. Top. Accel. Beams 3, 061301 (2000)] and the quasi-static code QuickPIC [Huang et al., J. Comput. Phys. 217, 658 (2006)]. The effect of non-zero plasma temperature on the peak accelerating electric field is studied for a two bunch electron beam driver with parameters corresponding to the plasma wakefield acceleration experiments at Facilities for Accelerator Science and Experimental Test Beams. It is shown that plasma temperature does not affect the energy gain and spread of the accelerated particles despite suppressing the peak accelerating electric field. The role of plasma temperature in improving the numerical convergence of the electric field with the grid resolution is discussed.

  13. Plasma wakefield acceleration studies using the quasi-static code WAKE

    CERN Document Server

    Jain, Neeraj; Antonsen, T M; Mori, Warren B; An, Weiming

    2014-01-01

    The quasi-static code WAKE [P. Mora and T. Antonsen, Phys. Plasmas {\\bf 4}, 217(1997)] is upgraded to model the propagation of an ultra-relativistic charged particle beam through a warm background plasma in plasma wakefield acceleration. The upgraded code is benchmarked against the full particle-in-cell code OSIRIS [Hemker et al., Phys. Rev. ST Accel. Beams {\\bf 3}, 061301(2000)] and the quasi-static code QuickPIC [Huang et al., J. Comp. Phys. {\\bf 217}, 658 (2006)]. The effect of non-zero plasma temperature on the peak accelerating electric field is studied for a two bunch electron beam driver with parameters corresponding to the plasma wakefield acceleration experiments at FACET. It is shown that plasma temperature does not affect the energy gain and spread of the accelerated particles despite suppressing the peak accelerating electric field. The role of plasma temperature in improving the numerical convergence of the electric field with the grid resolution is discussed.

  14. Extremely short relativistic-electron-bunch generation in the laser wakefield via novel bunch injection scheme

    NARCIS (Netherlands)

    Khachatryan, A.G.; Goor, van F.A.; Boller, K.-J.; Reitsma, A.J.W.; Jaroszynski, D.A.

    2004-01-01

    Recently a new electron-bunch injection scheme for the laser wakefield accelerator has been proposed [JETP Lett. 74, 371 (2001); Phys. Rev. E 65, 046504 (2002)]. In this scheme, a low energy electron bunch, sent in a plasma channel just before a high-intensity laser pulse, is trapped in the laser wa

  15. First results of the plasma wakefield acceleration experiment at PITZ

    Science.gov (United States)

    Lishilin, O.; Gross, M.; Brinkmann, R.; Engel, J.; Grüner, F.; Koss, G.; Krasilnikov, M.; Martinez de la Ossa, A.; Mehrling, T.; Osterhoff, J.; Pathak, G.; Philipp, S.; Renier, Y.; Richter, D.; Schroeder, C.; Schütze, R.; Stephan, F.

    2016-09-01

    The self-modulation instability of long particle beams was proposed as a new mechanism to produce driver beams for proton driven plasma wakefield acceleration (PWFA). The PWFA experiment at the Photo Injector Test facility at DESY, Zeuthen site (PITZ) was launched to experimentally demonstrate and study the self-modulation of long electron beams in plasma. Key aspects for the experiment are the very flexible photocathode laser system, a plasma cell and well-developed beam diagnostics. In this contribution we report about the plasma cell design, preparatory experiments and the results of the first PWFA experiment at PITZ.

  16. High-efficiency acceleration of an electron beam in a plasma wakefield accelerator.

    Science.gov (United States)

    Litos, M; Adli, E; An, W; Clarke, C I; Clayton, C E; Corde, S; Delahaye, J P; England, R J; Fisher, A S; Frederico, J; Gessner, S; Green, S Z; Hogan, M J; Joshi, C; Lu, W; Marsh, K A; Mori, W B; Muggli, P; Vafaei-Najafabadi, N; Walz, D; White, G; Wu, Z; Yakimenko, V; Yocky, G

    2014-11-06

    High-efficiency acceleration of charged particle beams at high gradients of energy gain per unit length is necessary to achieve an affordable and compact high-energy collider. The plasma wakefield accelerator is one concept being developed for this purpose. In plasma wakefield acceleration, a charge-density wake with high accelerating fields is driven by the passage of an ultra-relativistic bunch of charged particles (the drive bunch) through a plasma. If a second bunch of relativistic electrons (the trailing bunch) with sufficient charge follows in the wake of the drive bunch at an appropriate distance, it can be efficiently accelerated to high energy. Previous experiments using just a single 42-gigaelectronvolt drive bunch have accelerated electrons with a continuous energy spectrum and a maximum energy of up to 85 gigaelectronvolts from the tail of the same bunch in less than a metre of plasma. However, the total charge of these accelerated electrons was insufficient to extract a substantial amount of energy from the wake. Here we report high-efficiency acceleration of a discrete trailing bunch of electrons that contains sufficient charge to extract a substantial amount of energy from the high-gradient, nonlinear plasma wakefield accelerator. Specifically, we show the acceleration of about 74 picocoulombs of charge contained in the core of the trailing bunch in an accelerating gradient of about 4.4 gigavolts per metre. These core particles gain about 1.6 gigaelectronvolts of energy per particle, with a final energy spread as low as 0.7 per cent (2.0 per cent on average), and an energy-transfer efficiency from the wake to the bunch that can exceed 30 per cent (17.7 per cent on average). This acceleration of a distinct bunch of electrons containing a substantial charge and having a small energy spread with both a high accelerating gradient and a high energy-transfer efficiency represents a milestone in the development of plasma wakefield acceleration into a

  17. Self-Resonant Plasma Wake-Field Excitation by a Laser-Pulse with a Steep Leading-Edge for Particle-Acceleration

    NARCIS (Netherlands)

    Goloviznin, V. V.; van Amersfoort, P. W.

    1995-01-01

    The self-modulational instability of a relatively long laser pulse with a power close to or less than the critical power for relativistic self-focusing in plasma is considered. Strong wake-field excitation occurs as the result of a correlated transverse and longitudinal evolution of the pulse. The d

  18. Self-Injection and Acceleration of Monoenergetic Electron Beams from Laser Wakefield Accelerators in a Highly Relativistic Regime

    Institute of Scientific and Technical Information of China (English)

    H. Yoshitama; WEN Xian-Lun; WEN Tian-Shu; WU Yu-Chi; ZHANG Bao-San; ZHU Qi-Hua; HUANG Xiao-Jun; AN Wei-Min; HUNG Wen-Hui; TANG Chuan-Xiang; LIN Yu-Zheng; T. Kameshima; WANG Xiao-Dong; CHEN Li-Ming; H. Kotaki; M. Kando; K. Nakajima; GU Yu-Qiu; GUO Yi; JIAO Chun-Ye; LIU Hong-Jie; PENG Han-Sheng; TANG Chuan-Ming; WANG Xiao-Dong

    2008-01-01

    @@ Self-injection and acceleration of monoenergetic electron beams from laser wakefield accelerators are first in-vestigated in the highly relativistic regime, using 100 TW class, 27 fs laser pulses. Quasi-monoenergetic multi-bunched beams with energies as high as multi-hundredMeV are observed with simultaneous measurements of side-scattering emissions that indicate the formation of self-channelling and self-injection of electrons into a plasma wake, referred to as a 'bubble'. The three-dimensional particle-in-cell simulations confirmed multiple self-injection of electron bunches into the bubble and their beam acceleration with gradient of 1.5 GeV/cm.

  19. Whittaker functions in beam driven plasma wakefield acceleration for a plasma with a parabolic density profile

    Energy Technology Data Exchange (ETDEWEB)

    Golian, Y.; Dorranian, D., E-mail: d.dorranian@gmail.com [Laser Laboratory, Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Aslaninejad, M., E-mail: m.aslaninejad@ipm.ir [Institute for Research in Fundamental Sciences (IPM), School of Particles and Accelerators, P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of)

    2016-01-15

    A model for the interaction of charged particle beams and plasma for a linear wakefield generation in a parabolic plasma channel is presented. The density profile has the maximum on the axis. A Gaussian proton beam is employed to excite the plasma wakefield in the channel. We have built a thorough analytical model and solved the governing equations for the wakefield acceleration of a charged particle beam. The longitudinal and radial wakefields are expressed by Whittaker functions, and for certain parameters of plasma and the beam, their behaviours in longitudinal and radial directions are investigated. It is observed that the radial electric field generated by the bunch increases with the distance behind the bunch.

  20. Whittaker functions in beam driven plasma wakefield acceleration for a plasma with a parabolic density profile

    Science.gov (United States)

    Golian, Y.; Aslaninejad, M.; Dorranian, D.

    2016-01-01

    A model for the interaction of charged particle beams and plasma for a linear wakefield generation in a parabolic plasma channel is presented. The density profile has the maximum on the axis. A Gaussian proton beam is employed to excite the plasma wakefield in the channel. We have built a thorough analytical model and solved the governing equations for the wakefield acceleration of a charged particle beam. The longitudinal and radial wakefields are expressed by Whittaker functions, and for certain parameters of plasma and the beam, their behaviours in longitudinal and radial directions are investigated. It is observed that the radial electric field generated by the bunch increases with the distance behind the bunch.

  1. Modulation of continuous electron beams in plasma wake-fields

    Energy Technology Data Exchange (ETDEWEB)

    Rosenzweig, J.B.

    1988-09-08

    In this paper we discuss the interaction of a continuous electron beam with wake-field generated plasma waves. Using a one-dimensional two fluid model, a fully nonlinear analytical description of the interaction is obtained. The phenomena of continuous beam modulation and wave period shortening are discussed. The relationship between these effects and the two-stream instability is also examined. 12 refs., 1 fig.

  2. LCODE: A parallel quasistatic code for computationally heavy problems of plasma wakefield acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Sosedkin, A.P.; Lotov, K.V. [Budker Institute of Nuclear Physics SB RAS, 630090 Novosibirsk (Russian Federation); Novosibirsk State University, 630090 Novosibirsk (Russian Federation)

    2016-09-01

    LCODE is a freely distributed quasistatic 2D3V code for simulating plasma wakefield acceleration, mainly specialized at resource-efficient studies of long-term propagation of ultrarelativistic particle beams in plasmas. The beam is modeled with fully relativistic macro-particles in a simulation window copropagating with the light velocity; the plasma can be simulated with either kinetic or fluid model. Several techniques are used to obtain exceptional numerical stability and precision while maintaining high resource efficiency, enabling LCODE to simulate the evolution of long particle beams over long propagation distances even on a laptop. A recent upgrade enabled LCODE to perform the calculations in parallel. A pipeline of several LCODE processes communicating via MPI (Message‐Passing Interface) is capable of executing multiple consecutive time steps of the simulation in a single pass. This approach can speed up the calculations by hundreds of times.

  3. LCODE: A parallel quasistatic code for computationally heavy problems of plasma wakefield acceleration

    Science.gov (United States)

    Sosedkin, A. P.; Lotov, K. V.

    2016-09-01

    LCODE is a freely distributed quasistatic 2D3V code for simulating plasma wakefield acceleration, mainly specialized at resource-efficient studies of long-term propagation of ultrarelativistic particle beams in plasmas. The beam is modeled with fully relativistic macro-particles in a simulation window copropagating with the light velocity; the plasma can be simulated with either kinetic or fluid model. Several techniques are used to obtain exceptional numerical stability and precision while maintaining high resource efficiency, enabling LCODE to simulate the evolution of long particle beams over long propagation distances even on a laptop. A recent upgrade enabled LCODE to perform the calculations in parallel. A pipeline of several LCODE processes communicating via MPI (Message-Passing Interface) is capable of executing multiple consecutive time steps of the simulation in a single pass. This approach can speed up the calculations by hundreds of times.

  4. LCODE: a parallel quasistatic code for computationally heavy problems of plasma wakefield acceleration

    CERN Document Server

    Sosedkin, Alexander

    2015-01-01

    LCODE is a freely-distributed quasistatic 2D3V code for simulating plasma wakefield acceleration, mainly specialized at resource-efficient studies of long-term propagation of ultrarelativistic particle beams in plasmas. The beam is modeled with fully relativistic macro-particles in a simulation window copropagating with the light velocity; the plasma can be simulated with either kinetic or fluid model. Several techniques are used to obtain exceptional numerical stability and precision while maintaining high resource efficiency, enabling LCODE to simulate the evolution of long particle beams over long propagation distances even on a laptop. A recent upgrade enabled LCODE to perform the calculations in parallel. A pipeline of several LCODE processes communicating via MPI (Message-Passing Interface) is capable of executing multiple consecutive time steps of the simulation in a single pass. This approach can speed up the calculations by hundreds of times.

  5. Kilohertz laser wakefield accelerator using near critical density plasmas and millijoule-level drive pulses

    Science.gov (United States)

    Goers, Andy

    2016-10-01

    Laser wakefield accelerators operating in the so-called bubble or blowout regime are typically driven by Joule-class femtosecond laser systems driving plasma waves in highly underdense plasmas (1017 -1019cm-3). While these accelerators are very promising for accelerating GeV scale, low emittance electron beams, the large energy requirements of the laser systems have so far limited them to repetition rates below 10 Hz. However, there are a variety of applications, such as ultrafast electron diffraction or high repetition rate gamma ray sources for materials characterization or medical radiography, which would benefit from lower energy (1-10 MeV) but higher repetition rate ( 1 kHz) sources of relativistic electrons. This talk will describe relativistic wakefield acceleration of electron bunches in the range 1-10 MeV, driven by a 1 kHz, 30 fs, 1-12 mJ laser system. Our results are made possible by the use of very high density cryogenic H2 and He gas jet targets yielding electron densities >1021cm-3 in thin 100 μm gas flows. At these high densities the critical power for relativistic self-focusing and the plasma wave phase velocity are greatly reduced, leading to pulse collapse and self-injection even with 1 mJ drive laser pulses. Applications of this source to ultrafast electron diffraction and gamma ray radiography will be discussed. This research supported by the U.S. Department of Energy, National Science Foundation, and Air Force Office of Scientific Research.

  6. Staging optics considerations for a plasma wakefield acceleration linear collider

    Energy Technology Data Exchange (ETDEWEB)

    Lindstrøm, C.A., E-mail: c.a.lindstrom@fys.uio.no [Department of Physics, University of Oslo, Oslo 0316 (Norway); SLAC National Accelerator Laboratory, Menlo Park, CA 94025 (United States); Adli, E. [Department of Physics, University of Oslo, Oslo 0316 (Norway); SLAC National Accelerator Laboratory, Menlo Park, CA 94025 (United States); Allen, J.M.; Delahaye, J.P.; Hogan, M.J. [SLAC National Accelerator Laboratory, Menlo Park, CA 94025 (United States); Joshi, C. [Department of Electrical Engineering, UCLA, Los Angeles, CA 90095 (United States); Muggli, P. [Max Planck Institute for Physics, 80805 Munich (Germany); Raubenheimer, T.O.; Yakimenko, V. [SLAC National Accelerator Laboratory, Menlo Park, CA 94025 (United States)

    2016-09-01

    Plasma wakefield acceleration offers acceleration gradients of several GeV/m, ideal for a next-generation linear collider. The beam optics requirements between plasma cells include injection and extraction of drive beams, matching the main beam beta functions into the next cell, canceling dispersion as well as constraining bunch lengthening and chromaticity. To maintain a high effective acceleration gradient, this must be accomplished in the shortest distance possible. A working example is presented, using novel methods to correct chromaticity, as well as scaling laws for a high energy regime.

  7. First results of the plasma wakefield acceleration experiment at PITZ

    Energy Technology Data Exchange (ETDEWEB)

    Lishilin, O., E-mail: osip.lishilin@desy.de [Deutsches Elektronen-Synchrotron, DESY, Zeuthen (Germany); Gross, M. [Deutsches Elektronen-Synchrotron, DESY, Zeuthen (Germany); Brinkmann, R. [Deutsches Elektronen-Synchrotron, DESY, Hamburg (Germany); Engel, J. [Deutsches Elektronen-Synchrotron, DESY, Zeuthen (Germany); Grüner, F. [Universität Hamburg, UHH, Hamburg (Germany); Center for Free-Electron Laser Science, CFEL, Hamburg (Germany); Koss, G.; Krasilnikov, M. [Deutsches Elektronen-Synchrotron, DESY, Zeuthen (Germany); Martinez de la Ossa, A.; Mehrling, T.; Osterhoff, J. [Deutsches Elektronen-Synchrotron, DESY, Hamburg (Germany); Pathak, G.; Philipp, S.; Renier, Y. [Deutsches Elektronen-Synchrotron, DESY, Zeuthen (Germany); Richter, D. [Helmholtz-Zentrum Berlin, HZB, Berlin (Germany); Schroeder, C. [Lawrence Berkeley National Laboratory, LBNL, Berkeley (United States); Schütze, R.; Stephan, F. [Deutsches Elektronen-Synchrotron, DESY, Zeuthen (Germany)

    2016-09-01

    The self-modulation instability of long particle beams was proposed as a new mechanism to produce driver beams for proton driven plasma wakefield acceleration (PWFA). The PWFA experiment at the Photo Injector Test facility at DESY, Zeuthen site (PITZ) was launched to experimentally demonstrate and study the self-modulation of long electron beams in plasma. Key aspects for the experiment are the very flexible photocathode laser system, a plasma cell and well-developed beam diagnostics. In this contribution we report about the plasma cell design, preparatory experiments and the results of the first PWFA experiment at PITZ. - Highlights: • A self-modulation mechanism for producing driver beams for PWFA is proposed. • A proof-of-principle experiment is launched at the Photo Injector Test facility at DESY. • The self-modulation instability occurs in long particle beams passing through plasma. • A heat pipe oven and a laser are used to produce plasma.

  8. Laser wakefield signatures: from gas plasma to nanomaterials

    Science.gov (United States)

    Farinella, Deano; Zhang, Xiaomei; Shin, Youngmin; Tajima, Toshiki

    2016-10-01

    The signatures of laser wakefields have become increasingly important in recent years due to the invention of a novel laser compression technique that may enable the creation of single cycle x-ray pulses. This x-ray driver may be able to utilize solid density targets to create acceleration gradients of up to TeV/cm. On the other hand, Laser Wakefield Acceleration (LWFA) has been identified as a potential mechanism for the generation of Extreme High Energy Cosmic Rays (EHECR) in Active Galactic Nuclei (AGN). Though these disparate density regimes may include different physics, by investigating scalings of the ratio ncr/ne we are able to survey a wide range of parameters to gain insight into particle acceleration and photon emission properties. The scaling of electron acceleration and photon radiation from wakefields as a function of the parameter ncr/ne has been studied. Further, acceleration gradient as well as other scalings were investigated in solid density channels and compared to gas plasma. Funded in part by the Norman Rostoker Fund.

  9. Plasma Wakefield Acceleration of an Intense Positron Beam

    Energy Technology Data Exchange (ETDEWEB)

    Blue, B

    2004-04-21

    The Plasma Wakefield Accelerator (PWFA) is an advanced accelerator concept which possess a high acceleration gradient and a long interaction length for accelerating both electrons and positrons. Although electron beam-plasma interactions have been extensively studied in connection with the PWFA, very little work has been done with respect to positron beam-plasma interactions. This dissertation addresses three issues relating to a positron beam driven plasma wakefield accelerator. These issues are (a) the suitability of employing a positron drive bunch to excite a wake; (b) the transverse stability of the drive bunch; and (c) the acceleration of positrons by the plasma wake that is driven by a positron bunch. These three issues are explored first through computer simulations and then through experiments. First, a theory is developed on the impulse response of plasma to a short drive beam which is valid for small perturbations to the plasma density. This is followed up with several particle-in-cell (PIC) simulations which study the experimental parameter (bunch length, charge, radius, and plasma density) range. Next, the experimental setup is described with an emphasis on the equipment used to measure the longitudinal energy variations of the positron beam. Then, the transverse dynamics of a positron beam in a plasma are described. Special attention is given to the way focusing, defocusing, and a tilted beam would appear to be energy variations as viewed on our diagnostics. Finally, the energy dynamics imparted on a 730 {micro}m long, 40 {micro}m radius, 28.5 GeV positron beam with 1.2 x 10{sup 10} particles in a 1.4 meter long 0-2 x 10{sup 14} e{sup -}/cm{sup 3} plasma is described. First the energy loss was measured as a function of plasma density and the measurements are compared to theory. Then, an energy gain of 79 {+-} 15 MeV is shown. This is the first demonstration of energy gain of a positron beam in a plasma and it is in good agreement with the predictions

  10. A Proton-Driven Plasma Wakefield Acceleration experiment at CERN

    CERN Multimedia

    The AWAKE Collaboration has been formed in order to demonstrate protondriven plasma wakefield acceleration for the first time. This technology could lead to future colliders of high energy but of a much reduced length compared to proposed linear accelerators. The SPS proton beam in the CNGS facility will be injected into a 10m plasma cell where the long proton bunches will be modulated into significantly shorter micro-bunches. These micro-bunches will then initiate a strong wakefield in the plasma with peak fields above 1 GV/m that will be harnessed to accelerate a bunch of electrons from about 20MeV to the GeV scale within a few meters. The experimental program is based on detailed numerical simulations of beam and plasma interactions. The main accelerator components, the experimental area and infrastructure required as well as the plasma cell and the diagnostic equipment are discussed in detail. First protons to the experiment are expected at the end of 2016 and this will be followed by an initial 3–4 yea...

  11. Beyond injection: Trojan horse underdense photocathode plasma wakefield acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Hidding, B.; Rosenzweig, J. B.; Xi, Y.; O' Shea, B.; Andonian, G.; Schiller, D.; Barber, S.; Williams, O.; Pretzler, G.; Koenigstein, T.; Kleeschulte, F.; Hogan, M. J.; Litos, M.; Corde, S.; White, W. W.; Muggli, P.; Bruhwiler, D. L.; Lotov, K. [Institut fuer Laser- und Plasmaphysik, Heinrich-Heine-Universitaet Duesseldorf 40225 Duesseldorf (Germany) and Particle Beam Physics Laboratory, Department for Physics and Astronomy, UCLA (United States); Particle Beam Physics Laboratory, Department for Physics and Astronomy, UCLA (United States); Institut fuer Laser- und Plasmaphysik, Heinrich-Heine-Universitaet Duesseldorf 40225 Duesseldorf (Germany); Stanford Linear Accelerator Center (United States); Max-Planck-Institut fuer Physik, Muenchen (Germany); Tech-X Corporation, Boulder, Colorado (United States) and 1348 Redwood Ave., Boulder, Colorado 80304 (United States); Budker Institute of Nuclear Physics SB RAS, 630090, Novosibirsk (Russian Federation) and Novosibirsk State University, 630090, Novosibirsk (Russian Federation)

    2012-12-21

    An overview on the underlying principles of the hybrid plasma wakefield acceleration scheme dubbed 'Trojan Horse' acceleration is given. The concept is based on laser-controlled release of electrons directly into a particle-beam-driven plasma blowout, paving the way for controlled, shapeable electron bunches with ultralow emittance and ultrahigh brightness. Combining the virtues of a low-ionization-threshold underdense photocathode with the GV/m-scale electric fields of a practically dephasing-free beam-driven plasma blowout, this constitutes a 4th generation electron acceleration scheme. It is applicable as a beam brightness transformer for electron bunches from LWFA and PWFA systems alike. At FACET, the proof-of-concept experiment 'E-210: Trojan Horse Plasma Wakefield Acceleration' has recently been approved and is in preparation. At the same time, various LWFA facilities are currently considered to host experiments aiming at stabilizing and boosting the electron bunch output quality via a trojan horse afterburner stage. Since normalized emittance and brightness can be improved by many orders of magnitude, the scheme is an ideal candidate for light sources such as free-electron-lasers and those based on Thomson scattering and betatron radiation alike.

  12. Design of a plasma discharge circuit for particle wakefield acceleration

    CERN Document Server

    Anania, M P; Cianchi, A; Di Giovenale, D; Ferrario, M; Flora, F; Gallerano, G P; Ghigo, A; Marocchino, A; Massimo, F; Mostacci, A; Mezi, L; Musumeci, P; Serio, M; 10.1016/j.nima.2013.10.053

    2014-01-01

    Plasma wakefield acceleration is the most promising acceleration technique known nowadays, able to provide very high accelerating fields (10-100 GV m^-1), enabling acceleration of electrons to GeV energy in few centimetres. However, the quality of the electron bunches accelerated with this technique is still not comparable with that of conventional accelerators; radiofrequency-based accelerators, in fact, are limited in the accelerating field (10-100 MV m^-1) requiring therefore kilometric distances to reach the GeV energies, but can provide very bright electron bunches. Combining high brightness electron bunches from conventional accelerators and high accelerating fields reachable with plasmas could be a good compromise accelerators and high accelerating fields reachable with plasmas could be a good compromise allowing to further accelerate high brightness electron bunches coming from LINAC while preserving electron beam quality. Following the idea of plasma wave resonant excitation driven by a train of shor...

  13. Wakefield evolution and electron acceleration in interaction of frequency-chirped laser pulse with inhomogeneous plasma

    Science.gov (United States)

    Rezaei-Pandari, M.; Niknam, A. R.; Massudi, R.; Jahangiri, F.; Hassaninejad, H.; Khorashadizadeh, S. M.

    2017-02-01

    The nonlinear interaction of an ultra-short intense frequency-chirped laser pulse with an underdense plasma is studied. The effects of plasma inhomogeneity and laser parameters such as chirp, pulse duration, and intensity on plasma density and wakefield evolutions, and electron acceleration are examined. It is found that a properly chirped laser pulse could induce a stronger laser wakefield in an inhomogeneous plasma and result in higher electron acceleration energy. It is also shown that the wakefield amplitude is enhanced by increasing the slope of density in the inhomogeneous plasma.

  14. Plasma Channel Guided Laser Wakefield Accelerator

    CERN Document Server

    Geddes, C G

    2005-01-01

    High quality electron beams (several 109 electrons above 80 MeV energy with percent energy spread and low divergence) have been produced for the first time in a compact, high gradient, all-optical laser accelerator by extending the interaction distance using a pre-formed plasma density channel to guide the drive laser pulse. Laser-driven accelerators, in which particles are accelerated by the electric field of a plasma wave (wake) driven by the radiation pressure of an intense laser, have over the past decade demonstrated accelerating fields thousands of times greater than those achievable in conventional radio-frequency accelerators. This has spurred interest in them as compact next- generation sources of energetic electrons and radiation. To date, however, acceleration distances have been severely limited by the lack of a controllable method for extending the propagation distance of the focused laser pulse. The ensuing short acceleration distance resulted in low-energy beams with 100 percent electron energy...

  15. Energy loss of a high charge bunched electron beam in plasma: Simulations, scaling, and accelerating wakefields

    Directory of Open Access Journals (Sweden)

    J. B. Rosenzweig

    2004-06-01

    Full Text Available The energy loss and gain of a beam in the nonlinear, “blowout” regime of the plasma wakefield accelerator, which features ultrahigh accelerating fields, linear transverse focusing forces, and nonlinear plasma motion, has been asserted, through previous observations in simulations, to scale linearly with beam charge. Additionally, from a recent analysis by Barov et al., it has been concluded that for an infinitesimally short beam, the energy loss is indeed predicted to scale linearly with beam charge for arbitrarily large beam charge. This scaling is predicted to hold despite the onset of a relativistic, nonlinear response by the plasma, when the number of beam particles occupying a cubic plasma skin depth exceeds that of plasma electrons within the same volume. This paper is intended to explore the deviations from linear energy loss using 2D particle-in-cell simulations that arise in the case of experimentally relevant finite length beams. The peak accelerating field in the plasma wave excited behind the finite-length beam is also examined, with the artifact of wave spiking adding to the apparent persistence of linear scaling of the peak field amplitude into the nonlinear regime. At large enough normalized charge, the linear scaling of both decelerating and accelerating fields collapses, with serious consequences for plasma wave excitation efficiency. Using the results of parametric particle-in-cell studies, the implications of these results for observing severe deviations from linear scaling in present and planned experiments are discussed.

  16. Neutrino-driven wakefield plasma accelerator

    Science.gov (United States)

    Rios, L. A.; Serbeto, A.

    2003-08-01

    Processos envolvendo neutrinos são importantes em uma grande variedade de fenômenos astrofísicos, como as explosões de supernovas. Estes objetos, assim como os pulsares e as galáxias starburst, têm sido propostos como aceleradores cósmicos de partículas de altas energias. Neste trabalho, um modelo clássico de fluidos é utilizado para estudar a interação não-linear entre um feixe de neutrinos e um plasma não-colisional relativístico de pósitrons e elétrons na presença de um campo magnético. Durante a interação, uma onda híbrida superior de grande amplitude é excitada. Para parâmetros típicos de supernovas, verificamos que partículas carregadas "capturadas" por essa onda podem ser aceleradas a altas energias. Este resultado pode ser importante no estudo de mecanismos aceleradores de partículas em ambientes astrofísicos.

  17. High power microwave source for a plasma wakefield experiment

    Science.gov (United States)

    Shafir, G.; Shlapakovski, A.; Siman-Tov, M.; Bliokh, Yu.; Leopold, J. G.; Gleizer, S.; Gad, R.; Rostov, V. V.; Krasik, Ya. E.

    2017-01-01

    The results of the generation of a high-power microwave (˜550 MW, 0.5 ns, ˜9.6 GHz) beam and feasibility of wakefield-excitation with this beam in under-dense plasma are presented. The microwave beam is generated by a backward wave oscillator (BWO) operating in the superradiance regime. The BWO is driven by a high-current electron beam (˜250 keV, ˜1.5 kA, ˜5 ns) propagating through a slow-wave structure in a guiding magnetic field of 2.5 T. The microwave beam is focused at the desired location by a dielectric lens. Experimentally obtained parameters of the microwave beam at its waist are used for numerical simulations, the results of which demonstrate the formation of a bubble in the plasma that has almost 100% electron density modulation and longitudinal and transverse electric fields of several kV/cm.

  18. AWAKE, The Advanced Proton Driven Plasma Wakefield Acceleration Experiment at CERN

    OpenAIRE

    Gschwendtner, E; Adli, E.; Bingham, R.; Biskup, B.; Bohl, T.; Bracco, C.; Burrows, P.N.; Burt, G.; Buttenschon, B.; Butterworth, A.(CERN, Geneva, Switzerland); Caldwell, A.; Cascella, M.; AMORIM, L.; Chevallay, E.; Cipiccia, S.

    2016-01-01

    The Advanced Proton Driven Plasma Wakefield Acceleration Experiment (AWAKE) aims at studying plasma wakefield generation and electron acceleration driven by proton bunches. It is a proof-of-principle R&D; experiment at CERN and the world׳s first proton driven plasma wakefield acceleration experiment. The AWAKE experiment will be installed in the former CNGS facility and uses the 400 GeV/c proton beam bunches from the SPS. The first experiments will focus on the self-modulation instability of ...

  19. Theory and measurements of emittance preservation in plasma wakefield acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Frederico, Joel

    2016-12-01

    In this dissertation, we examine the preservation and measurement of emittance in the plasma wakefield acceleration blowout regime. Plasma wakefield acceleration (PWFA) is a revolutionary approach to accelerating charged particles that has been demonstrated to have the potential for gradients orders of magnitude greater than traditional approaches. The application of PWFA to the design of a linear collider will make new high energy physics research possible, but the design parameters must first be shown to be competitive with traditional methods. Emittance preservation is necessary in the design of a linear collider in order to maximize luminosity. We examine the conditions necessary for circular symmetry in the PWFA blowout regime, and demonstrate that current proposals meet these bounds. We also present an application of beam lamentation which describes the process of beam parameter and emittance matching. We show that the emittance growth saturates as a consequence of energy spread in the beam. The initial beam parameters determine the amount of emittance growth, while the contribution of energy spread is negligible. We also present a model for ion motion in the presence of a beam that is much more dense than the plasma. By combining the model of ion motion and emittance growth, we find the emittance growth due to ion motion is minimal in the case of marginal ion motion. In addition, we present a simulation that validates the ion motion model, which is under further development to examine emittance growth of both marginal and pronounced ion motion. Finally, we present a proof-of-concept of an emittance measurement which may enable the analysis of emittance preservation in future PWFA experiments.

  20. Optmized stability of a modulated driver in a plasma wakefield

    CERN Document Server

    Martorelli, Roberto

    2016-01-01

    We analyze the transverse stability for a configuration of multiple gaussian bunches subject to the self-generated plasma wakefield. Through a semi-analytical approach we first study the equilibrium configuration for the modulated beam and then we investigate the evolution of the equilibrium configuration due to the emittance-driven expansion of the beam front that results in a rigid backward shift. The rear-directed shift brings the modulated beam out of the equilibrium, with the possibility for some of the bunch particles to be lost with a consequent deterioration of the driver. We look therefore for the proper position of the single bunches that maximize the stability without severely affecting the accelerating field behind the driver. We then compare the results with 3D PIC simulations.

  1. AWAKE, The Advanced Proton Driven Plasma Wakefield Acceleration Experiment at CERN

    Science.gov (United States)

    Gschwendtner, E.; Adli, E.; Amorim, L.; Apsimon, R.; Assmann, R.; Bachmann, A.-M.; Batsch, F.; Bauche, J.; Berglyd Olsen, V. K.; Bernardini, M.; Bingham, R.; Biskup, B.; Bohl, T.; Bracco, C.; Burrows, P. N.; Burt, G.; Buttenschön, B.; Butterworth, A.; Caldwell, A.; Cascella, M.; Chevallay, E.; Cipiccia, S.; Damerau, H.; Deacon, L.; Dirksen, P.; Doebert, S.; Dorda, U.; Farmer, J.; Fedosseev, V.; Feldbaumer, E.; Fiorito, R.; Fonseca, R.; Friebel, F.; Gorn, A. A.; Grulke, O.; Hansen, J.; Hessler, C.; Hofle, W.; Holloway, J.; Hüther, M.; Jaroszynski, D.; Jensen, L.; Jolly, S.; Joulaei, A.; Kasim, M.; Keeble, F.; Li, Y.; Liu, S.; Lopes, N.; Lotov, K. V.; Mandry, S.; Martorelli, R.; Martyanov, M.; Mazzoni, S.; Mete, O.; Minakov, V. A.; Mitchell, J.; Moody, J.; Muggli, P.; Najmudin, Z.; Norreys, P.; Öz, E.; Pardons, A.; Pepitone, K.; Petrenko, A.; Plyushchev, G.; Pukhov, A.; Rieger, K.; Ruhl, H.; Salveter, F.; Savard, N.; Schmidt, J.; Seryi, A.; Shaposhnikova, E.; Sheng, Z. M.; Sherwood, P.; Silva, L.; Soby, L.; Sosedkin, A. P.; Spitsyn, R. I.; Trines, R.; Tuev, P. V.; Turner, M.; Verzilov, V.; Vieira, J.; Vincke, H.; Wei, Y.; Welsch, C. P.; Wing, M.; Xia, G.; Zhang, H.

    2016-09-01

    The Advanced Proton Driven Plasma Wakefield Acceleration Experiment (AWAKE) aims at studying plasma wakefield generation and electron acceleration driven by proton bunches. It is a proof-of-principle R&D experiment at CERN and the world's first proton driven plasma wakefield acceleration experiment. The AWAKE experiment will be installed in the former CNGS facility and uses the 400 GeV/c proton beam bunches from the SPS. The first experiments will focus on the self-modulation instability of the long (rms ~12 cm) proton bunch in the plasma. These experiments are planned for the end of 2016. Later, in 2017/2018, low energy (~15 MeV) electrons will be externally injected into the sample wakefields and be accelerated beyond 1 GeV. The main goals of the experiment will be summarized. A summary of the AWAKE design and construction status will be presented.

  2. AWAKE, The Advanced Proton Driven Plasma Wakefield Acceleration Experiment at CERN

    Energy Technology Data Exchange (ETDEWEB)

    Gschwendtner, E. [CERN, Geneva (Switzerland); Adli, E. [University of Oslo, Oslo 0316 (Norway); Amorim, L. [GoLP/Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, Lisbon (Portugal); Apsimon, R. [Cockcroft Institute, Warrington WA4 4AD (United Kingdom); Lancaster University, Lancaster LA1 4YR (United Kingdom); Assmann, R. [DESY, Notkestrasse 85, 22607 Hamburg (Germany); Bachmann, A.-M.; Batsch, F. [Max Planck Institute for Physics, Föhringer Ring 6, München 80805 (Germany); Bauche, J. [CERN, Geneva (Switzerland); Berglyd Olsen, V.K. [University of Oslo, Oslo 0316 (Norway); Bernardini, M. [CERN, Geneva (Switzerland); Bingham, R. [STFC Rutherford Appleton Laboratory, Didcot OX11 0QX (United Kingdom); Biskup, B. [CERN, Geneva (Switzerland); Czech Technical University, Zikova 1903/4, 166 36 Praha 6 (Czech Republic); Bohl, T.; Bracco, C. [CERN, Geneva (Switzerland); Burrows, P.N. [John Adams Institute for Accelerator Science, Oxford (United Kingdom); University of Oxford, Oxford OX1 2JD (United Kingdom); Burt, G. [Cockcroft Institute, Warrington WA4 4AD (United Kingdom); Buttenschön, B. [Max Planck Institute for Plasma Physics, Wendelsteinstr. 1, Greifswald 17491 (Germany); Butterworth, A. [CERN, Geneva (Switzerland); Caldwell, A. [Max Planck Institute for Physics, Föhringer Ring 6, München 80805 (Germany); Cascella, M. [UCL, Gower Street, London WC1E 6BT (United Kingdom); and others

    2016-09-01

    The Advanced Proton Driven Plasma Wakefield Acceleration Experiment (AWAKE) aims at studying plasma wakefield generation and electron acceleration driven by proton bunches. It is a proof-of-principle R&D experiment at CERN and the world's first proton driven plasma wakefield acceleration experiment. The AWAKE experiment will be installed in the former CNGS facility and uses the 400 GeV/c proton beam bunches from the SPS. The first experiments will focus on the self-modulation instability of the long (rms ~12 cm) proton bunch in the plasma. These experiments are planned for the end of 2016. Later, in 2017/2018, low energy (~15 MeV) electrons will be externally injected into the sample wakefields and be accelerated beyond 1 GeV. The main goals of the experiment will be summarized. A summary of the AWAKE design and construction status will be presented.

  3. AWAKE, The Advanced Proton Driven Plasma Wakefield Acceleration Experiment at CERN

    CERN Document Server

    Gschwendtner, E.; Amorim, L.; Apsimon, R.; Assmann, R.; Bachmann, A.M.; Batsch, F.; Bauche, J.; Berglyd Olsen, V.K.; Bernardini, M.; Bingham, R.; Biskup, B.; Bohl, T.; Bracco, C.; Burrows, P.N.; Burt, G.; Buttenschon, B.; Butterworth, A.; Caldwell, A.; Cascella, M.; Chevallay, E.; Cipiccia, S.; Damerau, H.; Deacon, L.; Dirksen, P.; Doebert, S.; Dorda, U.; Farmer, J.; Fedosseev, V.; Feldbaumer, E.; Fiorito, R.; Fonseca, R.; Friebel, F.; Gorn, A.A.; Grulke, O.; Hansen, J.; Hessler, C.; Hofle, W.; Holloway, J.; Huther, M.; Jaroszynski, D.; Jensen, L.; Jolly, S.; Joulaei, A.; Kasim, M.; Keeble, F.; Li, Y.; Liu, S.; Lopes, N.; Lotov, K.V.; Mandry, S.; Martorelli, R.; Martyanov, M.; Mazzoni, S.; Mete, O.; Minakov, V.A.; Mitchell, J.; Moody, J.; Muggli, P.; Najmudin, Z.; Norreys, P.; Oz, E.; Pardons, A.; Pepitone, K.; Petrenko, A.; Plyushchev, G.; Pukhov, A.; Rieger, K.; Ruhl, H.; Salveter, F.; Savard, N.; Schmidt, J.; Seryi, A.; Shaposhnikova, E.; Sheng, Z.M.; Sherwood, P.; Silva, L.; Soby, L.; Sosedkin, A.P.; Spitsyn, R.I.; Trines, R.; Tuev, P.V.; Turner, M.; Verzilov, V.; Vieira, J.; Vincke, H.; Wei, Y.; Welsch, C.P.; Wing, M.; Xia, G.; Zhang, H.

    2016-01-01

    The Advanced Proton Driven Plasma Wakefield Acceleration Experiment (AWAKE) aims at studying plasma wakefield generation and electron acceleration driven by proton bunches. It is a proof-of-principle R&D experiment at CERN and the world's first proton driven plasma wakefield acceleration experiment. The AWAKE experiment will be installed in the former CNGS facility and uses the 400 GeV/c proton beam bunches from the SPS. The first experiments will focus on the self-modulation instability of the long (rms ~12 cm) proton bunch in the plasma. These experiments are planned for the end of 2016. Later, in 2017/2018, low energy (~15 MeV) electrons will be externally injected to sample the wakefields and be accelerated beyond 1 GeV. The main goals of the experiment will be summarized. A summary of the AWAKE design and construction status will be presented.

  4. Nonlinear structure of the wakefield generated by relativistic intense ion bunch

    Science.gov (United States)

    Koshelev, A. A.; Andreev, N. E.

    2016-11-01

    The resonant excitation of the nonlinear wakefield by a single proton bunch is investigated with the parameters characteristic of the AWAKE experiment. It is shown that obtained structure of the wakefield at a distance more than twenty periods behind the driver proton bunch can be suitable for the side injection and further acceleration of the witness electron bunch in the wakefield.

  5. Transverse Dynamics and Energy Tuning of Fast Electrons Generated in Sub-Relativistic Intensity Laser Pulse Interaction with Plasmas

    CERN Document Server

    Mori, M; Daito, I; Kotaki, H; Hayashi, Y; Yamazaki, A; Ogura, K; Sagisaka, A; Koga, J; Nakajima, K; Daido, H; Bulanov, S V; Kimura, T

    2006-01-01

    The regimes of quasi-mono-energetic electron beam generation were experimentally studied in the sub-relativistic intensity laser plasma interaction. The observed electron acceleration regime is unfolded with two-dimensional-particle-in-cell simulations of laser-wakefield generation in the self-modulation regime.

  6. PROMETHEUS-A: A helicon plasma source for future wakefield accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Buttenschoen, Birger; Fahrenkamp, Nils; Grulke, Olaf [Max Planck Institute for Plasma Physics, Wendelsteinstr. 1, 17491 Greifswald (Germany)

    2015-05-01

    High density plasma sources are of interest for a wide range of applications like plasma-wall interaction studies, plasma thrusters for space propulsion, or future plasma wakefield particle accelerators. In this contribution, we present a high power helicon cell designed for the world's first proton-beam driven plasma wakefield accelerator experiment AWAKE. Using a modular concept with four antennas distributed along a one meter long, five centimeter diameter prototype module providing up to 35 kW of rf power to the plasma, accelerator relevant densities of 6 . 10{sup 20} m{sup -3} are transiently achieved and exceeded. These high density plasmas are characterized for the use with wakefield accelerators, considering density evolution and its reproducibility, plasma profiles and neutral gas inventory.

  7. Linear to non linear analysis for positron acceleration in plasma hollow channel wakefields

    Science.gov (United States)

    Amorim, Ligia Diana; An, Weiming; Mori, Warren B.; Vieira, Jorge

    2016-10-01

    Plasma wakefield accelerators are promising candidates for future generation compact accelerators. The standard regime of operation, non-linear or blowout regime, is reached when a particle bunch space charge or laser pulse ponderomotive force radially expels plasma electrons forming a bucket of ions that defocus positron bunches, thus preventing their acceleration. To avoid defocusing, hollow plasma channels have been considered. The corresponding wakefields have been examined in the linear and non-linear excitation regimes for electrons. It is therefore important to extend the theory for positron acceleration, particularly in the nonlinear regime where the wakefields strongly differ. In this work we explore the wakefield structure, examine the differences between the electron and positron beam cases, and explore positron acceleration in nonlinear regimes. We support our findings with multi-dimensional particle-in-cell simulations performed with OSIRIS and quasi-3D and QuickPIC.

  8. High-gradient plasma-wakefield acceleration with two subpicosecond electron bunches.

    Science.gov (United States)

    Kallos, Efthymios; Katsouleas, Tom; Kimura, Wayne D; Kusche, Karl; Muggli, Patric; Pavlishin, Igor; Pogorelsky, Igor; Stolyarov, Daniil; Yakimenko, Vitaly

    2008-02-22

    A plasma-wakefield experiment is presented where two 60 MeV subpicosecond electron bunches are sent into a plasma produced by a capillary discharge. Both bunches are shorter than the plasma wavelength, and the phase of the second bunch relative to the plasma wave is adjusted by tuning the plasma density. It is shown that the second bunch experiences a 150 MeV/m loaded accelerating gradient in the wakefield driven by the first bunch. This is the first experiment to directly demonstrate high-gradient, controlled acceleration of a short-pulse trailing electron bunch in a high-density plasma.

  9. Relativistic Cyclotron Instability in Anisotropic Plasmas

    Science.gov (United States)

    López, Rodrigo A.; Moya, Pablo S.; Navarro, Roberto E.; Araneda, Jaime A.; Muñoz, Víctor; Viñas, Adolfo F.; Alejandro Valdivia, J.

    2016-11-01

    A sufficiently large temperature anisotropy can sometimes drive various types of electromagnetic plasma micro-instabilities, which can play an important role in the dynamics of relativistic pair plasmas in space, astrophysics, and laboratory environments. Here, we provide a detailed description of the cyclotron instability of parallel propagating electromagnetic waves in relativistic pair plasmas on the basis of a relativistic anisotropic distribution function. Using plasma kinetic theory and particle-in-cell simulations, we study the influence of the relativistic temperature and the temperature anisotropy on the collective and noncollective modes of these plasmas. Growth rates and dispersion curves from the linear theory show a good agreement with simulations results.

  10. Laser-PlasmaWakefield Acceleration with Higher Order Laser Modes

    Energy Technology Data Exchange (ETDEWEB)

    Geddes, C.G.R.; Cormier-Michel, E.; Esarey, E.; Schroeder, C.B.; Mullowney, P.; Paul, K.; Cary, J.R.; Leemans, W.P.

    2010-06-01

    Laser-plasma collider designs point to staging of multiple accelerator stages at the 10 GeV level, which are to be developed on the upcoming BELLA laser, while Thomson Gamma source designs use GeV stages, both requiring efficiency and low emittance. Design and scaling of stages operating in the quasi-linear regime to address these needs are presented using simulations in the VORPAL framework. In addition to allowing symmetric acceleration of electrons and positrons, which is important for colliders, this regime has the property that the plasma wakefield is proportional to the transverse gradient of the laser intensity profile. We demonstrate use of higher order laser modes to tailor the laser pulse and hence the transverse focusing forces in the plasma. In particular, we show that by using higher order laser modes, we can reduce the focusing fields and hence increase the matched electron beam radius, which is important to increased charge and efficiency, while keeping the low bunch emittance required for applications.

  11. Coherent keV backscattering from plasma-wave boosted relativistic electron mirrors

    CERN Document Server

    Li, F Y; Chen, M; Wu, H C; Liu, Y; Meyer-ter-Vehn, J; Mori, W B; Zhang, J

    2014-01-01

    A new parameter regime of laser wakefield acceleration driven by sub-petawatt femotsecond lasers is proposed, which enables the generation of relativistic electron mirrors further accelerated by the plasma wave. Integrated particle-in-cell simulation including the mirror formation and Thomson scattering demonstrates that efficient coherent backscattering up to keV photon energy can be obtained with moderate driver laser intensities and high density gas targets.

  12. Properties of Trapped Electron Bunches in a Plasma Wakefield Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Kirby, Neil; /SLAC

    2009-10-30

    Plasma-based accelerators use the propagation of a drive bunch through plasma to create large electric fields. Recent plasma wakefield accelerator (PWFA) experiments, carried out at the Stanford Linear Accelerator Center (SLAC), successfully doubled the energy for some of the 42 GeV drive bunch electrons in less than a meter; this feat would have required 3 km in the SLAC linac. This dissertation covers one phenomenon associated with the PWFA, electron trapping. Recently it was shown that PWFAs, operated in the nonlinear bubble regime, can trap electrons that are released by ionization inside the plasma wake and accelerate them to high energies. These trapped electrons occupy and can degrade the accelerating portion of the plasma wake, so it is important to understand their origins and how to remove them. Here, the onset of electron trapping is connected to the drive bunch properties. Additionally, the trapped electron bunches are observed with normalized transverse emittance divided by peak current, {epsilon}{sub N,x}/I{sub t}, below the level of 0.2 {micro}m/kA. A theoretical model of the trapped electron emittance, developed here, indicates that the emittance scales inversely with the square root of the plasma density in the non-linear 'bubble' regime of the PWFA. This model and simulations indicate that the observed values of {epsilon}{sub N,x}/I{sub t} result from multi-GeV trapped electron bunches with emittances of a few {micro}m and multi-kA peak currents. These properties make the trapped electrons a possible particle source for next generation light sources. This dissertation is organized as follows. The first chapter is an overview of the PWFA, which includes a review of the accelerating and focusing fields and a survey of the remaining issues for a plasma-based particle collider. Then, the second chapter examines the physics of electron trapping in the PWFA. The third chapter uses theory and simulations to analyze the properties of the trapped

  13. Demonstration of a positron beam-driven hollow channel plasma wakefield accelerator.

    Science.gov (United States)

    Gessner, Spencer; Adli, Erik; Allen, James M; An, Weiming; Clarke, Christine I; Clayton, Chris E; Corde, Sebastien; Delahaye, J P; Frederico, Joel; Green, Selina Z; Hast, Carsten; Hogan, Mark J; Joshi, Chan; Lindstrøm, Carl A; Lipkowitz, Nate; Litos, Michael; Lu, Wei; Marsh, Kenneth A; Mori, Warren B; O'Shea, Brendan; Vafaei-Najafabadi, Navid; Walz, Dieter; Yakimenko, Vitaly; Yocky, Gerald

    2016-06-02

    Plasma wakefield accelerators have been used to accelerate electron and positron particle beams with gradients that are orders of magnitude larger than those achieved in conventional accelerators. In addition to being accelerated by the plasma wakefield, the beam particles also experience strong transverse forces that may disrupt the beam quality. Hollow plasma channels have been proposed as a technique for generating accelerating fields without transverse forces. Here we demonstrate a method for creating an extended hollow plasma channel and measure the wakefields created by an ultrarelativistic positron beam as it propagates through the channel. The plasma channel is created by directing a high-intensity laser pulse with a spatially modulated profile into lithium vapour, which results in an annular region of ionization. A peak decelerating field of 230 MeV m(-1) is inferred from changes in the beam energy spectrum, in good agreement with theory and particle-in-cell simulations.

  14. Demonstration of a positron beam-driven hollow channel plasma wakefield accelerator

    Science.gov (United States)

    Gessner, Spencer; Adli, Erik; Allen, James M.; An, Weiming; Clarke, Christine I.; Clayton, Chris E.; Corde, Sebastien; Delahaye, J. P.; Frederico, Joel; Green, Selina Z.; Hast, Carsten; Hogan, Mark J.; Joshi, Chan; Lindstrøm, Carl A.; Lipkowitz, Nate; Litos, Michael; Lu, Wei; Marsh, Kenneth A.; Mori, Warren B.; O'Shea, Brendan; Vafaei-Najafabadi, Navid; Walz, Dieter; Yakimenko, Vitaly; Yocky, Gerald

    2016-06-01

    Plasma wakefield accelerators have been used to accelerate electron and positron particle beams with gradients that are orders of magnitude larger than those achieved in conventional accelerators. In addition to being accelerated by the plasma wakefield, the beam particles also experience strong transverse forces that may disrupt the beam quality. Hollow plasma channels have been proposed as a technique for generating accelerating fields without transverse forces. Here we demonstrate a method for creating an extended hollow plasma channel and measure the wakefields created by an ultrarelativistic positron beam as it propagates through the channel. The plasma channel is created by directing a high-intensity laser pulse with a spatially modulated profile into lithium vapour, which results in an annular region of ionization. A peak decelerating field of 230 MeV m-1 is inferred from changes in the beam energy spectrum, in good agreement with theory and particle-in-cell simulations.

  15. Relativistic electron beam driven longitudinal wake-wave breaking in a cold plasma

    CERN Document Server

    Bera, Ratan Kumar; Sengupta, Sudip; Das, Amita

    2016-01-01

    Space-time evolution of relativistic electron beam driven wake-field in a cold, homogeneous plasma, is studied using 1D-fluid simulation techniques. It is observed that the wake wave gradu- ally evolves and eventually breaks, exhibiting sharp spikes in the density profile and sawtooth like features in the electric field profile [1]. It is shown here that the excited wakefield is a longitudi- nal Akhiezer-Polovin mode [2] and its steepening (breaking) can be understood in terms of phase mixing of this mode, which arises because of relativistic mass variation effects. Further the phase mixing time (breaking time) is studied as a function of beam density and beam velocity and is found to follow the well known scaling presented in ref.[3].

  16. Detection of inverse Compton scattering in plasma wakefield experiments

    Energy Technology Data Exchange (ETDEWEB)

    Bohlen, Simon

    2016-12-15

    Inverse Compton scattering (ICS) is the process of scattering of photons and electrons, where the photons gain a part of the electrons energy. In combination with plasma wakefield acceleration (PWA), ICS offers a compact MeV γ-ray source. A numerical study of ICS radiation produced in PWA experiments at FLASHForward was performed, using an ICS simulation code and the results from particle-in-cell modelling. The possibility of determining electron beam properties from measurements of the γ-ray source was explored for a wide range of experimental conditions. It was found that information about the electron divergence, the electron spectrum and longitudinal information can be obtained from measurements of the ICS beams for some cases. For the measurement of the ICS profile at FLASHForward, a CsI(Tl) scintillator array was chosen, similar to scintillators used in other ICS experiments. To find a suitable detector for spectrum measurements, an experimental test of a Compton spectrometer at the RAL was conducted. This test showed that a similar spectrometer could also be used at FLASHForward. However, changes to the spectrometer could be needed in order to use the pair production effect. In addition, further studies using Geant4 could lead to a better reconstruction of the obtained data. The studies presented here show that ICS is a promising method to analyse electron parameters from PWA experiments in further detail.

  17. The influence of plasma density decreasement by pre-pulse on the laser wakefield acceleration

    Directory of Open Access Journals (Sweden)

    Ke-Gong Dong

    2011-12-01

    Full Text Available In the laser wakefield acceleration, the generation of electron beam is very sensitive to the plasma density. Not only the laser-wakefield interaction, but also the electron trapping and acceleration would be effected by the plasma density. However, the plasma density could be changed in the experiment by different reasons, which will result in the mismatch of parameters arranged initially. Forward Raman scattering spectrum demonstrated that the interaction density was decreased obviously in the experiment, which was verified by the pre-pulse conditions and two-dimensional particle-in-cell simulations. It was demonstrated that the plasma density was very important on the self-evolutions and energy coupling of laser pulse and wakefield, and eventually the energy spectrum of electron beam.

  18. Meter scale plasma source for plasma wakefield experiments

    Science.gov (United States)

    Vafaei-Najafabadi, N.; Shaw, J. L.; Marsh, K. A.; Joshi, C.; Hogan, M. J.

    2012-12-01

    High accelerating gradients generated by a high density electron beam moving through plasma has been used to double the energy of the SLAC electron beam [1]. During that experiment, the electron current density was high enough to generate its own plasma without significant head erosion. In the newly commissioned FACET facility at SLAC, the peak current will be lower and without pre-ionization, head erosion will be a significant challenge for the planned experiments. In this work we report on our design of a meter scale plasma source for these experiments to effectively avoid the problem of head erosion. The plasma source is based on a homogeneous metal vapor gas column that is generated in a heat pipe oven [2]. A lithium oven over 30 cm long at densities over 1017 cm-3 has been constructed and tested at UCLA. The plasma is then generated by coupling a 10 TW short pulse Ti:Sapphire laser into the gas column using an axicon lens setup. The Bessel profile of the axicon setup creates a region of high intensity that can stretch over the full length of the gas column with approximately constant diameter. In this region of high intensity, the alkali metal vapor is ionized through multi-photon ionization process. In this manner, a fully ionized meter scale plasma of uniform density can be formed. Methods for controlling the plasma diameter and length will also be discussed.

  19. Meter scale plasma source for plasma wakefield experiments

    Energy Technology Data Exchange (ETDEWEB)

    Vafaei-Najafabadi, N.; Shaw, J. L.; Marsh, K. A.; Joshi, C.; Hogan, M. J. [Department of Electrical Engineering, University of California Los Angeles, Los Angeles, CA 90095 (United States); SLAC National Accelerator Laboratory, Menlo Park, CA 94025 (United States)

    2012-12-21

    High accelerating gradients generated by a high density electron beam moving through plasma has been used to double the energy of the SLAC electron beam [1]. During that experiment, the electron current density was high enough to generate its own plasma without significant head erosion. In the newly commissioned FACET facility at SLAC, the peak current will be lower and without pre-ionization, head erosion will be a significant challenge for the planned experiments. In this work we report on our design of a meter scale plasma source for these experiments to effectively avoid the problem of head erosion. The plasma source is based on a homogeneous metal vapor gas column that is generated in a heat pipe oven [2]. A lithium oven over 30 cm long at densities over 10{sup 17} cm{sup -3} has been constructed and tested at UCLA. The plasma is then generated by coupling a 10 TW short pulse Ti:Sapphire laser into the gas column using an axicon lens setup. The Bessel profile of the axicon setup creates a region of high intensity that can stretch over the full length of the gas column with approximately constant diameter. In this region of high intensity, the alkali metal vapor is ionized through multi-photon ionization process. In this manner, a fully ionized meter scale plasma of uniform density can be formed. Methods for controlling the plasma diameter and length will also be discussed.

  20. An $ep$ collider based on proton-driven plasma wakefield acceleration

    CERN Document Server

    Wing, M.; Mete, O.; Aimidula, A.; Welsch, C.; Chattopadhyay, S.; Mandry, S.

    2014-01-01

    Recent simulations have shown that a high-energy proton bunch can excite strong plasma wakefields and accelerate a bunch of electrons to the energy frontier in a single stage of acceleration. This scheme could lead to a future $ep$ collider using the LHC for the proton beam and a compact electron accelerator of length 170 m, producing electrons of energy up to 100 GeV. The parameters of such a collider are discussed as well as conceptual layouts within the CERN accelerator complex. The physics of plasma wakefield acceleration will also be introduced, with the AWAKE experiment, a proof of principle demonstration of proton-driven plasma wakefield acceleration, briefly reviewed, as well as the physics possibilities of such an $ep$ collider.

  1. Dynamics of electron acceleration in laser-driven wakefields. Acceleration limits and asymmetric plasma waves

    Energy Technology Data Exchange (ETDEWEB)

    Popp, Antonia

    2011-12-16

    The experiments presented in this thesis study several aspects of electron acceleration in a laser-driven plasma wave. High-intensity lasers can efficiently drive a plasma wave that sustains electric fields on the order of 100 GV/m. Electrons that are trapped in this plasma wave can be accelerated to GeV-scale energies. As the accelerating fields in this scheme are 3-4 orders of magnitude higher than in conventional radio-frequency accelerators, the necessary acceleration distance can be reduced by the same factor, turning laser-wakefield acceleration (LWFA) into a promising compact, and potentially cheaper, alternative. However, laser-accelerated electron bunches have not yet reached the parameter standards of conventional accelerators. This work will help to gain better insight into the acceleration process and to optimize the electron bunch properties. The 25 fs, 1.8 J-pulses of the ATLAS laser at the Max-Planck-Institute of Quantum Optics were focused into a steady-state flow gas cell. This very reproducible and turbulence-free gas target allows for stable acceleration of electron bunches. Thus the sensitivity of electron parameters to subtle changes of the experimental setup could be determined with meaningful statistics. At optimized experimental parameters, electron bunches of {approx}50 pC total charge were accelerated to energies up to 450 MeV with a divergence of {approx}2 mrad FWHM. As, in a new design of the gas cell, its length can be varied from 2 to 14 mm, the electron bunch energy could be evaluated after different acceleration distances, at two different electron densities. From this evolution important acceleration parameters could be extracted. At an electron density of 6.43. 10{sup 18} cm{sup -3} the maximum electric field strength in the plasma wave was determined to be {approx}160 GV/m. The length after which the relativistic electrons outrun the accelerating phase of the electric field and are decelerated again, the so-called dephasing length

  2. Optimization of a train of bunches for plasma wakefield acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Martorelli, Roberto

    2016-05-10

    Particle accelerators are a fundamental instrument for the understanding of fundamental mechanism in nature. The need of always higher energies for the particle beams requires a huge increase of the sizes of the accelerators using the actual technology. Moreover the highest energies are achieved nowadays by circular colliders, not perfectly suitable for acceleration of electrons and positrons due to the radiation losses. In order to overcome this problem a new branch of physics studying alternative technique for particle acceleration has been developed. Among the various alternatives a promising one is the plasma wakefield acceleration (PWFA), in which a driver bunch interacts with a cold background plasma, exciting a plasma wave. The electric field of the plasma wave is then used for the acceleration of a second bunch. Such a mechanism allows to reach fields strength far beyond currently available, limited by the dielectric strength of the material. Among the different driver configurations, a promising one is the use of a modulated beam, namely a train of bunches, that provides a coherent interference among the electric fields generated by the single bunches. Such mechanism is subjected to a renewed interest in view of the forthcoming AWAKE experiment at CERN in which the long proton beam produced at the SPS facility is used as a driver. This possibility is achieved thanks to the onset of the self-modulation instability that modulates the long beam in a train of approximately 100 bunches. In order to accelerate the witness bunch to high energies is necessary on the other hand an efficient exchange of energy from the driver to the accelerated bunch, as well as a long duration of the driver so that can propagates for kilometers. This thesis deals with this two last aspects. The aim of this work is to provide an optimization for the modulated driver in order to improve specific features of the PWFA. This work shows the possibility to achieve an improved efficiency

  3. Plasma undulator based on laser excitation of wakefields in a plasma channel.

    Science.gov (United States)

    Rykovanov, S G; Schroeder, C B; Esarey, E; Geddes, C G R; Leemans, W P

    2015-04-10

    An undulator is proposed based on the plasma wakefields excited by a laser pulse in a plasma channel. Generation of the undulator fields is achieved by inducing centroid oscillations of the laser pulse in the channel. The period of such an undulator is proportional to the Rayleigh length of the laser pulse and can be submillimeter, while preserving high undulator strength. The electron trajectories in the undulator are examined, expressions for the undulator strength are presented, and the spontaneous radiation is calculated. Multimode and multicolor laser pulses are considered for greater tunability of the undulator period and strength.

  4. Electron beam manipulation, injection and acceleration in plasma wakefield accelerators by optically generated plasma density spikes

    Energy Technology Data Exchange (ETDEWEB)

    Wittig, Georg; Karger, Oliver S.; Knetsch, Alexander [Institute of Experimental Physics, University of Hamburg, 22761 Hamburg (Germany); Xi, Yunfeng; Deng, Aihua; Rosenzweig, James B. [Particle Beam Physics Laboratory, UCLA, Los Angeles, CA 90095 (United States); Bruhwiler, David L. [RadiaSoft LLC, Boulder, CO 80304 (United States); RadiaBeam Technologies LLC (United States); Smith, Jonathan [Tech-X UK Ltd, Daresbury, Cheshire WA4 4FS (United Kingdom); Sheng, Zheng-Ming; Jaroszynski, Dino A.; Manahan, Grace G. [Physics Department, SUPA, University of Strathclyde, Glasgow G4 0NG (United Kingdom); Hidding, Bernhard [Institute of Experimental Physics, University of Hamburg, 22761 Hamburg (Germany); Physics Department, SUPA, University of Strathclyde, Glasgow G4 0NG (United Kingdom)

    2016-09-01

    We discuss considerations regarding a novel and robust scheme for optically triggered electron bunch generation in plasma wakefield accelerators [1]. In this technique, a transversely propagating focused laser pulse ignites a quasi-stationary plasma column before the arrival of the plasma wake. This localized plasma density enhancement or optical “plasma torch” distorts the blowout during the arrival of the electron drive bunch and modifies the electron trajectories, resulting in controlled injection. By changing the gas density, and the laser pulse parameters such as beam waist and intensity, and by moving the focal point of the laser pulse, the shape of the plasma torch, and therefore the generated trailing beam, can be tuned easily. The proposed method is much more flexible and faster in generating gas density transitions when compared to hydrodynamics-based methods, and it accommodates experimentalists needs as it is a purely optical process and straightforward to implement.

  5. Electron beam manipulation, injection and acceleration in plasma wakefield accelerators by optically generated plasma density spikes

    Science.gov (United States)

    Wittig, Georg; Karger, Oliver S.; Knetsch, Alexander; Xi, Yunfeng; Deng, Aihua; Rosenzweig, James B.; Bruhwiler, David L.; Smith, Jonathan; Sheng, Zheng-Ming; Jaroszynski, Dino A.; Manahan, Grace G.; Hidding, Bernhard

    2016-09-01

    We discuss considerations regarding a novel and robust scheme for optically triggered electron bunch generation in plasma wakefield accelerators [1]. In this technique, a transversely propagating focused laser pulse ignites a quasi-stationary plasma column before the arrival of the plasma wake. This localized plasma density enhancement or optical "plasma torch" distorts the blowout during the arrival of the electron drive bunch and modifies the electron trajectories, resulting in controlled injection. By changing the gas density, and the laser pulse parameters such as beam waist and intensity, and by moving the focal point of the laser pulse, the shape of the plasma torch, and therefore the generated trailing beam, can be tuned easily. The proposed method is much more flexible and faster in generating gas density transitions when compared to hydrodynamics-based methods, and it accommodates experimentalists needs as it is a purely optical process and straightforward to implement.

  6. Modeling beam-driven and laser-driven plasma Wakefield accelerators with XOOPIC

    Energy Technology Data Exchange (ETDEWEB)

    Bruhwiler, David L.; Giacone, Rodolfo; Cary, John R.; Verboncoeur, John P.; Mardahl, Peter; Esarey, Eric; Leemans, Wim

    2000-06-01

    We present 2-D particle-in-cell simulations of both beam-driven and laser-driven plasma wakefield accelerators, using the object-oriented code XOOPIC, which is time explicit, fully electromagnetic, and capable of running on massively parallel supercomputers. Simulations of laser-driven wakefields with low ({approximately} 10{sup 16} W/cm{sup 2}) and high ({approximately} 10{sup 18} W/cm{sup 2}) peak intensity laser pulses are conducted in slab geometry, showing agreement with theory. Simulations of the E-157 beam wakefield experiment at the Stanford Linear Accelerator Center, in which a 30 GeV electron beam passes through 1 m of preionized lithium plasma, are conducted in cylindrical geometry, obtaining good agreement with previous work. We briefly describe some of the more significant modifications to XOOPIC required by this work, and summarize the issues relevant to modeling electron-neutral collisions in a particle-in-cell code.

  7. Wakefield-acceleration of relativistic electrons with few-cycle laser pulses at kHz-repetition-rate

    Science.gov (United States)

    Guenot, Diego; Gustas, Dominykas; Vernier, Aline; Boehle, Frederik; Beaurepaire, Benoit; Lopez-Martens, Rodrigo; Faure, Jerome; Appli Team

    2016-10-01

    The generation of relativistic electron beams using laser wakefield acceleration has become a standard technique, providing low emittance electron bunches with femtosecond durations. However, this technique usually requires multi-ten-terawatt lasers and is thus limited to low repetition-rate (typically 10 Hz or less). We have recently demonstrated the generation of few MeV electrons using 2.5-mJ, 4-fs, 1-kHz repetition-rate laser pulses, focused to relativistic intensity onto a gas jet with electron density 1020 cm-3. We have investigated the influence of the pulse duration, the gas density. We demonstrated that an electron beam with a charge in the range of 10-fC/shot, with a divergence of 20-mrad and a peaked spectrum with energies between 2 and 4 MeV can be generated at kHz repetition-rate. These results confirm the possibility of using few-cycle laser pulses with very low energy for exciting wakefields in the bubble regime and for trapping electrons, as predicted by PIC simulations. This kHz electron source is ideally suited for performing electron diffraction experiments with very high temporal resolution. Our results also open the way to other applications, such as the generation of a kHz ultrafast X-ray source. ERC femtoelec.

  8. Relativistic QED Plasma at Extremely High Temperature

    CERN Document Server

    Masood, Samina S

    2016-01-01

    Renormalization scheme of QED (Quantum Electrodynamics) at high temperatures is used to calculate the effective parameters of relativistic plasma in the early universe. Renormalization constants of QED play role of effective parameters of the theory and can be used to determine the collective behavior of the medium. We explicitly show that the dielectric constant, magnetic reluctivity, Debye length and the plasma frequency depend on temperature in the early universe. Propagation speed, refractive index, plasma frequency and Debye shielding length of a QED plasma are computed at extremely high temperatures in the early universe. We also found the favorable conditions for the relativistic plasma from this calculations.

  9. Relativistic and non-relativistic solitons in plasmas

    Science.gov (United States)

    Barman, Satyendra Nath

    This thesis entitled as "Relativistic and Non-relativistic Solitons in Plasmas" is the embodiment of a number of investigations related to the formation of ion-acoustic solitary waves in plasmas under various physical situations. The whole work of the thesis is devoted to the studies of solitary waves in cold and warm collisionless magnetized or unmagnetized plasmas with or without relativistic effect. To analyze the formation of solitary waves in all our models of plasmas, we have employed two established methods namely - reductive perturbation method to deduce the Korteweg-de Vries (KdV) equation, the solutions of which represent the important but near exact characteristic concepts of soliton-physics. Next, the pseudopotential method to deduce the energy integral with total nonlinearity in the coupling process for exact characteristic results of solitons has been incorporated. In Chapter 1, a brief description of plasma in nature and laboratory and its generation are outlined elegantly. The nonlinear differential equations to characterize solitary waves and the relevant but important methods of solutions have been mentioned in this chapter. The formation of solitary waves in unmagnetized and magnetized plasmas, and in relativistic plasmas has been described through mathematical entity. Applications of plasmas in different fields are also put forwarded briefly showing its importance. The study of plasmas as they naturally occur in the universe encompasses number of topics including sun's corona, solar wind, planetary magnetospheres, ionospheres, auroras, cosmic rays and radiation. The study of space weather to understand the universe, communications and the activities of weather satellites are some useful areas of space plasma physics. The surface cleaning, sterilization of food and medical appliances, killing of bacteria on various surfaces, destroying of viruses, fungi, spores and plasma coating in industrial instruments ( like computers) are some of the fields

  10. A self-focusing, high transformer ratio, collinear plasma dielectric wakefield accelerator driven by a ramped bunch train

    Science.gov (United States)

    Sotnikov, Gennadij V.; Marshall, Thomas C.; Shchelkunov, Sergey V.; Hirshfield, Jay L.

    2017-03-01

    New results of studies of wakefield excitation by a ramped bunch train in a collinear, single-channel dielectriclined THz-wakefield accelerator structure that is filled with a low-temperature plasma are presented. A novel ramped train of drive bunches, together with plasma filling part of the transport channel, makes possible substantial improvement of the transformer ratio of the multimode collinear device to 6:1 while the plasma could stabilize the transverse motion of the drive and witness bunches.

  11. 3-D Simulations of Plasma Wakefield Acceleration with Non-Idealized Plasmas and Beams

    Energy Technology Data Exchange (ETDEWEB)

    Deng, S.; Katsouleas, T.; Lee, S.; Muggli, P.; /Southern California U.; Mori, W.B.; Hemker, R.; Ren, C.; Huang, C.; Dodd, E.; Blue, B.E.; Clayton, C.E.; Joshi, C.; Wang,; /UCLA; Decker, F.J.; Hogan, M.J.; Iverson, R.H.; O' Connell, C.; Raimondi, P.; Walz, D.; /SLAC

    2005-09-27

    3-D Particle-in-cell OSIRIS simulations of the current E-162 Plasma Wakefield Accelerator Experiment are presented in which a number of non-ideal conditions are modeled simultaneously. These include tilts on the beam in both planes, asymmetric beam emittance, beam energy spread and plasma inhomogeneities both longitudinally and transverse to the beam axis. The relative importance of the non-ideal conditions is discussed and a worst case estimate of the effect of these on energy gain is obtained. The simulation output is then propagated through the downstream optics, drift spaces and apertures leading to the experimental diagnostics to provide insight into the differences between actual beam conditions and what is measured. The work represents a milestone in the level of detail of simulation comparisons to plasma experiments.

  12. Downramp-assisted underdense photocathode electron bunch generation in plasma wakefield accelerators

    CERN Document Server

    Knetsch, Alexander; Wittig, Georg; Groth, Henning; Xi, Yunfeng; Deng, Aihua; Rosenzweig, James Benjamin; Bruhwiler, David Leslie; Smith, Johnathan; Jaroszynski, Dino Anthony; Sheng, Zheng-Ming; Manahan, Grace Gloria; Xia, Guoxing; Jamison, Steven; Hidding, Bernhard

    2014-01-01

    It is shown that the requirements for high quality electron bunch generation and trapping from an underdense photocathode in plasma wakefield accelerators can be substantially relaxed through localizing it on a plasma density downramp. This depresses the phase velocity of the accelerating electric field until the generated electrons are in phase, allowing for trapping in shallow trapping potentials. As a consequence the underdense photocathode technique is applicable by a much larger number of accelerator facilities. Furthermore, dark current generation is effectively suppressed.

  13. Comparisons of time explicit hybrid kinetic-fluid code Architect for Plasma Wakefield Acceleration with a full PIC code

    Science.gov (United States)

    Massimo, F.; Atzeni, S.; Marocchino, A.

    2016-12-01

    Architect, a time explicit hybrid code designed to perform quick simulations for electron driven plasma wakefield acceleration, is described. In order to obtain beam quality acceptable for applications, control of the beam-plasma-dynamics is necessary. Particle in Cell (PIC) codes represent the state-of-the-art technique to investigate the underlying physics and possible experimental scenarios; however PIC codes demand the necessity of heavy computational resources. Architect code substantially reduces the need for computational resources by using a hybrid approach: relativistic electron bunches are treated kinetically as in a PIC code and the background plasma as a fluid. Cylindrical symmetry is assumed for the solution of the electromagnetic fields and fluid equations. In this paper both the underlying algorithms as well as a comparison with a fully three dimensional particle in cell code are reported. The comparison highlights the good agreement between the two models up to the weakly non-linear regimes. In highly non-linear regimes the two models only disagree in a localized region, where the plasma electrons expelled by the bunch close up at the end of the first plasma oscillation.

  14. Stable discrete representation of relativistically drifting plasmas

    CERN Document Server

    Kirchen, Manuel; Godfrey, Brendan B; Dornmair, Irene; Jalas, Soeren; Peters, Kevin; Vay, Jean-Luc; Maier, Andreas R

    2016-01-01

    Representing the electrodynamics of relativistically drifting particle ensembles in discrete, co-propagating Galilean coordinates enables the derivation of a Particle-in-Cell algorithm that is intrinsically free of the Numerical Cherenkov Instability, for plasmas flowing at a uniform velocity. Application of the method is shown by modeling plasma accelerators in a Lorentz-transformed optimal frame of reference.

  15. Solitary Waves in Relativistic Electromagnetic Plasma

    Institute of Scientific and Technical Information of China (English)

    XIE Bai-Song; HUA Cun-Cai

    2005-01-01

    Solitary waves in relativistic electromagnetic plasmas are obtained numerically. The longitudinal momentum of electrons has been taken into account in the problem. It is found that in the moving frame with electromagnetic field propagating the solitary waves can exist in both cases, where the vector potential frequency is larger or smaller than the plasma characteristic frequency.

  16. Letter of Intent for a Demonstration Experiment in Proton-Driven Plasma Wakefield Acceleration

    CERN Document Server

    Adli, E; Assmann, R; Bingham, R; Caldwell, A; Chattopadhyay, S; Delerue, N; Dias, F M; Efthymiopoulos, I; Elsen, E; Fartoukh, S; Ferreira, C M; Fonseca, R A; Geschonke, G; Goddard, B; Gruelke, O; Hessler, C; Hillenbrand, S; Holloway, J; Huang, C; Jarozinsky, D; Jolly, S; Joshi, C; Kumar, N; Lu, W; Lopes, N; Kaur, M; Lotov, K; Malka, V; Meddahi, M; Mete, O; Mori, W B; Mueller, A; Muggli, P; Najmudin, Z; Norreys, P; Osterhoff, J; Pozimski, J; Pukhov, A; Reimann, O; Roesler, S; Ruhl, H; Schlarb, H; Schmidt, B; Schmitt, H v d; Schoening, A; Seryi, A; Simon, F; Silva, L O; Tajima, T; Trines, R; Tueckmantel, T; Upadhyay, A; Vieira, J; Willi, O; Wing, M; Xia, G; Yakimenko, V; Yan, X; Zimmermann, F; CERN. Geneva. SPS and PS Experiments Committee; SPSC

    2011-01-01

    We propose an experiment on proton-driven plasma wakefield acceleration (PDPWA) which could lead to a future TeV-scale e+- collider of much reduced length compared to conventional designs. Proton bunches are ideal drivers for high energy lepton accelerators, with the potential of reducing drastically the number of required driver stages. By using a plasma to modulate a long proton bunch, a strong plasma wave can be generated by a series of ‘micro-bunches’, so that an experimental program can start today with the existing proton beams. In this letter of intent, we propose a demonstration experiment using the existing CERN SPS beam. This project would be the first beam-driven wakefield acceleration experiment in Europe, and the first proton-driven plasma-wakefield acceleration experiment worldwide. We have set as an initial goal the demonstration of 1 GeV energy gain for electrons in 10 m of plasma. A proposal for reaching 100 GeV within 100 m of plasma will be developed using results from the initial roun...

  17. Relativistic Plasma Polarizer: Impact of Temperature Anisotropy on Relativistic Transparency

    Science.gov (United States)

    Hazeltine, R. D.; Stark, David J.; Bhattacharjee, Chinmoy; Arefiev, Alexey V.; Toncian, Toma; Mahajan, S. M.

    2015-11-01

    3D particle-in-cell simulations demonstrate that the enhanced transparency of a relativistically hot plasma is sensitive to how the energy is partitioned between different degrees of freedom. We consider here the simplest problem: the propagation of a low amplitude pulse through a preformed relativistically hot anisotropic electron plasma to explore its intrinsic dielectric properties. We find that: 1) the critical density for propagation depends strongly on the pulse polarization, 2) two plasmas with the same density and average energy per electron can exhibit profoundly different responses to electromagnetic pulses, 3) the anisotropy-driven Weibel instability develops as expected; the timescales of the growth and back reaction (on anisotropy), however, are long enough that sufficient anisotropy persists for the entire duration of the simulation. This plasma can then function as a polarizer or a wave plate to dramatically alter the pulse polarization. This work was supported by the U.S. DOE Contract Nos. DE-FG02-04ER54742 and DE-AC05-06OR23100 (D. J. S.) and NNSA Contract No. DE-FC52-08NA28512.

  18. Study of ultra-high gradient wakefield excitation by intense ultrashort laser pulses in plasma

    CERN Document Server

    Kotaki, H

    2002-01-01

    We investigate a mechanism of nonlinear phenomena in laser-plasma interaction, a laser wakefield excited by intense laser pulses, and the possibility of generating an intense bright electron source by an intense laser pulse. We need to understand and further employ some of these phenomena for our purposes. We measure self-focusing, filamentation, and the anomalous blueshift of the laser pulse. The ionization of gas with the self-focusing causes a broad continuous spectrum with blueshift. The normal blueshift depends on the laser intensity and the plasma density. We, however, have found different phenomenon. The laser spectrum shifts to fixed wavelength independent of the laser power and gas pressure above some critical power. We call the phenomenon 'anomalous blueshift'. The results are explained by the formation of filaments. An intense laser pulse can excite a laser wakefield in plasma. The coherent wakefield excited by 2 TW, 50 fs laser pulses in a gas-jet plasma around 10 sup 1 sup 8 cm sup - sup 3 is mea...

  19. Electron Bunch Length Measurements in the E-167 Plasma Wakefield Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Blumenfeld, I.; Auerbach, D.; Berry, M.; Clayton, C.E.; Decker, F.J.; Hogan, M.J.; Huang, Cheng-Kun; Ischebeck, R.; Iverson, R.; Johnson, D.; Joshi, C.; Katsouleas, T.; Kirby, N.; Lu, Wei; Marsh, K.A.; Mori, W.B.; Muggli, P.; Oz, E.; Siemann, R.H.; Walz, D.; Zacherl, W.; /SLAC /UCLA /Southern California U.

    2007-03-27

    Bunch length is of prime importance to beam driven plasma wakefield acceleration experiments due to its inverse relationship to the amplitude of the accelerating wake. We present here a summary of work done by the E167 collaboration measuring the SLAC ultra-short bunches via autocorrelation of coherent transition radiation. We have studied material transmission properties and improved our autocorrelation traces using materials with better spectral characteristics.

  20. Two-Color Laser High-Harmonic Generation in Cavitated Plasma Wakefields

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, Carl; Benedetti, Carlo; Esarey, Eric; Leemans, Wim

    2016-10-03

    A method is proposed for producing coherent x-rays via high-harmonic generation using a laser interacting with highly-stripped ions in cavitated plasma wakefields. Two laser pulses of different colors are employed: a long-wavelength pulse for cavitation and a short-wavelength pulse for harmonic generation. This method enables efficient laser harmonic generation in the sub-nm wavelength regime.

  1. Emittance Growth Due to Multiple Coulomb Scattering in a Linear Collider Based on Plasma Wakefield Acceleration

    CERN Document Server

    Mete, Oznur; Xia, Guoxing; Labiche, Marc; Karamyshev, Oleg; Wei, Yelong; Welsch, Carsten; Wing, Matthew

    2014-01-01

    Alternative acceleration technologies are currently under development for cost-effective, robust, compact and efficient solutions. One such technology is plasma wakefield acceleration, driven by either a charged particle or laser beam. However, the potential issues must be studied in detail. In this paper, the emittance growth of the witness beam through elastic scattering from gaseous media is derived. The model is compared with the numerical studies.

  2. Relativistic mirrors in laser plasmas (analytical methods)

    Science.gov (United States)

    Bulanov, S. V.; Esirkepov, T. Zh; Kando, M.; Koga, J.

    2016-10-01

    Relativistic flying mirrors in plasmas are realized as thin dense electron (or electron-ion) layers accelerated by high-intensity electromagnetic waves to velocities close to the speed of light in vacuum. The reflection of an electromagnetic wave from the relativistic mirror results in its energy and frequency changing. In a counter-propagation configuration, the frequency of the reflected wave is multiplied by the factor proportional to the Lorentz factor squared. This scientific area promises the development of sources of ultrashort x-ray pulses in the attosecond range. The expected intensity will reach the level at which the effects predicted by nonlinear quantum electrodynamics start to play a key role. We present an overview of theoretical methods used to describe relativistic flying, accelerating, oscillating mirrors emerging in intense laser-plasma interactions.

  3. Proton-driven plasma wakefield acceleration: a path to the future of high-energy particle physics

    CERN Document Server

    Assmann, R; Bohl, T; Bracco, C; Buttenschön, B; Butterworth, A; Caldwell, A; Chattopadhyay, S; Cipiccia, S; Feldbaumer, E; Fonseca, R A; Goddard, B; Gross, M; Grulke, O; Gschwendtner, E; Holloway, J; Huang, C; Jaroszynski, D; Jolly, S; Kempkes, P; Lopes, N; Lotov, K; Machacek, J; Mandry, S R; McKenzie, J W; Meddahi, M; Militsyn, B L; Moschuering, N; Muggli, P; Najmudin, Z; Noakes, T C Q; Norreys, P A; Öz, E; Pardons, A; Petrenko, A; Pukhov, A; Rieger, K; Reimann, O; Ruhl, H; Shaposhnikova, E; Silva, L O; Sosedkin, A; Tarkeshian, R; Trines, R M G N; Tückmantel, T; Vieira, J; Vincke, H; Wing, M; Xia G , G

    2014-01-01

    New acceleration technology is mandatory for the future elucidation of fundamental particles and their interactions. A promising approach is to exploit the properties of plasmas. Past research has focused on creating large-amplitude plasma waves by injecting an intense laser pulse or an electron bunch into the plasma. However, the maximum energy gain of electrons accelerated in a single plasma stage is limited by the energy of the driver. Proton bunches are the most promising drivers of wakefields to accelerate electrons to the TeV energy scale in a single stage. An experimental program at CERN { the AWAKE experiment { has been launched to study in detail the important physical processes and to demonstrate the power of proton-driven plasma wakefield acceleration. Here we review the physical principles and some experimental considerations for a future proton-driven plasma wakefield accelerator.

  4. Proton-driven plasma wakefield acceleration: a path to the future of high-energy particle physics

    CERN Document Server

    Assmann, R; Bohl, T; Bracco, C; Buttenschon, B; Butterworth, A; Caldwell, A; Chattopadhyay, S; Cipiccia, S; Feldbaumer, E; Fonseca, R A; Goddard, B; Gross, M; Grulke, O; Gschwendtner, E; Holloway, J; Huang, C; Jaroszynski, D; Jolly, S; Kempkes, P; Lopes, N; Lotov, K; Machacek, J; Mandry, S R; McKenzie, J W; Meddahi, M; Militsyn, B L; Moschuering, N; Muggli, P; Najmudin, Z; Noakes, T C Q; Norreys, P A; Oz, E; Pardons, A; Petrenko, A; Pukhov, A; Rieger, K; Reimann, O; Ruhl, H; Shaposhnikova, E; Silva, L O; Sosedkin, A; Tarkeshian, R; Trines, R M G N; Tuckmantel, T; Vieira, J; Vincke, H; Wing, M; Xia, G

    2014-01-01

    New acceleration technology is mandatory for the future elucidation of fundamental particles and their interactions. A promising approach is to exploit the properties of plasmas. Past research has focused on creating large-amplitude plasma waves by injecting an intense laser pulse or an electron bunch into the plasma. However, the maximum energy gain of electrons accelerated in a single plasma stage is limited by the energy of the driver. Proton bunches are the most promising drivers of wakefields to accelerate electrons to the TeV energy scale in a single stage. An experimental program at CERN -- the AWAKE experiment -- has been launched to study in detail the important physical processes and to demonstrate the power of proton-driven plasma wakefield acceleration. Here we review the physical principles and some experimental considerations for a future proton-driven plasma wakefield accelerator.

  5. Relativistic Mirrors in Laser Plasmas (Analytical Methods)

    CERN Document Server

    Bulanov, Sergei V; Kando, Masaki; Koga, James K

    2016-01-01

    Relativistic flying mirrors in plasmas are realized as thin dense electron (or electron-ion) layers accelerated by high-intensity electromagnetic waves to velocities close to the speed of light in vacuum. The reflection of an electromagnetic wave from the relativistic mirror results in its energy and frequency changing. In a counter-propagation configuration, the frequency of the reflected wave is multiplied by the factor proportional to the Lorentz factor squared. This scientific area promises the development of sources of ultrashort X-ray pulses in the attosecond range. The expected intensity will reach the level at which the effects predicted by nonlinear quantum electrodynamics start to play a key role.

  6. Capturing relativistic wake eld structures in plasmas using ultrashort high-energy electrons as a probe

    CERN Document Server

    Zhang, C J; Xu, X L; Li, F; Pai, C -H; Wan, Y; Wu, Y P; Gu, Y Q; Mori, W B; Joshi, C; Lu, W

    2016-01-01

    A new method capable of capturing coherent electric field structures propagating at nearly the speed of light in plasma with a time resolution as small as a few femtoseconds is proposed. This method uses a few femtoseconds long relativistic electron bunch to probe the wake produced in a plasma by an intense laser pulse or an ultra-short relativistic charged particle beam. As the probe bunch traverses the wake, its momentum is modulated by the electric field of the wake, leading to a density variation of the probe after free-space propagation. This variation of probe density produces a snapshot of the wake that can directly give many useful information of the wake structure and its evolution. Furthermore, this snapshot allows detailed mapping of the longitudinal and transverse components of the wakefield. We develop a theoretical model for field reconstruction and verify it using 3-dimensional particle-in-cell (PIC) simulations. This model can accurately reconstruct the wakefield structure in the linear regime...

  7. Beam dynamics in resonant plasma wakefield acceleration at SPARC_LAB

    Science.gov (United States)

    Romeo, S.; Anania, M. P.; Chiadroni, E.; Croia, M.; Ferrario, M.; Marocchino, A.; Pompili, R.; Vaccarezza, C.

    2016-09-01

    Strategies to mitigate the increase of witness emittance and energy spread in beam driven plasma wakefield acceleration are investigated. Starting from the proposed resonant wakefield acceleration scheme in quasi-non-linear regime that is going to be carried out at SPARC_LAB, we performed systematic scans of the parameters to be used for drivers. The analysis will show that one of the main requirements to preserve witness quality during the acceleration is to have accelerating and focusing fields that are very stable during all the accelerating length. The difference between the dynamics of the leading bunch and the trailing bunch is pointed out. The classical condition on bunch length kpσz =√{ 2 } seems to be an ideal condition for the first driver within long accelerating lengths. The other drivers show to follow different longitudinal matching conditions. In the end a new method for the investigation of the matching for the first driver is introduced.

  8. Positron acceleration in plasma bubble wakefield driven by an ultraintense laser

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Ya-Juan; Wan, Feng; Sang, Hai-Bo, E-mail: sanghb@bnu.edu.cn; Xie, Bai-Song [Key Laboratory of Beam Technology and Material Modification of Ministry of Education, and College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China)

    2016-01-15

    The dynamics of positrons accelerating in electron-positron-ion plasma bubble fields driven by an ultraintense laser is investigated. The bubble wakefield is obtained theoretically when laser pulses are propagating in the electron-positron-ion plasma. To restrict the positrons transversely, an electron beam is injected. Acceleration regions and non-acceleration ones of positrons are obtained by the numerical simulation. It is found that the ponderomotive force causes the fluctuation of the positrons momenta, which results in the trapping of them at a lower ion density. The energy gaining of the accelerated positrons is demonstrated, which is helpful for practical applications.

  9. Generation of high-field narrowband terahertz radiation by counterpropagating plasma wakefields

    Science.gov (United States)

    Timofeev, I. V.; Annenkov, V. V.; Volchok, E. P.

    2017-10-01

    It is found that nonlinear interaction of plasma wakefields driven by counterpropagating laser or particle beams can efficiently generate high-power electromagnetic radiation at the second harmonic of the plasma frequency. Using a simple analytical theory and particle-in-cell simulations, we show that this phenomenon can be attractive for producing high-field ( ˜10 MV/cm) tunable terahertz radiation with a narrow line width. For laser drivers produced by existing petawatt-class systems, this nonlinear process opens the way to the generation of gigawatt, multi-millijoule terahertz pulses which are not presently available for any other generating schemes.

  10. Electron bunch injection at an angle into a laser wakefield

    NARCIS (Netherlands)

    Luttikhof, M.J.H.; Khachatryan, A.G.; van Goor, F.A.; Boller, Klaus J.; Mora, P.

    2009-01-01

    External injection of electron bunches longer than the plasma wavelength in a laser wakefield accelerator can lead to the generation of femtosecond ultra relativistic bunches with a couple of percent energy spread. Extensive study has been done on external electron bunch (e.g., one generated by a

  11. Oscillating two-stream instability of laser wakefield-driven plasma wave

    Indian Academy of Sciences (India)

    Nafis Ahmad; V K Tripathi; Moiz Ahmad; M Rafat

    2016-01-01

    The laser wakefield-driven plasma wave in a low-density plasma is seen to be susceptible to the oscillating two-stream instability (OTSI). The plasma wave couples to two short wavelength plasma wave sidebands. The pump plasma wave and sidebands exert a ponderomotive force on the electrons driving a low-frequency quasimode. The electron density perturbation associated with this mode couples with the pump-driven electron oscillatory velocity to produce nonlinear currents driving the sidebands. At large pump amplitude, the instability grows faster than the ion plasma frequency and ions do not play a significant role. The growth rate of the quasimode, at large pump amplitude scales faster than linear. The growth rate is maximum for an optimum wave number of the quasimode and also increases with pump amplitude. Nonlocal effects, however reduce the growth rate by about half.

  12. A Beam Driven Plasma-Wakefield Linear Collider: From Higgs Factory to Multi-TeV

    CERN Document Server

    Adli, Erik; Gessner, Spencer J; Hogan, Mark J; Raubenheimer, Tor; An, Weiming; Joshi, Chan; Mori, Warren

    2013-01-01

    Plasma wakefield acceleration (PWFA) holds much promise for advancing the energy frontier because it can potentially provide a 1000-fold or more increase in acceleration gradient with excellent power efficiency in respect with standard technologies. Most of the advances in beam-driven plasma wakefield acceleration were obtained by a UCLA/USC/SLAC collaboration working at the SLAC FFTB[ ]. These experiments have shown that plasmas can accelerate and focus both electron and positron high energy beams, and an accelerating gradient in excess of 50 GeV/m can be sustained in an 85 cm-long plasma. The FFTB experiments were essentially proof-of-principle experiments that showed the great potential of plasma accelerators. The FACET[ ] test facility at SLAC will in the period 2012-2016 further study several issues that are directly related to the applicability of PWFA to a high-energy collider, in particular two-beam acceleration where the witness beam experiences high beam loading (required for high efficiency), small...

  13. Weibel instability in relativistic quantum plasmas

    Science.gov (United States)

    Mendonça, J. T.; Brodin, G.

    2015-08-01

    Generation of quasi-static magnetic fields, due to the Weibel instability is studied in a relativistic quantum plasma. This instability is induced by a temperature anisotropy. The dispersion relation and growth rates for low frequency electromagnetic perturbations are derived using a wave-kinetic equation which describes the evolution of the electron Wigner quasi-distribution. The influence of parallel kinetic effects is discussed in detail.

  14. Generation of high quality electron beams via ionization injection in a plasma wakefield accelerator

    Science.gov (United States)

    Vafaei-Najafabadi, Navid; Joshi, Chan; E217 SLAC Collaboration

    2016-10-01

    Ionization injection in a beam driven plasma wakefield accelerator has been used to generate electron beams with over 30 GeV of energy in a 130 cm of lithium plasma. The experiments were performed using the 3 nC, 20.35 GeV electron beam at the FACET facility of the SLAC National Accelerator Laboratory as the driver of the wakefield. The ionization of helium atoms in the up ramp of a lithium plasma were injected into the wake and over the length of acceleration maintained an emittance on the order of 30 mm-mrad, which was an order of magnitude smaller than the drive beam, albeit with an energy spread of 10-20%. The process of ionization injection occurs due to an increase in the electric field of the drive beam as it pinches through its betatron oscillations. Thus, this energy spread is attributed to the injection region encompassing multiple betatron oscillations. In this poster, we will present evidence through OSIRIS simulations of producing an injected beam with percent level energy spread and low emittance by designing the plasma parameters appropriately, such that the ionization injection occurs over a very limited distance of one betatron cycle. Work at UCLA was supported by the NSF Grant Number PHY-1415386 and DOE Grant Number DE-SC0010064. Work at SLAC was supported by DOE contract number DE-AC02-76SF00515. Simulations used the Hoffman cluster at UCLA.

  15. Transport coefficients of a relativistic plasma

    Science.gov (United States)

    Pike, O. J.; Rose, S. J.

    2016-05-01

    In this work, a self-consistent transport theory for a relativistic plasma is developed. Using the notation of Braginskii [S. I. Braginskii, in Reviews of Plasma Physics, edited by M. A. Leontovich (Consultants Bureau, New York, 1965), Vol. 1, p. 174], we provide semianalytical forms of the electrical resistivity, thermoelectric, and thermal conductivity tensors for a Lorentzian plasma in a magnetic field. This treatment is then generalized to plasmas with arbitrary atomic number by numerically solving the linearized Boltzmann equation. The corresponding transport coefficients are fitted by rational functions in order to make them suitable for use in radiation-hydrodynamic simulations and transport calculations. Within the confines of linear transport theory and on the assumption that the plasma is optically thin, our results are valid for temperatures up to a few MeV. By contrast, classical transport theory begins to incur significant errors above kBT ˜10 keV, e.g., the parallel thermal conductivity is suppressed by 15% at kBT =20 keV due to relativistic effects.

  16. Stability of relativistic plasma-vacuum interfaces

    CERN Document Server

    Trakhinin, Yuri

    2010-01-01

    We study the plasma-vacuum interface problem in relativistic magnetohydrodynamics for the case when the plasma density does not go to zero continuously, but jumps. Unlike the nonrelativistic version of this problem, we have to assume that the plasma expands into the vacuum (otherwise, the problem is underdetermined). We show that even if this necessary condition is satisfied the planar interface can be still violently unstable. By using a suitable secondary symmetrization of the Maxwell equations in vacuum, we find a sufficient condition that precludes violent instabilities. Under this condition we derive a basic a priori estimate in the anisotropic weighted Sobolev space $H^1_*$ for the variable coefficients linearized problem for nonplanar plasma-vacuum interfaces and prove the well-posedness of this problem.

  17. Solitons in relativistic laser-plasma interactions

    Institute of Scientific and Technical Information of China (English)

    XIE Bai-song; DU Shu-cheng

    2007-01-01

    Single or/and multipeak solitons in plasma under relativistic electromagnetic field are reviewed.The incident electromagnetic field iS allowed to have a zero or/and nonzero initial constant amplitude.Some interesting numerical results are obtained that include a high-number multipeak laser pulse and single or/and low-number multipeak plasma wake structures.It is also shown that there exists a combination of soliton and oscillation waves for plasma wake field.Also,the electron density exhibits multi-caviton structure or the combination of caviton and oscillation.A complete eigenvalue spectrum of parameters is given wherein some higher peak numbers of multipeak electromagnetic solitons in the plasma are included.Moreover, some interesting scaling laws are presented for field energy via numerical approaches.Some implications of results are discussed.

  18. Nonthermal Lorentzian wake-field effects on collision processes in complex dusty plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Hong, Woo-Pyo [Department of Electronics Engineering, Catholic University of Daegu, Hayang 712-702 (Korea, Republic of); Jung, Young-Dae, E-mail: ydjung@hanyang.ac.kr [Department of Physics, Applied Physics, and Astronomy, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180-3590 (United States); Department of Applied Physics and Department of Bionanotechnology, Hanyang University, Ansan, Kyunggi-Do 426-791 (Korea, Republic of)

    2014-10-15

    The influence of nonthermal Lorentzian wake-field on the electron-dust grain collision is investigated in complex dusty plasmas. The Eikonal method and the effective interaction potential are applied to obtain the Eikonal scattering phase shift, the differential Eikonal collision cross section, and the total Eikonal collision cross section as functions of the collision energy, the impact parameter, the Mach number, and the spectral index of Lorentzian plasma. It is found that the nonthermal effect enhances the Eikonal scattering phase shift and, however, suppresses the Eikonal collision cross section for the electron-dust grain in Lorentzian complex dusty plasmas. It is also found that the Eikonal scattering phase shift decreases with increasing Mach number and spectral index. In addition, the Eikonal collision cross section increases with an increase of the spectral index and Mach number in Lorentzian complex dusty plasmas.

  19. Laser plasma wakefield acceleration gain enhancement by means of accelerating Bessel pulses

    Science.gov (United States)

    Kumar, S.; Parola, A.; Di Trapani, P.; Jedrkiewicz, O.

    2017-06-01

    In this paper, we propose an approach to enhance the electron energy gain in standard laser-driven plasma wakefield accelerators, using accelerating Bessel pulses with tunable group velocity so to avoid electron dephasing. We use in the numerical simulations a one-dimensional theoretical model in the linear regime, taking advantage of the "diffraction-free" properties of the localized Bessel beam and thus neglecting transverse effects during the acceleration process. With a multistage tailoring approach, we show a gain enhancement of more than 100 with electron energies that may reach the GeV range over distances shorter than 1 m.

  20. Collider design issues based on proton-driven plasma wakefield acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Xia, G., E-mail: guoxing.xia@manchester.ac.uk [School of Physics and Astronomy, University of Manchester, Manchester (United Kingdom); The Cockcroft Institute, Sci-Tech Daresbury, Daresbury, Warrington (United Kingdom); Mete, O. [School of Physics and Astronomy, University of Manchester, Manchester (United Kingdom); The Cockcroft Institute, Sci-Tech Daresbury, Daresbury, Warrington (United Kingdom); Aimidula, A.; Welsch, C.P. [The Cockcroft Institute, Sci-Tech Daresbury, Daresbury, Warrington (United Kingdom); The University of Liverpool, Liverpool (United Kingdom); Chattopadhyay, S. [School of Physics and Astronomy, University of Manchester, Manchester (United Kingdom); The Cockcroft Institute, Sci-Tech Daresbury, Daresbury, Warrington (United Kingdom); The University of Liverpool, Liverpool (United Kingdom); Mandry, S. [Department of Physics and Astronomy, University College London, London (United Kingdom); Wing, M. [Department of Physics and Astronomy, University College London, London (United Kingdom); Deutsche Elektronen-Synchrotron DESY, Hamburg (Germany)

    2014-03-11

    Recent simulations have shown that a high-energy proton bunch can excite strong plasma wakefields and accelerate a bunch of electrons to the energy frontier in a single stage of acceleration. It therefore paves the way towards a compact future collider design using the proton beams from existing high-energy proton machines, e.g. Tevatron or the LHC. This paper addresses some key issues in designing a compact electron–positron linear collider and an electron–proton collider based on the existing CERN accelerator infrastructure.

  1. Collider design issues based on proton-driven plasma wakefield acceleration

    CERN Document Server

    Xia, G; Aimidula, A; Welsch, C; Chattopadhyay, S; Mandry, S; Wing, M

    2014-01-01

    Recent simulations have shown that a high-energy proton bunch can excite strong plasma wakefields and accelerate a bunch of electrons to the energy frontier in a single stage of acceleration. It therefore paves the way towards a compact future collider design using the proton beams from existing high-energy proton machines, e.g. Tevatron or the LHC. This paper addresses some key issues in designing a compact electron-positron linear collider and an electron-proton collider based on existing CERN accelerator infrastructure.

  2. Wakefield-Induced Ionization injection in beam-driven plasma accelerators

    CERN Document Server

    de la Ossa, A Martinez; Streeter, M J V; Osterhoff, J

    2015-01-01

    We present a detailed analysis of the features and capabilities of Wakefield-Induced Ionization (WII) injection in the blowout regime of beam driven plasma accelerators. This mechanism exploits the electric wakefields to ionize electrons from a dopant gas and trap them in a well-defined region of the accelerating and focusing wake phase, leading to the formation of high-quality witness-bunches. The electron-beam drivers must feature high-peak currents ($I_b^0\\gtrsim 8.5~\\mathrm{kA}$) and a duration comparable to the plasma wavelength to excite plasma waves in the blowout regime and enable WII injection. In this regime, the disparity of the magnitude of the electric field in the driver region and the electric field in the rear of the ion cavity allows for the selective ionization and subsequent trapping from a narrow phase interval. The witness bunches generated in this manner feature a short duration and small values of the normalized transverse emittance ($k_p\\sigma_z \\sim k_p\\epsilon_n \\sim 0.1$). In additi...

  3. Generation of whistler mode in a relativistic plasma

    Indian Academy of Sciences (India)

    N K Deka; B J Saikia; K S Goswami

    2008-03-01

    This paper contains the plasma maser interaction between high frequency nonresonant whistler R-mode and low frequency resonant ion acoustic mode in a relativistic plasma. It shows that the whistler R-mode grows through the plasma maser interaction between the relativistic electrons and the ion acoustic fluctuation.

  4. Challenges in plasma and laser wakefield accelerated beams diagnostic

    Energy Technology Data Exchange (ETDEWEB)

    Cianchi, A., E-mail: alessandro.cianchi@roma2.infn.it [University of Rome Tor Vergata and INFN, V. della Ricerca Scientifica 1, 00133 Rome (Italy); Anania, M.P.; Bellaveglia, M.; Castellano, M.; Chiadroni, E.; Ferrario, M.; Gatti, G. [INFN-LNF - Via E. Fermi 40, 00044 Frascati (RM) (Italy); Marchetti, B. [DESY, Platanenallee 6, D-15738 Zeuthen (Germany); Mostacci, A. [University of Rome La Sapienza, P.le Aldo Moro 5, 00185 Rome (Italy); Pompili, R. [INFN-LNF - Via E. Fermi 40, 00044 Frascati (RM) (Italy); Ronsivalle, C. [ENEA C.R. Frascati, Via E. Fermi,45 00044 Frascati (RM) (Italy); Rossi, A.R.; Serafini, L. [INFN-Mi, Via Celoria, 16 20133 Milano (Italy)

    2013-08-21

    The new frontier in the particle beam accelerator is the so called plasma acceleration. Using the strong electric field inside a plasma it is possible to achieve accelerating gradients in the order of magnitude larger with respect to the actual technologies. Different schemes have been proposed and several already tested, producing beams of energy of several GeV. Mainly two approaches are followed: either the beam is directly produced by the interaction of a TW/PW class laser with a gas jet or a preexisting particle beam is accelerated in a plasma channel. In both cases a precise determination of the emerging beam parameters is mandatory for the fine tuning of the devices. The measurement of these parameters, in particular the emittance, is not trivial, mainly due to the large energy spread and to the tight focusing of these beams or to the background noise produced in the plasma channel. We show the problems related to the diagnostic of this kind of beams and the proposed or already realized solutions.

  5. Challenges in plasma and laser wakefield accelerated beams diagnostic

    Science.gov (United States)

    Cianchi, A.; Anania, M. P.; Bellaveglia, M.; Castellano, M.; Chiadroni, E.; Ferrario, M.; Gatti, G.; Marchetti, B.; Mostacci, A.; Pompili, R.; Ronsivalle, C.; Rossi, A. R.; Serafini, L.

    2013-08-01

    The new frontier in the particle beam accelerator is the so called plasma acceleration. Using the strong electric field inside a plasma it is possible to achieve accelerating gradients in the order of magnitude larger with respect to the actual technologies. Different schemes have been proposed and several already tested, producing beams of energy of several GeV. Mainly two approaches are followed: either the beam is directly produced by the interaction of a TW/PW class laser with a gas jet or a preexisting particle beam is accelerated in a plasma channel. In both cases a precise determination of the emerging beam parameters is mandatory for the fine tuning of the devices. The measurement of these parameters, in particular the emittance, is not trivial, mainly due to the large energy spread and to the tight focusing of these beams or to the background noise produced in the plasma channel. We show the problems related to the diagnostic of this kind of beams and the proposed or already realized solutions.

  6. Multi-gigaelectronvolt acceleration of positrons in a self-loaded plasma wakefield

    Energy Technology Data Exchange (ETDEWEB)

    Corde, Sebastien [SLAC National Accelerator Lab., Menlo Park, CA (United States); Adli, E. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Univ. of Oslo, Oslo (Norway); Allen, J. M. [SLAC National Accelerator Lab., Menlo Park, CA (United States); An, W. [Univ. of California, Los Angeles, CA (United States); Clarke, C. I. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Delahaye, J. P. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Frederico, J. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Gessner, S. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Green, S. Z. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Hogan, M. J. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Joshi, C. [Univ. of California, Los Angeles, CA (United States); Lipkowitz, N. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Litos, M. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Lu, W. [Tsinghua Univ., Beijing (China); Marsh, K. A. [Univ. of California, Los Angeles, CA (United States); Mori, W. B. [Univ. of California, Los Angeles, CA (United States); Schmeltz, M. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Vafaei-Najafabadi, N. [Univ. of California, Los Angeles, CA (United States); Walz, D. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Yakimenko, V. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Yocky, G. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Clayton, C. E. [Univ. of California, Los Angeles, CA (United States)

    2015-08-26

    New accelerator concepts must be developed to make future particle colliders more compact and affordable. The Plasma Wakefield Accelerator (PWFA) is one such concept, where the electric field of a plasma wake excited by a charged-particle bunch is used to accelerate a trailing bunch of particles. To apply plasma acceleration to particle colliders, it is imperative that both the electrons and their antimatter counterpart, the positrons, are efficiently accelerated at high fields using plasmas1. While substantial progress has recently been reported on high-field, high-efficiency acceleration of electrons in a PWFA powered by an electron bunch 2, such an electron-driven wake is unsuitable for the acceleration and focusing of a positron bunch. Here we demonstrate a new regime of PWFA where particles in the front of a single positron bunch transfer their energy to a substantial number of those in the rear of the same bunch by exciting a wakefield in the plasma. In the process, the accelerating field is altered – self-loaded – so that about a billion positrons gain five gigaelectronvolts (GeV) of energy with a narrow energy spread in a distance of just 1.3 meters. They extract about 30% of the wake’s energy and form a spectrally distinct bunch with as low as a 1.8% r.m.s. energy spread. This demonstrated ability of positron-driven plasma wakes to efficiently accelerate a significant number of positrons with a small energy spread may overcome the long-standing challenge of positron acceleration in plasma-based accelerators.

  7. Plasma wakefields driven by intense, broadband, incoherent electromagnetic radiation

    CERN Document Server

    Trines, R M G M; Mendonça, J T; Mori, W B; Norreys, P A; Bingham, R

    2014-01-01

    Non-linear wave-driven processes in plasmas are normally described by either a monochromatic pump wave that couples to other monochromatic waves, or as a random phase wave coupling to other random phase waves. An alternative approach involves an incoherent, random or broadband pump coupling to monochromatic and/or coherent structures in the plasma. This approach can be implemented through the wave kinetic model. In this model, the incoming pump wave is described by either a bunch (for coherent waves) or a sea (for random phase waves) of quasi-particles. A particle-in-cell type code has been developed to perform numerical simulations of such interactions using the quasi-particle approach. This code allows for a comparatively easy description of both random phase and coherent pump pulses coupling to slow electrostatic plasma waves, while providing an extended range of powerful diagnostics leading to a deeper physical insight into the dynamics of the fast waves. As an example, the propagation of short, intense l...

  8. Energy Doubling of 42 GeV Electrons in a Meter-scale Plasma Wakefield Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Blumenfeld, Ian; Clayton, Christopher E.; Decker, Franz-Josef; Hogan, Mark J.; Huang, Chengkun; Ischebeck, Rasmus; Iverson, Richard; Joshi, Chandrashekhar; Katsouleas,; Kirby, Neil; Lu, Wei; Marsh, Kenneth A.; Mori, Warren B.; Muggli, Patric; Oz, Erdem; Siemann, Robert H.; Walz, Dieter; Zhou, Miaomiao; /SLAC /UCLA /Southern California U.

    2007-03-14

    The energy frontier of particle physics is several trillion electron volts, but colliders capable of reaching this regime (such as the Large Hadron Collider and the International Linear Collider) are costly and time-consuming to build; it is therefore important to explore new methods of accelerating particles to high energies. Plasma-based accelerators are particularly attractive because they are capable of producing accelerating fields that are orders of magnitude larger than those used in conventional colliders. In these accelerators, a drive beam (either laser or particle) produces a plasma wave (wakefield) that accelerates charged particles. The ultimate utility of plasma accelerators will depend on sustaining ultrahigh accelerating fields over a substantial length to achieve a significant energy gain. Here we show that an energy gain of more than 42 GeV is achieved in a plasma wakefield accelerator of 85 cm length, driven by a 42 GeV electron beam at the Stanford Linear Accelerator Center (SLAC). The results are in excellent agreement with the predictions of three-dimensional particle-in-cell simulations. Most of the beam electrons lose energy to the plasma wave, but some electrons in the back of the same beam pulse are accelerated with a field of {approx} 52GV m{sup -1}. This effectively doubles their energy, producing the energy gain of the 3-km-long SLAC accelerator in less than a meter for a small fraction of the electrons in the injected bunch. This is an important step towards demonstrating the viability of plasma accelerators for high-energy physics applications.

  9. Three electron beams from a laser-plasma wakefield accelerator and the energy apportioning question.

    Science.gov (United States)

    Yang, X; Brunetti, E; Gil, D Reboredo; Welsh, G H; Li, F Y; Cipiccia, S; Ersfeld, B; Grant, D W; Grant, P A; Islam, M R; Tooley, M P; Vieux, G; Wiggins, S M; Sheng, Z M; Jaroszynski, D A

    2017-03-10

    Laser-wakefield accelerators are compact devices capable of delivering ultra-short electron bunches with pC-level charge and MeV-GeV energy by exploiting the ultra-high electric fields arising from the interaction of intense laser pulses with plasma. We show experimentally and through numerical simulations that a high-energy electron beam is produced simultaneously with two stable lower-energy beams that are ejected in oblique and counter-propagating directions, typically carrying off 5-10% of the initial laser energy. A MeV, 10s nC oblique beam is ejected in a 30°-60° hollow cone, which is filled with more energetic electrons determined by the injection dynamics. A nC-level, 100s keV backward-directed beam is mainly produced at the leading edge of the plasma column. We discuss the apportioning of absorbed laser energy amongst the three beams. Knowledge of the distribution of laser energy and electron beam charge, which determine the overall efficiency, is important for various applications of laser-wakefield accelerators, including the development of staged high-energy accelerators.

  10. Three electron beams from a laser-plasma wakefield accelerator and the energy apportioning question

    Science.gov (United States)

    Yang, X.; Brunetti, E.; Gil, D. Reboredo; Welsh, G. H.; Li, F. Y.; Cipiccia, S.; Ersfeld, B.; Grant, D. W.; Grant, P. A.; Islam, M. R.; Tooley, M. P.; Vieux, G.; Wiggins, S. M.; Sheng, Z. M.; Jaroszynski, D. A.

    2017-01-01

    Laser-wakefield accelerators are compact devices capable of delivering ultra-short electron bunches with pC-level charge and MeV-GeV energy by exploiting the ultra-high electric fields arising from the interaction of intense laser pulses with plasma. We show experimentally and through numerical simulations that a high-energy electron beam is produced simultaneously with two stable lower-energy beams that are ejected in oblique and counter-propagating directions, typically carrying off 5–10% of the initial laser energy. A MeV, 10s nC oblique beam is ejected in a 30°–60° hollow cone, which is filled with more energetic electrons determined by the injection dynamics. A nC-level, 100s keV backward-directed beam is mainly produced at the leading edge of the plasma column. We discuss the apportioning of absorbed laser energy amongst the three beams. Knowledge of the distribution of laser energy and electron beam charge, which determine the overall efficiency, is important for various applications of laser-wakefield accelerators, including the development of staged high-energy accelerators. PMID:28281679

  11. Tunable Electron Multibunch Production in Plasma Wakefield Accelerators

    CERN Document Server

    Hidding, B; Wittig, G; Aniculaesei, C; Jaroszynski, D; McNeil, B W J; Campbell, L T; Islam, M R; Ersfeld, B; Sheng, Z -M; Xi, Y; Deng, A; Rosenzweig, J B; Andonian, G; Murokh, A; Hogan, M J; Bruhwiler, D L; Cormier, E

    2014-01-01

    Synchronized, independently tunable and focused $\\mu$J-class laser pulses are used to release multiple electron populations via photo-ionization inside an electron-beam driven plasma wave. By varying the laser foci in the laboratory frame and the position of the underdense photocathodes in the co-moving frame, the delays between the produced bunches and their energies are adjusted. The resulting multibunches have ultra-high quality and brightness, allowing for hitherto impossible bunch configurations such as spatially overlapping bunch populations with strictly separated energies, which opens up a new regime for light sources such as free-electron-lasers.

  12. Hosing Instability Suppression in Self-Modulated Plasma Wakefields

    CERN Document Server

    Vieira, J; Muggli, P

    2014-01-01

    We show that the hosing instability can be suppressed after the saturation of the self-modulation instability of a long particle bunch if the plasma density perturbation is linear. We derive scalings for maximum bunch tilts and seeds for the self-modulation instability to ensure stable propagation beyond saturation of self-modulation. Numerical solutions of the reduced hosing equations and three-dimensional particle-in-cell simulations confirm our analytical findings. Our results may also apply when a train of particle bunches or laser pulses excites a linear wake.

  13. Relativistic heat conduction and thermoelectric properties of nonuniform plasmas

    CERN Document Server

    Honda, M

    2003-01-01

    Relativistic heat transport in electron-two-temperature plasmas with density gradients has been investigated. The Legendre expansion analysis of relativistically modified kinetic equations shows that strong inhibition of heat flux appears in relativistic temperature regimes, suppressing the classical Spitzer-H{\\"a}rm conduction. The Seebeck coefficient, the Wiedemann-Franz law, and the thermoelectric figure of merit are derived in the relativistic regimes.

  14. Multi-gigaelectronvolt acceleration of positrons in a self-loaded plasma wakefield.

    Science.gov (United States)

    Corde, S; Adli, E; Allen, J M; An, W; Clarke, C I; Clayton, C E; Delahaye, J P; Frederico, J; Gessner, S; Green, S Z; Hogan, M J; Joshi, C; Lipkowitz, N; Litos, M; Lu, W; Marsh, K A; Mori, W B; Schmeltz, M; Vafaei-Najafabadi, N; Walz, D; Yakimenko, V; Yocky, G

    2015-08-27

    Electrical breakdown sets a limit on the kinetic energy that particles in a conventional radio-frequency accelerator can reach. New accelerator concepts must be developed to achieve higher energies and to make future particle colliders more compact and affordable. The plasma wakefield accelerator (PWFA) embodies one such concept, in which the electric field of a plasma wake excited by a bunch of charged particles (such as electrons) is used to accelerate a trailing bunch of particles. To apply plasma acceleration to electron-positron colliders, it is imperative that both the electrons and their antimatter counterpart, the positrons, are efficiently accelerated at high fields using plasmas. Although substantial progress has recently been reported on high-field, high-efficiency acceleration of electrons in a PWFA powered by an electron bunch, such an electron-driven wake is unsuitable for the acceleration and focusing of a positron bunch. Here we demonstrate a new regime of PWFAs where particles in the front of a single positron bunch transfer their energy to a substantial number of those in the rear of the same bunch by exciting a wakefield in the plasma. In the process, the accelerating field is altered--'self-loaded'--so that about a billion positrons gain five gigaelectronvolts of energy with a narrow energy spread over a distance of just 1.3 metres. They extract about 30 per cent of the wake's energy and form a spectrally distinct bunch with a root-mean-square energy spread as low as 1.8 per cent. This ability to transfer energy efficiently from the front to the rear within a single positron bunch makes the PWFA scheme very attractive as an energy booster to an electron-positron collider.

  15. Non-linear Ion-wake Excitation by Ultra-relativistic Electron Wakefields

    CERN Document Server

    Sahai, Aakash A

    2015-01-01

    The excitation of a non-linear ion-wake by a train of ultra-relativistic plasmons is modeled and its use for a novel regime of positron acceleration is explored. Its channel-like structure is independent of the energy-source driving the bubble-shaped slowly-propagating high phase-velocity electron density waves. The back of the bubble electron compression sucks-in the ions and the space-charge within the bubble expels them, forming a near-void channel with on-axis and bubble-edge density-spikes. The channel-edge density-spike is driven radially outwards as a non-linear ion acoustic-wave by the wake electron thermal pressure. OSIRIS PIC simulations are used to study the ion-wake structure, its evolution and its use for positron acceleration.

  16. Potential applications of the dielectric wakefield accelerators in the SINBAD facility at DESY

    Energy Technology Data Exchange (ETDEWEB)

    Nie, Y.C., E-mail: yuancun.nie@desy.de [Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg (Germany); Assmann, R.; Dorda, U.; Marchetti, B. [Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg (Germany); Weikum, M. [Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg (Germany); University of Strathclyde, G1 1XQ Glasgow (United Kingdom); Zhu, J.; Hüning, M. [Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg (Germany)

    2016-09-01

    Short, high-brightness relativistic electron bunches can drive ultra-high wakefields in the dielectric wakefield accelerators (DWFAs). This effect can be used to generate high power THz coherent Cherenkov radiation, accelerate a witness bunch with gradient two or three orders of magnitude larger than that in the conventional RF linear accelerators, introduce energy modulation within the driving bunch itself, etc. The paper studies potential applications of the DWFAs in the SINBAD facility at DESY. The simulations show that the ultra-short relativistic bunches from the SINBAD injector ARES can excite accelerating wakefields with peak amplitudes as high as GV/m at THz frequencies in proper DWFA structures. In addition, it illustrates that the DWFA structure can serve as a dechirper to compensate the correlated energy spread of the bunches accelerated by the laser plasma wakefield accelerator.

  17. Phase space linearization and external injection of electron bunches into laser-driven plasma wakefields at REGAE

    Energy Technology Data Exchange (ETDEWEB)

    Zeitler, Benno Michael Georg [Hamburg Univ. (Germany). Fakultaet fuer Mathematik, Informatik und Naturwissenschaften

    2017-01-15

    Laser Wake field Acceleration (LWFA) has the potential to become the next-generation acceleration technique for electrons. In particular, the large field gradients provided by these plasma-based accelerators are an appealing property, promising a significant reduction of size for future machines and user facilities. Despite the unique advantages of these sources, however, as of today, the produced electron bunches cannot yet compete in all beam quality criteria compared to conventional acceleration methods. Especially the stability in terms of beam pointing and energy gain, as well as a comparatively large energy spread of LWFA electron bunches require further advancement for their applicability. The accelerated particles are typically trapped from within the plasma which is used to create the large field gradients in the wake of a high-power laser. From this results a lack of control and access to observing the actual electron injection - and, consequently, a lack of experimental verification. To tackle this problem, the injection of external electrons into a plasma wakefield seems promising. In this case, the initial beam parameters are known, so that a back-calculation and reconstruction of the wakefield structure are feasible. Such an experiment is planned at the Relativistic Electron Gun for Atomic Exploration (REGAE). REGAE, which is located at DESY in Hamburg, is a small linear accelerator offering unique beam parameters compatible with the requirements of the planned experiment. The observations and results gained from such an external injection are expected to improve the beam quality and stability of internal injection variants, due to the broadened understanding of the underlying plasma dynamics. Furthermore, an external injection will always be required for so-called staging of multiple LWFA-driven cavities. Also, the demonstration of a suchlike merging of conventional and plasma accelerators gives rise to novel hybrid accelerators, where the matured

  18. A variational approach to resistive relativistic plasmas

    CERN Document Server

    Andersson, N; Hawke, I

    2016-01-01

    We develop an action principle to construct the field equations for a multi-fluid system containing charge-neutral fluids, plasmas, and dissipation (via resistive interactions), by combining the standard, Maxwell action and minimal coupling of the electromagnetic field with a recently developed action for relativistic dissipative fluids. We use a pull-back formalism from spacetime to abstract matter spaces to build unconstrained variations for both the charge-neutral fluids and currents making up the plasmas. Using basic linear algebra techniques, we show that a general "relabeling" invariance exists for the abstract matter spaces. With the field equations in place, a phenomenological model for the resistivity is developed, using as constraints charge conservation and the Second Law of Thermodynamics. A minimal model for a system of electrons, protons, and heat is developed using the Onsager procedure for incorporating dissipation.

  19. A variational approach to resistive relativistic plasmas

    Science.gov (United States)

    Andersson, N.; Comer, G. L.; Hawke, I.

    2017-06-01

    We develop an action principle to construct the field equations for a multi-fluid system containing charge-neutral fluids, plasmas, and dissipation (via resistive interactions), by combining the standard, Maxwell action and minimal coupling of the electromagnetic field with a recently developed action for relativistic dissipative fluids. We use a pull-back formalism from spacetime to abstract matter spaces to build unconstrained variations for both the charge-neutral fluids and currents making up the plasmas. Using basic linear algebra techniques, we show that a general ‘relabeling’ invariance exists for the abstract matter spaces. With the field equations in place, a phenomenological model for the resistivity is developed, using as constraints charge conservation and the Second Law of Thermodynamics. A minimal model for a system of electrons, protons, and heat is developed using the Onsager procedure for incorporating dissipation.

  20. Colliding ionization injection in a plasma wakefield accelerator

    Science.gov (United States)

    Wan, Y.; Zhang, C. J.; Li, F.; Wu, Y. P.; Hua, J. F.; Pai, C.-H.; Lu, W.; Gu, Y. Q.; Xu, X. L.; Joshi, C.; Mori, W. B.

    2016-03-01

    A new scheme of generating high quality electron bunches via ionization injection triggered by an counter propagating laser pulse inside a beam driven plasma wake is proposed and examined via two-dimensional particle-in-cell (PIC) simulations. This scheme has two major advantages: first, the injection distance is easily tunable by varying the launching time or the focal position of the laser pulse; second, the electrons in each injected slice are released at nearly the same time. Both factors can significantly reduce the phase space mixing during the ionization injection process (Xu et al 2014 Phys. Rev. Lett. 112 035003, Xu et al 2014 Phys. Rev. Spec. Top.: Accel. Beams 17 061301, Li et al 2013 Phys. Rev. Lett. 111 015003), leading to very small energy spreads (˜10 keV for slice,˜100 keV for the whole bunch) and very small normalized emittance (˜few nm). As an example, a 4.5 fs 0.4 pC electron bunch with normalized emittance of 3.3 nm, slice energy spread of 13 keV, absolute energy spread of 80 keV, and a brightness of 7.2× {{10}18} A m-2rad-2 is obtained under realistic conditions. This scheme may have potential applications for future compact coherent light sources.

  1. Characterization of the equilibrium configuration for modulated beams in a plasma wakefield accelerator

    CERN Document Server

    Martorelli, Roberto

    2016-01-01

    We analyze the equilibrium configuration for a modulated beam with sharp boundaries exposed to the fields self-generated by the interaction with a plasma. Through a semi-analytical approach we show the presence of multiple equilibrium configurations and we determine the one more suitable for wakefield excitation. Once pointed out the absence of confinement for the front of the beam and the consequently divergence driven by the emittance, we study the evolution of the equilibrium configuration while propagating in the plasma, discarding all the others time-dependencies. We show the onset of a rigid backward drift of the equilibrium configuration and we provide an explanation in the increasing length of the first bunch.

  2. Beam Transfer Line Design for a Plasma Wakefield Acceleration Experiment (AWAKE) at the CERN SPS

    CERN Document Server

    Bracco, C; Brethoux, D; Clerc, V; Goddard, B; Gschwendtner, E; Jensen, L K; Kosmicki, A; Le Godec, G; Meddahi, M; Muggli, P; Mutin, C; Osborne, O; Papastergiou, K; Pardons, A; Velotti, F M; Vincke, H

    2013-01-01

    The world’s first proton driven plasma wakefield acceleration experiment (AWAKE) is presently being studied at CERN. The experimentwill use a high energy proton beam extracted from the SPS as driver. Two possible locations for installing the AWAKE facility were considered: the West Area and the CNGS beam line. The previous transfer line from the SPS to the West Area was completely dismantled in 2005 and would need to be fully re-designed and re-built. For this option, geometric constraints for radiation protection reasons would limit the maximum proton beam energy to 300 GeV. The existing CNGS line could be used by applying only minor changes to the lattice for the final focusing and the interface between the proton beam and the laser, required for plasma ionisation and bunch-modulation seeding. The beam line design studies performed for the two options are presented.

  3. Plasma wakefields in the quasi-nonlinear regime: Experiments at ATF

    Science.gov (United States)

    Rosenzweig, J. B.; Andonian, G.; Barber, S.; Ferrario, M.; Muggli, P.; O'Shea, B.; Sakai, Y.; Valloni, A.; Williams, O.; Xi, Y.; Yakimenko, V.

    2012-12-01

    In this work we present details of planned experiments to investigate certain aspects of the quasi non linear regime (QNL) of plasma wakefield acceleration (PWFA). In the QNL regime it is, in principal, possible to combine the benefits of both nonlinear and linear PWFA. That is, beams of high quality can be maintained through acceleration due to the complete ejection of plasma electrons from beam occupied region, while large energy gains can be achieved through use of transformer ratio increasing schemes, such as ramped bunch trains. With the addition of an short focal length PMQ triplet capable of focusing beams to the few micron scale and the ability to generate tunable bunch trains, the Accelerator Test Facility (ATF) at Brookhaven National Lab offers the unique capabilities to probe these characteristics of the QNL regime.

  4. High quality electron beam generation in a proton-driven hollow plasma wakefield accelerator

    CERN Document Server

    Li, Yangmei; Lotov, Konstantin V; Sosedkin, Alexander P; Hanahoe, Kieran; Mete-Apsimon, Oznur

    2016-01-01

    Proton-driven plasma wakefield accelerators have numerically demonstrated substantially higher accelerating gradients compared to conventional accelerators and the viability of accelerating electrons to energy frontier in a single plasma stage. However, due to the intrinsic strong and radially varying transverse fields, the beam quality is still far from suitable for practical application in future colliders. Here we propose a new accelerating region which is free from both plasma electrons and ions in the proton-driven hollow plasma channel. The high quality electron beam is therefore generated with this scheme without transverse plasma fields. The results show that a 1 TeV proton driver can propagate and accelerate an electron beam to 0.62 TeV with correlated energy spread of 4.6% and well-preserved normalized emittance below 2.4 mm mrad in a single hollow plasma channel of 700 m. More importantly, the beam loading tolerance is significantly improved compared to the uniform plasma case. This high quality an...

  5. Hosing Instability of the Drive Electron Beam in the E157 Plasma-Wakefield Acceleration Experiment at the Stanford Linear Accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Blue, Brent Edward; /SLAC /UCLA

    2005-10-10

    In the plasma-wakefield experiment at SLAC, known as E157, an ultra-relativistic electron beam is used to both excite and witness a plasma wave for advanced accelerator applications. If the beam is tilted, then it will undergo transverse oscillations inside of the plasma. These oscillations can grow exponentially via an instability know as the electron hose instability. The linear theory of electron-hose instability in a uniform ion column predicts that for the parameters of the E157 experiment (beam charge, bunch length, and plasma density) a growth of the centroid offset should occur. Analysis of the E157 data has provided four critical results. The first was that the incoming beam did have a tilt. The tilt was much smaller than the radius and was measured to be 5.3 {micro}m/{delta}{sub z} at the entrance of the plasma (IP1.) The second was the beam centroid oscillates in the ion channel at half the frequency of the beam radius (betatron beam oscillations), and these oscillations can be predicted by the envelope equation. Third, up to the maximum operating plasma density of E157 ({approx}2 x 10{sup 14} cm{sup -3}), no growth of the centroid offset was measured. Finally, time-resolved data of the beam shows that up to this density, no significant growth of the tail of the beam (up to 8ps from the centroid) occurred even though the beam had an initial tilt.

  6. Synergistic Direct/Wakefield Acceleration of Plasma Electrons In the Plasma Bubble Regime Using Tailored Laser Pulses

    Science.gov (United States)

    Shvets, Gennady

    2016-10-01

    The integration of direct laser acceleration (DLA) and laser wakefield acceleration (LWFA) is a new approach to plasma-based acceleration that confers several benefits over both schemes taken separately. Such integration requires a significant portion of the laser energy (e.g., a separate laser pulse) to trail the main bubble-producing laser pulse, and resonantly interact with the trapped accelerated electrons undergoing betatron motion inside the plasma bubble. I will demonstrate how electron dephasing from the accelerating wakefield, which is one of the key limitations of LWFA, is reduced by their growing undulating motion. Moreover, the distinct energy gains from wake and the laser pulse are compounding, thereby increasing the total energy gain. Even more significant increases of the overall acceleration can be obtained by moving away from single-frequency laser format toward combining mid-infrared laser pulses for plasma bubble generation with short-wavelength trailing pulses for DLA. Various injection mechanisms, such as ionization injection, external injection, self-injection, and their advantages will also be discussed. Translating these new concepts into specific experiments will take advantage of recent technological advances in synchronizing laser and electron beams, and using multiple beamlines for producing sophisticated laser pulse formats.

  7. Efficient modeling of plasma wakefield acceleration in quasi-non-linear-regimes with the hybrid code Architect

    Science.gov (United States)

    Marocchino, A.; Massimo, F.; Rossi, A. R.; Chiadroni, E.; Ferrario, M.

    2016-09-01

    In this paper we present a hybrid approach aiming to assess feasible plasma wakefield acceleration working points with reduced computation resources. The growing interest for plasma wakefield acceleration and especially the need to control with increasing precision the quality of the accelerated bunch demands for more accurate and faster simulations. Particle in cell codes are the state of the art technique to simulate the underlying physics, however the run-time represents the major drawback. Architect is a hybrid code that treats the bunch kinetically and the background electron plasma as a fluid, initialising bunches in vacuum so to take into account for the transition from vacuum to plasma. Architect solves directly the Maxwell's equations on a Yee lattice. Such an approach allows us to drastically reduce run time without loss of generality or accuracy up to the weakly non linear regime.

  8. Efficient modeling of plasma wakefield acceleration in quasi-non-linear-regimes with the hybrid code Architect

    Energy Technology Data Exchange (ETDEWEB)

    Marocchino, A., E-mail: albz.uk@gmail.com [Dipartimento SBAI, “Sapienza” University of Rome and INFN-Roma 1, Rome (Italy); Massimo, F. [Dipartimento SBAI, “Sapienza” University of Rome and INFN-Roma 1, Rome (Italy); Rossi, A.R. [Dipartimento di Fisica, University of Milan and INFN-Milano, Milano (Italy); Chiadroni, E.; Ferrario, M. [INFN-LNF, Frascati (Italy)

    2016-09-01

    In this paper we present a hybrid approach aiming to assess feasible plasma wakefield acceleration working points with reduced computation resources. The growing interest for plasma wakefield acceleration and especially the need to control with increasing precision the quality of the accelerated bunch demands for more accurate and faster simulations. Particle in cell codes are the state of the art technique to simulate the underlying physics, however the run-time represents the major drawback. Architect is a hybrid code that treats the bunch kinetically and the background electron plasma as a fluid, initialising bunches in vacuum so to take into account for the transition from vacuum to plasma. Architect solves directly the Maxwell's equations on a Yee lattice. Such an approach allows us to drastically reduce run time without loss of generality or accuracy up to the weakly non linear regime.

  9. An ultrashort pulse ultra-violet radiation undulator source driven by a laser plasma wakefield accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Anania, M. P. [SUPA, Department of Physics, University of Strathclyde, Glasgow G4 0NG (United Kingdom); INFN, Laboratori Nazionali di Frascati, I-00044 Frascati (Italy); Brunetti, E.; Wiggins, S. M.; Grant, D. W.; Welsh, G. H.; Issac, R. C.; Cipiccia, S.; Shanks, R. P.; Manahan, G. G.; Aniculaesei, C.; Jaroszynski, D. A., E-mail: d.a.jaroszynski@strath.ac.uk [SUPA, Department of Physics, University of Strathclyde, Glasgow G4 0NG (United Kingdom); Geer, S. B. van der; Loos, M. J. de [Pulsar Physics, Burghstraat 47, 5614 BC Eindhoven (Netherlands); Poole, M. W.; Shepherd, B. J. A.; Clarke, J. A. [ASTeC, STFC, Daresbury Laboratory, Warrington WA4 4AD (United Kingdom); Gillespie, W. A. [SUPA, School of Engineering, Physics and Mathematics, University of Dundee, Dundee DD1 4HN (United Kingdom); MacLeod, A. M. [School of Computing and Creative Technologies, University of Abertay Dundee, Dundee DD1 1HG (United Kingdom)

    2014-06-30

    Narrow band undulator radiation tuneable over the wavelength range of 150–260 nm has been produced by short electron bunches from a 2 mm long laser plasma wakefield accelerator based on a 20 TW femtosecond laser system. The number of photons measured is up to 9 × 10{sup 6} per shot for a 100 period undulator, with a mean peak brilliance of 1 × 10{sup 18} photons/s/mrad{sup 2}/mm{sup 2}/0.1% bandwidth. Simulations estimate that the driving electron bunch r.m.s. duration is as short as 3 fs when the electron beam has energy of 120–130 MeV with the radiation pulse duration in the range of 50–100 fs.

  10. Optmized stability of a modulated driver in a plasma wakefield accelerator

    CERN Document Server

    Martorelli, Roberto

    2016-01-01

    We analyze the transverse stability for a configuration of multiple gaussian bunches subject to the self-generated plasma wakefield. Through a semi-analytical approach we first study the equilibrium configuration for the modulated beam and then we investigate the evolution of the equilibrium configuration due to the emittance-driven expansion of the beam front that results in a rigid backward shift. The rear-directed shift brings the modulated beam out of the equilibrium, with the possibility for some of the bunch particles to be lost with a consequent deterioration of the driver. We look therefore for the proper position of the single bunches that maximize the stability without severely affecting the accelerating field behind the driver. We then compare the results with 3D PIC simulations.

  11. Optimizing density down-ramp injection for beam-driven plasma wakefield accelerators

    Science.gov (United States)

    Martinez de la Ossa, A.; Hu, Z.; Streeter, M. J. V.; Mehrling, T. J.; Kononenko, O.; Sheeran, B.; Osterhoff, J.

    2017-09-01

    Density down-ramp (DDR) injection is a promising concept in beam-driven plasma wakefield accelerators for the generation of high-quality witness beams. We review and complement the theoretical principles of the method and employ particle-in-cell (PIC) simulations in order to determine constrains on the geometry of the density ramp and the current of the drive beam, regarding the applicability of DDR injection. Furthermore, PIC simulations are utilized to find optimized conditions for the production of high-quality beams. We find and explain the intriguing result that the injection of an increased charge by means of a steepened ramp favors the generation of beams with lower emittance. Exploiting this fact enables the production of beams with high charge (˜140 pC ), low normalized emittance (˜200 nm ) and low uncorrelated energy spread (0.3%) in sufficiently steep ramps even for drive beams with moderate peak current (˜2.5 kA ).

  12. Efficient numerical modelling of the emittance evolution of beams with finite energy spread in plasma wakefield accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Mehrling, T.J., E-mail: timon.mehrling@desy.de [Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg (Germany); Robson, R.E. [Centre for Quantum Dynamics, School of Natural Sciences, Griffith University, Brisbane (Australia); Erbe, J-H.; Osterhoff, J. [Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg (Germany)

    2016-09-01

    This paper introduces a semi-analytic numerical approach (SANA) for the rapid computation of the transverse emittance of beams with finite energy spread in plasma wakefield accelerators in the blowout regime. The SANA method is used to model the beam emittance evolution when injected into and extracted from realistic plasma profiles. Results are compared to particle-in-cell simulations, establishing the accuracy and efficiency of the procedure. In addition, it is demonstrated that the tapering of vacuum-to-plasma and plasma-to-vacuum transitions is a viable method for the mitigation of emittance growth of beams during their injection and extraction from and into plasma cells.

  13. Multidimensional electron beam-plasma instabilities in the relativistic regime

    OpenAIRE

    BRET, ANTOINE; Gremillet, Laurent; Dieckmann, Mark Eric

    2010-01-01

    The interest in relativistic beam-plasma instabilities has been greatly rejuvenated over the past two decades by novel concepts in laboratory and space plasmas. Recent advances in this long-standing field are here reviewed from both theoretical and numerical points of view. The primary focus is on the two-dimensional spectrum of unstable electromagnetic waves growing within relativistic, unmagnetized, and uniform electron beam-plasma systems. Although the goal is to provide a unified picture ...

  14. Ultra-low frequency shock dynamics in degenerate relativistic plasmas

    Science.gov (United States)

    Islam, S.; Sultana, S.; Mamun, A. A.

    2017-09-01

    A degenerate relativistic three-component plasma model is proposed for ultra-low frequency shock dynamics. A reductive perturbation technique is adopted, leading to Burgers' nonlinear partial differential equation. The properties of the shock waves are analyzed via the stationary shock wave solution for different plasma configuration parameters. The role of different intrinsic plasma parameters, especially the relativistic effects on the linear wave properties and also on the shock dynamics, is briefly discussed.

  15. Nonlinear magnetosonic waves in dense plasmas with non-relativistic and ultra-relativistic degenerate electrons

    Energy Technology Data Exchange (ETDEWEB)

    Hussain, S.; Mahmood, S.; Rehman, Aman-ur- [Theoretical Physics Division (TPD), PINSTECH, P.O. Nilore, Islamabad 44000, Pakistan and Pakistan Institute of Engineering and Applied Sciences (PIEAS), P.O. Nilore, Islamabad 44000 (Pakistan)

    2014-11-15

    Linear and nonlinear propagation of magnetosonic waves in the perpendicular direction to the ambient magnetic field is studied in dense plasmas for non-relativistic and ultra-relativistic degenerate electrons pressure. The sources of nonlinearities are the divergence of the ions and electrons fluxes, Lorentz forces on ions and electrons fluids and the plasma current density in the system. The Korteweg-de Vries equation for magnetosonic waves propagating in the perpendicular direction of the magnetic field is derived by employing reductive perturbation method for non-relativistic as well as ultra-relativistic degenerate electrons pressure cases in dense plasmas. The plots of the magnetosonic wave solitons are also shown using numerical values of the plasma parameters such a plasma density and magnetic field intensity of the white dwarfs from literature. The dependence of plasma density and magnetic field intensity on the magnetosonic wave propagation is also pointed out in dense plasmas for both non-relativistic and ultra-relativistic degenerate electrons pressure cases.

  16. An accurate Rb density measurement method for a plasma wakefield accelerator experiment using a novel Rb reservoir

    Energy Technology Data Exchange (ETDEWEB)

    Öz, E.; Batsch, F.; Muggli, P.

    2016-09-01

    A method to accurately measure the density of Rb vapor is described. We plan on using this method for the Advanced Wakefield (AWAKE) (Assmann et al., 2014 [1]) project at CERN , which will be the world's first proton driven plasma wakefield experiment. The method is similar to the hook (Marlow, 1967 [2]) method and has been described in great detail in the work by Hill et al. (1986) [3]. In this method a cosine fit is applied to the interferogram to obtain a relative accuracy on the order of 1% for the vapor density–length product. A single-mode, fiber-based, Mach–Zenhder interferometer will be built and used near the ends of the 10 meter-long AWAKE plasma source to be able to make accurate relative density measurement between these two locations. This can then be used to infer the vapor density gradient along the AWAKE plasma source and also change it to the value desired for the plasma wakefield experiment. Here we describe the plan in detail and show preliminary results obtained using a prototype 8 cm long novel Rb vapor cell.

  17. An accurate Rb density measurement method for a plasma wakefield accelerator experiment using a novel Rb reservoir

    CERN Document Server

    Öz, E; Muggli, P

    2016-01-01

    A method to accurately measure the density of Rb vapor is described. We plan on using this method for the Advanced Wakefield (AWAKE)~\\cite{bib:awake} project at CERN , which will be the world's first proton driven plasma wakefield experiment. The method is similar to the hook~\\cite{bib:Hook} method and has been described in great detail in the work by W. Tendell Hill et. al.~\\cite{bib:densitymeter}. In this method a cosine fit is applied to the interferogram to obtain a relative accuracy on the order of $1\\%$ for the vapor density-length product. A single-mode, fiber-based, Mach-Zenhder interferometer will be built and used near the ends of the 10 meter-long AWAKE plasma source to be able to make accurate relative density measurement between these two locations. This can then be used to infer the vapor density gradient along the AWAKE plasma source and also change it to the value desired for the plasma wakefield experiment. Here we describe the plan in detail and show preliminary results obtained using a prot...

  18. An accurate Rb density measurement method for a plasma wakefield accelerator experiment using a novel Rb reservoir

    Science.gov (United States)

    Öz, E.; Batsch, F.; Muggli, P.

    2016-09-01

    A method to accurately measure the density of Rb vapor is described. We plan on using this method for the Advanced Wakefield (AWAKE) (Assmann et al., 2014 [1]) project at CERN , which will be the world's first proton driven plasma wakefield experiment. The method is similar to the hook (Marlow, 1967 [2]) method and has been described in great detail in the work by Hill et al. (1986) [3]. In this method a cosine fit is applied to the interferogram to obtain a relative accuracy on the order of 1% for the vapor density-length product. A single-mode, fiber-based, Mach-Zenhder interferometer will be built and used near the ends of the 10 meter-long AWAKE plasma source to be able to make accurate relative density measurement between these two locations. This can then be used to infer the vapor density gradient along the AWAKE plasma source and also change it to the value desired for the plasma wakefield experiment. Here we describe the plan in detail and show preliminary results obtained using a prototype 8 cm long novel Rb vapor cell.

  19. IMPROVEMENTS FOR THE THIRD GENERATION PLASMA WAKEFIELD EXPERIMENT E-164 AT SLAC

    Energy Technology Data Exchange (ETDEWEB)

    Barnes, C

    2004-09-15

    The E-164 experiment at the Stanford Linear Accelerator Center is the third in a series investigating Plasma Wakefield Acceleration where the wake is driven by electron bunches. A collaboration between SLAC, UCLA and USC, E-164 has up to 2 x 10{sup 10} electrons at 28.5 GeV in 100 micron long bunches. These bunches enter a 30cm long Lithium plasma with density of 6 x 10{sup 15} electrons/cm{sup 3}, where the transfer of energy from the head of the bunch to the tail takes place. In addition to acceleration, strong focusing, refraction of the electron beam and ''betatron X-ray'' production are all investigated. E-164 builds on related prior experiments, and its apparatus has evolved considerably. A third Optical Transition Radiator has been added for real time Twiss Parameter measurements which include the effects of scattering. The plasma cell is moved to the focus of the Final Focus Test Beam facility in order to increase bunch electron density. Spectrometry is extended with an upstream chicane in a dispersive region to produce synchrotron X-rays. Performance of these improvements and status of the experiment are discussed.

  20. Sapphire capillaries for laser-driven wakefield acceleration in plasma. Fs-laser micromachining and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Schwinkendorf, Jan-Patrick

    2012-08-15

    Plasma wakefields are a promising approach for the acceleration of electrons with ultrahigh (10 to 100 GV/m) electric fields. Nowadays, high-intensity laser pulses are routinely utilized to excite these large-amplitude plasma waves. However, several detrimental effects such as laser diffraction, electron-wake dephasing and laser depletion may terminate the acceleration process. Two of these phenomena can be mitigated or avoided by the application of capillary waveguides, e.g. fabricated out of sapphire for longevity. Capillaries may compensate for laser diffraction like a fiber and allow for the creation of tapered gas-density profiles working against the dephasing between the accelerating wave and the particles. Additionally, they offer the possibility of controlled particle injection. This thesis is reporting on the set up of a laser for fs-micromachining of capillaries of almost arbitrary shapes and a test stand for density-profile characterization. These devices will permit the creation of tailored gas-density profiles for controlled electron injection and acceleration inside plasma.

  1. Betatron radiation based diagnostics for plasma wakefield accelerated electron beams at the SPARC-LAB test facility

    Energy Technology Data Exchange (ETDEWEB)

    Shpakov, V.; Anania, M.P.; Biagioni, A.; Chiadroni, E. [INFN - LNF, via Enrico Fermi 40, 00044 Frascati (Italy); Cianchi, A. [INFN - LNF, via Enrico Fermi 40, 00044 Frascati (Italy); “Tor Vergata” University, via della Ricerca Scientifica 1, 00133 Rome (Italy); Curcio, A. [INFN - LNF, via Enrico Fermi 40, 00044 Frascati (Italy); Dabagov, S. [INFN - LNF, via Enrico Fermi 40, 00044 Frascati (Italy); P.N. Lebedev Physical Institute RAS, Leninskiy Prospekt 53, 119991 Moscow (Russian Federation); NRNU “MEPhI”, Kashirskoe highway 31, 115409 Moscow (Russian Federation); Ferrario, M.; Filippi, F. [INFN - LNF, via Enrico Fermi 40, 00044 Frascati (Italy); Marocchino, A. [Dipartimento SBAI Universitá di Roma ‘La Sapienza’, via Antonio Scarpa 14/16, 00161 Rome (Italy); Paroli, B. [INFN - MI, via Celoria 16, 20133 Milan (Italy); Pompili, R. [INFN - LNF, via Enrico Fermi 40, 00044 Frascati (Italy); Rossi, A.R. [INFN - MI, via Celoria 16, 20133 Milan (Italy); Zigler, A. [Racah Institute of Physics Hebrew University of Jerusalem (Israel)

    2016-09-01

    Recent progress with wake-field acceleration has shown a great potential in providing high gradient acceleration fields, while the quality of the beams remains relatively poor. Precise knowledge of the beam size at the exit from the plasma and matching conditions for the externally injected beams are the key for improvement of beam quality. Betatron radiation emitted by the beam during acceleration in the plasma is a powerful tool for the transverse beam size measurement, being also non-intercepting. In this work we report on the technical solutions chosen at SPARC-LAB for such diagnostics tool, along with expected parameters of betatron radiation. - Highlights: • The betatron radiation parameters in SPARC-LAB wakefiled experiments were studied. • The differences with betatron radiation in other wake-field experiments were highlighted. • The solution for betatron radiation detection was investigated.

  2. Terahertz radiation driven by two-color laser pulses at near-relativistic intensities: Competition between photoionization and wakefield effects.

    Science.gov (United States)

    González de Alaiza Martínez, P; Davoine, X; Debayle, A; Gremillet, L; Bergé, L

    2016-06-03

    We numerically investigate terahertz (THz) pulse generation by linearly-polarized, two-color femtosecond laser pulses in highly-ionized argon. Major processes consist of tunneling photoionization and ponderomotive forces associated with transverse and longitudinal field excitations. By means of two-dimensional particle-in-cell (PIC) simulations, we reveal the importance of photocurrent mechanisms besides transverse and longitudinal plasma waves for laser intensities >10(15) W/cm(2). We demonstrate the following. (i) With two-color pulses, photoionization prevails in the generation of GV/m THz fields up to 10(17) W/cm(2) laser intensities and suddenly loses efficiency near the relativistic threshold, as the outermost electron shell of ionized Ar atoms has been fully depleted. (ii) PIC results can be explained by a one-dimensional Maxwell-fluid model and its semi-analytical solutions, offering the first unified description of the main THz sources created in plasmas. (iii) The THz power emitted outside the plasma channel mostly originates from the transverse currents.

  3. Plasma wakefields driven by an incoherent combination of laser pulses: a path towards high-average power laser-plasma accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Benedetti, C.; Schroeder, C.B.; Esarey, E.; Leemans, W.P.

    2014-05-01

    he wakefield generated in a plasma by incoherently combining a large number of low energy laser pulses (i.e.,without constraining the pulse phases) is studied analytically and by means of fully-self-consistent particle-in-cell simulations. The structure of the wakefield has been characterized and its amplitude compared with the amplitude of the wake generated by a single (coherent) laser pulse. We show that, in spite of the incoherent nature of the wakefield within the volume occupied by the laser pulses, behind this region the structure of the wakefield can be regular with an amplitude comparable or equal to that obtained from a single pulse with the same energy. Wake generation requires that the incoherent structure in the laser energy density produced by the combined pulses exists on a time scale short compared to the plasma period. Incoherent combination of multiple laser pulses may enable a technologically simpler path to high-repetition rate, high-average power laser-plasma accelerators and associated applications.

  4. 9 GeV Energy Gain in a Beam-Driven Plasma Wakefield Accelerator

    CERN Document Server

    Litos, M; Allen, J M; An, W; Clarke, C I; Corde, S; Clayton, C E; Frederico, J; Gessner, S J; Green, S Z; Hogan, M J; Joshi, C; Lu, W; Marsh, K A; Mori, W B; Schmeltz, M; Vafaei-Najafabadi, N; Yakimenko, V

    2015-01-01

    An electron beam has gained a maximum energy of 9 GeV per particle in a 1.3 m-long electron beam-driven plasma wakefield accelerator. The amount of charge accelerated in the spectral peak was 28.3 pC, and the root-mean-square energy spread was 5.0%. The mean accelerated charge and energy gain per particle of the 215 shot data set was 115 pC and 5.3 GeV, respectively, corresponding to an acceleration gradient of 4.0 GeV/m at the spectral peak. The mean energy spread of the data set was 5.1%. These results are consistent with the extrapolation of the previously reported energy gain results using a shorter, 36 cm-long plasma source to within 10%, evincing a non-evolving wake structure that can propagate distances of over a meter in length. Wake-loading effects were evident in the data through strong dependencies observed between various spectral properties and the amount of accelerated charge.

  5. Three electron beams from a laser-plasma wakefield accelerator and the energy apportioning question

    CERN Document Server

    Yang, X; Reboredo Gil, David; Welsh, Gregor H; Li, Y.F; Cipiccia, Silvia; Ersfeld, Bernhard; Grant, D. W; Grant, P. A; Islam, Muhammad; Tooley, M.B; Vieux, Gregory; Wiggins, Sally; Sheng, Zheng-Ming; Jaroszynski, Dino

    2017-01-01

    Laser-wakefield accelerators are compact devices capable of delivering ultra-short electron bunches with pC-level charge and MeV-GeV energy by exploiting the ultra-high electric fields arising from the interaction of intense laser pulses with plasma. We show experimentally and through numerical simulations that a high-energy electron beam is produced simultaneously with two stable lowerenergy beams that are ejected in oblique and counter-propagating directions, typically carrying off 5–10% of the initial laser energy. A MeV, 10s nC oblique beam is ejected in a 30°–60° hollow cone, which is filled with more energetic electrons determined by the injection dynamics. A nC-level, 100s keV backward-directed beam is mainly produced at the leading edge of the plasma column. We discuss the apportioning of absorbed laser energy amongst the three beams. Knowledge of the distribution of laser energy and electron beam charge, which determine the overall efficiency, is important for various applications of laser-wake...

  6. Characterization and Application of Hard X-Ray Betatron Radiation Generated by Relativistic Electrons from a Laser-Wakefield Accelerator

    CERN Document Server

    Schnell, Michael; Uschmann, Ingo; Jansen, Oliver; Kaluza, Malte Christoph; Spielmann, Christian

    2015-01-01

    The necessity for compact table-top x-ray sources with higher brightness, shorter wavelength and shorter pulse duration has led to the development of complementary sources based on laser-plasma accelerators, in contrast to conventional accelerators. Relativistic interaction of short-pulse lasers with underdense plasmas results in acceleration of electrons and in consequence in the emission of spatially coherent radiation, which is known in the literature as betatron radiation. In this article we report on our recent results in the rapidly developing field of secondary x-ray radiation generated by high-energy electron pulses. The betatron radiation is characterized with a novel setup allowing to measure the energy, the spatial energy distribution in the far-field of the beam and the source size in a single laser shot. Furthermore, the polarization state is measured for each laser shot. In this way the emitted betatron x-rays can be used as a non-invasive diagnostic tool to retrieve very subtle information of t...

  7. TURBULENT RECONNECTION IN RELATIVISTIC PLASMAS AND EFFECTS OF COMPRESSIBILITY

    Energy Technology Data Exchange (ETDEWEB)

    Takamoto, Makoto [Max-Planck-Institut für Kernphysik, Heidelberg (Germany); Inoue, Tsuyoshi [Division of Theoretical Astronomy, National Astronomical Observatory of Japan (Japan); Lazarian, Alexandre, E-mail: mtakamoto@eps.s.u-tokyo.ac.jp, E-mail: tsuyoshi.inoue@nao.ac.jp, E-mail: alazarian@facstaff.wisc.edu [Department of Astronomy, University of Wisconsin, 475 North Charter Street, Madison, WI 53706 (United States)

    2015-12-10

    We report on the turbulence effects on magnetic reconnection in relativistic plasmas using three-dimensional relativistic resistive magnetohydrodynamics simulations. We found that the reconnection rate became independent of the plasma resistivity due to turbulence effects similarly to non-relativistic cases. We also found that compressible turbulence effects modified the turbulent reconnection rate predicted in non-relativistic incompressible plasmas; the reconnection rate saturates, and even decays, as the injected velocity approaches to the Alfvén velocity. Our results indicate that compressibility cannot be neglected when a compressible component becomes about half of the incompressible mode, occurring when the Alfvén Mach number reaches about 0.3. The obtained maximum reconnection rate is around 0.05–0.1, which will be able to reach around 0.1–0.2 if injection scales are comparable to the sheet length.

  8. Measurement of the Charge Reduction and Asymmetrical Interaction Force Created by the Ion Wakefield in a Dusty Plasma

    Science.gov (United States)

    Chen, Mudi; Yousefi, Razieh; Kong, Jie; Qiao, Ke; Carmona-Reyes, Jorge; Matthews, Lorin; Hyde, Truell

    2014-10-01

    The manner in which the ion wakefield forms has strong implications on the structure, stability and dynamics of a complex plasma. The majority of vertically aligned, ordered dust particle structures observed in a complex plasma result from a combination of the ion wakefield and the external confinement. The ion wakefield is also responsible for other interesting phenomena, such as the reduction in charge seen for a down-stream particle in a vertically aligned dust particle chain and the asymmetrical interaction force between the up-stream and down-stream particles. Unfortunately, few experimental measurements of these phenomena are available. In this experiment, one dimensional (1-D) dust particle structures (i.e., particle chains) are formed in a GEC RF reference cell within a glass box sitting on the powered, lower electrode. The charge reduction on the downstream particle and the asymmetric interaction force are examined using an externally produced DC bias applied to the lower electrode and a diode pumped solid state laser (Coherent VERDI) for perturbation.

  9. Alfven solitary waves in nonrelativistic, relativistic, and ultra-relativistic degenerate quantum plasma

    Energy Technology Data Exchange (ETDEWEB)

    Rehman, M. A.; Qureshi, M. N. S. [Department of Physics, GC University, Kachery Road, Lahore 54000 (Pakistan); Shah, H. A. [Department of Physics, Forman Christian College, Ferozepur Road, Lahore 54600 (Pakistan); Masood, W. [COMSATS, Institute of Information Technology, Park Road, Chak Shehzad, Islamabad 44000 (Pakistan); National Centre for Physics (NCP) Shahdra Valley Road, Islamabad (Pakistan)

    2015-10-15

    Nonlinear circularly polarized Alfvén waves are studied in magnetized nonrelativistic, relativistic, and ultrarelativistic degenerate Fermi plasmas. Using the quantum hydrodynamic model, Zakharov equations are derived and the Sagdeev potential approach is used to investigate the properties of the electromagnetic solitary structures. It is seen that the amplitude increases with the increase of electron density in the relativistic and ultrarelativistic cases but decreases in the nonrelativistic case. Both right and left handed waves are considered, and it is seen that supersonic, subsonic, and super- and sub-Alfvénic solitary structures are obtained for different polarizations and under different relativistic regimes.

  10. Relabeling symmetry in relativistic fluids and plasmas

    CERN Document Server

    Kawazura, Yohei; Fukumoto, Yasuhide

    2014-01-01

    The conservation of the recently formulated relativistic canonical helicity [Yoshida Z, Kawazura Y, and Yokoyama T 2014 J. Math. Phys. 55 043101] is derived from Noether's theorem by constructing an action principle on the relativistic Lagrangian coordinates (we obtain general cross helicities that include the helicity of the canonical vorticity). The conservation law is, then, explained by the relabeling symmetry pertinent to the Lagrangian label of fluid elements. Upon Eulerianizing the Noether current, the purely spatial volume integral on the Lagrangian coordinates is mapped to a space-time mixed three-dimensional integral on the four-dimensional Eulerian coordinates. The relativistic conservation law in the Eulerian coordinates is no longer represented by any divergence-free current; hence, it is not adequate to regard the relativistic helicity (represented by the Eulerian variables) as a Noether charge, and this stands the reason why the "conventional helicity" is no longer a constant of motion. We have...

  11. Betatron radiation based diagnostics for plasma wakefield accelerated electron beams at the SPARC_LAB test facility

    Science.gov (United States)

    Shpakov, V.; Anania, M. P.; Biagioni, A.; Chiadroni, E.; Cianchi, A.; Curcio, A.; Dabagov, S.; Ferrario, M.; Filippi, F.; Marocchino, A.; Paroli, B.; Pompili, R.; Rossi, A. R.; Zigler, A.

    2016-09-01

    Recent progress with wake-field acceleration has shown a great potential in providing high gradient acceleration fields, while the quality of the beams remains relatively poor. Precise knowledge of the beam size at the exit from the plasma and matching conditions for the externally injected beams are the key for improvement of beam quality. Betatron radiation emitted by the beam during acceleration in the plasma is a powerful tool for the transverse beam size measurement, being also non-intercepting. In this work we report on the technical solutions chosen at SPARC_LAB for such diagnostics tool, along with expected parameters of betatron radiation.

  12. Intense terahertz radiation from relativistic laser-plasma interactions

    Science.gov (United States)

    Liao, G. Q.; Li, Y. T.; Li, C.; Liu, H.; Zhang, Y. H.; Jiang, W. M.; Yuan, X. H.; Nilsen, J.; Ozaki, T.; Wang, W. M.; Sheng, Z. M.; Neely, D.; McKenna, P.; Zhang, J.

    2017-01-01

    The development of tabletop intense terahertz (THz) radiation sources is extremely important for THz science and applications. This paper presents our measurements of intense THz radiation from relativistic laser-plasma interactions under different experimental conditions. Several THz generation mechanisms have been proposed and investigated, including coherent transition radiation (CTR) emitted by fast electrons from the target rear surface, transient current radiation at the front of the target, and mode conversion from electron plasma waves (EPWs) to THz waves. The results indicate that relativistic laser plasma is a promising driver of intense THz radiation sources.

  13. Scheme for proton-driven plasma-wakefield acceleration of positively charged particles in a hollow plasma channel

    Directory of Open Access Journals (Sweden)

    Longqing Yi (易龙卿

    2013-07-01

    Full Text Available A new scheme for accelerating positively charged particles in a plasma-wakefield accelerator is proposed. If the proton drive beam propagates in a hollow plasma channel, and the beam radius is of order of the channel width, the space charge force of the driver causes charge separation at the channel wall, which helps to focus the positively charged witness bunch propagating along the beam axis. In the channel, the acceleration buckets for positively charged particles are much larger than in the blowout regime of the uniform plasma, and stable acceleration over long distances is possible. In addition, phasing of the witness with respect to the wave can be tuned by changing the radius of the channel to ensure the acceleration is optimal. Two-dimensional simulations suggest that, for proton drivers likely available in future, positively charged particles can be stably accelerated over 1 km with the average acceleration gradient of 1.3  GeV/m.

  14. Recent progresses in relativistic beam-plasma instability theory

    Directory of Open Access Journals (Sweden)

    A. Bret

    2010-11-01

    Full Text Available Beam-plasma instabilities are a key physical process in many astrophysical phenomena. Within the fireball model of Gamma ray bursts, they first mediate a relativistic collisionless shock before they produce upstream the turbulence needed for the Fermi acceleration process. While non-relativistic systems are usually governed by flow-aligned unstable modes, relativistic ones are likely to be dominated by normally or even obliquely propagating waves. After reviewing the basis of the theory, results related to the relativistic kinetic regime of the poorly-known oblique unstable modes will be presented. Relevant systems besides the well-known electron beam-plasma interaction are presented, and it is shown how the concept of modes hierarchy yields a criterion to assess the proton to electron mass ratio in Particle in cell simulations.

  15. Scaling of Magnetic Reconnection in Relativistic Collisionless Pair Plasmas

    Science.gov (United States)

    Liu, Yi-Hsin; Guo, Fan; Daughton, William; Li, Hui; Hesse, Michael

    2015-01-01

    Using fully kinetic simulations, we study the scaling of the inflow speed of collisionless magnetic reconnection in electron-positron plasmas from the non-relativistic to ultra-relativistic limit. In the anti-parallel configuration, the inflow speed increases with the upstream magnetization parameter sigma and approaches the speed of light when sigma is greater than O(100), leading to an enhanced reconnection rate. In all regimes, the divergence of the pressure tensor is the dominant term responsible for breaking the frozen-in condition at the x-line. The observed scaling agrees well with a simple model that accounts for the Lorentz contraction of the plasma passing through the diffusion region. The results demonstrate that the aspect ratio of the diffusion region, modified by the compression factor of proper density, remains approximately 0.1 in both the non-relativistic and relativistic limits.

  16. Relativistic effects on the modulational instability of electron plasma waves in quantum plasma

    Indian Academy of Sciences (India)

    Basudev Ghosh; Swarniv Chandra; Sailendra Nath Paul

    2012-05-01

    Relativistic effects on the linear and nonlinear properties of electron plasma waves are investigated using the one-dimensional quantum hydrodynamic (QHD) model for a twocomponent electron–ion dense quantum plasma. Using standard perturbation technique, a nonlinear Schrödinger equation (NLSE) containing both relativistic and quantum effects has been derived. This equation has been used to discuss the modulational instability of the wave. Through numerical calculations it is shown that relativistic effects significantly change the linear dispersion character of the wave. Unlike quantum effects, relativistic effects are shown to reduce the instability growth rate of electron plasma waves.

  17. Stream instabilities in relativistically hot plasma

    CERN Document Server

    Shaisultanov, Rashid; Eichler, David

    2011-01-01

    The instabilities of relativistic ion beams in a relativistically hot electron background are derived for general propagation angles. It is shown that the Weibel instability in the direction perpendicular to the streaming direction is the fastest growing mode, and probably the first to appear, consistent with the aligned filaments that are seen in PIC simulations. Oblique, quasiperpendicular modes grow almost as fast, as the growth rate varies only moderately with angle, and they may distort or corrugate the filaments after the perpendicular mode saturates.

  18. Waves in relativistic electron beam in low-density plasma

    Science.gov (United States)

    Sheinman, I.; Sheinman (Chernenco, J.

    2016-11-01

    Waves in electron beam in low-density plasma are analyzed. The analysis is based on complete electrodynamics consideration. Dependencies of dispersion laws from system parameters are investigated. It is shown that when relativistic electron beam is passed through low-density plasma surface waves of two types may exist. The first type is a high frequency wave on a boundary between the beam and neutralization area and the second type wave is on the boundary between neutralization area and stationary plasma.

  19. Stable Propagating Waves and Wake Fields in Relativistic Electromagnetic Plasma

    Institute of Scientific and Technical Information of China (English)

    DUAN Yi-Shi; XIE Bai-Song; TIAN Miao; YIN Xin-Tao; ZHANG Xin-Hui

    2008-01-01

    Stable propagating waves and wake fields in relativistic electromagnetic plasma are investigated. The incident electromagnetic field has a finite initial constant amplitude meanwhile the longitudinal momentum of electrons is taken into account in the problem. It is found that in the moving frame with transverse wave group velocity the stable propagating transverse electromagnetic waves and longitudinal plasma wake fields can exist in the appropriate regime of plasma.

  20. Shielding effect and wakefield pattern of a moving test charge in a non-Maxwellian dusty plasma

    Energy Technology Data Exchange (ETDEWEB)

    Ali, S. [National Centre for Physics (NCP), Quaid-e-Azam University Campus, Shahdra Valley Road, Islamabad 44000 (Pakistan); Khan, S. [National Centre for Physics (NCP), Quaid-e-Azam University Campus, Shahdra Valley Road, Islamabad 44000 (Pakistan); Department of Physics, Gomal University, Dera Ismail Khan 29050 (Pakistan)

    2013-07-15

    By using the Vlasov-Poisson equations, we calculate an expression for the electrostatic potential caused by a test charge in an unmagnetized non-Maxwellian dusty plasma, whose constituents are the superthermal hot-electrons, the mobile cold-electrons with a neutralizing background of cold ions, and charge fluctuating isolated dust grains. The superthermality effects due to hot electrons not only modify the dielectric constant of the electron-acoustic waves but also significantly affect the electrostatic potential. The latter can be decomposed into the Debye-Hückel and oscillatory wake potentials. Analytical and numerical results reveal that the Debye-Hückel and wakefield potentials converge to the Maxwellian case for large values of superthermality parameter. Furthermore, the plasma parameters play a vital role in the formation of shielding and wakefield pattern in a two-electron temperature plasma. The present results should be important for laboratory and space dusty plasmas, where hot-electrons can be assumed to follow the non-Maxwellian distribution function.

  1. Controlling multiple filaments by relativistic optical vortex beams in plasmas

    Science.gov (United States)

    Ju, L. B.; Huang, T. W.; Xiao, K. D.; Wu, G. Z.; Yang, S. L.; Li, R.; Yang, Y. C.; Long, T. Y.; Zhang, H.; Wu, S. Z.; Qiao, B.; Ruan, S. C.; Zhou, C. T.

    2016-09-01

    Filamentation dynamics of relativistic optical vortex beams (OVBs) propagating in underdense plasma is investigated. It is shown that OVBs with finite orbital angular momentum (OAM) exhibit much more robust propagation behavior than the standard Gaussian beam. In fact, the growth rate of the azimuthal modulational instability decreases rapidly with increase of the OVB topological charge. Thus, relativistic OVBs can maintain their profiles for significantly longer distances in an underdense plasma before filamentation occurs. It is also found that an OVB would then break up into regular filament patterns due to conservation of the OAM, in contrast to a Gaussian laser beam, which in general experiences random filamentation.

  2. Quantum ion-acoustic solitary waves in weak relativistic plasma

    Indian Academy of Sciences (India)

    Biswajit Sahu

    2011-06-01

    Small amplitude quantum ion-acoustic solitary waves are studied in an unmagnetized twospecies relativistic quantum plasma system, comprised of electrons and ions. The one-dimensional quantum hydrodynamic model (QHD) is used to obtain a deformed Korteweg–de Vries (dKdV) equation by reductive perturbation method. A linear dispersion relation is also obtained taking into account the relativistic effect. The properties of quantum ion-acoustic solitary waves, obtained from the deformed KdV equation, are studied taking into account the quantum mechanical effects in the weak relativistic limit. It is found that relativistic effects significantly modify the properties of quantum ion-acoustic waves. Also the effect of the quantum parameter on the nature of solitary wave solutions is studied in some detail.

  3. Relativistic electromagnetic waves in an electron-ion plasma

    Science.gov (United States)

    Chian, Abraham C.-L.; Kennel, Charles F.

    1987-01-01

    High power laser beams can drive plasma particles to relativistic energies. An accurate description of strong waves requires the inclusion of ion dynamics in the analysis. The equations governing the propagation of relativistic electromagnetic waves in a cold electron-ion plasma can be reduced to two equations expressing conservation of energy-momentum of the system. The two conservation constants are functions of the plasma stream velocity, the wave velocity, the wave amplitude, and the electron-ion mass ratio. The dynamic parameter, expressing electron-ion momentum conversation in the laboratory frame, can be regarded as an adjustable quantity, a suitable choice of which will yield self-consistent solutions when other plasma parameters were specified. Circularly polarized electromagnetic waves and electrostatic plasma waves are used as illustrations.

  4. Solitons in a relativistic plasma with negative ions--

    Energy Technology Data Exchange (ETDEWEB)

    Das, G.C. (Dept. of Mathematics, Manipur Univ. Canchipur, Imphal-795003 (IN)); Karmakar, B. (Dept. of Mathematics, Dinabandhu College, Bongaon, Calcutta (IN)); Ibohanbi Singh, KH. (Dept. of Mathematics, Modern College, Imphal-795001 (IN))

    1990-02-01

    The interaction of the nonlinearity and the dispersiveness causing the solitary waves are studied in a relativistic plasma with negative ions through the derivation of a nonlinear partial differential equation known as the Korteweg-Devries (K-DV) equation. The negative ions play a salient feature on the existence and behavior of the solitons and could be of interest in laboratory plasmas. First, the observations are made in a nonisothermal plasma, and later the reduction to the nonisothermality of the plasma shows entirely different characteristics as compared to the solitons in the isothermal plasmas. A comparison with the various solutions has been emphasized.

  5. Limitation on the accelerating gradient of a wakefield excited by an ultrarelativistic electron beam in rubidium plasma

    Science.gov (United States)

    Vafaei-Najafabadi, N.; Marsh, K. A.; Clayton, C. E.; An, W.; Mori, W. B.; Joshi, C.; Lu, W.; Adli, E.; Corde, S.; Clarke, C. I.; Litos, M.; Green, S. Z.; Gessner, S.; Frederico, J.; Fisher, A. S.; Wu, Z.; Walz, D.; Hogan, M. J.

    2016-10-01

    We have investigated the viability of using plasmas formed by ionization of high Z, low ionization potential element rubidium (Rb) for beam-driven plasma wakefield acceleration. The Rb vapor column confined by argon (Ar) buffer gas was used to reduce the expected limitation on the beam propagation length due to head erosion that was observed previously when a lower Z but higher ionization potential lithium vapor was used. However, injection of electrons into the wakefield due to ionization of Ar buffer gas and nonuniform ionization of Rb1 + to Rb2 + was a possible concern. In this paper we describe experimental results and the supporting simulations which indicate that such ionization of Ar and Rb1 + in the presence of combined fields of the beam and the wakefield inside the wake does indeed occur. Some of this charge accumulates in the accelerating region of the wake leading to the reduction of the electric field—an effect known as beam loading. The beam-loading effect is quantified by determining the average transformer ratio ⟨R ⟩ which is the maximum energy gained divided by the maximum energy lost by the electrons in the bunch used to produce the wake. ⟨R ⟩ is shown to depend on the propagation length and the quantity of the accumulated charge, indicating that the distributed injection of secondary Rb electrons is the main cause of beam loading in this experiment. The average transformer ratio is reduced from 1.5 to less than 1 as the excess charge from secondary ionization increased from 100 to 700 pC. The simulations show that while the decelerating field remains constant, the accelerating field is reduced from its unloaded value of 82 to 46 GeV /m due to this distributed injection of dark current into the wake.

  6. Limitation on the accelerating gradient of a wakefield excited by an ultrarelativistic electron beam in rubidium plasma

    Directory of Open Access Journals (Sweden)

    N. Vafaei-Najafabadi

    2016-10-01

    Full Text Available We have investigated the viability of using plasmas formed by ionization of high Z, low ionization potential element rubidium (Rb for beam-driven plasma wakefield acceleration. The Rb vapor column confined by argon (Ar buffer gas was used to reduce the expected limitation on the beam propagation length due to head erosion that was observed previously when a lower Z but higher ionization potential lithium vapor was used. However, injection of electrons into the wakefield due to ionization of Ar buffer gas and nonuniform ionization of Rb^{1+} to Rb^{2+} was a possible concern. In this paper we describe experimental results and the supporting simulations which indicate that such ionization of Ar and Rb^{1+} in the presence of combined fields of the beam and the wakefield inside the wake does indeed occur. Some of this charge accumulates in the accelerating region of the wake leading to the reduction of the electric field—an effect known as beam loading. The beam-loading effect is quantified by determining the average transformer ratio ⟨R⟩ which is the maximum energy gained divided by the maximum energy lost by the electrons in the bunch used to produce the wake. ⟨R⟩ is shown to depend on the propagation length and the quantity of the accumulated charge, indicating that the distributed injection of secondary Rb electrons is the main cause of beam loading in this experiment. The average transformer ratio is reduced from 1.5 to less than 1 as the excess charge from secondary ionization increased from 100 to 700 pC. The simulations show that while the decelerating field remains constant, the accelerating field is reduced from its unloaded value of 82 to 46  GeV/m due to this distributed injection of dark current into the wake.

  7. Dielectric effects on Thomson scattering in a relativistic magnetized plasma

    DEFF Research Database (Denmark)

    Bindslev, H.

    1991-01-01

    the absorption is small. Symmetry between variables relating to incident and scattered fields is demonstrated and shown to be in agreement with the reciprocity relation. Earlier results are confirmed in the cold plasma limit. Significant relativistic effects, of practical importance to the scattering......The effects of the dielectric properties of a relativistic magnetized plasma on the scattering of electromagnetic radiation by fluctuations in electron density are investigated. The origin of the density fluctuations is not considered. Expressions for the scattering cross-section and the scattered...... power accepted by the receiving antenna are derived for a plasma with spatial dispersion. The resulting expressions allow thermal motion to be included in the description of the plasma and remain valid for frequencies of the probing radiation in the region of omega(p) and omega(ce), provided...

  8. The self-injection threshold in self-guided laser wakefield accelerators

    CERN Document Server

    Mangles, Stuart P D; Bloom, Michael S; Burza, Matthias; Najmudin, Zulfikar; Persson, Anders; Svensson, Kristoffer; Thomas, Alexander G R; Wahlstrom, Claes-Goran

    2012-01-01

    A laser pulse traveling through a plasma can excite large amplitude plasma waves that can be used to accelerate relativistic electron beams in a very short distance---a technique called laser wakefield acceleration. Many wakefield acceleration experiments rely on the process of wavebreaking, or self-injection, to inject electrons into the wave, while other injection techniques rely on operation without self-injection. We present an experimental study into the parameters, including the pulse energy, focal spot quality and pulse power, that determine whether or not a wakefield accelerator will self-inject. By taking into account the processes of self-focusing and pulse compression we are able to extend a previously described theoretical model, where the minimum bubble size required for trapping is not constant but varies slowly with density and find excellent agreement with this model.

  9. Self-injection threshold in self-guided laser wakefield accelerators

    Directory of Open Access Journals (Sweden)

    S. P. D. Mangles

    2012-01-01

    Full Text Available A laser pulse traveling through a plasma can excite large amplitude plasma waves that can be used to accelerate relativistic electron beams in a very short distance—a technique called laser wakefield acceleration. Many wakefield acceleration experiments rely on the process of wave breaking, or self-injection, to inject electrons into the wave, while other injection techniques rely on operation without self-injection. We present an experimental study into the parameters, including the pulse energy, focal spot quality, and pulse power, that determine whether or not a wakefield accelerator will self-inject. By taking into account the processes of self-focusing and pulse compression we are able to extend a previously described theoretical model, where the minimum bubble size k_{p}r_{b} required for trapping is not constant but varies slowly with density and find excellent agreement with this model.

  10. A Relativistic Plasma Polarizer: Impact of Temperature Anisotropy on Relativistic Transparency

    CERN Document Server

    Stark, David J; Arefiev, Alexey V; Hazeltine, R D; Mahajan, S M

    2014-01-01

    3D particle-in-cell simulations demonstrate that the enhanced transparency of a relativistically hot plasma is sensitive to how the energy is partitioned between different degrees of freedom. For an anisotropic electron distribution, propagation characteristics, like the critical density, will depend on the polarization of the electromagnetic wave. Despite the onset of the Weibel instability in such plasmas, the anisotropy can persist long enough to affect laser propagation. This plasma can then function as a polarizer or a waveplate to dramatically alter the pulse polarization.

  11. Beam loading by distributed injection of electrons in a plasma wakefield accelerator.

    Science.gov (United States)

    Vafaei-Najafabadi, N; Marsh, K A; Clayton, C E; An, W; Mori, W B; Joshi, C; Lu, W; Adli, E; Corde, S; Litos, M; Li, S; Gessner, S; Frederico, J; Fisher, A S; Wu, Z; Walz, D; England, R J; Delahaye, J P; Clarke, C I; Hogan, M J; Muggli, P

    2014-01-17

    We show through experiments and supporting simulations that propagation of a highly relativistic and dense electron bunch through a plasma can lead to distributed injection of electrons, which depletes the accelerating field, i.e., beam loads the wake. The source of the injected electrons is ionization of the second electron of rubidium (Rb II) within the wake. This injection of excess charge is large enough to severely beam load the wake, and thereby reduce the transformer ratio T. The reduction of the average T with increasing beam loading is quantified for the first time by measuring the ratio of peak energy gain and loss of electrons while changing the beam emittance. Simulations show that beam loading by Rb II electrons contributes to the reduction of the peak accelerating field from its weakly loaded value of 43  GV/m to a strongly loaded value of 26  GV/m.

  12. Microengineering laser plasma interactions at relativistic intensities

    CERN Document Server

    Jiang, S; Audesirk, H; George, K M; Snyder, J; Krygier, A; Lewis, N S; Schumacher, D W; Pukhov, A; Freeman, R R; Akli, K U

    2015-01-01

    We report on the first successful proof-of-principle experiment to manipulate laser-matter interactions on the microscale using highly ordered Si microwire arrays. The interaction of a high contrast short pulse laser with a flat target via periodic Si microwires yields a substantial enhancement in both total and cut-off energies of the produced electron beam. The self generated electric and magnetic fields behave as an electromagnetic lens that confines and guides electrons between the microwires as they acquire relativistic energies via direct laser acceleration (DLA).

  13. Microengineering Laser Plasma Interactions at Relativistic Intensities.

    Science.gov (United States)

    Jiang, S; Ji, L L; Audesirk, H; George, K M; Snyder, J; Krygier, A; Poole, P; Willis, C; Daskalova, R; Chowdhury, E; Lewis, N S; Schumacher, D W; Pukhov, A; Freeman, R R; Akli, K U

    2016-02-26

    We report on the first successful proof-of-principle experiment to manipulate laser-matter interactions on microscales using highly ordered Si microwire arrays. The interaction of a high-contrast short-pulse laser with a flat target via periodic Si microwires yields a substantial enhancement in both the total and cutoff energies of the produced electron beam. The self-generated electric and magnetic fields behave as an electromagnetic lens that confines and guides electrons between the microwires as they acquire relativistic energies via direct laser acceleration.

  14. Linear Landau damping in strongly relativistic quark gluon plasma

    Energy Technology Data Exchange (ETDEWEB)

    Murtaza, G.; Khattak, N.A.D.; Shah, H.A. [Salam Chair in Physics, G C Univ., Lahore (Pakistan)]|[Dept. of Physics, G C Univ., Lahore (Pakistan)

    2004-07-01

    On the basis of semi classical kinetic Vlasov equation for Quark-Gluon plasma (QGP) and Yang-Mills equation in covariant gauge, linear Landau damping for electrostatic perturbations like Langmuir waves is investigated. For the extreme relativistic case, wherein the thermal speed of the particles exceeds the phase velocity of the perturbations, the linear Landau damping is absent. However, a departure from extreme relativistic case generates an imaginary component of the frequency giving rise to linear Landau damping effect. The relevant integral for the conductivity tensor has been evaluated and the dispersion relation for the longitudinal part of the oscillation obtained. (orig.)

  15. Transverse dynamics of an intense electron bunch traveling through a pre-ionized plasma

    Energy Technology Data Exchange (ETDEWEB)

    Lehe, R., E-mail: remi.lehe@ensta.fr; Thaury, C.; Lifschitz, A.; Rax, J.-M.; Malka, V. [Laboratoire d' Optique Appliquée, ENSTA-CNRS-Ecole Polytechnique, UMR 7639, 91761 Palaiseau (France)

    2014-04-15

    The propagation of a relativistic electron bunch through a plasma is an important problem in both plasma-wakefield acceleration and laser-wakefield acceleration. In those situations, the charge of the accelerated bunch is usually large enough to drive a relativistic wakefield, which then affects the transverse dynamics of the bunch itself. Yet to date, there is no fully relativistic, fully electromagnetic model that describes the generation of this wakefield and its feedback on the bunch. In this article, we derive a model which takes into account all the relevant relativistic and electromagnetic effects involved in the problem. A very good agreement is found between the model and the results of particle-in-cell simulations. The implications of high-charge effects for the transport of the bunch are discussed in detail.

  16. Filamentation in Laser Wakefields

    Science.gov (United States)

    Los, Eva; Trines, Raoul; Silva, Luis; Bingham, Robert

    2016-10-01

    Laser filamentation instability is observed in plasma wakefields with sub-critical densities, and in high density inertial fusion plasmas. This leads to non-uniform acceleration or compression respectively. Here, we present simulation results on laser filamentation in plasma wakefields. The 2-D simulations are carried out using the particle-in-cell code Osiris. The filament intensity was found to increase exponentially before saturating. The maximum amplitude to which the highest intensity filament grew for a specific set of parameters was also recorded, and plotted against a corresponding parameter value. Clear, positively correlated linear trends were established between plasma density, transverse wavenumber k, laser pulse amplitude and maximum filament amplitude. Plasma density and maximum filament amplitude also showed a positive correlation, which saturated after a certain plasma density. Pulse duration and interaction length did not affect either filament intensity or transverse k value in a predictable manner. There was no discernible trend between pulse amplitude and filament width.

  17. The First Principle Formula of the Relativistic Heat Conductivity of Coulomb Electronic Plasmas

    Institute of Scientific and Technical Information of China (English)

    TIAN Chu-Shun; ZHANG Chi; LU Quan-Kang

    2001-01-01

    Making use of the relativistic BBGKY technique,the relativistic generalization of Landau collision integral is obtained.Furthermore,we calculate the relativistic hydrodynamic modes up to the second order in the hydrodynamic wave number.Combining Résibois' method,we present the first principle formula of the relativistic heat conductivity of Coulomb electronic plasmas for low-order corrections.

  18. Phase-mixing self-injection into plasma-wakefield acceleration structures driven in a rising density gradient

    Science.gov (United States)

    Sahai, Aakash Ajit

    We model the phase-mixing self-injection of electrons into plasma-wakefield acceleration structures driven in a longitudinally rising density gradient. Self-injection is the process where some of the plasma electrons lose coherence with the wave due to non-linearities. The non-linearity is inherently and intentionally induced in the plasma oscillations due to the variation of the restoring force along the rising density gradient. These electrons then get trapped in and propagate with the accelerating phase of the plasma-wave. The electron oscillations driven by matched energy-sources are shown to get trapped in the wakefields similar in scaling to the phase-mixing of free oscillations. The onset of trapping is shown to scale with the gradient of rising density and the amplitude of oscillations. The planar longitudinal electron oscillations undergo trajectory crossing above a threshold amplitude or in a density inhomogeneity leading to phase-mixing and trapping of the oscillating electrons to a phase of the wave. In this thesis, we analyze the scaling of the phase-mixing based trapping of electron oscillations, independent of a threshold, in planar geometry driven by an electron beam in a rising density gradient. The cylindrical and spherical geometry electron oscillations undergo phase-mixing irrespective of the amplitude of oscillations. Here, driven radial electron oscillations in cylindrical geometry are shown to undergo phase-mixing leading to trapping of the plasma electrons in a longitudinally rising density gradient. We also present preliminary scaling results of phase-mixing based trapping of radially oscillating electrons in a rising density gradient.

  19. Optical Properties of Relativistic Plasma Mirrors

    CERN Document Server

    Vincenti, H; Kahaly, S; Martin, Ph; Quéré, F

    2013-01-01

    The advent of ultrahigh-power femtosecond lasers creates a need for optical components suitable to handle ultrahigh light intensities. Due to the unavoidable laser-induced ionization of matter, these components will have to be based on a plasma medium. An archetype of such optical elements is a plasma mirror, created when an intense femtosecond laser pulse impinges on a solid target. It consists of a dense plasma, formed by the laser field itself, which specularly reflects the main part of the pulse. Plasma mirrors have major potential applications as active optical elements to manipulate the temporal and spatial properties of intense laser beams, in particular for the generation of intense attosecond pulses of light. We investigate the basic physics involved in the deformation of a plasma mirror resulting from the light pressure exerted by the ultraintense laser during reflection, by deriving a simple model of this fundamental process, which we validate both numerically and experimentally. The understanding ...

  20. Correlation function and electronic spectral line broadening in relativistic plasmas

    Directory of Open Access Journals (Sweden)

    Douis S.

    2013-01-01

    Full Text Available The electrons dynamics and the time autocorrelation function Cee(t for the total electric microfield of the electrons on positive charge impurity embedded in a plasma are considered when the relativistic dynamic of the electrons is taken into account. We have, at first, built the effective potential governing the electrons dynamics. This potential obeys a nonlinear integral equation that we have solved numerically. Regarding the electron broadening of the line in plasma, we have found that when the plasma parameters change, the amplitude of the collision operator changes in the same way as the time integral of Cee(t. The electron-impurity interaction is taken at first time as screened Deutsh interaction and at the second time as Kelbg interaction. Comparisons of all interesting quantities are made with respect to the previous interactions as well as between classical and relativistic dynamics of electrons.

  1. Towards laboratory produced relativistic electron-positron pair plasmas

    Science.gov (United States)

    Chen, Hui; Meyerhofer, D. D.; Wilks, S. C.; Cauble, R.; Dollar, F.; Falk, K.; Gregori, G.; Hazi, A.; Moses, E. I.; Murphy, C. D.; Myatt, J.; Park, J.; Seely, J.; Shepherd, R.; Spitkovsky, A.; Stoeckl, C.; Szabo, C. I.; Tommasini, R.; Zulick, C.; Beiersdorfer, P.

    2011-12-01

    We review recent experimental results on the path to producing electron-positron pair plasmas using lasers. Relativistic pair-plasmas and jets are believed to exist in many astrophysical objects and are often invoked to explain energetic phenomena related to Gamma Ray Bursts and Black Holes. On earth, positrons from radioactive isotopes or accelerators are used extensively at low energies (sub-MeV) in areas related to surface science positron emission tomography and basic antimatter science. Experimental platforms capable of producing the high-temperature pair-plasma and high-flux jets required to simulate astrophysical positron conditions have so far been absent. In the past few years, we performed extensive experiments generating positrons with intense lasers where we found that relativistic electron and positron jets are produced by irradiating a solid gold target with an intense picosecond laser pulse. The positron temperatures in directions parallel and transverse to the beam both exceeded 0.5 MeV, and the density of electrons and positrons in these jets are of order 10 16 cm -3 and 10 13 cm -3, respectively. With the increasing performance of high-energy ultra-short laser pulses, we expect that a high-density, up to 10 18 cm -3, relativistic pair-plasma is achievable, a novel regime of laboratory-produced hot dense matter.

  2. Towards laboratory produced relativistic electron–positron pair plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Hui; Meyerhofer, D. D.; Wilks, S. C.; Cauble, R.; Dollar, F.; Falk, K.; Gregori, G.; Hazi, A.; Moses, E. I.; Murphy, C. D.; Myatt, J.; Park, J.; Seely, J.; Shepherd, R.; Spitkovsky, A.; Stoeckl, C.; Szabo, C. I.; Tommasini, R.; Zulick, C.; Beiersdorfer, P.

    2011-12-01

    We review recent experimental results on the path to producing electron–positron pair plasmas using lasers. Relativistic pair-plasmas and jets are believed to exist in many astrophysical objects and are often invoked to explain energetic phenomena related to Gamma Ray Bursts and Black Holes. On earth, positrons from radioactive isotopes or accelerators are used extensively at low energies (sub-MeV) in areas related to surface science positron emission tomography and basic antimatter science. Experimental platforms capable of producing the high-temperature pair-plasma and high-flux jets required to simulate astrophysical positron conditions have so far been absent. In the past few years, we performed extensive experiments generating positrons with intense lasers where we found that relativistic electron and positron jets are produced by irradiating a solid gold target with an intense picosecond laser pulse. The positron temperatures in directions parallel and transverse to the beam both exceeded 0.5 MeV, and the density of electrons and positrons in these jets are of order 1016 cm-3 and 1013 cm-3, respectively. With the increasing performance of high-energy ultra-short laser pulses, we expect that a high-density, up to 1018 cm-3, relativistic pair-plasma is achievable, a novel regime of laboratory-produced hot dense matter.

  3. Evidence for high-energy and low-emittance electron beams using ionization injection of charge in a plasma wakefield accelerator

    CERN Document Server

    Vafaei-Najafabadi, N; Clayton, C E; Joshi, C; Marsh, K A; Mori, W B; Welch, E C; Lu, W; Adli, E; Allen, J; Clarke, C I; Corde, S; Frederico, J; Gessner, S J; Green, S Z; Hogan, M J; Litos, M D; Yakimenko, V

    2015-01-01

    Ionization injection in a plasma wakefield accelerator was investigated experimentally using two lithium plasma sources of different lengths. The ionization of the helium gas, used to confine the lithium, injects electrons in the wake. After acceleration, these injected electrons were observed as a distinct group from the drive beam on the energy spectrometer. They typically have a charge of tens of pC, an energy spread of a few GeV, and a maximum energy of up to 30 GeV. The emittance of this group of electrons can be many times smaller than the initial emittance of the drive beam. The energy scaling for the trapped charge from one plasma length to the other is consistent with the blowout theory of the plasma wakefield.

  4. Binary collision rates of relativistic thermal plasmas. I Theoretical framework

    Science.gov (United States)

    Dermer, C. D.

    1985-01-01

    Binary collision rates for arbitrary scattering cross sections are derived in the case of a beam of particles interacting with a Maxwell-Boltzmann (MB) plasma, or in the case of two MB plasmas interacting at generally different temperatures. The expressions are valid for all beam energies and plasma temperatures, from the nonrelativistic to the extreme relativistic limits. The calculated quantities include the reaction rate, the energy exchange rate, and the average rate of change of the squared transverse momentum component of a monoenergetic particle beam as a result of scatterings with particles of a MB plasma. Results are specialized to elastic scattering processes, two-temperature reaction rates, or the cold plasma limit, reproducing previous work.

  5. Hot-electron refluxing enhanced relativistic transparency of overdense plasmas

    CERN Document Server

    Yu, Yong; Chen, Zi-Yu; Wang, Jia-Xiang; Zhu, Wen-Jun

    2013-01-01

    A new phenomenon of enhancing the relativistic transparency of overdense plasmas by the influence of hot-electron refluxing has been found via particle-in-cell simulations. When a p-polarized laser pulse, with intensity below the self-induced-transparency (SIT) threshold, obliquely irradiates a thin overdense plasma, the initially opaque plasma would become transparent after a time interval which linearly relies on the thickness of the plasma. This phenomenon can be interpreted by the influence of hot-electron refluxing. As the laser intensity is higher than the SIT threshold, the penetration velocity of the laser in the plasma is enhanced when the refluxing is presented. Simulation data with ion motion considered is also consistent with the assumption that hot-electron refluxing enhances transparency. These results have potential applications in laser shaping.

  6. Transition from coherent to incoherent acceleration of nonthermal relativistic electron induced by an intense light pulse

    Science.gov (United States)

    Liu, Y. L.; Kuramitsu, Y.; Moritaka, T.; Chen, S. H.

    2017-03-01

    Nonthermal acceleration of relativistic electrons due to the wakefield induced by an intense light pulse is investigated. The spectra of the cosmic rays are well represented by power-law. Wakefield acceleration has been considered as a candidate for the origins of cosmic rays. The wakefield can be excited by an intense laser pulse as large-amplitude precursor waves in collisionless shocks in the universe. National Central University (NCU) 100-TW laser facility in Taiwan is able to provide high-repetition rate and short intense laser. To experimentally study the wakefield acceleration for the spectrum of the cosmic rays, particle-in-cell simulations are performed to calculate the energy distribution functions of electrons in fixed laser conditions with various plasma densities. The transitions of wakefields from coherent to inherent are observed as the plasma density increases. The distribution functions indicate that the smooth nonthermal power-law spectra with an index of -2 appear when the incoherent wakefields are excited. In contrast, the mono-peak appear in the spectra when the coherent wakefields are excited. The incoherent wakefields yielding the power-law spectra imply the stochastic accelerating of electrons. To explain the universal nonthermal power-law spectra with an index of -2, we described and extended the stochastic acceleration model based on Fokker-Planck equation by assuming the transition rate as an exponential function.

  7. Review and Recent Advances in PIC Modeling of Relativistic Beams and Plasmas

    CERN Document Server

    Godfrey, Brendan B

    2014-01-01

    Particle-in-Cell (PIC) simulation codes have wide applicability to first-principles modeling of multidimensional nonlinear plasma phenomena, including wake-field accelerators. This review addresses both finite difference and pseudo-spectral PIC algorithms, including numerical instability suppression and generalizations of the spectral field solver.

  8. On the phase velocity of plasma waves in a self-modulated laser wake-field accelerator

    NARCIS (Netherlands)

    Andreev, N. E.; Kirsanov, V. I.; Sakharov, A. S.; van Amersfoort, P. W.; Goloviznin, V. V.

    1996-01-01

    The properties of the wake field excited by a flattop laser pulse with a sharp leading edge and a power below the critical one for relativistic self-focusing are studied analytically and numerically with emphasis on the phase velocity of the plasma wave. The paraxial model describing modulation of t

  9. On the phase velocity of plasma waves in a self-modulated laser wake-field accelerator

    NARCIS (Netherlands)

    Andreev, N. E.; Kirsanov, V. I.; Sakharov, A. S.; van Amersfoort, P. W.; Goloviznin, V. V.

    1996-01-01

    The properties of the wake field excited by a flattop laser pulse with a sharp leading edge and a power below the critical one for relativistic self-focusing are studied analytically and numerically with emphasis on the phase velocity of the plasma wave. The paraxial model describing modulation of t

  10. Parametric decays in relativistic magnetized electron-positron plasmas with relativistic temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, Rodrigo A.; Munoz, Victor [Departamento de Fisica, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago (Chile); Asenjo, Felipe A. [Institute for Fusion Studies, University of Texas at Austin, Austin, Texas 78712 (United States); Alejandro Valdivia, J. [Departamento de Fisica, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago (Chile); Centro para el Desarrollo de la Nanociencia y la Nanotecnologia, CEDENNA, Santiago (Chile)

    2012-08-15

    The nonlinear evolution of a circularly polarized electromagnetic wave in an electron-positron plasma propagating along a constant background magnetic field is considered, by studying its parametric decays. Relativistic effects, of the particle motion in the wave field and of the plasma temperature, are included to obtain the dispersion relation of the decays. The exact dispersion relation of the pump wave has been previously calculated within the context of a relativistic fluid theory and presents two branches: an electromagnetic and an Alfven one. We investigate the parametric decays for the pump wave in these two branches, including the anomalous dispersion zone of the Alfven branch where the group velocity is negative. We solve the nonlinear dispersion relation for different pump wave amplitudes and plasma temperatures, finding various resonant and nonresonant wave couplings. We are able to identify these couplings and study their behavior as we modify the plasma parameters. Some of these couplings are suppressed for larger amplitudes or temperatures. We also find two kinds of modulational instabilities, one involving two sideband daughter waves and another involving a forward-propagating electroacoustic mode and a sideband daughter wave.

  11. Ultrafast science using Laser Wakefield Accelerators

    Science.gov (United States)

    Thomas, Alec G. R.

    2016-10-01

    Recent progress in laser wakefield acceleration has led to the emergence of a new generation of electron and X-ray sources that may have considerable benefits for ultrafast science. Laser wakefield acceleration provides radiation pulses that have femtosecond duration and intrinsic synchronisation with the laser source, allowing for pump-probe measurements with unprecedented temporal resolution. These pulses can be used to study ultrafast dynamical phenomena in plasma and dense material, such as transient magnetic fields, rapidly evolving plasma dynamics and crystal lattice oscillations. In this talk, I will review recent experiments in laser wakefield acceleration and energetic photon generation using the laser systems HERCULES and Lambda-Cubed at the University of Michigan and their use for capturing the dynamics of laser-pumped samples. Studies of the electron beam hosing instability and the generation of annular phase space distributions increase X-ray flux while maintaining its femtosecond duration. Single-shot, spectrally resolved absorption measurements in laser pumped foils can be made on ultrafast timescales using this broadband photon source. Ultrafast electron radiography is able to temporally resolve relativistically expanding magnetic fields in high-intensity laser-solid interactions and the evolution of electric fields in low density plasma. Time-resolved electron diffraction captures structural dynamics in crystalline silicon. I will also discuss the technological needs for and potential impact of such revolutionary compact radiation sources for ultrafast science in the future. US Air Force Office of Scientific Research under Award Number FA9550-12-1-0310, the US National Science Foundation Grants No. 1054164, 0935197, 1535628 and 0810979, US Department of Energy Grant No. DE-NA0002372 and Army Research Office Grant No. W911NF1.

  12. Nonlinear dynamics of electromagnetic pulses in cold relativistic plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Bonatto, A.; Pakter, R.; Rizzato, F.B. [Universidade Federal do Rio Grande do Sul, Instituto de Fisica, Rio Grande do Sul (Brazil)

    2004-07-01

    The propagation of intense electromagnetic pulses in plasmas is a subject of current interest particularly for particle acceleration and laser fusion.In the present analysis we study the self consistent propagation of nonlinear electromagnetic pulses in a one dimensional relativistic electron-ion plasma, from the perspective of nonlinear dynamics. We show how a series of Hamiltonian bifurcations give rise to the electric fields which are of relevance in the subject of particle acceleration. Connections between these bifurcated solutions and results of earlier analysis are made. (authors)

  13. Extended quasiparticle approximation for relativistic electrons in plasmas

    Directory of Open Access Journals (Sweden)

    V.G.Morozov

    2006-01-01

    Full Text Available Starting with Dyson equations for the path-ordered Green's function, it is shown that the correlation functions for relativistic electrons (positrons in a weakly coupled non-equilibrium plasmas can be decomposed into sharply peaked quasiparticle parts and off-shell parts in a rather general form. To leading order in the electromagnetic coupling constant, this decomposition yields the extended quasiparticle approximation for the correlation functions, which can be used for the first principle calculation of the radiation scattering rates in QED plasmas.

  14. Relativistic runaway electrons in tokamak plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Jaspers, R.E.

    1995-02-03

    Runaway electrons are inherently present in a tokamak, in which an electric field is applied to drive a toroidal current. The experimental work is performed in the tokamak TEXTOR. Here runaway electrons can acquire energies of up to 30 MeV. The runaway electrons are studied by measuring their synchrotron radiation, which is emitted in the infrared wavelength range. The studies presented are unique in the sense that they are the first ones in tokamak research to employ this radiation. Hitherto, studies of runaway electrons revealed information about their loss in the edge of the discharge. The behaviour of confined runaways was still a terra incognita. The measurement of the synchrotron radiation allows a direct observation of the behaviour of runaway electrons in the hot core of the plasma. Information on the energy, the number and the momentum distribution of the runaway electrons is obtained. The production rate of the runaway electrons, their transport and the runaway interaction with plasma waves are studied. (orig./HP).

  15. Relativistic simulation of the Vlasov equation for plasma expansion into vacuum

    Directory of Open Access Journals (Sweden)

    H Abbasi

    2012-12-01

    Full Text Available   In this study, relativistic Vlasov simulation of plasma for expansion of collisionless plasma for into vacuum is presented. The model is based on 1+1 dimensional phase space and electrostatic approximation. For this purpose, the electron dynamics is studied by the relativistic Vlasov equation. Regardless of the ions temperature, fluid equations are used for their dynamics. The initial electrons distribution function is the relativistic Maxwellian. The results show that due to the electrons relativistic temperature, the process of the plasma expansion takes place faster, the resulting electric field is stronger and the ions are accelerated to higher velocities, in comparison to the non-relativistic case.

  16. Relativistic modeling capabilities in PERSEUS extended MHD simulation code for HED plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Hamlin, Nathaniel D., E-mail: nh322@cornell.edu [438 Rhodes Hall, Cornell University, Ithaca, NY, 14853 (United States); Seyler, Charles E., E-mail: ces7@cornell.edu [Cornell University, Ithaca, NY, 14853 (United States)

    2014-12-15

    We discuss the incorporation of relativistic modeling capabilities into the PERSEUS extended MHD simulation code for high-energy-density (HED) plasmas, and present the latest hybrid X-pinch simulation results. The use of fully relativistic equations enables the model to remain self-consistent in simulations of such relativistic phenomena as X-pinches and laser-plasma interactions. By suitable formulation of the relativistic generalized Ohm’s law as an evolution equation, we have reduced the recovery of primitive variables, a major technical challenge in relativistic codes, to a straightforward algebraic computation. Our code recovers expected results in the non-relativistic limit, and reveals new physics in the modeling of electron beam acceleration following an X-pinch. Through the use of a relaxation scheme, relativistic PERSEUS is able to handle nine orders of magnitude in density variation, making it the first fluid code, to our knowledge, that can simulate relativistic HED plasmas.

  17. A nonextensive statistics approach for Langmuir waves in relativistic plasmas

    Directory of Open Access Journals (Sweden)

    V. Muñoz

    2006-01-01

    Full Text Available The nonextensive statistics formalism proposed by Tsallis has found many applications in systems with memory effects, long range spatial correlations, and in general whenever the phase space has fractal or multi-fractal structure. These features may appear naturally in turbulent or non-neutral plasmas. In fact, the equilibrium distribution functions which maximize the nonextensive entropy strongly resemble the non-Maxwellian particle distribution functions observed in space and laboratory and turbulent pure electron plasmas. In this article we apply the Tsallis entropy formalism to the problem of longitudinal oscillations in a proton-electron plasma. In particular, we study the equilibrium distribution function and the dispersion relation of longitudinal oscillations in a relativistic plasma, finding interesting differences with the nonrelativistic treatment.

  18. Self-aligning concave relativistic plasma mirror with adjustable focus

    CERN Document Server

    Tsai, Hai-En; Shaw, Joseph M; Stark, David J; Wang, Xiaoming; Zgadzaj, Rafal; Downer, M C

    2016-01-01

    We report an experimental-computational study of the optical properties of plasma mirrors (PMs) at the incident laser frequency when irradiated directly at relativistic intensity (1e18 < I_0 < 1e19 W/cm^2) by near-normally incident (4 degree), high-contrast, 30 fs, 800 nm laser pulses. We find that such relativistic PMs are highly reflective (0.6 to 0.8), and focus a significant fraction of reflected light to intensity as large as 10I_0 at distance f as small 25 microns from the PM, provided that pre-pulses do not exceed 1e14 W/cm^2 prior to 20 ps before arrival of the main pulse peak. Particle-in-cell simulations show that focusing results from denting of the reflecting surface by light pressure combined with relativistic transparency, and that reflectivity and f can be adjusted by controlling pre-plasma length L over the range 0.5 < L < 3 microns. Pump-probe reflectivity measurements show the PM's focusing properties evolve on a ps time scale.

  19. PIC Simulation of Relativistic Electromagnetic Plasma Expansion with Radiation Damping

    Science.gov (United States)

    Noguchi, Koichi; Liang, Edison; Wilks, Scott

    2004-11-01

    One of the unsolved problems in astrophysics is the acceleration of nonthermal high-energy particles. Nonthermal radiation is observed from pulsars, blazers, gamma-ray bursts and black holes. Recently, a new mechanism of relativistic nonthermal particle acceleration, called the Diamagnetic Relativistic Pulse Accelerator(DRPA), discovered using multi-dimensional Particle-in-Cell(PIC) simulations. When a plasma-loaded electromagnetic pulse expands relativistically, the self-induced drift current creates ponderomotive trap, which drags only the fast particles in the trap and leave slow ones behind. Here we study the effect of radiation on an electron-positron plasma accelerated by the DRPA, by introducing the radiation force in our 2D PIC code. In the radiation case, particles are accelerated by the EM pulse but decelerated by the radiation reaction simultaneously, whereas particles are accelerated indefinitely in the non-radiation case. We find that even with the radiation dumping the DRPA mechanism remains robust and particles are accelerated to over γ>100. After the simulation reaches the quasi-equilibrium state, kinetic energy becomes constant, and field energy is converted to radiation using particles as the transfer agent. We will also produce sample light waves of the radiation output.

  20. Simulation of laser-driven plasma beat-wave propagation in collisional weakly relativistic plasmas

    Science.gov (United States)

    Kaur, Maninder; Nandan Gupta, Devki

    2016-11-01

    The process of interaction of lasers beating in a plasma has been explored by virtue of particle-in-cell (PIC) simulations in the presence of electron-ion collisions. A plasma beat wave is resonantly excited by ponderomotive force by two relatively long laser pulses of different frequencies. The amplitude of the plasma wave become maximum, when the difference in the frequencies is equal to the plasma frequency. We propose to demonstrate the energy transfer between the laser beat wave and the plasma wave in the presence of electron-ion collision in nearly relativistic regime with 2D-PIC simulations. The relativistic effect and electron-ion collision both affect the energy transfer between the interacting waves. The finding of simulation results shows that there is a considerable decay in the plasma wave and the field energy over time in the presence of electron-ion collisions.

  1. Induced Compton Scattering by Relativistic Electrons in Magnetized Astrophysical Plasmas.

    Science.gov (United States)

    Sincell, Mark William

    1994-01-01

    The effects of stimulated scattering on high brightness temperature radiation are studied in two important contexts. In the first case, we assume that the radiation is confined to a collimated beam traversing a relativistically streaming magnetized plasma. When the plasma is cold in the bulk frame, stimulated scattering is only significant if the angle between the photon motion and the plasma velocity is less than gamma^{-1} , where gamma is the bulk Lorentz factor. Under the assumption that the center of the photon beam is parallel to the bulk motion, we calculate the scattering rate as a function of the angular spread of the beam and gamma. Magnetization changes the photon recoil, without which stimulated scattering has no effect. It also introduces a strong dependence on frequency and polarization: if the photon frequency matches the electron cyclotron frequency, the scattering rate of photons polarized perpendicular to the magnetic field can be substantially enhanced relative to Thomson, and if the photon frequency is much less than the cyclotron frequency the scattering is suppressed. Applying these calculations to pulsars, we find that stimulated scattering of the radio beam in the magnetized wind believed to exist outside the light cylinder can substantially alter the spectrum and polarization state of the radio signal. We suggest that the scattering rate is so high in some pulsars that the ability of the radio signal to penetrate the pulsar magnetosphere requires modification of either the conventional model of the magnetosphere or assumptions about the effects of stimulated scattering upon a beam. In the second case, we present a model of the radio emission from synchrotron self-absorbed sources, including the effects of induced Compton scattering by the relativistic electrons in the source. Order of magnitude estimates show that stimulated scattering becomes the dominant absorption process when (kTB/m ec^2)tau_{T }_sp{~}> 0.1. Numerical simulations

  2. Fluctuations in the relativistic plasma and primordial magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Lemoine, D. (Institut d' Astrophysique de Paris, CNRS, 98bis Bd Arago, F-75014 Paris (France) DAEC, Observatoire de Paris, Universite Paris VII, CNRS (UA173), F-92195 Meudon Cedex (France))

    1995-03-15

    The stochastic fluctuations of the electromagnetic field in a relativistic electron-positron plasma are studied. The correlation functions of the fluctuating four-current, electric and magnetic fields are computed to leading order using the Schwinger-Keldysh closed time path formulation of thermal field theory. As an application, we consider the scenario proposed by Tajima [ital et] [ital al]. for generating a primordial magnetic field from thermal fluctuations in the prerecombination plasma. We compute the level of magnetic fluctuations sustained by the pair plasma at or before the epoch of big bang nucleosynthesis and conclude that the early Universe was pervaded by a strong low-frequency, albeit small-scale, random magnetic field. The astrophysical implications are briefly discussed.

  3. Femtosecond electron-bunch dynamics in laser wakefields and vacuum

    OpenAIRE

    Khachatryan, A. G.; Irman, A.; Goor, van de, AAAM; Boller, K. -J.

    2007-01-01

    Recent advances in laser wakefield acceleration demonstrated the generation of extremely short (with a duration of a few femtoseconds) relativistic electron bunches with relatively low (of the order of couple of percent) energy spread. In this article we study the dynamics of such bunches in drift space (vacuum) and in channel-guided laser wakefields. Analytical solutions were found for the transverse coordinate of an electron and for the bunch envelope in the wakefield in the case of arbitra...

  4. Classical Equation of State for Dilute Relativistic Plasma

    Science.gov (United States)

    Hussein, N. A.; Eisa, D. A.; Sayed, E. G.

    2016-06-01

    The aim of this paper is to calculate the analytical form of the equation of state for dilute relativistic plasma. We obtained the excess free energy and pressure in the form of a convergent series expansion in terms of the thermal parameter μ where μ = {{m{c^2}} over {KT}}, m is the mass of charge, c is the speed of light, K is the Boltzmann's constant, and T is the absolute temperature. The results are discussed and compared with previous work of other authors.

  5. Relativistic Magnetic Reconnection in Pair Plasmas in Three Dimensions

    CERN Document Server

    Kagan, Daniel; Spitkovsky, Anatoly

    2012-01-01

    We investigate guide-field magnetic reconnection and particle acceleration in relativistic pair plasmas with three-dimensional particle-in-cell (PIC) simulations of a kinetic-scale current sheet in a periodic geometry at low magnetizations. The tearing instability is the dominant mode in the current sheet for all guide field strengths, while the linear kink mode is less important even without guide field. Oblique modes seem to be suppressed entirely. In its nonlinear evolution, the reconnection layer develops a network of interconnected and interacting magnetic flux ropes. As smaller flux ropes merge into larger ones, the reconnection layer evolves toward a three-dimensional, disordered state in which the resulting flux rope segments contain magnetic substructure on plasma skin depth scales. Embedded in the flux ropes, we detect spatially and temporally intermittent sites of dissipation reflected in peaks in the parallel electric field. Magnetic dissipation and particle acceleration persist until the end of t...

  6. Relativistic simulation of the Vlasov equation for plasma expansion into vacuum

    OpenAIRE

    H ABBASI; R Shokoohi; Moridi, M.

    2012-01-01

      In this study, relativistic Vlasov simulation of plasma for expansion of collisionless plasma for into vacuum is presented. The model is based on 1+1 dimensional phase space and electrostatic approximation. For this purpose, the electron dynamics is studied by the relativistic Vlasov equation. Regardless of the ions temperature, fluid equations are used for their dynamics. The initial electrons distribution function is the relativistic Maxwellian. The results show that due to the electrons ...

  7. Complete temporal characterisation of asymmetric pulse compression in a laser wakefield

    CERN Document Server

    Schreiber, J; Mangles, S P D; Kamperidis, C; Kneip, S; Nagel, S R; Palmer, C A J; Rajeev, P P; Najmudin, Z

    2010-01-01

    We present complete experimental characterisation of the temporal shape of an intense ultrashort 200-TW laser pulse driving a laser wakefield. The phase of the pulse was uniquely measured using (second order) frequency resolved optical gating (FROG). The pulses are asymmetrically compressed, and exhibit a positive chirp consistent with the expected asymmetric self-phase modulation due to photon acceleration/deceleration in a relativistic plasma wave. The measured pulse duration decreases linearly with increasing length and density of the plasma, in quantitative agreement with the intensity dependent group velocity variation in the plasma wave.

  8. Relativistic warm plasma theory of nonlinear laser-driven electron plasma waves.

    Science.gov (United States)

    Schroeder, C B; Esarey, E

    2010-05-01

    A relativistic, warm fluid model of a nonequilibrium, collisionless plasma is developed and applied to examine nonlinear Langmuir waves excited by relativistically intense, short-pulse lasers. Closure of the covariant fluid theory is obtained via an asymptotic expansion assuming a nonrelativistic plasma temperature. The momentum spread is calculated in the presence of an intense laser field and shown to be intrinsically anisotropic. Coupling between the transverse and longitudinal momentum variances is enabled by the laser field. A generalized dispersion relation is derived for Langmuir waves in a thermal plasma in the presence of an intense laser field. Including thermal fluctuations in three-velocity-space dimensions, the properties of the nonlinear electron plasma wave, such as the plasma temperature evolution and nonlinear wavelength, are examined and the maximum amplitude of the nonlinear oscillation is derived. The presence of a relativistically intense laser pulse is shown to strongly influence the maximum plasma wave amplitude for nonrelativistic phase velocities owing to the coupling between the longitudinal and transverse momentum variances.

  9. DOE-HEP Final Report for 2013-2016: Studies of plasma wakefields for high repetition-rate plasma collider, and Theoretical study of laser-plasma proton and ion acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Katsouleas, Thomas C. [Duke Univ., Durham, NC (United States). Dept. of Electrical and Computer Engineering; Sahai, Aakash A. [Imperial College, London (United Kingdom). Dept. of Physics

    2016-08-08

    There were two goals for this funded project: 1. Studies of plasma wakefields for high repetition-rate plasma collider, and 2. Theoretical study of laser-plasma proton and ion acceleration. For goal 1, an analytical model was developed to determine the ion-motion resulting from the interaction of non-linear “blow-out” wakefields excited by beam-plasma and laser-plasma interactions. This is key to understanding the state of the plasma at timescales of 1 picosecond to a few 10s of picoseconds behind the driver-energy pulse. More information can be found in the document. For goal 2, we analytically and computationally analyzed the longitudinal instabilities of the laser-plasma interactions at the critical layer. Specifically, the process of “Doppler-shifted Ponderomotive bunching” is significant to eliminate the very high-energy spread and understand the importance of chirping the laser pulse frequency. We intend to publish the results of the mixing process in 2-D. We intend to publish Chirp-induced transparency. More information can be found in the document.

  10. Ponderomotive Acceleration by Relativistic Waves

    CERN Document Server

    Lau, Calvin; Yeh, Po-Chun; Luk, Onnie; McClenaghan, Joseph; Ebisuzaki, Toshikazu; Tajima, Toshiki

    2014-01-01

    In the extreme high intensity regime of electromagnetic (EM) waves in plasma, the acceleration process is found to be dominated by the ponderomotive acceleration (PA). While the wakefields driven by the ponderomotive force of the relativistic intensity EM waves are important, they may be overtaken by the PA itself in the extreme high intensity regime when the dimensionless vector potential $a_0$ of the EM waves far exceeds unity. The energy gain by this regime (in 1D) is shown to be (approximately) proportional to $a_0^2$. Before reaching this extreme regime, the coexistence of the PA and the wakefield acceleration (WA) is observed where the wave structures driven by the wakefields show the phenomenon of multiple and folded wave-breakings. Investigated are various signatures of the acceleration processes such as the dependence on the mass ratio for the energy gain as well as the energy spectral features. The relevance to high energy cosmic ray acceleration and to the relativistic laser acceleration is conside...

  11. Stabilization effect of Weibel modes in relativistic laser fusion plasma

    Science.gov (United States)

    Belghit, Slimen; Sid, Abdelaziz

    2016-06-01

    In this work, the Weibel instability (WI) due to inverse bremsstrahlung (IB) absorption in a laser fusion plasma has been investigated. The stabilization effect due to the coupling of the self-generated magnetic field by WI with the laser wave field is explicitly shown. In this study, the relativistic effects are taken into account. Here, the basic equation is the relativistic Fokker-Planck (F-P) equation. The main obtained result is that the coupling of self-generated magnetic field with the laser wave causes a stabilizing effect of excited Weibel modes. We found a decrease in the spectral range of Weibel unstable modes. This decreasing is accompanied by a reduction of two orders in the growth rate of instable Weibel modes or even stabilization of these modes. It has been shown that the previous analysis of the Weibel instability due to IB has overestimated the values of the generated magnetic fields. Therefore, the generation of magnetic fields by the WI due to IB should not affect the experiences of an inertial confinement fusion.

  12. Laser pulse propagation in inhomogeneous magnetoplasma channels and wakefield acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, B. S., E-mail: bs-phy@yahoo.com; Jain, Archana [Government College Kota, Kota 324001 (India); Jaiman, N. K. [Department of Pure and Applied Physics, University of Kota, Kota 324010 (India); Gupta, D. N. [Department of Physics and Astrophysics, University of Delhi, Delhi 110007 (India); Jang, D. G.; Suk, H. [Department of Physics and Photon Science, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of); Kulagin, V. V. [Sternberg Astronomical Institute of Moscow State University, Moscow 119992 (Russian Federation)

    2014-02-15

    Wakefield excitation in a preformed inhomogeneous parabolic plasma channel by an intense relativistic (≃10{sup 19} W/cm{sup 2}) circularly polarized Gaussian laser pulse is investigated analytically and numerically in the presence of an external longitudinal magnetic field. A three dimensional envelope equation for the evolution of the laser pulse is derived, which includes the effect of the nonparaxial and applied external magnetic field. A relation for the channel radius with the laser spot size is derived and examines numerically to see the external magnetic field effect. It is observed that the channel radius depends on the applied external magnetic field. An analytical expression for the wakefield is derived and validated with the help of a two dimensional particle in cell (2D PIC) simulation code. It is shown that the electromagnetic nature of the wakes in an inhomogeneous plasma channel makes their excitation nonlocal, which results in change of fields with time and external magnetic field due to phase mixing of the plasma oscillations with spatially varying frequencies. The magnetic field effect on perturbation of the plasma density and decreasing length is also analyzed numerically. In addition, it has been shown that the electron energy gain in the inhomogeneous parabolic magnetoplasma channel can be increased significantly compared with the homogeneous plasma channel.

  13. Vacuum laser acceleration of relativistic electrons using plasma mirror injectors

    CERN Document Server

    Thévenet, M; Kahaly, S; Vincenti, H; Vernier, A; Quéré, F; Faure, J

    2015-01-01

    Accelerating particles to relativistic energies over very short distances using lasers has been a long standing goal in physics. Among the various schemes proposed for electrons, vacuum laser acceleration has attracted considerable interest and has been extensively studied theoretically because of its appealing simplicity: electrons interact with an intense laser field in vacuum and can be continuously accelerated, provided they remain at a given phase of the field until they escape the laser beam. But demonstrating this effect experimentally has proved extremely challenging, as it imposes stringent requirements on the conditions of injection of electrons in the laser field. Here, we solve this long-standing experimental problem for the first time by using a plasma mirror to inject electrons in an ultraintense laser field, and obtain clear evidence of vacuum laser acceleration. With the advent of PetaWatt class lasers, this scheme could provide a competitive source of very high charge (nC) and ultrashort rela...

  14. Electron Heating in a Relativistic, Weibel-Unstable Plasma

    CERN Document Server

    Kumar, Rahul; Gedalin, Michael

    2015-01-01

    The dynamics of two initially unmagnetized relativistic counter-streaming homogeneous ion-electron plasma beams are simulated in two dimensions using the particle-in-cell (PIC) method. It is shown that current filaments, which form due to the Weibel instability, develop a large scale longitudinal electric field in the direction opposite to the current carried by the filaments as predicted by theory. Fast moving ions in the current filaments decelerate due to this longitudinal electric field. The same longitudinal electric field, which is partially inductive and partially electrostatic, is identified as the main source of acceleration of electrons in the current filaments. The transverse electric field, though larger than the longitudinal one, is shown to play a smaller role in heating electrons, contrary to previous claims. It is found that, in 1D, the electrons become strongly magnetized and are \\textit{not} accelerated beyond their initial kinetic energy. Rather, the heating of the electrons is enhanced by ...

  15. 2-D studies of Relativistic electron beam plasma instabilities in an inhomogeneous plasma

    CERN Document Server

    Shukla, Chandrashekhar; Patel, Kartik

    2015-01-01

    Relativistic electron beam propagation in plasma is fraught with several micro instabilities like two stream, filamentation etc., in plasma. This results in severe limitation of the electron transport through a plasma medium. Recently, however, there has been an experimental demonstration of improved transport of Mega Ampere of electron currents (generated by the interaction of intense laser with solid target) in a carbon nanotube structured solid target [Phys. Rev Letts. 108, 235005 (2012)]. This then suggests that the inhomogeneous plasma (created by the ionization of carbon nano tube structured target) helps in containing the growth of the beam plasma instabilities. This manuscript addresses this issue with the help of a detailed analytical study and simulations with the help of 2-D Particle - In - Cell code. The study conclusively demonstrates that the growth rate of the dominant instability in the 2-D geometry decreases when the plasma density is chosen to be inhomogeneous, provided the scale length 1/ks...

  16. Investigations of the concept of a multibunch dielectric wakefield accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Onishchenko, I.N., E-mail: onish@kipt.kharkov.ua; Kiselev, V.A.; Linnik, A.F.; Pristupa, V.I.; Sotnikov, G.V.

    2016-09-01

    Theoretical and experimental investigations of the physical principles of multibunch dielectric wakefield accelerator concept based on the wakefield excitation in the dielectric structure by a sequence of relativistic electron bunches are presented. The purpose of the concept is to enhance the wakefield intensity by means of the multibunch coherent excitation and wakefield accumulation in a resonator. The acceleration of bunches is achieved at detuning of bunch repetition frequency relative to the frequency of the excited wakefield. In such a way the sequence of bunches is divided into exciting and accelerated parts due to displacing bunches into accelerating phases of wakefield excited by a previous part of bunches of the same sequence. Besides the change of the permittivity and loss tangent of dielectrics under the irradiation by 100 MeV electron beam is studied.

  17. Semi-relativistic hydrodynamics of three-dimensional and low-dimensional quantum plasma

    CERN Document Server

    Andreev, Pavel; Kuz'menkov, Leonid

    2014-01-01

    Contributions of the current-current and Darwin interactions and weak-relativistic addition to kinetic energy in the quantum hydrodynamic equations are considered. Features of hydrodynamic equations for two-dimensional layer of plasma (two-dimensional electron gas for instance) are described. It is shown that the force fields caused by the Darwin interaction and weak-relativistic addition to kinetic energy are partially reduced. Dispersion of three- and two-dimensional semi-relativistic Langmuir waves is calculated.

  18. Exploring novel structures for manipulating relativistic laser-plasma interaction

    Science.gov (United States)

    Ji, Liangliang

    2016-10-01

    The prospect of realizing compact particle accelerators and x-ray sources based on high power lasers has gained numerous attention. Utilization of all the proposed schemes in the field requires the laser-matter-interaction process to be repeatable or moreover, controllable. This has been very challenging at ultra-high light intensities due to the pre-pulse issue and the limitation on target manufacturing. With recent development on pulse cleaning technique, such as XPW and the use of plasma mirror, we now propose a novel approach that leverages recent advancements in 3D nano-printing of materials and high contrast lasers to manipulate the laser-matter interactions on the micro-scales. The current 3D direct laser-writing (DLW) technique can produce repeatable structures with at a resolution as high as 100 nm. Based on 3D PIC simulations, we explored two typical structures, the micro-cylinder and micro-tube targets. The former serves to enhance and control laser-electron acceleration and the latter is dedicated to manipulate relativistic light intensity. First principle-of-proof experiments were carried out in the SCARLET laser facility and confirmed some of our predictions on enhancing direct laser acceleration of electrons and ion acceleration. We believe that the use of the micro-structured elements provides another degree of freedom in LPI and these new results will open new paths towards micro-engineering interaction process that will benefit high field science, laser-based proton therapy, near-QED physics, and relativistic nonlinear optics. This work is supported by the AFOSR Basic Research Initiative (FA9550-14-1-0085).

  19. Secular free solution up to third order of relativistic cold dissipative plasma equations for electromagnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Chandra, S.K.

    1976-01-01

    The perturbation method of Lindstedt is applied to study the relativistic nonlinear effects for an elliptically polarized transverse monochromatic wave in a cold dissipative plasma in the absence of a static magnetic field. Amplitude-dependent wavelength and frequency shifts including relativistic correlations are derived.

  20. Physics of Nonmagnetic Relativistic Thermal Plasmas. Ph.D. Thesis - Calif. Univ., San Diego

    Science.gov (United States)

    Dermer, C. D.

    1984-01-01

    A detailed treatment of the kinematics of relativistic systems of particles and photons is presented. In the case of a relativistic Maxwell-Boltzmann distribution of particles, the reaction rate and luminosity are written as single integrals over the invariant cross section, and the production spectrum is written as a double integral over the cross section differential in the energy of the produced particles (or photons) in the center-of-momentum system of two colliding particles. The results are applied to the calculation of the annihilation spectrum of a thermal electron-positron plasma, confirming previous numerical and analytic results. Relativistic thermal electron-ion and electron-electron bremsstrahlung are calculated exactly to lowest order, and relativistic thermal electron-positron bremsstrahlung is calculated in an approximate fashion. An approximate treatment of relativistic Comptonization is developed. The question of thermalization of a relativistic plasma is considered. A formula for the energy loss or exchange rate from the interaction of two relativistic Maxwell-Boltzmann plasmas at different temperatures is derived. Application to a stable, uniform, nonmagnetic relativistic thermal plasma is made. Comparison is made with other studies.

  1. Applications of laser wakefield accelerator-based light sources

    Science.gov (United States)

    Albert, Félicie; Thomas, Alec G. R.

    2016-11-01

    Laser-wakefield accelerators (LWFAs) were proposed more than three decades ago, and while they promise to deliver compact, high energy particle accelerators, they will also provide the scientific community with novel light sources. In a LWFA, where an intense laser pulse focused onto a plasma forms an electromagnetic wave in its wake, electrons can be trapped and are now routinely accelerated to GeV energies. From terahertz radiation to gamma-rays, this article reviews light sources from relativistic electrons produced by LWFAs, and discusses their potential applications. Betatron motion, Compton scattering and undulators respectively produce x-rays or gamma-rays by oscillating relativistic electrons in the wakefield behind the laser pulse, a counter-propagating laser field, or a magnetic undulator. Other LWFA-based light sources include bremsstrahlung and terahertz radiation. We first evaluate the performance of each of these light sources, and compare them with more conventional approaches, including radio frequency accelerators or other laser-driven sources. We have then identified applications, which we discuss in details, in a broad range of fields: medical and biological applications, military, defense and industrial applications, and condensed matter and high energy density science.

  2. Ion-Acoustic Envelope Modes in a Degenerate Relativistic Electron-Ion Plasma

    CERN Document Server

    McKerr, M; Kourakis, I

    2016-01-01

    A self-consistent relativistic two-fluid model is proposed for one-dimensional electron-ion plasma dynamics. A multiple scales perturbation technique is employed, leading to an evolution equation for the wave envelope, in the form of a nonlinear Schr\\"odinger type equation (NLSE). The inclusion of relativistic effects is shown to introduce density-dependent factors, not present in the non-relativistic case - in the conditions for modulational instability. The role of relativistic effects on the linear dispersion laws and on envelope soliton solutions of the NLSE is discussed.

  3. Accelerator Studies on a possible Experiment on Proton-Driven Plasma Wakefields at CERN

    CERN Document Server

    Assmann, R W; Fartoukh, S; Geschonke, G; Goddard, B; Hessler, C; Hillenbrand, S; Meddahi, M; Roesler, S; Zimmermann, F; Caldwell, A; Muggli, P; Xia, G

    2011-01-01

    There has been a proposal by Caldwell et al to use proton beams as drivers for high energy linear colliders. An experimental test with CERN’s proton beams is being studied. Such a test requires a transfer line for transporting the beam to the experiment, a focusing section for beam delivery into the plasma, the plasma cell and a downstream diagnostics and dump section. The work done at CERN towards the conceptual layout and design of such a test area is presented. A possible development of such a test area into a CERN test facility for high-gradient acceleration experiments is discussed.

  4. Relativistic longitudinal non-Abelian oscillations in quark–antiquark plasma

    Indian Academy of Sciences (India)

    Vishnu M Bannur

    2002-10-01

    We study the relativistic version of the non-Abelian, longitudinal wave in quark–antiquark plasma reported earlier by Bhat et al [Phys. Rev. D39, 649 (1989)]. We have also relaxed various approximations they made in their analysis. Both the quark and antiquark dynamics are taken in our analysis. The non-linearity arising from non-Abelian field as well as from plasma are included. Hence it is an exact longitudinal mode in relativistic quark–antiquark plasma, relevant to the study of quark gluon plasma. We find that earlier results are reproduced for non-relativistic and low amplitude oscillations, but are modified for relativistic or large amplitude waves. Further more, the above results are based on just four first-order equations for gauge invariant quantities derived from gauge covariant twelve first-order equations.

  5. Nonlinear propagation of ion-acoustic waves through the Burgers equation in weakly relativistic plasmas

    Science.gov (United States)

    Hafez, M. G.; Talukder, M. R.; Hossain Ali, M.

    2017-04-01

    The Burgers equation is obtained to study the characteristics of nonlinear propagation of ionacoustic shock, singular kink, and periodic waves in weakly relativistic plasmas containing relativistic thermal ions, nonextensive distributed electrons, Boltzmann distributed positrons, and kinematic viscosity of ions using the well-known reductive perturbation technique. This equation is solved by employing the ( G'/ G)-expansion method taking unperturbed positron-to-electron concentration ratio, electron-to-positron temperature ratio, strength of electrons nonextensivity, ion kinematic viscosity, and weakly relativistic streaming factor. The influences of plasma parameters on nonlinear propagation of ion-acoustic shock, periodic, and singular kink waves are displayed graphically and the relevant physical explanations are described. It is found that these parameters extensively modify the shock structures excitation. The obtained results may be useful in understanding the features of small but finite amplitude localized relativistic ion-acoustic shock waves in an unmagnetized plasma system for some astrophysical compact objects and space plasmas.

  6. Persistence of magnetic field driven by relativistic electrons in a plasma

    CERN Document Server

    Flacco, A; Lifschitz, A; Sylla, F; Kahaly, S; Veltcheva, M; Silva, L O; Malka, V

    2015-01-01

    The onset and evolution of magnetic fields in laboratory and astrophysical plasmas is determined by several mechanisms, including instabilities, dynamo effects and ultra-high energy particle flows through gas, plasma and interstellar-media. These processes are relevant over a wide range of conditions, from cosmic ray acceleration and gamma ray bursts to nuclear fusion in stars. The disparate temporal and spatial scales where each operates can be reconciled by scaling parameters that enable to recreate astrophysical conditions in the laboratory. Here we unveil a new mechanism by which the flow of ultra-energetic particles can strongly magnetize the boundary between the plasma and the non-ionized gas to magnetic fields up to 10-100 Tesla (micro Tesla in astrophysical conditions). The physics is observed from the first time-resolved large scale magnetic field measurements obtained in a laser wakefield accelerator. Particle-in-cell simulations capturing the global plasma and field dynamics over the full plasma le...

  7. Magnetic Moment Fields in Dense Relativistic Plasma Interacting with Laser Radiations

    Directory of Open Access Journals (Sweden)

    B.Ghosh1* , S.N.Paul 1 , S.Bannerjee2 and C.Das3

    2013-04-01

    Full Text Available Theory of the generation of magnetic moment field from resonant interaction of three high frequency electromagnetic waves in un-magnetized dense electron plasma is developed including the relativistic change of electron mass. It is shown that the inclusion of relativistic effect enhances the magnetic moment field. For high intensity laser beams this moment field may be of the order of a few mega gauss. Such a high magnetic field can considerably affect the transport of electrons in fusion plasma

  8. Dynamics of low dimensional model for weakly relativistic Zakharov equations for plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Sahu, Biswajit [Department of Mathematics, West Bengal State University, Barasat, Kolkata-700126 (India); Pal, Barnali; Poria, Swarup [Department of Applied Mathematics, University of Calcutta, Kolkata-700009 (India); Roychoudhury, Rajkumar [Physics and Applied Mathematics Unit, Indian Statistical Institute, Kolkata-700108 (India)

    2013-05-15

    In the present paper, the nonlinear interaction between Langmuir waves and ion acoustic waves described by the one-dimensional Zakharov equations (ZEs) for relativistic plasmas are investigated formulating a low dimensional model. Equilibrium points of the model are found and it is shown that the existence and stability conditions of the equilibrium point depend on the relativistic parameter. Computational investigations are carried out to examine the effects of relativistic parameter and other plasma parameters on the dynamics of the model. Power spectrum analysis using fast fourier transform and also construction of first return map confirm that periodic, quasi-periodic, and chaotic type solution exist for both relativistic as well as in non-relativistic case. Existence of supercritical Hopf bifurcation is noted in the system for two critical plasmon numbers.

  9. Fast reconnection in relativistic plasmas: the magnetohydrodynamics tearing instability revisited

    CERN Document Server

    Del Zanna, L; Landi, S; Bugli, M; Bucciantini, N

    2016-01-01

    Fast reconnection operating in magnetically dominated plasmas is often invoked in models for magnetar giant flares, for magnetic dissipation in pulsar winds, or to explain the gamma-ray flares observed in the Crab nebula, hence its investigation is of paramount importance in high-energy astrophysics. Here we study, by means of two dimensional numerical simulations, the linear phase and the subsequent nonlinear evolution of the tearing instability within the framework of relativistic resistive magnetohydrodynamics, as appropriate in situations where the Alfven velocity approaches the speed of light. It is found that the linear phase of the instability closely matches the analysis in classical MHD, where the growth rate scales with the Lundquist number S as S^-1/2, with the only exception of an enhanced inertial term due to the thermal and magnetic energy contributions. In addition, when thin current sheets of inverse aspect ratio scaling as S^-1/3 are considered, the so-called "ideal" tearing regime is retriev...

  10. Electron Heating in a Relativistic, Weibel-unstable Plasma

    Science.gov (United States)

    Kumar, Rahul; Eichler, David; Gedalin, Michael

    2015-06-01

    The dynamics of two initially unmagnetized relativistic counter-streaming homogeneous ion-electron plasma beams are simulated in two dimensions (2D) using the particle-in-cell (PIC) method. It is shown that current filaments, which form due to the Weibel instability, develop a large-scale longitudinal electric field in the direction opposite to the current carried by the filaments as predicted by theory. This field, which is partially inductive and partially electrostatic, is identified as the main source of net electron acceleration, greatly exceeding that due to magnetic field decay at later stages. The transverse electric field, although larger than the longitudinal field, is shown to play a smaller role in heating electrons, contrary to previous claims. It is found that in one dimension, the electrons become strongly magnetized and are not accelerated beyond their initial kinetic energy. Rather, the heating of the electrons is enhanced by the bending and break up of the filaments, which releases electrons that would otherwise be trapped within a single filament and slow the development of the Weibel instability (i.e., the magnetic field growth) via induction as per Lenz’s law. In 2D simulations, electrons are heated to about one quarter of the initial kinetic energy of ions. The magnetic energy at maximum is about 4%, decaying to less than 1% by the end of the simulation. The ions are found to gradually decelerate until the end of the simulation, by which time they retain a residual anisotropy of less than 10%.

  11. ELECTRON HEATING IN A RELATIVISTIC, WEIBEL-UNSTABLE PLASMA

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Rahul; Eichler, David; Gedalin, Michael [Physics Department, Ben-Gurion University, Be’er-Sheba 84105 (Israel)

    2015-06-20

    The dynamics of two initially unmagnetized relativistic counter-streaming homogeneous ion–electron plasma beams are simulated in two dimensions (2D) using the particle-in-cell (PIC) method. It is shown that current filaments, which form due to the Weibel instability, develop a large-scale longitudinal electric field in the direction opposite to the current carried by the filaments as predicted by theory. This field, which is partially inductive and partially electrostatic, is identified as the main source of net electron acceleration, greatly exceeding that due to magnetic field decay at later stages. The transverse electric field, although larger than the longitudinal field, is shown to play a smaller role in heating electrons, contrary to previous claims. It is found that in one dimension, the electrons become strongly magnetized and are not accelerated beyond their initial kinetic energy. Rather, the heating of the electrons is enhanced by the bending and break up of the filaments, which releases electrons that would otherwise be trapped within a single filament and slow the development of the Weibel instability (i.e., the magnetic field growth) via induction as per Lenz’s law. In 2D simulations, electrons are heated to about one quarter of the initial kinetic energy of ions. The magnetic energy at maximum is about 4%, decaying to less than 1% by the end of the simulation. The ions are found to gradually decelerate until the end of the simulation, by which time they retain a residual anisotropy of less than 10%.

  12. Ion acoustic solitary waves in plasmas with nonextensive distributed electrons, positrons and relativistic thermal ions

    Science.gov (United States)

    Hafez, M. G.; Talukder, M. R.; Sakthivel, R.

    2016-05-01

    The theoretical and numerical studies have been investigated on nonlinear propagation of weakly relativistic ion acoustic solitary waves in an unmagnetized plasma system consisting of nonextensive electrons, positrons and relativistic thermal ions. To study the characteristics of nonlinear propagation of the three-component plasma system, the reductive perturbation technique has been applied to derive the Korteweg-de Vries equation, which divulges the soliton-like solitary wave solution. The ansatz method is employed to carry out the integration of this equation. The effects of nonextensive electrons, positrons and relativistic thermal ions on phase velocity, amplitude and width of soliton and electrostatic nonlinear propagation of weakly relativistic ion acoustic solitary waves have been discussed taking different plasma parameters into consideration. The obtained results can be useful in understanding the features of small amplitude localized relativistic ion acoustic solitary waves in an unmagnetized three-component plasma system for hard thermal photon production with relativistic heavy ions collision in quark-gluon plasma as well as for astrophysical plasmas.

  13. Waves in General Relativistic Two-fluid Plasma around a Schwarzschild Black Hole

    CERN Document Server

    Rahman, M Atiqur

    2010-01-01

    Waves propagating in the relativistic electron-positron or ions plasma are investigated in a frame of two-fluid equations using the 3+1 formalism of general relativity developed by Thorne, Price and Macdonald (TPM). The plasma is assumed to be freefalling in the radial direction toward the event horizon due to the strong gravitational field of a Schwarzschild black hole. The local dispersion relations for transverse and longitudinal waves have been derived, in analogy with the special relativistic formulation as explained in an earlier paper, to take account of relativistic effects due to the event horizon using WKB approximation

  14. Optimal positron-beam excited plasma wakefields in Hollow and Ion-Wake channels

    CERN Document Server

    Sahai, Aakash A

    2015-01-01

    A positron-beam interacting with the plasma electrons drives radial suck-in, in contrast to an electron-beam driven blow-out in the over-dense regime, $n_b>n_0$. In a homogeneous plasma, the electrons are radially sucked-in from all the different radii. The electrons collapsing from different radii do not simultaneously compress on-axis driving weak fields. A hollow-channel allows electrons from its channel-radius to collapse simultaneously exciting coherent fields. We analyze the optimal channel radius. Additionally, the low ion density in the hollow allows a larger region with focusing phase which we show is linearly focusing. We have shown the formation of an ion-wake channel behind a blow-out electron bubble-wake. Here we explore positron acceleration in the over-dense regime comparing an optimal hollow-plasma channel to the ion-wake channel. The condition for optimal hollow-channel radius is also compared. We also address the effects of a non-ideal ion-wake channel on positron-beam excited fields.

  15. Laser-driven plasma wakefield electron acceleration and coherent femtosecond pulse generation in X-ray and gamma ranges

    Science.gov (United States)

    Trunov, V. I.; Lotov, K. V.; Gubin, K. V.; Pestryakov, E. V.; Bagayev, S. N.; Logachev, P. V.

    2017-01-01

    The laser wakefield acceleration (LWFA) of electrons in capillaries and gas jets followed by inverse Compton scattering of high intensity femtosecond laser pulses is discussed. The drive and scattered pulses will be produced by the two-channel multi-terawatt laser system developed in ILP SB RAS.

  16. Two-dimensional studies of relativistic electron beam plasma instabilities in an inhomogeneous plasma

    Energy Technology Data Exchange (ETDEWEB)

    Shukla, Chandrasekhar; Das, Amita, E-mail: amita@ipr.res.in [Institute for Plasma Research, Bhat, Gandhinagar 382428 (India); Patel, Kartik [Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India)

    2015-11-15

    Relativistic electron beam propagation in plasma is fraught with several micro instabilities like two stream, filamentation, etc., in plasma. This results in severe limitation of the electron transport through a plasma medium. Recently, however, there has been an experimental demonstration of improved transport of Mega Ampere of electron currents (generated by the interaction of intense laser with solid target) in a carbon nanotube structured solid target [G. Chatterjee et al., Phys. Rev. Lett. 108, 235005 (2012)]. This then suggests that the inhomogeneous plasma (created by the ionization of carbon nanotube structured target) helps in containing the growth of the beam plasma instabilities. This manuscript addresses this issue with the help of a detailed analytical study and 2-D Particle-In-Cell simulations. The study conclusively demonstrates that the growth rate of the dominant instability in the 2-D geometry decreases when the plasma density is chosen to be inhomogeneous, provided the scale length 1/k{sub s} of the inhomogeneous plasma is less than the typical plasma skin depth (c/ω{sub 0}) scale. At such small scale lengths channelization of currents is also observed in simulation.

  17. Strong electromagnetic waves in a magnetized relativistic electron-positron plasma

    Energy Technology Data Exchange (ETDEWEB)

    Yu, M.Y.; Shukla, P.K.; Rao, N.N. (Bochum Univ. (Germany, F.R.). Inst. fuer Theoretische Physik)

    1984-12-01

    It is shown that in a strongly magnetized relativistic electron-positron plasma, strongly localized large amplitude circularly polarized electromagnetic wave pulses exist. The localization is due to relativistic mass variation as well as ponderomotive force effects. Three types of pulses are found analytically: the sharply spiked pulse in a strongly magnetized cold plasma, the smooth pulse in a weak magnetized warm plasma, and the moderately spiked pulse for a weakly magnetized cold plasma. The physical mechanisms giving rise to these pulses are distinct for each case. Possible implications of our investigation to pulsar radiation are discussed.

  18. Trans-Relativistic Particle Acceleration in Astrophysical Plasmas

    Science.gov (United States)

    Becker, Peter A.; Subramanian, P.

    2014-01-01

    Trans-relativistic particle acceleration due to Fermi interactions between charged particles and MHD waves helps to power the observed high-energy emission in AGN transients and solar flares. The trans-relativistic acceleration process is challenging to treat analytically due to the complicated momentum dependence of the momentum diffusion coefficient. For this reason, most existing analytical treatments of particle acceleration assume that the injected seed particles are already relativistic, and therefore they are not suited to study trans-relativistic acceleration. The lack of an analytical model has forced workers to rely on numerical simulations to obtain particle spectra describing the trans-relativistic case. In this work we present the first analytical solution to the global, trans-relativistic problem describing the acceleration of seed particles due to hard-sphere collisions with MHD waves. The new results include the exact solution for the steady-state Green's function resulting from the continual injection of monoenergetic seed particles with an arbitrary energy. We also introduce an approximate treatment of the trans-relativistic acceleration process based on a hybrid form for the momentum diffusion coefficient, given by the sum of the two asymptotic forms. We refer to this process as "quasi hard-sphere scattering." The main advantage of the hybrid approximation is that it allows the extension of the physical model to include (i) the effects of synchrotron and inverse-Compton losses and (ii) time dependence. The new analytical results can be used to model the trans-relativistic acceleration of particles in AGN and solar environments, and can also be used to compute the spectra of the associated synchrotron and inverse-Compton emission. Applications of both types are discussed. We highlight (i) relativistic ion acceleration in black hole accretion coronae, and (ii) the production of gyrosynchrotron microwave emission due to relativistic electron

  19. Modulation and nonlinear evolution of multi-dimensional Langmuir wave envelopes in a relativistic plasma

    Science.gov (United States)

    Shahmansouri, M.; Misra, A. P.

    2016-12-01

    The modulational instability (MI) and the evolution of weakly nonlinear two-dimensional (2D) Langmuir wave (LW) packets are studied in an unmagnetized collisionless plasma with weakly relativistic electron flow. By using a 2D self-consistent relativistic fluid model and employing the standard multiple-scale technique, a coupled set of Davey-Stewartson (DS)-like equations is derived, which governs the slow modulation and the evolution of LW packets in relativistic plasmas. It is found that the relativistic effects favor the instability of LW envelopes in the k - θ plane, where k is the wave number and θ ( 0 ≤ θ ≤ π ) the angle of modulation. It is also found that as the electron thermal velocity or θ increases, the growth rate of MI increases with cutoffs at higher wave numbers of modulation. Furthermore, in the nonlinear evolution of the DS-like equations, it is seen that with an effect of the relativistic flow, a Gaussian wave beam collapses in a finite time, and the collapse can be arrested when the effect of the thermal pressure or the relativistic flow is slightly relaxed. The present results may be useful to the MI and the formation of localized LW envelopes in cosmic plasmas with a relativistic flow of electrons.

  20. Fast reconnection in relativistic plasmas: the magnetohydrodynamics tearing instability revisited

    Science.gov (United States)

    Del Zanna, L.; Papini, E.; Landi, S.; Bugli, M.; Bucciantini, N.

    2016-08-01

    Fast reconnection operating in magnetically dominated plasmas is often invoked in models for magnetar giant flares, for magnetic dissipation in pulsar winds, or to explain the gamma-ray flares observed in the Crab nebula; hence, its investigation is of paramount importance in high-energy astrophysics. Here we study, by means of two-dimensional numerical simulations, the linear phase and the subsequent non-linear evolution of the tearing instability within the framework of relativistic resistive magnetohydrodynamics (MHD), as appropriate in situations where the Alfvén velocity approaches the speed of light. It is found that the linear phase of the instability closely matches the analysis in classical MHD, where the growth rate scales with the Lundquist number S as S-1/2, with the only exception of an enhanced inertial term due to the thermal and magnetic energy contributions. In addition, when thin current sheets of inverse aspect ratio scaling as S-1/3 are considered, the so-called ideal tearing regime is retrieved, with modes growing independently of S and extremely fast, on only a few light crossing times of the sheet length. The overall growth of fluctuations is seen to solely depend on the value of the background Alfvén velocity. In the fully non-linear stage, we observe an inverse cascade towards the fundamental mode, with Petschek-type supersonic jets propagating at the external Alfvén speed from the X-point, and a fast reconnection rate at the predicted value {R}˜ (ln S)^{-1}.

  1. Acceleration and evolution of a hollow electron beam in wakefields driven by a Laguerre-Gaussian laser pulse

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Guo-Bo [Key Laboratory for Laser Plasmas (MOE) and Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); College of Science, National University of Defense Technology, Changsha 410073 (China); Chen, Min, E-mail: minchen@sjtu.edu.cn, E-mail: yanyunma@126.com; Luo, Ji; Zeng, Ming; Yu, Lu-Le; Weng, Su-Ming [Key Laboratory for Laser Plasmas (MOE) and Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); Schroeder, C. B.; Esarey, E. [Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Li, Fei-Yu [SUPA, Department of Physics, University of Strathclyde, Glasgow G4 0NG (United Kingdom); Ma, Yan-Yun, E-mail: minchen@sjtu.edu.cn, E-mail: yanyunma@126.com; Yu, Tong-Pu [College of Science, National University of Defense Technology, Changsha 410073 (China); Sheng, Zheng-Ming [Key Laboratory for Laser Plasmas (MOE) and Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai 200240 (China); SUPA, Department of Physics, University of Strathclyde, Glasgow G4 0NG (United Kingdom)

    2016-03-15

    We show that a ring-shaped hollow electron beam can be injected and accelerated by using a Laguerre-Gaussian laser pulse and ionization-induced injection in a laser wakefield accelerator. The acceleration and evolution of such a hollow, relativistic electron beam are investigated through three-dimensional particle-in-cell simulations. We find that both the ring size and the beam thickness oscillate during the acceleration. The beam azimuthal shape is angularly dependent and evolves during the acceleration. The beam ellipticity changes resulting from the electron angular momenta obtained from the drive laser pulse and the focusing forces from the wakefield. The dependence of beam ring radius on the laser-plasma parameters (e.g., laser intensity, focal size, and plasma density) is studied. Such a hollow electron beam may have potential applications for accelerating and collimating positively charged particles.

  2. Probing the K-edge of a laser heated aluminum plasma using X-rays from betatron oscillations in a laser wakefield accelerator with femtosecond resolution

    Science.gov (United States)

    Behm, Keegan; Hussein, Amina; Zhao, Tony; Hill, Edward; Maksimchuk, Anatoly; Nees, John; Yanovsky, Victor; Mangles, Stuart; Krushelnick, Karl; Thomas, Alexander; CenterUltrafast Optical Science Team; Plasmas Group Team

    2016-10-01

    Presented here are data from a two-beam pump-probe experiment. We used synchrotron-like X-rays created by betatron oscillations to probe a thin metal foil that is pumped by the secondary laser beam. The Hercules Ti:Sapphire laser facility was operated with a pulse duration of 34 fs and a power of 80 TW split. A 75-25 beam splitter was used to drive a laser wakefield accelerator and heat the secondary target. We observed opacity changes around the K-edge of thin aluminum foil as it was heated by an ultrafast pump laser. To understand how the opacity is changing with heating and expansion of the plasma, the delay between the two laser paths was adjusted on a femtosecond time scale from 50 to 400 fs. Experimental data for aluminum shows variation in opacity around the K-edge with changes in the probe delay. The transmitted synchrotron-like spectrum was measured using single photon counting on an X-ray CCD camera and was available on a shot-by-shot basis. The success of this work demonstrates a practical application for X-rays produced from betatron oscillations in a wakefield accelerator. U.S. Department of Energy and the National Nuclear Security Administration.

  3. Relativistic plasma optics enabled by near-critical density nanostructured material

    CERN Document Server

    Bin, J H; Wang, H Y; Streeter, M J V; Kreuzer, C; Kiefer, D; Yeung, M; Cousens, S; Foster, P S; Dromey, B; Yan, X Q; Meyer-ter-Vehn, J; Zepf, M; Schreiber, J

    2014-01-01

    The nonlinear optical properties of a plasma due to the relativistic electron motion in an intense laser field are of fundamental importance for current research and the generation of brilliant laser-driven sources of particles and photons1-15. Yet, one of the most interesting regimes, where the frequency of the laser becomes resonant with the plasma, has remained experimentally hard to access. We overcome this limitation by utilizing ultrathin carbon nanotube foam16 (CNF) targets allowing the strong relativistic nonlinearities at near- critical density (NCD) to be exploited for the first time. We report on the experimental realization of relativistic plasma optics to spatio-temporally compress the laser pulse within a few micrometers of propagation, while maintaining about half its energy. We also apply the enhanced laser pulses to substantially improve the properties of an ion bunch accelerated from a secondary target. Our results provide first insights into the rich physics of NCD plasmas and the opportuni...

  4. Ion acceleration and plasma jet formation in ultra-thin foils undergoing expansion and relativistic transparency

    Energy Technology Data Exchange (ETDEWEB)

    King, M.; Gray, R.J.; Powell, H.W.; MacLellan, D.A.; Gonzalez-Izquierdo, B. [SUPA Department of Physics, University of Strathclyde, Glasgow G4 0NG (United Kingdom); Stockhausen, L.C. [Centro de Laseres Pulsados (CLPU), Parque Cientifico, Calle del Adaja, s/n. 37185 Villamayor, Salamanca (Spain); Hicks, G.S.; Dover, N.P. [The John Adams Institute for Accelerator Science, Blackett Laboratory, Imperial College London, London SW7 2BZ (United Kingdom); Rusby, D.R. [SUPA Department of Physics, University of Strathclyde, Glasgow G4 0NG (United Kingdom); Central Laser Facility, STFC Rutherford Appleton Laboratory, Oxfordshire OX11 0QX (United Kingdom); Carroll, D.C. [Central Laser Facility, STFC Rutherford Appleton Laboratory, Oxfordshire OX11 0QX (United Kingdom); Padda, H. [SUPA Department of Physics, University of Strathclyde, Glasgow G4 0NG (United Kingdom); Torres, R. [Centro de Laseres Pulsados (CLPU), Parque Cientifico, Calle del Adaja, s/n. 37185 Villamayor, Salamanca (Spain); Kar, S. [Centre for Plasma Physics, Queens University Belfast, Belfast BT7 1NN (United Kingdom); Clarke, R.J.; Musgrave, I.O. [Central Laser Facility, STFC Rutherford Appleton Laboratory, Oxfordshire OX11 0QX (United Kingdom); Najmudin, Z. [The John Adams Institute for Accelerator Science, Blackett Laboratory, Imperial College London, London SW7 2BZ (United Kingdom); Borghesi, M. [Centre for Plasma Physics, Queens University Belfast, Belfast BT7 1NN (United Kingdom); Neely, D. [Central Laser Facility, STFC Rutherford Appleton Laboratory, Oxfordshire OX11 0QX (United Kingdom); McKenna, P., E-mail: paul.mckenna@strath.ac.uk [SUPA Department of Physics, University of Strathclyde, Glasgow G4 0NG (United Kingdom)

    2016-09-01

    At sufficiently high laser intensities, the rapid heating to relativistic velocities and resulting decompression of plasma electrons in an ultra-thin target foil can result in the target becoming relativistically transparent to the laser light during the interaction. Ion acceleration in this regime is strongly affected by the transition from an opaque to a relativistically transparent plasma. By spatially resolving the laser-accelerated proton beam at near-normal laser incidence and at an incidence angle of 30°, we identify characteristic features both experimentally and in particle-in-cell simulations which are consistent with the onset of three distinct ion acceleration mechanisms: sheath acceleration; radiation pressure acceleration; and transparency-enhanced acceleration. The latter mechanism occurs late in the interaction and is mediated by the formation of a plasma jet extending into the expanding ion population. The effect of laser incident angle on the plasma jet is explored.

  5. Self-regulation of the reconnecting current layer in relativistic pair plasma reconnection

    CERN Document Server

    Zenitani, S

    2008-01-01

    We investigate properties of the reconnecting current layer in relativistic pair plasma reconnection. We found that the current layer self-regulates its thickness when the current layer runs out current carriers and so relativistic reconnection retains a fast reconnection rate. Constructing a steady state Sweet-Parker model, we discuss conditions for the current sheet expansion. Based on the energy argument we conclude that the incompressible assumption is invalid in relativistic Sweet-Parker reconnection. The guide field cases are more incompressible than the anti-parallel cases, and we find a more significant current sheet expansion.

  6. Mitigating Particle Integration Error in Relativistic Laser-Plasma Simulations

    Science.gov (United States)

    Higuera, Adam; Weichmann, Kathleen; Cowan, Benjamin; Cary, John

    2016-10-01

    In particle-in-cell simulations of laser wakefield accelerators with a0 greater than unity, errors in particle trajectories produce incorrect beam charges and energies, predicting performance not realized in experiments such as the Texas Petawatt Laser. In order to avoid these errors, the simulation time step must resolve a time scale smaller than the laser period by a factor of a0. If the Yee scheme advances the fields with this time step, the laser wavelength must be over-resolved by a factor of a0 to avoid dispersion errors. Here is presented and demonstrated with Vorpal simulations, a new electromagnetic algorithm, building on previous work, correcting Yee dispersion for arbitrary sub-CFL time steps, reducing simulation times by a0.

  7. Relativistic degeneracy effect on propagation of arbitrary amplitude ion-acoustic solitons in Thomas-Fermi plasmas

    CERN Document Server

    Esfandyari-Kalejahi, Abdolrasoul; Saberian, Ehsan; 10.1585/pfr.5.045

    2011-01-01

    Arbitrary amplitude ion-acoustic solitary waves (IASWs) are studied using Sagdeev-Potential approach in electron-positron-ion plasma with ultra-relativistic or non-relativistic degenerate electrons and positrons and the matching criteria of existence of such solitary waves are numerically investigated. It has been shown that the relativistic degeneracy of electrons and positrons has significant effects on the amplitude and the Mach-number range of IASWs. Also it is remarked that only compressive IASWs can propagate in both non-relativistic and ultra-relativistic degenerate plasmas.

  8. Merging conventional and laser wakefield accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Zeitler, Benno; Schnepp, Matthias; Gehrke, Tim; Gruener, Florian [Hamburg Univ. (Germany); Center for Free-Electron Laser Science (Germany); Grebenyuk, Julia; Mehrling, Timon; Osterhoff, Jens [Hamburg Univ. (Germany); Floettmann, Klaus [Deutsches Elektronen-Synchrotron (DESY) (Germany)

    2013-07-01

    Laser wakefield accelerators deliver high quality electron beams in terms of emittance and bunch length. However there are also parameters which cannot compete with conventional machines, namely spectral width and shot to shot stability. One reason for that is that there is no direct access to the injection mechanism. Injecting a well-characterized electron beam produced by a conventional accelerator into a plasma wakefield could help to solve that problem, since such a pump-probe type experiment should allow for a direct reconstruction of the field distribution and a better understanding of the injection process. REGAE at DESY in Hamburg is a suited accelerator for such a type of experiment. We report on the status of the beamline extension at REGAE and the plans towards the external injection project with the goal to directly measure the wakefield and further improve the stability of laser wakefield accelerators.

  9. Mitigating the hosing instability in relativistic laser-plasma interactions

    Science.gov (United States)

    Ceurvorst, L.; Ratan, N.; Levy, M. C.; Kasim, M. F.; Sadler, J.; Scott, R. H. H.; Trines, R. M. G. M.; Huang, T. W.; Skramic, M.; Vranic, M.; Silva, L. O.; Norreys, P. A.

    2016-05-01

    A new physical model of the hosing instability that includes relativistic laser pulses and moderate densities is presented and derives the density dependence of the hosing equation. This is tested against two-dimensional particle-in-cell simulations. These simulations further examine the feasibility of using multiple pulses to mitigate the hosing instability in a Nd:glass-type parameter space. An examination of the effects of planar versus cylindrical exponential density gradients on the hosing instability is also presented. The results show that strongly relativistic pulses and more planar geometries are capable of mitigating the hosing instability which is in line with the predictions of the physical model.

  10. Nonlinear propagation of weakly relativistic ion-acoustic waves in electron–positron–ion plasma

    Indian Academy of Sciences (India)

    M G HAFEZ; M R TALUKDER; M HOSSAIN ALI

    2016-11-01

    This work presents theoretical and numerical discussion on the dynamics of ion-acoustic solitary wave for weakly relativistic regime in unmagnetized plasma comprising non-extensive electrons, Boltzmann positrons and relativistic ions. In order to analyse the nonlinear propagation phenomena, the Korteweg–de Vries(KdV) equation is derived using the well-known reductive perturbation method. The integration of the derived equation is carried out using the ansatz method and the generalized Riccati equation mapping method. The influenceof plasma parameters on the amplitude and width of the soliton and the electrostatic nonlinear propagation of weakly relativistic ion-acoustic solitary waves are described. The obtained results of the nonlinear low-frequencywaves in such plasmas may be helpful to understand various phenomena in astrophysical compact object and space physics.

  11. Ion acoustic solitary waves in plasmas with nonextensive electrons, Boltzmann positrons and relativistic thermal ions

    Science.gov (United States)

    Hafez, M. G.; Talukder, M. R.

    2015-09-01

    This work investigates the theoretical and numerical studies on nonlinear propagation of ion acoustic solitary waves (IASWs) in an unmagnetized plasma consisting of nonextensive electrons, Boltzmann positrons and relativistic thermal ions. The Korteweg-de Vries (KdV) equation is derived by using the well known reductive perturbation method. This equation admits the soliton like solitary wave solution. The effects of phase velocity, amplitude of soliton, width of soliton and electrostatic nonlinear propagation of weakly relativistic ion-acoustic solitary waves have been discussed with graphical representation found in the variation of the plasma parameters. The obtained results can be helpful in understanding the features of small but finite amplitude localized relativistic ion-acoustic waves for an unmagnetized three component plasma system in astrophysical compact objects.

  12. Relativistic Spherical Wake Wave in Plasma. Relativistic focusing spherical mirror and Schwinger pair production

    Science.gov (United States)

    Bulanov, Stepan; Maksimchuk, Anatoly; Zhidkov, Alexei

    2009-11-01

    We report on the analytic and computer simulation study of a relativistic spherical wake wave. Such a wave in the breaking regime, traveling towards the center is able to reflect and focus the incoming radiation and up-shifting its frequency. The reflected and focused electromagnetic pulse can have such high intensity, that it is able to create e^+e^- pairs via Schwinger process.

  13. Modeling of modified electron-acoustic solitary waves in a relativistic degenerate plasma

    Energy Technology Data Exchange (ETDEWEB)

    Hossen, M. R.; Mamun, A. A. [Jahangirnagar University, Savar, Dhaka (Bangladesh)

    2014-12-15

    The modeling of a theoretical and numerical study on the nonlinear propagation of modified electron-acoustic (mEA) solitary waves has been carried out in an unmagnetized, collisionless, relativistic, degenerate quantum plasma (containing non-relativistic degenerate inertial cold electrons, both non-relativistic and ultra-relativistic degenerate hot electron and inertial positron fluids, and positively-charged static ions). A reductive perturbation technique is used to derive the planar and the nonplanar Korteweg-de Vries (K-dV) equations, which admit a localized wave solution for the solitary profile. The solitary wave's characteristics are found to have been influenced significantly for the non-relativistic and the ultra-relativistic limits. The mEA solitary waves are also found to have been significantly modified due to the effects of the degenerate pressure and the number densities of this dense plasma's constituents. The properties of the planar K-dV solitary wave are quite different from those of the nonplanar K-dV solitary wave. The relevance of our results to astrophysical objects (like white dwarfs and neutron stars), which are of scientific interest, is briefly mentioned.

  14. Energy boost in laser wakefield accelerators using sharp density transitions

    CERN Document Server

    Döpp, A; Thaury, C; Lifschitz, A; Phuoc, K Ta; Malka, V

    2015-01-01

    The energy gain in laser wakefield accelerators is limited by dephasing between the driving laser pulse and the highly relativistic electrons in its wake. Since this phase depends on both the driver and the cavity length, the effects of dephasing can be mitigated with appropriate tailoring of the plasma density along propagation. Preceding studies have discussed the prospects of continuous phase-locking in the linear wakefield regime. However, most experiments are performed in the highly non-linear regime and rely on self-guiding of the laser pulse. Due to the complexity of the driver evolution in this regime it is much more difficult to achieve phase locking. As an alternative we study the scenario of rapid rephasing in sharp density transitions, as was recently demonstrated experimentally. Starting from a phenomenological model we deduce expressions for the electron energy gain in such density profiles. The results are in accordance with particle-in-cell simulations and we present gain estimations for singl...

  15. Thermal-inertial effects on magnetic reconnection in relativistic pair plasmas.

    Science.gov (United States)

    Comisso, Luca; Asenjo, Felipe A

    2014-07-25

    The magnetic reconnection process is studied in relativistic pair plasmas when the thermal and inertial properties of the magnetohydrodynamical fluid are included. We find that in both Sweet-Parker and Petschek relativistic scenarios there is an increase of the reconnection rate owing to the thermal-inertial effects, both satisfying causality. To characterize the new effects we define a thermal-inertial number which is independent of the relativistic Lundquist number, implying that reconnection can be achieved even for vanishing resistivity as a result of only thermal-inertial effects. The current model has fundamental importance for relativistic collisionless reconnection, as it constitutes the simplest way to get reconnection rates faster than those accessible with the sole resistivity.

  16. Angular function for the Compton scattering in mildly and ultra relativistic astrophysical plasmas

    CERN Document Server

    Sazonov, S Y; Sazonov, Sergei Y.; Sunyaev, Rashid A.

    1999-01-01

    Compton scattering of low-frequency radiation by an isotropic distribution of(i) mildly and (ii) ultra relativistic electrons is considered. It is shownthat the ensemble-averaged differential cross-section in this case isnoticeably different from the Rayleigh phase function. The scattering by anensemble of ultra-relativistic electrons obeys the law p=1-cos(alpha), wherealpha is the scattering angle; hence photons are preferentially scatteredbackwards. This contrasts the forward scattering behaviour in the Klein-Nishinaregime. Analytical formulae describing first-order Klein-Nishina andfinite-electron-energy corrections to the simple relation above are given forvarious energy distributions of electrons: monoenergetic,relativistic-Maxwellian, and power-law. A similar formula is also given for themildly relativistic (with respect to the photon energy and electrontemperature) corrections to the Rayleigh angular function. One ofmanifestations of the phenomenon under consideration is that hot plasma is morereflecti...

  17. A reduced model for relativistic electron beam transport in solids and dense plasmas

    Science.gov (United States)

    Touati, M.; Feugeas, J.-L.; Nicolaï, Ph; Santos, J. J.; Gremillet, L.; Tikhonchuk, V. T.

    2014-07-01

    A hybrid reduced model for relativistic electron beam transport based on the angular moments of the relativistic kinetic equation with a special closure is presented. It takes into account collective effects with the self-generated electromagnetic fields as well as collisional effects with the slowing down of the relativistic electrons by plasmons, bound and free electrons and their angular scattering on both ions and electrons. This model allows for fast computations of relativistic electron beam transport while describing their energy distribution evolution. Despite the loss of information concerning the angular distribution of the electron beam, the model reproduces analytical estimates in the academic case of a monodirectional and monoenergetic electron beam propagating through a warm and dense plasma and hybrid particle-in-cell simulation results in a realistic laser-generated electron beam transport case.

  18. Propagation of ion-acoustic solitary waves in a relativistic electron-positron-ion plasma

    CERN Document Server

    Saberian, E; Akbari-Moghanjoughi, M

    2011-01-01

    Propagation of large amplitude ion-acoustic solitary waves (IASWs) in a fully relativistic plasma consisting of cold ions and ultrarelativistic hot electrons and positrons is investigated using the Sagdeev's pseudopotential method in a relativistic hydrodynamics model. Effects of streaming speed of plasma fluid, thermal energy, positron density and positron temperature on large amplitude IASWs are studied by analysis of the pseudopotential structure. It is found that in regions that the streaming speed of plasma fluid is larger than that of solitary wave, by increasing the streaming speed of plasma fluid the depth and width of potential well increases and resulting in narrower solitons with larger amplitude. This behavior is opposite for the case where the streaming speed of plasma fluid is smaller than that of solitary wave. On the other hand, increase of the thermal energy results in wider solitons with smaller amplitude, because the depth and width of potential well decreases in that case. Additionally, th...

  19. Numerical Construction of Magnetosphere with Relativistic Two-fluid Plasma Flows

    CERN Document Server

    Kojima, Yasufumi

    2009-01-01

    We present a numerical model in which a cold pair plasma is ejected with relativistic speed through a polar cap region and flows almost radially outside the light cylinder. Stationary axisymmetric structures of electromagnetic fields and plasma flows are self-consistently calculated. In our model, motions of positively and negatively charged particles are assumed to be determined by electromagnetic forces and inertial terms, without pair creation and annihilation or radiation loss. The global electromagnetic fields are calculated by the Maxwell's equations for the plasma density and velocity, without using ideal MHD condition. Numerical result demonstrates the acceleration and deceleration of plasma due to parallel component of the electric fields. Numerical model is successfully constructed for weak magnetic fields or highly relativistic fluid velocity, i.e, kinetic energy dominated outflow. It is found that appropriate choices of boundary conditions and plasma injection model at the polar cap should be expl...

  20. Seeding of self-modulation instability of a long electron bunch in a plasma.

    Science.gov (United States)

    Fang, Y; Yakimenko, V E; Babzien, M; Fedurin, M; Kusche, K P; Malone, R; Vieira, J; Mori, W B; Muggli, P

    2014-01-31

    We demonstrate experimentally that a relativistic electron bunch shaped with a sharp rising edge drives plasma wakefields with one to seven periods along the bunch as the plasma density is increased. The plasma density is varied in the 10(15)-10(17)  cm(-3) range. The wakefields generation is observed after the plasma as a periodic modulation of the correlated energy spectrum of the incoming bunch. We choose a low bunch charge of 50 pC for optimum visibility of the modulation at all plasma densities. The longitudinal wakefields creating the modulation are in the MV/m range and are indirect evidence of the generation of transverse wakefields that can seed the self-modulation instability, although the instability does not grow significantly over the short plasma length (2 cm). We show that the seeding provides a phase reference for the wakefields, a necessary condition for the deterministic external injection of a witness bunch in an accelerator. This electron work supports the concept of similar experiments in the future, e.g., SMI experiments using long bunches of relativistic protons.

  1. Magnetoacoustic solitons and shocks in dense astrophysical plasmas with relativistic degenerate electrons

    Science.gov (United States)

    Irfan, M.; Ali, S.; Mirza, Arshad M.

    2016-02-01

    Two-fluid quantum magnetohydrodynamic (QMHD) equations are employed to investigate linear and nonlinear properties of the magnetosonic waves in a semi-relativistic dense plasma accounting for degenerate relativistic electrons. In the linear analysis, a plane wave solution is used to derive the dispersion relation of magnetosonic waves, which is significantly modified due to relativistic degenerate electrons. However, for a nonlinear investigation of solitary and shock waves, we employ the reductive perturbation technique for the derivation of Korteweg-de Vries (KdV) and Korteweg-de Vries Burger (KdVB) equations, admitting nonlinear wave solutions. Numerically, it is shown that the wave frequency decreases to attain a lowest possible value at a certain critical number density Nc(0), and then increases beyond Nc(0) as the plasma number density increases. Moreover, the relativistic electrons and associated pressure degeneracy lead to a reduction in the spatial extents of the magnetosonic waves and a strengthening of the shock amplitude. The results might be important for understanding the linear and nonlinear magnetosonic excitations in dense astrophysical plasmas, such as in white dwarfs, magnetars and neutron stars, etc., where relativistic degenerate electrons are present.

  2. Kadomtsev-Petviashvili solitons propagation in a plasma system with superthermal and weakly relativistic effects

    Energy Technology Data Exchange (ETDEWEB)

    Hafeez-Ur-Rehman; Mahmood, S. [Theoretical Plasma Physics Division, PINSTECH, P.O. Nilore, Islamabad (Pakistan); Department of Physics and Applied Mathematics, PIEAS, Nilore, 44000 Islamabad (Pakistan); Shah, Asif; Haque, Q. [Theoretical Plasma Physics Division, PINSTECH, P.O. Nilore, Islamabad (Pakistan)

    2011-12-15

    Two dimensional (2D) solitons are studied in a plasma system comprising of relativistically streaming ions, kappa distributed electrons, and positrons. Kadomtsev-Petviashvili (KP) equation is derived through the reductive perturbation technique. Analytical solution of the KP equation has been studied numerically and graphically. It is noticed that kappa parameters of electrons and positrons as well as the ions relativistic streaming factor have an emphatic influence on the structural as well as propagation characteristics of two dimensional solitons in the considered plasma system. Our results may be helpful in the understanding of soliton propagation in astrophysical and laboratory plasmas, specifically the interaction of pulsar relativistic wind with supernova ejecta and the transfer of energy to plasma by intense electric field of laser beams producing highly energetic superthermal and relativistic particles [L. Arons, Astrophys. Space Sci. Lib. 357, 373 (2009); P. Blasi and E. Amato, Astrophys. Space Sci. Proc. 2011, 623; and A. Shah and R. Saeed, Plasma Phys. Controlled Fusion 53, 095006 (2011)].

  3. Beyond ideal magnetohydrodynamics: Resistive, reactive and relativistic plasmas

    CERN Document Server

    Andersson, N; Hawke, I; Comer, G L

    2016-01-01

    We develop a new framework for the modelling of charged fluid dynamics in general relativity. The model, which builds on a recently developed variational multi-fluid model for dissipative fluids, accounts for relevant effects like the inertia of both charge currents and heat and, for mature systems, the decoupling of superfluid components. We discuss how the model compares to standard relativistic magnetohydronamics and consider the connection between the fluid dynamics, the microphysics and the underlying equation of state. As illustrations of the formalism, we consider three distinct two-fluid models describing i) an Ohm's law for resistive charged flows, ii) a relativistic heat equation, and iii) an equation representing the momentum of a decoupled superfluid component. As a more complex example, we also formulate a three-fluid model which demonstrates the thermo-electric effect. This framework allows us to model neutron stars (and related systems) at a hierarchy of increasingly complex levels, and should ...

  4. Ion waves driven by shear flow in a relativistic degenerate astrophysical plasma

    Indian Academy of Sciences (India)

    KHAN SHABBIR A; BAKHTIAR-UD-DIN; ILYAS MUHAMMAD; WAZIR ZAFAR

    2016-05-01

    We investigate the existence and propagation of low-frequency (in comparison to ion cyclotron frequency) electrostatic ion waves in highly dense inhomogeneous astrophysical magnetoplasma comprising relativistic degenerate electrons and non-degenerate ions. The dispersion equation is obtained by Fourier analysis under mean-field quantum hydrodynamics approximationfor various limits of the ratio of rest mass energy to Fermi energy of electrons, relevant to ultrarelativistic, weakly-relativistic and non-relativistic regimes. It is found that the system admits an oscillatory instability under certain condition in the presence of velocity shear parallel to ambient magnetic field. The dispersive role of plasma density and magnetic field is also discussed parametrically in the scenario of dense and degenerate astrophysical plasmas.

  5. Three dimensional filamentary structures of a relativistic electron beam in Fast Ignition plasmas

    CERN Document Server

    Karmakar, Anupam; Pukhov, Alexander

    2008-01-01

    The filamentary structures and associated electromagnetic fields of a relativistic electron beam have been studied by three dimensional particle-in-cell (PIC) simulations in the context of Fast Ignition fusion. The simulations explicitly include collisions in return plasma current and distinctly examine the effects of beam temperature and collisions on the growth of filamentary structures generated.

  6. Self-modulated dynamics of a relativistic charged particle beam in plasma wake field excitation

    Energy Technology Data Exchange (ETDEWEB)

    Akhter, T.; Fedele, R. [Dipartimento di Fisica ‘Ettore Pancini’, Università di Napoli Federico II and INFN Sezione di Napoli, Napoli (Italy); Nicola, S. De [CNR-SPIN and INFN Sezione di Napoli, Napoli (Italy); Tanjia, F. [Dipartimento di Fisica ‘Ettore Pancini’, Università di Napoli Federico II and INFN Sezione di Napoli, Napoli (Italy); Jovanović, D. [Institute of Physics, University of Belgrade, Belgrade (Serbia); Mannan, A. [Department of Physics, Jahangirnagar University, Savar, Dhaka (Bangladesh)

    2016-09-01

    The self-modulated dynamics of a relativistic charged particle beam is provided within the context of the theory of plasma wake field excitation. The self-consistent description of the beam dynamics is provided by coupling the Vlasov equation with a Poisson-type equation relating the plasma wake potential to the beam density. An analysis of the beam envelope self-modulation is then carried out and the criteria for the occurrence of the instability are discussed thereby.

  7. Similarity for ultra-relativistic laser plasmas and the optimal acceleration regime

    CERN Document Server

    Pukhov, A

    2005-01-01

    A similarity theory is developed for ultra-relativistic laser-plasmas. It is shown that the most fundamental S-similarity is valid for both under- and overdense plasmas. Optimal scalings for laser wake field electron acceleration are obtained heuristically. The strong message of the present work is that the bubble acceleration regime [see Pukhov, Meyer-ter-Vehn, Appl. Phys. B, 74, 355 (2002)] satisfies these optimal scalings.

  8. Effect of High-Frequency Electric Field on Propagation of Electrostatic Wave in a Non-Uniform Relativistic Plasma Waveguide

    Institute of Scientific and Technical Information of China (English)

    Kh. H. EL-SHORBAGY

    2008-01-01

    The effect of a high frequency (HF) electric field on the propagation of electrostatic wave in a 2D non-uniform relativistic plasma waveguide is investigated. A variable separation method is applied to the two-fluid plasma model. An analytical study of the reflection of electro-static wave propagation along a magnetized non-uniform relativistic plasma slab subjected to an intense HF electric field is presented and compared with the case of a non relativistic plasma. It is found that, when the frequency of the incident wave is close to the relativistic electron plasma frequency, the plasma is less reflective due to the presence of both an HF field and the effect of rel-ativistic electrons. On the other hand, for a low-frequency incident wave the reflection coefficient is directly proportional to the amplitude of the HF field. Also, it is shown that the relativistic electron plasma leads to a decrease in the value of reflection coefficient in comparison with the case of the non relativistic plasma.

  9. Solitary waves in dusty plasmas with weak relativistic effects in electrons and ions

    Energy Technology Data Exchange (ETDEWEB)

    Kalita, B. C., E-mail: bckalita123@gmail.com [Gauhati University, Department of Mathematics (India); Choudhury, M., E-mail: choudhurymamani@gmail.com [Handique Girls’ College, Department of Mathematics (India)

    2016-10-15

    Two distinct classes of dust ion acoustic (DIA) solitary waves based on relativistic ions and electrons, dust charge Z{sub d} and ion-to-dust mass ratio Q’ = m{sub i}/m{sub d} are established in this model of multicomponent plasmas. At the increase of mass ratio Q’ due to increase of relativistic ion mass and accumulation of more negative dust charges into the plasma causing decrease of dust mass, relativistic DIA solitons of negative potentials are abundantly observed. Of course, relativistic compressive DIA solitons are also found to exist simultaneously. Further, the decrease of temperature inherent in the speed of light c causes the nonlinear term to be more active that increases the amplitude of the rarefactive solitons and dampens the growth of compressive solitons for relatively low and high mass ratio Q’, respectively. The impact of higher initial streaming of the massive ions is observed to identify the point of maximum dust density N{sub d} to yield rarefactive relativistic solitons of maximum amplitude.

  10. Modulation and nonlinear evolution of multi-dimensional Langmuir wave envelopes in a relativistic plasma

    CERN Document Server

    Shahmansouri, M

    2016-01-01

    The modulational instability (MI) and the evolution of weakly nonlinear two-dimensional (2D) Langmuir wave (LW) packets are studied in an unmagnetized collisionless plasma with weakly relativistic electron flow. By using a 2D self-consistent relativistic fluid model and employing the standard multiple-scale technique, a coupled set of Davey-Stewartson (DS)-like equations is derived which governs the slow modulation and the evolution of LW packets in relativistic plasmas. It is found that the relativistic effects favor the instability of LW envelopes in the k{\\theta} plane, where k is the wave number and {\\theta} the angle of modulation. It is also found that as the electron thermal velocity or {\\theta} increases, the growth rate of MI increases with cutoffs at higher wave numbers of modulation. Furthermore, in the nonlinear evolution of the DS-like equations, it is seen that with an effect of the relativistic flow, a Gaussian wave beam collapses in a finite time, and the collapse can be arrested when the effe...

  11. Workshop on Quark-Gluon Plasma and Relativistic Heavy Ions

    CERN Document Server

    Lombardo, Maria Paola; Nardi, Marzia; GISELDA 2002; QGP 2002

    2002-01-01

    This book offers the unique possibility of tackling the problem of hadronic deconfinement from different perspectives. After general introductions to the physical issues, from both the theoretical and the experimental point of view, the book presents the most recent expertise on field theory approaches to the QCD phase diagram, many-body techniques and applications, the dynamics of phase transitions, and phenomenological analysis of relativistic heavy ion collisions. One of the major goals of this book is to promote interchange among those fields of research, which have traditionally been cult

  12. Relativistic Magnetosonic Soliton in a Negative-Ion-Rich Magnetized Plasma

    Institute of Scientific and Technical Information of China (English)

    WANG Yun-Liang; ZHOU Zhong-Xiang; LU Yan-Zhen; NI Xiao-Dong; SHEN Jiang; ZHANG Yu

    2008-01-01

    @@ Two-dimensional (2D) relativistic magnetosonic solitons in the negative-ion-rich plasma consisting of positive ions Ar+, negative ions SF6- and electrons are investigated in the presence of an applied magnetic field Bo and can be described by a Kadomtsev-Petviashvili (KP) equation in the weakly relativistic limit. The ratio of positive ion density to negative ion density has a marked influence on the amplitude φm and width W of the steady-state KP soliton. The interaction law of the nontrivial solitons with rich web structure is studied by the Wronskian determinant method.

  13. Numerical instability due to relativistic plasma drift in EM-PIC simulations

    CERN Document Server

    Xu, Xinlu; Martins, Samual F; Tsung, Frank S; Decyk, Viktor K; Fonseca, Ricardo A; Lu, Wei; Silva, Luis O; Mori, Warren B

    2012-01-01

    The numerical instability observed in the Electromagnetic-Particle-in-cell (EM-PIC) simulations with a plasma drifting with relativistic velocities is studied using both theory and computer simulations. We derive the numerical dispersion relation for a cold plasma drifting with a relativistic velocity and find an instability attributed to the coupling between the beam modes of the drifting plasma and the electromagnetic modes in the system. The characteristic pattern of the instability in Fourier space for various simulation setups and Maxwell Equation solvers are explored by solving the corresponding numerical dispersion relations. Furthermore, based upon these characteristic patterns we derive an asymptotic expression for the instability growth rate. The results are compared against simulation results and good agreement is found. The results are used as a guide to develop possible approaches to mitigate the instability. We examine the use of a spectral solver and show that such a solver when combined with a...

  14. Weakly nonlinear ion-acoustic excitations in a relativistic model for dense quantum plasma.

    Science.gov (United States)

    Behery, E E; Haas, F; Kourakis, I

    2016-02-01

    The dynamics of linear and nonlinear ionic-scale electrostatic excitations propagating in a magnetized relativistic quantum plasma is studied. A quantum-hydrodynamic model is adopted and degenerate statistics for the electrons is taken into account. The dispersion properties of linear ion acoustic waves are examined in detail. A modified characteristic charge screening length and "sound speed" are introduced, for relativistic quantum plasmas. By employing the reductive perturbation technique, a Zakharov-Kuznetzov-type equation is derived. Using the small-k expansion method, the stability profile of weakly nonlinear slightly supersonic electrostatic pulses is also discussed. The effect of electron degeneracy on the basic characteristics of electrostatic excitations is investigated. The entire analysis is valid in a three-dimensional as well as in two-dimensional geometry. A brief discussion of possible applications in laboratory and space plasmas is included.

  15. Propagation of an ultrashort, intense laser pulse in a relativistic plasma

    Energy Technology Data Exchange (ETDEWEB)

    Ritchie, B.; Decker, C.D. [Lawrence Livermore National Lab., CA (United States)

    1997-12-31

    A Maxwell-relativistic fluid model is developed for the propagation of an ultrashort, intense laser pulse through an underdense plasma. The separability of plasma and optical frequencies ({omega}{sub p} and {omega} respectively) for small {omega}{sub p}/{omega} is not assumed; thus the validity of multiple-scales theory (MST) can be tested. The theory is valid when {omega}{sub p}/{omega} is of order unity or for cases in which {omega}{sub p}/{omega} {much_lt} 1 but strongly relativistic motion causes higher-order plasma harmonics to be generated which overlap the region of the first-order laser harmonic, such that MST would not expected to be valid although its principal validity criterion {omega}{sub p}/{omega} {much_lt} 1 holds.

  16. Ion acoustic shock and solitary waves in highly relativistic plasmas with nonextensive electrons and positrons

    Science.gov (United States)

    Hafez, M. G.; Talukder, M. R.; Hossain Ali, M.

    2016-01-01

    The Korteweg-de Vries Burgers (KdVB) -like equation is derived to study the characteristics of nonlinear propagation of ion acoustic solitions in a highly relativistic plasma containing relativistic ions and nonextensive distribution of electrons and positrons using the well known reductive perturbation technique. The KdVB-like equation is solved employing the Bernoulli's equation method taking unperturbed positron to electron concentration ratio, electron to positron temperature ratio, strength of nonextensivity, ion kinematic viscosity, and highly relativistic streaming factor. It is found that these parameters significantly modify the structures of the solitonic excitation. The ion acoustic shock profiles are observed due to the influence of ion kinematic viscosity. In the absence of dissipative term to the KdVB equation, compressive and rarefactive solitons are observed in case of superthermality, but only compressive solitons are found for the case of subthermality.

  17. The efficiency of fast wave current drive for a weakly relativistic plasma

    Science.gov (United States)

    Chiu, S. C.; Lin-Liu, Y. R.; Karney, C. F. F.

    1994-10-01

    Current drive by fast waves (FWCD) is an important candidate for steady-state operation of tokamaks. Major experiments using this scheme are being carried out on DIII-D. There has been considerable study of the theoretical efficiency of FWCD. In Refs. 4 and 5, the nonrelativistic efficiency of FWCD at arbitrary frequencies was studied. For DIII-D parameters, the results can be considerably different from the Landau and Alfvén limits. At the high temperatures of reactors and DIII-D upgrade, relativistic effects become important. In this paper, the relativistic FWCD efficiency for arbitrary frequencies is studied. Assuming that the plasma is weakly relativistic, i.e., Te/mc2 is small, an analytic expression for FWCD is obtained for high resonant energies (uph/uTe≫1). Comparisons with the results from a numerical code ADJ and the nonrelativistic results shall be made and analytical fits in the whole range of velocities shall be presented.

  18. Trapped electron acceleration by a laser-driven relativistic plasma wave

    Science.gov (United States)

    Everett, M.; Lal, A.; Gordon, D.; Clayton, C. E.; Marsh, K. A.; Joshi, C.

    1994-04-01

    THE aim of new approaches for high-energy particle acceleration1 is to push the acceleration rate beyond the limit (~100 MeV m-1) imposed by radio-frequency breakdown in conventional accelerators. Relativistic plasma waves, having phase velocities very close to the speed of light, have been proposed2-6 as a means of accelerating charged particles, and this has recently been demonstrated7,8. Here we show that the charged particles can be trapped by relativistic plasma waves-a necessary condition for obtaining the maximum amount of energy theoretically possible for such schemes. In our experiments, plasma waves are excited in a hydrogen plasma by beats induced by two collinear laser beams, the difference in whose frequencies matches the plasma frequency. Electrons with an energy of 2 MeV are injected into the excited plasma, and the energy spectrum of the exiting electrons is analysed. We detect electrons with velocities exceeding that of the plasma wave, demonstrating that some electrons are 'trapped' by the wave potential and therefore move synchronously with the plasma wave. We observe a maximum energy gain of 28 MeV, corresponding to an acceleration rate of about 2.8 GeV m-1.

  19. Motion of the Plasma Critical Layer During Relativistic-electron Laser Interaction with Immobile and Comoving Ion Plasma for Ion Acceleration

    CERN Document Server

    Sahai, Aakash A

    2014-01-01

    We analyze the motion of the plasma critical layer by two different processes in the relativistic-electron laser-plasma interaction regime ($a_0>1$). The differences are highlighted when the critical layer ions are stationary in contrast to when they move with it. Controlling the speed of the plasma critical layer in this regime is essential for creating low-$\\beta$ traveling acceleration structures of sufficient laser-excited potential for laser ion accelerators (LIA). In Relativistically Induced Transparency Acceleration (RITA) scheme the heavy plasma-ions are fixed and only trace-density light-ions are accelerated. The relativistic critical layer and the acceleration structure move longitudinally forward by laser inducing transparency through apparent relativistic increase in electron mass. In the Radiation Pressure Acceleration (RPA) scheme the whole plasma is longitudinally pushed forward under the action of the laser radiation pressure, possible only when plasma ions co-propagate with the laser front. I...

  20. The Diagnostics Of Hydrogen-Cesium Plasma Using Fully Relativistic Electron Impact Cross Sections

    Science.gov (United States)

    Priti, Priti; Dipti, Dipti; Gangwar, Reetesh; Srivastava, Rajesh

    2016-10-01

    Electron excitation cross-sections and rate coefficients have been calculated using fully relativistic distorted wave theory for several fine-structure transitions from the ground as well as excited states of cesium atom in the wide range of incident electron energy. These processes play dominant role in low pressure hydrogen-cesium plasma relevant to the negative ion based neutral beam injectors for the ITER project. The calculated cross-sections are used to construct a reliable collisional radiative (CR) model to characterize the hydrogen-cesium plasma. The calculated plasma parameters are compared with the available experimental and theoretical results.

  1. Ultrahigh-gradient acceleration of injected eletrons by laser-excited relativistic electron plasma waves

    Science.gov (United States)

    Clayton, C. E.; Marsh, K. A.; Dyson, A.; Everett, M.; Lal, A.; Leemans, W. P.; Williams, R.; Joshi, C.

    1993-01-01

    High-gradient acceleration of externally injected 2.1-MeV electrons by a laser beat wave driven relativistic plasma wave has been demonstrated for the first time. Electrons with energies up to the detection limit of 9.1 MeV were detected when such a plasma wave was resonantly excited using a two-frequency laser. This implies a gradient of 0.7 GeV/m, corresponding to a plasma-wave amplitude of more than 8%. The electron signal was below detection threshold without injection or when the laser was operated on a single frequency.

  2. Influence of ions on relativistic double layers radiation in astrophysical plasmas

    Directory of Open Access Journals (Sweden)

    AM Ahadi

    2009-12-01

    Full Text Available As double layers (DLs are one of the most important acceleration mechanisms in space as well as in laboratory plasmas, they are studied from different points of view. In this paper, the emitted power and energy radiated from charged particles, accelerated in relativistic cosmic DLs are investigated. The effect of the presence of additional ions in a multi-species plasma, as a real example of astrophysical plasma, is also investigated. Considering the acceleration role of DLs, radiations from accelerated charged particles could be seen as a loss mechanism. These radiations are influenced directly by the additional ion species as well as their relative densities.

  3. PIC simulation of electron acceleration in an underdense plasma

    Directory of Open Access Journals (Sweden)

    S Darvish Molla

    2011-06-01

    Full Text Available One of the interesting Laser-Plasma phenomena, when the laser power is high and ultra intense, is the generation of large amplitude plasma waves (Wakefield and electron acceleration. An intense electromagnetic laser pulse can create plasma oscillations through the action of the nonlinear pondermotive force. electrons trapped in the wake can be accelerated to high energies, more than 1 TW. Of the wide variety of methods for generating a regular electric field in plasmas with strong laser radiation, the most attractive one at the present time is the scheme of the Laser Wake Field Accelerator (LWFA. In this method, a strong Langmuir wave is excited in the plasma. In such a wave, electrons are trapped and can acquire relativistic energies, accelerated to high energies. In this paper the PIC simulation of wakefield generation and electron acceleration in an underdense plasma with a short ultra intense laser pulse is discussed. 2D electromagnetic PIC code is written by FORTRAN 90, are developed, and the propagation of different electromagnetic waves in vacuum and plasma is shown. Next, the accuracy of implementation of 2D electromagnetic code is verified, making it relativistic and simulating the generating of wakefield and electron acceleration in an underdense plasma. It is shown that when a symmetric electromagnetic pulse passes through the plasma, the longitudinal field generated in plasma, at the back of the pulse, is weaker than the one due to an asymmetric electromagnetic pulse, and thus the electrons acquire less energy. About the asymmetric pulse, when front part of the pulse has smaller time rise than the back part of the pulse, a stronger wakefield generates, in plasma, at the back of the pulse, and consequently the electrons acquire more energy. In an inverse case, when the rise time of the back part of the pulse is bigger in comparison with that of the back part, a weaker wakefield generates and this leads to the fact that the electrons

  4. Femtosecond electron-bunch dynamics in laser wakefields and vacuum

    NARCIS (Netherlands)

    Khachatryan, A.G.; Irman, A.; Goor, van F.A.; Boller, K.-J.

    2007-01-01

    Recent advances in laser wakefield acceleration demonstrated the generation of extremely short (with a duration of a few femtoseconds) relativistic electron bunches with relatively low (of the order of couple of percent) energy spread. In this article we study the dynamics of such bunches in drift s

  5. Double pulse laser wakefield accelerator

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Changbum [Department of Physics, Pohang University of Science and Technology, Pohang 790-784 (Korea, Republic of)], E-mail: chbkim@postech.ac.kr; Kim, Jin-Cheol B. [Department of Physics, Pohang University of Science and Technology, Pohang 790-784 (Korea, Republic of); Kim, Kukhee [National Fusion Reserch Center, Daejeon 305-333 (Korea, Republic of); Ko, In Soo [Department of Physics, Pohang University of Science and Technology, Pohang 790-784 (Korea, Republic of); Suk, Hyyong [Center for Advanced Accelerators, Korea Electrotechnology Research Institute, Changwon 641-120 (Korea, Republic of)

    2007-10-22

    Two-dimensional simulation studies are performed for modified laser wakefield acceleration. After one laser pulse, another identical laser pulse is sent to the plasma to amplify the wake wave resonantly. The simulation results show that the number of injected electrons is bigger than that of the single pulse case and the beam energy is higher as well. In addition, increase of the transverse amplitude is noticed in the wake wave after the second laser pulse. This shows that the transverse motion of the wake wave enhances the wave breaking for strong injection and acceleration of electron beams.

  6. Relativistic quasi-solitons and embedded solitons with circular polarization in cold plasmas

    CERN Document Server

    Sánchez-Arriaga, G

    2016-01-01

    The existence of localized electromagnetic structures is discussed in the framework of the 1-dimensional relativistic Maxwell-fluid model for a cold plasma with immobile ions. New partially localized solutions are found with a finite-difference algorithm designed to locate numerically exact solutions of the Maxwell-fluid system. These solutions are called quasi-solitons and consist of a localized electromagnetic wave trapped in a spatially extended electron plasma wave. They are organized in families characterized by the number of nodes $p$ of the vector potential and exist in a continuous range of parameters in the $\\omega-V$ plane, where $V$ is the velocity of propagation and $\\omega$ is the vector potential angular frequency. A parametric study shows that the familiar fully localized relativistic solitons are special members of the families of partially localized quasi-solitons. Soliton solution branches with $p>1$ are therefore parametrically embedded in the continuum of quasi-solitons. On the other hand,...

  7. General Relativistic Simulations of Magnetized Plasmas around Merging Supermassive Black Holes

    CERN Document Server

    Giacomazzo, Bruno; Miller, M Coleman; Reynolds, Christopher S; van Meter, James R

    2012-01-01

    Coalescing supermassive black hole binaries are produced by the mergers of galaxies and are the most powerful sources of gravitational waves accessible to space-based gravitational observatories. Some such mergers may occur in the presence of matter and magnetic fields and hence generate an electromagnetic counterpart. In this paper we present the first general relativistic simulations of magnetized plasma around merging supermassive black holes using the general relativistic magnetohydrodynamic code Whisky. By considering different magnetic field strengths, going from non-magnetically dominated to magnetically dominated regimes, we explore how magnetic fields affect the dynamics of the plasma and the possible emission of electromagnetic signals. In particular we observe a total amplification of the magnetic field of ~2 orders of magnitude which is driven by the accretion onto the binary and that leads to much stronger electromagnetic signals, more than a factor of 10^4 larger than comparable calculations don...

  8. General Relativistic Simulations of Magnetized Plasmas around Merging Supermassive Black Holes

    Science.gov (United States)

    Giacomazzo, Bruno; Baker, John G.; Miller, M. Coleman; Reynolds, Christopher S.; van Meter, James R.

    2012-06-01

    Coalescing supermassive black hole binaries are produced by the mergers of galaxies and are the most powerful sources of gravitational waves accessible to space-based gravitational observatories. Some such mergers may occur in the presence of matter and magnetic fields and hence generate an electromagnetic counterpart. In this Letter, we present the first general relativistic simulations of magnetized plasma around merging supermassive black holes using the general relativistic magnetohydrodynamic code Whisky. By considering different magnetic field strengths, going from non-magnetically dominated to magnetically dominated regimes, we explore how magnetic fields affect the dynamics of the plasma and the possible emission of electromagnetic signals. In particular, we observe a total amplification of the magnetic field of ~2 orders of magnitude, which is driven by the accretion onto the binary and that leads to much stronger electromagnetic signals, more than a factor of 104 larger than comparable calculations done in the force-free regime where such amplifications are not possible.

  9. Compressible Relativistic Magnetohydrodynamic Turbulence in Magnetically-Dominated Plasmas And Implications for A New Regime

    CERN Document Server

    Takamoto, Makoto

    2016-01-01

    In this Letter, we report compressible mode effects on relativistic magnetohydrodynamic (RMHD) turbulence in Poynting-dominated plasmas using 3-dimensional numerical simulations. We decomposed fluctuations in the turbulence into 3 MHD modes (fast, slow, and Alfv\\'en) following the procedure mode decomposition in (Cho & Lazarian 2002), and analyzed their energy spectra and structure functions separately. We also analyzed the ratio of compressible mode to Alfv\\'en mode energy with respect to its Mach number. We found the ratio of compressible mode increases not only with the Alfv\\'en Mach number but with the background magnetization, which indicates a strong coupling between the fast and Alfv\\'en modes and appearance of a new regime of RMHD turbulence in Poynting-dominated plasmas where the fast and Alfv\\'en modes strongly couples and cannot be distinguished, different from the non-relativistic MHD case. This finding will affect particle acceleration efficiency obtained by assuming Alfv\\'enic critical balan...

  10. Instability saturation by the oscillating two-stream instability in a weakly relativistic plasma

    Energy Technology Data Exchange (ETDEWEB)

    Pal, Barnali; Poria, Swarup, E-mail: swarup-p@yahoo.com [Department of Applied Mathematics, University of Calcutta, 92, Acharya Prafulla Chandra Road, Kolkata 700 009 (India); Sahu, Biswajit, E-mail: biswajit-sahu@yahoo.co.in [Department of Mathematics, West Bengal State University, Barasat, Kolkata 700126 (India)

    2015-04-15

    The two-stream instability has wide range of astrophysical applications starting from gamma-ray bursts and pulsar glitches to cosmology. We consider one dimensional weakly relativistic Zakharov equations and describe nonlinear saturation of the oscillating two-stream instability using a three dimensional dynamical system resulting form a truncation of the nonlinear Schrodinger equation to three modes. The equilibrium points of the model are determined and their stability natures are discussed. Using the tools of nonlinear dynamics such as the bifurcation diagram, Poincaré maps, and Lyapunav exponents, existence of periodic, quasi-periodic, and chaotic solutions are established in the dynamical system. Interestingly, we observe the multistable behavior in this plasma model. The system has multiple attractors depending on the initial conditions. We also notice that the relativistic parameter plays the role of control parameter in the model. The theoretical results presented in this paper may be helpful for better understanding of space and astrophysical plasmas.

  11. Self-Guiding of Electromagnetic Beams in Degenerate Relativistic Electron-Positron Plasma

    CERN Document Server

    Berezhiani, V I

    2016-01-01

    The possibility of self-trapped propagation of electromagnetic beams in the fully degenerate relativistic electron-positron plasma has been studied applying Fluid-Maxwell model; it is shown that dynamics of such beams can be described by the generalized Nonlinear Schr\\"odinger equation with specific type of saturating nonlinearity. Existence of radially symmetric localized solitary structures is demonstrated. It is found that stable solitary structures exist for the arbitrary level of degeneracy.

  12. On the high frequency perpendicular propagating waves in ultra-relativistic fully degenerate electron plasma

    Science.gov (United States)

    Noureen, S.; Abbas, G.; Farooq, H.

    2017-09-01

    Using Vlasov-Maxwell's equations, the spectra of the perpendicular propagating Bernstein wave and Extraordinary wave in ultra-relativistic fully degenerate electron plasma are studied. The equilibrium particle distribution function is assumed to be isotropic Fermian. The analysis of high frequency spectra of the waves is carried out in the weak propagation limit Ω≫k .v and in the weak magnetic field limit |ω-k .v | ≫Ω and graphically observed.

  13. Nonlinear dynamics of cold magnetized non-relativistic plasma in the presence of electron-ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Sahu, Biswajit, E-mail: biswajit-sahu@yahoo.co.in [Department of Mathematics, West Bengal State University, Barasat, Kolkata 700126 (India); Sinha, Anjana, E-mail: sinha.anjana@gmail.com [Department of Instrumentation Science, Jadavpur University, Kolkata 700 032 (India); Roychoudhury, Rajkumar, E-mail: rroychoudhury123@gmail.com [Department of Mathematics, Visva-Bharati, Santiniketan - 731 204, India and Advanced Centre for Nonlinear and Complex Phenomena, 1175 Survey Park, Kolkata 700 075 (India)

    2015-09-15

    A numerical study is presented of the nonlinear dynamics of a magnetized, cold, non-relativistic plasma, in the presence of electron-ion collisions. The ions are considered to be immobile while the electrons move with non-relativistic velocities. The primary interest is to study the effects of the collision parameter, external magnetic field strength, and the initial electromagnetic polarization on the evolution of the plasma system.

  14. Stimulated Raman scattering in the relativistic regime in near-critical plasmas

    CERN Document Server

    Moreau, J G; Nuter, R; Tikhonchuk, V T

    2016-01-01

    Interaction of a high intensity short laser pulse with near-critical plasmas allows to achieve extremely high coupling efficiency and transfer laser energy to energetic ions. One dimensional Particle-In-Cell (PIC) simulations are considered to detail the processes involved in the energy transfer. A confrontation of the numerical results with the theory highlights a key role played by the process of stimulated Raman scattering in the relativistic regime. The interaction of a 1 ps laser pulse (I $\\sim$ 6.10$^{18}$ W.cm$^2$) with an under-critical (0.5 $n_c$) homogeneous plasma leads to a very high plasma absorption reaching 68 % of the laser pulse energy. This permits a homogeneous electron heating all along the plasma and an efficient ion acceleration at the plasma edges and in cavities.

  15. Magnetohydrodynamic waves with relativistic electrons and positrons in degenerate spin-1/2 astrophysical plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Maroof, R. [Department of Physics, Abdul Wali Khan University, Mardan 23200 (Pakistan); Department of Physics, University of Peshawar, Peshawar 25000 (Pakistan); National Center for Physics (NCP) at QAU Campus, Shahdra Valley Road, Islamabad 44000 (Pakistan); Ali, S. [National Center for Physics (NCP) at QAU Campus, Shahdra Valley Road, Islamabad 44000 (Pakistan); Mushtaq, A. [Department of Physics, Abdul Wali Khan University, Mardan 23200 (Pakistan); National Center for Physics (NCP) at QAU Campus, Shahdra Valley Road, Islamabad 44000 (Pakistan); Qamar, A. [Department of Physics, University of Peshawar, Peshawar 25000 (Pakistan)

    2015-11-15

    Linear properties of high and low frequency waves are studied in an electron-positron-ion (e-p-i) dense plasma with spin and relativity effects. In a low frequency regime, the magnetohydrodynamic (MHD) waves, namely, the magnetoacoustic and Alfven waves are presented in a magnetized plasma, in which the inertial ions are taken as spinless and non-degenerate, whereas the electrons and positrons are treated quantum mechanically due to their smaller mass. Quantum corrections associated with the spin magnetization and density correlations for electrons and positrons are re-considered and a generalized dispersion relation for the low frequency MHD waves is derived to account for relativistic degeneracy effects. On the basis of angles of propagation, the dispersion relations of different modes are discussed analytically in a degenerate relativistic plasma. Numerical results reveal that electron and positron relativistic degeneracy effects significantly modify the dispersive properties of MHD waves. Our present analysis should be useful for understanding the collective interactions in dense astrophysical compact objects, like, the white dwarfs and in atmosphere of neutron stars.

  16. Proton acceleration by a relativistic laser frequency-chirp driven plasma snowplow

    CERN Document Server

    Sahai, Aakash A; Bingham, R A; Tsung, F S; Tableman, A R; Tzoufras, M; Mori, W B

    2014-01-01

    We analyze the use of a relativistic laser pulse with a controlled frequency chirp incident on a rising plasma density gradient to drive an acceleration structure for proton and light-ion acceleration. The Chirp Induced Transparency Acceleration (ChITA) scheme is described with an analytical model of the velocity of the snowplow at critical density on a pre-formed rising plasma density gradient that is driven by a positive-chirp in the frequency of a relativistic laser pulse. The velocity of the ChITA-snowplow is shown to depend upon rate of rise of the frequency of the relativistic laser pulse represented by $\\frac{\\epsilon_0}{\\theta}$ where, $\\epsilon_0 = \\frac{\\Delta\\omega_0}{\\omega_0}$ and chirping spatial scale-length, $\\theta$, the normalized magnetic vector potential of the laser pulse $a_0$ and the plasma density gradient scale-length, $\\alpha$. We observe using 1-D OSIRIS simulations the formation and forward propagation of ChITA-snowplow, being continuously pushed by the chirping laser at a velocity...

  17. Relativistic magnetic reconnection in collisionless ion-electron plasmas explored with particle-in-cell simulations

    CERN Document Server

    Melzani, Mickaël; Folini, Doris; Winisdoerffer, Christophe; Favre, Jean M

    2014-01-01

    Magnetic reconnection is a leading mechanism for magnetic energy conversion and high-energy non-thermal particle production in a variety of high-energy astrophysical objects, including ones with relativistic ion-electron plasmas (e.g., microquasars or AGNs) - a regime where first principle studies are scarce. We present 2D particle-in-cell (PIC) simulations of low $\\beta$ ion-electron plasmas under relativistic conditions, i.e., with inflow magnetic energy exceeding the plasma rest-mass energy. We identify outstanding properties: (i) For relativistic inflow magnetizations (here $10 80$), the reconnection electric field is sustained more by bulk inertia than by thermal inertia. It challenges the thermal-inertia-paradigm and its implications. (iii) The inflows feature sharp transitions at the entrance of the diffusion zones. These are not shocks but results from particle ballistic motions, all bouncing at the same location, provided that the thermal velocity in the inflow is far smaller than the inflow E cross...

  18. A nonextensive statistics approach for Langmuir waves in relativistic plasmas

    OpenAIRE

    V. Muñoz

    2006-01-01

    The nonextensive statistics formalism proposed by Tsallis has found many applications in systems with memory effects, long range spatial correlations, and in general whenever the phase space has fractal or multi-fractal structure. These features may appear naturally in turbulent or non-neutral plasmas. In fact, the equilibrium distribution functions which maximize the nonextensive entropy strongly resemble the non-Maxwellian particle distribution functions observed in space and laborato...

  19. Terahertz radiation emission from plasma beat-wave interactions with a relativistic electron beam

    Science.gov (United States)

    Gupta, D. N.; Kulagin, V. V.; Suk, H.

    2017-10-01

    We present a mechanism to generate terahertz radiation from laser-driven plasma beat-wave interacting with an electron beam. The theory of the energy transfer between the plasma beat-wave and terahertz radiation is elaborated through nonlinear coupling in the presence of a negative-energy relativistic electron beam. An expression of terahertz radiation field is obtained to find out the efficiency of the process. Our results show that the efficiency of terahertz radiation emission is strongly sensitive to the electron beam energy. Emitted field strength of the terahertz radiation is calculated as a function of electron beam velocity.

  20. A model of global magnetic reconnection rate in relativistic collisionless plasmas

    CERN Document Server

    Liu, Yi-Hsin; Guo, Fan; Daughton, William; Li, Hui

    2016-01-01

    A model of global magnetic reconnection rate in relativistic collisionless plasmas is developed and validated by the fully kinetic simulation. Through considering the force balance at the upstream and downstream of the diffusion region, we show that the global rate is bounded by a value $\\sim 0.3$ even when the local rate goes up to $\\sim O(1)$ and the local inflow speed approaches the speed of light in strongly magnetized plasmas. The derived model is general and can be applied to magnetic reconnection under widely different circumstances.

  1. 非对称激光等离子体尾场中被加速电子的模拟%Electron acceleration in the plasma wakefield of asymmetric laser pulses

    Institute of Scientific and Technical Information of China (English)

    艾尔肯·扎克尔; 阿不都热苏力·阿不都热西提; 吉建强; 董燕; 甫尔开提·夏尔丁; 艾米尔丁·艾米都拉

    2012-01-01

    In order to study the dynamics of accelerated electrons in the plasma wakefield driven by asymmetric laser pulses, the phase space, electron density and potential energy of accelerated electrons were obtained by means of numerical simulation. The results show that the electrons have high energy in the wakefield of asymmetric laser pulses. In order to accelerate the electron effectively, it is necessary to chose appropriate rise length and fall length in the wakefield of asymmetric laser pulses.%为了研究在激光驱动的等离子体尾场中被加速电子的动力学,采用数值模拟方法得到了非对称脉冲驱动的尾波场中被加速的电子的运动相图、密度分布及势能.结果表明,非对称激光脉冲驱动尾场中电子得到很高的能量.在非对称激光脉冲驱动的激光尾场中,为了有效地加速电子,要选择恰当的上升激光脉冲长度和下降激光脉冲长度.

  2. Explosion of relativistic electron vortices in laser plasmas

    CERN Document Server

    Lezhnin, K V; Esirkepov, T Zh; Bulanov, S V; Gu, Y; Weber, S; Korn, G

    2016-01-01

    The interaction of high intensity laser radiation with underdense plasma may lead to the formation of electron vortices. Though being quasistationary on an electron timescales, these structures tend to expand on a proton timescale due to Coloumb repulsion of ions. Using a simple analytical model of a stationary vortex as initial condition, 2D PIC simulations are performed. A number of effects are observed such as vortex boundary field intensification, multistream instabilities at the vortex boundary, and bending of the vortex boundary with the subsequent transformation into smaller electron vortices.

  3. Observation of Laser Wakefield Acceleration of Electrons

    CERN Document Server

    Amiranoff, F; Bernard, D; Cros, B; Descamps, D; Dorchies, F; Jacquet, F; Malka, V; Marqués, J R; Matthieussent, G; Miné, P; Modena, A; Mora, P; Morillo, J; Najmudin, Z

    1998-01-01

    The acceleration of electrons injected in a plasma wave generated by the laser wakefield mechanism has been observed. A maximum energy gain of 1.6~MeV has been measured and the maximum longitudinal electric field is estimated to 1.5~GV/m. The experimental data agree with theoretical predictions when 3D effects are taken into account. The duration of the plasma wave inferred from the number of accelerated electrons is of the order of 1~ps.

  4. Polarization of the Sunyaev-Zel'dovich effect: relativistic imprint of thermal and non-thermal plasma

    CERN Document Server

    Emritte, M S; Marchegiani, P

    2016-01-01

    [Abridged] Inverse Compton scattering of CMB fluctuations off cosmic electron plasma generates a polarization of the associated Sunyaev-Zel'dovich (SZ) effect. This signal has been studied so far mostly in the non-relativistic regime and for a thermal electron population and, as such, has limited astrophysical applications. Partial attempts to extend this calculation for a thermal electron plasma in the relativistic regime have been done but cannot be applied to a general relativistic electron distribution. Here we derive a general form of the SZ effect polarization valid in the full relativistic approach for both thermal and non-thermal electron plasmas, as well as for a generic combination of various electron population co-spatially distributed in the environments of galaxy clusters or radiogalaxy lobes. We derive the spectral shape of the Stokes parameters induced by the IC scattering of every CMB multipole, focusing on the CMB quadrupole and octupole that provide the largest detectable signals in galaxy c...

  5. Quasi-phasematched acceleration of electrons in a density modulated plasma waveguide

    Science.gov (United States)

    Yoon, Sung Jun

    Two quasi-phasematching schemes are proposed for efficient acceleration of electrons to relativistic energies using moderate intensity laser pulses. In the first scheme, Direct Laser Acceleration (DLA) in a corrugated plasma waveguide is proposed for acceleration of relativistic electrons with sub-terawatt laser systems, using the laser field directly as the accelerating field. The second scheme uses the fact that a plasma wakefield generated by an intense guided pulse in a corrugated plasma waveguide can accelerate relativistic electrons significantly beyond the well-known dephasing limit. In each case, particle-in-cell (PIC) simulations are used to validate the acceleration concept, demonstrating linear acceleration by either the phase matched laser field or phase-matched wakefield. In the phase matched wakefield case, theory and PIC simulations demonstrate a significant increase in energy gain compared to the standard laser wakefield acceleration (LWFA) scheme. Corrugated plasma waveguides can be generated by the interaction between an ionizing laser pulse and an atomic cluster flow interrupted by an array of thin wires,. When the collisional mean free path of the clusters is greater than the wire diameter, shadows of the periodically located wires are imparted on the cluster flow, leading to the production of axially modulated plasma waveguides after laser heating of the flow. This occurs when the population ratio of clusters to monomers in the gas is high. At other limit, dominated by gas monomer flow, shock waves generated off the wires by the supersonic gas flow disrupts modulated waveguide generation. Lastly, we experimentally demonstrate LWFA with ionization injection in a N5+ plasma waveguide. It is first shown that the plasma waveguide is almost completely composed of He-like nitrogen (N5+). It is then shown that intense pulse channeling in the plasma waveguide drives stronger wakefields, while the ionization injection process is critical to lowering the

  6. Nonthermal Particle Acceleration in 3D Relativistic Magnetic Reconnection in Pair Plasma

    Science.gov (United States)

    Werner, Gregory R.; Uzdensky, Dmitri A.

    2017-07-01

    As a fundamental process converting magnetic to plasma energy in high-energy astrophysical plasmas, relativistic magnetic reconnection is a leading explanation for the acceleration of particles to the ultrarelativistic energies that are necessary to power nonthermal emission (especially X-rays and gamma-rays) in pulsar magnetospheres and pulsar wind nebulae, coronae and jets of accreting black holes, and gamma-ray bursts. An important objective of plasma astrophysics is therefore the characterization of nonthermal particle acceleration (NTPA) effected by reconnection. Reconnection-powered NTPA has been demonstrated over a wide range of physical conditions using large 2D kinetic simulations. However, its robustness in realistic 3D reconnection—in particular, whether the 3D relativistic drift-kink instability (RDKI) disrupts NTPA—has not been systematically investigated, although pioneering 3D simulations have observed NTPA in isolated cases. Here, we present the first comprehensive study of NTPA in 3D relativistic reconnection in collisionless electron-positron plasmas, characterizing NTPA as the strength of 3D effects is varied systematically via the length in the third dimension and the strength of the guide magnetic field. We find that, while the RDKI prominently perturbs 3D reconnecting current sheets, it does not suppress particle acceleration, even for zero guide field; fully 3D reconnection robustly and efficiently produces nonthermal power-law particle spectra closely resembling those obtained in 2D. This finding provides strong support for reconnection as the key mechanism powering high-energy flares in various astrophysical systems. We also show that strong guide fields significantly inhibit NTPA, slowing reconnection and limiting the energy available for plasma energization, yielding steeper and shorter power-law spectra.

  7. The Ion Wakefield Inside a Glass Box

    Science.gov (United States)

    Chen, Mudi; Matthews, Lorin; Hyde, Truell

    2016-10-01

    The formation of an ion wakefield downstream of dust particles in a complex plasma sheath has long been understood to have strong implications on their structure, stability and dynamics . The presence of the ion wake introduces interesting phenomena such as charge reduction on downstream particles and asymmetric interaction forces between upstream and downstream particles. Many of the self-ordered dust particle structures observed in complex plasma experiments are the result of the combination of the ion-wakefield and the external confinement; unfortunately, few experimental measurements isolating the effect of the wakefield have been conducted. In this experiment, 1-D dust particle structures (i.e., vertically aligned particle chains) are formed in a GEC RF reference cell within a glass box sitting on the powered lower electrode. A diode pumped, solid-state laser is used to perturb individual particles within the particle chain, allowing a map of the ion wakefield inside the glass box to be generated. The implications of these results will be discussed. NSF / DOE funding is gratefully acknowledged - PHY1414523 & PHY1262031.

  8. Theoretical analysis of a relativistic travelling wave tube filled with plasma

    Institute of Scientific and Technical Information of China (English)

    Xie Hong-Quan; Liu Pu-Kun

    2007-01-01

    A cold and uniform plasma-filled travelling wave tube with sinusoidally corrugated slow wave structure is driven by a finite thick annular intense relal:ivistic electron beam with the entire system immersed in a strong longitudinal magnetic field.By means of the linear field theory,the dispersion relation for the relativistic travelling wave tube (RTWT) is derived.By numerical computation,the dispersion characteristics of the RTWT are analysed in difierent cases of various geometric parameters of the slow wave structure and plasma densities.Also the gain versus frequency for three difierent plasma densities and the peak gain of the tube versus plasma density are analysed.Some useful results are obtained on the basis of the discussion.

  9. Quantumlike description of the nonlinear and collective effects on relativistic electron beams in strongly magnetized plasmas

    CERN Document Server

    Tanjia, Fatema; Fedele, Renato; Shukla, P K; Jovanovic, Dusan

    2011-01-01

    A numerical analysis of the self-interaction induced by a relativistic electron/positron beam in the presence of an intense external longitudinal magnetic field in plasmas is carried out. Within the context of the Plasma Wake Field theory in the overdense regime, the transverse beam-plasma dynamics is described by a quantumlike Zakharov system of equations in the long beam limit provided by the Thermal Wave Model. In the limiting case of beam spot size much larger than the plasma wavelength, the Zakharov system is reduced to a 2D Gross-Pitaevskii-type equation, where the trap potential well is due to the external magnetic field. Vortices, "beam halos" and nonlinear coherent states (2D solitons) are predicted.

  10. Investigation of relativistic laser-plasmas using nuclear diagnostics; Untersuchung relativistischer Laserplasmen mittels nukleardiagnostischer Verfahren

    Energy Technology Data Exchange (ETDEWEB)

    Guenther, Marc M.

    2011-01-19

    The present work explores with the development of a novel nuclear diagnostic method for the investigation of the electron dynamics in relativistic laser-plasma interactions. An additional aim of this work was the determination of the real laser peak intensity via the interaction of an intense laser short-pulse with a solid target. The nuclear diagnostics is based on a photo-neutron disintegration nuclear activation method. The main constituent of the nuclear diagnostic are novel pseudoalloic activation targets as a kind of calorimeter to measure the high-energy bremsstrahlung produced by relativistic electrons. The targets are composed of several stable isotopes with different ({gamma},xn)-reaction thresholds. The activated nuclides were identified via the characteristic gamma-ray decay spectrum by using high-resolution gamma spectroscopy after the laser irradiation. Via the gamma spectroscopy the ({gamma},xn)-reaction yields were determined. The high-energy bremsstrahlung spectrum has been deconvolved using a novel analysis method based on a modified Penfold-Leiss method. This facilitates the reconstruction of the spectrum of bremsstrahlung photons without any anticipated fit procedures. Furthermore, the characterization of the corresponding bremsstrahlung electrons in the interaction zone is accessible immediately. The consolidated findings about the properties of the relativistic electrons were used to determine the real peak intensity at the laser-plasma interaction zone. In the context of this work, experiments were performed at three different laser facilities. First Experiments were carried out at the 100 TW laser facility at Laboratoire pour l'Utilisation des Lasers Intense (LULI) in France and supplementary at the Vulcan laser facility at Rutherford Appleton Laboratory (RAL) in United Kingdom. The main part of the activation experiments were performed at the PHELIX laser facility (Petawatt High Energy Laser for heavy Ion EXperiments) at GSI

  11. One-photon pair annihilation in magnetized relativistic plasmas

    Science.gov (United States)

    Harding, A. K.

    1986-01-01

    In supersonic magnetic fields, electron-positron pairs may annihilate into single photons producing spectral features above 1 MeV. The paper calculates the exact one-photon annihilation rate in the general case where pairs may annihilate from excited Landau states, extending the previous studies which were restricted to pairs in the ground state. Asymptotic expressions for annihilation spectra and rates in the limit of large pair quantum numbers are also derived. It is found that the rate of annihilation from excited states can exceed the rate from the ground state by orders of magnitude in fields less than about 2 x 10 to the 12th G. This allows one-photon annihilation to be competitive with the two-photon process at typical neutron star field strengths. Annihilation spectra from a Maxwellian pair plasma at transrelativistic temperatures show fine structure near threshold on a scale (h/2pi)omega sub B as the result of contributions from individual pair states, which blend into a smooth continuum at higher energies.

  12. Longitudinal dielectric function and dispersion relation of electrostatic waves in relativistic plasmas

    Science.gov (United States)

    Touil, B.; Bendib, A.; Bendib-Kalache, K.

    2017-02-01

    The longitudinal dielectric function is derived analytically from the relativistic Vlasov equation for arbitrary values of the relevant parameters z = m c 2 / T , where m is the rest electron mass, c is the speed of light, and T is the electron temperature in energy units. A new analytical approach based on the Legendre polynomial expansion and continued fractions was used. Analytical expression of the electron distribution function was derived. The real part of the dispersion relation and the damping rate of electron plasma waves are calculated both analytically and numerically in the whole range of the parameter z . The results obtained improve significantly the previous results reported in the literature. For practical purposes, explicit expressions of the real part of the dispersion relation and the damping rate in the range z > 30 and strongly relativistic regime are also proposed.

  13. Propagation of Ordinary and Extraordinary Modes in Ultra-Relativistic Maxwellian Electron Plasma

    Science.gov (United States)

    Ali, M.; Zaheer, S.; Murtaza, G.

    2010-12-01

    Modes of ultra relativistic electron plasma embedded in a strong magnetic field are investigated for perpendicular propagation. Using Boltzmann-Vlasov equation, a general expression for the conductivity tensor is derived. An ultra-relativistic Maxwellian distribution function is employed to derive different modes for strong magnetic field limit. In particular, the dispersion relations for the ordinary mode and the extra ordinary mode (O-mode and X-mode) are obtained. Graphs of these dispersion relations and the imaginary parts of the frequency are drawn for some specific values of the parameters. It is observed that the damping rate increases gradually, reaches some maximum point and then decreases for larger wavenumbers. Further, increasing the strength of the magnetic field lowers the maximum value of the damping rate.

  14. Proton acceleration using doped Argon plasma density gradient interacting with relativistic CO2 -laser pulse

    Science.gov (United States)

    Sahai, Aakash; Ettlinger, Oliver; Hicks, George; Ditter, Emma-Jane; Najmudin, Zulfikar

    2016-10-01

    We investigate proton and light-ion acceleration driven by the interaction of relativistic CO2 laser pulses with overdense Argon or other heavy-ion gas targets doped with lighter-ion species. Optically shaping the gas targets allows tuning of the pre-plasma scale-length from a few to several laser wavelengths, allowing the laser to efficiently drive a propagating snowplow through the bunching in the electron density. Preliminary PIC-based modeling shows that the lighter-ion species is accelerated even without any significant motion of the heavier ions which is a signature of the Relativistically Induced Transparency Acceleration mechanism. Some outlines of possible experiments at the TW CO2 laser at the Accelerator Test Facility at Brookhaven National Laboratory are presented.

  15. Weibel Instability Growth Rate in Magnetized Plasmas with Quasi-Relativistic Distribution Function

    Science.gov (United States)

    Hosseini, Sayed Ahmad; Mahdavi, Mohammad

    2016-12-01

    The mechanism of the Weibel instability is investigated for dense magnetized plasmas. As we know, due to the electron velocity distribution, the Coulomb collision effect of electron-ion and the relativistic properties play an important role in such study. In this study an analytical expression for the growth rate and the condition of restricting the Weibel instability are derived for low-frequency limit. These calculations are done for the oscillation frequency dependence on the electron cyclotron frequency. It is shown that, the relativistic properties of the particle lead to increasing the growth rate of the instability. On the other hand the collision effects and background magnetic field try to decrease the growth rate by decreasing the temperature anisotropy and restricting the particles movement.

  16. Whistler instability in a semi-relativistic bi-Maxwellian plasma

    Energy Technology Data Exchange (ETDEWEB)

    Bashir, M.F., E-mail: frazbashir@yahoo.com [Salam Chair in Physics, GC University Lahore (Pakistan); Department of Physics, GC University Lahore (Pakistan); Zaheer, S. [Department of Physics, FCC University, Lahore (Pakistan); Iqbal, Z. [Salam Chair in Physics, GC University Lahore (Pakistan); Department of Physics, GC University Lahore (Pakistan); Murtaza, G. [Salam Chair in Physics, GC University Lahore (Pakistan)

    2013-11-08

    Employing linearized Vlasov–Maxwell system of equations, the whistler instability is discussed for a semi-relativistic bi-Maxwellian distribution. The dispersion relations are analyzed analytically along with the graphical representation and the estimates of the growth rate and instability threshold condition are also presented in the limiting cases i.e., ξ{sub ±}=(ω∓Ω)/k{sub ∥}v{sub t{sub ‖}}⩽1 (resonant case) and ξ{sub ±}≫1 (non-resonant case). Further for field free case i.e., B{sub 0}=0, the growth rates for Weibel instability in a semi-relativistic bi-Maxwellian plasma are presented for both the limiting cases.

  17. Energy Density in Aligned Nanowire Arrays Irradiated with Relativistic Intensities: Path to Terabar Pressure Plasmas

    Science.gov (United States)

    Rocca, J.; Bargsten, C.; Hollinger, R.; Shylaptsev, V.; Wang, S.; Rockwood, A.; Wang, Y.; Keiss, D.; Capeluto, M.; Kaymak, V.; Pukhov, A.; Tommasini, R.; London, R.; Park, J.

    2016-10-01

    Ultra-high-energy-density (UHED) plasmas, characterized by energy densities >1 x 108 J cm-3 and pressures greater than a gigabar are encountered in the center of stars and in inertial confinement fusion capsules driven by the world's largest lasers. Similar conditions can be obtained with compact, ultra-high contrast, femtosecond lasers focused to relativistic intensities onto aligned nanowire array targets. Here we report the measurement of the key physical process in determining the energy density deposited in high aspect ratio nanowire array plasmas: the energy penetration. By monitoring the x-ray emission from buried Co tracer segments in Ni nanowire arrays irradiated at an intensity of 4 x 1019 W cm-2, we demonstrate energy penetration depths of several μm, leading to UHED plasmas of that size. Relativistic 3D particle-in-cell-simulations validated by these measurements predict that irradiation of nanostructures at increased intensity will lead to a virtually unexplored extreme UHED plasma regime characterized by energy densities in excess of 8 x 1010 J cm-3, equivalent to a pressure of 0.35 Tbar. This work was supported by the Fusion Energy Program, Office of Science of the U.S Department of Energy, and by the Defense Threat Reduction Agency.

  18. Improved theory for relativistic transmittance of circularly polarized laser pulses in non-ideal, realistic plasmas

    Science.gov (United States)

    Kang, Teyoun; Kim, Young-Kuk; Hur, Min Sup

    2016-10-01

    Owing to the rapid development of laser technologies, relativistically-induced transmittance (RT) of ultra-intense laser pulses in overdense plasmas is now a practically important matter. RT could give either deleterious or positive effects depending on the kinds of laser-plasma interactions. In radiation-pressure-acceleration (RPA), enhanced transmittance lowers the momentum transfer from the pulse to the ions. Meanwhile, in collisionless-electrostatic-shock, the acceleration efficiency can be increased owing to the effective heating of upstream electrons by transmitted laser fields. Previous theories mostly have handled RT in ideal plasmas, such as an infinitely long uniform plasma or a delta-function-like slab. In the actual applications, however, RT is generally combined with other dynamics, such as plasma density compression, leading to RT under a plasma in other cases. We developed one-dimensional RT theories for circularly polarized laser pulses, which would be used for such realistic plasma profiles. According to our theory, optimal thickness condition should be modified in RPA. Furthermore we developed our theory so that RT in the common two-step density plasma can be modeled. In this poster, we present the derivation and the comparison of the improved theory with PIC simulation results. This work was supported by the Basic Science Research Program (Grant Number NRF-2013R1A1A2006353).

  19. Beyond the ponderomotive limit: direct laser acceleration of relativistic electrons in sub-critical plasmas

    CERN Document Server

    Arefiev, A V; Robinson, A P L; Shvets, G; Willingale, L; Schollmeier, M

    2016-01-01

    We examine a regime in which a linearly-polarized laser pulse with relativistic intensity irradiates a sub-critical plasma for much longer than the characteristic electron response time. A steady-state channel is formed in the plasma in this case with quasi-static transverse and longitudinal electric fields. These relatively weak fields significantly alter the electron dynamics. The longitudinal electric field reduces the longitudinal dephasing between the electron and the wave, leading to an enhancement of the electron energy gain from the pulse. The energy gain in this regime is ultimately limited by the superluminosity of the wave fronts induced by the plasma in the channel. The transverse electric field alters the oscillations of the transverse electron velocity, allowing it to remain anti-parallel to laser electric field and leading to a significant energy gain. The energy enhancement is accompanied by development of significant oscillations perpendicular to the plane of the driven motion, making traject...

  20. Specular Reflectivity and Hot-Electron Generation in High-Contrast Relativistic Laser-Plasma Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Kemp, Gregory Elijah [The Ohio State Univ., Columbus, OH (United States)

    2013-01-01

    Ultra-intense laser (> 1018 W/cm2) interactions with matter are capable of producing relativistic electrons which have a variety of applications in state-of-the-art scientific and medical research conducted at universities and national laboratories across the world. Control of various aspects of these hot-electron distributions is highly desired to optimize a particular outcome. Hot-electron generation in low-contrast interactions, where significant amounts of under-dense pre-plasma are present, can be plagued by highly non-linear relativistic laser-plasma instabilities and quasi-static magnetic field generation, often resulting in less than desirable and predictable electron source characteristics. High-contrast interactions offer more controlled interactions but often at the cost of overall lower coupling and increased sensitivity to initial target conditions. An experiment studying the differences in hot-electron generation between high and low-contrast pulse interactions with solid density targets was performed on the Titan laser platform at the Jupiter Laser Facility at Lawrence Livermore National Laboratory in Livermore, CA. To date, these hot-electrons generated in the laboratory are not directly observable at the source of the interaction. Instead, indirect studies are performed using state-of-the-art simulations, constrained by the various experimental measurements. These measurements, more-often-than-not, rely on secondary processes generated by the transport of these electrons through the solid density materials which can susceptible to a variety instabilities and target material/geometry effects. Although often neglected in these types of studies, the specularly reflected light can provide invaluable insight as it is directly influenced by the interaction. In this thesis, I address the use of (personally obtained) experimental specular reflectivity measurements to indirectly study hot-electron generation in the context of high-contrast, relativistic

  1. Ion-acoustic rogue waves and breathers in relativistically degenerate electron-positron plasmas

    Science.gov (United States)

    Abdikian, A.; Ismaeel, S.

    2017-08-01

    In this paper, we employ a weakly relativistic fluid model to study the nonlinear amplitude modulation of electrostatic waves in an unmagnetized electron-positron-ion plasma. It is assumed that the degeneracy pressure law for electrons and positrons follows the Chandrasekhar limit of state whereas ions are warm and classical. The hydrodynamic approach along with the perturbation method have been applied to obtain the corresponding nonlinear Schrödinger equation (NLSE) in which nonlinearity is in balance with the dispersive terms. Using the NLSE, we could evaluate the modulational instability to show that various types of localized ion acoustic excitations exist in the form of either bright-type envelope solitons or dark-type envelope solitons. The regions of the stable and unstable envelope wave have been confined punctually for various regimes. Furthermore, it is proposed that the exact solutions of the NLSE for breather waves are the rogue waves (RWs), Akhmediev breather (AB), and Kuznetsov-Ma breather (KM) soliton. In order to show that the characteristics of breather structures is influenced by the plasma parameters (namely, relativistic parameter, positron concentration, and ionic temperature), the relevant numerical analysis of the NLSE is examined. In particular, it is observed that by increasing the values of the mentioned plasma parameters, the amplitude of the RWs will be decreased. Our results help researchers to explain the formation and dynamics of nonlinear electrostatic excitations in super dense astrophysical regimes.

  2. Nonlinear frequency shift in Raman backscattering and its implications for plasma diagnostics

    Science.gov (United States)

    Kaganovich, D.; Hafizi, B.; Palastro, J. P.; Ting, A.; Helle, M. H.; Chen, Y.-H.; Jones, T. G.; Gordon, D. F.

    2016-12-01

    Raman backscattered radiation of intense laser pulses in plasmas is investigated for a wide range of intensities relevant to laser wakefield acceleration. The weakly nonlinear dispersion relation for Raman backscattering predicts an intensity and density dependent frequency shift that is opposite to that suggested by a simple relativistic consideration. This observation has been benchmarked against experimental results, providing a novel diagnostic for laser-plasma interactions.

  3. Nonlinear Frequency Shift in Raman Backscattering and its Implications for Plasma Diagnostics

    CERN Document Server

    Kaganovich, D; Palastro, J P; Ting, A; Helle, M H; Chen, Y -H; Jones, T G; Gordon, D F

    2016-01-01

    Raman backscattered radiation of intense laser pulses in plasma is investigated for a wide range of intensities relevant to laser wakefield acceleration. The weakly nonlinear dispersion relation for Raman backscattering predicts an intensity and density dependent frequency shift that is opposite to that suggested by a simple relativistic consideration. This observation has been benchmarked against experimental results, providing a novel diagnostic for laser-plasma interactions.

  4. The extent of power-law energy spectra in collisionless relativistic magnetic reconnection in pair plasmas

    CERN Document Server

    Werner, G R; Cerutti, B; Nalewajko, K; Begelman, M C

    2014-01-01

    Using two-dimensional particle-in-cell simulations, we characterize the energy spectra of particles accelerated by relativistic magnetic reconnection (without guide field) in collisionless electron-positron plasmas, for a wide range of upstream magnetizations $\\sigma$ and system sizes $L$. The particle spectra are well-represented by a power law $\\gamma^{-\\alpha}$, with a combination of exponential and super-exponential high-energy cutoffs, proportional to $\\sigma$ and $L$, respectively. For large $L$ and $\\sigma$, the power-law index $\\alpha$ approaches about 1.2.

  5. Two-dimensional relativistic electromagnetic dromion-like soliton in a cold transparent plasma

    Institute of Scientific and Technical Information of China (English)

    Wang Yun-Liang; Zhou Zhong-Xiang; Yuan Cheng-Xun; Jiang Xiang-Qian; Qin Ru-Hu

    2006-01-01

    By using a standard multiple scale method, a Davey-Stewartson (DS) equation has been derived and also applied to a multi-dimensional analytical investigation on the interaction of an ultra-intense laser pulse with a cold unmagnetized transparent electron-ion plasma. The regions of instability are found by considering the modulation instability of a plane wave solution of the DS equation. The DS equation is just of the Daveylution, i.e. a two-dimensional (2D) dromion soliton decaying exponentially in all spatial directions. A 2D relativistic electromagnetic dromion-like soliton (2D REDLS) is derived for a vector potential.

  6. Three-Dimensional PIC-MC Modeling for Relativistic Electron Beam Transport Through Dense Plasma

    Institute of Scientific and Technical Information of China (English)

    CAO Lihua; CHANG Tieqiang; PEI Wenbing; LIU Zhanjun; LI Meng; ZHENG Chunyang

    2008-01-01

    We have developed a three dimensional (3D) PIC (particle-in-cell)-MC (Monte Carlo) code in order to simulate an electron beam transported into the dense matter based on our previous two dimensional code. The relativistic motion of fast electrons is treated by the particle-in-cell method under the influence of both a self-generated transverse magnetic field and an axial electric field, as well as collisions. The electric field generated by return current is ex-pressed by Ohm's law and the magnetic field is calculated from Faraday's law. The slowing down of monoenergy electrons in DT plasma is calculated and discussed.

  7. Motion of the plasma critical layer during relativistic-electron laser interaction with immobile and comoving ion plasma for ion acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Sahai, Aakash A., E-mail: aakash.sahai@gmail.com [Department of Electrical Engineering, Duke University, Durham, North Carolina 27708 (United States)

    2014-05-15

    We analyze the motion of the plasma critical layer by two different processes in the relativistic-electron laser-plasma interaction regime (a{sub 0}>1). The differences are highlighted when the critical layer ions are stationary in contrast to when they move with it. Controlling the speed of the plasma critical layer in this regime is essential for creating low-β traveling acceleration structures of sufficient laser-excited potential for laser ion accelerators. In Relativistically Induced Transparency Acceleration (RITA) scheme, the heavy plasma-ions are fixed and only trace-density light-ions are accelerated. The relativistic critical layer and the acceleration structure move longitudinally forward by laser inducing transparency through apparent relativistic increase in electron mass. In the Radiation Pressure Acceleration (RPA) scheme, the whole plasma is longitudinally pushed forward under the action of the laser radiation pressure, possible only when plasma ions co-propagate with the laser front. In RPA, the acceleration structure velocity critically depends upon plasma-ion mass in addition to the laser intensity and plasma density. In RITA, mass of the heavy immobile plasma-ions does not affect the speed of the critical layer. Inertia of the bared immobile ions in RITA excites the charge separation potential, whereas RPA is not possible when ions are stationary.

  8. Motion of the plasma critical layer during relativistic-electron laser interaction with immobile and comoving ion plasma for ion accelerationa)

    Science.gov (United States)

    Sahai, Aakash A.

    2014-05-01

    We analyze the motion of the plasma critical layer by two different processes in the relativistic-electron laser-plasma interaction regime (a0>1). The differences are highlighted when the critical layer ions are stationary in contrast to when they move with it. Controlling the speed of the plasma critical layer in this regime is essential for creating low-β traveling acceleration structures of sufficient laser-excited potential for laser ion accelerators. In Relativistically Induced Transparency Acceleration (RITA) scheme, the heavy plasma-ions are fixed and only trace-density light-ions are accelerated. The relativistic critical layer and the acceleration structure move longitudinally forward by laser inducing transparency through apparent relativistic increase in electron mass. In the Radiation Pressure Acceleration (RPA) scheme, the whole plasma is longitudinally pushed forward under the action of the laser radiation pressure, possible only when plasma ions co-propagate with the laser front. In RPA, the acceleration structure velocity critically depends upon plasma-ion mass in addition to the laser intensity and plasma density. In RITA, mass of the heavy immobile plasma-ions does not affect the speed of the critical layer. Inertia of the bared immobile ions in RITA excites the charge separation potential, whereas RPA is not possible when ions are stationary.

  9. Nonlinear interaction of ultraintense laser pulse with relativistic thin plasma foil in the radiation pressure-dominant regime

    Indian Academy of Sciences (India)

    KRISHNA KUMAR SONI; K P MAHESHWARI

    2016-11-01

    We present a study of the effect of laser pulse temporal profile on the energy/momentum acquired by the ions as a result of the ultraintense laser pulse focussed on a thin plasma layer in the radiation pressuredominant(RPD) regime. In the RPD regime, the plasma foil is pushed by ultraintense laser pulse when the radiation cannot propagate through the foil, while the electron and ion layers move together. The nonlinear character of laser–matter interaction is exhibited in the relativistic frequency shift, and also change in the wave amplitude as the EM wave gets reflected by the relativistically moving thin dense plasma layer. Relativistic effects in a highenergy plasma provide matching conditions that make it possible to exchange very effectively ordered kineticenergy and momentum between the EM fields and the plasma. When matter moves at relativistic velocities, the efficiency of the energy transfer from the radiation to thin plasma foil is more than 30% and in ultrarelativisticcase it approaches one. The momentum/energy transfer to the ions is found to depend on the temporal profile of the laser pulse. Our numerical results show that for the same laser and plasma parameters, a Lorentzian pulse canaccelerate ions upto 0.2 GeV within 10 fs which is 1.5 times larger than that a Gaussian pulse can.

  10. Particle-in-cell simulations of plasma accelerators and electron-neutral collisions

    Energy Technology Data Exchange (ETDEWEB)

    Bruhwiler, David L.; Giacone, Rodolfo E.; Cary, John R.; Verboncoeur, John P.; Mardahl, Peter; Esarey, Eric; Leemans, W.P.; Shadwick, B.A.

    2001-10-01

    We present 2-D simulations of both beam-driven and laser-driven plasma wakefield accelerators, using the object-oriented particle-in-cell code XOOPIC, which is time explicit, fully electromagnetic, and capable of running on massively parallel supercomputers. Simulations of laser-driven wakefields with low ({approx}10{sup 16} W/cm{sup 2}) and high ({approx}10{sup 18} W/cm{sup 2}) peak intensity laser pulses are conducted in slab geometry, showing agreement with theory and fluid simulations. Simulations of the E-157 beam wakefield experiment at the Stanford Linear Accelerator Center, in which a 30 GeV electron beam passes through 1 m of preionized lithium plasma, are conducted in cylindrical geometry, obtaining good agreement with previous work. We briefly describe some of the more significant modifications of XOOPIC required by this work, and summarize the issues relevant to modeling relativistic electron-neutral collisions in a particle-in-cell code.

  11. Stern Gerlach surfing in laser wakefield accelerators

    Energy Technology Data Exchange (ETDEWEB)

    Flood, Stephen P. [Department of Physics, Lancaster University, Lancaster (United Kingdom); Cockcroft Institute of Accelerator Science and Technology, Daresbury (United Kingdom); Burton, David A., E-mail: d.burton@lancaster.ac.uk [Department of Physics, Lancaster University, Lancaster (United Kingdom); Cockcroft Institute of Accelerator Science and Technology, Daresbury (United Kingdom)

    2015-09-25

    We investigate the effects of a Stern–Gerlach-type addition to the Lorentz force on electrons in a laser wakefield accelerator. The Stern–Gerlach-type terms are found to generate a family of trajectories describing electrons that ‘surf’ along the plasma density wave driven by a laser pulse. Such trajectories could lead to an increase in the size of an electron bunch, which may have implications for attempts to exploit such bunches in future free electron lasers.

  12. Laser wakefield accelerator based light sources: potential applications and requirements

    Energy Technology Data Exchange (ETDEWEB)

    Albert, F. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). NIF and Photon Sciences; Thomas, A. G. [Univ. of Michigan, Ann Arbor, MI (United States). Dept. of Nuclear Engineering and Radiological Sciences; Mangles, S. P.D. [Imperial College, London (United Kingdom). Blackett Lab.; Banerjee, S. [Univ. of Nebraska, Lincoln, NE (United States); Corde, S. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Flacco, A. [ENSTA, CNRS, Ecole Polytechnique, Palaiseau (France); Litos, M. [SLAC National Accelerator Lab., Menlo Park, CA (United States); Neely, D. [Science and Technology Facilities Council (STFC), Oxford (United Kingdom). Rutherford Appleton Lab. (RAL). Central Laser Facility; Viera, J. [Univ. of Lisbon (Portugal). GoLP-Inst. de Plasmas e Fusao Nuclear-Lab. Associado; Najmudin, Z. [Imperial College, London (United Kingdom). Blackett Lab.; Bingham, R. [Science and Technology Facilities Council (STFC), Oxford (United Kingdom). Rutherford Appleton Lab. (RAL). Central Laser Facility; Joshi, C. [Univ. of California, Los Angeles, CA (United States). Dept. of Electrical Engineering; Katsouleas, T. [Duke Univ., Durham, NC (United States). Platt School of Engineering

    2015-01-15

    In this article we review the prospects of laser wakefield accelerators as next generation light sources for applications. This work arose as a result of discussions held at the 2013 Laser Plasma Accelerators Workshop. X-ray phase contrast imaging, X-ray absorption spectroscopy, and nuclear resonance fluorescence are highlighted as potential applications for laser-plasma based light sources. We discuss ongoing and future efforts to improve the properties of radiation from plasma betatron emission and Compton scattering using laser wakefield accelerators for these specific applications.

  13. Particle-In-Cell Modeling of Plasma-Based Accelerators in Two and Three Dimensions

    CERN Document Server

    Hemker, Roy G

    2015-01-01

    In this dissertation, a fully object-oriented, fully relativistic, multi-dimensional Particle-In-Cell code was developed and applied to answer key questions in plasma-based accelerator research. The simulations increase the understanding of the processes in laser plasma and beam-plasma interaction, allow for comparison with experiments, and motivate the development of theoretical models. The simulations support the idea that the injection of electrons in a plasma wave by using a transversely propagating laser pulse is possible. The beam parameters of the injected electrons found in the simulations compare reasonably with beams produced by conventional methods and therefore laser injection is an interesting concept for future plasma-based accelerators. Simulations of the optical guiding of a laser wakefield driver in a parabolic plasma channel support the idea that electrons can be accelerated over distances much longer than the Rayleigh length in a channel. Simulations of plasma wakefield acceleration in the ...

  14. Relativistic correction of (v/c)2 to the collective Thomson scattering for high-temperature high-density plasma

    Institute of Scientific and Technical Information of China (English)

    Jiang Chen-Fan-Fu; Zheng Jian; Zhao Bin

    2011-01-01

    Collective Thomson scattering is theoretically investigated with the inclusion of the relativistic correction of (v/c)2.The correction is rather small for the plasma parameters inferred from the spectra of the thermal electron plasma waves in the plasma. Since the full formula of the corrected result is rather complicated,a simplified one is derived for practical use,which is shown to be in good agreement with the un-simplified one.

  15. Effect of self-injection on ultraintense laser wake-field acceleration.

    Science.gov (United States)

    Zhidkov, A; Koga, J; Kinoshita, K; Uesaka, M

    2004-03-01

    The self-injection of plasma electrons which have been accelerated to relativistic energies by a laser pulse moving with a group velocity less than the speed of light with I lambda(2)>5 x 10(19) W microm(2)/cm(2) is found via particle-in-cell simulation to be efficient for laser wake-field acceleration. When the matching condition a(0)> or =(2(1/4)omega/omega(pl))(2/3) is met, the self-injection, along with wave breaking, dominates monoenergetic electron acceleration yielding up to 100 MeV energies by a 100 TW, 20 fs laser pulse. In contrast to the injection due to wave-breaking processes, self-injection allows suppression of production of a Maxwell distribution of accelerated particles and the extraction of a beam-quality bunch of energetic electrons.

  16. 组合激光脉冲激发的等离子体尾场的参数研究∗%Parameter Study of a Plasma Wakefield Driven by Combined Laser Pulses

    Institute of Scientific and Technical Information of China (English)

    西日艾·买买提; 沙依甫加马力·达吾来提; 谢柏松

    2015-01-01

    Electron acceleration in the first cycle of a plasma wakefield driven by combined two laser pulses with different intensity and pulse duration is investigated analytically and numerically. It is found that the combined laser pulses can efficiently modify the plasma wakefield potential and phase portrait of the electron dynamics. The optimum combination of two laser pulses to maximize the net energy gain of the accelerated electrons is discussed.%本文通过数值和解析方法分析了对称强激光脉冲和弱激光脉冲的前后结合所形成的混合激光激发的尾场的参数对尾场势的影响。讨论了在弱脉冲的位置有所改动的条件下,尾场最大和最小势随各激光脉冲参数变化的敏感度。

  17. Acoustic solitons in a magnetized quantum electron-positron-ion plasma with relativistic degenerate electrons and positrons pressure

    Science.gov (United States)

    Abdikian, A.; Mahmood, S.

    2016-12-01

    The obliquely nonlinear acoustic solitary propagation in a relativistically quantum magnetized electron-positron (e-p) plasma in the presence of the external magnetic field as well as the stationary ions for neutralizing the plasma background was studied. By considering the dynamic of the fluid e-p quantum and by using the quantum hydrodynamics model and the standard reductive perturbation technique, the Zakharov-Kuznetsov (ZK) equation is derived for small but finite amplitude waves and the solitary wave solution for the parameters relevant to dense astrophysical objects such as white dwarf stars is obtained. The numerical results show that the relativistic effects lead to propagate the electrostatic bell shape structures in quantum e-p plasmas like those in classical pair-ion or pair species for relativistic plasmas. It is also observed that by increasing the relativistic effects, the amplitude and width of the e-p acoustic solitary wave will decrease. In addition, the wave amplitude increases as positron density decreases in magnetized e-p plasmas. It is indicated that by increasing the strength of the magnetic field, the width of the soliton reduces and it becomes sharper. At the end, we have analytically and numerically shown that the pulse soliton solution of the ZK equation is unstable and have traced the dependence of the instability growth rate on electron density. It is found that by considering the relativistic pressure, the instability of the soliton pulse can be reduced. The results can be useful to study the obliquely nonlinear propagation of small amplitude localized structures in magnetized quantum e-p plasmas and be applicable to understand the particle and energy transport mechanism in compact stars such as white dwarfs, where the effects of relativistic electron degeneracy become important.

  18. Magnetic structures propagating in non-equilibrium relativistic plasma of pulsar wind nebulae

    Science.gov (United States)

    Petrov, A. E.; Bykov, A. M.

    2016-11-01

    The kinetic model of highly non-equilibrium relativistic electron-positron plasma is used to study dynamical magnetic structures in pulsar wind nebulae (PWNe). The evolution equation which describes a propagation of a long-wavelength magnetosonic type perturbation of small but finite amplitude is derived. The wavelength is assumed to be longer than the scattering length of the background positrons and electrons. The rates of scattering of electrons and positrons by the stochastic magnetic field fluctuations are distinguished but the difference is supposed to be small compared with the gyrofrequencies of particles. The phase velocity, the dissipation rate and the dispersion length of the magnetic pulse are studied as the functions of plasma parameters and the scattering rates of electrons and positrons. The model being confronted to observations can help to determine the pulsar wind composition, particle distribution and non-thermal pressure in PWNe.

  19. Transverse conductivity of a relativistic plasma in oblique electric and magnetic fields

    Science.gov (United States)

    Melia, Fulvio; Fatuzzo, Marco

    1991-01-01

    Resistive tearing in a primary candidate for flares occurring in stressed magnetic fields. Its possible application to the strongly magnetized environments (Hz about 10 to the 12th G) near the surface of neutron stars, particularly as a mechanism for generating the plasma heating and particle acceleration leading to gamma-ray bursts, has motivated a quantum treatment of this process, which requires knowledge of the electrical conductivity sigma of a relativistic gas in a new domain (i.e., that of a low-density n/e/) plasma in oblique electric and magnetic fields. This paper discusses the mathematical formalism for calculating sigma and present numerical results for a wide range of parameter values. The results indicate that sigma depends very strongly on both the applied electric and magnetic fields.

  20. High density ultrashort relativistic positron beam generation by laser-plasma interaction

    Science.gov (United States)

    Gu, Y. J.; Klimo, O.; Weber, S.; Korn, G.

    2016-11-01

    A mechanism of high energy and high density positron beam creation is proposed in ultra-relativistic laser-plasma interaction. Longitudinal electron self-injection into a strong laser field occurs in order to maintain the balance between the ponderomotive potential and the electrostatic potential. The injected electrons are trapped and form a regular layer structure. The radiation reaction and photon emission provide an additional force to confine the electrons in the laser pulse. The threshold density to initiate the longitudinal electron self-injection is obtained from analytical model and agrees with the kinetic simulations. The injected electrons generate γ-photons which counter-propagate into the laser pulse. Via the Breit-Wheeler process, well collimated positron bunches in the GeV range are generated of the order of the critical plasma density and the total charge is about nano-Coulomb. The above mechanisms are demonstrated by particle-in-cell simulations and single electron dynamics.

  1. Relativistic nonlinearity and wave-guide propagation of rippled laser beam in plasma

    Indian Academy of Sciences (India)

    R K Khanna; K Baheti

    2001-06-01

    In the present paper we have investigated the self-focusing behaviour of radially symmetrical rippled Gaussian laser beam propagating in a plasma. Considering the nonlinearity to arise from relativistic phenomena and following the approach of Akhmanov et al, which is based on the WKB and paraxial-ray approximation, the self-focusing behaviour has been investigated in some detail. The effect of the position and width of the ripple on the self-focusing of laser beam has been studied for arbitrary large magnitude of nonlinearity. Results indicate that the medium behaves as an oscillatory wave-guide. The self-focusing is found to depend on the position parameter of ripple as well as on the beam width. Values of critical power has been calculated for different values of the position parameter of ripple. Effects of axially and radially inhomogeneous plasma on self-focusing behaviour have been investigated and presented here.

  2. Disperson relation of finite amplitude Alfven wave in a relativistic electron- positron plasma

    CERN Document Server

    Hada, T; Muñoz, V; Hada, Tohru; Matsukiyo, Shuichi; Munoz, Victor

    2004-01-01

    The linear dispersion relation of a finite amplitude, parallel, circularly polarized Alfv\\'en wave in a relativistic electron-positron plasma is derived. In the nonrelativistic regime, the dispersion relation has two branches, one electromagnetic wave, with a low frequency cutoff at $\\sqrt{1+2\\omega_p^2/\\Omega_p^2}$ (where $\\omega_p=(4\\pi n e^2/m)^{1/2}$ is the electron/positron plasma frequency), and an Alfv\\'en wave, with high frequency cutoff at the positron gyrofrequency $\\Omega_p$. There is only one forward propagating mode for a given frequency. However, due to relativistic effects, there is no low frequency cutoff for the electromagnetic branch, and there appears a critical wave number above which the Alfv\\'en wave ceases to exist. This critical wave number is given by $ck_c/\\Omega_p=a/\\eta$, where $a=\\omega_p^2/\\Omega_p^2$ and $\\eta$ is the ratio between the Alfv\\'en wave magnetic field amplitude and the background magnetic field. In this case, for each frequency in the Alfv\\'en branch, two additional...

  3. GENERAL RELATIVISTIC SIMULATIONS OF MAGNETIZED PLASMAS AROUND MERGING SUPERMASSIVE BLACK HOLES

    Energy Technology Data Exchange (ETDEWEB)

    Giacomazzo, Bruno [JILA, University of Colorado and National Institute of Standards and Technology, 440 UCB, Boulder, CO 80309 (United States); Baker, John G.; Van Meter, James R. [Gravitational Astrophysics Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD 21114 (United States); Coleman Miller, M.; Reynolds, Christopher S. [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States)

    2012-06-10

    Coalescing supermassive black hole binaries are produced by the mergers of galaxies and are the most powerful sources of gravitational waves accessible to space-based gravitational observatories. Some such mergers may occur in the presence of matter and magnetic fields and hence generate an electromagnetic counterpart. In this Letter, we present the first general relativistic simulations of magnetized plasma around merging supermassive black holes using the general relativistic magnetohydrodynamic code Whisky. By considering different magnetic field strengths, going from non-magnetically dominated to magnetically dominated regimes, we explore how magnetic fields affect the dynamics of the plasma and the possible emission of electromagnetic signals. In particular, we observe a total amplification of the magnetic field of {approx}2 orders of magnitude, which is driven by the accretion onto the binary and that leads to much stronger electromagnetic signals, more than a factor of 10{sup 4} larger than comparable calculations done in the force-free regime where such amplifications are not possible.

  4. Electron Weibel instability in relativistic counterstreaming plasmas with flow-aligned external magnetic fields

    Science.gov (United States)

    Grassi, A.; Grech, M.; Amiranoff, F.; Pegoraro, F.; Macchi, A.; Riconda, C.

    2017-02-01

    The Weibel instability driven by two symmetric counterstreaming relativistic electron plasmas, also referred to as current-filamentation instability, is studied in a constant and uniform external magnetic field aligned with the plasma flows. Both the linear and nonlinear stages of the instability are investigated using analytical modeling and particle-in-cell simulations. While previous studies have already described the stabilizing effect of the magnetic field, we show here that the saturation stage is only weakly affected. The different mechanisms responsible for the saturation are discussed in detail in the relativistic cold fluid framework considering a single unstable mode. The application of an external field leads to a slight increase of the saturation level for large wavelengths, while it does not affect the small wavelengths. Multimode and temperature effects are then investigated. While at high temperature the saturation level is independent of the external magnetic field, at low but finite temperature the competition between different modes in the presence of an external magnetic field leads to a saturation level lower with respect to the unmagnetized case.

  5. On plane-wave relativistic electrodynamics in plasmas and in vacuum

    CERN Document Server

    Fiore, Gaetano

    2016-01-01

    We revisit the exact microscopic equations (in differential, and equivalent integral form) ruling a relativistic cold plasma after the plane-wave Ansatz, without customary approximations. We show that in the Eulerian description the motion of a very diluted plasma initially at rest and excited by an arbitrary transverse plane electromagnetic travelling-wave has a very simple and explicit dependence on the transverse electromagnetic potential; for a non-zero density plasma the above motion is a good approximation of the real one as long as the back-reaction of the charges on the electromagnetic field can be neglected, i.e. for a time lapse decreasing with the plasma density, and can be used as initial step in an iterative resolution scheme. As one of many possible applications, we use these results to describe how the ponderomotive force of a very intense and short plane laser pulse hitting normally the surface of a plasma boosts the surface electrons into the ion background. Because of this penetration the el...

  6. Characterization of >100 T magnetic fields associated with relativistic Weibel instability in laser-produced plasmas

    Science.gov (United States)

    Mishra, Rohini; Ruyer, Charles; Goede, Sebastian; Roedel, Christian; Gauthier, Maxence; Zeil, Karl; Schramm, Ulrich; Glenzer, Siegfried; Fiuza, Frederico

    2016-10-01

    Weibel-type instabilities can occur in weakly magnetized and anisotropic plasmas of relevance to a wide range of astrophysical and laboratory scenarios. It leads to the conversion of a significant fraction of the kinetic energy of the plasma into magnetic energy. We will present a detailed numerical study, using 2D and 3D PIC simulations of the Weibel instability in relativistic laser-solid interactions. In this case, the instability develops due to the counter-streaming of laser-heated electrons and the background return current. We show that the growth rate of the instability is maximized near the critical density region on the rear side of the expanded plasma, producing up to 400 MG magnetic fields for Hydrogen plasmas. We have found that this strong field can be directly probed by energetic protons accelerated in rear side of the plasma by Target Normal Sheath Acceleration (TNSA). This allows the experimental characterization of the instability from the analysis of the spatial modulation of the detected protons. Our numerical results are compared with recent laser experiments with Hydrogen jets and show good agreement with the proton modulations observed experimentally. This work was supported by the DOE Office of Science, Fusion Energy Science (FWP 100182).

  7. Theoretical investigation of external injection schemes for laser wakefield acceleration

    NARCIS (Netherlands)

    Luttikhof, Mark Jan Hendrik

    2010-01-01

    This thesis reports on laser wakefield acceleration, a radically new approach for particle acceleration that builds on the huge electric fields that a plasma wave can provide. In this approach, an ultra-short laser pulse of high intensity is sent through a plasma. At sufficient intensity, the radiat

  8. Oblique propagation of ion acoustic shock waves in weakly and highly relativistic plasmas with nonthermal electrons and positrons

    Science.gov (United States)

    Hafez, M. G.; Roy, N. C.; Talukder, M. R.; Hossain Ali, M.

    2016-09-01

    This work investigates the oblique nonlinear propagation of ion acoustic (IA) shock waves for both weakly and highly relativistic plasmas composed of nonthermal electrons and positrons with relativistic thermal ions. The KdVB-like equation, involving dispersive, weakly transverse dispersive, nonlinearity and dissipative coefficients, is derived employing the well known reductive perturbation method. The integration of this equation is carried out by the {tanh} method taking the stable shock formation condition into account. The effects of nonthermal electrons and positrons, nonthermal electrons with isothermal positrons, isothermal electrons with nonthermal positrons, and isothermal electrons and positrons on oblique propagation of IA shock waves in weakly relativistic regime are described. Furthermore, the effects of plasma parameters on oblique propagation of IA shock waves in highly relativistic regime are discussed and compared with weakly relativistic case. It is seen that the plasma parameters within certain limits significantly modify the structures of the IA shock waves in both cases. The results may be useful for better understanding of the interactions of charged particles with extra-galactic jets as well as astrophysical compact objects.

  9. Numerical instability due to relativistic plasma drift in EM-PIC simulations

    Science.gov (United States)

    Xu, Xinlu; Yu, Peicheng; Martins, Samual F.; Tsung, Frank S.; Decyk, Viktor K.; Vieira, Jorge; Fonseca, Ricardo A.; Lu, Wei; Silva, Luis O.; Mori, Warren B.

    2013-11-01

    The numerical instability observed in electromagnetic particle-in-cell (EM-PIC) simulations with a plasma drifting with relativistic velocities is studied using both theory and computer simulations. We derive the numerical dispersion relation for a cold plasma drifting with a relativistic velocity, and find an instability attributed to the intersection between beam resonances and the electromagnetic modes in the drifting plasma. The intersection can occur in the fundamental Brillouin zones when EM waves with phase velocities less than the speed of light exist, and from aliasing beam resonances and aliasing EM modes. The unstable modes are neither purely transverse nor longitudinal. The characteristic patterns of the instability in Fourier space for various simulation setups and Maxwell equation solvers are explored by solving the corresponding numerical dispersion relations. Furthermore, based upon these characteristic patterns, we derive an asymptotic expression for the instability growth rate. The asymptotic expression greatly speeds up the calculation of the instability growth rate and makes the parameter scans for minimal growth rate feasible even for full three dimensions. The results are compared against simulation results, and good agreements are found. These results can be used as a guide to develop possible approaches to mitigate the instability. We examine the use of a spectral solver and show that such a solver when combined with a low pass filter with a cutoff value of |k→| essentially eliminates the instability while not modifying modes of physical interest. The use of a spectral solver also provides minimal errors to electromagnetic modes in the lowest Brillouin zones.

  10. Laser Wakefield diagnostic using holographic longitudinal interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Volfbeyn, P.; Esarey, E.; Leemans, W.P.

    1999-03-26

    We propose a diagnostic technique for wakefield measurement in plasma channels. A new technique for plasma channel creation, the Ignitor Heater scheme was proposed and experimentally tested in hydrogen and nitrogen previously. It makes use of two laser pulses. The Ignitor, an ultrashort (sub 100 fs) laser pulse, is brought to a line focus using a cylindrical lens to ionize the gas. The Heater pulse (160 ps long) is used to heat the existing spark via in-verse Bremsstrahlung. The hydrodynamic shock expansion creates a partially evacuated plasma channel with a density minimum on axis. Such a channel has properties of an optical waveguide. This technique allows creation of plasma channels in low atomic number gases, such as hydrogen, which is of importance for guiding of highly intense laser pulses. Laser pulses injected into such plasma channels produce a plasma wake that has a phase velocity close to the speed of light. A discussion of plasma wake measurements, using a Longitudinal Interferometry Wakefield Diagnostic Based on Time Domain Rayleigh Refractometry with Holographic Inversion, will be presented.

  11. Collisional effects on the oblique instability in relativistic beam-plasma interactions

    Science.gov (United States)

    Hao, B.; Ding, W. J.; Sheng, Z. M.; Ren, C.; Kong, X.; Mu, J.; Zhang, J.

    2012-07-01

    The general oblique instability for a relativistic electron beam propagating through a warm and resistive plasma is investigated fully kinetically by a variable rotation method. Analysis shows that the electrostatic part of the oblique instability is attenuated and eventually stabilized by collisional effects. However, the electromagnetic part of the oblique instability (EMOI) is enhanced. Since the current-filamentation instability as a special case of the EMOI has a larger growth rate, it becomes dominant in the collisional case as shown in our two-dimensional particle-in-cell simulations. While the beam diverges in the collisionless case, it can become magnetically collimated in the collisional case due to stabilization of the electrostatic instabilities when the initial beam spreading angle is less than certain magnitude such as a dozen degrees.

  12. Kinetic turbulence in relativistic plasma: from thermal bath to non-thermal continuum

    CERN Document Server

    Zhdankin, Vladimir; Uzdensky, Dmitri A; Begelman, Mitchell C

    2016-01-01

    We present results from particle-in-cell simulations of driven turbulence in collisionless, relativistic pair plasma. We find that turbulent fluctuations are consistent with the classical $k_\\perp^{-5/3}$ magnetic energy spectrum at fluid scales and a steeper $k_\\perp^{-4}$ spectrum at sub-Larmor scales, where $k_\\perp$ is the wavevector perpendicular to the mean field. We demonstrate the development of a non-thermal, power-law particle energy distribution, $f(E) \\sim E^{-\\alpha}$, with index well fit by $\\alpha \\sim 1 + C_0 (\\sigma \\rho_e/L)^{-1/2}$, where $C_0$ is a constant, $\\sigma$ is magnetization, and $\\rho_e/L$ is the ratio of characteristic Larmor radius to system size. In the absence of asymptotic system-size independent scalings, our results challenge the viability of turbulent particle acceleration in high-energy astrophysical systems such as pulsar wind nebulae.

  13. General relativistic radiative transfer in hot astrophysical plasmas a characteristic approach

    CERN Document Server

    Zane, S; Nobili, L; Erna, M; Zane, Silvia; Turolla, Roberto; Nobili, Luciano; Erna, Myris

    1996-01-01

    In this paper we present a characteristic method for solving the transfer equation in differentially moving media in a curved spacetime. The method is completely general, but its capabilities are exploited at best in presence of symmetries, when the existence of conserved quantities allows to derive analytical expressions for the photon trajectories in phase space. In spherically--symmetric, stationary configurations the solution of the transfer problem is reduced to the integration of a single ordinary differential equation along the bi--parametric family of characteristic rays. Accurate expressions for the radiative processes relevant to continuum transfer in a hot astrophysical plasma have been used in evaluating the source term, including relativistic e--p, e--e bremsstrahlung and Compton scattering. A numerical code for the solution of the transfer problem in moving media in a Schwarzschild spacetime has been developed and tested. Some applications, concerning ``hot'' and ``cold'' accretion onto non--rot...

  14. Collective modes of an anisotropic quark-gluon plasma induced by relativistic jets

    CERN Document Server

    Mandal, Mahatsab

    2012-01-01

    We discuss the characteristics of collective modes induced by relativistic jets in an anisotropic quark-gluon plasma(AQGP). Assuming a tsunami-like initial jet distribution, it is found that the dispersion relations for both the stable and unstable modes are modified substantially due to the passage of jet compared to the case when there is no jet. It has also been shown that the growth rate of instability first increases compared to the no jet case and then completely turned into damping except the case when the jet velocity is perpendicular to the wave vector in which case the instability always grows. Thus, the introduction of the jet in the AQGP, in general, might to faster isotropization for the special case when the wave vector is parallel to the anisotropy axis.

  15. Head-on collision of two dust ion acoustic solitary waves in a weakly relativistic multicomponent superthermal plasma

    Science.gov (United States)

    Saini, N. S.; Singh, Kuldeep

    2016-10-01

    A head-on collision between two dust ion acoustic solitary waves (DIASWs) travelling in the opposite direction in a weakly relativistic plasma composed of four distinct particle populations, namely, weakly relativistic ion fluid, superthermal electrons as well as positrons, and immobile dust, is investigated. By employing extended Poincaré-Lighthill-Kuo method, two Korteweg-de Vries (KdV) equations are derived. The analytical phase shift after a head-on collision of two dust ion acoustic (DIA) solitary waves is also obtained. The combined effects of relativistic factor (β), electron to positron temperature ratio (α), ion to electron temperature ratio (σ), positron to electron density ratio (P), dust density ratio (d), and superthermality of electrons as well as positrons (via κ) on the phase shifts are numerically studied. All these physical parameters have also changed the potential amplitude and the width of colliding solitary waves. It is found that the presence of superthermal electrons as well as positrons and dust grains has emphatic influence on the phase shifts and potential pulse profiles of compressive DIA solitons. Our results are general and may be helpful in understanding a head-on collision between two DIASWs in astrophysical and laboratory plasmas, especially the interaction of pulsar relativistic winds with supernova ejecta that produces the superthermal particles and relativistic ions.

  16. Observation of acceleration and deceleration in gigaelectron-volt-per-metre gradient dielectric wakefield accelerators.

    Science.gov (United States)

    O'Shea, B D; Andonian, G; Barber, S K; Fitzmorris, K L; Hakimi, S; Harrison, J; Hoang, P D; Hogan, M J; Naranjo, B; Williams, O B; Yakimenko, V; Rosenzweig, J B

    2016-09-14

    There is urgent need to develop new acceleration techniques capable of exceeding gigaelectron-volt-per-metre (GeV m(-1)) gradients in order to enable future generations of both light sources and high-energy physics experiments. To address this need, short wavelength accelerators based on wakefields, where an intense relativistic electron beam radiates the demanded fields directly into the accelerator structure or medium, are currently under intense investigation. One such wakefield based accelerator, the dielectric wakefield accelerator, uses a dielectric lined-waveguide to support a wakefield used for acceleration. Here we show gradients of 1.347±0.020 GeV m(-1) using a dielectric wakefield accelerator of 15 cm length, with sub-millimetre transverse aperture, by measuring changes of the kinetic state of relativistic electron beams. We follow this measurement by demonstrating accelerating gradients of 320±17 MeV m(-1). Both measurements improve on previous measurements by and order of magnitude and show promise for dielectric wakefield accelerators as sources of high-energy electrons.

  17. Role of the Kelvin-Helmholtz instability in the evolution of magnetized relativistic sheared plasma flows.

    Science.gov (United States)

    Hamlin, Nathaniel D; Newman, William I

    2013-04-01

    We explore, via analytical and numerical methods, the Kelvin-Helmholtz (KH) instability in relativistic magnetized plasmas, with applications to astrophysical jets. We solve the single-fluid relativistic magnetohydrodynamic (RMHD) equations in conservative form using a scheme which is fourth order in space and time. To recover the primitive RMHD variables, we use a highly accurate, rapidly convergent algorithm which improves upon such schemes as the Newton-Raphson method. Although the exact RMHD equations are marginally stable, numerical discretization renders them unstable. We include numerical viscosity to restore numerical stability. In relativistic flows, diffusion can lead to a mathematical anomaly associated with frame transformations. However, in our KH studies, we remain in the rest frame of the system, and therefore do not encounter this anomaly. We use a two-dimensional slab geometry with periodic boundary conditions in both directions. The initial unperturbed velocity peaks along the central axis and vanishes asymptotically at the transverse boundaries. Remaining unperturbed quantities are uniform, with a flow-aligned unperturbed magnetic field. The early evolution in the nonlinear regime corresponds to the formation of counter-rotating vortices, connected by filaments, which persist in the absence of a magnetic field. A magnetic field inhibits the vortices through a series of stages, namely, field amplification, vortex disruption, turbulent breakdown, and an approach to a flow-aligned equilibrium configuration. Similar stages have been discussed in MHD literature. We examine how and to what extent these stages manifest in RMHD for a set of representative field strengths. To characterize field strength, we define a relativistic extension of the Alfvénic Mach number M(A). We observe close complementarity between flow and magnetic field behavior. Weaker fields exhibit more vortex rotation, magnetic reconnection, jet broadening, and intermediate turbulence

  18. New insight into the dispersion characteristics of electrostatic waves in ultradense plasmas: electron degeneracy and relativistic effects

    Science.gov (United States)

    Kourakis, I.; McKerr, M.; Elkamash, I. S.; Haas, F.

    2017-10-01

    The dispersion properties of electrostatic waves propagating in ultrahigh density plasma are investigated, from first principles, in a one-dimensional geometry. A self-consistent multispecies plasma fluid model is taken as starting point, incorporating electron degeneracy and relativistic effects. The inertia of all plasma components is retained, for rigor. Exact expressions are obtained for the oscillation frequency, and the phase and group velocity of electrostatic waves is computed. Two branches are obtained, viz. an acoustic low-frequency dispersion branch and an upper (optic-like) branch: these may be interpreted as ion-acoustic and electron plasma (Langmuir) waves, respectively, as in classical plasmas, yet bearing an explicit correction in account of relativistic and electron degeneracy effects. The electron plasma frequency is shown to reduce significantly at high values of the density, due to the relativistic effect. The result is compared with approximate models, wherein either electrons are considered inertialess (low-frequency ionic scale) or ions are considered to be stationary (Langmuir-wave limit).

  19. Nonlinear density excitations in a magnetorotating relativistic plasma with warm ions and non-Maxwellian electrons

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Ali [National Centre for Physics, Shahdara Valley Road, Islamabad (Pakistan); Masood, W. [National Centre for Physics, Shahdara Valley Road, Islamabad (Pakistan); COMSATS Institute of Information Technology, Park Road, Chak Shahzad, Islamabad (Pakistan)

    2016-05-15

    Linear and nonlinear electrostatic ion acoustic waves in a weakly relativistic magnetorotating plasma in the presence of non-Maxwellian electrons and warm ions have been examined. The system under consideration has yielded two solutions, namely, the fast and slow acoustic modes which have been observed to depend on the streaming velocity, ion to electron temperature ratio, and the nonthermality parameter of the non-Maxwellian electrons. Using the multiple time scale analysis, we have derived the three dimensional nonlinear Zakharov–Kuznetsov equation and also presented its solution. Both compressive and rarefactive solitary structures have been found in consonance with the satellite observations. It has been observed that although the linear dispersion relation gives both fast and slow ion acoustic waves, the solitary structures form only for the fast acoustic mode. The dependence of the characteristics of the solitary structures on several plasma parameters has also been explored. The present investigation may be beneficial to understanding the rotating plasma environments such as those found in the planetary magnetospheres of Saturn and Jupiter.

  20. "Chemical" composition of the Quark-Gluon Plasma in relativistic heavy-ion collisions

    CERN Document Server

    Scardina, F; Plumari, S; Greco, V

    2012-01-01

    We study the evolution of the quark-gluon composition of the plasma created in ultra-Relativistic Heavy Ion Collisions (uRHIC's) employing a partonic transport theory that includes both elastic and inelastic collisions plus a mean fields dynamics associated to the widely used quasi-particle model. The latter, able to describe lattice QCD thermodynamics, implies a "chemical" equilibrium ratio between quarks and gluons strongly increasing as $T\\rightarrow T_c$, the phase transition temperature. Accordingly we see in realistic simulations of uRHIC's a rapid evolution from a gluon dominated initial state to a quark dominated plasma close to $T_c$. The quark to gluon ratio can be modified by about a factor of $\\sim 20$ in the bulk of the system and appears to be large also in the high $p_T$ region. We discuss how this aspect, often overflown, can be essential for a quantitative study of several key issues in the QGP physics: shear viscosity, jet quenching, quarkonia suppression. Furthemore a bulk plasma made by mo...

  1. Generation of intense circularly polarized attosecond light bursts from relativistic laser plasmas

    CERN Document Server

    Ma, Guangjin; Yu, M Y; Shen, Baifei; Veisz, Laszlo

    2016-01-01

    We have investigated the polarization of attosecond light bursts generated by nanobunches of electrons from relativistic few-cycle laser pulse interaction with the surface of overdense plasmas. Particle-in-cell simulation shows that the polarization state of the generated attosecond burst depends on the incident-pulse polarization, duration, carrier envelope phase, as well as the plasma scale length. Through laser and plasma parameter control, without compromise of generation efficiency, a linearly polarized laser pulse with azimuth $\\theta^i=10^\\circ$ can generate an elliptically polarized attosecond burst with azimuth $|\\theta^r_{\\rm atto}|\\approx61^\\circ$ and ellipticity $\\sigma^r_{\\rm atto}\\approx0.27$; while an elliptically polarized laser pulse with $\\sigma^i\\approx0.36$ can generate an almost circularly polarized attosecond burst with $\\sigma^r_{\\rm atto}\\approx0.95$. The results propose a new way to a table-top circularly polarized XUV source as a probe with attosecond scale time resolution for many a...

  2. Stopping of a relativistic electron beam in a plasma irradiated by an intense laser field

    CERN Document Server

    Nersisyan, Hrachya B

    2014-01-01

    The effects of a radiation field (RF) on the interaction process of a relativistic electron beam (REB) with an electron plasma are investigated. The stopping power of the test electron averaged with a period of the RF has been calculated assuming an underdense plasma, $\\omega_{0} >\\omega_{p}$, where $\\omega_{0}$ is the frequency of the RF and $\\omega_{p}$ is the plasma frequency. In order to highlight the effect of the radiation field we present a comparison of our analytical and numerical results obtained for nonzero RF with those for vanishing RF. In particular, it has been shown that the weak RF increases the mean energy loss for small angles between the velocity of the REB and the direction of polarization of the RF while decreasing it at large angles. Furthermore, the relative deviation of the energy loss from the field-free value is strongly reduced with increasing the beam energy. Special case of the parallel orientation of the polarization of the RF with respect to the beam velocity has been also cons...

  3. Exciting gauge unstable modes of the quark-gluon plasma by relativistic jets

    Energy Technology Data Exchange (ETDEWEB)

    Mannarelli, M; Manuel, C [Instituto de Ciencias del Espacio (IEEC/CSIC), Campus Universitat Autonoma de Barcelona, Facultat de Ciencies, Torre C5 E-08193 Bellaterra (Barcelona) (Spain)], E-mail: massimo@ieec.uab.es

    2008-05-15

    We present a study of the properties of the collective modes of a system composed by a thermalized quark-gluon plasma traversed by a relativistic jet of partons. We find that when the jet traverses the system unstable gauge field modes are excited and grow on very short time scales. The aim is to provide a novel mechanism for the description of the jet quenching phenomenon, where the jet crossing the plasma loses energy exciting colored unstable modes. In order to simplify the analysis we employ a linear response approximation, valid for short time scales. We assume that the partons in the jet can be described with a tsunami-like distribution function, whereas we treat the quark-gluon plasma employing two different approaches. In the first approach we adopt a Vlasov approximation for the kinetic equations, in the second approach we solve a set of fluid equations. In both cases we derive the expressions of the dispersion law of the collective unstable modes and compare the results obtained.

  4. Channeling of relativistic laser pulses in underdense plasmas and subsequent electron acceleration

    Directory of Open Access Journals (Sweden)

    Naseri N.

    2013-11-01

    Full Text Available This contribution is concerned with the nonlinear behavior of a relativistic laser pulse focused in an underdense plasma and with the subsequent generation of fast electrons. Specifically, we study the interaction of laser pulses having their intensity Iλ2 in the range [1019, 1020]  W/cm2  μm2, focused in a plasma of electron density n0 such that the ratio n0/nc lies in the interval [10−3, 2 × 10−2], nc denoting the critical density; the laser pulse power PL exceeds the critical power for laser channeling Pch. The laser-plasma interaction in such conditions is investigated by means of 3D Particle in Cell (PIC simulations. It is observed that the laser front gives rise to the excitation of a surface wave which propagates along the sharp boundaries of the electron free channel created by the laser pulse. The mechanism responsible for the generation of the fast electrons observed in the PIC simulations is then analyzed by means of a test particles code. It is thus found that the fast electrons are generated by the combination of the betatron process and of the acceleration by the surface wave. The maximum electron energy observed in the simulations with Iλ2 = 1020  W/cm2  μm2 and n0/nc = 2 × 10−2 is 350 MeV.

  5. Beyond the ponderomotive limit: Direct laser acceleration of relativistic electrons in sub-critical plasmas

    Science.gov (United States)

    Arefiev, A. V.; Khudik, V. N.; Robinson, A. P. L.; Shvets, G.; Willingale, L.; Schollmeier, M.

    2016-05-01

    We examine a regime in which a linearly polarized laser pulse with relativistic intensity irradiates a sub-critical plasma for much longer than the characteristic electron response time. A steady-state channel is formed in the plasma in this case with quasi-static transverse and longitudinal electric fields. These relatively weak fields significantly alter the electron dynamics. The longitudinal electric field reduces the longitudinal dephasing between the electron and the wave, leading to an enhancement of the electron energy gain from the pulse. The energy gain in this regime is ultimately limited by the superluminosity of the wave fronts induced by the plasma in the channel. The transverse electric field alters the oscillations of the transverse electron velocity, allowing it to remain anti-parallel to laser electric field and leading to a significant energy gain. The energy enhancement is accompanied by the development of significant oscillations perpendicular to the plane of the driven motion, making trajectories of energetic electrons three-dimensional. Proper electron injection into the laser beam can further boost the electron energy gain.

  6. Propagation of an ultra-short, intense laser in a relativistic fluid

    Energy Technology Data Exchange (ETDEWEB)

    Ritchie, A.B.; Decker, C.D. [Lawrence Livermore National Lab., CA (United States)

    1997-12-31

    A Maxwell-relativistic fluid model is developed to describe the propagation of an ultrashort, intense laser pulse through an underdense plasma. The model makes use of numerically stabilizing fast Fourier transform (FFT) computational methods for both the Maxwell and fluid equations, and it is benchmarked against particle-in-cell (PIC) simulations. Strong fields generated in the wake of the laser are calculated, and the authors observe coherent wake-field radiation generated at harmonics of the plasma frequency due to nonlinearities in the laser-plasma interaction. For a plasma whose density is 10% of critical, the highest members of the plasma harmonic series begin to overlap with the first laser harmonic, suggesting that widely used multiple-scales-theory, by which the laser and plasma frequencies are assumed to be separable, ceases to be a useful approximation.

  7. Modeling laser wakefield accelerators in a Lorentz boosted frame

    Energy Technology Data Exchange (ETDEWEB)

    Vay, J.-L.; Geddes, C.G.R.; Cormier-Michel, E.; Grote, D.P.

    2010-09-15

    Modeling of laser-plasma wakefield accelerators in an optimal frame of reference [1] is shown to produce orders of magnitude speed-up of calculations from first principles. Obtaining these speedups requires mitigation of a high frequency instability that otherwise limits effectiveness in addition to solutions for handling data input and output in a relativistically boosted frame of reference. The observed high-frequency instability is mitigated using methods including an electromagnetic solver with tunable coefficients, its extension to accomodate Perfectly Matched Layers and Friedman's damping algorithms, as well as an efficient large bandwidth digital filter. It is shown that choosing theframe of the wake as the frame of reference allows for higher levels of filtering and damping than is possible in other frames for the same accuracy. Detailed testing also revealed serendipitously the existence of a singular time step at which the instability level is minimized, independently of numerical dispersion, thus indicating that the observed instability may not be due primarily to Numerical Cerenkov as has been conjectured. The techniques developed for Cerenkov mitigation prove nonetheless to be very efficient at controlling the instability. Using these techniques, agreement at the percentage level is demonstrated between simulations using different frames of reference, with speedups reaching two orders of magnitude for a 0.1 GeV class stages. The method then allows direct and efficient full-scale modeling of deeply depleted laser-plasma stages of 10 GeV-1 TeV for the first time, verifying the scaling of plasma accelerators to very high energies. Over 4, 5 and 6 orders of magnitude speedup is achieved for the modeling of 10 GeV, 100 GeV and 1 TeV class stages, respectively.

  8. Modeling laser wakefield accelerators in a Lorentz boosted frame

    Energy Technology Data Exchange (ETDEWEB)

    Vay, J.-L.; Geddes, C.G.R.; Cormier-Michel, E.; Grotec, D. P.

    2010-06-15

    Modeling of laser-plasma wakefield accelerators in an optimal frame of reference is shown to produce orders of magnitude speed-up of calculations from first principles. Obtaining these speedups requires mitigation of a high-frequency instability that otherwise limits effectiveness in addition to solutions for handling data input and output in a relativistically boosted frame of reference. The observed high-frequency instability is mitigated using methods including an electromagnetic solver with tunable coefficients, its extension to accomodate Perfectly Matched Layers and Friedman's damping algorithms, as well as an efficient large bandwidth digital filter. It is shown that choosing the frame of the wake as the frame of reference allows for higher levels of filtering and damping than is possible in other frames for the same accuracy. Detailed testing also revealed serendipitously the existence of a singular time step at which the instability level is minimized, independently of numerical dispersion, thus indicating that the observed instability may not be due primarily to Numerical Cerenkov as has been conjectured. The techniques developed for Cerenkov mitigation prove nonetheless to be very efficient at controlling the instability. Using these techniques, agreement at the percentage level is demonstrated between simulations using different frames of reference, with speedups reaching two orders of magnitude for a 0.1 GeV class stages. The method then allows direct and efficient full-scale modeling of deeply depleted laser-plasma stages of 10 GeV-1 TeV for the first time, verifying the scaling of plasma accelerators to very high energies. Over 4, 5 and 6 orders of magnitude speedup is achieved for the modeling of 10 GeV, 100 GeV and 1 TeV class stages, respectively.

  9. Lorentz boosted frame simulation of Laser wakefield acceleration in quasi-3D geometry

    CERN Document Server

    Yu, Peicheng; Davidson, Asher; Tableman, Adam; Dalichaouch, Thamine; Meyers, Michael D; Tsung, Frank S; Decyk, Viktor K; Fiuza, Frederico; Vieira, Jorge; Fonseca, Ricardo A; Lu, Wei; Silva, Luis O; Mori, Warren B

    2015-01-01

    When modeling laser wakefield acceleration (LWFA) using the particle-in-cell (PIC) algorithm in a Lorentz boosted frame, the plasma is drifting relativistically at $\\beta_b c$ towards the laser, which can lead to a computational speedup of $\\sim \\gamma_b^2=(1-\\beta_b^2)^{-1}$. Meanwhile, when LWFA is modeled in the quasi-3D geometry in which the electromagnetic fields and current are decomposed into a limited number of azimuthal harmonics, speedups are achieved by modeling three dimensional problems with the computation load on the order of two dimensional $r-z$ simulations. Here, we describe how to combine the speed ups from the Lorentz boosted frame and quasi-3D algorithms. The key to the combination is the use of a hybrid Yee-FFT solver in the quasi-3D geometry that can be used to effectively eliminate the Numerical Cerenkov Instability (NCI) that inevitably arises in a Lorentz boosted frame due to the unphysical coupling of Langmuir modes and EM modes of the relativistically drifting plasma in these simul...

  10. Multidimensional Plasma Wake Excitation in the Non-linear Blowout Regime

    CERN Document Server

    Vieira, J; Silva, L O

    2016-01-01

    Plasma accelerators can sustain very high acceleration gradients. They are promising candidates for future generations of particle accelerators for sev- eral scientific, medical and technological applications. Current plasma based acceleration experiments operate in the relativistic regime, where the plasma response is strongly non-linear. We outline some of the key properties of wake- field excitation in these regimes. We outline a multidimensional theory for the excitation of plasma wakefields in connection with current experiments. We then use these results and provide design guidelines for the choice of laser and plasma parameters ensuring a stable laser wakefield accelerator that maximizes the quality of the accelerated electrons. We also mention some of the future challenges associated with this technology.

  11. Nonlinear Waveforms for Ion-Acoustic Waves in Weakly Relativistic Plasma of Warm Ion-Fluid and Isothermal Electrons

    Directory of Open Access Journals (Sweden)

    S. A. El-Wakil

    2012-01-01

    Full Text Available The reductive perturbation method has been employed to derive the Korteweg-de Vries (KdV equation for small- but finite-amplitude electrostatic ion-acoustic waves in weakly relativistic plasma consisting of warm ions and isothermal electrons. An algebraic method with computerized symbolic computation is applied in obtaining a series of exact solutions of the KdV equation. Numerical studies have been made using plasma parameters which reveal different solutions, that is, bell-shaped solitary pulses, rational pulses, and solutions with singularity at finite points, which called “blowup” solutions in addition to the propagation of an explosive pulses. The weakly relativistic effect is found to significantly change the basic properties (namely, the amplitude and the width of the ion-acoustic waves. The result of the present investigation may be applicable to some plasma environments, such as ionosphere region.

  12. Two-Dimensional Nonlinear Propagation of Ion Acoustic Waves through KPB and KP Equations in Weakly Relativistic Plasmas

    Directory of Open Access Journals (Sweden)

    M. G. Hafez

    2016-01-01

    Full Text Available Two-dimensional three-component plasma system consisting of nonextensive electrons, positrons, and relativistic thermal ions is considered. The well-known Kadomtsev-Petviashvili-Burgers and Kadomtsev-Petviashvili equations are derived to study the basic characteristics of small but finite amplitude ion acoustic waves of the plasmas by using the reductive perturbation method. The influences of positron concentration, electron-positron and ion-electron temperature ratios, strength of electron and positrons nonextensivity, and relativistic streaming factor on the propagation of ion acoustic waves in the plasmas are investigated. It is revealed that the electrostatic compressive and rarefactive ion acoustic waves are obtained for superthermal electrons and positrons, but only compressive ion acoustic waves are found and the potential profiles become steeper in case of subthermal positrons and electrons.

  13. Effect of temperature anisotropy on various modes and instabilities for a magnetized non-relativistic bi-Maxwellian plasma

    CERN Document Server

    Bashir, M F

    2012-01-01

    Using kinetic theory for homogeneous collisionless magnetized plasmas, we present an extended review of the plasma waves and instabilities and discuss the anisotropic response of generalized relativistic dielectric tensor and Onsager symmetry properties for arbitrary distribution functions. In general, we observe that for such plasmas only those electromagnetic modes whose magnetic field perturbations are perpendicular to the ambient magneticeld, i.e.,B1 \\perp B0, are effected by the anisotropy. However, in oblique propagation all modes do show such anisotropic effects. Considering the non-relativistic bi-Maxwellian distribution and studying the relevant components of the general dielectric tensor under appropriate conditions, we derive the dispersion relations for various modes and instabilities. We show that only the electromagnetic R- and L- waves, those derived from them and the O-mode are affected by thermal anisotropies, since they satisfy the required condition B1\\perpB0. By contrast, the perpendicular...

  14. PIC simulations of the production of high-quality electron beams via laser-plasma interaction

    Energy Technology Data Exchange (ETDEWEB)

    Benedetti, C. [Department of Physics, University of Bologna and INFN/Bologna, Via Irnerio 46, 40126 Bologna (Italy)], E-mail: carlo.benedetti@bo.infn.it; Londrillo, P. [INAF, Osservatorio Astronomico di Bologna, Via Ranzani 1, 40127 Bologna (Italy); Petrillo, V.; Serafini, L. [INFN/Milano, Via Celoria 14, 10133 Milano (Italy); Sgattoni, A. [Department of Physics, University of Bologna and INFN/Bologna, Via Irnerio 46, 40126 Bologna (Italy); Tomassini, P. [INFN/Milano, Via Celoria 14, 10133 Milano (Italy); Turchetti, G. [Department of Physics, University of Bologna and INFN/Bologna, Via Irnerio 46, 40126 Bologna (Italy)

    2009-09-01

    We present some numerical studies and parameter scans performed with the electromagnetic, relativistic, fully self-consistent Particle-In-Cell (PIC) code ALaDyn (Acceleration by LAser and DYNamics of charged particles), concerning the generation of a low emittance, high charge and low momentum spread electron bunch from laser-plasma interaction in the Laser WakeField Acceleration (LWFA) regime, in view of achieving beam brightness of interest for FEL applications.

  15. Ion acoustic shock and periodic waves through Burgers equation in weakly and highly relativistic plasmas with nonextensivity

    Science.gov (United States)

    M, G. Hafez; N, C. Roy; M, R. Talukder; M Hossain, Ali

    2017-01-01

    A comparative study is carried out for the nonlinear propagation of ion acoustic shock waves both for the weakly and highly relativistic plasmas consisting of relativistic ions and q-distributed electrons and positions. The Burgers equation is derived to reveal the physical phenomena using the well known reductive perturbation technique. The integration of the Burgers equation is performed by the (G\\prime /G)-expansion method. The effects of positron concentration, ion–electron temperature ratio, electron–positron temperature ratio, ion viscosity coefficient, relativistic streaming factor and the strength of the electron and positron nonextensivity on the nonlinear propagation of ion acoustic shock and periodic waves are presented graphically and the relevant physical explanations are provided.

  16. Relativistically Induced Transparency Acceleration (RITA) of Protons and Light-ions with Ultrashort Laser Interaction with Heavy-ion Plasma Density Gradient

    CERN Document Server

    Sahai, Aakash A; Tableman, A R; Mori, W B; Katsouleas, T C

    2014-01-01

    The relativistically induced transparency acceleration (RITA) scheme of proton and ion acceleration using laser-plasma interactions is introduced, modeled, and compared to the existing schemes. Protons are accelerated with femtosecond relativistic pulses to produce quasimonoenergetic bunches with controllable peak energy. The RITA scheme works by a relativistic laser inducing transparency to densities higher than the cold-electron critical density, while the background heavy ions are stationary. The rising laser pulse creates a traveling acceleration structure at the relativistic critical density by ponderomotively driving a local electron density inflation, creating an electron snowplow and a co-propagating electrostatic potential. The snowplow advances with a velocity determined by the rate of the rise of the laser's intensity envelope and the heavy-ion-plasma density gradient scale length. The rising laser is incrementally rendered transparent to higher densities such that the relativistic-electron plasma ...

  17. Building a Dispersion Relation Solver for Hot Plasmas with Arbitrary Non-relativistic Parallel Velocity Distributions

    Science.gov (United States)

    Fu, X.; Waters, T.; Gary, S. P.

    2014-12-01

    Collisionless space plasmas often deviate from Maxwellian-like velocity distributions. To study kinetic waves and instabilities in such plasmas, the dispersion relation, which depends on the velocity distribution, needs to be solved numerically. Most current dispersion solvers (e.g. WHAMP) take advantage of mathematical properties of the Gaussian (or generalized Lorentzian) function, and assume that the velocity distributions can be modeled by a combination of several drift-Maxwellian (or drift-Lorentzian) components. In this study we are developing a kinetic dispersion solver that admits nearly arbitrary non-relativistic parallel velocity distributions. A key part of any dispersion solver is the evaluation of a Hilbert transform of the velocity distribution function and its derivative along Landau contours. Our new solver builds upon a recent method to compute the Hilbert transform accurately and efficiently using the fast Fourier transform, while simultaneously treating the singularities arising from resonances analytically. We have benchmarked our new solver against other codes dealing with Maxwellian distributions. As an example usage of our code, we will show results for several instabilities that occur for electron velocity distributions observed in the solar wind.

  18. Amplification of Weibel instability in the relativistic beam-plasma interactions due to ion streaming

    Science.gov (United States)

    Ardaneh, Kazem; Cai, DongSheng; Nishikawa, Ken-Ichi

    2014-11-01

    On the basis of a three-dimensional relativistic electromagnetic particle-in-cell (PIC) code, we have analyzed the Weibel instability driven by a relativistic electron-ion beam propagating into an unmagnetized ambient electron-ion plasma. The analysis is focused on the ion contribution in the instability, considering the earliest evolution in shock formation. Simulation results demonstrate that the Weibel instability is responsible for generating and amplifying the small-scale, fluctuating, and dominantly transversal magnetic fields. These magnetic fields deflect particles behind the beam front both perpendicular and parallel to the beam propagation direction. Initially, the incoming electrons respond to field fluctuations growing as the result of the Weibel instability. Therefore, the electron current filaments are generated and the total magnetic energy grows linearly due to the mutual attraction between the filaments, and downstream advection of the magnetic field perturbations. When the magnetic fields become strong enough to deflect the much heavier ions, the ions begin to get involved in the instability. Subsequently, the linear growth of total magnetic energy decreases because of opposite electron-ion currents and topological change in the structure of magnetic fields. The ion current filaments are then merged and magnetic field energy grows more slowly at the expense of the energy stored in ion stream. It has been clearly illustrated that the ion current filaments extend through a larger scale in the longitudinal direction, while extension of the electron filaments is limited. Hence, the ions form current filaments that are the sources of deeply penetrating magnetic fields. The results also reveal that the Weibel instability is further amplified due to the ions streaming, but on a longer time scale. Our simulation predictions are in valid agreement with those reported in the literature.

  19. Three-dimensional relativistic pair plasma reconnection with radiative feedback in the Crab Nebula

    Energy Technology Data Exchange (ETDEWEB)

    Cerutti, B. [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Werner, G. R.; Uzdensky, D. A. [Center for Integrated Plasma Studies, Physics Department, University of Colorado, UCB 390, Boulder, CO 80309-0390 (United States); Begelman, M. C., E-mail: bcerutti@astro.princeton.edu, E-mail: greg.werner@colorado.edu, E-mail: uzdensky@colorado.edu, E-mail: mitch@jila.colorado.edu [JILA, University of Colorado and National Institute of Standards and Technology, UCB 440, Boulder, CO 80309-0440 (United States)

    2014-02-20

    The discovery of rapid synchrotron gamma-ray flares above 100 MeV from the Crab Nebula has attracted new interest in alternative particle acceleration mechanisms in pulsar wind nebulae. Diffuse shock-acceleration fails to explain the flares because particle acceleration and emission occur during a single or even sub-Larmor timescale. In this regime, the synchrotron energy losses induce a drag force on the particle motion that balances the electric acceleration and prevents the emission of synchrotron radiation above 160 MeV. Previous analytical studies and two-dimensional (2D) particle-in-cell (PIC) simulations indicate that relativistic reconnection is a viable mechanism to circumvent the above difficulties. The reconnection electric field localized at X-points linearly accelerates particles with little radiative energy losses. In this paper, we check whether this mechanism survives in three dimension (3D), using a set of large PIC simulations with radiation reaction force and with a guide field. In agreement with earlier works, we find that the relativistic drift kink instability deforms and then disrupts the layer, resulting in significant plasma heating but few non-thermal particles. A moderate guide field stabilizes the layer and enables particle acceleration. We report that 3D magnetic reconnection can accelerate particles above the standard radiation reaction limit, although the effect is less pronounced than in 2D with no guide field. We confirm that the highest-energy particles form compact bunches within magnetic flux ropes, and a beam tightly confined within the reconnection layer, which could result in the observed Crab flares when, by chance, the beam crosses our line of sight.

  20. Three-dimensional Relativistic Pair Plasma Reconnection with Radiative Feedback in the Crab Nebula

    Science.gov (United States)

    Cerutti, B.; Werner, G. R.; Uzdensky, D. A.; Begelman, M. C.

    2014-02-01

    The discovery of rapid synchrotron gamma-ray flares above 100 MeV from the Crab Nebula has attracted new interest in alternative particle acceleration mechanisms in pulsar wind nebulae. Diffuse shock-acceleration fails to explain the flares because particle acceleration and emission occur during a single or even sub-Larmor timescale. In this regime, the synchrotron energy losses induce a drag force on the particle motion that balances the electric acceleration and prevents the emission of synchrotron radiation above 160 MeV. Previous analytical studies and two-dimensional (2D) particle-in-cell (PIC) simulations indicate that relativistic reconnection is a viable mechanism to circumvent the above difficulties. The reconnection electric field localized at X-points linearly accelerates particles with little radiative energy losses. In this paper, we check whether this mechanism survives in three dimension (3D), using a set of large PIC simulations with radiation reaction force and with a guide field. In agreement with earlier works, we find that the relativistic drift kink instability deforms and then disrupts the layer, resulting in significant plasma heating but few non-thermal particles. A moderate guide field stabilizes the layer and enables particle acceleration. We report that 3D magnetic reconnection can accelerate particles above the standard radiation reaction limit, although the effect is less pronounced than in 2D with no guide field. We confirm that the highest-energy particles form compact bunches within magnetic flux ropes, and a beam tightly confined within the reconnection layer, which could result in the observed Crab flares when, by chance, the beam crosses our line of sight.

  1. A hydrodynamic approach to the study of anisotropic instabilities in dissipative relativistic plasmas

    Science.gov (United States)

    Calzetta, Esteban; Kandus, Alejandra

    2016-12-01

    We develop a purely hydrodynamic formalism to describe collisional, anisotropic instabilities in a relativistic plasma, that are usually described with kinetic theory tools. Our main motivation is the fact that coarse-grained models of high particle number systems give more clear and comprehensive physical descriptions of those systems than purely kinetic approaches, and can be more easily tested experimentally as well as numerically. Also they make it easier to follow perturbations from linear to nonlinear regimes. In particular, we aim at developing a theory that describes both a background nonequilibrium fluid configurations and its perturbations, to be able to account for the backreaction of the latter on the former. Our system of equations includes the usual conservation laws for the energy-momentum tensor and for the electric current, and the equations for two new tensors that encode the information about dissipation. To make contact with kinetic theory, we write the different tensors as the moments of a nonequilibrium one-particle distribution function (1pdf) which, for illustrative purposes, we take in the form of a Grad-like ansatz. Although this choice limits the applicability of the formalism to states not far from equilibrium, it retains the main features of the underlying kinetic theory. We assume the validity of the Vlasov-Boltzmann equation, with a collision integral given by the Anderson-Witting prescription, which is more suitable for highly relativistic systems than Marle’s (or Bhatnagar, Gross and Krook) form, and derive the conservation laws by taking its corresponding moments. We apply our developments to study the emergence of instabilities in an anisotropic, but axially symmetric background. For small departures of isotropy we find the dispersion relation for normal modes, which admit unstable solutions for a wide range of values of the parameter space.

  2. Online plasma diagnostics of a laser-produced plasma

    Science.gov (United States)

    Kai, Gao; Nasr, A. M. Hafz; Song, Li; Mohammad, Mirzaie; Guangyu, Li; Quratul, Ain

    2017-01-01

    In this study, we report a laser interferometry experiment for the online-diagnosing of a laser-produced plasma. The laser pulses generating the plasma are ultra-fast (30 femtoseconds), ultra-intense (tens of Terawatt) and are focused on a helium gas jet to generate relativistic electron beams via the laser wakefield acceleration (LWFA) mechanism. A probe laser beam (λ = 800 nm) which is split-off the main beam is used to cross the plasma at the time of arrival of the main pulse, allowing online plasma density diagnostics. The interferometer setup is based on the NoMarski method in which we used a Fresnel bi-prism where the probe beam interferes with itself after crossing the plasma medium. A high-dynamic range CCD camera is used to record the interference patterns. Based upon the Abel inversion technique, we obtained a 3D density distribution of the plasma density.

  3. The formation of relativistic plasma structures and their potential role in the generation of cosmic ray electrons

    Directory of Open Access Journals (Sweden)

    M. E. Dieckmann

    2008-11-01

    Full Text Available Recent particle-in-cell (PIC simulation studies have addressed particle acceleration and magnetic field generation in relativistic astrophysical flows by plasma phase space structures. We discuss the astrophysical environments such as the jets of compact objects, and we give an overview of the global PIC simulations of shocks. These reveal several types of phase space structures, which are relevant for the energy dissipation. These structures are typically coupled in shocks, but we choose to consider them here in an isolated form. Three structures are reviewed. (1 Simulations of interpenetrating or colliding plasma clouds can trigger filamentation instabilities, while simulations of thermally anisotropic plasmas observe the Weibel instability. Both transform a spatially uniform plasma into current filaments. These filament structures cause the growth of the magnetic fields. (2 The development of a modified two-stream instability is discussed. It saturates first by the formation of electron phase space holes. The relativistic electron clouds modulate the ion beam and a secondary, spatially localized electrostatic instability grows, which saturates by forming a relativistic ion phase space hole. It accelerates electrons to ultra-relativistic speeds. (3 A simulation is also revised, in which two clouds of an electron-ion plasma collide at the speed 0.9c. The inequal densities of both clouds and a magnetic field that is oblique to the collision velocity vector result in waves with a mixed electrostatic and electromagnetic polarity. The waves give rise to growing corkscrew distributions in the electrons and ions that establish an equipartition between the electron, the ion and the magnetic energy. The filament-, phase space hole- and corkscrew structures are discussed with respect to electron acceleration and magnetic field generation.

  4. Electron Rephasing in a Laser-Wakefield Accelerator.

    Science.gov (United States)

    Guillaume, E; Döpp, A; Thaury, C; Ta Phuoc, K; Lifschitz, A; Grittani, G; Goddet, J-P; Tafzi, A; Chou, S W; Veisz, L; Malka, V

    2015-10-09

    An important limit for energy gain in laser-plasma wakefield accelerators is the dephasing length, after which the electron beam reaches the decelerating region of the wakefield and starts to decelerate. Here, we propose to manipulate the phase of the electron beam in the wakefield, in order to bring the beam back into the accelerating region, hence increasing the final beam energy. This rephasing is operated by placing an upward density step in the beam path. In a first experiment, we demonstrate the principle of this technique using a large energy spread electron beam. Then, we show that it can be used to increase the energy of monoenergetic electron beams by more than 50%.

  5. Experimental evidence of nonthermal acceleration of relativistic electrons by an intensive laser pulse.

    Science.gov (United States)

    Kuramitsu, Y; Nakanii, N; Kondo, K; Sakawa, Y; Mori, Y; Miura, E; Tsuji, K; Kimura, K; Fukumochi, S; Kashihara, M; Tanimoto, T; Nakamura, H; Ishikura, T; Takeda, K; Tampo, M; Kodama, R; Kitagawa, Y; Mima, K; Tanaka, K A; Hoshino, M; Takabe, H

    2011-02-01

    Nonthermal acceleration of relativistic electrons is investigated with an intensive laser pulse. An energy distribution function of energetic particles in the universe or cosmic rays is well represented by a power-law spectrum, therefore, nonthermal acceleration is essential to understand the origin of cosmic rays. A possible candidate for the origin of cosmic rays is wakefield acceleration at relativistic astrophysical perpendicular shocks. The wakefield is considered to be excited by large-amplitude precursor light waves in the upstream of the shocks. Substituting an intensive laser pulse for the large amplitude light waves, we performed a model experiment of the shock environments in a laboratory plasma. An intensive laser pulse was propagated in a plasma tube created by imploding a hollow polystyrene cylinder, as the large amplitude light waves propagated in the upstream plasma at an astrophysical shock. Nonthermal electrons were generated, and the energy distribution functions of the electrons have a power-law component with an index of ~2. We described the detailed procedures to obtain the nonthermal components from data obtained by an electron spectrometer.

  6. Laser-plasmas in the relativistic-transparency regime: Science and applications

    Science.gov (United States)

    Fernández, Juan C.; Cort Gautier, D.; Huang, Chengkung; Palaniyappan, Sasikumar; Albright, Brian J.; Bang, Woosuk; Dyer, Gilliss; Favalli, Andrea; Hunter, James F.; Mendez, Jacob; Roth, Markus; Swinhoe, Martyn; Bradley, Paul A.; Deppert, Oliver; Espy, Michelle; Falk, Katerina; Guler, Nevzat; Hamilton, Christopher; Hegelich, Bjorn Manuel; Henzlova, Daniela; Ianakiev, Kiril D.; Iliev, Metodi; Johnson, Randall P.; Kleinschmidt, Annika; Losko, Adrian S.; McCary, Edward; Mocko, Michal; Nelson, Ronald O.; Roycroft, Rebecca; Santiago Cordoba, Miguel A.; Schanz, Victor A.; Schaumann, Gabriel; Schmidt, Derek W.; Sefkow, Adam; Shimada, Tsutomu; Taddeucci, Terry N.; Tebartz, Alexandra; Vogel, Sven C.; Vold, Erik; Wurden, Glen A.; Yin, Lin

    2017-05-01

    Laser-plasma interactions in the novel regime of relativistically induced transparency (RIT) have been harnessed to generate intense ion beams efficiently with average energies exceeding 10 MeV/nucleon (>100 MeV for protons) at "table-top" scales in experiments at the LANL Trident Laser. By further optimization of the laser and target, the RIT regime has been extended into a self-organized plasma mode. This mode yields an ion beam with much narrower energy spread while maintaining high ion energy and conversion efficiency. This mode involves self-generation of persistent high magnetic fields (˜104 T, according to particle-in-cell simulations of the experiments) at the rear-side of the plasma. These magnetic fields trap the laser-heated multi-MeV electrons, which generate a high localized electrostatic field (˜0.1 T V/m). After the laser exits the plasma, this electric field acts on a highly structured ion-beam distribution in phase space to reduce the energy spread, thus separating acceleration and energy-spread reduction. Thus, ion beams with narrow energy peaks at up to 18 MeV/nucleon are generated reproducibly with high efficiency (≈5%). The experimental demonstration has been done with 0.12 PW, high-contrast, 0.6 ps Gaussian 1.053 μm laser pulses irradiating planar foils up to 250 nm thick at 2-8 × 1020 W/cm2. These ion beams with co-propagating electrons have been used on Trident for uniform volumetric isochoric heating to generate and study warm-dense matter at high densities. These beam plasmas have been directed also at a thick Ta disk to generate a directed, intense point-like Bremsstrahlung source of photons peaked at ˜2 MeV and used it for point projection radiography of thick high density objects. In addition, prior work on the intense neutron beam driven by an intense deuterium beam generated in the RIT regime has been extended. Neutron spectral control by means of a flexible converter-disk design has been demonstrated, and the neutron beam has

  7. Laser wakefield acceleration of polarized electron beams

    Science.gov (United States)

    Pugacheva, D. V.; Andreev, N. E.; Cros, B.

    2016-11-01

    The acceleration of highly polarized electron beams are widely used in state-of-the-art high-energy physics experiments. In this work, a model for investigation of polarization dynamics of electron beams in the laser-plasma accelerator depending on the initial energy of electrons was developed and tested. To obtain the evolution of the trajectory and momentum of the electron for modeling its acceleration the wakefield structure was determined. The spin precession of the beam electron was described by Thomas-Bargman-Michel-Telegdi equations. The evolution of the electron beam polarization was investigated for zero-emittance beams with zero-energy spread.

  8. NORSE: A solver for the relativistic non-linear Fokker-Planck equation for electrons in a homogeneous plasma

    Science.gov (United States)

    Stahl, A.; Landreman, M.; Embréus, O.; Fülöp, T.

    2017-03-01

    Energetic electrons are of interest in many types of plasmas, however previous modeling of their properties has been restricted to the use of linear Fokker-Planck collision operators or non-relativistic formulations. Here, we describe a fully non-linear kinetic-equation solver, capable of handling large electric-field strengths (compared to the Dreicer field) and relativistic temperatures. This tool allows modeling of the momentum-space dynamics of the electrons in cases where strong departures from Maxwellian distributions may arise. As an example, we consider electron runaway in magnetic-confinement fusion plasmas and describe a transition to electron slide-away at field strengths significantly lower than previously predicted.

  9. NORSE: A solver for the relativistic non-linear Fokker-Planck equation for electrons in a homogeneous plasma

    CERN Document Server

    Stahl, A; Embréus, O; Fülöp, T

    2016-01-01

    Energetic electrons are of interest in many types of plasmas, however previous modelling of their properties have been restricted to the use of linear Fokker-Planck collision operators or non-relativistic formulations. Here, we describe a fully non-linear kinetic-equation solver, capable of handling large electric-field strengths (compared to the Dreicer field) and relativistic temperatures. This tool allows modelling of the momentum-space dynamics of the electrons in cases where strong departures from Maxwellian distributions may arise. As an example, we consider electron runaway in magnetic-confinement fusion plasmas and describe a transition to electron slide-away at field strengths significantly lower than previously predicted.

  10. Laser-Driven Ultra-Relativistic Plasmas - Nuclear Fusion in Coulomb Shock Waves, Rouge Waves, and Background Matter

    Science.gov (United States)

    2015-05-05

    AND SUBTITLE LASER-DRIVEN ULTRA-RELATIVISTIC PLASMAS - NUCLEAR FUSION IN COULOMB SHOCK WAVES, ROUGE WAVES, AND BACKGROUND MATTER. 5a.  CONTRACT...blackbody radiation on free electrons .........................9 2.vi. Proposal of ultimate test of laser nuclear fusion efficiency in clusters...domain of energies and temperatures, with applications in particular to controlled nuclear fusion . 2. Final technical report on the grant #F49620-11-1

  11. Self consistent thermal wave model description of the transverse dynamics for relativistic charged particle beams in magnetoactive plasmas

    CERN Document Server

    Fedele, Renato; De Nicola, Sergio; Shukla, P K; Jovanovic, Dusan

    2011-01-01

    Thermal Wave Model is used to study the strong self-consistent Plasma Wake Field interaction (transverse effects) between a strongly magnetized plasma and a relativistic electron/positron beam travelling along the external magnetic field, in the long beam limit, in terms of a nonlocal NLS equation and the virial equation. In the linear regime, vortices predicted in terms of Laguerre-Gauss beams characterized by non-zero orbital angular momentum (vortex charge). In the nonlinear regime, criteria for collapse and stable oscillations is established and the thin plasma lens mechanism is investigated, for beam size much greater than the plasma wavelength. The beam squeezing and the self-pinching equilibrium is predicted, for beam size much smaller than the plasma wavelength, taking the aberrationless solution of the nonlocal Nonlinear Schroeding equation.

  12. Hadron production in relativistic heavy ion interactions and the search for the quark-gluon plasma

    Energy Technology Data Exchange (ETDEWEB)

    Tannenbaum, M.J.

    1989-12-01

    The course starts with an introduction, from the experimentalist's point of view, of the challenge of measuring Relativistic Heavy Ion interactions. A review of some theoretical predictions for the expected signatures of the quark gluon plasma will be made, with a purpose to understand how they relate to quantities which may be experimentally measured. A short exposition of experimental techniques and details is given including charged particles in matter, momentum resolution, kinematics and Lorentz Transformations, calorimetry. Principles of particle identification including magnetic spectrometers, time of flight measurement. Illustrations using the E802 spectrometer and other measured results. Resolution smearing of spectra, and binning effects. Parent to daughter effects in decay, with {pi}{sup 0} {yields} {gamma} {gamma} as an example. The experimental situation from the known data in p -- p collisions and proton-nucleus reactions is reviewed and used as a basis for further discussions. The Cronin Effect'' and the Seagull Effect'' being two arcana worth noting. Then, selected experiments from the BNL and CERN heavy ion programs are discussed in detail. 118 refs., 45 figs.

  13. Effect of the plasma-generated magnetic field on relativistic electron transport.

    Science.gov (United States)

    Nicolaï, Ph; Feugeas, J-L; Regan, C; Olazabal-Loumé, M; Breil, J; Dubroca, B; Morreeuw, J-P; Tikhonchuk, V

    2011-07-01

    In the fast-ignition scheme, relativistic electrons transport energy from the laser deposition zone to the dense part of the target where the fusion reactions can be ignited. The magnetic fields and electron collisions play an important role in the collimation or defocusing of this electron beam. Detailed description of these effects requires large-scale kinetic calculations and is limited to short time intervals. In this paper, a reduced kinetic model of fast electron transport coupled to the radiation hydrodynamic code is presented. It opens the possibility to carry on hybrid simulations in a time scale of tens of picoseconds or more. It is shown with this code that plasma-generated magnetic fields induced by noncollinear temperature and density gradients may strongly modify electron transport in a time scale of a few picoseconds. These fields tend to defocus the electron beam, reducing the coupling efficiency to the target. This effect, that was not seen before in shorter time simulations, has to be accounted for in any ignition design using electrons as a driver.

  14. Relativistic Shear Flow between Electron–Ion and Electron–Positron Plasmas and Astrophysical Applications

    Science.gov (United States)

    Liang, Edison; Fu, Wen; Böttcher, Markus

    2017-10-01

    We present particle-in-cell simulation results of relativistic shear boundary layers between electron–ion and electron–positron plasmas and discuss their potential applications to astrophysics. Specifically, we find that in the case of a fast electron–positron spine surrounded by a slow-moving or stationary electron–ion sheath, lepton acceleration proceeds in a highly anisotropic manner due to electromagnetic fields created at the shear interface. While the highest-energy leptons still produce a beaming pattern (as seen in the quasi-stationary frame of the sheath) of order 1/Γ, where Γ is the bulk Lorentz factor of the spine, for lower-energy particles, the beaming is much less pronounced. This is in stark contrast to the case of pure electron–ion shear layers, in which anisotropic particle acceleration leads to significantly narrower beaming patterns than 1/Γ for the highest-energy particles. In either case, shear-layer acceleration is expected to produce strongly angle-dependent lepton (hence, emanating radiation) spectra, with a significantly harder spectrum in the forward direction than viewed from larger off-axis angles, much beyond the regular Doppler boosting effect from a co-moving isotropic lepton distribution. This may solve the problem of the need for high (and apparently arbitrarily chosen) minimum Lorentz factors of radiating electrons, often plaguing current blazar and GRB jet modeling efforts.

  15. Initial energy density of quark-gluon plasma in relativistic heavy-ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Wong, C.Y.

    1984-01-01

    Recently, there has been considerable interest in the central rapidity region of highly relativistic heavy-ion collisions. Such an interest stems from the possibility of creating hadron matter of high energy density which may exceed the critical energy density for a phase transition between ordinary confined matter and the unconfined quark-gluon plasma. The experimental searches and identification of the quark-gluon plasma may provide a new insight into the question of quark confinement. The estimate of the initial energy density is quite uncertain. The initial energy density is nonetheless an important physical quantity. It is one of the factors which determines whether the produced matter can undergo phase transition or not. The energy density has been estimated previously by using the color neutralization model of Brodsky et al. However, the color neutralization model gives a central rapidity multiplicity in heavy-ion collision too low by a factor of two. For this reason, we wish to obtain a better estimate of the energy density (in the central rapidity region). As is well known, a simple Glauber-type multiple collision model can reproduce the total multiplicity and multiplicity plateau near the central rapidity region to within 30%. The simple multiple collision model has an approximate validity as a gross description of the reaction process. We shall adopt a semiempirical approach. Using the multiple collision model and the thickness function of Glauber, we obtain analytical functional form for all the quantities in question. A single parameter, r/sub rms/, is adjusted to fit the experimental central rapidity multiplicity data. The semi-empirical results provide a useful tool to extrapolate to the unknown central rapidity region of heavy-ion collisions.

  16. Comment on "Electrostatic compressive and rarefactive shocks and solitons in relativistic plasmas occurring in polar regions of pulsar"

    Science.gov (United States)

    Hafez, M. G.; Talukder, M. R.; Hossain Ali, M.

    2016-05-01

    The aim of this comment is to show the solution of the KdVB equation used by Shah et al. (Astrophys. Space Sci. 335:529-537, 2011, doi: 10.1007/s10509-011-0766-y) is not correct. So, the numerical results that are predicted in this manuscript should not be helpful for further investigations in a plasma laboratory. For this reason, we have employed the Bernoulli's equation method to obtain the correct form of analytical solution to this equation, which is appropriate for the study of electrostatic compressive and rarefactive shocks and solitons in relativistic plasmas occurring in polar regions of pulsar.

  17. Whistler instability in a semi-relativistic bi-Maxwellian plasma

    CERN Document Server

    Bashir, M F; Iqbal, Z; Murtaza, G

    2013-01-01

    Employing linearized Vlasov-Maxwell system, the Weibel instability embedded in an ambient magnetic field is discussed for a semi-relativistic bi-Maxwellian distribution hoping such a scenario occurs in some relativistic environments e.g., gamma-ray burst sources and relativistic jet sources, supernovae, and galactic cosmic rays where the perpendicular temperature is much dominated over the parallel . The dispersion relations are analyzed analytically along with the graphical representation and the estimates of the growth rate are presented along with the instability threshold condition in the limiting cases i.e., xi>1 (non-resonant case). It is observed that the relativistic effect suppresses the instability and also lowers the threshold for the instability to set in. The ambient magnetic field contribution to instability appears only in non-resonant case resulting in reduction of growth rate. However, the effect of the ambient magnetic field is diminished as we go from the weak relativistic regime to the hig...

  18. Optimization and control of electron beams from laser wakefield accelerations using asymmetric laser pulses

    Science.gov (United States)

    Gopal, K.; Gupta, D. N.

    2017-10-01

    Optimization and control of electron beam quality in laser wakefield acceleration are explored by using a temporally asymmetric laser pulse of the sharp rising front portion. The temporally asymmetric laser pulse imparts stronger ponderomotive force on the ambient plasma electrons. The stronger ponderomotive force associated with the asymmetric pulse significantly affects the injection of electrons into the wakefield and consequently the quality of the injected bunch in terms of injected charge, mean energy, and emittance. Based on particle-in-cell simulations, we report to generate a monoenergetic electron beam with reduced emittance and enhanced charge in laser wakefield acceleration using an asymmetric pulse of duration 30 fs.

  19. Dynamics of electron bunches at the laser-plasma interaction in the bubble regime

    Science.gov (United States)

    Maslov, V. I.; Svystun, O. M.; Onishchenko, I. N.; Tkachenko, V. I.

    2016-09-01

    The multi-bunches self-injection, observed in laser-plasma accelerators in the bubble regime, affects the energy gain of electrons accelerated by laser wakefield. However, understanding of dynamics of the electron bunches formed at laser-plasma interaction may be challenging. We present here the results of fully relativistic electromagnetic particle-in-cell (PIC) simulation of laser wakefield acceleration driven by a short laser pulse in an underdense plasma. The trapping and acceleration of three witness electron bunches by the bubble-like structures were observed. It has been shown that with time the first two witness bunches turn into drivers and contribute to acceleration of the last witness bunch.

  20. Dynamics of electron bunches at the laser–plasma interaction in the bubble regime

    Energy Technology Data Exchange (ETDEWEB)

    Maslov, V.I., E-mail: vmaslov@kipt.kharkov.ua; Svystun, O.M., E-mail: svistun_elena@mail.ru; Onishchenko, I.N.; Tkachenko, V.I.

    2016-09-01

    The multi-bunches self-injection, observed in laser–plasma accelerators in the bubble regime, affects the energy gain of electrons accelerated by laser wakefield. However, understanding of dynamics of the electron bunches formed at laser–plasma interaction may be challenging. We present here the results of fully relativistic electromagnetic particle-in-cell (PIC) simulation of laser wakefield acceleration driven by a short laser pulse in an underdense plasma. The trapping and acceleration of three witness electron bunches by the bubble-like structures were observed. It has been shown that with time the first two witness bunches turn into drivers and contribute to acceleration of the last witness bunch.

  1. Propagation of localized structures in relativistic magnetized electron-positron plasmas using particle-in-cell simulations

    Energy Technology Data Exchange (ETDEWEB)

    López, Rodrigo A. [Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Concepción, Concepción 4070386 (Chile); Muñoz, Víctor [Departamento de Física, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago (Chile); Viñas, Adolfo F. [Geospace Physics Laboratory, Heliophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, Maryland 20771 (United States); Valdivia, Juan A. [Departamento de Física, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago (Chile); Centro para el Desarrollo de la Nanociencia y la Nanotecnología (CEDENNA), Santiago 9170124 (Chile)

    2015-09-15

    We use a particle-in-cell simulation to study the propagation of localized structures in a magnetized electron-positron plasma with relativistic finite temperature. We use as initial condition for the simulation an envelope soliton solution of the nonlinear Schrödinger equation, derived from the relativistic two fluid equations in the strongly magnetized limit. This envelope soliton turns out not to be a stable solution for the simulation and splits in two localized structures propagating in opposite directions. However, these two localized structures exhibit a soliton-like behavior, as they keep their profile after they collide with each other due to the periodic boundary conditions. We also observe the formation of localized structures in the evolution of a spatially uniform circularly polarized Alfvén wave. In both cases, the localized structures propagate with an amplitude independent velocity.

  2. Tachyonic quantum densities of relativistic electron plasmas: Cherenkov spectra of γ-ray pulsars

    Energy Technology Data Exchange (ETDEWEB)

    Tomaschitz, Roman, E-mail: tom@geminga.org

    2014-06-27

    Tachyonic Cherenkov radiation in second quantization can explain the subexponential spectral tails of GeV γ-ray pulsars (Crab pulsar, PSR J1836+5925, PSR J0007+7303, PSR J2021+4026) recently observed with the Fermi-LAT, VERITAS and MAGIC telescopes. The radiation is emitted by a thermal ultra-relativistic electron plasma. The Cherenkov effect is derived from a Maxwell–Proca field with negative mass-square in a dispersive spacetime. The frequency variation of the tachyon mass results in exp(−β{sup ^}ω{sup 1−ρ}) attenuation of the asymptotic Cherenkov energy flux, where β{sup ^} is a decay constant related to the electron temperature and ρ is the frequency scaling exponent of the tachyon mass. An exponent in the range 0<ρ<1 can reproduce the observed subexponential decay of the energy flux. For the Crab pulsar, we find ρ=0.81±0.02, inferred from the substantially weaker-than-exponential decay of its spectral tail measured by MAGIC over an extended energy range. The scaling exponent ρ determines whether the group velocity of the tachyonic γ-rays is sub- or superluminal. - Highlights: • Quantized tachyonic Cherenkov densities lead to subexponential spectral decay. • γ-Ray spectral fits to Crab pulsar, PSR J1836+5925, PSR J0007+7303, PSR J2021+4026. • The polarization of γ-rays is analyzed in the quasiclassical regime and quantum limit. • Three degrees of polarization due to the negative mass-square of the Maxwell–Proca field. • Weibull decay of spectral tails caused by frequency scaling of the tachyon mass.

  3. A comparative study of the filamentation and two-stream instabilities in weakly relativistic counter-streaming plasmas

    Science.gov (United States)

    Ghorbanalilu, M.; Sadegzadeh, S.

    2017-01-01

    Counter-streaming plasma structures are ubiquitous in astrophysical sources of non-thermal radiations. We discuss the dispersion properties and the stability of this non-thermal particle distribution, which is modeled on the basis of the relativistic Jüttner-Maxwell distribution function in the correct laboratory frame of reference. In this work, we aim to construct analytical solutions of the dispersion relations and investigate the properties of the growth rate of the filamentation and two-stream instabilities in an unmagnetized and homogeneous counter-propagating plasma. The Maxwell and the relativistic Vlasov equations are used to derive the covariant dispersion relations that are valid in any (conveniently chosen) reference frame. Aperiodic solutions ( ℜ(ω)≃0 ) to the covariant dispersion relations of the growing modes ( ℑ(ω)>0 ) are demonstrated with the aid of analytical calculations. The dependence of the growth rate on the normalized bulk velocity β0=V0/c and thermal parameter μ=m c2/KBT is shown in graphic illustrations. We found that for both kinds of instabilities, growth rates are decreased by increasing the temperature and decreasing the bulk velocity. Therefore, the electrons at sufficiently low temperatures and with relativistic streams are capable of increasing the range of unstable wave numbers and consequently prevent the instability to cease at small wave numbers. The results indicate that under the same condition and in contrast to the non-relativistic regime, the filamentation instability has the largest growth rate and the electrostatic two-stream instability is in the next place.

  4. Higher-order paraxial theory of the propagation of ring rippled laser beam in plasma: Relativistic ponderomotive regime

    Energy Technology Data Exchange (ETDEWEB)

    Purohit, Gunjan, E-mail: gunjan75@gmail.com; Rawat, Priyanka [Department of Physics, Laser-Plasma Computational Laboratory, DAV PG College, Dehradun, Uttarakhand (India); Chauhan, Prashant [Department of Physics and Material Science and Engineering, Jaypee Institute of Information Technology, Uttar Pradesh (India); Mahmoud, Saleh T. [Department of Physics, College of Science, UAE University, PO Box 17551 Al-Ain (United Arab Emirates)

    2015-05-15

    This article presents higher-order paraxial theory (non-paraxial theory) for the ring ripple formation on an intense Gaussian laser beam and its propagation in plasma, taking into account the relativistic-ponderomotive nonlinearity. The intensity dependent dielectric constant of the plasma has been determined for the main laser beam and ring ripple superimposed on the main laser beam. The dielectric constant of the plasma is modified due to the contribution of the electric field vector of ring ripple. Nonlinear differential equations have been formulated to examine the growth of ring ripple in plasma, self focusing of main laser beam, and ring rippled laser beam in plasma using higher-order paraxial theory. These equations have been solved numerically for different laser intensities and plasma frequencies. The well established experimental laser and plasma parameters are used in numerical calculation. It is observed that the focusing of the laser beams (main and ring rippled) becomes fast in the nonparaxial region by expanding the eikonal and other relevant quantities up to the fourth power of r. The splitted profile of laser beam in the plasma is observed due to uneven focusing/defocusing of the axial and off-axial rays. The growths of ring ripple increase when the laser beam intensity increases. Furthermore, the intensity profile of ring rippled laser beam gets modified due to the contribution of growth rate.

  5. Supersonic jets of hydrogen and helium for laser wakefield acceleration

    CERN Document Server

    Svensson, K.; Wojda, F.; Senje, L.; Burza, M.; Aurand, B.; Genoud, G.; Persson, A.; Wahlström, C.-G.; Lundh, O.

    2016-01-01

    The properties of laser wakefield accelerated electrons in supersonic gas flows of hydrogen and helium are investigated. At identical backing pressure, we find that electron beams emerging from helium show large variations in their spectral and spatial distributions, whereas electron beams accelerated in hydrogen plasmas show a higher degree of reproducibility. In an experimental investigation of the relation between neutral gas density and backing pressure, it is found that the resulting number density for helium is ∼30% higher than for hydrogen at the same backing pressure. The observed differences in electron beam properties between the two gases can thus be explained by differences in plasma electron density. This interpretation is verified by repeating the laser wakefield acceleration experiment using similar plasma electron densities for the two gases, which then yielded electron beams with similar properties.

  6. A relativistic model of electron cyclotron current drive efficiency in tokamak plasmas

    OpenAIRE

    Lin-Liu Y.R.; Hu Y.J.; Hu Y.M.

    2012-01-01

    A fully relativistic model of electron cyclotron current drive (ECCD) efficiency based on the adjoint function techniques is considered. Numerical calculations of the current drive efficiency in a tokamak by using the variational approach are performed. A fully relativistic extension of the variational principle with the modified basis functions for the Spitzer function with momentum conservation in the electron-electron collision is described in general tokamak geometry. The model developed ...

  7. GigaGauss magnetic fields in under-dense plasma

    CERN Document Server

    Lecz, Zsolt; Seryi, Andrei; Andreev, Alexander

    2016-01-01

    Magnetic fields have a crucial role in physics at all scales, from synchrotrons and laser-driven plasma accelerators to astrophysics and nanotechnology. Large field strengths, beside the guiding of relativistic particles along a shorter curvature, allows the investigation of material in extreme conditions existing only in exotic astro-objects like neutron stars or pulsars. Here we propose a method for generating magnetic field on the GigaGauss level in under-dense plasma using high intensity laser pulses with azimuthally non-uniform intensity distribution. The interaction is studied with the help of three-dimensional particle-in-cell plasma simulation code. Beside the standard wake-field and bubble generation, such laser beam induces the rotational motion of electrons at the edge of evacuated plasma region. The combined axial magnetic and electric fields form a compact source of both high frequency radiation, due to coherent synchrotron emission, and low emittance, high density relativistic electron bunches. ...

  8. Effect of halo on high power laser pulse wake in underdense plasma

    Science.gov (United States)

    Pathak, Naveen; Zhidkov, Alexei; Masuda, Shinichi; Hosokai, Tomonao; Kodama, Ryosuke

    2016-11-01

    Strong disturbance in the wake of the laser pulses propagating in underdense plasma and consequent unstable electron acceleration by the wakefield can be provoked by pulse's halo, which always exists as a result of an imperfect optical focusing. When the power in the halo part exceeds a critical level for the self-focusing, it evolves in the plasma as an independent mode, which later gets coupled with the propagation of the central Gaussian spot of the pulse resulting in a novel instability. Here, this instability is investigated numerically via fully relativistic 3D particle-in-cell simulations and is shown to be partially suppressed by using plasma channels for pulse guiding.

  9. Effects of ion mobility and positron fraction on solitary waves in weak relativistic electron-positron-ion plasma

    CERN Document Server

    Lu, Ding; Xie, Bai-Song

    2013-01-01

    Effects of ion mobility and positron fraction on solitary waves of envelop of laser field and potential of electrostatic field in weak relativistic electron-positron-ion plasma are investigated. The parameter region for the existence of solitary waves is obtained analytically, and the reasonable choice of parameters is clarified. Both cases of mobile and immobile ions are considered. It is found that the amplitudes of solitary waves in the former case are larger compared to the latter case. For small plasma density, the localized solitary wave solutions in terms of approximate perturbation analytical method are consistent well with that by exact numerical calculations. However as the plasma density increases the analytical method loses its validity more and more. The influence of the positron fraction on the amplitudes of solitary waves shows a monotonous increasing relation. Implication of our results to the particle acceleration is also discussed briefly.

  10. Effects of ion mobility and positron fraction on solitary waves in weak relativistic electron-positron-ion plasma

    Science.gov (United States)

    Lu, Ding; Li, Zi-Liang; Xie, Bai-Song

    2013-09-01

    The effects of ion mobility and positron fraction on the solitary waves of the laser field envelope and the potential of the electrostatic field in weak relativistic electron-positron-ion plasma are investigated. The parameter region for the existence of solitary waves is obtained analytically, and a reasonable choice of parameters is clarified. Both cases of mobile and immobile ions are considered. It is found that the amplitudes of solitary waves in the former case are larger compared to the latter case. For small plasma density, the localized solitary wave solutions in terms of the approximate perturbation analytical method are very consistent with those by exact numerical calculations. However, as the plasma density increases the analytical method loses its validity more and more. The influence of the positron fraction on the amplitudes of solitary waves shows a monotonous increasing relation. The implications of our results to particle acceleration are also discussed briefly.

  11. Equation of state of fully ionized electron-ion plasmas. II. Extension to relativistic densities and to the solid phase

    CERN Document Server

    Potekhin, A Yu

    2000-01-01

    The analytic equation of state of nonideal Coulomb plasmas consisting of pointlike ions immersed in a polarizable electron background (physics/9807042) is improved, and its applicability range is considerably extended. First, the fit of the electron screening contribution in the free energy of the Coulomb liquid is refined at high densities where the electrons are relativistic. Second, we calculate the screening contribution for the Coulomb solid (bcc and fcc) and derive an analytic fitting expression. Third, we propose a simple approximation to the internal and free energy of the liquid one-component plasma of ions, accurate within the numerical errors of the most recent Monte Carlo simulations. We obtain an updated value of the coupling parameter at the solid-liquid phase transition for the one-component plasma: Gamma_m = 175.0 (+/- 0.4).

  12. On the Kinematics of a Corotating Relativistic Plasma Stream in the Perpendicular rotator Model of a Pulsar Magnetosphere

    Science.gov (United States)

    Chedia, O. V.; Kahniashvili, T. A.; Machabeli, G. Z.; Nanobashvili, I. S.

    1996-05-01

    An investigation of the kinematics of a rotating relativistic plasma stream in the perpendicular rotator model of the pulsar magnetosphere is presented. It is assumed that the plasma (ejected from the pulsar) moves along the pulsar magnetic field lines and also corotates with them. The field lines are considered to be radial straight lines, located in the plane which is perpendicular to the pulsar rotation axis. The necessity of taking particle inertia into account is discussed. It is argued that the “massless” (“force-free”) approximation cannot be used for the description of this problem. The frame selection is discussed and it is shown that it is convenient to discuss the problem in the noninertial frame of ZAMOs (Zero Angular Momentum Observers). The equation of motion and the exact set of equations describing the behaviour of a relativistic plasma stream in the pulsar magnetosphere is obtained. The possible relevance of this investigation for the understanding of the formation process of a pulsar magnetosphere is discussed.

  13. Transverse operator method for wakefields in a rectangular dielectric loaded accelerating structure

    Directory of Open Access Journals (Sweden)

    S. S. Baturin

    2013-05-01

    Full Text Available Cherenkov radiation generated by a relativistic electron bunch in a rectangular dielectric-loaded waveguide is analyzed under the assumption that the dielectric layers are inhomogeneous normal to the beam path. We propose a method that uses eigenfunctions of the transverse operator applied to develop a rigorous full solution for the wakefields that are generated. The dispersion equation for the structure is derived and the wakefield analysis is carried out. The formalism developed here allows the direct solution of the inhomogeneous system of Maxwell equations, an alternative analytic approach to the analysis of wakefields in contrast to the previously used impedance method for rectangular structure analysis. The formalism described here was successfully applied to the analysis of rectangular dielectric-lined structures that have been recently beam tested at the Argonne (ANL/AWA and Brookhaven (BNL/ATF accelerator facilities.

  14. A 3D Self-Consistent, Analytical Model for Longitudinal Plasma Oscillation in a Relativistic Electron Beam

    CERN Document Server

    Geloni, G; Schneidmiller, E; Yurkov, M V

    2004-01-01

    Longitudinal plasma oscillations are becoming a subject of great interest for XFEL physics in connection with LSC microbunching instability[1] and certain pump-probe synchronization schemes[2]. In the present paper we developed the first exact analytical treatment for longitudinal oscillations within an axis-symmetric, (relativistic) electron beam, which can be used as a primary standard for benchmarking space-charge simulation codes. Also, this result is per se of obvious theoretical relevance as it constitutes one of the few exact solutions for the evolution of charged particles under the action of self-interactions.

  15. Soliton and Shock Profiles in Electron-positron-ion Degenerate Plasmas for Both Nonrelativistic and Ultra-Relativistic Limits

    Science.gov (United States)

    Haider, Md. Masum

    2016-12-01

    An attempt has been taken to find a general equation for degenerate pressure of Chandrasekhar and constants, by using which one can study nonrelativistic as well as ultra-relativistic cases instead of two different equations and constants. Using the general equation, ion-acoustic solitary and shock waves have been studied and compared, numerically and graphically, the two cases in same situation of electron-positron-ion plasmas. Korteweg-de Vries (KdV) and KdV-Barger equations have been derived as well as their solution to study the soliton and shock profiles, respectively.

  16. On the perpendicular propagating modes in the ultra-relativistic weakly magnetized plasma

    Energy Technology Data Exchange (ETDEWEB)

    Abbas, Gohar; Iqbal, Z. [Department of Physics, GC University Lahore, Lahore 54000 (Pakistan); Murtaza, G. [Department of Physics, Quaid-i-Azam University, Islamabad 45320 (Pakistan)

    2015-03-15

    The dispersion relations for the weakly magnetized perpendicular propagating modes (O-mode, X-mode, and upper hybrid mode) based on the ultra-relativistic Fermi-Dirac distribution function with chemical potential are derived using the Vlasov–Maxwell model. The results are presented in terms of Polylog functions without making any approximation. It is found that as the ratio μ/T is increased, the cutoff points shift downward. A comparison is also performed with the previously derived results for ultra-relativistic Maxwellian distribution.

  17. A table-top x-ray FEL based on a laser wakefield accelerator-undulator system

    Energy Technology Data Exchange (ETDEWEB)

    Nakajima, K.; Kawakubo, T.; Nakanishi, H. [National Lab. for High Energy Physics, Ibaraki-ken (Japan)] [and others

    1995-12-31

    Ultrahigh-gradient electron acceleration has been confirmed owing to the laser wakefield acceleration mechanism driven by an intense short laser wakefield acceleration mechanism driven by an intense short laser pulse in an underdense plasma. The laser wakefield acceleration makes it possible to build a compact electron linac capable of producing an ultra-short bunched electron beam. While the accelerator is attributed to longitudinal wakefields, transverse wakefields simultaneously generated by a short laser pulse can serve as a plasma undulator with a very short wavelength equal to a half of the plasma wavelength. We propose a new FEL concept for X-rays based on a laser wakefield accelerator-undulator system driven by intense short laser pulses delivered from table-top terawatt lasers. The system is composed of the accelerator stage and the undulator stage in a table-top size. A low energy electron beam is accelerated an bunched into microbunches due to laser wakefields in the accelerator stage. A micro-bunched beam travelling to the opposite direction of driving laser pulses produces coherent X-ray radiation in the undulator stage. A practical configuration and its analyses are presented.

  18. Advanced Accelerators: Particle, Photon and Plasma Wave Interactions

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Ronald L. [Florida A & M University, Tallahassee, FL (United States)

    2017-06-29

    The overall objective of this project was to study the acceleration of electrons to very high energies over very short distances based on trapping slowly moving electrons in the fast moving potential wells of large amplitude plasma waves, which have relativistic phase velocities. These relativistic plasma waves, or wakefields, are the basis of table-top accelerators that have been shown to accelerate electrons to the same high energies as kilometer-length linear particle colliders operating using traditional decades-old acceleration techniques. The accelerating electrostatic fields of the relativistic plasma wave accelerators can be as large as GigaVolts/meter, and our goal was to study techniques for remotely measuring these large fields by injecting low energy probe electron beams across the plasma wave and measuring the beam’s deflection. Our method of study was via computer simulations, and these results suggested that the deflection of the probe electron beam was directly proportional to the amplitude of the plasma wave. This is the basis of a proposed diagnostic technique, and numerous studies were performed to determine the effects of changing the electron beam, plasma wave and laser beam parameters. Further simulation studies included copropagating laser beams with the relativistic plasma waves. New interesting results came out of these studies including the prediction that very small scale electron beam bunching occurs, and an anomalous line focusing of the electron beam occurs under certain conditions. These studies were summarized in the dissertation of a graduate student who obtained the Ph.D. in physics. This past research program has motivated ideas for further research to corroborate these results using particle-in-cell simulation tools which will help design a test-of-concept experiment in our laboratory and a scaled up version for testing at a major wakefield accelerator facility.

  19. Observation of spectral composition and polarization of sub-terahertz emission from dense plasma during relativistic electron beam–plasma interaction

    Energy Technology Data Exchange (ETDEWEB)

    Arzhannikov, A. V.; Burmasov, V. S.; Ivanov, I. A.; Kuznetsov, S. A.; Postupaev, V. V.; Sinitsky, S. L.; Vyacheslavov, L. N. [Budker Institute of Nuclear Physics, 11 Lavrentiev Ave., Novosibirsk 630090 (Russian Federation); Novosibirsk State University, 2 Pirogova St., Novosibirsk 630090 (Russian Federation); Burdakov, A. V. [Budker Institute of Nuclear Physics, 11 Lavrentiev Ave., Novosibirsk 630090 (Russian Federation); Novosibirsk State Technical University, 20 Karl Marks Ave., Novosibirsk 630092 (Russian Federation); Gavrilenko, D. E.; Kasatov, A. A.; Mekler, K. I.; Rovenskikh, A. F. [Budker Institute of Nuclear Physics, 11 Lavrentiev Ave., Novosibirsk 630090 (Russian Federation); Polosatkin, S. V.; Sklyarov, V. F. [Budker Institute of Nuclear Physics, 11 Lavrentiev Ave., Novosibirsk 630090 (Russian Federation); Novosibirsk State University, 2 Pirogova St., Novosibirsk 630090 (Russian Federation); Novosibirsk State Technical University, 20 Karl Marks Ave., Novosibirsk 630092 (Russian Federation)

    2014-08-15

    The paper presents results of measurements of sub-terahertz electromagnetic emission from magnetized plasma during injection of a powerful relativistic electron beam of microsecond duration in plasma with the density of 3 × 10{sup 14 }cm{sup −3}. It was found that the spectrum of the radiation concentrated in three distinct regions with high level of spectral power density. The first region is located near f{sub 1} = 100 GHz; the second one is in the vicinity of 190 GHz, and the third region is in the frequency interval f{sub 3} = 280–340 GHz. Polarization vectors of the emission in the first and third regions (f{sub 1} and f{sub 3}) are directed mainly perpendicular to the magnetic field in the plasma. At the same time, the polarization of the radiation in the vicinity of f{sub 2} = 190 GHz is parallel to the magnetic field. The most likely mechanism of electromagnetic wave generation in the frequency regions f{sub 1} and f{sub 2} is the linear conversion of the plasma oscillations into the electromagnetic waves on strong gradients of the plasma density. The third region is situated in the vicinity of second harmonic of electron plasma frequency, and we explain this emission by the coalescence of the upper-hybrid oscillations at high level turbulence in plasma.

  20. Stern-Gerlach surfing in laser wakefield accelerators

    CERN Document Server

    Flood, Stephen P

    2015-01-01

    We investigate the effects of a Stern-Gerlach-type addition to the Lorentz force on electrons in a laser wakefield accelerator. The Stern-Gerlach-type terms are found to generate a family of trajectories describing electrons that surf along the plasma density wave driven by a laser pulse. Such trajectories could lead to an increase in the size of an electron bunch, which may have implications for attempts to exploit such bunches in future free electron lasers.

  1. Stern-Gerlach surfing in laser wakefield accelerators

    Science.gov (United States)

    Flood, Stephen P.; Burton, David A.

    2015-09-01

    We investigate the effects of a Stern-Gerlach-type addition to the Lorentz force on electrons in a laser wakefield accelerator. The Stern-Gerlach-type terms are found to generate a family of trajectories describing electrons that 'surf' along the plasma density wave driven by a laser pulse. Such trajectories could lead to an increase in the size of an electron bunch, which may have implications for attempts to exploit such bunches in future free electron lasers.

  2. Abell 115: It Takes Two to Tango - The interaction of Relativistic and Thermal Plasma in a Merging Subcluster

    Science.gov (United States)

    Forman, William

    2011-09-01

    We propose a 310 ks ACIS-I observation of the merging cluster A115 whose northern subcluster, A115-N, hosts 3C28 which shows two wispy "tails" pointing in the direction of subcluster motion! With 360 ks (310 ks new, plus 50 ks archival), we can study the hydrodynamics of the gas flow in and around A115-N to determine flow velocities that are traced by the radio plasma. We will measure and compare the circulation time of the gas to the aging time of the radio emitting electrons, understand the structure of the relativistic plasma (i.e., thin sheath or filled cavity) by measuring distortions in the X-ray surface brightness, investigate magnetic draping, and develop a 3D model for the merger using extensive optical spectroscopy with the velocity of A115-N measured from the X-ray analysis.

  3. Excitation of wakefield around pulsars

    CERN Document Server

    Berezhiani, V; Belic, M

    2016-01-01

    We study the generation of the wakefields by means of the high energy radiation of pulsars. The problem is considered in the framework of a one dimensional approach. We linearize the set of governing equations consisting of the momentum equation, continuity equation an Poisson equation and show that a wavelike structure will inevitably arise relatively close to the pulsar.

  4. Wakefield: Community and Library Analysis.

    Science.gov (United States)

    Trumpeter, Margo C.; Donahue, Mary Ellen

    This community analysis was conducted in order to characterize and identify the information needs of the Wakefield community, and library services and use were evaluated to determine how well the library meets these needs. The study included an examination of the history of the town and its physical characteristics, economic development, and…

  5. Controlled electron injection using nanoparticles in laser wakefield acceleration

    Science.gov (United States)

    Cho, Myung Hoon; Pathak, Vishwa Bandhu; Kim, Hyung Taek; Nakajima, Kazuhisa; Nam, Chang Hee; CenterRelativistic Laser Science Team

    2016-10-01

    Laser wakefield acceleration is one of compact electron acceleration schemes due to its high accelerating gradient. Despite of the great progress of several GeV electron beams with high power lasers, the electron injection to the wakefield is still a critical issue for a very low density plasma 1017 electrons/cc. In this talk a novel method to control the injection using nanoparticles is proposed. We investigate the electron injection by analyzing the interaction of electrons with the two potentials - one created by a nanoparticle and the other by the wakefield. The nanoparticle creates a localized electric potential and this nanoparticle potential just slips the present wake potential. To confirm the Hamiltonian description of the interaction, a test particle calculation is performed by controlling the bubble and the nanoparticle potentials. A multi-dimensional particle-in-cell simulations are also presented as a proof-of-principle. Comparing theoretical estimates and PIC simulation, we suggest nanoparticle parameters of size and electron density depending on the background plasma density. Our scheme can be applicable for low plasma density to break though the limitation of self-injection toward extremely high energy electron energy.

  6. Head-on collision of ion acoustic solitary waves in electron-positron-ion nonthermal plasmas for weakly and highly relativistic regimes

    Science.gov (United States)

    Alam, M. S.; Hafez, M. G.; Talukder, M. R.; Hossain Ali, M.

    2017-07-01

    A comparative study of the interactions between nonlinear ion acoustic solitary waves (IASWs) propagating toward each other, and the electrostatic nonlinear propagation of IASWs, both for the weakly and relativistic regimes consisting of relativistic warm ions, nonthermal electrons, and positrons, is carried out. Two-sided Korteweg-de Vries (KdV) equations are derived using the extended Poincaré-Lighthill-Kuo (PLK) method to reveal the physical issues concerned. The effects of positron concentration, ion-electron temperature ratio, electron-positron temperature ratio, relativistic streaming factor, the population of electron, and positron nonthermality on the electrostatic resonances and their phase shifts are investigated for both regimes. It is found that the plasma parameters significantly modify the phase shifts, electrostatic resonances, hump-shaped electrostatic potential profiles, and the electric fields on the nonlinear propagation characteristics of IASWs. The results obtained may be useful for clarifications of interaction between IASWs in astrophysical and laboratory plasmas, especially in pulsar magnetosphere, laser produced, inertial confinement plasmas, and pulsar relativistic winds with supernova ejecta that produce nonthermal electrons, positrons, and relativistic ions.

  7. The relativistic electron plasma: a candidate for nature's left-handed material

    CERN Document Server

    de Carvalho, C A A

    2015-01-01

    The electric permittivities and magnetic permeabilities for a relativistic electron gas are calculated from quantum electrodynamics at finite temperature and density as functions of temperature, chemical potential, frequency, and wavevector. The polarization and the magnetization depend linearly on both electric and magnetic fields, and are the sum of a zero-temperature and zero-density vacuum part with a temperature- and chemical potential-dependent medium part. Analytic calculations lead to generalized expressions that depend on three scalar functions. In the nonrelativistic limit, results reproduce the Lindhard formula. In the relativistic case, and in the long wavelength limit, we obtain: i) for $\\omega=0$, generalized susceptibilities that reduce to known nonrelativistic limits; ii) for $\\omega \

  8. Multi-dimensional collective effects in high-current relativistic beams relevant to High Density Laboratory Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Shvets, Gennady

    2014-05-09

    In summary, an analytical model describing the self-pinching of a relativistic charge-neutralized electron beam undergoing the collisionless Weibel instability in an overdense plasma has been developed. The model accurately predicts the final temperature and size of the self-focused filament. It is found that the final temperature is primarily defined by the total beam’s current, while the filament’s radius is shown to be smaller than the collisionless skin depth in the plasma and primarily determined by the beam’s initial size. The model also accurately predicts the repartitioning ratio of the initial energy of the beam’s forward motion into the magnetic field energy and the kinetic energy of the surrounding plasma. The density profile of the final filament is shown to be a superposition of the standard Bennett pinch profile and a wide halo surrounding the pinch, which contains a significant fraction of the beam’s electrons. PIC simulations confirm the key assumption of the analytic theory: the collisionless merger of multiple current filaments in the course of the Weibel Instability provides the mechanism for Maxwellization of the beam’s distribution function. Deviations from the Maxwell-Boltzmann distribution are explained by incomplete thermalization of the deeply trapped and halo electrons. It is conjectured that the simple expression derived here can be used for understanding collsionless shock acceleration and magnetic field amplification in astrophysical plasmas.

  9. Skin Depth vs. Relativistics Self-focusing at ps Laser-Plasma Interaction

    Science.gov (United States)

    Hora, Heinrich; Peng, Hansheng; Zhang, Weiyan; Osman, Frederick

    2002-03-01

    Highly charged MeV ions from target irradiated by laser longer than 0.1 ns, can be explained by relativistic self-focusing and subsequent acceleration by the nonlinear (ponderomotive) force [1]. In strong contrast to this, same laser intensities of ps pulses produced hundred times less energetic ions if the contrast ratio for suppression of prepulses was sufficiently high [1]. It was remarkable that the number of ions was constant and the ion energy linear on the laser intensity. We developed a model to explain the measurements as interactions within the skin layer of the target in contrast to relativistic self-focusing. However, if there is an appropriate prepulse applied, the MeV ions appear as before with the ns pulses which can be explained by the then possible relativistic self focusing. Consequences for the fast ignitor laser fusion scheme are elaborated. [1] J. Badziak, et al. Laser and Particle Beams 17, 323 (1999); E. Woryna, J. Wolowski, B. Kralikowa, J. Kraska, L. Laska, M. Pfeifer, K. Rohlena, J. Skala, V. Perina, R. Höpfl, & H. Hora, Rev. Scient. Instrum. 71, 949 (2000).

  10. Analytical study of whistler mode waves in presence of parallel DC electric field for relativistic plasma in the magnetosphere of Uranus

    Science.gov (United States)

    Pandey, R. S.; Kaur, Rajbir

    2016-10-01

    In present paper, field aligned whistler mode waves are analyzed, in the presence of DC field in background plasma having relativistic distribution function in the magnetosphere of Uranus. The work has been examined for relativistic Maxwellian and loss-cone distribution function. In both the cases, we have studied the effect of various plasma parameters on the growth rate of waves by using the method of characteristics and discussed using data provided by Voyager 2. Growth rate has increased by increasing the magnitude of electric field, temperature anisotropy, energy density and number density of particles for Maxwellian and loss-cone background. However, when relativistic factor (λ =√{ 1 -v2 /c2 }) increases, growth rate decreases. The significant increase in real frequency of whistler waves can be observed. The results can be used for comparative study of planetary magnetospheres. The derivation can also be adapted to study various other instabilities in magnetosphere of Uranus.

  11. Propagation and Generation of Electromagnetic Waves at Proton Gyrofrequencies in a Relativistic Electron-Positron Plasma. II. Excitation of Electromagnetic Waves

    Science.gov (United States)

    Zheleznyakov, V. V.; Bespalov, P. A.

    2016-04-01

    In part I of this work [1], we study the dispersion characteristics of low-frequency waves in a relativistic electron-positron plasma. In part II, we examine the electromagnetic wave instability in this plasma caused by an admixture of nonrelativistic protons with energy comparable with the energy of relativistic low-mass particles. The instability occurs in the frequency band between the fundamental harmonic of proton gyrofrequency and the fundamental harmonic of relativistic electron gyrofrequency. The results can be used for the interpretation of known observations of the pulsar emissions obtained with a high time and frequency resolution. The considered instability can probably be the initial stage of the microwave radio emission nanoshots typical of the pulsar in the Crab Nebula.

  12. Electromagnetic behaviour of a plasma in fluid and relativistic regimes: simulation code R H E A; Comportement electromagnetique d`un plasma en regimes hydrodynamique et relativiste: code de simulation R H E A

    Energy Technology Data Exchange (ETDEWEB)

    Bonnaud, G.; Dussy, S.; Lefebvre, E. [CEA Bruyeres-le-Chatel, 91 (France). Dept. de Physique Theorique et Appliquee; Bouchut, F. [Orleans Univ., 45 (France). Dept. de Mathematiques, UMR CNRS

    1998-12-31

    This report presents a numerical model to simulate the electromagnetic processes involved by electrically-charged relativistic fluids. The physical model is first given. Second, the numerical methods are explained with the various packages of the code RHEA, with indication methods are explained with the various packages of the code RHEA, with indication of its performances, within a 1.5.- dimensional framework. Results from test-simulations are shown to validate the use of the code, for both academic situations and realistic context of laser-plasma interaction, for which the code has been designed: the non-linear phenomena in the context of inertial confinement fusion and the ultra-intense laser pulses. (author) 25 refs.

  13. Electromagnetic behaviour of a plasma in fluid and relativistic regimes: simulation code R H E A; Comportement electromagnetique d`un plasma en regimes hydrodynamique et relativiste: code de simulation R H E A

    Energy Technology Data Exchange (ETDEWEB)

    Bonnaud, G.; Dussy, S.; Lefebvre, E. [CEA Bruyeres-le-Chatel, 91 (France). Dept. de Physique Theorique et Appliquee; Bouchut, F. [Orleans Univ., 45 (France). Dept. de Mathematiques, UMR CNRS

    1998-12-31

    This report presents a numerical model to simulate the electromagnetic processes involved by electrically-charged relativistic fluids. The physical model is first given. Second, the numerical methods are explained with the various packages of the code RHEA, with indication methods are explained with the various packages of the code RHEA, with indication of its performances, within a 1.5.- dimensional framework. Results from test-simulations are shown to validate the use of the code, for both academic situations and realistic context of laser-plasma interaction, for which the code has been designed: the non-linear phenomena in the context of inertial confinement fusion and the ultra-intense laser pulses. (author) 25 refs.

  14. Electron bunch injection at an angle into a laser wakefield

    CERN Document Server

    Luttikhof, M J H; Van Goor, F A; Boller, K -J

    2008-01-01

    External injection of electron bunches longer than the plasma wavelength in a laser wakefield accelerator can lead to the generation of femtosecond ultrarelativistic bunches with a couple of percent energy spread. Extensive study has been done on external electron bunch (e.g. one generated by a photo-cathode rf linac) injection in a laser wakefield for different configurations. In this paper we investigate a new way of external injection where the electron bunch is injected at a small angle into the wakefield. This way one can avoid the ponderomotive scattering as well as the vacuum-plasma transition region, which tend to destroy the injected bunch. In our simulations, the effect of the laser pulse dynamics is also taken into account. It is shown that injection at an angle can provide compressed and accelerated electron bunches with less than 2% energy spread. Another advantage of this scheme is that it has less stringent requirements in terms of the size of the injected bunch and there is the potential to tr...

  15. Exact relativistic kinetic theory of an electron beam-plasma system: hierarchy of the competing modes in the system parameter space

    OpenAIRE

    Bret, A.; Gremillet, L; Benisti, D.; Lefebvre, E.

    2008-01-01

    Besides being one of the most fundamental basic issues of plasma physics, the stability analysis of an electron beam-plasma system is of critical relevance in many areas of physics. Surprisingly, decades of extensive investigation had not yet resulted in a realistic unified picture of the multidimensional unstable spectrum within a fully relativistic and kinetic framework. All attempts made so far in this direction were indeed restricted to simplistic distribution functions and/or did not aim...

  16. Magnetic field amplification and electron acceleration to near-energy equipartition with ions by a mildly relativistic quasi-parallel plasma protoshock

    OpenAIRE

    Murphy, Gareth C.; Dieckmann, Mark E.; BRET, ANTOINE; Drury, Luke O'C.

    2010-01-01

    The prompt emissions of gamma-ray bursts are seeded by radiating ultrarelativistic electrons. Internal shocks propagating through a jet launched by a stellar implosion, are expected to amplify the magnetic field & accelerate electrons. We explore the effects of density asymmetry & a quasi-parallel magnetic field on the collision of plasma clouds. A 2D relativistic PIC simulation models the collision of two plasma clouds, in the presence of a quasi-parallel magnetic field. The cloud density ra...

  17. Effects of high energy photon emissions in laser generated ultra-relativistic plasmas: Real-time synchrotron simulations

    Science.gov (United States)

    Wallin, Erik; Gonoskov, Arkady; Marklund, Mattias

    2015-03-01

    We model the emission of high energy photons due to relativistic charged particle motion in intense laser-plasma interactions. This is done within a particle-in-cell code, for which high frequency radiation normally cannot be resolved due to finite time steps and grid size. A simple expression for the synchrotron radiation spectra is used together with a Monte-Carlo method for the emittance. We extend previous work by allowing for arbitrary fields, considering the particles to be in instantaneous circular motion due to an effective magnetic field. Furthermore, we implement noise reduction techniques and present validity estimates of the method. Finally, we perform a rigorous comparison to the mechanism of radiation reaction, and find the emitted energy to be in excellent agreement with the losses calculated using radiation reaction.

  18. A new scheme of causal viscous hydrodynamics for relativistic heavy-ion collisions: Riemann solver for quark-gluon plasma

    CERN Document Server

    Akamatsu, Yukinao; Nonaka, Chiho; Takamoto, Makoto

    2013-01-01

    In this article, we present a state-of-the-art algorithm for solving the relativistic viscous hydrodynamic equation with QCD equation of state. The numerical method is based on the second-order Godunov method and has less numerical dissipation, which are crucial in describing of quark-gluon plasma in high energy heavy-ion collisions. We apply the algorithm to several numerical test problems such as sound wave propagation, shock tube and blast wave problems. In the sound wave propagation, the intrinsic {\\em numerical} viscosity is measured and its explicit expression is shown, which is the second-order of spatial resolution both in the presence and absence of {\\em physical} viscosity. The expression of the numerical viscosity can be used to determine the maximum cell size in order to accurately measure the effect of physical viscosity in the numerical simulation.

  19. Simple runtime high energy photon emission for ultra relativistic laser-plasma interaction in a PIC-code

    CERN Document Server

    Wallin, Erik; Marklund, Mattias

    2014-01-01

    We model the emission of high energy photons due to relativistic particles in a plasma interacting with a super-intense laser. This is done in a particle-in-cell code where the high frequency radiation normally cannot be resolved, due to the unattainable demands it would place on the time and space resolution. A simple expression for the synchrotron radiation spectra is used together with a Monte-Carlo method for the emittance. We extend to previous work by accounting acceleration due to arbitrary fields, considering the particles to be in instantaneous circular motion due to an effective magnetic field. Furthermore we implement noise reduction techniques and present estimations of the validity of the method. Finally we perform a rigorous comparison to the mechanism of radiation reaction, with the emitted energy very well in agreement with the radiation reaction loss.

  20. Effects of relativistic and channel focusing on q-Gaussian laser beam propagating in a preformed parabolic plasma channel

    Science.gov (United States)

    Wang, Li; Hong, Xue-Ren; Sun, Jian-An; Tang, Rong-An; Yang, Yang; Zhou, Wei-Jun; Tian, Jian-Min; Duan, Wen-Shan

    2017-07-01

    The propagation of q-Gaussian laser beam in a preformed plasma channel is investigated by means of the variational method. A differential equation for the spot size has been obtained by including the effects of relativistic self-focusing, ponderomotive self-channeling and preformed channel focusing. The propagation behaviors and their corresponding physical conditions are identified. The comparison of the propagation between q-Gaussian and Gaussian laser beams is done by theoretical and numerical analysis. It is shown that, in the same channel, the focusing power of q-Gaussian laser beam is lower than that of Gaussian laser beam, i.e., the q-Gaussian laser beam is easier to focus than Gaussian laser beam.

  1. Magnetohydrodynamic-Particle-in-Cell Method for Coupling Cosmic Rays with a Thermal Plasma: Application to Non-relativistic Shocks

    CERN Document Server

    Bai, Xue-Ning; Sironi, Lorenzo; Spitkovsky, Anatoly

    2014-01-01

    We formulate a magnetohydrodynamic-particle-in-cell (MHD-PIC) method for describing the interaction between collisionless cosmic ray (CR) particles and a thermal plasma. The thermal plasma is treated as a fluid, obeying equations of ideal MHD, while CRs are treated as relativistic Lagrangian particles subject to the Lorentz force. Backreaction from CRs to the gas is included in the form of momentum and energy feedback. In addition, we include the electromagnetic feedback due to CR-induced Hall effect that becomes important when the electron-ion drift velocity of the background plasma induced by CRs approaches the Alfv\\'en velocity. Our method is applicable on scales much larger than the ion inertial length, bypassing the microscopic scales that must be resolved in conventional PIC methods, while retaining the full kinetic nature of the CRs. We have implemented and tested this method in the Athena MHD code, where the overall scheme is second-order accurate and fully conservative. As a first application, we des...

  2. Relativistic magnetohydrodynamics in one dimension.

    Science.gov (United States)

    Lyutikov, Maxim; Hadden, Samuel

    2012-02-01

    We derive a number of solutions for one-dimensional dynamics of relativistic magnetized plasma that can be used as benchmark estimates in relativistic hydrodynamic and magnetohydrodynamic numerical codes. First, we analyze the properties of simple waves of fast modes propagating orthogonally to the magnetic field in relativistically hot plasma. The magnetic and kinetic pressures obey different equations of state, so that the system behaves as a mixture of gases with different polytropic indices. We find the self-similar solutions for the expansion of hot strongly magnetized plasma into vacuum. Second, we derive linear hodograph and Darboux equations for the relativistic Khalatnikov potential, which describe arbitrary one-dimensional isentropic relativistic motion of cold magnetized plasma and find their general and particular solutions. The obtained hodograph and Darboux equations are very powerful: A system of highly nonlinear, relativistic, time-dependent equations describing arbitrary (not necessarily self-similar) dynamics of highly magnetized plasma reduces to a single linear differential equation.

  3. Electron Acceleration in Wakefield and Supra-Bubble Regimes by Ultraintense Laser with Asvmmetric Pulse*

    Institute of Scientific and Technical Information of China (English)

    BAKE Maimaitiaili; XIE Bai-Song; DULAT Sayipjamal; AIMIDULA Aimierding

    2011-01-01

    Electron acceleration in plasma driven by circular polarized ultraintense laser with asymmetric pulse are investigated analytically and numerically in terms of oscillation-center Hamiltonian formalism.Studies include wakefield acceleration, which dominates in blow-out or bubble regime and snow-plow acceleration which dominates in supra-bubble regime.By a comparison with each other it is found that snow-plow acceleration has lower acceleration capability.In wakefield acceleration, there exists an obvious optimum pulse asymmetry or/and pulse lengths that leads to the high net energy gain while in snow-plow acceleration it is insensitive to the pulse lengths.Power and linear scaling laws for wakefield and snow-plow acceleration respetively are observed from the net energy gain depending on laser field amplitude.Moreover, there exists also an upper and lower limit on plasma density for an effective acceleration in both of regimes.

  4. Electromagnetic fluctuations in magnetized plasmas. I. The rigorous relativistic kinetic theory

    Energy Technology Data Exchange (ETDEWEB)

    Schlickeiser, R., E-mail: rsch@tp4.rub.de, E-mail: yoonp@umd.edu [Institut für Theoretische Physik, Lehrstuhl IV: Weltraum- und Astrophysik, Ruhr-Universität Bochum, D-44780 Bochum (Germany); Yoon, P. H., E-mail: rsch@tp4.rub.de, E-mail: yoonp@umd.edu [Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742 (United States); School of Space Research, Kyung Hee University, Yongin-Si, Gyeonggi-Do 446-701 (Korea, Republic of)

    2015-07-15

    Using the system of the Klimontovich and Maxwell equations, the general linear fluctuation theory for magnetized plasmas is developed. General expressions for the electromagnetic fluctuation spectra (electric and magnetic fields) from uncorrelated plasma particles in plasmas with a uniform magnetic field are derived, which are covariantly correct within the theory of special relativity. The general fluctuation spectra hold for plasmas of arbitrary composition, arbitrary momentum dependences of the plasma particle distribution functions, and arbitrary orientations of the wave vector with respect to the uniform magnetic field. Moreover, no restrictions on the values of the real and the imaginary parts of the frequency are made. The derived fluctuation spectra apply to both non-collective fluctuations and collective plasma eigenmodes in magnetized plasmas. In the latter case, kinetic equations for the components of fluctuating electric and magnetic fields in magnetized plasmas are derived that include the effect of spontaneous emission and absorption. In the limiting case of an unmagnetized plasmas, the general fluctuation spectra correctly reduce to the unmagnetized fluctuation spectra derived before.

  5. Generation of Helical and Axial Magnetic Fields by the Relativistic Laser Pulses in Under-dense Plasma: Three-Dimensional Particle-in-Cell Simulation

    Science.gov (United States)

    Zheng, Chun-Yang; Zhu, Shao-Ping; He, Xian-Tu

    2002-07-01

    The quasi-static magnetic fields created in the interaction of relativistic laser pulses with under-dense plasmas have been investigated by three-dimensional particle-in-cell simulation. The relativistic ponderomotive force can drive an intense electron current in the laser propagation direction, which is responsible for the generation of a helical magnetic field. The axial magnetic field results from a difference beat of wave-wave, which drives a solenoidal current. In particular, the physical significance of the kinetic model for the generation of the axial magnetic field is discussed.

  6. Enabling Lorentz boosted frame particle-in-cell simulations of laser wakefield acceleration in quasi-3D geometry

    Science.gov (United States)

    Yu, Peicheng; Xu, Xinlu; Davidson, Asher; Tableman, Adam; Dalichaouch, Thamine; Li, Fei; Meyers, Michael D.; An, Weiming; Tsung, Frank S.; Decyk, Viktor K.; Fiuza, Frederico; Vieira, Jorge; Fonseca, Ricardo A.; Lu, Wei; Silva, Luis O.; Mori, Warren B.

    2016-07-01

    When modeling laser wakefield acceleration (LWFA) using the particle-in-cell (PIC) algorithm in a Lorentz boosted frame, the plasma is drifting relativistically at βb c towards the laser, which can lead to a computational speedup of ∼ γb2 = (1 - βb2)-1. Meanwhile, when LWFA is modeled in the quasi-3D geometry in which the electromagnetic fields and current are decomposed into a limited number of azimuthal harmonics, speedups are achieved by modeling three dimensional (3D) problems with the computational loads on the order of two dimensional r - z simulations. Here, we describe a method to combine the speedups from the Lorentz boosted frame and quasi-3D algorithms. The key to the combination is the use of a hybrid Yee-FFT solver in the quasi-3D geometry that significantly mitigates the Numerical Cerenkov Instability (NCI) which inevitably arises in a Lorentz boosted frame due to the unphysical coupling of Langmuir modes and EM modes of the relativistically drifting plasma in these simulations. In addition, based on the space-time distribution of the LWFA data in the lab and boosted frame, we propose to use a moving window to follow the drifting plasma, instead of following the laser driver as is done in the LWFA lab frame simulations, in order to further reduce the computational loads. We describe the details of how the NCI is mitigated for the quasi-3D geometry, the setups for simulations which combine the Lorentz boosted frame, quasi-3D geometry, and the use of a moving window, and compare the results from these simulations against their corresponding lab frame cases. Good agreement is obtained among these sample simulations, particularly when there is no self-trapping, which demonstrates it is possible to combine the Lorentz boosted frame and the quasi-3D algorithms when modeling LWFA. We also discuss the preliminary speedups achieved in these sample simulations.

  7. Particle acceleration by ultra-intense laser-plasma interactions

    CERN Document Server

    Nakajima, K

    2002-01-01

    The mechanism of particle acceleration by ultra-increase laser-plasma interaction is explained. Laser light can generate very high electric field by focusing with electromagnetic field matched phase with frequency. 1018 W/cm sup 2 laser light produce about 3 TV/m electric field. Many laser accelerators, which particle acceleration method satisfies phase matching particle and electric field, are proposed. In these accelerators, the Inverse Cherenkov Accelerator, Inverse FEL Accelerator and Laser-Plasma Accelerator are explained. Three laser-plasma acceleration mechanisms: Plasma Beat Wave Accelerator, Laser Wake-Field Accelerator (LWFA) and Self-Modulated LWFA, showed particle acceleration by experiments. By developing a high speed Z pinch capillary-plasma optical waveguide, 2.2 TW and 90 fs laser pulse could be propagated 2 cm at 40 mu m focusing radius in 1999. Dirac acceleration or ultra-relativistic ponderomotive acceleration mechanism can increase energy exponentially. (S.Y.)

  8. Enhanced relativistic self-focusing of Hermite-cosh-Gaussian laser beam in plasma under density transition

    Energy Technology Data Exchange (ETDEWEB)

    Nanda, Vikas; Kant, Niti, E-mail: nitikant@yahoo.com [Department of Physics, Lovely Professional University, Phagwara 144411, Punjab (India)

    2014-04-15

    Enhanced and early relativistic self-focusing of Hermite-cosh-Gaussian (HChG) beam in the plasmas under density transition has been investigated theoretically using Wentzel-Kramers-Brillouin and paraxial ray approximation for mode indices m=0, 1, and 2. The variation of beam width parameter with normalized propagation distance for m=0, 1, and 2 is reported, and it is observed that strong self-focusing occurs as the HChG beam propagates deeper inside the nonlinear medium as spot size shrinks due to highly dense plasmas and the results are presented graphically. A comparative study between self-focusing of HChG beam in the presence and absence of plasmas density transition is reported. The dependency of beam width parameter on the normalized propagation distance for different values of decentered parameter “b” has also been presented graphically. For m=0 and 1, strong self-focusing is reported for b=1.8, and for m=2 and b=1.8, beam gets diffracted. The results obtained indicate the dependency of the self-focusing of the HChG beam on the selected values of decentered parameter. Moreover, proper selection of decentered parameter results strong self-focusing of HChG beam. Stronger self-focusing of laser beam is observed due to the presence of plasma density transition which might be very useful in the applications like the generation of inertial fusion energy driven by lasers, laser driven accelerators, etc.

  9. Relativistic degenerate effects of electrons and positrons on modulational instability of quantum ion acoustic waves in dense plasmas with two polarity ions

    Institute of Scientific and Technical Information of China (English)

    刘铁路; 王云良; 路彦珍

    2015-01-01

    The nonlinear propagation of quantum ion acoustic wave (QIAW) is investigated in a four-component plasma com-posed of warm classical positive ions and negative ions, as well as inertialess relativistically degenerate electrons and positrons. A nonlinear Schr ¨odinger equation is derived by using the reductive perturbation method, which governs the dynamics of QIAW packets. The modulation instability analysis of QIAWs is considered based on the typical parameters of the white dwarf. The results exhibit that both in weakly relativistic limit and in ultrarelativistic limit, the modulational instability regions are sensitively dependent on the ratios of temperature and number density of negative ions to those of positive ions respectively, and on relativistically degenerate effect as well.

  10. Modeling of Laser wakefield acceleration in Lorentz boosted frame using EM-PIC code with spectral solver

    CERN Document Server

    Yu, Peicheng; Decyk, Viktor K; An, Weiming; Vieira, Jorge; Tsung, Frank S; Fonseca, Ricardo A; Lu, Wei; Silva, Luis O; Mori, Warren B

    2013-01-01

    Simulating laser wakefield acceleration (LWFA) in a Lorentz boosted frame in which the plasma drifts towards the laser with $v_b$ can speedup the simulation by factors of $\\gamma^2_b=(1-v^2_b/c^2)^{-1}$. In these simulations the relativistic drifting plasma inevitably induces a high frequency numerical instability that contaminates the interested physics. Various approaches have been proposed to mitigate this instability. One approach is to solve Maxwell equations in Fourier space (a spectral solver) as this has been shown to suppress the fastest growing modes of this instability in simple test problems using a simple low pass, ring (in two dimensions), or shell (in three dimensions) filter in Fourier space. We describe the development of a fully parallelized, multi-dimensional, particle-in-cell code that uses a spectral solver to solve Maxwell's equations and that includes the ability to launch a laser using a moving antenna. This new EM-PIC code is called UPIC-EMMA and it is based on the components of the U...

  11. Refined Study of ECR Wave Propagation and Absorption in the Weakly Relativistic Plasma

    Institute of Scientific and Technical Information of China (English)

    SHIBingren; LONGYongxin

    2001-01-01

    The ECR wave heating is now a routine method for plasma heating and profile control in fusion devices and also in plasma applications. Theoretical study of ECR wave propagation and absorption began very early in 1950's. Basic theoretical work had accomplished in 1970~1980. For toroidal devices like the tokamak, the fundamental O-mode and X-mode with nearly perpendicular propagation were used very often. For pure O-mode and X-mode with kx=O,

  12. Acceleration in perpendicular relativistic shocks for plasmas consisting of leptons and hadrons

    CERN Document Server

    Stockem, A; Fonseca, R A; Silva, L O

    2012-01-01

    We investigate the acceleration of light particles in perpendicular shocks for plasmas consisting of a mixture of leptonic and hadronic particles. Starting from the full set of conservation equations for the mixed plasma constituents, we generalize the magneto-hydrodynamical jump conditions for a multi-component plasma, including information about the specific adiabatic constants for the different species. The impact of deviations from the standard model of an ideal gas is compared in theory and particle-in-cell simulations, showing that the standard-MHD model is a good approximation. The simulations of shocks in electron-positron-ion plasmas are for the first time multi-dimensional, transverse effects are small in this configuration and 1D simulations are a good representation if the initial magnetization is chosen high. 1D runs with a mass ratio of 1836 are performed, which identify the Larmor frequency \\omega_{ci} as the dominant frequency that determines the shock physics in mixed component plasmas. The m...

  13. Simulation studies of laser wakefield acceleration based on typical 100 TW laser facilities

    Institute of Scientific and Technical Information of China (English)

    李大章; 高杰; 朱雄伟; 何安

    2011-01-01

    In this paper, 2-D Particle-In-Cell simulations are made for Laser Wakefield Accelerations (LWFA). As in a real experiment, we perform plasma density scanning for typical 100 TW laser facilities. Several basic laws for self-injected acceleration in a bubb

  14. Three-dimensional relativistic pair plasma reconnection with radiative feedback in the Crab Nebula

    CERN Document Server

    Cerutti, Benoit; Uzdensky, Dmitri A; Begelman, Mitchell C

    2013-01-01

    The discovery of rapid synchrotron gamma-ray flares above 100 MeV from the Crab Nebula has attracted new interest in alternative particle acceleration mechanisms in pulsar wind nebulae. Diffuse shock-acceleration fails to explain the flares because particle acceleration and emission occur during a single or even sub-Larmor timescale. In this regime, the synchrotron energy losses induce a drag force on the particle motion that balances the electric acceleration and prevents the emission of synchrotron radiation above 160 MeV. Previous analytical studies and 2D particle-in-cell (PIC) simulations indicate that relativistic reconnection is a viable mechanism to circumvent the above difficulties. The reconnection electric field localized at X-points linearly accelerates particles with little radiative energy losses. In this paper, we check whether this mechanism survives in 3D, using a set of large PIC simulations with radiation reaction force and with a guide field. In agreement with earlier works, we find that t...

  15. Generation of High Brightness Electron Beams via Ionization Induced Injection by Transverse Colliding Lasers in a Beam-Driven Plasma Wakefield Accelerator

    CERN Document Server

    Li, F; Xu, X L; Zhang, C J; Yan, L X; Du, Y C; Huang, W H; Cheng, H B; Tang, C X; Lu, W; Joshi, C; Mori, W B; Gu, Y Q

    2013-01-01

    The production of ultra-bright electron bunches using ionization injection triggered by two transversely colliding laser pulses inside a beam-driven plasma wake is examined via three-dimensional (3D) particle-in-cell (PIC) simulations. The relatively low intensity lasers are polarized along the wake axis and overlap with the wake for a very short time. The result is that the residual momentum of the ionized electrons in the transverse plane of the wake is much reduced and the injection is localized along the propagation axis of the wake. This minimizes both the initial 'thermal' emittance and the emittance growth due to transverse phase mixing. 3D PIC simulations show that ultra-short (around 8 fs) high-current (0.4 kA) electron bunches with a normalized emittance of 8.5 and 6 nm in the two planes respectively and a brightness greater than 1.7*10e19 A rad-2 m-2 can be obtained for realistic parameters.

  16. Particle-in-cell simulation of x-ray wakefield acceleration and betatron radiation in nanotubes

    Science.gov (United States)

    Zhang, Xiaomei; Tajima, Toshiki; Farinella, Deano; Shin, Youngmin; Mourou, Gerard; Wheeler, Jonathan; Taborek, Peter; Chen, Pisin; Dollar, Franklin; Shen, Baifei

    2016-10-01

    Though wakefield acceleration in crystal channels has been previously proposed, x-ray wakefield acceleration has only recently become a realistic possibility since the invention of the single-cycled optical laser compression technique. We investigate the acceleration due to a wakefield induced by a coherent, ultrashort x-ray pulse guided by a nanoscale channel inside a solid material. By two-dimensional particle-in-cell computer simulations, we show that an acceleration gradient of TeV /cm is attainable. This is about 3 orders of magnitude stronger than that of the conventional plasma-based wakefield accelerations, which implies the possibility of an extremely compact scheme to attain ultrahigh energies. In addition to particle acceleration, this scheme can also induce the emission of high energy photons at ˜O (10 - 100 ) MeV . Our simulations confirm such high energy photon emissions, which is in contrast with that induced by the optical laser driven wakefield scheme. In addition to this, the significantly improved emittance of the energetic electrons has been discussed.

  17. On the Nonlinear Conductivity Tensor for an Unmagnetized Relativistic Turbulent Plasma.

    Science.gov (United States)

    1982-02-01

    New York (1977). (10) L. M. Al’tshul’ and V. I. Karpman , The Kinetics of Waves in a Weakly Turbulent Plasma, Zh. Eksp. Teor. Fiz., 47 (1964), 1552...LONTZ DEFENSE FOR RESEARCH & ENGINEERING ATTN B. D. GUENTHER DIR ENERGY TECHNOLOGY OFFICE ATTN TECH LIBRARY ATTN J. R. AIREY RESEARCH TRIANGLE PARK, NC

  18. Acceleration in Perpendicular Relativistic Shocks for Plasmas Consisting of Leptons and Hadrons

    Science.gov (United States)

    Stockem, A.; Fiúza, F.; Fonseca, R. A.; Silva, L. O.

    2012-08-01

    We investigate the acceleration of light particles in perpendicular shocks for plasmas consisting of a mixture of leptonic and hadronic particles. Starting from the full set of conservation equations for the mixed plasma constituents, we generalize the magnetohydrodynamical jump conditions for a multi-component plasma, including information about the specific adiabatic constants for the different species. The impact of deviations from the standard model of an ideal gas is compared in theory and particle-in-cell simulations, showing that the standard MHD model is a good approximation. The simulations of shocks in electron-positron-ion plasmas are for the first time multi-dimensional, transverse effects are small in this configuration, and one-dimensional (1D) simulations are a good representation if the initial magnetization is chosen high. 1D runs with a mass ratio of 1836 are performed, which identify the Larmor frequency ω ci as the dominant frequency that determines the shock physics in mixed component plasmas. The maximum energy in the non-thermal tail of the particle spectra evolves in time according to a power law vpropt α with α in the range 1/3 < α < 1, depending on the initial parameters. A connection is made with transport theoretical models by Drury and Gargaté & Spitkovsky, which predict an acceleration time vpropγ and the theory for small wavelength scattering by Kirk & Reville, which predicts a behavior rather as vpropγ2. Furthermore, we compare different magnetic field orientations with B 0 inside and out of the plane, observing qualitatively different particle spectra than in pure electron-ion shocks.

  19. Elimination of numerical Cherenkov instability in flowing-plasma particle-in-cell simulations by using Galilean coordinates

    Science.gov (United States)

    Lehe, Remi; Kirchen, Manuel; Godfrey, Brendan B.; Maier, Andreas R.; Vay, Jean-Luc

    2016-11-01

    Particle-in-cell (PIC) simulations of relativistic flowing plasmas are of key interest to several fields of physics (including, e.g., laser-wakefield acceleration, when viewed in a Lorentz-boosted frame) but remain sometimes infeasible due to the well-known numerical Cherenkov instability (NCI). In this article, we show that, for a plasma drifting at a uniform relativistic velocity, the NCI can be eliminated by simply integrating the PIC equations in Galilean coordinates that follow the plasma (also sometimes known as comoving coordinates) within a spectral analytical framework. The elimination of the NCI is verified empirically and confirmed by a theoretical analysis of the instability. Moreover, it is shown that this method is applicable both to Cartesian geometry and to cylindrical geometry with azimuthal Fourier decomposition.

  20. Elimination of Numerical Cherenkov Instability in flowing-plasma Particle-In-Cell simulations by using Galilean coordinates

    CERN Document Server

    Lehe, Remi; Godfrey, Brendan B; Maier, Andreas R; Vay, Jean-Luc

    2016-01-01

    Particle-In-Cell (PIC) simulations of relativistic flowing plasmas are of key interest to several fields of physics (including e.g. laser-wakefield acceleration, when viewed in a Lorentz-boosted frame), but remain sometimes infeasible due to the well-known numerical Cherenkov instability (NCI). In this article, we show that, for a plasma drifting at a uniform relativistic velocity, the NCI can be eliminated by simply integrating the PIC equations in Galilean coordinates that follow the plasma (also sometimes known as comoving coordinates) within a spectral analytical framework. The elimination of the NCI is verified empirically and confirmed by a theoretical analysis of the instability. Moreover, it is shown that this method is applicable both to Cartesian geometry and to cylindrical geometry with azimuthal Fourier decomposition.