WorldWideScience

Sample records for relativistic particle wind

  1. Hot relativistic winds and the Crab nebula

    International Nuclear Information System (INIS)

    Fujimura, F.S.; Kennel, C.F.

    1981-01-01

    Efforts are reviewed to construct a self-consistent model of pulsar magnetospheres that links the particle source near the pulsar to the outflowing relativistic wind and couples the wind to the surrounding nebula. (Auth.)

  2. Relativistic particle in a box

    OpenAIRE

    Alberto, P.; Fiolhais, Carlos; Gil, Victor

    1996-01-01

    The problem of a relativistic spin 1/2 particle confined to a one-dimensional box is solved in a way that resembles closely the solution of the well known quantum-mechanical textbook problem of a non-relativistic particle in a box. The energy levels and probability density are computed and compared with the non-relativistic case

  3. Localization of relativistic particles

    International Nuclear Information System (INIS)

    Omnes, R.

    1997-01-01

    In order to discuss localization experiments and also to extend the consistent history interpretation of quantum mechanics to relativistic properties, the techniques introduced in a previous paper [J. Math. Phys. 38, 697 (1997)] are applied to the localization of a photon in a given region of space. An essential requirement is to exclude arbitrarily large wavelengths. The method is valid for a particle with any mass and spin. Though there is no proper position operator for a photon, one never needs one in practice. Causality is valid up to exponentially small corrections. copyright 1997 American Institute of Physics

  4. Scattering in relativistic particle mechanics

    International Nuclear Information System (INIS)

    De Bievre, S.

    1986-01-01

    The problem of direct interaction in relativistic particle mechanics has been extensively studied and a variety of models has been proposed avoiding the conclusions of the so-called no-interaction theorems. In this thesis the authors studied scattering in the relativistic two-body problem. He uses the results to analyze gauge invariance in Hamiltonian constraint models and the uniqueness of the symplectic structure in manifestly covariant relativistic particle mechanics. A general geometric framework that underlies approaches to relativistic particle mechanics is presented and the kinematic properties of the scattering transformation, i.e., those properties that arise solely from the invariance of the theory under the Poincare group are studied. The second part of the analysis of the relativistic two-body scattering problem is devoted to the dynamical properties of the scattering process. Using general geometric arguments, gauge invariance of the scattering transformation in the Todorov-Komar Hamiltonian constraint model is proved. Finally, quantization of the models is discussed

  5. Diffraction radiation from relativistic particles

    CERN Document Server

    Potylitsyn, Alexander Petrovich; Strikhanov, Mikhail Nikolaevich; Tishchenko, Alexey Alexandrovich

    2010-01-01

    This book deals with diffraction radiation, which implies the boundary problems of electromagnetic radiation theory. Diffraction radiation is generated when a charged particle moves in a vacuum near a target edge. Diffraction radiation of non-relativistic particles is widely used to design intense emitters in the cm wavelength range. Diffraction radiation from relativistic charged particles is important for noninvasive beam diagnostics and design of free electron lasers based on Smith-Purcell radiation which is diffraction radiation from periodic structures. Different analytical models of diffraction radiation and results of recent experimental studies are presented in this book. The book may also serve as guide to classical electrodynamics applications in beam physics and electrodynamics. It can be of great use for young researchers to develop skills and for experienced scientists to obtain new results.

  6. Relativistic shocks and particle acceleration

    International Nuclear Information System (INIS)

    Heavens, A.F.

    1988-01-01

    In this paper, we investigate the fluid dynamics of relativistic shock waves, and use the results to calculate the spectral index of particles accelerated by the Fermi process in such shocks. We have calculated the distributions of Fermi-accelerated particles at shocks propagating into cold proton-electron plasma and also cold electron-positron plasma. We have considered two different power spectra for the scattering waves, and find, in contrast to the non-relativistic case, that the spectral index of the accelerated particles depends on the wave power spectrum. On the assumption of thermal equilibrium both upstream and downstream, we present some useful fits for the compression ratio of shocks propagating at arbitrary speeds into gas of any temperature. (author)

  7. Diffraction radiation from relativistic particles

    International Nuclear Information System (INIS)

    Potylitsyn, Alexander Petrovich; Ryazanov, Mikhail Ivanovich; Strikhanov, Mikhail Nikolaevich; Tishchenko, Alexey Alexandrovich

    2010-01-01

    This book deals with diffraction radiation, which implies the boundary problems of electromagnetic radiation theory. Diffraction radiation is generated when a charged particle moves in a vacuum near a target edge. Diffraction radiation of non-relativistic particles is widely used to design intense emitters in the cm wavelength range. Diffraction radiation from relativistic charged particles is important for noninvasive beam diagnostics and design of free electron lasers based on Smith-Purcell radiation which is diffraction radiation from periodic structures. Different analytical models of diffraction radiation and results of recent experimental studies are presented in this book. The book may also serve as guide to classical electrodynamics applications in beam physics and electrodynamics. It can be of great use for young researchers to develop skills and for experienced scientists to obtain new results. (orig.)

  8. Radiatively driven relativistic spherical winds under relativistic radiative transfer

    Science.gov (United States)

    Fukue, J.

    2018-05-01

    We numerically investigate radiatively driven relativistic spherical winds from the central luminous object with mass M and luminosity L* under Newtonian gravity, special relativity, and relativistic radiative transfer. We solve both the relativistic radiative transfer equation and the relativistic hydrodynamical equations for spherically symmetric flows under the double-iteration processes, to obtain the intensity and velocity fields simultaneously. We found that the momentum-driven winds with scattering are quickly accelerated near the central object to reach the terminal speed. The results of numerical solutions are roughly fitted by a relation of \\dot{m}=0.7(Γ _*-1)\\tau _* β _* β _out^{-2.6}, where \\dot{m} is the mass-loss rate normalized by the critical one, Γ* the central luminosity normalized by the critical one, τ* the typical optical depth, β* the initial flow speed at the central core of radius R*, and βout the terminal speed normalized by the speed of light. This relation is close to the non-relativistic analytical solution, \\dot{m} = 2(Γ _*-1)\\tau _* β _* β _out^{-2}, which can be re-expressed as β _out^2/2 = (Γ _*-1)GM/c^2 R_*. That is, the present solution with small optical depth is similar to that of the radiatively driven free outflow. Furthermore, we found that the normalized luminosity (Eddington parameter) must be larger than unity for the relativistic spherical wind to blow off with intermediate or small optical depth, i.e. Γ _* ≳ \\sqrt{(1+β _out)^3/(1-β _out)}. We briefly investigate and discuss an isothermal wind.

  9. Loading relativistic Maxwell distributions in particle simulations

    International Nuclear Information System (INIS)

    Zenitani, Seiji

    2015-01-01

    Numerical algorithms to load relativistic Maxwell distributions in particle-in-cell (PIC) and Monte-Carlo simulations are presented. For stationary relativistic Maxwellian, the inverse transform method and the Sobol algorithm are reviewed. To boost particles to obtain relativistic shifted-Maxwellian, two rejection methods are proposed in a physically transparent manner. Their acceptance efficiencies are ≈50% for generic cases and 100% for symmetric distributions. They can be combined with arbitrary base algorithms

  10. Loading relativistic Maxwell distributions in particle simulations

    Energy Technology Data Exchange (ETDEWEB)

    Zenitani, Seiji, E-mail: seiji.zenitani@nao.ac.jp [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan)

    2015-04-15

    Numerical algorithms to load relativistic Maxwell distributions in particle-in-cell (PIC) and Monte-Carlo simulations are presented. For stationary relativistic Maxwellian, the inverse transform method and the Sobol algorithm are reviewed. To boost particles to obtain relativistic shifted-Maxwellian, two rejection methods are proposed in a physically transparent manner. Their acceptance efficiencies are ≈50% for generic cases and 100% for symmetric distributions. They can be combined with arbitrary base algorithms.

  11. Relativistic three-particle theory

    International Nuclear Information System (INIS)

    Hochauser, S.

    1979-01-01

    In keeping with recent developments in experimental nuclear physics, a formalism is developed to treat interactions between three relativistic nuclear particles. The concept of unitarity and a simple form of analyticity are used to construct coupled, integral, Faddeev-type equations and, with the help of analytic separable potentials, these are cast in simple, one-dimensional form. Energy-dependent potentials are introduced so as to take into account the sign-change of some phase shifts in the nucleon-nucleon interaction and parameters for these potentials are obtained. With regard to the success of such local potentials as the Yukawa potential, a recently developed method for expanding these in separable form is discussed. Finally, a new method for the numerical integration of the Faddeev equations along the real axis is introduced, thus avoiding the traditional need for contour rotations into the complex plane. (author)

  12. A Comprehensive Comparison of Relativistic Particle Integrators

    Science.gov (United States)

    Ripperda, B.; Bacchini, F.; Teunissen, J.; Xia, C.; Porth, O.; Sironi, L.; Lapenta, G.; Keppens, R.

    2018-03-01

    We compare relativistic particle integrators commonly used in plasma physics, showing several test cases relevant for astrophysics. Three explicit particle pushers are considered, namely, the Boris, Vay, and Higuera–Cary schemes. We also present a new relativistic fully implicit particle integrator that is energy conserving. Furthermore, a method based on the relativistic guiding center approximation is included. The algorithms are described such that they can be readily implemented in magnetohydrodynamics codes or Particle-in-Cell codes. Our comparison focuses on the strengths and key features of the particle integrators. We test the conservation of invariants of motion and the accuracy of particle drift dynamics in highly relativistic, mildly relativistic, and non-relativistic settings. The methods are compared in idealized test cases, i.e., without considering feedback onto the electrodynamic fields, collisions, pair creation, or radiation. The test cases include uniform electric and magnetic fields, {\\boldsymbol{E}}× {\\boldsymbol{B}} fields, force-free fields, and setups relevant for high-energy astrophysics, e.g., a magnetic mirror, a magnetic dipole, and a magnetic null. These tests have direct relevance for particle acceleration in shocks and in magnetic reconnection.

  13. Loading relativistic Maxwell distributions in particle simulations

    Science.gov (United States)

    Zenitani, S.

    2015-12-01

    In order to study energetic plasma phenomena by using particle-in-cell (PIC) and Monte-Carlo simulations, we need to deal with relativistic velocity distributions in these simulations. However, numerical algorithms to deal with relativistic distributions are not well known. In this contribution, we overview basic algorithms to load relativistic Maxwell distributions in PIC and Monte-Carlo simulations. For stationary relativistic Maxwellian, the inverse transform method and the Sobol algorithm are reviewed. To boost particles to obtain relativistic shifted-Maxwellian, two rejection methods are newly proposed in a physically transparent manner. Their acceptance efficiencies are 􏰅50% for generic cases and 100% for symmetric distributions. They can be combined with arbitrary base algorithms.

  14. The Crab Pulsar and Relativistic Wind

    Science.gov (United States)

    Coroniti, F. V.

    2017-12-01

    The possibility that the Crab pulsar produces a separated ion-dominated and pair-plasma-dominated, magnetically striped relativistic wind is assessed by rough estimates of the polar cap acceleration of the ion and electron primary beams, the pair production of secondary electrons and positrons, and a simple model of the near-magnetosphere-wind zone. For simplicity, only the orthogonal rotator is considered. Below (above) the rotational equator, ions (electrons) are accelerated in a thin sheath, of order (much less than) the width of the polar cap, to Lorentz factor {γ }i≈ (5{--}10)× {10}7({γ }e≈ {10}7). The accelerating parallel electric field is shorted out by ion-photon (curvature synchrotron) pair production. With strong, but fairly reasonable, assumptions, a set of general magnetic geometry relativistic wind equations is derived and shown to reduce to conservation relations that are similar to those of the wind from a magnetic monopole. The strength of the field-aligned currents carried by the primary beams is determined by the wind’s Alfvén critical point condition to be about eight times the Goldreich-Julian value. A simple model for the transition from the dipole region wind to the asymptotic monopole wind zone is developed. The asymptotic ratio of Poynting flux to ion (pair plasma) kinetic energy flux—the wind {σ }w∞ -parameter—is found to be of order {σ }w∞ ≈ 1/2({10}4). The far wind zone is likely to be complex, with the ion-dominated and pair-plasma-dominated magnetic stripes merging, and the oppositely directed azimuthal magnetic fields annihilating.

  15. On free fall of a relativistic particle

    International Nuclear Information System (INIS)

    Chernikov, N.A.; Paramonova, N.N.; Shavokhina, N.S.

    2005-01-01

    The free fall of a relativistic particle is considered: the well-known fact of the light velocity constancy is taken into account in the Galilean problem about the movement of a particle from nongravitational forces and its fall onto the ground. The velocity hodograph and the world line of the particle are found

  16. Spinning relativistic particles in external fields

    International Nuclear Information System (INIS)

    Pomeranskii, Andrei A; Sen'kov, Roman A; Khriplovich, Iosif B

    2000-01-01

    The motion of spinning relativistic particles in external electromagnetic and gravitational fields is considered. The self-consistent equations of motion are built with the noncovariant description of spin and with the usual, 'naive' definition of the coordinate of a relativistic particle. A simple derivation of the gravitational interaction of first order in spin is presented for a relativistic particle. The approach developed allows one to consider effects of higher order in spin. Concrete calculations are performed for the second order. The gravimagnetic moment is discussed, a special spin effect in general relativity. We also consider the contributions of the spin interactions of first and second order to the gravitational radiation of compact binary stars. (from the current literature)

  17. Path integral for relativistic particle theory

    International Nuclear Information System (INIS)

    Fradkin, E.S.; Gitman, D.M.; Shvartsman, Sh.M.

    1990-06-01

    An action for a relativistic spinning particle interacting with external electromagnetic field is considered in reparametrization and local supergauge invariant form. It is shown that various path integral representations derived for the causal Green function correspond to the different forms of the relativistic particle action. The analogy of the path integral derived with the Lagrangian path integral of the field theory is discussed. It is shown that to obtain the causal propagator, the integration over the null mode of the Lagrangian multiplier corresponding to the reparametrization invariance, has to be performed in the (0,+infinity) limits. (author). 23 refs

  18. Bmad: A relativistic charged particle simulation library

    International Nuclear Information System (INIS)

    Sagan, D.

    2006-01-01

    Bmad is a subroutine library for simulating relativistic charged particle beams in high-energy accelerators and storage rings. Bmad can be used to study both single and multi-particle beam dynamics using routines to track both particles and macroparticles. Bmad has various tracking algorithms including Runge-Kutta and symplectic (Lie algebraic) integration. Various effects such as wakefields, and radiation excitation and damping can be simulated. Bmad has been developed in a modular, object-oriented fashion to maximize flexibility. Interface routines allow Bmad to be called from C/C++ as well as Fortran programs. Bmad is well documented. Every routine is individually annotated, and there is an extensive manual

  19. Interplanetary Magnetic Field Guiding Relativistic Particles

    Science.gov (United States)

    Masson, S.; Demoulin, P.; Dasso, S.; Klein, K. L.

    2011-01-01

    The origin and the propagation of relativistic solar particles (0.5 to few Ge V) in the interplanetary medium remains a debated topic. These relativistic particles, detected at the Earth by neutron monitors have been previously accelerated close to the Sun and are guided by the interplanetary magnetic field (IMF) lines, connecting the acceleration site and the Earth. Usually, the nominal Parker spiral is considered for ensuring the magnetic connection to the Earth. However, in most GLEs the IMF is highly disturbed, and the active regions associated to the GLEs are not always located close to the solar footprint of the nominal Parker spiral. A possible explanation is that relativistic particles are propagating in transient magnetic structures, such as Interplanetary Coronal Mass Ejections (ICMEs). In order to check this interpretation, we studied in detail the interplanetary medium where the particles propagate for 10 GLEs of the last solar cycle. Using the magnetic field and the plasma parameter measurements (ACE/MAG and ACE/SWEPAM), we found widely different IMF configurations. In an independent approach we develop and apply an improved method of the velocity dispersion analysis to energetic protons measured by SoHO/ERNE. We determined the effective path length and the solar release time of protons from these data and also combined them with the neutron monitor data. We found that in most of the GLEs, protons propagate in transient magnetic structures. Moreover, the comparison between the interplanetary magnetic structure and the interplanetary length suggest that the timing of particle arrival at Earth is dominantly determined by the type of IMF in which high energetic particles are propagating. Finally we find that these energetic protons are not significantly scattered during their transport to Earth.

  20. Relativistic Collisions of Structured Atomic Particles

    CERN Document Server

    Voitkiv, Alexander

    2008-01-01

    The book reviews the progress achieved over the last decade in the study of collisions between an ion and an atom in which both the atomic particles carry electrons and can undergo transitions between their internal states -- including continua. It presents the detailed considerations of different theoretical approaches, that can be used to describe collisions of structured atomic particles for the very broad interval of impact energies ranging from 0.5--1 MeV/u till extreme relativistic energies where the collision velocity very closely approaches the speed of light.

  1. Relativistic scattering theory of charged spinless particles

    International Nuclear Information System (INIS)

    Alt, E.O.; Hannemann, M.

    1986-01-01

    In the context of relativistic quantum mechanics the scattering is discussed of two and three charged spinless particles. The corresponding transition operators are shown to satisfy four-dimensional Lippmann-Schwinger and eight-dimensional Faddeev-type equations, respectively. A simplified model of two particles with Coulomb interaction can be solved exactly. Calculations have been made of (i) the partial wave S-matrix from which the bound state spectrum has been extracted; the latter agrees with a fourth-order result of Schwinger; (ii) the full scattering amplitude which in the weak-field limit coincides with the expression derived by Fried et al. from eikonalized QED. (author)

  2. Relativistic and separable classical hamiltonian particle dynamics

    International Nuclear Information System (INIS)

    Sazdjian, H.

    1981-01-01

    We show within the Hamiltonian formalism the existence of classical relativistic mechanics of N scalar particles interacting at a distance which satisfies the requirements of Poincare invariance, separability, world-line invariance and Einstein causality. The line of approach which is adopted here uses the methods of the theory of systems with constraints applied to manifestly covariant systems of particles. The study is limited to the case of scalar interactions remaining weak in the whole phase space and vanishing at large space-like separation distances of the particles. Poincare invariance requires the inclusion of many-body, up to N-body, potentials. Separability requires the use of individual or two-body variables and the construction of the total interaction from basic two-body interactions. Position variables of the particles are constructed in terms of the canonical variables of the theory according to the world-line invariance condition and the subsidiary conditions of the non-relativistic limit and separability. Positivity constraints on the interaction masses squared of the particles ensure that the velocities of the latter remain always smaller than the velocity of light

  3. BRST field theory of relativistic particles

    International Nuclear Information System (INIS)

    Holten, J.W. van

    1992-01-01

    A generalization of BRST field theory is presented, based on wave operators for the fields constructed out of, but different from the BRST operator. The authors discuss their quantization, gauge fixing and the derivation of propagators. It is shown, that the generalized theories are relevant to relativistic particle theories in the Brink-Di Vecchia-Howe-Polyakov (BDHP) formulation, and argue that the same phenomenon holds in string theories. In particular it is shown, that the naive BRST formulation of the BDHP theory leads to trivial quantum field theories with vanishing correlation functions. (author). 22 refs

  4. Fundamentals of relativistic particle beam optics

    International Nuclear Information System (INIS)

    Cornacchia, M.

    1995-12-01

    This lecture introduces the nonaccelerator-specialist to the motion of charged particles in a Storage Ring. The topics of discussion are restricted to the linear and nonlinear dynamics of a single particle in the transverse plane, i.e., the plane perpendicular to the direction of motion. The major omissions for a complete review of accelerator theory, for which a considerable literature exists, are the energy and phase oscillations (1). Other important accelerator physics aspects not treated here are the collective instabilities (2), the role of synchrotron radiation in electron storage rings (3), scattering processes (4), and beam-beam effects in colliding beam facilities (5). Much of the discussion that follows applies equally well to relativistic electron, proton, or ion synchrotrons. In this narrative, we refer to the particle as electron. After a broad overview, the magnetic forces acting on the electrons and the associated differential equations of motion are discussed. Solutions of the equations are given without derivation; the method of solution is outlined. and references for deeper studies are given. In this paper, the word electron is used to signify electron or positron. The dynamics of a single particle are not affected by the sign of its charge when the magnetic field direction is changed accordingly

  5. Kinematics of a relativistic particle with de Sitter momentum space

    International Nuclear Information System (INIS)

    Arzano, Michele; Kowalski-Glikman, Jerzy

    2011-01-01

    We discuss kinematical properties of a free relativistic particle with deformed phase space in which momentum space is given by (a submanifold of) de Sitter space. We provide a detailed derivation of the action, Hamiltonian structure and equations of motion for such a free particle. We study the action of deformed relativistic symmetries on the phase space and derive explicit formulae for the action of the deformed Poincare group. Finally we provide a discussion on parametrization of the particle worldlines stressing analogies and differences with ordinary relativistic kinematics.

  6. Canonical quantization of spinning relativistic particle in external backgrounds

    Energy Technology Data Exchange (ETDEWEB)

    Gavrilov, S.P. [Universidade Federal de Sergipe (UFS), Aracaju, SE (Brazil); Gitman, D.M. [Sao Paulo Univ. (USP), SP (Brazil). Inst. de Fisica

    2000-07-01

    Full text follows: We revise the problem of the quantization of spinning relativistic particle pseudoclassical model, using a modified consistent canonical scheme. It allows one not only to include arbitrary electromagnetic and gravitational backgrounds in the consideration but to get in course of the quantization a consistent relativistic quantum mechanics, which reproduces literally the behavior of the one-particle sector of quantized spinor field. In particular, in a physical sector of the Hilbert space a complete positive spectrum of energies of relativistic particles and antiparticles is reproduced. Requirement to maintain all classical symmetries under the coordinate transformations and under U(1) transformations allows one to realize operator algebra without any ambiguities. (author)

  7. Canonical analysis of non-relativistic particle and superparticle

    Energy Technology Data Exchange (ETDEWEB)

    Kluson, Josef [Masaryk University, Department of Theoretical Physics and Astrophysics, Faculty of Science, Brno (Czech Republic)

    2018-02-15

    We perform canonical analysis of non-relativistic particle in Newton-Cartan Background. Then we extend this analysis to the case of non-relativistic superparticle in the same background. We determine constraints structure of this theory and find generator of κ-symmetry. (orig.)

  8. Relativistic ''potential model'' for N-particle systems

    International Nuclear Information System (INIS)

    Noyes, H.P.

    1986-08-01

    Neither quantum field theory nor S-Matrix theory have a well defined procedure for going over to an approximation that can be reliably used in non-relativistic models for nuclear physics. We meet the problem here by constructing a finite particle number relativistic scattering theory for (scalar) particles and mesons using integral equations of the Faddeev-Yakubovsky type. Restricted to N particles and one meson, we can go from the relativistic theory to a ''potential theory'' in the integral equation formulation by using boundary states which do not contain the meson asymptotically. The meson-particle input amplitudes contain a pole at the particle mass, and the particle-particle input amplitudes are null. This gives unique definition (numerically calculable) to the particle-particle off-shell amplitude, and hence to the covariant ''scattering potential'' (but not to the noninvariant concept of ''potential energy''). As we have commented before, if we take these scattering amplitudes as iput for relativistic Faddeev equations, the results are identical to those obtained from the same model starting from three particles and one meson. In this paper we explore how far we can extend this relativistic ''potential model'' to higher numbers of particles and mesons. 10 refs

  9. Relativistic three-particle dynamical equations: I. Theoretical development

    International Nuclear Information System (INIS)

    Adhikari, S.K.; Tomio, L.; Frederico, T.

    1993-11-01

    Starting from the two-particle Bethe-Salpeter equation in the ladder approximation and integrating over the time component of momentum, three dimensional scattering integral equations satisfying constrains of relativistic unitarity and covariance are rederived. These equations were first derived by Weinberg and by Blankenbecler and Sugar. These two-particle equations are shown to be related by a transformation of variables. Hence it is shown to perform and relate dynamical calculation using these two equations. Similarly, starting from the Bethe-Salpeter-Faddeev equation for the three-particle system and integrating over the time component of momentum, several three dimensional three-particle scattering equations satisfying constraints of relativistic unitary and covariance are derived. Two of these three-particle equations are related by a transformation of variables as in the two-particle case. The three-particle equations obtained are very practical and suitable for performing relativistic scattering calculations. (author)

  10. Mechanism of 238U disintegration induced by relativistic particles

    International Nuclear Information System (INIS)

    Andronenko, L.N.; Zhdanov, A.A.; Kravtsov, A.V.; Solyakin, G.E.

    2002-01-01

    In heavy-nucleus disintegration induced by a relativistic projectile particle, the production of collinear massive fragments accompanied by numerous charged particles and neutrons is explained in terms of the mechanism of projectile-momentum compensation due to the emission of a particle whose mass is greater than the projectile mass

  11. On the time delay between ultra-relativistic particles

    International Nuclear Information System (INIS)

    Fleury, Pierre

    2016-01-01

    The time delay between the receptions of ultra-relativistic particles emitted simultaneously is a useful observable for both fundamental physics and cosmology. The expression of the delay when the particles travel through an arbitrary spacetime has been derived recently by Fanizza et al., using a particular coordinate system and self-consistent assumptions. The present article shows that this formula enjoys a simple physical interpretation: the relative velocity between two ultra-relativistic particles is constant. This result reveals an interesting kinematical property of general relativity, namely that the tidal forces experienced by ultra-relativistic particles in the direction of their motion are much smaller than those experienced orthogonally to their motion.

  12. On the time delay between ultra-relativistic particles

    Energy Technology Data Exchange (ETDEWEB)

    Fleury, Pierre, E-mail: pierre.fleury@uct.ac.za [Department of Mathematics and Applied Mathematics, University of Cape Town, Rondebosch 7701, Cape Town (South Africa); Department of Physics, University of the Western Cape, Robert Sobukwe Road, Bellville 7535 (South Africa)

    2016-09-10

    The time delay between the receptions of ultra-relativistic particles emitted simultaneously is a useful observable for both fundamental physics and cosmology. The expression of the delay when the particles travel through an arbitrary spacetime has been derived recently by Fanizza et al., using a particular coordinate system and self-consistent assumptions. The present article shows that this formula enjoys a simple physical interpretation: the relative velocity between two ultra-relativistic particles is constant. This result reveals an interesting kinematical property of general relativity, namely that the tidal forces experienced by ultra-relativistic particles in the direction of their motion are much smaller than those experienced orthogonally to their motion.

  13. Relativistic Spinning Particle without Grassmann Variables and the Dirac Equation

    Directory of Open Access Journals (Sweden)

    A. A. Deriglazov

    2011-01-01

    Full Text Available We present the relativistic particle model without Grassmann variables which, being canonically quantized, leads to the Dirac equation. Classical dynamics of the model is in correspondence with the dynamics of mean values of the corresponding operators in the Dirac theory. Classical equations for the spin tensor are the same as those of the Barut-Zanghi model of spinning particle.

  14. Relativistic motion of spinning particles in a gravitational field

    International Nuclear Information System (INIS)

    Chicone, C.; Mashhoon, B.; Punsly, B.

    2005-01-01

    The relative motion of a classical relativistic spinning test particle is studied with respect to a nearby free test particle in the gravitational field of a rotating source. The effects of the spin-curvature coupling force are elucidated and the implications of the results for the motion of rotating plasma clumps in astrophysical jets are discussed

  15. Relativistic mechanics of two interacting particles and bilocal theory

    International Nuclear Information System (INIS)

    Takabayasi, Takehiko

    1975-01-01

    New relativistic mechanics of two-particle system is set forth, where the two constituent particles are interacting by an arbitrary (central) action-at-a-distance. The fundamental equations are presented in a form covariant under general transformation of parameters parametrizing the world lines of constituent particles. The theory represents the proper relativistic generalization of the usual Newtonian mechanics in the sense that it tends in the non-relativistic (and weak interaction) limit to the usual mechanics of two particles moving under a corresponding non-relativistic potential. For the analysis of theory it is convenient to choose a certain particular gauge (i.e., parametrization) fixed by two gauge relations. This brings the theory to a canonical formalism accompanied by two weak equations, and in this gauge quantization can be performed. The result verifies that the relativistic quantum mechanics for two particles interacting by an action-at-a-distance is just represented by a bilocal wave equation and a subsidiary condition, with the clarification of its correspondence-theoretical foundation and internal dynamics. As an example the case of Hooke-type force is illustrated, where the internal motions are elliptic oscillations in the center-of-mass frame. Its quantum theory just reproduces the original form of bilocal theory giving bound states lying on a straightly rising trajectory and on its daughter trajectories. (auth.)

  16. On the relativistic quantum mechanics of two interacting spinless particles

    International Nuclear Information System (INIS)

    Rizov, V.A.; Sazdjian, H.; Todorov, I.T.

    1984-05-01

    The L 2 -scalar product ∫ PHI*(x)PSI(x) d 3 x is not appropriate for the space of states describing the center-of-mass relative motion of two relativistic particles whose interaction is given by an energy dependent quasipotential. The problem already appears in the relativistic quantum mechanics of a Klein-Gordon charged particle in an external field. We extend the methods developed for that case to study a two-particle system with an energy independent scalar interaction as well as the relativistic Coulomb problem. We write down a Poincare invariant inner product for which the eigenfunctions corresponding to different energy eigenvalues are orthogonal. We also construct a perturbative expansion for bound-state energy eigenvalues corresponding to an arbitrary energy dependent (quasipotential) correction to an unperturbed Hamiltonian with a known spectrum. The description of observables and transition probabilities for eigenvalue problems with a polynomial dependence on the spectral parameter is also discussed

  17. Note of positions of particles in classical relativistic mechanics

    International Nuclear Information System (INIS)

    Pazma, V.

    1983-01-01

    The relation between world-lines and the position vector of a particle is studied from the point of view of gauge system theory. The expressions for the position vector of a free relativistic particle and of two interacting particles described by the Todorov-Komar model are derived under plausible assumptions. The relation between the physical meaning of basic canonical variables and the choice of a gauge is also discussed. (author)

  18. Non-relativistic model of two-particle decay

    International Nuclear Information System (INIS)

    Dittrich, J.; Exner, P.

    1986-01-01

    A simple non-relativistic model of a spinless particle decaying into two lighter particles is treated in detail. It is similar to the Lee-model description of V-particle decay. Galilean covariance is formulated properly, by means of a unitary projective representation acting on the state space of the model. After separating the centre-of-mass motion the meromorphic structure of the reduced resolvent is deduced

  19. The L1-shell ionisation of atoms by relativistic particles

    International Nuclear Information System (INIS)

    Moiseiwitsch, B.L.; Norrington, P.H.

    1979-01-01

    An expression for the L 1 -shell ionisation cross sections of atoms by high-energy particles has been derived using the relativistic plane-wave Born approximation. The incident and scattered particles are described by Dirac plane waves while Darwin hydrogenic wavefunctions are used for the atomic electrons. A comparison is made with experimental total cross sections for incident electrons in the energy range 1-2 MeV. The agreement is a considerable improvement on that obtained using the non-relativistic planewave Born approximation. (author)

  20. Particle Interferometry for Relativistic Heavy-Ion Collisions

    CERN Document Server

    Wiedemann, Urs Achim; Wiedemann, Urs Achim; Heinz, Ulrich

    1999-01-01

    In this report we give a detailed account on Hanbury Brown/Twiss (HBT) particle interferometric methods for relativistic heavy-ion collisions. These exploit identical two-particle correlations to gain access to the space-time geometry and dynamics of the final freeze-out stage. The connection between the measured correlations in momentum space and the phase-space structure of the particle emitter is established, both with and without final state interactions. Suitable Gaussian parametrizations for the two-particle correlation function are derived and the physical interpretation of their parameters is explained. After reviewing various model studies, we show how a combined analysis of single- and two-particle spectra allows to reconstruct the final state of relativistic heavy-ion collisions.

  1. Mass, Momentum and Kinetic Energy of a Relativistic Particle

    Science.gov (United States)

    Zanchini, Enzo

    2010-01-01

    A rigorous definition of mass in special relativity, proposed in a recent paper, is recalled and employed to obtain simple and rigorous deductions of the expressions of momentum and kinetic energy for a relativistic particle. The whole logical framework appears as the natural extension of the classical one. Only the first, second and third laws of…

  2. On the relativistic particle dynamics in external gravitational fields

    International Nuclear Information System (INIS)

    Kuz'menkov, L.S.; Naumov, N.D.

    1977-01-01

    On the base of the Riemann metrics of an event space, leading to the Newton mechanics at nonrelativistic velocities and not obligatory weak gravitational fields relativistic particle dynamics in external gravitation fields has been considered. Found are trajectories, motion laws and light ray equations for the homogeneous and Newton fields

  3. Path integral for a relativistic-particle theory

    International Nuclear Information System (INIS)

    Fradkin, E.S.; Gitman, D.M.; Shvartsman, S.M.

    1991-01-01

    An action of a relativistic spinning particle written in reparametrization and local super-invariant form is consistently determined by using the path integral representation for the Green's function of the spinor field. It is shown that, to obtain the causal propagator, the integration over the null mode of the onebein variable must be performed in the (0, + ∞ limits

  4. Path integral for a relativistic-particle theory

    Energy Technology Data Exchange (ETDEWEB)

    Fradkin, E.S. (AN SSSR, Moscow (SU)); Gitman, D.M. (Moskovskij Inst. Radiotekhniki, Ehlektroniki i Automatiki, Moscow (SU)); Shvartsman, S.M. (Tomskij Pedagogicheskij Inst., Tomsk (SU))

    1991-06-01

    An action of a relativistic spinning particle written in reparametrization and local super-invariant form is consistently determined by using the path integral representation for the Green's function of the spinor field. It is shown that, to obtain the causal propagator, the integration over the null mode of the onebein variable must be performed in the (0, + {infinity}) limits.

  5. Particle Acceleration, Magnetic Field Generation and Emission from Relativistic Jets

    Science.gov (United States)

    Nishikawa, K.-I.; Hardee, P.; Hededal, C.; Mizuno, Yosuke; Fishman, G. Jerry; Hartmann, D. H.

    2006-01-01

    Nonthermal radiation observed from astrophysical systems containing relativistic jets and shocks, e.g., active galactic nuclei (AGNs), gamma-ray bursts (GRBs), supernova remnants, and Galactic microquasar systems usually have power-law emission spectra. Fermi acceleration is the mechanism usually assumed for the acceleration of particles in astrophysical environments. Recent PIC simulations using injected relativistic electron-ion (electro-positron) jets show that particle acceleration occurs within the downstream jet, rather than by the scattering of particles back and forth across the shock as in Fermi acceleration. Shock acceleration' is a ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., the Buneman instability, other two-streaming instability, and the Weibel instability) created in the shocks are responsible for particle (electron, positron, and ion) acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields. These magnetic fields contribute to the electron's transverse deflection behind the jet head. The "jitter" radiation from deflected electrons has different spectral properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants. We will review recent PIC simulations of relativistic jets and try to make a connection with observations.

  6. Quantum theory of relativistic charged particles in external fields

    International Nuclear Information System (INIS)

    Ruijsenaars, S.N.M.

    1976-01-01

    A study was made on external field theories in which the quantized field corresponds to relativistic elementary particles with non-zero rest mass. These particles are assumed to be charged, thus they have distinct antiparticles. The thesis consists of two parts. The first tries to accommodate the general features of theories of relativistic charged particles in external fields. Spin and dynamics in particular are not specified. In the second part, the results are applied to charged spin-1/2 and spin-0 particles, the dynamics of which are given by the Dirac resp. Klein-Gordon equation. The greater emphasis is on external fields which are rapidly decreasing, infinitely differentiable functions of space-time, but also considers time-independent fields. External fields, other than electromagnetic fields are also considered, e.g. scalar fields

  7. Cherenkov particle identifier for relativistic heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    Dufour, J P; Olson, D L; Baumgartner, M; Girard, J G; Lindstrom, P J; Greiner, D E; Symons, T J.M.; Crawford, H J

    1985-12-01

    A total internal reflection Cherenkov detector is described. A figure of merit of 84Z/sup 2/sin/sup 2/theta photoelectrons/cm has been measured and the application of the device to charge and velocity measurements of relativistic heavy ions has been tested. We have achieved a charge resolution of ..delta..Zsub(rms)=0.15e for Z=20 with a 3 mm thick glass detector and a velocity resolution of ..delta beta..sub(rms)=2x10/sup -4/ at ..beta..=0.93 and Z=26 with a 6 mm thick fused silica detector. Combining charge and velocity measurements with a magnetic rigidity selection, we have achieved an isotopic mass resolution of ..delta..Msub(rms)=0.1 u with a 2 mm thick fused silica detector for 20

  8. Cherenkov particle identifier for relativistic heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    Dufour, J P; Olson, D L; Baumgartner, M; Girard, J G; Lindstrom, P J; Greiner, D E; Symons, T J.M.; Crawford, H J

    1985-12-01

    A total internal reflection Cherenkov detector is described. A figure of merit of 84Z/sup 2/sin/sup 2/theta photoelectrons/cm has been measured and the application of the device to charge and velocity measurements of relativistic heavy ions has been tested. We have achieved a charge resolution of ..delta..Zsub(rms)=0.15e for Z=20 with a 3 mm thick glass detector and a velocity resolution of ..delta beta..sub(rms)=2 x 10/sup -4/ at ..beta..=0.93 and Z=26 with a 6 mm thick fused silica detector. Combining charge and velocity measurements with a magnetic rigidity selection, we have achieved an isotopic mass resolution of ..delta..Msub(rms)=0.1 u with a 2 mm thick fused silica detector for 20 < A < 40.

  9. Measuring the cosmological background of relativistic particles with WMAP

    CERN Document Server

    Crotty, P; Pastor, S; Crotty, Patrick; Lesgourgues, Julien; Pastor, Sergio

    2003-01-01

    We show that the first year results of the Wilkinson Microwave Anisotropy Probe (WMAP) constrain very efficiently the energy density in relativistic particles in the universe. We derive new bounds on additional relativistic degrees of freedom expressed in terms of an excess in the effective number of light neutrinos Delta N_eff. Within the flat LambdaCDM scenario, the allowed range is Delta N_eff < 6 (95% CL) using WMAP data only, or -2.6 < Delta N_eff < 4 with the prior H_0= 72 \\pm 8 km/s/Mpc. When other cosmic microwave background and large scale structure experiments are taken into account, the window shrinks to -1.5 < Delta N_eff < 4.2. These results are in perfect agreement with the bounds from primordial nucleosynthesis. Non-minimal cosmological models with extra relativistic degrees of freedom are now severely restricted.

  10. A simplectic formulation of relativistic particle dynamics

    International Nuclear Information System (INIS)

    Tulczyjew, W.M.

    1976-12-01

    Particle mechanics is formulated in terms of symplectic relations and infinitesimal symplectic relations. Generating functions of symplectic relations are shown to be classical counterparts of Green's functions of wave mechanics. (orig.) [de

  11. A sympletic formulation of relativistic particle dynamics

    International Nuclear Information System (INIS)

    Tulczyjew, W.M.

    1977-01-01

    Particle mechanics is formulated in terms of sympletic relations and infinitesimal symplectic relations. Generating functions of symplectic relations are shown to be classical counterparts of Green's functions of wave mechanics. (author)

  12. Electromagnetic field of a circular beam of relativistic particles

    International Nuclear Information System (INIS)

    Vybiral, B.

    1978-01-01

    The generalized Coulomb law and the generalized Biot-Savart-Laplace law are derived for an element of a beam of charged relativistic particles moving generally irregularly. These laws are utilized for the description of an electromagnetic field of a circular beam of relativistic regularly moving particles. It is shown that in the points on the axis of the beam the intensity of the electric field is given by an expression precisely corresponding to the classical Coulomb law for charges at rest and the induction of the magnetic field corresponds to the classical Biot-Savart-Laplace law for conductive currents. From the numerical solution it follows that in the points outside the axis the induction of the magnetic field rises with the velocity of the particles. For a velocity nearing that of light in vacuum it assumes a definite value (with the exception of the points lying on the beam). (author)

  13. Characterization of particle states in relativistic classical quantum theory

    International Nuclear Information System (INIS)

    Horwitz, L.P.; Rabin, Y.

    1977-02-01

    Classical and quantum relativistic mechanics are studied. The notion of a ''particle'' is defined in the classical case and the interpretation of mechanics in space-time is clarified. These notions are carried over to the quantum theory, as much as possible. The relation between the results of Feyman's path integral approach and the theory of Horwitz and Piron is discussed. The ''particle'' interpretation is shown to imply an asymptotic condition for scattering. A general method of constructing the dynamical mass spectrum of composite ''particle'' states is discussed. An interference experiment is proposed to affirm the interpretation and applicability of Stueckelberg type wave functions for actual physical phenomena. Some discussion of the relation of this relativistic quantum theory to Feynman's approach to quantum field theory is also given

  14. Auxiliary fields in the geometrical relativistic particle dynamics

    International Nuclear Information System (INIS)

    Amador, A; Bagatella, N; Rojas, E; Cordero, R

    2008-01-01

    We describe how to construct the dynamics of relativistic particles, following either timelike or null curves, by means of an auxiliary variables method instead of the standard theory of deformations for curves. There are interesting physical particle models governed by actions that involve higher order derivatives of the embedding functions of the worldline. We point out that the mechanical content of such models can be extracted wisely from a lower order action, which can be performed by implementing in the action a finite number of constraints that involve the geometrical relationship structures inherent to a curve and by using a covariant formalism. We emphasize our approach for null curves. For such systems, the natural time parameter is a pseudo-arclength whose properties resemble those of the standard proper time. We illustrate the formalism by applying it to some models for relativistic particles

  15. Auxiliary fields in the geometrical relativistic particle dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Amador, A; Bagatella, N; Rojas, E [Departamento de Fisica, Facultad de Fisica e Inteligencia Artificial, Universidad Veracruzana, 91000 Xalapa, Veracruz (Mexico); Cordero, R [Departamento de Fisica, Escuela Superior de Fisica y Matematicas del I.P.N, Edificio 9, 07738 Mexico D.F (Mexico)], E-mail: aramador@gmail.com, E-mail: nbagatella@uv.mx, E-mail: cordero@esfm.ipn.mx, E-mail: efrojas@uv.mx

    2008-03-21

    We describe how to construct the dynamics of relativistic particles, following either timelike or null curves, by means of an auxiliary variables method instead of the standard theory of deformations for curves. There are interesting physical particle models governed by actions that involve higher order derivatives of the embedding functions of the worldline. We point out that the mechanical content of such models can be extracted wisely from a lower order action, which can be performed by implementing in the action a finite number of constraints that involve the geometrical relationship structures inherent to a curve and by using a covariant formalism. We emphasize our approach for null curves. For such systems, the natural time parameter is a pseudo-arclength whose properties resemble those of the standard proper time. We illustrate the formalism by applying it to some models for relativistic particles.

  16. 2D Relativistic MHD simulations of the Kruskal-Schwarzschild instability in a relativistic striped wind

    Science.gov (United States)

    Gill, Ramandeep; Granot, Jonathan; Lyubarsky, Yuri

    2018-03-01

    We study the linear and non-linear development of the Kruskal-Schwarzchild instability in a relativisitically expanding striped wind. This instability is the generalization of Rayleigh-Taylor instability in the presence of a magnetic field. It has been suggested to produce a self-sustained acceleration mechanism in strongly magnetized outflows found in active galactic nuclei, gamma-ray bursts, and micro-quasars. The instability leads to magnetic reconnection, but in contrast with steady-state Sweet-Parker reconnection, the dissipation rate is not limited by the current layer's small aspect ratio. We performed two-dimensional (2D) relativistic magnetohydrodynamic (RMHD) simulations featuring two cold and highly magnetized (1 ≤ σ ≤ 103) plasma layers with an anti-parallel magnetic field separated by a thin layer of relativistically hot plasma with a local effective gravity induced by the outflow's acceleration. Our simulations show how the heavier relativistically hot plasma in the reconnecting layer drips out and allows oppositely oriented magnetic field lines to reconnect. The instability's growth rate in the linear regime matches the predictions of linear stability analysis. We find turbulence rather than an ordered bulk flow near the reconnection region, with turbulent velocities up to ˜0.1c, largely independent of model parameters. However, the magnetic energy dissipation rate is found to be much slower, corresponding to an effective ordered bulk velocity inflow into the reconnection region vin = βinc of 10-3 ≲ βin ≲ 5 × 10-3. This occurs due to the slow evacuation of hot plasma from the current layer, largely because of the Kelvin-Helmholtz instability experienced by the dripping plasma. 3D RMHD simulations are needed to further investigate the non-linear regime.

  17. On the injection of relativistic particles into the Crab Nebula

    International Nuclear Information System (INIS)

    Shklovskij, I.S.

    1977-01-01

    It is shown that a flux of relativistic electrons from the NP 0532 pulsar magnetosphere, responsible for its synchrotron emission, cannot provide the necessary energy pumping to the Crab Nebula. A conclusion is reached that such a pumping can be effectuated by a flow of relativistic electrons leaving the NP 0532 magnetosphere at small pitch angles and giving therefore no appreciable contribution to the synchrotron emission of the pulsar. An interpretation of the Crab Nebula synchrotron spectrum is given on the assumption of secular ''softening'' of the energy spectrum of the relativistic electrons injected into the Nebula. A possibility of explanation of the observed rapid variability of some features in the central part of the Nebula by ejection of free - neutron - rich dense gas clouds from the pulsar surface during ''starquakes'' is discussed. The clouds of rather dense (nsub(e) approximately 10 7 cm -3 ) plasma, thus formed at about 10 13 cm from pulsar, will be accelerated up to relativistic velocities by the pressure of the magneto-dipole radiation of NP 0532 and will deform the magnetic field in the inner part (R 17 cm) of the Crab Nebula, that is the cause of the variability observed. In this case, favourable conditions for the acceleration of the particles in the cloud up to relativistic energies are realized; that may be an additional source of injection

  18. Relativistic local quantum field theory for m=0 particles

    International Nuclear Information System (INIS)

    Morales Villasevil, A.

    1965-01-01

    A method is introduced ta deal with relativistic quantum field theory for particles with m=0. Two mappings I and J, giving rise respectively to particle and anti particle states, are defined between a test space and the physical Hilbert space. The intrinsic field operator is then defined as the minimal causal linear combinations of operators belonging to the annihilation-creation algebra associated to the germ and antigerm parts of the element. Local elements are introduced as improper test elements and local field operators are constructed in the same way as the intrinsic ones. Commutation rules are given. (Author) 17 refs

  19. Relativistic motion of particle in photogravitational field of star

    International Nuclear Information System (INIS)

    Zubko, O.L.

    2014-01-01

    Relativistic motion of particle in photogravitational field of star has been considered at different levels. It is shown that taking into account direct light pressure, elliptical orbit of the particle increases in sizes. Taking into account longitudinal Doppler effect and aberration of light leads to the motion of the particle by decreasing in size ellipse, which also has decreasing and eccentricity. Taking into account forces proportional to v 1 2 /c 2 leads to a faster reduction of the ellipse and its eccentricity. (authors)

  20. Particle Acceleration, Magnetic Field Generation, and Emission in Relativistic Shocks

    Science.gov (United States)

    Nishikawa, Ken-IchiI.; Hededal, C.; Hardee, P.; Richardson, G.; Preece, R.; Sol, H.; Fishman, G.

    2004-01-01

    Shock acceleration is an ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., the Buneman instability, two-streaming instability, and the Weibel instability) created in the shocks are responsible for particle (electron, positron, and ion) acceleration. Using a 3-D relativistic electromagnetic particle (m) code, we have investigated particle acceleration associated with a relativistic jet front propagating through an ambient plasma with and without initial magnetic fields. We find only small differences in the results between no ambient and weak ambient parallel magnetic fields. Simulations show that the Weibel instability created in the collisionless shock front accelerates particles perpendicular and parallel to the jet propagation direction. New simulations with an ambient perpendicular magnetic field show the strong interaction between the relativistic jet and the magnetic fields. The magnetic fields are piled up by the jet and the jet electrons are bent, which creates currents and displacement currents. At the nonlinear stage, the magnetic fields are reversed by the current and the reconnection may take place. Due to these dynamics the jet and ambient electron are strongly accelerated in both parallel and perpendicular directions.

  1. Particle Acceleration, Magnetic Field Generation in Relativistic Shocks

    Science.gov (United States)

    Nishikawa, Ken-Ichi; Hardee, P.; Hededal, C. B.; Richardson, G.; Sol, H.; Preece, R.; Fishman, G. J.

    2005-01-01

    Shock acceleration is an ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., the Buneman instability, two-streaming instability, and the Weibel instability) created in the shocks are responsible for particle (electron, positron, and ion) acceleration. Using a 3-D relativistic electromagnetic particle (REMP) code, we have investigated particle acceleration associated with a relativistic jet front propagating through an ambient plasma with and without initial magnetic fields. We find only small differences in the results between no ambient and weak ambient parallel magnetic fields. Simulations show that the Weibel instability created in the collisionless shock front accelerates particles perpendicular and parallel to the jet propagation direction. New simulations with an ambient perpendicular magnetic field show the strong interaction between the relativistic jet and the magnetic fields. The magnetic fields are piled up by the jet and the jet electrons are bent, which creates currents and displacement currents. At the nonlinear stage, the magnetic fields are reversed by the current and the reconnection may take place. Due to these dynamics the jet and ambient electron are strongly accelerated in both parallel and perpendicular directions.

  2. Relativistic scattering theory of two charged spinless particles

    International Nuclear Information System (INIS)

    Alt, E.O.; Hannemann

    1985-01-01

    In the framework of a relativistic quantum mechanics, the authors calculate for two spinless particles with Coulomb interaction exactly the partial-wave S-matrix and the full scattering amplitude. From the former they can extract the exact binding energies which, when expanded in powers of α, reproduce in the hydrogenic case the fourth-order result of a previous study. In the weak field limit, the latter coincides with the amplitude derived by another study from QED in eikonal approximation

  3. Coherent oscillations of a ring of relativistic particles

    International Nuclear Information System (INIS)

    Hofmann, I.

    1976-07-01

    The effect of ring curvature on the coherent perturbations of a ring of relativistic particles is studied within the framework of the linearized Vlasov equation. Finite curvature is shown to have a minor effect on the dynamics of the 'negative mass' mode; the 'transverse' mode in radial direction, however, is found to be coupled with a simultaneous longitudinal density modulation which modifies the dispersion relation. In the limit of small mode frequency (ω/Ω [de

  4. Tachyonless models of relativistic particles with curvature and torsion

    International Nuclear Information System (INIS)

    Kuznetsov, Yu.A.; Plyushchaj, M.S.

    1992-01-01

    The problem of construction (2+1)-dimensional tachyonless models of relativistic particles with an action depending on the world-trajectory curvature and torsion is investigated. The special class of models, described by maximum symmetric action and comprising only spin internal degrees of freedom is found. The examples of systems from the special class are given, whose classical and quantum spectra contain only massive states. 23 refs

  5. Relativistic Photon Induced Processes of Composite Particles

    International Nuclear Information System (INIS)

    Ribeiro-Silva, C.I; Curado, E. M. F.; Rego-Monteiro, M. A.

    2007-01-01

    We consider a complex quantum field theory based on a generalized Heisenberg[1] algebra, which describes at the space-time a spin less composite particle. We compute the perturbative series and the cross section of the scattering process 2 γ→φ - , φ + up to second order in the coupling constant and we find a further contribution due to the structure of the composite pion which is described here phenomenologically by the generalized algebra. We compare the results of this study with available experimental data. (Author)

  6. Particle acceleration and injection problem in relativistic and nonrelativistic shocks

    International Nuclear Information System (INIS)

    Hoshino, M.

    2008-01-01

    Acceleration of charged particles at the collisionless shock is believed to be responsible for production of cosmic rays in a variety of astrophysical objects such as supernova, AGN jet, and GRB etc., and the diffusive shock acceleration model is widely accepted as a key process for generating cosmic rays with non-thermal, power-law energy spectrum. Yet it is not well understood how the collisionless shock can produce such high energy particles. Among several unresolved issues, two major problems are the so-called '' injection '' problem of the supra-thermal particles and the generation of plasma waves and turbulence in and around the shock front. With recent advance of computer simulations, however, it is now possible to discuss those issues together with dynamical evolution of the kinetic shock structure. A wealth of modern astrophysical observations also inspires the dynamical shock structure and acceleration processes along with the theoretical and computational studies on shock. In this presentation, we focus on the plasma wave generation and the associated particle energization that directly links to the injection problem by taking into account the kinetic plasma processes of both non-relativistic and relativistic shocks by using a particle-in-cell simulation. We will also discuss some new particle acceleration mechanisms such as stochastic surfing acceleration and wakefield acceleration by the action of nonlinear electrostatic fields. (author)

  7. Dynamics of relativistic point particles as a problem with constraints

    International Nuclear Information System (INIS)

    Todorov, I.T.

    1976-01-01

    The relativistic n-particle dynamics is studied as a problem with constraints of the type (2phisub(i)=)msub(i)sup(2)-psub(i)sup(2)+PHIsub(i)=0, i=1,...,n, (C) where PHIsub(i) are Poincare invariant functions of the particles' coordinates, momenta and spin components; PHIsib(i) is assumed to vanish asymptotically when the i-th particle coordinates tend to infinity. In the two particle case it is assumed in addition that the Poisson bracket [phi 1 , phi 2 ] vanishes on the surface (C). That allows us to give a formulation of the theory, invariant with respect to the choice of the time-parameter on each trajectory. The quantization of the relative two-particle motion is also discussed. It is pointed out that the stationary Schrodinger equation obtained in this manner is a local quasipotential equation

  8. Spinor and isospinor structure of relativistic particle propagators

    International Nuclear Information System (INIS)

    Gitman, D.M.; Shvartsman, Sh.M.

    1993-07-01

    Representations by means of path integrals are used to find spinor and isospinor structure of relativistic particle propagators in external fields. For Dirac propagator in an external electromagnetic field all Grassmannian integrations are performed and a general result is presented via a bosonic path integral. The spinor structure of the integrand is given explicitly by its decomposition in the independent γ-matrix structures. A similar technique is used to get the isospinor structure of the scalar particle propagator in an external non-Abelian field. (author). 21 refs

  9. Dirac particle in a box, and relativistic quantum Zeno dynamics

    International Nuclear Information System (INIS)

    Menon, Govind; Belyi, Sergey

    2004-01-01

    After developing a complete set of eigenfunctions for a Dirac particle restricted to a box, the quantum Zeno dynamics of a relativistic system is considered. The evolution of a continuously observed quantum mechanical system is governed by the theorem put forth by Misra and Sudarshan. One of the conditions for quantum Zeno dynamics to be manifest is that the Hamiltonian is semi-bounded. This Letter analyzes the effects of continuous observation of a particle whose time evolution is generated by the Dirac Hamiltonian. The theorem by Misra and Sudarshan is not applicable here since the Dirac operator is not semi-bounded

  10. Relativistic-particle quantum mechanics (applications and approximations) II

    International Nuclear Information System (INIS)

    Coester, F.

    1981-01-01

    In this lecture I hope to show that relativistic-particle quantum mechanics with direct interactions is a useful tool for building models applicable to hadron systems at intermediate energies. To do this I will first describe a class of models designed to incorporate nucleon-nucleon interactions, pion production, absorption and scattering into a single dynamical framework without dressing the nucleons with pion clouds. The second major topic concerns electromagnetic interactions. In the previous lecture I specifically excluded long-rang forces and zero-mass particles. Since many of the experimental data in hadron physics involve electromagnetic interactions this limitation is a major defect which must be addressed

  11. Classical relativistic constituent particles and composite-particle scattering

    International Nuclear Information System (INIS)

    King, M.J.

    1984-01-01

    A nonlocal Lagrangian formalism is developed to describe a classical many-particle system. The nonstandard Lagrangian is a function of a single parameter s which is not, in general, associated with the physical clock. The particles are constrained to be constituents of composite systems, which in turn can decompose into asymptotic composite states representing free observable particles. To demonstrate this, explicit models of composite-composite particle scattering are constructed. Space-time conservation laws are not imposed separately on the system, but follow upon requiring the constituents to ''pair up'' into free composites at s = +infinity,-infinity. One model is characterized by the appearance of an ''external'' zero-mass composite particle which participates in the scattering process without affecting the space-time conservation laws of the two-composite system. Initial conditions on the two incoming composite particles and the zero-mass participant determine the scattering angle and the final states of the two outgoing composite particles. Although the formalism is classical, the model displays some features usually associated with quantum field theory, such as particle scattering by means of constituent exchange, creation and annihilation of particles, and restriction of values of angular momentum

  12. Real-time energy detector for relativistic charged particles

    International Nuclear Information System (INIS)

    Piestrup, A.

    1988-01-01

    The objective of the research is to investigate the use of coherent transition radiation to measure the energy of ultra-relativistic charged particles. The research has possible applications for the detection and identification of these particles. It can also be used for beam diagnostics for both high-repetition-rate and single-pulse, high-current accelerators. The device is low cost and can operate in situ while causing little or no perturbation to the beam. Three such coherent radiators have been constructed and tested at two accelerators using electron beam energies ranging from 50 to 228 MeV. Soft x-ray emission (1 keV to 4 keV) was emitted in a circularly symmetrical annulus with half-angle divergence of 2.5 to 9.0 mr. By selecting foil thickness and spacing, it is possible to design radiators whose angle of emission varies radically over a range of charge-particle energies

  13. Non-relativistic spinning particle in a Newton-Cartan background

    Science.gov (United States)

    Barducci, Andrea; Casalbuoni, Roberto; Gomis, Joaquim

    2018-01-01

    We construct the action of a non-relativistic spinning particle moving in a general torsionless Newton-Cartan background. The particle does not follow the geodesic equations, instead the motion is governed by the non-relativistic analog of Papapetrou equation. The spinning particle is described in terms of Grassmann variables. In the flat case the action is invariant under the non-relativistic analog of space-time vector supersymmetry.

  14. A signed particle formulation of non-relativistic quantum mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Sellier, Jean Michel, E-mail: jeanmichel.sellier@parallel.bas.bg

    2015-09-15

    A formulation of non-relativistic quantum mechanics in terms of Newtonian particles is presented in the shape of a set of three postulates. In this new theory, quantum systems are described by ensembles of signed particles which behave as field-less classical objects which carry a negative or positive sign and interact with an external potential by means of creation and annihilation events only. This approach is shown to be a generalization of the signed particle Wigner Monte Carlo method which reconstructs the time-dependent Wigner quasi-distribution function of a system and, therefore, the corresponding Schrödinger time-dependent wave-function. Its classical limit is discussed and a physical interpretation, based on experimental evidences coming from quantum tomography, is suggested. Moreover, in order to show the advantages brought by this novel formulation, a straightforward extension to relativistic effects is discussed. To conclude, quantum tunnelling numerical experiments are performed to show the validity of the suggested approach.

  15. Particle-production mechanism in relativistic heavy-ion collisions

    International Nuclear Information System (INIS)

    Bush, B.W.; Nix, J.R.

    1994-01-01

    We discuss the production of particles in relativistic heavy-ion collisions through the mechanism of massive bremsstrahlung, in which massive mesons are emitted during rapid nucleon acceleration. This mechanism is described within the framework of classical hadrodynamics for extended nucleons, corresponding to nucleons of finite size interacting with massive meson fields. This new theory provides a natural covariant microscopic approach to relativistic heavy-ion collisions that includes automatically spacetime nonlocality and retardation, nonequilibrium phenomena, interactions among all nucleons, and particle production. Inclusion of the finite nucleon size cures the difficulties with preacceleration and runaway solutions that have plagued the classical theory of self-interacting point particles. For the soft reactions that dominate nucleon-nucleon collisions, a significant fraction of the incident center-of-mass energy is radiated through massive bremsstrahlung. In the present version of the theory, this radiated energy is in the form of neutral scalar (σ) and neutral vector (ω) mesons, which subsequently decay primarily into pions with some photons also. Additional meson fields that are known to be important from nucleon-nucleon scattering experiments should be incorporated in the future, in which case the radiated energy would also contain isovector pseudoscalar (π + , π - , π 0 ), isovector scalar (δ + , δ - , δ 0 ), isovector vector (ρ + , ρ - , ρ 0 ), and neutral pseudoscalar (η) mesons

  16. The model of the relativistic particle with torsion

    International Nuclear Information System (INIS)

    Plyushchay, M.S.

    1991-01-01

    The model of the relativistic particle with torsion, whose action appears in the Bose-Fermi transmutation mechanism, is canonically quantized in the Minkowski and euclidean spaces. In the Minkowski space there are massive, massless and tachyonic states in the spectrum of the model. In the massive sector the spectrum contains an infinite number of states, whose spin can take integer, half-integer, or fractional values. In the euclidean space, the spectrum is finite and the spin can only be integer, or half-integer. The reasons for the differences of the quantum theory of the model in the two spaces are elucidated. (orig.)

  17. Scattering of Non-Relativistic Charged Particles by Electromagnetic Radiation

    Science.gov (United States)

    Apostol, M.

    2017-11-01

    The cross-section is computed for non-relativistic charged particles (like electrons and ions) scattered by electromagnetic radiation confined to a finite region (like the focal region of optical laser beams). The cross-section exhibits maxima at scattering angles given by the energy and momentum conservation in multi-photon absorption or emission processes. For convenience, a potential scattering is included and a comparison is made with the well-known Kroll-Watson scattering formula. The scattering process addressed in this paper is distinct from the process dealt with in previous studies, where the scattering is immersed in the radiation field.

  18. Spacetime alternatives in the quantum mechanics of a relativistic particle

    International Nuclear Information System (INIS)

    Whelan, J.T.

    1994-01-01

    Hartle's generalized quantum mechanics formalism is used to examine spacetime coarse grainings, i.e., sets of alternatives defined with respect to a region extended in time as well as space, in the quantum mechanics of a free relativistic particle. For a simple coarse graining and suitable initial conditions, tractable formulas are found for branch wave functions. Despite the nonlocality of the positive-definite version of the Klein-Gordon inner product, which means that nonoverlapping branches are not sufficient to imply decoherence, some initial conditions are found to give decoherence and allow the consistent assignment of probabilities

  19. Nonthermal Particle Acceleration in 3D Relativistic Magnetic Reconnection in Pair Plasma

    Energy Technology Data Exchange (ETDEWEB)

    Werner, Gregory R.; Uzdensky, Dmitri A., E-mail: Greg.Werner@colorado.edu [Center for Integrated Plasma Studies, Physics Department, University of Colorado, 390 UCB, Boulder, CO 80309 (United States)

    2017-07-10

    As a fundamental process converting magnetic to plasma energy in high-energy astrophysical plasmas, relativistic magnetic reconnection is a leading explanation for the acceleration of particles to the ultrarelativistic energies that are necessary to power nonthermal emission (especially X-rays and gamma-rays) in pulsar magnetospheres and pulsar wind nebulae, coronae and jets of accreting black holes, and gamma-ray bursts. An important objective of plasma astrophysics is therefore the characterization of nonthermal particle acceleration (NTPA) effected by reconnection. Reconnection-powered NTPA has been demonstrated over a wide range of physical conditions using large 2D kinetic simulations. However, its robustness in realistic 3D reconnection—in particular, whether the 3D relativistic drift-kink instability (RDKI) disrupts NTPA—has not been systematically investigated, although pioneering 3D simulations have observed NTPA in isolated cases. Here, we present the first comprehensive study of NTPA in 3D relativistic reconnection in collisionless electron–positron plasmas, characterizing NTPA as the strength of 3D effects is varied systematically via the length in the third dimension and the strength of the guide magnetic field. We find that, while the RDKI prominently perturbs 3D reconnecting current sheets, it does not suppress particle acceleration, even for zero guide field; fully 3D reconnection robustly and efficiently produces nonthermal power-law particle spectra closely resembling those obtained in 2D. This finding provides strong support for reconnection as the key mechanism powering high-energy flares in various astrophysical systems. We also show that strong guide fields significantly inhibit NTPA, slowing reconnection and limiting the energy available for plasma energization, yielding steeper and shorter power-law spectra.

  20. Dynamic bremsstrahlung from relativistic particles scattered by atom

    International Nuclear Information System (INIS)

    Astapenko, V.A.; Bujmistrov, V.M.; Krotov, Yu.A.; Mikhajlov, L.K.; Trakhtenberg, L.I.

    1985-01-01

    The bremsstrahlung cross section for a relativistic particle scattered by an atom is calculated. In contrast to the screening approximation usually employed, the influence of the atomic electron on the bremsstrahlung is taken into account exactly, viz., the atomic electron is considered as a moving particle interacting with the electromagnetic field and not only as the source of a static external field. Consequently, along with the static term which leads to the Bethe-Heitw,ler formula, a ne dynamic, term appears in the transition amplitude. The corresponding cross section, the dynamic bremsstrahlung cross section, in certain frequensy ranges and certain ranges of the directions of photon emission exceeds considerably the static bremsstrahlung cross section

  1. Outline of a nonlinear, relativistic quantum mechanics of extended particles

    International Nuclear Information System (INIS)

    Mielke, E.W.

    1981-01-01

    A quantum theory of intrinsically extended particles similar to de Broglie's theory of the Double Solution is proposed. A rational notion of the particle's extension is enthroned by realizing its internal structure via soliton-type solutions of nonlinear, relativistic wave equations. These droplet-type waves have a quasi-objective character except for certain boundary conditions which may be subject to stochastic fluctuations. More precisely, this assumption amounts to a probabilistic description of the center of a soliton such that it would follow the conventional quantum-mechanical formalism in the limit of zero particle radius. At short interaction distances, however, a promising nonlinear and nonlocal theory emerges. This model is not only capable of achieving a conceptually satisfying synthesis of the particle-wave dualism, but may also lead to a rational resolution of epistemological problems in the quantum-theoretical measurement process. Within experimental errors the results for, e.g., the hydrogen atom can be reproduced by appropriately specifying the nature of the nonlinear self-interaction. It is speculated that field theoretical issues raised by such notions as identical particles, field quantization and renormalization are already incorporated or resolved by this nonlocal theory, at least in principle. (author)

  2. Outline of a nonlinear, relativistic quantum mechanics of extended particles

    International Nuclear Information System (INIS)

    Mielke, E.W.

    1981-01-01

    A quantum theory of intrinsically extended particles similar to de Broglie's Theory of the Double Solution is proposed. A rational notion of the particle's extension is enthroned by realizing its internal structure via soliton-type solutions of nonlinear, relativistic wave equations. These droplet-type waves have a quasi-objective character except for certain boundary conditions which may be subject to stochastic fluctuations. More precisely, this assumption amounts to a probabilistic description of the center of a soliton such that it would follow the conventional quantum-mechanical formalism in the limit of zero particle radius. At short interaction distances, however, a promising nonlinear and nonlocal theory emerges. This model is not only capable of achieving a conceptually satisfying synthesis of the particle-wave dualism, but may also lead to a rational resolution of epistemological problems in the quantum-theoretical measurement process. Within experimental errors the results for, e.g., the hydrogen atom can be reproduced by appropriately specifying the nature of the nonlinear self-interaction. It is speculated that field theoretical issues raised by such notions as identical particles, field quantization and renormalization are already incorporated or resolved by this nonlocal theory, at least in principle. (author)

  3. A relativistic gauge model describing N particles bound by harmonic forces

    International Nuclear Information System (INIS)

    Filippov, A.T.

    1987-01-01

    Application of the principle of gauging to linear canonical symmetries of simplest/rudimentary/bilinear lagrangians is shown to produce a relativistic version of the Lagrangian describing N particles bound by harmonic forces. For pairwise coupled identical particles the gauge group is T 1 xU 1 , xSU N-1 . A model for the relativistic discrete string (a chain of N particles) is also discussed. All these gauge theoried of particles can be quantized by standard methods

  4. Classical particle limit of non-relativistic quantum mechanics

    International Nuclear Information System (INIS)

    Zucchini, R.

    1984-01-01

    We study the classical particle limit of non-relativistic quantum mechanics. We show that the unitary group describing the evolution of the quantum fluctuation around any classical phase orbit has a classical limit as h → 0 in the strong operator topology for a very large class of time independent scalar and vector potentials, which in practice covers all physically interesting cases. We also show that the mean values of the quantum mechanical position and velocity operators on suitable states, obtained by time evolution of the product of a Weyl operator centred around the large coordinates and momenta and a fixed n-independent wave function, converge to the solution of the classical equations with initial data as h → 0 for a broad class of repulsive interactions

  5. Tailoring of silicon crystals for relativistic-particle channeling

    International Nuclear Information System (INIS)

    Guidi, V.; Antonini, A.; Baricordi, S.; Logallo, F.; Malagu, C.; Milan, E.; Ronzoni, A.; Stefancich, M.; Martinelli, G.; Vomiero, A.

    2005-01-01

    In the last years, the research on channeling of relativistic particles has progressed considerably. A significant contribution has been provided by the development of techniques for quality improvement of the crystals. In particular, a planar etching of the surfaces of the silicon crystals proved useful to remove the superficial layer, which is a region very rich in imperfections, in turn leading to greater channeling efficiency. Micro-fabrication techniques, borrowed from silicon technology, may also be useful: micro-indentation and deposition of tensile or compressive layers onto silicon samples allow one to impart an even curvature to the samples. In this way, different topologies may be envisaged, such as a bent crystal for deflection of protons and ions or an undulator to force coherent oscillations of positrons and electrons

  6. Canonical quantization of a relativistic particle with curvature and torsion

    International Nuclear Information System (INIS)

    Nesterenko, V.V.

    1991-01-01

    A generalization of the relativistic particle action is considered. It contain, in addition to the length of the world trajectory, the integrals along the world curve of its curvature and torsion. The generalized Hamiltonian formalism for this model in the D-dimensional space-time is constructed. A complete set of the constraints in the phase space is obtained and their division into the first-class and the second-class constraints is accomplished. On this basis the canonical quantization of the model is fulfilled. For D=3 the mass spectrum is obtained in the sector without tachyonic states, the mass of the state being dependent on its spin. It is shown that in the framework of this model when D=3 the possibility to describe the states with integral, half-odd-integral and continuous spins is derived. Interaction with an external Abelian gauge field introduced in the geometrical way. 21 refs

  7. Particle acceleration in relativistic magnetic flux-merging events

    Science.gov (United States)

    Lyutikov, Maxim; Sironi, Lorenzo; Komissarov, Serguei S.; Porth, Oliver

    2017-12-01

    Using analytical and numerical methods (fluid and particle-in-cell simulations) we study a number of model problems involving merger of magnetic flux tubes in relativistic magnetically dominated plasma. Mergers of current-carrying flux tubes (exemplified by the two-dimensional `ABC' structures) and zero-total-current magnetic flux tubes are considered. In all cases regimes of spontaneous and driven evolution are investigated. We identify two stages of particle acceleration during flux mergers: (i) fast explosive prompt X-point collapse and (ii) ensuing island merger. The fastest acceleration occurs during the initial catastrophic X-point collapse, with the reconnection electric field of the order of the magnetic field. During the X-point collapse, particles are accelerated by charge-starved electric fields, which can reach (and even exceed) values of the local magnetic field. The explosive stage of reconnection produces non-thermal power-law tails with slopes that depend on the average magnetization . For plasma magnetization 2$ the spectrum power-law index is 2$ ; in this case the maximal energy depends linearly on the size of the reconnecting islands. For higher magnetization, 2$ , the spectra are hard, , yet the maximal energy \\text{max}$ can still exceed the average magnetic energy per particle, , by orders of magnitude (if is not too close to unity). The X-point collapse stage is followed by magnetic island merger that dissipates a large fraction of the initial magnetic energy in a regime of forced magnetic reconnection, further accelerating the particles, but proceeds at a slower reconnection rate.

  8. Future X-ray Polarimetry of Relativistic Accelerators: Pulsar Wind Nebulae and Supernova Remnants

    Directory of Open Access Journals (Sweden)

    Niccolò Bucciantini

    2018-03-01

    Full Text Available Supernova remnants (SNRs and pulsar wind nebulae (PWNs are among the most significant sources of non-thermal X-rays in the sky, and the best means by which relativistic plasma dynamics and particle acceleration can be investigated. Being strong synchrotron emitters, they are ideal candidates for X-ray polarimetry, and indeed the Crab nebula is up to present the only object where X-ray polarization has been detected with a high level of significance. Future polarimetric measures will likely provide us with crucial information on the level of turbulence that is expected at particle acceleration sites, together with the spatial and temporal coherence of magnetic field geometry, enabling us to set stronger constraints on our acceleration models. PWNs will also allow us to estimate the level of internal dissipation. I will briefly review the current knowledge on the polarization signatures in SNRs and PWNs, and I will illustrate what we can hope to achieve with future missions such as IXPE/XIPE.

  9. Relativistic equation of the orbit of a particle in a arbitrary central force field

    International Nuclear Information System (INIS)

    Aaron, Francisc D.

    2005-01-01

    The equation of the orbit of a relativistic particle moving in an arbitrary central force field is derived. Straightforward generalizations of well-known first and second order differential equations are given. It is pointed out that the relativistic equation of the orbit has the same form as in the non-relativistic case, the only changes consisting in the appearance of additional terms proportional to 1/c 2 in both potential and total energies. (author)

  10. Relativistic particles coupled to Chern-Simons term-revisited

    International Nuclear Information System (INIS)

    Chakraborty, B.

    1995-01-01

    The author considers the model of N relativistic spinless particles coupled to an abelian Chern-Simons term. Rewriting the action in a time reparamaterized form by introducing an arbitary parameter, parameterizing the world line of the particles, the author makes a classical constraint Hamiltonian analysis of the model. Subsequent to gauge fixing by equating the arbitrary parameter with the time the author identifies the Hamiltonian of the system, which agrees with the Hamiltonian obtained by using Banerjee's method of fixing the arbitrary Langrange multiplier by using equations of motion. The author exhibits the Poincare invariance of the model, at the classical level, by constructing spacetime generators using either the canonical or symmetric definition of the energy-momentum tensor. A detailed comparison of the expressions of angular momentum obtained by both methods show that both agree up to a boundary term. In presence of rotationally symmetric vortex configuration this term can be interpreted as an anomalous angular momentum term. The author also heuristically discusses the effect of gauge fixing on the transformation properties. 13 refs

  11. PROBING RELATIVISTIC WINDS: THE CASE OF PSR J07370-3039 A and B

    International Nuclear Information System (INIS)

    Arons, J

    2004-01-01

    We propose synchrotron absorption in a magnetosheath forming a cocoon around the magnetosphere of pulsar B to be the origin of the eclipse phenomena seen in the recently discovered double pulsar system PSRJ07370-3039 A and B. The magnetosheath enfolds the magnetosphere of pulsar B, where the relativistic wind from A collides with B's magnetic field. If this model is correct, it predicts the eclipses will clear at frequencies higher than those of the observations reported to date (nominally, above ν ∼ 5 GHz.) The model also predicts synchrotron emission at the level of a few to 10 (micro)Jy, peaking at ν ∼ 2.5 GHz with possible orbital modulation. We use simplified semi-analytic models to elucidate the structure of the B magnetosphere, showing that the A wind's dynamic pressure confines B's magnetic field to within a radius less than 50,000 km from B, smaller than B's light cylinder radius, on the ''daytime'' side (the side facing A). Downstream of B (''nightime''), B forms a magnetotail. We use particle-in-cell simulations to include the effects of magnetospheric rotation, showing that the magnetosheath has an asymmetric density distribution which may be responsible for the observed eclipse asymmetries. We use simple estimates based upon the magnetic reconnection observed in the simulations to derive a ''propellor'' spindown torque on B, which is the dominant mode of angular mementum extraction from this star. Application of this torque to B's observed spindown yields a polar dipole field ∼ 7 x 10 11 Gauss (magnetic moment (micro) B ∼ 3.5 x 10 29 cgs). This torque has a braking index of unity. We show that the model can explain the known eclipses only if the A wind's density is at least 4 orders of magnitude greater than is expected from existing popular models of pair creation in pulsars. We discuss the implications of this result for our general understanding of pulsar physics

  12. Relativistic formulations with Blankenbecler-Sugar reduction technique for the three-particle system

    International Nuclear Information System (INIS)

    Morioka, S.; Afnan, I.R.

    1980-05-01

    A critical comparison for two-types of three-dimensional covariant equations for the three-particle system obtained by the Blankenbecler-Sugar reduction technique with the Whitghtman-Garding momenta and the usual Jacobi variables is presented. The relations between the relativistic and non-relativistic equations in the low energy limit are discussed

  13. Particle acceleration in explosive relativistic reconnection events and Crab Nebula gamma-ray flares

    Science.gov (United States)

    Lyutikov, Maxim; Komissarov, Serguei; Sironi, Lorenzo

    2018-04-01

    We develop a model of gamma-ray flares of the Crab Nebula resulting from the magnetic reconnection events in a highly magnetised relativistic plasma. We first discuss physical parameters of the Crab Nebula and review the theory of pulsar winds and termination shocks. We also review the principle points of particle acceleration in explosive reconnection events [Lyutikov et al., J. Plasma Phys., vol. 83(6), p. 635830601 (2017a); J. Plasma Phys., vol. 83(6), p. 635830602 (2017b)]. It is required that particles producing flares are accelerated in highly magnetised regions of the nebula. Flares originate from the poleward regions at the base of the Crab's polar outflow, where both the magnetisation and the magnetic field strength are sufficiently high. The post-termination shock flow develops macroscopic (not related to the plasma properties on the skin-depth scale) kink-type instabilities. The resulting large-scale magnetic stresses drive explosive reconnection events on the light-crossing time of the reconnection region. Flares are produced at the initial stage of the current sheet development, during the X-point collapse. The model has all the ingredients needed for Crab flares: natural formation of highly magnetised regions, explosive dynamics on the light travel time, development of high electric fields on macroscopic scales and acceleration of particles to energies well exceeding the average magnetic energy per particle.

  14. Particle Acceleration and Radiative Losses at Relativistic Shocks

    Science.gov (United States)

    Dempsey, P.; Duffy, P.

    A semi-analytic approach to the relativistic transport equation with isotropic diffusion and consistent radiative losses is presented. It is based on the eigenvalue method first introduced in Kirk & Schneider [5]and Heavens & Drury [3]. We demonstrate the pitch-angle dependence of the cut-off in relativistic shocks.

  15. Relativistic particles with rigidity and torsion in D = 3 spacetimes

    International Nuclear Information System (INIS)

    Barros, Manuel; Ferrandez, Angel; Javaloyes, Miguel Angel; Lucas, Pascual

    2005-01-01

    Models describing relativistic particles, where Lagrangian densities depend linearly on both the curvature and the torsion of the trajectories, are revisited in D = 3 Lorentzian spacetimes with constant curvature. The moduli spaces of trajectories are completely and explicitly determined. Trajectories are Lancret curves including ordinary helices. To get the geometric integration of the solutions, we design algorithms that essentially involve the Lancret program as well as the notions of scrolls and Hopf tubes. The most interesting and consistent models appear in anti-de Sitter spaces, where the Hopf mappings, both the standard and the Lorentzian ones, play an important role. The moduli subspaces of closed solitons in anti-de Sitter settings are also obtained. Our main tool is the isoperimetric inequality in the hyperbolic plane. The mass spectra of these models are also obtained. The main characteristic of the anti-de Sitter space comes from the presence of real gravity, which becomes essential to find some system with only massive states. This fact, on one hand, has no equivalent in flat spaces, where spectra necessarily present tachyonic sectors and, on the other hand, solves an early stated problem

  16. Ratchet effect on a relativistic particle driven by external forces

    International Nuclear Information System (INIS)

    Quintero, Niurka R; Alvarez-Nodarse, Renato; Cuesta, Jose A

    2011-01-01

    We study the ratchet effect of a damped relativistic particle driven by both asymmetric temporal bi-harmonic and time-periodic piecewise constant forces. This system can be formally solved for any external force, providing the ratchet velocity as a nonlinear functional of the driving force. This allows us to explicitly illustrate the functional Taylor expansion formalism recently proposed for this kind of systems. The Taylor expansion reveals particularly useful to obtain the shape of the current when the force is periodic, piecewise constant. We also illustrate the somewhat counterintuitive effect that introducing damping may induce a ratchet effect. When the force is symmetric under time-reversal and the system is undamped, under symmetry principles no ratchet effect is possible. In this situation increasing damping generates a ratchet current which, upon increasing the damping coefficient eventually reaches a maximum and decreases toward zero. We argue that this effect is not specific of this example and should appear in any ratchet system with tunable damping driven by a time-reversible external force. (paper)

  17. Ratchet effect on a relativistic particle driven by external forces

    Energy Technology Data Exchange (ETDEWEB)

    Quintero, Niurka R [Departamento de Fisica Aplicada I, Escuela Universitaria Politecnica, Universidad de Sevilla, Calle Virgen de Africa 7, E-41011 Sevilla (Spain); Alvarez-Nodarse, Renato [Departamento de Analisis Matematico, Facultad de Matematicas, Universidad de Sevilla, Apdo 1160, E-41080 Sevilla (Spain); Cuesta, Jose A, E-mail: niurka@us.es, E-mail: ran@us.es, E-mail: cuesta@math.uc3m.es [Grupo Interdisciplinar de Sistemas Complejos (GISC), Departamento de Matematicas, Universidad Carlos III de Madrid, Avenida de la Universidad 30, E-28911 Leganes, Madrid (Spain)

    2011-10-21

    We study the ratchet effect of a damped relativistic particle driven by both asymmetric temporal bi-harmonic and time-periodic piecewise constant forces. This system can be formally solved for any external force, providing the ratchet velocity as a nonlinear functional of the driving force. This allows us to explicitly illustrate the functional Taylor expansion formalism recently proposed for this kind of systems. The Taylor expansion reveals particularly useful to obtain the shape of the current when the force is periodic, piecewise constant. We also illustrate the somewhat counterintuitive effect that introducing damping may induce a ratchet effect. When the force is symmetric under time-reversal and the system is undamped, under symmetry principles no ratchet effect is possible. In this situation increasing damping generates a ratchet current which, upon increasing the damping coefficient eventually reaches a maximum and decreases toward zero. We argue that this effect is not specific of this example and should appear in any ratchet system with tunable damping driven by a time-reversible external force. (paper)

  18. Frame dependence of world lines for directly interacting classical relativistic particles

    International Nuclear Information System (INIS)

    Molotkov, V.V.; Todorov, I.T.

    1979-06-01

    The motion of world lines is studied in the constraint Hamiltonian formulation of relativistic point particle dynamics. The particle world lines are shown to depend, in general (in the presence of interaction) on the choice of the equal time hyperplane (the only exception being the elastic scattering of rigid balls). However, the relative motion of a 2-particle system and the (classical) S-matrix are independent of this choice. This inferred that particle trajectories should not be regarded as frame independent observables in the classical theory of relativistic particles. (author)

  19. Relativistic corrections to one-particle neutron levels in the harmonic oscillator well

    International Nuclear Information System (INIS)

    Yanavichyus, A.I.

    1983-01-01

    Relativistic corrections to mass and potential energy for one-particle levels in the harmonic oscillator well are calculated in the first approximation of the perturbation theory. These corrections are, mainly negliqible, but they sharply increase with growth of the head and orbital quantum numbers. For the state 1s the relativistic correction is of the order of 0.01 MeV, and for 3p it is equal to 0.4 MeV. Thus, the relativistic correction for certain states approaches the energy of spin-orbital interactions and it should be taken into account in calculating the energy of one-particle levels

  20. A search for relativistic particles with fractional electric charge at the Cern collider

    DEFF Research Database (Denmark)

    Banner, M.; Kofoed-Hansen, O.

    1983-01-01

    A search for relativistic particles with fractional electric charge has been performed at the CERN collider using a telescope of scintillation counters to detect particles with abnormally low ionisation. The thickness of the detector (40 gr cm−2) limits this search to particles without strong...

  1. Motion of the relativistic charged particle in an axisymmetric toroidal system

    Energy Technology Data Exchange (ETDEWEB)

    Chiyoda, K; Sugimoto, H [Electrotechnical Labs., Sakura, Ibaraki (Japan)

    1980-01-01

    The relativistic theory of motion of one particle by Morozov and Solov'ev is summarized for convenience of the present study. Then, a drift equation is given and four constants of motion, E/sub 0/, J perpendicular, J and J parallel, are obtained. These constants of motion are used in analyzing the particle motion in an axisymmetric toroidal system. The displacement of the particle from the magnetic surface, ..delta..r, and the period of the banana motion, tau, are obtained. The relativistic expressions of the displacement, ..delta..r, and the period, tau, are obtained by multiplying the corresponding nonrelativistic expressions by (1 - v parallel/sup 2//c/sup 2/) - 1/2, where the relativistic expression of ..delta..r includes the relativistic mass in terms of Larmor radius r/sub L/.

  2. Relativistic particle in a box: Klein-Gordon versus Dirac equations

    Science.gov (United States)

    Alberto, Pedro; Das, Saurya; Vagenas, Elias C.

    2018-03-01

    The problem of a particle in a box is probably the simplest problem in quantum mechanics which allows for significant insight into the nature of quantum systems and thus is a cornerstone in the teaching of quantum mechanics. In relativistic quantum mechanics this problem allows also to highlight the implications of special relativity for quantum physics, namely the effect that spin has on the quantised energy spectra. To illustrate this point, we solve the problem of a spin zero relativistic particle in a one- and three-dimensional box using the Klein-Gordon equation in the Feshbach-Villars formalism. We compare the solutions and the energy spectra obtained with the corresponding ones from the Dirac equation for a spin one-half relativistic particle. We note the similarities and differences, in particular the spin effects in the relativistic energy spectrum. As expected, the non-relativistic limit is the same for both kinds of particles, since, for a particle in a box, the spin contribution to the energy is a relativistic effect.

  3. Two-spinor description of massive particles and relativistic spin projection operators

    Directory of Open Access Journals (Sweden)

    A.P. Isaev

    2018-04-01

    Full Text Available On the basis of the Wigner unitary representations of the covering group ISL(2,C of the Poincaré group, we obtain spin-tensor wave functions of free massive particles with arbitrary spin. The wave functions automatically satisfy the Dirac–Pauli–Fierz equations. In the framework of the two-spinor formalism we construct spin-vectors of polarizations and obtain conditions that fix the corresponding relativistic spin projection operators (Behrends–Fronsdal projection operators. With the help of these conditions we find explicit expressions for relativistic spin projection operators for integer spins (Behrends–Fronsdal projection operators and then find relativistic spin projection operators for half integer spins. These projection operators determine the numerators in the propagators of fields of relativistic particles. We deduce generalizations of the Behrends–Fronsdal projection operators for arbitrary space–time dimensions D>2.

  4. Two-spinor description of massive particles and relativistic spin projection operators

    Science.gov (United States)

    Isaev, A. P.; Podoinitsyn, M. A.

    2018-04-01

    On the basis of the Wigner unitary representations of the covering group ISL (2 , C) of the Poincaré group, we obtain spin-tensor wave functions of free massive particles with arbitrary spin. The wave functions automatically satisfy the Dirac-Pauli-Fierz equations. In the framework of the two-spinor formalism we construct spin-vectors of polarizations and obtain conditions that fix the corresponding relativistic spin projection operators (Behrends-Fronsdal projection operators). With the help of these conditions we find explicit expressions for relativistic spin projection operators for integer spins (Behrends-Fronsdal projection operators) and then find relativistic spin projection operators for half integer spins. These projection operators determine the numerators in the propagators of fields of relativistic particles. We deduce generalizations of the Behrends-Fronsdal projection operators for arbitrary space-time dimensions D > 2.

  5. Quantum mechanics of relativistic particles in multiply connected spaces and the Aharonov-Bohm effect

    International Nuclear Information System (INIS)

    Gamboa, J.; Rivelles, V.O.

    1990-04-01

    We consider the motion of free relativistic particles in multiply connected spaces. We show that if one of the spatial dimensions has the topology of a circle then the D dimensional spacetime is compactified to D-1 dimensions and the particle mass increases by an amount which is proportional to a quantum phase factor and inversely proportional to the radius of the circle. We also consider the relativistic Aharonov-Bohm effect and we show that the interference pattern is a universal characteristic due only to the topological properties of the experimental situation and not to the intrinsic properties of the particle. The propagators are calculated in both situations. (author) [pt

  6. Radiation reaction for the classical relativistic spinning particle in scalar, tensor and linearized gravitational fields

    International Nuclear Information System (INIS)

    Barut, A.O.; Cruz, M.G.

    1992-08-01

    We use the method of analytic continuation of the equation of motion including the self-fields to evaluate the radiation reaction for a classical relativistic spinning point particle in interaction with scalar, tensor and linearized gravitational fields in flat spacetime. In the limit these equations reduce to those of spinless particles. We also show the renormalizability of these theories. (author). 10 refs

  7. Infinite stochastic acceleration of charged particles from non-relativistic initial energies

    International Nuclear Information System (INIS)

    Buts, V.A.; Manujlenko, O.V.; Turkin, Yu.A.

    1997-01-01

    Stochastic charged particle acceleration by electro-magnetic field due to overlapping of non-linear cyclotron resonances is considered. It was shown that non-relativistic charged particles are involved in infinitive stochastic acceleration regime. This effect can be used for stochastic acceleration or for plasma heating by regular electro-magnetic fields

  8. Relativistic Equations for Spin Particles: What can We Learn from Noncommutativity?

    International Nuclear Information System (INIS)

    Dvoeglazov, V. V.

    2009-01-01

    We derive relativistic equations for charged and neutral spin particles. The approach for higher-spin particles is based on generalizations of the Bargmann-Wigner formalism. Next, we study, what new physical information can give the introduction of non-commutativity. Additional non-commutative parameters can provide a suitable basis for explanation of the origin of mass.

  9. Classical relativistic spinning particle with anomalous magnetic moment: The precession of spin

    International Nuclear Information System (INIS)

    Barut, A.O.; Cruz, M.G.

    1993-05-01

    The theory of classical relativistic spinning particles with c-number internal spinor variables, modelling accurately the Dirac electron, is generalized to particles with anomalous magnetic moments. The equations of motion are derived and the problem of spin precession is discussed and compared with other theories of spin. (author). 32 refs

  10. Smooth Particle Hydrodynamics-based Wind Representation

    Energy Technology Data Exchange (ETDEWEB)

    Prescott, Steven [Idaho National Lab. (INL), Idaho Falls, ID (United States); Smith, Curtis [Idaho National Lab. (INL), Idaho Falls, ID (United States); Hess, Stephen [Idaho National Lab. (INL), Idaho Falls, ID (United States); Lin, Linyu [Idaho National Lab. (INL), Idaho Falls, ID (United States); Sampath, Ram [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-12-01

    As a result of the 2011 accident at the Fukushima Dai-ichi NPP and other operational NPP experience, there is an identified need to better characterize and evaluate the potential impacts of externally generated hazards on NPP safety. Due to the ubiquitous occurrence of high winds around the world and the possible extreme magnitude of the hazard that has been observed, the assessment of the impact of the high-winds hazard has been identified as an important activity by both NPP owner-operators and regulatory authorities. However, recent experience obtained from the conduct of high-winds risk assessments indicates that such activities have been both labor-intensive and expensive to perform. Additionally, the existing suite of methods and tools to conduct such assessments (which were developed decades ago) do not make use of modern computational architectures (e.g., parallel processing, object-oriented programming techniques, or simple user interfaces) or methods (e.g., efficient and robust numerical-solution schemes). As a result, the current suite of methods and tools will rapidly become obsolete. Physics-based 3D simulation methods can provide information to assist in the RISMC PRA methodology. This research is intended to determine what benefits SPH methods could bring to high-winds simulations for the purposes of assessing their potential impact on NPP safety. The initial investigation has determined that SPH can simulate key areas of high-wind events with reasonable accuracy, compared to other methods. Some problems, such as simulation voids, need to be addressed, but possible solutions have been identified and will be tested with continued work. This work also demonstrated that SPH simulations can provide a means for simulating debris movement; however, further investigations into the capability to determine the impact of high winds and the impacts of wind-driven debris that lead to SSC failures need to be done. SPH simulations alone would be limited in size

  11. A Non-Perturbative, Finite Particle Number Approach to Relativistic Scattering Theory

    Energy Technology Data Exchange (ETDEWEB)

    Lindesay, James V

    2001-05-11

    We present integral equations for the scattering amplitudes of three scalar particles, using the Faddeev channel decomposition, which can be readily extended to any finite number of particles of any helicity. The solution of these equations, which have been demonstrated to be calculable, provide a non-perturbative way of obtaining relativistic scattering amplitudes for any finite number of particles that are Lorentz invariant, unitary, cluster decomposable and reduce unambiguously in the non-relativistic limit to the non-relativistic Faddeev equations. The aim of this program is to develop equations which explicitly depend upon physically observable input variables, and do not require ''renormalization'' or ''dressing'' of these parameters to connect them to the boundary states.

  12. Transition in the equilibrium distribution function of relativistic particles.

    Science.gov (United States)

    Mendoza, M; Araújo, N A M; Succi, S; Herrmann, H J

    2012-01-01

    We analyze a transition from single peaked to bimodal velocity distribution in a relativistic fluid under increasing temperature, in contrast with a non-relativistic gas, where only a monotonic broadening of the bell-shaped distribution is observed. Such transition results from the interplay between the raise in thermal energy and the constraint of maximum velocity imposed by the speed of light. We study the Bose-Einstein, the Fermi-Dirac, and the Maxwell-Jüttner distributions, and show that they all exhibit the same qualitative behavior. We characterize the nature of the transition in the framework of critical phenomena and show that it is either continuous or discontinuous, depending on the group velocity. We analyze the transition in one, two, and three dimensions, with special emphasis on twodimensions, for which a possible experiment in graphene, based on the measurement of the Johnson-Nyquist noise, is proposed.

  13. Magnetic resonance phenomena in dynamics of relativistic particles

    International Nuclear Information System (INIS)

    Ternov, I.M.; Bordovitsyn, V.A.

    1987-01-01

    A relativistic generalization of Rabi's formula for magnetic resonance is given. On this basis, we consider fast and slow passage through resonance. We define a magnetic resonance exterior field as usual, using unit vectors of a Cartesian coordinate system, a homogeneous magnetic field, and the amplitude of a rotating magnetic field. For the description of spin dynamics we use the Bargmann-Michel-Telegdi equation

  14. Relativistic acceleration of captured particles by a longitudinal wave in a slightly inhomogeneous plasma

    International Nuclear Information System (INIS)

    Erokhin, N.S.; Zol'nikova, N.N.; Mikhajlovskaya, L.A.

    1991-01-01

    Relativistic acceleration of charged particles, captured by a longitudinal wave in a slightly inhomogeneous plasma without an external magnetic field is considered numerically and analytically. It is shown that with the growth of the plasma inhomogeneity parameter the maximum energy of accelerated captured particles exponentially increases. Attention is paid to the possibility of 'eternal' confinement and, respectively, unlimited acceleration of captured particles by an undamped longitudinal wave in a plasma without a magnetic field

  15. A gauge model describing N relativistic particles bound by linear forces

    International Nuclear Information System (INIS)

    Filippov, A.T.

    1988-01-01

    A relativistic model of N particles bound by linear forces is obtained by applying the gauging procedure to the linear canonical symmteries of a simple (rudimentary) nonrelativistic N-particle Lagrangian extended to relativistic phase space. The new (gauged) Lagrangian is formally Poincare invariant, the Hamiltonian is a linear combination of first-class constraints which are closed with respect to Pisson brackets and generate the localized canonical symmteries. The gauge potentials appear as the Lagrange multipliers of the constraints. Gauge fixing and quantization of the model are also briefly discussed. 11 refs

  16. Relativistic MHD modeling of magnetized neutron stars, pulsar winds, and their nebulae

    Science.gov (United States)

    Del Zanna, L.; Pili, A. G.; Olmi, B.; Bucciantini, N.; Amato, E.

    2018-01-01

    Neutron stars are among the most fascinating astrophysical sources, being characterized by strong gravity, densities about the nuclear one or even above, and huge magnetic fields. Their observational signatures can be extremely diverse across the electromagnetic spectrum, ranging from the periodic and low-frequency signals of radio pulsars, up to the abrupt high-energy gamma-ray flares of magnetars, where energies of ∼ {10}46 {erg} are released in a few seconds. Fast-rotating and highly magnetized neutron stars are expected to launch powerful relativistic winds, whose interaction with the supernova remnants gives rise to the non-thermal emission of pulsar wind nebulae, which are known cosmic accelerators of electrons and positrons up to PeV energies. In the extreme cases of proto-magnetars (magnetic fields of ∼ {10}15 G and millisecond periods), a similar mechanism is likely to provide a viable engine for the still mysterious gamma-ray bursts. The key ingredient in all these spectacular manifestations of neutron stars is the presence of strong magnetic fields in their constituent plasma. Here we will present recent updates of a couple of state-of-the-art numerical investigations by the high-energy astrophysics group in Arcetri: a comprehensive modeling of the steady-state axisymmetric structure of rotating magnetized neutron stars in general relativity, and dynamical 3D MHD simulations of relativistic pulsar winds and their associated nebulae.

  17. Radiation of a relativistic particle falling into a black hole

    International Nuclear Information System (INIS)

    Dymnikova, I.G.

    1980-01-01

    The gravitational and electromagnetic radiation emitted by a relativistic test body falling into a black hole at a velocity that is not small compared with the velocity of light is studied. For ω 3 γ 0 /(GM), the spectra of the electromagnetic and gravitational radiation do not depend on the frequency, but for ω > c 3 γ 0 (GM) they fall off exponentially. The total radiated power is proportional to γ 0 1n γ 0 and γ 3 0 , respectively, for the electromagnetic and gravitational radiation

  18. Form factor of relativistic two-particle system and covariant hamiltonian formulation of quantum field theory

    International Nuclear Information System (INIS)

    Skachkov, N.; Solovtsov, I.

    1979-01-01

    Based on the hamiltonian formulation of quantum field theory proposed by Kadyshevsky the three-dimensional relativistic approach is developed for describing the form factors of composite systems. The main features of the diagram technique appearing in the covariant hamiltonian formulation of field theory are discussed. The three-dimensional relativistic equation for the vertex function is derived and its connection with that for the quasipotential wave function is found. The expressions are obtained for the form factor of the system through equal-time two-particle wave functions both in momentum and relativistic configurational representations. An explicit expression for the form factor is found for the case of two-particle interaction through the Coulomb potential

  19. Geosynchronous Relativistic Electron Events Associated with High-Speed Solar Wind Streams in 2006

    Directory of Open Access Journals (Sweden)

    Sungeun Lee

    2009-12-01

    Full Text Available Recurrent enhancements of relativistic electron events at geosynchronous orbit (GREEs were observed in 2006. These GREE enhancements were associated with high-speed solar wind streams coming from the same coronal hole. For the first six months of 2006, the occurrence of GREEs has 27 day periodicity and the GREEs were enhanced with various flux levels. Several factors have been studied to be related to GREEs: (1 High speed stream, (2 Pc5 ULF wave activity, (3 Southward IMF Bz, (4 substorm occurrence, (5 Whistler mode chorus wave, and (6 Dynamic pressure. In this paper, we have examined the effectiveness about those parameters in selected periods.

  20. General relativistic variation formalism for a probe particle with momenta

    Energy Technology Data Exchange (ETDEWEB)

    Minkevich, A V; Sokol' skii, A A [Belorusskij Gosudarstvennyj Univ., Minsk

    1975-01-01

    On the basis of a model of an oriental particle a variational formalism was developed for a rotating test particle having momenta and moving in inhomogeneous space-time: the Lagrange equations for translational and rotational motion were obtained, and a metric pulse energy tensor was found. The formalism applies to a charged rotating particle with an electrical and a magnetic moment and a rotating particle in space with curvature and torsion.

  1. General relativistic variation formalism for a probe particle with momenta

    International Nuclear Information System (INIS)

    Minkevich, A.V.; Sokol'skij, A.A.

    1975-01-01

    On the basis of a model of an oriental particle a variational formalism was developed for a rotating test particle having momenta and moving in inhomogeneous space-time: the Lagrange equations for translational and rotational motion were obtained, and a metric pulse energy tensor was found. The formalism applies to a charged rotating particle with an electrical and a magnetic moment and a rotating particle in space with curvature and torsion. (author)

  2. Relativistic particle dynamics: Lagrangian proof of the no-interaction theorem

    International Nuclear Information System (INIS)

    Marmo, G.; Mukunda, N.; Sudarshan, E.C.G.

    1983-11-01

    An economical proof is given, in the Lagrangian framework, of the No Interaction Theorem of relativistic particle mechanics. It is based on the assumption that there is a Lagrangian, which if singular is allowed to lead at most to primary first class constraints. The proof works with Lagrange rather than Poisson brackets, leading to considerable simplifications compared to other proofs

  3. On the model of the relativistic particle with curvature and torsion

    International Nuclear Information System (INIS)

    Nesterenko, V.V.

    1992-01-01

    Two integrals along the world trajectory of its curvature and torsion are added to the standard action for the point-like spinless relativistic particle. This enables one to quantize the model canonically and to derive exactly the relation between the spin and mass of the states. 10 refs

  4. Particle Acceleration, Magnetic Field Generation, and Emission in Relativistic Pair Jets

    Science.gov (United States)

    Nishikawa, K.-I.; Ramirez-Ruiz, E.; Hardee, P.; Hededal, C.; Mizuno, Y.

    2005-01-01

    Shock acceleration is a ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., the Buneman instability, two-streaming instability, and the Weibel instability) created by relativistic pair jets are responsible for particle (electron, positron, and ion) acceleration. Using a 3-D relativistic electromagnetic particle (REMP) code, we have investigated particle acceleration associated with a relativistic jet propagating through an ambient plasma with and without initial magnetic fields. The growth rates of the Weibel instability depends on the distribution of pair jets. Simulations show that the Weibel instability created in the collisionless shock accelerates particles perpendicular and parallel to the jet propagation direction. The simulation results show that this instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields, which contribute to the electron's transverse deflection behind the jet head. The "jitter" radiation from deflected electrons has different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants.

  5. Cooling and focusing of a relativistic charged particle beam in crossed laser field

    International Nuclear Information System (INIS)

    Li Fuli

    1987-01-01

    A new method to focus a relativistic charged particle beam is suggested and studied. This idea is based on the use of the ponderomotive force which arises when a periodic electromagnetic field is created, as in the case of two crossed laser beams. (author)

  6. Particle identification with the OPAL jet chamber in the region of the relativistic rise

    Energy Technology Data Exchange (ETDEWEB)

    Breuker, H; Fischer, H M; Hauschild, M; Hartmann, H; Wuensch, B; Boerner, H; Burckhart, H J; Dittmar, M; Hammarstroem, R; Heuer, R D

    1987-10-15

    An important goal of the OPAL jet chamber is particle identification at high momenta by exploiting the relativistic rise of the energy loss. Extensive tests have been performed with the full scale prototype of the OPAL jet chamber to measure the energy loss in an argon-methane-isobutane mixture as function of momentum and particle species. The measurements were done under various operating conditions in order to optimise the operationg point, to investigate sources of systematic errors, to monitor the stability of the energy loss measurement and to develop calibration procedures. The particle separation capability in the region of relativistic rise has been studied at gas pressures of 3 and 4 bar. The adopted operation point represents a reasonable compromise between the requirements for particle identification and tracking accuracy.

  7. Non-thermal particle acceleration in collisionless relativistic electron-proton reconnection

    Science.gov (United States)

    Werner, G. R.; Uzdensky, D. A.; Begelman, M. C.; Cerutti, B.; Nalewajko, K.

    2018-02-01

    Magnetic reconnection in relativistic collisionless plasmas can accelerate particles and power high-energy emission in various astrophysical systems. Whereas most previous studies focused on relativistic reconnection in pair plasmas, less attention has been paid to electron-ion plasma reconnection, expected in black hole accretion flows and relativistic jets. We report a comprehensive particle-in-cell numerical investigation of reconnection in an electron-ion plasma, spanning a wide range of ambient ion magnetizations σi, from the semirelativistic regime (ultrarelativistic electrons but non-relativistic ions, 10-3 ≪ σi ≪ 1) to the fully relativistic regime (both species are ultrarelativistic, σi ≫ 1). We investigate how the reconnection rate, electron and ion plasma flows, electric and magnetic field structures, electron/ion energy partitioning, and non-thermal particle acceleration depend on σi. Our key findings are: (1) the reconnection rate is about 0.1 of the Alfvénic rate across all regimes; (2) electrons can form concentrated moderately relativistic outflows even in the semirelativistic, small-σi regime; (3) while the released magnetic energy is partitioned equally between electrons and ions in the ultrarelativistic limit, the electron energy fraction declines gradually with decreased σi and asymptotes to about 0.25 in the semirelativistic regime; and (4) reconnection leads to efficient non-thermal electron acceleration with a σi-dependent power-law index, p(σ _i)˜eq const+0.7σ _i^{-1/2}. These findings are important for understanding black hole systems and lend support to semirelativistic reconnection models for powering non-thermal emission in blazar jets, offering a natural explanation for the spectral indices observed in these systems.

  8. The ionisation loss of relativistic charged particles in thin gas samples and its use for particle identification. I

    International Nuclear Information System (INIS)

    Cobb, J.H.; Allison, W.W.M.; Bunch, J.N.

    1976-01-01

    A brief review shows a significant discrepancy between available data and theoretical predictions on the ionisation loss of charged particles in thin gas-filled proportional counters. The discrepancy related both to the increase of the most probable loss at relativistic velocities (relativistic rise) and to the spectrum of such losses at a given velocity (the Landau distribution). The origin of this relativistic rise is discussed in simple terms and related to the phenomena of transition radiation and Cherenkov radiation. It is shown that the failure of the prediction is due to the small number of ionising collisions in a gas. This problem is overcome by using a Monte Carlo method rather than a continuous integral over the spectrum of single collision processes. A specific mode of the atomic form factors is used with a modified Born approximation to yield the differential cross sections needed for the calculation. The new predictions give improved agreement with experiment and are used to investigate the problem of identifying particles of known momenta in the relativistic region. It is shown that by measuring the ionisation loss of each particle several hundred times over 5m or more, kaon, pion and proton separation with good confidence level may be achieved. Many gases are considered and a comparison is made. The results are also compared with the velocity resolution achievable by measuring primary ionisation. (Auth.)

  9. Particle Acceleration, Magnetic Field Generation and Emission from Relativistic Jets and Supernova Remnants

    Science.gov (United States)

    Nishikawa, K.-I.; Hartmann, D. H.; Hardee, P.; Hededal, C.; Mizunno, Y.; Fishman, G. J.

    2006-01-01

    We performed numerical simulations of particle acceleration, magnetic field generation, and emission from shocks in order to understand the observed emission from relativistic jets and supernova remnants. The investigation involves the study of collisionless shocks, where the Weibel instability is responsible for particle acceleration as well as magnetic field generation. A 3-D relativistic particle-in-cell (RPIC) code has been used to investigate the shock processes in electron-positron plasmas. The evolution of theWeibe1 instability and its associated magnetic field generation and particle acceleration are studied with two different jet velocities (0 = 2,5 - slow, fast) corresponding to either outflows in supernova remnants or relativistic jets, such as those found in AGNs and microquasars. Slow jets have intrinsically different structures in both the generated magnetic fields and the accelerated particle spectrum. In particular, the jet head has a very weak magnetic field and the ambient electrons are strongly accelerated and dragged by the jet particles. The simulation results exhibit jitter radiation from inhomogeneous magnetic fields, generated by the Weibel instability, which has different spectral properties than standard synchrotron emission in a homogeneous magnetic field.

  10. New relativistic particle-in-cell simulation studies of prompt and early afterglows from GRBs

    International Nuclear Information System (INIS)

    Ken-Ichi Nishikawa

    2008-01-01

    Nonthermal radiation observed from astrophysical systems containing relativistic jets and shocks, e.g., gamma-ray bursts (GRBs), active galactic nuclei (AGNs), and Galactic microquasar systems usually have power-law emission spectra. Recent PIC simulations of relativistic electron-ion (electro-positron) jets injected into a stationary medium show that particle acceleration occurs within the downstream jet. In the collisionless relativistic shock particle acceleration is due to plasma waves and their associated instabilities (e.g., the Buneman instability, other two-streaming instability, and the Weibel (filamentation) instability) created in the shocks are responsible for particle (electron, positron, and ion) acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields. These magnetic fields contribute to the electrons' transverse deflection behind the jet head. The '' jitter '' radiation from deflected electrons has different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants. (author)

  11. Particle emission in the hydrodynamical description of relativistic nuclear collisions

    International Nuclear Information System (INIS)

    Grassi, F.; Hama, Y.; Kodama, T.

    1994-09-01

    Continuous particle emission during the whole expansion of thermalized matter is studied and a new formula for the observed transverse mass spectrum is derived. In some limit, the usual emission at freeze out scenario (Cooper-Frye formula) may be recovered. In a simplified description of expansion, it is shown that continuous particle emission can lead to a sizable curvature in the pion transverse mass spectrum and parallel slopes for the various particles. These results are compared to experimental data. (author). 26 refs, 3 figs

  12. Relativistic wave equations for particles in electromagnetic fields

    International Nuclear Information System (INIS)

    Good, R.H. Jr.

    1989-01-01

    A new type of generalization of the Dirac equation of higher spin particles and antiparticles is given, in case only the terms proportional to the external fields need to be retained. copyright 1989 Academic Press, Inc

  13. A relativistic colored spinning particle in an external color field

    International Nuclear Information System (INIS)

    Heinz, U.

    1984-01-01

    I derive fully covariant equations of motion for a classical colored spinning particle in an external SU(3) color field. Although the total color charge and total spin of the particle are found to be separately constants of motion (here I disagree with a recent paper by Arodz), the dynamics of the orientation of the color and spin vectors are coupled to each other through interaction with the color field, even if the latter is homogeneous. (orig.)

  14. Formation of hard power laws in the energetic particle spectra resulting from relativistic magnetic reconnection.

    Science.gov (United States)

    Guo, Fan; Li, Hui; Daughton, William; Liu, Yi-Hsin

    2014-10-10

    Using fully kinetic simulations, we demonstrate that magnetic reconnection in relativistic plasmas is highly efficient at accelerating particles through a first-order Fermi process resulting from the curvature drift of particles in the direction of the electric field induced by the relativistic flows. This mechanism gives rise to the formation of hard power-law spectra in parameter regimes where the energy density in the reconnecting field exceeds the rest mass energy density σ ≡ B(2)/(4πnm(e)c(2))>1 and when the system size is sufficiently large. In the limit σ ≫ 1, the spectral index approaches p = 1 and most of the available energy is converted into nonthermal particles. A simple analytic model is proposed which explains these key features and predicts a general condition under which hard power-law spectra will be generated from magnetic reconnection.

  15. Explicit symplectic algorithms based on generating functions for relativistic charged particle dynamics in time-dependent electromagnetic field

    Science.gov (United States)

    Zhang, Ruili; Wang, Yulei; He, Yang; Xiao, Jianyuan; Liu, Jian; Qin, Hong; Tang, Yifa

    2018-02-01

    Relativistic dynamics of a charged particle in time-dependent electromagnetic fields has theoretical significance and a wide range of applications. The numerical simulation of relativistic dynamics is often multi-scale and requires accurate long-term numerical simulations. Therefore, explicit symplectic algorithms are much more preferable than non-symplectic methods and implicit symplectic algorithms. In this paper, we employ the proper time and express the Hamiltonian as the sum of exactly solvable terms and product-separable terms in space-time coordinates. Then, we give the explicit symplectic algorithms based on the generating functions of orders 2 and 3 for relativistic dynamics of a charged particle. The methodology is not new, which has been applied to non-relativistic dynamics of charged particles, but the algorithm for relativistic dynamics has much significance in practical simulations, such as the secular simulation of runaway electrons in tokamaks.

  16. Aggregated wind power generation probabilistic forecasting based on particle filter

    International Nuclear Information System (INIS)

    Li, Pai; Guan, Xiaohong; Wu, Jiang

    2015-01-01

    Highlights: • A new method for probabilistic forecasting of aggregated wind power generation. • A dynamic system is established based on a numerical weather prediction model. • The new method handles the non-Gaussian and time-varying wind power uncertainties. • Particle filter is applied to forecast predictive densities of wind generation. - Abstract: Probability distribution of aggregated wind power generation in a region is one of important issues for power system daily operation. This paper presents a novel method to forecast the predictive densities of the aggregated wind power generation from several geographically distributed wind farms, considering the non-Gaussian and non-stationary characteristics in wind power uncertainties. Based on a mesoscale numerical weather prediction model, a dynamic system is established to formulate the relationship between the atmospheric and near-surface wind fields of geographically distributed wind farms. A recursively backtracking framework based on the particle filter is applied to estimate the atmospheric state with the near-surface wind power generation measurements, and to forecast the possible samples of the aggregated wind power generation. The predictive densities of the aggregated wind power generation are then estimated based on these predicted samples by a kernel density estimator. In case studies, the new method presented is tested on a 9 wind farms system in Midwestern United States. The testing results that the new method can provide competitive interval forecasts for the aggregated wind power generation with conventional statistical based models, which validates the effectiveness of the new method

  17. Physics of the saturation of particle acceleration in relativistic magnetic reconnection

    Science.gov (United States)

    Kagan, Daniel; Nakar, Ehud; Piran, Tsvi

    2018-05-01

    We investigate the saturation of particle acceleration in relativistic reconnection using two-dimensional particle-in-cell simulations at various magnetizations σ. We find that the particle energy spectrum produced in reconnection quickly saturates as a hard power law that cuts off at γ ≈ 4σ, confirming previous work. Using particle tracing, we find that particle acceleration by the reconnection electric field in X-points determines the shape of the particle energy spectrum. By analysing the current sheet structure, we show that physical cause of saturation is the spontaneous formation of secondary magnetic islands that can disrupt particle acceleration. By comparing the size of acceleration regions to the typical distance between disruptive islands, we show that the maximum Lorentz factor produced in reconnection is γ ≈ 5σ, which is very close to what we find in our particle energy spectra. We also show that the dynamic range in Lorentz factor of the power-law spectrum in reconnection is ≤40. The hardness of the power law combined with its narrow dynamic range implies that relativistic reconnection is capable of producing the hard narrow-band flares observed in the Crab nebula but has difficulty producing the softer broad-band prompt gamma-ray burst emission.

  18. Probing the Physics of Core-Collapse Supernovae and Ultra-Relativistic Outflows using Pulsar Wind Nebulae

    Science.gov (United States)

    Gelfand, Joseph

    Core-collapse supernovae, the powerful explosions triggered by the gravitational collapse of massive stars, play an important role in evolution of star-forming galaxies like our Milky Way. Not only do these explosions eject the outer envelope of the progenitor star with extremely high velocities, creating a supernova remnant (SNR), the rotational energy of the resultant neutron star powers an ultra-relativistic outflow called a pulsar wind which creates a pulsar wind nebula (PWN) as it expands into its surroundings. Despite almost a century of study, many fundamental questions remain, including: How is a neutron star formed during a core-collapse supernova? How are particles created in the neutron star magnetosphere? How are particles accelerated to the PeV energies inside PWNe? Answering these questions requires measuring the properties of the progenitor star and pulsar wind for a diverse collection of neutron stars. Currently, this is best done by studying those PWNe inside a SNR, since their evolution is very sensitive to the initial spin period of the neutron star, the mass and initial kinetic energy of the supernova ejecta, and the magnetization and particle spectrum of the pulsar wind - quantities critical for answering the above questions. To this end, we propose to measure these properties for 17 neutron stars whose spin-down inferred dipole surface magnetic field strengths and characteristic ages differ by 1.5 orders of magnitude by fitting the broadband spectral energy distribution (SED) and dynamical properties of their associated PWNe with a model for the dynamical and spectral evolution of a PWN inside SNR. To do so, we will first re-analyze all archival X-ray (e.g., XMM, Chandra, INTEGRAL, NuSTAR) and gamma-ray (e.g., Fermi-LAT Pass 8) data on each PWN to ensure consistent measurements of the volume-integrated properties (e.g., X-ray photon index and unabsorbed flux, GeV spectrum) needed for this analysis. Additionally, we will use a Markoff Chain

  19. CHARGED PARTICLE MULTIPLICITIES IN ULTRA-RELATIVISTIC AU+AU AND CU+CU COLLISIONS

    Science.gov (United States)

    Back, B. B.; Alver, B.; Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Busza, W.; Carroll, A.; Chai, Z.; Chetluru, V.; Decowski, M. P.; Garcia, E.; Gburek, T.; George, N.; Gulbrandsen, K.; Halliwell, C.; Hamblen, J.; Harnarine, I.; Hauer, M.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Holynski, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Khan, N.; Kulinich, P.; Kuo, C. M.; Li, W.; Lin, W. T.; Loizides, C.; Manly, S.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Reed, C.; Richardson, E.; Roland, C.; Roland, G.; Sagerer, J.; Seals, H.; Sedykh, I.; Smith, C. E.; Stankiewicz, M. A.; Steinberg, P.; Stephans, G. S. F.; Sukhanov, A.; Szostak, A.; Tonjes, M. B.; Trzupek, A.; Vale, C.; Vannieuwenhuizen, G. J.; Vaurynovich, S. S.; Verdier, R.; Veres, G. I.; Walters, P.; Wenger, E.; Willhelm, D.; Wolfs, F. L. H.; Wosiek, B.; Wozniak, K.; Wyngaardt, S.; Wyslouch, B.

    The PHOBOS collaboration has carried out a systematic study of charged particle multiplicities in Cu+Cu and Au+Au collisions at the Relativistic Heavy-Ion Collider (RHIC) at Brookhaven National Laboratory. A unique feature of the PHOBOS detector is its ability to measure charged particles over a very wide angular range from 0.5° to 179.5° corresponding to |η| <5.4. The general features of the charged particle multiplicity distributions as a function of pseudo-rapidity, collision energy and centrality, as well as system size, are discussed.

  20. Relativistic particles with spin and antisymmetric tensor fields

    International Nuclear Information System (INIS)

    Sandoval Junior, L.

    1990-09-01

    A study is made on antisymmetric tensor fields particularly on second order tensor field as far as his equivalence to other fields and quantization through the path integral are concerned. Also, a particle model is studied which has been recently proposed and reveals to be equivalent to antisymmetric tensor fields of any order. (L.C.J.A.)

  1. Delocalization of Relativistic Dirac Particles in Disordered One-Dimensional Systems and Its Implementation with Cold Atoms

    International Nuclear Information System (INIS)

    Zhu Shiliang; Zhang Danwei; Wang, Z. D.

    2009-01-01

    We study theoretically the localization of relativistic particles in disordered one-dimensional chains. It is found that the relativistic particles tend to delocalization in comparison with the nonrelativistic particles with the same disorder strength. More intriguingly, we reveal that the massless Dirac particles are entirely delocalized for any energy due to the inherent chiral symmetry, leading to a well-known result that particles are always localized in one-dimensional systems for arbitrary weak disorders to break down. Furthermore, we propose a feasible scheme to detect the delocalization feature of the Dirac particles with cold atoms in a light-induced gauge field.

  2. Auroral kilometric radiation - An example of relativistic wave-particle interaction in geoplasma

    International Nuclear Information System (INIS)

    Pritchett, P.L.

    1990-01-01

    The earth's auroral kilometric radiation (AKR) is believed to be produced by the electron-cyclotron maser instability. This instability is the result of a wave-particle interaction in which relativistic effects are crucial. An explanation is given as to how these relativistic effects alter the shape of the resonance curve in velocity space and modify the R - X mode wave dispersion near the electron cyclotron frequency compared to the results obtained in the nonrelativistic limit and from cold-plasma theory. The properties of the cyclotron maser instability in a driven system are illustrated using two-dimensional electromagnetic particle simulations which incorporate a continual flow of primary energetic electrons along the magnetic field. 31 refs

  3. Relativistic particle with the action dependent on the torsion of its world trajectory

    International Nuclear Information System (INIS)

    Nesterenko, V.V.

    1990-01-01

    The generalized Hamiltonian formalism for the relativistic particle with a torsion in a D-dimensional space-time is constructed. A complete set of the constraints in the phase space is obtained and their division into the first-class and the second-class constraints is accomplished. On this basis the canonical quantization of the model is fulfilled. For D=3 the mass spectrum is obtained explicitly, the mass of the state being dependent on its spin. The possibility of describing in the framework of this model the states with integer, half-integer and continuous spins is discussed. The wave equation and the propagator are found in the operator form. The mass formula is obtained also in the model of a relativistic particles with curvature in a D-dimensional space-time. 34 refs

  4. Fast detector for triggering on charged particle multiplicity for relativistic nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Agakishiev, G.; Man'yakov, P.K.; Drees, A.

    1997-01-01

    The simple and fast detector of charged particle multiplicity for relativistic nucleus-nucleus collision studies is performed. The multiplicity detector has been designed for the first level trigger of the CERES/NA45 experiment to study Pb-Au collisions at CERN SPS energies. The detector has allowed a realization of the 40 ns trigger for selection of events with definite impact parameter. The construction, operation characteristics, method of calibration, and testing results are described in detail

  5. Self-modulated dynamics of a relativistic charged particle beam in plasma wake field excitation

    Energy Technology Data Exchange (ETDEWEB)

    Akhter, T.; Fedele, R. [Dipartimento di Fisica ‘Ettore Pancini’, Università di Napoli Federico II and INFN Sezione di Napoli, Napoli (Italy); Nicola, S. De [CNR-SPIN and INFN Sezione di Napoli, Napoli (Italy); Tanjia, F. [Dipartimento di Fisica ‘Ettore Pancini’, Università di Napoli Federico II and INFN Sezione di Napoli, Napoli (Italy); Jovanović, D. [Institute of Physics, University of Belgrade, Belgrade (Serbia); Mannan, A. [Department of Physics, Jahangirnagar University, Savar, Dhaka (Bangladesh)

    2016-09-01

    The self-modulated dynamics of a relativistic charged particle beam is provided within the context of the theory of plasma wake field excitation. The self-consistent description of the beam dynamics is provided by coupling the Vlasov equation with a Poisson-type equation relating the plasma wake potential to the beam density. An analysis of the beam envelope self-modulation is then carried out and the criteria for the occurrence of the instability are discussed thereby.

  6. Dynamics of the relativistic acceleration of charged particles in space plasma while surfing the package electromagnetic waves

    International Nuclear Information System (INIS)

    Erokhin, N.S.; Zol'nikova, N.N.; Kuznetsov, E.A.; Mikhajlovskaya, L.A.

    2010-01-01

    Based on numerical calculations considered the relativistic acceleration of charged particles in space plasma when surfing on the spatially localized package of electromagnetic waves. The problem is reduced to the study of unsteady, nonlinear equation for the wave phase at the carrier frequency at the location of the accelerated charge, which is solved numerically. We study the temporal dynamics of the relativistic factor, the component of momentum and velocity of the particle, its trajectory is given gyro-rotation in an external magnetic field after the departure of the effective potential well. Dependence of the dynamics of a particle interacting with the wave of the sign of the velocity of the charge along the wave front. We formulate the optimal conditions of the relativistic particle acceleration wave packet, indicate the possibility of again (after a number gyro-turnover) charge trapping wave with an additional relativistic acceleration.

  7. On the Relativistic Correction of Particles Trajectory in Tandem Type Electrostatic Accelerator

    Science.gov (United States)

    Minárik, Stanislav

    2015-08-01

    A constant potential is applied to the acceleration of the ion-beam in the tandem type electrostatic accelerator. However, not just one voltage is applied, but instead a number of applications can be made in succession by means of the tandem arrangement of high voltage tubes. This number of voltage applications, which is the number of so-called "stages" of a tandem accelerator, may be two, three, or four, depending on the chosen design. Electrostatic field with approximately constant intensity acts on ions in any stage. In general, non-relativistic dynamics is used for the description of the ion transport in tandem accelerator. Energies of accelerated ions are too low and relativistic effects cannot be commonly observed by standard experimental technique. Estimation of possible relativistic correction of ion trajectories is therefore only a matter of calculation. In this note, we briefly present such calculation. Our aim is to show how using the relativistic dynamics modifies the particles trajectory in tandem type accelerator and what parameters determine this modification.

  8. Scaling of charged particle multiplicity distributions in relativistic nuclear collisions

    International Nuclear Information System (INIS)

    Ahamd, N.; Hushnud; Azmi, M.D.; Zafar, M.; Irfan, M.; Khan, M.M.; Tufail, A.

    2011-01-01

    Validity of KNO scaling in hadron-hadron and hadron-nucleus collisions has been tested by several workers. Multiplicity distributions for p-emulsion interactions are found to be consistent with the KNO scaling hypothesis for pp collisions. The applicability of the scaling law was extended to FNAL energies by earlier workers. Slattery has shown that KNO scaling hypothesis is in fine agreement with the data for pp interactions over a wide range of incident energies. An attempt, is, therefore, made to examine the scaling hypothesis using multiplicity distributions of particles produced in 3.7A GeV/c 16 O-, 4.5A GeV/c and 14.5A GeV/c 28 Si - nucleus interactions

  9. Cosmology as relativistic particle mechanics: from big crunch to big bang

    Energy Technology Data Exchange (ETDEWEB)

    Russo, J G [Institucio Catalana de Recerca i Estudis Avancats, Departament ECM, Facultat de FIsica, Universitat de Barcelona, Diagonal 647, E-08028 Barcelona (Spain); Townsend, P K [Institucio Catalana de Recerca i Estudis Avancats, Departament ECM, Facultat de FIsica, Universitat de Barcelona, Diagonal 647, E-08028 Barcelona (Spain)

    2005-02-21

    Cosmology can be viewed as geodesic motion in an appropriate metric on an 'augmented' target space; here we obtain these geodesics from an effective relativistic particle action. As an application, we find some exact (flat and curved) cosmologies for models with N scalar fields taking values in a hyperbolic target space for which the augmented target space is a Milne universe. The singularities of these cosmologies correspond to points at which the particle trajectory crosses the Milne horizon, suggesting a novel resolution of them, which we explore via the Wheeler-DeWitt equation.

  10. Larmor precession and dwell time of a relativistic particle scattered by a rectangular quantum well

    CERN Document Server

    Li, Z J; Liang, J J; Liang, J Q

    2003-01-01

    The Larmor precession of a relativistic neutral spin particle in a uniform constant magnetic field confined to the region of a one-dimensional rectangular potential well is investigated. The spin precession serves as a clock to measure the time spent by a quantum particle dwelling at a potential well. With the help of a general spin coherent state it is explicitly shown that the spin precession time is equal to the dwell time in the first-order approximation of the infinitesimal field limit. The comparison of the time in a potential well with that in free space shows apparent superluminality.

  11. Features of energetic particle radial profiles inferred from geosynchronous responses to solar wind dynamic pressure enhancements

    Directory of Open Access Journals (Sweden)

    Y. Shi

    2009-02-01

    Full Text Available Determination of the radial profile of phase space density of relativistic electrons at constant adiabatic invariants is crucial for identifying the source for them within the outer radiation belt. The commonly used method is to convert flux observed at fixed energy to phase space density at constant first, second and third adiabatic invariants, which requires an empirical global magnetic field model and thus might produce some uncertainties in the final results. From a different perspective, in this paper we indirectly infer the shape of the radial profile of phase space density of relativistic electrons near the geosynchronous region by statistically examining the geosynchronous energetic flux response to 128 solar wind dynamic pressure enhancements during the years 2000 to 2003. We thus avoid the disadvantage of using empirical magnetic field models. Our results show that the flux response is species and energy dependent. For protons and low-energy electrons, the primary response to magnetospheric compression is an increase in flux at geosynchronous orbit. For relativistic electrons, the dominant response is a decrease in flux, which implies that the phase space density decreases toward increasing radial distance at geosynchronous orbit and leads to a local peak inside of geosynchronous orbit. The flux response of protons and non-relativistic electrons could result from a phase density that increases toward increasing radial distance, but this cannot be determined for sure due to the particle energization associated with pressure enhancements. Our results for relativistic electrons are consistent with previous results obtained using magnetic field models, thus providing additional confirmation that these results are correct and indicating that they are not the result of errors in their selected magnetic field model.

  12. Reinterpretation of the ''relativistic mass'' correction to the spin magnetic moment of a moving particle

    International Nuclear Information System (INIS)

    Hegstrom, R.A.; Lhuillier, C.

    1977-01-01

    Starting from a classical covariant equation of motion for the spin of a particle moving in a homogeneous electromagnetic field (the Bargmann-Michel-Telegdi equation), we show that the ''relativistic mass'' correction to the electron spin magnetic moment, which has been obtained previously from relativistic quantum-mechanical treatments of the Zeeman effect, may be reinterpreted as the combination of three classical effects: (i) the difference in time scales in the electron rest frame vis-a-vis the lab frame, (ii) the Lorentz transformation of the magnetic field between the two frames, and (iii) the Thomas precession of the electron spin due to the acceleration of the electron produced by the magnetic field

  13. Relativistic two-body equation for one Dirac and one Duffin-Kemmer particle

    International Nuclear Information System (INIS)

    Krolikowski, W.

    1983-01-01

    A new relativistic two-body wave equation is proposed for one spin-1/2 and one spin-0 or spin-1 particle which, if isolated from each other, are described by the Dirac and the Duffin-Kemmer equation, respectively. For a static mutual interaction this equation splits into two equations: a two-body wave equation for one Dirac and one Klein-Gordon particle (which was introduced by the author previously) and a new two-body wave equation for one Dirac and one Proca particle. The proposed equation may be applied in particular to the quark-diquark system. In Appendix, however, an alternative approach is sketched, where the diquark is described as the point limit of a very close Breit system rather than a Duffin-Kemmer particle. (Author)

  14. SHARP: A Spatially Higher-order, Relativistic Particle-in-cell Code

    Energy Technology Data Exchange (ETDEWEB)

    Shalaby, Mohamad; Broderick, Avery E. [Department of Physics and Astronomy, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1 (Canada); Chang, Philip [Department of Physics, University of Wisconsin-Milwaukee, 1900 E. Kenwood Boulevard, Milwaukee, WI 53211 (United States); Pfrommer, Christoph [Leibniz-Institut für Astrophysik Potsdam (AIP), An der Sternwarte 16, D-14482 Potsdam (Germany); Lamberts, Astrid [Theoretical Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States); Puchwein, Ewald, E-mail: mshalaby@live.ca [Institute of Astronomy and Kavli Institute for Cosmology, University of Cambridge, Madingley Road, Cambridge, CB3 0HA (United Kingdom)

    2017-05-20

    Numerical heating in particle-in-cell (PIC) codes currently precludes the accurate simulation of cold, relativistic plasma over long periods, severely limiting their applications in astrophysical environments. We present a spatially higher-order accurate relativistic PIC algorithm in one spatial dimension, which conserves charge and momentum exactly. We utilize the smoothness implied by the usage of higher-order interpolation functions to achieve a spatially higher-order accurate algorithm (up to the fifth order). We validate our algorithm against several test problems—thermal stability of stationary plasma, stability of linear plasma waves, and two-stream instability in the relativistic and non-relativistic regimes. Comparing our simulations to exact solutions of the dispersion relations, we demonstrate that SHARP can quantitatively reproduce important kinetic features of the linear regime. Our simulations have a superior ability to control energy non-conservation and avoid numerical heating in comparison to common second-order schemes. We provide a natural definition for convergence of a general PIC algorithm: the complement of physical modes captured by the simulation, i.e., those that lie above the Poisson noise, must grow commensurately with the resolution. This implies that it is necessary to simultaneously increase the number of particles per cell and decrease the cell size. We demonstrate that traditional ways for testing for convergence fail, leading to plateauing of the energy error. This new PIC code enables us to faithfully study the long-term evolution of plasma problems that require absolute control of the energy and momentum conservation.

  15. Superluminal tunneling of a relativistic half-integer spin particle through a potential barrier

    Directory of Open Access Journals (Sweden)

    Nanni Luca

    2017-11-01

    Full Text Available This paper investigates the problem of a relativistic Dirac half-integer spin free particle tunneling through a rectangular quantum-mechanical barrier. If the energy difference between the barrier and the particle is positive, and the barrier width is large enough, there is proof that the tunneling may be superluminal. For first spinor components of particle and antiparticle states, the tunneling is always superluminal regardless the barrier width. Conversely, the second spinor components of particle and antiparticle states may be either subluminal or superluminal depending on the barrier width. These results derive from studying the tunneling time in terms of phase time. For the first spinor components of particle and antiparticle states, it is always negative while for the second spinor components of particle and antiparticle states, it is always positive, whatever the height and width of the barrier. In total, the tunneling time always remains positive for particle states while it becomes negative for antiparticle ones. Furthermore, the phase time tends to zero, increasing the potential barrier both for particle and antiparticle states. This agrees with the interpretation of quantum tunneling that the Heisenberg uncertainty principle provides. This study’s results are innovative with respect to those available in the literature. Moreover, they show that the superluminal behaviour of particles occurs in those processes with high-energy confinement.

  16. Study of the equations of a particle in Non- Relativistic Quantum Mechanics

    International Nuclear Information System (INIS)

    Miltao, Milton Souza Ribeiro; Silva, Vanessa Santos Teles da

    2011-01-01

    Full text: The study of group theory is relevant to the treatment of physical problems, in which concepts of invariance and symmetry are important. In the field of Non-Relativistic Quantum Mechanics, we can do algebraic considerations taking into account the principles of symmetry, considering the framework of the study of Galileo transformations, which have characteristics of group. Therefore, we discuss the Stern-Gerlach experiment that had the historical importance of demonstrating that the electron has an intrinsic angular momentum. Through discussion of this experiment, we found that the spin appears in Non-Relativistic Quantum Mechanics as a feature of the algebraic structure underlying any physical theory represented by a group. From these studies, we have algebraic considerations for physical systems in non-relativistic domain, which are described by the Schroedinger and Pauli equations, describing the dynamics of particles of spin zero and 1/2 respectively, taking into account the structure of the transformations Galileo. Due to the operatorial, we represent Galileo's transformations by matrices by choosing an appropriate basis of space-time. Using these arrays, we saw group characteristics associated with these transformations, which we call the Galileo Group. We note the invariance of the Schroedinger and Pauli equations after these changes, as well as the physical state associated with it, which is represented by a radius vector in Hilbert space. (author)

  17. The connection of two-particle relativistic quantum mechanics with the Bethe-Salpeter equation

    International Nuclear Information System (INIS)

    Sazdjian, H.

    1986-02-01

    We show the formal equivalence between the wave equations of two-particle relativistic quantum mechanics, based on the manifestly covariant hamiltonian formalism with constraints, and the Bethe-Salpeter equation. This is achieved by algebraically transforming the latter so as to separate it into two independent equations which match the equations of hamiltonian relativistic quantum mechanics. The first equation determines the relative time evolution of the system, while the second one yields a three-dimensional eigenvalue equation. A connection is thus established between the Bethe-Salpeter wave function and its kernel on the one hand and the quantum mechanical wave function and interaction potential on the other. For the sector of solutions of the Bethe-Salpeter equation having non-relativistic limits, this relationship can be evaluated in perturbation theory. We also device a generalized form of the instantaneous approximation which simplifies the various expressions involved in the above relations. It also permits the evaluation of the normalization condition of the quantum mechanical wave function as a three-dimensional integral

  18. Particle Acceleration, Magnetic Field Generation and Associated Emission in Collisionless Relativistic Jets

    Science.gov (United States)

    Nishikawa, K. I.; Ramirez-Ruiz, E.; Hardee, P.; Mizuno, Y.; Fishman. G. J.

    2007-01-01

    Nonthermal radiation observed from astrophysical systems containing relativistic jets and shocks, e.g., active galactic nuclei (AGNs), gamma-ray bursts (GRBs), and Galactic microquasar systems usually have power-law emission spectra. Recent PIC simulations using injected relativistic electron-ion (electro-positron) jets show that acceleration occurs within the downstream jet. Shock acceleration is a ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., the Buneman instability, other two-streaming instability, and the Weibel instability) created in the shocks are responsible for particle (electron, positron, and ion) acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields. These magnetic fields contribute to the electron's transverse deflection behind the jet head. The "jitter" radiation from deflected electrons has different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants.

  19. Toward a unified theory of the radiation by relativistic particles in crystals

    International Nuclear Information System (INIS)

    Beloshitskii, V.V.; Kalinichenko, V.F.

    1989-01-01

    A quantum theory of the electromagnetic emission by relativistic particles incorporating channeling and the thermal vibrations of the crystal nuclei is derived. A general expression for the emission probability is found after an average over the initial polarizations of the particles and a summation over the final polarizations of the particles and over the polarizations of the photons. An average is carried out over the crystal states of the nuclei in the cases with and without excitation of phonons. The total emission is made up of channeling emission and bremsstrahlung, which are related to each other. During scattering by thermal vibrations, incoherent bremsstrahlung is produced. Some particular cases which determine the properties of the emission in the case of channeling are derived from the general expression and analyzed

  20. THE EFFECT OF COOLING ON PARTICLE TRAJECTORIES AND ACCELERATION IN RELATIVISTIC MAGNETIC RECONNECTION

    Energy Technology Data Exchange (ETDEWEB)

    Kagan, Daniel; Nakar, Ehud [Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv 69978 (Israel); Piran, Tsvi, E-mail: daniel.kagan@mail.huji.ac.il [Racah Institute of Physics, The Hebrew University, Jerusalem 91904 (Israel)

    2016-12-20

    The maximum synchrotron burnoff limit of 160 MeV represents a fundamental limit to radiation resulting from electromagnetic particle acceleration in one-zone ideal plasmas. In magnetic reconnection, however, particle acceleration and radiation are decoupled because the electric field is larger than the magnetic field in the diffusion region. We carry out two-dimensional particle-in-cell simulations to determine the extent to which magnetic reconnection can produce synchrotron radiation above the burnoff limit. We use the test particle comparison (TPC) method to isolate the effects of cooling by comparing the trajectories and acceleration efficiencies of test particles incident on such a reconnection region with and without cooling them. We find that the cooled and uncooled particle trajectories are typically similar during acceleration in the reconnection region, and derive an effective limit on particle acceleration that is inversely proportional to the average magnetic field experienced by the particle during acceleration. Using the calculated distribution of this average magnetic field as a function of uncooled final particle energy, we find analytically that cooling does not affect power-law particle energy spectra except at energies far above the synchrotron burnoff limit. Finally, we compare fully cooled and uncooled simulations of reconnection, confirming that the synchrotron burnoff limit does not produce a cutoff in the particle energy spectrum. Our results indicate that the TPC method accurately predicts the effects of cooling on particle acceleration in relativistic reconnection, and that, even far above the burnoff limit, the synchrotron energy of radiation produced in reconnection is not limited by cooling.

  1. THE EFFECT OF COOLING ON PARTICLE TRAJECTORIES AND ACCELERATION IN RELATIVISTIC MAGNETIC RECONNECTION

    International Nuclear Information System (INIS)

    Kagan, Daniel; Nakar, Ehud; Piran, Tsvi

    2016-01-01

    The maximum synchrotron burnoff limit of 160 MeV represents a fundamental limit to radiation resulting from electromagnetic particle acceleration in one-zone ideal plasmas. In magnetic reconnection, however, particle acceleration and radiation are decoupled because the electric field is larger than the magnetic field in the diffusion region. We carry out two-dimensional particle-in-cell simulations to determine the extent to which magnetic reconnection can produce synchrotron radiation above the burnoff limit. We use the test particle comparison (TPC) method to isolate the effects of cooling by comparing the trajectories and acceleration efficiencies of test particles incident on such a reconnection region with and without cooling them. We find that the cooled and uncooled particle trajectories are typically similar during acceleration in the reconnection region, and derive an effective limit on particle acceleration that is inversely proportional to the average magnetic field experienced by the particle during acceleration. Using the calculated distribution of this average magnetic field as a function of uncooled final particle energy, we find analytically that cooling does not affect power-law particle energy spectra except at energies far above the synchrotron burnoff limit. Finally, we compare fully cooled and uncooled simulations of reconnection, confirming that the synchrotron burnoff limit does not produce a cutoff in the particle energy spectrum. Our results indicate that the TPC method accurately predicts the effects of cooling on particle acceleration in relativistic reconnection, and that, even far above the burnoff limit, the synchrotron energy of radiation produced in reconnection is not limited by cooling.

  2. On the H particle stability in the non relativistic quark model

    International Nuclear Information System (INIS)

    Silvestre-Brac, B.; Carbonell, J.; Gignoux, C.

    1987-05-01

    The H particle with quark content (uuddss) is presented as a good candidate to be stable with respect to strong interactions. In the framework of a non relativistic potential model, the binding energy is calculated by a full dynamical approach using a resonating group trial wave function. The center of mass motion and the Pauli principle are correctly treated. Sophisticated baryon wave functions are employed and the equation of motion is solved with six coupled channels including radial excited baryon states. The effect of breaking SU(3) flavour symmetry is discussed in detail

  3. Quantization of a relativistic particle on the SL(2.R) manifold based on Hamiltonian reduction

    International Nuclear Information System (INIS)

    Jorjadze, G.; O'Raifeartaigh, L.; Tsutsui, I.

    1994-07-01

    A quantum theory is constructed for the system of a relativistic particle with mass m moving freely on the SL(2.R) group manifold. Applied to the cotangent bundle of SL(2.R). the method of Hamiltonian reduction allows us to split the reduced system into two coadjoint orbits of the group. We find that the Hilbert space consists of states given by the discrete series of the unitary irreducible representations of SL(2.R). and with a positive-definite, discrete spectrum. (author)

  4. Particle Acceleration and Magnetic Field Generation in Electron-Positron Relativistic Shocks

    Science.gov (United States)

    Nishikawa, K.-I.; Hardee, P.; Richardson, G.; Preece, R.; Sol, H.; Fishman, G. J.

    2005-01-01

    Shock acceleration is a ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., Buneman, Weibel, and other two-stream instabilities) created in collisionless shocks are responsible for particle (electron, positron, and ion) acceleration. Using a three-dimensional relativistic electromagnetic particle (REMP) code, we have investigated particle acceleration associated with a relativistic electron-positron jet front propagating into an ambient electron-positron plasma with and without initial magnetic fields. We find small differences in the results for no ambient and modest ambient magnetic fields. New simulations show that the Weibel instability created in the collisionless shock front accelerates jet and ambient particles both perpendicular and parallel to the jet propagation direction. Furthermore, the nonlinear fluctuation amplitudes of densities, currents, and electric and magnetic fields in the electron-positron shock are larger than those found in the electron-ion shock studied in a previous paper at a comparable simulation time. This comes from the fact that both electrons and positrons contribute to generation of the Weibel instability. In addition, we have performed simulations with different electron skin depths. We find that growth times scale inversely with the plasma frequency, and the sizes of structures created by tine Weibel instability scale proportionally to the electron skin depth. This is the expected result and indicates that the simulations have sufficient grid resolution. While some Fermi acceleration may occur at the jet front, the majority of electron and positron acceleration takes place behind the jet front and cannot be characterized as Fermi acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying nonuniform, small-scale magnetic fields, which contribute to the electron s (positron s) transverse deflection behind the jet head. This

  5. Current Sheets in Pulsar Magnetospheres and Winds: Particle Acceleration and Pulsed Gamma Ray Emission

    Science.gov (United States)

    Arons, Jonathan

    The research proposed addresses understanding of the origin of non-thermal energy in the Universe, a subject beginning with the discovery of Cosmic Rays and continues, including the study of relativistic compact objects - neutron stars and black holes. Observed Rotation Powered Pulsars (RPPs) have rotational energy loss implying they have TeraGauss magnetic fields and electric potentials as large as 40 PetaVolts. The rotational energy lost is reprocessed into particles which manifest themselves in high energy gamma ray photon emission (GeV to TeV). Observations of pulsars from the FERMI Gamma Ray Observatory, launched into orbit in 2008, have revealed 130 of these stars (and still counting), thus demonstrating the presence of efficient cosmic accelerators within the strongly magnetized regions surrounding the rotating neutron stars. Understanding the physics of these and other Cosmic Accelerators is a major goal of astrophysical research. A new model for particle acceleration in the current sheets separating the closed and open field line regions of pulsars' magnetospheres, and separating regions of opposite magnetization in the relativistic winds emerging from those magnetopsheres, will be developed. The currents established in recent global models of the magnetosphere will be used as input to a magnetic field aligned acceleration model that takes account of the current carrying particles' inertia, generalizing models of the terrestrial aurora to the relativistic regime. The results will be applied to the spectacular new results from the FERMI gamma ray observatory on gamma ray pulsars, to probe the physics of the generation of the relativistic wind that carries rotational energy away from the compact stars, illuminating the whole problem of how compact objects can energize their surroundings. The work to be performed if this proposal is funded involves extending and developing concepts from plasma physics on dissipation of magnetic energy in thin sheets of

  6. WIND EROSION INTENSITY DETERMINATION USING SOIL PARTICLE CATCHER DEVICES

    Directory of Open Access Journals (Sweden)

    Lenka Lackóová

    2013-12-01

    Full Text Available To analyze wind erosion events in the real terrain conditions, we proposed to construct a prototype of soil particle catcher devices to trap soil particles. With these devices we are able to measure the intensity of wind erosion at six different heights above the soil surface in one location or at three different heights in two places. It is possible to use them for six different places at the same time as well. We performed field measurements to determine the amount of soil particles transported by the wind between 26th – 31st March 2012. Each measuring took 60 minutes. After this time the soil particle catchers were emptied and further measurements carried out. At the beginning we selected two places for measurement (soil HPJ 16 and 37 at two heights, one above the other. Then we used two measuring systems 40 m apart at two sites (D2 and D4 and the soil captured at two heights (0, 1. The maximum weight of soil particles trapped in measuring system D2 at height (0 was 1242.7 g at a wind speed of 9.6 ms-1. At measurement height (1 the maximum weight was 72.7 g trapped at the same average hourly rate, but during different measurement events. The measuring system at D4 trapped the highest amount of soil at a wind speed of 8.9 ms-1 (1141.7 g at height (0 and at a speed of 9.3 ms-1 (22.3 g at height (1. During the measurements with the two basic measuring systems D4 and D2, we measured the wind erosion intensity together with soil particle catchers D1 and D3. D3 was placed between devices D4 and D2, D1 was 20 m ahead D2. Soil particle catchers were placed on the soil surface at height position (0. We measured increasing soil erosion downwind on four locations spaced at 20 m. The results show that with there is an increasing quantity of particles collected as the erosive surface length increases, due to the so-called snowball effect. We analyzed selected trapped soil samples in order to determine the size of the soil particles and their proportion

  7. 10th Biennial Conference on Classical and Quantum Relativistic Dynamics of Particles and Fields

    International Nuclear Information System (INIS)

    2017-01-01

    Preface The International Association for Relativistic Dynamics was organized in February 1998 in Houston, Texas, with John R. Fanchi as president. Although the subject of relativistic dynamics has been explored, from both classical and quantum mechanical points of view, since the work of Einstein and Dirac, its most striking development has been in the framework of quantum field theory. The very accurate calculations of spectral and scattering properties, for example, of the anomalous magnetic moment of the electron and the Lamb shift in quantum electrodynamics, and many qualitative features of the strong and electroweak interactions, demonstrate the very great power of description achieved in this framework. Yet, many fundamental questions remain to be clarified, such as the structure of classical relativistic dynamical theories on the level of Hamilton and Lagrange in Minkowski space as well as on the curved manifolds of general relativity. There, moreover, remained the important questions of the covariant classical description of systems at high energy for which particle production effects are not large, such as discussed in Synge’s book, The Relativistic Gas , and in Balescu’s book on relativistic statistical mechanics, and the development of a consistent single and many body relativistic quantum theory. In recent years, the very high accuracy of telescopes and advanced facilities for computation have brought a high level of interest in cosmological problems such as the structure of galaxies (dark matter) and the apparently anomalous expansion of the universe (dark energy). Some of the papers reported here deal with these problems, as well as other fundamental related issues. It was for this purpose, to bring together researchers from a wide variety of fields, such as particle physics, astrophysics, cosmology, foundations of relativity theory, and mathematical physics, with a common interest in relativistic dynamics, to investigate fundamental questions of

  8. An optimization method of relativistic backward wave oscillator using particle simulation and genetic algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Zaigao; Wang, Jianguo [Key Laboratory for Physical Electronics and Devices of the Ministry of Education, Xi' an Jiaotong University, Xi' an, Shaanxi 710049 (China); Northwest Institute of Nuclear Technology, P.O. Box 69-12, Xi' an, Shaanxi 710024 (China); Wang, Yue; Qiao, Hailiang; Zhang, Dianhui [Northwest Institute of Nuclear Technology, P.O. Box 69-12, Xi' an, Shaanxi 710024 (China); Guo, Weijie [Key Laboratory for Physical Electronics and Devices of the Ministry of Education, Xi' an Jiaotong University, Xi' an, Shaanxi 710049 (China)

    2013-11-15

    Optimal design method of high-power microwave source using particle simulation and parallel genetic algorithms is presented in this paper. The output power, simulated by the fully electromagnetic particle simulation code UNIPIC, of the high-power microwave device is given as the fitness function, and the float-encoding genetic algorithms are used to optimize the high-power microwave devices. Using this method, we encode the heights of non-uniform slow wave structure in the relativistic backward wave oscillators (RBWO), and optimize the parameters on massively parallel processors. Simulation results demonstrate that we can obtain the optimal parameters of non-uniform slow wave structure in the RBWO, and the output microwave power enhances 52.6% after the device is optimized.

  9. particle simulation for electrostatic oscillation of virtual cathode in relativistic electron beams

    International Nuclear Information System (INIS)

    Chen Deming; Wang Min

    1990-01-01

    The virtual cathode oscillation in relativistic electron beams is studied by a 1-D electrostatic particle simulation code with finite-size-particle model. When injection current is less than the space charge limiting current, electron beam propagates stably and transsmits completely. When injection current exceeds the space charge limit, its propagation is unstable, a part of electrons reflect and the other electrons transsmit. The position and potential of the virtual cathode caused by space charge effects oscillate periodically. When the beam current increases, the virtual cathode position closer to the injection plane and its oscillating region gets narrower, the virtual cathode potential decreases and its amplitude increases, the oscillation frequency increases above the beam plasma frequency

  10. Development of a relativistic Particle In Cell code PARTDYN for linear accelerator beam transport

    Energy Technology Data Exchange (ETDEWEB)

    Phadte, D., E-mail: deepraj@rrcat.gov.in [LPD, Raja Ramanna Centre for Advanced Technology, Indore 452013 (India); Patidar, C.B.; Pal, M.K. [MAASD, Raja Ramanna Centre for Advanced Technology, Indore (India)

    2017-04-11

    A relativistic Particle In Cell (PIC) code PARTDYN is developed for the beam dynamics simulation of z-continuous and bunched beams. The code is implemented in MATLAB using its MEX functionality which allows both ease of development as well higher performance similar to a compiled language like C. The beam dynamics calculations carried out by the code are compared with analytical results and with other well developed codes like PARMELA and BEAMPATH. The effect of finite number of simulation particles on the emittance growth of intense beams has been studied. Corrections to the RF cavity field expressions were incorporated in the code so that the fields could be calculated correctly. The deviations of the beam dynamics results between PARTDYN and BEAMPATH for a cavity driven in zero-mode have been discussed. The beam dynamics studies of the Low Energy Beam Transport (LEBT) using PARTDYN have been presented.

  11. Classical and quantum dynamics of a kicked relativistic particle in a box

    Science.gov (United States)

    Yusupov, J. R.; Otajanov, D. M.; Eshniyazov, V. E.; Matrasulov, D. U.

    2018-03-01

    We study classical and quantum dynamics of a kicked relativistic particle confined in a one dimensional box. It is found that in classical case for chaotic motion the average kinetic energy grows in time, while for mixed regime the growth is suppressed. However, in case of regular motion energy fluctuates around certain value. Quantum dynamics is treated by solving the time-dependent Dirac equation with delta-kicking potential, whose exact solution is obtained for single kicking period. In quantum case, depending on the values of the kicking parameters, the average kinetic energy can be quasi periodic, or fluctuating around some value. Particle transport is studied by considering spatio-temporal evolution of the Gaussian wave packet and by analyzing the trembling motion.

  12. Spontaneous photon emission from a non-relativistic free charged particle in collapse models: A case study

    International Nuclear Information System (INIS)

    Bassi, A.; Donadi, S.

    2014-01-01

    We study the photon emission rate of a non-relativistic charged particle interacting with an external classical noise through its position. Both the particle and the electromagnetic field are quantized. Under only the dipole approximation, the equations of motion can be solved exactly for a free particle, or a particle bounded by an harmonic potential. The physical quantity we will be interested in is the spectrum of the radiation emitted by the particle, due to the interaction with the noise. We will highlight several properties of the spectrum and clarify some issues appearing in the literature, regarding the exact mathematical formula of a spectrum for a free particle.

  13. Particle-in-cell simulation of two-dimensional electron velocity shear driven instability in relativistic domain

    Energy Technology Data Exchange (ETDEWEB)

    Shukla, Chandrasekhar, E-mail: chandrasekhar.shukla@gmail.com; Das, Amita, E-mail: amita@ipr.res.in [Institute for Plasma Research, Bhat, Gandhinagar 382428 (India); Patel, Kartik [Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India)

    2016-08-15

    We carry out particle-in-cell simulations to study the instabilities associated with a 2-D sheared electron flow configuration against a neutralizing background of ions. Both weak and strong relativistic flow velocities are considered. In the weakly relativistic case, we observe the development of electromagnetic Kelvin-Helmholtz instability with similar characteristics as that predicted by the electron Magnetohydrodynamic (EMHD) model. On the contrary, in a strong relativistic case, the compressibility effects of electron fluid dominate and introduce upper hybrid electrostatic oscillations transverse to the flow which are very distinct from EMHD fluid behavior. In the nonlinear regime, both weak and strong relativistic cases lead to turbulence with broad power law spectrum.

  14. Particle Acceleration in Pulsar Wind Nebulae: PIC Modelling

    Science.gov (United States)

    Sironi, Lorenzo; Cerutti, Benoît

    We discuss the role of PIC simulations in unveiling the origin of the emitting particles in PWNe. After describing the basics of the PIC technique, we summarize its implications for the quiescent and the flaring emission of the Crab Nebula, as a prototype of PWNe. A consensus seems to be emerging that, in addition to the standard scenario of particle acceleration via the Fermi process at the termination shock of the pulsar wind, magnetic reconnection in the wind, at the termination shock and in the Nebula plays a major role in powering the multi-wavelength signatures of PWNe.

  15. Synchronous motion of a relativistic particles in the wave propagating at the angle to a magnetic field

    International Nuclear Information System (INIS)

    Milant'ev, V.P.

    1996-01-01

    It is shown that within the transverse or the longitudinal wave propagating at the angle to the magnetic field there is a specific mode of motion of relativistic particle called as a synchronous one where the condition of a particle resonance with the wave is realized with increasing accuracy with increase of particle energy. A trend to the unlimited acceleration is detected in a synchronous mode of the Cherenkov resonance. 21 refs

  16. Constraining sources of ultrahigh energy cosmic rays and shear acceleration mechanism of particles in relativistic jets

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Ruoyu

    2015-06-10

    Ultrahigh energy cosmic rays are extreme energetic particles from outer space. They have aroused great interest among scientists for more than fifty years. However, due to the rarity of the events and complexity of the process of their propagation to Earth, they are still one of the biggest puzzles in modern high energy astrophysics. This dissertation is dedicated to study the origin of ultrahigh energy cosmic rays from various aspects. Firstly, we discuss a possible link between recently discovered sub-PeV/PeV neutrinos and ultrahigh energy cosmic rays. If these two kinds of particles share the same origin, the observation of neutrinos may provide additional and non-trivial constraints on the sources of ultrahigh energy cosmic rays. Secondly, we jointly employ the chemical composition measurement and the arrival directions of ultrahigh energy cosmic rays, and find a robust upper limit for distances of sources of ultrahigh energy cosmic rays above ∝55 EeV, as well as a lower limit for their metallicities. Finally, we study the shear acceleration mechanism in relativistic jets, which is a more efficient mechanism for the acceleration of higher energy particle. We compute the acceleration efficiency and the time-dependent particle energy spectrum, and explore the feature of synchrotron radiation of the accelerated particles. The possible realizations of this mechanism for acceleration of ultrahigh energy cosmic rays in different astrophysical environments is also discussed.

  17. Gravitational waves from a spinning particle scattered by a relativistic star: Axial mode case

    International Nuclear Information System (INIS)

    Tominaga, Kazuhiro; Saijo, Motoyuki; Maeda, Kei-ichi

    2001-01-01

    We use a perturbation method to study gravitational waves from a spinning test particle scattered by a relativistic star. The present analysis is restricted to axial modes. By calculating the energy spectrum, the wave forms, and the total energy and angular momentum of gravitational waves, we analyze the dependence of the emitted gravitational waves on particle spin. For a normal neutron star, the energy spectrum has one broad peak whose characteristic frequency corresponds to the angular velocity at the turning point (a periastron). Since the turning point is determined by the orbital parameter, there exists a dependence of the gravitational wave on particle spin. We find that the total energy of l=2 gravitational waves gets larger as the spin increases in the antiparallel direction to the orbital angular momentum. For an ultracompact star, in addition to such an orbital contribution, we find the quasinormal modes excited by a scattered particle, whose excitation rate to gravitational waves depends on the particle spin. We also discuss the ratio of the total angular momentum to the total energy of gravitational waves and explain its spin dependence

  18. On the theory of the relativistic motion of a charged particle in the field of intense electromagnetic radiation

    Energy Technology Data Exchange (ETDEWEB)

    Milant' ev, V. P., E-mail: vmilantiev@sci.pfu.edu.ru; Castillo, A. J., E-mail: vmilant@mail.ru [Peoples' Friendship University of Russia (Russian Federation)

    2013-04-15

    Averaged relativistic equations of motion of a charged particle in the field of intense electromagnetic radiation have been obtained in the geometrical optics approximation using the Bogoliubov method. Constraints are determined under which these equations are valid. Oscillating additions to the smoothed dynamical variables of the particle have been found; they are reduced to known expressions in the case of the circularly and linearly polarized plane waves. It has been shown that the expressions for the averaged relativistic force in both cases contain new additional small terms weakening its action. The known difference between the expressions for the ponderomotive force in the cases of circularly and linearly polarized waves has been confirmed.

  19. Magnetic Field Generation, Particle Energization and Radiation at Relativistic Shear Boundary Layers

    Science.gov (United States)

    Liang, Edison; Fu, Wen; Spisak, Jake; Boettcher, Markus

    2015-11-01

    Recent large scale Particle-in-Cell (PIC) simulations have demonstrated that in unmagnetized relativistic shear flows, strong transverse d.c. magnetic fields are generated and sustained by ion-dominated currents on the opposite sides of the shear interface. Instead of dissipating the shear flow free energy via turbulence formation and mixing as it is usually found in MHD simulations, the kinetic results show that the relativistic boundary layer stabilizes itself via the formation of a robust vacuum gap supported by a strong magnetic field, which effectively separates the opposing shear flows, as in a maglev train. Our new PIC simulations have extended the runs to many tens of light crossing times of the simulation box. Both the vacuum gap and supporting magnetic field remain intact. The electrons are energized to reach energy equipartition with the ions, with 10% of the total energy in electromagnetic fields. The dominant radiation mechanism is similar to that of a wiggler, due to oscillating electron orbits around the boundary layer.

  20. Supernova ejecta with a relativistic wind from a central compact object: a unified picture for extraordinary supernovae

    Science.gov (United States)

    Suzuki, Akihiro; Maeda, Keiichi

    2017-04-01

    The hydrodynamical interaction between freely expanding supernova ejecta and a relativistic wind injected from the central region is studied in analytic and numerical ways. As a result of the collision between the ejecta and the wind, a geometrically thin shell surrounding a hot bubble forms and expands in the ejecta. We use a self-similar solution to describe the early dynamical evolution of the shell and carry out a two-dimensional special relativistic hydrodynamic simulation to follow further evolution. The Rayleigh-Taylor instability inevitably develops at the contact surface separating the shocked wind and ejecta, leading to the complete destruction of the shell and the leakage of hot gas from the hot bubble. The leaking hot materials immediately catch up with the outermost layer of the supernova ejecta and thus different layers of the ejecta are mixed. We present the spatial profiles of hydrodynamical variables and the kinetic energy distributions of the ejecta. We stop the energy injection when a total energy of 1052 erg, which is 10 times larger than the initial kinetic energy of the supernova ejecta, is deposited into the ejecta and follow the subsequent evolution. From the results of our simulations, we consider expected emission from supernova ejecta powered by the energy injection at the centre and discuss the possibility that superluminous supernovae and broad-lined Ic supernovae could be produced by similar mechanisms.

  1. Curci-Ferrari-type condition in Hamiltonian formalism: A free spinning relativistic particle

    Science.gov (United States)

    Shukla, A.; Bhanja, T.; Malik, R. P.

    2013-03-01

    The Curci-Ferrari (CF)-type restriction emerges in the description of a free spinning relativistic particle within the framework of the Becchi-Rouet-Stora-Tyutin (BRST) formalism when the off-shell nilpotent and absolutely anticommuting (anti-)BRST symmetry transformations for this system are derived from the application of the horizontality condition (HC) and its supersymmetric generalization (SUSY-HC) within the framework of the superfield formalism. We show that the above CF condition, which turns out to be the secondary constraint of our present theory, remains time-evolution invariant within the framework of Hamiltonian formalism. This time-evolution invariance i) physically justifies the imposition of the (anti-)BRST invariant CF-type condition on this system, and ii) mathematically implies the linear independence of BRST and anti-BRST symmetries of our present theory.

  2. Causal wave propagation for relativistic massive particles: physical asymptotics in action

    International Nuclear Information System (INIS)

    Berry, M V

    2012-01-01

    Wavepackets representing relativistic quantum particles injected into a half-space, from a source that is switched on at a definite time, are represented by superpositions of plane waves that must include negative frequencies. Propagation is causal: it is a consequence of analyticity that at time t no part of the wave has travelled farther than ct, corresponding to the front of the signal. Nevertheless, interference fringes behind the front travel superluminally. For Klein-Gordon and Dirac wavepackets, the spatially integrated density increases because current is injected at the boundary. Even in the simplest causal model, understanding the shape of the wave after long times is an instructive exercise in the asymptotics of integrals, illustrating several techniques at a level suitable for graduate students; different spatial features involve contributions from a pole and from two saddle points, the uniform asymptotics for the pole close to a saddle, and the coalescence of two saddles into the Sommerfeld precursor immediately behind the front. (paper)

  3. Particle production and Boltzmann integral form of relativistic quantum transport theory

    International Nuclear Information System (INIS)

    Rafelski, J.; Davis, E.D.; Bialynicki-Birula, I.

    1993-01-01

    The 3+3+1 dimensional relativistic quantum transport equation for the fermion matter field, combines the particle pair production with flow phenomena, which occur at very different time scale. A direct numerical treatment of dynamical situations is therefore practically impossible. The authors attempt a seperation of these two sectors by the method of prediagonalization of the integral equations. They exploit the structure of the resolvent of the transport equations: it contains two poles corresponding to the flow sector and two to the pair production sector. Their hope for practical applications is to treat matter flow as a classical phenomenon and to be able to obtain an integral term describing the pair production accurately

  4. Constrained dynamics of two interacting relativistic particles in the Faddeev-Jackiw symplectic framework

    Science.gov (United States)

    Rodríguez-Tzompantzi, Omar

    2018-05-01

    The Faddeev-Jackiw symplectic formalism for constrained systems is applied to analyze the dynamical content of a model describing two massive relativistic particles with interaction, which can also be interpreted as a bigravity model in one dimension. We systematically investigate the nature of the physical constraints, for which we also determine the zero-modes structure of the corresponding symplectic matrix. After identifying the whole set of constraints, we find out the transformation laws for all the set of dynamical variables corresponding to gauge symmetries, encoded in the remaining zero modes. In addition, we use an appropriate gauge-fixing procedure, the conformal gauge, to compute the quantization brackets (Faddeev-Jackiw brackets) and also obtain the number of physical degree of freedom. Finally, we argue that this symplectic approach can be helpful for assessing physical constraints and understanding the gauge structure of theories of interacting spin-2 fields.

  5. Identification of relativistic charged particles by means of ionisation energy loss in proportional counters

    International Nuclear Information System (INIS)

    Bateman, J.E.

    1978-12-01

    A method is described of obtaining a useful degree of improvement in the particle discrimination capability of multiwire proportional counters. The normal multiple sampling technique using a suitable bias to combat the small magnitude of the relativistic rise in the ionization energy loss and the wide pulse height distributions obtained in thin gas counters requires a large number of samples for useful discrimination. In the method reported, this number is reduced by suppressing the delta ray contribution to the total charge pulse from the anode wire. A monte carlo model convoluting the 'delta ray suppressed' data from a one sample detector shows that when it is required to separate pions and electrons at 1 GeV/C with a detection efficiency for the electron of 90%, a 'suppressor' circuit can achieve a pion rejection ratio of 250:1 with 82 samples, whereas the truncated mean approach (lowest 70% of samples) requires 100 samples. (UK)

  6. On the radiation emitted by a particle falling into a black hole in the semi-relativistic approximation

    International Nuclear Information System (INIS)

    Coretti, C.; Ferrari, V.

    1986-01-01

    In this paper the limits of applicability of the semi-relativistic approximation for estimating the radiation emitted in processes of capture of particles by black holes are discussed. It is shown that it gives reliable estimates in the case of spherically symmetric black holes, but it fails in the case of rotating black holes

  7. Transport of transient solar wind particles in Earth's cusps

    International Nuclear Information System (INIS)

    Parks, G. K.; Lee, E.; Teste, A.; Wilber, M.; Lin, N.; Canu, P.; Dandouras, I.; Reme, H.; Fu, S. Y.; Goldstein, M. L.

    2008-01-01

    An important problem in space physics still not understood well is how the solar wind enters the Earth's magnetosphere. Evidence is presented that transient solar wind particles produced by solar disturbances can appear in the Earth's mid-altitude (∼5 R E geocentric) cusps with densities nearly equal to those in the magnetosheath. That these are magnetosheath particles is established by showing they have the same ''flattop'' electron distributions as magnetosheath electrons behind the bow shock. The transient ions are moving parallel to the magnetic field (B) toward Earth and often coexist with ionospheric particles that are flowing out. The accompanying waves include electromagnetic and broadband electrostatic noise emissions and Bernstein mode waves. Phase-space distributions show a mixture of hot and cold electrons and multiple ion species including field-aligned ionospheric O + beams

  8. Manifestation of solar activity in solar wind particle flux density

    International Nuclear Information System (INIS)

    Kovalenko, V.A.

    1988-01-01

    An analysis has been made of the origin of long-term variations in flux density of solar wind particles (nv) for different velocity regimes. The study revealed a relationship of these variations to the area of the polar coronal holes (CH). It is shown that within the framework of the model under development, the main longterm variations of nv are a result of the latitude redistribution of the solar wind mass flux in the heliosphere and are due to changes in the large-scale geometry of the solar plasma flow in the corona. A study has been made of the variations of nv for high speed solar wind streams. It is found that nv in high speed streams which are formed in CH, decreases from minimum to maximum solar activity. The analysis indicates that this decrease is attributable to the magnetic field strength increase in coronal holes. It has been found that periods of rapid global changes of background magnetic fields on the Sun are accompanied by a reconfiguration of coronal magnetic fields, rapid changes in the length of quiescent filaments, and by an increase in the density of the particle flux of a high speed solar wind. It has been established that these periods precede the formation of CH, corresponding to the increase in solar wind velocity near the Earth and to enhancement of the level of geomagnetic disturbance. (author)

  9. Exact solution of the relativistic Coulomb problem for two-particle bound states in the quasipotential approach

    International Nuclear Information System (INIS)

    Kapshay, V.N.; Skachkov, N.B.

    1979-01-01

    A composite system of two relativistic particles is studied on the basis of the Kadyshevsky quasipotential equation, in which the ''Coulomb'' potential is taken in the form of a propagator of the massless-scalar-particle exchange. The obtained exact solutions to this equation are shown to be a geometrical generalization of nonrelativistic Coulomb wave functions in the sense of change of the Euclidean geometry of momentum space to the Lobachevsky geometry

  10. The acceleration of particles by relativistic electron plasma waves driven by the optical mixing of laser light in a plasma

    International Nuclear Information System (INIS)

    Ebrahim, N.A.; Douglas, S.R.

    1992-03-01

    Electron acceleration by relativistic large-amplitude electron plasma waves is studied by theory and particle simulations. The maximum acceleration that can be obtained from this process depends on many different factors. This report presents a study of how these various factors impact on the acceleration mechanism. Although particular reference is made to the laser plasma beatwave concept, the study is equally relevant to the acceleration of particles in the plasma wakefield accelerator and the laser wakefield accelerator

  11. Particle acceleration and reconnection in the solar wind

    Energy Technology Data Exchange (ETDEWEB)

    Zank, G. P.; Hunana, P.; Mostafavi, P.; Le Roux, J. A.; Webb, G. M. [Center for Space Plasma and Aeronomic Research (CSPAR), University of Alabama, Huntsville, AL 35805 (United States); Department of Space Science, University of Alabama, Huntsville, AL 35899 (United States); Khabarova, O. [Heliophysical Laboratory, IZMIRAN, Troitsk, Moscow 142190 (Russian Federation); Cummings, A. C.; Stone, E. C. [California Institute of Technology, Mail Code 290-17, Pasadena, CA 91125 (United States); Decker, R. B. [Johns Hopkins University/Applied Physics Lab., Laurel, MD 20723-6099 (United States)

    2016-03-25

    An emerging paradigm for the dissipation of magnetic turbulence in the supersonic solar wind is via localized quasi-2D small-scale magnetic island reconnection processes. An advection-diffusion transport equation for a nearly isotropic particle distribution describes particle transport and energization in a region of interacting magnetic islands [1; 2]. The dominant charged particle energization processes are 1) the electric field induced by quasi-2D magnetic island merging, and 2) magnetic island contraction. The acceleration of charged particles in a “sea of magnetic islands” in a super-Alfvénic flow, and the energization of particles by combined diffusive shock acceleration (DSA) and downstream magnetic island reconnection processes are discussed.

  12. Particle acceleration via reconnection processes in the supersonic solar wind

    International Nuclear Information System (INIS)

    Zank, G. P.; Le Roux, J. A.; Webb, G. M.; Dosch, A.; Khabarova, O.

    2014-01-01

    An emerging paradigm for the dissipation of magnetic turbulence in the supersonic solar wind is via localized small-scale reconnection processes, essentially between quasi-2D interacting magnetic islands. Charged particles trapped in merging magnetic islands can be accelerated by the electric field generated by magnetic island merging and the contraction of magnetic islands. We derive a gyrophase-averaged transport equation for particles experiencing pitch-angle scattering and energization in a super-Alfvénic flowing plasma experiencing multiple small-scale reconnection events. A simpler advection-diffusion transport equation for a nearly isotropic particle distribution is derived. The dominant charged particle energization processes are (1) the electric field induced by quasi-2D magnetic island merging and (2) magnetic island contraction. The magnetic island topology ensures that charged particles are trapped in regions where they experience repeated interactions with the induced electric field or contracting magnetic islands. Steady-state solutions of the isotropic transport equation with only the induced electric field and a fixed source yield a power-law spectrum for the accelerated particles with index α = –(3 + M A )/2, where M A is the Alfvén Mach number. Considering only magnetic island contraction yields power-law-like solutions with index –3(1 + τ c /(8τ diff )), where τ c /τ diff is the ratio of timescales between magnetic island contraction and charged particle diffusion. The general solution is a power-law-like solution with an index that depends on the Alfvén Mach number and the timescale ratio τ diff /τ c . Observed power-law distributions of energetic particles observed in the quiet supersonic solar wind at 1 AU may be a consequence of particle acceleration associated with dissipative small-scale reconnection processes in a turbulent plasma, including the widely reported c –5 (c particle speed) spectra observed by Fisk and Gloeckler

  13. Radiation dominated relativistic current sheets

    International Nuclear Information System (INIS)

    Jaroschek, C.H.

    2008-01-01

    Relativistic Current Sheets (RCS) feature plasma instabilities considered as potential key to magnetic energy dissipation and non-thermal particle generation in Poynting flux dominated plasma flows. We show in a series of kinetic plasma simulations that the physical nature of non-linear RCS evolution changes in the presence of incoherent radiation losses: In the ultra-relativistic regime (i.e. magnetization parameter sigma = 104 defined as the ratio of magnetic to plasma rest frame energy density) the combination of non-linear RCS dynamics and synchrotron emission introduces a temperature anisotropy triggering the growth of the Relativistic Tearing Mode (RTM). As direct consequence the RTM prevails over the Relativistic Drift Kink (RDK) Mode as competitive RCS instability. This is in contrast to the previously studied situation of weakly relativistic RCS (sigma ∼ 1) where the RDK is dominant and most of the plasma is thermalized. The simulations witness the typical life cycle of ultra-relativistic RCS evolving from a violent radiation induced collapse towards a radiation quiescent state in rather classical Sweet-Parker topology. Such a transition towards Sweet-Parker configuration in the late non-linear evolution has immediate consequences for the efficiency of magnetic energy dissipation and non-thermal particle generation. Ceasing dissipation rates directly affect our present understanding of non-linear RCS evolution in conventional striped wind scenarios. (author)

  14. Relativistic alpha-particles emitted in Fe-emulsion interactions at 1.7 A GeV

    International Nuclear Information System (INIS)

    Bhalla, K.B.; Chaudhry, M.; Lokanathan, S.; Grover, R.K.; Daftari, I.K.; Mangotra, L.L.; Rao, N.K.; Garpman, S.; Otterlund, I.

    1981-02-01

    Relativistic α-particles have been studied in 423 Fe-emulsion interactions at 1.7 A Gev. Comparisons of the observed angular distribution with that from 16 O-emulsion reactions at 2.1 A GeV reveal that more α particles are observed at large angles in the Fe-emulsion reactions. The α particles with large angles connot be explained by fragmentation from a clean cut spectator. Comparison of the experimental data with moving relativistic Boltzmann distributions shows that a single Boltzmann distribution cannot fit the fragmentation peak and the tail simultaneously. A thermal source (fireball) explaining the tail part of the distribution need to be formed by a mechanism other than simple clean cut participant-spectator picture. A large transverse momentum transfer to spectator before fragmentation may explain the tail. (author)

  15. Coherent quantum states of a relativistic particle in an electromagnetic plane wave and a parallel magnetic field

    International Nuclear Information System (INIS)

    Colavita, E.; Hacyan, S.

    2014-01-01

    We analyze the solutions of the Klein–Gordon and Dirac equations describing a charged particle in an electromagnetic plane wave combined with a magnetic field parallel to the direction of propagation of the wave. It is shown that the Klein–Gordon equation admits coherent states as solutions, while the corresponding solutions of the Dirac equation are superpositions of coherent and displaced-number states. Particular attention is paid to the resonant case in which the motion of the particle is unbounded. -- Highlights: •We study a relativistic electron in a particular electromagnetic field configuration. •New exact solutions of the Klein–Gordon and Dirac equations are obtained. •Coherent and displaced number states can describe a relativistic particle

  16. Control of particle precipitation by energy transfer from solar wind

    Science.gov (United States)

    Bremer, J.; Gernandt, H.

    1985-12-01

    The energy transfer function (epsilon), introduced by Perreault and Akasofu (1978), appears to be well suited for the description of the long-term control of the particle precipitation by interplanetary parameters. An investigation was conducted with the objective to test this control in more detail. This investigation included the calculation of hourly epsilon values on the basis of satellite-measured solar wind and IMF (interplanetary magnetic field) data. The results were compared with corresponding geomagnetic and ionospheric data. The ionospheric data had been obtained by three GDR (German Democratic Republic) teams during the 21st, 22nd, and 23rd Soviet Antarctic Expeditions in the time period from 1976 to 1979. It was found that, in high latitudes, the properties of the solar wind exercise a pronounced degree of control on the precipitation of energetic particles into the atmosphere, taking into account a time delay of about one hour due to the occurrence of magnetospheric storage processes.

  17. A study on the effects of relativistic heavy charged particles on the cellular microenvironment

    Science.gov (United States)

    Costes, Sylvain Vincent

    This study was done under the National Aeronautics Space Administration (NASA) effort to assess the effect of cosmic radiation on astronauts during a 3 year mission to Mars. Carcinogenesis is known to be induced more efficiently by cosmic radiation. Our attention was turned towards one of the most efficient cosmic particles in inducing cancer, relativistic Fe, and focused in assessing its effect on the cellular microenvironment (ECM). Previous observations on mammary glands were showing irregularities in the immunoreactivity of the ECM protein laminin one hour after whole body irradiation with 1GeV/amu Fe ions for a dose of 0.8 Gy. This effect was not observed after 5 Gy γ-rays exposure. The rapidity of such a change suggested that the effect might be due to a physical event specific to relativistic charged particles (HZE), rather than a biological event. Our study showed that this effect is actually a complex and rapid response of the microenvironment to highly ionizing radiation. It involves a fast disruption of the basement membrane of the ECM induced by the highly localized ionization and reactive oxygen formation around the track of the Fe ion. This disruption triggers further chemical and biological responses involved in the remodeling of the laminin network in the basement membrane. A metalloproteinase is suspected to be the intermediate protease affecting laminin. The HZE effect on the microenvironment was seen in both mouse mammary glands and skin, but the laminin isoforms sensitive to Fe ions were different for each organ, with a clear disruption of laminin-1 network in skin and of laminin-5 in mammary glands. In addition, the laminin receptor integrins seem to be involved in this mechanism, but its contribution is unclear at this point. Finally, such studies suggest a shift from the concept of relative biological effectiveness (RBE) used in classical radiation biology since the effect is only seen with HZE at viable whole body doses. In addition, this

  18. Relativistic local quantum field theory for m=0 particles; Campos cuanticos locales relativos a particulas de masa no nula

    Energy Technology Data Exchange (ETDEWEB)

    Morales Villasevil, A

    1965-07-01

    A method is introduced ta deal with relativistic quantum field theory for particles with m=0. Two mappings I and J, giving rise respectively to particle and anti particle states, are defined between a test space and the physical Hilbert space. The intrinsic field operator is then defined as the minimal causal linear combinations of operators belonging to the annihilation-creation algebra associated to the germ and antigerm parts of the element. Local elements are introduced as improper test elements and local field operators are constructed in the same way as the intrinsic ones. Commutation rules are given. (Author) 17 refs.

  19. Dynamical properties for the problem of a particle in an electric field of wave packet: Low velocity and relativistic approach

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Diego F.M., E-mail: diegofregolente@gmail.com [Institute for Multiscale Simulations, Friedrich-Alexander Universität, D-91052, Erlangen (Germany); Leonel, Edson D., E-mail: edleonel@rc.unesp.br [Departamento de Estatística, Matemática Aplicada e Computação, UNESP, Univ. Estadual Paulista, Av. 24A, 1515, Bela Vista, 13506-900, Rio Claro, SP (Brazil); Departamento de Física, UNESP, Univ. Estadual Paulista, Av. 24A, 1515, 13506-900, Rio Claro, SP (Brazil)

    2012-11-01

    We study some dynamical properties for the problem of a charged particle in an electric field considering both the low velocity and relativistic cases. The dynamics for both approaches is described in terms of a two-dimensional and nonlinear mapping. The structure of the phase spaces is mixed and we introduce a hole in the chaotic sea to let the particles to escape. By changing the size of the hole we show that the survival probability decays exponentially for both cases. Additionally, we show for the relativistic dynamics, that the introduction of dissipation changes the mixed phase space and attractors appear. We study the parameter space by using the Lyapunov exponent and the average energy over the orbit and show that the system has a very rich structure with infinite family of self-similar shrimp shaped embedded in a chaotic region.

  20. Gravitational radiation from the radial infall of highly relativistic point particles into Kerr black holes

    International Nuclear Information System (INIS)

    Cardoso, Vitor; Lemos, Jose P.S.

    2003-01-01

    In this paper, we consider the gravitational radiation generated by the collision of highly relativistic particles with rotating Kerr black holes. We use the Sasaki-Nakamura formalism to compute the waveform, energy spectra, and total energy radiated during this process. We show that the gravitational spectrum for high-energy collisions has definite characteristic universal features, which are independent of the spin of the colliding objects. We also discuss the possible connections between these results and black-hole-black-hole collisions at the speed of light. Our results show that during the high-speed collision of a nonrotating hole with a rotating one, at most 35% of the total energy can get converted into gravitational waves. This 35% efficiency occurs only in the most optimistic situation, that of a zero impact parameter collision, along the equatorial plane, with an almost extreme Kerr black hole. In the general situation, the total gravitational energy radiated is expected to be much less, especially if the impact parameter increases. Thus, if one is able to produce black holes at the CERN Large Hadron Collider, at most 35% of the partons' energy should be emitted during the so-called balding phase. This energy will be missing, since we do not have gravitational wave detectors able to measure such amplitudes. The collision at the speed of light between one rotating black hole and a nonrotating one or two rotating black holes turns out to be the most efficient gravitational wave generator in the Universe

  1. Inclusive characteristics of the nuclear target fragmentation products induced by relativistic particles

    International Nuclear Information System (INIS)

    Bogatin, V.I.; Ganza, E.A.; Lozhkin, O.V.; Murin, Yu.A.; Oplavin, V.S.; Perfilov, N.A.; Yakovlev, Yu.P.

    1981-01-01

    An experimental investigation of inclusive characteristics of nuclei-target fragmentation is conducted for further development and test of physical value of the earlier suggested nuclear fragmentation model based on the connection of the fragmentation with fluctuations of the quasiparticle density in the two-component quantum liquid, an experimental investigation of the inclusive characteristics of the nuclei-target fragmentation is carried out. The processes of sup(3, 4, 6, 8)He and sup(6, 7, 8, 9, 11)Li fragment formation during the interaction of relativistic protons (Esub(p)=6.7 GeV) and deutrons (Esub(d)=3.1 GeV) with 112 Sn and 124 Sn isotopes are studied by the method of semiconductive ΔE-E detectors. Differential energy spectra of fragments and isotopic ratio of cross sections of their formation as well as data on the dependence of isotopic ratios of fragmentation cross sections on the energy of incident particles and on the fragment energy are obtained. Presented is a phenomenological model of fragmentation within the frames of which the obtained experimental data are analyzed [ru

  2. Relativistic theory of particles in a scattering flow III: photon transport.

    Science.gov (United States)

    Achterberg, A.; Norman, C. A.

    2018-06-01

    We use the theory developed in Achterberg & Norman (2018a) and Achterberg & Norman (2018b) to calculate the stress due to photons that are scattered elastically by a relativistic flow. We show that the energy-momentum tensor of the radiation takes the form proposed by Eckart (1940). In particular we show that no terms associated with a bulk viscosity appear if one makes the diffusion approximation for radiation transport and treats the radiation as a separate fluid. We find only shear (dynamic) viscosity terms and heat flow terms in our expression for the energy-momentum tensor. This conclusion holds quite generally for different forms of scattering: Krook-type integral scattering, diffusive (Fokker-Planck) scattering and Thomson scattering. We also derive the transport equation in the diffusion approximation that shows the effects of the flow on the photon gas in the form of a combination of adiabatic heating and an irreversible heating term. We find no diffusive changes to the comoving number density and energy density of the scattered photons, in contrast with some published results in Radiation Hydrodynamics. It is demonstrated that these diffusive corrections to the number- and energy density of the photons are in fact higher-order terms that can (and should) be neglected in the diffusion approximation. Our approach eliminates these terms at the root of the expansion that yields the anisotropic terms in the phase-space density of particles and photons, the terms responsible for the photon viscosity.

  3. Relativistic three-particle dynamical equations: II. Application to the trinucleon system

    International Nuclear Information System (INIS)

    Adhikari, S.K.; Tomio, L.

    1993-11-01

    The contribution of relativistic dynamics on the neutron-deuteron scattering length and triton binding energy is calculated employing five sets tri nucleon potential models and four types of three-dimensional relativistic three-body equations suggested in the preceding paper. The relativistic correction to binding energy may vary a lot and even change sign depending on the relativistic formulation employed. The deviations of these observables from those obtained in nonrelativistic models follow the general universal trend of deviations introduced by off- and on-shell variations of two- and three-nucleon potentials in a nonrelativistic model calculation. Consequently, it will be difficult to separate unambiguously the effect of off-and on-shell variations of two and three-nucleon potentials on low-energy three-nucleon observables from the effect of relativistic dynamics. (author)

  4. A novel transition radiation detector utilizing superconducting microspheres for measuring the energy of relativistic high-energy charged particles

    International Nuclear Information System (INIS)

    Yuan, Luke C.L.; Chen, C.P.; Huang, C.Y.; Lee, S.C.; Waysand, G.; Perrier, P.; Limagne, D.; Jeudy, V.; Girard, T.

    2000-01-01

    A novel transition radiation detector (TRD) utilizing superheated superconducting microspheres of tin of 22-26, 27-32 and 32-38 μm in diameter, respectively, has been constructed which is capable of measuring accurately the energy of relativistic high-energy charged particles. The test has been conducted in a high-energy electron beam facility at the CERN PS in the energy range of 1-10 GeV showing an energy dependence of the TR X-ray photon produced and hence the value γ=E/mc 2 of the charged particle

  5. Covariant spinor representation of iosp(d,2/2) and quantization of the spinning relativistic particle

    Energy Technology Data Exchange (ETDEWEB)

    Jarvis, P.D.; Corney, S.P.; Tsohantjis, I. [School of Mathematics and Physics, University of Tasmania, Hobart Tas (Australia)

    1999-12-03

    A covariant spinor representation of iosp(d,2/2) is constructed for the quantization of the spinning relativistic particle. It is found that, with appropriately defined wavefunctions, this representation can be identified with the state space arising from the canonical extended BFV-BRST quantization of the spinning particle with admissible gauge fixing conditions after a contraction procedure. For this model, the cohomological determination of physical states can thus be obtained purely from the representation theory of the iosp(d,2/2) algebra. (author)

  6. Explaining the Diverse Response of the Ultra-relativistic Van Allen Radiation Belt to Solar Wind Forcing

    Science.gov (United States)

    Mann, I. R.; Ozeke, L.; Murphy, K. R.; Claudepierre, S. G.; Rae, J.; Milling, D. K.; Kale, A.; Baker, D. N.

    2017-12-01

    The NASA Van Allen Probes have opened a new window on the dynamics of ultra-relativistic electrons in the Van Allen radiation belts. Under different solar wind forcing the outer belt is seen to respond in a variety of apparently diverse and sometimes remarkable ways. For example, sometimes a third radiation belt is carved out (e.g., September 2012), or the belts can remain depleted for 10 days or more (September 2014). More usually there is a sequential response of a strong and sometimes rapid depletion followed by a re-energization, the latter increasing outer belt electron flux by orders of magnitude on hour timescales during some of the strongest storms of this solar cycle (e.g., March 2013, March 2015). Such dynamics also appear to be often bounded at low-L by an apparently impenetrable barrier at L 2.8 through which ultra-relativistic electrons do not penetrate. Many studies in the Van Allen Probes era have sought explanations for these apparently diverse features, often incorporating the effects from multiple plasma waves. In contrast, we show how this apparently diverse behaviour can instead be explained by one dominant process: ULF wave radial transport. Once ULF wave transport rates are accurately specified by observations, and coupled to the dynamical variation of the outer boundary condition at the edge of the outer belt, the observed diverse responses can all be explained. However, in order to get good agreement with observations, the modeling reveals the importance of still currently unexplained very fast loss in the main phase which results in an almost total extinction of the belts and decouples pre- and post-storm ultra-relativistic electron flux on hour timescales. Similarly, varying plasmasheet source populations are seen to be of critical importance such that near-tail dynamics play a crucial role in Van Allen belt dynamics. Nonetheless, simple models incorporating accurate transport rates derived directly from ULF wave measurements are shown to

  7. Particle production in high energy collisions and the non-relativistic quark model

    International Nuclear Information System (INIS)

    Anisovich, V.V.; Nyiri, J.

    1981-07-01

    The present review deals with multiparticle production processes at high energies using ideas which originate in the non-relativistic quark model. Consequences of the approach are considered and they are compared with experimental data. (author)

  8. Propagation of localized structures in relativistic magnetized electron-positron plasmas using particle-in-cell simulations

    Energy Technology Data Exchange (ETDEWEB)

    López, Rodrigo A. [Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Concepción, Concepción 4070386 (Chile); Muñoz, Víctor [Departamento de Física, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago (Chile); Viñas, Adolfo F. [Geospace Physics Laboratory, Heliophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, Maryland 20771 (United States); Valdivia, Juan A. [Departamento de Física, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago (Chile); Centro para el Desarrollo de la Nanociencia y la Nanotecnología (CEDENNA), Santiago 9170124 (Chile)

    2015-09-15

    We use a particle-in-cell simulation to study the propagation of localized structures in a magnetized electron-positron plasma with relativistic finite temperature. We use as initial condition for the simulation an envelope soliton solution of the nonlinear Schrödinger equation, derived from the relativistic two fluid equations in the strongly magnetized limit. This envelope soliton turns out not to be a stable solution for the simulation and splits in two localized structures propagating in opposite directions. However, these two localized structures exhibit a soliton-like behavior, as they keep their profile after they collide with each other due to the periodic boundary conditions. We also observe the formation of localized structures in the evolution of a spatially uniform circularly polarized Alfvén wave. In both cases, the localized structures propagate with an amplitude independent velocity.

  9. Propagation of localized structures in relativistic magnetized electron-positron plasmas using particle-in-cell simulations

    International Nuclear Information System (INIS)

    López, Rodrigo A.; Muñoz, Víctor; Viñas, Adolfo F.; Valdivia, Juan A.

    2015-01-01

    We use a particle-in-cell simulation to study the propagation of localized structures in a magnetized electron-positron plasma with relativistic finite temperature. We use as initial condition for the simulation an envelope soliton solution of the nonlinear Schrödinger equation, derived from the relativistic two fluid equations in the strongly magnetized limit. This envelope soliton turns out not to be a stable solution for the simulation and splits in two localized structures propagating in opposite directions. However, these two localized structures exhibit a soliton-like behavior, as they keep their profile after they collide with each other due to the periodic boundary conditions. We also observe the formation of localized structures in the evolution of a spatially uniform circularly polarized Alfvén wave. In both cases, the localized structures propagate with an amplitude independent velocity

  10. Average profiles of the solar wind and outer radiation belt during the extreme flux enhancement of relativistic electrons at geosynchronous orbit

    Directory of Open Access Journals (Sweden)

    R. Kataoka

    2008-06-01

    Full Text Available We report average profiles of the solar wind and outer radiation belt during the extreme flux enhancement of relativistic electrons at geosynchronous orbit (GEO. It is found that seven of top ten extreme events at GEO during solar cycle 23 are associated with the magnetosphere inflation during the storm recovery phase as caused by the large-scale solar wind structure of very low dynamic pressure (<1.0 nPa during rapid speed decrease from very high (>650 km/s to typical (400–500 km/s in a few days. For the seven events, the solar wind parameters, geomagnetic activity indices, and relativistic electron flux and geomagnetic field at GEO are superposed at the local noon period of GOES satellites to investigate the physical cause. The average profiles support the "double inflation" mechanism that the rarefaction of the solar wind and subsequent magnetosphere inflation are one of the best conditions to produce the extreme flux enhancement at GEO because of the excellent magnetic confinement of relativistic electrons by reducing the drift loss of trapped electrons at dayside magnetopause.

  11. Particle transport patterns of short-distance soil erosion by wind-driven rain, rain and wind

    Science.gov (United States)

    Marzen, Miriam; Iserloh, Thomas; de Lima, João L. M. P.; Ries, Johannes B.

    2015-04-01

    Short distance erosion of soil surface material is one of the big question marks in soil erosion studies. The exact measurement of short-distance transported soil particles, prior to the occurrence of overland flow, is a challenge to soil erosion science due to the particular requirements of the experimental setup and test procedure. To approach a quantification of amount and distance of each type of transport, we applied an especially developed multiple-gutter system installed inside the Trier Portable Wind and Rainfall Simulator (PWRS). We measured the amount and travel distance of soil particles detached and transported by raindrops (splash), wind-driven rain (splash-saltation and splash-drift) and wind (saltation). The test setup included three different erosion agents (rain/ wind-driven rain/ wind), two substrates (sandy/ loamy), three surface structures (grain roughness/ rills lengthwise/ rills transversal) and three slope angles (0°/+7°/-7°). The results present detailed transport patterns of the three erosion agents under the varying soil and surface conditions up to a distance of 1.6 m. Under the applied rain intensity and wind velocity, wind-driven rain splash generates the highest erosion. The erodibility and travel distance of the two substrates depend on the erosion agent. The total erosion is slightly higher for the slope angle -7° (downslope), but for wind-driven rain splash, the inclination is not a relevant factor. The effect of surface structures (rills) changes with traveling distance. The wind driven rain splash generates a much higher amount of erosion and a further travel distance of the particles due to the combined action of wind and rain. The wind-driven rain factor appears to be much more significant than the other factors. The study highlights the effects of different erosion agents and surface parameters on short-distance particle transport and the powerful impact of wind-driven rain on soil erosion.

  12. Some studies of the relativistic theories for spin-3/2 particles and its interactions with an uniforme magnetic field

    International Nuclear Information System (INIS)

    Oliveira, M.A.B. de.

    1984-01-01

    We present our investigations on the problems of non-causality of propagation, at the c-number level, of four spin 3/2 theories in the Schroedinger form employing the minimum number of eight components, in interaction with a constant magnetic field. Analyzing first the basic formulations of free particle spin 3/2 relativistic wave equations, we deduze, extending to spin 3/2 Dirac's ''spin 1/2 factorization'' of the mas condition, a new eight-component relativistic wave equation in the Schroedinger form for this spin and prove its relativistic invariance. We demostrate explicitly that the entire content of the Rarita-Schwinger (RS) theory for spin 3/2 can be written in the form of two Dirac-Like wave equations. We demonstrate that our wave equation for spin 3/2 cab indeed be deduzed from a modified RS theory wherein both Hamiltonians above referred to are taken hermitian. We also establish, in a transparent maner, the equivalences existing between the formalisms of RS, Belinfante and Hurley-Sudarshan for spin 3/2. We investigate the c-number problem of the stationary state eigevalues of the spin 3/2 Hamiltonians in a constant external magnetic field, in the four theories in the Schoedinger form with eight components, those of Moldauer and Case (deduzed from TS theory), of Weaver, Hammer and Good. (autor) [pt

  13. Relativistic effects in the energy loss of a fast charged particle moving parallel to a two-dimensional electron gas

    Science.gov (United States)

    Mišković, Zoran L.; Akbari, Kamran; Segui, Silvina; Gervasoni, Juana L.; Arista, Néstor R.

    2018-05-01

    We present a fully relativistic formulation for the energy loss rate of a charged particle moving parallel to a sheet containing two-dimensional electron gas, allowing that its in-plane polarization may be described by different longitudinal and transverse conductivities. We apply our formulation to the case of a doped graphene layer in the terahertz range of frequencies, where excitation of the Dirac plasmon polariton (DPP) in graphene plays a major role. By using the Drude model with zero damping we evaluate the energy loss rate due to excitation of the DPP, and show that the retardation effects are important when the incident particle speed and its distance from graphene both increase. Interestingly, the retarded energy loss rate obtained in this manner may be both larger and smaller than its non-retarded counterpart for different combinations of the particle speed and distance.

  14. Investigation of the response of Lexan polycarbonate to relativistic ultra heavy nuclear particles

    CERN Document Server

    Keane, A J; O'Sullivan, D

    1999-01-01

    Recent investigations of the track response of Lexan to relativistic ultra heavy nuclei are reported. The inherent charge resolution of Lexan for relativistic ultra heavy nuclei under normal exposure conditions at accelerators has been investigated. The registration temperature effect was measured using gold (Z=79) at energies 2, 4 and 11 GeV/u covering a wide range of temperatures from -78 deg. C to +22 deg. C. In addition, the sensitivity of the track etch rate and the bulk etch rate to etch product concentration was re-examined.

  15. Investigation of the response of Lexan polycarbonate to relativistic ultra heavy nuclear particles

    International Nuclear Information System (INIS)

    Keane, A.J.; Thompson, A.; O'Sullivan, D.

    1999-01-01

    Recent investigations of the track response of Lexan to relativistic ultra heavy nuclei are reported. The inherent charge resolution of Lexan for relativistic ultra heavy nuclei under normal exposure conditions at accelerators has been investigated. The registration temperature effect was measured using gold (Z=79) at energies 2, 4 and 11 GeV/u covering a wide range of temperatures from -78 deg. C to +22 deg. C. In addition, the sensitivity of the track etch rate and the bulk etch rate to etch product concentration was re-examined

  16. Multiwavelength Observations of Relativistic Jets from General Relativistic Magnetohydrodynamic Simulations

    Directory of Open Access Journals (Sweden)

    Richard Anantua

    2018-03-01

    Full Text Available This work summarizes a program intended to unify three burgeoning branches of the high-energy astrophysics of relativistic jets: general relativistic magnetohydrodynamic (GRMHD simulations of ever-increasing dynamical range, the microphysical theory of particle acceleration under relativistic conditions, and multiwavelength observations resolving ever-decreasing spatiotemporal scales. The process, which involves converting simulation output into time series of images and polarization maps that can be directly compared to observations, is performed by (1 self-consistently prescribing models for emission, absorption, and particle acceleration and (2 performing time-dependent polarized radiative transfer. M87 serves as an exemplary prototype for this investigation due to its prominent and well-studied jet and the imminent prospect of learning much more from Event Horizon Telescope (EHT observations this year. Synthetic observations can be directly compared with real observations for observational signatures such as jet instabilities, collimation, relativistic beaming, and polarization. The simplest models described adopt the standard equipartition hypothesis; other models calculate emission by relating it to current density or shear. These models are intended for application to the radio jet instead of the higher frequency emission, the disk and the wind, which will be subjects of future investigations.

  17. Application of Advanced Particle Swarm Optimization Techniques to Wind-thermal Coordination

    DEFF Research Database (Denmark)

    Singh, Sri Niwas; Østergaard, Jacob; Yadagiri, J.

    2009-01-01

    wind-thermal coordination algorithm is necessary to determine the optimal proportion of wind and thermal generator capacity that can be integrated into the system. In this paper, four versions of Particle Swarm Optimization (PSO) techniques are proposed for solving wind-thermal coordination problem...

  18. Relativistic Treatment of Spinless Particles Subject to a Tietz-Wei Oscillator

    Institute of Scientific and Technical Information of China (English)

    孙国华; 董世海

    2012-01-01

    The bound state solutions of the relativistic Klein-Gordon equation with the Tietz-Wei diatomic molecular potential are presented for the s wave. It is shown that the solutions can be expressed by the generalized hypergeometric functions. The normalized wavefunctions are also derived.

  19. Numerical modeling of the pulsar wind interaction with ISM

    NARCIS (Netherlands)

    Bogovalov, S. V.; Chechetkin, V. M.; Koldoba, A. V.; Ustyugova, G. V.; Battiston, R; Shea, MA; Rakowski, C; Chatterjee, S

    2006-01-01

    Time dependent numerical simulation of relativistic wind interaction with interstellar medium was performed. The winds are ejected from magnetosphere of rotation powered pulsars. The particle flux in the winds is assumed to be isotropic. The energy flux is taken as strongly anisotropic in accordance

  20. Relativistic hydrodynamics

    CERN Document Server

    Luciano, Rezzolla

    2013-01-01

    Relativistic hydrodynamics is a very successful theoretical framework to describe the dynamics of matter from scales as small as those of colliding elementary particles, up to the largest scales in the universe. This book provides an up-to-date, lively, and approachable introduction to the mathematical formalism, numerical techniques, and applications of relativistic hydrodynamics. The topic is typically covered either by very formal or by very phenomenological books, but is instead presented here in a form that will be appreciated both by students and researchers in the field. The topics covered in the book are the results of work carried out over the last 40 years, which can be found in rather technical research articles with dissimilar notations and styles. The book is not just a collection of scattered information, but a well-organized description of relativistic hydrodynamics, from the basic principles of statistical kinetic theory, down to the technical aspects of numerical methods devised for the solut...

  1. Short-Term Wind Power Forecasting Using the Enhanced Particle Swarm Optimization Based Hybrid Method

    OpenAIRE

    Wen-Yeau Chang

    2013-01-01

    High penetration of wind power in the electricity system provides many challenges to power system operators, mainly due to the unpredictability and variability of wind power generation. Although wind energy may not be dispatched, an accurate forecasting method of wind speed and power generation can help power system operators reduce the risk of an unreliable electricity supply. This paper proposes an enhanced particle swarm optimization (EPSO) based hybrid forecasting method for short-term wi...

  2. Theoretical physics vol. 2. Quantum mechanics, relativistic quantum mechanics, quantum field theory, elementar-particle theory, thermodynamics and statistics

    International Nuclear Information System (INIS)

    Rebhan, E.

    2005-01-01

    The present second volume treats quantum mechanics, relativistic quantum mechanics, the foundations of quantum-field and elementary-particle theory as well as thermodynamics and statistics. Both volumes comprehend all fields, which are usually offered in a course about theoretical physics. In all treated fields a very careful introduction to the basic natural laws forms the starting point, whereby it is thoroughly analysed, which of them is based on empirics, which is logically deducible, and which role play basic definitions. Extendingly the matter extend of the corresponding courses starting from the relativistic quantum theory an introduction to the elementary particles is developed. All problems are very thoroughly and such extensively studied, that each step is singularly reproducible. On motivation and good understandability is cared much about. The mixing of mathematical difficulties with problems of physical nature often obstructive in the learning is so circumvented, that important mathematical methods are presented in own chapters (for instance Hilbert spaces, Lie groups). By means of many examples and problems (for a large part with solutions) the matter worked out is deepened and exercised. Developments, which are indeed important, but seem for the first approach abandonable, are pursued in excurses. This book starts from courses, which the author has held at the Heinrich-Heine university in Duesseldorf, and was in many repetitions fitted to the requirements of the students. It is conceived in such a way, that it is also after the study suited as dictionary or for the regeneration

  3. Optimized Placement of Wind Turbines in Large-Scale Offshore Wind Farm using Particle Swarm Optimization Algorithm

    DEFF Research Database (Denmark)

    Hou, Peng; Hu, Weihao; Soltani, Mohsen

    2015-01-01

    With the increasing size of wind farm, the impact of the wake effect on wind farm energy yields become more and more evident. The arrangement of the wind turbines’ (WT) locations will influence the capital investment and contribute to the wake losses which incur the reduction of energy production....... As a consequence, the optimized placement of the wind turbines may be done by considering the wake effect as well as the components cost within the wind farm. In this paper, a mathematical model which includes the variation of both wind direction and wake deficit is proposed. The problem is formulated by using...... Levelized Production Cost (LPC) as the objective function. The optimization procedure is performed by Particle Swarm Optimization (PSO) algorithm with the purpose of maximizing the energy yields while minimizing the total investment. The simulation results indicate that the proposed method is effective...

  4. Towards Extreme Field Physics: Relativistic Optics and Particle Acceleration in the Transparent-Overdense Regime

    Science.gov (United States)

    Hegelich, B. Manuel

    2011-10-01

    A steady increase of on-target laser intensity with also increasing pulse contrast is leading to light-matter interactions of extreme laser fields with matter in new physics regimes which in turn enable a host of applications. A first example is the realization of interactions in the transperent-overdense regime (TOR), which is reached by interacting a highly relativistic (a0 >10), ultra high contrast laser pulse [1] with a solid density target, turning it transparent to the laser by the relativistic mass increase of the electrons. Thus, the interactions becomes volumetric, increasing the energy coupling from laser to plasma, facilitating a range of effects, including relativistic optics and pulse shaping, mono-energetic electron acceleration [3], highly efficient ion acceleration in the break-out afterburner regime [4], and the generation of relativistic and forward directed surface harmonics. Experiments at the LANL 130TW Trident laser facility successfully reached the TOR, and show relativistic pulse shaping beyond the Fourier limit, the acceleration of mono-energetic ~40 MeV electron bunches from solid targets, forward directed coherent relativistic high harmonic generation >1 keV Break-Out Afterburner (BOA) ion acceleration of Carbon to >1 GeV and Protons to >100 MeV. Carbon ions were accelerated with a conversion efficiency of >10% for ions >20 MeV and monoenergetic carbon ions with an energy spread of ICF diagnostics over ion fast ignition to medical physics. Furthermore, TOR targets traverse a wide range of HEDP parameter space during the interaction ranging from WDM conditions (e.g. brown dwarfs) to energy densities of ~1011 J/cm3 at peak, then dropping back to the underdense but extremely hot parameter range of gamma-ray bursts. Whereas today this regime can only be accessed on very few dedicated facilities, employing special targets and pulse cleaning technology, the next generation of laser facilities will operate in this regime by default, turning its

  5. Excitation of atomic nuclei and atoms by relativistic charge particles bound in a one-dimensional potential

    International Nuclear Information System (INIS)

    Almaliev, A.N.; Batkin, I.S.; Kopytin, I.V.

    1987-01-01

    The process of exciting atoms and atomic nuclei by relativistic electrons and positrons bound in a one-dimensional potential is investigated theoretically. It is shown that a pole corresponding to the emergence of a virtual photon on a bulk surface occurs in the matrix interaction element under definite kinematic relationships. It is obtained that the probability of the excitation process depends on the lifetime of the level being excited, the virtual photon, and the charged particle in a definite energetic state. An estimate of the magnitude of the excitation section of low-lying nuclear states yields a value exceeding by several orders the section obtained for charged particles in the absence of a binding potential

  6. Relativistic Shock Acceleration

    International Nuclear Information System (INIS)

    Duffy, P.; Downes, T.P.; Gallant, Y.A.; Kirk, J.G.

    1999-01-01

    In this paper we briefly review the basic theory of shock waves in relativistic hydrodynamics and magneto-hydrodynamics, emphasising some astrophysically interesting cases. We then present an overview of the theory of particle acceleration at such shocks describing the methods used to calculate the spectral indices of energetic particles. Recent results on acceleration at ultra-relativistic shocks are discussed. (author)

  7. On the description of classical Einstein relativistic two-particle systems

    International Nuclear Information System (INIS)

    Aaberge, T.

    1978-01-01

    The author starts by considering the system of one free particle, and gives a sufficiently general description of this system to include the center of mass of systems of several particles. He then passes to the system of two particles. The coordinates separating the center of mass and the internal system are defined and the dynamics discussed. Finally the author outlines the construction of a more restrictive two-particle theory, and studies some consequences of the definition of a particle in an external field as a two-particle system in the limit where the mass of one of the particles becomes infinite. (Auth.)

  8. PREFACE: IARD 2012: 8th Biennial Conference on Classical and Quantum Relativistic Dynamics of Particles and Fields

    Science.gov (United States)

    Horwitz, L. P.; Land, Martin C.; Gill, Tepper; Lusanna, Luca; Salucci, Paolo

    2013-04-01

    Although the subject of relativistic dynamics has been explored, from both classical and quantum mechanical points of view, since the work of Einstein and Dirac, its most striking development has been in the framework of quantum field theory. The very accurate calculations of spectral and scattering properties, for example, of the anomalous magnetic moment of the electron and the Lamb shift in quantum electrodynamics, and many qualitative features of the strong and electroweak interactions, demonstrate the very great power of description achieved in this framework. Yet, many fundamental questions remain to be clarified, such as the structure of classical relativistic dynamical theories on the level of Hamilton and Lagrange in Minkowski space as well as on the curved manifolds of general relativity. There moreover remains the important question of the covariant classical description of systems at high energy for which particle production effects are not large, such as discussed in Synge's book, The Relativistic Gas, and in Balescu's book on relativistic statistical mechanics. In recent years, the study of high energy plasmas and heavy ion collisions has emphasized the importance of developing the techniques of relativistic mechanics. The results of Lindner et al [Physical Review Letters 95 0040401 (2005)] as well as the more recent proposal of Palacios et al [Phys. Rev. Lett. 103 253001 (2009)] and others, have shown that there must be a quantum theory with coherence in time. Such a theory, manifestly covariant under the transformations of special relativity with an invariant evolution parameter, such as that of Stueckelberg [Helv. Phys. Acta 14 322, 588 (1941); 15 23 (1942); see also R P Feynman Phys. Rev. 80 4401 and J S Schwinger Phys. Rev. 82 664 (1951)] could provide a suitable basis for the study of such questions, as well as many others for which the application of the standard methods of quantum field theory are difficult to manage, involving, in particular

  9. Plasma simulation by macroscale, electromagnetic particle code and its application to current-drive by relativistic electron beam injection

    International Nuclear Information System (INIS)

    Tanaka, M.; Sato, T.

    1985-01-01

    A new implicit macroscale electromagnetic particle simulation code (MARC) which allows a large scale length and a time step in multi-dimensions is described. Finite mass electrons and ions are used with relativistic version of the equation of motion. The electromagnetic fields are solved by using a complete set of Maxwell equations. For time integration of the field equations, a decentered (backward) finite differencing scheme is employed with the predictor - corrector method for small noise and super-stability. It is shown both in analytical and numerical ways that the present scheme efficiently suppresses high frequency electrostatic and electromagnetic waves in a plasma, and that it accurately reproduces low frequency waves such as ion acoustic waves, Alfven waves and fast magnetosonic waves. The present numerical scheme has currently been coded in three dimensions for application to a new tokamak current-drive method by means of relativistic electron beam injection. Some remarks of the proper macroscale code application is presented in this paper

  10. A rigorous approach to relativistic corrections of bound state energies for spin-1/2 particles

    International Nuclear Information System (INIS)

    Gesztesy, F.; Thaller, B.; Grosse, H.

    1983-01-01

    Under fairly general conditions on the interactions we prove holomorphy of the Dirac resolvent around its nonrelativistic limit. As a consequences, perturbation theory in terms of resolvents (instead of Hamiltonians) yields holomorphy of Dirac eigenvalues and eigenfunctions with respect to c - 1 and a new method of calculating relativistic corrections to bound state energies. Due to a formulation in an abstract setting our method is applicable in many different concrete situation. In particular our approach covers the case of the relavistic hydrogen atom in external electromagnetic fields. (Author)

  11. A semi-relativistic treatment of spinless particles subject to the nuclear Woods-Saxon potential

    International Nuclear Information System (INIS)

    Hamzavi, M.; Ikhdair, S.M.; Rajabi, A.A.

    2013-01-01

    By applying an appropriate Pekeris approximation to deal with the centrifugal term, we present an approximate systematic solution of the two-body spinless Salpeter (SS) equation with the Woods-Saxon interaction potential for an arbitrary l-state. The analytical semi-relativistic bound-state energy eigenvalues and the corresponding wave functions are calculated. Two special cases from our solution are studied: the approximated Schroedinger-Woods-Saxon problem for an arbitrary l-state and the exact s-wave (l=0). (authors)

  12. Impact parameter dependence of the specific entropy and the light particle yield in relativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Gudima, K.K.; Toneev, V.D.

    1986-01-01

    The connection between the fragment yield and the associated specific entropy of particles produced in the course of a relativistic heavy ion collision is studied within the cascade approach. The essential impact parameter dependence of the fragment yield indicates that the specific entropy increases with impact parameter and that the critical density of the system decay is the larger the more central the collision process is. The results show that the thermodynamical equilibrium limit for the entropy production is not reached for such heavy systems as Nb+Nb at 400 MeV/nucleon and that the finite size effects and the dynamical freeze-out process are dominant factors in determining the cluster yield

  13. Single particle inclusive spectra resulting from the collision of relativistic protons, deuterons, alpha particles, and carbon ions with nuclei

    International Nuclear Information System (INIS)

    Papp, J.

    1975-05-01

    The yields of positive and negative particles resulting from the collision of 1.05 GeV/nucleon and 2.1 GeV/nucleon protons, deuterons, alpha particles, and 1.05 GeV/nucleon carbon nuclei with various targets have been measured. Single particle inclusive cross sections for production of π + , π - , p, d, 3 H, 3 He, and 4 He at 2.5 0 (lab) were obtained. How the results bear on the concepts of limiting fragmentation and scaling, the structure of the alpha particle and deuteron, and the possibility of ''coherent'' production of pions by heavy ions are discussed. (U.S.)

  14. Three-dimensional lagrangian approach to the classical relativistic dynamics of directly interacting particles

    International Nuclear Information System (INIS)

    Gaida, R.P.; Kluchkousky, Ya.B.; Tretyak, V.I.

    1987-01-01

    In the present report the main attention is paid to the interrelations of various three-dimensional approaches and to the relation of the latter to the Fokker-type action formalism; the problem of the correspondence between three-dimensional descriptions and singular Lagrangian formalism will be shortly concerned. The authors start with the three-dimensional Lagrangian formulation of the classical RDIT. The generality of this formalism enables, similarly as in the non-relativistic case, to consider it as a central link explaining naturally a number of features of other three-dimensional approaches, namely Newtonian (based directly on second order equations of motion) and Hamiltonian ones). It is also capable of describing four-dimensional manifestly covariant models using Fokker action integrals and singular Lagrangians

  15. On parasupersymmetries and relativistic descriptions for spin one particles. Pt. 1. The free context

    International Nuclear Information System (INIS)

    Beckers, J.; Debergh, N.; Nikitin, A.G.

    1995-01-01

    This series of two papers is devoted to a constructive review of the relativistic wave equations for vector mesons due to the recent impact of spin one developments in connection with parasupersymmetric quantum mechanics. The free case as well as the interacting context with an electromagnetic field will be successively visited and discussed. Their associated parasupersymmetric properties will be pointed out. In this first part, the free context is presented by studying systematically the (symmetric) forms of wave equations subtended by a 16-dimensional reducible representation of the Lie algebra sl (2, C) or, evidently, so (3, 1), this representation playing a well known role in p = 2-parastatistical developments. Their hamiltonian forms are also discussed and some second order descriptions are finally reviewed. (orig.)

  16. Classical relativistic equations for particles with spin moving in external fields

    NARCIS (Netherlands)

    Dam, H. van; Ruijgrok, Th.W.

    1980-01-01

    We derive equations of motion for a point particle with spin in an external electromagnetic and in an external scalar field. The derivation is based on the ten conservation laws of linear and angular momentum and on a general expression for the current by which the particle interacts with the

  17. Beyond the relativistic mean-field approximation. II. Configuration mixing of mean-field wave functions projected on angular momentum and particle number

    International Nuclear Information System (INIS)

    Niksic, T.; Vretenar, D.; Ring, P.

    2006-01-01

    The framework of relativistic self-consistent mean-field models is extended to include correlations related to the restoration of broken symmetries and to fluctuations of collective variables. The generator coordinate method is used to perform configuration mixing of angular-momentum and particle-number projected relativistic wave functions. The geometry is restricted to axially symmetric shapes, and the intrinsic wave functions are generated from the solutions of the relativistic mean-field+Lipkin-Nogami BCS equations, with a constraint on the mass quadrupole moment. The model employs a relativistic point-coupling (contact) nucleon-nucleon effective interaction in the particle-hole channel, and a density-independent δ-interaction in the pairing channel. Illustrative calculations are performed for 24 Mg, 32 S, and 36 Ar, and compared with results obtained employing the model developed in the first part of this work, i.e., without particle-number projection, as well as with the corresponding nonrelativistic models based on Skyrme and Gogny effective interactions

  18. Relativistic two-and three-particle scattering equations using instant and light-front dynamics

    International Nuclear Information System (INIS)

    Adhikari, S.K.; Tomio, L.; Frederico, T.

    1992-01-01

    Starting from the Bethe-Salpeter equation for two particles in the ladder approximation and integrating over the time component of momentum we derive three dimensional scattering integral equations satisfying constraints of unitarity and relativity, both employing the light-front and instant-form variables. The equations we arrive at are those first derived by Weinberg and by Blankenbecler and Sugar, and are shown to be related by a transformation of variables. Hence we show how to perform and relate identical dynamical calculation using these two equations. We extends this procedure to the case of three particles interacting via two-particle separable potentials. Using light-front and instant form variables we suggest a couple of three dimensional three-particle scattering equations satisfying constraints of two and three-particle unitarity and relativity. The three-particle light-front equation is shown to be approximately related by a transformation of variables to one of the instant-form three-particle equations. (author)

  19. When do particle ratios freeze out in relativistic heavy ion collisions?

    Science.gov (United States)

    Humanic, Thomas; Bellwied, Rene

    1999-10-01

    The systematics of CERN SPS data for transverse mass distributions have been shown to imply that thermal equilibrium is achieved at freeze out in these collisions. This conclusion is based on the observation that for p+p, S+S, and Pb+Pb collisions freeze out occurs at a single temperature for all particle species measured if one assumes a certain uniform expansion velocity after hadronization for each colliding system [1]. A recent final- state rescattering calculation for SPS Pb+Pb collisions has shown that these systematics can be described as a consequence of particle rescattering where the system is assumed initially (i.e. at hadronization) to have a common temperature for all particles and no initial expansion velocity [2]. In addition to kinetic observables, it is equally interesting to investigate the time dependence of particle abundances through particle ratios in such a calculation. Two questions immediately arise: 1) is chemical equilibrium established in these collisions, and 2) when does chemical freeze out occur with respect to thermal freeze out for different particle ratios? How rescattering influences particle ratios is clearly of interest if one would like to deduce information about the hadronization stage of the collision from particle ratios measured at freeze out. For the present work we will show results for strange and non-strange particle ratios within the context of a version of the dynamic transport code used in Ref. [2]. [1] NA44 colaboration, I.G. Bearden et al., Phys. Rev. Lett. 78,2080(1997), [2] T. J. Humanic, Phys. Rev. C 57,866(1998)

  20. Some aspects of the description of relativistic particles in external fields. [Time dependent and time independent potentials

    Energy Technology Data Exchange (ETDEWEB)

    Labonte, G

    1973-01-01

    We study the time description of the motion of relativistic particles in both the dependent and time independent potentials. The differential equations of motion considered are the standard linear spin zero and one half equations. They are always meaningful in the sense that, at all times, unique well defined operator valued distributions in the three space variables are determined. We discuss the problem of determining which set of creation and annihilation operators is relevant in a given problem. We examine the implementation of certain simple requirements which seem to be necessary in order for the mathematical formalism to be able to describe a physical system. We show that whenever the equation of motion is homogeneous, the study of all physical requirements reduces to studying Bogoliubov transformations between creation and annihilation operators. We study such transformations where we obtain some new important results concerning their general properties. We examine in detail a quantized field in presence of an external source, electrons and positrons acted upon by a plane electromagnetic wave, Dirac fields acted upon by potentials of the form A(x) delta (t) and A(x) THETA (t-t/sub 0/). We study Dirac fields in presence of potentials which have time dependences which can be represented by sequences of step functions. We then discuss the limiting case where the time dependence is continuous. We prove that the requirements that there exists a unitary evolution operator or that physical particles can be described are exactly equivalent. (auth)

  1. Semi-classical approximation and the problem of boundary conditions in the theory of relativistic particle radiation

    International Nuclear Information System (INIS)

    Akhiezer, A.I.; Shul'ga, N.F.

    1991-01-01

    The process of relativistic particle radiation in an external field has been studied in the semi-classical approximation rather extensively. The main problem arising in the studies is in expressing the formula of the quantum theory of radiation in terms of classical quantities, for example of the classical trajectories. However, it still remains unclear how the particle trajectory is assigned, that is which particular initial or boundary conditions determine the trajectory in semi-classical approximation quantum theory of radiation. We shall try to solve this problem. Its importance comes from the fact that in some cases one and the same boundary conditions may give rise to two or more trajectories. We demonstrate that this fact must necessarily be taken into account on deriving the classical limit for the formulae of the quantum theory of radiation, since it leads to a specific interference effect in radiation. The method we used to deal with the problem is similar to the method employed by Fock to analyze the problem of a canonical transformation in classical and quantum mechanics. (author)

  2. PREFACE: IARD 2010: The 7th Biennial Conference on Classical and Quantum Relativistic Dynamics of Particles and Fields

    Science.gov (United States)

    Horwitz, Lawrence; Hu, Bei-Lok; Lee, Da-Shin; Gill, Tepper; Land, Martin

    2011-12-01

    Although the subject of relativistic dynamics has been explored from both classical and quantum mechanical points of view since the work of Einstein and Dirac, its most striking development has been in the framework of quantum field theory. The very accurate calculations of spectral and scattering properties, for example, of the anamolous magnetic moment of the electron and the Lamb shift in quantum electrodynamics, and many qualitative features of the strong and electroweak interactions, demonstrate the very great power of description achieved in this framework. Yet, many fundamental questions remain to be clarified, such as the structure of classical realtivistic dynamical theories on the level of Hamilton and Lagrange in Minkowski space as well as on the curved manifolds of general relativity. There moreover remains the important question of the covariant classical description of systems at high energy for which particle production effects are not large, such as discussed in Synge's book, The Relativistic Gas, and in Balescu's book on relativistic statistical mechanics. In recent years, the study of high energy plasmas and heavy ion collisions has emphasized the importance of developing the techniques of relativistic mechanics. The results of Linder et al (Phys. Rev. Lett. 95 0040401 (2005)) as well as the more recent work of Palacios et al (Phys. Rev. Lett. 103 253001 (2009)) and others, have shown that there must be a quantum theory with coherence in time. Such a theory, manifestly covariant under the transformations of special relativity with an invariant evolution parameter, such as that of Stueckelberg (Helv. Phys. Acta 14 322, 588 (1941); 15 23 (1942); see also R P Feynman Phys. Rev. 80 4401 and J S Schwinger Phys. Rev. 82 664 (1951)) could provide a suitable basis for the study of such questions, as well as many others for which the application of the standard methods of quantum field theory are difficult to manage, involving, in particular, local

  3. Simulation of concentration distribution of urban particles under wind

    Science.gov (United States)

    Chen, Yanghou; Yang, Hangsheng

    2018-02-01

    The concentration of particulate matter in the air is too high, which seriously affects people’s health. The concentration of particles in densely populated towns is also high. Understanding the distribution of particles in the air helps to remove them passively. The concentration distribution of particles in urban streets is simulated by using the FLUENT software. The simulation analysis based on Discrete Phase Modelling (DPM) of FLUENT. Simulation results show that the distribution of the particles is caused by different layout of buildings. And it is pointed out that in the windward area of the building and the leeward sides of the high-rise building are the areas with high concentration of particles. Understanding the concentration of particles in different areas is also helpful for people to avoid and reduce the concentration of particles in high concentration areas.

  4. Spin 0 and spin 1/2 quantum relativistic particles in a constant gravitational field

    International Nuclear Information System (INIS)

    Khorrami, M.; Alimohammadi, M.; Shariati, A.

    2003-01-01

    The Klein-Gordon and Dirac equations in a semi-infinite lab (x>0), in the background metric ds 2 =u 2 (x)(-dt 2 +dx 2 )+dy 2 +dz 2 , are investigated. The resulting equations are studied for the special case u(x)=1+gx. It is shown that in the case of zero transverse-momentum, the square of the energy eigenvalues of the spin-1/2 particles are less than the squares of the corresponding eigenvalues of spin-0 particles with same masses, by an amount of mgℎc. Finally, for non-zero transverse-momentum, the energy eigenvalues corresponding to large quantum numbers are obtained and the results for spin-0 and spin-1/2 particles are compared to each other

  5. On a model of a classical relativistic particle of constant and universal mass and spin

    Energy Technology Data Exchange (ETDEWEB)

    Kassandrov, V; Markova, N [Institute of Gravitation and Cosmology, Russian Peoples' Friendship University, Moscow (Russian Federation); Schaefer, G; Wipf, A [Institute of Theoretical Physics, Friedrich-Schiller University, Jena (Germany)

    2009-08-07

    The deformation of the classical action for a point-like particle recently suggested by Staruszkiewicz gives rise to a spin structure which constrains the values of the invariant mass and the invariant spin to be the same for any solution of the equations of motion. Both these Casimir invariants, the square of the 4-momentum vector and the square of the Pauli-Lubanski vector, are shown to preserve the same fixed values also in the presence of an arbitrary external electromagnetic field. In the 'free' case, in the centre-of-mass reference frame, the particle moves along a circle of fixed radius with arbitrary varying frequency. In a homogeneous magnetic field, a number of rotational 'states' are possible with frequencies slightly different from the cyclotron frequency, and 'phase-like' transitions with spin flops occur at some critical values of the particle's 3-momentum.

  6. The search for highly relativistic broken-charge particles in the cosmic radiation

    International Nuclear Information System (INIS)

    Krisor, K.

    1974-01-01

    As an introduction, the quark model of the elementary particles and the present state of the quark search is gone into. The theory of the energy loss of charged particles in the passage through matter and the set-up of the experiment (proportional counter hodoscope, electronics, on-line computer and off-line analysis of the data) are dealt with in detail. The following upper limits are given with 90% confidence: charge 1/3e -11 cm -2 sr -1 s -1 charge 2/3e -11 cm -2 sr -1 s -1 for the flow of unaccompanied quarks at sea level. (BJ/LH) [de

  7. PREVENTING POLLUTION USING ISO 14001 AT A PARTICLE ACCELERATOR THE RELATIVISTIC HEAVY ION COLLIDER PROJECT

    International Nuclear Information System (INIS)

    BRIGGS, S.L.K.; MUSOLINO, S.V.

    2001-01-01

    In early 1997 Brookhaven National Laboratory (BNL) discovered that the spent fuel pool of their High Flux Beam Reactor was leaking tritium into the groundwater. Community members, activist groups, politicians and regulators were outraged with the poor environmental management practices at BNL. The reactor was shut down and the Department of Energy (DOE) terminated the contract with the existing Management Company. At this same time, a major new scientific facility, the Relativistic Heavy Ion Collider (RHIC), was nearing the end of construction and readying for commissioning. Although environmental considerations had been incorporated into the design of the facility; some interested parties were skeptical that this new facility would not cause significant environmental impacts. RHIC management recognized that the future of its operation was dependent on preventing pollution and allaying concerns of its stakeholders. Although never done at a DOE National Laboratory before Brookhaven Science Associates, the new management firm, committed to implementing an Environmental Management System (EMS) and RHIC managers volunteered to deploy it within their facility on an extremely aggressive schedule. Several of these IS0 requirements contribute directly to preventing pollution, an area where particular emphasis was placed. This paper describes how Brookhaven used the following key IS0 14001 elements to institutionalize Pollution Prevention concepts: Environmental Policy, Aspects, Objectives and Targets, Environmental Management Program, Structure and Responsibility, Operational Controls, Training, and Management Review. In addition, examples of implementation at the RHIC Project illustrate how BNL's premiere facility was able to demonstrate to interested parties that care had been taken to implement technological and administrative controls to minimize environmental impacts, while at the same time reduce the applicability of regulatory requirements to their operations

  8. Einstein-aether theory: dynamics of relativistic particles with spin or polarization in a Gödel-type universe

    Energy Technology Data Exchange (ETDEWEB)

    Balakin, Alexander B.; Popov, Vladimir A., E-mail: alexander.balakin@kpfu.ru, E-mail: vladipopov@mail.ru [Department of General Relativity and Gravitation, Institute of Physics, Kazan Federal University, Kremlevskaya str. 18, Kazan 420008 (Russian Federation)

    2017-04-01

    In the framework of the Einstein-aether theory we consider a cosmological model, which describes the evolution of the unit dynamic vector field with activated rotational degree of freedom. We discuss exact solutions of the Einstein-aether theory, for which the space-time is of the Gödel-type, the velocity four-vector of the aether motion is characterized by a non-vanishing vorticity, thus the rotational vectorial modes can be associated with the source of the universe rotation. The main goal of our paper is to study the motion of test relativistic particles with a vectorial internal degree of freedom (spin or polarization), which is coupled to the unit dynamic vector field. The particles are considered as the test ones in the given space-time background of the Gödel-type; the spin (polarization) coupling to the unit dynamic vector field is modeled using exact solutions of three types. The first exact solution describes the aether with arbitrary Jacobson's coupling constants; the second one relates to the case, when the Jacobson's constant responsible for the vorticity is vanishing; the third exact solution is obtained using three constraints for the coupling constants. The analysis of the exact expressions, which are obtained for the particle momentum and for the spin (polarization) four-vector components, shows that the interaction of the spin (polarization) with the unit vector field induces a rotation, which is additional to the geodesic precession of the spin (polarization) associated with the universe rotation as a whole.

  9. Collision dynamics and particle production in relativistic nucleus- nucleus collisions at CERN

    International Nuclear Information System (INIS)

    Harris, J.W.

    1990-03-01

    The possibility of forming a quark-gluon plasma is the primary motivation for studying nucleus-nucleus collisions at very high energies. Various ''signatures'' for the existence of a quark-gluon plasma in these collisions have been proposed. These include an enhancement in the production of strange particles, suppression of J/Ψ production, observation of direct photons from the plasma, event-by-event fluctuations in the rapidity distributions of produced particles, and various other observables. However, the system will evolve dynamically from a pure plasma or mixed phase through expansion, cooling, hadronization and freezeout into the final state particles. Therefore, to be able to determine that a new, transient state of matter has been formed it will be necessary to understand the space-time evolution of the collision process and the microscopic structure of hadronic interactions, at the level of quarks and gluons, at high temperatures and densities. In this talk I will review briefly the present state of our understanding of the dynamics of these collisions and, in addition, present a few recent results on particle production from the NA35 experiment at CERN. 21 refs., 5 figs

  10. Absorbing Boundary Conditions in Quantum Relativistic Mechanics for Spinless Particles Subject to a Classical Electromagnetic Field

    Science.gov (United States)

    Sater, Julien

    The theory of Artificial Boundary Conditions described by Antoine et al. [2,4-6] for the Schrodinger equation is applied to the Klein-Gordon (KG) in two-dimensions (2-D) for spinless particles subject to electromagnetic fields. We begin by providing definitions for a basic understanding of the theory of operators, differential geometry and wave front sets needed to discuss the factorization theorem thanks to Nirenberg and Hormander [14, 16]. The laser-free Klein-Gordon equation in 1-D is then discussed, followed by the case including electrodynamics potentials, concluding with the KG equation in 2-D space with electrodynamics potentials. We then consider numerical simulations of the laser-particle KG equation, which includes a brief analysis of a finite difference scheme. The conclusion integrates a discussion of the numerical results, the successful completion of the objective set forth, a declaration of the unanswered encountered questions and a suggestion of subjects for further research.

  11. Position map calculations of BPMs by CST particle studio for non-relativistic energies

    Energy Technology Data Exchange (ETDEWEB)

    Forck, Peter; Almalki, Mohammed; Kester, Oliver [GSI, Darmstadt (Germany); Goethe Universitaet Frankfurt (Germany); He, Jun [Institute of High Energy Physics, CAS Beijing (China); Kaufmann, Wolfgang; Sieber, Thomas; Singh, Rahul [GSI, Darmstadt (Germany)

    2016-07-01

    Beam positon monitors BPM at LINACs serve as the basic instrument for non-destructive position determination as yield from the difference-over-sum of signal of opposite electrodes. The time evolution of the signals, and consequently their Fourier-transformations, depend on the particle velocity and the distance from the electrodes. Position maps, i.e. electrodes difference-over-sum signal versus beam offset, were calculated using the wake-field solver CST Particle Studio in the velocity range from 0.05c to 0.5c for two BPM types. For the planned proton LINAC at FAIR, four separated button BPM electrodes are foreseen. The BPMs installed in the GSI UNILAC are made of a ceramic ring with four metallized sectors installed in a special housing. For the latter type resonances and capacitive coupling between the sectors modify the position map. The general findings and peculiarities of both types are presented.

  12. Transverse instabilities of relativistic particle beams in accelerators and storage rings. I

    International Nuclear Information System (INIS)

    Zotter, B.

    1977-01-01

    This paper deals with transverse instabilities in coasting beams. A short description is given of the mechanism which leads to transverse instabilities, due essentially to the reaction of the electromagnetic fields caused by an oscillating beam on the particle motion. The methods used to calculate the electromagnetic fields are described and one of them is used to calculate the dispersion relation coefficients as well as the transverse coupling impedance, of a cylindrical beam in a concentric vacuum chamber with finite wall resistivity. In the last sections the dispersion relation is derived from the equation of motion of a single particle. The concept of the stability diagram is introduced and the stability criterion is discussed from several points of view. (Auth.)

  13. Particle identification in the relativistic rise region using a longitudinal drift chamber

    Energy Technology Data Exchange (ETDEWEB)

    Arai, R; Bensinger, J; Boerner, H; Fukushima, Y; Hayashi, K; Ishihara, N; Inaba, S; Kohriki, T; Nakamura, S; Ogawa, K [National Lab. for High Energy Physics, Oho, Ibaraki (Japan)

    1983-09-01

    Particle identification by energy loss measurement was tested using a longitudinal drift chamber equipped with a 25 MHz flash ADC. For 3 GeV/c pions the resolution sigmasub(E)/E was about 5%. The separation between pions and protons at this momentum was about 4 standard deviations. The influence of a magnetic field was examined. The deterioration of the separation was less than 15% up to a field strength of 5.2 kG.

  14. Distributed drift chamber design for rare particle detection in relativistic heavy ion collisions

    CERN Document Server

    Bellwied, R; Bernardo, V; Caines, H; Christie, W; Costa, S; Crawford, H J; Cronqvist, M; Debbe, R; Dinnwiddie, R; Engelage, J; Flores, I; Fuzesy, R Z; Greiner, L; Hallman, T; Hoffmann, G; Huang, H Z; Jensen, P; Judd, E G; Kainz, K; Kaplan, M; Kelly, S; Lindstrom, P J; Llope, W J; Lo Curto, G; Longacre, R; Milosevich, Z; Mitchell, J T; Mitchell, J W; Mogavero, E; Mutchler, G S; Paganis, S; Platner, E; Potenza, R; Rotondo, F; Russ, D; Sakrejda, I; Saulys, A; Schambach, J; Sheen, J; Smirnoff, N; Stokely, C L; Tang, J; Trattner, A L; Trentalange, S; Visser, G; Whitfield, J P; Witharm, F; Witharm, R; Wright, M

    2002-01-01

    This report describes a multi plane drift chamber that was designed and constructed to function as a topological detector for the BNL AGS E896 rare particle experiment. The chamber was optimized for good spatial resolution, two track separation, and a high uniform efficiency while operating in a 1.6 T magnetic field and subjected to long term exposure from a 11.6 GeV/nucleon beam of 10 sup 6 Au ions per second.

  15. Study of Particle Production and Nuclear Fragmentation in Relativistic Heavy-Ion Collisions in Nuclear Emulsions

    CERN Multimedia

    2002-01-01

    % EMU11 \\\\ \\\\ We propose to use nuclear emulsions for the study of nuclear collisions of $^{207}$Pb, $^{197}$Au, and any other heavy-ion beams when they are available. We have, in the past, used $^{32}$S at 200A~GeV and $^{16}$O at 200A and 60A~GeV from CERN (Experiment EMU08) and at present the analysis is going on with $^{28}$Si beam from BNL at 14.5A~GeV. It will be important to compare the previous and the present investigations with the new $^{207}$Pb beam at 60-160A~GeV. We want to measure in nuclear emulsion, on an event by event basis, shower particle multiplicity, pseudorapidity density and density fluctuations of charged particles, charge multiplicity and angular distributions of projectile fragments, production and interaction cross-sections of heavily ionizing particles emitted from the target fragmentation. Special emphasis will be placed on the analysis of events produced in the central collisions which are selected on the basis of low energy fragments emitted from the target excitation. It woul...

  16. Beyond the relativistic point particle: A reciprocally invariant system and its generalisation

    International Nuclear Information System (INIS)

    Pavsic, Matej

    2009-01-01

    We investigate a reciprocally invariant system proposed by Low and Govaerts et al., whose action contains both the orthogonal and the symplectic forms and is invariant under global O(2,4) intersection Sp(2,4) transformations. We find that the general solution to the classical equations of motion has no linear term in the evolution parameter, τ, but only the oscillatory terms, and therefore cannot represent a particle propagating in spacetime. As a remedy, we consider a generalisation of the action by adopting a procedure similar to that of Bars et al., who introduced the concept of a τ derivative that is covariant under local Sp(2) transformations between the phase space variables x μ (τ) and p μ (τ). This system, in particular, is similar to a rigid particle whose action contains the extrinsic curvature of the world line, which turns out to be helical in spacetime. Another possible generalisation is the introduction of a symplectic potential proposed by Montesinos. We show how the latter approach is related to Kaluza-Klein theories and to the concept of Clifford space, a manifold whose tangent space at any point is Clifford algebra Cl(8), a promising framework for the unification of particles and forces.

  17. Investigation of Rising-Sun Magnetrons Operated at Relativistic Voltages Using Three Dimensional Particle-in-Cell Simulation

    International Nuclear Information System (INIS)

    Lemke, R.W.; Genoni, T.C.; Spencer, T.A.

    1999-01-01

    This work is an attempt to elucidate effects that may limit efficiency in magnetrons operated at relativistic voltages (V ∼ 500 kV). Three-dimensional particle-in-cell simulation is used to investigate the behavior of 14 and 22 cavity, cylindrical, rising-sun magnetrons. Power is extracted radially through a single iris located at the end of every other cavity. Numerical results show that in general output power and efficiency increase approximately linearly with increasing iris width (decreasing vacuum Q) until the total Q becomes too low for stable oscillation in the n-mode to be maintained. Beyond this point mode competition and/or switching occur and efficiency decreases. Results reveal that the minimum value of Q (maximum efficiency) that can be achieved prior to the onset of mode competition is significantly affected by the magnitude of the 0-space-harmonic of the π-mode, a unique characteristic of rising-suns, and by the magnitude of the electron current density (space-charge effects). By minimizing these effects, up to 3.7 GW output power has been produced at an efficiency of 40%

  18. LPIC++. A parallel one-dimensional relativistic electromagnetic particle-in-cell code for simulating laser-plasma-interaction

    International Nuclear Information System (INIS)

    Lichters, R.; Pfund, R.E.W.; Meyer-ter-Vehn, J.

    1997-08-01

    The code LPIC++ presented here, is based on a one-dimensional, electromagnetic, relativistic PIC code that has originally been developed by one of the authors during a PhD thesis at the Max-Planck-Institut fuer Quantenoptik for kinetic simulations of high harmonic generation from overdense plasma surfaces. The code uses essentially the algorithm of Birdsall and Langdon and Villasenor and Bunemann. It is written in C++ in order to be easily extendable and has been parallelized to be able to grow in power linearly with the size of accessable hardware, e.g. massively parallel machines like Cray T3E. The parallel LPIC++ version uses PVM for communication between processors. PVM is public domain software, can be downloaded from the world wide web. A particular strength of LPIC++ lies in its clear program and data structure, which uses chained lists for the organization of grid cells and enables dynamic adjustment of spatial domain sizes in a very convenient way, and therefore easy balancing of processor loads. Also particles belonging to one cell are linked in a chained list and are immediately accessable from this cell. In addition to this convenient type of data organization in a PIC code, the code shows excellent performance in both its single processor and parallel version. (orig.)

  19. Reduction of the ionization loss distribution width of several simultaneous relativistic particles traversing a scintillation counter

    CERN Document Server

    Aderholz, M; Matthewson, R; Lehraus, I no 1; Matthewson, R no 1; Aderholz, M no 1

    1975-01-01

    A Poisson distribution of number of electrons at the input stages of a photomultiplier has been folded into a Landau-Symon distribution of ionization losses in a plastic scintillator and a distribution of the smallest value out of n detectors was derived analytically for m simultaneous particles. A group of four identical scintillation counters was constructed and the smallest of the four output pulses was used for selective triggering of the bubble chamber flash with the greater precision engendered by the considerably reduced distribution width. (22 refs).

  20. Lectures in relativistic quantum mechanics an introductory course for postgraduates in particle physics

    CERN Document Server

    Azfar, Farrukh

    2017-01-01

    This book is based on a series of lectures taught by the author to all incoming first year Oxford University postgraduates in experimental particle physics. It begins by deriving the Dirac equation and incorporating the electro-magnetic interaction and calculating several bread and butter processes at tree level using the Feynman Stueckelberg approach: Mott scattering, electron-electron scattering, electron-positron scattering, Compton scattering, Bremsstrahlung and electron-positron to muon-anti-muon. The intention is for the student to become fluent in detail with all the steps leading to the calculation of these processes. Every step is motivated using the most basic arguments.

  1. Additional acceleration of solar-wind particles in current sheets of the heliosphere

    Directory of Open Access Journals (Sweden)

    V. Zharkova

    2015-04-01

    Full Text Available Particles of fast solar wind in the vicinity of the heliospheric current sheet (HCS or in a front of interplanetary coronal mass ejections (ICMEs often reveal very peculiar energy or velocity profiles, density distributions with double or triple peaks, and well-defined streams of electrons occurring around or far away from these events. In order to interpret the parameters of energetic particles (both ions and electrons measured by the WIND spacecraft during the HCS crossings, a comparison of the data was carried out with 3-D particle-in-cell (PIC simulations for the relevant magnetic topology (Zharkova and Khabarova, 2012. The simulations showed that all the observed particle-energy distributions, densities, ion peak velocities, electron pitch angles and directivities can be fitted with the same model if the heliospheric current sheet is in a status of continuous magnetic reconnection. In this paper we present further observations of the solar-wind particles being accelerated to rather higher energies while passing through the HCS and the evidence that this acceleration happens well before the appearance of the corotating interacting region (CIR, which passes through the spacecraft position hours later. We show that the measured particle characteristics (ion velocity, electron pitch angles and the distance at which electrons are turned from the HCS are in agreement with the simulations of additional particle acceleration in a reconnecting HCS with a strong guiding field as measured by WIND. A few examples are also presented showing additional acceleration of solar-wind particles during their passage through current sheets formed in a front of ICMEs. This additional acceleration at the ICME current sheets can explain the anticorrelation of ion and electron fluxes frequently observed around the ICME's leading front. Furthermore, it may provide a plausible explanation of the appearance of bidirectional "strahls" (field-aligned most energetic

  2. Stereo particle image velocimetry set up for measurements in the wake of scaled wind turbines

    Science.gov (United States)

    Campanardi, Gabriele; Grassi, Donato; Zanotti, Alex; Nanos, Emmanouil M.; Campagnolo, Filippo; Croce, Alessandro; Bottasso, Carlo L.

    2017-08-01

    Stereo particle image velocimetry measurements were carried out in the boundary layer test section of Politecnico di Milano large wind tunnel to survey the wake of a scaled wind turbine model designed and developed by Technische Universität München. The stereo PIV instrumentation was set up to survey the three velocity components on cross-flow planes at different longitudinal locations. The area of investigation covered the entire extent of the wind turbines wake that was scanned by the use of two separate traversing systems for both the laser and the cameras. Such instrumentation set up enabled to gain rapidly high quality results suitable to characterise the behaviour of the flow field in the wake of the scaled wind turbine. This would be very useful for the evaluation of the performance of wind farm control methodologies based on wake redirection and for the validation of CFD tools.

  3. Inclusive particle production at forward angles from collisions of light relativistic nuclei: Negative pions

    International Nuclear Information System (INIS)

    Moeller, E.; Anderson, L.; Brueckner, W.; Nagamiya, S.; Nissen-Meyer, S.; Schroeder, L.; Shapiro, G.; Steiner, H.

    1983-01-01

    We have measured single particle inclusive spectra of negative pions produced at angles from 0 0 to 12 0 (lab) in collisions of 1.05 and 2.1 GeV/nucleon protons, deuterons, alpha particles, and carbon nuclei with targets of C, Cu, Pb, and H (from a CH 2 -C subtraction). Most of the pions are produced in the kinematical domains allowed in free nucleon-nucleon collisions, but for alpha and carbon projectiles we have also observed pions whose energies range up to nearly twice the kinetic energy of a nucleon in the projectile. Our results suggest that processes involving more than two colliding nucleons and/or high internal momentum components are involved in the production of these high energy pions. Comparison is made with several hypotheses of scaling including specific dynamical models, and some disagreement is observed. We present fits to the kinetic energy dependence of the data, and the target and projectile mass dependence. We also show transverse momentum distributions

  4. Relativistic motion of charged particles in the interaction of short pulses of intense laser light with plasma

    International Nuclear Information System (INIS)

    Gomez R, F.

    2004-01-01

    In the chapter 1 we show the foundations of the special relativity in the frame of the classical mechanics and we develop the necessary theory for the theoretical description of the relativistic dynamics of charged particles in the interaction with electromagnetic fields. It will see that starting from the energy conservation principle is derived the Einstein's law that establishes the relationship among this and the mass. Later on, it will take the action of a charged particle in a given radiation field and in the one which only we will take two parts, the action of the free particle and the one that defines the interaction of this with the field. The equations of motion of a charge in an electromagnetic field come given by the Lagrange equations, being obtained an expression for the force, well-known as Lorentz force, which consists of two terms, the first of them is the force that the electric field E exercises on the particle; which doesn't depend on the charge speed and is oriented in the direction of the field, the second term represents the force that exercises the magnetic field B and that it is proportional to the charge speed, being perpendicular to the direction of it. In the chapter 2 an integration method of the Hamilton-Jacobi for the case of a pulse is that allows to found analytical forms for the moment, the energy and the charge position is developed with detail. We will present, also, a discussion of the classical theory of the relativistic dynamic of free electrons. They are also obtained, invariant quantities like the phase, before the frame of the reference inertial changes, well-known as Lorentz invariants of the system. In this part it is considered to the electron in the laboratory frame (frame in which the particle is initially in repose regarding the observer), of which the speed and the acceleration quadrivectors can be calculated. We demonstrate that the η phase is a Lorentz invariant. It is shown, also that the proper time interval d

  5. Particle Production in Strong Electromagnetic Fields in Relativistic Heavy-Ion Collisions

    Directory of Open Access Journals (Sweden)

    Kirill Tuchin

    2013-01-01

    Full Text Available I review the origin and properties of electromagnetic fields produced in heavy-ion collisions. The field strength immediately after a collision is proportional to the collision energy and reaches ~mπ2 at RHIC and ~10mπ2 at LHC. I demonstrate by explicit analytical calculation that after dropping by about one-two orders of magnitude during the first fm/c of plasma expansion, it freezes out and lasts for as long as quark-gluon plasma lives as a consequence of finite electrical conductivity of the plasma. Magnetic field breaks spherical symmetry in the direction perpendicular to the reaction plane, and therefore all kinetic coefficients are anisotropic. I examine viscosity of QGP and show that magnetic field induces azimuthal anisotropy on plasma flow even in spherically symmetric geometry. Very strong electromagnetic field has an important impact on particle production. I discuss the problem of energy loss and polarization of fast fermions due to synchrotron radiation, consider photon decay induced by magnetic field, elucidate J/ψ dissociation via Lorentz ionization mechanism, and examine electromagnetic radiation by plasma. I conclude that all processes in QGP are affected by strong electromagnetic field and call for experimental investigation.

  6. Demonstration of Clean Particle Seeding for Particle Image Velocimetry in a Closed Circuit Supersonic Wind Tunnel

    National Research Council Canada - National Science Library

    McNiel, Charles M

    2007-01-01

    The purpose of this research was to determine whether solid carbon dioxide (CO2) particles might provide a satisfactory, and cleaner, alternative to traditional seed material for Particle Image Velocimetry (PIV...

  7. Relativistic quantum mechanics; Mecanique quantique relativiste

    Energy Technology Data Exchange (ETDEWEB)

    Ollitrault, J.Y. [CEA Saclay, 91 - Gif-sur-Yvette (France). Service de Physique Theorique]|[Universite Pierre et Marie Curie, 75 - Paris (France)

    1998-12-01

    These notes form an introduction to relativistic quantum mechanics. The mathematical formalism has been reduced to the minimum in order to enable the reader to calculate elementary physical processes. The second quantification and the field theory are the logical followings of this course. The reader is expected to know analytical mechanics (Lagrangian and Hamiltonian), non-relativistic quantum mechanics and some basis of restricted relativity. The purpose of the first 3 chapters is to define the quantum mechanics framework for already known notions about rotation transformations, wave propagation and restricted theory of relativity. The next 3 chapters are devoted to the application of relativistic quantum mechanics to a particle with 0,1/5 and 1 spin value. The last chapter deals with the processes involving several particles, these processes require field theory framework to be thoroughly described. (A.C.) 2 refs.

  8. Resonant acceleration of alpha particles by ion cyclotron waves in the solar wind

    Science.gov (United States)

    Gomberoff, L.; Elgueta, R.

    1991-06-01

    Preferential acceleration of alpha particles interacting with left-hand polarized ion cyclotron waves is studied. It is shown that a small positive drift velocity between alpha particles and protons can lead to alpha particle velocities well in excess of the proton bulk velocity. During the acceleration process, which is assumed to take place at heliocentric distances less than 0.3 AU, the alpha particle drift velocity should exceed the proton bulk velocity, and then the gap which exists around the alpha particle gyrofrequency should disappear. It is also shown that for proton thermal anisotropies of the order of those observed in fast solar wind, the waves either grow or are not damped excessively, so that the waves can exist and might thus lead to the observed differential speeds. However, the way in which the alpha particles exceed the proton velocity remains unexplained.

  9. Relativistic Kinetic Theory

    Science.gov (United States)

    Vereshchagin, Gregory V.; Aksenov, Alexey G.

    2017-02-01

    Preface; Acknowledgements; Acronyms and definitions; Introduction; Part I. Theoretical Foundations: 1. Basic concepts; 2. Kinetic equation; 3. Averaging; 4. Conservation laws and equilibrium; 5. Relativistic BBGKY hierarchy; 6. Basic parameters in gases and plasmas; Part II. Numerical Methods: 7. The basics of computational physics; 8. Direct integration of Boltzmann equations; 9. Multidimensional hydrodynamics; Part III. Applications: 10. Wave dispersion in relativistic plasma; 11. Thermalization in relativistic plasma; 12. Kinetics of particles in strong fields; 13. Compton scattering in astrophysics and cosmology; 14. Self-gravitating systems; 15. Neutrinos, gravitational collapse and supernovae; Appendices; Bibliography; Index.

  10. Short-Term Wind Power Forecasting Using the Enhanced Particle Swarm Optimization Based Hybrid Method

    Directory of Open Access Journals (Sweden)

    Wen-Yeau Chang

    2013-09-01

    Full Text Available High penetration of wind power in the electricity system provides many challenges to power system operators, mainly due to the unpredictability and variability of wind power generation. Although wind energy may not be dispatched, an accurate forecasting method of wind speed and power generation can help power system operators reduce the risk of an unreliable electricity supply. This paper proposes an enhanced particle swarm optimization (EPSO based hybrid forecasting method for short-term wind power forecasting. The hybrid forecasting method combines the persistence method, the back propagation neural network, and the radial basis function (RBF neural network. The EPSO algorithm is employed to optimize the weight coefficients in the hybrid forecasting method. To demonstrate the effectiveness of the proposed method, the method is tested on the practical information of wind power generation of a wind energy conversion system (WECS installed on the Taichung coast of Taiwan. Comparisons of forecasting performance are made with the individual forecasting methods. Good agreements between the realistic values and forecasting values are obtained; the test results show the proposed forecasting method is accurate and reliable.

  11. LATTICE SIMULATIONS OF THE THERMODYNAMICS OF STRONGLY INTERACTING ELEMENTARY PARTICLES AND THE EXPLORATION OF NEW PHASES OF MATTER IN RELATIVISTIC HEAVY ION COLLISIONS

    International Nuclear Information System (INIS)

    KARSCH, F.

    2006-01-01

    At high temperatures or densities matter formed by strongly interacting elementary particles (hadronic matter) is expected to undergo a transition to a new form of matter--the quark gluon plasma--in which elementary particles (quarks and gluons) are no longer confined inside hadrons but are free to propagate in a thermal medium much larger in extent than the typical size of a hadron. The transition to this new form of matter as well as properties of the plasma phase are studied in large scale numerical calculations based on the theory of strong interactions--Quantum Chromo Dynamics (QCD). Experimentally properties of hot and dense elementary particle matter are studied in relativistic heavy ion collisions such as those currently performed at the relativistic heavy ion collider (RHIC) at BNL. We review here recent results from studies of thermodynamic properties of strongly interacting elementary particle matter performed on Teraflops-Computer. We present results on the QCD equation of state and discuss the status of studies of the phase diagram at non-vanishing baryon number density

  12. Integrative modeling and novel particle swarm-based optimal design of wind farms

    Science.gov (United States)

    Chowdhury, Souma

    To meet the energy needs of the future, while seeking to decrease our carbon footprint, a greater penetration of sustainable energy resources such as wind energy is necessary. However, a consistent growth of wind energy (especially in the wake of unfortunate policy changes and reported under-performance of existing projects) calls for a paradigm shift in wind power generation technologies. This dissertation develops a comprehensive methodology to explore, analyze and define the interactions between the key elements of wind farm development, and establish the foundation for designing high-performing wind farms. The primary contribution of this research is the effective quantification of the complex combined influence of wind turbine features, turbine placement, farm-land configuration, nameplate capacity, and wind resource variations on the energy output of the wind farm. A new Particle Swarm Optimization (PSO) algorithm, uniquely capable of preserving population diversity while addressing discrete variables, is also developed to provide powerful solutions towards optimizing wind farm configurations. In conventional wind farm design, the major elements that influence the farm performance are often addressed individually. The failure to fully capture the critical interactions among these factors introduces important inaccuracies in the projected farm performance and leads to suboptimal wind farm planning. In this dissertation, we develop the Unrestricted Wind Farm Layout Optimization (UWFLO) methodology to model and optimize the performance of wind farms. The UWFLO method obviates traditional assumptions regarding (i) turbine placement, (ii) turbine-wind flow interactions, (iii) variation of wind conditions, and (iv) types of turbines (single/multiple) to be installed. The allowance of multiple turbines, which demands complex modeling, is rare in the existing literature. The UWFLO method also significantly advances the state of the art in wind farm optimization by

  13. Relativistic equations

    International Nuclear Information System (INIS)

    Gross, F.

    1986-01-01

    Relativistic equations for two and three body scattering are discussed. Particular attention is paid to relativistic three body kinetics because of recent form factor measurements of the Helium 3 - Hydrogen 3 system recently completed at Saclay and Bates and the accompanying speculation that relativistic effects are important for understanding the three nucleon system. 16 refs., 4 figs

  14. General relativistic fields of an isolated spin-half charged particle near the spin axis with application to the rest-mass of the electron and positron

    International Nuclear Information System (INIS)

    Lynch, J.T.

    1999-01-01

    Using a lowest-order approximation, the field equations of a general relativistic spinor-connection theory are solved semi-analytically for the fields of a stable, spin-half changed particle near the spin axis. With the exception of the atomic fine-structure constant, all parameters arising in the solution, including the rest mass of the source particle, are found by imposing the standard junction conditions of general relativity and electromagnetism. Using the empirical value for the fine-structure constant, the value derived for the rest mass gives some reason to identify the source particle with the electron. Moreover, since the rest mass is independent of the sign of the electron charge carried by the source, the solution is equally applicable to the positron

  15. A Distributed Lag Autoregressive Model of Geostationary Relativistic Electron Fluxes: Comparing the Influences of Waves, Seed and Source Electrons, and Solar Wind Inputs

    Science.gov (United States)

    Simms, Laura; Engebretson, Mark; Clilverd, Mark; Rodger, Craig; Lessard, Marc; Gjerloev, Jesper; Reeves, Geoffrey

    2018-05-01

    Relativistic electron flux at geosynchronous orbit depends on enhancement and loss processes driven by ultralow frequency (ULF) Pc5, chorus, and electromagnetic ion cyclotron (EMIC) waves, seed electron flux, magnetosphere compression, the "Dst effect," and substorms, while solar wind inputs such as velocity, number density, and interplanetary magnetic field Bz drive these factors and thus correlate with flux. Distributed lag regression models show the time delay of highest influence of these factors on log10 high-energy electron flux (0.7-7.8 MeV, Los Alamos National Laboratory satellites). Multiple regression with an autoregressive term (flux persistence) allows direct comparison of the magnitude of each effect while controlling other correlated parameters. Flux enhancements due to ULF Pc5 and chorus waves are of equal importance. The direct effect of substorms on high-energy electron flux is strong, possibly due to injection of high-energy electrons by the substorms themselves. Loss due to electromagnetic ion cyclotron waves is less influential. Southward Bz shows only moderate influence when correlated processes are accounted for. Adding covariate compression effects (pressure and interplanetary magnetic field magnitude) allows wave-driven enhancements to be more clearly seen. Seed electrons (270 keV) are most influential at lower relativistic energies, showing that such a population must be available for acceleration. However, they are not accelerated directly to the highest energies. Source electrons (31.7 keV) show no direct influence when other factors are controlled. Their action appears to be indirect via the chorus waves they generate. Determination of specific effects of each parameter when studied in combination will be more helpful in furthering modeling work than studying them individually.

  16. Newtonian analogue of force and relativistic drag on a free particle in the gravitational field of a combined Kerr-NUT field

    International Nuclear Information System (INIS)

    Singh, T.; Yadav, R.B.S.

    1980-01-01

    In the first part of the present paper the Newtonian analogue of force for the combined Kerr-NUT metric has been investigated. To the first order of approximation one component of the force vector corresponds to the Newtonian gravitational force. In the higher order of approximation the relativistic correction terms due to rotation and presence of gravitational analogue of a magnetic monopole are obtained. In the second part of the paper the motion of a freely falling body has been investigated. It is found that plane orbits are not possible. Also a radial fall is not possible and there is a rotational drag on the particle which has no Newtonian analogue. (author)

  17. Effects of wind on background particle concentrations at truck freight terminals.

    Science.gov (United States)

    Garcia, Ronald; Hart, Jaime E; Davis, Mary E; Reaser, Paul; Natkin, Jonathan; Laden, Francine; Garshick, Eric; Smith, Thomas J

    2007-01-01

    Truck freight terminals are predominantly located near highways and industrial facilities. This proximity to pollution sources, coupled with meteorological conditions and wind patterns, may affect occupational exposures to particles at these work locations. To understand this process, data from an environmental sampling study of particles at U.S. trucking terminals, along with weather and geographic maps, were analyzed to determine the extent to which the transportation of particles from local pollutant sources elevated observed occupational exposures at these locations. To help identify potential upwind sources, wind direction weighted averages and speed measurements were used to construct wind roses that were superimposed on overhead photos of the terminal and examined for upwind source activity. Statistical tests were performed on these "source" and "nonsource" directions to determine whether there were significant differences in observed particle levels between the two groups. Our results provide evidence that nearby upwind pollution sources significantly elevated background concentrations at only a few of the locations sampled, whereas the majority provided little to no evidence of a significant upwind source effect.

  18. Design of optimal wind farm configuration using a binary particle swarm optimization at Huasai district, Southern Thailand

    International Nuclear Information System (INIS)

    Pookpunt, Sittichoke; Ongsakul, Weerakorn

    2016-01-01

    Highlights: • Real wind data form a wind distributed map use in wind farm optimization algorithm. • Practical cost benefit is evaluated in the objective function. • Learning curve is developed to determine a wind farm cost model. • BPSO-TVAC simultaneously optimizes wind farm spacing, position, sizing, hub height. • Optimal placement shows improvement of operating income over conventional layout. - Abstract: This paper proposes the design of optimal wind farm configuration using a new wind probability distribution map at Huasai district, the east coast of Southern Thailand. The new wind probability distribution map integrates both frequency of wind speed and direction data at a monitoring site. The linear wake effect model is used to determine the wind speed at downstream turbines for the total power extraction from a wind farm array. The component cost model and learning curve is used to express the initial investment cost, levelized cost and the annual energy production cost of a wind farm, depending on the number of wind turbines, the installed size, hub height and wake loss within a wind farm. Based on Thailand wind energy selling price consisting of the fixed wind premium on top of base tariff, the profit depends on revenue of selling electricity and cost of energy. In this paper, Binary Particle Swarm Optimization with Time-Varying Acceleration Coefficients (BPSO-TVAC) is proposed to maximize profit subject to turbine position, turbine size, hub height, annual energy production, investment budget, land lease cost, operation and maintenance cost and levelized replacement cost constraints. Test results indicate that BPSO-TVAC optimally locate wind turbines directly facing the high frequent wind speed and direction, leading to a higher profit than the conventional wind farm layout.

  19. On the acceleration of alpha particles in the fast solar wind

    International Nuclear Information System (INIS)

    Gomberoff, L.; Hernandez, R.

    1992-01-01

    Recently, Gomberoff and Elgueta (1991) showed that in a plasma composed of anisotropic protons and alpha particles drifting along an external magnetic field with a small velocity relative to the protons, strong left-hand polarized electromagnetic ion cyclotron waves can be generated. These waves can accelerate the alpha particles to velocities well in excess of the proton bulk velocity. Here the authors assume a more realistic model of the solar wind by considering a double-humped proton distribution. It is shown that the secondary proton beam has no important effects on the ion cyclotron waves for beam densities of the order of those observed in fast solar wind conditions. The fact that the alpha proton drift velocity is modulated by the Alfven velocity remains unexplained

  20. Biquaternions and relativistic kinematics

    International Nuclear Information System (INIS)

    Bogush, A.A.; Kurochkin, Yu.A.; Fedorov, F.I.

    1979-01-01

    The problems concerning the use of quaternion interpretation of the Lorentz group vector parametrization are considered for solving relativistic kinematics problems. A vector theory convenient for describing the characteristic features of the Lobachevsky space is suggested. The kinematics of elementary particle scattering is investigated on the basis of this theory. A synthesis of vector parametrization and of quaternion calculation has been shown to lead to natural formulation of the theory of vectors in the three-dimensional Lobachevsky space, realized on mass hyperboloids of relativistic particles

  1. The "FIP Effect" and the Origins of Solar Energetic Particles and of the Solar Wind

    Science.gov (United States)

    Reames, Donald V.

    2018-03-01

    We find that the element abundances in solar energetic particles (SEPs) and in the slow solar wind (SSW), relative to those in the photosphere, show different patterns as a function of the first ionization potential (FIP) of the elements. Generally, the SEP and SSW abundances reflect abundance samples of the solar corona, where low-FIP elements, ionized in the chromosphere, are more efficiently conveyed upward to the corona than high-FIP elements that are initially neutral atoms. Abundances of the elements, especially C, P, and S, show a crossover from low to high FIP at {≈} 10 eV in the SEPs but {≈} 14 eV for the solar wind. Naively, this seems to suggest cooler plasma from sunspots beneath active regions. More likely, if the ponderomotive force of Alfvén waves preferentially conveys low-FIP ions into the corona, the source plasma that eventually will be shock-accelerated as SEPs originates in magnetic structures where Alfvén waves resonate with the loop length on closed magnetic field lines. This concentrates FIP fractionation near the top of the chromosphere. Meanwhile, the source of the SSW may lie near the base of diverging open-field lines surrounding, but outside of, active regions, where such resonance does not exist, allowing fractionation throughout the chromosphere. We also find that energetic particles accelerated from the solar wind itself by shock waves at corotating interaction regions, generally beyond 1 AU, confirm the FIP pattern of the solar wind.

  2. The "FIP Effect" and the Origins of Solar Energetic Particles and of the Solar Wind

    OpenAIRE

    Reames, Donald V.

    2018-01-01

    We find that the element abundances in solar energetic particles (SEPs) and in the slow solar wind (SSW), relative to those in the photosphere, show different patterns as a function of the first ionization potential (FIP) of the elements. Generally, the SEP and SSW abundances reflect abundance samples of the solar corona, where low-FIP elements, ionized in the chromosphere, are more efficiently conveyed upward to the corona than high-FIP elements that are initially neutral atoms. Abundances o...

  3. Relativistic non-Hamiltonian mechanics

    International Nuclear Information System (INIS)

    Tarasov, Vasily E.

    2010-01-01

    Relativistic particle subjected to a general four-force is considered as a nonholonomic system. The nonholonomic constraint in four-dimensional space-time represents the relativistic invariance by the equation for four-velocity u μ u μ + c 2 = 0, where c is the speed of light in vacuum. In the general case, four-forces are non-potential, and the relativistic particle is a non-Hamiltonian system in four-dimensional pseudo-Euclidean space-time. We consider non-Hamiltonian and dissipative systems in relativistic mechanics. Covariant forms of the principle of stationary action and the Hamilton's principle for relativistic mechanics of non-Hamiltonian systems are discussed. The equivalence of these principles is considered for relativistic particles subjected to potential and non-potential forces. We note that the equations of motion which follow from the Hamilton's principle are not equivalent to the equations which follow from the variational principle of stationary action. The Hamilton's principle and the principle of stationary action are not compatible in the case of systems with nonholonomic constraint and the potential forces. The principle of stationary action for relativistic particle subjected to non-potential forces can be used if the Helmholtz conditions are satisfied. The Hamilton's principle and the principle of stationary action are equivalent only for a special class of relativistic non-Hamiltonian systems.

  4. From a particle in a box to the uncertainty relation in a quantum dot and to reflecting walls for relativistic fermions

    International Nuclear Information System (INIS)

    Al-Hashimi, M.H.; Wiese, U.-J.

    2012-01-01

    We consider a 1-parameter family of self-adjoint extensions of the Hamiltonian for a particle confined to a finite interval with perfectly reflecting boundary conditions. In some cases, one obtains negative energy states which seem to violate the Heisenberg uncertainty relation. We use this as a motivation to derive a generalized uncertainty relation valid for an arbitrarily shaped quantum dot with general perfectly reflecting walls in d dimensions. In addition, a general uncertainty relation for non-Hermitian operators is derived and applied to the non-Hermitian momentum operator in a quantum dot. We also consider minimal uncertainty wave packets in this situation, and we prove that the spectrum depends monotonically on the self-adjoint extension parameter. In addition, we construct the most general boundary conditions for semiconductor heterostructures such as quantum dots, quantum wires, and quantum wells, which are characterized by a 4-parameter family of self-adjoint extensions. Finally, we consider perfectly reflecting boundary conditions for relativistic fermions confined to a finite volume or localized on a domain wall, which are characterized by a 1-parameter family of self-adjoint extensions in the (1+1)-d and (2+1)-d cases, and by a 4-parameter family in the (3+1)-d and (4+1)-d cases. - Highlights: ► Finite volume Heisenberg uncertainty relation. ► General self-adjoint extensions for relativistic fermions. ► New prospective for the problem of particle in a box.

  5. Centrality dependence of identified particle elliptic flow in relativistic heavy ion collisions at √{sN N}=7.7 -62.4 GeV

    Science.gov (United States)

    Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; Aggarwal, M. M.; Ahammed, Z.; Alekseev, I.; Aparin, A.; Arkhipkin, D.; Aschenauer, E. C.; Averichev, G. S.; Bai, X.; Bairathi, V.; Banerjee, A.; Bellwied, R.; Bhasin, A.; Bhati, A. K.; Bhattarai, P.; Bielcik, J.; Bielcikova, J.; Bland, L. C.; Bordyuzhin, I. G.; Bouchet, J.; Brandenburg, D.; Brandin, A. V.; Bunzarov, I.; Butterworth, J.; Caines, H.; Calderón de la Barca Sánchez, M.; Campbell, J. M.; Cebra, D.; Cervantes, M. C.; Chakaberia, I.; Chaloupka, P.; Chang, Z.; Chattopadhyay, S.; Chen, X.; Chen, J. H.; Cheng, J.; Cherney, M.; Chisman, O.; Christie, W.; Contin, G.; Crawford, H. J.; Das, S.; De Silva, L. C.; Debbe, R. R.; Dedovich, T. G.; Deng, J.; Derevschikov, A. A.; di Ruzza, B.; Didenko, L.; Dilks, C.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Du, C. M.; Dunkelberger, L. E.; Dunlop, J. C.; Efimov, L. G.; Engelage, J.; Eppley, G.; Esha, R.; Evdokimov, O.; Eyser, O.; Fatemi, R.; Fazio, S.; Federic, P.; Fedorisin, J.; Feng, Z.; Filip, P.; Fisyak, Y.; Flores, C. E.; Fulek, L.; Gagliardi, C. A.; Garand, D.; Geurts, F.; Gibson, A.; Girard, M.; Greiner, L.; Grosnick, D.; Gunarathne, D. S.; Guo, Y.; Gupta, A.; Gupta, S.; Guryn, W.; Hamad, A.; Hamed, A.; Haque, R.; Harris, J. W.; He, L.; Heppelmann, S.; Heppelmann, S.; Hirsch, A.; Hoffmann, G. W.; Hofman, D. J.; Horvat, S.; Huang, H. Z.; Huang, B.; Huang, X.; Huck, P.; Humanic, T. J.; Igo, G.; Jacobs, W. W.; Jang, H.; Jiang, K.; Judd, E. G.; Kabana, S.; Kalinkin, D.; Kang, K.; Kauder, K.; Ke, H. W.; Keane, D.; Kechechyan, A.; Khan, Z. H.; Kikoła, D. P.; Kisel, I.; Kisiel, A.; Kochenda, L.; Koetke, D. D.; Kollegger, T.; Kosarzewski, L. K.; Kraishan, A. F.; Kravtsov, P.; Krueger, K.; Kulakov, I.; Kumar, L.; Kycia, R. A.; Lamont, M. A. C.; Landgraf, J. M.; Landry, K. D.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, J. H.; Li, X.; Li, Y.; Li, W.; Li, C.; Li, X.; Li, Z. M.; Lisa, M. A.; Liu, F.; Ljubicic, T.; Llope, W. J.; Lomnitz, M.; Longacre, R. S.; Luo, X.; Ma, L.; Ma, Y. G.; Ma, G. L.; Ma, R.; Magdy, N.; Majka, R.; Manion, A.; Margetis, S.; Markert, C.; Masui, H.; Matis, H. S.; McDonald, D.; Meehan, K.; Minaev, N. G.; Mioduszewski, S.; Mishra, D.; Mohanty, B.; Mondal, M. M.; Morozov, D. A.; Mustafa, M. K.; Nandi, B. K.; Nasim, Md.; Nayak, T. K.; Nigmatkulov, G.; Niida, T.; Nogach, L. V.; Noh, S. Y.; Novak, J.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Oh, K.; Okorokov, V.; Olvitt, D.; Page, B. S.; Pak, R.; Pan, Y. X.; Pandit, Y.; Panebratsev, Y.; Pawlik, B.; Pei, H.; Perkins, C.; Peterson, A.; Pile, P.; Planinic, M.; Pluta, J.; Poljak, N.; Poniatowska, K.; Porter, J.; Posik, M.; Poskanzer, A. M.; Pruthi, N. K.; Putschke, J.; Qiu, H.; Quintero, A.; Ramachandran, S.; Raniwala, S.; Raniwala, R.; Ray, R. L.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Roy, A.; Ruan, L.; Rusnak, J.; Rusnakova, O.; Sahoo, N. R.; Sahu, P. K.; Salur, S.; Sandweiss, J.; Sarkar, A.; Schambach, J.; Scharenberg, R. P.; Schmah, A. M.; Schmidke, W. B.; Schmitz, N.; Seger, J.; Seyboth, P.; Shah, N.; Shahaliev, E.; Shanmuganathan, P. V.; Shao, M.; Sharma, B.; Sharma, M. K.; Shen, W. Q.; Shi, S. S.; Shou, Q. Y.; Sichtermann, E. P.; Sikora, R.; Simko, M.; Singha, S.; Skoby, M. J.; Smirnov, N.; Smirnov, D.; Song, L.; Sorensen, P.; Spinka, H. M.; Srivastava, B.; Stanislaus, T. D. S.; Stepanov, M.; Stock, R.; Strikhanov, M.; Stringfellow, B.; Sumbera, M.; Summa, B.; Sun, X.; Sun, Z.; Sun, Y.; Sun, X. M.; Surrow, B.; Svirida, N.; Szelezniak, M. A.; Tang, Z.; Tang, A. H.; Tarnowsky, T.; Tawfik, A.; Thäder, J.; Thomas, J. H.; Timmins, A. R.; Tlusty, D.; Tokarev, M.; Trentalange, S.; Tribble, R. E.; Tribedy, P.; Tripathy, S. K.; Trzeciak, B. A.; Tsai, O. D.; Ullrich, T.; Underwood, D. G.; Upsal, I.; Van Buren, G.; van Nieuwenhuizen, G.; Vandenbroucke, M.; Varma, R.; Vasiliev, A. N.; Vertesi, R.; Videbæk, F.; Viyogi, Y. P.; Vokal, S.; Voloshin, S. A.; Vossen, A.; Wang, F.; Wang, Y.; Wang, G.; Wang, Y.; Wang, J. S.; Wang, H.; Webb, J. C.; Webb, G.; Wen, L.; Westfall, G. D.; Wieman, H.; Wissink, S. W.; Witt, R.; Wu, Y. F.; Wu, Y.; Xiao, Z. G.; Xie, W.; Xin, K.; Xu, Z.; Xu, H.; Xu, Y. F.; Xu, Q. H.; Xu, N.; Yang, Y.; Yang, C.; Yang, S.; Yang, Y.; Yang, Q.; Ye, Z.; Ye, Z.; Yepes, P.; Yi, L.; Yip, K.; Yoo, I.-K.; Yu, N.; Zbroszczyk, H.; Zha, W.; Zhang, J. B.; Zhang, Y.; Zhang, S.; Zhang, J.; Zhang, J.; Zhang, Z.; Zhang, X. P.; Zhao, J.; Zhong, C.; Zhou, L.; Zhu, X.; Zoulkarneeva, Y.; Zyzak, M.; STAR Collaboration

    2016-01-01

    Elliptic flow (v2) values for identified particles at midrapidity in Au + Au collisions measured by the STAR experiment in the Beam Energy Scan at the Relativistic Heavy Ion Collider at √{sN N}= 7.7 -62.4 GeV are presented for three centrality classes. The centrality dependence and the data at √{sN N}= 14.5 GeV are new. Except at the lowest beam energies, we observe a similar relative v2 baryon-meson splitting for all centrality classes which is in agreement within 15% with the number-of-constituent quark scaling. The larger v2 for most particles relative to antiparticles, already observed for minimum bias collisions, shows a clear centrality dependence, with the largest difference for the most central collisions. Also, the results are compared with a multiphase transport (AMPT) model and fit with a blast wave model.

  6. Height profile of particle concentration in an aeolian saltating cloud: A wind tunnel investigation by PIV MSD

    Science.gov (United States)

    Dong, Zhibao; Wang, Hongtao; Zhang, Xiaohang; Ayrault, Michael

    2003-10-01

    Attempt is made to define the particle concentration in an aeolian saltating cloud and its variation with height using artificial spherical quartz sand in a wind tunnel. The height profiles of the relative particle concentration in aeolian saltating cloud at three wind velocities were detected by the state of the art PIV (Particle Image Velocimetry) MSD (Mie Scattering Diffusion) technique, and converted to actual concentration based on sand transport rate and the variation with height of velocity of the saltating cloud. The particle concentration was found to decay exponentially with height and to increase with wind velocity. It decayed more rapidly when the wind velocity decreased. The volume/volume concentration in the near-surface layer was at the order of 10-4. The results obtained by PIV MSD technique were in good agreement with those derived from the sand flux and velocity profiles, the former being about 15% greater than the later.

  7. Relativistic quantum mechanics

    International Nuclear Information System (INIS)

    Ollitrault, J.Y.

    1998-12-01

    These notes form an introduction to relativistic quantum mechanics. The mathematical formalism has been reduced to the minimum in order to enable the reader to calculate elementary physical processes. The second quantification and the field theory are the logical followings of this course. The reader is expected to know analytical mechanics (Lagrangian and Hamiltonian), non-relativistic quantum mechanics and some basis of restricted relativity. The purpose of the first 3 chapters is to define the quantum mechanics framework for already known notions about rotation transformations, wave propagation and restricted theory of relativity. The next 3 chapters are devoted to the application of relativistic quantum mechanics to a particle with 0,1/5 and 1 spin value. The last chapter deals with the processes involving several particles, these processes require field theory framework to be thoroughly described. (A.C.)

  8. Relativistic astrophysics

    CERN Document Server

    Demianski, Marek

    2013-01-01

    Relativistic Astrophysics brings together important astronomical discoveries and the significant achievements, as well as the difficulties in the field of relativistic astrophysics. This book is divided into 10 chapters that tackle some aspects of the field, including the gravitational field, stellar equilibrium, black holes, and cosmology. The opening chapters introduce the theories to delineate gravitational field and the elements of relativistic thermodynamics and hydrodynamics. The succeeding chapters deal with the gravitational fields in matter; stellar equilibrium and general relativity

  9. The connection between solar wind charged particles and tornadoes: Case analysis

    Directory of Open Access Journals (Sweden)

    Radovanović Milan M.

    2013-01-01

    Full Text Available The temperature of charged particles coming from the Sun ranges from several hundred thousands to several millions °C, in extreme cases. Theoretical possibilities of the hydrodynamic air mass seizing by charged particles, i. e. solar wind, are discussed in this paper. On one hand, they are characterized by extremely high temperatures, on the other, by the compression of cold air at an approximate altitude of 90 km towards the top of the cloud of the cyclone, they influence the phenomenon of extremely low temperatures. By using the Mann-Whitney U test we have tried to determine the potential link between certain indicators of solar activity and resulting disturbances in the atmosphere. Analyzed data refer to global daily values for the 2004-2010 period. Our results confirm the possibility of coupling between the charged particles and the vortex air mass movements, based on which a more detailed study of the appearance of a tornado near Sombor on May 12th, 2010, was carried out. It has also been proven that there are grounds for a causality between the sudden arrival of the solar wind charged particles, i. e. protons, and the appearance of a tornado. Based on the presented approach, elements for an entirely novel prediction model are given. [Projekat Ministarstva nauke Republike Srbije, br. III47007 i br. 176008

  10. The Wigner function in the relativistic quantum mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Kowalski, K., E-mail: kowalski@uni.lodz.pl; Rembieliński, J.

    2016-12-15

    A detailed study is presented of the relativistic Wigner function for a quantum spinless particle evolving in time according to the Salpeter equation. - Highlights: • We study the Wigner function for a quantum spinless relativistic particle. • We discuss the relativistic Wigner function introduced by Zavialov and Malokostov. • We introduce relativistic Wigner function based on the standard definition. • We find analytic expressions for relativistic Wigner functions.

  11. The capture of submicron particles by collector plates - Wind-tunnel investigations

    International Nuclear Information System (INIS)

    Gauthier, Daniel

    1971-01-01

    The deposition of submicron particles on collector plates parallel to the flow was studied experimentally in a wind-tunnel. The validity of a theoretical model based on brownian diffusion was investigated and its Inadequacies tested. The aerosol sample consisted of uranine particles (mean geometrical radius: about 0. 1 μm). The average flow speeds varied from 1 to 10 m/s and the length of the collector plates between 1 and 10 cm. Results showed that capture was mainly due to diffusion and was in good agreement with the theoretical model; however a noticeable deposit of particles on the front part of the collector edge was observed. Sedimentation was insignificant in almost all the cases. (author) [fr

  12. Relativistic stellar dynamics

    International Nuclear Information System (INIS)

    Contopoulos, G.

    1983-01-01

    In this paper, three main areas of relativistic stellar dynamics are reviewed: (a) The dynamics of clusters, or nuclei of galaxies, of very high density; (b) The dynamics of systems containing a massive black hole; and (c) The dynamics of particles (and photons) in an expanding Universe. The emphasis is on the use of orbit perturbations. (Auth.)

  13. Relativistic Wigner functions

    Directory of Open Access Journals (Sweden)

    Bialynicki-Birula Iwo

    2014-01-01

    Full Text Available Original definition of the Wigner function can be extended in a natural manner to relativistic domain in the framework of quantum field theory. Three such generalizations are described. They cover the cases of the Dirac particles, the photon, and the full electromagnetic field.

  14. On the solar wind - magnetosphere - ionosphere coupling: AMPTE/CCE particle data and the AE indices

    International Nuclear Information System (INIS)

    Daglis, I.A.; Wilken, B.; Sarris, E.T.; Kremser, G.

    1992-01-01

    We present a statistical study of the substorm particle energization in terms of the energy density of the major magnetospheric ions (H + , O + , He ++ , He + ). The correlation between energy density during substorm expansion phase and the auroral indices (AE, AU, Al) is examined and interpreted. Most distinct result is that the ionospheric origin O + energy density correlate remarkable well with the AE index, while the solar wind origin He ++ energy density does not correlate at all with AE. Mixed origin H + and He + ions exhibit an intermediate behavior. Furthermore, the O + energy density correlates very well with the pre-onset AU index level, while there is no correlation with the pre-onset AL index. The results are interpreted as a result of solar wind. The results are interpreted as a result of solar wind - magnetosphere - ionosphere coupling through the internal magnetospheric dynamo: the ionosphere responds to the increased activity of the internal dynamo (which is due to the high solar wind input) and influences substorm dynamics by feeding the near-Earth magnetotail with energetic ionospheric ions during late growth phase and expansion phase

  15. DEVIATION OF STELLAR ORBITS FROM TEST PARTICLE TRAJECTORIES AROUND SGr A* DUE TO TIDES AND WINDS

    International Nuclear Information System (INIS)

    Psaltis, Dimitrios; Li, Gongjie; Loeb, Abraham

    2013-01-01

    Monitoring the orbits of stars around Sgr A* offers the possibility of detecting the precession of their orbital planes due to frame dragging, of measuring the spin and quadrupole moment of the black hole, and of testing the no-hair theorem. Here we investigate whether the deviations of stellar orbits from test-particle trajectories due to wind mass loss and tidal dissipation of the orbital energy compromise such measurements. We find that the effects of stellar winds are, in general, negligible. On the other hand, for the most eccentric orbits (e > 0.96) for which an optical interferometer, such as GRAVITY, will detect orbital plane precession due to frame dragging, the tidal dissipation of orbital energy occurs at timescales comparable to the timescale of precession due to the quadrupole moment of the black hole. As a result, this non-conservative effect is a potential source of systematic uncertainty in testing the no-hair theorem with stellar orbits

  16. DEVIATION OF STELLAR ORBITS FROM TEST PARTICLE TRAJECTORIES AROUND SGr A* DUE TO TIDES AND WINDS

    Energy Technology Data Exchange (ETDEWEB)

    Psaltis, Dimitrios [Astronomy Department, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Li, Gongjie; Loeb, Abraham, E-mail: dpsaltis@email.arizona.edu, E-mail: gli@cfa.harvard.edu, E-mail: aloeb@cfa.harvard.edu [Institute for Theory and Computation, Harvard-Smithsonian CfA, 60 Garden Street, Cambridge, MA (United States)

    2013-11-01

    Monitoring the orbits of stars around Sgr A* offers the possibility of detecting the precession of their orbital planes due to frame dragging, of measuring the spin and quadrupole moment of the black hole, and of testing the no-hair theorem. Here we investigate whether the deviations of stellar orbits from test-particle trajectories due to wind mass loss and tidal dissipation of the orbital energy compromise such measurements. We find that the effects of stellar winds are, in general, negligible. On the other hand, for the most eccentric orbits (e > 0.96) for which an optical interferometer, such as GRAVITY, will detect orbital plane precession due to frame dragging, the tidal dissipation of orbital energy occurs at timescales comparable to the timescale of precession due to the quadrupole moment of the black hole. As a result, this non-conservative effect is a potential source of systematic uncertainty in testing the no-hair theorem with stellar orbits.

  17. Investigating fundamental properties of wind turbine wake structure using particle image velocimetry

    Energy Technology Data Exchange (ETDEWEB)

    Whale, J. [Univ. of Edinburgh, Dept. of Mechanical Engineering, Edinburgh (United Kingdom)

    1997-08-01

    Low Reynolds number flow visualization tests are often used for showing the flow pattern changes associated with changes in lift-coefficients at a higher Reynolds number. In wind turbine studies, analysis of measured wake structures at small scale may reveal fundamental properties of the wake which will offer wake modellers a more complete understanding of rotor flows. Measurements are presented from experiments on a model wind turbine rig conducted in a water channel. The laser-optics technique of Particle Image Velocimetry (PIV) is used to make simultaneous multi-point measurements of the wake flow behind small-scale rotors. Analysis of the PIV data shows trends in velocity and vorticity structure in the wake. Study of the flow close to the rotor plane reveals information on stalled flow and blade performance. (au)

  18. On the harmonic-type and linear-type confinement of a relativistic scalar particle yielded by Lorentz symmetry breaking effects

    Energy Technology Data Exchange (ETDEWEB)

    Bakke, K., E-mail: kbakke@fisica.ufpb.br [Departamento de Física, Universidade Federal da Paraíba, Caixa Postal 5008, 58051-900, João Pessoa-PB (Brazil); Belich, H., E-mail: belichjr@gmail.com [Departamento de Física e Química, Universidade Federal do Espírito Santo, Av. Fernando Ferrari, 514, Goiabeiras, 29060-900, Vitória, ES (Brazil)

    2016-10-15

    Based on the Standard Model Extension, we investigate relativistic quantum effects on a scalar particle in backgrounds of the Lorentz symmetry violation defined by a tensor field. We show that harmonic-type and linear-type confining potentials can stem from Lorentz symmetry breaking effects, and thus, relativistic bound state solutions can be achieved. We first analyse a possible scenario of the violation of the Lorentz symmetry that gives rise to a harmonic-type potential. In the following, we analyse another possible scenario of the breaking of the Lorentz symmetry that induces both harmonic-type and linear-type confining potentials. In this second case, we also show that not all values of the parameter associated with the intensity of the electric field are permitted in the search for polynomial solutions to the radial equation, where the possible values of this parameter are determined by the quantum numbers of the system and the parameters associated with the violation of the Lorentz symmetry.

  19. Wavelet analysis of angular spectra of relativistic particles in 208Pb induced collisions with emulsion nuclei at 158A GeV/c

    International Nuclear Information System (INIS)

    Fedorisin, J.; Vokal, S.

    2008-01-01

    The continuous wavelet transform is applied to the pseudorapidity spectra of relativistic secondary particles created in Pb + Em nuclear collisions at 158A GeV/c. The wavelet pseudorapidity spectra are subsequently surveyed at different scales to look for signs of ring-like correlations whose presence could be explained either via the production of Cherenkov gluons or the propagation of Mach shock waves in excited nuclear medium. The presented approach is established on the basic prerequisite that the both effects would lead to excess of particles at certain typical pseudorapidities. Furthermore, the particles contributing to the ring-like structures are expected to have uniform azimuthal distributions. The multiscale analysis of the wavelet pseudorapidity spectra reveals the irregularities which are interpreted as the favoured pseudorapidities of groups of produced particles. A uniformity of the azimuthal structure of the disclosed pseudorapidity irregularities is examined, eventually leading to the conclusion that the irregularities are not related to correlations of a ring-like nature

  20. On parasupersymmetries and relativistic descriptions for spin one particles. Pt. 2. The interacting context with (electro)magnetic fields

    International Nuclear Information System (INIS)

    Beckers, J.; Debergh, N.; Nikitin, A.G.

    1995-01-01

    This second part belongs to a series of two papers devoted to a constructive review of the relativistic wave equations for vector mesons due to the recent impact of spin one developments in connection with parasupersymmetric quantum mechanics. Here, the mesons are interacting with external (electro)magnetic fields but the simplest context of homogeneous constant magnetic fields directed along the z-axis is particularly studied. Discussions on reality of energy eigenvalues, on causal propagation and on gyromagnetic ratios are especially presented. Supersymmetries and parasupersymmetries are analysed with respect to new pseudosupersymmetries suggested by these developments in one particular context. (orig.)

  1. Thermodynamic laws and equipartition theorem in relativistic Brownian motion.

    Science.gov (United States)

    Koide, T; Kodama, T

    2011-06-01

    We extend the stochastic energetics to a relativistic system. The thermodynamic laws and equipartition theorem are discussed for a relativistic Brownian particle and the first and the second law of thermodynamics in this formalism are derived. The relation between the relativistic equipartition relation and the rate of heat transfer is discussed in the relativistic case together with the nature of the noise term.

  2. Particle acceleration inside PWN: Simulation and observational constraints with INTEGRAL; Acceleration de particules au sein des vents relativistes de pulsar: simulation et contraintes observationelles avec le satellite INTEGRAL

    Energy Technology Data Exchange (ETDEWEB)

    Forot, M

    2006-12-15

    The context of this thesis is to gain new constraints on the different particle accelerators that occur in the complex environment of neutron stars: in the pulsar magnetosphere, in the striped wind or wave outside the light cylinder, in the jets and equatorial wind, and at the wind terminal shock. An important tool to constrain both the magnetic field and primary particle energies is to image the synchrotron ageing of the population, but it requires a careful modelling of the magnetic field evolution in the wind flow. The current models and understanding of these different accelerators, the acceleration processes and open questions have been reviewed in the first part of the thesis. The instrumental part of this work involves the IBIS imager, on board the INTEGRAL satellite, that provides images with 12' resolution from 17 keV to MeV where the SPI spectrometer takes over up, to 10 MeV, but with a reduced 2 degrees resolution. A new method for using the double-layer IBIS imager as a Compton telescope with coded mask aperture. Its performance has been measured. The Compton scattering information and the achieved sensitivity also open a new window for polarimetry in gamma rays. A method has been developed to extract the linear polarization properties and to check the instrument response for fake polarimetric signals in the various backgrounds and projection effects.

  3. Particle acceleration inside PWN: Simulation and observational constraints with INTEGRAL; Acceleration de particules au sein des vents relativistes de pulsar: simulation et contraintes observationelles avec le satellite INTEGRAL

    Energy Technology Data Exchange (ETDEWEB)

    Forot, M

    2006-12-15

    The context of this thesis is to gain new constraints on the different particle accelerators that occur in the complex environment of neutron stars: in the pulsar magnetosphere, in the striped wind or wave outside the light cylinder, in the jets and equatorial wind, and at the wind terminal shock. An important tool to constrain both the magnetic field and primary particle energies is to image the synchrotron ageing of the population, but it requires a careful modelling of the magnetic field evolution in the wind flow. The current models and understanding of these different accelerators, the acceleration processes and open questions have been reviewed in the first part of the thesis. The instrumental part of this work involves the IBIS imager, on board the INTEGRAL satellite, that provides images with 12' resolution from 17 keV to MeV where the SPI spectrometer takes over up, to 10 MeV, but with a reduced 2 degrees resolution. A new method for using the double-layer IBIS imager as a Compton telescope with coded mask aperture. Its performance has been measured. The Compton scattering information and the achieved sensitivity also open a new window for polarimetry in gamma rays. A method has been developed to extract the linear polarization properties and to check the instrument response for fake polarimetric signals in the various backgrounds and projection effects.

  4. Thrust calculation of electric solar wind sail by particle-in-cell simulation

    Energy Technology Data Exchange (ETDEWEB)

    Hoshi, Kento [Kyoto Univ. (Japan). Dept. of Electrical Engineering; Kojima, Hirotsugu; Yamakawa, Hiroshi [Kyoto Univ. (Japan). Research Inst. for Sustainable Humanosphere; Muranaka, Takanobu [Chukyo Univ., Nagoya (Japan). Dept. of Electrical Engineering

    2016-07-01

    In this study, thrust characteristics of an electric solar wind sail were numerically evaluated using full threedimensional particle-in-cell (PIC) simulation. The thrust obtained from the PIC simulation was lower than the thrust estimations obtained in previous studies. The PIC simulation indicated that ambient electrons strongly shield the electrostatic potential of the tether of the sail, and the strong shield effect causes a greater thrust reduction than has been obtained in previous studies. Additionally, previous expressions of the thrust estimation were modified by using the shielded potential structure derived from the present simulation results. The modified thrust estimation agreed very well with the thrust obtained from the PIC simulation.

  5. Thrust calculation of electric solar wind sail by particle-in-cell simulation

    International Nuclear Information System (INIS)

    Hoshi, Kento; Kojima, Hirotsugu; Yamakawa, Hiroshi; Muranaka, Takanobu

    2016-01-01

    In this study, thrust characteristics of an electric solar wind sail were numerically evaluated using full threedimensional particle-in-cell (PIC) simulation. The thrust obtained from the PIC simulation was lower than the thrust estimations obtained in previous studies. The PIC simulation indicated that ambient electrons strongly shield the electrostatic potential of the tether of the sail, and the strong shield effect causes a greater thrust reduction than has been obtained in previous studies. Additionally, previous expressions of the thrust estimation were modified by using the shielded potential structure derived from the present simulation results. The modified thrust estimation agreed very well with the thrust obtained from the PIC simulation.

  6. Self consistent hydrodynamic description of the plasma wake field excitation induced by a relativistic charged-particle beam in an unmagnetized plasma

    Science.gov (United States)

    Jovanović, Dušan; Fedele, Renato; De Nicola, Sergio; Akhter, Tamina; Belić, Milivoj

    2017-12-01

    A self-consistent nonlinear hydrodynamic theory is presented of the propagation of a long and thin relativistic electron beam, for a typical plasma wake field acceleration configuration in an unmagnetized and overdense plasma. The random component of the trajectories of the beam particles as well as of their velocity spread is modelled by an anisotropic temperature, allowing the beam dynamics to be approximated as a 3D adiabatic expansion/compression. It is shown that even in the absence of the nonlinear plasma wake force, the localisation of the beam in the transverse direction can be achieved owing to the nonlinearity associated with the adiabatic compression/rarefaction and a coherent stationary state is constructed. Numerical calculations reveal the possibility of the beam focussing and defocussing, but the lifetime of the beam can be significantly extended by the appropriate adjustments, so that transverse oscillations are observed, similar to those predicted within the thermal wave and Vlasov kinetic models.

  7. Relativistic impulse dynamics.

    Science.gov (United States)

    Swanson, Stanley M

    2011-08-01

    Classical electrodynamics has some annoying rough edges. The self-energy of charges is infinite without a cutoff. The calculation of relativistic trajectories is difficult because of retardation and an average radiation reaction term. By reconceptuallizing electrodynamics in terms of exchanges of impulses rather than describing it by forces and potentials, we eliminate these problems. A fully relativistic theory using photonlike null impulses is developed. Numerical calculations for a two-body, one-impulse-in-transit model are discussed. A simple relationship between center-of-mass scattering angle and angular momentum was found. It reproduces the Rutherford cross section at low velocities and agrees with the leading term of relativistic distinguishable-particle quantum cross sections (Møller, Mott) when the distance of closest approach is larger than the Compton wavelength of the particle. Magnetism emerges as a consequence of viewing retarded and advanced interactions from the vantage point of an instantaneous radius vector. Radiation reaction becomes the local conservation of energy-momentum between the radiating particle and the emitted impulse. A net action is defined that could be used in developing quantum dynamics without potentials. A reinterpretation of Newton's laws extends them to relativistic motion.

  8. Magnetic pumping as a source of particle heating in the solar wind

    Science.gov (United States)

    Lichko, E. R.; Egedal, J.; Daughton, W. S.; Kasper, J. C.

    2017-12-01

    Magnetic pumping is a means of heating plasmas for both fusion and astrophysical applications. In this study a magnetic pumping model is developed as a possible explanation for the heating and the generation of power-law distribution functions observed in the solar wind plasma. In most previous studies turbulent energy is only dissipated at microscopic kinetic scales. In contrast, magnetic pumping energizes the particles through the largest scale turbulent fluctuations, thus bypassing the energy cascade. Kinetic simulations are applied to verify these analytic predictions. Previous results for the one-dimensional model, as well as initial results for a two-dimensional model which includes the effects of trapped and passing particles are presented. Preliminary results of the presence of this mechanism in the bow shock region, using spacecraft data from the Magnetospheric Multiscale mission, are presented as well.

  9. Relativistic solitons and pulsars

    Energy Technology Data Exchange (ETDEWEB)

    Karpman, V I [Inst. of Terrestrial Magnetism, Ionosphere, and Radio-Wave Propagation, Moscow; Norman, C A; ter Haar, D; Tsytovich, V N

    1975-05-01

    A production mechanism for stable electron bunches or sheets of localized electric fields is investigated which may account for pulsar radio emission. Possible soliton phenomena in a one-dimensional relativistic plasma are analyzed, and it is suggested that the motion of a relativistic soliton, or ''relaton'', along a curved magnetic-field line may produce radio emission with the correct polarization properties. A general MHD solution is obtained for relatons, the radiation produced by a relativistic particle colliding with a soliton is evaluated, and the emission by a soliton moving along a curved field line is estimated. It is noted that due to a number of severe physical restrictions, curvature radiation is not a very likely solution to the problem of pulsar radio emission. (IAA)

  10. Relativistic quantum mechanics

    CERN Document Server

    Horwitz, Lawrence P

    2015-01-01

    This book describes a relativistic quantum theory developed by the author starting from the E.C.G. Stueckelberg approach proposed in the early 40s. In this framework a universal invariant evolution parameter (corresponding to the time originally postulated by Newton) is introduced to describe dynamical evolution. This theory is able to provide solutions for some of the fundamental problems encountered in early attempts to construct a relativistic quantum theory. A relativistically covariant construction is given for which particle spins and angular momenta can be combined through the usual rotation group Clebsch-Gordan coefficients. Solutions are defined for both the classical and quantum two body bound state and scattering problems. The recently developed quantum Lax-Phillips theory of semigroup evolution of resonant states is described. The experiment of Lindner and coworkers on interference in time is discussed showing how the property of coherence in time provides a simple understanding of the results. Th...

  11. Luminescence as a new detection method for non-relativistic highly ionizing particles in water/ice neutrino telescopes

    Energy Technology Data Exchange (ETDEWEB)

    Pollmann, Anna [Bergische Universitaet Wuppertal (Germany); Collaboration: IceCube-Collaboration

    2016-07-01

    Cosmic ray detectors use air as a radiator for luminescence. In water and ice detectors Cherenkov light is the dominant light producing mechanism when the particle velocity exceeds the Cherenkov threshold, approximately three quarters of the speed of light. Luminescence is produced by highly ionizing particles passing through matter due to the excitation of the surrounding atoms. The observables of luminescence, such as the wavelength spectrum and decay times, are highly dependent on the properties of the medium. Therefore, the results of measurements, in which luminescence was produced by particles passing through water or ice, vary by two orders of magnitude in intensity. It is shown that, even for the most conservative intensity value, luminescence can be used as a detection method for highly ionizing particles with velocities below the Cherenkov threshold. These could be magnetic monopoles or other massive and highly penetrating exotic particles. In the most optimistic case, luminescence contributes even to the light output of standard model particles.

  12. Effect of wind direction and speed on the dispersion of nucleation and accumulation mode particles in an urban street canyon.

    Science.gov (United States)

    Kumar, Prashant; Fennell, Paul; Britter, Rex

    2008-08-25

    There have been many studies concerning dispersion of gaseous pollutants from vehicles within street canyons; fewer address the dispersion of particulate matter, particularly particle number concentrations separated into the nucleation (10-30 nm or N10-30) or accumulation (30-300 nm or N30-300) modes either separately or together (N10-300). This study aimed to determine the effect of wind direction and speed on particle dispersion in the above size ranges. Particle number distributions (PNDs) and concentrations (PNCs) were measured in the 5-2738 nm range continuously (and in real-time) for 17 days between 7th and 23rd March 2007 in a regular (aspect ratio approximately unity) street canyon in Cambridge (UK), using a newly developed fast-response differential mobility spectrometer (sampling frequency 0.5 Hz), at 1.60 m above the road level. The PNCs in each size range, during all wind directions, were better described by a proposed two regime model (traffic-dependent and wind-dependent mixing) than by simply assuming that the PNC was inversely proportional to the wind speed or by fitting the data with a best-fit single power law. The critical cut-off wind speed (Ur,crit) for each size range of particles, distinguishing the boundary between these mixing regimes was also investigated. In the traffic-dependent PNC region (UrUrwind speed and direction. In the wind speed dependent PNC region (UrUr>Ur,critUr,crit), concentrations were inversely proportional to Ur irrespective of any particle size range and wind directions. The wind speed demarcating the two regimes (Ur,critUr,crit) was 1.23+/-0.55 m s(-1) for N10-300, (1.47+/-0.72 m s(-1)) for N10-30 but smaller (0.78+/-0.29 m s(-1)) for N30-300.

  13. The solar wind plasma density control of night-time auroral particle precipitation

    Directory of Open Access Journals (Sweden)

    V. G. Vorobjev

    2004-03-01

    Full Text Available DMSP F6 and F7 spacecraft observations of the average electron and ion energy, and energy fluxes in different night-time precipitation regions for the whole of 1986 were used to examine the precipitation features associated with solar wind density changes. It was found that during magnetic quietness |AL|<100nT, the enhancement of average ion fluxes was observed at least two times, along with the solar wind plasma density increase from 2 to 24cm–3. More pronounced was the ion flux enhancement that occurred in the b2i–b4s and b4s–b5 regions, which are approximately corresponding to the statistical auroral oval and map to the magnetospheric plasma sheet tailward of the isotropy boundary. The average ion energy decrease of about 2–4kev was registered simultaneously with this ion flux enhancement. The results verify the occurrence of effective penetration of the solar wind plasma into the magnetospheric tail plasma sheet. Key words. Ionosphere (auroral ionosphere, particle precipitation – Magnetospheric physics (solar windmagnetosphere interaction

  14. Pluto's interaction with its space environment: Solar wind, energetic particles, and dust.

    Science.gov (United States)

    Bagenal, F; Horányi, M; McComas, D J; McNutt, R L; Elliott, H A; Hill, M E; Brown, L E; Delamere, P A; Kollmann, P; Krimigis, S M; Kusterer, M; Lisse, C M; Mitchell, D G; Piquette, M; Poppe, A R; Strobel, D F; Szalay, J R; Valek, P; Vandegriff, J; Weidner, S; Zirnstein, E J; Stern, S A; Ennico, K; Olkin, C B; Weaver, H A; Young, L A

    2016-03-18

    The New Horizons spacecraft carried three instruments that measured the space environment near Pluto as it flew by on 14 July 2015. The Solar Wind Around Pluto (SWAP) instrument revealed an interaction region confined sunward of Pluto to within about 6 Pluto radii. The region's surprisingly small size is consistent with a reduced atmospheric escape rate, as well as a particularly high solar wind flux. Observations from the Pluto Energetic Particle Spectrometer Science Investigation (PEPSSI) instrument suggest that ions are accelerated and/or deflected around Pluto. In the wake of the interaction region, PEPSSI observed suprathermal particle fluxes equal to about 1/10 of the flux in the interplanetary medium and increasing with distance downstream. The Venetia Burney Student Dust Counter, which measures grains with radii larger than 1.4 micrometers, detected one candidate impact in ±5 days around New Horizons' closest approach, indicating an upper limit of <4.6 kilometers(-3) for the dust density in the Pluto system. Copyright © 2016, American Association for the Advancement of Science.

  15. Contraint's theory and relativistic dynamics

    International Nuclear Information System (INIS)

    Longhi, G.; Lusanna, L.

    1987-01-01

    The purpose of this Workshop was to examine the current situation of relativistic dynamics. In particular, Dirac-Bergmann's theory of constraints, which lies at the heart of gauge theories, general relativity, relativistic mechanics and string theories, was chosen as the unifying theoretical framework best suited to investigate such a field. The papers discussed were on general relativity; relativistic mechanics; particle physics and mathematical physics. Also discussed were the problems of classical and quantum level, namely the identification of the classical observables of constrained systems, the equivalence of the nonequivalence of the various ways to quantize such systems; the problem of the anomalies; the best geometrical approach to the theory of constraints; the possibility of unifying all the treatments of relativistic mechanics. This book compiles the papers presented at proceedings of relativistic dynamics and constraints theory

  16. Impact of a wind turbine on turbulence: Un-freezing turbulence by means of a simple vortex particle approach

    DEFF Research Database (Denmark)

    Branlard, Emmanuel Simon Pierre; Mercier, P.; Machefaux, Ewan

    2016-01-01

    by a bound vorticity lifting line while the turbine wake vorticity and the turbulence vorticity are projected onto vortex particles. In the present work the rotor blades are stiff leaving aero-elastic interactions for future work. Inflow turbulence is generated with the model of Mann and converted to vortex......? Is it acceptable to neglect the influence of the wake and the wind turbine on the turbulent inflow? Is there evidence to justify the extra cost of a method capable of including these effects correctly? To this end, a unified vorticity representation of the flow is used: the wind turbine model is represented......A vortex particle representation of turbulent fields is devised in order to address the following questions: Does a wind turbine affect the statistics of the incoming turbulence? Should this imply a change in the way turbulence boxes are used in wind turbine aero-elastic simulations...

  17. Relativistic quantum mechanics and introduction to field theory

    Energy Technology Data Exchange (ETDEWEB)

    Yndurain, F.J. [Universidad Autonoma de Madrid (Spain). Dept. de Fisica Teorica

    1996-12-01

    The following topics were dealt with: relativistic transformations, the Lorentz group, Klein-Gordon equation, spinless particles, spin 1/2 particles, Dirac particle in a potential, massive spin 1 particles, massless spin 1 particles, relativistic collisions, S matrix, cross sections, decay rates, partial wave analysis, electromagnetic field quantization, interaction of radiation with matter, interactions in quantum field theory and relativistic interactions with classical sources.

  18. Relativistic quantum mechanics and introduction to field theory

    International Nuclear Information System (INIS)

    Yndurain, F.J.

    1996-01-01

    The following topics were dealt with: relativistic transformations, the Lorentz group, Klein-Gordon equation, spinless particles, spin 1/2 particles, Dirac particle in a potential, massive spin 1 particles, massless spin 1 particles, relativistic collisions, S matrix, cross sections, decay rates, partial wave analysis, electromagnetic field quantization, interaction of radiation with matter, interactions in quantum field theory and relativistic interactions with classical sources

  19. A recirculation aerosol wind tunnel for evaluating aerosol samplers and measuring particle penetration through protective clothing materials.

    Science.gov (United States)

    Jaques, Peter A; Hsiao, Ta-Chih; Gao, Pengfei

    2011-08-01

    A recirculation aerosol wind tunnel was designed to maintain a uniform airflow and stable aerosol size distribution for evaluating aerosol sampler performance and determining particle penetration through protective clothing materials. The oval-shaped wind tunnel was designed to be small enough to fit onto a lab bench, have optimized dimensions for uniformity in wind speed and particle size distributions, sufficient mixing for even distribution of particles, and minimum particle losses. Performance evaluation demonstrates a relatively high level of spatial uniformity, with a coefficient of variation of 1.5-6.2% for wind velocities between 0.4 and 2.8 m s(-1) and, in this range, 0.8-8.5% for particles between 50 and 450 nm. Aerosol concentration stabilized within the first 5-20 min with, approximately, a count median diameter of 135 nm and geometric standard deviation of 2.20. Negligible agglomerate growth and particle loss are suggested. The recirculation design appears to result in unique features as needed for our research.

  20. A Bi-Level Particle Swarm Optimization Algorithm for Solving Unit Commitment Problems with Wind-EVs Coordinated Dispatch

    Science.gov (United States)

    Song, Lei; Zhang, Bo

    2017-07-01

    Nowadays, the grid faces much more challenges caused by wind power and the accessing of electric vehicles (EVs). Based on the potentiality of coordinated dispatch, a model of wind-EVs coordinated dispatch was developed. Then, A bi-level particle swarm optimization algorithm for solving the model was proposed in this paper. The application of this algorithm to 10-unit test system carried out that coordinated dispatch can benefit the power system from the following aspects: (1) Reducing operating costs; (2) Improving the utilization of wind power; (3) Stabilizing the peak-valley difference.

  1. SPECTRA OF MAGNETIC FLUCTUATIONS AND RELATIVISTIC PARTICLES PRODUCED BY A NONRESONANT WAVE INSTABILITY IN SUPERNOVA REMNANT SHOCKS

    International Nuclear Information System (INIS)

    Vladimirov, Andrey E.; Ellison, Donald C.; Bykov, Andrei M.

    2009-01-01

    We model strong forward shocks in young supernova remnants with efficient particle acceleration where a nonresonant instability driven by the cosmic ray current amplifies magnetic turbulence in the shock precursor. Particle injection, magnetic field amplification (MFA), and the nonlinear feedback of particles and fields on the bulk flow are derived consistently. The shock structure depends critically on the efficiency of turbulence cascading. If cascading is suppressed, MFA is strong, the shock precursor is stratified, and the turbulence spectrum contains several discrete peaks. These peaks, as well as the amount of MFA, should influence synchrotron X-rays, allowing observational tests of cascading and other assumptions intrinsic to the nonlinear model of nonresonant wave growth.

  2. Electromagnetic particle-in-cell simulations of the solar wind interaction with lunar magnetic anomalies.

    Science.gov (United States)

    Deca, J; Divin, A; Lapenta, G; Lembège, B; Markidis, S; Horányi, M

    2014-04-18

    We present the first three-dimensional fully kinetic and electromagnetic simulations of the solar wind interaction with lunar crustal magnetic anomalies (LMAs). Using the implicit particle-in-cell code iPic3D, we confirm that LMAs may indeed be strong enough to stand off the solar wind from directly impacting the lunar surface forming a mini-magnetosphere, as suggested by spacecraft observations and theory. In contrast to earlier magnetohydrodynamics and hybrid simulations, the fully kinetic nature of iPic3D allows us to investigate the space charge effects and in particular the electron dynamics dominating the near-surface lunar plasma environment. We describe for the first time the interaction of a dipole model centered just below the lunar surface under plasma conditions such that only the electron population is magnetized. The fully kinetic treatment identifies electromagnetic modes that alter the magnetic field at scales determined by the electron physics. Driven by strong pressure anisotropies, the mini-magnetosphere is unstable over time, leading to only temporal shielding of the surface underneath. Future human exploration as well as lunar science in general therefore hinges on a better understanding of LMAs.

  3. Analysis of ultra-relativistic charged particle beam and stretched wire measurement interactions with cylindrically symmetric structures

    International Nuclear Information System (INIS)

    Deibele, C.E.

    1996-01-01

    The beam impedance and wakefield are quantities which describe the stability of charged particles in their trajectory within an accelerator. The stretched wire measurement technique is a method which estimates the beam impedance and wakefield. Definitions for the beam impedance, the wakefield, and the stretched wire measurement are presented. A pillbox resonator with circular beampipes is studied for its relatively simple profile and mode structure. Theoretical predictions and measurement data are presented for the interaction of various charged particle beams and center conductor geometries between the cavity and beampipe. Time domain predictions for the stretched wire measurement and wakefield are presented and are shown to be a linear interaction

  4. Relativistic quantum motion of spin-0 particles under the influence of noninertial effects in the cosmic string spacetime

    Energy Technology Data Exchange (ETDEWEB)

    Santos, L.C.N.; Barros, C.C. [Universidade Federal de Santa Catarina, Dept. de Fisica - CFM, Florianopolis, SC (Brazil)

    2018-01-15

    We study solutions for the Klein-Gordon equation with vector and scalar potentials of the Coulomb types under the influence of noninertial effects in the cosmic string spacetime. We also investigate a quantum particle described by the Klein-Gordon oscillator in the background spacetime generated by a cosmic string. An important result obtained is that the noninertial effects restrict the physical region of the spacetime where the particle can be placed. In addition, we show that these potentials can form bound states for the Klein-Gordon equation in this kind of background. (orig.)

  5. Relativistic shock waves and the excitation of plerions

    Energy Technology Data Exchange (ETDEWEB)

    Arons, J. (California Univ., Berkeley, CA (USA)); Gallant, Y.A. (California Univ., Berkeley, CA (USA). Dept. of Physics); Hoshino, Masahiro; Max, C.E. (California Univ., Livermore, CA (USA). Inst. of Geophysics and Planetary Physics); Langdon, A.B. (Lawrence Livermore National Lab., CA (USA))

    1991-01-07

    The shock termination of a relativistic magnetohydrodynamic wind from a pulsar is the most interesting and viable model for the excitation of the synchrotron sources observed in plerionic supernova remnants. We have studied the structure of relativistic magnetosonic shock waves in plasmas composed purely of electrons and positrons, as well as those whose composition includes heavy ions as a minority constituent by number. We find that relativistic shocks in symmetric pair plasmas create fully thermalized distributions of particles and fields downstream. Therefore, such shocks are not good candidates for the mechanism which converts rotational energy lost from a pulsar into the nonthermal synchrotron emission observed in plerions. However, when the upstream wind contains heavy ions which are minority constituent by number density, but carry the bulk of the energy density, much of the energy of the shock goes into a downstream, nonthermal power law distribution of positrons with energy distribution N(E)dE {proportional to}E{sup {minus}s}. In a specific model presented in some detail, s = 3. These characteristics are close to those assumed for the pairs in macroscopic MHD wind models of plerion excitation. The essential mechanism is collective synchrotron emission of left-handed extraordinary modes by the ions in the shock front at high harmonics of the ion cyclotron frequency, with the downstream positrons preferentially absorbing almost all of this radiation, mostly at their fundamental (relativistic) cyclotron frequencies. Possible applications to models of plerions and to constraints on theories of energy loss from pulsars are briefly outlines. 27 refs., 5 figs.

  6. Interplanetary Parameters Leading to Relativistic Electron Enhancement and Persistent Depletion Events at Geosynchronous Orbit and Potential for Prediction

    Science.gov (United States)

    Pinto, Victor A.; Kim, Hee-Jeong; Lyons, Larry R.; Bortnik, Jacob

    2018-02-01

    We have identified 61 relativistic electron enhancement events and 21 relativistic electron persistent depletion events during 1996 to 2006 from the Geostationary Operational Environmental Satellite (GOES) 8 and 10 using data from the Energetic Particle Sensor (EPS) >2 MeV fluxes. We then performed a superposed epoch time analysis of the events to find the characteristic solar wind parameters that determine the occurrence of such events, using the OMNI database. We found that there are clear differences between the enhancement events and the persistent depletion events, and we used these to establish a set of threshold values in solar wind speed, proton density and interplanetary magnetic field (IMF) Bz that can potentially be useful to predict sudden increases in flux. Persistent depletion events are characterized by a low solar wind speed, a sudden increase in proton density that remains elevated for a few days, and a northward turning of IMF Bz shortly after the depletion starts. We have also found that all relativistic electron enhancement or persistent depletion events occur when some geomagnetic disturbance is present, either a coronal mass ejection or a corotational interaction region; however, the storm index, SYM-H, does not show a strong connection with relativistic electron enhancement events or persistent depletion events. We have tested a simple threshold method for predictability of relativistic electron enhancement events using data from GOES 11 for the years 2007-2010 and found that around 90% of large increases in electron fluxes can be identified with this method.

  7. Relativistic Quantum Mechanics

    International Nuclear Information System (INIS)

    Antoine, J-P

    2004-01-01

    The aim of relativistic quantum mechanics is to describe the finer details of the structure of atoms and molecules, where relativistic effects become nonnegligible. It is a sort of intermediate realm, between the familiar nonrelativistic quantum mechanics and fully relativistic quantum field theory, and thus it lacks the simplicity and elegance of both. Yet it is a necessary tool, mostly for quantum chemists. Pilkuhn's book offers to this audience an up-to-date survey of these methods, which is quite welcome since most previous textbooks are at least ten years old. The point of view of the author is to start immediately in the relativistic domain, following the lead of Maxwell's equations rather than classical mechanics, and thus to treat the nonrelativistic version as an approximation. Thus Chapter 1 takes off from Maxwell's equations (in the noncovariant Coulomb gauge) and gradually derives the basic aspects of Quantum Mechanics in a rather pedestrian way (states and observables, Hilbert space, operators, quantum measurement, scattering,. Chapter 2 starts with the Lorentz transformations, then continues with the Pauli spin equation and the Dirac equation and some of their applications (notably the hydrogen atom). Chapter 3 is entitled 'Quantum fields and particles', but falls short of treating quantum field theory properly: only creation/annihilation operators are considered, for a particle in a box. The emphasis is on two-electron states (the Pauli principle, the Foldy--Wouthuysen elimination of small components of Dirac spinors, Breit projection operators. Chapter 4 is devoted to scattering theory and the description of relativistic bound states. Chapter 5, finally, covers hyperfine interactions and radiative corrections. As we said above, relativistic quantum mechanics is by nature limited in scope and rather inelegant and Pilkuhn's book is no exception. The notation is often heavy (mostly noncovariant) and the mathematical level rather low. The central topic

  8. Dawn-dusk asymmetry in particles of solar wind origin within the magnetosphere

    Directory of Open Access Journals (Sweden)

    T. J. Stubbs

    Full Text Available Solar wind/magnetosheath plasma in the magnetosphere can be identified using a component that has a higher charge state, lower density and, at least soon after their entry into the magnetosphere, lower energy than plasma from a terrestrial source. We survey here observations taken over 3 years of He2+ ions made by the Magnetospheric Ion Composition Sensor (MICS of the Charge and Mass Magnetospheric Ion Composition Experiment (CAMMICE instrument aboard POLAR. The occurrence probability of these solar wind ions is then plotted as a function of Magnetic Local Time (MLT and invariant latitude (7 for various energy ranges. For all energies observed by MICS (1.8–21.4 keV and all solar wind conditions, the occurrence probabilities peaked around the cusp region and along the dawn flank. The solar wind conditions were filtered to see if this dawnward asymmetry is controlled by the Svalgaard-Mansurov effect (and so depends on the BY component of the interplanetary magnetic field, IMF or by Fermi acceleration of He2+ at the bow shock (and so depends on the IMF ratio BX /BY . It is shown that the asymmetry remained persistently on the dawn flank, suggesting it was not due to effects associated with direct entry into the magnetosphere. This asymmetry, with enhanced fluxes on the dawn flank, persisted for lower energy ions (below a "cross-over" energy of about 23 keV but reversed sense to give higher fluxes on the dusk flank at higher energies. This can be explained by the competing effects of gradient/curvature drifts and the convection electric field on ions that are convecting sunward on re-closed field lines. The lower-energy He2+ ions E × B drift dawnwards as they move earthward, whereas the higher energy ions curvature/ gradient drift towards dusk. The convection electric field in the tail is weaker for

  9. Dawn-dusk asymmetry in particles of solar wind origin within the magnetosphere

    Directory of Open Access Journals (Sweden)

    T. J. Stubbs

    2001-01-01

    Full Text Available Solar wind/magnetosheath plasma in the magnetosphere can be identified using a component that has a higher charge state, lower density and, at least soon after their entry into the magnetosphere, lower energy than plasma from a terrestrial source. We survey here observations taken over 3 years of He2+ ions made by the Magnetospheric Ion Composition Sensor (MICS of the Charge and Mass Magnetospheric Ion Composition Experiment (CAMMICE instrument aboard POLAR. The occurrence probability of these solar wind ions is then plotted as a function of Magnetic Local Time (MLT and invariant latitude (7 for various energy ranges. For all energies observed by MICS (1.8–21.4 keV and all solar wind conditions, the occurrence probabilities peaked around the cusp region and along the dawn flank. The solar wind conditions were filtered to see if this dawnward asymmetry is controlled by the Svalgaard-Mansurov effect (and so depends on the BY component of the interplanetary magnetic field, IMF or by Fermi acceleration of He2+ at the bow shock (and so depends on the IMF ratio BX /BY . It is shown that the asymmetry remained persistently on the dawn flank, suggesting it was not due to effects associated with direct entry into the magnetosphere. This asymmetry, with enhanced fluxes on the dawn flank, persisted for lower energy ions (below a "cross-over" energy of about 23 keV but reversed sense to give higher fluxes on the dusk flank at higher energies. This can be explained by the competing effects of gradient/curvature drifts and the convection electric field on ions that are convecting sunward on re-closed field lines. The lower-energy He2+ ions E × B drift dawnwards as they move earthward, whereas the higher energy ions curvature/ gradient drift towards dusk. The convection electric field in the tail is weaker for northward IMF. Ions then need less energy to drift to the dusk flank, so that the cross-over energy, at which the asymmetry changes sense, is reduced

  10. Relativistic few body calculations

    International Nuclear Information System (INIS)

    Gross, F.

    1988-01-01

    A modern treatment of the nuclear few-body problem must take into account both the quark structure of baryons and mesons, which should be important at short range, and the relativistic exchange of mesons, which describes the long range, peripheral interactions. A way to model both of these aspects is described. The long range, peripheral interactions are calculated using the spectator model, a general approach in which the spectators to nucleon interactions are put on their mass-shell. Recent numerical results for a relativistic OBE model of the NN interaction, obtained by solving a relativistic equation with one-particle on mass-shell, will be presented and discussed. Two meson exchange models, one with only four mesons (π,σ,/rho/,ω) but with a 25% admixture of γ 5 coupling for the pion, and a second with six mesons (π,σ,/rho/,ω,δ,/eta/) but pure γ 5 γ/sup μ/ pion coupling, are shown to give very good quantitative fits to the NN scattering phase shifts below 400 MeV, and also a good description of the /rvec p/ 40 Ca elastic scattering observables. Applications of this model to electromagnetic interactions of the two body system, with emphasis on the determination of relativistic current operators consistent with the dynamics and the exact treatment of current conservation in the presence of phenomenological form factors, will be described. 18 refs., 8 figs

  11. Perpendicular relativistic shocks in magnetized pair plasma

    Science.gov (United States)

    Plotnikov, Illya; Grassi, Anna; Grech, Mickael

    2018-04-01

    Perpendicular relativistic (γ0 = 10) shocks in magnetized pair plasmas are investigated using two dimensional Particle-in-Cell simulations. A systematic survey, from unmagnetized to strongly magnetized shocks, is presented accurately capturing the transition from Weibel-mediated to magnetic-reflection-shaped shocks. This transition is found to occur for upstream flow magnetizations 10-3 10-2, it leaves place to a purely electromagnetic precursor following from the strong emission of electromagnetic waves at the shock front. Particle acceleration is found to be efficient in weakly magnetized perpendicular shocks in agreement with previous works, and is fully suppressed for σ > 10-2. Diffusive Shock Acceleration is observed only in weakly magnetized shocks, while a dominant contribution of Shock Drift Acceleration is evidenced at intermediate magnetizations. The spatial diffusion coefficients are extracted from the simulations allowing for a deeper insight into the self-consistent particle kinematics and scale with the square of the particle energy in weakly magnetized shocks. These results have implications for particle acceleration in the internal shocks of AGN jets and in the termination shocks of Pulsar Wind Nebulae.

  12. Observation of an Energy-Dependent Difference in Elliptic Flow between Particles and Antiparticles in Relativistic Heavy Ion Collisions

    Czech Academy of Sciences Publication Activity Database

    Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; Aggarwal, M. M.; Ahammed, Z.; Alekseev, I.; Alford, J.; Anson, C.; Barnovská, Zuzana; Bielčík, J.; Bielčíková, Jana; Chaloupka, P.; Chung, Paul; Hajková, O.; Kapitán, Jan; Pachr, M.; Rusňák, Jan; Šumbera, Michal; Tlustý, David

    2013-01-01

    Roč. 110, č. 14 (2013), s. 142301 ISSN 0031-9007 R&D Projects: GA ČR GA13-20841S Institutional support: RVO:61389005 Keywords : STAR * elliptic flow * heavy ion collisions * particles and antiparticles comparations Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 7.728, year: 2013 http://prl. aps .org/pdf/PRL/v110/i14/e142301

  13. Non-Extensive Statistical Analysis of Solar Wind Electric, Magnetic Fields and Solar Energetic Particle time series.

    Science.gov (United States)

    Pavlos, G. P.; Malandraki, O.; Khabarova, O.; Livadiotis, G.; Pavlos, E.; Karakatsanis, L. P.; Iliopoulos, A. C.; Parisis, K.

    2017-12-01

    In this work we study the non-extensivity of Solar Wind space plasma by using electric-magnetic field data obtained by in situ spacecraft observations at different dynamical states of solar wind system especially in interplanetary coronal mass ejections (ICMEs), Interplanetary shocks, magnetic islands, or near the Earth Bow shock. Especially, we study the energetic particle non extensive fractional acceleration mechanism producing kappa distributions as well as the intermittent turbulence mechanism producing multifractal structures related with the Tsallis q-entropy principle. We present some new and significant results concerning the dynamics of ICMEs observed in the near Earth at L1 solar wind environment, as well as its effect in Earth's magnetosphere as well as magnetic islands. In-situ measurements of energetic particles at L1 are analyzed, in response to major solar eruptive events at the Sun (intense flares, fast CMEs). The statistical characteristics are obtained and compared for the Solar Energetic Particles (SEPs) originating at the Sun, the energetic particle enhancements associated with local acceleration during the CME-driven shock passage over the spacecraft (Energetic Particle Enhancements, ESPs) as well as the energetic particle signatures observed during the passage of the ICME. The results are referred to Tsallis non-extensive statistics and in particular to the estimation of Tsallis q-triplet, (qstat, qsen, qrel) of electric-magnetic field and the kappa distributions of solar energetic particles time series of the ICME, magnetic islands, resulting from the solar eruptive activity or the internal Solar Wind dynamics. Our results reveal significant differences in statistical and dynamical features, indicating important variations of the magnetic field dynamics both in time and space domains during the shock event, in terms of rate of entropy production, relaxation dynamics and non-equilibrium meta-stable stationary states.

  14. Relativistic wave mechanics

    CERN Document Server

    Corinaldesi, Ernesto

    1963-01-01

    Geared toward advanced undergraduate and graduate students of physics, this text provides readers with a background in relativistic wave mechanics and prepares them for the study of field theory. The treatment originated as a series of lectures from a course on advanced quantum mechanics that has been further amplified by student contributions.An introductory section related to particles and wave functions precedes the three-part treatment. An examination of particles of spin zero follows, addressing wave equation, Lagrangian formalism, physical quantities as mean values, translation and rotat

  15. Relativistic astrophysics

    CERN Document Server

    Price, R H

    1993-01-01

    Work reported in the workshop on relativistic astrophysics spanned a wide varicy of topics. Two specific areas seemed of particular interest. Much attention was focussed on gravitational wave sources, especially on the waveforms they produce, and progress was reported in theoretical and observational aspects of accretion disks.

  16. Relativistic Kinematics

    OpenAIRE

    Sahoo, Raghunath

    2016-01-01

    This lecture note covers Relativistic Kinematics, which is very useful for the beginners in the field of high-energy physics. A very practical approach has been taken, which answers "why and how" of the kinematics useful for students working in the related areas.

  17. Relativistic Astrophysics

    International Nuclear Information System (INIS)

    Font, J. A.

    2015-01-01

    The relativistic astrophysics is the field of astrophysics employing the theory of relativity Einstein as physical-mathematical model is to study the universe. This discipline analyzes astronomical contexts in which the laws of classical mechanics of Newton's law of gravitation are not valid. (Author)

  18. Tensor force effect on the evolution of single-particle energies in some isotopic chains in the relativistic Hartree-Fock approximation

    Science.gov (United States)

    López-Quelle, M.; Marcos, S.; Niembro, R.; Savushkin, L. N.

    2018-03-01

    Within a nonlinear relativistic Hartree-Fock approximation combined with the BCS method, we study the effect of the nucleon-nucleon tensor force of the π-exchange potential on the spin- and pseudospin-orbit doublets along the Ca and Sn isotopic chains. We show how the self-consistent tensor force effect modifies the splitting of both kinds of doublets in an interdependent form, leading, quite generally, to opposite effects in the accomplishment of the spin and pseudospin symmetries (the one is restored, the other one deteriorates and vice versa). The ordering of the single-particle energy levels is crucial to this respect. Also, we observe a mutual dependence on the evolution of the shell closure gap Z = 50 and the energy band outside the core, along the Sn chain, as due to the tensor force. In fact, when the shell gap is quenched the outside energy band is enlarged, and vice versa. A reduction of the strength of the pion tensor force with respect to its experimental value from the nucleon-nucleon scattering is needed to get results closer to the experiment. Pairing correlations act to some extent in the opposite direction of the tensor term of the one-pion-exchange force.

  19. Towards relativistic atomic physics. Part 1. The rest-frame instant form of dynamics and a canonical transformation for a system of charged particles plus the electromagnetic field

    International Nuclear Information System (INIS)

    Alba, D.; Crater, H.W.; Lusanna, L.

    2010-01-01

    A complete exposition of the rest-frame instant form of dynamics for arbitrary isolated systems (particles, fields, strings, fluids) admitting a Lagrangian description is given. The starting point is the parametrized Minkowski theory describing the system in arbitrary admissible noninertial frames in Minkowski space-time, which allows one to define the energy-momentum tensor of the system and to show the independence of the description from the clock synchronization convention and from the choice of the 3-coordinates. The restriction to the inertial rest frame, centered on the inertial observer having the Fokker-Pryce center-of-inertia world-line, and the study of relativistic collective variables replacing the nonrelativistic center of mass lead to the description of the isolated system as a decoupled globally defined noncovariant canonical external center of mass carrying a pole-dipole structure (the invariant mass M and the rest spin S¯ of the system) and an external realization of the Poincare group. Mc and S¯ are the energy and angular momentum of a unfaithful internal realization of the Poincare group built with the energy-momentum tensor of the system and acting inside the instantaneous Wigner 3-spaces where all the 3-vectors are Wigner covariant. The vanishing of the internal 3-momentum and of the internal Lorentz boosts eliminate the internal 3-center of mass inside the Wigner 3-spaces, so that at the end the isolated system is described only by Wigner-covariant canonical internal relative variables. Then an isolated system of positive-energy charged scalar articles with mutual Coulomb interaction plus a transverse electromagnetic field in the radiation gauge is investigated as a classical background for defining relativistic atomic physics. The electric charges of the particles are Grassmann-valued to regularize the self-energies. The external and internal realizations of the Poincare algebra in the rest-frame instant form of dynamics are found. This

  20. What invariant one-particle multiplicity distributions and two-particle correlations are telling us about relativistic heavy-ion collisions

    International Nuclear Information System (INIS)

    Nix, J.R.; Strottman, D.; Hecke, H.W. van; Schlei, B.R.; Sullivan, J.P.; Murray, M.J.

    1998-02-01

    The authors have used a nine-parameter expanding source model that includes special relativity, quantum statistics, resonance decays, and freeze-out on a realistic hypersurface in spacetime to analyze in detail invariant π + , K + , and K - one-particle multiplicity distributions and π + and π - two-particle correlations in nearly central collisions of Pb + Pb at p lab /A = 158 GeV/c. These studies confirm an earlier conclusion for nearly central collisions of Si + Au at p lab /A = 14.6 GeV/c that the freeze-out temperature is less than 100 meV and that both the longitudinal and transverse collective velocities -- which are anti-correlated with the temperature -- are substantial. The authors also reconciled their current results with those of previous analyses that yielded a much higher freeze-out temperature of approximately 140 meV for both Pb + Pb collisions at p lab /A = 158 GeV/c and other reactions. One type of analysis was based upon the use of a heuristic equation that neglects relativity to extrapolate slope parameters to zero particle mass. Another type of analysis utilized a thermal model in which there was an accumulation of effects from several approximations. The future should witness the arrival of much new data on invariant one-particle multiplicity distributions and two-particle correlations as functions of bombarding energy and/or size of the colliding nuclei. The proper analysis of these data in terms of a realistic model could yield accurate values for the density, temperature, collective velocity, size, and other properties of the expanding matter as it freezes out into a collection of noninteracting hadrons. A sharp discontinuity in the value of one or more of these properties could conceivably be the long-awaited signal for the formation of a quark-gluon plasma or other new physics

  1. Random phase approximation in relativistic approach

    International Nuclear Information System (INIS)

    Ma Zhongyu; Yang Ding; Tian Yuan; Cao Ligang

    2009-01-01

    Some special issues of the random phase approximation(RPA) in the relativistic approach are reviewed. A full consistency and proper treatment of coupling to the continuum are responsible for the successful application of the RPA in the description of dynamical properties of finite nuclei. The fully consistent relativistic RPA(RRPA) requires that the relativistic mean filed (RMF) wave function of the nucleus and the RRPA correlations are calculated in a same effective Lagrangian and the consistent treatment of the Dirac sea of negative energy states. The proper treatment of the single particle continuum with scattering asymptotic conditions in the RMF and RRPA is discussed. The full continuum spectrum can be described by the single particle Green's function and the relativistic continuum RPA is established. A separable form of the paring force is introduced in the relativistic quasi-particle RPA. (authors)

  2. Relativistic studies in actinides

    International Nuclear Information System (INIS)

    Weinberger, P.; Gonis, A.

    1987-01-01

    In this review the theoretical background is given for a relativistic description for actinide systems. A short introduction is given of the density functional theory which forms the basis for a fully relativistic single-particle theory. A section on the Dirac Hamiltonian is followed by a brief summary on group theoretical concepts. Single site scattering is presented such that formal extensions to the case of the presence of an internal (external) magnetic field and/or anisotropic scattering are evident. Multiple scattering is discussed such that it can readily be applied also to the problem of dislocations. In connection with the problem of selfconsistency particular attention is drawn to the use of complex energies. Finally the various theoretical aspects discussed are illustrated through the results of numerical calculations. 101 refs.; 37 figs.; 5 tabs

  3. Elementary relativistic atoms

    International Nuclear Information System (INIS)

    Nemenov, L.

    2001-01-01

    The Coulomb interaction which occurs in the final state between two particles with opposite charges allows for creation of the bound state of these particles. In the case when particles are generated with large momentum in lab frame, the Lorentz factors of the bound state will also be much larger than one. The relativistic velocity of the atoms provides the opportunity to observe bound states of (π + μ - ), (π + π - ) and (π + K - ) with a lifetime as short as 10 -16 s, and to measure their parameters. The ultrarelativistic positronium atoms (A 2e ) allow us to observe the e.ect of superpenetration in matter, to study the effects caused by the formation time of A 2e from virtual e + e - pairs and to investigate the process of transformation of two virtual particles into the bound state

  4. Inert tracer wind resuspension as a function of wind speed, atmospheric stability, and initial tracer particle size

    International Nuclear Information System (INIS)

    Sehmel, G.A.; Lloyd, F.D.

    1979-01-01

    Wind-caused resuspension rates are being determined in three different, long-term, inert-tracer field experiments. Chemical results were recently received from an accumulated backlog of air filter samples. Resuspension rates are yet to be calculated from these data

  5. Using Particle Image Velocimetry to Measure the Wind in a Winnowing Chamber

    OpenAIRE

    Matsui, Masami; Inoue, Eiji; Kuwano, Tomoko; Mori, Ken; Furuno, Yuko

    2003-01-01

    The array of vectors for the winnowing wind in the threshing unit was investigated uding PIV in order to improve the winnowing accuracy. It is difficult to measure wind velocities at many points simultaneously using the anemometer. However, visualization of the winnowing wind was possible using the tracer and laser beam. Futhermore, The PIV method made it possible to measure an array of vectors for the winnowing wind. The results produced by PIV concurred with the results of conventional meth...

  6. Relativistic klystrons

    International Nuclear Information System (INIS)

    Allen, M.A.; Azuma, O.; Callin, R.S.

    1989-03-01

    Experimental work is underway by a SLAC-LLNL-LBL collaboration to investigate the feasibility of using relativistic klystrons as a power source for future high gradient accelerators. Two different relativistic klystron configurations have been built and tested to date: a high grain multicavity klystron at 11.4 GHz and a low gain two cavity subharmonic buncher driven at 5.7 GHz. In both configurations power is extracted at 11.4 GHz. In order to understand the basic physics issues involved in extracting RF from a high power beam, we have used both a single resonant cavity and a multi-cell traveling wave structure for energy extraction. We have learned how to overcome our previously reported problem of high power RF pulse shortening, and have achieved peak RF power levels of 170 MW with the RF pulse of the same duration as the beam current pulse. 6 refs., 3 figs., 3 tabs

  7. Gravitation relativiste

    CERN Document Server

    Hakim, Rémi

    1994-01-01

    Il existe à l'heure actuelle un certain nombre de théories relativistes de la gravitation compatibles avec l'expérience et l'observation. Toutefois, la relativité générale d'Einstein fut historiquement la première à fournir des résultats théoriques corrects en accord précis avec les faits.

  8. Relativistic klystron

    International Nuclear Information System (INIS)

    Marks, R.

    1985-09-01

    Theoretical analysis is presented of a relativisic klystron; i.e. a high-relativistic bunched electron beam which is sent through a succession of tuned cavities and has its energy replenished by periodic induction accelerator units. Parameters are given for a full-size device and for an experimental device using the FEL at the ETA; namely the ELF Facility. 6 refs., 2 figs

  9. Relativistic ion acceleration by ultraintense laser interactions

    International Nuclear Information System (INIS)

    Nakajima, K.; Koga, J.K.; Nakagawa, K.

    2001-01-01

    There has been a great interest in relativistic particle generation by ultraintense laser interactions with matter. We propose the use of relativistically self-focused laser pulses for the acceleration of ions. Two dimensional PIC simulations are performed, which show the formation of a large positive electrostatic field near the front of a relativistically self-focused laser pulse. Several factors contribute to the acceleration including self-focusing distance, pulse depletion, and plasma density. Ultraintense laser-plasma interactions are capable of generating enormous electrostatic fields of ∼3 TV/m for acceleration of protons with relativistic energies exceeding 1 GeV

  10. RELATIVISTIC CYCLOTRON INSTABILITY IN ANISOTROPIC PLASMAS

    Energy Technology Data Exchange (ETDEWEB)

    López, Rodrigo A.; Moya, Pablo S.; Muñoz, Víctor; Valdivia, J. Alejandro [Departamento de Física, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago (Chile); Navarro, Roberto E.; Araneda, Jaime A. [Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Concepción, Casilla 160-C, Concepción (Chile); Viñas, Adolfo F., E-mail: rlopez186@gmail.com [NASA Goddard Space Flight Center, Heliophysics Science Division, Geospace Physics Laboratory, Mail Code 673, Greenbelt, MD 20771 (United States)

    2016-11-20

    A sufficiently large temperature anisotropy can sometimes drive various types of electromagnetic plasma micro-instabilities, which can play an important role in the dynamics of relativistic pair plasmas in space, astrophysics, and laboratory environments. Here, we provide a detailed description of the cyclotron instability of parallel propagating electromagnetic waves in relativistic pair plasmas on the basis of a relativistic anisotropic distribution function. Using plasma kinetic theory and particle-in-cell simulations, we study the influence of the relativistic temperature and the temperature anisotropy on the collective and noncollective modes of these plasmas. Growth rates and dispersion curves from the linear theory show a good agreement with simulations results.

  11. A low-dispersion, exactly energy-charge-conserving semi-implicit relativistic particle-in-cell algorithm

    Science.gov (United States)

    Chen, Guangye; Luis, Chacon; Bird, Robert; Stark, David; Yin, Lin; Albright, Brian

    2017-10-01

    Leap-frog based explicit algorithms, either ``energy-conserving'' or ``momentum-conserving'', do not conserve energy discretely. Time-centered fully implicit algorithms can conserve discrete energy exactly, but introduce large dispersion errors in the light-wave modes, regardless of timestep sizes. This can lead to intolerable simulation errors where highly accurate light propagation is needed (e.g. laser-plasma interactions, LPI). In this study, we selectively combine the leap-frog and Crank-Nicolson methods to produce a low-dispersion, exactly energy-and-charge-conserving PIC algorithm. Specifically, we employ the leap-frog method for Maxwell equations, and the Crank-Nicolson method for particle equations. Such an algorithm admits exact global energy conservation, exact local charge conservation, and preserves the dispersion properties of the leap-frog method for the light wave. The algorithm has been implemented in a code named iVPIC, based on the VPIC code developed at LANL. We will present numerical results that demonstrate the properties of the scheme with sample test problems (e.g. Weibel instability run for 107 timesteps, and LPI applications.

  12. RADCHARM++: A C++ routine to compute the electromagnetic radiation generated by relativistic charged particles in crystals and complex structures

    Energy Technology Data Exchange (ETDEWEB)

    Bandiera, Laura; Bagli, Enrico; Guidi, Vincenzo [INFN Sezione di Ferrara and Dipartimento di Fisica e Scienze della Terra, Università degli Studi di Ferrara, Via Saragat 1, 44121 Ferrara (Italy); Tikhomirov, Victor V. [Research Institute for Nuclear Problems, Belarusian State University, Minsk (Belarus)

    2015-07-15

    The analytical theories of coherent bremsstrahlung and channeling radiation well describe the process of radiation generation in crystals under some special cases. However, the treatment of complex situations requires the usage of a more general approach. In this report we present a C++ routine, named RADCHARM++, to compute the electromagnetic radiation emitted by electrons and positrons in crystals and complex structures. In the RADCHARM++ routine, the model for the computation of e.m. radiation generation is based on the direct integration of the quasiclassical formula of Baier and Katkov. This approach allows one taking into account real trajectories, and thereby the contribution of incoherent scattering. Such contribution can be very important in many cases, for instance for electron channeling. The generality of the Baier–Katkov operator method permits one to simulate the electromagnetic radiation emitted by electrons/positrons in very different cases, e.g., in straight, bent and periodically bent crystals, and for different beam energy ranges, from sub-GeV to TeV and above. The RADCHARM++ routine has been implemented in the Monte Carlo code DYNECHARM++, which solves the classical equation of motion of charged particles traveling through a crystal under the continuum potential approximation. The code has proved to reproduce the results of experiments performed at the MAinzer MIkrotron (MAMI) with 855 MeV electrons and has been used to predict the radiation spectrum generated by the same electron beam in a bent crystal.

  13. Prediction Model for Relativistic Electrons at Geostationary Orbit

    Science.gov (United States)

    Khazanov, George V.; Lyatsky, Wladislaw

    2008-01-01

    We developed a new prediction model for forecasting relativistic (greater than 2MeV) electrons, which provides a VERY HIGH correlation between predicted and actually measured electron fluxes at geostationary orbit. This model implies the multi-step particle acceleration and is based on numerical integrating two linked continuity equations for primarily accelerated particles and relativistic electrons. The model includes a source and losses, and used solar wind data as only input parameters. We used the coupling function which is a best-fit combination of solar wind/interplanetary magnetic field parameters, responsible for the generation of geomagnetic activity, as a source. The loss function was derived from experimental data. We tested the model for four year period 2004-2007. The correlation coefficient between predicted and actual values of the electron fluxes for whole four year period as well as for each of these years is stable and incredibly high (about 0.9). The high and stable correlation between the computed and actual electron fluxes shows that the reliable forecasting these electrons at geostationary orbit is possible.

  14. Nonlinear dynamics of the relativistic standard map

    International Nuclear Information System (INIS)

    Nomura, Y.; Ichikawa, Y.H.; Horton, W.

    1991-04-01

    Heating and acceleration of charged particles by RF fields have been extensively investigated by the standard map. The question arises as to how the relativistic effects change the nonlinear dynamical behavior described by the classical standard map. The relativistic standard map is a two parameter (K, Β = ω/kc) family of dynamical systems reducing to the standard map when Β → 0. For Β ≠ 0 the relativistic mass increase suppresses the onset of stochasticity. It shown that the speed of light limits the rate of advance of the phase in the relativistic standard map and introduces KAM surfaces persisting in the high momentum region. An intricate structure of mixing in the higher order periodic orbits and chaotic orbits is analyzed using the symmetry properties of the relativistic standard map. The interchange of the stability of the periodic orbits in the relativistic standard map is also observed and is explained by the local linear stability of the orbits. 12 refs., 16 figs

  15. Magnetic Pumping as a Source of Particle Heating and Power-law Distributions in the Solar Wind

    Science.gov (United States)

    Lichko, E.; Egedal, J.; Daughton, W.; Kasper, J.

    2017-12-01

    Based on the rate of expansion of the solar wind, the plasma should cool rapidly as a function of distance to the Sun. Observations show this is not the case. In this work, a magnetic pumping model is developed as a possible explanation for the heating and the generation of power-law distribution functions observed in the solar wind plasma. Most previous studies in this area focus on the role that the dissipation of turbulent energy on microscopic kinetic scales plays in the overall heating of the plasma. However, with magnetic pumping, particles are energized by the largest-scale turbulent fluctuations, thus bypassing the energy cascade. In contrast to other models, we include the pressure anisotropy term, providing a channel for the large-scale fluctuations to heat the plasma directly. A complete set of coupled differential equations describing the evolution, and energization, of the distribution function are derived, as well as an approximate closed-form solution. Numerical simulations using the VPIC kinetic code are applied to verify the model’s analytical predictions. The results of the model for realistic solar wind scenario are computed, where thermal streaming of particles are important for generating a phase shift between the magnetic perturbations and the pressure anisotropy. In turn, averaged over a pump cycle, the phase shift permits mechanical work to be converted directly to heat in the plasma. The results of this scenario show that magnetic pumping may account for a significant portion of the solar wind energization.

  16. Relativistic quantum mechanics an introduction to relativistic quantum fields

    CERN Document Server

    Maiani, Luciano

    2016-01-01

    Written by two of the world's leading experts on particle physics and the standard model - including an award-winning former Director General of CERN - this textbook provides a completely up-to-date account of relativistic quantum mechanics and quantum field theory. It describes the formal and phenomenological aspects of the standard model of particle physics, and is suitable for advanced undergraduate and graduate students studying both theoretical and experimental physics.

  17. Short term hydroelectric power system scheduling with wind turbine generators using the multi-pass iteration particle swarm optimization approach

    International Nuclear Information System (INIS)

    Lee, T.-Y.

    2008-01-01

    This paper uses multi-pass iteration particle swarm optimization (MIPSO) to solve short term hydroelectric generation scheduling of a power system with wind turbine generators. MIPSO is a new algorithm for solving nonlinear optimal scheduling problems. A new index called iteration best (IB) is incorporated into particle swarm optimization (PSO) to improve solution quality. The concept of multi-pass dynamic programming is applied to modify PSO further and improve computation efficiency. The feasible operational regions of the hydro units and pumped storage plants over the whole scheduling time range must be determined before applying MIPSO to the problem. Wind turbine power generation then shaves the power system load curves. Next, MIPSO calculates hydroelectric generation scheduling. It begins with a coarse time stage and searching space and refines the time interval between two time stages and the search spacing pass by pass (iteration). With the cooperation of agents called particles, the near optimal solution of the scheduling problem can be effectively reached. The effects of wind speed uncertainty were also considered in this paper. The feasibility of the new algorithm is demonstrated by a numerical example, and MIPSO solution quality and computation efficiency are compared to those of other algorithms

  18. Relativistic distances, sizes, lengths

    International Nuclear Information System (INIS)

    Strel'tsov, V.N.

    1992-01-01

    Such notion as light or retarded distance, field size, formation way, visible size of a body, relativistic or radar length and wave length of light from a moving atom are considered. The relation between these notions is cleared up, their classification is given. It is stressed that the formation way is defined by the field size of a moving particle. In the case of the electromagnetic field, longitudinal sizes increase proportionally γ 2 with growing charge velocity (γ is the Lorentz-factor). 18 refs

  19. Relativistic quarkonium dynamics

    International Nuclear Information System (INIS)

    Sazdjian, H.

    1985-06-01

    We present, in the framework of relativistic quantum mechanics of two interacting particles, a general model for quarkonium systems satisfying the following four requirements: confinement, spontaneous breakdown of chiral symmetry, soft explicit chiral symmetry breaking, short distance interactions of the vector type. The model is characterized by two arbitrary scalar functions entering in the large and short distance interaction potentials, respectively. Using relationships with corresponding quantities of the Bethe-Salpeter equation, we also present the normalization condition of the wave functions, as well as the expressions of the meson decay coupling constants. The quark masses appear in this model as free parameters

  20. Contribution to the design of superconducting Nb3Sn dipole windings for particle accelerator

    International Nuclear Information System (INIS)

    Felice, H.

    2006-10-01

    Improvement of particle accelerators relies on complex technologies such as the design and fabrication of superconducting magnets. A key parameter in magnet design is the mechanical pre-stress, applied at room temperature to insure compression of the coil during excitation. In dipole magnets, high field and high mechanical stresses in windings combined with the Nb 3 Sn stress sensitivity ask the question of the limit of the mechanical stress that the Nb 3 Sn can undergo without degradation. This limit estimated around 150 MPa is still discussed and has to be investigated. Whatever its value, preliminary studies show that conventional cosine theta design induces mechanical stresses (> 200 MPa) in large aperture (> 130 mm) and high field configurations, which underscore the need of alternative coil arrangements. The first part of this thesis gives an introduction to the issues and challenges encountered by the designers of superconducting ma nets. The second part is devoted to the study of large aperture (88, 130 and 160 mm) and high field (13 T) dipoles based on intersecting ellipses. After a theoretical study, a 2D magnetic design is detailed for each aperture and a mechanical study is developed for the 130 mm aperture dipole. In the last part, an experimental device dedicated to the study of the influence of the pre-stress on the training of sub-scale Nb 3 Sn dipole and to the investigation of the mechanical stress limit is presented. The design of this magnet is detailed and the result of the first test carried out with the structure is reported. (author)

  1. Coordinates in relativistic Hamiltonian mechanics

    International Nuclear Information System (INIS)

    Sokolov, S.N.

    1984-01-01

    The physical (covariant and measurable) coordinates of free particles and covariant coordinates of the center of inertia are found for three main forms of relativistic dynamics. In the point form of dynamics, the covariant coordinates of two directly interacting particles are found, and the equations of motion are brought to the explicitly covariant form. These equations are generalized to the case of interaction with an external electromagnetic field

  2. The influence of wind speed on airflow and fine particle transport within different building layouts of an industrial city.

    Science.gov (United States)

    Mei, Dan; Wen, Meng; Xu, Xuemei; Zhu, Yuzheng; Xing, Futang

    2018-04-20

    In atmospheric environment, the layout difference of urban buildings has a powerful influence on accelerating or inhibiting the dispersion of particle matters (PM). In industrial cities, buildings of variable heights can obstruct the diffusion of PM from industrial stacks. In this study, PM dispersed within building groups was simulated by Reynolds-averaged Navier-Stokes equations coupled Lagrangian approach. Four typical street building arrangements were used: (a) a low-rise building block with Height/base H/b = 1 (b = 20 m); (b) step-up building layout (H/b = 1, 2, 3, 4); (c) step-down building layout (H/b = 4, 3, 2, 1); (d) high-rise building block (H/b = 5). Profiles of stream functions and turbulence intensity were used to examine the effect of various building layouts on atmospheric airflow. Here, concepts of particle suspension fraction and concentration distribution were used to evaluate the effect of wind speed on fine particle transport. These parameters showed that step-up building layouts accelerated top airflow and diffused more particles into street canyons, likely having adverse effects on resident health. In renewal old industry areas, the step-down building arrangement which can hinder PM dispersion from high-level stacks should be constructed preferentially. High turbulent intensity results in formation of a strong vortex that hinders particles into the street canyons. It is found that an increase in wind speed enhanced particle transport and reduced local particle concentrations, however, it did not affect the relative location of high particle concentration zones, which are related to building height and layout. This study has demonstrated the height variation and layout of urban architecture affect the local concentration distribution of particulate matter (PM) in the atmosphere and for the first time that wind velocity has particular effects on PM transport in various building groups. The findings may have general implications in optimization

  3. Wave-Particle Interactions in the Radiation Belts, Aurora,and Solar Wind: Opportunities for Lab Experiments

    Science.gov (United States)

    Kletzing, C.

    2017-12-01

    The physics of the creation, loss, and transport of radiation belt particles is intimately connected to the electric and magnetic fields which mediate these processes. A large range of field and particle interactions are involved in this physics from large-scale ring current ion and magnetic field dynamics to microscopic kinetic interactions of whistler-mode chorus waves with energetic electrons. To measure these kinds of radiation belt interactions, NASA implemented the two-satellite Van Allen Probes mission. As part of the mission, the Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) investigation is an integrated set of instruments consisting of a triaxial fluxgate magnetometer (MAG) and a Waves instrument which includes a triaxial search coil magnetometer (MSC). We show a variety of waves thought to be important for wave particle interactionsin the radiation belts: low frequency ULF pulsations, EMIC waves, and whistler mode waves including upper and lower band chorus. Outside ofthe radiation belts, Alfven waves play a key role in both solar wind turbulenceand auroral particle acceleration. Several of these wave modes could benefit (or have benefitted) from laboratory studies to further refineour understanding of the detailed physics of the wave-particle interactionswhich lead to energization, pitch angle scattering, and cross-field transportWe illustrate some of the processes and compare the wave data with particle measurements to show relationships between wave activity and particle processobserved in the inner magnetosphere and heliosphere.

  4. Methods in relativistic nuclear physics

    International Nuclear Information System (INIS)

    Danos, M.; Gillet, V.; Cauvin, M.

    1984-01-01

    This book is intended to provide the methods and tools for performing actual calculations for finite many-body systems of bound relativistic constituent particles. The aim is to cover thoroughly the methodological aspects of the relativistic many-body problem for bound states while avoiding the presentation of specific models. The many examples contained in the later part of the work are meant to give concrete illustrations of how to actually apply the methods which are given in the first part. The basic framework of the approach is the lagrangian field theory solved in the time-independent Schroedinger picture. (Auth.)

  5. SMALL-SCALE MAGNETIC ISLANDS IN THE SOLAR WIND AND THEIR ROLE IN PARTICLE ACCELERATION. II. PARTICLE ENERGIZATION INSIDE MAGNETICALLY CONFINED CAVITIES

    International Nuclear Information System (INIS)

    Khabarova, Olga V.; Zank, Gary P.; Li, Gang; Le Roux, Jakobus A.; Webb, Gary M.; Malandraki, Olga E.

    2016-01-01

    We explore the role of heliospheric magnetic field configurations and conditions that favor the generation and confinement of small-scale magnetic islands associated with atypical energetic particle events (AEPEs) in the solar wind. Some AEPEs do not align with standard particle acceleration mechanisms, such as flare-related or simple diffusive shock acceleration processes related to interplanetary coronal mass ejections (ICMEs) and corotating interaction regions (CIRs). As we have shown recently, energetic particle flux enhancements may well originate locally and can be explained by particle acceleration in regions filled with small-scale magnetic islands with a typical width of ∼0.01 au or less, which is often observed near the heliospheric current sheet (HCS). The particle energization is a consequence of magnetic reconnection-related processes in islands experiencing either merging or contraction, observed, for example, in HCS ripples. Here we provide more observations that support the idea and the theory of particle energization produced by small-scale-flux-rope dynamics (Zank et al. and Le Roux et al.). If the particles are pre-accelerated to keV energies via classical mechanisms, they may be additionally accelerated up to 1–1.5 MeV inside magnetically confined cavities of various origins. The magnetic cavities, formed by current sheets, may occur at the interface of different streams such as CIRs and ICMEs or ICMEs and coronal hole flows. They may also form during the HCS interaction with interplanetary shocks (ISs) or CIRs/ICMEs. Particle acceleration inside magnetic cavities may explain puzzling AEPEs occurring far beyond ISs, within ICMEs, before approaching CIRs as well as between CIRs.

  6. Relativistic Outflows from ADAFs

    Science.gov (United States)

    Becker, Peter; Subramanian, Prasad; Kazanas, Demosthenes

    2001-04-01

    Advection-dominated accretion flows (ADAFs) have a positive Bernoulli parameter, and are therefore gravitationally bound. The Newtonian ADAF model has been generalized recently to obtain the ADIOS model that includes outflows of energy and angular momentum, thereby allowing accretion to proceed self-consistently. However, the utilization of a Newtonian gravitational potential limits the ability of this model to describe the inner region of the disk, where any relativistic outflows are likely to originate. In this paper we modify the ADIOS scenario to incorporate a seudo - Newtonian potential, which approximates the effects of general relativity. The analysis yields a unique, self - similar solution for the structure of the coupled disk/wind system. Interesting features of the new solution include the relativistic character of the outflow in the vicinity of the radius of marginal stability, which represents the inner edge of the quasi-Keplerian disk in our model. Our self - similar model may therefore help to explain the origin of relativistic jets in active galaxies. At large distances the radial dependence of the accretion rate approachs the unique form dot M ∝ r^1/2, with an associated density variation given by ρ ∝ r-1. This density variation agrees with that implied by the dependence of the X-ray hard time lags on the Fourier frequency for a number of accreting galactic black hole candidates. While intriguing, the results of our self-similar model need to be confirmed in the future by incorporating a detailed physical description of the energization mechanism that drives the outflow, which is likely to be powered by the shear of the underlying accretion disk.

  7. Relativistic Astronomy

    Science.gov (United States)

    Zhang, Bing; Li, Kunyang

    2018-02-01

    The “Breakthrough Starshot” aims at sending near-speed-of-light cameras to nearby stellar systems in the future. Due to the relativistic effects, a transrelativistic camera naturally serves as a spectrograph, a lens, and a wide-field camera. We demonstrate this through a simulation of the optical-band image of the nearby galaxy M51 in the rest frame of the transrelativistic camera. We suggest that observing celestial objects using a transrelativistic camera may allow one to study the astronomical objects in a special way, and to perform unique tests on the principles of special relativity. We outline several examples that suggest transrelativistic cameras may make important contributions to astrophysics and suggest that the Breakthrough Starshot cameras may be launched in any direction to serve as a unique astronomical observatory.

  8. Relativistic magnetohydrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez, Juan; Kovtun, Pavel [Department of Physics and Astronomy, University of Victoria,Victoria, BC, V8P 5C2 (Canada)

    2017-05-02

    We present the equations of relativistic hydrodynamics coupled to dynamical electromagnetic fields, including the effects of polarization, electric fields, and the derivative expansion. We enumerate the transport coefficients at leading order in derivatives, including electrical conductivities, viscosities, and thermodynamic coefficients. We find the constraints on transport coefficients due to the positivity of entropy production, and derive the corresponding Kubo formulas. For the neutral state in a magnetic field, small fluctuations include Alfvén waves, magnetosonic waves, and the dissipative modes. For the state with a non-zero dynamical charge density in a magnetic field, plasma oscillations gap out all propagating modes, except for Alfvén-like waves with a quadratic dispersion relation. We relate the transport coefficients in the “conventional” magnetohydrodynamics (formulated using Maxwell’s equations in matter) to those in the “dual” version of magnetohydrodynamics (formulated using the conserved magnetic flux).

  9. Relaxing the Small Particle Approximation for Dust-grain opacities in Carbon-star Wind Models

    OpenAIRE

    Mattsson, Lars; Höfner, Susanne

    2010-01-01

    We have computed wind models with time-dependent dust formation and grain-size dependent opacities, where (1) the problem is simplified by assuming a fixed dust-grain size, and where (2) the radiation pressure efficiency is approximated using grain sizes based on various means of the actual grain size distribution. It is shown that in critical cases, the effect of grain sizes can be significant. For well-developed winds, however, the effects on the mass-loss rate and the wind speed are small.

  10. Particle-In-Cell Simulations of the Solar Wind Interaction with Lunar Crustal Magnetic Anomalies: Magnetic Cusp Regions

    Science.gov (United States)

    Poppe, A. R.; Halekas, J. S.; Delory, G. T.; Farrell, W. M.

    2012-01-01

    As the solar wind is incident upon the lunar surface, it will occasionally encounter lunar crustal remanent magnetic fields. These magnetic fields are small-scale, highly non-dipolar, have strengths up to hundreds of nanotesla, and typically interact with the solar wind in a kinetic fashion. Simulations, theoretical analyses, and spacecraft observations have shown that crustal fields can reflect solar wind protons via a combination of magnetic and electrostatic reflection; however, analyses of surface properties have suggested that protons may still access the lunar surface in the cusp regions of crustal magnetic fields. In this first report from a planned series of studies, we use a 1 1/2-dimensional, electrostatic particle-in-cell code to model the self-consistent interaction between the solar wind, the cusp regions of lunar crustal remanent magnetic fields, and the lunar surface. We describe the self-consistent electrostatic environment within crustal cusp regions and discuss the implications of this work for the role that crustal fields may play regulating space weathering of the lunar surface via proton bombardment.

  11. Nuclear and Non-Ionizing Energy-Loss for Coulomb Scattered Particles from Low Energy up to Relativistic Regime in Space Radiation Environment

    CERN Document Server

    Boschini, M.J.; Gervasi, M.; Giani, S.; Grandi, D.; Ivantchenko, V.; Pensotti, S.; Rancoita, P.G.; Tacconi, M.

    2011-01-01

    In the space environment, instruments onboard of spacecrafts can be affected by displacement damage due to radiation. The differential scattering cross section for screened nucleus--nucleus interactions - i.e., including the effects due to screened Coulomb nuclear fields -, nuclear stopping powers and non-ionization energy losses are treated from about 50\\,keV/nucleon up to relativistic energies.

  12. Implementation of a Particle Image Velocimetry System for Wind Tunnel Flowfield Measurements

    Science.gov (United States)

    2014-12-01

    Instrumentation Wind tunnel speed was measured by two pitot probes mounted on opposite tunnel walls upstream of the model and above the ground...board. The pitot probes were connected differentially to Scanivalve 1-psi transducers. A secondary measurement of wind tunnel speed was made with the...Manf. Model Range 1 Tunnel Vel (south pitot ) Transducer Scanivalve CR24D 1 psi 2 Tunnel Vel (north pitot ) Transducer Scanivalve CR24D 1 psi 3

  13. RBF neural network based PI pitch controller for a class of 5-MW wind turbines using particle swarm optimization algorithm.

    Science.gov (United States)

    Poultangari, Iman; Shahnazi, Reza; Sheikhan, Mansour

    2012-09-01

    In order to control the pitch angle of blades in wind turbines, commonly the proportional and integral (PI) controller due to its simplicity and industrial usability is employed. The neural networks and evolutionary algorithms are tools that provide a suitable ground to determine the optimal PI gains. In this paper, a radial basis function (RBF) neural network based PI controller is proposed for collective pitch control (CPC) of a 5-MW wind turbine. In order to provide an optimal dataset to train the RBF neural network, particle swarm optimization (PSO) evolutionary algorithm is used. The proposed method does not need the complexities, nonlinearities and uncertainties of the system under control. The simulation results show that the proposed controller has satisfactory performance. Copyright © 2012 ISA. Published by Elsevier Ltd. All rights reserved.

  14. Formation of field-twisting flux tubes on the magnetopause and solar wind particle entry into the magnetosphere

    International Nuclear Information System (INIS)

    Sato, T.; Shimada, T.; Tanaka, M.; Hayashi, T.; Watanabe, K.

    1986-01-01

    A global interaction between the solar wind with a southward interplanetary magnetic field (IMF) and the magnetosphere is studied using a semi-global simulation model. A magnetic flux tube in which field lines are twisted is created as a result of repeated reconnection between the IMF and the outermost earth-rooted magnetic field near the equatorial plane and propagates to higher latitudes. When crossing the polar cusp, the flux tube penetrates into the magnetosphere reiterating reconnection with the earth-rooted higher latitude magnetic field, whereby solar wind particles are freely brought inside the magnetosphere. The flux tube structure has similarities in many aspects to the flux transfer events (FTEs) observed near the dayside magnetopause

  15. Draws on a relativistic pinch with a longitudinal magnetic field

    International Nuclear Information System (INIS)

    Trubnikov, B.A.

    1991-01-01

    The problems of draws on a relativistic pinch with longitudinal magnetic field are discussed. The absence of collisions promoting the energy exchange between different degrees of particle freedom is assumed. The calculations are conducted using the ideal relativistic anisotropic magnetic hydrodynamics equations. The spectrum of particles accelerated in the draws, is determined

  16. Deep processes in non-relativistic confining potentials

    International Nuclear Information System (INIS)

    Fishbane, P.M.; Grisaru, M.T.

    1978-01-01

    The authors study deep inelastic and hard scattering processes for non-relativistic particles confined in deep potentials. The mechanisms by which the effects of confinement disappear and the particles scatter as if free are useful in understanding the analogous results for a relativistic field theory. (Auth.)

  17. Interplanetary ions during an energetic storm particle event - The distribution function from solar wind thermal energies to 1.6 MeV

    Science.gov (United States)

    Gosling, J. T.; Asbridge, J. R.; Bame, S. J.; Feldman, W. C.; Zwickl, R. D.; Paschmann, G.; Sckopke, N.; Hynds, R. J.

    1981-01-01

    An ion velocity distribution function of the postshock phase of an energetic storm particle (ESP) event is obtained from data from the ISEE 2 and ISEE 3 experiments. The distribution function is roughly isotropic in the solar wind frame from solar wind thermal energies to 1.6 MeV. The ESP event studied (8/27/78) is superposed upon a more energetic particle event which was predominantly field-aligned and which was probably of solar origin. The observations suggest that the ESP population is accelerated directly out of the solar wind thermal population or its quiescent suprathermal tail by a stochastic process associated with shock wave disturbance. The acceleration mechanism is sufficiently efficient so that approximately 1% of the solar wind population is accelerated to suprathermal energies. These suprathermal particles have an energy density of approximately 290 eV cubic centimeters.

  18. Relativistic extension of a charge-conservative finite element solver for time-dependent Maxwell-Vlasov equations

    Science.gov (United States)

    Na, D.-Y.; Moon, H.; Omelchenko, Y. A.; Teixeira, F. L.

    2018-01-01

    Accurate modeling of relativistic particle motion is essential for physical predictions in many problems involving vacuum electronic devices, particle accelerators, and relativistic plasmas. A local, explicit, and charge-conserving finite-element time-domain (FETD) particle-in-cell (PIC) algorithm for time-dependent (non-relativistic) Maxwell-Vlasov equations on irregular (unstructured) meshes was recently developed by Moon et al. [Comput. Phys. Commun. 194, 43 (2015); IEEE Trans. Plasma Sci. 44, 1353 (2016)]. Here, we extend this FETD-PIC algorithm to the relativistic regime by implementing and comparing three relativistic particle-pushers: (relativistic) Boris, Vay, and Higuera-Cary. We illustrate the application of the proposed relativistic FETD-PIC algorithm for the analysis of particle cyclotron motion at relativistic speeds, harmonic particle oscillation in the Lorentz-boosted frame, and relativistic Bernstein modes in magnetized charge-neutral (pair) plasmas.

  19. Anomalous particle diffusion and Levy random walk of magnetic field lines in three dimensional solar wind turbulence

    International Nuclear Information System (INIS)

    Zimbardo, G.

    2005-01-01

    Plasma transport in the presence of turbulence depends on a variety of parameters like the fluctuation level ? B/B0, the ratio between the particle Larmor radius and the turbulence correlation lengths, and the turbulence anisotropy. In this presentation, we review the results of numerical simulations of plasma and magnetic field line transport in the case of anisotropic magnetic turbulence, for parameter values close to those of the solar wind. We assume a uniform background magnetic field B0 = B0ez and a Fourier representation for magnetic fluctuations, with wavectors forming any angle with respect to B0. The energy density spectrum is a power law, and in k space the constant amplitude surfaces are ellipsoids, described by the correlation lengths lx, ly, lz, which quantify the anisotropy of turbulence. For magnetic field lines, we find that transport perpendicular to the background field depends on the Kubo number R = ? B B0 lz lx . For small Kubo numbers, R ? 1, we find anomalous, non Gaussian transport regimes (both sub and superdiffusive) which can be described as a Levy random walk. Increasing the Kubo number, i.e., the fluctuation level ? B/B0 and/or the ratio lz/lx, we find first a quasilinear and then a percolative regime, both corresponding to Gaussian diffusion. For particles, we find that transport parallel and perpendicular to the background magnetic field heavily depends on the turbulence anisotropy and on the particle Larmor radius. For turbulence levels typical of the solar wind, ? B/B0 ? 0.5 ?1, when the ratio between the particle Larmor radius and the turbulence correlation lengths is small, anomalous regimes are found in the case lz/lx ? 1, with Levy random walk (superdiffusion) along the magnetic field and subdiffusion in the perpendicular directions. Conversely, for lz/lx > 1 normal, Gaussian diffusion is found. Increasing the ratio between the particle Larmor radius and the turbulence correlation lengths, the parallel superdiffusion is

  20. Time Operator in Relativistic Quantum Mechanics

    Science.gov (United States)

    Khorasani, Sina

    2017-07-01

    It is first shown that the Dirac’s equation in a relativistic frame could be modified to allow discrete time, in agreement to a recently published upper bound. Next, an exact self-adjoint 4 × 4 relativistic time operator for spin-1/2 particles is found and the time eigenstates for the non-relativistic case are obtained and discussed. Results confirm the quantum mechanical speculation that particles can indeed occupy negative energy levels with vanishingly small but non-zero probablity, contrary to the general expectation from classical physics. Hence, Wolfgang Pauli’s objection regarding the existence of a self-adjoint time operator is fully resolved. It is shown that using the time operator, a bosonic field referred here to as energons may be created, whose number state representations in non-relativistic momentum space can be explicitly found.

  1. Vortex particle-mesh simulations of vertical axis wind turbine flows: from the airfoil performance to the very far wake

    Directory of Open Access Journals (Sweden)

    P. Chatelain

    2017-06-01

    Full Text Available A vortex particle-mesh (VPM method with immersed lifting lines has been developed and validated. Based on the vorticity–velocity formulation of the Navier–Stokes equations, it combines the advantages of a particle method and of a mesh-based approach. The immersed lifting lines handle the creation of vorticity from the blade elements and its early development. Large-eddy simulation (LES of vertical axis wind turbine (VAWT flows is performed. The complex wake development is captured in detail and over up to 15 diameters downstream: from the blades to the near-wake coherent vortices and then through the transitional ones to the fully developed turbulent far wake (beyond 10 rotor diameters. The statistics and topology of the mean flow are studied. The computational sizes also allow insights into the detailed unsteady vortex dynamics and topological flow features, such as a recirculation region influenced by the tip speed ratio and the rotor geometry.

  2. Vortex Particle-Mesh simulations of Vertical Axis Wind Turbine flows: from the blade aerodynamics to the very far wake

    Science.gov (United States)

    Chatelain, P.; Duponcheel, M.; Caprace, D.-G.; Marichal, Y.; Winckelmans, G.

    2016-09-01

    A Vortex Particle-Mesh (VPM) method with immersed lifting lines has been developed and validated. Based on the vorticity-velocity formulation of the Navier-Stokes equations, it combines the advantages of a particle method and of a mesh-based approach. The immersed lifting lines handle the creation of vorticity from the blade elements and its early development. LES of Vertical Axis Wind Turbine (VAWT) flows are performed. The complex wake development is captured in details and over very long distances: from the blades to the near wake coherent vortices, then through the transitional ones to the fully developed turbulent far wake (beyond 10 rotor diameters). The statistics and topology of the mean flow are studied. The computational sizes also allow insights into the detailed unsteady vortex dynamics, including some unexpected topological flow features.

  3. Vortex Particle-Mesh simulations of Vertical Axis Wind Turbine flows: from the blade aerodynamics to the very far wake

    International Nuclear Information System (INIS)

    Chatelain, P; Duponcheel, M; Caprace, D-G; Winckelmans, G; Marichal, Y

    2016-01-01

    A Vortex Particle-Mesh (VPM) method with immersed lifting lines has been developed and validated. Based on the vorticity-velocity formulation of the Navier-Stokes equations, it combines the advantages of a particle method and of a mesh-based approach. The immersed lifting lines handle the creation of vorticity from the blade elements and its early development. LES of Vertical Axis Wind Turbine (VAWT) flows are performed. The complex wake development is captured in details and over very long distances: from the blades to the near wake coherent vortices, then through the transitional ones to the fully developed turbulent far wake (beyond 10 rotor diameters). The statistics and topology of the mean flow are studied. The computational sizes also allow insights into the detailed unsteady vortex dynamics, including some unexpected topological flow features. (paper)

  4. The Virtual Resistance Control Strategy for HVRT of Doubly Fed Induction Wind Generators Based on Particle Swarm Optimization

    Directory of Open Access Journals (Sweden)

    Zhen Xie

    2014-01-01

    Full Text Available Grid voltage swell will cause transient DC flux component in the doubly fed induction generator (DFIG stator windings, creating serious stator and rotor current and torque oscillation, which is more serious than influence of the voltage dip. It is found that virtual resistance manages effectively to suppress rotor current and torque oscillation, avoid the operation of crowbar circuit, and enhance its high voltage ride through technology capability. In order to acquire the best virtual resistance value, the excellent particle library (EPL of dynamic particle swarm optimization (PSO algorithm is proposed. It takes the rotor voltage and rotor current as two objectives, which has a fast convergence performance and high accuracy. Simulation and experimental results verify the effectiveness of the virtual resistance control strategy.

  5. New derivation of relativistic dissipative fluid dynamics

    International Nuclear Information System (INIS)

    Jaiswal, Amaresh; Bhalerao, Rajeev S.; Pal, Subrata

    2012-01-01

    Relativistic dissipative hydrodynamics has been quite successful in explaining the spectra and azimuthal anisotropy of particles produced in heavy-ion collisions at the RHIC and recently at the LHC. The first-order dissipative fluid dynamics or the relativistic Navier-Stokes (NS) theory involves parabolic differential equations and suffers from a causality and instability. The second-order or Israel-Stewart (IS) theory with its hyperbolic equations restores causality but may not guarantee stability. The correct formulation of relativistic viscous fluid dynamics is far from settled and is under intense investigation

  6. The de Sitter relativistic top theory

    International Nuclear Information System (INIS)

    Armenta, J.; Nieto, J.A.

    2005-01-01

    We discuss the relativistic top theory from the point of view of the de Sitter (or anti-de Sitter) group. Our treatment rests on the Hanson-Regge spherical relativistic top Lagrangian formulation. We propose an alternative method for studying spinning objects via Kaluza-Klein theory. In particular, we derive the relativistic top equations of motion starting with the geodesic equation for a point particle in 4+N dimensions. We compare our approach with Fukuyama's formulation of spinning objects, which is also based on Kaluza-Klein theory. We also report a generalization of our approach to a 4+N+D dimensional theory

  7. On the physics of relativistic double layers

    International Nuclear Information System (INIS)

    Carlqvist, P.

    1982-06-01

    A model of a strong, time-independent, and relativistic double layer is studied. Besides double layers having the electric field parallel to the current the model also describes a certain type of oblique double layers. The 'Langmuir condition' (ratio of ion current density to electron current density) as well as an expression for the potential drop of the double layer are derived. Furthermore, the distribution of charged particles, electric field, and potential within the double layer are clarified and discussed. It is found that the properties of relativistic double layers differ substantially from the properties of corresponding non-relativistic double layers. (Author)

  8. Anomalous particle diffusion and Levy random walk of magnetic field lines in three-dimensional solar wind turbulence

    International Nuclear Information System (INIS)

    Zimbardo, Gaetano

    2005-01-01

    Plasma transport in the presence of turbulence depends on a variety of parameters such as the fluctuation level, δB/B 0 , the ratio between the particle Larmor radius and the turbulence correlation length, and the turbulence anisotropy. In this paper, we present the results of numerical simulations of plasma and magnetic field line transport in the case of anisotropic magnetic turbulence, for parameter values close to those of the solar wind. We assume a uniform background magnetic field B 0 = B 0 e z and a Fourier representation for magnetic fluctuations, which includes wavectors oblique with respect to B 0 . The energy density spectrum is a power law, and in k space it is described by the correlation lengths l x , l y , l z , which quantify the anisotropy of turbulence. For magnetic field lines, transport perpendicular to the background field depends on the Kubo number R (δB/B 0 ) (l z /l x ). For small Kubo numbers, R 0 , or the ratio l z /l x , we find first a quasilinear regime and then a percolative regime, both corresponding to Gaussian diffusion. For particles, we find that transport parallel and perpendicular to the background magnetic field depends heavily on the turbulence anisotropy and on the particle Larmor radius. For turbulence levels typical of the solar wind, δB/B 0 ≅ 0.5-1, when the ratio between the particle Larmor radius and the turbulence correlation lengths is small, anomalous regimes are found in the case l z /l x ≤ 1, with a Levy random walk (superdiffusion) along the magnetic field and subdiffusion in the perpendicular directions. Conversely, for l z /l x > 1 normal Gaussian diffusion is found. A possible expression for generalized double diffusion is discussed

  9. Tracking of macroscopic particle motions generated by a turbulent wind via digital image analysis

    Science.gov (United States)

    Ciccone, A. D.; Kawall, J. G.; Keffer, J. F.

    A novel technique utilizing the basic principles of two-dimensional signal analysis and artificial intelligence/computer vision to reconstruct the Lagrangian particle trajectories from flow visualization images of macroparticle motions in a turbulent boundary layer is presented. Since, in most cases, the entire trajectory of a particle could not be viewed in one photographic frame (the particles were moving at a high velocity over a small field of view), a stochastic model was developed to complete the trajectories and obtain statistical data on particle velocities. The associated programs were implemented on a Cray supercomputer to optimize computational costs and time.

  10. Fundamental laws of relativistic classical dynamics revisited

    International Nuclear Information System (INIS)

    Blaquiere, Augustin

    1977-01-01

    By stating that a linear differential form, whose coefficients are the components of the momentum and the energy of a particle, has an antiderivative, the basic equations of the dynamics of points are obtained, in the relativistic case. From the point of view of optimization theory, a connection between our condition and the Bellman-Isaacs equation of dynamic programming is discussed, with a view to extending the theory to relativistic wave mechanics [fr

  11. Numerical investigation of kinetic turbulence in relativistic pair plasmas - I. Turbulence statistics

    Science.gov (United States)

    Zhdankin, Vladimir; Uzdensky, Dmitri A.; Werner, Gregory R.; Begelman, Mitchell C.

    2018-02-01

    We describe results from particle-in-cell simulations of driven turbulence in collisionless, magnetized, relativistic pair plasma. This physical regime provides a simple setting for investigating the basic properties of kinetic turbulence and is relevant for high-energy astrophysical systems such as pulsar wind nebulae and astrophysical jets. In this paper, we investigate the statistics of turbulent fluctuations in simulations on lattices of up to 10243 cells and containing up to 2 × 1011 particles. Due to the absence of a cooling mechanism in our simulations, turbulent energy dissipation reduces the magnetization parameter to order unity within a few dynamical times, causing turbulent motions to become sub-relativistic. In the developed stage, our results agree with predictions from magnetohydrodynamic turbulence phenomenology at inertial-range scales, including a power-law magnetic energy spectrum with index near -5/3, scale-dependent anisotropy of fluctuations described by critical balance, lognormal distributions for particle density and internal energy density (related by a 4/3 adiabatic index, as predicted for an ultra-relativistic ideal gas), and the presence of intermittency. We also present possible signatures of a kinetic cascade by measuring power-law spectra for the magnetic, electric and density fluctuations at sub-Larmor scales.

  12. Protons and alpha particles in the expanding solar wind: Hybrid simulations

    Czech Academy of Sciences Publication Activity Database

    Hellinger, Petr; Trávníček, Pavel M.

    2013-01-01

    Roč. 118, č. 9 (2013), s. 5421-5430 ISSN 2169-9380 Institutional support: RVO:68378289 Keywords : solar wind * ion energetics Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 3.440, year: 2013 http://onlinelibrary.wiley.com/doi/10.1002/jgra.50540/abstract

  13. Relativistic mechanics with reduced fields

    International Nuclear Information System (INIS)

    Sokolov, S.N.

    1996-01-01

    A new relativistic classical mechanics of interacting particles using a concept of a reduced field (RF) os proposed. RF is a mediator of interactions, the state of which is described by a finite number of two-argument functions. Ten of these functions correspond to the generators of the Poincare group. Equations of motion contain the retardation of interactions required by the causality principle and have form of a finite system of ordinary hereditary differential equations [ru

  14. Kadomtsev-Petviashvili solitons propagation in a plasma system with superthermal and weakly relativistic effects

    International Nuclear Information System (INIS)

    Hafeez-Ur-Rehman; Mahmood, S.; Shah, Asif; Haque, Q.

    2011-01-01

    Two dimensional (2D) solitons are studied in a plasma system comprising of relativistically streaming ions, kappa distributed electrons, and positrons. Kadomtsev-Petviashvili (KP) equation is derived through the reductive perturbation technique. Analytical solution of the KP equation has been studied numerically and graphically. It is noticed that kappa parameters of electrons and positrons as well as the ions relativistic streaming factor have an emphatic influence on the structural as well as propagation characteristics of two dimensional solitons in the considered plasma system. Our results may be helpful in the understanding of soliton propagation in astrophysical and laboratory plasmas, specifically the interaction of pulsar relativistic wind with supernova ejecta and the transfer of energy to plasma by intense electric field of laser beams producing highly energetic superthermal and relativistic particles [L. Arons, Astrophys. Space Sci. Lib. 357, 373 (2009); P. Blasi and E. Amato, Astrophys. Space Sci. Proc. 2011, 623; and A. Shah and R. Saeed, Plasma Phys. Controlled Fusion 53, 095006 (2011)].

  15. Compression-amplified EMIC waves and their effects on relativistic electrons

    International Nuclear Information System (INIS)

    Li, L. Y.; Yu, J.; Cao, J. B.; Yuan, Z. G.

    2016-01-01

    During enhancement of solar wind dynamic pressure, we observe the periodic emissions of electromagnetic ion cyclotron (EMIC) waves near the nightside geosynchronous orbit (6.6R E ). In the hydrogen and helium bands, the different polarized EMIC waves have different influences on relativistic electrons (>0.8 MeV). The flux of relativistic electrons is relatively stable if there are only the linearly polarized EMIC waves, but their flux decreases if the left-hand polarized (L-mode) EMIC waves are sufficiently amplified (power spectral density (PSD) ≥ 1 nT 2 /Hz). The larger-amplitude L-mode waves can cause more electron losses. In contrast, the R-mode EMIC waves are very weak (PSD < 1 nT 2 /Hz) during the electron flux dropouts; thus, their influence may be ignored here. During the electron flux dropouts, the relativistic electron precipitation is observed by POES satellite near the foot point (∼850 km) of the wave emission region. The quasi-linear simulation of wave-particle interactions indicates that the L-mode EMIC waves can cause the rapid precipitation loss of relativistic electrons, especially when the initial resonant electrons have a butterfly-like pitch angle distribution.

  16. Compression-amplified EMIC waves and their effects on relativistic electrons

    Energy Technology Data Exchange (ETDEWEB)

    Li, L. Y., E-mail: lyli-ssri@buaa.edu.cn; Yu, J.; Cao, J. B. [School of Space and Environment, Beihang University, Beijing (China); Yuan, Z. G. [School of Electronic Information, Wuhan University, Wuhan (China)

    2016-06-15

    During enhancement of solar wind dynamic pressure, we observe the periodic emissions of electromagnetic ion cyclotron (EMIC) waves near the nightside geosynchronous orbit (6.6R{sub E}). In the hydrogen and helium bands, the different polarized EMIC waves have different influences on relativistic electrons (>0.8 MeV). The flux of relativistic electrons is relatively stable if there are only the linearly polarized EMIC waves, but their flux decreases if the left-hand polarized (L-mode) EMIC waves are sufficiently amplified (power spectral density (PSD) ≥ 1 nT{sup 2}/Hz). The larger-amplitude L-mode waves can cause more electron losses. In contrast, the R-mode EMIC waves are very weak (PSD < 1 nT{sup 2}/Hz) during the electron flux dropouts; thus, their influence may be ignored here. During the electron flux dropouts, the relativistic electron precipitation is observed by POES satellite near the foot point (∼850 km) of the wave emission region. The quasi-linear simulation of wave-particle interactions indicates that the L-mode EMIC waves can cause the rapid precipitation loss of relativistic electrons, especially when the initial resonant electrons have a butterfly-like pitch angle distribution.

  17. The relativistic virial theorem

    International Nuclear Information System (INIS)

    Lucha, W.; Schoeberl, F.F.

    1989-11-01

    The relativistic generalization of the quantum-mechanical virial theorem is derived and used to clarify the connection between the nonrelativistic and (semi-)relativistic treatment of bound states. 12 refs. (Authors)

  18. ESCAPING PARTICLE FLUXES IN THE ATMOSPHERES OF CLOSE-IN EXOPLANETS. II. REDUCED MASS-LOSS RATES AND ANISOTROPIC WINDS

    International Nuclear Information System (INIS)

    Guo, J. H.

    2013-01-01

    In Paper I, we presented a one-dimensional hydrodynamic model for the winds of close-in exoplanets. However, close-in exoplanets are tidally locked and irradiated only on the day sides by their host stars. This requires two-dimensional hydrodynamic models with self-consistent radiative transfer calculations. In this paper, for the tidal-locking (two-dimensional radiative transfer) and non-tidal-locking cases (one-dimensional radiative transfer), we constructed a multi-fluid two-dimensional hydrodynamic model with detailed radiative transfer to depict the escape of particles. We found that the tidal forces (the sum of tidal gravity of the star and centrifugal force due to the planetary rotation) supply significant accelerations and result in anisotropic winds. An important effect of the tidal forces is that it severely depresses the outflow of particles near the polar regions where the density and the radial velocity are a factor of a few (ten) smaller than those of the low-latitude regions. As a consequence, most particles escape the surface of the planet from the regions of low latitude. Comparing the tidal-locking and non-tidal-locking cases, we found that their optical depths are very different so that the flows also emerge with a different pattern. In the case of non-tidal locking, the radial velocities at the base of the wind are higher than the meridional velocities. However, in the case of tidal locking, the meridional velocities dominate the flow at the base of the wind, and they can effectively transfer mass and energy from the day sides to the night sides. Further, we also found that the differences of the winds show a middle extent at large radii. This means that the structure of the wind at the base can be changed by the two-dimensional radiative transfer due to large optical depths, but the extent is reduced with an increase in radius. Because the escape is depressed in the polar regions, the mass-loss rate predicted by the non-tidal-locking model, in

  19. Protons and alpha particles in the expanding solar wind: Hybrid simulations

    Czech Academy of Sciences Publication Activity Database

    Hellinger, Petr; Trávníček, Pavel M.

    2013-01-01

    Roč. 118, č. 9 (2013), s. 5421-5429 ISSN 2169-9380 R&D Projects: GA ČR GAP209/12/2023 Grant - others:EU(XE) SHOCK Project No. 284515 Institutional support: RVO:67985815 ; RVO:68378289 Keywords : solar wind * proton energetics * turbulent heating Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics; BL - Plasma and Gas Discharge Physics (UFA-U) Impact factor: 3.440, year: 2013

  20. Interplanetary ions during an energetic storm particle event: The distribution function from solar wind thermal energies to 1.6 MeV

    International Nuclear Information System (INIS)

    Gosling, J.T.; Asbridge, J.R.; Bame, S.J.; Feldman, W.C.; Zwickl, R.D.; Paschmann, G.; Sckopke, N.; Hynds, R.J.

    1981-01-01

    Data from the Los Alamos Scientific Laboratory/Max-Planck-Institut fast plasma experiment on Isee 2 have been combined with data from the European Space Agency/Imperial College/Space Research Laboratory low-energy proton experiment on Isee 3 to obtain for the first time an ion velocity distribution function f(v) extending from solar wind energies (-1 keV) to 1.6 MeV during the postshock phase of an energetic storm particle (ESP) event. This study reveals that f(v) of the ESP population is roughly isotropic in the solar wind frame from solar wind thermal energies out to 1.6 MeV. Emerging smoothly out of the solar wind thermal distribution, the ESP f(v) initially falls with increasing energy as E/sup -2.4/ in the solar wind frame. Above about 40 keV no single power law exponent adequately describes the energy dependence of f(v) in the solar wind frame. Above approx.200 keV in both the spacecraft frame and the solar wind frame, f(v) can be described by an exponential in speed (f(v)proportionale/sup -v/v//sub o/) with v/sub o/ = 1.05 x 10 8 cm s -1 . The ESP event studied (August 27, 1978) was superposed upon a more energetic particle event which was predominantly field-aligned and which was probably of solar origin. Our observations suggest that the ESP population is accelerated directly out of the solar wind thermal population or its quiescent suprathermal tail by a stochastic process associated with the shock wave disturbance. The acceleration mechanism is sufficiently efficient that approx.1% of the solar wind population is accelerated to suprathermal energies. These suprathermal particles have an energy density of approx.290 eV cm -3

  1. Unlimited Relativistic Shock Surfing Acceleration

    International Nuclear Information System (INIS)

    Ucer, D.; Shapiro, V. D.

    2001-01-01

    Nonrelativistic shock surfing acceleration at quasiperpendicular shocks is usually considered to be a preacceleration mechanism for slow pickup ions to initiate diffusive shock acceleration. In shock surfing, the particle accelerates along the shock front under the action of the convective electric field of the plasma flow. However, the particle also gains kinetic energy normal to the shock and eventually escapes downstream. We consider the case when ions are accelerated to relativistic velocities. In this case, the ions are likely to be trapped for infinitely long times, because the energy of bounce oscillations tends to decrease during acceleration. This suggests the possibility of unlimited acceleration by shock surfing

  2. The Crab nebula's ''wisps'' as shocked pulsar wind

    International Nuclear Information System (INIS)

    Gallant, Y.A.; Arons, J.; Langdon, A.B.

    1992-01-01

    The Crab synchrotron nebula has been successfully modelled as the post-shock region of a relativistic, magnetized wind carrying most of the spindown luminosity from the central pulsar. While the Crab is the best-studied example, most of the highest spindown luminosity pulsars are also surrounded by extended synchrotron nebulae, and several additional supernova remnants with ''plerionic'' morphologies similar to the Crab are known where the central object is not seen. All these objects have nonthermal, power-law spectra attributable to accelerated high-energy particles thought to originate in a Crab-like relativistic pulsar wind. However, proposed models have so far treated the wind shock as an infinitesimally thin discontinuity, with an arbitrarily ascribed particle acceleration efficiency. To make further progress, investigations resolving the shock structure seemed in order. Motivated by these considerations, we have performed ''particle-in-cell (PIC) simulations of perpendicularly magnetized shocks in electron-positron and electron-positron-ion plasmas. The shocks in pure electron-positron plasmas were found to produce only thermal distributions downstream, and are thus poor candidates as particle acceleration sites. When the upstream plasma flow also contained a smaller population of positive ions, however, efficient acceleration of positrons, and to a lesser extent of electrons, was observed in the simulations

  3. Relativistic Boltzmann theory for a plasma

    International Nuclear Information System (INIS)

    Erkelens, H. van.

    1984-01-01

    This thesis gives a self-contained treatment of the relativistic Boltzmann theory for a plasma. Here plasma means any mixture containing electrically charged particles. The relativistic Boltzmann equation is linearized for the case of a plasma. The Chapman-Enskog method is elaborated further for transport phenomena. Linear laws for viscous phenomena are derived. Then the collision term in the Boltzmann theory is dealt with. Using the transport equation, a kinetic theory of wave phenomena is developed and the dissipation of hydromagnetic waves in a relativistic plasma is investigated. In the final chapter, it is demonstrated how the relativistic Boltzmann theory can be applied in cosmology. In doing so, expressions are derived for the electric conductivity of the cosmological plasma in the lepton era, the plasma era and the annihilation era. (Auth.)

  4. Time-dependent Occurrence Rate of Electromagnetic Cyclotron Waves in the Solar Wind: Evidence for the Effect of Alpha Particles?

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, G. Q.; Feng, H. Q. [Institute of Space Physics, Luoyang Normal University, Luoyang (China); Wu, D. J. [Purple Mountain Observatory, CAS, Nanjing (China); Chu, Y. H. [Institute of Space Science, National Central University, Chungli, Taiwan (China); Huang, J. [CAS Key Laboratory of Solar Activity, National Astronomical Observatories, Beijing (China)

    2017-09-20

    Previous studies revealed that electromagnetic cyclotron waves (ECWs) near the proton cyclotron frequency exist widely in the solar wind, and the majority of ECWs are left-handed (LH) polarized waves. Using the magnetic field data from the STEREO mission, this Letter carries out a survey of ECWs over a long period of 7 years and calculates the occurrence rates of ECWs with different polarization senses. Results show that the occurrence rate is nearly a constant for the ECWs with right-handed polarization, but it varies significantly for the ECWs with LH polarization. Further investigation of plasma conditions reveals that the LH ECWs take place preferentially in a plasma characterized by higher temperature, lower density, and larger velocity. Some considerable correlations between the occurrence rate of LH ECWs and the properties of ambient plasmas are discussed. The present research may provide evidence for the effect of alpha particles on the generation of ECWs.

  5. Exchange effects in Relativistic Schroedinger Theory

    International Nuclear Information System (INIS)

    Sigg, T.; Sorg, M.

    1998-01-01

    The Relativistic Schroedinger Theory predicts the occurrence of exchange and overlap effects in many-particle systems. For a 2-particle system, the interaction energy of the two particles consists of two contributions: Coulomb energy and exchange energy, where the first one is revealed to be the same as in standard quantum theory. However the exchange energy is mediated by an exchange potential, contrary to the kinematical origin of the exchange term in the standard theory

  6. Heavy particle transport in a trellised agricultural canopy during non-row-aligned winds

    Science.gov (United States)

    Agricultural systems are exposed to and influenced by particles of many types (e.g., pathogens, pollen, pests), the concentrations of which are typically highest in the regions immediately surrounding their sources. The intermittent nature of trellised canopies creates an unique canopy architecture ...

  7. Trapping of Solar Energetic Particles by Small-Scale Topology of Solar Wind Turbulence

    Science.gov (United States)

    Ruffolo, D.; Matthaeus, W. H.; Chuychai, P.

    2004-05-01

    The transport of energetic particles perpendicular to the mean magnetic field in space plasmas long has been viewed as a diffusive process. However, there is an apparent conflict between recent observations of solar energetic particles (SEP): 1) impulsive solar flares can exhibit ``dropouts" in which SEP intensity near Earth repeatedly disappears and reappears, indicating a filamentary distribution of SEPs and little diffusion across these boundaries. 2) Observations by the IMP-8 and Ulysses spacecraft, while they were on opposite sides of the Sun, showed similar time-intensity profiles for many SEP events, indicating rapid lateral diffusion of particles throughout the inner solar system within a few days. We explain these seemingly contradictory observations using a theoretical model, supported by computer simulations, in which many particles are temporarily trapped within topological structures in statistically homogeneous magnetic turbulence, and ultimately escape to diffuse at a much faster rate. This work was supported by the Thailand Research Fund, the Rachadapisek Sompoj Fund of Chulalongkorn University, and the NASA Sun-Earth Connections Theory Program (grant NAG5-8134).

  8. The relativistic Brownian motion: Interdisciplinary applications

    International Nuclear Information System (INIS)

    Aragones-Munoz, A; Sandoval-Villalbazo, A

    2010-01-01

    Relativistic Brownian motion theory will be applied to the study of analogies between physical and economic systems, emphasizing limiting cases in which Gaussian distributions are no longer valid. The characteristic temperatures of the particles will be associated with the concept of variance, and this will allow us to choose whether the pertinent distribution is classical or relativistic, while working specific situations. The properties of particles can be interpreted as economic variables, in order to study the behavior of markets in terms of Levy financial processes, since markets behave as stochastic systems. As far as we know, the application of the Juettner distribution to the study of economic systems is a new idea.

  9. Elementary particle theory

    CERN Document Server

    Stefanovich, Eugene

    2018-01-01

    This book introduces notation, terminology, and basic ideas of relativistic quantum theories. The discussion proceeds systematically from the principle of relativity and postulates of quantum logics to the construction of Poincaré invariant few-particle models of interaction and scattering. It is the first of three volumes formulating a consistent relativistic quantum theory of interacting charged particles.

  10. Rotating relativistic neutron stars

    Energy Technology Data Exchange (ETDEWEB)

    Weber, F.; Glendenning, N.K.

    1991-07-21

    Models of rotating neutron stars are constructed in the framework of Einstein's theory of general relativity. For this purpose a refined version of Hartle's method is applied. The properties of these objects, e.g. gravitational mass, equatorial and polar radius, eccentricity, red- and blueshift, quadrupole moment, are investigated for Kepler frequencies of 4000 s{sup {minus}1} {le} {Omega}{sub K} {le} 9000 s{sup {minus}1}. Therefore a self-consistency problem inherent in the determination of {Omega}{sub K} must be solved. The investigation is based on neutron star matter equations of state derived from the relativistic Martin-Schwinger hierarch of coupled Green's functions. By means of introducing the Hartree, Hartree-Fock, and ladder ({Lambda}) approximations, models of the equation of state derived. A special feature of the latter approximation scheme is the inclusion of dynamical two-particle correlations. These have been calculated from the relativistic T-matrix applying both the HEA and Bonn meson-exchange potentials of the nucleon-nucleon force. The nuclear forces of the former two treatments are those of the standard scalar-vector-isovector model of quantum hadron dynamics, with parameters adjusted to the nuclear matter data. An important aspect of this work consists in testing the compatibility of different competing models of the nuclear equation of state with data on pulsar periods. By this the fundamental problem of nuclear physics concerning the behavior of the equation of state at supernuclear densities can be treated.

  11. The relativistic electron wave equation

    International Nuclear Information System (INIS)

    Dirac, P.A.M.

    1977-08-01

    The paper was presented at the European Conference on Particle Physics held in Budapest between the 4th and 9th July of 1977. A short review is given on the birth of the relativistic electron wave equation. After Schroedinger has shown the equivalence of his wave mechanics and the matrix mechanics of Heisenberg, a general transformation theory was developed by the author. This theory required a relativistic wave equation linear in delta/delta t. As the Klein--Gordon equation available at this time did not satisfy this condition the development of a new equation became necessary. The equation which was found gave the value of the electron spin and magnetic moment automatically. (D.P.)

  12. Refining design of superconducting magnets synchronous with winding using particle swarm optimization

    International Nuclear Information System (INIS)

    Du, J.J.; Wu, W.; Mei, E.M.; Yuan, P.; Ma, L.Z.; Dong, Z.W.

    2013-01-01

    Highlights: ► A method of synchronous optimization design of superconducting magnets is proposed. ► We get a refining design of a main magnet on Lanzhou Penning Trap by the method. ► We expounds the necessity of tracking optimizing of coils for magnets. ► Particle swarm optimization shows effectiveness in magnet optimization. ► The expected homogeneity of the magnet improves considerably. -- Abstract: A methodology of synchronous optimization design of magnets under construction according to original design scheme is put forward in this paper, and it has been successfully used for refining design of a superconducting magnet on Lanzhou Penning Trap (LPT). This paper expounds the necessity of tracking optimization of magnet coil in the process of traditional manufacturing, and optimization design of magnet coils by particle swarm optimization is proposed. Particle swarm optimization is turned out to be an effective design method for magnet optimization. The expected homogeneity of the magnet is improved to 200 ppm from 1150 ppm through the refining optimizing, which provides important guarantee for required homogeneity of the whole magnet

  13. A Multi Time Scale Wind Power Forecasting Model of a Chaotic Echo State Network Based on a Hybrid Algorithm of Particle Swarm Optimization and Tabu Search

    Directory of Open Access Journals (Sweden)

    Xiaomin Xu

    2015-11-01

    Full Text Available The uncertainty and regularity of wind power generation are caused by wind resources’ intermittent and randomness. Such volatility brings severe challenges to the wind power grid. The requirements for ultrashort-term and short-term wind power forecasting with high prediction accuracy of the model used, have great significance for reducing the phenomenon of abandoned wind power , optimizing the conventional power generation plan, adjusting the maintenance schedule and developing real-time monitoring systems. Therefore, accurate forecasting of wind power generation is important in electric load forecasting. The echo state network (ESN is a new recurrent neural network composed of input, hidden layer and output layers. It can approximate well the nonlinear system and achieves great results in nonlinear chaotic time series forecasting. Besides, the ESN is simpler and less computationally demanding than the traditional neural network training, which provides more accurate training results. Aiming at addressing the disadvantages of standard ESN, this paper has made some improvements. Combined with the complementary advantages of particle swarm optimization and tabu search, the generalization of ESN is improved. To verify the validity and applicability of this method, case studies of multitime scale forecasting of wind power output are carried out to reconstruct the chaotic time series of the actual wind power generation data in a certain region to predict wind power generation. Meanwhile, the influence of seasonal factors on wind power is taken into consideration. Compared with the classical ESN and the conventional Back Propagation (BP neural network, the results verify the superiority of the proposed method.

  14. The Study of Fuzzy Proportional Integral Controllers Based on Improved Particle Swarm Optimization for Permanent Magnet Direct Drive Wind Turbine Converters

    Directory of Open Access Journals (Sweden)

    Yancai Xiao

    2016-05-01

    Full Text Available In order to meet the requirements of high precision and fast response of permanent magnet direct drive (PMDD wind turbines, this paper proposes a fuzzy proportional integral (PI controller associated with a new control strategy for wind turbine converters. The purpose of the control strategy is to achieve the global optimization for the quantization factors, ke and kec, and scale factors, kup and kui, of the fuzzy PI controller by an improved particle swarm optimization (PSO method. Thus the advantages of the rapidity of the improved PSO and the robustness of the fuzzy controller can be fully applied in the control process. By conducting simulations for 2 MW PMDD wind turbines with Matlab/Simulink, the performance of the fuzzy PI controller based on the improved PSO is demonstrated to be obviously better than that of the PI controller or the fuzzy PI controller without using the improved PSO under the situation when the wind speed changes suddenly.

  15. DISSIPATION OF PARALLEL AND OBLIQUE ALFVÉN-CYCLOTRON WAVES—IMPLICATIONS FOR HEATING OF ALPHA PARTICLES IN THE SOLAR WIND

    Energy Technology Data Exchange (ETDEWEB)

    Maneva, Y. G.; Poedts, Stefaan [Centre for Mathematical Plasma Astrophysics, KU Leuven, B-3001 Leuven (Belgium); Viñas, Adolfo F.; Moya, Pablo S.; Wicks, Robert T., E-mail: yana.maneva@wis.kuleuven.be [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2015-11-20

    We perform 2.5D hybrid simulations with massless fluid electrons and kinetic particle-in-cell ions to study the temporal evolution of ion temperatures, temperature anisotropies, and velocity distribution functions in relation to the dissipation and turbulent evolution of a broadband spectrum of parallel and obliquely propagating Alfvén-cyclotron waves. The purpose of this paper is to study the relative role of parallel versus oblique Alfvén-cyclotron waves in the observed heating and acceleration of alpha particles in the fast solar wind. We consider collisionless homogeneous multi-species plasma, consisting of isothermal electrons, isotropic protons, and a minor component of drifting α particles in a finite-β fast stream near the Earth. The kinetic ions are modeled by initially isotropic Maxwellian velocity distribution functions, which develop nonthermal features and temperature anisotropies when a broadband spectrum of low-frequency nonresonant, ω ≤ 0.34 Ω{sub p}, Alfvén-cyclotron waves is imposed at the beginning of the simulations. The initial plasma parameter values, such as ion density, temperatures, and relative drift speeds, are supplied by fast solar wind observations made by the Wind spacecraft at 1 AU. The imposed broadband wave spectra are left-hand polarized and resemble Wind measurements of Alfvénic turbulence in the solar wind. The imposed magnetic field fluctuations for all cases are within the inertial range of the solar wind turbulence and have a Kraichnan-type spectral slope α = −3/2. We vary the propagation angle from θ = 0° to θ = 30° and θ = 60°, and find that the heating of alpha particles is most efficient for the highly oblique waves propagating at 60°, whereas the protons exhibit perpendicular cooling at all propagation angles.

  16. DISSIPATION OF PARALLEL AND OBLIQUE ALFVÉN-CYCLOTRON WAVES—IMPLICATIONS FOR HEATING OF ALPHA PARTICLES IN THE SOLAR WIND

    International Nuclear Information System (INIS)

    Maneva, Y. G.; Poedts, Stefaan; Viñas, Adolfo F.; Moya, Pablo S.; Wicks, Robert T.

    2015-01-01

    We perform 2.5D hybrid simulations with massless fluid electrons and kinetic particle-in-cell ions to study the temporal evolution of ion temperatures, temperature anisotropies, and velocity distribution functions in relation to the dissipation and turbulent evolution of a broadband spectrum of parallel and obliquely propagating Alfvén-cyclotron waves. The purpose of this paper is to study the relative role of parallel versus oblique Alfvén-cyclotron waves in the observed heating and acceleration of alpha particles in the fast solar wind. We consider collisionless homogeneous multi-species plasma, consisting of isothermal electrons, isotropic protons, and a minor component of drifting α particles in a finite-β fast stream near the Earth. The kinetic ions are modeled by initially isotropic Maxwellian velocity distribution functions, which develop nonthermal features and temperature anisotropies when a broadband spectrum of low-frequency nonresonant, ω ≤ 0.34 Ω p , Alfvén-cyclotron waves is imposed at the beginning of the simulations. The initial plasma parameter values, such as ion density, temperatures, and relative drift speeds, are supplied by fast solar wind observations made by the Wind spacecraft at 1 AU. The imposed broadband wave spectra are left-hand polarized and resemble Wind measurements of Alfvénic turbulence in the solar wind. The imposed magnetic field fluctuations for all cases are within the inertial range of the solar wind turbulence and have a Kraichnan-type spectral slope α = −3/2. We vary the propagation angle from θ = 0° to θ = 30° and θ = 60°, and find that the heating of alpha particles is most efficient for the highly oblique waves propagating at 60°, whereas the protons exhibit perpendicular cooling at all propagation angles

  17. Three-dimensional relativistic pair plasma reconnection with radiative feedback in the Crab Nebula

    Energy Technology Data Exchange (ETDEWEB)

    Cerutti, B. [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Werner, G. R.; Uzdensky, D. A. [Center for Integrated Plasma Studies, Physics Department, University of Colorado, UCB 390, Boulder, CO 80309-0390 (United States); Begelman, M. C., E-mail: bcerutti@astro.princeton.edu, E-mail: greg.werner@colorado.edu, E-mail: uzdensky@colorado.edu, E-mail: mitch@jila.colorado.edu [JILA, University of Colorado and National Institute of Standards and Technology, UCB 440, Boulder, CO 80309-0440 (United States)

    2014-02-20

    The discovery of rapid synchrotron gamma-ray flares above 100 MeV from the Crab Nebula has attracted new interest in alternative particle acceleration mechanisms in pulsar wind nebulae. Diffuse shock-acceleration fails to explain the flares because particle acceleration and emission occur during a single or even sub-Larmor timescale. In this regime, the synchrotron energy losses induce a drag force on the particle motion that balances the electric acceleration and prevents the emission of synchrotron radiation above 160 MeV. Previous analytical studies and two-dimensional (2D) particle-in-cell (PIC) simulations indicate that relativistic reconnection is a viable mechanism to circumvent the above difficulties. The reconnection electric field localized at X-points linearly accelerates particles with little radiative energy losses. In this paper, we check whether this mechanism survives in three dimension (3D), using a set of large PIC simulations with radiation reaction force and with a guide field. In agreement with earlier works, we find that the relativistic drift kink instability deforms and then disrupts the layer, resulting in significant plasma heating but few non-thermal particles. A moderate guide field stabilizes the layer and enables particle acceleration. We report that 3D magnetic reconnection can accelerate particles above the standard radiation reaction limit, although the effect is less pronounced than in 2D with no guide field. We confirm that the highest-energy particles form compact bunches within magnetic flux ropes, and a beam tightly confined within the reconnection layer, which could result in the observed Crab flares when, by chance, the beam crosses our line of sight.

  18. STATISTICAL STUDY ON THE DECAY PHASE OF SOLAR NEAR-RELATIVISTIC ELECTRON EVENTS

    International Nuclear Information System (INIS)

    Lario, D.

    2010-01-01

    We study the decay phase of solar near-relativistic (53-315 keV) electron events as observed by the Advanced Composition Explorer (ACE) and the Ulysses spacecraft during solar cycle 23. By fitting an exponential function (exp - t/τ) to the time-intensity profile in the late phase of selected solar near-relativistic electron events, we examine the dependence of τ on electron energy, electron intensity spectra, event peak intensity, event fluence, and solar wind velocity, as well as heliocentric radial distance, heliolatitude, and heliolongitude of the spacecraft with respect to the parent solar event. The decay rates are found to be either independent or slightly decrease with the electron energy. No clear dependence is found between τ and the heliolongitude of the parent solar event, with the exception of well-connected events for which low values of τ are more commonly observed than for poorly-connected events. For those events concurrently observed by ACE and Ulysses, decay rates increase at distances >3 AU. Events with similar decay rates at ACE and Ulysses were observed mainly when Ulysses was at high heliographic latitudes. We discuss the basic physical mechanisms that control the decay phase of the electron events and conclude that both solar wind convection and adiabatic deceleration effects influence the final shape of the decay phase of solar energetic particle events, but not as expressed by the models based on diffusive transport acting on an isotropic particle population.

  19. Extended Galilean symmetries of non-relativistic strings

    Energy Technology Data Exchange (ETDEWEB)

    Batlle, Carles [Departament de Matemàtiques and IOC, Universitat Politècnica de Catalunya, EPSEVG,Av. V. Balaguer 1, E-08808 Vilanova i la Geltrú (Spain); Gomis, Joaquim; Not, Daniel [Departament de Física Quàntica i Astrofísica and Institut de Ciències del Cosmos (ICCUB),Universitat de Barcelona,Martí i Franquès 1, E-08028 Barcelona (Spain)

    2017-02-09

    We consider two non-relativistic strings and their Galilean symmetries. These strings are obtained as the two possible non-relativistic (NR) limits of a relativistic string. One of them is non-vibrating and represents a continuum of non-relativistic massless particles, and the other one is a non-relativistic vibrating string. For both cases we write the generator of the most general point transformation and impose the condition of Noether symmetry. As a result we obtain two sets of non-relativistic Killing equations for the vector fields that generate the symmetry transformations. Solving these equations shows that NR strings exhibit two extended, infinite dimensional space-time symmetries which contain, as a subset, the Galilean symmetries. For each case, we compute the associated conserved charges and discuss the existence of non-central extensions.

  20. Relativistic Linear Restoring Force

    Science.gov (United States)

    Clark, D.; Franklin, J.; Mann, N.

    2012-01-01

    We consider two different forms for a relativistic version of a linear restoring force. The pair comes from taking Hooke's law to be the force appearing on the right-hand side of the relativistic expressions: d"p"/d"t" or d"p"/d["tau"]. Either formulation recovers Hooke's law in the non-relativistic limit. In addition to these two forces, we…

  1. Slowly rotating general relativistic superfluid neutron stars with relativistic entrainment

    International Nuclear Information System (INIS)

    Comer, G.L.

    2004-01-01

    Neutron stars that are cold enough should have two or more superfluids or supercondutors in their inner crusts and cores. The implication of superfluidity or superconductivity for equilibrium and dynamical neutron star states is that each individual particle species that forms a condensate must have its own, independent number density current and equation of motion that determines that current. An important consequence of the quasiparticle nature of each condensate is the so-called entrainment effect; i.e., the momentum of a condensate is a linear combination of its own current and those of the other condensates. We present here the first fully relativistic modeling of slowly rotating superfluid neutron stars with entrainment that is accurate to the second-order in the rotation rates. The stars consist of superfluid neutrons, superconducting protons, and a highly degenerate, relativistic gas of electrons. We use a relativistic σ-ω mean field model for the equation of state of the matter and the entrainment. We determine the effect of a relative rotation between the neutrons and protons on a star's total mass, shape, and Kepler, mass-shedding limit

  2. Relativistic (e > 0.6, > 2.0, and > 4.0 MeV) Electron Acceleration at Geosynchronous Orbit during High-intensity, Long-duration, Continuous AE Activity (HILDCAA) Events

    Czech Academy of Sciences Publication Activity Database

    Hajra, R.; Tsurutani, B. T.; Echer, E.; Gonzalez, W. D.; Santolík, Ondřej

    2015-01-01

    Roč. 799, č. 1 (2015), 39/1-39/8 ISSN 0004-637X R&D Projects: GA ČR GAP205/10/2279 Institutional support: RVO:68378289 Keywords : acceleration of particles * magnetic reconnection * relativistic processes * solar wind * waves Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 5.909, year: 2015 http://iopscience.iop.org/0004-637X/799/1/39/article

  3. Relativistic quantum logic

    International Nuclear Information System (INIS)

    Mittelstaedt, P.

    1983-01-01

    on the basis of the well-known quantum logic and quantum probability a formal language of relativistic quantum physics is developed. This language incorporates quantum logical as well as relativistic restrictions. It is shown that relativity imposes serious restrictions on the validity regions of propositions in space-time. By an additional postulate this relativistic quantum logic can be made consistent. The results of this paper are derived exclusively within the formal quantum language; they are, however, in accordance with well-known facts of relativistic quantum physics in Hilbert space. (author)

  4. The polar cusp: Particle-, optical- and geomagnetic manifistations of solar wind - magnetosphere interaction

    International Nuclear Information System (INIS)

    Sandholt, P.E.; Egeland, A.; Lybekk, B.

    1985-08-01

    In this study observations of particle precipitation, optical emissions and geomagnetic disturbances associated with the low-altitude polar cusp are presented. The main observational basis is photometer data from two stations on Svalbard (Spitsbergen), Norway. These data have been used to map the location and dynamics of polar cusp auroras. One event with coordinated observations of low-energy precipitation from satellite HILAT and optical observations from the ground is discussed. Simultaneous photometer observations of the midday (Svalbard) and midnight (Alaska) sectors of the auroral oval are also presented. Thus, dynamical auroral phenomena with different temporal and spatial scales are investigated in relation to the interplanetary magnetic field and magnetospheric substorms. Certain large- and small-scale dynamics of the aurora and the geomagnetic field are shown to be consistent with the quasi steady-state/large-scale and impulsive/small-scale modes of magnetic reconnection at the frontside magnetopause

  5. Particle Acceleration in Mildly Relativistic Shearing Flows: The Interplay of Systematic and Stochastic Effects, and the Origin of the Extended High-energy Emission in AGN Jets

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Ruo-Yu; Rieger, F. M.; Aharonian, F. A., E-mail: ruoyu@mpi-hd.mpg.de, E-mail: frank.rieger@mpi-hd.mpg.de, E-mail: aharon@mpi-hd.mpg.de [Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg (Germany)

    2017-06-10

    The origin of the extended X-ray emission in the large-scale jets of active galactic nuclei (AGNs) poses challenges to conventional models of acceleration and emission. Although electron synchrotron radiation is considered the most feasible radiation mechanism, the formation of the continuous large-scale X-ray structure remains an open issue. As astrophysical jets are expected to exhibit some turbulence and shearing motion, we here investigate the potential of shearing flows to facilitate an extended acceleration of particles and evaluate its impact on the resultant particle distribution. Our treatment incorporates systematic shear and stochastic second-order Fermi effects. We show that for typical parameters applicable to large-scale AGN jets, stochastic second-order Fermi acceleration, which always accompanies shear particle acceleration, can play an important role in facilitating the whole process of particle energization. We study the time-dependent evolution of the resultant particle distribution in the presence of second-order Fermi acceleration, shear acceleration, and synchrotron losses using a simple Fokker–Planck approach and provide illustrations for the possible emergence of a complex (multicomponent) particle energy distribution with different spectral branches. We present examples for typical parameters applicable to large-scale AGN jets, indicating the relevance of the underlying processes for understanding the extended X-ray emission and the origin of ultrahigh-energy cosmic rays.

  6. Relativistic collective diffusion in one-dimensional systems

    Science.gov (United States)

    Lin, Gui-Wu; Lam, Yu-Yiu; Zheng, Dong-Qin; Zhong, Wei-Rong

    2018-05-01

    The relativistic collective diffusion in one-dimensional molecular system is investigated through nonequilibrium molecular dynamics with Monte Carlo methods. We have proposed the relationship among the speed, the temperature, the density distribution and the collective diffusion coefficient of particles in a relativistic moving system. It is found that the relativistic speed of the system has no effect on the temperature, but the collective diffusion coefficient decreases to zero as the velocity of the system approaches to the speed of light. The collective diffusion coefficient is modified as D‧ = D(1 ‑w2 c2 )3 2 for satisfying the relativistic circumstances. The present results may contribute to the understanding of the behavior of the particles transport diffusion in a high speed system, as well as enlighten the study of biological metabolism at relativistic high speed situation.

  7. Calculation of the binding energy per nucleon and the quasi-particle interation in nuclear matter under consideration of relativistic medium effects

    International Nuclear Information System (INIS)

    Hippchen, T.

    1985-12-01

    In a first part, nuclear matter calculations have been performed in the Dirac-Brueckner approach using a) a nucleon-nucleon potential of one-boson-exchange (OBE) type and b) a more realistic interaction in which the fictitious σ-exchange of the OBE-model is replaced by explicit 2π- and πρ-exchange diagrams. Both potential models yield the correct empirical binding energy and saturation density. It turns out that the total sum of relativistic effects caused by the emplicit 2 π- and πρ-exchanges is comparable to those due to σ-exchange. In a second part, the nuclear quasiparticle interaction, i.e. the Landau parameters, have been calculated in the central (F), isospin (F'), spin (G) and spin-isospin (G') channel, in an analogous way. Compared to nonrelativistic calculations (including conventional medium corrections like Pauli and dispersion effects), a strong improvement has been found, especially in the F- and G-channel. Finally, the influence of A 1 -exchange is studied, in NN scattering and in nuclear matter. It turns out that, after a suitable and necessary readjustment of some meson parameters, its role is negligibly small. (orig.)

  8. Strong-coupling diffusion in relativistic systems

    Indian Academy of Sciences (India)

    hanced values needed to interpret the data at higher energies point towards the importance of strong-coupling effects. ... when all secondary particles have been created. For short times in the initial phase ... It is decisive for a proper representation of the available data for relativistic heavy-ion collisions at and beyond SPS.

  9. Chaos and maps in relativistic rynamical systems

    Directory of Open Access Journals (Sweden)

    L. P. Horwitz

    2000-01-01

    Full Text Available The basic work of Zaslavskii et al showed that the classical non-relativistic electromagnetically kicked oscillator can be cast into the form of an iterative map on the phase space; the resulting evolution contains a stochastic flow to unbounded energy. Subsequent studies have formulated the problem in terms of a relativistic charged particle in interaction with the electromagnetic field. We review the structure of the covariant Lorentz force used to study this problem. We show that the Lorentz force equation can be derived as well from the manifestly covariant mechanics of Stueckelberg in the presence of a standard Maxwell field, establishing a connection between these equations and mass shell constraints. We argue that these relativistic generalizations of the problem are intrinsically inaccurate due to an inconsistency in the structure of the relativistic Lorentz force, and show that a reformulation of the relativistic problem, permitting variations (classically in both the particle mass and the effective “mass” of the interacting electromagnetic field, provides a consistent system of classical equations for describing such processes.

  10. Towards relativistic quantum geometry

    Energy Technology Data Exchange (ETDEWEB)

    Ridao, Luis Santiago [Instituto de Investigaciones Físicas de Mar del Plata (IFIMAR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mar del Plata (Argentina); Bellini, Mauricio, E-mail: mbellini@mdp.edu.ar [Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Funes 3350, C.P. 7600, Mar del Plata (Argentina); Instituto de Investigaciones Físicas de Mar del Plata (IFIMAR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mar del Plata (Argentina)

    2015-12-17

    We obtain a gauge-invariant relativistic quantum geometry by using a Weylian-like manifold with a geometric scalar field which provides a gauge-invariant relativistic quantum theory in which the algebra of the Weylian-like field depends on observers. An example for a Reissner–Nordström black-hole is studied.

  11. Relativistic Coulomb Fission

    Science.gov (United States)

    Norbury, John W.

    1992-01-01

    Nuclear fission reactions induced by the electromagnetic field of relativistic nuclei are studied for energies relevant to present and future relativistic heavy ion accelerators. Cross sections are calculated for U-238 and Pu-239 fission induced by C-12, Si-28, Au-197, and U-238 projectiles. It is found that some of the cross sections can exceed 10 b.

  12. Structural Optimization Design of Horizontal-Axis Wind Turbine Blades Using a Particle Swarm Optimization Algorithm and Finite Element Method

    Directory of Open Access Journals (Sweden)

    Pan Pan

    2012-11-01

    Full Text Available This paper presents an optimization method for the structural design of horizontal-axis wind turbine (HAWT blades based on the particle swarm optimization algorithm (PSO combined with the finite element method (FEM. The main goal is to create an optimization tool and to demonstrate the potential improvements that could be brought to the structural design of HAWT blades. A multi-criteria constrained optimization design model pursued with respect to minimum mass of the blade is developed. The number and the location of layers in the spar cap and the positions of the shear webs are employed as the design variables, while the strain limit, blade/tower clearance limit and vibration limit are taken into account as the constraint conditions. The optimization of the design of a commercial 1.5 MW HAWT blade is carried out by combining the above method and design model under ultimate (extreme flap-wise load conditions. The optimization results are described and compared with the original design. It shows that the method used in this study is efficient and produces improved designs.

  13. Relativistic quantum mechanics of leptons and fields

    International Nuclear Information System (INIS)

    Grandy, W.T. Jr.

    1991-01-01

    This book serves as an advanced text on the Dirac theory, and provides a monograph summarizing the description of relativistic quantum mechanics and quantum electrodynamics as classical field theories. It presents a broad, detailed, and up-to-date exposition of relativistic quantum mechanics, including the two-body problem. It also demonstrates the extent to which the behavior of stable particles and their interactions can be understood without introducing operator (second-quantized) fields. The subsequent difficulties are studied in detail and possible resolutions are presented through quantum field theory

  14. Relativistic tunneling through two successive barriers

    International Nuclear Information System (INIS)

    Lunardi, Jose T.; Manzoni, Luiz A.

    2007-01-01

    We study the relativistic quantum mechanical problem of a Dirac particle tunneling through two successive electrostatic barriers. Our aim is to study the emergence of the so-called generalized Hartman effect, an effect observed in the context of nonrelativistic tunneling as well as in its counterparts and which is often associated with the possibility of superluminal velocities in the tunneling process. We discuss the behavior of both the phase (or group) tunneling time and the dwell time, and show that in the limit of opaque barriers the relativistic theory also allows the emergence of the generalized Hartman effect. We compare our results with the nonrelativistic ones and discuss their interpretation

  15. Constraints on the cosmological relativistic energy density

    International Nuclear Information System (INIS)

    Zentner, Andrew R.; Walker, Terry P.

    2002-01-01

    We discuss bounds on the cosmological relativistic energy density as a function of redshift, reviewing the big bang nucleosynthesis and cosmic microwave background bounds, updating bounds from large scale structure, and introducing a new bound from the magnitude-redshift relation for type Ia supernovae. We conclude that the standard and well-motivated assumption that relativistic energy is negligible during recent epochs is not necessitated by extant data. We then demonstrate the utility of these bounds by constraining the mass and lifetime of a hypothetical massive big bang relic particle

  16. Relativistic classical limit of quantum theory

    International Nuclear Information System (INIS)

    Shin, G.R.; Rafelski, J.

    1993-01-01

    We study the classical limit of the equal-time relativistic quantum transport theory. We discuss in qualitative terms the need to fold first the Wigner function with a coarse-graining function. Only then does the singularity at ℎ→0 seem to be manageable. In the limit ℎ→0, we obtain the relativistic Vlasov equations for the particle and the antiparticle sector of the Fock space. Similarly, we address the evolution equations of the spin and the magnetic-moment density

  17. Strange particle correlations measured by the Star experiment in ultra-relativistic heavy ion collisions a RHIC; Etude des correlations de particules etranges mesurees par l'experience STAR dans les collisions d'ions lourds ultra-relativistes au RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Renault, G

    2004-09-01

    Non-identical correlation functions allow to study the space-time evolution of the source of particles formed in ultra-relativistic heavy ion collisions. The STAR experiment is dedicated to probe the formation of a new state of nuclear matter called Quark Gluon Plasma. The proton - lambda correlation function is supposed to be more sensitive to bigger source sizes than the proton - proton because of the absence of the final state Coulomb interaction. In this thesis, proton - lambda, anti-proton - anti-lambda, anti-proton - lambda and proton - anti-lambda correlation functions are studied in Au+Au collisions at {radical}S{sub NN} = 200 GeV using an analytical model. The proton - lambda and anti-proton - anti-lambda correlation functions exhibit the same behavior as in previous measurements. The anti-proton - lambda and proton - anti-lambda correlation functions, measured for the first time, show a very strong signal corresponding to the baryon - anti-baryon annihilation channel. Parameterizing the correlation functions has allowed to characterize final state interactions. (author)

  18. Role of the lifetime of ring current particles on the solar wind-magnetosphere power transfer during the intense geomagnetic storm of 28 August 1978

    International Nuclear Information System (INIS)

    Gonzalez, W.D.; Gonzalez, A.L.C.; Lee, L.C.

    1990-01-01

    For the intense magnetic storms of 28 August 1978 it is shown that the power transfer from the solar wind to the magnetosphere is well represented by the expression obtained by Vasyliunas et al. (1982, Planet. Space Sci. 30, 359) from dimensional analysis, but this representation becomes improved when such an expression is modified by a factor due to an influence of the lifetime of ring current particles as suggested by Lee and Akasofu (1984, Planet. Space Sci. 32, 1423). During a steady state regime of the ring current evolution of this storm, our study suggests that the power transfer depends on the solar wind density, the transverse component of the IMF (Interplanetary magnetic field) (with respect to the Sun-Earth line) and also, explicitly, on the time constant for ring current energy decay, but not on the solar wind speed. (author)

  19. Confinement of the crab pulsar's wind by its supernova remnant

    International Nuclear Information System (INIS)

    Kennel, C.F.; Coroniti, F.V.

    1984-01-01

    We construct a steady state, spherically symmetric, magnetohydrodynamic model of the Crab nebual. A highly relativistic, positronic pulsar wind is terminated by a strong MHD shock that decelerates the flow and increases its pressure to match boundary conditions imposed by the recently discovered supernova remnant that surrounds the nebula. If the magnetic luminosity of the pulsar wind upsteam of the shock is about 0.3% of its particle luminosity, the pressure and velocity boundary conditions imposed by the remnant place the shock where we infer it to be; near the outer boundary of an underluminous region observed to surround the pulsar. It is necessary to include the weak magnetization of the wind to satisfy the boundary conditions and to calculate the nebular synchrotron radiation self-consistently

  20. Relativistic mean field model for entrainment in general relativistic superfluid neutron stars

    International Nuclear Information System (INIS)

    Comer, G.L.; Joynt, R.

    2003-01-01

    General relativistic superfluid neutron stars have a significantly more intricate dynamics than their ordinary fluid counterparts. Superfluidity allows different superfluid (and superconducting) species of particles to have independent fluid flows, a consequence of which is that the fluid equations of motion contain as many fluid element velocities as superfluid species. Whenever the particles of one superfluid interact with those of another, the momentum of each superfluid will be a linear combination of both superfluid velocities. This leads to the so-called entrainment effect whereby the motion of one superfluid will induce a momentum in the other superfluid. We have constructed a fully relativistic model for entrainment between superfluid neutrons and superconducting protons using a relativistic σ-ω mean field model for the nucleons and their interactions. In this context there are two notions of 'relativistic': relativistic motion of the individual nucleons with respect to a local region of the star (i.e. a fluid element containing, say, an Avogadro's number of particles), and the motion of fluid elements with respect to the rest of the star. While it is the case that the fluid elements will typically maintain average speeds at a fraction of that of light, the supranuclear densities in the core of a neutron star can make the nucleons themselves have quite high average speeds within each fluid element. The formalism is applied to the problem of slowly rotating superfluid neutron star configurations, a distinguishing characteristic being that the neutrons can rotate at a rate different from that of the protons

  1. Relativistic transport theory for cosmic-rays

    International Nuclear Information System (INIS)

    Webb, G.M.

    1985-01-01

    Various aspects of the transport of cosmic-rays in a relativistically moving magnetized plasma supporting a spectrum of hydromagnetic waves that scatter the cosmic-rays are presented. A local Lorentz frame moving with the waves or turbulence scattering the cosmic-rays is used to specify the individual particle momentum. The comoving frame is in general a noninertial frame in which the observer's volume element is expanding and shearing, geometric energy change terms appear in the cosmic-ray transport equation which consist of the relativistic generalization of the adiabatic deceleration term and a further term involving the acceleration vector of the scatterers. A relativistic version of the pitch angle evolution equation, including the effects of adiabatic focussing, pitch angle scattering, and energy changes is presented

  2. Quadratic hamiltonians and relativistic quantum mechanics

    International Nuclear Information System (INIS)

    Razumov, A.V.; Solov'ev, V.O.; Taranov, A.Yu.

    1981-01-01

    For the case of a charged scalar field described by a quadratic hamiltonian the equivalent relativistic quantum mechanics is constructed in one-particle sector. Complete investigation of a charged relativistic particle motion in the Coulomb field is carried out. Subcritical as well as supercritical cases are considered. In the course of investigation of the charged scalar particle in the Coulomb field the diagonalization of the quadratic hamiltonian describing the charged scalar quantized field interaction with the external Coulomb field has taken place. Mathematically this problem is bound to the construction of self-conjugated expansions of the symmetric operator. The construction of such expansion is necessary at any small external field magnitude [ru

  3. On different experimental behaviour of fast secondary particles produced in 12C interactions at relativistic energies as studied with radiochemistry and in a propane chamber

    International Nuclear Information System (INIS)

    Kulakov, B.A.; Karachuk, J.; Gelovani, L.K.; Gridnev, T.G.; Sosnin, A.N.; Brandt, R.

    1998-01-01

    Energetic secondary fragments produced in the interaction of (41-44) GeV 12 C ions with copper exhibit experimentally a broader angular distribution as compared to energetic secondary fragments produced in the interactions at a lower 12 C-energy (15-25) GeV when studied with radiochemical techniques. Such a different experimental behaviour of secondary fragments produced by 12 C ions of the same two energy groups is not observed, when these secondary fragments are investigated with a propane bubble chamber. Separation of secondary particles is described

  4. How one can construct a consistent relativistic quantum mechanics on the base of a relativistic wave equation

    Energy Technology Data Exchange (ETDEWEB)

    Gavrilov, S.P. [Universidade Federal de Sergipe (UFS), Aracaju, SE (Brazil); Gitman, D.M. [Sao Paulo Univ. (USP), SP (Brazil). Inst. de Fisica

    2000-07-01

    Full text follows: There is a common opinion that the construction of a consistent relativistic quantum mechanics on the base of a relativistic wave equation meets well-known difficulties related to the existence of infinite number of negative energy levels, to the existence of negative vector norms, and so on, which may be only solved in a second-quantized theory, see, for example, two basic papers devoted to the problem L.Foldy, S.Wouthuysen, Phys. Rep.78 (1950) 29; H.Feshbach, F.Villars, Rev. Mod. Phys. 30 (1958) 24, whose arguments are repeated in all handbooks in relativistic quantum theory. Even Dirac trying to solve the problem had turned last years to infinite-component relativistic wave equations, see P.A.M. Dirac, Proc. R. Soc. London, A328 (1972) 1. We believe that a consistent relativistic quantum mechanics may be constructed on the base of an extended (charge symmetric) equation, which unite both a relativistic wave equation for a particle and for an antiparticle. We present explicitly the corresponding construction, see for details hep-th/0003112. We support such a construction by two demonstrations: first, in course of a careful canonical quantization of the corresponding classical action of a relativistic particle we arrive just to such a consistent quantum mechanics; second, we demonstrate that a reduction of the QFT of a corresponding field (scalar, spinor, etc.) to one-particle sector, if such a reduction may be done, present namely this quantum mechanics. (author)

  5. Study of quantum spin correlations of relativistic electron pairs - Testing nonlocality of relativistic quantum mechanics

    International Nuclear Information System (INIS)

    Bodek, K.; Rozpędzik, D.; Zejma, J.; Caban, P.; Rembieliński, J.; Włodarczyk, M.; Ciborowski, J.; Enders, J.; Köhler, A.; Kozela, A.

    2013-01-01

    The Polish-German project QUEST aims at studying relativistic quantum spin correlations of the Einstein-Rosen-Podolsky-Bohm type, through measurement of the correlation function and the corresponding probabilities for relativistic electron pairs. The results will be compared to theoretical predictions obtained by us within the framework of relativistic quantum mechanics, based on assumptions regarding the form of the relativistic spin operator. Agreement or divergence will be interpreted in the context of non-uniqueness of the relativistic spin operator in quantum mechanics as well as dependence of the correlation function on the choice of observables representing the spin. Pairs of correlated electrons will originate from the Mo/ller scattering of polarized 15 MeV electrons provided by the superconducting Darmstadt electron linear accelerator S-DALINAC, TU Darmstadt, incident on a Be target. Spin projections will be determined using the Mott polarimetry technique. Measurements (starting 2013) are planned for longitudinal and transverse beam polarizations and different orientations of the beam polarization vector w.r.t. the Mo/ller scattering plane. This is the first project to study relativistic spin correlations for particles with mass

  6. Plasma relativistic microwave electronics

    International Nuclear Information System (INIS)

    Kuzelev, M.V.; Loza, O.T.; Rukhadze, A.A.; Strelkov, P.S.; Shkvarunets, A.G.

    2001-01-01

    One formulated the principles of plasma relativistic microwave electronics based on the induced Cherenkov radiation of electromagnetic waves at interaction of a relativistic electron beam with plasma. One developed the theory of plasma relativistic generators and accelerators of microwave radiation, designed and studied the prototypes of such devices. One studied theoretically the mechanisms of radiation, calculated the efficiencies and the frequency spectra of plasma relativistic microwave generators and accelerators. The theory findings are proved by the experiment: intensity of the designed sources of microwave radiation is equal to 500 μW, the frequency of microwave radiation is increased by 7 times (from 4 up to 28 GHz), the width of radiation frequency band may vary from several up to 100%. The designed sources of microwave radiation are no else compared in the electronics [ru

  7. The relativistic rocket

    Energy Technology Data Exchange (ETDEWEB)

    Antippa, Adel F [Departement de Physique, Universite du Quebec a Trois-Rivieres, Trois-Rivieres, Quebec G9A 5H7 (Canada)

    2009-05-15

    We solve the problem of the relativistic rocket by making use of the relation between Lorentzian and Galilean velocities, as well as the laws of superposition of successive collinear Lorentz boosts in the limit of infinitesimal boosts. The solution is conceptually simple, and technically straightforward, and provides an example of a powerful method that can be applied to a wide range of special relativistic problems of linear acceleration.

  8. Exact Relativistic `Antigravity' Propulsion

    Science.gov (United States)

    Felber, Franklin S.

    2006-01-01

    The Schwarzschild solution is used to find the exact relativistic motion of a payload in the gravitational field of a mass moving with constant velocity. At radial approach or recession speeds faster than 3-1/2 times the speed of light, even a small mass gravitationally repels a payload. At relativistic speeds, a suitable mass can quickly propel a heavy payload from rest nearly to the speed of light with negligible stresses on the payload.

  9. Relativistic Quantum Revivals

    International Nuclear Information System (INIS)

    Strange, P.

    2010-01-01

    Quantum revivals are now a well-known phenomena within nonrelativistic quantum theory. In this Letter we display the effects of relativity on revivals and quantum carpets. It is generally believed that revivals do not occur within a relativistic regime. Here we show that while this is generally true, it is possible, in principle, to set up wave packets with specific mathematical properties that do exhibit exact revivals within a fully relativistic theory.

  10. SMALL-SCALE MAGNETIC ISLANDS IN THE SOLAR WIND AND THEIR ROLE IN PARTICLE ACCELERATION. I. DYNAMICS OF MAGNETIC ISLANDS NEAR THE HELIOSPHERIC CURRENT SHEET

    Energy Technology Data Exchange (ETDEWEB)

    Khabarova, O. [Heliophysical Laboratory, Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radiowave Propagation RAS (IZMIRAN), Troitsk, Moscow 142190 (Russian Federation); Zank, G. P.; Li, G.; Roux, J. A. le; Webb, G. M.; Dosch, A. [Center for Space Plasma and Aeronomic Research (CSPAR), University of Alabama in Huntsville, Huntsville, AL 35805 (United States); Malandraki, O. E. [IAASARS, National Observatory of Athens, GR-15236 Penteli (Greece)

    2015-08-01

    Increases of ion fluxes in the keV–MeV range are sometimes observed near the heliospheric current sheet (HCS) during periods when other sources are absent. These resemble solar energetic particle events, but the events are weaker and apparently local. Conventional explanations based on either shock acceleration of charged particles or particle acceleration due to magnetic reconnection at interplanetary current sheets (CSs) are not persuasive. We suggest instead that recurrent magnetic reconnection occurs at the HCS and smaller CSs in the solar wind, a consequence of which is particle energization by the dynamically evolving secondary CSs and magnetic islands. The effectiveness of the trapping and acceleration process associated with magnetic islands depends in part on the topology of the HCS. We show that the HCS possesses ripples superimposed on the large-scale flat or wavy structure. We conjecture that the ripples can efficiently confine plasma and provide tokamak-like conditions that are favorable for the appearance of small-scale magnetic islands that merge and/or contract. Particles trapped in the vicinity of merging islands and experiencing multiple small-scale reconnection events are accelerated by the induced electric field and experience first-order Fermi acceleration in contracting magnetic islands according to the transport theory of Zank et al. We present multi-spacecraft observations of magnetic island merging and particle energization in the absence of other sources, providing support for theory and simulations that show particle energization by reconnection related processes of magnetic island merging and contraction.

  11. Relativistic viscoelastic fluid mechanics

    International Nuclear Information System (INIS)

    Fukuma, Masafumi; Sakatani, Yuho

    2011-01-01

    A detailed study is carried out for the relativistic theory of viscoelasticity which was recently constructed on the basis of Onsager's linear nonequilibrium thermodynamics. After rederiving the theory using a local argument with the entropy current, we show that this theory universally reduces to the standard relativistic Navier-Stokes fluid mechanics in the long time limit. Since effects of elasticity are taken into account, the dynamics at short time scales is modified from that given by the Navier-Stokes equations, so that acausal problems intrinsic to relativistic Navier-Stokes fluids are significantly remedied. We in particular show that the wave equations for the propagation of disturbance around a hydrostatic equilibrium in Minkowski space-time become symmetric hyperbolic for some range of parameters, so that the model is free of acausality problems. This observation suggests that the relativistic viscoelastic model with such parameters can be regarded as a causal completion of relativistic Navier-Stokes fluid mechanics. By adjusting parameters to various values, this theory can treat a wide variety of materials including elastic materials, Maxwell materials, Kelvin-Voigt materials, and (a nonlinearly generalized version of) simplified Israel-Stewart fluids, and thus we expect the theory to be the most universal description of single-component relativistic continuum materials. We also show that the presence of strains and the corresponding change in temperature are naturally unified through the Tolman law in a generally covariant description of continuum mechanics.

  12. Relativistic viscoelastic fluid mechanics.

    Science.gov (United States)

    Fukuma, Masafumi; Sakatani, Yuho

    2011-08-01

    A detailed study is carried out for the relativistic theory of viscoelasticity which was recently constructed on the basis of Onsager's linear nonequilibrium thermodynamics. After rederiving the theory using a local argument with the entropy current, we show that this theory universally reduces to the standard relativistic Navier-Stokes fluid mechanics in the long time limit. Since effects of elasticity are taken into account, the dynamics at short time scales is modified from that given by the Navier-Stokes equations, so that acausal problems intrinsic to relativistic Navier-Stokes fluids are significantly remedied. We in particular show that the wave equations for the propagation of disturbance around a hydrostatic equilibrium in Minkowski space-time become symmetric hyperbolic for some range of parameters, so that the model is free of acausality problems. This observation suggests that the relativistic viscoelastic model with such parameters can be regarded as a causal completion of relativistic Navier-Stokes fluid mechanics. By adjusting parameters to various values, this theory can treat a wide variety of materials including elastic materials, Maxwell materials, Kelvin-Voigt materials, and (a nonlinearly generalized version of) simplified Israel-Stewart fluids, and thus we expect the theory to be the most universal description of single-component relativistic continuum materials. We also show that the presence of strains and the corresponding change in temperature are naturally unified through the Tolman law in a generally covariant description of continuum mechanics.

  13. Dissipative relativistic hydrodynamics

    International Nuclear Information System (INIS)

    Imshennik, V.S.; Morozov, Yu.I.

    1989-01-01

    Using the comoving reference frame in the general non-inertial case, the relativistic hydrodynamics equations are derived with an account for dissipative effects in the matter. From the entropy production equation, the exact from for the dissipative tensor components is obtained. As a result, the closed system of equations of dissipative relativistic hydrodynamics is obtained in the comoving reference frame as a relativistic generalization of the known Navier-Stokes equations for Lagrange coordinates. Equations of relativistic hydrodynamics with account for dissipative effects in the matter are derived using the assocoated reference system in general non-inertial case. True form of the dissipative tensor components is obtained from entropy production equation. Closed system of equations for dissipative relativistic hydrodynamics is obtained as a result in the assocoated reference system (ARS) - relativistic generalization of well-known Navier-Stokes equations for Lagrange coordinates. Equation system, obtained in this paper for ARS, may be effectively used in numerical models of explosive processes with 10 51 erg energy releases which are characteristic for flashes of supernovae, if white dwarf type compact target suggested as presupernova

  14. An efficient scenario-based and fuzzy self-adaptive learning particle swarm optimization approach for dynamic economic emission dispatch considering load and wind power uncertainties

    International Nuclear Information System (INIS)

    Bahmani-Firouzi, Bahman; Farjah, Ebrahim; Azizipanah-Abarghooee, Rasoul

    2013-01-01

    Renewable energy resources such as wind power plants are playing an ever-increasing role in power generation. This paper extends the dynamic economic emission dispatch problem by incorporating wind power plant. This problem is a multi-objective optimization approach in which total electrical power generation costs and combustion emissions are simultaneously minimized over a short-term time span. A stochastic approach based on scenarios is suggested to model the uncertainty associated with hourly load and wind power forecasts. A roulette wheel technique on the basis of probability distribution functions of load and wind power is implemented to generate scenarios. As a result, the stochastic nature of the suggested problem is emancipated by decomposing it into a set of equivalent deterministic problem. An improved multi-objective particle swarm optimization algorithm is applied to obtain the best expected solutions for the proposed stochastic programming framework. To enhance the overall performance and effectiveness of the particle swarm optimization, a fuzzy adaptive technique, θ-search and self-adaptive learning strategy for velocity updating are used to tune the inertia weight factor and to escape from local optima, respectively. The suggested algorithm goes through the search space in the polar coordinates instead of the Cartesian one; whereby the feasible space is more compact. In order to evaluate the efficiency and feasibility of the suggested framework, it is applied to two test systems with small and large scale characteristics. - Highlights: ► Formulates multi-objective DEED problem under a stochastic programming framework. ► Considers uncertainties related to forecasted values of load demand and wind power. ► Proposes an interactive fuzzy satisfying method based on the novel FSALPSO. ► Presents a new self-adaptive learning strategy to improve original PSO algorithm

  15. Detection of gamma-ray emission from the Vela pulsar wind nebula with AGILE.

    Science.gov (United States)

    Pellizzoni, A; Trois, A; Tavani, M; Pilia, M; Giuliani, A; Pucella, G; Esposito, P; Sabatini, S; Piano, G; Argan, A; Barbiellini, G; Bulgarelli, A; Burgay, M; Caraveo, P; Cattaneo, P W; Chen, A W; Cocco, V; Contessi, T; Costa, E; D'Ammando, F; Del Monte, E; De Paris, G; Di Cocco, G; Di Persio, G; Donnarumma, I; Evangelista, Y; Feroci, M; Ferrari, A; Fiorini, M; Fuschino, F; Galli, M; Gianotti, F; Hotan, A; Labanti, C; Lapshov, I; Lazzarotto, F; Lipari, P; Longo, F; Marisaldi, M; Mastropietro, M; Mereghetti, S; Moretti, E; Morselli, A; Pacciani, L; Palfreyman, J; Perotti, F; Picozza, P; Pittori, C; Possenti, A; Prest, M; Rapisarda, M; Rappoldi, A; Rossi, E; Rubini, A; Santolamazza, P; Scalise, E; Soffitta, P; Striani, E; Trifoglio, M; Vallazza, E; Vercellone, S; Verrecchia, F; Vittorini, V; Zambra, A; Zanello, D; Giommi, P; Colafrancesco, S; Antonelli, A; Salotti, L; D'Amico, N; Bignami, G F

    2010-02-05

    Pulsars are known to power winds of relativistic particles that can produce bright nebulae by interacting with the surrounding medium. These pulsar wind nebulae are observed by their radio, optical, and x-ray emissions, and in some cases also at TeV (teraelectron volt) energies, but the lack of information in the gamma-ray band precludes drawing a comprehensive multiwavelength picture of their phenomenology and emission mechanisms. Using data from the AGILE satellite, we detected the Vela pulsar wind nebula in the energy range from 100 MeV to 3 GeV. This result constrains the particle population responsible for the GeV emission and establishes a class of gamma-ray emitters that could account for a fraction of the unidentified galactic gamma-ray sources.

  16. Nonlinear Evolution of Observed Fast Streams in the Solar Wind - Micro-instabilities and Energy Exchange between Protons and Alpha Particles

    Science.gov (United States)

    Maneva, Y. G.; Poedts, S.

    2017-12-01

    Non-thermal kinetic components such as deformed velocity distributions, temperature anisotropies and relative drifts between the multiple ion populations are frequently observed features in the collisionless fast solar wind streams near the Earth whose origin is still to be better understood. Some of the traditional models consider the formation of the temperature anisotropies through the effect of the solar wind expansion, while others assume in situ heating and particle acceleration by local fluctuations, such as plasma waves, or by spacial structures, such as advected or locally generated current sheets. In this study we consider the evolution of initial ion temperature anisotropies and relative drifts in the presence of plasma oscillations, such as ion-cyclotron and kinetic Alfven waves. We perform 2.5D hybrid simulations to study the evolution of observed fast solar wind plasma parcels, including the development of the plasma micro-instabilities, the field-particle correlations and the energy transfer between the multiple ion species. We consider two distinct cases of highly anisotropic and quickly drifting protons which excite ion-cyclotron waves and of moderately anisotropic slower protons, which co-exist with kinetic Alfven waves. The alpha particles for both cases are slightly anisotropic in the beginning and remain anisotropic throughout the simulation time. Both the imposed magnetic fluctuations and the initial differential streaming decrease in time for both cases, while the minor ions are getting heated. Finally we study the effects of the solar wind expansion and discuss its implications for the nonlinear evolution of the system.

  17. Consistent resolution of some relativistic quantum paradoxes

    International Nuclear Information System (INIS)

    Griffiths, Robert B.

    2002-01-01

    A relativistic version of the (consistent or decoherent) histories approach to quantum theory is developed on the basis of earlier work by Hartle, and used to discuss relativistic forms of the paradoxes of spherical wave packet collapse, Bohm's formulation of the Einstein-Podolsky-Rosen paradox, and Hardy's paradox. It is argued that wave function collapse is not needed for introducing probabilities into relativistic quantum mechanics, and in any case should never be thought of as a physical process. Alternative approaches to stochastic time dependence can be used to construct a physical picture of the measurement process that is less misleading than collapse models. In particular, one can employ a coarse-grained but fully quantum-mechanical description in which particles move along trajectories, with behavior under Lorentz transformations the same as in classical relativistic physics, and detectors are triggered by particles reaching them along such trajectories. States entangled between spacelike separate regions are also legitimate quantum descriptions, and can be consistently handled by the formalism presented here. The paradoxes in question arise because of using modes of reasoning which, while correct for classical physics, are inconsistent with the mathematical structure of quantum theory, and are resolved (or tamed) by using a proper quantum analysis. In particular, there is no need to invoke, nor any evidence for, mysterious long-range superluminal influences, and thus no incompatibility, at least from this source, between relativity theory and quantum mechanics

  18. Dependence of the multiplicity of relativistic charged particles on the atomic number in interactions between pi /sup -/ mesons with a 17 GeV/sec pulse and between protons with 60 GeV/sec and 67 GeV/sec pulses on photoemulsion nuclei

    CERN Document Server

    Maslennikova, N V; Melnichuk, T A; Tretakova, M I

    1972-01-01

    Full account of experiments with the photo-emulsion G5 being irradiated by pi /sup -/ mesons by the CERN accelerator and the photo- emulsions BR-2 and BRx4y being irradiated by protons by the Serpukhov accelerator is presented, supported by tables and histograms. Nuclear interactions, discovered along the trace, and the division criteria between interactions of light nuclei (CNO) and heavy nuclei (AgBr) are studied. All interactions are grouped under quasi-nuclear, light nuclei and heavy nuclei, and their distribution with differing quantities of relativistic particles n/sub s/ and heavily ionized particles N/sub h/ is explained and discussed. (5 refs).

  19. Electromagnetic radiation from collisions at almost the speed of light: An extremely relativistic charged particle falling into a Schwarzschild black hole

    International Nuclear Information System (INIS)

    Cardoso, Vitor; Lemos, Jose P.S.; Yoshida, Shijun

    2003-01-01

    We investigate the electromagnetic radiation released during the high energy collision of a charged point particle with a four-dimensional Schwarzschild black hole. We show that the spectra is flat, and well described by a classical calculation. We also compare the total electromagnetic and gravitational energies emitted, and find that the former is suppressed in relation to the latter for very high energies. These results could apply to the astrophysical world in the case that charged stars and small charged black holes are out there colliding into large black holes, and to a very high energy collision experiment in a four-dimensional world. In this latter scenario the calculation is to be used for the moments just after black hole formation, when the collision of charged debris with the newly formed black hole is certainly expected. Since the calculation is four dimensional, it does not directly apply to TeV-scale gravity black holes, as these inhabit a world of six to eleven dimensions, although our results should qualitatively hold when extrapolated with some care to higher dimensions

  20. On the Velocity of Moving Relativistic Unstable Quantum Systems

    Directory of Open Access Journals (Sweden)

    K. Urbanowski

    2015-01-01

    Full Text Available We study properties of moving relativistic quantum unstable systems. We show that in contrast to the properties of classical particles and quantum stable objects the velocity of freely moving relativistic quantum unstable systems cannot be constant in time. We show that this new quantum effect results from the fundamental principles of the quantum theory and physics: it is a consequence of the principle of conservation of energy and of the fact that the mass of the quantum unstable system is not defined. This effect can affect the form of the decay law of moving relativistic quantum unstable systems.

  1. Relativistic laser channeling in plasmas for fast ignition

    Science.gov (United States)

    Lei, A. L.; Pukhov, A.; Kodama, R.; Yabuuchi, T.; Adumi, K.; Endo, K.; Freeman, R. R.; Habara, H.; Kitagawa, Y.; Kondo, K.; Kumar, G. R.; Matsuoka, T.; Mima, K.; Nagatomo, H.; Norimatsu, T.; Shorokhov, O.; Snavely, R.; Yang, X. Q.; Zheng, J.; Tanaka, K. A.

    2007-12-01

    We report an experimental observation suggesting plasma channel formation by focusing a relativistic laser pulse into a long-scale-length preformed plasma. The channel direction coincides with the laser axis. Laser light transmittance measurement indicates laser channeling into the high-density plasma with relativistic self-focusing. A three-dimensional particle-in-cell simulation reproduces the plasma channel and reveals that the collimated hot-electron beam is generated along the laser axis in the laser channeling. These findings hold the promising possibility of fast heating a dense fuel plasma with a relativistic laser pulse.

  2. Effectively semi-relativistic Hamiltonians of nonrelativistic form

    International Nuclear Information System (INIS)

    Lucha, W.; Schoeberl, F.F.; Moser, M.

    1993-12-01

    We construct effective Hamiltonians which despite their apparently nonrelativistic form incorporate relativistic effects by involving parameters which depend on the relevant momentum. For some potentials the corresponding energy eigenvalues may be determined analytically. Applied to two-particle bound states, it turns out that in this way a nonrelativistic treatment may indeed be able to simulate relativistic effects. Within the framework of hadron spectroscopy, this lucky circumstance may be an explanation for the sometimes extremely good predictions of nonrelativistic potential models even in relativistic regions. (authors)

  3. Report of seminar on relativistic approach to nuclear reaction and nuclear structure

    International Nuclear Information System (INIS)

    1986-05-01

    A seminar on 'Relativistic Approach to Nuclear Reaction and Nuclear Structure' was held in 1985 at Osaka University. This booklet includes twenty-four reports given at the seminar, which deal with: Conventional Nonrelativistic Description of Nuclear Matter and Nuclear Spin-Orbit Interactions; Relativistic Approach to Nuclear Structure; Atomic and Molecular Structure Calculations; Electromagnetic Interaction in Nucleus and Relativistic Effect; Nuclear Magnetic Moment in the Relativistic Mean Field Theory, Effective Mass and Particle-Vibration Coupling in the Relativistic σ-ω Model; Gauge Invariance in Relativistic Many-Body Theory; Relativistic Description of Nucleon-Nucleon Interaction in Review; σ-Particle in NN Interaction; Nuclear Optical Potentials Based on the Brueckner-Hartree-Fock Approach; Elastic Backscattering and Optical Potential; Description of Intermediate-Energy Nuclear Reactions; Dirac Phenomenology at E(p) = 65 MeV; Relativistic Impulse Approximation; Reaction Studies with Intermediate Energy Deuterons at SATURNE; Folding Model for Intermediate-Energy Deutron Scattering; Folding Model for Polarized Deutron Scattering at 700 MeV; Dirac Approach Problems and a Different Viewpoint; Relativistic Approach and EMC Effect; Quasielastic Electron Scattering; Response Function of Quasielastic Electron Scattering; Relativistic Hartree Response Function for Quasielastic Electron Scattering on 12 C and 40 Ca; Backflow-, Retardation- and Relativistic Effects on the Longitudinal Response Function of Nuclear Matter; Pion-Photoproduction in the σ-ω Model. (Nogami, K.)

  4. Physical processes in relativistic plasmas

    International Nuclear Information System (INIS)

    Svensson, R.

    1984-01-01

    The continuum emission in many active galactic nuclei (AGNs) extend to 100 keV and beyond (e.g. Rothschild et al. 1983). In thermal models of the continuum emission this implies temperatures above 10 9 K or kT of order mc 2 . In such a plasma the electrons are at least mildly relativistic and furthermore the particles and the photons are energetic enough to produce electron-positron pairs. The physics of such hot plasmas has only recently been studied in any detail and here we review the results of those studies. Significant electron-positron pair production may also occur in non-thermal models of the continuum emission if the optical depth to photon-photon pair production is greater than unity. We review the few results obtained regarding this interesting but not very well studied possibility. First, however, we briefly discuss the processes taking place in relativistic plasmas and the standard models for the continuum emission from AGNs. We then summarize the effects pair production have on these models and the observational implications of the presence of electron-positron pairs. (orig./WL)

  5. Form of relativistic dynamics with world lines

    International Nuclear Information System (INIS)

    Mukunda, N.; Sudarshan, E.C.G.

    1981-01-01

    In any Hamiltonian relativistic theory there are ten generators of the Poincare group which are realized canonically. The dynamical evolution is described by a Hamiltonian which is one of the ten generators in Dirac's generator formalism. The requirement that the canonical transformations reproduce the geometrical transformation of world points generates the world-line conditions. The Dirac identification of the Hamiltonian and the world-line conditions together lead to the no-interaction theorem. Interacting relativistic theories with world-line conditions should go beyond the Dirac theory and have eleven generators. In this paper we present a constraint dynamics formalism which describes an eleven-generator theory of N interacting particles using 8(N+1) variables with suitable constraints. The (N+1)th pair of four-vectors is associated with the uniform motion of a center which coincides with the center of energy for free particles. In such theories dynamics and kinematics cannot be separated out in a simple fashion

  6. Relativistic predictive quantum potential: the N-body case

    International Nuclear Information System (INIS)

    Garuccio, A.; Kyprianidis, A.; Vigier, J.P.

    1984-01-01

    It is generalized to a system of N scalar particles the casual description with action at a distance already given for two-particle systems in EPR type of experiments. The many body quantum potential is shown to satisfy the predictivity constraints established by Droz-Vincent for relativistic mechanics

  7. Electromagnetic interactions in relativistic systems of many bodies

    International Nuclear Information System (INIS)

    Cook, A.H.

    1987-09-01

    In a previous report (Cook, 1986, 1987) on a formulation of a quasi-relativistic quantum mechanical equation of motion for many particles, little was said of the electromagnetic interactions that keep a set of particles in a bound state. That omission is to some extent repaired in this report. (author). 3 refs

  8. Relativistic nuclear photographic emulsion for multilayer piles

    International Nuclear Information System (INIS)

    Bogomolov, K.S.; Romanovskaya, K.M.; Razorenova, I.F.

    1975-01-01

    Nuclear photoemulsion layers having a high sensitivity to relativistic singly charged particles, a high sensitivity stability, time stability of the latent image, as well as a high constancy of the emulsion thickness within the limits of the layer, were developed and fabricated for a large nuclear photoemulsion stack that was exposed in space during the experiments carried out on the artificial earth satellite ''Intercosmos-6''

  9. Status of the Relativistic Heavy Ion Collider

    International Nuclear Information System (INIS)

    Lee, S.Y.

    1990-01-01

    Accelerator Physics issues, such as the dynamical aperture, the beam lifetime and the current--intensity limitation are carefully studied for the Relativistic Heavy Ion Collider at Brookhaven National Laboratory. The single layer superconducting magnets, of 8 cm coil inner diameter, satisfying the beam stability requirements have also been successfully tested. The proposal has generated wide spread interest in the particle and nuclear physics. 1 ref., 4 figs., 3 tabs

  10. Relativistic and non-relativistic studies of nuclear matter

    NARCIS (Netherlands)

    Banerjee, MK; Tjon, JA

    2002-01-01

    We point out that the differences between the results of the non-relativistic lowest order Brueckner theory (LOBT) and the relativistic Dirac-Brueckner analysis predominantly arise from two sources. Besides effects from a nucleon mass modification M* in nuclear medium we have in a relativistic

  11. Relativistic theories of materials

    CERN Document Server

    Bressan, Aldo

    1978-01-01

    The theory of relativity was created in 1905 to solve a problem concerning electromagnetic fields. That solution was reached by means of profound changes in fundamental concepts and ideas that considerably affected the whole of physics. Moreover, when Einstein took gravitation into account, he was forced to develop radical changes also in our space-time concepts (1916). Relativistic works on heat, thermodynamics, and elasticity appeared as early as 1911. However, general theories having a thermodynamic basis, including heat conduction and constitutive equations, did not appear in general relativity until about 1955 for fluids and appeared only after 1960 for elastic or more general finitely deformed materials. These theories dealt with materials with memory, and in this connection some relativistic versions of the principle of material indifference were considered. Even more recently, relativistic theories incorporating finite deformations for polarizable and magnetizable materials and those in which couple s...

  12. Handbook of relativistic quantum chemistry

    International Nuclear Information System (INIS)

    Liu, Wenjian

    2017-01-01

    This handbook focuses on the foundations of relativistic quantum mechanics and addresses a number of fundamental issues never covered before in a book. For instance: How can many-body theory be combined with quantum electrodynamics? How can quantum electrodynamics be interfaced with relativistic quantum chemistry? What is the most appropriate relativistic many-electron Hamiltonian? How can we achieve relativistic explicit correlation? How can we formulate relativistic properties? - just to name a few. Since relativistic quantum chemistry is an integral component of computational chemistry, this handbook also supplements the ''Handbook of Computational Chemistry''. Generally speaking, it aims to establish the 'big picture' of relativistic molecular quantum mechanics as the union of quantum electrodynamics and relativistic quantum chemistry. Accordingly, it provides an accessible introduction for readers new to the field, presents advanced methodologies for experts, and discusses possible future perspectives, helping readers understand when/how to apply/develop the methodologies.

  13. Handbook of relativistic quantum chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wenjian (ed.) [Peking Univ., Beijing (China). Center for Computational Science and Engineering

    2017-03-01

    This handbook focuses on the foundations of relativistic quantum mechanics and addresses a number of fundamental issues never covered before in a book. For instance: How can many-body theory be combined with quantum electrodynamics? How can quantum electrodynamics be interfaced with relativistic quantum chemistry? What is the most appropriate relativistic many-electron Hamiltonian? How can we achieve relativistic explicit correlation? How can we formulate relativistic properties? - just to name a few. Since relativistic quantum chemistry is an integral component of computational chemistry, this handbook also supplements the ''Handbook of Computational Chemistry''. Generally speaking, it aims to establish the 'big picture' of relativistic molecular quantum mechanics as the union of quantum electrodynamics and relativistic quantum chemistry. Accordingly, it provides an accessible introduction for readers new to the field, presents advanced methodologies for experts, and discusses possible future perspectives, helping readers understand when/how to apply/develop the methodologies.

  14. Relativistic motion of charged particles in the interaction of short pulses of intense laser light with plasma; Movimiento relativista de particulas cargadas en la interaccion de pulsos cortos de luz laser intensa con plasma

    Energy Technology Data Exchange (ETDEWEB)

    Gomez R, F

    2004-07-01

    In the chapter 1 we show the foundations of the special relativity in the frame of the classical mechanics and we develop the necessary theory for the theoretical description of the relativistic dynamics of charged particles in the interaction with electromagnetic fields. It will see that starting from the energy conservation principle is derived the Einstein's law that establishes the relationship among this and the mass. Later on, it will take the action of a charged particle in a given radiation field and in the one which only we will take two parts, the action of the free particle and the one that defines the interaction of this with the field. The equations of motion of a charge in an electromagnetic field come given by the Lagrange equations, being obtained an expression for the force, well-known as Lorentz force, which consists of two terms, the first of them is the force that the electric field E exercises on the particle; which doesn't depend on the charge speed and is oriented in the direction of the field, the second term represents the force that exercises the magnetic field B and that it is proportional to the charge speed, being perpendicular to the direction of it. In the chapter 2 an integration method of the Hamilton-Jacobi for the case of a pulse is that allows to found analytical forms for the moment, the energy and the charge position is developed with detail. We will present, also, a discussion of the classical theory of the relativistic dynamic of free electrons. They are also obtained, invariant quantities like the phase, before the frame of the reference inertial changes, well-known as Lorentz invariants of the system. In this part it is considered to the electron in the laboratory frame (frame in which the particle is initially in repose regarding the observer), of which the speed and the acceleration quadrivectors can be calculated. We demonstrate that the {eta} phase is a Lorentz invariant. It is shown, also that the proper time

  15. Relativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Barz, H.W.; Kaempfer, B.; Schulz, H.

    1984-12-01

    An elementary introduction is given into the scenario of relativistic heavy ion collisions. It deals with relativistic kinematics and estimates of energy densities, extrapolations of the present knowledge of hadron-hadron and hadron-nuleus to nucleus-nucleus collisions, the properties of the quark-gluon plasma and the formation of the plasma and possible experimental signatures. Comments are made on a cosmic ray experiment which could be interpreted as a first indication of the quark-gluon phase of the matter. (author)

  16. Gamma rays from active regions in the galaxy: the possible contribution of stellar winds

    International Nuclear Information System (INIS)

    Cesarsky, C.J.; Montmerle, Thierry.

    1982-08-01

    Massive stars release a considerable amount of mechanical energy in the form of strong stellar winds. A fraction of this energy may be transferred to relativistic cosmic rays by diffusive shock acceleration at the wind boundary, and/or in the expanding, turbulent wind itself. Massive stars are most frequently found in OB associations, surrounded by H II regions lying at the edge of dense molecular clouds. The interaction of the freshly accelerated particles with matter gives rise to #betta#-ray emission. In this paper, we first briefly review the current knowledge on the energetics of strong stellar winds from O and Wolf-Rayet stars, as well as from T Tauri stars. Taking into account the finite lifetime of these stars, we then proceed to show that stellar winds dominate the energetics of OB associations during the first 4 to 6 million years, after which supernovae take over. In the solar neighborhood, the star formation rate is constant, and a steady-state situation prevails, in which the supernova contribution is found to be dominant. A small, but meaningful fraction of the CO S-B #betta#-ray sources may be fueled by WR and O stellar winds in OB associations, while the power released by T Tauri stars alone is perhaps insufficient to account for the #betta#-ray emission of nearby dark clouds. Finally, we discuss some controversial aspects of the physics of particle acceleration by stellar winds

  17. Cosmic-ray acceleration at stellar wind terminal shocks

    International Nuclear Information System (INIS)

    Webb, G.M.; Forman, M.A.; Axford, W.I.

    1985-01-01

    Steady-state, spherically symmetric, analytic solutions of the cosmic-ray transport equations, applicable to the problem of acceleration of cosmic rays at the terminal shock to a stellar wind, are studied. The spectra, gradients, and flow patterns of particle modulated and accelerated by the stellar wind and shock are investigated by means of monoenergetic-source solutions at finite radius, as well as solutions with monoenergetic and power-law Galactic spectra. The solutions obtained apply in the test particle limit in which the cosmic rays do not modify the background flow. The solutions show a characteristic power-law momentum spectrum for accelerated particles and a more complex spectrum of particles that are decelerated in the stellar wind. The power-law spectral index depends on the compression ratio of the shock and on the modulation parameters characterizing propagation conditions in the upstream and downstream regions of the shock. Solutions of the transport equations for the total density N (integrated over all energies), pressure P/sub c/, and energy flux F/sub c/ of Galactic cosmic rays interacting with a stellar wind and shock are also studied. The density N(r) increases with radius r, and for strong shocks with large enough modulation parameters, there may be a significant enhancement of the pressure of weakly relativistic particles near the shock compared to the cosmic-ray background pressure P/sub infinity/. The emergent energy flux at infinity is of the order of 4π R 2 V 1 P/sub infinity/ (V 1 is wind velocity upstream of the shock, R is shock radius)

  18. Isoscalar giant resonances in a relativistic model

    International Nuclear Information System (INIS)

    L'Huillier, M.; Nguyen Van Giai.

    1988-07-01

    Isoscalar giant resonances in finite nuclei are studied in a relativistic Random Phase Approximation (RRPA) approach. The model is self-consistent in the sense that one set of coupling constants generates the Dirac-Hartree single-particle spectrum and the residual particle-hole interaction. The RRPA is used to calculate response functions of multipolarity L = 0,2,3, and 4 in light and medium nuclei. It is found that monopole and quadrupole modes exhibit a collective character. The peak energies are overestimated, but not as much as one might think if the bulk properties (compression modulus, effective mass) were the only relevant quantities

  19. Non-relativistic supersymmetry

    International Nuclear Information System (INIS)

    Clark, T.E.; Love, S.T.

    1984-01-01

    The most general one- and two-body hamiltonian invariant under galilean supersymmetry is constructed in superspace. The corresponding Feynman rules are given for the superfield Green functions. As demonstrated by a simple example, it is straightforward to construct models in which the supersymmetry is spontaneously broken by the non-relativistic vacuum. (orig.)

  20. The Relativistic Rocket

    Science.gov (United States)

    Antippa, Adel F.

    2009-01-01

    We solve the problem of the relativistic rocket by making use of the relation between Lorentzian and Galilean velocities, as well as the laws of superposition of successive collinear Lorentz boosts in the limit of infinitesimal boosts. The solution is conceptually simple, and technically straightforward, and provides an example of a powerful…

  1. Relativistic Polarizable Embedding

    DEFF Research Database (Denmark)

    Hedegård, Erik Donovan; Bast, Radovan; Kongsted, Jacob

    2017-01-01

    Most chemistry, including chemistry where relativistic effects are important, occurs in an environment, and in many cases, this environment has a significant effect on the chemistry. In nonrelativistic quantum chemistry, a lot of progress has been achieved with respect to including environments s...

  2. Relativistic length agony continued

    Directory of Open Access Journals (Sweden)

    Redžić D.V.

    2014-01-01

    Full Text Available We made an attempt to remedy recent confusing treatments of some basic relativistic concepts and results. Following the argument presented in an earlier paper (Redžić 2008b, we discussed the misconceptions that are recurrent points in the literature devoted to teaching relativity such as: there is no change in the object in Special Relativity, illusory character of relativistic length contraction, stresses and strains induced by Lorentz contraction, and related issues. We gave several examples of the traps of everyday language that lurk in Special Relativity. To remove a possible conceptual and terminological muddle, we made a distinction between the relativistic length reduction and relativistic FitzGerald-Lorentz contraction, corresponding to a passive and an active aspect of length contraction, respectively; we pointed out that both aspects have fundamental dynamical contents. As an illustration of our considerations, we discussed briefly the Dewan-Beran-Bell spaceship paradox and the ‘pole in a barn’ paradox. [Projekat Ministarstva nauke Republike Srbije, br. 171028

  3. Relativistic Coulomb excitation

    International Nuclear Information System (INIS)

    Winther, A.; Alder, K.

    1979-01-01

    Coulomb excitation of both target and projectile in relativistic heavy ion collisions is evaluated including the lowest order correction for the deviation from a straight line trajectory. Explicit results for differential and total cross sections are given in the form of tables and figures. (Auth.)

  4. Fundamental Relativistic Rotator

    International Nuclear Information System (INIS)

    Staruszkiewicz, A.

    2008-01-01

    Professor Jan Weyssenhoff was Myron Mathisson's sponsor and collaborator. He introduced a class of objects known in Cracow as '' kreciolki Weyssenhoffa '', '' Weyssenhoff's rotating little beasts ''. The Author describes a particularly simple object from this class. The relativistic rotator described in the paper is such that its both Casimir invariants are parameters rather than constants of motion. (author)

  5. Relativistic corrections for the conventional, classical Nyquist theorem

    International Nuclear Information System (INIS)

    Theimer, O.; Dirk, E.H.

    1983-01-01

    New expressions for the Nyquist theorem are derived under the condition in which the random thermal speed of electrons, in a system of charged particles, can approach the speed of light. Both the case in which, the electron have not drift velocity relative to the ions or neutral particles and the case in which drift occours are investigated. In both instances, the new expressions for the Nyquist theorem are found to contain relativistic correction terms; however for electron temperatures T approx. 10 9 K and drift velocity magnitudes w approx. 0.5c, where c is the speed of light, the effects of these correction terms are generally small. The derivation of these relativistic corrections is carried out by means of procedures developed in an earlier work. A relativistic distribution function, which incorporates a constant drift velocity with a random thermal velocity for a given particle species, is developed

  6. High-energy X-ray imaging of the pulsar wind nebula MSH 15-52: constraints on particle acceleration and transport

    DEFF Research Database (Denmark)

    An, Hongjun; Madsen, Kristin K.; Reynolds, Stephen P.

    2014-01-01

    We present the first images of the pulsar wind nebula (PWN) MSH 15−52 in the hard X-ray band (8 keV), as measured with the Nuclear Spectroscopic Telescope Array (NuSTAR). Overall, the morphology of the PWN as measured by NuSTAR in the 3–7 keV band is similar to that seen in Chandra high-resolutio......We present the first images of the pulsar wind nebula (PWN) MSH 15−52 in the hard X-ray band (8 keV), as measured with the Nuclear Spectroscopic Telescope Array (NuSTAR). Overall, the morphology of the PWN as measured by NuSTAR in the 3–7 keV band is similar to that seen in Chandra high...... of the PWN softens away from the central pulsar B1509−58, and that there exists a roughly sinusoidal variation of spectral hardness in the azimuthal direction. We discuss the results using particle flow models.We find non-monotonic structure in the variation with distance of spectral hardness within 50...... of the pulsar moving in the jet direction, which may imply particle and magnetic-field compression by magnetic hoop stress as previously suggested for this source. We also present two-dimensional maps of spectral parameters and find an interesting shell-like structure in the NH map.We discuss possible origins...

  7. Lectures on relativistic quantum mechanics and path integration

    International Nuclear Information System (INIS)

    Gunn, J.M.F.

    1989-02-01

    The question posed is why bother with relativistic quantum mechanics? Three reasons are given: First that there are many experimental phenomena which cannot be explained in non-relativistic terms. Secondly it would be unsatisfactory if relativity and quantum mechanics could not be united. Thirdly, there are theoretical reasons why new effects can be expected at relativistic velocities. The objectives of the course are to set up relativistic analogues of the Schroedinger equation and to understand their consequences. In doing so there are some questions which are raised and discussed such as can a first order equation be used to describe spin 0 particles and a second order equation be used to describe spin 1/ 2 (author)

  8. Recent progresses in relativistic beam-plasma instability theory

    Directory of Open Access Journals (Sweden)

    A. Bret

    2010-11-01

    Full Text Available Beam-plasma instabilities are a key physical process in many astrophysical phenomena. Within the fireball model of Gamma ray bursts, they first mediate a relativistic collisionless shock before they produce upstream the turbulence needed for the Fermi acceleration process. While non-relativistic systems are usually governed by flow-aligned unstable modes, relativistic ones are likely to be dominated by normally or even obliquely propagating waves. After reviewing the basis of the theory, results related to the relativistic kinetic regime of the poorly-known oblique unstable modes will be presented. Relevant systems besides the well-known electron beam-plasma interaction are presented, and it is shown how the concept of modes hierarchy yields a criterion to assess the proton to electron mass ratio in Particle in cell simulations.

  9. Polarization transfer in relativistic magnetized plasmas

    Science.gov (United States)

    Heyvaerts, Jean; Pichon, Christophe; Prunet, Simon; Thiébaut, Jérôme

    2013-04-01

    The polarization transfer coefficients of a relativistic magnetized plasma are derived. These results apply to any momentum distribution function of the particles, isotropic or anisotropic. Particles interact with the radiation either in a non-resonant mode when the frequency of the radiation exceeds their characteristic synchrotron emission frequency or quasi-resonantly otherwise. These two classes of particles contribute differently to the polarization transfer coefficients. For a given frequency, this dichotomy corresponds to a regime change in the dependence of the transfer coefficients on the parameters of the particle's population, since these parameters control the relative weight of the contribution of each class of particles. Our results apply to either regimes as well as the intermediate one. The derivation of the transfer coefficients involves an exact expression of the conductivity tensor of the relativistic magnetized plasma that has not been used hitherto in this context. Suitable expansions valid at frequencies much larger than the cyclotron frequency allow us to analytically perform the summation over all resonances at high harmonics of the relativistic gyrofrequency. The transfer coefficients are represented in the form of two-variable integrals that can be conveniently computed for any set of parameters by using Olver's expansion of high-order Bessel functions. We particularize our results to a number of distribution functions, isotropic, thermal or power law, with different multipolar anisotropies of low order, or strongly beamed. Specifically, earlier exact results for thermal distributions are recovered. For isotropic distributions, the Faraday coefficients are expressed in the form of a one-variable quadrature over energy, for which we provide the kernels in the high-frequency limit and in the asymptotic low-frequency limit. An interpolation formula extending over the full energy range is proposed for these kernels. A similar reduction to a

  10. Properties of silicium n-i-p junctions - application to the detection of relativist particles; Propriete des jonctions nip de silicium - Application a la detection des particules relativistes; Svojstva perekhoda p-i-n v kremnii - primenenie k obnaruzheniyu relyativistskikh chastits; Propiedades de estructuras nip de silicio - Aplicacion a la deteccion de particulas relativistas

    Energy Technology Data Exchange (ETDEWEB)

    Koch, L; Messier, J; Valin, J [Centre d' Etudes Nucleaires de Saclay (France)

    1962-04-15

    An account is given of experience gained at the CENS on the detection of nuclear particles by semiconductors. One type of detector, of pin structure, has been specially studied. In comparison with the usual p-n or npp{sup +} structures, and given an equal purity of the base material, it has the advantage of permitting a larger effective volume for the following reasons: (a) with an equal potential difference applied to the crystal, the total thickness of the barrier layers is greater; (b) with an equal reverse current, the maximum potential difference which they can withstand is greater; (c) other things being equal, their capacitance per unit of area is smaller and hence the permitted maximum surface is greater. A detailed description is given of methods of obtaining pin structures in silicon, the intermediate zone reaching 1 mm. Lastly, certain applications of these detectors are described: {alpha} and {gamma} spectroscopy and the measurement of dE/dX for relativistic particles. (author) [French] Les auteurs exposent l'experience acquise au CENS sur la detection des particules nucleaires par les semi-conducteurs. Un type de detecteur, de structure pin, a ete particulierement etudie. U presente par rapport aux structures classiques pn ou npp{sup +}, et a purete egale du materiau de depart, l'avantage de permettre un volume sensible plus grand. En effet: a) a difference de potentiel egale appliquee au cristal, l'epaisseur totale des barrieres est plus importante; b) a courant inverse egal, la d.d.p. maximum qu'ils supportent est plus grande; c) toutes choses egales d'ailleurs, leur capacite par unite d'aire est plus faible et la surface maximum permise est donc plus grande. Les auteurs decrivent en detail quelques procedes permettant d'obtenir des structures pin dans le silicium, la zone intermediaire atteignant 1 mm. Enfin, ils decrivent quelques applications de ces detecteurs: spectroscopie {alpha} et {gamma}, mesure de dE/dX pour les particules relativistes

  11. Search for Exotic Strange Dibaryon in Relativistic Heavy Ion Collisions

    Institute of Scientific and Technical Information of China (English)

    GAO Chong-Shou

    2003-01-01

    The exotic strange dibaryon particle (ΩΩ)0+ with S = -6 can be produced in relativistic heavyioncollisions. The yields of this kind of exotic strange dibaryon particles can increase significantly soon as the formation ofQGP does exhibit after the collision. If there is no phase transition after the collision, the upper bound of the productionof this diomega can be estimated from the free hadronic gas model for nuclear matter. The relative yield ratio of diomegato deuteron is less than 0.000205, this means that if there is no QGP creation it is difficult to observe the production ofdiomega in relativistic heavy ion collisions.

  12. Search for Exotic Strange Dibaryon in Relativistic Heavy Ion Collisions

    Institute of Scientific and Technical Information of China (English)

    GAOChong-Shou

    2003-01-01

    The exotic strange dibaryon particle (ΩΩ)0+ with S = -6 can be produced in relativistic heavy ion collisions. The yields of this kind of exotic strange dibaryon particles can increase signitlcantly soon as the formation of QGP does exhibit after the collision. If there is no phase transition after the collision, the upper bound of the production of this diomega can be estimated from the free hadronic gas model for nuclear matter. The relative yield ratio of diomega to deuteron is less than 0.000205, this means that if there is no QGP creation it is difficult to observe the production of diomega in relativistic heavy ion collisions.

  13. Quasi-relativistic effects in barrier-penetration processes

    International Nuclear Information System (INIS)

    Anchishkin, D.V.

    1991-01-01

    The problem of a particle tunneling through the potential barrier is solved within quasi-relativistic Schroedinger equation. It is shown that the subbarrier relativistic effects give a significant addition to penetration coefficient when some relations between parameters of the barrier and mass of a tunneling particle are satisfied. For instance an account of these effects for penetration of low energy π + -mesons through Coulomb barrier of the 298 U nuclei would give the increasing of penetration coefficient to 30 percent as compared to the nonrelativistic one. Also we give the criteria under which the contribution of the ''under barrier relativism'' to penetration coefficient becomes essential. 3 refs.; 6 figs. (author)

  14. Relativistic thermodynamics of Fluids. l

    International Nuclear Information System (INIS)

    Havas, P.; Swenson, R.J.

    1979-01-01

    In 1953, Stueckelberg and Wanders derived the basic laws of relativistic linear nonequilibrium thermodynamics for chemically reacting fluids from the relativistic local conservation laws for energy-momentum and the local laws of production of substances and of nonnegative entropy production by the requirement that the corresponding currents (assumed to depend linearly on the derivatives of the state variables) should not be independent. Generalizing their method, we determine the most general allowed form of the energy-momentum tensor T/sup alphabeta/ and of the corresponding rate of entropy production under the same restriction on the currents. The problem of expressing this rate in terms of thermodynamic forces and fluxes is discussed in detail; it is shown that the number of independent forces is not uniquely determined by the theory, and seven possibilities are explored. A number of possible new cross effects are found, all of which persist in the Newtonian (low-velocity) limit. The treatment of chemical reactions is incorporated into the formalism in a consistent manner, resulting in a derivation of the law for rate of production, and in relating this law to transport processes differently than suggested previously. The Newtonian limit is discussed in detail to establish the physical interpretation of the various terms of T/sup alphabeta/. In this limit, the interpretation hinges on that of the velocity field characterizing the fluid. If it is identified with the average matter velocity following from a consideration of the number densities, the usual local conservation laws of Newtonian nonequilibrium thermodynamics are obtained, including that of mass. However, a slightly different identification allows conversion of mass into energy even in this limit, and thus a macroscopic treatment of nuclear or elementary particle reactions. The relation of our results to previous work is discussed in some detail

  15. Relativistic nuclear physics with the spectator model

    International Nuclear Information System (INIS)

    Gross, F.

    1988-01-01

    The spectator model, a general approach to the relativistic treatment of nuclear physics problems in which spectators to nuclear interactions are put on their mass-shell, will be defined nd described. The approach grows out of the relativistic treatment of two and three body systems in which one particle is off-shell, and recent numerical results for the NN interaction will be presented. Two meson-exchange models, one with only 4 mesons (π, σ, /rho/, ω) but with a 25% admixture of γ 5 coupling for the pion, and a second with 6 mesons (π, σ, /rho/, ω, δ, and /eta/) but a pure γ 5 γ/sup mu/ pion coupling, are shown to give very good quantitative fits to NN scattering phase shifts below 400 MeV, and also a good description of the /rho/ 40 Cα elastic scattering observables. 19 refs., 6 figs., 1 tab

  16. Intense EM filamentation in relativistic hot plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Qiang-Lin [Department of Physics, Jinggangshan University, Ji' an, Jiangxi 343009 (China); Chen, Zhong-Ping [Department of Physics and Institute for Fusion Studies, The University of Texas at Austin, Austin, TX 78712 (United States); Mahajan, Swadesh M., E-mail: mahajan@mail.utexas.edu [Department of Physics and Institute for Fusion Studies, The University of Texas at Austin, Austin, TX 78712 (United States); Department of Physics, School of Natural Sciences, Shiv Nadar University, Uttar Pradesh 201314 (India)

    2017-03-03

    Highlights: • Breaking up of an intense EM pulse into filaments is a spectacular demonstration of the nonlinear wave-plasma interaction. • Filaments are spectacularly sharper, highly extended and longer lived at relativistic temperatures. • EM energy concentration can trigger new nonlinear phenomena with absolute consequences for high energy density matter. - Abstract: Through 2D particle-in-cell (PIC) simulations, we demonstrate that the nature of filamentation of a high intensity electromagnetic (EM) pulse propagating in an underdense plasma, is profoundly affected at relativistically high temperatures. The “relativistic” filaments are sharper, are dramatically extended (along the direction of propagation), and live much longer than their lower temperature counterparts. The thermally boosted electron inertia is invoked to understand this very interesting and powerful phenomenon.

  17. Proceedings of the Workshop on relativistic heavy ion physics at present and future accelerators

    International Nuclear Information System (INIS)

    Csoergoe, T.; Hegyi, S.; Lukacs, B.; Zimanyi, J.

    1991-09-01

    This volume contains the Proceedings of the Budapest Workshop on relativistic heavy ion physics at present and future accelerators. The topics includes experimental heavy ion physics, particle phenomenology, Bose-Einstein correlations, relativistic transport theory, quark-gluon plasma rehadronization, astronuclear physics, leptonpair production and intermittency. All contributions were indexed separately for the INIS database. (G.P.)

  18. Bremsstrahlung from relativistic bare heavy ions: Nuclear and electronic contributions in amorphous and crystalline materials

    DEFF Research Database (Denmark)

    Jensen, Tue Vissing; Sørensen, Allan Hvidkjær

    2013-01-01

    A charged particle emits bremsstrahlung while traversing matter. We calculate the radiation cross section for bare heavy ions penetrating amorphous materials and single crystals at highly relativistic energies. The main component originates in scattering of the virtual photons of screened target...... in a pronounced directional dependence of the energy loss of bare heavy ions at extreme relativistic energies....

  19. A monolithic relativistic electron beam source based on a dielectric laser accelerator structure

    International Nuclear Information System (INIS)

    McNeur, Josh; Carranza, Nestor; Travish, Gil; Yin Hairong; Yoder, Rodney

    2012-01-01

    Work towards a monolithic device capable of producing relativistic particle beams within a cubic-centimeter is detailed. We will discuss the Micro-Accelerator Platform (MAP), an optical laser powered dielectric accelerator as the main building block of this chip-scale source along with a field enhanced emitter and a region for sub-relativistic acceleration.

  20. Optimisation for offshore wind farm cable connection layout using adaptive particle swarm optimisation minimum spanning tree method

    DEFF Research Database (Denmark)

    Hou, Peng; Hu, Weihao; Chen, Zhe

    2016-01-01

    operational requirement and this constraint should be considered during the MST formulation process. Hence, traditional MST algorithm cannot ensure a minimal cable investment layout. In this paper, a new method to optimize the offshore wind farm cable connection layout is presented. The algorithm...... with the optimized cable connection layout. The proposed method is compared with the MST and Dynamic MST (DMST) methods and simulation results show the effectiveness of the proposed method....