WorldWideScience

Sample records for relativistic particle spectrum

  1. Relativistic shocks and particle acceleration

    International Nuclear Information System (INIS)

    Heavens, A.F.

    1988-01-01

    In this paper, we investigate the fluid dynamics of relativistic shock waves, and use the results to calculate the spectral index of particles accelerated by the Fermi process in such shocks. We have calculated the distributions of Fermi-accelerated particles at shocks propagating into cold proton-electron plasma and also cold electron-positron plasma. We have considered two different power spectra for the scattering waves, and find, in contrast to the non-relativistic case, that the spectral index of the accelerated particles depends on the wave power spectrum. On the assumption of thermal equilibrium both upstream and downstream, we present some useful fits for the compression ratio of shocks propagating at arbitrary speeds into gas of any temperature. (author)

  2. Relativistic particle in a box

    OpenAIRE

    Alberto, P.; Fiolhais, Carlos; Gil, Victor

    1996-01-01

    The problem of a relativistic spin 1/2 particle confined to a one-dimensional box is solved in a way that resembles closely the solution of the well known quantum-mechanical textbook problem of a non-relativistic particle in a box. The energy levels and probability density are computed and compared with the non-relativistic case

  3. Localization of relativistic particles

    International Nuclear Information System (INIS)

    Omnes, R.

    1997-01-01

    In order to discuss localization experiments and also to extend the consistent history interpretation of quantum mechanics to relativistic properties, the techniques introduced in a previous paper [J. Math. Phys. 38, 697 (1997)] are applied to the localization of a photon in a given region of space. An essential requirement is to exclude arbitrarily large wavelengths. The method is valid for a particle with any mass and spin. Though there is no proper position operator for a photon, one never needs one in practice. Causality is valid up to exponentially small corrections. copyright 1997 American Institute of Physics

  4. Scattering in relativistic particle mechanics

    International Nuclear Information System (INIS)

    De Bievre, S.

    1986-01-01

    The problem of direct interaction in relativistic particle mechanics has been extensively studied and a variety of models has been proposed avoiding the conclusions of the so-called no-interaction theorems. In this thesis the authors studied scattering in the relativistic two-body problem. He uses the results to analyze gauge invariance in Hamiltonian constraint models and the uniqueness of the symplectic structure in manifestly covariant relativistic particle mechanics. A general geometric framework that underlies approaches to relativistic particle mechanics is presented and the kinematic properties of the scattering transformation, i.e., those properties that arise solely from the invariance of the theory under the Poincare group are studied. The second part of the analysis of the relativistic two-body scattering problem is devoted to the dynamical properties of the scattering process. Using general geometric arguments, gauge invariance of the scattering transformation in the Todorov-Komar Hamiltonian constraint model is proved. Finally, quantization of the models is discussed

  5. Diffraction radiation from relativistic particles

    CERN Document Server

    Potylitsyn, Alexander Petrovich; Strikhanov, Mikhail Nikolaevich; Tishchenko, Alexey Alexandrovich

    2010-01-01

    This book deals with diffraction radiation, which implies the boundary problems of electromagnetic radiation theory. Diffraction radiation is generated when a charged particle moves in a vacuum near a target edge. Diffraction radiation of non-relativistic particles is widely used to design intense emitters in the cm wavelength range. Diffraction radiation from relativistic charged particles is important for noninvasive beam diagnostics and design of free electron lasers based on Smith-Purcell radiation which is diffraction radiation from periodic structures. Different analytical models of diffraction radiation and results of recent experimental studies are presented in this book. The book may also serve as guide to classical electrodynamics applications in beam physics and electrodynamics. It can be of great use for young researchers to develop skills and for experienced scientists to obtain new results.

  6. Diffraction radiation from relativistic particles

    International Nuclear Information System (INIS)

    Potylitsyn, Alexander Petrovich; Ryazanov, Mikhail Ivanovich; Strikhanov, Mikhail Nikolaevich; Tishchenko, Alexey Alexandrovich

    2010-01-01

    This book deals with diffraction radiation, which implies the boundary problems of electromagnetic radiation theory. Diffraction radiation is generated when a charged particle moves in a vacuum near a target edge. Diffraction radiation of non-relativistic particles is widely used to design intense emitters in the cm wavelength range. Diffraction radiation from relativistic charged particles is important for noninvasive beam diagnostics and design of free electron lasers based on Smith-Purcell radiation which is diffraction radiation from periodic structures. Different analytical models of diffraction radiation and results of recent experimental studies are presented in this book. The book may also serve as guide to classical electrodynamics applications in beam physics and electrodynamics. It can be of great use for young researchers to develop skills and for experienced scientists to obtain new results. (orig.)

  7. Relativistic scattering theory of charged spinless particles

    International Nuclear Information System (INIS)

    Alt, E.O.; Hannemann, M.

    1986-01-01

    In the context of relativistic quantum mechanics the scattering is discussed of two and three charged spinless particles. The corresponding transition operators are shown to satisfy four-dimensional Lippmann-Schwinger and eight-dimensional Faddeev-type equations, respectively. A simplified model of two particles with Coulomb interaction can be solved exactly. Calculations have been made of (i) the partial wave S-matrix from which the bound state spectrum has been extracted; the latter agrees with a fourth-order result of Schwinger; (ii) the full scattering amplitude which in the weak-field limit coincides with the expression derived by Fried et al. from eikonalized QED. (author)

  8. Canonical quantization of spinning relativistic particle in external backgrounds

    Energy Technology Data Exchange (ETDEWEB)

    Gavrilov, S.P. [Universidade Federal de Sergipe (UFS), Aracaju, SE (Brazil); Gitman, D.M. [Sao Paulo Univ. (USP), SP (Brazil). Inst. de Fisica

    2000-07-01

    Full text follows: We revise the problem of the quantization of spinning relativistic particle pseudoclassical model, using a modified consistent canonical scheme. It allows one not only to include arbitrary electromagnetic and gravitational backgrounds in the consideration but to get in course of the quantization a consistent relativistic quantum mechanics, which reproduces literally the behavior of the one-particle sector of quantized spinor field. In particular, in a physical sector of the Hilbert space a complete positive spectrum of energies of relativistic particles and antiparticles is reproduced. Requirement to maintain all classical symmetries under the coordinate transformations and under U(1) transformations allows one to realize operator algebra without any ambiguities. (author)

  9. Loading relativistic Maxwell distributions in particle simulations

    International Nuclear Information System (INIS)

    Zenitani, Seiji

    2015-01-01

    Numerical algorithms to load relativistic Maxwell distributions in particle-in-cell (PIC) and Monte-Carlo simulations are presented. For stationary relativistic Maxwellian, the inverse transform method and the Sobol algorithm are reviewed. To boost particles to obtain relativistic shifted-Maxwellian, two rejection methods are proposed in a physically transparent manner. Their acceptance efficiencies are ≈50% for generic cases and 100% for symmetric distributions. They can be combined with arbitrary base algorithms

  10. Loading relativistic Maxwell distributions in particle simulations

    Energy Technology Data Exchange (ETDEWEB)

    Zenitani, Seiji, E-mail: seiji.zenitani@nao.ac.jp [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan)

    2015-04-15

    Numerical algorithms to load relativistic Maxwell distributions in particle-in-cell (PIC) and Monte-Carlo simulations are presented. For stationary relativistic Maxwellian, the inverse transform method and the Sobol algorithm are reviewed. To boost particles to obtain relativistic shifted-Maxwellian, two rejection methods are proposed in a physically transparent manner. Their acceptance efficiencies are ≈50% for generic cases and 100% for symmetric distributions. They can be combined with arbitrary base algorithms.

  11. Relativistic three-particle theory

    International Nuclear Information System (INIS)

    Hochauser, S.

    1979-01-01

    In keeping with recent developments in experimental nuclear physics, a formalism is developed to treat interactions between three relativistic nuclear particles. The concept of unitarity and a simple form of analyticity are used to construct coupled, integral, Faddeev-type equations and, with the help of analytic separable potentials, these are cast in simple, one-dimensional form. Energy-dependent potentials are introduced so as to take into account the sign-change of some phase shifts in the nucleon-nucleon interaction and parameters for these potentials are obtained. With regard to the success of such local potentials as the Yukawa potential, a recently developed method for expanding these in separable form is discussed. Finally, a new method for the numerical integration of the Faddeev equations along the real axis is introduced, thus avoiding the traditional need for contour rotations into the complex plane. (author)

  12. A Comprehensive Comparison of Relativistic Particle Integrators

    Science.gov (United States)

    Ripperda, B.; Bacchini, F.; Teunissen, J.; Xia, C.; Porth, O.; Sironi, L.; Lapenta, G.; Keppens, R.

    2018-03-01

    We compare relativistic particle integrators commonly used in plasma physics, showing several test cases relevant for astrophysics. Three explicit particle pushers are considered, namely, the Boris, Vay, and Higuera–Cary schemes. We also present a new relativistic fully implicit particle integrator that is energy conserving. Furthermore, a method based on the relativistic guiding center approximation is included. The algorithms are described such that they can be readily implemented in magnetohydrodynamics codes or Particle-in-Cell codes. Our comparison focuses on the strengths and key features of the particle integrators. We test the conservation of invariants of motion and the accuracy of particle drift dynamics in highly relativistic, mildly relativistic, and non-relativistic settings. The methods are compared in idealized test cases, i.e., without considering feedback onto the electrodynamic fields, collisions, pair creation, or radiation. The test cases include uniform electric and magnetic fields, {\\boldsymbol{E}}× {\\boldsymbol{B}} fields, force-free fields, and setups relevant for high-energy astrophysics, e.g., a magnetic mirror, a magnetic dipole, and a magnetic null. These tests have direct relevance for particle acceleration in shocks and in magnetic reconnection.

  13. Loading relativistic Maxwell distributions in particle simulations

    Science.gov (United States)

    Zenitani, S.

    2015-12-01

    In order to study energetic plasma phenomena by using particle-in-cell (PIC) and Monte-Carlo simulations, we need to deal with relativistic velocity distributions in these simulations. However, numerical algorithms to deal with relativistic distributions are not well known. In this contribution, we overview basic algorithms to load relativistic Maxwell distributions in PIC and Monte-Carlo simulations. For stationary relativistic Maxwellian, the inverse transform method and the Sobol algorithm are reviewed. To boost particles to obtain relativistic shifted-Maxwellian, two rejection methods are newly proposed in a physically transparent manner. Their acceptance efficiencies are 􏰅50% for generic cases and 100% for symmetric distributions. They can be combined with arbitrary base algorithms.

  14. On free fall of a relativistic particle

    International Nuclear Information System (INIS)

    Chernikov, N.A.; Paramonova, N.N.; Shavokhina, N.S.

    2005-01-01

    The free fall of a relativistic particle is considered: the well-known fact of the light velocity constancy is taken into account in the Galilean problem about the movement of a particle from nongravitational forces and its fall onto the ground. The velocity hodograph and the world line of the particle are found

  15. On the relativistic quantum mechanics of two interacting spinless particles

    International Nuclear Information System (INIS)

    Rizov, V.A.; Sazdjian, H.; Todorov, I.T.

    1984-05-01

    The L 2 -scalar product ∫ PHI*(x)PSI(x) d 3 x is not appropriate for the space of states describing the center-of-mass relative motion of two relativistic particles whose interaction is given by an energy dependent quasipotential. The problem already appears in the relativistic quantum mechanics of a Klein-Gordon charged particle in an external field. We extend the methods developed for that case to study a two-particle system with an energy independent scalar interaction as well as the relativistic Coulomb problem. We write down a Poincare invariant inner product for which the eigenfunctions corresponding to different energy eigenvalues are orthogonal. We also construct a perturbative expansion for bound-state energy eigenvalues corresponding to an arbitrary energy dependent (quasipotential) correction to an unperturbed Hamiltonian with a known spectrum. The description of observables and transition probabilities for eigenvalue problems with a polynomial dependence on the spectral parameter is also discussed

  16. Spinning relativistic particles in external fields

    International Nuclear Information System (INIS)

    Pomeranskii, Andrei A; Sen'kov, Roman A; Khriplovich, Iosif B

    2000-01-01

    The motion of spinning relativistic particles in external electromagnetic and gravitational fields is considered. The self-consistent equations of motion are built with the noncovariant description of spin and with the usual, 'naive' definition of the coordinate of a relativistic particle. A simple derivation of the gravitational interaction of first order in spin is presented for a relativistic particle. The approach developed allows one to consider effects of higher order in spin. Concrete calculations are performed for the second order. The gravimagnetic moment is discussed, a special spin effect in general relativity. We also consider the contributions of the spin interactions of first and second order to the gravitational radiation of compact binary stars. (from the current literature)

  17. The model of the relativistic particle with torsion

    International Nuclear Information System (INIS)

    Plyushchay, M.S.

    1991-01-01

    The model of the relativistic particle with torsion, whose action appears in the Bose-Fermi transmutation mechanism, is canonically quantized in the Minkowski and euclidean spaces. In the Minkowski space there are massive, massless and tachyonic states in the spectrum of the model. In the massive sector the spectrum contains an infinite number of states, whose spin can take integer, half-integer, or fractional values. In the euclidean space, the spectrum is finite and the spin can only be integer, or half-integer. The reasons for the differences of the quantum theory of the model in the two spaces are elucidated. (orig.)

  18. Path integral for relativistic particle theory

    International Nuclear Information System (INIS)

    Fradkin, E.S.; Gitman, D.M.; Shvartsman, Sh.M.

    1990-06-01

    An action for a relativistic spinning particle interacting with external electromagnetic field is considered in reparametrization and local supergauge invariant form. It is shown that various path integral representations derived for the causal Green function correspond to the different forms of the relativistic particle action. The analogy of the path integral derived with the Lagrangian path integral of the field theory is discussed. It is shown that to obtain the causal propagator, the integration over the null mode of the Lagrangian multiplier corresponding to the reparametrization invariance, has to be performed in the (0,+infinity) limits. (author). 23 refs

  19. On the injection of relativistic particles into the Crab Nebula

    International Nuclear Information System (INIS)

    Shklovskij, I.S.

    1977-01-01

    It is shown that a flux of relativistic electrons from the NP 0532 pulsar magnetosphere, responsible for its synchrotron emission, cannot provide the necessary energy pumping to the Crab Nebula. A conclusion is reached that such a pumping can be effectuated by a flow of relativistic electrons leaving the NP 0532 magnetosphere at small pitch angles and giving therefore no appreciable contribution to the synchrotron emission of the pulsar. An interpretation of the Crab Nebula synchrotron spectrum is given on the assumption of secular ''softening'' of the energy spectrum of the relativistic electrons injected into the Nebula. A possibility of explanation of the observed rapid variability of some features in the central part of the Nebula by ejection of free - neutron - rich dense gas clouds from the pulsar surface during ''starquakes'' is discussed. The clouds of rather dense (nsub(e) approximately 10 7 cm -3 ) plasma, thus formed at about 10 13 cm from pulsar, will be accelerated up to relativistic velocities by the pressure of the magneto-dipole radiation of NP 0532 and will deform the magnetic field in the inner part (R 17 cm) of the Crab Nebula, that is the cause of the variability observed. In this case, favourable conditions for the acceleration of the particles in the cloud up to relativistic energies are realized; that may be an additional source of injection

  20. Characterization of particle states in relativistic classical quantum theory

    International Nuclear Information System (INIS)

    Horwitz, L.P.; Rabin, Y.

    1977-02-01

    Classical and quantum relativistic mechanics are studied. The notion of a ''particle'' is defined in the classical case and the interpretation of mechanics in space-time is clarified. These notions are carried over to the quantum theory, as much as possible. The relation between the results of Feyman's path integral approach and the theory of Horwitz and Piron is discussed. The ''particle'' interpretation is shown to imply an asymptotic condition for scattering. A general method of constructing the dynamical mass spectrum of composite ''particle'' states is discussed. An interference experiment is proposed to affirm the interpretation and applicability of Stueckelberg type wave functions for actual physical phenomena. Some discussion of the relation of this relativistic quantum theory to Feynman's approach to quantum field theory is also given

  1. Rayleigh-Brillouin spectrum in special relativistic hydrodynamics

    International Nuclear Information System (INIS)

    Garcia-Perciante, A. L.; Garcia-Colin, L. S.; Sandoval-Villalbazo, A.

    2009-01-01

    In this paper we calculate the Rayleigh-Brillouin spectrum for a relativistic simple fluid according to three different versions available for a relativistic approach to nonequilibrium thermodynamics. An outcome of these calculations is that Eckart's version predicts that such spectrum does not exist. This provides an argument to question its validity. The remaining two results, which differ one from another, do provide a finite form for such spectrum. This raises the rather intriguing question as to which of the two theories is a better candidate to be taken as a possible version of relativistic nonequilibrium thermodynamics. The answer will clearly require deeper examination of this problem.

  2. Bmad: A relativistic charged particle simulation library

    International Nuclear Information System (INIS)

    Sagan, D.

    2006-01-01

    Bmad is a subroutine library for simulating relativistic charged particle beams in high-energy accelerators and storage rings. Bmad can be used to study both single and multi-particle beam dynamics using routines to track both particles and macroparticles. Bmad has various tracking algorithms including Runge-Kutta and symplectic (Lie algebraic) integration. Various effects such as wakefields, and radiation excitation and damping can be simulated. Bmad has been developed in a modular, object-oriented fashion to maximize flexibility. Interface routines allow Bmad to be called from C/C++ as well as Fortran programs. Bmad is well documented. Every routine is individually annotated, and there is an extensive manual

  3. Interplanetary Magnetic Field Guiding Relativistic Particles

    Science.gov (United States)

    Masson, S.; Demoulin, P.; Dasso, S.; Klein, K. L.

    2011-01-01

    The origin and the propagation of relativistic solar particles (0.5 to few Ge V) in the interplanetary medium remains a debated topic. These relativistic particles, detected at the Earth by neutron monitors have been previously accelerated close to the Sun and are guided by the interplanetary magnetic field (IMF) lines, connecting the acceleration site and the Earth. Usually, the nominal Parker spiral is considered for ensuring the magnetic connection to the Earth. However, in most GLEs the IMF is highly disturbed, and the active regions associated to the GLEs are not always located close to the solar footprint of the nominal Parker spiral. A possible explanation is that relativistic particles are propagating in transient magnetic structures, such as Interplanetary Coronal Mass Ejections (ICMEs). In order to check this interpretation, we studied in detail the interplanetary medium where the particles propagate for 10 GLEs of the last solar cycle. Using the magnetic field and the plasma parameter measurements (ACE/MAG and ACE/SWEPAM), we found widely different IMF configurations. In an independent approach we develop and apply an improved method of the velocity dispersion analysis to energetic protons measured by SoHO/ERNE. We determined the effective path length and the solar release time of protons from these data and also combined them with the neutron monitor data. We found that in most of the GLEs, protons propagate in transient magnetic structures. Moreover, the comparison between the interplanetary magnetic structure and the interplanetary length suggest that the timing of particle arrival at Earth is dominantly determined by the type of IMF in which high energetic particles are propagating. Finally we find that these energetic protons are not significantly scattered during their transport to Earth.

  4. Relativistic Collisions of Structured Atomic Particles

    CERN Document Server

    Voitkiv, Alexander

    2008-01-01

    The book reviews the progress achieved over the last decade in the study of collisions between an ion and an atom in which both the atomic particles carry electrons and can undergo transitions between their internal states -- including continua. It presents the detailed considerations of different theoretical approaches, that can be used to describe collisions of structured atomic particles for the very broad interval of impact energies ranging from 0.5--1 MeV/u till extreme relativistic energies where the collision velocity very closely approaches the speed of light.

  5. Relativistic and separable classical hamiltonian particle dynamics

    International Nuclear Information System (INIS)

    Sazdjian, H.

    1981-01-01

    We show within the Hamiltonian formalism the existence of classical relativistic mechanics of N scalar particles interacting at a distance which satisfies the requirements of Poincare invariance, separability, world-line invariance and Einstein causality. The line of approach which is adopted here uses the methods of the theory of systems with constraints applied to manifestly covariant systems of particles. The study is limited to the case of scalar interactions remaining weak in the whole phase space and vanishing at large space-like separation distances of the particles. Poincare invariance requires the inclusion of many-body, up to N-body, potentials. Separability requires the use of individual or two-body variables and the construction of the total interaction from basic two-body interactions. Position variables of the particles are constructed in terms of the canonical variables of the theory according to the world-line invariance condition and the subsidiary conditions of the non-relativistic limit and separability. Positivity constraints on the interaction masses squared of the particles ensure that the velocities of the latter remain always smaller than the velocity of light

  6. Particle acceleration and injection problem in relativistic and nonrelativistic shocks

    International Nuclear Information System (INIS)

    Hoshino, M.

    2008-01-01

    Acceleration of charged particles at the collisionless shock is believed to be responsible for production of cosmic rays in a variety of astrophysical objects such as supernova, AGN jet, and GRB etc., and the diffusive shock acceleration model is widely accepted as a key process for generating cosmic rays with non-thermal, power-law energy spectrum. Yet it is not well understood how the collisionless shock can produce such high energy particles. Among several unresolved issues, two major problems are the so-called '' injection '' problem of the supra-thermal particles and the generation of plasma waves and turbulence in and around the shock front. With recent advance of computer simulations, however, it is now possible to discuss those issues together with dynamical evolution of the kinetic shock structure. A wealth of modern astrophysical observations also inspires the dynamical shock structure and acceleration processes along with the theoretical and computational studies on shock. In this presentation, we focus on the plasma wave generation and the associated particle energization that directly links to the injection problem by taking into account the kinetic plasma processes of both non-relativistic and relativistic shocks by using a particle-in-cell simulation. We will also discuss some new particle acceleration mechanisms such as stochastic surfing acceleration and wakefield acceleration by the action of nonlinear electrostatic fields. (author)

  7. BRST field theory of relativistic particles

    International Nuclear Information System (INIS)

    Holten, J.W. van

    1992-01-01

    A generalization of BRST field theory is presented, based on wave operators for the fields constructed out of, but different from the BRST operator. The authors discuss their quantization, gauge fixing and the derivation of propagators. It is shown, that the generalized theories are relevant to relativistic particle theories in the Brink-Di Vecchia-Howe-Polyakov (BDHP) formulation, and argue that the same phenomenon holds in string theories. In particular it is shown, that the naive BRST formulation of the BDHP theory leads to trivial quantum field theories with vanishing correlation functions. (author). 22 refs

  8. Fundamentals of relativistic particle beam optics

    International Nuclear Information System (INIS)

    Cornacchia, M.

    1995-12-01

    This lecture introduces the nonaccelerator-specialist to the motion of charged particles in a Storage Ring. The topics of discussion are restricted to the linear and nonlinear dynamics of a single particle in the transverse plane, i.e., the plane perpendicular to the direction of motion. The major omissions for a complete review of accelerator theory, for which a considerable literature exists, are the energy and phase oscillations (1). Other important accelerator physics aspects not treated here are the collective instabilities (2), the role of synchrotron radiation in electron storage rings (3), scattering processes (4), and beam-beam effects in colliding beam facilities (5). Much of the discussion that follows applies equally well to relativistic electron, proton, or ion synchrotrons. In this narrative, we refer to the particle as electron. After a broad overview, the magnetic forces acting on the electrons and the associated differential equations of motion are discussed. Solutions of the equations are given without derivation; the method of solution is outlined. and references for deeper studies are given. In this paper, the word electron is used to signify electron or positron. The dynamics of a single particle are not affected by the sign of its charge when the magnetic field direction is changed accordingly

  9. Relativistic particle in a box: Klein-Gordon versus Dirac equations

    Science.gov (United States)

    Alberto, Pedro; Das, Saurya; Vagenas, Elias C.

    2018-03-01

    The problem of a particle in a box is probably the simplest problem in quantum mechanics which allows for significant insight into the nature of quantum systems and thus is a cornerstone in the teaching of quantum mechanics. In relativistic quantum mechanics this problem allows also to highlight the implications of special relativity for quantum physics, namely the effect that spin has on the quantised energy spectra. To illustrate this point, we solve the problem of a spin zero relativistic particle in a one- and three-dimensional box using the Klein-Gordon equation in the Feshbach-Villars formalism. We compare the solutions and the energy spectra obtained with the corresponding ones from the Dirac equation for a spin one-half relativistic particle. We note the similarities and differences, in particular the spin effects in the relativistic energy spectrum. As expected, the non-relativistic limit is the same for both kinds of particles, since, for a particle in a box, the spin contribution to the energy is a relativistic effect.

  10. Kinematics of a relativistic particle with de Sitter momentum space

    International Nuclear Information System (INIS)

    Arzano, Michele; Kowalski-Glikman, Jerzy

    2011-01-01

    We discuss kinematical properties of a free relativistic particle with deformed phase space in which momentum space is given by (a submanifold of) de Sitter space. We provide a detailed derivation of the action, Hamiltonian structure and equations of motion for such a free particle. We study the action of deformed relativistic symmetries on the phase space and derive explicit formulae for the action of the deformed Poincare group. Finally we provide a discussion on parametrization of the particle worldlines stressing analogies and differences with ordinary relativistic kinematics.

  11. Canonical analysis of non-relativistic particle and superparticle

    Energy Technology Data Exchange (ETDEWEB)

    Kluson, Josef [Masaryk University, Department of Theoretical Physics and Astrophysics, Faculty of Science, Brno (Czech Republic)

    2018-02-15

    We perform canonical analysis of non-relativistic particle in Newton-Cartan Background. Then we extend this analysis to the case of non-relativistic superparticle in the same background. We determine constraints structure of this theory and find generator of κ-symmetry. (orig.)

  12. Canonical quantization of a relativistic particle with curvature and torsion

    International Nuclear Information System (INIS)

    Nesterenko, V.V.

    1991-01-01

    A generalization of the relativistic particle action is considered. It contain, in addition to the length of the world trajectory, the integrals along the world curve of its curvature and torsion. The generalized Hamiltonian formalism for this model in the D-dimensional space-time is constructed. A complete set of the constraints in the phase space is obtained and their division into the first-class and the second-class constraints is accomplished. On this basis the canonical quantization of the model is fulfilled. For D=3 the mass spectrum is obtained in the sector without tachyonic states, the mass of the state being dependent on its spin. It is shown that in the framework of this model when D=3 the possibility to describe the states with integral, half-odd-integral and continuous spins is derived. Interaction with an external Abelian gauge field introduced in the geometrical way. 21 refs

  13. Relativistic ''potential model'' for N-particle systems

    International Nuclear Information System (INIS)

    Noyes, H.P.

    1986-08-01

    Neither quantum field theory nor S-Matrix theory have a well defined procedure for going over to an approximation that can be reliably used in non-relativistic models for nuclear physics. We meet the problem here by constructing a finite particle number relativistic scattering theory for (scalar) particles and mesons using integral equations of the Faddeev-Yakubovsky type. Restricted to N particles and one meson, we can go from the relativistic theory to a ''potential theory'' in the integral equation formulation by using boundary states which do not contain the meson asymptotically. The meson-particle input amplitudes contain a pole at the particle mass, and the particle-particle input amplitudes are null. This gives unique definition (numerically calculable) to the particle-particle off-shell amplitude, and hence to the covariant ''scattering potential'' (but not to the noninvariant concept of ''potential energy''). As we have commented before, if we take these scattering amplitudes as iput for relativistic Faddeev equations, the results are identical to those obtained from the same model starting from three particles and one meson. In this paper we explore how far we can extend this relativistic ''potential model'' to higher numbers of particles and mesons. 10 refs

  14. Relativistic three-particle dynamical equations: I. Theoretical development

    International Nuclear Information System (INIS)

    Adhikari, S.K.; Tomio, L.; Frederico, T.

    1993-11-01

    Starting from the two-particle Bethe-Salpeter equation in the ladder approximation and integrating over the time component of momentum, three dimensional scattering integral equations satisfying constrains of relativistic unitarity and covariance are rederived. These equations were first derived by Weinberg and by Blankenbecler and Sugar. These two-particle equations are shown to be related by a transformation of variables. Hence it is shown to perform and relate dynamical calculation using these two equations. Similarly, starting from the Bethe-Salpeter-Faddeev equation for the three-particle system and integrating over the time component of momentum, several three dimensional three-particle scattering equations satisfying constraints of relativistic unitary and covariance are derived. Two of these three-particle equations are related by a transformation of variables as in the two-particle case. The three-particle equations obtained are very practical and suitable for performing relativistic scattering calculations. (author)

  15. Mechanism of 238U disintegration induced by relativistic particles

    International Nuclear Information System (INIS)

    Andronenko, L.N.; Zhdanov, A.A.; Kravtsov, A.V.; Solyakin, G.E.

    2002-01-01

    In heavy-nucleus disintegration induced by a relativistic projectile particle, the production of collinear massive fragments accompanied by numerous charged particles and neutrons is explained in terms of the mechanism of projectile-momentum compensation due to the emission of a particle whose mass is greater than the projectile mass

  16. Spontaneous photon emission from a non-relativistic free charged particle in collapse models: A case study

    International Nuclear Information System (INIS)

    Bassi, A.; Donadi, S.

    2014-01-01

    We study the photon emission rate of a non-relativistic charged particle interacting with an external classical noise through its position. Both the particle and the electromagnetic field are quantized. Under only the dipole approximation, the equations of motion can be solved exactly for a free particle, or a particle bounded by an harmonic potential. The physical quantity we will be interested in is the spectrum of the radiation emitted by the particle, due to the interaction with the noise. We will highlight several properties of the spectrum and clarify some issues appearing in the literature, regarding the exact mathematical formula of a spectrum for a free particle.

  17. Particle acceleration in relativistic magnetic flux-merging events

    Science.gov (United States)

    Lyutikov, Maxim; Sironi, Lorenzo; Komissarov, Serguei S.; Porth, Oliver

    2017-12-01

    Using analytical and numerical methods (fluid and particle-in-cell simulations) we study a number of model problems involving merger of magnetic flux tubes in relativistic magnetically dominated plasma. Mergers of current-carrying flux tubes (exemplified by the two-dimensional `ABC' structures) and zero-total-current magnetic flux tubes are considered. In all cases regimes of spontaneous and driven evolution are investigated. We identify two stages of particle acceleration during flux mergers: (i) fast explosive prompt X-point collapse and (ii) ensuing island merger. The fastest acceleration occurs during the initial catastrophic X-point collapse, with the reconnection electric field of the order of the magnetic field. During the X-point collapse, particles are accelerated by charge-starved electric fields, which can reach (and even exceed) values of the local magnetic field. The explosive stage of reconnection produces non-thermal power-law tails with slopes that depend on the average magnetization . For plasma magnetization 2$ the spectrum power-law index is 2$ ; in this case the maximal energy depends linearly on the size of the reconnecting islands. For higher magnetization, 2$ , the spectra are hard, , yet the maximal energy \\text{max}$ can still exceed the average magnetic energy per particle, , by orders of magnitude (if is not too close to unity). The X-point collapse stage is followed by magnetic island merger that dissipates a large fraction of the initial magnetic energy in a regime of forced magnetic reconnection, further accelerating the particles, but proceeds at a slower reconnection rate.

  18. On the time delay between ultra-relativistic particles

    International Nuclear Information System (INIS)

    Fleury, Pierre

    2016-01-01

    The time delay between the receptions of ultra-relativistic particles emitted simultaneously is a useful observable for both fundamental physics and cosmology. The expression of the delay when the particles travel through an arbitrary spacetime has been derived recently by Fanizza et al., using a particular coordinate system and self-consistent assumptions. The present article shows that this formula enjoys a simple physical interpretation: the relative velocity between two ultra-relativistic particles is constant. This result reveals an interesting kinematical property of general relativity, namely that the tidal forces experienced by ultra-relativistic particles in the direction of their motion are much smaller than those experienced orthogonally to their motion.

  19. On the time delay between ultra-relativistic particles

    Energy Technology Data Exchange (ETDEWEB)

    Fleury, Pierre, E-mail: pierre.fleury@uct.ac.za [Department of Mathematics and Applied Mathematics, University of Cape Town, Rondebosch 7701, Cape Town (South Africa); Department of Physics, University of the Western Cape, Robert Sobukwe Road, Bellville 7535 (South Africa)

    2016-09-10

    The time delay between the receptions of ultra-relativistic particles emitted simultaneously is a useful observable for both fundamental physics and cosmology. The expression of the delay when the particles travel through an arbitrary spacetime has been derived recently by Fanizza et al., using a particular coordinate system and self-consistent assumptions. The present article shows that this formula enjoys a simple physical interpretation: the relative velocity between two ultra-relativistic particles is constant. This result reveals an interesting kinematical property of general relativity, namely that the tidal forces experienced by ultra-relativistic particles in the direction of their motion are much smaller than those experienced orthogonally to their motion.

  20. Relativistic Spinning Particle without Grassmann Variables and the Dirac Equation

    Directory of Open Access Journals (Sweden)

    A. A. Deriglazov

    2011-01-01

    Full Text Available We present the relativistic particle model without Grassmann variables which, being canonically quantized, leads to the Dirac equation. Classical dynamics of the model is in correspondence with the dynamics of mean values of the corresponding operators in the Dirac theory. Classical equations for the spin tensor are the same as those of the Barut-Zanghi model of spinning particle.

  1. Relativistic motion of spinning particles in a gravitational field

    International Nuclear Information System (INIS)

    Chicone, C.; Mashhoon, B.; Punsly, B.

    2005-01-01

    The relative motion of a classical relativistic spinning test particle is studied with respect to a nearby free test particle in the gravitational field of a rotating source. The effects of the spin-curvature coupling force are elucidated and the implications of the results for the motion of rotating plasma clumps in astrophysical jets are discussed

  2. Relativistic mechanics of two interacting particles and bilocal theory

    International Nuclear Information System (INIS)

    Takabayasi, Takehiko

    1975-01-01

    New relativistic mechanics of two-particle system is set forth, where the two constituent particles are interacting by an arbitrary (central) action-at-a-distance. The fundamental equations are presented in a form covariant under general transformation of parameters parametrizing the world lines of constituent particles. The theory represents the proper relativistic generalization of the usual Newtonian mechanics in the sense that it tends in the non-relativistic (and weak interaction) limit to the usual mechanics of two particles moving under a corresponding non-relativistic potential. For the analysis of theory it is convenient to choose a certain particular gauge (i.e., parametrization) fixed by two gauge relations. This brings the theory to a canonical formalism accompanied by two weak equations, and in this gauge quantization can be performed. The result verifies that the relativistic quantum mechanics for two particles interacting by an action-at-a-distance is just represented by a bilocal wave equation and a subsidiary condition, with the clarification of its correspondence-theoretical foundation and internal dynamics. As an example the case of Hooke-type force is illustrated, where the internal motions are elliptic oscillations in the center-of-mass frame. Its quantum theory just reproduces the original form of bilocal theory giving bound states lying on a straightly rising trajectory and on its daughter trajectories. (auth.)

  3. The ionisation loss of relativistic charged particles in thin gas samples and its use for particle identification. I

    International Nuclear Information System (INIS)

    Cobb, J.H.; Allison, W.W.M.; Bunch, J.N.

    1976-01-01

    A brief review shows a significant discrepancy between available data and theoretical predictions on the ionisation loss of charged particles in thin gas-filled proportional counters. The discrepancy related both to the increase of the most probable loss at relativistic velocities (relativistic rise) and to the spectrum of such losses at a given velocity (the Landau distribution). The origin of this relativistic rise is discussed in simple terms and related to the phenomena of transition radiation and Cherenkov radiation. It is shown that the failure of the prediction is due to the small number of ionising collisions in a gas. This problem is overcome by using a Monte Carlo method rather than a continuous integral over the spectrum of single collision processes. A specific mode of the atomic form factors is used with a modified Born approximation to yield the differential cross sections needed for the calculation. The new predictions give improved agreement with experiment and are used to investigate the problem of identifying particles of known momenta in the relativistic region. It is shown that by measuring the ionisation loss of each particle several hundred times over 5m or more, kaon, pion and proton separation with good confidence level may be achieved. Many gases are considered and a comparison is made. The results are also compared with the velocity resolution achievable by measuring primary ionisation. (Auth.)

  4. Physics of the saturation of particle acceleration in relativistic magnetic reconnection

    Science.gov (United States)

    Kagan, Daniel; Nakar, Ehud; Piran, Tsvi

    2018-05-01

    We investigate the saturation of particle acceleration in relativistic reconnection using two-dimensional particle-in-cell simulations at various magnetizations σ. We find that the particle energy spectrum produced in reconnection quickly saturates as a hard power law that cuts off at γ ≈ 4σ, confirming previous work. Using particle tracing, we find that particle acceleration by the reconnection electric field in X-points determines the shape of the particle energy spectrum. By analysing the current sheet structure, we show that physical cause of saturation is the spontaneous formation of secondary magnetic islands that can disrupt particle acceleration. By comparing the size of acceleration regions to the typical distance between disruptive islands, we show that the maximum Lorentz factor produced in reconnection is γ ≈ 5σ, which is very close to what we find in our particle energy spectra. We also show that the dynamic range in Lorentz factor of the power-law spectrum in reconnection is ≤40. The hardness of the power law combined with its narrow dynamic range implies that relativistic reconnection is capable of producing the hard narrow-band flares observed in the Crab nebula but has difficulty producing the softer broad-band prompt gamma-ray burst emission.

  5. Note of positions of particles in classical relativistic mechanics

    International Nuclear Information System (INIS)

    Pazma, V.

    1983-01-01

    The relation between world-lines and the position vector of a particle is studied from the point of view of gauge system theory. The expressions for the position vector of a free relativistic particle and of two interacting particles described by the Todorov-Komar model are derived under plausible assumptions. The relation between the physical meaning of basic canonical variables and the choice of a gauge is also discussed. (author)

  6. Non-relativistic model of two-particle decay

    International Nuclear Information System (INIS)

    Dittrich, J.; Exner, P.

    1986-01-01

    A simple non-relativistic model of a spinless particle decaying into two lighter particles is treated in detail. It is similar to the Lee-model description of V-particle decay. Galilean covariance is formulated properly, by means of a unitary projective representation acting on the state space of the model. After separating the centre-of-mass motion the meromorphic structure of the reduced resolvent is deduced

  7. The L1-shell ionisation of atoms by relativistic particles

    International Nuclear Information System (INIS)

    Moiseiwitsch, B.L.; Norrington, P.H.

    1979-01-01

    An expression for the L 1 -shell ionisation cross sections of atoms by high-energy particles has been derived using the relativistic plane-wave Born approximation. The incident and scattered particles are described by Dirac plane waves while Darwin hydrogenic wavefunctions are used for the atomic electrons. A comparison is made with experimental total cross sections for incident electrons in the energy range 1-2 MeV. The agreement is a considerable improvement on that obtained using the non-relativistic planewave Born approximation. (author)

  8. Particle Interferometry for Relativistic Heavy-Ion Collisions

    CERN Document Server

    Wiedemann, Urs Achim; Wiedemann, Urs Achim; Heinz, Ulrich

    1999-01-01

    In this report we give a detailed account on Hanbury Brown/Twiss (HBT) particle interferometric methods for relativistic heavy-ion collisions. These exploit identical two-particle correlations to gain access to the space-time geometry and dynamics of the final freeze-out stage. The connection between the measured correlations in momentum space and the phase-space structure of the particle emitter is established, both with and without final state interactions. Suitable Gaussian parametrizations for the two-particle correlation function are derived and the physical interpretation of their parameters is explained. After reviewing various model studies, we show how a combined analysis of single- and two-particle spectra allows to reconstruct the final state of relativistic heavy-ion collisions.

  9. Mass, Momentum and Kinetic Energy of a Relativistic Particle

    Science.gov (United States)

    Zanchini, Enzo

    2010-01-01

    A rigorous definition of mass in special relativity, proposed in a recent paper, is recalled and employed to obtain simple and rigorous deductions of the expressions of momentum and kinetic energy for a relativistic particle. The whole logical framework appears as the natural extension of the classical one. Only the first, second and third laws of…

  10. On the relativistic particle dynamics in external gravitational fields

    International Nuclear Information System (INIS)

    Kuz'menkov, L.S.; Naumov, N.D.

    1977-01-01

    On the base of the Riemann metrics of an event space, leading to the Newton mechanics at nonrelativistic velocities and not obligatory weak gravitational fields relativistic particle dynamics in external gravitation fields has been considered. Found are trajectories, motion laws and light ray equations for the homogeneous and Newton fields

  11. Path integral for a relativistic-particle theory

    International Nuclear Information System (INIS)

    Fradkin, E.S.; Gitman, D.M.; Shvartsman, S.M.

    1991-01-01

    An action of a relativistic spinning particle written in reparametrization and local super-invariant form is consistently determined by using the path integral representation for the Green's function of the spinor field. It is shown that, to obtain the causal propagator, the integration over the null mode of the onebein variable must be performed in the (0, + ∞ limits

  12. Path integral for a relativistic-particle theory

    Energy Technology Data Exchange (ETDEWEB)

    Fradkin, E.S. (AN SSSR, Moscow (SU)); Gitman, D.M. (Moskovskij Inst. Radiotekhniki, Ehlektroniki i Automatiki, Moscow (SU)); Shvartsman, S.M. (Tomskij Pedagogicheskij Inst., Tomsk (SU))

    1991-06-01

    An action of a relativistic spinning particle written in reparametrization and local super-invariant form is consistently determined by using the path integral representation for the Green's function of the spinor field. It is shown that, to obtain the causal propagator, the integration over the null mode of the onebein variable must be performed in the (0, + {infinity}) limits.

  13. Particle Acceleration, Magnetic Field Generation and Emission from Relativistic Jets

    Science.gov (United States)

    Nishikawa, K.-I.; Hardee, P.; Hededal, C.; Mizuno, Yosuke; Fishman, G. Jerry; Hartmann, D. H.

    2006-01-01

    Nonthermal radiation observed from astrophysical systems containing relativistic jets and shocks, e.g., active galactic nuclei (AGNs), gamma-ray bursts (GRBs), supernova remnants, and Galactic microquasar systems usually have power-law emission spectra. Fermi acceleration is the mechanism usually assumed for the acceleration of particles in astrophysical environments. Recent PIC simulations using injected relativistic electron-ion (electro-positron) jets show that particle acceleration occurs within the downstream jet, rather than by the scattering of particles back and forth across the shock as in Fermi acceleration. Shock acceleration' is a ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., the Buneman instability, other two-streaming instability, and the Weibel instability) created in the shocks are responsible for particle (electron, positron, and ion) acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields. These magnetic fields contribute to the electron's transverse deflection behind the jet head. The "jitter" radiation from deflected electrons has different spectral properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants. We will review recent PIC simulations of relativistic jets and try to make a connection with observations.

  14. Quantum theory of relativistic charged particles in external fields

    International Nuclear Information System (INIS)

    Ruijsenaars, S.N.M.

    1976-01-01

    A study was made on external field theories in which the quantized field corresponds to relativistic elementary particles with non-zero rest mass. These particles are assumed to be charged, thus they have distinct antiparticles. The thesis consists of two parts. The first tries to accommodate the general features of theories of relativistic charged particles in external fields. Spin and dynamics in particular are not specified. In the second part, the results are applied to charged spin-1/2 and spin-0 particles, the dynamics of which are given by the Dirac resp. Klein-Gordon equation. The greater emphasis is on external fields which are rapidly decreasing, infinitely differentiable functions of space-time, but also considers time-independent fields. External fields, other than electromagnetic fields are also considered, e.g. scalar fields

  15. Cherenkov particle identifier for relativistic heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    Dufour, J P; Olson, D L; Baumgartner, M; Girard, J G; Lindstrom, P J; Greiner, D E; Symons, T J.M.; Crawford, H J

    1985-12-01

    A total internal reflection Cherenkov detector is described. A figure of merit of 84Z/sup 2/sin/sup 2/theta photoelectrons/cm has been measured and the application of the device to charge and velocity measurements of relativistic heavy ions has been tested. We have achieved a charge resolution of ..delta..Zsub(rms)=0.15e for Z=20 with a 3 mm thick glass detector and a velocity resolution of ..delta beta..sub(rms)=2x10/sup -4/ at ..beta..=0.93 and Z=26 with a 6 mm thick fused silica detector. Combining charge and velocity measurements with a magnetic rigidity selection, we have achieved an isotopic mass resolution of ..delta..Msub(rms)=0.1 u with a 2 mm thick fused silica detector for 20

  16. Cherenkov particle identifier for relativistic heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    Dufour, J P; Olson, D L; Baumgartner, M; Girard, J G; Lindstrom, P J; Greiner, D E; Symons, T J.M.; Crawford, H J

    1985-12-01

    A total internal reflection Cherenkov detector is described. A figure of merit of 84Z/sup 2/sin/sup 2/theta photoelectrons/cm has been measured and the application of the device to charge and velocity measurements of relativistic heavy ions has been tested. We have achieved a charge resolution of ..delta..Zsub(rms)=0.15e for Z=20 with a 3 mm thick glass detector and a velocity resolution of ..delta beta..sub(rms)=2 x 10/sup -4/ at ..beta..=0.93 and Z=26 with a 6 mm thick fused silica detector. Combining charge and velocity measurements with a magnetic rigidity selection, we have achieved an isotopic mass resolution of ..delta..Msub(rms)=0.1 u with a 2 mm thick fused silica detector for 20 < A < 40.

  17. Particle Acceleration, Magnetic Field Generation and Emission from Relativistic Jets and Supernova Remnants

    Science.gov (United States)

    Nishikawa, K.-I.; Hartmann, D. H.; Hardee, P.; Hededal, C.; Mizunno, Y.; Fishman, G. J.

    2006-01-01

    We performed numerical simulations of particle acceleration, magnetic field generation, and emission from shocks in order to understand the observed emission from relativistic jets and supernova remnants. The investigation involves the study of collisionless shocks, where the Weibel instability is responsible for particle acceleration as well as magnetic field generation. A 3-D relativistic particle-in-cell (RPIC) code has been used to investigate the shock processes in electron-positron plasmas. The evolution of theWeibe1 instability and its associated magnetic field generation and particle acceleration are studied with two different jet velocities (0 = 2,5 - slow, fast) corresponding to either outflows in supernova remnants or relativistic jets, such as those found in AGNs and microquasars. Slow jets have intrinsically different structures in both the generated magnetic fields and the accelerated particle spectrum. In particular, the jet head has a very weak magnetic field and the ambient electrons are strongly accelerated and dragged by the jet particles. The simulation results exhibit jitter radiation from inhomogeneous magnetic fields, generated by the Weibel instability, which has different spectral properties than standard synchrotron emission in a homogeneous magnetic field.

  18. Measuring the cosmological background of relativistic particles with WMAP

    CERN Document Server

    Crotty, P; Pastor, S; Crotty, Patrick; Lesgourgues, Julien; Pastor, Sergio

    2003-01-01

    We show that the first year results of the Wilkinson Microwave Anisotropy Probe (WMAP) constrain very efficiently the energy density in relativistic particles in the universe. We derive new bounds on additional relativistic degrees of freedom expressed in terms of an excess in the effective number of light neutrinos Delta N_eff. Within the flat LambdaCDM scenario, the allowed range is Delta N_eff < 6 (95% CL) using WMAP data only, or -2.6 < Delta N_eff < 4 with the prior H_0= 72 \\pm 8 km/s/Mpc. When other cosmic microwave background and large scale structure experiments are taken into account, the window shrinks to -1.5 < Delta N_eff < 4.2. These results are in perfect agreement with the bounds from primordial nucleosynthesis. Non-minimal cosmological models with extra relativistic degrees of freedom are now severely restricted.

  19. A simplectic formulation of relativistic particle dynamics

    International Nuclear Information System (INIS)

    Tulczyjew, W.M.

    1976-12-01

    Particle mechanics is formulated in terms of symplectic relations and infinitesimal symplectic relations. Generating functions of symplectic relations are shown to be classical counterparts of Green's functions of wave mechanics. (orig.) [de

  20. A sympletic formulation of relativistic particle dynamics

    International Nuclear Information System (INIS)

    Tulczyjew, W.M.

    1977-01-01

    Particle mechanics is formulated in terms of sympletic relations and infinitesimal symplectic relations. Generating functions of symplectic relations are shown to be classical counterparts of Green's functions of wave mechanics. (author)

  1. Electromagnetic field of a circular beam of relativistic particles

    International Nuclear Information System (INIS)

    Vybiral, B.

    1978-01-01

    The generalized Coulomb law and the generalized Biot-Savart-Laplace law are derived for an element of a beam of charged relativistic particles moving generally irregularly. These laws are utilized for the description of an electromagnetic field of a circular beam of relativistic regularly moving particles. It is shown that in the points on the axis of the beam the intensity of the electric field is given by an expression precisely corresponding to the classical Coulomb law for charges at rest and the induction of the magnetic field corresponds to the classical Biot-Savart-Laplace law for conductive currents. From the numerical solution it follows that in the points outside the axis the induction of the magnetic field rises with the velocity of the particles. For a velocity nearing that of light in vacuum it assumes a definite value (with the exception of the points lying on the beam). (author)

  2. Auxiliary fields in the geometrical relativistic particle dynamics

    International Nuclear Information System (INIS)

    Amador, A; Bagatella, N; Rojas, E; Cordero, R

    2008-01-01

    We describe how to construct the dynamics of relativistic particles, following either timelike or null curves, by means of an auxiliary variables method instead of the standard theory of deformations for curves. There are interesting physical particle models governed by actions that involve higher order derivatives of the embedding functions of the worldline. We point out that the mechanical content of such models can be extracted wisely from a lower order action, which can be performed by implementing in the action a finite number of constraints that involve the geometrical relationship structures inherent to a curve and by using a covariant formalism. We emphasize our approach for null curves. For such systems, the natural time parameter is a pseudo-arclength whose properties resemble those of the standard proper time. We illustrate the formalism by applying it to some models for relativistic particles

  3. Auxiliary fields in the geometrical relativistic particle dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Amador, A; Bagatella, N; Rojas, E [Departamento de Fisica, Facultad de Fisica e Inteligencia Artificial, Universidad Veracruzana, 91000 Xalapa, Veracruz (Mexico); Cordero, R [Departamento de Fisica, Escuela Superior de Fisica y Matematicas del I.P.N, Edificio 9, 07738 Mexico D.F (Mexico)], E-mail: aramador@gmail.com, E-mail: nbagatella@uv.mx, E-mail: cordero@esfm.ipn.mx, E-mail: efrojas@uv.mx

    2008-03-21

    We describe how to construct the dynamics of relativistic particles, following either timelike or null curves, by means of an auxiliary variables method instead of the standard theory of deformations for curves. There are interesting physical particle models governed by actions that involve higher order derivatives of the embedding functions of the worldline. We point out that the mechanical content of such models can be extracted wisely from a lower order action, which can be performed by implementing in the action a finite number of constraints that involve the geometrical relationship structures inherent to a curve and by using a covariant formalism. We emphasize our approach for null curves. For such systems, the natural time parameter is a pseudo-arclength whose properties resemble those of the standard proper time. We illustrate the formalism by applying it to some models for relativistic particles.

  4. Relativistic local quantum field theory for m=0 particles

    International Nuclear Information System (INIS)

    Morales Villasevil, A.

    1965-01-01

    A method is introduced ta deal with relativistic quantum field theory for particles with m=0. Two mappings I and J, giving rise respectively to particle and anti particle states, are defined between a test space and the physical Hilbert space. The intrinsic field operator is then defined as the minimal causal linear combinations of operators belonging to the annihilation-creation algebra associated to the germ and antigerm parts of the element. Local elements are introduced as improper test elements and local field operators are constructed in the same way as the intrinsic ones. Commutation rules are given. (Author) 17 refs

  5. Relativistic motion of particle in photogravitational field of star

    International Nuclear Information System (INIS)

    Zubko, O.L.

    2014-01-01

    Relativistic motion of particle in photogravitational field of star has been considered at different levels. It is shown that taking into account direct light pressure, elliptical orbit of the particle increases in sizes. Taking into account longitudinal Doppler effect and aberration of light leads to the motion of the particle by decreasing in size ellipse, which also has decreasing and eccentricity. Taking into account forces proportional to v 1 2 /c 2 leads to a faster reduction of the ellipse and its eccentricity. (authors)

  6. Relativistic particle with the action dependent on the torsion of its world trajectory

    International Nuclear Information System (INIS)

    Nesterenko, V.V.

    1990-01-01

    The generalized Hamiltonian formalism for the relativistic particle with a torsion in a D-dimensional space-time is constructed. A complete set of the constraints in the phase space is obtained and their division into the first-class and the second-class constraints is accomplished. On this basis the canonical quantization of the model is fulfilled. For D=3 the mass spectrum is obtained explicitly, the mass of the state being dependent on its spin. The possibility of describing in the framework of this model the states with integer, half-integer and continuous spins is discussed. The wave equation and the propagator are found in the operator form. The mass formula is obtained also in the model of a relativistic particles with curvature in a D-dimensional space-time. 34 refs

  7. Particle Acceleration, Magnetic Field Generation, and Emission in Relativistic Shocks

    Science.gov (United States)

    Nishikawa, Ken-IchiI.; Hededal, C.; Hardee, P.; Richardson, G.; Preece, R.; Sol, H.; Fishman, G.

    2004-01-01

    Shock acceleration is an ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., the Buneman instability, two-streaming instability, and the Weibel instability) created in the shocks are responsible for particle (electron, positron, and ion) acceleration. Using a 3-D relativistic electromagnetic particle (m) code, we have investigated particle acceleration associated with a relativistic jet front propagating through an ambient plasma with and without initial magnetic fields. We find only small differences in the results between no ambient and weak ambient parallel magnetic fields. Simulations show that the Weibel instability created in the collisionless shock front accelerates particles perpendicular and parallel to the jet propagation direction. New simulations with an ambient perpendicular magnetic field show the strong interaction between the relativistic jet and the magnetic fields. The magnetic fields are piled up by the jet and the jet electrons are bent, which creates currents and displacement currents. At the nonlinear stage, the magnetic fields are reversed by the current and the reconnection may take place. Due to these dynamics the jet and ambient electron are strongly accelerated in both parallel and perpendicular directions.

  8. Particle Acceleration, Magnetic Field Generation in Relativistic Shocks

    Science.gov (United States)

    Nishikawa, Ken-Ichi; Hardee, P.; Hededal, C. B.; Richardson, G.; Sol, H.; Preece, R.; Fishman, G. J.

    2005-01-01

    Shock acceleration is an ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., the Buneman instability, two-streaming instability, and the Weibel instability) created in the shocks are responsible for particle (electron, positron, and ion) acceleration. Using a 3-D relativistic electromagnetic particle (REMP) code, we have investigated particle acceleration associated with a relativistic jet front propagating through an ambient plasma with and without initial magnetic fields. We find only small differences in the results between no ambient and weak ambient parallel magnetic fields. Simulations show that the Weibel instability created in the collisionless shock front accelerates particles perpendicular and parallel to the jet propagation direction. New simulations with an ambient perpendicular magnetic field show the strong interaction between the relativistic jet and the magnetic fields. The magnetic fields are piled up by the jet and the jet electrons are bent, which creates currents and displacement currents. At the nonlinear stage, the magnetic fields are reversed by the current and the reconnection may take place. Due to these dynamics the jet and ambient electron are strongly accelerated in both parallel and perpendicular directions.

  9. Relativistic scattering theory of two charged spinless particles

    International Nuclear Information System (INIS)

    Alt, E.O.; Hannemann

    1985-01-01

    In the framework of a relativistic quantum mechanics, the authors calculate for two spinless particles with Coulomb interaction exactly the partial-wave S-matrix and the full scattering amplitude. From the former they can extract the exact binding energies which, when expanded in powers of α, reproduce in the hydrogenic case the fourth-order result of a previous study. In the weak field limit, the latter coincides with the amplitude derived by another study from QED in eikonal approximation

  10. Coherent oscillations of a ring of relativistic particles

    International Nuclear Information System (INIS)

    Hofmann, I.

    1976-07-01

    The effect of ring curvature on the coherent perturbations of a ring of relativistic particles is studied within the framework of the linearized Vlasov equation. Finite curvature is shown to have a minor effect on the dynamics of the 'negative mass' mode; the 'transverse' mode in radial direction, however, is found to be coupled with a simultaneous longitudinal density modulation which modifies the dispersion relation. In the limit of small mode frequency (ω/Ω [de

  11. Tachyonless models of relativistic particles with curvature and torsion

    International Nuclear Information System (INIS)

    Kuznetsov, Yu.A.; Plyushchaj, M.S.

    1992-01-01

    The problem of construction (2+1)-dimensional tachyonless models of relativistic particles with an action depending on the world-trajectory curvature and torsion is investigated. The special class of models, described by maximum symmetric action and comprising only spin internal degrees of freedom is found. The examples of systems from the special class are given, whose classical and quantum spectra contain only massive states. 23 refs

  12. Relativistic Photon Induced Processes of Composite Particles

    International Nuclear Information System (INIS)

    Ribeiro-Silva, C.I; Curado, E. M. F.; Rego-Monteiro, M. A.

    2007-01-01

    We consider a complex quantum field theory based on a generalized Heisenberg[1] algebra, which describes at the space-time a spin less composite particle. We compute the perturbative series and the cross section of the scattering process 2 γ→φ - , φ + up to second order in the coupling constant and we find a further contribution due to the structure of the composite pion which is described here phenomenologically by the generalized algebra. We compare the results of this study with available experimental data. (Author)

  13. Dynamics of relativistic point particles as a problem with constraints

    International Nuclear Information System (INIS)

    Todorov, I.T.

    1976-01-01

    The relativistic n-particle dynamics is studied as a problem with constraints of the type (2phisub(i)=)msub(i)sup(2)-psub(i)sup(2)+PHIsub(i)=0, i=1,...,n, (C) where PHIsub(i) are Poincare invariant functions of the particles' coordinates, momenta and spin components; PHIsib(i) is assumed to vanish asymptotically when the i-th particle coordinates tend to infinity. In the two particle case it is assumed in addition that the Poisson bracket [phi 1 , phi 2 ] vanishes on the surface (C). That allows us to give a formulation of the theory, invariant with respect to the choice of the time-parameter on each trajectory. The quantization of the relative two-particle motion is also discussed. It is pointed out that the stationary Schrodinger equation obtained in this manner is a local quasipotential equation

  14. Spinor and isospinor structure of relativistic particle propagators

    International Nuclear Information System (INIS)

    Gitman, D.M.; Shvartsman, Sh.M.

    1993-07-01

    Representations by means of path integrals are used to find spinor and isospinor structure of relativistic particle propagators in external fields. For Dirac propagator in an external electromagnetic field all Grassmannian integrations are performed and a general result is presented via a bosonic path integral. The spinor structure of the integrand is given explicitly by its decomposition in the independent γ-matrix structures. A similar technique is used to get the isospinor structure of the scalar particle propagator in an external non-Abelian field. (author). 21 refs

  15. Dirac particle in a box, and relativistic quantum Zeno dynamics

    International Nuclear Information System (INIS)

    Menon, Govind; Belyi, Sergey

    2004-01-01

    After developing a complete set of eigenfunctions for a Dirac particle restricted to a box, the quantum Zeno dynamics of a relativistic system is considered. The evolution of a continuously observed quantum mechanical system is governed by the theorem put forth by Misra and Sudarshan. One of the conditions for quantum Zeno dynamics to be manifest is that the Hamiltonian is semi-bounded. This Letter analyzes the effects of continuous observation of a particle whose time evolution is generated by the Dirac Hamiltonian. The theorem by Misra and Sudarshan is not applicable here since the Dirac operator is not semi-bounded

  16. Relativistic-particle quantum mechanics (applications and approximations) II

    International Nuclear Information System (INIS)

    Coester, F.

    1981-01-01

    In this lecture I hope to show that relativistic-particle quantum mechanics with direct interactions is a useful tool for building models applicable to hadron systems at intermediate energies. To do this I will first describe a class of models designed to incorporate nucleon-nucleon interactions, pion production, absorption and scattering into a single dynamical framework without dressing the nucleons with pion clouds. The second major topic concerns electromagnetic interactions. In the previous lecture I specifically excluded long-rang forces and zero-mass particles. Since many of the experimental data in hadron physics involve electromagnetic interactions this limitation is a major defect which must be addressed

  17. Relativistic jet feedback - II. Relationship to gigahertz peak spectrum and compact steep spectrum radio galaxies

    Science.gov (United States)

    Bicknell, Geoffrey V.; Mukherjee, Dipanjan; Wagner, Alexander Y.; Sutherland, Ralph S.; Nesvadba, Nicole P. H.

    2018-04-01

    We propose that Gigahertz Peak Spectrum (GPS) and Compact Steep Spectrum (CSS) radio sources are the signposts of relativistic jet feedback in evolving galaxies. Our simulations of relativistic jets interacting with a warm, inhomogeneous medium, utilizing cloud densities and velocity dispersions in the range derived from optical observations, show that free-free absorption can account for the ˜ GHz peak frequencies and low-frequency power laws inferred from the radio observations. These new computational models replace a power-law model for the free-free optical depth a more fundamental model involving disrupted log-normal distributions of warm gas. One feature of our new models is that at early stages, the low-frequency spectrum is steep but progressively flattens as a result of a broader distribution of optical depths, suggesting that the steep low-frequency spectra discovered by Callingham et al. may possibly be attributed to young sources. We also investigate the inverse correlation between peak frequency and size and find that the initial location on this correlation is determined by the average density of the warm ISM. The simulated sources track this correlation initially but eventually fall below it, indicating the need for a more extended ISM than presently modelled. GPS and CSS sources can potentially provide new insights into the phenomenon of AGN feedback since their peak frequencies and spectra are indicative of the density, turbulent structure, and distribution of gas in the host galaxy.

  18. Particle-in-cell simulation of two-dimensional electron velocity shear driven instability in relativistic domain

    Energy Technology Data Exchange (ETDEWEB)

    Shukla, Chandrasekhar, E-mail: chandrasekhar.shukla@gmail.com; Das, Amita, E-mail: amita@ipr.res.in [Institute for Plasma Research, Bhat, Gandhinagar 382428 (India); Patel, Kartik [Bhabha Atomic Research Centre, Trombay, Mumbai 400 085 (India)

    2016-08-15

    We carry out particle-in-cell simulations to study the instabilities associated with a 2-D sheared electron flow configuration against a neutralizing background of ions. Both weak and strong relativistic flow velocities are considered. In the weakly relativistic case, we observe the development of electromagnetic Kelvin-Helmholtz instability with similar characteristics as that predicted by the electron Magnetohydrodynamic (EMHD) model. On the contrary, in a strong relativistic case, the compressibility effects of electron fluid dominate and introduce upper hybrid electrostatic oscillations transverse to the flow which are very distinct from EMHD fluid behavior. In the nonlinear regime, both weak and strong relativistic cases lead to turbulence with broad power law spectrum.

  19. Classical relativistic constituent particles and composite-particle scattering

    International Nuclear Information System (INIS)

    King, M.J.

    1984-01-01

    A nonlocal Lagrangian formalism is developed to describe a classical many-particle system. The nonstandard Lagrangian is a function of a single parameter s which is not, in general, associated with the physical clock. The particles are constrained to be constituents of composite systems, which in turn can decompose into asymptotic composite states representing free observable particles. To demonstrate this, explicit models of composite-composite particle scattering are constructed. Space-time conservation laws are not imposed separately on the system, but follow upon requiring the constituents to ''pair up'' into free composites at s = +infinity,-infinity. One model is characterized by the appearance of an ''external'' zero-mass composite particle which participates in the scattering process without affecting the space-time conservation laws of the two-composite system. Initial conditions on the two incoming composite particles and the zero-mass participant determine the scattering angle and the final states of the two outgoing composite particles. Although the formalism is classical, the model displays some features usually associated with quantum field theory, such as particle scattering by means of constituent exchange, creation and annihilation of particles, and restriction of values of angular momentum

  20. Quantization of a relativistic particle on the SL(2.R) manifold based on Hamiltonian reduction

    International Nuclear Information System (INIS)

    Jorjadze, G.; O'Raifeartaigh, L.; Tsutsui, I.

    1994-07-01

    A quantum theory is constructed for the system of a relativistic particle with mass m moving freely on the SL(2.R) group manifold. Applied to the cotangent bundle of SL(2.R). the method of Hamiltonian reduction allows us to split the reduced system into two coadjoint orbits of the group. We find that the Hilbert space consists of states given by the discrete series of the unitary irreducible representations of SL(2.R). and with a positive-definite, discrete spectrum. (author)

  1. Particle emission in the hydrodynamical description of relativistic nuclear collisions

    International Nuclear Information System (INIS)

    Grassi, F.; Hama, Y.; Kodama, T.

    1994-09-01

    Continuous particle emission during the whole expansion of thermalized matter is studied and a new formula for the observed transverse mass spectrum is derived. In some limit, the usual emission at freeze out scenario (Cooper-Frye formula) may be recovered. In a simplified description of expansion, it is shown that continuous particle emission can lead to a sizable curvature in the pion transverse mass spectrum and parallel slopes for the various particles. These results are compared to experimental data. (author). 26 refs, 3 figs

  2. Real-time energy detector for relativistic charged particles

    International Nuclear Information System (INIS)

    Piestrup, A.

    1988-01-01

    The objective of the research is to investigate the use of coherent transition radiation to measure the energy of ultra-relativistic charged particles. The research has possible applications for the detection and identification of these particles. It can also be used for beam diagnostics for both high-repetition-rate and single-pulse, high-current accelerators. The device is low cost and can operate in situ while causing little or no perturbation to the beam. Three such coherent radiators have been constructed and tested at two accelerators using electron beam energies ranging from 50 to 228 MeV. Soft x-ray emission (1 keV to 4 keV) was emitted in a circularly symmetrical annulus with half-angle divergence of 2.5 to 9.0 mr. By selecting foil thickness and spacing, it is possible to design radiators whose angle of emission varies radically over a range of charge-particle energies

  3. Non-relativistic spinning particle in a Newton-Cartan background

    Science.gov (United States)

    Barducci, Andrea; Casalbuoni, Roberto; Gomis, Joaquim

    2018-01-01

    We construct the action of a non-relativistic spinning particle moving in a general torsionless Newton-Cartan background. The particle does not follow the geodesic equations, instead the motion is governed by the non-relativistic analog of Papapetrou equation. The spinning particle is described in terms of Grassmann variables. In the flat case the action is invariant under the non-relativistic analog of space-time vector supersymmetry.

  4. A signed particle formulation of non-relativistic quantum mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Sellier, Jean Michel, E-mail: jeanmichel.sellier@parallel.bas.bg

    2015-09-15

    A formulation of non-relativistic quantum mechanics in terms of Newtonian particles is presented in the shape of a set of three postulates. In this new theory, quantum systems are described by ensembles of signed particles which behave as field-less classical objects which carry a negative or positive sign and interact with an external potential by means of creation and annihilation events only. This approach is shown to be a generalization of the signed particle Wigner Monte Carlo method which reconstructs the time-dependent Wigner quasi-distribution function of a system and, therefore, the corresponding Schrödinger time-dependent wave-function. Its classical limit is discussed and a physical interpretation, based on experimental evidences coming from quantum tomography, is suggested. Moreover, in order to show the advantages brought by this novel formulation, a straightforward extension to relativistic effects is discussed. To conclude, quantum tunnelling numerical experiments are performed to show the validity of the suggested approach.

  5. Particle-production mechanism in relativistic heavy-ion collisions

    International Nuclear Information System (INIS)

    Bush, B.W.; Nix, J.R.

    1994-01-01

    We discuss the production of particles in relativistic heavy-ion collisions through the mechanism of massive bremsstrahlung, in which massive mesons are emitted during rapid nucleon acceleration. This mechanism is described within the framework of classical hadrodynamics for extended nucleons, corresponding to nucleons of finite size interacting with massive meson fields. This new theory provides a natural covariant microscopic approach to relativistic heavy-ion collisions that includes automatically spacetime nonlocality and retardation, nonequilibrium phenomena, interactions among all nucleons, and particle production. Inclusion of the finite nucleon size cures the difficulties with preacceleration and runaway solutions that have plagued the classical theory of self-interacting point particles. For the soft reactions that dominate nucleon-nucleon collisions, a significant fraction of the incident center-of-mass energy is radiated through massive bremsstrahlung. In the present version of the theory, this radiated energy is in the form of neutral scalar (σ) and neutral vector (ω) mesons, which subsequently decay primarily into pions with some photons also. Additional meson fields that are known to be important from nucleon-nucleon scattering experiments should be incorporated in the future, in which case the radiated energy would also contain isovector pseudoscalar (π + , π - , π 0 ), isovector scalar (δ + , δ - , δ 0 ), isovector vector (ρ + , ρ - , ρ 0 ), and neutral pseudoscalar (η) mesons

  6. Scattering of Non-Relativistic Charged Particles by Electromagnetic Radiation

    Science.gov (United States)

    Apostol, M.

    2017-11-01

    The cross-section is computed for non-relativistic charged particles (like electrons and ions) scattered by electromagnetic radiation confined to a finite region (like the focal region of optical laser beams). The cross-section exhibits maxima at scattering angles given by the energy and momentum conservation in multi-photon absorption or emission processes. For convenience, a potential scattering is included and a comparison is made with the well-known Kroll-Watson scattering formula. The scattering process addressed in this paper is distinct from the process dealt with in previous studies, where the scattering is immersed in the radiation field.

  7. Spacetime alternatives in the quantum mechanics of a relativistic particle

    International Nuclear Information System (INIS)

    Whelan, J.T.

    1994-01-01

    Hartle's generalized quantum mechanics formalism is used to examine spacetime coarse grainings, i.e., sets of alternatives defined with respect to a region extended in time as well as space, in the quantum mechanics of a free relativistic particle. For a simple coarse graining and suitable initial conditions, tractable formulas are found for branch wave functions. Despite the nonlocality of the positive-definite version of the Klein-Gordon inner product, which means that nonoverlapping branches are not sufficient to imply decoherence, some initial conditions are found to give decoherence and allow the consistent assignment of probabilities

  8. Definition of mass spectrum of mesons taking into account relativistic character of interactions

    International Nuclear Information System (INIS)

    Dinejkhan, M.; Zhaugasheva, S.A.; Karimzhan, K.

    2009-01-01

    Taking into account relativistic and nonlocal character of interactions, the mass spectrum of the mesons consisting of the light-light and light-heavy quarks with orbital and radial excitations, is determined. Our result show that good agreement with the experimental data for the slope and the intercept of the Regge trajectory can be obtained, only taking into account the nonperturbative and the nonlocal character of interactions. Dependence of constituent mass of constituent particles on mass of a free state is certain. When quarks are light the difference of current and valent masses of quarks is greater than valent masses of quarks, and when quarks are heavy the difference of these masses is insignificant. One of alternative variants of the account of nonlocality is suggested for the definition of properties of hadrons at large distances. Dependence of constituent mass on the radius of confinement is studied

  9. Dynamic bremsstrahlung from relativistic particles scattered by atom

    International Nuclear Information System (INIS)

    Astapenko, V.A.; Bujmistrov, V.M.; Krotov, Yu.A.; Mikhajlov, L.K.; Trakhtenberg, L.I.

    1985-01-01

    The bremsstrahlung cross section for a relativistic particle scattered by an atom is calculated. In contrast to the screening approximation usually employed, the influence of the atomic electron on the bremsstrahlung is taken into account exactly, viz., the atomic electron is considered as a moving particle interacting with the electromagnetic field and not only as the source of a static external field. Consequently, along with the static term which leads to the Bethe-Heitw,ler formula, a ne dynamic, term appears in the transition amplitude. The corresponding cross section, the dynamic bremsstrahlung cross section, in certain frequensy ranges and certain ranges of the directions of photon emission exceeds considerably the static bremsstrahlung cross section

  10. Outline of a nonlinear, relativistic quantum mechanics of extended particles

    International Nuclear Information System (INIS)

    Mielke, E.W.

    1981-01-01

    A quantum theory of intrinsically extended particles similar to de Broglie's theory of the Double Solution is proposed. A rational notion of the particle's extension is enthroned by realizing its internal structure via soliton-type solutions of nonlinear, relativistic wave equations. These droplet-type waves have a quasi-objective character except for certain boundary conditions which may be subject to stochastic fluctuations. More precisely, this assumption amounts to a probabilistic description of the center of a soliton such that it would follow the conventional quantum-mechanical formalism in the limit of zero particle radius. At short interaction distances, however, a promising nonlinear and nonlocal theory emerges. This model is not only capable of achieving a conceptually satisfying synthesis of the particle-wave dualism, but may also lead to a rational resolution of epistemological problems in the quantum-theoretical measurement process. Within experimental errors the results for, e.g., the hydrogen atom can be reproduced by appropriately specifying the nature of the nonlinear self-interaction. It is speculated that field theoretical issues raised by such notions as identical particles, field quantization and renormalization are already incorporated or resolved by this nonlocal theory, at least in principle. (author)

  11. Outline of a nonlinear, relativistic quantum mechanics of extended particles

    International Nuclear Information System (INIS)

    Mielke, E.W.

    1981-01-01

    A quantum theory of intrinsically extended particles similar to de Broglie's Theory of the Double Solution is proposed. A rational notion of the particle's extension is enthroned by realizing its internal structure via soliton-type solutions of nonlinear, relativistic wave equations. These droplet-type waves have a quasi-objective character except for certain boundary conditions which may be subject to stochastic fluctuations. More precisely, this assumption amounts to a probabilistic description of the center of a soliton such that it would follow the conventional quantum-mechanical formalism in the limit of zero particle radius. At short interaction distances, however, a promising nonlinear and nonlocal theory emerges. This model is not only capable of achieving a conceptually satisfying synthesis of the particle-wave dualism, but may also lead to a rational resolution of epistemological problems in the quantum-theoretical measurement process. Within experimental errors the results for, e.g., the hydrogen atom can be reproduced by appropriately specifying the nature of the nonlinear self-interaction. It is speculated that field theoretical issues raised by such notions as identical particles, field quantization and renormalization are already incorporated or resolved by this nonlocal theory, at least in principle. (author)

  12. Gravitational waves from a spinning particle scattered by a relativistic star: Axial mode case

    International Nuclear Information System (INIS)

    Tominaga, Kazuhiro; Saijo, Motoyuki; Maeda, Kei-ichi

    2001-01-01

    We use a perturbation method to study gravitational waves from a spinning test particle scattered by a relativistic star. The present analysis is restricted to axial modes. By calculating the energy spectrum, the wave forms, and the total energy and angular momentum of gravitational waves, we analyze the dependence of the emitted gravitational waves on particle spin. For a normal neutron star, the energy spectrum has one broad peak whose characteristic frequency corresponds to the angular velocity at the turning point (a periastron). Since the turning point is determined by the orbital parameter, there exists a dependence of the gravitational wave on particle spin. We find that the total energy of l=2 gravitational waves gets larger as the spin increases in the antiparallel direction to the orbital angular momentum. For an ultracompact star, in addition to such an orbital contribution, we find the quasinormal modes excited by a scattered particle, whose excitation rate to gravitational waves depends on the particle spin. We also discuss the ratio of the total angular momentum to the total energy of gravitational waves and explain its spin dependence

  13. A relativistic gauge model describing N particles bound by harmonic forces

    International Nuclear Information System (INIS)

    Filippov, A.T.

    1987-01-01

    Application of the principle of gauging to linear canonical symmetries of simplest/rudimentary/bilinear lagrangians is shown to produce a relativistic version of the Lagrangian describing N particles bound by harmonic forces. For pairwise coupled identical particles the gauge group is T 1 xU 1 , xSU N-1 . A model for the relativistic discrete string (a chain of N particles) is also discussed. All these gauge theoried of particles can be quantized by standard methods

  14. Classical particle limit of non-relativistic quantum mechanics

    International Nuclear Information System (INIS)

    Zucchini, R.

    1984-01-01

    We study the classical particle limit of non-relativistic quantum mechanics. We show that the unitary group describing the evolution of the quantum fluctuation around any classical phase orbit has a classical limit as h → 0 in the strong operator topology for a very large class of time independent scalar and vector potentials, which in practice covers all physically interesting cases. We also show that the mean values of the quantum mechanical position and velocity operators on suitable states, obtained by time evolution of the product of a Weyl operator centred around the large coordinates and momenta and a fixed n-independent wave function, converge to the solution of the classical equations with initial data as h → 0 for a broad class of repulsive interactions

  15. Tailoring of silicon crystals for relativistic-particle channeling

    International Nuclear Information System (INIS)

    Guidi, V.; Antonini, A.; Baricordi, S.; Logallo, F.; Malagu, C.; Milan, E.; Ronzoni, A.; Stefancich, M.; Martinelli, G.; Vomiero, A.

    2005-01-01

    In the last years, the research on channeling of relativistic particles has progressed considerably. A significant contribution has been provided by the development of techniques for quality improvement of the crystals. In particular, a planar etching of the surfaces of the silicon crystals proved useful to remove the superficial layer, which is a region very rich in imperfections, in turn leading to greater channeling efficiency. Micro-fabrication techniques, borrowed from silicon technology, may also be useful: micro-indentation and deposition of tensile or compressive layers onto silicon samples allow one to impart an even curvature to the samples. In this way, different topologies may be envisaged, such as a bent crystal for deflection of protons and ions or an undulator to force coherent oscillations of positrons and electrons

  16. THE EFFECT OF COOLING ON PARTICLE TRAJECTORIES AND ACCELERATION IN RELATIVISTIC MAGNETIC RECONNECTION

    Energy Technology Data Exchange (ETDEWEB)

    Kagan, Daniel; Nakar, Ehud [Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv 69978 (Israel); Piran, Tsvi, E-mail: daniel.kagan@mail.huji.ac.il [Racah Institute of Physics, The Hebrew University, Jerusalem 91904 (Israel)

    2016-12-20

    The maximum synchrotron burnoff limit of 160 MeV represents a fundamental limit to radiation resulting from electromagnetic particle acceleration in one-zone ideal plasmas. In magnetic reconnection, however, particle acceleration and radiation are decoupled because the electric field is larger than the magnetic field in the diffusion region. We carry out two-dimensional particle-in-cell simulations to determine the extent to which magnetic reconnection can produce synchrotron radiation above the burnoff limit. We use the test particle comparison (TPC) method to isolate the effects of cooling by comparing the trajectories and acceleration efficiencies of test particles incident on such a reconnection region with and without cooling them. We find that the cooled and uncooled particle trajectories are typically similar during acceleration in the reconnection region, and derive an effective limit on particle acceleration that is inversely proportional to the average magnetic field experienced by the particle during acceleration. Using the calculated distribution of this average magnetic field as a function of uncooled final particle energy, we find analytically that cooling does not affect power-law particle energy spectra except at energies far above the synchrotron burnoff limit. Finally, we compare fully cooled and uncooled simulations of reconnection, confirming that the synchrotron burnoff limit does not produce a cutoff in the particle energy spectrum. Our results indicate that the TPC method accurately predicts the effects of cooling on particle acceleration in relativistic reconnection, and that, even far above the burnoff limit, the synchrotron energy of radiation produced in reconnection is not limited by cooling.

  17. THE EFFECT OF COOLING ON PARTICLE TRAJECTORIES AND ACCELERATION IN RELATIVISTIC MAGNETIC RECONNECTION

    International Nuclear Information System (INIS)

    Kagan, Daniel; Nakar, Ehud; Piran, Tsvi

    2016-01-01

    The maximum synchrotron burnoff limit of 160 MeV represents a fundamental limit to radiation resulting from electromagnetic particle acceleration in one-zone ideal plasmas. In magnetic reconnection, however, particle acceleration and radiation are decoupled because the electric field is larger than the magnetic field in the diffusion region. We carry out two-dimensional particle-in-cell simulations to determine the extent to which magnetic reconnection can produce synchrotron radiation above the burnoff limit. We use the test particle comparison (TPC) method to isolate the effects of cooling by comparing the trajectories and acceleration efficiencies of test particles incident on such a reconnection region with and without cooling them. We find that the cooled and uncooled particle trajectories are typically similar during acceleration in the reconnection region, and derive an effective limit on particle acceleration that is inversely proportional to the average magnetic field experienced by the particle during acceleration. Using the calculated distribution of this average magnetic field as a function of uncooled final particle energy, we find analytically that cooling does not affect power-law particle energy spectra except at energies far above the synchrotron burnoff limit. Finally, we compare fully cooled and uncooled simulations of reconnection, confirming that the synchrotron burnoff limit does not produce a cutoff in the particle energy spectrum. Our results indicate that the TPC method accurately predicts the effects of cooling on particle acceleration in relativistic reconnection, and that, even far above the burnoff limit, the synchrotron energy of radiation produced in reconnection is not limited by cooling.

  18. On a temporal evolution of the ultra-relativistic electron spectrum by action of synchrotron losses and turbulent acceleration

    International Nuclear Information System (INIS)

    Samsonov, A.M.; Fedorenko, V.N.

    1981-01-01

    The kinetic equation describing temporal evolution of the ultra-relativistic electrons' energy spectrum effected by synchrotron losses and turbulent acceleration is solved for the isotropic part of the electrons' distribution function. The original distribution is assumed to be given in the form of a power spectrum. Turbulence properties are stated by means of the turbulent acceleration coefficient depending on epsilon energy D(epsilon)=D 0 epsilon 3 which is related to the synchrotron losses coefficient b(epsilon)=b 0 epsilon 3 so that the isotropization of the distribution function is provided without essential acceleration of particles. The initial spectrum is conserved up to some values of time t and energy epsilon connected by inequality epsilonb 0 t 0 /D 0 -2 if epsilonD 0 t>>1 and b 0 >>D 0 . Finally, are possible applications of the solution to description of processes in supernova shells and radio galaxies are discussed [ru

  19. Relativistic equation of the orbit of a particle in a arbitrary central force field

    International Nuclear Information System (INIS)

    Aaron, Francisc D.

    2005-01-01

    The equation of the orbit of a relativistic particle moving in an arbitrary central force field is derived. Straightforward generalizations of well-known first and second order differential equations are given. It is pointed out that the relativistic equation of the orbit has the same form as in the non-relativistic case, the only changes consisting in the appearance of additional terms proportional to 1/c 2 in both potential and total energies. (author)

  20. Relativistic particles coupled to Chern-Simons term-revisited

    International Nuclear Information System (INIS)

    Chakraborty, B.

    1995-01-01

    The author considers the model of N relativistic spinless particles coupled to an abelian Chern-Simons term. Rewriting the action in a time reparamaterized form by introducing an arbitary parameter, parameterizing the world line of the particles, the author makes a classical constraint Hamiltonian analysis of the model. Subsequent to gauge fixing by equating the arbitrary parameter with the time the author identifies the Hamiltonian of the system, which agrees with the Hamiltonian obtained by using Banerjee's method of fixing the arbitrary Langrange multiplier by using equations of motion. The author exhibits the Poincare invariance of the model, at the classical level, by constructing spacetime generators using either the canonical or symmetric definition of the energy-momentum tensor. A detailed comparison of the expressions of angular momentum obtained by both methods show that both agree up to a boundary term. In presence of rotationally symmetric vortex configuration this term can be interpreted as an anomalous angular momentum term. The author also heuristically discusses the effect of gauge fixing on the transformation properties. 13 refs

  1. Constraining sources of ultrahigh energy cosmic rays and shear acceleration mechanism of particles in relativistic jets

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Ruoyu

    2015-06-10

    Ultrahigh energy cosmic rays are extreme energetic particles from outer space. They have aroused great interest among scientists for more than fifty years. However, due to the rarity of the events and complexity of the process of their propagation to Earth, they are still one of the biggest puzzles in modern high energy astrophysics. This dissertation is dedicated to study the origin of ultrahigh energy cosmic rays from various aspects. Firstly, we discuss a possible link between recently discovered sub-PeV/PeV neutrinos and ultrahigh energy cosmic rays. If these two kinds of particles share the same origin, the observation of neutrinos may provide additional and non-trivial constraints on the sources of ultrahigh energy cosmic rays. Secondly, we jointly employ the chemical composition measurement and the arrival directions of ultrahigh energy cosmic rays, and find a robust upper limit for distances of sources of ultrahigh energy cosmic rays above ∝55 EeV, as well as a lower limit for their metallicities. Finally, we study the shear acceleration mechanism in relativistic jets, which is a more efficient mechanism for the acceleration of higher energy particle. We compute the acceleration efficiency and the time-dependent particle energy spectrum, and explore the feature of synchrotron radiation of the accelerated particles. The possible realizations of this mechanism for acceleration of ultrahigh energy cosmic rays in different astrophysical environments is also discussed.

  2. Relativistic formulations with Blankenbecler-Sugar reduction technique for the three-particle system

    International Nuclear Information System (INIS)

    Morioka, S.; Afnan, I.R.

    1980-05-01

    A critical comparison for two-types of three-dimensional covariant equations for the three-particle system obtained by the Blankenbecler-Sugar reduction technique with the Whitghtman-Garding momenta and the usual Jacobi variables is presented. The relations between the relativistic and non-relativistic equations in the low energy limit are discussed

  3. All-sky analysis of the general relativistic galaxy power spectrum

    Science.gov (United States)

    Yoo, Jaiyul; Desjacques, Vincent

    2013-07-01

    We perform an all-sky analysis of the general relativistic galaxy power spectrum using the well-developed spherical Fourier decomposition. Spherical Fourier analysis expresses the observed galaxy fluctuation in terms of the spherical harmonics and spherical Bessel functions that are angular and radial eigenfunctions of the Helmholtz equation, providing a natural orthogonal basis for all-sky analysis of the large-scale mode measurements. Accounting for all the relativistic effects in galaxy clustering, we compute the spherical power spectrum and its covariance matrix and compare it to the standard three-dimensional power spectrum to establish a connection. The spherical power spectrum recovers the three-dimensional power spectrum at each wave number k with its angular dependence μk encoded in angular multipole l, and the contributions of the line-of-sight projection to galaxy clustering such as the gravitational lensing effect can be readily accommodated in the spherical Fourier analysis. A complete list of formulas for computing the relativistic spherical galaxy power spectrum is also presented.

  4. Particle Acceleration and Radiative Losses at Relativistic Shocks

    Science.gov (United States)

    Dempsey, P.; Duffy, P.

    A semi-analytic approach to the relativistic transport equation with isotropic diffusion and consistent radiative losses is presented. It is based on the eigenvalue method first introduced in Kirk & Schneider [5]and Heavens & Drury [3]. We demonstrate the pitch-angle dependence of the cut-off in relativistic shocks.

  5. Relativistic particles with rigidity and torsion in D = 3 spacetimes

    International Nuclear Information System (INIS)

    Barros, Manuel; Ferrandez, Angel; Javaloyes, Miguel Angel; Lucas, Pascual

    2005-01-01

    Models describing relativistic particles, where Lagrangian densities depend linearly on both the curvature and the torsion of the trajectories, are revisited in D = 3 Lorentzian spacetimes with constant curvature. The moduli spaces of trajectories are completely and explicitly determined. Trajectories are Lancret curves including ordinary helices. To get the geometric integration of the solutions, we design algorithms that essentially involve the Lancret program as well as the notions of scrolls and Hopf tubes. The most interesting and consistent models appear in anti-de Sitter spaces, where the Hopf mappings, both the standard and the Lorentzian ones, play an important role. The moduli subspaces of closed solitons in anti-de Sitter settings are also obtained. Our main tool is the isoperimetric inequality in the hyperbolic plane. The mass spectra of these models are also obtained. The main characteristic of the anti-de Sitter space comes from the presence of real gravity, which becomes essential to find some system with only massive states. This fact, on one hand, has no equivalent in flat spaces, where spectra necessarily present tachyonic sectors and, on the other hand, solves an early stated problem

  6. Ratchet effect on a relativistic particle driven by external forces

    International Nuclear Information System (INIS)

    Quintero, Niurka R; Alvarez-Nodarse, Renato; Cuesta, Jose A

    2011-01-01

    We study the ratchet effect of a damped relativistic particle driven by both asymmetric temporal bi-harmonic and time-periodic piecewise constant forces. This system can be formally solved for any external force, providing the ratchet velocity as a nonlinear functional of the driving force. This allows us to explicitly illustrate the functional Taylor expansion formalism recently proposed for this kind of systems. The Taylor expansion reveals particularly useful to obtain the shape of the current when the force is periodic, piecewise constant. We also illustrate the somewhat counterintuitive effect that introducing damping may induce a ratchet effect. When the force is symmetric under time-reversal and the system is undamped, under symmetry principles no ratchet effect is possible. In this situation increasing damping generates a ratchet current which, upon increasing the damping coefficient eventually reaches a maximum and decreases toward zero. We argue that this effect is not specific of this example and should appear in any ratchet system with tunable damping driven by a time-reversible external force. (paper)

  7. Ratchet effect on a relativistic particle driven by external forces

    Energy Technology Data Exchange (ETDEWEB)

    Quintero, Niurka R [Departamento de Fisica Aplicada I, Escuela Universitaria Politecnica, Universidad de Sevilla, Calle Virgen de Africa 7, E-41011 Sevilla (Spain); Alvarez-Nodarse, Renato [Departamento de Analisis Matematico, Facultad de Matematicas, Universidad de Sevilla, Apdo 1160, E-41080 Sevilla (Spain); Cuesta, Jose A, E-mail: niurka@us.es, E-mail: ran@us.es, E-mail: cuesta@math.uc3m.es [Grupo Interdisciplinar de Sistemas Complejos (GISC), Departamento de Matematicas, Universidad Carlos III de Madrid, Avenida de la Universidad 30, E-28911 Leganes, Madrid (Spain)

    2011-10-21

    We study the ratchet effect of a damped relativistic particle driven by both asymmetric temporal bi-harmonic and time-periodic piecewise constant forces. This system can be formally solved for any external force, providing the ratchet velocity as a nonlinear functional of the driving force. This allows us to explicitly illustrate the functional Taylor expansion formalism recently proposed for this kind of systems. The Taylor expansion reveals particularly useful to obtain the shape of the current when the force is periodic, piecewise constant. We also illustrate the somewhat counterintuitive effect that introducing damping may induce a ratchet effect. When the force is symmetric under time-reversal and the system is undamped, under symmetry principles no ratchet effect is possible. In this situation increasing damping generates a ratchet current which, upon increasing the damping coefficient eventually reaches a maximum and decreases toward zero. We argue that this effect is not specific of this example and should appear in any ratchet system with tunable damping driven by a time-reversible external force. (paper)

  8. Frame dependence of world lines for directly interacting classical relativistic particles

    International Nuclear Information System (INIS)

    Molotkov, V.V.; Todorov, I.T.

    1979-06-01

    The motion of world lines is studied in the constraint Hamiltonian formulation of relativistic point particle dynamics. The particle world lines are shown to depend, in general (in the presence of interaction) on the choice of the equal time hyperplane (the only exception being the elastic scattering of rigid balls). However, the relative motion of a 2-particle system and the (classical) S-matrix are independent of this choice. This inferred that particle trajectories should not be regarded as frame independent observables in the classical theory of relativistic particles. (author)

  9. On the mass spectrum of particles

    International Nuclear Information System (INIS)

    Sajo, Istvan

    1983-01-01

    An eigenvalue formula of general validity was developed with correct mathematical methods from measured data of the stationary mass and self-energy of stationary particles; this is able to generate universally the mass of particles belonging to any class or group, i.e. to produce the spectra of particles with a stationary mass surpassing that of the electron. The author shows that this eigenvalue formula can be produced as the produc t of several partial formulae which, separately, are not more complicated than that developed by Balmer from data measured on the spectrum of the hydrogen atom. The validity of the first version of the formulae was checked for many particles discovered subsequently. The results are published in detail in the present paper, together with the method of development of the universal eigenvalue formula generating the mass spectrum of elementary particles. The formulae describing the discrete energy levels of the particles can be extended by considering the theory of special relativity, also to the mass of moving particles proportional with their inertia. (author)

  10. Relativistic corrections to one-particle neutron levels in the harmonic oscillator well

    International Nuclear Information System (INIS)

    Yanavichyus, A.I.

    1983-01-01

    Relativistic corrections to mass and potential energy for one-particle levels in the harmonic oscillator well are calculated in the first approximation of the perturbation theory. These corrections are, mainly negliqible, but they sharply increase with growth of the head and orbital quantum numbers. For the state 1s the relativistic correction is of the order of 0.01 MeV, and for 3p it is equal to 0.4 MeV. Thus, the relativistic correction for certain states approaches the energy of spin-orbital interactions and it should be taken into account in calculating the energy of one-particle levels

  11. A search for relativistic particles with fractional electric charge at the Cern collider

    DEFF Research Database (Denmark)

    Banner, M.; Kofoed-Hansen, O.

    1983-01-01

    A search for relativistic particles with fractional electric charge has been performed at the CERN collider using a telescope of scintillation counters to detect particles with abnormally low ionisation. The thickness of the detector (40 gr cm−2) limits this search to particles without strong...

  12. Motion of the relativistic charged particle in an axisymmetric toroidal system

    Energy Technology Data Exchange (ETDEWEB)

    Chiyoda, K; Sugimoto, H [Electrotechnical Labs., Sakura, Ibaraki (Japan)

    1980-01-01

    The relativistic theory of motion of one particle by Morozov and Solov'ev is summarized for convenience of the present study. Then, a drift equation is given and four constants of motion, E/sub 0/, J perpendicular, J and J parallel, are obtained. These constants of motion are used in analyzing the particle motion in an axisymmetric toroidal system. The displacement of the particle from the magnetic surface, ..delta..r, and the period of the banana motion, tau, are obtained. The relativistic expressions of the displacement, ..delta..r, and the period, tau, are obtained by multiplying the corresponding nonrelativistic expressions by (1 - v parallel/sup 2//c/sup 2/) - 1/2, where the relativistic expression of ..delta..r includes the relativistic mass in terms of Larmor radius r/sub L/.

  13. Two-spinor description of massive particles and relativistic spin projection operators

    Directory of Open Access Journals (Sweden)

    A.P. Isaev

    2018-04-01

    Full Text Available On the basis of the Wigner unitary representations of the covering group ISL(2,C of the Poincaré group, we obtain spin-tensor wave functions of free massive particles with arbitrary spin. The wave functions automatically satisfy the Dirac–Pauli–Fierz equations. In the framework of the two-spinor formalism we construct spin-vectors of polarizations and obtain conditions that fix the corresponding relativistic spin projection operators (Behrends–Fronsdal projection operators. With the help of these conditions we find explicit expressions for relativistic spin projection operators for integer spins (Behrends–Fronsdal projection operators and then find relativistic spin projection operators for half integer spins. These projection operators determine the numerators in the propagators of fields of relativistic particles. We deduce generalizations of the Behrends–Fronsdal projection operators for arbitrary space–time dimensions D>2.

  14. Two-spinor description of massive particles and relativistic spin projection operators

    Science.gov (United States)

    Isaev, A. P.; Podoinitsyn, M. A.

    2018-04-01

    On the basis of the Wigner unitary representations of the covering group ISL (2 , C) of the Poincaré group, we obtain spin-tensor wave functions of free massive particles with arbitrary spin. The wave functions automatically satisfy the Dirac-Pauli-Fierz equations. In the framework of the two-spinor formalism we construct spin-vectors of polarizations and obtain conditions that fix the corresponding relativistic spin projection operators (Behrends-Fronsdal projection operators). With the help of these conditions we find explicit expressions for relativistic spin projection operators for integer spins (Behrends-Fronsdal projection operators) and then find relativistic spin projection operators for half integer spins. These projection operators determine the numerators in the propagators of fields of relativistic particles. We deduce generalizations of the Behrends-Fronsdal projection operators for arbitrary space-time dimensions D > 2.

  15. Energy spectrum of Compton scattering of laser photons on relativistic electrons

    International Nuclear Information System (INIS)

    Ando, Hiroaki; Yoneda, Yasuharu

    1976-01-01

    The high energy photons in gamma-ray region are obtainable by the Compton scattering of laser photons on relativistic electrons. But the motion of the electrons in the storage ring is not necessarily uniform. In the study of the uneven effect, the energy distribution of scattered photons is derived from the assumed momentum distribution of incident electrons. It is generally impossible to derive the momentum distribution of incident electrons from the energy spectrum of scattered photons. The additional conditions which make this possible in a special case are considered. A calculational method is examined for deriving the energy spectrum of scattered photons from the assumed momentum distribution of incident electrons. (Mori, K.)

  16. Quantum mechanics of relativistic particles in multiply connected spaces and the Aharonov-Bohm effect

    International Nuclear Information System (INIS)

    Gamboa, J.; Rivelles, V.O.

    1990-04-01

    We consider the motion of free relativistic particles in multiply connected spaces. We show that if one of the spatial dimensions has the topology of a circle then the D dimensional spacetime is compactified to D-1 dimensions and the particle mass increases by an amount which is proportional to a quantum phase factor and inversely proportional to the radius of the circle. We also consider the relativistic Aharonov-Bohm effect and we show that the interference pattern is a universal characteristic due only to the topological properties of the experimental situation and not to the intrinsic properties of the particle. The propagators are calculated in both situations. (author) [pt

  17. Radiation reaction for the classical relativistic spinning particle in scalar, tensor and linearized gravitational fields

    International Nuclear Information System (INIS)

    Barut, A.O.; Cruz, M.G.

    1992-08-01

    We use the method of analytic continuation of the equation of motion including the self-fields to evaluate the radiation reaction for a classical relativistic spinning point particle in interaction with scalar, tensor and linearized gravitational fields in flat spacetime. In the limit these equations reduce to those of spinless particles. We also show the renormalizability of these theories. (author). 10 refs

  18. Infinite stochastic acceleration of charged particles from non-relativistic initial energies

    International Nuclear Information System (INIS)

    Buts, V.A.; Manujlenko, O.V.; Turkin, Yu.A.

    1997-01-01

    Stochastic charged particle acceleration by electro-magnetic field due to overlapping of non-linear cyclotron resonances is considered. It was shown that non-relativistic charged particles are involved in infinitive stochastic acceleration regime. This effect can be used for stochastic acceleration or for plasma heating by regular electro-magnetic fields

  19. Relativistic Equations for Spin Particles: What can We Learn from Noncommutativity?

    International Nuclear Information System (INIS)

    Dvoeglazov, V. V.

    2009-01-01

    We derive relativistic equations for charged and neutral spin particles. The approach for higher-spin particles is based on generalizations of the Bargmann-Wigner formalism. Next, we study, what new physical information can give the introduction of non-commutativity. Additional non-commutative parameters can provide a suitable basis for explanation of the origin of mass.

  20. Classical relativistic spinning particle with anomalous magnetic moment: The precession of spin

    International Nuclear Information System (INIS)

    Barut, A.O.; Cruz, M.G.

    1993-05-01

    The theory of classical relativistic spinning particles with c-number internal spinor variables, modelling accurately the Dirac electron, is generalized to particles with anomalous magnetic moments. The equations of motion are derived and the problem of spin precession is discussed and compared with other theories of spin. (author). 32 refs

  1. A Non-Perturbative, Finite Particle Number Approach to Relativistic Scattering Theory

    Energy Technology Data Exchange (ETDEWEB)

    Lindesay, James V

    2001-05-11

    We present integral equations for the scattering amplitudes of three scalar particles, using the Faddeev channel decomposition, which can be readily extended to any finite number of particles of any helicity. The solution of these equations, which have been demonstrated to be calculable, provide a non-perturbative way of obtaining relativistic scattering amplitudes for any finite number of particles that are Lorentz invariant, unitary, cluster decomposable and reduce unambiguously in the non-relativistic limit to the non-relativistic Faddeev equations. The aim of this program is to develop equations which explicitly depend upon physically observable input variables, and do not require ''renormalization'' or ''dressing'' of these parameters to connect them to the boundary states.

  2. Transition in the equilibrium distribution function of relativistic particles.

    Science.gov (United States)

    Mendoza, M; Araújo, N A M; Succi, S; Herrmann, H J

    2012-01-01

    We analyze a transition from single peaked to bimodal velocity distribution in a relativistic fluid under increasing temperature, in contrast with a non-relativistic gas, where only a monotonic broadening of the bell-shaped distribution is observed. Such transition results from the interplay between the raise in thermal energy and the constraint of maximum velocity imposed by the speed of light. We study the Bose-Einstein, the Fermi-Dirac, and the Maxwell-Jüttner distributions, and show that they all exhibit the same qualitative behavior. We characterize the nature of the transition in the framework of critical phenomena and show that it is either continuous or discontinuous, depending on the group velocity. We analyze the transition in one, two, and three dimensions, with special emphasis on twodimensions, for which a possible experiment in graphene, based on the measurement of the Johnson-Nyquist noise, is proposed.

  3. Magnetic resonance phenomena in dynamics of relativistic particles

    International Nuclear Information System (INIS)

    Ternov, I.M.; Bordovitsyn, V.A.

    1987-01-01

    A relativistic generalization of Rabi's formula for magnetic resonance is given. On this basis, we consider fast and slow passage through resonance. We define a magnetic resonance exterior field as usual, using unit vectors of a Cartesian coordinate system, a homogeneous magnetic field, and the amplitude of a rotating magnetic field. For the description of spin dynamics we use the Bargmann-Michel-Telegdi equation

  4. Relativistic acceleration of captured particles by a longitudinal wave in a slightly inhomogeneous plasma

    International Nuclear Information System (INIS)

    Erokhin, N.S.; Zol'nikova, N.N.; Mikhajlovskaya, L.A.

    1991-01-01

    Relativistic acceleration of charged particles, captured by a longitudinal wave in a slightly inhomogeneous plasma without an external magnetic field is considered numerically and analytically. It is shown that with the growth of the plasma inhomogeneity parameter the maximum energy of accelerated captured particles exponentially increases. Attention is paid to the possibility of 'eternal' confinement and, respectively, unlimited acceleration of captured particles by an undamped longitudinal wave in a plasma without a magnetic field

  5. A gauge model describing N relativistic particles bound by linear forces

    International Nuclear Information System (INIS)

    Filippov, A.T.

    1988-01-01

    A relativistic model of N particles bound by linear forces is obtained by applying the gauging procedure to the linear canonical symmteries of a simple (rudimentary) nonrelativistic N-particle Lagrangian extended to relativistic phase space. The new (gauged) Lagrangian is formally Poincare invariant, the Hamiltonian is a linear combination of first-class constraints which are closed with respect to Pisson brackets and generate the localized canonical symmteries. The gauge potentials appear as the Lagrange multipliers of the constraints. Gauge fixing and quantization of the model are also briefly discussed. 11 refs

  6. Radiation of a relativistic particle falling into a black hole

    International Nuclear Information System (INIS)

    Dymnikova, I.G.

    1980-01-01

    The gravitational and electromagnetic radiation emitted by a relativistic test body falling into a black hole at a velocity that is not small compared with the velocity of light is studied. For ω 3 γ 0 /(GM), the spectra of the electromagnetic and gravitational radiation do not depend on the frequency, but for ω > c 3 γ 0 (GM) they fall off exponentially. The total radiated power is proportional to γ 0 1n γ 0 and γ 3 0 , respectively, for the electromagnetic and gravitational radiation

  7. Gravitational radiation from the radial infall of highly relativistic point particles into Kerr black holes

    International Nuclear Information System (INIS)

    Cardoso, Vitor; Lemos, Jose P.S.

    2003-01-01

    In this paper, we consider the gravitational radiation generated by the collision of highly relativistic particles with rotating Kerr black holes. We use the Sasaki-Nakamura formalism to compute the waveform, energy spectra, and total energy radiated during this process. We show that the gravitational spectrum for high-energy collisions has definite characteristic universal features, which are independent of the spin of the colliding objects. We also discuss the possible connections between these results and black-hole-black-hole collisions at the speed of light. Our results show that during the high-speed collision of a nonrotating hole with a rotating one, at most 35% of the total energy can get converted into gravitational waves. This 35% efficiency occurs only in the most optimistic situation, that of a zero impact parameter collision, along the equatorial plane, with an almost extreme Kerr black hole. In the general situation, the total gravitational energy radiated is expected to be much less, especially if the impact parameter increases. Thus, if one is able to produce black holes at the CERN Large Hadron Collider, at most 35% of the partons' energy should be emitted during the so-called balding phase. This energy will be missing, since we do not have gravitational wave detectors able to measure such amplitudes. The collision at the speed of light between one rotating black hole and a nonrotating one or two rotating black holes turns out to be the most efficient gravitational wave generator in the Universe

  8. Form factor of relativistic two-particle system and covariant hamiltonian formulation of quantum field theory

    International Nuclear Information System (INIS)

    Skachkov, N.; Solovtsov, I.

    1979-01-01

    Based on the hamiltonian formulation of quantum field theory proposed by Kadyshevsky the three-dimensional relativistic approach is developed for describing the form factors of composite systems. The main features of the diagram technique appearing in the covariant hamiltonian formulation of field theory are discussed. The three-dimensional relativistic equation for the vertex function is derived and its connection with that for the quasipotential wave function is found. The expressions are obtained for the form factor of the system through equal-time two-particle wave functions both in momentum and relativistic configurational representations. An explicit expression for the form factor is found for the case of two-particle interaction through the Coulomb potential

  9. General relativistic variation formalism for a probe particle with momenta

    Energy Technology Data Exchange (ETDEWEB)

    Minkevich, A V; Sokol' skii, A A [Belorusskij Gosudarstvennyj Univ., Minsk

    1975-01-01

    On the basis of a model of an oriental particle a variational formalism was developed for a rotating test particle having momenta and moving in inhomogeneous space-time: the Lagrange equations for translational and rotational motion were obtained, and a metric pulse energy tensor was found. The formalism applies to a charged rotating particle with an electrical and a magnetic moment and a rotating particle in space with curvature and torsion.

  10. General relativistic variation formalism for a probe particle with momenta

    International Nuclear Information System (INIS)

    Minkevich, A.V.; Sokol'skij, A.A.

    1975-01-01

    On the basis of a model of an oriental particle a variational formalism was developed for a rotating test particle having momenta and moving in inhomogeneous space-time: the Lagrange equations for translational and rotational motion were obtained, and a metric pulse energy tensor was found. The formalism applies to a charged rotating particle with an electrical and a magnetic moment and a rotating particle in space with curvature and torsion. (author)

  11. Relativistic particle dynamics: Lagrangian proof of the no-interaction theorem

    International Nuclear Information System (INIS)

    Marmo, G.; Mukunda, N.; Sudarshan, E.C.G.

    1983-11-01

    An economical proof is given, in the Lagrangian framework, of the No Interaction Theorem of relativistic particle mechanics. It is based on the assumption that there is a Lagrangian, which if singular is allowed to lead at most to primary first class constraints. The proof works with Lagrange rather than Poisson brackets, leading to considerable simplifications compared to other proofs

  12. On the model of the relativistic particle with curvature and torsion

    International Nuclear Information System (INIS)

    Nesterenko, V.V.

    1992-01-01

    Two integrals along the world trajectory of its curvature and torsion are added to the standard action for the point-like spinless relativistic particle. This enables one to quantize the model canonically and to derive exactly the relation between the spin and mass of the states. 10 refs

  13. Particle Acceleration, Magnetic Field Generation, and Emission in Relativistic Pair Jets

    Science.gov (United States)

    Nishikawa, K.-I.; Ramirez-Ruiz, E.; Hardee, P.; Hededal, C.; Mizuno, Y.

    2005-01-01

    Shock acceleration is a ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., the Buneman instability, two-streaming instability, and the Weibel instability) created by relativistic pair jets are responsible for particle (electron, positron, and ion) acceleration. Using a 3-D relativistic electromagnetic particle (REMP) code, we have investigated particle acceleration associated with a relativistic jet propagating through an ambient plasma with and without initial magnetic fields. The growth rates of the Weibel instability depends on the distribution of pair jets. Simulations show that the Weibel instability created in the collisionless shock accelerates particles perpendicular and parallel to the jet propagation direction. The simulation results show that this instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields, which contribute to the electron's transverse deflection behind the jet head. The "jitter" radiation from deflected electrons has different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants.

  14. Cooling and focusing of a relativistic charged particle beam in crossed laser field

    International Nuclear Information System (INIS)

    Li Fuli

    1987-01-01

    A new method to focus a relativistic charged particle beam is suggested and studied. This idea is based on the use of the ponderomotive force which arises when a periodic electromagnetic field is created, as in the case of two crossed laser beams. (author)

  15. Particle identification with the OPAL jet chamber in the region of the relativistic rise

    Energy Technology Data Exchange (ETDEWEB)

    Breuker, H; Fischer, H M; Hauschild, M; Hartmann, H; Wuensch, B; Boerner, H; Burckhart, H J; Dittmar, M; Hammarstroem, R; Heuer, R D

    1987-10-15

    An important goal of the OPAL jet chamber is particle identification at high momenta by exploiting the relativistic rise of the energy loss. Extensive tests have been performed with the full scale prototype of the OPAL jet chamber to measure the energy loss in an argon-methane-isobutane mixture as function of momentum and particle species. The measurements were done under various operating conditions in order to optimise the operationg point, to investigate sources of systematic errors, to monitor the stability of the energy loss measurement and to develop calibration procedures. The particle separation capability in the region of relativistic rise has been studied at gas pressures of 3 and 4 bar. The adopted operation point represents a reasonable compromise between the requirements for particle identification and tracking accuracy.

  16. Non-thermal particle acceleration in collisionless relativistic electron-proton reconnection

    Science.gov (United States)

    Werner, G. R.; Uzdensky, D. A.; Begelman, M. C.; Cerutti, B.; Nalewajko, K.

    2018-02-01

    Magnetic reconnection in relativistic collisionless plasmas can accelerate particles and power high-energy emission in various astrophysical systems. Whereas most previous studies focused on relativistic reconnection in pair plasmas, less attention has been paid to electron-ion plasma reconnection, expected in black hole accretion flows and relativistic jets. We report a comprehensive particle-in-cell numerical investigation of reconnection in an electron-ion plasma, spanning a wide range of ambient ion magnetizations σi, from the semirelativistic regime (ultrarelativistic electrons but non-relativistic ions, 10-3 ≪ σi ≪ 1) to the fully relativistic regime (both species are ultrarelativistic, σi ≫ 1). We investigate how the reconnection rate, electron and ion plasma flows, electric and magnetic field structures, electron/ion energy partitioning, and non-thermal particle acceleration depend on σi. Our key findings are: (1) the reconnection rate is about 0.1 of the Alfvénic rate across all regimes; (2) electrons can form concentrated moderately relativistic outflows even in the semirelativistic, small-σi regime; (3) while the released magnetic energy is partitioned equally between electrons and ions in the ultrarelativistic limit, the electron energy fraction declines gradually with decreased σi and asymptotes to about 0.25 in the semirelativistic regime; and (4) reconnection leads to efficient non-thermal electron acceleration with a σi-dependent power-law index, p(σ _i)˜eq const+0.7σ _i^{-1/2}. These findings are important for understanding black hole systems and lend support to semirelativistic reconnection models for powering non-thermal emission in blazar jets, offering a natural explanation for the spectral indices observed in these systems.

  17. New relativistic particle-in-cell simulation studies of prompt and early afterglows from GRBs

    International Nuclear Information System (INIS)

    Ken-Ichi Nishikawa

    2008-01-01

    Nonthermal radiation observed from astrophysical systems containing relativistic jets and shocks, e.g., gamma-ray bursts (GRBs), active galactic nuclei (AGNs), and Galactic microquasar systems usually have power-law emission spectra. Recent PIC simulations of relativistic electron-ion (electro-positron) jets injected into a stationary medium show that particle acceleration occurs within the downstream jet. In the collisionless relativistic shock particle acceleration is due to plasma waves and their associated instabilities (e.g., the Buneman instability, other two-streaming instability, and the Weibel (filamentation) instability) created in the shocks are responsible for particle (electron, positron, and ion) acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields. These magnetic fields contribute to the electrons' transverse deflection behind the jet head. The '' jitter '' radiation from deflected electrons has different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants. (author)

  18. Relativistic wave equations for particles in electromagnetic fields

    International Nuclear Information System (INIS)

    Good, R.H. Jr.

    1989-01-01

    A new type of generalization of the Dirac equation of higher spin particles and antiparticles is given, in case only the terms proportional to the external fields need to be retained. copyright 1989 Academic Press, Inc

  19. A relativistic colored spinning particle in an external color field

    International Nuclear Information System (INIS)

    Heinz, U.

    1984-01-01

    I derive fully covariant equations of motion for a classical colored spinning particle in an external SU(3) color field. Although the total color charge and total spin of the particle are found to be separately constants of motion (here I disagree with a recent paper by Arodz), the dynamics of the orientation of the color and spin vectors are coupled to each other through interaction with the color field, even if the latter is homogeneous. (orig.)

  20. Formation of hard power laws in the energetic particle spectra resulting from relativistic magnetic reconnection.

    Science.gov (United States)

    Guo, Fan; Li, Hui; Daughton, William; Liu, Yi-Hsin

    2014-10-10

    Using fully kinetic simulations, we demonstrate that magnetic reconnection in relativistic plasmas is highly efficient at accelerating particles through a first-order Fermi process resulting from the curvature drift of particles in the direction of the electric field induced by the relativistic flows. This mechanism gives rise to the formation of hard power-law spectra in parameter regimes where the energy density in the reconnecting field exceeds the rest mass energy density σ ≡ B(2)/(4πnm(e)c(2))>1 and when the system size is sufficiently large. In the limit σ ≫ 1, the spectral index approaches p = 1 and most of the available energy is converted into nonthermal particles. A simple analytic model is proposed which explains these key features and predicts a general condition under which hard power-law spectra will be generated from magnetic reconnection.

  1. Explicit symplectic algorithms based on generating functions for relativistic charged particle dynamics in time-dependent electromagnetic field

    Science.gov (United States)

    Zhang, Ruili; Wang, Yulei; He, Yang; Xiao, Jianyuan; Liu, Jian; Qin, Hong; Tang, Yifa

    2018-02-01

    Relativistic dynamics of a charged particle in time-dependent electromagnetic fields has theoretical significance and a wide range of applications. The numerical simulation of relativistic dynamics is often multi-scale and requires accurate long-term numerical simulations. Therefore, explicit symplectic algorithms are much more preferable than non-symplectic methods and implicit symplectic algorithms. In this paper, we employ the proper time and express the Hamiltonian as the sum of exactly solvable terms and product-separable terms in space-time coordinates. Then, we give the explicit symplectic algorithms based on the generating functions of orders 2 and 3 for relativistic dynamics of a charged particle. The methodology is not new, which has been applied to non-relativistic dynamics of charged particles, but the algorithm for relativistic dynamics has much significance in practical simulations, such as the secular simulation of runaway electrons in tokamaks.

  2. CHARGED PARTICLE MULTIPLICITIES IN ULTRA-RELATIVISTIC AU+AU AND CU+CU COLLISIONS

    Science.gov (United States)

    Back, B. B.; Alver, B.; Back, B. B.; Baker, M. D.; Ballintijn, M.; Barton, D. S.; Betts, R. R.; Bickley, A. A.; Bindel, R.; Busza, W.; Carroll, A.; Chai, Z.; Chetluru, V.; Decowski, M. P.; Garcia, E.; Gburek, T.; George, N.; Gulbrandsen, K.; Halliwell, C.; Hamblen, J.; Harnarine, I.; Hauer, M.; Henderson, C.; Hofman, D. J.; Hollis, R. S.; Holynski, R.; Holzman, B.; Iordanova, A.; Johnson, E.; Kane, J. L.; Khan, N.; Kulinich, P.; Kuo, C. M.; Li, W.; Lin, W. T.; Loizides, C.; Manly, S.; Mignerey, A. C.; Nouicer, R.; Olszewski, A.; Pak, R.; Reed, C.; Richardson, E.; Roland, C.; Roland, G.; Sagerer, J.; Seals, H.; Sedykh, I.; Smith, C. E.; Stankiewicz, M. A.; Steinberg, P.; Stephans, G. S. F.; Sukhanov, A.; Szostak, A.; Tonjes, M. B.; Trzupek, A.; Vale, C.; Vannieuwenhuizen, G. J.; Vaurynovich, S. S.; Verdier, R.; Veres, G. I.; Walters, P.; Wenger, E.; Willhelm, D.; Wolfs, F. L. H.; Wosiek, B.; Wozniak, K.; Wyngaardt, S.; Wyslouch, B.

    The PHOBOS collaboration has carried out a systematic study of charged particle multiplicities in Cu+Cu and Au+Au collisions at the Relativistic Heavy-Ion Collider (RHIC) at Brookhaven National Laboratory. A unique feature of the PHOBOS detector is its ability to measure charged particles over a very wide angular range from 0.5° to 179.5° corresponding to |η| <5.4. The general features of the charged particle multiplicity distributions as a function of pseudo-rapidity, collision energy and centrality, as well as system size, are discussed.

  3. Relativistic particles with spin and antisymmetric tensor fields

    International Nuclear Information System (INIS)

    Sandoval Junior, L.

    1990-09-01

    A study is made on antisymmetric tensor fields particularly on second order tensor field as far as his equivalence to other fields and quantization through the path integral are concerned. Also, a particle model is studied which has been recently proposed and reveals to be equivalent to antisymmetric tensor fields of any order. (L.C.J.A.)

  4. Delocalization of Relativistic Dirac Particles in Disordered One-Dimensional Systems and Its Implementation with Cold Atoms

    International Nuclear Information System (INIS)

    Zhu Shiliang; Zhang Danwei; Wang, Z. D.

    2009-01-01

    We study theoretically the localization of relativistic particles in disordered one-dimensional chains. It is found that the relativistic particles tend to delocalization in comparison with the nonrelativistic particles with the same disorder strength. More intriguingly, we reveal that the massless Dirac particles are entirely delocalized for any energy due to the inherent chiral symmetry, leading to a well-known result that particles are always localized in one-dimensional systems for arbitrary weak disorders to break down. Furthermore, we propose a feasible scheme to detect the delocalization feature of the Dirac particles with cold atoms in a light-induced gauge field.

  5. The full-sky relativistic correlation function and power spectrum of galaxy number counts. Part I: theoretical aspects

    Science.gov (United States)

    Tansella, Vittorio; Bonvin, Camille; Durrer, Ruth; Ghosh, Basundhara; Sellentin, Elena

    2018-03-01

    We derive an exact expression for the correlation function in redshift shells including all the relativistic contributions. This expression, which does not rely on the distant-observer or flat-sky approximation, is valid at all scales and includes both local relativistic corrections and integrated contributions, like gravitational lensing. We present two methods to calculate this correlation function, one which makes use of the angular power spectrum Cl(z1,z2) and a second method which evades the costly calculations of the angular power spectra. The correlation function is then used to define the power spectrum as its Fourier transform. In this work theoretical aspects of this procedure are presented, together with quantitative examples. In particular, we show that gravitational lensing modifies the multipoles of the correlation function and of the power spectrum by a few percent at redshift z=1 and by up to 30% and more at z=2. We also point out that large-scale relativistic effects and wide-angle corrections generate contributions of the same order of magnitude and have consequently to be treated in conjunction. These corrections are particularly important at small redshift, z=0.1, where they can reach 10%. This means in particular that a flat-sky treatment of relativistic effects, using for example the power spectrum, is not consistent.

  6. Auroral kilometric radiation - An example of relativistic wave-particle interaction in geoplasma

    International Nuclear Information System (INIS)

    Pritchett, P.L.

    1990-01-01

    The earth's auroral kilometric radiation (AKR) is believed to be produced by the electron-cyclotron maser instability. This instability is the result of a wave-particle interaction in which relativistic effects are crucial. An explanation is given as to how these relativistic effects alter the shape of the resonance curve in velocity space and modify the R - X mode wave dispersion near the electron cyclotron frequency compared to the results obtained in the nonrelativistic limit and from cold-plasma theory. The properties of the cyclotron maser instability in a driven system are illustrated using two-dimensional electromagnetic particle simulations which incorporate a continual flow of primary energetic electrons along the magnetic field. 31 refs

  7. Fast detector for triggering on charged particle multiplicity for relativistic nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Agakishiev, G.; Man'yakov, P.K.; Drees, A.

    1997-01-01

    The simple and fast detector of charged particle multiplicity for relativistic nucleus-nucleus collision studies is performed. The multiplicity detector has been designed for the first level trigger of the CERES/NA45 experiment to study Pb-Au collisions at CERN SPS energies. The detector has allowed a realization of the 40 ns trigger for selection of events with definite impact parameter. The construction, operation characteristics, method of calibration, and testing results are described in detail

  8. Self-modulated dynamics of a relativistic charged particle beam in plasma wake field excitation

    Energy Technology Data Exchange (ETDEWEB)

    Akhter, T.; Fedele, R. [Dipartimento di Fisica ‘Ettore Pancini’, Università di Napoli Federico II and INFN Sezione di Napoli, Napoli (Italy); Nicola, S. De [CNR-SPIN and INFN Sezione di Napoli, Napoli (Italy); Tanjia, F. [Dipartimento di Fisica ‘Ettore Pancini’, Università di Napoli Federico II and INFN Sezione di Napoli, Napoli (Italy); Jovanović, D. [Institute of Physics, University of Belgrade, Belgrade (Serbia); Mannan, A. [Department of Physics, Jahangirnagar University, Savar, Dhaka (Bangladesh)

    2016-09-01

    The self-modulated dynamics of a relativistic charged particle beam is provided within the context of the theory of plasma wake field excitation. The self-consistent description of the beam dynamics is provided by coupling the Vlasov equation with a Poisson-type equation relating the plasma wake potential to the beam density. An analysis of the beam envelope self-modulation is then carried out and the criteria for the occurrence of the instability are discussed thereby.

  9. Dynamics of the relativistic acceleration of charged particles in space plasma while surfing the package electromagnetic waves

    International Nuclear Information System (INIS)

    Erokhin, N.S.; Zol'nikova, N.N.; Kuznetsov, E.A.; Mikhajlovskaya, L.A.

    2010-01-01

    Based on numerical calculations considered the relativistic acceleration of charged particles in space plasma when surfing on the spatially localized package of electromagnetic waves. The problem is reduced to the study of unsteady, nonlinear equation for the wave phase at the carrier frequency at the location of the accelerated charge, which is solved numerically. We study the temporal dynamics of the relativistic factor, the component of momentum and velocity of the particle, its trajectory is given gyro-rotation in an external magnetic field after the departure of the effective potential well. Dependence of the dynamics of a particle interacting with the wave of the sign of the velocity of the charge along the wave front. We formulate the optimal conditions of the relativistic particle acceleration wave packet, indicate the possibility of again (after a number gyro-turnover) charge trapping wave with an additional relativistic acceleration.

  10. On the Relativistic Correction of Particles Trajectory in Tandem Type Electrostatic Accelerator

    Science.gov (United States)

    Minárik, Stanislav

    2015-08-01

    A constant potential is applied to the acceleration of the ion-beam in the tandem type electrostatic accelerator. However, not just one voltage is applied, but instead a number of applications can be made in succession by means of the tandem arrangement of high voltage tubes. This number of voltage applications, which is the number of so-called "stages" of a tandem accelerator, may be two, three, or four, depending on the chosen design. Electrostatic field with approximately constant intensity acts on ions in any stage. In general, non-relativistic dynamics is used for the description of the ion transport in tandem accelerator. Energies of accelerated ions are too low and relativistic effects cannot be commonly observed by standard experimental technique. Estimation of possible relativistic correction of ion trajectories is therefore only a matter of calculation. In this note, we briefly present such calculation. Our aim is to show how using the relativistic dynamics modifies the particles trajectory in tandem type accelerator and what parameters determine this modification.

  11. Scaling of charged particle multiplicity distributions in relativistic nuclear collisions

    International Nuclear Information System (INIS)

    Ahamd, N.; Hushnud; Azmi, M.D.; Zafar, M.; Irfan, M.; Khan, M.M.; Tufail, A.

    2011-01-01

    Validity of KNO scaling in hadron-hadron and hadron-nucleus collisions has been tested by several workers. Multiplicity distributions for p-emulsion interactions are found to be consistent with the KNO scaling hypothesis for pp collisions. The applicability of the scaling law was extended to FNAL energies by earlier workers. Slattery has shown that KNO scaling hypothesis is in fine agreement with the data for pp interactions over a wide range of incident energies. An attempt, is, therefore, made to examine the scaling hypothesis using multiplicity distributions of particles produced in 3.7A GeV/c 16 O-, 4.5A GeV/c and 14.5A GeV/c 28 Si - nucleus interactions

  12. Cosmology as relativistic particle mechanics: from big crunch to big bang

    Energy Technology Data Exchange (ETDEWEB)

    Russo, J G [Institucio Catalana de Recerca i Estudis Avancats, Departament ECM, Facultat de FIsica, Universitat de Barcelona, Diagonal 647, E-08028 Barcelona (Spain); Townsend, P K [Institucio Catalana de Recerca i Estudis Avancats, Departament ECM, Facultat de FIsica, Universitat de Barcelona, Diagonal 647, E-08028 Barcelona (Spain)

    2005-02-21

    Cosmology can be viewed as geodesic motion in an appropriate metric on an 'augmented' target space; here we obtain these geodesics from an effective relativistic particle action. As an application, we find some exact (flat and curved) cosmologies for models with N scalar fields taking values in a hyperbolic target space for which the augmented target space is a Milne universe. The singularities of these cosmologies correspond to points at which the particle trajectory crosses the Milne horizon, suggesting a novel resolution of them, which we explore via the Wheeler-DeWitt equation.

  13. Larmor precession and dwell time of a relativistic particle scattered by a rectangular quantum well

    CERN Document Server

    Li, Z J; Liang, J J; Liang, J Q

    2003-01-01

    The Larmor precession of a relativistic neutral spin particle in a uniform constant magnetic field confined to the region of a one-dimensional rectangular potential well is investigated. The spin precession serves as a clock to measure the time spent by a quantum particle dwelling at a potential well. With the help of a general spin coherent state it is explicitly shown that the spin precession time is equal to the dwell time in the first-order approximation of the infinitesimal field limit. The comparison of the time in a potential well with that in free space shows apparent superluminality.

  14. Draws on a relativistic pinch with a longitudinal magnetic field

    International Nuclear Information System (INIS)

    Trubnikov, B.A.

    1991-01-01

    The problems of draws on a relativistic pinch with longitudinal magnetic field are discussed. The absence of collisions promoting the energy exchange between different degrees of particle freedom is assumed. The calculations are conducted using the ideal relativistic anisotropic magnetic hydrodynamics equations. The spectrum of particles accelerated in the draws, is determined

  15. Application of the model of the relativistic anti-loss-cone distribution to ECE spectrum in discharge applying LH wave

    International Nuclear Information System (INIS)

    Sato, Masayasu; Yokomizo, Hideaki

    1987-11-01

    The electron cyclotron emission (ECE) is dominated from supra-thermal electron in discharge applying LH wave. We obtain informations of supra-thermal electron by applying the model of the relativistic anti-loss-cone distribution to ECE spectrum in the discharge. In this model, the emission perpendicular to the magnetic field are considered. The frequency range is considered to be well above the plasma and electron cyclotron frequencies, thus collective effects can be neglected. The electron distribution is assumed to be anisotropic in the velocity space and strongly extended in the direction parallel to the magnetic field, namely the relativistic anti-loss-cone distribution. The informations of supra-thermal electron are obtained by the following way. The temperature and density of the supra-thermal electron and the anti-loss-cone angle are obtained from the power spectrum of LH wave launched, the measured slope of the spectrum of ECE and the spectral radiance of ECE. (author)

  16. Reinterpretation of the ''relativistic mass'' correction to the spin magnetic moment of a moving particle

    International Nuclear Information System (INIS)

    Hegstrom, R.A.; Lhuillier, C.

    1977-01-01

    Starting from a classical covariant equation of motion for the spin of a particle moving in a homogeneous electromagnetic field (the Bargmann-Michel-Telegdi equation), we show that the ''relativistic mass'' correction to the electron spin magnetic moment, which has been obtained previously from relativistic quantum-mechanical treatments of the Zeeman effect, may be reinterpreted as the combination of three classical effects: (i) the difference in time scales in the electron rest frame vis-a-vis the lab frame, (ii) the Lorentz transformation of the magnetic field between the two frames, and (iii) the Thomas precession of the electron spin due to the acceleration of the electron produced by the magnetic field

  17. Relativistic two-body equation for one Dirac and one Duffin-Kemmer particle

    International Nuclear Information System (INIS)

    Krolikowski, W.

    1983-01-01

    A new relativistic two-body wave equation is proposed for one spin-1/2 and one spin-0 or spin-1 particle which, if isolated from each other, are described by the Dirac and the Duffin-Kemmer equation, respectively. For a static mutual interaction this equation splits into two equations: a two-body wave equation for one Dirac and one Klein-Gordon particle (which was introduced by the author previously) and a new two-body wave equation for one Dirac and one Proca particle. The proposed equation may be applied in particular to the quark-diquark system. In Appendix, however, an alternative approach is sketched, where the diquark is described as the point limit of a very close Breit system rather than a Duffin-Kemmer particle. (Author)

  18. SHARP: A Spatially Higher-order, Relativistic Particle-in-cell Code

    Energy Technology Data Exchange (ETDEWEB)

    Shalaby, Mohamad; Broderick, Avery E. [Department of Physics and Astronomy, University of Waterloo, 200 University Avenue West, Waterloo, ON, N2L 3G1 (Canada); Chang, Philip [Department of Physics, University of Wisconsin-Milwaukee, 1900 E. Kenwood Boulevard, Milwaukee, WI 53211 (United States); Pfrommer, Christoph [Leibniz-Institut für Astrophysik Potsdam (AIP), An der Sternwarte 16, D-14482 Potsdam (Germany); Lamberts, Astrid [Theoretical Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States); Puchwein, Ewald, E-mail: mshalaby@live.ca [Institute of Astronomy and Kavli Institute for Cosmology, University of Cambridge, Madingley Road, Cambridge, CB3 0HA (United Kingdom)

    2017-05-20

    Numerical heating in particle-in-cell (PIC) codes currently precludes the accurate simulation of cold, relativistic plasma over long periods, severely limiting their applications in astrophysical environments. We present a spatially higher-order accurate relativistic PIC algorithm in one spatial dimension, which conserves charge and momentum exactly. We utilize the smoothness implied by the usage of higher-order interpolation functions to achieve a spatially higher-order accurate algorithm (up to the fifth order). We validate our algorithm against several test problems—thermal stability of stationary plasma, stability of linear plasma waves, and two-stream instability in the relativistic and non-relativistic regimes. Comparing our simulations to exact solutions of the dispersion relations, we demonstrate that SHARP can quantitatively reproduce important kinetic features of the linear regime. Our simulations have a superior ability to control energy non-conservation and avoid numerical heating in comparison to common second-order schemes. We provide a natural definition for convergence of a general PIC algorithm: the complement of physical modes captured by the simulation, i.e., those that lie above the Poisson noise, must grow commensurately with the resolution. This implies that it is necessary to simultaneously increase the number of particles per cell and decrease the cell size. We demonstrate that traditional ways for testing for convergence fail, leading to plateauing of the energy error. This new PIC code enables us to faithfully study the long-term evolution of plasma problems that require absolute control of the energy and momentum conservation.

  19. Superluminal tunneling of a relativistic half-integer spin particle through a potential barrier

    Directory of Open Access Journals (Sweden)

    Nanni Luca

    2017-11-01

    Full Text Available This paper investigates the problem of a relativistic Dirac half-integer spin free particle tunneling through a rectangular quantum-mechanical barrier. If the energy difference between the barrier and the particle is positive, and the barrier width is large enough, there is proof that the tunneling may be superluminal. For first spinor components of particle and antiparticle states, the tunneling is always superluminal regardless the barrier width. Conversely, the second spinor components of particle and antiparticle states may be either subluminal or superluminal depending on the barrier width. These results derive from studying the tunneling time in terms of phase time. For the first spinor components of particle and antiparticle states, it is always negative while for the second spinor components of particle and antiparticle states, it is always positive, whatever the height and width of the barrier. In total, the tunneling time always remains positive for particle states while it becomes negative for antiparticle ones. Furthermore, the phase time tends to zero, increasing the potential barrier both for particle and antiparticle states. This agrees with the interpretation of quantum tunneling that the Heisenberg uncertainty principle provides. This study’s results are innovative with respect to those available in the literature. Moreover, they show that the superluminal behaviour of particles occurs in those processes with high-energy confinement.

  20. Nonthermal Particle Acceleration in 3D Relativistic Magnetic Reconnection in Pair Plasma

    Energy Technology Data Exchange (ETDEWEB)

    Werner, Gregory R.; Uzdensky, Dmitri A., E-mail: Greg.Werner@colorado.edu [Center for Integrated Plasma Studies, Physics Department, University of Colorado, 390 UCB, Boulder, CO 80309 (United States)

    2017-07-10

    As a fundamental process converting magnetic to plasma energy in high-energy astrophysical plasmas, relativistic magnetic reconnection is a leading explanation for the acceleration of particles to the ultrarelativistic energies that are necessary to power nonthermal emission (especially X-rays and gamma-rays) in pulsar magnetospheres and pulsar wind nebulae, coronae and jets of accreting black holes, and gamma-ray bursts. An important objective of plasma astrophysics is therefore the characterization of nonthermal particle acceleration (NTPA) effected by reconnection. Reconnection-powered NTPA has been demonstrated over a wide range of physical conditions using large 2D kinetic simulations. However, its robustness in realistic 3D reconnection—in particular, whether the 3D relativistic drift-kink instability (RDKI) disrupts NTPA—has not been systematically investigated, although pioneering 3D simulations have observed NTPA in isolated cases. Here, we present the first comprehensive study of NTPA in 3D relativistic reconnection in collisionless electron–positron plasmas, characterizing NTPA as the strength of 3D effects is varied systematically via the length in the third dimension and the strength of the guide magnetic field. We find that, while the RDKI prominently perturbs 3D reconnecting current sheets, it does not suppress particle acceleration, even for zero guide field; fully 3D reconnection robustly and efficiently produces nonthermal power-law particle spectra closely resembling those obtained in 2D. This finding provides strong support for reconnection as the key mechanism powering high-energy flares in various astrophysical systems. We also show that strong guide fields significantly inhibit NTPA, slowing reconnection and limiting the energy available for plasma energization, yielding steeper and shorter power-law spectra.

  1. Study of the equations of a particle in Non- Relativistic Quantum Mechanics

    International Nuclear Information System (INIS)

    Miltao, Milton Souza Ribeiro; Silva, Vanessa Santos Teles da

    2011-01-01

    Full text: The study of group theory is relevant to the treatment of physical problems, in which concepts of invariance and symmetry are important. In the field of Non-Relativistic Quantum Mechanics, we can do algebraic considerations taking into account the principles of symmetry, considering the framework of the study of Galileo transformations, which have characteristics of group. Therefore, we discuss the Stern-Gerlach experiment that had the historical importance of demonstrating that the electron has an intrinsic angular momentum. Through discussion of this experiment, we found that the spin appears in Non-Relativistic Quantum Mechanics as a feature of the algebraic structure underlying any physical theory represented by a group. From these studies, we have algebraic considerations for physical systems in non-relativistic domain, which are described by the Schroedinger and Pauli equations, describing the dynamics of particles of spin zero and 1/2 respectively, taking into account the structure of the transformations Galileo. Due to the operatorial, we represent Galileo's transformations by matrices by choosing an appropriate basis of space-time. Using these arrays, we saw group characteristics associated with these transformations, which we call the Galileo Group. We note the invariance of the Schroedinger and Pauli equations after these changes, as well as the physical state associated with it, which is represented by a radius vector in Hilbert space. (author)

  2. The connection of two-particle relativistic quantum mechanics with the Bethe-Salpeter equation

    International Nuclear Information System (INIS)

    Sazdjian, H.

    1986-02-01

    We show the formal equivalence between the wave equations of two-particle relativistic quantum mechanics, based on the manifestly covariant hamiltonian formalism with constraints, and the Bethe-Salpeter equation. This is achieved by algebraically transforming the latter so as to separate it into two independent equations which match the equations of hamiltonian relativistic quantum mechanics. The first equation determines the relative time evolution of the system, while the second one yields a three-dimensional eigenvalue equation. A connection is thus established between the Bethe-Salpeter wave function and its kernel on the one hand and the quantum mechanical wave function and interaction potential on the other. For the sector of solutions of the Bethe-Salpeter equation having non-relativistic limits, this relationship can be evaluated in perturbation theory. We also device a generalized form of the instantaneous approximation which simplifies the various expressions involved in the above relations. It also permits the evaluation of the normalization condition of the quantum mechanical wave function as a three-dimensional integral

  3. Particle Acceleration, Magnetic Field Generation and Associated Emission in Collisionless Relativistic Jets

    Science.gov (United States)

    Nishikawa, K. I.; Ramirez-Ruiz, E.; Hardee, P.; Mizuno, Y.; Fishman. G. J.

    2007-01-01

    Nonthermal radiation observed from astrophysical systems containing relativistic jets and shocks, e.g., active galactic nuclei (AGNs), gamma-ray bursts (GRBs), and Galactic microquasar systems usually have power-law emission spectra. Recent PIC simulations using injected relativistic electron-ion (electro-positron) jets show that acceleration occurs within the downstream jet. Shock acceleration is a ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., the Buneman instability, other two-streaming instability, and the Weibel instability) created in the shocks are responsible for particle (electron, positron, and ion) acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields. These magnetic fields contribute to the electron's transverse deflection behind the jet head. The "jitter" radiation from deflected electrons has different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants.

  4. Toward a unified theory of the radiation by relativistic particles in crystals

    International Nuclear Information System (INIS)

    Beloshitskii, V.V.; Kalinichenko, V.F.

    1989-01-01

    A quantum theory of the electromagnetic emission by relativistic particles incorporating channeling and the thermal vibrations of the crystal nuclei is derived. A general expression for the emission probability is found after an average over the initial polarizations of the particles and a summation over the final polarizations of the particles and over the polarizations of the photons. An average is carried out over the crystal states of the nuclei in the cases with and without excitation of phonons. The total emission is made up of channeling emission and bremsstrahlung, which are related to each other. During scattering by thermal vibrations, incoherent bremsstrahlung is produced. Some particular cases which determine the properties of the emission in the case of channeling are derived from the general expression and analyzed

  5. On the H particle stability in the non relativistic quark model

    International Nuclear Information System (INIS)

    Silvestre-Brac, B.; Carbonell, J.; Gignoux, C.

    1987-05-01

    The H particle with quark content (uuddss) is presented as a good candidate to be stable with respect to strong interactions. In the framework of a non relativistic potential model, the binding energy is calculated by a full dynamical approach using a resonating group trial wave function. The center of mass motion and the Pauli principle are correctly treated. Sophisticated baryon wave functions are employed and the equation of motion is solved with six coupled channels including radial excited baryon states. The effect of breaking SU(3) flavour symmetry is discussed in detail

  6. Particle Acceleration and Magnetic Field Generation in Electron-Positron Relativistic Shocks

    Science.gov (United States)

    Nishikawa, K.-I.; Hardee, P.; Richardson, G.; Preece, R.; Sol, H.; Fishman, G. J.

    2005-01-01

    Shock acceleration is a ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., Buneman, Weibel, and other two-stream instabilities) created in collisionless shocks are responsible for particle (electron, positron, and ion) acceleration. Using a three-dimensional relativistic electromagnetic particle (REMP) code, we have investigated particle acceleration associated with a relativistic electron-positron jet front propagating into an ambient electron-positron plasma with and without initial magnetic fields. We find small differences in the results for no ambient and modest ambient magnetic fields. New simulations show that the Weibel instability created in the collisionless shock front accelerates jet and ambient particles both perpendicular and parallel to the jet propagation direction. Furthermore, the nonlinear fluctuation amplitudes of densities, currents, and electric and magnetic fields in the electron-positron shock are larger than those found in the electron-ion shock studied in a previous paper at a comparable simulation time. This comes from the fact that both electrons and positrons contribute to generation of the Weibel instability. In addition, we have performed simulations with different electron skin depths. We find that growth times scale inversely with the plasma frequency, and the sizes of structures created by tine Weibel instability scale proportionally to the electron skin depth. This is the expected result and indicates that the simulations have sufficient grid resolution. While some Fermi acceleration may occur at the jet front, the majority of electron and positron acceleration takes place behind the jet front and cannot be characterized as Fermi acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying nonuniform, small-scale magnetic fields, which contribute to the electron s (positron s) transverse deflection behind the jet head. This

  7. SO(4,1) as a structure group of a fibre bundle and SO(3,2) as a relativistic spectrum-generating group

    International Nuclear Information System (INIS)

    Bohm, A.

    1979-12-01

    A collective model for hadrons is presented that has two aspects: the description of nonlocal objects and the construction of spectrum-generating groups in a relativistic theory. The experimental data for this model are the mass and spin spectrum of hadron towers; each tower is characterized by a system constant α. The mass formula derived is m 2 = lambda 2 (α 2 - 9/4) + lambda 2 s(s+1), where R = 1/lambda is the radius of micro-de Sitter spaces. The subject is treated under the following topics: relativistic spectrum-generating SO(3,2); nonlocal objects and SO(4,1); the SO(4,1) constraint relation for the relativistic spectrum-generating SO(3,2); and generalization of the remarkable representation and generalization of the de Sitter fiber bundle - the general relativistic rotator. 1 figure, 1 table

  8. Random phase approximation in relativistic approach

    International Nuclear Information System (INIS)

    Ma Zhongyu; Yang Ding; Tian Yuan; Cao Ligang

    2009-01-01

    Some special issues of the random phase approximation(RPA) in the relativistic approach are reviewed. A full consistency and proper treatment of coupling to the continuum are responsible for the successful application of the RPA in the description of dynamical properties of finite nuclei. The fully consistent relativistic RPA(RRPA) requires that the relativistic mean filed (RMF) wave function of the nucleus and the RRPA correlations are calculated in a same effective Lagrangian and the consistent treatment of the Dirac sea of negative energy states. The proper treatment of the single particle continuum with scattering asymptotic conditions in the RMF and RRPA is discussed. The full continuum spectrum can be described by the single particle Green's function and the relativistic continuum RPA is established. A separable form of the paring force is introduced in the relativistic quasi-particle RPA. (authors)

  9. The Nustar Spectrum of Mrk 335: Extreme Relativistic Effects Within Two Gravitational Radii of the Event Horizon?

    Science.gov (United States)

    Parker, M. L.; Wilkins, D. R.; Fabian, A. C.; Grupe, D.; Dauser, T.; Matt, G.; Harrison, F. A.; Brenneman, L.; Boggs, S. E.; Christensen, F. E.; hide

    2014-01-01

    We present 3-50 keV NuSTAR observations of the active galactic nuclei Mrk 335 in a very low flux state. The spectrum is dominated by very strong features at the energies of the iron line at 5-7 keV and Compton hump from 10-30 keV. The source is variable during the observation, with the variability concentrated at low energies, which suggesting either a relativistic reflection or a variable absorption scenario. In this work, we focus on the reflection interpretation, making use of new relativistic reflection models that self consistently calculate the reflection fraction, relativistic blurring and angle-dependent reflection spectrum for different coronal heights to model the spectra. We find that the spectra can be well fitted with relativistic reflection, and that the lowest flux state spectrum is described by reflection alone, suggesting the effects of extreme light-bending occurring within approx. 2 gravitational radii (RG) of the event horizon. The reflection fraction decreases sharply with increasing flux, consistent with a point source moving up to above 10 RG as the source brightens. We constrain the spin parameter to greater than 0.9 at the 3(sigma) confidence level. By adding a spin-dependent upper limit on the reflection fraction to our models, we demonstrate that this can be a powerful way of constraining the spin parameter, particularly in reflection dominated states. We also calculate a detailed emissivity profile for the iron line, and find that it closely matches theoretical predictions for a compact source within a few RG of the black hole.

  10. 10th Biennial Conference on Classical and Quantum Relativistic Dynamics of Particles and Fields

    International Nuclear Information System (INIS)

    2017-01-01

    Preface The International Association for Relativistic Dynamics was organized in February 1998 in Houston, Texas, with John R. Fanchi as president. Although the subject of relativistic dynamics has been explored, from both classical and quantum mechanical points of view, since the work of Einstein and Dirac, its most striking development has been in the framework of quantum field theory. The very accurate calculations of spectral and scattering properties, for example, of the anomalous magnetic moment of the electron and the Lamb shift in quantum electrodynamics, and many qualitative features of the strong and electroweak interactions, demonstrate the very great power of description achieved in this framework. Yet, many fundamental questions remain to be clarified, such as the structure of classical relativistic dynamical theories on the level of Hamilton and Lagrange in Minkowski space as well as on the curved manifolds of general relativity. There, moreover, remained the important questions of the covariant classical description of systems at high energy for which particle production effects are not large, such as discussed in Synge’s book, The Relativistic Gas , and in Balescu’s book on relativistic statistical mechanics, and the development of a consistent single and many body relativistic quantum theory. In recent years, the very high accuracy of telescopes and advanced facilities for computation have brought a high level of interest in cosmological problems such as the structure of galaxies (dark matter) and the apparently anomalous expansion of the universe (dark energy). Some of the papers reported here deal with these problems, as well as other fundamental related issues. It was for this purpose, to bring together researchers from a wide variety of fields, such as particle physics, astrophysics, cosmology, foundations of relativity theory, and mathematical physics, with a common interest in relativistic dynamics, to investigate fundamental questions of

  11. An optimization method of relativistic backward wave oscillator using particle simulation and genetic algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Zaigao; Wang, Jianguo [Key Laboratory for Physical Electronics and Devices of the Ministry of Education, Xi' an Jiaotong University, Xi' an, Shaanxi 710049 (China); Northwest Institute of Nuclear Technology, P.O. Box 69-12, Xi' an, Shaanxi 710024 (China); Wang, Yue; Qiao, Hailiang; Zhang, Dianhui [Northwest Institute of Nuclear Technology, P.O. Box 69-12, Xi' an, Shaanxi 710024 (China); Guo, Weijie [Key Laboratory for Physical Electronics and Devices of the Ministry of Education, Xi' an Jiaotong University, Xi' an, Shaanxi 710049 (China)

    2013-11-15

    Optimal design method of high-power microwave source using particle simulation and parallel genetic algorithms is presented in this paper. The output power, simulated by the fully electromagnetic particle simulation code UNIPIC, of the high-power microwave device is given as the fitness function, and the float-encoding genetic algorithms are used to optimize the high-power microwave devices. Using this method, we encode the heights of non-uniform slow wave structure in the relativistic backward wave oscillators (RBWO), and optimize the parameters on massively parallel processors. Simulation results demonstrate that we can obtain the optimal parameters of non-uniform slow wave structure in the RBWO, and the output microwave power enhances 52.6% after the device is optimized.

  12. particle simulation for electrostatic oscillation of virtual cathode in relativistic electron beams

    International Nuclear Information System (INIS)

    Chen Deming; Wang Min

    1990-01-01

    The virtual cathode oscillation in relativistic electron beams is studied by a 1-D electrostatic particle simulation code with finite-size-particle model. When injection current is less than the space charge limiting current, electron beam propagates stably and transsmits completely. When injection current exceeds the space charge limit, its propagation is unstable, a part of electrons reflect and the other electrons transsmit. The position and potential of the virtual cathode caused by space charge effects oscillate periodically. When the beam current increases, the virtual cathode position closer to the injection plane and its oscillating region gets narrower, the virtual cathode potential decreases and its amplitude increases, the oscillation frequency increases above the beam plasma frequency

  13. Development of a relativistic Particle In Cell code PARTDYN for linear accelerator beam transport

    Energy Technology Data Exchange (ETDEWEB)

    Phadte, D., E-mail: deepraj@rrcat.gov.in [LPD, Raja Ramanna Centre for Advanced Technology, Indore 452013 (India); Patidar, C.B.; Pal, M.K. [MAASD, Raja Ramanna Centre for Advanced Technology, Indore (India)

    2017-04-11

    A relativistic Particle In Cell (PIC) code PARTDYN is developed for the beam dynamics simulation of z-continuous and bunched beams. The code is implemented in MATLAB using its MEX functionality which allows both ease of development as well higher performance similar to a compiled language like C. The beam dynamics calculations carried out by the code are compared with analytical results and with other well developed codes like PARMELA and BEAMPATH. The effect of finite number of simulation particles on the emittance growth of intense beams has been studied. Corrections to the RF cavity field expressions were incorporated in the code so that the fields could be calculated correctly. The deviations of the beam dynamics results between PARTDYN and BEAMPATH for a cavity driven in zero-mode have been discussed. The beam dynamics studies of the Low Energy Beam Transport (LEBT) using PARTDYN have been presented.

  14. Classical and quantum dynamics of a kicked relativistic particle in a box

    Science.gov (United States)

    Yusupov, J. R.; Otajanov, D. M.; Eshniyazov, V. E.; Matrasulov, D. U.

    2018-03-01

    We study classical and quantum dynamics of a kicked relativistic particle confined in a one dimensional box. It is found that in classical case for chaotic motion the average kinetic energy grows in time, while for mixed regime the growth is suppressed. However, in case of regular motion energy fluctuates around certain value. Quantum dynamics is treated by solving the time-dependent Dirac equation with delta-kicking potential, whose exact solution is obtained for single kicking period. In quantum case, depending on the values of the kicking parameters, the average kinetic energy can be quasi periodic, or fluctuating around some value. Particle transport is studied by considering spatio-temporal evolution of the Gaussian wave packet and by analyzing the trembling motion.

  15. Influence of two-stream relativistic electron beam parameters on the space-charge wave with broad frequency spectrum formation

    Science.gov (United States)

    Alexander, LYSENKO; Iurii, VOLK

    2018-03-01

    We developed a cubic non-linear theory describing the dynamics of the multiharmonic space-charge wave (SCW), with harmonics frequencies smaller than the two-stream instability critical frequency, with different relativistic electron beam (REB) parameters. The self-consistent differential equation system for multiharmonic SCW harmonic amplitudes was elaborated in a cubic non-linear approximation. This system considers plural three-wave parametric resonant interactions between wave harmonics and the two-stream instability effect. Different REB parameters such as the input angle with respect to focusing magnetic field, the average relativistic factor value, difference of partial relativistic factors, and plasma frequency of partial beams were investigated regarding their influence on the frequency spectrum width and multiharmonic SCW saturation levels. We suggested ways in which the multiharmonic SCW frequency spectrum widths could be increased in order to use them in multiharmonic two-stream superheterodyne free-electron lasers, with the main purpose of forming a powerful multiharmonic electromagnetic wave.

  16. Synchronous motion of a relativistic particles in the wave propagating at the angle to a magnetic field

    International Nuclear Information System (INIS)

    Milant'ev, V.P.

    1996-01-01

    It is shown that within the transverse or the longitudinal wave propagating at the angle to the magnetic field there is a specific mode of motion of relativistic particle called as a synchronous one where the condition of a particle resonance with the wave is realized with increasing accuracy with increase of particle energy. A trend to the unlimited acceleration is detected in a synchronous mode of the Cherenkov resonance. 21 refs

  17. On the theory of the relativistic motion of a charged particle in the field of intense electromagnetic radiation

    Energy Technology Data Exchange (ETDEWEB)

    Milant' ev, V. P., E-mail: vmilantiev@sci.pfu.edu.ru; Castillo, A. J., E-mail: vmilant@mail.ru [Peoples' Friendship University of Russia (Russian Federation)

    2013-04-15

    Averaged relativistic equations of motion of a charged particle in the field of intense electromagnetic radiation have been obtained in the geometrical optics approximation using the Bogoliubov method. Constraints are determined under which these equations are valid. Oscillating additions to the smoothed dynamical variables of the particle have been found; they are reduced to known expressions in the case of the circularly and linearly polarized plane waves. It has been shown that the expressions for the averaged relativistic force in both cases contain new additional small terms weakening its action. The known difference between the expressions for the ponderomotive force in the cases of circularly and linearly polarized waves has been confirmed.

  18. Quantum Geometry: Relativistic energy approach to cooperative electron-nucleary-transition spectrum

    Directory of Open Access Journals (Sweden)

    Ольга Юрьевна Хецелиус

    2014-11-01

    Full Text Available An advanced relativistic energy approach is presented and applied to calculating parameters of electron-nuclear 7-transition spectra of nucleus in the atom. The intensities of the spectral satellites are defined in the relativistic version of the energy approach (S-matrix formalism, and gauge-invariant quantum-electrodynamical perturbation theory with the Dirac-Kohn-Sham density-functional zeroth approximation.

  19. Dependence of effective spectrum width of synchrotron radiation on particle energy

    Energy Technology Data Exchange (ETDEWEB)

    Bagrov, V.G. [Tomsk State University, Department of Physics, Tomsk (Russian Federation); Institute of High Current Electronics, Tomsk (Russian Federation); University of Sao Paulo, Institute of Physics, Sao Paulo (Brazil); Gitman, D.M. [Tomsk State University, Department of Physics, Tomsk (Russian Federation); University of Sao Paulo, Institute of Physics, Sao Paulo (Brazil); P.N. Lebedev Physical Institute, Moscow (Russian Federation); Levin, A.D. [University of Sao Paulo, Institute of Physics, Sao Paulo (Brazil); Loginov, A.S.; Saprykin, A.D. [Tomsk State University, Department of Physics, Tomsk (Russian Federation)

    2017-05-15

    In the classical theory of synchrotron radiation, for the exact quantitative characterization of spectral properties, the concept of effective spectral width is introduced. In the first part of our work, published in EJPC 75 (2015), the effective spectral width as a function of the energy E of the radiating particle was obtained only in the ultra-relativistic approximation. In this article, which can be considered as a natural continuation of this work, a complete investigation is presented of the dependence of the effective width of the synchrotron radiation spectrum on energy for any values of E and for all the polarization components of the radiation. Numerical calculations were carried out for an effective width not exceeding 100 harmonics. (orig.)

  20. Magnetic Field Generation, Particle Energization and Radiation at Relativistic Shear Boundary Layers

    Science.gov (United States)

    Liang, Edison; Fu, Wen; Spisak, Jake; Boettcher, Markus

    2015-11-01

    Recent large scale Particle-in-Cell (PIC) simulations have demonstrated that in unmagnetized relativistic shear flows, strong transverse d.c. magnetic fields are generated and sustained by ion-dominated currents on the opposite sides of the shear interface. Instead of dissipating the shear flow free energy via turbulence formation and mixing as it is usually found in MHD simulations, the kinetic results show that the relativistic boundary layer stabilizes itself via the formation of a robust vacuum gap supported by a strong magnetic field, which effectively separates the opposing shear flows, as in a maglev train. Our new PIC simulations have extended the runs to many tens of light crossing times of the simulation box. Both the vacuum gap and supporting magnetic field remain intact. The electrons are energized to reach energy equipartition with the ions, with 10% of the total energy in electromagnetic fields. The dominant radiation mechanism is similar to that of a wiggler, due to oscillating electron orbits around the boundary layer.

  1. Particle acceleration in explosive relativistic reconnection events and Crab Nebula gamma-ray flares

    Science.gov (United States)

    Lyutikov, Maxim; Komissarov, Serguei; Sironi, Lorenzo

    2018-04-01

    We develop a model of gamma-ray flares of the Crab Nebula resulting from the magnetic reconnection events in a highly magnetised relativistic plasma. We first discuss physical parameters of the Crab Nebula and review the theory of pulsar winds and termination shocks. We also review the principle points of particle acceleration in explosive reconnection events [Lyutikov et al., J. Plasma Phys., vol. 83(6), p. 635830601 (2017a); J. Plasma Phys., vol. 83(6), p. 635830602 (2017b)]. It is required that particles producing flares are accelerated in highly magnetised regions of the nebula. Flares originate from the poleward regions at the base of the Crab's polar outflow, where both the magnetisation and the magnetic field strength are sufficiently high. The post-termination shock flow develops macroscopic (not related to the plasma properties on the skin-depth scale) kink-type instabilities. The resulting large-scale magnetic stresses drive explosive reconnection events on the light-crossing time of the reconnection region. Flares are produced at the initial stage of the current sheet development, during the X-point collapse. The model has all the ingredients needed for Crab flares: natural formation of highly magnetised regions, explosive dynamics on the light travel time, development of high electric fields on macroscopic scales and acceleration of particles to energies well exceeding the average magnetic energy per particle.

  2. Curci-Ferrari-type condition in Hamiltonian formalism: A free spinning relativistic particle

    Science.gov (United States)

    Shukla, A.; Bhanja, T.; Malik, R. P.

    2013-03-01

    The Curci-Ferrari (CF)-type restriction emerges in the description of a free spinning relativistic particle within the framework of the Becchi-Rouet-Stora-Tyutin (BRST) formalism when the off-shell nilpotent and absolutely anticommuting (anti-)BRST symmetry transformations for this system are derived from the application of the horizontality condition (HC) and its supersymmetric generalization (SUSY-HC) within the framework of the superfield formalism. We show that the above CF condition, which turns out to be the secondary constraint of our present theory, remains time-evolution invariant within the framework of Hamiltonian formalism. This time-evolution invariance i) physically justifies the imposition of the (anti-)BRST invariant CF-type condition on this system, and ii) mathematically implies the linear independence of BRST and anti-BRST symmetries of our present theory.

  3. Causal wave propagation for relativistic massive particles: physical asymptotics in action

    International Nuclear Information System (INIS)

    Berry, M V

    2012-01-01

    Wavepackets representing relativistic quantum particles injected into a half-space, from a source that is switched on at a definite time, are represented by superpositions of plane waves that must include negative frequencies. Propagation is causal: it is a consequence of analyticity that at time t no part of the wave has travelled farther than ct, corresponding to the front of the signal. Nevertheless, interference fringes behind the front travel superluminally. For Klein-Gordon and Dirac wavepackets, the spatially integrated density increases because current is injected at the boundary. Even in the simplest causal model, understanding the shape of the wave after long times is an instructive exercise in the asymptotics of integrals, illustrating several techniques at a level suitable for graduate students; different spatial features involve contributions from a pole and from two saddle points, the uniform asymptotics for the pole close to a saddle, and the coalescence of two saddles into the Sommerfeld precursor immediately behind the front. (paper)

  4. Particle production and Boltzmann integral form of relativistic quantum transport theory

    International Nuclear Information System (INIS)

    Rafelski, J.; Davis, E.D.; Bialynicki-Birula, I.

    1993-01-01

    The 3+3+1 dimensional relativistic quantum transport equation for the fermion matter field, combines the particle pair production with flow phenomena, which occur at very different time scale. A direct numerical treatment of dynamical situations is therefore practically impossible. The authors attempt a seperation of these two sectors by the method of prediagonalization of the integral equations. They exploit the structure of the resolvent of the transport equations: it contains two poles corresponding to the flow sector and two to the pair production sector. Their hope for practical applications is to treat matter flow as a classical phenomenon and to be able to obtain an integral term describing the pair production accurately

  5. Constrained dynamics of two interacting relativistic particles in the Faddeev-Jackiw symplectic framework

    Science.gov (United States)

    Rodríguez-Tzompantzi, Omar

    2018-05-01

    The Faddeev-Jackiw symplectic formalism for constrained systems is applied to analyze the dynamical content of a model describing two massive relativistic particles with interaction, which can also be interpreted as a bigravity model in one dimension. We systematically investigate the nature of the physical constraints, for which we also determine the zero-modes structure of the corresponding symplectic matrix. After identifying the whole set of constraints, we find out the transformation laws for all the set of dynamical variables corresponding to gauge symmetries, encoded in the remaining zero modes. In addition, we use an appropriate gauge-fixing procedure, the conformal gauge, to compute the quantization brackets (Faddeev-Jackiw brackets) and also obtain the number of physical degree of freedom. Finally, we argue that this symplectic approach can be helpful for assessing physical constraints and understanding the gauge structure of theories of interacting spin-2 fields.

  6. Identification of relativistic charged particles by means of ionisation energy loss in proportional counters

    International Nuclear Information System (INIS)

    Bateman, J.E.

    1978-12-01

    A method is described of obtaining a useful degree of improvement in the particle discrimination capability of multiwire proportional counters. The normal multiple sampling technique using a suitable bias to combat the small magnitude of the relativistic rise in the ionization energy loss and the wide pulse height distributions obtained in thin gas counters requires a large number of samples for useful discrimination. In the method reported, this number is reduced by suppressing the delta ray contribution to the total charge pulse from the anode wire. A monte carlo model convoluting the 'delta ray suppressed' data from a one sample detector shows that when it is required to separate pions and electrons at 1 GeV/C with a detection efficiency for the electron of 90%, a 'suppressor' circuit can achieve a pion rejection ratio of 250:1 with 82 samples, whereas the truncated mean approach (lowest 70% of samples) requires 100 samples. (UK)

  7. Wavenumber spectrum of whistler turbulence: Particle-in-cell simulation

    International Nuclear Information System (INIS)

    Saito, S.; Gary, S. Peter; Narita, Y.

    2010-01-01

    The forward cascade of decaying whistler turbulence is studied in low beta plasma to understand essential properties of the energy spectrum at electron scales, by using a two-dimensional electromagnetic particle-in-cell (PIC) simulation. This simulation demonstrates turbulence in which the energy cascade rate is greater than the dissipation rate at the electron inertial length. The PIC simulation shows that the magnetic energy spectrum of forward-cascaded whistler turbulence at electron inertial scales is anisotropic and develops a very steep power-law spectrum which is consistent with recent solar wind observations. A comparison of the simulated spectrum with that predicted by a phenomenological turbulence scaling model suggests that the energy cascade at the electron inertial scale depends on both magnetic fluctuations and electron velocity fluctuations, as well as on the whistler dispersion relation. Thus, not only kinetic Alfven turbulence but also whistler turbulence may explain recent solar wind observations of very steep magnetic spectra at short scales.

  8. On the radiation emitted by a particle falling into a black hole in the semi-relativistic approximation

    International Nuclear Information System (INIS)

    Coretti, C.; Ferrari, V.

    1986-01-01

    In this paper the limits of applicability of the semi-relativistic approximation for estimating the radiation emitted in processes of capture of particles by black holes are discussed. It is shown that it gives reliable estimates in the case of spherically symmetric black holes, but it fails in the case of rotating black holes

  9. Two-dimensional angular energy spectrum of electrons accelerated by the ultra-short relativistic laser pulse

    Energy Technology Data Exchange (ETDEWEB)

    Borovskiy, A. V. [Department of Computer Science and Cybernetics, Baikal State University of Economics and Law, 11 Lenin Street, Irkutsk 664003 (Russian Federation); Galkin, A. L. [Coherent and Nonlinear Optics Department, A.M. Prokhorov General Physics Institute of the RAS, 38 Vavilov Street, Moscow 119991 (Russian Federation); Department of Physics of MBF, Pirogov Russian National Research Medical University, 1 Ostrovitianov Street, Moscow 117997 (Russian Federation); Kalashnikov, M. P., E-mail: galkin@kapella.gpi.ru [Max-Born-Institute for Nonlinear Optics and Short-Time Spectroscopy, 2a Max-Born-Strasse, Berlin 12489 (Germany)

    2015-04-15

    The new method of calculating energy spectra of accelerated electrons, based on the parameterization by their initial coordinates, is proposed. The energy spectra of electrons accelerated by Gaussian ultra-short relativistic laser pulse at a selected angle to the axis of the optical system focusing the laser pulse in a low density gas are theoretically calculated. The two-peak structure of the electron energy spectrum is obtained. Discussed are the reasons for its appearance as well as an applicability of other models of the laser field.

  10. Particle precipitation: How the spectrum fit impacts atmospheric chemistry

    Science.gov (United States)

    Wissing, J. M.; Nieder, H.; Yakovchouk, O. S.; Sinnhuber, M.

    2016-11-01

    Particle precipitation causes atmospheric ionization. Modeled ionization rates are widely used in atmospheric chemistry/climate simulations of the upper atmosphere. As ionization rates are based on particle measurements some assumptions concerning the energy spectrum are required. While detectors measure particles binned into certain energy ranges only, the calculation of a ionization profile needs a fit for the whole energy spectrum. Therefore the following assumptions are needed: (a) fit function (e.g. power-law or Maxwellian), (b) energy range, (c) amount of segments in the spectral fit, (d) fixed or variable positions of intersections between these segments. The aim of this paper is to quantify the impact of different assumptions on ionization rates as well as their consequences for atmospheric chemistry modeling. As the assumptions about the particle spectrum are independent from the ionization model itself the results of this paper are not restricted to a single ionization model, even though the Atmospheric Ionization Module OSnabrück (AIMOS, Wissing and Kallenrode, 2009) is used here. We include protons only as this allows us to trace changes in the chemistry model directly back to the different assumptions without the need to interpret superposed ionization profiles. However, since every particle species requires a particle spectrum fit with the mentioned assumptions the results are generally applicable to all precipitating particles. The reader may argue that the selection of assumptions of the particle fit is of minor interest, but we would like to emphasize on this topic as it is a major, if not the main, source of discrepancies between different ionization models (and reality). Depending on the assumptions single ionization profiles may vary by a factor of 5, long-term calculations may show systematic over- or underestimation in specific altitudes and even for ideal setups the definition of the energy-range involves an intrinsic 25% uncertainty for the

  11. Exact solution of the relativistic Coulomb problem for two-particle bound states in the quasipotential approach

    International Nuclear Information System (INIS)

    Kapshay, V.N.; Skachkov, N.B.

    1979-01-01

    A composite system of two relativistic particles is studied on the basis of the Kadyshevsky quasipotential equation, in which the ''Coulomb'' potential is taken in the form of a propagator of the massless-scalar-particle exchange. The obtained exact solutions to this equation are shown to be a geometrical generalization of nonrelativistic Coulomb wave functions in the sense of change of the Euclidean geometry of momentum space to the Lobachevsky geometry

  12. The acceleration of particles by relativistic electron plasma waves driven by the optical mixing of laser light in a plasma

    International Nuclear Information System (INIS)

    Ebrahim, N.A.; Douglas, S.R.

    1992-03-01

    Electron acceleration by relativistic large-amplitude electron plasma waves is studied by theory and particle simulations. The maximum acceleration that can be obtained from this process depends on many different factors. This report presents a study of how these various factors impact on the acceleration mechanism. Although particular reference is made to the laser plasma beatwave concept, the study is equally relevant to the acceleration of particles in the plasma wakefield accelerator and the laser wakefield accelerator

  13. From a particle in a box to the uncertainty relation in a quantum dot and to reflecting walls for relativistic fermions

    International Nuclear Information System (INIS)

    Al-Hashimi, M.H.; Wiese, U.-J.

    2012-01-01

    We consider a 1-parameter family of self-adjoint extensions of the Hamiltonian for a particle confined to a finite interval with perfectly reflecting boundary conditions. In some cases, one obtains negative energy states which seem to violate the Heisenberg uncertainty relation. We use this as a motivation to derive a generalized uncertainty relation valid for an arbitrarily shaped quantum dot with general perfectly reflecting walls in d dimensions. In addition, a general uncertainty relation for non-Hermitian operators is derived and applied to the non-Hermitian momentum operator in a quantum dot. We also consider minimal uncertainty wave packets in this situation, and we prove that the spectrum depends monotonically on the self-adjoint extension parameter. In addition, we construct the most general boundary conditions for semiconductor heterostructures such as quantum dots, quantum wires, and quantum wells, which are characterized by a 4-parameter family of self-adjoint extensions. Finally, we consider perfectly reflecting boundary conditions for relativistic fermions confined to a finite volume or localized on a domain wall, which are characterized by a 1-parameter family of self-adjoint extensions in the (1+1)-d and (2+1)-d cases, and by a 4-parameter family in the (3+1)-d and (4+1)-d cases. - Highlights: ► Finite volume Heisenberg uncertainty relation. ► General self-adjoint extensions for relativistic fermions. ► New prospective for the problem of particle in a box.

  14. PREFACE: IARD 2010: The 7th Biennial Conference on Classical and Quantum Relativistic Dynamics of Particles and Fields

    Science.gov (United States)

    Horwitz, Lawrence; Hu, Bei-Lok; Lee, Da-Shin; Gill, Tepper; Land, Martin

    2011-12-01

    find a propagating 0+ mode that could account for accelerated expansion. They discuss, in particular, a model in the Bianchi class A, and present a Lagrangian and a typical dynamical evolution. J T Hsiang, C H Wu, L H Ford and K W Ng review investigations of the effects of a quantum stress tensor of a conformal field on inflationary cosmology. They find that the quantum stress tensor fluctuations lead to effects that can depend upon the total expansion factor during inflation, which may contribute to a non-scale invariant and non-Gaussian component to the primordial spectrum of perturbations,and may be observable. In the framework of quantum field theory, A N Kvinikhidze and B Blankleider show that a relativistic quantum mechanics emerges from light frame quantum field theory, and that in the case of baryon-like conservation, these theories are equivalent. With T Skawronski, they show in a second paper the power of gauging for several body problems, and demonstrate how this idea can be applied to the study of parton distributions, two nucleon currents in cutoff quantum field theory, and in a potential model for πN scattering. C M Chen and J R Sun study a holographic dual of the Reissner-Nordström black hole in a quantum gravity description from the perspective of the AdS/CFT correspondence. On a fundamental level, somewhat related to the ideas of Finkelstein, A Gersten and A Moalem discuss the factorization of the d'Alembertian in a 4×4 representation of 'relativistic quaternions' to find an interpretation of Maxwell's equations; with an 8×8 factorization, they obtain spin two fields as in gravitation. They discuss a general method for obtaining field equations for zero mass particles and arbitrary spin. M Pavsic has developed a generalization of the theory of Stueckelberg, mentioned above, applicable to general relativity. He finds a source of the world time τ in M2,4, achieving a 5D metric tensor and a resolution of the 'problem of time' in this framework. In a

  15. Relativistic alpha-particles emitted in Fe-emulsion interactions at 1.7 A GeV

    International Nuclear Information System (INIS)

    Bhalla, K.B.; Chaudhry, M.; Lokanathan, S.; Grover, R.K.; Daftari, I.K.; Mangotra, L.L.; Rao, N.K.; Garpman, S.; Otterlund, I.

    1981-02-01

    Relativistic α-particles have been studied in 423 Fe-emulsion interactions at 1.7 A Gev. Comparisons of the observed angular distribution with that from 16 O-emulsion reactions at 2.1 A GeV reveal that more α particles are observed at large angles in the Fe-emulsion reactions. The α particles with large angles connot be explained by fragmentation from a clean cut spectator. Comparison of the experimental data with moving relativistic Boltzmann distributions shows that a single Boltzmann distribution cannot fit the fragmentation peak and the tail simultaneously. A thermal source (fireball) explaining the tail part of the distribution need to be formed by a mechanism other than simple clean cut participant-spectator picture. A large transverse momentum transfer to spectator before fragmentation may explain the tail. (author)

  16. Coherent quantum states of a relativistic particle in an electromagnetic plane wave and a parallel magnetic field

    International Nuclear Information System (INIS)

    Colavita, E.; Hacyan, S.

    2014-01-01

    We analyze the solutions of the Klein–Gordon and Dirac equations describing a charged particle in an electromagnetic plane wave combined with a magnetic field parallel to the direction of propagation of the wave. It is shown that the Klein–Gordon equation admits coherent states as solutions, while the corresponding solutions of the Dirac equation are superpositions of coherent and displaced-number states. Particular attention is paid to the resonant case in which the motion of the particle is unbounded. -- Highlights: •We study a relativistic electron in a particular electromagnetic field configuration. •New exact solutions of the Klein–Gordon and Dirac equations are obtained. •Coherent and displaced number states can describe a relativistic particle

  17. A study on the effects of relativistic heavy charged particles on the cellular microenvironment

    Science.gov (United States)

    Costes, Sylvain Vincent

    This study was done under the National Aeronautics Space Administration (NASA) effort to assess the effect of cosmic radiation on astronauts during a 3 year mission to Mars. Carcinogenesis is known to be induced more efficiently by cosmic radiation. Our attention was turned towards one of the most efficient cosmic particles in inducing cancer, relativistic Fe, and focused in assessing its effect on the cellular microenvironment (ECM). Previous observations on mammary glands were showing irregularities in the immunoreactivity of the ECM protein laminin one hour after whole body irradiation with 1GeV/amu Fe ions for a dose of 0.8 Gy. This effect was not observed after 5 Gy γ-rays exposure. The rapidity of such a change suggested that the effect might be due to a physical event specific to relativistic charged particles (HZE), rather than a biological event. Our study showed that this effect is actually a complex and rapid response of the microenvironment to highly ionizing radiation. It involves a fast disruption of the basement membrane of the ECM induced by the highly localized ionization and reactive oxygen formation around the track of the Fe ion. This disruption triggers further chemical and biological responses involved in the remodeling of the laminin network in the basement membrane. A metalloproteinase is suspected to be the intermediate protease affecting laminin. The HZE effect on the microenvironment was seen in both mouse mammary glands and skin, but the laminin isoforms sensitive to Fe ions were different for each organ, with a clear disruption of laminin-1 network in skin and of laminin-5 in mammary glands. In addition, the laminin receptor integrins seem to be involved in this mechanism, but its contribution is unclear at this point. Finally, such studies suggest a shift from the concept of relative biological effectiveness (RBE) used in classical radiation biology since the effect is only seen with HZE at viable whole body doses. In addition, this

  18. Relativistic local quantum field theory for m=0 particles; Campos cuanticos locales relativos a particulas de masa no nula

    Energy Technology Data Exchange (ETDEWEB)

    Morales Villasevil, A

    1965-07-01

    A method is introduced ta deal with relativistic quantum field theory for particles with m=0. Two mappings I and J, giving rise respectively to particle and anti particle states, are defined between a test space and the physical Hilbert space. The intrinsic field operator is then defined as the minimal causal linear combinations of operators belonging to the annihilation-creation algebra associated to the germ and antigerm parts of the element. Local elements are introduced as improper test elements and local field operators are constructed in the same way as the intrinsic ones. Commutation rules are given. (Author) 17 refs.

  19. Energy spectrum structure and ''trap'' effects in a three-particle system

    International Nuclear Information System (INIS)

    Simenog, I.V.; Sitnichenko, A.I.

    1982-01-01

    Investigation is made of the threshold energy spectrum structure in a system of three spinless particles depending on the form of two-particle interaction. The correlation dependence of the spectrum and low-energy scattering parameters are shown. A new phenomenon of ''traps'' for the spectrum in a three-particle system with interaction involving components of considerably different ranges is established

  20. Dynamical properties for the problem of a particle in an electric field of wave packet: Low velocity and relativistic approach

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Diego F.M., E-mail: diegofregolente@gmail.com [Institute for Multiscale Simulations, Friedrich-Alexander Universität, D-91052, Erlangen (Germany); Leonel, Edson D., E-mail: edleonel@rc.unesp.br [Departamento de Estatística, Matemática Aplicada e Computação, UNESP, Univ. Estadual Paulista, Av. 24A, 1515, Bela Vista, 13506-900, Rio Claro, SP (Brazil); Departamento de Física, UNESP, Univ. Estadual Paulista, Av. 24A, 1515, 13506-900, Rio Claro, SP (Brazil)

    2012-11-01

    We study some dynamical properties for the problem of a charged particle in an electric field considering both the low velocity and relativistic cases. The dynamics for both approaches is described in terms of a two-dimensional and nonlinear mapping. The structure of the phase spaces is mixed and we introduce a hole in the chaotic sea to let the particles to escape. By changing the size of the hole we show that the survival probability decays exponentially for both cases. Additionally, we show for the relativistic dynamics, that the introduction of dissipation changes the mixed phase space and attractors appear. We study the parameter space by using the Lyapunov exponent and the average energy over the orbit and show that the system has a very rich structure with infinite family of self-similar shrimp shaped embedded in a chaotic region.

  1. Inclusive characteristics of the nuclear target fragmentation products induced by relativistic particles

    International Nuclear Information System (INIS)

    Bogatin, V.I.; Ganza, E.A.; Lozhkin, O.V.; Murin, Yu.A.; Oplavin, V.S.; Perfilov, N.A.; Yakovlev, Yu.P.

    1981-01-01

    An experimental investigation of inclusive characteristics of nuclei-target fragmentation is conducted for further development and test of physical value of the earlier suggested nuclear fragmentation model based on the connection of the fragmentation with fluctuations of the quasiparticle density in the two-component quantum liquid, an experimental investigation of the inclusive characteristics of the nuclei-target fragmentation is carried out. The processes of sup(3, 4, 6, 8)He and sup(6, 7, 8, 9, 11)Li fragment formation during the interaction of relativistic protons (Esub(p)=6.7 GeV) and deutrons (Esub(d)=3.1 GeV) with 112 Sn and 124 Sn isotopes are studied by the method of semiconductive ΔE-E detectors. Differential energy spectra of fragments and isotopic ratio of cross sections of their formation as well as data on the dependence of isotopic ratios of fragmentation cross sections on the energy of incident particles and on the fragment energy are obtained. Presented is a phenomenological model of fragmentation within the frames of which the obtained experimental data are analyzed [ru

  2. Relativistic theory of particles in a scattering flow III: photon transport.

    Science.gov (United States)

    Achterberg, A.; Norman, C. A.

    2018-06-01

    We use the theory developed in Achterberg & Norman (2018a) and Achterberg & Norman (2018b) to calculate the stress due to photons that are scattered elastically by a relativistic flow. We show that the energy-momentum tensor of the radiation takes the form proposed by Eckart (1940). In particular we show that no terms associated with a bulk viscosity appear if one makes the diffusion approximation for radiation transport and treats the radiation as a separate fluid. We find only shear (dynamic) viscosity terms and heat flow terms in our expression for the energy-momentum tensor. This conclusion holds quite generally for different forms of scattering: Krook-type integral scattering, diffusive (Fokker-Planck) scattering and Thomson scattering. We also derive the transport equation in the diffusion approximation that shows the effects of the flow on the photon gas in the form of a combination of adiabatic heating and an irreversible heating term. We find no diffusive changes to the comoving number density and energy density of the scattered photons, in contrast with some published results in Radiation Hydrodynamics. It is demonstrated that these diffusive corrections to the number- and energy density of the photons are in fact higher-order terms that can (and should) be neglected in the diffusion approximation. Our approach eliminates these terms at the root of the expansion that yields the anisotropic terms in the phase-space density of particles and photons, the terms responsible for the photon viscosity.

  3. Relativistic three-particle dynamical equations: II. Application to the trinucleon system

    International Nuclear Information System (INIS)

    Adhikari, S.K.; Tomio, L.

    1993-11-01

    The contribution of relativistic dynamics on the neutron-deuteron scattering length and triton binding energy is calculated employing five sets tri nucleon potential models and four types of three-dimensional relativistic three-body equations suggested in the preceding paper. The relativistic correction to binding energy may vary a lot and even change sign depending on the relativistic formulation employed. The deviations of these observables from those obtained in nonrelativistic models follow the general universal trend of deviations introduced by off- and on-shell variations of two- and three-nucleon potentials in a nonrelativistic model calculation. Consequently, it will be difficult to separate unambiguously the effect of off-and on-shell variations of two and three-nucleon potentials on low-energy three-nucleon observables from the effect of relativistic dynamics. (author)

  4. Finiteness of the discrete spectrum of the three-particle Schroedinger operator

    International Nuclear Information System (INIS)

    Abdullaev, Janikul I.; Khalkhujaev, Axmad, M.

    2001-08-01

    We analyse the spectrum of the three-particle Schroedinger operator with pair contact and three-particle interactions on the neighboring nodes on a three-dimensional lattice. We show that the essential spectrum of this operator is the union of two segments, one of which coincides with the spectrum of an unperturbed operator and the other called two-particle branch. We will prove finiteness of the discrete spectrum of the Schroedinger operator at all parameter values of the problem. (author)

  5. A novel transition radiation detector utilizing superconducting microspheres for measuring the energy of relativistic high-energy charged particles

    International Nuclear Information System (INIS)

    Yuan, Luke C.L.; Chen, C.P.; Huang, C.Y.; Lee, S.C.; Waysand, G.; Perrier, P.; Limagne, D.; Jeudy, V.; Girard, T.

    2000-01-01

    A novel transition radiation detector (TRD) utilizing superheated superconducting microspheres of tin of 22-26, 27-32 and 32-38 μm in diameter, respectively, has been constructed which is capable of measuring accurately the energy of relativistic high-energy charged particles. The test has been conducted in a high-energy electron beam facility at the CERN PS in the energy range of 1-10 GeV showing an energy dependence of the TR X-ray photon produced and hence the value γ=E/mc 2 of the charged particle

  6. Covariant spinor representation of iosp(d,2/2) and quantization of the spinning relativistic particle

    Energy Technology Data Exchange (ETDEWEB)

    Jarvis, P.D.; Corney, S.P.; Tsohantjis, I. [School of Mathematics and Physics, University of Tasmania, Hobart Tas (Australia)

    1999-12-03

    A covariant spinor representation of iosp(d,2/2) is constructed for the quantization of the spinning relativistic particle. It is found that, with appropriately defined wavefunctions, this representation can be identified with the state space arising from the canonical extended BFV-BRST quantization of the spinning particle with admissible gauge fixing conditions after a contraction procedure. For this model, the cohomological determination of physical states can thus be obtained purely from the representation theory of the iosp(d,2/2) algebra. (author)

  7. The annihilation spectrum of relatiVistic electron-positron plasma

    International Nuclear Information System (INIS)

    Aragonyan, F.A.; Atoyan, A.M.; Syunyaev, R.A.

    1980-01-01

    The annihilation spectrum of isotropically distributed monoenergetic electrons and positrons is obtained. The spectrum of the (e + e - ) plasma is analyzed in a large range of plasma temperatures. The comparison of transitions peratures. The comparison of transitions intensities of annihilation radiation and bremsstrahlung shows that for temperatures kT 2 (e + e - ) plasma is cooled mainly due to annihilation. The case of the fast positron annihilation on the rest electrons also considered. The possible astrophysical applications are discussed [ru

  8. Particle production in high energy collisions and the non-relativistic quark model

    International Nuclear Information System (INIS)

    Anisovich, V.V.; Nyiri, J.

    1981-07-01

    The present review deals with multiparticle production processes at high energies using ideas which originate in the non-relativistic quark model. Consequences of the approach are considered and they are compared with experimental data. (author)

  9. Propagation of localized structures in relativistic magnetized electron-positron plasmas using particle-in-cell simulations

    Energy Technology Data Exchange (ETDEWEB)

    López, Rodrigo A. [Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Concepción, Concepción 4070386 (Chile); Muñoz, Víctor [Departamento de Física, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago (Chile); Viñas, Adolfo F. [Geospace Physics Laboratory, Heliophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, Maryland 20771 (United States); Valdivia, Juan A. [Departamento de Física, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago (Chile); Centro para el Desarrollo de la Nanociencia y la Nanotecnología (CEDENNA), Santiago 9170124 (Chile)

    2015-09-15

    We use a particle-in-cell simulation to study the propagation of localized structures in a magnetized electron-positron plasma with relativistic finite temperature. We use as initial condition for the simulation an envelope soliton solution of the nonlinear Schrödinger equation, derived from the relativistic two fluid equations in the strongly magnetized limit. This envelope soliton turns out not to be a stable solution for the simulation and splits in two localized structures propagating in opposite directions. However, these two localized structures exhibit a soliton-like behavior, as they keep their profile after they collide with each other due to the periodic boundary conditions. We also observe the formation of localized structures in the evolution of a spatially uniform circularly polarized Alfvén wave. In both cases, the localized structures propagate with an amplitude independent velocity.

  10. Propagation of localized structures in relativistic magnetized electron-positron plasmas using particle-in-cell simulations

    International Nuclear Information System (INIS)

    López, Rodrigo A.; Muñoz, Víctor; Viñas, Adolfo F.; Valdivia, Juan A.

    2015-01-01

    We use a particle-in-cell simulation to study the propagation of localized structures in a magnetized electron-positron plasma with relativistic finite temperature. We use as initial condition for the simulation an envelope soliton solution of the nonlinear Schrödinger equation, derived from the relativistic two fluid equations in the strongly magnetized limit. This envelope soliton turns out not to be a stable solution for the simulation and splits in two localized structures propagating in opposite directions. However, these two localized structures exhibit a soliton-like behavior, as they keep their profile after they collide with each other due to the periodic boundary conditions. We also observe the formation of localized structures in the evolution of a spatially uniform circularly polarized Alfvén wave. In both cases, the localized structures propagate with an amplitude independent velocity

  11. Electrons in a relativistic-intensity laser field: generation of zeptosecond electromagnetic pulses and energy spectrum of the accelerated electrons

    International Nuclear Information System (INIS)

    Andreev, A A; Galkin, A L; Kalashnikov, M P; Korobkin, V V; Romanovsky, Mikhail Yu; Shiryaev, O B

    2011-01-01

    We study the motion of an electron and emission of electromagnetic waves by an electron in the field of a relativistically intense laser pulse. The dynamics of the electron is described by the Newton equation with the Lorentz force in the right-hand side. It is shown that the electrons may be ejected from the interaction region with high energy. The energy spectrum of these electrons and the technique of using the spectrum to assess the maximal intensity in the focus are analysed. It is found that electromagnetic radiation of an electron moving in an intense laser field occurs within a small angle around the direction of the electron trajectory tangent. The tangent quickly changes its direction in space; therefore, electromagnetic radiation of the electron in the far-field zone in a certain direction in the vicinity of the tangent is a short pulse with a duration as short as zeptoseconds. The calculation of the temporary and spectral distribution of the radiation field is carried out. (superintense laser fields)

  12. Relativistic and thermal effects on the magnon spectrum of a ferromagnetic monolayer.

    Science.gov (United States)

    Rózsa, L; Udvardi, L; Szunyogh, L

    2013-12-18

    A spin model including magnetic anisotropy terms and Dzyaloshinsky-Moriya interactions is studied for the case of a ferromagnetic monolayer with C2v symmetry like Fe/W(110). Using the quasiclassical stochastic Landau-Lifshitz-Gilbert equations, the magnon spectrum of the system is derived using linear response theory. The Dzyaloshinsky-Moriya interaction leads to asymmetry in the spectrum, while the anisotropy terms induce a gap. It is shown that, in the presence of lattice defects, both the Dzyaloshinsky-Moriya interactions and the two-site anisotropy lead to a softening of the magnon energies. Two methods are developed to investigate the magnon spectrum at finite temperatures. The theoretical results are compared to atomistic spin dynamics simulations and good agreement is found between them.

  13. Some studies of the relativistic theories for spin-3/2 particles and its interactions with an uniforme magnetic field

    International Nuclear Information System (INIS)

    Oliveira, M.A.B. de.

    1984-01-01

    We present our investigations on the problems of non-causality of propagation, at the c-number level, of four spin 3/2 theories in the Schroedinger form employing the minimum number of eight components, in interaction with a constant magnetic field. Analyzing first the basic formulations of free particle spin 3/2 relativistic wave equations, we deduze, extending to spin 3/2 Dirac's ''spin 1/2 factorization'' of the mas condition, a new eight-component relativistic wave equation in the Schroedinger form for this spin and prove its relativistic invariance. We demostrate explicitly that the entire content of the Rarita-Schwinger (RS) theory for spin 3/2 can be written in the form of two Dirac-Like wave equations. We demonstrate that our wave equation for spin 3/2 cab indeed be deduzed from a modified RS theory wherein both Hamiltonians above referred to are taken hermitian. We also establish, in a transparent maner, the equivalences existing between the formalisms of RS, Belinfante and Hurley-Sudarshan for spin 3/2. We investigate the c-number problem of the stationary state eigevalues of the spin 3/2 Hamiltonians in a constant external magnetic field, in the four theories in the Schoedinger form with eight components, those of Moldauer and Case (deduzed from TS theory), of Weaver, Hammer and Good. (autor) [pt

  14. Relativistic effects in the energy loss of a fast charged particle moving parallel to a two-dimensional electron gas

    Science.gov (United States)

    Mišković, Zoran L.; Akbari, Kamran; Segui, Silvina; Gervasoni, Juana L.; Arista, Néstor R.

    2018-05-01

    We present a fully relativistic formulation for the energy loss rate of a charged particle moving parallel to a sheet containing two-dimensional electron gas, allowing that its in-plane polarization may be described by different longitudinal and transverse conductivities. We apply our formulation to the case of a doped graphene layer in the terahertz range of frequencies, where excitation of the Dirac plasmon polariton (DPP) in graphene plays a major role. By using the Drude model with zero damping we evaluate the energy loss rate due to excitation of the DPP, and show that the retardation effects are important when the incident particle speed and its distance from graphene both increase. Interestingly, the retarded energy loss rate obtained in this manner may be both larger and smaller than its non-retarded counterpart for different combinations of the particle speed and distance.

  15. Formation of spectrum of accelerated particles and the hydromagnetic turbulence in the variable magnetic field

    International Nuclear Information System (INIS)

    Savane, Y. Sy; Diaby, I.; Faza Barry, M.; Lomonossov, V.

    2002-11-01

    We study the acceleration of charged particles by the variable magnetic field. The study is based on the determination of spectrum of accelerated particles and the spectrum of hydro magnetic turbulence. We plan the self-consistent system of equation and we also find out the solution of the system for the spectrum of particles and hydro magnetic turbulence with the conditions of effective acceleration in the cosmic space of solar system. (author)

  16. Investigation of the response of Lexan polycarbonate to relativistic ultra heavy nuclear particles

    CERN Document Server

    Keane, A J; O'Sullivan, D

    1999-01-01

    Recent investigations of the track response of Lexan to relativistic ultra heavy nuclei are reported. The inherent charge resolution of Lexan for relativistic ultra heavy nuclei under normal exposure conditions at accelerators has been investigated. The registration temperature effect was measured using gold (Z=79) at energies 2, 4 and 11 GeV/u covering a wide range of temperatures from -78 deg. C to +22 deg. C. In addition, the sensitivity of the track etch rate and the bulk etch rate to etch product concentration was re-examined.

  17. Investigation of the response of Lexan polycarbonate to relativistic ultra heavy nuclear particles

    International Nuclear Information System (INIS)

    Keane, A.J.; Thompson, A.; O'Sullivan, D.

    1999-01-01

    Recent investigations of the track response of Lexan to relativistic ultra heavy nuclei are reported. The inherent charge resolution of Lexan for relativistic ultra heavy nuclei under normal exposure conditions at accelerators has been investigated. The registration temperature effect was measured using gold (Z=79) at energies 2, 4 and 11 GeV/u covering a wide range of temperatures from -78 deg. C to +22 deg. C. In addition, the sensitivity of the track etch rate and the bulk etch rate to etch product concentration was re-examined

  18. Relativistic Treatment of Spinless Particles Subject to a Tietz-Wei Oscillator

    Institute of Scientific and Technical Information of China (English)

    孙国华; 董世海

    2012-01-01

    The bound state solutions of the relativistic Klein-Gordon equation with the Tietz-Wei diatomic molecular potential are presented for the s wave. It is shown that the solutions can be expressed by the generalized hypergeometric functions. The normalized wavefunctions are also derived.

  19. Relativistic hydrodynamics

    CERN Document Server

    Luciano, Rezzolla

    2013-01-01

    Relativistic hydrodynamics is a very successful theoretical framework to describe the dynamics of matter from scales as small as those of colliding elementary particles, up to the largest scales in the universe. This book provides an up-to-date, lively, and approachable introduction to the mathematical formalism, numerical techniques, and applications of relativistic hydrodynamics. The topic is typically covered either by very formal or by very phenomenological books, but is instead presented here in a form that will be appreciated both by students and researchers in the field. The topics covered in the book are the results of work carried out over the last 40 years, which can be found in rather technical research articles with dissimilar notations and styles. The book is not just a collection of scattered information, but a well-organized description of relativistic hydrodynamics, from the basic principles of statistical kinetic theory, down to the technical aspects of numerical methods devised for the solut...

  20. Theoretical physics vol. 2. Quantum mechanics, relativistic quantum mechanics, quantum field theory, elementar-particle theory, thermodynamics and statistics

    International Nuclear Information System (INIS)

    Rebhan, E.

    2005-01-01

    The present second volume treats quantum mechanics, relativistic quantum mechanics, the foundations of quantum-field and elementary-particle theory as well as thermodynamics and statistics. Both volumes comprehend all fields, which are usually offered in a course about theoretical physics. In all treated fields a very careful introduction to the basic natural laws forms the starting point, whereby it is thoroughly analysed, which of them is based on empirics, which is logically deducible, and which role play basic definitions. Extendingly the matter extend of the corresponding courses starting from the relativistic quantum theory an introduction to the elementary particles is developed. All problems are very thoroughly and such extensively studied, that each step is singularly reproducible. On motivation and good understandability is cared much about. The mixing of mathematical difficulties with problems of physical nature often obstructive in the learning is so circumvented, that important mathematical methods are presented in own chapters (for instance Hilbert spaces, Lie groups). By means of many examples and problems (for a large part with solutions) the matter worked out is deepened and exercised. Developments, which are indeed important, but seem for the first approach abandonable, are pursued in excurses. This book starts from courses, which the author has held at the Heinrich-Heine university in Duesseldorf, and was in many repetitions fitted to the requirements of the students. It is conceived in such a way, that it is also after the study suited as dictionary or for the regeneration

  1. Towards Extreme Field Physics: Relativistic Optics and Particle Acceleration in the Transparent-Overdense Regime

    Science.gov (United States)

    Hegelich, B. Manuel

    2011-10-01

    A steady increase of on-target laser intensity with also increasing pulse contrast is leading to light-matter interactions of extreme laser fields with matter in new physics regimes which in turn enable a host of applications. A first example is the realization of interactions in the transperent-overdense regime (TOR), which is reached by interacting a highly relativistic (a0 >10), ultra high contrast laser pulse [1] with a solid density target, turning it transparent to the laser by the relativistic mass increase of the electrons. Thus, the interactions becomes volumetric, increasing the energy coupling from laser to plasma, facilitating a range of effects, including relativistic optics and pulse shaping, mono-energetic electron acceleration [3], highly efficient ion acceleration in the break-out afterburner regime [4], and the generation of relativistic and forward directed surface harmonics. Experiments at the LANL 130TW Trident laser facility successfully reached the TOR, and show relativistic pulse shaping beyond the Fourier limit, the acceleration of mono-energetic ~40 MeV electron bunches from solid targets, forward directed coherent relativistic high harmonic generation >1 keV Break-Out Afterburner (BOA) ion acceleration of Carbon to >1 GeV and Protons to >100 MeV. Carbon ions were accelerated with a conversion efficiency of >10% for ions >20 MeV and monoenergetic carbon ions with an energy spread of ICF diagnostics over ion fast ignition to medical physics. Furthermore, TOR targets traverse a wide range of HEDP parameter space during the interaction ranging from WDM conditions (e.g. brown dwarfs) to energy densities of ~1011 J/cm3 at peak, then dropping back to the underdense but extremely hot parameter range of gamma-ray bursts. Whereas today this regime can only be accessed on very few dedicated facilities, employing special targets and pulse cleaning technology, the next generation of laser facilities will operate in this regime by default, turning its

  2. Excitation of atomic nuclei and atoms by relativistic charge particles bound in a one-dimensional potential

    International Nuclear Information System (INIS)

    Almaliev, A.N.; Batkin, I.S.; Kopytin, I.V.

    1987-01-01

    The process of exciting atoms and atomic nuclei by relativistic electrons and positrons bound in a one-dimensional potential is investigated theoretically. It is shown that a pole corresponding to the emergence of a virtual photon on a bulk surface occurs in the matrix interaction element under definite kinematic relationships. It is obtained that the probability of the excitation process depends on the lifetime of the level being excited, the virtual photon, and the charged particle in a definite energetic state. An estimate of the magnitude of the excitation section of low-lying nuclear states yields a value exceeding by several orders the section obtained for charged particles in the absence of a binding potential

  3. Relativistic Shock Acceleration

    International Nuclear Information System (INIS)

    Duffy, P.; Downes, T.P.; Gallant, Y.A.; Kirk, J.G.

    1999-01-01

    In this paper we briefly review the basic theory of shock waves in relativistic hydrodynamics and magneto-hydrodynamics, emphasising some astrophysically interesting cases. We then present an overview of the theory of particle acceleration at such shocks describing the methods used to calculate the spectral indices of energetic particles. Recent results on acceleration at ultra-relativistic shocks are discussed. (author)

  4. Luminescence as a new detection method for non-relativistic highly ionizing particles in water/ice neutrino telescopes

    Energy Technology Data Exchange (ETDEWEB)

    Pollmann, Anna [Bergische Universitaet Wuppertal (Germany); Collaboration: IceCube-Collaboration

    2016-07-01

    Cosmic ray detectors use air as a radiator for luminescence. In water and ice detectors Cherenkov light is the dominant light producing mechanism when the particle velocity exceeds the Cherenkov threshold, approximately three quarters of the speed of light. Luminescence is produced by highly ionizing particles passing through matter due to the excitation of the surrounding atoms. The observables of luminescence, such as the wavelength spectrum and decay times, are highly dependent on the properties of the medium. Therefore, the results of measurements, in which luminescence was produced by particles passing through water or ice, vary by two orders of magnitude in intensity. It is shown that, even for the most conservative intensity value, luminescence can be used as a detection method for highly ionizing particles with velocities below the Cherenkov threshold. These could be magnetic monopoles or other massive and highly penetrating exotic particles. In the most optimistic case, luminescence contributes even to the light output of standard model particles.

  5. On the description of classical Einstein relativistic two-particle systems

    International Nuclear Information System (INIS)

    Aaberge, T.

    1978-01-01

    The author starts by considering the system of one free particle, and gives a sufficiently general description of this system to include the center of mass of systems of several particles. He then passes to the system of two particles. The coordinates separating the center of mass and the internal system are defined and the dynamics discussed. Finally the author outlines the construction of a more restrictive two-particle theory, and studies some consequences of the definition of a particle in an external field as a two-particle system in the limit where the mass of one of the particles becomes infinite. (Auth.)

  6. PREFACE: IARD 2012: 8th Biennial Conference on Classical and Quantum Relativistic Dynamics of Particles and Fields

    Science.gov (United States)

    Horwitz, L. P.; Land, Martin C.; Gill, Tepper; Lusanna, Luca; Salucci, Paolo

    2013-04-01

    Although the subject of relativistic dynamics has been explored, from both classical and quantum mechanical points of view, since the work of Einstein and Dirac, its most striking development has been in the framework of quantum field theory. The very accurate calculations of spectral and scattering properties, for example, of the anomalous magnetic moment of the electron and the Lamb shift in quantum electrodynamics, and many qualitative features of the strong and electroweak interactions, demonstrate the very great power of description achieved in this framework. Yet, many fundamental questions remain to be clarified, such as the structure of classical relativistic dynamical theories on the level of Hamilton and Lagrange in Minkowski space as well as on the curved manifolds of general relativity. There moreover remains the important question of the covariant classical description of systems at high energy for which particle production effects are not large, such as discussed in Synge's book, The Relativistic Gas, and in Balescu's book on relativistic statistical mechanics. In recent years, the study of high energy plasmas and heavy ion collisions has emphasized the importance of developing the techniques of relativistic mechanics. The results of Lindner et al [Physical Review Letters 95 0040401 (2005)] as well as the more recent proposal of Palacios et al [Phys. Rev. Lett. 103 253001 (2009)] and others, have shown that there must be a quantum theory with coherence in time. Such a theory, manifestly covariant under the transformations of special relativity with an invariant evolution parameter, such as that of Stueckelberg [Helv. Phys. Acta 14 322, 588 (1941); 15 23 (1942); see also R P Feynman Phys. Rev. 80 4401 and J S Schwinger Phys. Rev. 82 664 (1951)] could provide a suitable basis for the study of such questions, as well as many others for which the application of the standard methods of quantum field theory are difficult to manage, involving, in particular

  7. Plasma simulation by macroscale, electromagnetic particle code and its application to current-drive by relativistic electron beam injection

    International Nuclear Information System (INIS)

    Tanaka, M.; Sato, T.

    1985-01-01

    A new implicit macroscale electromagnetic particle simulation code (MARC) which allows a large scale length and a time step in multi-dimensions is described. Finite mass electrons and ions are used with relativistic version of the equation of motion. The electromagnetic fields are solved by using a complete set of Maxwell equations. For time integration of the field equations, a decentered (backward) finite differencing scheme is employed with the predictor - corrector method for small noise and super-stability. It is shown both in analytical and numerical ways that the present scheme efficiently suppresses high frequency electrostatic and electromagnetic waves in a plasma, and that it accurately reproduces low frequency waves such as ion acoustic waves, Alfven waves and fast magnetosonic waves. The present numerical scheme has currently been coded in three dimensions for application to a new tokamak current-drive method by means of relativistic electron beam injection. Some remarks of the proper macroscale code application is presented in this paper

  8. A rigorous approach to relativistic corrections of bound state energies for spin-1/2 particles

    International Nuclear Information System (INIS)

    Gesztesy, F.; Thaller, B.; Grosse, H.

    1983-01-01

    Under fairly general conditions on the interactions we prove holomorphy of the Dirac resolvent around its nonrelativistic limit. As a consequences, perturbation theory in terms of resolvents (instead of Hamiltonians) yields holomorphy of Dirac eigenvalues and eigenfunctions with respect to c - 1 and a new method of calculating relativistic corrections to bound state energies. Due to a formulation in an abstract setting our method is applicable in many different concrete situation. In particular our approach covers the case of the relavistic hydrogen atom in external electromagnetic fields. (Author)

  9. A semi-relativistic treatment of spinless particles subject to the nuclear Woods-Saxon potential

    International Nuclear Information System (INIS)

    Hamzavi, M.; Ikhdair, S.M.; Rajabi, A.A.

    2013-01-01

    By applying an appropriate Pekeris approximation to deal with the centrifugal term, we present an approximate systematic solution of the two-body spinless Salpeter (SS) equation with the Woods-Saxon interaction potential for an arbitrary l-state. The analytical semi-relativistic bound-state energy eigenvalues and the corresponding wave functions are calculated. Two special cases from our solution are studied: the approximated Schroedinger-Woods-Saxon problem for an arbitrary l-state and the exact s-wave (l=0). (authors)

  10. Collective scattering of electromagnetic waves from a relativistic magnetized plasma

    International Nuclear Information System (INIS)

    Lu Quankang

    1998-01-01

    Recently, laser and microwave scattering has become one of the important diagnostic means for plasma. Laser and microwave correlative scattering spectrum is determined by particle-density fluctuations in a weak turbulent plasma. In a relativistic plasma, on the basis of complete electromagnetic-interaction between particles, a general expression for particle density fluctuations and spectrums of laser and microwave scattering from a magnetized plasma are derived. The laser and microwave scattering spectrums provide informations on electron density and temperature, ion temperature, resonance and nonresonance effects. (author)

  11. Impact parameter dependence of the specific entropy and the light particle yield in relativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Gudima, K.K.; Toneev, V.D.

    1986-01-01

    The connection between the fragment yield and the associated specific entropy of particles produced in the course of a relativistic heavy ion collision is studied within the cascade approach. The essential impact parameter dependence of the fragment yield indicates that the specific entropy increases with impact parameter and that the critical density of the system decay is the larger the more central the collision process is. The results show that the thermodynamical equilibrium limit for the entropy production is not reached for such heavy systems as Nb+Nb at 400 MeV/nucleon and that the finite size effects and the dynamical freeze-out process are dominant factors in determining the cluster yield

  12. Single particle inclusive spectra resulting from the collision of relativistic protons, deuterons, alpha particles, and carbon ions with nuclei

    International Nuclear Information System (INIS)

    Papp, J.

    1975-05-01

    The yields of positive and negative particles resulting from the collision of 1.05 GeV/nucleon and 2.1 GeV/nucleon protons, deuterons, alpha particles, and 1.05 GeV/nucleon carbon nuclei with various targets have been measured. Single particle inclusive cross sections for production of π + , π - , p, d, 3 H, 3 He, and 4 He at 2.5 0 (lab) were obtained. How the results bear on the concepts of limiting fragmentation and scaling, the structure of the alpha particle and deuteron, and the possibility of ''coherent'' production of pions by heavy ions are discussed. (U.S.)

  13. Spectrum of relativistic radiation from electric charges and dipoles as they fall freely into a black hole

    Energy Technology Data Exchange (ETDEWEB)

    Shatskiy, A. A., E-mail: shatskiy@asc.rssi.ru; Novikov, I. D.; Lipatova, L. N. [Russian Academy of Sciences, Astrospace Center, Lebedev Physical Institute (Russian Federation)

    2013-06-15

    The motion of electric charges and dipoles falling radially and freely into a Schwarzschild black hole is considered. The inverse effect of the electromagnetic fields on the black hole is neglected. Since the dipole is assumed to be a point particle, the deformation due to the action of tidal forces on it is neglected. According to the theorem stating that 'black holes have no hair', the multipole electromagnetic fields should be completely radiated as a multipole falls into a black hole. The electromagnetic radiation power spectrum for these multipoles (a monopole and a dipole) has been found. Differences have been found in the spectra for different orientations of the falling dipole. A general method has been developed to find the radiated multipole electromagnetic fields for multipoles (including higher-order multipoles-quadrupoles, etc.) falling freely into a black hole. The calculated electromagnetic spectra can be compared with observational data from stellar-mass and smaller black holes.

  14. Three-dimensional lagrangian approach to the classical relativistic dynamics of directly interacting particles

    International Nuclear Information System (INIS)

    Gaida, R.P.; Kluchkousky, Ya.B.; Tretyak, V.I.

    1987-01-01

    In the present report the main attention is paid to the interrelations of various three-dimensional approaches and to the relation of the latter to the Fokker-type action formalism; the problem of the correspondence between three-dimensional descriptions and singular Lagrangian formalism will be shortly concerned. The authors start with the three-dimensional Lagrangian formulation of the classical RDIT. The generality of this formalism enables, similarly as in the non-relativistic case, to consider it as a central link explaining naturally a number of features of other three-dimensional approaches, namely Newtonian (based directly on second order equations of motion) and Hamiltonian ones). It is also capable of describing four-dimensional manifestly covariant models using Fokker action integrals and singular Lagrangians

  15. On parasupersymmetries and relativistic descriptions for spin one particles. Pt. 1. The free context

    International Nuclear Information System (INIS)

    Beckers, J.; Debergh, N.; Nikitin, A.G.

    1995-01-01

    This series of two papers is devoted to a constructive review of the relativistic wave equations for vector mesons due to the recent impact of spin one developments in connection with parasupersymmetric quantum mechanics. The free case as well as the interacting context with an electromagnetic field will be successively visited and discussed. Their associated parasupersymmetric properties will be pointed out. In this first part, the free context is presented by studying systematically the (symmetric) forms of wave equations subtended by a 16-dimensional reducible representation of the Lie algebra sl (2, C) or, evidently, so (3, 1), this representation playing a well known role in p = 2-parastatistical developments. Their hamiltonian forms are also discussed and some second order descriptions are finally reviewed. (orig.)

  16. On the beat interaction of particles with large amplitude spectrum in the description of mixing systems

    International Nuclear Information System (INIS)

    Krlin, L.

    1973-07-01

    The effect of stochastic instability of particle motion on nonlinear Landau damping was investigated on a simple model of particles with a discrete spectrum. It was shown that as far as the trajectory of particles was stochastically unstable (at beat resonances under consideration), diffusion of particles took place. The influence of this effect on the nonlinear Landau mechanism commonly assumed is discussed; the possibility of heating in this regime in a beam-plasma experiment is dealt with briefly. (author)

  17. Classical relativistic equations for particles with spin moving in external fields

    NARCIS (Netherlands)

    Dam, H. van; Ruijgrok, Th.W.

    1980-01-01

    We derive equations of motion for a point particle with spin in an external electromagnetic and in an external scalar field. The derivation is based on the ten conservation laws of linear and angular momentum and on a general expression for the current by which the particle interacts with the

  18. Beyond the relativistic mean-field approximation. II. Configuration mixing of mean-field wave functions projected on angular momentum and particle number

    International Nuclear Information System (INIS)

    Niksic, T.; Vretenar, D.; Ring, P.

    2006-01-01

    The framework of relativistic self-consistent mean-field models is extended to include correlations related to the restoration of broken symmetries and to fluctuations of collective variables. The generator coordinate method is used to perform configuration mixing of angular-momentum and particle-number projected relativistic wave functions. The geometry is restricted to axially symmetric shapes, and the intrinsic wave functions are generated from the solutions of the relativistic mean-field+Lipkin-Nogami BCS equations, with a constraint on the mass quadrupole moment. The model employs a relativistic point-coupling (contact) nucleon-nucleon effective interaction in the particle-hole channel, and a density-independent δ-interaction in the pairing channel. Illustrative calculations are performed for 24 Mg, 32 S, and 36 Ar, and compared with results obtained employing the model developed in the first part of this work, i.e., without particle-number projection, as well as with the corresponding nonrelativistic models based on Skyrme and Gogny effective interactions

  19. Relativistic two-and three-particle scattering equations using instant and light-front dynamics

    International Nuclear Information System (INIS)

    Adhikari, S.K.; Tomio, L.; Frederico, T.

    1992-01-01

    Starting from the Bethe-Salpeter equation for two particles in the ladder approximation and integrating over the time component of momentum we derive three dimensional scattering integral equations satisfying constraints of unitarity and relativity, both employing the light-front and instant-form variables. The equations we arrive at are those first derived by Weinberg and by Blankenbecler and Sugar, and are shown to be related by a transformation of variables. Hence we show how to perform and relate identical dynamical calculation using these two equations. We extends this procedure to the case of three particles interacting via two-particle separable potentials. Using light-front and instant form variables we suggest a couple of three dimensional three-particle scattering equations satisfying constraints of two and three-particle unitarity and relativity. The three-particle light-front equation is shown to be approximately related by a transformation of variables to one of the instant-form three-particle equations. (author)

  20. [Air Dielectric Barrier Discharge Emission Spectrum Measurement and Particle Analysis of Discharge Process].

    Science.gov (United States)

    Shen, Shuang-yan; Jin, Xing; Zhang, Peng

    2016-02-01

    The emission spectrum detection and diagnosis is one of the most common methods of application to the plasma. It provides wealth of information of the chemical and physical process of the plasma. The analysis of discharge plasma dynamic behavior plays an important role in the study of gas discharge mechanism and application. An air dielectric discharge spectrum measuring device was designed and the emission spectrum data was measured under the experimental condition. The plasma particles evolution was analyzed from the emission spectrum. The numerical calculation model was established and the density equation, energy transfer equation and the Boltzmann equation was coupled to analyze the change of the particle density to explain the emission spectrum characteristics. The results are that the particle density is growing with the increasing of reduced electric field. The particle density is one or two orders of magnitude difference for the same particle at the same moment for the reduced electric field of 40, 60 or 80 Td. A lot of N₂ (A³), N₂ (A³) and N₂ (C³) particles are generated by the electric field excitation. However, it transforms quickly due to the higher energy level. The transformation returns to the balance after the discharge of 10⁻⁶ s. The emission spectrometer measured in the experiments is mostly generated by the transition of excited nitrogen. The peak concentration of O₂ (A¹), O₂ (B¹) and O₂ (A³ ∑⁺u) is not low compared to the excited nitrogen molecules. These particles energy is relatively low and the transition spectral is longer. The spectrometer does not capture the oxygen emission spectrum. And the peak concentration of O particles is small, so the transition emission spectrum is weak. The calculation results of the stabled model can well explain the emission spectrum data.

  1. When do particle ratios freeze out in relativistic heavy ion collisions?

    Science.gov (United States)

    Humanic, Thomas; Bellwied, Rene

    1999-10-01

    The systematics of CERN SPS data for transverse mass distributions have been shown to imply that thermal equilibrium is achieved at freeze out in these collisions. This conclusion is based on the observation that for p+p, S+S, and Pb+Pb collisions freeze out occurs at a single temperature for all particle species measured if one assumes a certain uniform expansion velocity after hadronization for each colliding system [1]. A recent final- state rescattering calculation for SPS Pb+Pb collisions has shown that these systematics can be described as a consequence of particle rescattering where the system is assumed initially (i.e. at hadronization) to have a common temperature for all particles and no initial expansion velocity [2]. In addition to kinetic observables, it is equally interesting to investigate the time dependence of particle abundances through particle ratios in such a calculation. Two questions immediately arise: 1) is chemical equilibrium established in these collisions, and 2) when does chemical freeze out occur with respect to thermal freeze out for different particle ratios? How rescattering influences particle ratios is clearly of interest if one would like to deduce information about the hadronization stage of the collision from particle ratios measured at freeze out. For the present work we will show results for strange and non-strange particle ratios within the context of a version of the dynamic transport code used in Ref. [2]. [1] NA44 colaboration, I.G. Bearden et al., Phys. Rev. Lett. 78,2080(1997), [2] T. J. Humanic, Phys. Rev. C 57,866(1998)

  2. Some aspects of the description of relativistic particles in external fields. [Time dependent and time independent potentials

    Energy Technology Data Exchange (ETDEWEB)

    Labonte, G

    1973-01-01

    We study the time description of the motion of relativistic particles in both the dependent and time independent potentials. The differential equations of motion considered are the standard linear spin zero and one half equations. They are always meaningful in the sense that, at all times, unique well defined operator valued distributions in the three space variables are determined. We discuss the problem of determining which set of creation and annihilation operators is relevant in a given problem. We examine the implementation of certain simple requirements which seem to be necessary in order for the mathematical formalism to be able to describe a physical system. We show that whenever the equation of motion is homogeneous, the study of all physical requirements reduces to studying Bogoliubov transformations between creation and annihilation operators. We study such transformations where we obtain some new important results concerning their general properties. We examine in detail a quantized field in presence of an external source, electrons and positrons acted upon by a plane electromagnetic wave, Dirac fields acted upon by potentials of the form A(x) delta (t) and A(x) THETA (t-t/sub 0/). We study Dirac fields in presence of potentials which have time dependences which can be represented by sequences of step functions. We then discuss the limiting case where the time dependence is continuous. We prove that the requirements that there exists a unitary evolution operator or that physical particles can be described are exactly equivalent. (auth)

  3. Semi-classical approximation and the problem of boundary conditions in the theory of relativistic particle radiation

    International Nuclear Information System (INIS)

    Akhiezer, A.I.; Shul'ga, N.F.

    1991-01-01

    The process of relativistic particle radiation in an external field has been studied in the semi-classical approximation rather extensively. The main problem arising in the studies is in expressing the formula of the quantum theory of radiation in terms of classical quantities, for example of the classical trajectories. However, it still remains unclear how the particle trajectory is assigned, that is which particular initial or boundary conditions determine the trajectory in semi-classical approximation quantum theory of radiation. We shall try to solve this problem. Its importance comes from the fact that in some cases one and the same boundary conditions may give rise to two or more trajectories. We demonstrate that this fact must necessarily be taken into account on deriving the classical limit for the formulae of the quantum theory of radiation, since it leads to a specific interference effect in radiation. The method we used to deal with the problem is similar to the method employed by Fock to analyze the problem of a canonical transformation in classical and quantum mechanics. (author)

  4. Relativistic transport theory for cosmic-rays

    International Nuclear Information System (INIS)

    Webb, G.M.

    1985-01-01

    Various aspects of the transport of cosmic-rays in a relativistically moving magnetized plasma supporting a spectrum of hydromagnetic waves that scatter the cosmic-rays are presented. A local Lorentz frame moving with the waves or turbulence scattering the cosmic-rays is used to specify the individual particle momentum. The comoving frame is in general a noninertial frame in which the observer's volume element is expanding and shearing, geometric energy change terms appear in the cosmic-ray transport equation which consist of the relativistic generalization of the adiabatic deceleration term and a further term involving the acceleration vector of the scatterers. A relativistic version of the pitch angle evolution equation, including the effects of adiabatic focussing, pitch angle scattering, and energy changes is presented

  5. SPECTRA OF MAGNETIC FLUCTUATIONS AND RELATIVISTIC PARTICLES PRODUCED BY A NONRESONANT WAVE INSTABILITY IN SUPERNOVA REMNANT SHOCKS

    International Nuclear Information System (INIS)

    Vladimirov, Andrey E.; Ellison, Donald C.; Bykov, Andrei M.

    2009-01-01

    We model strong forward shocks in young supernova remnants with efficient particle acceleration where a nonresonant instability driven by the cosmic ray current amplifies magnetic turbulence in the shock precursor. Particle injection, magnetic field amplification (MFA), and the nonlinear feedback of particles and fields on the bulk flow are derived consistently. The shock structure depends critically on the efficiency of turbulence cascading. If cascading is suppressed, MFA is strong, the shock precursor is stratified, and the turbulence spectrum contains several discrete peaks. These peaks, as well as the amount of MFA, should influence synchrotron X-rays, allowing observational tests of cascading and other assumptions intrinsic to the nonlinear model of nonresonant wave growth.

  6. Prompt γ energy spectrum by associated particle technique

    International Nuclear Information System (INIS)

    An Li; He Tie; Guo Haiping; Yang Jian; Zheng Pu; Wang Xinhua; Chen Yuan; Mou Yunfeng; Zhu Chuanxin; Yang Xiaofei

    2010-01-01

    The basic principle of associated alpha particle technique and the measurement system were introduced. The characteristic prompt gamma-rays coming from water, graphite, liquid nitrogen, ammonium nitrate, melamine and simulated samples induced by D-T neutron from generator were gained by single alpha particle detector and gamma-ray detector. The complex gamma-ray spectra were deconvolved. The element ratio between the experiment and chemic molecular formula is agreement in 10%. (authors)

  7. Spin 0 and spin 1/2 quantum relativistic particles in a constant gravitational field

    International Nuclear Information System (INIS)

    Khorrami, M.; Alimohammadi, M.; Shariati, A.

    2003-01-01

    The Klein-Gordon and Dirac equations in a semi-infinite lab (x>0), in the background metric ds 2 =u 2 (x)(-dt 2 +dx 2 )+dy 2 +dz 2 , are investigated. The resulting equations are studied for the special case u(x)=1+gx. It is shown that in the case of zero transverse-momentum, the square of the energy eigenvalues of the spin-1/2 particles are less than the squares of the corresponding eigenvalues of spin-0 particles with same masses, by an amount of mgℎc. Finally, for non-zero transverse-momentum, the energy eigenvalues corresponding to large quantum numbers are obtained and the results for spin-0 and spin-1/2 particles are compared to each other

  8. On a model of a classical relativistic particle of constant and universal mass and spin

    Energy Technology Data Exchange (ETDEWEB)

    Kassandrov, V; Markova, N [Institute of Gravitation and Cosmology, Russian Peoples' Friendship University, Moscow (Russian Federation); Schaefer, G; Wipf, A [Institute of Theoretical Physics, Friedrich-Schiller University, Jena (Germany)

    2009-08-07

    The deformation of the classical action for a point-like particle recently suggested by Staruszkiewicz gives rise to a spin structure which constrains the values of the invariant mass and the invariant spin to be the same for any solution of the equations of motion. Both these Casimir invariants, the square of the 4-momentum vector and the square of the Pauli-Lubanski vector, are shown to preserve the same fixed values also in the presence of an arbitrary external electromagnetic field. In the 'free' case, in the centre-of-mass reference frame, the particle moves along a circle of fixed radius with arbitrary varying frequency. In a homogeneous magnetic field, a number of rotational 'states' are possible with frequencies slightly different from the cyclotron frequency, and 'phase-like' transitions with spin flops occur at some critical values of the particle's 3-momentum.

  9. The search for highly relativistic broken-charge particles in the cosmic radiation

    International Nuclear Information System (INIS)

    Krisor, K.

    1974-01-01

    As an introduction, the quark model of the elementary particles and the present state of the quark search is gone into. The theory of the energy loss of charged particles in the passage through matter and the set-up of the experiment (proportional counter hodoscope, electronics, on-line computer and off-line analysis of the data) are dealt with in detail. The following upper limits are given with 90% confidence: charge 1/3e -11 cm -2 sr -1 s -1 charge 2/3e -11 cm -2 sr -1 s -1 for the flow of unaccompanied quarks at sea level. (BJ/LH) [de

  10. PREVENTING POLLUTION USING ISO 14001 AT A PARTICLE ACCELERATOR THE RELATIVISTIC HEAVY ION COLLIDER PROJECT

    International Nuclear Information System (INIS)

    BRIGGS, S.L.K.; MUSOLINO, S.V.

    2001-01-01

    In early 1997 Brookhaven National Laboratory (BNL) discovered that the spent fuel pool of their High Flux Beam Reactor was leaking tritium into the groundwater. Community members, activist groups, politicians and regulators were outraged with the poor environmental management practices at BNL. The reactor was shut down and the Department of Energy (DOE) terminated the contract with the existing Management Company. At this same time, a major new scientific facility, the Relativistic Heavy Ion Collider (RHIC), was nearing the end of construction and readying for commissioning. Although environmental considerations had been incorporated into the design of the facility; some interested parties were skeptical that this new facility would not cause significant environmental impacts. RHIC management recognized that the future of its operation was dependent on preventing pollution and allaying concerns of its stakeholders. Although never done at a DOE National Laboratory before Brookhaven Science Associates, the new management firm, committed to implementing an Environmental Management System (EMS) and RHIC managers volunteered to deploy it within their facility on an extremely aggressive schedule. Several of these IS0 requirements contribute directly to preventing pollution, an area where particular emphasis was placed. This paper describes how Brookhaven used the following key IS0 14001 elements to institutionalize Pollution Prevention concepts: Environmental Policy, Aspects, Objectives and Targets, Environmental Management Program, Structure and Responsibility, Operational Controls, Training, and Management Review. In addition, examples of implementation at the RHIC Project illustrate how BNL's premiere facility was able to demonstrate to interested parties that care had been taken to implement technological and administrative controls to minimize environmental impacts, while at the same time reduce the applicability of regulatory requirements to their operations

  11. Einstein-aether theory: dynamics of relativistic particles with spin or polarization in a Gödel-type universe

    Energy Technology Data Exchange (ETDEWEB)

    Balakin, Alexander B.; Popov, Vladimir A., E-mail: alexander.balakin@kpfu.ru, E-mail: vladipopov@mail.ru [Department of General Relativity and Gravitation, Institute of Physics, Kazan Federal University, Kremlevskaya str. 18, Kazan 420008 (Russian Federation)

    2017-04-01

    In the framework of the Einstein-aether theory we consider a cosmological model, which describes the evolution of the unit dynamic vector field with activated rotational degree of freedom. We discuss exact solutions of the Einstein-aether theory, for which the space-time is of the Gödel-type, the velocity four-vector of the aether motion is characterized by a non-vanishing vorticity, thus the rotational vectorial modes can be associated with the source of the universe rotation. The main goal of our paper is to study the motion of test relativistic particles with a vectorial internal degree of freedom (spin or polarization), which is coupled to the unit dynamic vector field. The particles are considered as the test ones in the given space-time background of the Gödel-type; the spin (polarization) coupling to the unit dynamic vector field is modeled using exact solutions of three types. The first exact solution describes the aether with arbitrary Jacobson's coupling constants; the second one relates to the case, when the Jacobson's constant responsible for the vorticity is vanishing; the third exact solution is obtained using three constraints for the coupling constants. The analysis of the exact expressions, which are obtained for the particle momentum and for the spin (polarization) four-vector components, shows that the interaction of the spin (polarization) with the unit vector field induces a rotation, which is additional to the geodesic precession of the spin (polarization) associated with the universe rotation as a whole.

  12. Collision dynamics and particle production in relativistic nucleus- nucleus collisions at CERN

    International Nuclear Information System (INIS)

    Harris, J.W.

    1990-03-01

    The possibility of forming a quark-gluon plasma is the primary motivation for studying nucleus-nucleus collisions at very high energies. Various ''signatures'' for the existence of a quark-gluon plasma in these collisions have been proposed. These include an enhancement in the production of strange particles, suppression of J/Ψ production, observation of direct photons from the plasma, event-by-event fluctuations in the rapidity distributions of produced particles, and various other observables. However, the system will evolve dynamically from a pure plasma or mixed phase through expansion, cooling, hadronization and freezeout into the final state particles. Therefore, to be able to determine that a new, transient state of matter has been formed it will be necessary to understand the space-time evolution of the collision process and the microscopic structure of hadronic interactions, at the level of quarks and gluons, at high temperatures and densities. In this talk I will review briefly the present state of our understanding of the dynamics of these collisions and, in addition, present a few recent results on particle production from the NA35 experiment at CERN. 21 refs., 5 figs

  13. Construction of Fine Particles Source Spectrum Bank in Typical Region and Empirical Research of Matching Diagnosis

    Science.gov (United States)

    Wang, Xing; Sun, Wenliang; Guo, Min; Li, Minjiao; Li, Wan

    2018-01-01

    The research object of this paper is fine particles in typical region. The construction of component spectrum bank is based on the technology of online source apportionment, then the result of the apportionment is utilized to verify the effectiveness of fine particles component spectrum bank and which also act as the matching basis of online source apportionment receptor sample. On the next, the particle source of air pollution is carried through the matching diagnosis empirical research by utilizing online source apportionment technology, to provide technical support for the cause analysis and treatment of heavy pollution weather.

  14. Influence of rescattering on the strange particle spectrum

    International Nuclear Information System (INIS)

    David, C.; Hartnack, C; Aichelin, J.

    1997-01-01

    Applying a new method of rescattering which is based on the neural network technique we study the influence of rescattering on the spectra of strange particles produced in heavy ion reactions. In contradistinction to formal approaches the rescattering is done explicitly and not in a perturbative fashion. We present a comparison of our calculations for the system Ni (1.93 A.GeV) + Ni with recent data of the FOPI collaboration. We find that even for this small system rescattering changes the observables considerably but does not invalidate the role of the kaons as a messenger from the high density zone. We cannot confirm the conjecture that the kaon flow can be of use for the determination of the optical potential of the kaon. The experimental results agree with the computations showing a minimal change of the K + particles in the nuclear matter. Probably, the situation is very different for the K - particles

  15. Laboratory Measurements of Single-Particle Polarimetric Spectrum

    Science.gov (United States)

    Gritsevich, M.; Penttila, A.; Maconi, G.; Kassamakov, I.; Helander, P.; Puranen, T.; Salmi, A.; Hæggström, E.; Muinonen, K.

    2017-12-01

    Measuring scattering properties of different targets is important for material characterization, remote sensing applications, and for verifying theoretical results. Furthermore, there are usually simplifications made when we model targets and compute the scattering properties, e.g., ideal shape or constant optical parameters throughout the target material. Experimental studies help in understanding the link between the observed properties and computed results. Experimentally derived Mueller matrices of studied particles can be used as input for larger-scale scattering simulations, e.g., radiative transfer computations. This method allows to bypass the problem of using an idealized model for single-particle optical properties. While existing approaches offer ensemble- and orientation-averaged particle properties, our aim is to measure individual particles with controlled or known orientation. With the newly developed scatterometer, we aim to offer novel possibility to measure single, small (down to μm-scale) targets and their polarimetric spectra. This work presents an experimental setup that measures light scattered by a fixed small particle with dimensions ranging between micrometer and millimeter sizes. The goal of our setup is nondestructive characterization of such particles by measuring light of multiple wavelengths scattered in 360° in a horizontal plane by an ultrasonically levitating sample, whilst simultaneously controlling its 3D position and orientation. We describe the principles and design of our instrument and its calibration. We also present example measurements of real samples. This study was conducted under the support from the European Research Council, in the frame of the Advanced Grant project No. 320773 `Scattering and Absorption of Electromagnetic Waves in Particulate Media' (SAEMPL).

  16. Absorbing Boundary Conditions in Quantum Relativistic Mechanics for Spinless Particles Subject to a Classical Electromagnetic Field

    Science.gov (United States)

    Sater, Julien

    The theory of Artificial Boundary Conditions described by Antoine et al. [2,4-6] for the Schrodinger equation is applied to the Klein-Gordon (KG) in two-dimensions (2-D) for spinless particles subject to electromagnetic fields. We begin by providing definitions for a basic understanding of the theory of operators, differential geometry and wave front sets needed to discuss the factorization theorem thanks to Nirenberg and Hormander [14, 16]. The laser-free Klein-Gordon equation in 1-D is then discussed, followed by the case including electrodynamics potentials, concluding with the KG equation in 2-D space with electrodynamics potentials. We then consider numerical simulations of the laser-particle KG equation, which includes a brief analysis of a finite difference scheme. The conclusion integrates a discussion of the numerical results, the successful completion of the objective set forth, a declaration of the unanswered encountered questions and a suggestion of subjects for further research.

  17. Position map calculations of BPMs by CST particle studio for non-relativistic energies

    Energy Technology Data Exchange (ETDEWEB)

    Forck, Peter; Almalki, Mohammed; Kester, Oliver [GSI, Darmstadt (Germany); Goethe Universitaet Frankfurt (Germany); He, Jun [Institute of High Energy Physics, CAS Beijing (China); Kaufmann, Wolfgang; Sieber, Thomas; Singh, Rahul [GSI, Darmstadt (Germany)

    2016-07-01

    Beam positon monitors BPM at LINACs serve as the basic instrument for non-destructive position determination as yield from the difference-over-sum of signal of opposite electrodes. The time evolution of the signals, and consequently their Fourier-transformations, depend on the particle velocity and the distance from the electrodes. Position maps, i.e. electrodes difference-over-sum signal versus beam offset, were calculated using the wake-field solver CST Particle Studio in the velocity range from 0.05c to 0.5c for two BPM types. For the planned proton LINAC at FAIR, four separated button BPM electrodes are foreseen. The BPMs installed in the GSI UNILAC are made of a ceramic ring with four metallized sectors installed in a special housing. For the latter type resonances and capacitive coupling between the sectors modify the position map. The general findings and peculiarities of both types are presented.

  18. Transverse instabilities of relativistic particle beams in accelerators and storage rings. I

    International Nuclear Information System (INIS)

    Zotter, B.

    1977-01-01

    This paper deals with transverse instabilities in coasting beams. A short description is given of the mechanism which leads to transverse instabilities, due essentially to the reaction of the electromagnetic fields caused by an oscillating beam on the particle motion. The methods used to calculate the electromagnetic fields are described and one of them is used to calculate the dispersion relation coefficients as well as the transverse coupling impedance, of a cylindrical beam in a concentric vacuum chamber with finite wall resistivity. In the last sections the dispersion relation is derived from the equation of motion of a single particle. The concept of the stability diagram is introduced and the stability criterion is discussed from several points of view. (Auth.)

  19. Particle identification in the relativistic rise region using a longitudinal drift chamber

    Energy Technology Data Exchange (ETDEWEB)

    Arai, R; Bensinger, J; Boerner, H; Fukushima, Y; Hayashi, K; Ishihara, N; Inaba, S; Kohriki, T; Nakamura, S; Ogawa, K [National Lab. for High Energy Physics, Oho, Ibaraki (Japan)

    1983-09-01

    Particle identification by energy loss measurement was tested using a longitudinal drift chamber equipped with a 25 MHz flash ADC. For 3 GeV/c pions the resolution sigmasub(E)/E was about 5%. The separation between pions and protons at this momentum was about 4 standard deviations. The influence of a magnetic field was examined. The deterioration of the separation was less than 15% up to a field strength of 5.2 kG.

  20. Distributed drift chamber design for rare particle detection in relativistic heavy ion collisions

    CERN Document Server

    Bellwied, R; Bernardo, V; Caines, H; Christie, W; Costa, S; Crawford, H J; Cronqvist, M; Debbe, R; Dinnwiddie, R; Engelage, J; Flores, I; Fuzesy, R Z; Greiner, L; Hallman, T; Hoffmann, G; Huang, H Z; Jensen, P; Judd, E G; Kainz, K; Kaplan, M; Kelly, S; Lindstrom, P J; Llope, W J; Lo Curto, G; Longacre, R; Milosevich, Z; Mitchell, J T; Mitchell, J W; Mogavero, E; Mutchler, G S; Paganis, S; Platner, E; Potenza, R; Rotondo, F; Russ, D; Sakrejda, I; Saulys, A; Schambach, J; Sheen, J; Smirnoff, N; Stokely, C L; Tang, J; Trattner, A L; Trentalange, S; Visser, G; Whitfield, J P; Witharm, F; Witharm, R; Wright, M

    2002-01-01

    This report describes a multi plane drift chamber that was designed and constructed to function as a topological detector for the BNL AGS E896 rare particle experiment. The chamber was optimized for good spatial resolution, two track separation, and a high uniform efficiency while operating in a 1.6 T magnetic field and subjected to long term exposure from a 11.6 GeV/nucleon beam of 10 sup 6 Au ions per second.

  1. Study of Particle Production and Nuclear Fragmentation in Relativistic Heavy-Ion Collisions in Nuclear Emulsions

    CERN Multimedia

    2002-01-01

    % EMU11 \\\\ \\\\ We propose to use nuclear emulsions for the study of nuclear collisions of $^{207}$Pb, $^{197}$Au, and any other heavy-ion beams when they are available. We have, in the past, used $^{32}$S at 200A~GeV and $^{16}$O at 200A and 60A~GeV from CERN (Experiment EMU08) and at present the analysis is going on with $^{28}$Si beam from BNL at 14.5A~GeV. It will be important to compare the previous and the present investigations with the new $^{207}$Pb beam at 60-160A~GeV. We want to measure in nuclear emulsion, on an event by event basis, shower particle multiplicity, pseudorapidity density and density fluctuations of charged particles, charge multiplicity and angular distributions of projectile fragments, production and interaction cross-sections of heavily ionizing particles emitted from the target fragmentation. Special emphasis will be placed on the analysis of events produced in the central collisions which are selected on the basis of low energy fragments emitted from the target excitation. It woul...

  2. Beyond the relativistic point particle: A reciprocally invariant system and its generalisation

    International Nuclear Information System (INIS)

    Pavsic, Matej

    2009-01-01

    We investigate a reciprocally invariant system proposed by Low and Govaerts et al., whose action contains both the orthogonal and the symplectic forms and is invariant under global O(2,4) intersection Sp(2,4) transformations. We find that the general solution to the classical equations of motion has no linear term in the evolution parameter, τ, but only the oscillatory terms, and therefore cannot represent a particle propagating in spacetime. As a remedy, we consider a generalisation of the action by adopting a procedure similar to that of Bars et al., who introduced the concept of a τ derivative that is covariant under local Sp(2) transformations between the phase space variables x μ (τ) and p μ (τ). This system, in particular, is similar to a rigid particle whose action contains the extrinsic curvature of the world line, which turns out to be helical in spacetime. Another possible generalisation is the introduction of a symplectic potential proposed by Montesinos. We show how the latter approach is related to Kaluza-Klein theories and to the concept of Clifford space, a manifold whose tangent space at any point is Clifford algebra Cl(8), a promising framework for the unification of particles and forces.

  3. The 'single-particle' spectrum of states: correlated or uncorrelated?

    International Nuclear Information System (INIS)

    Garrett, J.D.

    1985-01-01

    Even though static neutron pair correlations appear to be quenched for stably-deformed rare earth nuclei at .4 MeV, correlations remain for the lowest (π,α)=(+,0), and to a lesser extent for the lowest (+,1/2), configuration. Neutron pair fluctuations (pair vibrations) probably are a significant portion of these correlations. Since correlations are configuration dependent, but are relatively independent of isotope, an empirical spectrum of single-neutron states can be constructed from values of the neutron Fermi level, extracted from experiment. (orig.)

  4. Investigation of Rising-Sun Magnetrons Operated at Relativistic Voltages Using Three Dimensional Particle-in-Cell Simulation

    International Nuclear Information System (INIS)

    Lemke, R.W.; Genoni, T.C.; Spencer, T.A.

    1999-01-01

    This work is an attempt to elucidate effects that may limit efficiency in magnetrons operated at relativistic voltages (V ∼ 500 kV). Three-dimensional particle-in-cell simulation is used to investigate the behavior of 14 and 22 cavity, cylindrical, rising-sun magnetrons. Power is extracted radially through a single iris located at the end of every other cavity. Numerical results show that in general output power and efficiency increase approximately linearly with increasing iris width (decreasing vacuum Q) until the total Q becomes too low for stable oscillation in the n-mode to be maintained. Beyond this point mode competition and/or switching occur and efficiency decreases. Results reveal that the minimum value of Q (maximum efficiency) that can be achieved prior to the onset of mode competition is significantly affected by the magnitude of the 0-space-harmonic of the π-mode, a unique characteristic of rising-suns, and by the magnitude of the electron current density (space-charge effects). By minimizing these effects, up to 3.7 GW output power has been produced at an efficiency of 40%

  5. LPIC++. A parallel one-dimensional relativistic electromagnetic particle-in-cell code for simulating laser-plasma-interaction

    International Nuclear Information System (INIS)

    Lichters, R.; Pfund, R.E.W.; Meyer-ter-Vehn, J.

    1997-08-01

    The code LPIC++ presented here, is based on a one-dimensional, electromagnetic, relativistic PIC code that has originally been developed by one of the authors during a PhD thesis at the Max-Planck-Institut fuer Quantenoptik for kinetic simulations of high harmonic generation from overdense plasma surfaces. The code uses essentially the algorithm of Birdsall and Langdon and Villasenor and Bunemann. It is written in C++ in order to be easily extendable and has been parallelized to be able to grow in power linearly with the size of accessable hardware, e.g. massively parallel machines like Cray T3E. The parallel LPIC++ version uses PVM for communication between processors. PVM is public domain software, can be downloaded from the world wide web. A particular strength of LPIC++ lies in its clear program and data structure, which uses chained lists for the organization of grid cells and enables dynamic adjustment of spatial domain sizes in a very convenient way, and therefore easy balancing of processor loads. Also particles belonging to one cell are linked in a chained list and are immediately accessable from this cell. In addition to this convenient type of data organization in a PIC code, the code shows excellent performance in both its single processor and parallel version. (orig.)

  6. Reduction of the ionization loss distribution width of several simultaneous relativistic particles traversing a scintillation counter

    CERN Document Server

    Aderholz, M; Matthewson, R; Lehraus, I no 1; Matthewson, R no 1; Aderholz, M no 1

    1975-01-01

    A Poisson distribution of number of electrons at the input stages of a photomultiplier has been folded into a Landau-Symon distribution of ionization losses in a plastic scintillator and a distribution of the smallest value out of n detectors was derived analytically for m simultaneous particles. A group of four identical scintillation counters was constructed and the smallest of the four output pulses was used for selective triggering of the bubble chamber flash with the greater precision engendered by the considerably reduced distribution width. (22 refs).

  7. Lectures in relativistic quantum mechanics an introductory course for postgraduates in particle physics

    CERN Document Server

    Azfar, Farrukh

    2017-01-01

    This book is based on a series of lectures taught by the author to all incoming first year Oxford University postgraduates in experimental particle physics. It begins by deriving the Dirac equation and incorporating the electro-magnetic interaction and calculating several bread and butter processes at tree level using the Feynman Stueckelberg approach: Mott scattering, electron-electron scattering, electron-positron scattering, Compton scattering, Bremsstrahlung and electron-positron to muon-anti-muon. The intention is for the student to become fluent in detail with all the steps leading to the calculation of these processes. Every step is motivated using the most basic arguments.

  8. Relativistic stability of interacting Fermi gas in a strong magnetic field

    International Nuclear Information System (INIS)

    Wang Lilin; Tian Jincheng; Men Fudian; Zhang Yipeng

    2013-01-01

    By means of the single particle energy spectrum of weak interaction between fermions and Poisson formula, the thermodynamic potential function of relativistic Fermi gas in a strong magnetic field is derived. Based on this, we obtained the criterion of stability for the system. The results show that the mechanics stability of a Fermi gas with weak interacting is influenced by the interacting. While the magnetic field is able to regulate the influence and the relativistic effect has almost no effect on it. (authors)

  9. Inclusive particle production at forward angles from collisions of light relativistic nuclei: Negative pions

    International Nuclear Information System (INIS)

    Moeller, E.; Anderson, L.; Brueckner, W.; Nagamiya, S.; Nissen-Meyer, S.; Schroeder, L.; Shapiro, G.; Steiner, H.

    1983-01-01

    We have measured single particle inclusive spectra of negative pions produced at angles from 0 0 to 12 0 (lab) in collisions of 1.05 and 2.1 GeV/nucleon protons, deuterons, alpha particles, and carbon nuclei with targets of C, Cu, Pb, and H (from a CH 2 -C subtraction). Most of the pions are produced in the kinematical domains allowed in free nucleon-nucleon collisions, but for alpha and carbon projectiles we have also observed pions whose energies range up to nearly twice the kinetic energy of a nucleon in the projectile. Our results suggest that processes involving more than two colliding nucleons and/or high internal momentum components are involved in the production of these high energy pions. Comparison is made with several hypotheses of scaling including specific dynamical models, and some disagreement is observed. We present fits to the kinetic energy dependence of the data, and the target and projectile mass dependence. We also show transverse momentum distributions

  10. Relativistic motion of charged particles in the interaction of short pulses of intense laser light with plasma

    International Nuclear Information System (INIS)

    Gomez R, F.

    2004-01-01

    In the chapter 1 we show the foundations of the special relativity in the frame of the classical mechanics and we develop the necessary theory for the theoretical description of the relativistic dynamics of charged particles in the interaction with electromagnetic fields. It will see that starting from the energy conservation principle is derived the Einstein's law that establishes the relationship among this and the mass. Later on, it will take the action of a charged particle in a given radiation field and in the one which only we will take two parts, the action of the free particle and the one that defines the interaction of this with the field. The equations of motion of a charge in an electromagnetic field come given by the Lagrange equations, being obtained an expression for the force, well-known as Lorentz force, which consists of two terms, the first of them is the force that the electric field E exercises on the particle; which doesn't depend on the charge speed and is oriented in the direction of the field, the second term represents the force that exercises the magnetic field B and that it is proportional to the charge speed, being perpendicular to the direction of it. In the chapter 2 an integration method of the Hamilton-Jacobi for the case of a pulse is that allows to found analytical forms for the moment, the energy and the charge position is developed with detail. We will present, also, a discussion of the classical theory of the relativistic dynamic of free electrons. They are also obtained, invariant quantities like the phase, before the frame of the reference inertial changes, well-known as Lorentz invariants of the system. In this part it is considered to the electron in the laboratory frame (frame in which the particle is initially in repose regarding the observer), of which the speed and the acceleration quadrivectors can be calculated. We demonstrate that the η phase is a Lorentz invariant. It is shown, also that the proper time interval d

  11. Kinetic Modeling of Radiative Turbulence in Relativistic Astrophysical Plasmas: Particle Acceleration and High-Energy Flares

    Science.gov (United States)

    Wise, John

    In the near future, next-generation telescopes, covering most of the electromagnetic spectrum, will provide a view into the very earliest stages of galaxy formation. To accurately interpret these future observations, accurate and high-resolution simulations of the first stars and galaxies are vital. This proposal is centered on the formation of the first galaxies in the Universe and their observational signatures in preparation for these future observatories. This proposal has two overall goals: 1. To simulate the formation and evolution of a statistically significant sample of galaxies during the first billion years of the Universe, including all relevant astrophysics while resolving individual molecular clouds, in various cosmological environments. These simulations will utilize a sophisticated physical model of star and black hole formation and feedback, including radiation transport and magnetic fields, which will lead to the most realistic and resolved predictions for the early universe; 2. To predict the observational features of the first galaxies throughout the electromagnetic spectrum, allowing for optimal extraction of galaxy and dark matter halo properties from their photometry, imaging, and spectra; The proposed research plan addresses a timely and relevant issue to theoretically prepare for the interpretation of future observations of the first galaxies in the Universe. A suite of adaptive mesh refinement simulations will be used to follow the formation and evolution of thousands of galaxies observable with the James Webb Space Telescope (JWST) that will be launched during the second year of this project. The simulations will have also tracked the formation and death of over 100,000 massive metal-free stars. Currently, there is a gap of two orders of magnitude in stellar mass between the smallest observed z > 6 galaxy and the largest simulated galaxy from "first principles", capturing its entire star formation history. This project will eliminate this

  12. The Spectrum of Particles with Short-Ranged Interactions in a Harmonic Trap

    Directory of Open Access Journals (Sweden)

    Metsch B. Ch.

    2010-04-01

    Full Text Available The possibility to control short-ranged interactions of cold gases in optical traps by Feshbachresonances makes these systems ideal candidates to study universal scaling properties and Efimov physics. The spectrum of particles in a trap, idealised by a harmonic oscillator potential, in the zero range limit with 2- and 3-particle contact interactions is studied numerically. The Hamiltonian is regularised by restricting the oscillator basis and the coupling constants are tuned such that the ground state energies of the 2- and 3-particle sector are reproduced [1],[2]. Results for 2-, 3-, and 4 particle systems are presented and compared to exact results [3],[4].

  13. Long range correlations, leading particle spectrum and correlations with leading particles

    International Nuclear Information System (INIS)

    Ilgenfritz, E.M.

    1976-05-01

    The unitary cluster emission model by de Groot and Ruijgrok is discussed as an approach to understand the leading particle behaviour. Consequences of the model concerning co--rrelations between leading particles and produced particles in the central region are considered. No satisfactory agreement was found. Production of leading clusters is argued for being an essential feature of these correlations. (author)

  14. Isoscalar giant resonances in a relativistic model

    International Nuclear Information System (INIS)

    L'Huillier, M.; Nguyen Van Giai.

    1988-07-01

    Isoscalar giant resonances in finite nuclei are studied in a relativistic Random Phase Approximation (RRPA) approach. The model is self-consistent in the sense that one set of coupling constants generates the Dirac-Hartree single-particle spectrum and the residual particle-hole interaction. The RRPA is used to calculate response functions of multipolarity L = 0,2,3, and 4 in light and medium nuclei. It is found that monopole and quadrupole modes exhibit a collective character. The peak energies are overestimated, but not as much as one might think if the bulk properties (compression modulus, effective mass) were the only relevant quantities

  15. Particle Production in Strong Electromagnetic Fields in Relativistic Heavy-Ion Collisions

    Directory of Open Access Journals (Sweden)

    Kirill Tuchin

    2013-01-01

    Full Text Available I review the origin and properties of electromagnetic fields produced in heavy-ion collisions. The field strength immediately after a collision is proportional to the collision energy and reaches ~mπ2 at RHIC and ~10mπ2 at LHC. I demonstrate by explicit analytical calculation that after dropping by about one-two orders of magnitude during the first fm/c of plasma expansion, it freezes out and lasts for as long as quark-gluon plasma lives as a consequence of finite electrical conductivity of the plasma. Magnetic field breaks spherical symmetry in the direction perpendicular to the reaction plane, and therefore all kinetic coefficients are anisotropic. I examine viscosity of QGP and show that magnetic field induces azimuthal anisotropy on plasma flow even in spherically symmetric geometry. Very strong electromagnetic field has an important impact on particle production. I discuss the problem of energy loss and polarization of fast fermions due to synchrotron radiation, consider photon decay induced by magnetic field, elucidate J/ψ dissociation via Lorentz ionization mechanism, and examine electromagnetic radiation by plasma. I conclude that all processes in QGP are affected by strong electromagnetic field and call for experimental investigation.

  16. Analytic study of 1D diffusive relativistic shock acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Keshet, Uri, E-mail: ukeshet@bgu.ac.il [Physics Department, Ben-Gurion University of the Negev, POB 653, Be' er-Sheva 84105 (Israel)

    2017-10-01

    Diffusive shock acceleration (DSA) by relativistic shocks is thought to generate the dN / dE ∝ E{sup −p} spectra of charged particles in various astronomical relativistic flows. We show that for test particles in one dimension (1D), p {sup −1}=1−ln[γ{sub d}(1+β{sub d})]/ln[γ{sub u}(1+β{sub u})], where β{sub u}(β{sub d}) is the upstream (downstream) normalized velocity, and γ is the respective Lorentz factor. This analytically captures the main properties of relativistic DSA in higher dimensions, with no assumptions on the diffusion mechanism. Unlike 2D and 3D, here the spectrum is sensitive to the equation of state even in the ultra-relativistic limit, and (for a J(üttner-Synge equation of state) noticeably hardens with increasing 1<γ{sub u}<57, before logarithmically converging back to p (γ{sub u→∞})=2. The 1D spectrum is sensitive to drifts, but only in the downstream, and not in the ultra-relativistic limit.

  17. Relativistic quantum mechanics; Mecanique quantique relativiste

    Energy Technology Data Exchange (ETDEWEB)

    Ollitrault, J.Y. [CEA Saclay, 91 - Gif-sur-Yvette (France). Service de Physique Theorique]|[Universite Pierre et Marie Curie, 75 - Paris (France)

    1998-12-01

    These notes form an introduction to relativistic quantum mechanics. The mathematical formalism has been reduced to the minimum in order to enable the reader to calculate elementary physical processes. The second quantification and the field theory are the logical followings of this course. The reader is expected to know analytical mechanics (Lagrangian and Hamiltonian), non-relativistic quantum mechanics and some basis of restricted relativity. The purpose of the first 3 chapters is to define the quantum mechanics framework for already known notions about rotation transformations, wave propagation and restricted theory of relativity. The next 3 chapters are devoted to the application of relativistic quantum mechanics to a particle with 0,1/5 and 1 spin value. The last chapter deals with the processes involving several particles, these processes require field theory framework to be thoroughly described. (A.C.) 2 refs.

  18. Relativistic Kinetic Theory

    Science.gov (United States)

    Vereshchagin, Gregory V.; Aksenov, Alexey G.

    2017-02-01

    Preface; Acknowledgements; Acronyms and definitions; Introduction; Part I. Theoretical Foundations: 1. Basic concepts; 2. Kinetic equation; 3. Averaging; 4. Conservation laws and equilibrium; 5. Relativistic BBGKY hierarchy; 6. Basic parameters in gases and plasmas; Part II. Numerical Methods: 7. The basics of computational physics; 8. Direct integration of Boltzmann equations; 9. Multidimensional hydrodynamics; Part III. Applications: 10. Wave dispersion in relativistic plasma; 11. Thermalization in relativistic plasma; 12. Kinetics of particles in strong fields; 13. Compton scattering in astrophysics and cosmology; 14. Self-gravitating systems; 15. Neutrinos, gravitational collapse and supernovae; Appendices; Bibliography; Index.

  19. High-frequency asymptotics of the emission spectrum of moving charged particles in classical electrodynamics

    International Nuclear Information System (INIS)

    Abbasov, I.I.; Bolotovskij, B.M.; Davydov, V.A.

    1986-01-01

    Electromagnetic radiation appears as a result of a charged particle movement in free space and also in heterogeneous and non-stationary medium. The radiation spectrum depends on the charged particle motion law, as well as on the law of the medium property chage in space and time. The asymptotics of radiation spectrum, i.e. behaviour of spectral intensity at high frequencies, is studied. It is shown that if a charged particle moves along smooth trajectory or if the change in the medium properties takes place accordng to the law described by a smooth function, the radiation spectrum at high frequencies decreases according to exponential law. Thus, radiation spectrum of a charged particle moving along a smooth trajectory in the medium with gradual heterogeneity and (or) instability is rapidly cut, starting from a certain frequency value. The smooth trajectory means that the charge moves according to the law r = r(t), where vector-function r(t) is continuous with all its derivatives. In much the same way the medium with gradual heterogeneities (or with gradual instability) is described by the functions which are continuous with all their derivatives of any order. The method permitting to determine the upper boundary of radiation spectra is presented

  20. Total spectrum of photon emission by an ultra-relativistic positron channelling in a periodically bent crystal

    International Nuclear Information System (INIS)

    Krause, W.; Korol, A.V.; Department of Physics, St Petersburg State Maritime Technical University, Leninskii prospect 101, St Petersburg 198262; Solov'yov, A.V.; AF Ioffe Physical-Technical Institute of the Academy of Sciences of Russia, Polytechnicheskaya 26, St Petersburg 194021; Greiner, W.

    2000-01-01

    We present the results of numerical calculations of the channelling and undulator radiation generated by ultra-relativistic positron channelling along a crystal plane, which is periodically bent. The bending might be due to either the propagation of a transverse acoustic wave through the crystal, or the static strain as it occurs in superlattices. The periodically bent crystal serves as an undulator. We investigate the dependence of the intensities of both the ordinary channelling and the undulator radiations on the parameters of the periodically bent channel with simultaneous account for the de-channelling effect of the positrons. We demonstrate that there is a range of parameters in which the undulator radiation dominates over the channelling one and the characteristic frequencies of both types of radiation are well separated. This result is important, because the undulator radiation can be used to create a tunable source of x-ray and γ-radiation. (author). Letter-to-the-editor

  1. The application of particle swarm optimization to identify gamma spectrum with neural network

    International Nuclear Information System (INIS)

    Shi Dongsheng; Di Yuming; Zhou Chunlin

    2006-01-01

    Aiming at the shortcomings that BP algorithm is usually trapped to a local optimum and it has a low speed of convergence in the application of neural network to identify gamma spectrum, according to the advantage of the globe optimal searching of particle swarm optimization, this paper put forward a new algorithm for neural network training by combining BP algorithm and Particle Swarm Optimization-mixed PSO-BP algorithm. In the application to identify gamma spectrum, the new algorithm overcomes the shortcoming that BP algorithm is usually trapped to a local optimum and the neural network trained by it has a high ability of generalization with identification result of one hundred percent correct. Practical example shows that the mixed PSO-BP algorithm can effectively and reliably be used to identify gamma spectrum. (authors)

  2. LATTICE SIMULATIONS OF THE THERMODYNAMICS OF STRONGLY INTERACTING ELEMENTARY PARTICLES AND THE EXPLORATION OF NEW PHASES OF MATTER IN RELATIVISTIC HEAVY ION COLLISIONS

    International Nuclear Information System (INIS)

    KARSCH, F.

    2006-01-01

    At high temperatures or densities matter formed by strongly interacting elementary particles (hadronic matter) is expected to undergo a transition to a new form of matter--the quark gluon plasma--in which elementary particles (quarks and gluons) are no longer confined inside hadrons but are free to propagate in a thermal medium much larger in extent than the typical size of a hadron. The transition to this new form of matter as well as properties of the plasma phase are studied in large scale numerical calculations based on the theory of strong interactions--Quantum Chromo Dynamics (QCD). Experimentally properties of hot and dense elementary particle matter are studied in relativistic heavy ion collisions such as those currently performed at the relativistic heavy ion collider (RHIC) at BNL. We review here recent results from studies of thermodynamic properties of strongly interacting elementary particle matter performed on Teraflops-Computer. We present results on the QCD equation of state and discuss the status of studies of the phase diagram at non-vanishing baryon number density

  3. Target Channel Visiting Order Design Using Particle Swarm Optimization for Spectrum Handoff in Cognitive Radio Networks

    Directory of Open Access Journals (Sweden)

    Shilian Zheng

    2014-08-01

    Full Text Available In a dynamic spectrum access network, when a primary user (licensed user reappears on the current channel, cognitive radios (CRs need to vacate the channel and reestablish a communications link on some other channel to avoid interference to primary users, resulting in spectrum handoff. This paper studies the problem of designing target channel visiting order for spectrum handoff to minimize expected spectrum handoff delay. A particle swarm optimization (PSO based algorithm is proposed to solve the problem. Simulation results show that the proposed algorithm performs far better than random target channel visiting scheme. The solutions obtained by PSO are very close to the optimal solution which further validates the effectiveness of the proposed method.

  4. Explosive X-point collapse in relativistic magnetically dominated plasma

    Science.gov (United States)

    Lyutikov, Maxim; Sironi, Lorenzo; Komissarov, Serguei S.; Porth, Oliver

    2017-12-01

    The extreme properties of the gamma-ray flares in the Crab nebula present a clear challenge to our ideas on the nature of particle acceleration in relativistic astrophysical plasma. It seems highly unlikely that standard mechanisms of stochastic type are at work here and hence the attention of theorists has switched to linear acceleration in magnetic reconnection events. In this series of papers, we attempt to develop a theory of explosive magnetic reconnection in highly magnetized relativistic plasma which can explain the extreme parameters of the Crab flares. In the first paper, we focus on the properties of the X-point collapse. Using analytical and numerical methods (fluid and particle-in-cell simulations) we extend Syrovatsky's classical model of such collapse to the relativistic regime. We find that the collapse can lead to the reconnection rate approaching the speed of light on macroscopic scales. During the collapse, the plasma particles are accelerated by charge-starved electric fields, which can reach (and even exceed) values of the local magnetic field. The explosive stage of reconnection produces non-thermal power-law tails with slopes that depend on the average magnetization . For sufficiently high magnetizations and vanishing guide field, the non-thermal particle spectrum consists of two components: a low-energy population with soft spectrum that dominates the number census; and a high-energy population with hard spectrum that possesses all the properties needed to explain the Crab flares.

  5. Relativistic equations

    International Nuclear Information System (INIS)

    Gross, F.

    1986-01-01

    Relativistic equations for two and three body scattering are discussed. Particular attention is paid to relativistic three body kinetics because of recent form factor measurements of the Helium 3 - Hydrogen 3 system recently completed at Saclay and Bates and the accompanying speculation that relativistic effects are important for understanding the three nucleon system. 16 refs., 4 figs

  6. General relativistic fields of an isolated spin-half charged particle near the spin axis with application to the rest-mass of the electron and positron

    International Nuclear Information System (INIS)

    Lynch, J.T.

    1999-01-01

    Using a lowest-order approximation, the field equations of a general relativistic spinor-connection theory are solved semi-analytically for the fields of a stable, spin-half changed particle near the spin axis. With the exception of the atomic fine-structure constant, all parameters arising in the solution, including the rest mass of the source particle, are found by imposing the standard junction conditions of general relativity and electromagnetism. Using the empirical value for the fine-structure constant, the value derived for the rest mass gives some reason to identify the source particle with the electron. Moreover, since the rest mass is independent of the sign of the electron charge carried by the source, the solution is equally applicable to the positron

  7. A novel neutron energy spectrum unfolding code using particle swarm optimization

    International Nuclear Information System (INIS)

    Shahabinejad, H.; Sohrabpour, M.

    2017-01-01

    A novel neutron Spectrum Deconvolution using Particle Swarm Optimization (SDPSO) code has been developed to unfold the neutron spectrum from a pulse height distribution and a response matrix. The Particle Swarm Optimization (PSO) imitates the bird flocks social behavior to solve complex optimization problems. The results of the SDPSO code have been compared with those of the standard spectra and recently published Two-steps Genetic Algorithm Spectrum Unfolding (TGASU) code. The TGASU code have been previously compared with the other codes such as MAXED, GRAVEL, FERDOR and GAMCD and shown to be more accurate than the previous codes. The results of the SDPSO code have been demonstrated to match well with those of the TGASU code for both under determined and over-determined problems. In addition the SDPSO has been shown to be nearly two times faster than the TGASU code. - Highlights: • Introducing a novel method for neutron spectrum unfolding. • Implementation of a particle swarm optimization code for neutron unfolding. • Comparing results of the PSO code with those of recently published TGASU code. • Match results of the PSO code with those of TGASU code. • Greater convergence rate of implemented PSO code than TGASU code.

  8. Newtonian analogue of force and relativistic drag on a free particle in the gravitational field of a combined Kerr-NUT field

    International Nuclear Information System (INIS)

    Singh, T.; Yadav, R.B.S.

    1980-01-01

    In the first part of the present paper the Newtonian analogue of force for the combined Kerr-NUT metric has been investigated. To the first order of approximation one component of the force vector corresponds to the Newtonian gravitational force. In the higher order of approximation the relativistic correction terms due to rotation and presence of gravitational analogue of a magnetic monopole are obtained. In the second part of the paper the motion of a freely falling body has been investigated. It is found that plane orbits are not possible. Also a radial fall is not possible and there is a rotational drag on the particle which has no Newtonian analogue. (author)

  9. Relativistic charged Bose gas

    International Nuclear Information System (INIS)

    Hines, D.F.; Frankel, N.E.

    1979-01-01

    The charged Bose has been previously studied as a many body problem of great intrinsic interest which can also serve as a model of some real physical systems, for example, superconductors, white dwarf stars and neutron stars. In this article the excitation spectrum of a relativistic spin-zero charged Bose gas is obtained in a dielectric response formulation. Relativity introduces a dip in the spectrum and consequences of this dip for the thermodynamic functions are discussed

  10. Biquaternions and relativistic kinematics

    International Nuclear Information System (INIS)

    Bogush, A.A.; Kurochkin, Yu.A.; Fedorov, F.I.

    1979-01-01

    The problems concerning the use of quaternion interpretation of the Lorentz group vector parametrization are considered for solving relativistic kinematics problems. A vector theory convenient for describing the characteristic features of the Lobachevsky space is suggested. The kinematics of elementary particle scattering is investigated on the basis of this theory. A synthesis of vector parametrization and of quaternion calculation has been shown to lead to natural formulation of the theory of vectors in the three-dimensional Lobachevsky space, realized on mass hyperboloids of relativistic particles

  11. Simulation of particle diffusion in a spectrum of electrostatic turbulence. Low frequency Bohm or percolation scaling

    International Nuclear Information System (INIS)

    Reuss, J.D.; Misguich, J.H.

    1996-02-01

    An important point for turbulent transport consists in determining the scaling law for the diffusion coefficient D due to electrostatic turbulence. It is well-known that for weak amplitudes or large frequencies, the reduced diffusion coefficient has a quasi-linear like (or gyro-Bohm like) scaling, while for large amplitudes or small frequencies it has been traditionally believed that the scaling is Bohm-like. The aim of this work consists to test this prediction for a given realistic model. This problem is studied by direct simulation of particle trajectories. Guiding centre diffusion in a spectrum of electrostatic turbulence is computed for test particles in a model spectrum, by means of a new parallelized code RADIGUET 2. The results indicate a continuous transition for large amplitudes toward a value which is compatible with the Isichenko percolation prediction. (author)

  12. Analysis of thick source alpha particle spectrum from radium and its daughters in bone

    International Nuclear Information System (INIS)

    Mausner, L.F.; Schlenker, R.A.

    1978-01-01

    The alpha particle energy spectrum of 226 Ra and its four alpha emitting daughters in an ashed, ground bone sample has been resolved into its components using a computerized spectrum stripping algorithm. These calculated results have been compared to direct measurements of the 226 Ra and 214 Po distributions obtained by alpha--gamma coincidence techniques. The ability of the calculation to deconvolute the total spectrum into its five alpha components implies that straightforward alpha counting may be used instead of the very low efficiency 226 Ra alpha--gamma coincidence method. From knowledge of the actual 226 Ra distribution, along with suitable detector energy and efficiency calibrations, one could determine endosteal cell dose rate empirically

  13. Relativistic non-Hamiltonian mechanics

    International Nuclear Information System (INIS)

    Tarasov, Vasily E.

    2010-01-01

    Relativistic particle subjected to a general four-force is considered as a nonholonomic system. The nonholonomic constraint in four-dimensional space-time represents the relativistic invariance by the equation for four-velocity u μ u μ + c 2 = 0, where c is the speed of light in vacuum. In the general case, four-forces are non-potential, and the relativistic particle is a non-Hamiltonian system in four-dimensional pseudo-Euclidean space-time. We consider non-Hamiltonian and dissipative systems in relativistic mechanics. Covariant forms of the principle of stationary action and the Hamilton's principle for relativistic mechanics of non-Hamiltonian systems are discussed. The equivalence of these principles is considered for relativistic particles subjected to potential and non-potential forces. We note that the equations of motion which follow from the Hamilton's principle are not equivalent to the equations which follow from the variational principle of stationary action. The Hamilton's principle and the principle of stationary action are not compatible in the case of systems with nonholonomic constraint and the potential forces. The principle of stationary action for relativistic particle subjected to non-potential forces can be used if the Helmholtz conditions are satisfied. The Hamilton's principle and the principle of stationary action are equivalent only for a special class of relativistic non-Hamiltonian systems.

  14. RADCHARM++: A C++ routine to compute the electromagnetic radiation generated by relativistic charged particles in crystals and complex structures

    Energy Technology Data Exchange (ETDEWEB)

    Bandiera, Laura; Bagli, Enrico; Guidi, Vincenzo [INFN Sezione di Ferrara and Dipartimento di Fisica e Scienze della Terra, Università degli Studi di Ferrara, Via Saragat 1, 44121 Ferrara (Italy); Tikhomirov, Victor V. [Research Institute for Nuclear Problems, Belarusian State University, Minsk (Belarus)

    2015-07-15

    The analytical theories of coherent bremsstrahlung and channeling radiation well describe the process of radiation generation in crystals under some special cases. However, the treatment of complex situations requires the usage of a more general approach. In this report we present a C++ routine, named RADCHARM++, to compute the electromagnetic radiation emitted by electrons and positrons in crystals and complex structures. In the RADCHARM++ routine, the model for the computation of e.m. radiation generation is based on the direct integration of the quasiclassical formula of Baier and Katkov. This approach allows one taking into account real trajectories, and thereby the contribution of incoherent scattering. Such contribution can be very important in many cases, for instance for electron channeling. The generality of the Baier–Katkov operator method permits one to simulate the electromagnetic radiation emitted by electrons/positrons in very different cases, e.g., in straight, bent and periodically bent crystals, and for different beam energy ranges, from sub-GeV to TeV and above. The RADCHARM++ routine has been implemented in the Monte Carlo code DYNECHARM++, which solves the classical equation of motion of charged particles traveling through a crystal under the continuum potential approximation. The code has proved to reproduce the results of experiments performed at the MAinzer MIkrotron (MAMI) with 855 MeV electrons and has been used to predict the radiation spectrum generated by the same electron beam in a bent crystal.

  15. Centrality dependence of identified particle elliptic flow in relativistic heavy ion collisions at √{sN N}=7.7 -62.4 GeV

    Science.gov (United States)

    Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; Aggarwal, M. M.; Ahammed, Z.; Alekseev, I.; Aparin, A.; Arkhipkin, D.; Aschenauer, E. C.; Averichev, G. S.; Bai, X.; Bairathi, V.; Banerjee, A.; Bellwied, R.; Bhasin, A.; Bhati, A. K.; Bhattarai, P.; Bielcik, J.; Bielcikova, J.; Bland, L. C.; Bordyuzhin, I. G.; Bouchet, J.; Brandenburg, D.; Brandin, A. V.; Bunzarov, I.; Butterworth, J.; Caines, H.; Calderón de la Barca Sánchez, M.; Campbell, J. M.; Cebra, D.; Cervantes, M. C.; Chakaberia, I.; Chaloupka, P.; Chang, Z.; Chattopadhyay, S.; Chen, X.; Chen, J. H.; Cheng, J.; Cherney, M.; Chisman, O.; Christie, W.; Contin, G.; Crawford, H. J.; Das, S.; De Silva, L. C.; Debbe, R. R.; Dedovich, T. G.; Deng, J.; Derevschikov, A. A.; di Ruzza, B.; Didenko, L.; Dilks, C.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Du, C. M.; Dunkelberger, L. E.; Dunlop, J. C.; Efimov, L. G.; Engelage, J.; Eppley, G.; Esha, R.; Evdokimov, O.; Eyser, O.; Fatemi, R.; Fazio, S.; Federic, P.; Fedorisin, J.; Feng, Z.; Filip, P.; Fisyak, Y.; Flores, C. E.; Fulek, L.; Gagliardi, C. A.; Garand, D.; Geurts, F.; Gibson, A.; Girard, M.; Greiner, L.; Grosnick, D.; Gunarathne, D. S.; Guo, Y.; Gupta, A.; Gupta, S.; Guryn, W.; Hamad, A.; Hamed, A.; Haque, R.; Harris, J. W.; He, L.; Heppelmann, S.; Heppelmann, S.; Hirsch, A.; Hoffmann, G. W.; Hofman, D. J.; Horvat, S.; Huang, H. Z.; Huang, B.; Huang, X.; Huck, P.; Humanic, T. J.; Igo, G.; Jacobs, W. W.; Jang, H.; Jiang, K.; Judd, E. G.; Kabana, S.; Kalinkin, D.; Kang, K.; Kauder, K.; Ke, H. W.; Keane, D.; Kechechyan, A.; Khan, Z. H.; Kikoła, D. P.; Kisel, I.; Kisiel, A.; Kochenda, L.; Koetke, D. D.; Kollegger, T.; Kosarzewski, L. K.; Kraishan, A. F.; Kravtsov, P.; Krueger, K.; Kulakov, I.; Kumar, L.; Kycia, R. A.; Lamont, M. A. C.; Landgraf, J. M.; Landry, K. D.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, J. H.; Li, X.; Li, Y.; Li, W.; Li, C.; Li, X.; Li, Z. M.; Lisa, M. A.; Liu, F.; Ljubicic, T.; Llope, W. J.; Lomnitz, M.; Longacre, R. S.; Luo, X.; Ma, L.; Ma, Y. G.; Ma, G. L.; Ma, R.; Magdy, N.; Majka, R.; Manion, A.; Margetis, S.; Markert, C.; Masui, H.; Matis, H. S.; McDonald, D.; Meehan, K.; Minaev, N. G.; Mioduszewski, S.; Mishra, D.; Mohanty, B.; Mondal, M. M.; Morozov, D. A.; Mustafa, M. K.; Nandi, B. K.; Nasim, Md.; Nayak, T. K.; Nigmatkulov, G.; Niida, T.; Nogach, L. V.; Noh, S. Y.; Novak, J.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Oh, K.; Okorokov, V.; Olvitt, D.; Page, B. S.; Pak, R.; Pan, Y. X.; Pandit, Y.; Panebratsev, Y.; Pawlik, B.; Pei, H.; Perkins, C.; Peterson, A.; Pile, P.; Planinic, M.; Pluta, J.; Poljak, N.; Poniatowska, K.; Porter, J.; Posik, M.; Poskanzer, A. M.; Pruthi, N. K.; Putschke, J.; Qiu, H.; Quintero, A.; Ramachandran, S.; Raniwala, S.; Raniwala, R.; Ray, R. L.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Roy, A.; Ruan, L.; Rusnak, J.; Rusnakova, O.; Sahoo, N. R.; Sahu, P. K.; Salur, S.; Sandweiss, J.; Sarkar, A.; Schambach, J.; Scharenberg, R. P.; Schmah, A. M.; Schmidke, W. B.; Schmitz, N.; Seger, J.; Seyboth, P.; Shah, N.; Shahaliev, E.; Shanmuganathan, P. V.; Shao, M.; Sharma, B.; Sharma, M. K.; Shen, W. Q.; Shi, S. S.; Shou, Q. Y.; Sichtermann, E. P.; Sikora, R.; Simko, M.; Singha, S.; Skoby, M. J.; Smirnov, N.; Smirnov, D.; Song, L.; Sorensen, P.; Spinka, H. M.; Srivastava, B.; Stanislaus, T. D. S.; Stepanov, M.; Stock, R.; Strikhanov, M.; Stringfellow, B.; Sumbera, M.; Summa, B.; Sun, X.; Sun, Z.; Sun, Y.; Sun, X. M.; Surrow, B.; Svirida, N.; Szelezniak, M. A.; Tang, Z.; Tang, A. H.; Tarnowsky, T.; Tawfik, A.; Thäder, J.; Thomas, J. H.; Timmins, A. R.; Tlusty, D.; Tokarev, M.; Trentalange, S.; Tribble, R. E.; Tribedy, P.; Tripathy, S. K.; Trzeciak, B. A.; Tsai, O. D.; Ullrich, T.; Underwood, D. G.; Upsal, I.; Van Buren, G.; van Nieuwenhuizen, G.; Vandenbroucke, M.; Varma, R.; Vasiliev, A. N.; Vertesi, R.; Videbæk, F.; Viyogi, Y. P.; Vokal, S.; Voloshin, S. A.; Vossen, A.; Wang, F.; Wang, Y.; Wang, G.; Wang, Y.; Wang, J. S.; Wang, H.; Webb, J. C.; Webb, G.; Wen, L.; Westfall, G. D.; Wieman, H.; Wissink, S. W.; Witt, R.; Wu, Y. F.; Wu, Y.; Xiao, Z. G.; Xie, W.; Xin, K.; Xu, Z.; Xu, H.; Xu, Y. F.; Xu, Q. H.; Xu, N.; Yang, Y.; Yang, C.; Yang, S.; Yang, Y.; Yang, Q.; Ye, Z.; Ye, Z.; Yepes, P.; Yi, L.; Yip, K.; Yoo, I.-K.; Yu, N.; Zbroszczyk, H.; Zha, W.; Zhang, J. B.; Zhang, Y.; Zhang, S.; Zhang, J.; Zhang, J.; Zhang, Z.; Zhang, X. P.; Zhao, J.; Zhong, C.; Zhou, L.; Zhu, X.; Zoulkarneeva, Y.; Zyzak, M.; STAR Collaboration

    2016-01-01

    Elliptic flow (v2) values for identified particles at midrapidity in Au + Au collisions measured by the STAR experiment in the Beam Energy Scan at the Relativistic Heavy Ion Collider at √{sN N}= 7.7 -62.4 GeV are presented for three centrality classes. The centrality dependence and the data at √{sN N}= 14.5 GeV are new. Except at the lowest beam energies, we observe a similar relative v2 baryon-meson splitting for all centrality classes which is in agreement within 15% with the number-of-constituent quark scaling. The larger v2 for most particles relative to antiparticles, already observed for minimum bias collisions, shows a clear centrality dependence, with the largest difference for the most central collisions. Also, the results are compared with a multiphase transport (AMPT) model and fit with a blast wave model.

  16. Relativistic quantum mechanics

    International Nuclear Information System (INIS)

    Ollitrault, J.Y.

    1998-12-01

    These notes form an introduction to relativistic quantum mechanics. The mathematical formalism has been reduced to the minimum in order to enable the reader to calculate elementary physical processes. The second quantification and the field theory are the logical followings of this course. The reader is expected to know analytical mechanics (Lagrangian and Hamiltonian), non-relativistic quantum mechanics and some basis of restricted relativity. The purpose of the first 3 chapters is to define the quantum mechanics framework for already known notions about rotation transformations, wave propagation and restricted theory of relativity. The next 3 chapters are devoted to the application of relativistic quantum mechanics to a particle with 0,1/5 and 1 spin value. The last chapter deals with the processes involving several particles, these processes require field theory framework to be thoroughly described. (A.C.)

  17. Silicon surface barrier detector and study of energy spectrum of alpha particles from radioactive source

    International Nuclear Information System (INIS)

    Verma, S.D.; Sinha, Vijaya

    1986-01-01

    The principles of working of three commonly used radiation detectors, namely ionization chambers, scintillation counters with photomultiplier tube (PMT) systems and semiconductor detectors are briefly discussed. Out of the semiconductor detectors, the silicon surface barrier (SSB) detector has distinct advantages for detection of radiations, alpha particles in particular. The experimental setup to obtain the energy spectrum of alpha particles from 241 Am source using SSB fabricated in the Physics Department of Gujarat University, Ahmedabad is described. Its performance is compared with scintillation counter using PMT. SSB detector shows a sharp peak of #approx # 3 per cent energy resolution. The factors affecting the peak, namely, electronic noise, source dependent factors and detector-dependent factors are discussed. A method of calibrating SSB detectors based on energy loss mechanism of alpha particles in thin absorbers is described. Applications of such detectors are indicated. (M.G.B.)

  18. Spectral characteristics of a relativistic plasma microwave generator

    International Nuclear Information System (INIS)

    Kuzelev, M.V.; Loza, O.T.; Ponomarev, A.V.; Rukhadze, A.A.; Strelkov, P.S.; Ul'yanov, D.K.; Shkvarunets, A.G.

    1996-01-01

    The radiation spectrum of a broad-band relativistic plasma microwave generator, in which a hollow relativistic electron beam is injected into a plasma waveguide consisting of a hollow plasma within a round metallic waveguide is measured experimentally. The radiation spectrum is measured using a wide-aperture calorimetric spectrometer in the frequency range 3-32 GHz. The influence of the plasma density and the beam-plasma gap on the radiation spectrum is investigated. The amplification of the noise electromagnetic radiation when a relativistic electron beam is injected into the plasma waveguide is calculated on the basis of the nonlinear theory. The theory predicts passage from a one-particle generation regime to a collective regime and narrowing of the radiation spectrum as the plasma density and the gap between the hollow beam and the plasma increases. A comparison of the measurement results with the nonlinear theory accounts for several features of the measured spectrum. However, the predicted change in the generation regimes is not observed experimentally. Qualitative arguments are advanced, which explain the observed phenomena and call for further theoretical and experimental research, are advanced

  19. Relativistic astrophysics

    CERN Document Server

    Demianski, Marek

    2013-01-01

    Relativistic Astrophysics brings together important astronomical discoveries and the significant achievements, as well as the difficulties in the field of relativistic astrophysics. This book is divided into 10 chapters that tackle some aspects of the field, including the gravitational field, stellar equilibrium, black holes, and cosmology. The opening chapters introduce the theories to delineate gravitational field and the elements of relativistic thermodynamics and hydrodynamics. The succeeding chapters deal with the gravitational fields in matter; stellar equilibrium and general relativity

  20. Spectrum

    DEFF Research Database (Denmark)

    Høgfeldt Hansen, Leif

    2016-01-01

    The publication functions as a proces description of the development and construction of an urban furniture SPECTRUM in the city of Gwangju, Republic of Korea. It is used as the cataloque for the exhibition of Spectrum.......The publication functions as a proces description of the development and construction of an urban furniture SPECTRUM in the city of Gwangju, Republic of Korea. It is used as the cataloque for the exhibition of Spectrum....

  1. The Wigner function in the relativistic quantum mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Kowalski, K., E-mail: kowalski@uni.lodz.pl; Rembieliński, J.

    2016-12-15

    A detailed study is presented of the relativistic Wigner function for a quantum spinless particle evolving in time according to the Salpeter equation. - Highlights: • We study the Wigner function for a quantum spinless relativistic particle. • We discuss the relativistic Wigner function introduced by Zavialov and Malokostov. • We introduce relativistic Wigner function based on the standard definition. • We find analytic expressions for relativistic Wigner functions.

  2. Relativistic stellar dynamics

    International Nuclear Information System (INIS)

    Contopoulos, G.

    1983-01-01

    In this paper, three main areas of relativistic stellar dynamics are reviewed: (a) The dynamics of clusters, or nuclei of galaxies, of very high density; (b) The dynamics of systems containing a massive black hole; and (c) The dynamics of particles (and photons) in an expanding Universe. The emphasis is on the use of orbit perturbations. (Auth.)

  3. Relativistic Wigner functions

    Directory of Open Access Journals (Sweden)

    Bialynicki-Birula Iwo

    2014-01-01

    Full Text Available Original definition of the Wigner function can be extended in a natural manner to relativistic domain in the framework of quantum field theory. Three such generalizations are described. They cover the cases of the Dirac particles, the photon, and the full electromagnetic field.

  4. On the harmonic-type and linear-type confinement of a relativistic scalar particle yielded by Lorentz symmetry breaking effects

    Energy Technology Data Exchange (ETDEWEB)

    Bakke, K., E-mail: kbakke@fisica.ufpb.br [Departamento de Física, Universidade Federal da Paraíba, Caixa Postal 5008, 58051-900, João Pessoa-PB (Brazil); Belich, H., E-mail: belichjr@gmail.com [Departamento de Física e Química, Universidade Federal do Espírito Santo, Av. Fernando Ferrari, 514, Goiabeiras, 29060-900, Vitória, ES (Brazil)

    2016-10-15

    Based on the Standard Model Extension, we investigate relativistic quantum effects on a scalar particle in backgrounds of the Lorentz symmetry violation defined by a tensor field. We show that harmonic-type and linear-type confining potentials can stem from Lorentz symmetry breaking effects, and thus, relativistic bound state solutions can be achieved. We first analyse a possible scenario of the violation of the Lorentz symmetry that gives rise to a harmonic-type potential. In the following, we analyse another possible scenario of the breaking of the Lorentz symmetry that induces both harmonic-type and linear-type confining potentials. In this second case, we also show that not all values of the parameter associated with the intensity of the electric field are permitted in the search for polynomial solutions to the radial equation, where the possible values of this parameter are determined by the quantum numbers of the system and the parameters associated with the violation of the Lorentz symmetry.

  5. Wavelet analysis of angular spectra of relativistic particles in 208Pb induced collisions with emulsion nuclei at 158A GeV/c

    International Nuclear Information System (INIS)

    Fedorisin, J.; Vokal, S.

    2008-01-01

    The continuous wavelet transform is applied to the pseudorapidity spectra of relativistic secondary particles created in Pb + Em nuclear collisions at 158A GeV/c. The wavelet pseudorapidity spectra are subsequently surveyed at different scales to look for signs of ring-like correlations whose presence could be explained either via the production of Cherenkov gluons or the propagation of Mach shock waves in excited nuclear medium. The presented approach is established on the basic prerequisite that the both effects would lead to excess of particles at certain typical pseudorapidities. Furthermore, the particles contributing to the ring-like structures are expected to have uniform azimuthal distributions. The multiscale analysis of the wavelet pseudorapidity spectra reveals the irregularities which are interpreted as the favoured pseudorapidities of groups of produced particles. A uniformity of the azimuthal structure of the disclosed pseudorapidity irregularities is examined, eventually leading to the conclusion that the irregularities are not related to correlations of a ring-like nature

  6. On parasupersymmetries and relativistic descriptions for spin one particles. Pt. 2. The interacting context with (electro)magnetic fields

    International Nuclear Information System (INIS)

    Beckers, J.; Debergh, N.; Nikitin, A.G.

    1995-01-01

    This second part belongs to a series of two papers devoted to a constructive review of the relativistic wave equations for vector mesons due to the recent impact of spin one developments in connection with parasupersymmetric quantum mechanics. Here, the mesons are interacting with external (electro)magnetic fields but the simplest context of homogeneous constant magnetic fields directed along the z-axis is particularly studied. Discussions on reality of energy eigenvalues, on causal propagation and on gyromagnetic ratios are especially presented. Supersymmetries and parasupersymmetries are analysed with respect to new pseudosupersymmetries suggested by these developments in one particular context. (orig.)

  7. Thermodynamic laws and equipartition theorem in relativistic Brownian motion.

    Science.gov (United States)

    Koide, T; Kodama, T

    2011-06-01

    We extend the stochastic energetics to a relativistic system. The thermodynamic laws and equipartition theorem are discussed for a relativistic Brownian particle and the first and the second law of thermodynamics in this formalism are derived. The relation between the relativistic equipartition relation and the rate of heat transfer is discussed in the relativistic case together with the nature of the noise term.

  8. Spectrum and Collapse of a Particle in a Nonlocal Field of Centrifugal Type

    CERN Document Server

    Pupyshev, V V

    2004-01-01

    The investigated problem is the one-dimensional Schrödinger equation with the zero boundary conditions at the ends of the segment $[0,\\pi/2]$, and the interaction equal to the product of the potential proportional to squared secant of the argument and the sum of the unity and integral operators. For this problem the dependence of the spectrum of real eigenvalues and the corresponding eigenfunctions on the real potential parameter is analyzed qualitatively and numerically. For analysis the Fourier- and spline-approximations of the searched eigenfunction are proposed and applied. Special attention is paid to the particle collapse.

  9. Minimal supersymmetric grand unified theory: Symmetry breaking and the particle spectrum

    International Nuclear Information System (INIS)

    Bajc, Borut; Melfo, Alejandra; Senjanovic, Goran; Vissani, Francesco

    2004-01-01

    We discuss in detail the symmetry breaking and related issues in the minimal renormalizable supersymmetric grand unified theory. We find all the possible patterns of symmetry breaking, compute the associated particle spectrum and study its impact on the physical scales of the theory. In particular, the complete mass matrices of the SU(2) doublets and the color triplets are computed in connection with the doublet-triplet splitting and the d=5 proton decay. We explicitly construct the two light Higgs doublets as a function of the Higgs superpotential parameters. This provides a framework for the analysis of phenomenological implications of the theory, to be carried out in a second paper

  10. Self consistent hydrodynamic description of the plasma wake field excitation induced by a relativistic charged-particle beam in an unmagnetized plasma

    Science.gov (United States)

    Jovanović, Dušan; Fedele, Renato; De Nicola, Sergio; Akhter, Tamina; Belić, Milivoj

    2017-12-01

    A self-consistent nonlinear hydrodynamic theory is presented of the propagation of a long and thin relativistic electron beam, for a typical plasma wake field acceleration configuration in an unmagnetized and overdense plasma. The random component of the trajectories of the beam particles as well as of their velocity spread is modelled by an anisotropic temperature, allowing the beam dynamics to be approximated as a 3D adiabatic expansion/compression. It is shown that even in the absence of the nonlinear plasma wake force, the localisation of the beam in the transverse direction can be achieved owing to the nonlinearity associated with the adiabatic compression/rarefaction and a coherent stationary state is constructed. Numerical calculations reveal the possibility of the beam focussing and defocussing, but the lifetime of the beam can be significantly extended by the appropriate adjustments, so that transverse oscillations are observed, similar to those predicted within the thermal wave and Vlasov kinetic models.

  11. Relativistic impulse dynamics.

    Science.gov (United States)

    Swanson, Stanley M

    2011-08-01

    Classical electrodynamics has some annoying rough edges. The self-energy of charges is infinite without a cutoff. The calculation of relativistic trajectories is difficult because of retardation and an average radiation reaction term. By reconceptuallizing electrodynamics in terms of exchanges of impulses rather than describing it by forces and potentials, we eliminate these problems. A fully relativistic theory using photonlike null impulses is developed. Numerical calculations for a two-body, one-impulse-in-transit model are discussed. A simple relationship between center-of-mass scattering angle and angular momentum was found. It reproduces the Rutherford cross section at low velocities and agrees with the leading term of relativistic distinguishable-particle quantum cross sections (Møller, Mott) when the distance of closest approach is larger than the Compton wavelength of the particle. Magnetism emerges as a consequence of viewing retarded and advanced interactions from the vantage point of an instantaneous radius vector. Radiation reaction becomes the local conservation of energy-momentum between the radiating particle and the emitted impulse. A net action is defined that could be used in developing quantum dynamics without potentials. A reinterpretation of Newton's laws extends them to relativistic motion.

  12. Dragon kings of the deep sea: marine particles deviate markedly from the common number-size spectrum

    NARCIS (Netherlands)

    Bochdansky, A.B.; Clouse, M.A.; Herndl, G.

    2016-01-01

    Particles are the major vector for the transfer of carbon from the upper ocean to the deep sea. However, little is known about their abundance, composition and role at depths greater than 2000?m. We present the first number-size spectrum of bathy- and abyssopelagic particles to a depth of 5500?m

  13. Relativistic solitons and pulsars

    Energy Technology Data Exchange (ETDEWEB)

    Karpman, V I [Inst. of Terrestrial Magnetism, Ionosphere, and Radio-Wave Propagation, Moscow; Norman, C A; ter Haar, D; Tsytovich, V N

    1975-05-01

    A production mechanism for stable electron bunches or sheets of localized electric fields is investigated which may account for pulsar radio emission. Possible soliton phenomena in a one-dimensional relativistic plasma are analyzed, and it is suggested that the motion of a relativistic soliton, or ''relaton'', along a curved magnetic-field line may produce radio emission with the correct polarization properties. A general MHD solution is obtained for relatons, the radiation produced by a relativistic particle colliding with a soliton is evaluated, and the emission by a soliton moving along a curved field line is estimated. It is noted that due to a number of severe physical restrictions, curvature radiation is not a very likely solution to the problem of pulsar radio emission. (IAA)

  14. Relativistic quantum mechanics

    CERN Document Server

    Horwitz, Lawrence P

    2015-01-01

    This book describes a relativistic quantum theory developed by the author starting from the E.C.G. Stueckelberg approach proposed in the early 40s. In this framework a universal invariant evolution parameter (corresponding to the time originally postulated by Newton) is introduced to describe dynamical evolution. This theory is able to provide solutions for some of the fundamental problems encountered in early attempts to construct a relativistic quantum theory. A relativistically covariant construction is given for which particle spins and angular momenta can be combined through the usual rotation group Clebsch-Gordan coefficients. Solutions are defined for both the classical and quantum two body bound state and scattering problems. The recently developed quantum Lax-Phillips theory of semigroup evolution of resonant states is described. The experiment of Lindner and coworkers on interference in time is discussed showing how the property of coherence in time provides a simple understanding of the results. Th...

  15. On the high energy gamma ray spectrum and the particle production model

    International Nuclear Information System (INIS)

    Ohta, Itaru; Tezuka, Ikuo.

    1979-01-01

    A small emulsion chamber, 25 cm x 20 cm in area and 12 radiation lengths in thick, was exposed with JAL jet-cargo at an atmospheric depth of 260 g/cm 2 during 150 hrs. The gamma ray spectrum derived by combining data from X-ray films and nuclear emulsions is well represented by I sub(r) (>=Er) = (3.65 +- 0.30) x 10 -8 [E sub(r)/TeV]sup(-1.89+0.06-0.09)/cm 2 sr sec in the energy range 200 - 3,000 GeV. This result is in good agreement with those of several other groups. We discuss our data in terms of Feynman's and Koba-Nielsen-Olesen's scaling law of high energy particle production model. Interpreted in terms of an assumption of mild violation of the scaling law as x.d delta-s / delta-s indx = AE sup(2a)exp (-BE sup(a)x), our gamma ray spectrum results suggest an existence of a violation parameter of a = 0.18, which is consistent with results from gamma ray spectrum observations at great depth such as the mountain elevations. (author)

  16. Dragon kings of the deep sea: marine particles deviate markedly from the common number-size spectrum.

    Science.gov (United States)

    Bochdansky, Alexander B; Clouse, Melissa A; Herndl, Gerhard J

    2016-03-04

    Particles are the major vector for the transfer of carbon from the upper ocean to the deep sea. However, little is known about their abundance, composition and role at depths greater than 2000 m. We present the first number-size spectrum of bathy- and abyssopelagic particles to a depth of 5500 m based on surveys performed with a custom-made holographic microscope. The particle spectrum was unusual in that particles of several millimetres in length were almost 100 times more abundant than expected from the number spectrum of smaller particles, thereby meeting the definition of "dragon kings." Marine snow particles overwhelmingly contributed to the total particle volume (95-98%). Approximately 1/3 of the particles in the dragon-king size domain contained large amounts of transparent exopolymers with little ballast, which likely either make them neutrally buoyant or cause them to sink slowly. Dragon-king particles thus provide large volumes of unique microenvironments that may help to explain discrepancies in deep-sea biogeochemical budgets.

  17. Contraint's theory and relativistic dynamics

    International Nuclear Information System (INIS)

    Longhi, G.; Lusanna, L.

    1987-01-01

    The purpose of this Workshop was to examine the current situation of relativistic dynamics. In particular, Dirac-Bergmann's theory of constraints, which lies at the heart of gauge theories, general relativity, relativistic mechanics and string theories, was chosen as the unifying theoretical framework best suited to investigate such a field. The papers discussed were on general relativity; relativistic mechanics; particle physics and mathematical physics. Also discussed were the problems of classical and quantum level, namely the identification of the classical observables of constrained systems, the equivalence of the nonequivalence of the various ways to quantize such systems; the problem of the anomalies; the best geometrical approach to the theory of constraints; the possibility of unifying all the treatments of relativistic mechanics. This book compiles the papers presented at proceedings of relativistic dynamics and constraints theory

  18. Relativistic quantum mechanics and introduction to field theory

    Energy Technology Data Exchange (ETDEWEB)

    Yndurain, F.J. [Universidad Autonoma de Madrid (Spain). Dept. de Fisica Teorica

    1996-12-01

    The following topics were dealt with: relativistic transformations, the Lorentz group, Klein-Gordon equation, spinless particles, spin 1/2 particles, Dirac particle in a potential, massive spin 1 particles, massless spin 1 particles, relativistic collisions, S matrix, cross sections, decay rates, partial wave analysis, electromagnetic field quantization, interaction of radiation with matter, interactions in quantum field theory and relativistic interactions with classical sources.

  19. Relativistic quantum mechanics and introduction to field theory

    International Nuclear Information System (INIS)

    Yndurain, F.J.

    1996-01-01

    The following topics were dealt with: relativistic transformations, the Lorentz group, Klein-Gordon equation, spinless particles, spin 1/2 particles, Dirac particle in a potential, massive spin 1 particles, massless spin 1 particles, relativistic collisions, S matrix, cross sections, decay rates, partial wave analysis, electromagnetic field quantization, interaction of radiation with matter, interactions in quantum field theory and relativistic interactions with classical sources

  20. The effect of particle-hole interaction on the XPS core-hole spectrum

    International Nuclear Information System (INIS)

    Ohno, Masahide; Sjoegren, Lennart

    2004-01-01

    How the effective particle-hole interaction energy, U, or the polarization effect on a secondary electron in a final two-hole one-particle (2h1p) state created by the Coster-Kronig (CK) transition can solely affect the density of the CK particle states and consequently the core-hole spectral function, is discussed. The X-ray photoelectron spectroscopy (XPS) core-hole spectrum is predominantly governed by the unperturbed initial core-hole energy relative to the zero-point energy. At the latter energy, the real part of the initial core-hole self-energy becomes zero (no relaxation energy shift) and the imaginary part (the lifetime broadening) approximately maximizes. The zero-point energy relative to the double-ionization threshold energy is governed by the ratio of U relative to the bandwidth of the CK continuum. As an example, we study the 5p XPS spectra of atomic Ra (Z=88), Th (Z=90) and U (Z=92). The spectra are interpreted in terms of the change in the unperturbed initial core-hole energy relative to the zero-point energy. We explain why in general an ab initio atomic many-body calculation can provide an overall good description of solid-state spectra predominantly governed by the atomic-like localized core-hole dynamics. We explain this in terms of the change from free atom to metal in both U and the zero-point energy (self-energy)

  1. Importance of self-consistency in relativistic continuum random-phase approximation calculations

    International Nuclear Information System (INIS)

    Yang Ding; Cao Ligang; Tian Yuan; Ma Zhongyu

    2010-01-01

    A fully consistent relativistic continuum random phase approximation (RCRPA) is constructed, where the contribution of the continuum spectrum to nuclear excitations is treated exactly by the single-particle Green's function technique. The full consistency of the calculations is achieved that the same effective Lagrangian is adopted for the ground state and the excited states. The negative energy states in the Dirac sea are also included in the single-particle Green's function in the no-sea approximation. The currents from the vector meson and photon exchanges and the Coulomb interaction in RCRPA are treated exactly. The spin-orbit interaction is included naturally in the relativistic frame. Numerical results of the RCRPA are checked with the constrained relativistic mean-field theory. We study the effects of the inconsistency, particularly the currents and Coulomb interaction in various collective multipole excitations.

  2. Particle acceleration by Alfven wave turbulence in radio galaxies

    International Nuclear Information System (INIS)

    Eilek, J.A.

    1986-01-01

    Radio galaxies show evidence for acceleration of relativistic electrons locally within the diffuse radio luminous plasma. One likely candidate for the reacceleration mechanism is acceleration by magnetohydrodynamic turbulence which exists within the plasma. If Alfven waves are generated by a fluid turbulent cascade described by a power law energy-wavenumber spectrum, the particle spectrum in the presence of synchrotron losses will evolve towards an asymptotic power law which agrees with the particle spectra observed in these sources

  3. Influence of coated particle structure in thermal neutron spectrum energy range

    Energy Technology Data Exchange (ETDEWEB)

    Hansen, U; Teuchert, E

    1971-02-15

    The heterogenity due to lumping the fuel in coated particles affects the thermal neutron spectrum. A calculation model is discussed which, apart from some simplifying assumptions about the statistical distribution, allows a rigorous computation of effective cross sections for all nuclides of the heterogeneous medium. It is based on an exact computation of the neutron penetration probability through coating and kernel. The model is incorporated in a THERMOS-code providing a double heterogeneous cell calculation, which can be repeated automatically at different time steps in the depletion code system MAFIA-V.S.O.P.. A discussion of the effects of the coated particle structure is given by a comparison of calculations for heterogeneous and homogeneous fuel zones in pebble bed reactor elements. This is performed for enriched UO{sub 2} fuel and for a ThO{sub 2}-PuO{sub 2} mixture in the grains. Depending on the energy dependent total sigmas in the kernels the changes of the cross sections are ranging from 0.1% up to 45%. The influence on the spectrum averaged sigmas of the nuclides in the fresh UO{sub 2} fuel is lower than 1%. For the emerging {sup 240}Pu it increases up to 3.3% during irradiation. For the ThO{sub 2}-PuO{sub 2} fuel the averaged sigmas of the isotopes vary from 0.5% to 5.7% depending on the state of irradiation. Correspondingly there is an influence on the plutonium isotopic composition, on breeding ratios, and on the tilt of k{sub eff} during burnup which will be discussed in detail.

  4. Structures in the K-shell delta electron spectrum near threshold for ionization by fast charged particles

    International Nuclear Information System (INIS)

    Amundsen, P.A.; Aashamar, K.

    Results of calculations of the delta electron spectrum for K-shell ionization of atoms by fast charged particles for target charges in the range 6 2 <=40 are presented. Appreciable structure is found in the spectrum near the ionization threshold, in particular for fast projectiles and heavy target elements. The structure can be quite sensitive to the details of the effective atomic potentials. (Auth.)

  5. Analysis of ultra-relativistic charged particle beam and stretched wire measurement interactions with cylindrically symmetric structures

    International Nuclear Information System (INIS)

    Deibele, C.E.

    1996-01-01

    The beam impedance and wakefield are quantities which describe the stability of charged particles in their trajectory within an accelerator. The stretched wire measurement technique is a method which estimates the beam impedance and wakefield. Definitions for the beam impedance, the wakefield, and the stretched wire measurement are presented. A pillbox resonator with circular beampipes is studied for its relatively simple profile and mode structure. Theoretical predictions and measurement data are presented for the interaction of various charged particle beams and center conductor geometries between the cavity and beampipe. Time domain predictions for the stretched wire measurement and wakefield are presented and are shown to be a linear interaction

  6. Relativistic quantum motion of spin-0 particles under the influence of noninertial effects in the cosmic string spacetime

    Energy Technology Data Exchange (ETDEWEB)

    Santos, L.C.N.; Barros, C.C. [Universidade Federal de Santa Catarina, Dept. de Fisica - CFM, Florianopolis, SC (Brazil)

    2018-01-15

    We study solutions for the Klein-Gordon equation with vector and scalar potentials of the Coulomb types under the influence of noninertial effects in the cosmic string spacetime. We also investigate a quantum particle described by the Klein-Gordon oscillator in the background spacetime generated by a cosmic string. An important result obtained is that the noninertial effects restrict the physical region of the spacetime where the particle can be placed. In addition, we show that these potentials can form bound states for the Klein-Gordon equation in this kind of background. (orig.)

  7. The measurement of tripartition alpha particle low energy spectrum in 235U fission induced by thermal neutrons

    International Nuclear Information System (INIS)

    El Hage Sleiman, F.

    1980-01-01

    The energy spectrum of the α particles emitted in the thermal neutron induced fission of 235 U was measured from 11.5 MeV down to 2 MeV using the parabola mass spectrometer Lohengrin at the ILL high flux reactor. A Monte Carlo program, that simulates the α particle motion to the spectrometer, has been developed. Numerical results of Monte Carlo calculations for differents values of parameter are reported. The overall energy spectrum is slightly asymmetric at low energy. The possible reasons for the existence of this asymmetry are discussed [fr

  8. A maximally particle-hole asymmetric spectrum emanating from a semi-Dirac point

    Science.gov (United States)

    Quan, Yundi; Pickett, Warren E.

    2018-02-01

    Tight binding models have proven an effective means of revealing Dirac (massless) dispersion, flat bands (infinite mass), and intermediate cases such as the semi-Dirac (sD) dispersion. This approach is extended to a three band model that yields, with chosen parameters in a two-band limit, a closed line with maximally asymmetric particle-hole dispersion: infinite mass holes, zero mass particles. The model retains the sD points for a general set of parameters. Adjacent to this limiting case, hole Fermi surfaces are tiny and needle-like. A pair of large electron Fermi surfaces at low doping merge and collapse at half filling to a flat (zero energy) closed contour with infinite mass along the contour and enclosing no carriers on either side, while the hole Fermi surface has shrunk to a point at zero energy, also containing no carriers. The tight binding model is used to study several characteristics of the dispersion and density of states. The model inspired generalization of sD dispersion to a general  ± \\sqrt{k_x2n +k_y2m} form, for which analysis reveals that both n and m must be odd to provide a diabolical point with topological character. Evolution of the Hofstadter spectrum of this three band system with interband coupling strength is presented and discussed.

  9. Relativistic Quantum Mechanics

    International Nuclear Information System (INIS)

    Antoine, J-P

    2004-01-01

    The aim of relativistic quantum mechanics is to describe the finer details of the structure of atoms and molecules, where relativistic effects become nonnegligible. It is a sort of intermediate realm, between the familiar nonrelativistic quantum mechanics and fully relativistic quantum field theory, and thus it lacks the simplicity and elegance of both. Yet it is a necessary tool, mostly for quantum chemists. Pilkuhn's book offers to this audience an up-to-date survey of these methods, which is quite welcome since most previous textbooks are at least ten years old. The point of view of the author is to start immediately in the relativistic domain, following the lead of Maxwell's equations rather than classical mechanics, and thus to treat the nonrelativistic version as an approximation. Thus Chapter 1 takes off from Maxwell's equations (in the noncovariant Coulomb gauge) and gradually derives the basic aspects of Quantum Mechanics in a rather pedestrian way (states and observables, Hilbert space, operators, quantum measurement, scattering,. Chapter 2 starts with the Lorentz transformations, then continues with the Pauli spin equation and the Dirac equation and some of their applications (notably the hydrogen atom). Chapter 3 is entitled 'Quantum fields and particles', but falls short of treating quantum field theory properly: only creation/annihilation operators are considered, for a particle in a box. The emphasis is on two-electron states (the Pauli principle, the Foldy--Wouthuysen elimination of small components of Dirac spinors, Breit projection operators. Chapter 4 is devoted to scattering theory and the description of relativistic bound states. Chapter 5, finally, covers hyperfine interactions and radiative corrections. As we said above, relativistic quantum mechanics is by nature limited in scope and rather inelegant and Pilkuhn's book is no exception. The notation is often heavy (mostly noncovariant) and the mathematical level rather low. The central topic

  10. Relativistic few body calculations

    International Nuclear Information System (INIS)

    Gross, F.

    1988-01-01

    A modern treatment of the nuclear few-body problem must take into account both the quark structure of baryons and mesons, which should be important at short range, and the relativistic exchange of mesons, which describes the long range, peripheral interactions. A way to model both of these aspects is described. The long range, peripheral interactions are calculated using the spectator model, a general approach in which the spectators to nucleon interactions are put on their mass-shell. Recent numerical results for a relativistic OBE model of the NN interaction, obtained by solving a relativistic equation with one-particle on mass-shell, will be presented and discussed. Two meson exchange models, one with only four mesons (π,σ,/rho/,ω) but with a 25% admixture of γ 5 coupling for the pion, and a second with six mesons (π,σ,/rho/,ω,δ,/eta/) but pure γ 5 γ/sup μ/ pion coupling, are shown to give very good quantitative fits to the NN scattering phase shifts below 400 MeV, and also a good description of the /rvec p/ 40 Ca elastic scattering observables. Applications of this model to electromagnetic interactions of the two body system, with emphasis on the determination of relativistic current operators consistent with the dynamics and the exact treatment of current conservation in the presence of phenomenological form factors, will be described. 18 refs., 8 figs

  11. Observation of an Energy-Dependent Difference in Elliptic Flow between Particles and Antiparticles in Relativistic Heavy Ion Collisions

    Czech Academy of Sciences Publication Activity Database

    Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; Aggarwal, M. M.; Ahammed, Z.; Alekseev, I.; Alford, J.; Anson, C.; Barnovská, Zuzana; Bielčík, J.; Bielčíková, Jana; Chaloupka, P.; Chung, Paul; Hajková, O.; Kapitán, Jan; Pachr, M.; Rusňák, Jan; Šumbera, Michal; Tlustý, David

    2013-01-01

    Roč. 110, č. 14 (2013), s. 142301 ISSN 0031-9007 R&D Projects: GA ČR GA13-20841S Institutional support: RVO:61389005 Keywords : STAR * elliptic flow * heavy ion collisions * particles and antiparticles comparations Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 7.728, year: 2013 http://prl. aps .org/pdf/PRL/v110/i14/e142301

  12. Chiral quark model with relativistic kinematics

    International Nuclear Information System (INIS)

    Garcilazo, H.; Valcarce, A.

    2003-01-01

    The nonstrange baryon spectrum is studied within a three-body model that incorporates relativistic kinematics. We found that the combined effect of relativistic kinematics together with the pion exchange between quarks is able to reverse the order of the first positive- and negative-parity nucleon excited states as observed experimentally. Including the chiral partner of the pion (the σ meson) leads to an overall good description of the spectrum

  13. Chiral quark model with relativistic kinematics

    OpenAIRE

    Garcilazo, H.; Valcarce, A.

    2003-01-01

    The non-strange baryon spectrum is studied within a three-body model that incorporates relativistic kinematics. We found that the combined effect of relativistic kinematics together with the pion exchange between quarks is able to reverse the order of the first positive- and negative-parity nucleon excited states as observed experimentally. Including the chiral partner of the pion (the $\\sigma$ meson) leads to an overall good description of the spectrum.

  14. Relativistic wave mechanics

    CERN Document Server

    Corinaldesi, Ernesto

    1963-01-01

    Geared toward advanced undergraduate and graduate students of physics, this text provides readers with a background in relativistic wave mechanics and prepares them for the study of field theory. The treatment originated as a series of lectures from a course on advanced quantum mechanics that has been further amplified by student contributions.An introductory section related to particles and wave functions precedes the three-part treatment. An examination of particles of spin zero follows, addressing wave equation, Lagrangian formalism, physical quantities as mean values, translation and rotat

  15. Relativistic astrophysics

    CERN Document Server

    Price, R H

    1993-01-01

    Work reported in the workshop on relativistic astrophysics spanned a wide varicy of topics. Two specific areas seemed of particular interest. Much attention was focussed on gravitational wave sources, especially on the waveforms they produce, and progress was reported in theoretical and observational aspects of accretion disks.

  16. Relativistic Kinematics

    OpenAIRE

    Sahoo, Raghunath

    2016-01-01

    This lecture note covers Relativistic Kinematics, which is very useful for the beginners in the field of high-energy physics. A very practical approach has been taken, which answers "why and how" of the kinematics useful for students working in the related areas.

  17. Relativistic Astrophysics

    International Nuclear Information System (INIS)

    Font, J. A.

    2015-01-01

    The relativistic astrophysics is the field of astrophysics employing the theory of relativity Einstein as physical-mathematical model is to study the universe. This discipline analyzes astronomical contexts in which the laws of classical mechanics of Newton's law of gravitation are not valid. (Author)

  18. Tensor force effect on the evolution of single-particle energies in some isotopic chains in the relativistic Hartree-Fock approximation

    Science.gov (United States)

    López-Quelle, M.; Marcos, S.; Niembro, R.; Savushkin, L. N.

    2018-03-01

    Within a nonlinear relativistic Hartree-Fock approximation combined with the BCS method, we study the effect of the nucleon-nucleon tensor force of the π-exchange potential on the spin- and pseudospin-orbit doublets along the Ca and Sn isotopic chains. We show how the self-consistent tensor force effect modifies the splitting of both kinds of doublets in an interdependent form, leading, quite generally, to opposite effects in the accomplishment of the spin and pseudospin symmetries (the one is restored, the other one deteriorates and vice versa). The ordering of the single-particle energy levels is crucial to this respect. Also, we observe a mutual dependence on the evolution of the shell closure gap Z = 50 and the energy band outside the core, along the Sn chain, as due to the tensor force. In fact, when the shell gap is quenched the outside energy band is enlarged, and vice versa. A reduction of the strength of the pion tensor force with respect to its experimental value from the nucleon-nucleon scattering is needed to get results closer to the experiment. Pairing correlations act to some extent in the opposite direction of the tensor term of the one-pion-exchange force.

  19. Towards relativistic atomic physics. Part 1. The rest-frame instant form of dynamics and a canonical transformation for a system of charged particles plus the electromagnetic field

    International Nuclear Information System (INIS)

    Alba, D.; Crater, H.W.; Lusanna, L.

    2010-01-01

    A complete exposition of the rest-frame instant form of dynamics for arbitrary isolated systems (particles, fields, strings, fluids) admitting a Lagrangian description is given. The starting point is the parametrized Minkowski theory describing the system in arbitrary admissible noninertial frames in Minkowski space-time, which allows one to define the energy-momentum tensor of the system and to show the independence of the description from the clock synchronization convention and from the choice of the 3-coordinates. The restriction to the inertial rest frame, centered on the inertial observer having the Fokker-Pryce center-of-inertia world-line, and the study of relativistic collective variables replacing the nonrelativistic center of mass lead to the description of the isolated system as a decoupled globally defined noncovariant canonical external center of mass carrying a pole-dipole structure (the invariant mass M and the rest spin S¯ of the system) and an external realization of the Poincare group. Mc and S¯ are the energy and angular momentum of a unfaithful internal realization of the Poincare group built with the energy-momentum tensor of the system and acting inside the instantaneous Wigner 3-spaces where all the 3-vectors are Wigner covariant. The vanishing of the internal 3-momentum and of the internal Lorentz boosts eliminate the internal 3-center of mass inside the Wigner 3-spaces, so that at the end the isolated system is described only by Wigner-covariant canonical internal relative variables. Then an isolated system of positive-energy charged scalar articles with mutual Coulomb interaction plus a transverse electromagnetic field in the radiation gauge is investigated as a classical background for defining relativistic atomic physics. The electric charges of the particles are Grassmann-valued to regularize the self-energies. The external and internal realizations of the Poincare algebra in the rest-frame instant form of dynamics are found. This

  20. Radiation dominated relativistic current sheets

    International Nuclear Information System (INIS)

    Jaroschek, C.H.

    2008-01-01

    Relativistic Current Sheets (RCS) feature plasma instabilities considered as potential key to magnetic energy dissipation and non-thermal particle generation in Poynting flux dominated plasma flows. We show in a series of kinetic plasma simulations that the physical nature of non-linear RCS evolution changes in the presence of incoherent radiation losses: In the ultra-relativistic regime (i.e. magnetization parameter sigma = 104 defined as the ratio of magnetic to plasma rest frame energy density) the combination of non-linear RCS dynamics and synchrotron emission introduces a temperature anisotropy triggering the growth of the Relativistic Tearing Mode (RTM). As direct consequence the RTM prevails over the Relativistic Drift Kink (RDK) Mode as competitive RCS instability. This is in contrast to the previously studied situation of weakly relativistic RCS (sigma ∼ 1) where the RDK is dominant and most of the plasma is thermalized. The simulations witness the typical life cycle of ultra-relativistic RCS evolving from a violent radiation induced collapse towards a radiation quiescent state in rather classical Sweet-Parker topology. Such a transition towards Sweet-Parker configuration in the late non-linear evolution has immediate consequences for the efficiency of magnetic energy dissipation and non-thermal particle generation. Ceasing dissipation rates directly affect our present understanding of non-linear RCS evolution in conventional striped wind scenarios. (author)

  1. What invariant one-particle multiplicity distributions and two-particle correlations are telling us about relativistic heavy-ion collisions

    International Nuclear Information System (INIS)

    Nix, J.R.; Strottman, D.; Hecke, H.W. van; Schlei, B.R.; Sullivan, J.P.; Murray, M.J.

    1998-02-01

    The authors have used a nine-parameter expanding source model that includes special relativity, quantum statistics, resonance decays, and freeze-out on a realistic hypersurface in spacetime to analyze in detail invariant π + , K + , and K - one-particle multiplicity distributions and π + and π - two-particle correlations in nearly central collisions of Pb + Pb at p lab /A = 158 GeV/c. These studies confirm an earlier conclusion for nearly central collisions of Si + Au at p lab /A = 14.6 GeV/c that the freeze-out temperature is less than 100 meV and that both the longitudinal and transverse collective velocities -- which are anti-correlated with the temperature -- are substantial. The authors also reconciled their current results with those of previous analyses that yielded a much higher freeze-out temperature of approximately 140 meV for both Pb + Pb collisions at p lab /A = 158 GeV/c and other reactions. One type of analysis was based upon the use of a heuristic equation that neglects relativity to extrapolate slope parameters to zero particle mass. Another type of analysis utilized a thermal model in which there was an accumulation of effects from several approximations. The future should witness the arrival of much new data on invariant one-particle multiplicity distributions and two-particle correlations as functions of bombarding energy and/or size of the colliding nuclei. The proper analysis of these data in terms of a realistic model could yield accurate values for the density, temperature, collective velocity, size, and other properties of the expanding matter as it freezes out into a collection of noninteracting hadrons. A sharp discontinuity in the value of one or more of these properties could conceivably be the long-awaited signal for the formation of a quark-gluon plasma or other new physics

  2. Relativistic studies in actinides

    International Nuclear Information System (INIS)

    Weinberger, P.; Gonis, A.

    1987-01-01

    In this review the theoretical background is given for a relativistic description for actinide systems. A short introduction is given of the density functional theory which forms the basis for a fully relativistic single-particle theory. A section on the Dirac Hamiltonian is followed by a brief summary on group theoretical concepts. Single site scattering is presented such that formal extensions to the case of the presence of an internal (external) magnetic field and/or anisotropic scattering are evident. Multiple scattering is discussed such that it can readily be applied also to the problem of dislocations. In connection with the problem of selfconsistency particular attention is drawn to the use of complex energies. Finally the various theoretical aspects discussed are illustrated through the results of numerical calculations. 101 refs.; 37 figs.; 5 tabs

  3. Elementary relativistic atoms

    International Nuclear Information System (INIS)

    Nemenov, L.

    2001-01-01

    The Coulomb interaction which occurs in the final state between two particles with opposite charges allows for creation of the bound state of these particles. In the case when particles are generated with large momentum in lab frame, the Lorentz factors of the bound state will also be much larger than one. The relativistic velocity of the atoms provides the opportunity to observe bound states of (π + μ - ), (π + π - ) and (π + K - ) with a lifetime as short as 10 -16 s, and to measure their parameters. The ultrarelativistic positronium atoms (A 2e ) allow us to observe the e.ect of superpenetration in matter, to study the effects caused by the formation time of A 2e from virtual e + e - pairs and to investigate the process of transformation of two virtual particles into the bound state

  4. Exact quantization conditions for the relativistic Toda lattice

    International Nuclear Information System (INIS)

    Hatsuda, Yasuyuki; Mariño, Marcos

    2016-01-01

    Inspired by recent connections between spectral theory and topological string theory, we propose exact quantization conditions for the relativistic Toda lattice of N particles. These conditions involve the Nekrasov-Shatashvili free energy, which resums the perturbative WKB expansion, but they require in addition a non-perturbative contribution, which is related to the perturbative result by an S-duality transformation of the Planck constant. We test the quantization conditions against explicit calculations of the spectrum for N=3. Our proposal can be generalized to arbitrary toric Calabi-Yau manifolds and might solve the corresponding quantum integrable system of Goncharov and Kenyon.

  5. Relativistic klystrons

    International Nuclear Information System (INIS)

    Allen, M.A.; Azuma, O.; Callin, R.S.

    1989-03-01

    Experimental work is underway by a SLAC-LLNL-LBL collaboration to investigate the feasibility of using relativistic klystrons as a power source for future high gradient accelerators. Two different relativistic klystron configurations have been built and tested to date: a high grain multicavity klystron at 11.4 GHz and a low gain two cavity subharmonic buncher driven at 5.7 GHz. In both configurations power is extracted at 11.4 GHz. In order to understand the basic physics issues involved in extracting RF from a high power beam, we have used both a single resonant cavity and a multi-cell traveling wave structure for energy extraction. We have learned how to overcome our previously reported problem of high power RF pulse shortening, and have achieved peak RF power levels of 170 MW with the RF pulse of the same duration as the beam current pulse. 6 refs., 3 figs., 3 tabs

  6. Gravitation relativiste

    CERN Document Server

    Hakim, Rémi

    1994-01-01

    Il existe à l'heure actuelle un certain nombre de théories relativistes de la gravitation compatibles avec l'expérience et l'observation. Toutefois, la relativité générale d'Einstein fut historiquement la première à fournir des résultats théoriques corrects en accord précis avec les faits.

  7. Relativistic klystron

    International Nuclear Information System (INIS)

    Marks, R.

    1985-09-01

    Theoretical analysis is presented of a relativisic klystron; i.e. a high-relativistic bunched electron beam which is sent through a succession of tuned cavities and has its energy replenished by periodic induction accelerator units. Parameters are given for a full-size device and for an experimental device using the FEL at the ETA; namely the ELF Facility. 6 refs., 2 figs

  8. Relativistic ion acceleration by ultraintense laser interactions

    International Nuclear Information System (INIS)

    Nakajima, K.; Koga, J.K.; Nakagawa, K.

    2001-01-01

    There has been a great interest in relativistic particle generation by ultraintense laser interactions with matter. We propose the use of relativistically self-focused laser pulses for the acceleration of ions. Two dimensional PIC simulations are performed, which show the formation of a large positive electrostatic field near the front of a relativistically self-focused laser pulse. Several factors contribute to the acceleration including self-focusing distance, pulse depletion, and plasma density. Ultraintense laser-plasma interactions are capable of generating enormous electrostatic fields of ∼3 TV/m for acceleration of protons with relativistic energies exceeding 1 GeV

  9. RELATIVISTIC CYCLOTRON INSTABILITY IN ANISOTROPIC PLASMAS

    Energy Technology Data Exchange (ETDEWEB)

    López, Rodrigo A.; Moya, Pablo S.; Muñoz, Víctor; Valdivia, J. Alejandro [Departamento de Física, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago (Chile); Navarro, Roberto E.; Araneda, Jaime A. [Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Concepción, Casilla 160-C, Concepción (Chile); Viñas, Adolfo F., E-mail: rlopez186@gmail.com [NASA Goddard Space Flight Center, Heliophysics Science Division, Geospace Physics Laboratory, Mail Code 673, Greenbelt, MD 20771 (United States)

    2016-11-20

    A sufficiently large temperature anisotropy can sometimes drive various types of electromagnetic plasma micro-instabilities, which can play an important role in the dynamics of relativistic pair plasmas in space, astrophysics, and laboratory environments. Here, we provide a detailed description of the cyclotron instability of parallel propagating electromagnetic waves in relativistic pair plasmas on the basis of a relativistic anisotropic distribution function. Using plasma kinetic theory and particle-in-cell simulations, we study the influence of the relativistic temperature and the temperature anisotropy on the collective and noncollective modes of these plasmas. Growth rates and dispersion curves from the linear theory show a good agreement with simulations results.

  10. A low-dispersion, exactly energy-charge-conserving semi-implicit relativistic particle-in-cell algorithm

    Science.gov (United States)

    Chen, Guangye; Luis, Chacon; Bird, Robert; Stark, David; Yin, Lin; Albright, Brian

    2017-10-01

    Leap-frog based explicit algorithms, either ``energy-conserving'' or ``momentum-conserving'', do not conserve energy discretely. Time-centered fully implicit algorithms can conserve discrete energy exactly, but introduce large dispersion errors in the light-wave modes, regardless of timestep sizes. This can lead to intolerable simulation errors where highly accurate light propagation is needed (e.g. laser-plasma interactions, LPI). In this study, we selectively combine the leap-frog and Crank-Nicolson methods to produce a low-dispersion, exactly energy-and-charge-conserving PIC algorithm. Specifically, we employ the leap-frog method for Maxwell equations, and the Crank-Nicolson method for particle equations. Such an algorithm admits exact global energy conservation, exact local charge conservation, and preserves the dispersion properties of the leap-frog method for the light wave. The algorithm has been implemented in a code named iVPIC, based on the VPIC code developed at LANL. We will present numerical results that demonstrate the properties of the scheme with sample test problems (e.g. Weibel instability run for 107 timesteps, and LPI applications.

  11. Nonlinear dynamics of the relativistic standard map

    International Nuclear Information System (INIS)

    Nomura, Y.; Ichikawa, Y.H.; Horton, W.

    1991-04-01

    Heating and acceleration of charged particles by RF fields have been extensively investigated by the standard map. The question arises as to how the relativistic effects change the nonlinear dynamical behavior described by the classical standard map. The relativistic standard map is a two parameter (K, Β = ω/kc) family of dynamical systems reducing to the standard map when Β → 0. For Β ≠ 0 the relativistic mass increase suppresses the onset of stochasticity. It shown that the speed of light limits the rate of advance of the phase in the relativistic standard map and introduces KAM surfaces persisting in the high momentum region. An intricate structure of mixing in the higher order periodic orbits and chaotic orbits is analyzed using the symmetry properties of the relativistic standard map. The interchange of the stability of the periodic orbits in the relativistic standard map is also observed and is explained by the local linear stability of the orbits. 12 refs., 16 figs

  12. Hot relativistic winds and the Crab nebula

    International Nuclear Information System (INIS)

    Fujimura, F.S.; Kennel, C.F.

    1981-01-01

    Efforts are reviewed to construct a self-consistent model of pulsar magnetospheres that links the particle source near the pulsar to the outflowing relativistic wind and couples the wind to the surrounding nebula. (Auth.)

  13. Relativistic quantum mechanics an introduction to relativistic quantum fields

    CERN Document Server

    Maiani, Luciano

    2016-01-01

    Written by two of the world's leading experts on particle physics and the standard model - including an award-winning former Director General of CERN - this textbook provides a completely up-to-date account of relativistic quantum mechanics and quantum field theory. It describes the formal and phenomenological aspects of the standard model of particle physics, and is suitable for advanced undergraduate and graduate students studying both theoretical and experimental physics.

  14. β-delayed γ-proton decay in 56Zn: Analysis of the charged-particle spectrum

    International Nuclear Information System (INIS)

    Orrigo, S. E.A.; Ascher, P.; Cakirli, R. B.; Kozer, H. C.; Popescu, L.; Rogers, A. M.; Susoy, G.; Suzuki, T.

    2015-01-01

    A study of the β decay of the proton-rich T z = –2 nucleus 56 Zn has been reported in a recent publication. A rare and exotic decay mode, β-delayed γ-proton decay, has been observed there for the first time in the fp shell. Here, we expand on some of the details of the data analysis, focusing on the charged particle spectrum

  15. Relativistic distances, sizes, lengths

    International Nuclear Information System (INIS)

    Strel'tsov, V.N.

    1992-01-01

    Such notion as light or retarded distance, field size, formation way, visible size of a body, relativistic or radar length and wave length of light from a moving atom are considered. The relation between these notions is cleared up, their classification is given. It is stressed that the formation way is defined by the field size of a moving particle. In the case of the electromagnetic field, longitudinal sizes increase proportionally γ 2 with growing charge velocity (γ is the Lorentz-factor). 18 refs

  16. Relativistic quarkonium dynamics

    International Nuclear Information System (INIS)

    Sazdjian, H.

    1985-06-01

    We present, in the framework of relativistic quantum mechanics of two interacting particles, a general model for quarkonium systems satisfying the following four requirements: confinement, spontaneous breakdown of chiral symmetry, soft explicit chiral symmetry breaking, short distance interactions of the vector type. The model is characterized by two arbitrary scalar functions entering in the large and short distance interaction potentials, respectively. Using relationships with corresponding quantities of the Bethe-Salpeter equation, we also present the normalization condition of the wave functions, as well as the expressions of the meson decay coupling constants. The quark masses appear in this model as free parameters

  17. All-particle cosmic ray energy spectrum measured by the HAWC experiment from 10 to 500 TeV

    Science.gov (United States)

    Alfaro, R.; Alvarez, C.; Álvarez, J. D.; Arceo, R.; Arteaga-Velázquez, J. C.; Avila Rojas, D.; Ayala Solares, H. A.; Barber, A. S.; Becerril, A.; Belmont-Moreno, E.; BenZvi, S. Y.; Brisbois, C.; Caballero-Mora, K. S.; Capistrán, T.; Carramiñana, A.; Casanova, S.; Castillo, M.; Cotti, U.; Cotzomi, J.; Coutiño de León, S.; De León, C.; De la Fuente, E.; Diaz Hernandez, R.; Dichiara, S.; Dingus, B. L.; DuVernois, M. A.; Díaz-Vélez, J. C.; Ellsworth, R. W.; Enriquez-Rivera, O.; Fiorino, D. W.; Fleischhack, H.; Fraija, N.; García-González, J. A.; González Muñoz, A.; González, M. M.; Goodman, J. A.; Hampel-Arias, Z.; Harding, J. P.; Hernandez-Almada, A.; Hinton, J.; Hueyotl-Zahuantitla, F.; Hui, C. M.; Hüntemeyer, P.; Iriarte, A.; Jardin-Blicq, A.; Joshi, V.; Kaufmann, S.; Lara, A.; Lauer, R. J.; Lennarz, D.; León Vargas, H.; Linnemann, J. T.; Longinotti, A. L.; Luis Raya, G.; Luna-García, R.; López-Cámara, D.; López-Coto, R.; Malone, K.; Marinelli, S. S.; Martinez, O.; Martinez-Castellanos, I.; Martínez-Castro, J.; Martínez-Huerta, H.; Matthews, J. A.; Miranda-Romagnoli, P.; Moreno, E.; Mostafá, M.; Nellen, L.; Newbold, M.; Nisa, M. U.; Noriega-Papaqui, R.; Pelayo, R.; Pretz, J.; Pérez-Pérez, E. G.; Ren, Z.; Rho, C. D.; Rivière, C.; Rosa-González, D.; Rosenberg, M.; Ruiz-Velasco, E.; Salesa Greus, F.; Sandoval, A.; Schneider, M.; Schoorlemmer, H.; Sinnis, G.; Smith, A. J.; Springer, R. W.; Surajbali, P.; Taboada, I.; Tibolla, O.; Tollefson, K.; Torres, I.; Ukwatta, T. N.; Villaseñor, L.; Weisgarber, T.; Westerhoff, S.; Wood, J.; Yapici, T.; Zepeda, A.; Zhou, H.; HAWC Collaboration

    2017-12-01

    We report on the measurement of the all-particle cosmic ray energy spectrum with the High Altitude Water Cherenkov (HAWC) Observatory in the energy range 10 to 500 TeV. HAWC is a ground-based air-shower array deployed on the slopes of Volcan Sierra Negra in the state of Puebla, Mexico, and is sensitive to gamma rays and cosmic rays at TeV energies. The data used in this work were taken over 234 days between June 2016 and February 2017. The primary cosmic-ray energy is determined with a maximum likelihood approach using the particle density as a function of distance to the shower core. Introducing quality cuts to isolate events with shower cores landing on the array, the reconstructed energy distribution is unfolded iteratively. The measured all-particle spectrum is consistent with a broken power law with an index of -2.49 ±0.01 prior to a break at (45.7 ±0.1 ) TeV , followed by an index of -2.71 ±0.01 . The spectrum also represents a single measurement that spans the energy range between direct detection and ground-based experiments. As a verification of the detector response, the energy scale and angular resolution are validated by observation of the cosmic ray Moon shadow's dependence on energy.

  18. Properties of spectra of the reflected and transmitted radiation during propagation of relativistically strong laser pulses in underdense plasmas

    International Nuclear Information System (INIS)

    Bulanov, S.V.; Esirkepov, T.Z.; Naumova, N.M.

    1996-01-01

    Particle-in-cell simulation has been performed to study the spatial-temporal evolution of the pulse propagating in an underdense plasma. The spectra both of the reflected and transmitted radiation are investigated. The spectrum structure of the reflected radiation is due to the backward stimulated Raman scattering meanwhile the transmitted radiation structure is mainly due to the nonlinear self-phase-modulation. The influence of the pulse shape on the transmitted radiation spectrum is revealed. The dependence of the main features of the spectrum and the self-consistent pulse distortion is found. The pulse distortion is accompanied by the relativistic electrons generation. copyright 1996 American Institute of Physics

  19. Coordinates in relativistic Hamiltonian mechanics

    International Nuclear Information System (INIS)

    Sokolov, S.N.

    1984-01-01

    The physical (covariant and measurable) coordinates of free particles and covariant coordinates of the center of inertia are found for three main forms of relativistic dynamics. In the point form of dynamics, the covariant coordinates of two directly interacting particles are found, and the equations of motion are brought to the explicitly covariant form. These equations are generalized to the case of interaction with an external electromagnetic field

  20. Relativistic beaming and quasar statistics

    International Nuclear Information System (INIS)

    Orr, M.J.L.; Browne, I.W.A.

    1982-01-01

    The statistical predictions of a unified scheme for the radio emission from quasars are explored. This scheme attributes the observed differences between flat- and steep-spectrum quasars to projection and the effects of relativistic beaming of the emission from the nuclear components. We use a simple quasar model consisting of a compact relativistically beamed core with spectral index zero and unbeamed lobes, spectral index - 1, to predict the proportion of flat-spectrum sources in flux-limited samples selected at different frequencies. In our model this fraction depends on the core Lorentz factor, γ and we find that a value of approximately 5 gives satisfactory agreement with observation. In a similar way the model is used to construct the expected number/flux density counts for flat-spectrum quasars from the observed steep-spectrum counts. Again, good agreement with the observations is obtained if the average core Lorentz factor is about 5. Independent estimates of γ from observations of superluminal motion in quasars are of the same order of magnitude. We conclude that the statistical properties of quasars are entirely consistent with the predictions of simple relativistic-beam models. (author)

  1. Methods in relativistic nuclear physics

    International Nuclear Information System (INIS)

    Danos, M.; Gillet, V.; Cauvin, M.

    1984-01-01

    This book is intended to provide the methods and tools for performing actual calculations for finite many-body systems of bound relativistic constituent particles. The aim is to cover thoroughly the methodological aspects of the relativistic many-body problem for bound states while avoiding the presentation of specific models. The many examples contained in the later part of the work are meant to give concrete illustrations of how to actually apply the methods which are given in the first part. The basic framework of the approach is the lagrangian field theory solved in the time-independent Schroedinger picture. (Auth.)

  2. Solution of the relativistic 2-D Fokker-Planck equation for LH current drive

    International Nuclear Information System (INIS)

    Hizanidis, K.; Hewett, D.W.; Bers, A.

    1984-03-01

    We solve numerically the steady-state two-dimensional relativistic Fokker-Planck equation with strong rf diffusion using spectra relevant to recent experiments in ALCATOR-C. The results (current generated, power dissipated, and the distribution of energetic electrons) are sensitive to the location of the spectrum in momentum space. Relativistic effects play an important role, especially for wide spectra. The dependence on the ionic charge number Z/sub i/ is also investigated. Particular attention is paid to the perpendicular temperature inside the resonant region and beyond, as well as to the angular energetic particle-temperature distribution, T/sub μ/, a function of the pitch angle parameter μ. The dependence of the perpendicular temperature on the location of the spectrum is also investigated analytically with a model based on the method of moments and the results compared with those found numerically

  3. On Weibull's Spectrum of Nonrelativistic Energetic Particles at IP Shocks: Observations and Theoretical Interpretation

    Energy Technology Data Exchange (ETDEWEB)

    Pallocchia, G.; Laurenza, M.; Consolini, G. [INAF—Istituto di Astrofisica e Planetologia Spaziali, Via Fosso del Cavaliere 100, I-00133 Roma (Italy)

    2017-03-10

    Some interplanetary shocks are associated with short-term and sharp particle flux enhancements near the shock front. Such intensity enhancements, known as shock-spike events (SSEs), represent a class of relatively energetic phenomena as they may extend to energies of some tens of MeV or even beyond. Here we present an SSE case study in order to shed light on the nature of the particle acceleration involved in this kind of event. Our observations refer to an SSE registered on 2011 October 3 at 22:23 UT, by STEREO B instrumentation when, at a heliocentric distance of 1.08 au, the spacecraft was swept by a perpendicular shock moving away from the Sun. The main finding from the data analysis is that a Weibull distribution represents a good fitting function to the measured particle spectrum over the energy range from 0.1 to 30 MeV. To interpret such an observational result, we provide a theoretical derivation of the Weibull spectrum in the framework of the acceleration by “killed” stochastic processes exhibiting power-law growth in time of the velocity expectation, such as the classical Fermi process. We find an overall coherence between the experimental values of the Weibull spectrum parameters and their physical meaning within the above scenario. Hence, our approach based on the Weibull distribution proves to be useful for understanding SSEs. With regard to the present event, we also provide an alternative explanation of the Weibull spectrum in terms of shock-surfing acceleration.

  4. Relativistic Astronomy

    Science.gov (United States)

    Zhang, Bing; Li, Kunyang

    2018-02-01

    The “Breakthrough Starshot” aims at sending near-speed-of-light cameras to nearby stellar systems in the future. Due to the relativistic effects, a transrelativistic camera naturally serves as a spectrograph, a lens, and a wide-field camera. We demonstrate this through a simulation of the optical-band image of the nearby galaxy M51 in the rest frame of the transrelativistic camera. We suggest that observing celestial objects using a transrelativistic camera may allow one to study the astronomical objects in a special way, and to perform unique tests on the principles of special relativity. We outline several examples that suggest transrelativistic cameras may make important contributions to astrophysics and suggest that the Breakthrough Starshot cameras may be launched in any direction to serve as a unique astronomical observatory.

  5. Relativistic magnetohydrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez, Juan; Kovtun, Pavel [Department of Physics and Astronomy, University of Victoria,Victoria, BC, V8P 5C2 (Canada)

    2017-05-02

    We present the equations of relativistic hydrodynamics coupled to dynamical electromagnetic fields, including the effects of polarization, electric fields, and the derivative expansion. We enumerate the transport coefficients at leading order in derivatives, including electrical conductivities, viscosities, and thermodynamic coefficients. We find the constraints on transport coefficients due to the positivity of entropy production, and derive the corresponding Kubo formulas. For the neutral state in a magnetic field, small fluctuations include Alfvén waves, magnetosonic waves, and the dissipative modes. For the state with a non-zero dynamical charge density in a magnetic field, plasma oscillations gap out all propagating modes, except for Alfvén-like waves with a quadratic dispersion relation. We relate the transport coefficients in the “conventional” magnetohydrodynamics (formulated using Maxwell’s equations in matter) to those in the “dual” version of magnetohydrodynamics (formulated using the conserved magnetic flux).

  6. Nuclear and Non-Ionizing Energy-Loss for Coulomb Scattered Particles from Low Energy up to Relativistic Regime in Space Radiation Environment

    CERN Document Server

    Boschini, M.J.; Gervasi, M.; Giani, S.; Grandi, D.; Ivantchenko, V.; Pensotti, S.; Rancoita, P.G.; Tacconi, M.

    2011-01-01

    In the space environment, instruments onboard of spacecrafts can be affected by displacement damage due to radiation. The differential scattering cross section for screened nucleus--nucleus interactions - i.e., including the effects due to screened Coulomb nuclear fields -, nuclear stopping powers and non-ionization energy losses are treated from about 50\\,keV/nucleon up to relativistic energies.

  7. Multiwavelength Observations of Relativistic Jets from General Relativistic Magnetohydrodynamic Simulations

    Directory of Open Access Journals (Sweden)

    Richard Anantua

    2018-03-01

    Full Text Available This work summarizes a program intended to unify three burgeoning branches of the high-energy astrophysics of relativistic jets: general relativistic magnetohydrodynamic (GRMHD simulations of ever-increasing dynamical range, the microphysical theory of particle acceleration under relativistic conditions, and multiwavelength observations resolving ever-decreasing spatiotemporal scales. The process, which involves converting simulation output into time series of images and polarization maps that can be directly compared to observations, is performed by (1 self-consistently prescribing models for emission, absorption, and particle acceleration and (2 performing time-dependent polarized radiative transfer. M87 serves as an exemplary prototype for this investigation due to its prominent and well-studied jet and the imminent prospect of learning much more from Event Horizon Telescope (EHT observations this year. Synthetic observations can be directly compared with real observations for observational signatures such as jet instabilities, collimation, relativistic beaming, and polarization. The simplest models described adopt the standard equipartition hypothesis; other models calculate emission by relating it to current density or shear. These models are intended for application to the radio jet instead of the higher frequency emission, the disk and the wind, which will be subjects of future investigations.

  8. Deep processes in non-relativistic confining potentials

    International Nuclear Information System (INIS)

    Fishbane, P.M.; Grisaru, M.T.

    1978-01-01

    The authors study deep inelastic and hard scattering processes for non-relativistic particles confined in deep potentials. The mechanisms by which the effects of confinement disappear and the particles scatter as if free are useful in understanding the analogous results for a relativistic field theory. (Auth.)

  9. Particle acceleration model for the broad-band baseline spectrum of the Crab nebula

    Science.gov (United States)

    Fraschetti, F.; Pohl, M.

    2017-11-01

    We develop a simple one-zone model of the steady-state Crab nebula spectrum encompassing both the radio/soft X-ray and the GeV/multi-TeV observations. By solving the transport equation for GeV-TeV electrons injected at the wind termination shock as a log-parabola momentum distribution and evolved via energy losses, we determine analytically the resulting differential energy spectrum of photons. We find an impressive agreement with the observed spectrum of synchrotron emission, and the synchrotron self-Compton component reproduces the previously unexplained broad 200-GeV peak that matches the Fermi/Large Area Telescope (LAT) data beyond 1 GeV with the Major Atmospheric Gamma Imaging Cherenkov (MAGIC) data. We determine the parameters of the single log-parabola electron injection distribution, in contrast with multiple broken power-law electron spectra proposed in the literature. The resulting photon differential spectrum provides a natural interpretation of the deviation from power law customarily fitted with empirical multiple broken power laws. Our model can be applied to the radio-to-multi-TeV spectrum of a variety of astrophysical outflows, including pulsar wind nebulae and supernova remnants, as well as to interplanetary shocks.

  10. Mass spectrum of elementary particles in a temperature-dependent model

    International Nuclear Information System (INIS)

    Malik, G.P.; Singh, Santokh; Varma, V.S.

    1994-01-01

    It is shown that the temperature-generalization of a popular model of quark-confinement seems to provide a rather interesting insight into the origin of mass of elementary particles: as the universe cooled, there was an era when particles did not have an identity since their masses were variable; the temperature at which the conversion of these 'nomadic' particles into 'elementary' particles took place seems to have been governed by the value of a dimensionless coupling constant C c . For C c =0.001(0.1) this temperature is of the order of 10 9 K (10 11 K), below which the particle masses do not change. (author). 27 refs., 1 tab

  11. Relativistic extension of a charge-conservative finite element solver for time-dependent Maxwell-Vlasov equations

    Science.gov (United States)

    Na, D.-Y.; Moon, H.; Omelchenko, Y. A.; Teixeira, F. L.

    2018-01-01

    Accurate modeling of relativistic particle motion is essential for physical predictions in many problems involving vacuum electronic devices, particle accelerators, and relativistic plasmas. A local, explicit, and charge-conserving finite-element time-domain (FETD) particle-in-cell (PIC) algorithm for time-dependent (non-relativistic) Maxwell-Vlasov equations on irregular (unstructured) meshes was recently developed by Moon et al. [Comput. Phys. Commun. 194, 43 (2015); IEEE Trans. Plasma Sci. 44, 1353 (2016)]. Here, we extend this FETD-PIC algorithm to the relativistic regime by implementing and comparing three relativistic particle-pushers: (relativistic) Boris, Vay, and Higuera-Cary. We illustrate the application of the proposed relativistic FETD-PIC algorithm for the analysis of particle cyclotron motion at relativistic speeds, harmonic particle oscillation in the Lorentz-boosted frame, and relativistic Bernstein modes in magnetized charge-neutral (pair) plasmas.

  12. The time of discrete spectrum identical particles tunneling at their simultaneous passing over rectangular quantum barrier

    International Nuclear Information System (INIS)

    Martsenyuk, L.S.

    2010-01-01

    Research of influence of exchange interaction of identical particles for the time of their simultaneous tunneling through a rectangular quantum barrier is lead. The account of identity leads to necessity of symmetrisation of wave function owing to what in the formula describing interaction of two particles, arises an additional element. In result the parameters of tunneling, including time of tunneling change. Time of tunneling is calculated from the formula received in work from the size of exchange interaction of two particles simultaneously crossing a rectangular quantum barrier.

  13. Aerosol-Fluorescence Spectrum Analyzer: Real-Time Measurement of Emission Spectra of Airborne Biological Particles

    National Research Council Canada - National Science Library

    Hill, Steven

    1997-01-01

    ...) made from various biological materials (e.g., Bacillus subtilis spores, B. anthrasis spores, riboflavin, and tree leaves). The AFS may be useful in detecting and characterizing airborne bacteria and other airborne particles of biological origin.

  14. Continuous spectrum of electromagnetic radiation in the collision of nuclear particles

    International Nuclear Information System (INIS)

    Amusia, M.Y.; Solovyov, A.V.

    1988-01-01

    The bremsstrahlung arising at the scattering of various particles on a nucleus has been considered with the demonstration of an important participation of the nuclear polarization in the collision process

  15. Time Operator in Relativistic Quantum Mechanics

    Science.gov (United States)

    Khorasani, Sina

    2017-07-01

    It is first shown that the Dirac’s equation in a relativistic frame could be modified to allow discrete time, in agreement to a recently published upper bound. Next, an exact self-adjoint 4 × 4 relativistic time operator for spin-1/2 particles is found and the time eigenstates for the non-relativistic case are obtained and discussed. Results confirm the quantum mechanical speculation that particles can indeed occupy negative energy levels with vanishingly small but non-zero probablity, contrary to the general expectation from classical physics. Hence, Wolfgang Pauli’s objection regarding the existence of a self-adjoint time operator is fully resolved. It is shown that using the time operator, a bosonic field referred here to as energons may be created, whose number state representations in non-relativistic momentum space can be explicitly found.

  16. New derivation of relativistic dissipative fluid dynamics

    International Nuclear Information System (INIS)

    Jaiswal, Amaresh; Bhalerao, Rajeev S.; Pal, Subrata

    2012-01-01

    Relativistic dissipative hydrodynamics has been quite successful in explaining the spectra and azimuthal anisotropy of particles produced in heavy-ion collisions at the RHIC and recently at the LHC. The first-order dissipative fluid dynamics or the relativistic Navier-Stokes (NS) theory involves parabolic differential equations and suffers from a causality and instability. The second-order or Israel-Stewart (IS) theory with its hyperbolic equations restores causality but may not guarantee stability. The correct formulation of relativistic viscous fluid dynamics is far from settled and is under intense investigation

  17. The de Sitter relativistic top theory

    International Nuclear Information System (INIS)

    Armenta, J.; Nieto, J.A.

    2005-01-01

    We discuss the relativistic top theory from the point of view of the de Sitter (or anti-de Sitter) group. Our treatment rests on the Hanson-Regge spherical relativistic top Lagrangian formulation. We propose an alternative method for studying spinning objects via Kaluza-Klein theory. In particular, we derive the relativistic top equations of motion starting with the geodesic equation for a point particle in 4+N dimensions. We compare our approach with Fukuyama's formulation of spinning objects, which is also based on Kaluza-Klein theory. We also report a generalization of our approach to a 4+N+D dimensional theory

  18. On the physics of relativistic double layers

    International Nuclear Information System (INIS)

    Carlqvist, P.

    1982-06-01

    A model of a strong, time-independent, and relativistic double layer is studied. Besides double layers having the electric field parallel to the current the model also describes a certain type of oblique double layers. The 'Langmuir condition' (ratio of ion current density to electron current density) as well as an expression for the potential drop of the double layer are derived. Furthermore, the distribution of charged particles, electric field, and potential within the double layer are clarified and discussed. It is found that the properties of relativistic double layers differ substantially from the properties of corresponding non-relativistic double layers. (Author)

  19. Fundamental laws of relativistic classical dynamics revisited

    International Nuclear Information System (INIS)

    Blaquiere, Augustin

    1977-01-01

    By stating that a linear differential form, whose coefficients are the components of the momentum and the energy of a particle, has an antiderivative, the basic equations of the dynamics of points are obtained, in the relativistic case. From the point of view of optimization theory, a connection between our condition and the Bellman-Isaacs equation of dynamic programming is discussed, with a view to extending the theory to relativistic wave mechanics [fr

  20. Spectrum-generating SU(4) in particle physics. II. Electromagnetic decays of vector mesons

    International Nuclear Information System (INIS)

    Bohm, A.; Teese, R.B.

    1977-09-01

    The decay rates for the electromagnetic decays of vector mesons are derived within the spectrum-generating SU(4) approach. Radiative as well as leptonic decays of vector mesons can be derived from one theoretical assumption and given in terms of three reduced matrix elements. The implication of the experimental value GAMMA(rho → πγ) = (35 +- 10) keV for the form of the electromagnetic current operator is discussed

  1. Great SEP events and space weather: 2. Automatic determination of the solar energetic particle spectrum

    Science.gov (United States)

    Applbaum, David; Dorman, Lev; Pustil'Nik, Lev; Sternlieb, Abraham; Zagnetko, Alexander; Zukerman, Igor

    In Applbaum et al. (2010) it was described how the "SEP-Search" program works automat-ically, determining on the basis of on-line one-minute NM data the beginning of a great SEP event. The "SEP-Search" next uses one-minute data in order to check whether or not the observed increase reflects the beginning of a real great SEP event. If yes, the program "SEP-Research/Spectrum" automatically starts to work on line. We consider two variants: 1) quiet period (no change in cut-off rigidity), 2) disturbed period (characterized with possible changing of cut-off rigidity). We describe the method of determining the spectrum of SEP in the 1st vari-ant (for this we need data for at least two components with different coupling functions). For the 2nd variant we need data for at least three components with different coupling functions. We show that for these purposes one can use data of the total intensity and some different mul-tiplicities, but that it is better to use data from two or three NM with different cut-off rigidities. We describe in detail the algorithms of the program "SEP-Research/Spectrum." We show how this program worked on examples of some historical great SEP events. The work of NM on Mt. Hermon is supported by Israel (Tel Aviv University and ISA) -Italian (UNIRoma-Tre and IFSI-CNR) collaboration.

  2. On the spectrum of particles created in a Robertson-Walker universe

    International Nuclear Information System (INIS)

    Azuma, T.

    1983-01-01

    Created particle spectra are calculated in Robertson-Walker universes and discussed with a special emphasis on their dependence upon the initial and final times at which a WKB-like positive frequency conditions should be imposed. It is shown that the obtained spectra are very sensitive to these times if the WKB approximation for the field equation is not valid in their neighborhood. It is also shown that the total number density of created particles remains finite if the final time is set to be finite. (author)

  3. Relativistic mechanics with reduced fields

    International Nuclear Information System (INIS)

    Sokolov, S.N.

    1996-01-01

    A new relativistic classical mechanics of interacting particles using a concept of a reduced field (RF) os proposed. RF is a mediator of interactions, the state of which is described by a finite number of two-argument functions. Ten of these functions correspond to the generators of the Poincare group. Equations of motion contain the retardation of interactions required by the causality principle and have form of a finite system of ordinary hereditary differential equations [ru

  4. The relativistic virial theorem

    International Nuclear Information System (INIS)

    Lucha, W.; Schoeberl, F.F.

    1989-11-01

    The relativistic generalization of the quantum-mechanical virial theorem is derived and used to clarify the connection between the nonrelativistic and (semi-)relativistic treatment of bound states. 12 refs. (Authors)

  5. Mass spectrum of low-lying baryons in the ground state in a relativistic potential model of independent quarks with chiral symmetry

    International Nuclear Information System (INIS)

    Barik, N.; Dash, B.K.

    1986-01-01

    Under the assumption that baryons are an assembly of independent quarks, confined in a first approximation by an effective potential U(r) = 1/2(1+γ 0 )(ar 2 +V 0 ) which presumably represents the nonperturbative gluon interactions, the mass spectrum of the low-lying ground-state baryons has been calculated by considering perturbatively the contributions of the residual quark-pion coupling arising out of the requirement of chiral symmetry and that of the quark-gluon coupling due to one-gluon exchange over and above the necessary center-of-mass correction. The physical masses of the baryons so obtained agree quite well with the corresponding experimental value. The strong coupling constant α/sub c/ = 0.58 required here to describe the QCD mass splittings is quite consistent with the idea of treating one-gluon-exchange effects in lowest-order perturbation theory

  6. Distribution and spectrum of fluctuations of a Brownian particle in a potential well with reflecting walls

    International Nuclear Information System (INIS)

    Soskin, S.M.

    1987-01-01

    The authors examine Brownian motion in a square well with reflecting walls. An exact solution is obtained for the corresponding Einstein-Fokker-Planck equation, which is used to find the coordinate correlation function in explicit form. The correlation function, normalized to the square of the distance between the walls, typically exhibits a similarity property: its behavior as a function of time, friction, temperature, and wall separation reduces to a function of one simple combination of those four quantities. The limiting cases of low and high friction are investigated in detail, with explicit expressions being derived for the spectrum

  7. Finite-size effects on two-particle production in continuous and discrete spectrum

    CERN Document Server

    Lednicky, R

    2005-01-01

    The effect of a finite space-time extent of particle production region on the lifetime measurement of hadronic atoms produced by a high energy beam in a thin target is discussed. Particularly, it is found that the neglect of this effect on the pionium lifetime measurement in the experiment DIRAC at CERN could lead to the lifetime overestimation on the level of the expected 10% statistical error. It is argued that the data on correlations of identical particles obtained in the same experimental conditions, together with transport code simulation, allow to diminish the systematic error in the extracted lifetime to an acceptable level. The theoretical systematic errors arising in the calculation of the finite-size effect due to the neglect of non-equal emission times in the pair c.m.s., the space-time coherence and the residual charge are shown to be negligible.

  8. Study of the four identical particle spectrum moving in one dimension

    International Nuclear Information System (INIS)

    Conceicao, E.M.F. da.

    1986-01-01

    Technical details of the application of the hyperspherical harmonics method are investigated for the problem of four identical particles moving in one line. First of all, the states of the system are classified according theirs invariance properties, following the S 4 group and parity. As follows, the structure of the radial differential equations is investigated in lower order. From the result of this investigation, becauses clear how to treat with higher orders. (L.C.) [pt

  9. Calculations of electronic structure of UF6 molecule and crystal UO2 with relativistic pseudopotential

    International Nuclear Information System (INIS)

    Ehvarestov, R.A.; Panin, A.I.; Bandura, A.V.

    2008-01-01

    Account of relativistic effects on the properties of uranium hexafluoride is testified. Detailed comparison of single electron energies spectrum revealed in nonrelativistic (by Hartree-Fock method), relativistic (by Dirac-Fock method), and scalar-relativistic (using relativistic potential of atomic uranium frame) has been conducted. Optimization procedures of atomic basis in LCAO calculations of molecules and crystals permissive taking into account distortion of atomic orbitals when chemical bonding are discussed, and optimization effect of atomic basis on the results of scalar-relativistic calculations of UF 6 molecule properties is analyzed. Calculations of electronic structure and properties of UO 2 crystal having relativistic and nonrelativistic pseudopotentials have been realized [ru

  10. Numerical investigation of kinetic turbulence in relativistic pair plasmas - I. Turbulence statistics

    Science.gov (United States)

    Zhdankin, Vladimir; Uzdensky, Dmitri A.; Werner, Gregory R.; Begelman, Mitchell C.

    2018-02-01

    We describe results from particle-in-cell simulations of driven turbulence in collisionless, magnetized, relativistic pair plasma. This physical regime provides a simple setting for investigating the basic properties of kinetic turbulence and is relevant for high-energy astrophysical systems such as pulsar wind nebulae and astrophysical jets. In this paper, we investigate the statistics of turbulent fluctuations in simulations on lattices of up to 10243 cells and containing up to 2 × 1011 particles. Due to the absence of a cooling mechanism in our simulations, turbulent energy dissipation reduces the magnetization parameter to order unity within a few dynamical times, causing turbulent motions to become sub-relativistic. In the developed stage, our results agree with predictions from magnetohydrodynamic turbulence phenomenology at inertial-range scales, including a power-law magnetic energy spectrum with index near -5/3, scale-dependent anisotropy of fluctuations described by critical balance, lognormal distributions for particle density and internal energy density (related by a 4/3 adiabatic index, as predicted for an ultra-relativistic ideal gas), and the presence of intermittency. We also present possible signatures of a kinetic cascade by measuring power-law spectra for the magnetic, electric and density fluctuations at sub-Larmor scales.

  11. Unlimited Relativistic Shock Surfing Acceleration

    International Nuclear Information System (INIS)

    Ucer, D.; Shapiro, V. D.

    2001-01-01

    Nonrelativistic shock surfing acceleration at quasiperpendicular shocks is usually considered to be a preacceleration mechanism for slow pickup ions to initiate diffusive shock acceleration. In shock surfing, the particle accelerates along the shock front under the action of the convective electric field of the plasma flow. However, the particle also gains kinetic energy normal to the shock and eventually escapes downstream. We consider the case when ions are accelerated to relativistic velocities. In this case, the ions are likely to be trapped for infinitely long times, because the energy of bounce oscillations tends to decrease during acceleration. This suggests the possibility of unlimited acceleration by shock surfing

  12. Application of particle swarm optimization to identify gamma spectrum with neural network

    International Nuclear Information System (INIS)

    Shi Dongsheng; Di Yuming; Zhou Chunlin

    2007-01-01

    In applying neural network to identification of gamma spectra back propagation (BP) algorithm is usually trapped to a local optimum and has a low speed of convergence, whereas particle swarm optimization (PSO) is advantageous in terms of globe optimal searching. In this paper, we propose a new algorithm for neural network training, i.e. combined BP and PSO optimization, or PSO-BP algorithm. Practical example shows that the new algorithm can overcome shortcomings of BP algorithm and the neural network trained by it has a high ability of generalization with identification result of 100% correctness. It can be used effectively and reliably to identify gamma spectra. (authors)

  13. Solutions to the relativistic precession model

    NARCIS (Netherlands)

    Ingram, A.; Motta, S.

    2014-01-01

    The relativistic precession model (RPM) can be used to obtain a precise measurement of the mass and spin of a black hole when the appropriate set of quasi-periodic oscillations is detected in the power-density spectrum of an accreting black hole. However, in previous studies, the solution of the RPM

  14. Heavy baryons in the relativistic quark model

    International Nuclear Information System (INIS)

    Ebert, D.; Faustov, R.N.; Galkin, V.O.; Martynenko, A.P.; Saleev, V.A.

    1996-07-01

    In the framework of the relativistic quasipotential quark model the mass spectrum of baryons with two heavy quarks is calculated. The quasipotentials for interactions of two quarks and of a quark with a scalar and axial vector diquark are evaluated. The bound state masses of baryons with J P =1/2 + , 3/2 + are computed. (orig.)

  15. Impact of early stage non-equilibrium dynamics on photon production in relativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Oliva, L; Plumari, S; Scardina, F; Greco, V; Ruggieri, M

    2017-01-01

    In this study we discuss our results on the spectrum of photons emitted from the quark-gluon plasma produced in heavy ion collisions at RHIC energies. Simulating the space-time evolution of the fireball by solving the relativistic Boltzmann transport equation and including two-particle scattering processes with photon emission allows us to make a first step in the description of thermal photons from the QGP as well as of those produced in the pre-equilibrium stage. Indeed, we consider not only a standard Glauber initial condition but also a model in which quarks and gluons are produced in the very early stage through the Schwinger mechanism by the decay of an initial color-electric field. In the latter approach relativistic kinetic equations are coupled in a self-consistent way to field equations. We aim at spotting the impact of early stage non-equilibrium dynamics on the photon production. (paper)

  16. Relativistic Random-Phase Approximation with Density-dependent Meson-nucleon Couplings at Finite Temperature

    International Nuclear Information System (INIS)

    Niu, Y.; Paar, N.; Vretenar, D.; Meng, J.

    2009-01-01

    The fully self-consistent relativistic random-phase approximation (RRPA) framework based on effective interactions with a phenomenological density dependence is extended to finite temperatures. The RRPA configuration space is built from the spectrum of single-nucleon states at finite temperature obtained by the temperature dependent relativistic mean field (RMF-T) theory based on effective Lagrangian with density dependent meson-nucleon vertex functions. As an illustration, the dependence of binding energy, radius, entropy and single particle levels on temperature for spherical nucleus 2 08P b is investigated in RMF-T theory. The finite temperature RRPA has been employed in studies of giant monopole and dipole resonances, and the evolution of resonance properties has been studied as a function of temperature. In addition, exotic modes of excitation have been systematically explored at finite temperatures, with an emphasis on the case of pygmy dipole resonances.(author)

  17. Relativistic Boltzmann theory for a plasma

    International Nuclear Information System (INIS)

    Erkelens, H. van.

    1984-01-01

    This thesis gives a self-contained treatment of the relativistic Boltzmann theory for a plasma. Here plasma means any mixture containing electrically charged particles. The relativistic Boltzmann equation is linearized for the case of a plasma. The Chapman-Enskog method is elaborated further for transport phenomena. Linear laws for viscous phenomena are derived. Then the collision term in the Boltzmann theory is dealt with. Using the transport equation, a kinetic theory of wave phenomena is developed and the dissipation of hydromagnetic waves in a relativistic plasma is investigated. In the final chapter, it is demonstrated how the relativistic Boltzmann theory can be applied in cosmology. In doing so, expressions are derived for the electric conductivity of the cosmological plasma in the lepton era, the plasma era and the annihilation era. (Auth.)

  18. Exchange effects in Relativistic Schroedinger Theory

    International Nuclear Information System (INIS)

    Sigg, T.; Sorg, M.

    1998-01-01

    The Relativistic Schroedinger Theory predicts the occurrence of exchange and overlap effects in many-particle systems. For a 2-particle system, the interaction energy of the two particles consists of two contributions: Coulomb energy and exchange energy, where the first one is revealed to be the same as in standard quantum theory. However the exchange energy is mediated by an exchange potential, contrary to the kinematical origin of the exchange term in the standard theory

  19. The relativistic Brownian motion: Interdisciplinary applications

    International Nuclear Information System (INIS)

    Aragones-Munoz, A; Sandoval-Villalbazo, A

    2010-01-01

    Relativistic Brownian motion theory will be applied to the study of analogies between physical and economic systems, emphasizing limiting cases in which Gaussian distributions are no longer valid. The characteristic temperatures of the particles will be associated with the concept of variance, and this will allow us to choose whether the pertinent distribution is classical or relativistic, while working specific situations. The properties of particles can be interpreted as economic variables, in order to study the behavior of markets in terms of Levy financial processes, since markets behave as stochastic systems. As far as we know, the application of the Juettner distribution to the study of economic systems is a new idea.

  20. Relativistic Astrophysics and Cosmology: A Primer

    International Nuclear Information System (INIS)

    Abramowicz, Marek A

    2007-01-01

    'Relativistic Astrophysics and Cosmology: A Primer' by Peter Hoyng, was published last year by Springer. The book is based on lectures given by the author at University of Utrecht to advanced undergraduates. This is a short and scholarly book. In about 300 pages, the author has covered the most interesting and important applications of Albert Einstein's general relativity in present-day astrophysics and cosmology: black holes, neutron stars, gravitational waves, and the cosmic microwave background. The book stresses theory, but also discusses several experimental and observational topics, such as the Gravity Probe B mission, interferometer detectors of gravitational waves and the power spectrum of the cosmic microwave background. The coverage is not uniform. Some topics are discussed in depth, others are only briefly mentioned. The book obviously reflects the author's own research interests and his preferences for specific mathematical methods, and the choice of the original artwork that illustrates the book (and appears on its cover) is a very personal one. I consider this personal touch an advantage, even if I do not always agree with the author's choices. For example, I employ Killing vectors as a very useful mathematical tool not only in my research on black holes, but also in my classes. I find that my students prefer it when discussions of particle, photon and fluid motion in the Schwarzschild and Kerr spacetimes are based explicitly and directly on the Killing vectors rather than on coordinate calculations. The latter approach is, of course, the traditional one, and is used in Peter Hoyng's book. Reading the book is a stimulating experience, because the reader can almost feel the author's presence. The author's opinions, his mathematical taste, his research pleasures, and his pedagogical passion are apparent everywhere. Lecturers contemplating a new course on relativistic astrophysics could adopt Hoyng's book as the text. Their students will be in the author

  1. Bulk renormalization and particle spectrum in codimension-two brane worlds

    International Nuclear Information System (INIS)

    Salvio, Alberto

    2013-01-01

    We study the Casimir energy due to bulk loops of matter fields in codimension-two brane worlds and discuss how effective field theory methods allow us to use this result to renormalize the bulk and brane operators. In the calculation we explicitly sum over the Kaluza-Klein (KK) states with a new convenient method, which is based on a combined use of zeta function and dimensional regularization. Among the general class of models we consider we include a supersymmetric example, 6D gauged chiral supergravity. Although much of our discussion is more general, we treat in some detail a class of compactifications, where the extra dimensions parametrize a rugby ball shaped space with size stabilized by a bulk magnetic flux. The rugby ball geometry requires two branes, which can host the Standard Model fields and carry both tension and magnetic flux (of the bulk gauge field), the leading terms in a derivative expansion. The brane properties have an impact on the KK spectrum and therefore on the Casimir energy as well as on the renormalization of the brane operators. A very interesting feature is that when the two branes carry exactly the same amount of flux, one half of the bulk supersymmetries survives after the compactification, even if the brane tensions are large. We also discuss the implications of these calculations for the natural value of the cosmological constant when the bulk has two large extra dimensions and the bulk supersymmetry is partially preserved (or completely broken).

  2. Elementary particle theory

    CERN Document Server

    Stefanovich, Eugene

    2018-01-01

    This book introduces notation, terminology, and basic ideas of relativistic quantum theories. The discussion proceeds systematically from the principle of relativity and postulates of quantum logics to the construction of Poincaré invariant few-particle models of interaction and scattering. It is the first of three volumes formulating a consistent relativistic quantum theory of interacting charged particles.

  3. The study of hadron dynamics in relativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Venema, L.B.

    1994-01-01

    In this thesis, pion emission patterns were studied in two reaction systems Ar + Ca and Au + Au at 1 GeV/u, with the aim to improve the understanding of the pion production in relativistic heavy ion collisions. The study of the high energy tail of the π 0 -momentum spectrum was regarded as promising because of its sensitivity to compression since it did not appear in small reaction systems. Experiments were performed with TAPS together with the Forward Wall of the FoPi-collaboration at GSI. The combined measurement of charged particle multiplicities in the Forward Wall and the particles entering TAPS enabled an exclusive study of the pion production. TAPS was tested in separate experiments and its capabilities were demonstrated by measuring different reaction products, like photons, charged particles and neutrons. The data analysis involved new methods to treat the background contamination below the invariant mass peak of the π 0 -meson due to the geometry of the detector and to perform particle identification in a high particle multiplicity environment. (orig.)

  4. Rotating relativistic neutron stars

    Energy Technology Data Exchange (ETDEWEB)

    Weber, F.; Glendenning, N.K.

    1991-07-21

    Models of rotating neutron stars are constructed in the framework of Einstein's theory of general relativity. For this purpose a refined version of Hartle's method is applied. The properties of these objects, e.g. gravitational mass, equatorial and polar radius, eccentricity, red- and blueshift, quadrupole moment, are investigated for Kepler frequencies of 4000 s{sup {minus}1} {le} {Omega}{sub K} {le} 9000 s{sup {minus}1}. Therefore a self-consistency problem inherent in the determination of {Omega}{sub K} must be solved. The investigation is based on neutron star matter equations of state derived from the relativistic Martin-Schwinger hierarch of coupled Green's functions. By means of introducing the Hartree, Hartree-Fock, and ladder ({Lambda}) approximations, models of the equation of state derived. A special feature of the latter approximation scheme is the inclusion of dynamical two-particle correlations. These have been calculated from the relativistic T-matrix applying both the HEA and Bonn meson-exchange potentials of the nucleon-nucleon force. The nuclear forces of the former two treatments are those of the standard scalar-vector-isovector model of quantum hadron dynamics, with parameters adjusted to the nuclear matter data. An important aspect of this work consists in testing the compatibility of different competing models of the nuclear equation of state with data on pulsar periods. By this the fundamental problem of nuclear physics concerning the behavior of the equation of state at supernuclear densities can be treated.

  5. The relativistic electron wave equation

    International Nuclear Information System (INIS)

    Dirac, P.A.M.

    1977-08-01

    The paper was presented at the European Conference on Particle Physics held in Budapest between the 4th and 9th July of 1977. A short review is given on the birth of the relativistic electron wave equation. After Schroedinger has shown the equivalence of his wave mechanics and the matrix mechanics of Heisenberg, a general transformation theory was developed by the author. This theory required a relativistic wave equation linear in delta/delta t. As the Klein--Gordon equation available at this time did not satisfy this condition the development of a new equation became necessary. The equation which was found gave the value of the electron spin and magnetic moment automatically. (D.P.)

  6. Dynamics of hadronization in ultra-relativistic nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Friman, B.L.

    1986-01-01

    One of the main problems in the search for quark-gluon plasma in ultra-relativistic nucleus-nucleus collisions is finding a reliable signature for deconfinement. Several signatures have been suggested, e.g., dileptons with a spectrum characteristic of the plasma, an increase in the number of strange particles and effects due to the hadronization of the plasma. In this talk I will describe some recent work on the effects of the hadronization transition in the central rapidity region within the hydrodynamic model of Bjorken, Kajantie and McLerran. (orig.)

  7. Relative cataractogenic effects of X rays, fission-spectrum neutrons, and 56Fe particles: A comparison with mitotic effects

    International Nuclear Information System (INIS)

    Riley, E.F.; Lindgren, A.L.; Andersen, A.L.; Miller, R.C.; Ainsworth, E.J.

    1991-01-01

    The eyes of Sprague-Dawley rats were irradiated with doses of 2.5-10 Gy 250-kVp X rays, 1.25-2.25 Gy fission-spectrum neutrons (approximately 0.85 MeV), or 0.1-2.0 Gy 600-MeV/A 56Fe particles. Lens opacifications were evaluated for 51-61 weeks following X and neutron irradiations and for 87 weeks following X and 56Fe-particle irradiations. Average stage of opacification was determined relative to time after irradiation, and the time required for 50% of the irradiated lenses to achieve various stages (T50) was determined as a function of radiation dose. Data from two experiments were combined in dose-effect curves as T50 experimental values taken as percentages of the respective T50 control values (T50-% control). Simple exponential curves best describe dose responsiveness for both high-LET radiations. For X rays, a shallow dose-effect relationship (shoulder) up to 4.5 Gy was followed at higher doses by a steeper exponential dose-effect relationship. As a consequence, RBE values for the high-LET radiations are dose dependent. Dose-effect curves for cataracts were compared to those for mitotic abnormalities observed when quiescent lens epithelial cells were stimulated mechanically to proliferate at various intervals after irradiation. Neutrons were about 1.6-1.8 times more effective than 56Fe particles for inducing both cataracts and mitotic abnormalities. For stage 1 and 2 cataracts, the X-ray Dq was 10-fold greater and the D0 was similar to those for mitotic abnormalities initially expressed after irradiation

  8. [Research on engine remaining useful life prediction based on oil spectrum analysis and particle filtering].

    Science.gov (United States)

    Sun, Lei; Jia, Yun-xian; Cai, Li-ying; Lin, Guo-yu; Zhao, Jin-song

    2013-09-01

    The spectrometric oil analysis(SOA) is an important technique for machine state monitoring, fault diagnosis and prognosis, and SOA based remaining useful life(RUL) prediction has an advantage of finding out the optimal maintenance strategy for machine system. Because the complexity of machine system, its health state degradation process can't be simply characterized by linear model, while particle filtering(PF) possesses obvious advantages over traditional Kalman filtering for dealing nonlinear and non-Gaussian system, the PF approach was applied to state forecasting by SOA, and the RUL prediction technique based on SOA and PF algorithm is proposed. In the prediction model, according to the estimating result of system's posterior probability, its prior probability distribution is realized, and the multi-step ahead prediction model based on PF algorithm is established. Finally, the practical SOA data of some engine was analyzed and forecasted by the above method, and the forecasting result was compared with that of traditional Kalman filtering method. The result fully shows the superiority and effectivity of the

  9. Quantum dynamics of relativistic bosons through nonminimal vector square potentials

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Luiz P. de, E-mail: oliveira.phys@gmail.com

    2016-09-15

    The dynamics of relativistic bosons (scalar and vectorial) through nonminimal vector square (well and barrier) potentials is studied in the Duffin–Kemmer–Petiau (DKP) formalism. We show that the problem can be mapped in effective Schrödinger equations for a component of the DKP spinor. An oscillatory transmission coefficient is found and there is total reflection. Additionally, the energy spectrum of bound states is obtained and reveals the Schiff–Snyder–Weinberg effect, for specific conditions the potential lodges bound states of particles and antiparticles. - Highlights: • DKP bosons in a nonminimal vector square potential are studied. • Spin zero and spin one bosons have the same results. • The Schiff–Snyder–Weinberg effect is observed.

  10. Extended Galilean symmetries of non-relativistic strings

    Energy Technology Data Exchange (ETDEWEB)

    Batlle, Carles [Departament de Matemàtiques and IOC, Universitat Politècnica de Catalunya, EPSEVG,Av. V. Balaguer 1, E-08808 Vilanova i la Geltrú (Spain); Gomis, Joaquim; Not, Daniel [Departament de Física Quàntica i Astrofísica and Institut de Ciències del Cosmos (ICCUB),Universitat de Barcelona,Martí i Franquès 1, E-08028 Barcelona (Spain)

    2017-02-09

    We consider two non-relativistic strings and their Galilean symmetries. These strings are obtained as the two possible non-relativistic (NR) limits of a relativistic string. One of them is non-vibrating and represents a continuum of non-relativistic massless particles, and the other one is a non-relativistic vibrating string. For both cases we write the generator of the most general point transformation and impose the condition of Noether symmetry. As a result we obtain two sets of non-relativistic Killing equations for the vector fields that generate the symmetry transformations. Solving these equations shows that NR strings exhibit two extended, infinite dimensional space-time symmetries which contain, as a subset, the Galilean symmetries. For each case, we compute the associated conserved charges and discuss the existence of non-central extensions.

  11. Relativistic Linear Restoring Force

    Science.gov (United States)

    Clark, D.; Franklin, J.; Mann, N.

    2012-01-01

    We consider two different forms for a relativistic version of a linear restoring force. The pair comes from taking Hooke's law to be the force appearing on the right-hand side of the relativistic expressions: d"p"/d"t" or d"p"/d["tau"]. Either formulation recovers Hooke's law in the non-relativistic limit. In addition to these two forces, we…

  12. Time-dependent diffusive acceleration of test particles at shocks

    Energy Technology Data Exchange (ETDEWEB)

    Drury, L.O' C. (Dublin Inst. for Advanced Studies (Ireland))

    1991-07-15

    The acceleration of test particles at a steady plane non-relativistic shock is considered. Analytic expressions are found for the mean and the variance of the acceleration time distribution in the case where the diffusion coefficient has an arbitrary dependence on position and momentum. These expressions are used as the basis for an approximation scheme which is shown, by comparison with numerical solutions, to give an excellent representation of the time-dependent spectrum. (author).

  13. Time-dependent diffusive acceleration of test particles at shocks

    International Nuclear Information System (INIS)

    Drury, L.O'C.

    1991-01-01

    The acceleration of test particles at a steady plane non-relativistic shock is considered. Analytic expressions are found for the mean and the variance of the acceleration time distribution in the case where the diffusion coefficient has an arbitrary dependence on position and momentum. These expressions are used as the basis for an approximation scheme which is shown, by comparison with numerical solutions, to give an excellent representation of the time-dependent spectrum. (author)

  14. Slowly rotating general relativistic superfluid neutron stars with relativistic entrainment

    International Nuclear Information System (INIS)

    Comer, G.L.

    2004-01-01

    Neutron stars that are cold enough should have two or more superfluids or supercondutors in their inner crusts and cores. The implication of superfluidity or superconductivity for equilibrium and dynamical neutron star states is that each individual particle species that forms a condensate must have its own, independent number density current and equation of motion that determines that current. An important consequence of the quasiparticle nature of each condensate is the so-called entrainment effect; i.e., the momentum of a condensate is a linear combination of its own current and those of the other condensates. We present here the first fully relativistic modeling of slowly rotating superfluid neutron stars with entrainment that is accurate to the second-order in the rotation rates. The stars consist of superfluid neutrons, superconducting protons, and a highly degenerate, relativistic gas of electrons. We use a relativistic σ-ω mean field model for the equation of state of the matter and the entrainment. We determine the effect of a relative rotation between the neutrons and protons on a star's total mass, shape, and Kepler, mass-shedding limit

  15. Relativistic quantum logic

    International Nuclear Information System (INIS)

    Mittelstaedt, P.

    1983-01-01

    on the basis of the well-known quantum logic and quantum probability a formal language of relativistic quantum physics is developed. This language incorporates quantum logical as well as relativistic restrictions. It is shown that relativity imposes serious restrictions on the validity regions of propositions in space-time. By an additional postulate this relativistic quantum logic can be made consistent. The results of this paper are derived exclusively within the formal quantum language; they are, however, in accordance with well-known facts of relativistic quantum physics in Hilbert space. (author)

  16. Particle Acceleration in Mildly Relativistic Shearing Flows: The Interplay of Systematic and Stochastic Effects, and the Origin of the Extended High-energy Emission in AGN Jets

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Ruo-Yu; Rieger, F. M.; Aharonian, F. A., E-mail: ruoyu@mpi-hd.mpg.de, E-mail: frank.rieger@mpi-hd.mpg.de, E-mail: aharon@mpi-hd.mpg.de [Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg (Germany)

    2017-06-10

    The origin of the extended X-ray emission in the large-scale jets of active galactic nuclei (AGNs) poses challenges to conventional models of acceleration and emission. Although electron synchrotron radiation is considered the most feasible radiation mechanism, the formation of the continuous large-scale X-ray structure remains an open issue. As astrophysical jets are expected to exhibit some turbulence and shearing motion, we here investigate the potential of shearing flows to facilitate an extended acceleration of particles and evaluate its impact on the resultant particle distribution. Our treatment incorporates systematic shear and stochastic second-order Fermi effects. We show that for typical parameters applicable to large-scale AGN jets, stochastic second-order Fermi acceleration, which always accompanies shear particle acceleration, can play an important role in facilitating the whole process of particle energization. We study the time-dependent evolution of the resultant particle distribution in the presence of second-order Fermi acceleration, shear acceleration, and synchrotron losses using a simple Fokker–Planck approach and provide illustrations for the possible emergence of a complex (multicomponent) particle energy distribution with different spectral branches. We present examples for typical parameters applicable to large-scale AGN jets, indicating the relevance of the underlying processes for understanding the extended X-ray emission and the origin of ultrahigh-energy cosmic rays.

  17. Relativistic collective diffusion in one-dimensional systems

    Science.gov (United States)

    Lin, Gui-Wu; Lam, Yu-Yiu; Zheng, Dong-Qin; Zhong, Wei-Rong

    2018-05-01

    The relativistic collective diffusion in one-dimensional molecular system is investigated through nonequilibrium molecular dynamics with Monte Carlo methods. We have proposed the relationship among the speed, the temperature, the density distribution and the collective diffusion coefficient of particles in a relativistic moving system. It is found that the relativistic speed of the system has no effect on the temperature, but the collective diffusion coefficient decreases to zero as the velocity of the system approaches to the speed of light. The collective diffusion coefficient is modified as D‧ = D(1 ‑w2 c2 )3 2 for satisfying the relativistic circumstances. The present results may contribute to the understanding of the behavior of the particles transport diffusion in a high speed system, as well as enlighten the study of biological metabolism at relativistic high speed situation.

  18. Calculation of the binding energy per nucleon and the quasi-particle interation in nuclear matter under consideration of relativistic medium effects

    International Nuclear Information System (INIS)

    Hippchen, T.

    1985-12-01

    In a first part, nuclear matter calculations have been performed in the Dirac-Brueckner approach using a) a nucleon-nucleon potential of one-boson-exchange (OBE) type and b) a more realistic interaction in which the fictitious σ-exchange of the OBE-model is replaced by explicit 2π- and πρ-exchange diagrams. Both potential models yield the correct empirical binding energy and saturation density. It turns out that the total sum of relativistic effects caused by the emplicit 2 π- and πρ-exchanges is comparable to those due to σ-exchange. In a second part, the nuclear quasiparticle interaction, i.e. the Landau parameters, have been calculated in the central (F), isospin (F'), spin (G) and spin-isospin (G') channel, in an analogous way. Compared to nonrelativistic calculations (including conventional medium corrections like Pauli and dispersion effects), a strong improvement has been found, especially in the F- and G-channel. Finally, the influence of A 1 -exchange is studied, in NN scattering and in nuclear matter. It turns out that, after a suitable and necessary readjustment of some meson parameters, its role is negligibly small. (orig.)

  19. Relativistic many-body theory of high density matter

    International Nuclear Information System (INIS)

    Chin, S.A.

    1977-01-01

    A fully relativistic quantum many-body theory is applied to the study of high-density matter. The latter is identified with the zero-temperature ground state of a system of interacting baryons. In accordance with the observed short-range repulsive and long-range attractive character of the nucleon--nucleon force, baryons are described as interacting with each other via a massive scalar and a massive vector meson exchange. In the Hartree approximation, the theory yields the same result as the mean-field theory, but with additional vacuum fluctuation corrections. The resultant equation of state for neutron matter is used to determine properties of neutron stars. The relativistic exchange energy, its corresponding single-particle excitation spectrum, and its effect on the neutron matter equation of state, are calculated. The correlation energy from summing the set of ring diagrams is derived directly from the energy-momentum tensor, with renormalization carried out by adding counterterms to the original Lagrangian and subtracting purely vacuum expectation values. Terms of order g 4 lng 2 are explicitly given. Effects of scalar-vector mixing are discussed. Collective modes corresponding to macroscopic density fluctuation are investigated. Two basic modes are found, a plasma-like mode and zero sound, with the latter dominant at high density. The stability and damping of these modes are studied. Last, the effect of vacuum polarization in high-density matter is examined

  20. Strong-coupling diffusion in relativistic systems

    Indian Academy of Sciences (India)

    hanced values needed to interpret the data at higher energies point towards the importance of strong-coupling effects. ... when all secondary particles have been created. For short times in the initial phase ... It is decisive for a proper representation of the available data for relativistic heavy-ion collisions at and beyond SPS.

  1. Chaos and maps in relativistic rynamical systems

    Directory of Open Access Journals (Sweden)

    L. P. Horwitz

    2000-01-01

    Full Text Available The basic work of Zaslavskii et al showed that the classical non-relativistic electromagnetically kicked oscillator can be cast into the form of an iterative map on the phase space; the resulting evolution contains a stochastic flow to unbounded energy. Subsequent studies have formulated the problem in terms of a relativistic charged particle in interaction with the electromagnetic field. We review the structure of the covariant Lorentz force used to study this problem. We show that the Lorentz force equation can be derived as well from the manifestly covariant mechanics of Stueckelberg in the presence of a standard Maxwell field, establishing a connection between these equations and mass shell constraints. We argue that these relativistic generalizations of the problem are intrinsically inaccurate due to an inconsistency in the structure of the relativistic Lorentz force, and show that a reformulation of the relativistic problem, permitting variations (classically in both the particle mass and the effective “mass” of the interacting electromagnetic field, provides a consistent system of classical equations for describing such processes.

  2. Nuclear collisions in measurements of the cosmic ray charge spectrum with a counter telescope

    International Nuclear Information System (INIS)

    Lindstam, S.

    1975-06-01

    The importance of nuclear collisions of cosmic ray particles in a counter detector telescope is studied by simple Monte Carlo techniques. The interest concentrates on the charge region just below iron and the calculations are restricted to fully relativistic cosmic rays. It is found that it is difficult to avoid a blurring in the charge spectrum from nuclear collisions leading to considerable systematic errors in some abundance ratios. (Auth.)

  3. Viscous photons in relativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Dion, Maxime; Paquet, Jean-Francois; Young, Clint; Jeon, Sangyong; Gale, Charles; Schenke, Bjoern

    2011-01-01

    Theoretical studies of the production of real thermal photons in relativistic heavy ion collisions at the Relativistic Heavy Ion Collider (RHIC) are performed. The space-time evolution of the colliding system is modelled using music, a 3+1D relativistic hydrodynamic simulation, using both its ideal and viscous versions. The inclusive spectrum and its azimuthal angular anisotropy are studied separately, and the relative contributions of the different photon sources are highlighted. It is shown that the photon v 2 coefficient is especially sensitive to the details of the microscopic dynamics like the equation of state, the ratio of shear viscosity over entropy density, η/s, and to the morphology of the initial state.

  4. Towards relativistic quantum geometry

    Energy Technology Data Exchange (ETDEWEB)

    Ridao, Luis Santiago [Instituto de Investigaciones Físicas de Mar del Plata (IFIMAR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mar del Plata (Argentina); Bellini, Mauricio, E-mail: mbellini@mdp.edu.ar [Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Funes 3350, C.P. 7600, Mar del Plata (Argentina); Instituto de Investigaciones Físicas de Mar del Plata (IFIMAR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mar del Plata (Argentina)

    2015-12-17

    We obtain a gauge-invariant relativistic quantum geometry by using a Weylian-like manifold with a geometric scalar field which provides a gauge-invariant relativistic quantum theory in which the algebra of the Weylian-like field depends on observers. An example for a Reissner–Nordström black-hole is studied.

  5. Relativistic Coulomb Fission

    Science.gov (United States)

    Norbury, John W.

    1992-01-01

    Nuclear fission reactions induced by the electromagnetic field of relativistic nuclei are studied for energies relevant to present and future relativistic heavy ion accelerators. Cross sections are calculated for U-238 and Pu-239 fission induced by C-12, Si-28, Au-197, and U-238 projectiles. It is found that some of the cross sections can exceed 10 b.

  6. Coherent emission from relativistic beam-plasma interactions

    International Nuclear Information System (INIS)

    Latham, P.E.

    1986-01-01

    A theoretical model for the production of high-power, high-frequency electromagnetic radiation from unmagnetized, relativistic beam-plasma interactions is studied. Emphasis is placed on the injected-beam system, for which the dominant portion of the radiation is emitted near the point where the beam enters the plasma. In such systems, frequencies much larger than the plasma frequency and power levels many orders of magnitude above that predicted by single-particle radiation have been observed experimentally. A two-step process is proposed to explain these observations: electrostatic bunching of the beam followed by coherent radiation by the bunches. The first step, beam bunching, produces large-amplitude electrostatic waves. A Green's function analysis is employed to understand the convective growth of those waves near the plasma boundary; their saturation amplitude is found by applying conservation of energy to the beam-plasma system. An azimuthally symmetric model is used to compute the saturated spectrum analytically, and a relatively simple expression is found. The second step, the interaction of the electron beam with the electrostatic spectrum, leads to the production of high-power, high-frequency electromagnetic radiation. From a detailed analysis of the phase-space evolution of the trapped beam, an analytic expression for the electromagnetic spectrum is found as a function of angle and frequency

  7. The neutron's Dirac-equation: Its rigorous solution at slab-like magnetic fields, non-relativistic approximation, energy spectra and statistical characteristics

    International Nuclear Information System (INIS)

    Zhang Yongde.

    1987-03-01

    In this paper, the neutron Dirac-equation is presented. After decoupling it into two equations of the simple spinors, the rigorous solution of this equation is obtained in the case of slab-like uniform magnetic fields at perpendicular incidence. At non-relativistic approximation and first order approximation of weak field (NRWFA), our results have included all results that have been obtained in references for this case up to now. The corresponding transformations of the neutron's spin vectors are given. The single particle spectrum and its approximate expression are obtained. The characteristics of quantum statistics with the approximate expression of energy spectrum are studied. (author). 15 refs

  8. Relativistic quantum mechanics of leptons and fields

    International Nuclear Information System (INIS)

    Grandy, W.T. Jr.

    1991-01-01

    This book serves as an advanced text on the Dirac theory, and provides a monograph summarizing the description of relativistic quantum mechanics and quantum electrodynamics as classical field theories. It presents a broad, detailed, and up-to-date exposition of relativistic quantum mechanics, including the two-body problem. It also demonstrates the extent to which the behavior of stable particles and their interactions can be understood without introducing operator (second-quantized) fields. The subsequent difficulties are studied in detail and possible resolutions are presented through quantum field theory

  9. Relativistic tunneling through two successive barriers

    International Nuclear Information System (INIS)

    Lunardi, Jose T.; Manzoni, Luiz A.

    2007-01-01

    We study the relativistic quantum mechanical problem of a Dirac particle tunneling through two successive electrostatic barriers. Our aim is to study the emergence of the so-called generalized Hartman effect, an effect observed in the context of nonrelativistic tunneling as well as in its counterparts and which is often associated with the possibility of superluminal velocities in the tunneling process. We discuss the behavior of both the phase (or group) tunneling time and the dwell time, and show that in the limit of opaque barriers the relativistic theory also allows the emergence of the generalized Hartman effect. We compare our results with the nonrelativistic ones and discuss their interpretation

  10. Constraints on the cosmological relativistic energy density

    International Nuclear Information System (INIS)

    Zentner, Andrew R.; Walker, Terry P.

    2002-01-01

    We discuss bounds on the cosmological relativistic energy density as a function of redshift, reviewing the big bang nucleosynthesis and cosmic microwave background bounds, updating bounds from large scale structure, and introducing a new bound from the magnitude-redshift relation for type Ia supernovae. We conclude that the standard and well-motivated assumption that relativistic energy is negligible during recent epochs is not necessitated by extant data. We then demonstrate the utility of these bounds by constraining the mass and lifetime of a hypothetical massive big bang relic particle

  11. Relativistic classical limit of quantum theory

    International Nuclear Information System (INIS)

    Shin, G.R.; Rafelski, J.

    1993-01-01

    We study the classical limit of the equal-time relativistic quantum transport theory. We discuss in qualitative terms the need to fold first the Wigner function with a coarse-graining function. Only then does the singularity at ℎ→0 seem to be manageable. In the limit ℎ→0, we obtain the relativistic Vlasov equations for the particle and the antiparticle sector of the Fock space. Similarly, we address the evolution equations of the spin and the magnetic-moment density

  12. Strange particle correlations measured by the Star experiment in ultra-relativistic heavy ion collisions a RHIC; Etude des correlations de particules etranges mesurees par l'experience STAR dans les collisions d'ions lourds ultra-relativistes au RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Renault, G

    2004-09-01

    Non-identical correlation functions allow to study the space-time evolution of the source of particles formed in ultra-relativistic heavy ion collisions. The STAR experiment is dedicated to probe the formation of a new state of nuclear matter called Quark Gluon Plasma. The proton - lambda correlation function is supposed to be more sensitive to bigger source sizes than the proton - proton because of the absence of the final state Coulomb interaction. In this thesis, proton - lambda, anti-proton - anti-lambda, anti-proton - lambda and proton - anti-lambda correlation functions are studied in Au+Au collisions at {radical}S{sub NN} = 200 GeV using an analytical model. The proton - lambda and anti-proton - anti-lambda correlation functions exhibit the same behavior as in previous measurements. The anti-proton - lambda and proton - anti-lambda correlation functions, measured for the first time, show a very strong signal corresponding to the baryon - anti-baryon annihilation channel. Parameterizing the correlation functions has allowed to characterize final state interactions. (author)

  13. On the spectrum emitted by excited particles ejected from the surface of a calcium target by a beam of Ar+ ions

    International Nuclear Information System (INIS)

    Kiyan, T.S.; Gritsyna, V.V.; Fogel, Ya.M.

    1976-01-01

    The spectrum of the luminous aureole near the calcium target radiated by excited particles ejected from its surface by a beam of Ar + (energy 30 keV, current density 200 μA/cm 2 ) was investigated. This spectrum contains lines of the singlet and triplet systems of the one-and-two-electron excited states of the calcium atom and some bands of CaO and O + 2 molecules. The width of a conductivity band of CaO was measured. Some information on oxidation processes on calcium in a residual gas and rarefied nitrogen atmosphere was obtained. (Auth.)

  14. Relativistic mean field model for entrainment in general relativistic superfluid neutron stars

    International Nuclear Information System (INIS)

    Comer, G.L.; Joynt, R.

    2003-01-01

    General relativistic superfluid neutron stars have a significantly more intricate dynamics than their ordinary fluid counterparts. Superfluidity allows different superfluid (and superconducting) species of particles to have independent fluid flows, a consequence of which is that the fluid equations of motion contain as many fluid element velocities as superfluid species. Whenever the particles of one superfluid interact with those of another, the momentum of each superfluid will be a linear combination of both superfluid velocities. This leads to the so-called entrainment effect whereby the motion of one superfluid will induce a momentum in the other superfluid. We have constructed a fully relativistic model for entrainment between superfluid neutrons and superconducting protons using a relativistic σ-ω mean field model for the nucleons and their interactions. In this context there are two notions of 'relativistic': relativistic motion of the individual nucleons with respect to a local region of the star (i.e. a fluid element containing, say, an Avogadro's number of particles), and the motion of fluid elements with respect to the rest of the star. While it is the case that the fluid elements will typically maintain average speeds at a fraction of that of light, the supranuclear densities in the core of a neutron star can make the nucleons themselves have quite high average speeds within each fluid element. The formalism is applied to the problem of slowly rotating superfluid neutron star configurations, a distinguishing characteristic being that the neutrons can rotate at a rate different from that of the protons

  15. On a connection between the VAK, knot theory and El Naschie's theory of the mass spectrum of the high energy elementary particles

    International Nuclear Information System (INIS)

    Marek-Crnjac, L.

    2004-01-01

    In the present work we give an introduction to the ε (∞) Cantorian space-time theory. In this theory every particle can be interpreted as a scaling of another particle. Some particles are a scaling of the proton and are expressed in terms of phi and α-bar 0 . Following the VAK suggestion of El Naschie, the limit sets of Kleinian groups are Cantor sets with Hausdorff dimension phi or a derivative of phi such as 1/phi, 1/phi 2 , 1/phi 3 , etc. Consequently and using ε (∞) theory, the mass spectrum of elementary particles may be found from the limit set of the Moebius-Klein geometry of quantum space-time as a function of the golden mean phi=(}5-1)/2=0.618033989 as discussed recently by Datta (see Chaos, Solitons and Fractals 17 (2003) 621-630)

  16. On a connection between the VAK, knot theory and El Naschie's theory of the mass spectrum of the high energy elementary particles

    Energy Technology Data Exchange (ETDEWEB)

    Marek-Crnjac, L

    2004-02-01

    In the present work we give an introduction to the {epsilon}{sup ({infinity}}{sup )} Cantorian space-time theory. In this theory every particle can be interpreted as a scaling of another particle. Some particles are a scaling of the proton and are expressed in terms of phi and {alpha}-bar{sub 0}. Following the VAK suggestion of El Naschie, the limit sets of Kleinian groups are Cantor sets with Hausdorff dimension phi or a derivative of phi such as 1/phi, 1/phi{sup 2}, 1/phi{sup 3}, etc. Consequently and using {epsilon}{sup ({infinity}}{sup )} theory, the mass spectrum of elementary particles may be found from the limit set of the Moebius-Klein geometry of quantum space-time as a function of the golden mean phi=({r_brace}5-1)/2=0.618033989 as discussed recently by Datta (see Chaos, Solitons and Fractals 17 (2003) 621-630)

  17. Quadratic hamiltonians and relativistic quantum mechanics

    International Nuclear Information System (INIS)

    Razumov, A.V.; Solov'ev, V.O.; Taranov, A.Yu.

    1981-01-01

    For the case of a charged scalar field described by a quadratic hamiltonian the equivalent relativistic quantum mechanics is constructed in one-particle sector. Complete investigation of a charged relativistic particle motion in the Coulomb field is carried out. Subcritical as well as supercritical cases are considered. In the course of investigation of the charged scalar particle in the Coulomb field the diagonalization of the quadratic hamiltonian describing the charged scalar quantized field interaction with the external Coulomb field has taken place. Mathematically this problem is bound to the construction of self-conjugated expansions of the symmetric operator. The construction of such expansion is necessary at any small external field magnitude [ru

  18. On different experimental behaviour of fast secondary particles produced in 12C interactions at relativistic energies as studied with radiochemistry and in a propane chamber

    International Nuclear Information System (INIS)

    Kulakov, B.A.; Karachuk, J.; Gelovani, L.K.; Gridnev, T.G.; Sosnin, A.N.; Brandt, R.

    1998-01-01

    Energetic secondary fragments produced in the interaction of (41-44) GeV 12 C ions with copper exhibit experimentally a broader angular distribution as compared to energetic secondary fragments produced in the interactions at a lower 12 C-energy (15-25) GeV when studied with radiochemical techniques. Such a different experimental behaviour of secondary fragments produced by 12 C ions of the same two energy groups is not observed, when these secondary fragments are investigated with a propane bubble chamber. Separation of secondary particles is described

  19. Distortions of the distribution function of collisionless particles by high-frequency gravitational waves

    International Nuclear Information System (INIS)

    Vainer, B.V.; Nasel'skii, P.D.

    1983-01-01

    Equations for the correlation functions of fluctuations in the spectra of relativistic collisionless particles are obtained from the combined system of Einstein's equations and the Vlasov equation. It is shown that the interaction of high-frequency gravitational waves with collisionless particles leads to diffusion of their spectrum in the momentum space. The distortions in the spectrum of the microwave background radiation in a cosmological model with high-frequency gravitational waves are discussed. Bounds are obtained on the spectral characteristics of background gravitational waves

  20. How one can construct a consistent relativistic quantum mechanics on the base of a relativistic wave equation

    Energy Technology Data Exchange (ETDEWEB)

    Gavrilov, S.P. [Universidade Federal de Sergipe (UFS), Aracaju, SE (Brazil); Gitman, D.M. [Sao Paulo Univ. (USP), SP (Brazil). Inst. de Fisica

    2000-07-01

    Full text follows: There is a common opinion that the construction of a consistent relativistic quantum mechanics on the base of a relativistic wave equation meets well-known difficulties related to the existence of infinite number of negative energy levels, to the existence of negative vector norms, and so on, which may be only solved in a second-quantized theory, see, for example, two basic papers devoted to the problem L.Foldy, S.Wouthuysen, Phys. Rep.78 (1950) 29; H.Feshbach, F.Villars, Rev. Mod. Phys. 30 (1958) 24, whose arguments are repeated in all handbooks in relativistic quantum theory. Even Dirac trying to solve the problem had turned last years to infinite-component relativistic wave equations, see P.A.M. Dirac, Proc. R. Soc. London, A328 (1972) 1. We believe that a consistent relativistic quantum mechanics may be constructed on the base of an extended (charge symmetric) equation, which unite both a relativistic wave equation for a particle and for an antiparticle. We present explicitly the corresponding construction, see for details hep-th/0003112. We support such a construction by two demonstrations: first, in course of a careful canonical quantization of the corresponding classical action of a relativistic particle we arrive just to such a consistent quantum mechanics; second, we demonstrate that a reduction of the QFT of a corresponding field (scalar, spinor, etc.) to one-particle sector, if such a reduction may be done, present namely this quantum mechanics. (author)

  1. Study of quantum spin correlations of relativistic electron pairs - Testing nonlocality of relativistic quantum mechanics

    International Nuclear Information System (INIS)

    Bodek, K.; Rozpędzik, D.; Zejma, J.; Caban, P.; Rembieliński, J.; Włodarczyk, M.; Ciborowski, J.; Enders, J.; Köhler, A.; Kozela, A.

    2013-01-01

    The Polish-German project QUEST aims at studying relativistic quantum spin correlations of the Einstein-Rosen-Podolsky-Bohm type, through measurement of the correlation function and the corresponding probabilities for relativistic electron pairs. The results will be compared to theoretical predictions obtained by us within the framework of relativistic quantum mechanics, based on assumptions regarding the form of the relativistic spin operator. Agreement or divergence will be interpreted in the context of non-uniqueness of the relativistic spin operator in quantum mechanics as well as dependence of the correlation function on the choice of observables representing the spin. Pairs of correlated electrons will originate from the Mo/ller scattering of polarized 15 MeV electrons provided by the superconducting Darmstadt electron linear accelerator S-DALINAC, TU Darmstadt, incident on a Be target. Spin projections will be determined using the Mott polarimetry technique. Measurements (starting 2013) are planned for longitudinal and transverse beam polarizations and different orientations of the beam polarization vector w.r.t. the Mo/ller scattering plane. This is the first project to study relativistic spin correlations for particles with mass

  2. Particle acceleration inside PWN: Simulation and observational constraints with INTEGRAL; Acceleration de particules au sein des vents relativistes de pulsar: simulation et contraintes observationelles avec le satellite INTEGRAL

    Energy Technology Data Exchange (ETDEWEB)

    Forot, M

    2006-12-15

    The context of this thesis is to gain new constraints on the different particle accelerators that occur in the complex environment of neutron stars: in the pulsar magnetosphere, in the striped wind or wave outside the light cylinder, in the jets and equatorial wind, and at the wind terminal shock. An important tool to constrain both the magnetic field and primary particle energies is to image the synchrotron ageing of the population, but it requires a careful modelling of the magnetic field evolution in the wind flow. The current models and understanding of these different accelerators, the acceleration processes and open questions have been reviewed in the first part of the thesis. The instrumental part of this work involves the IBIS imager, on board the INTEGRAL satellite, that provides images with 12' resolution from 17 keV to MeV where the SPI spectrometer takes over up, to 10 MeV, but with a reduced 2 degrees resolution. A new method for using the double-layer IBIS imager as a Compton telescope with coded mask aperture. Its performance has been measured. The Compton scattering information and the achieved sensitivity also open a new window for polarimetry in gamma rays. A method has been developed to extract the linear polarization properties and to check the instrument response for fake polarimetric signals in the various backgrounds and projection effects.

  3. Particle acceleration inside PWN: Simulation and observational constraints with INTEGRAL; Acceleration de particules au sein des vents relativistes de pulsar: simulation et contraintes observationelles avec le satellite INTEGRAL

    Energy Technology Data Exchange (ETDEWEB)

    Forot, M

    2006-12-15

    The context of this thesis is to gain new constraints on the different particle accelerators that occur in the complex environment of neutron stars: in the pulsar magnetosphere, in the striped wind or wave outside the light cylinder, in the jets and equatorial wind, and at the wind terminal shock. An important tool to constrain both the magnetic field and primary particle energies is to image the synchrotron ageing of the population, but it requires a careful modelling of the magnetic field evolution in the wind flow. The current models and understanding of these different accelerators, the acceleration processes and open questions have been reviewed in the first part of the thesis. The instrumental part of this work involves the IBIS imager, on board the INTEGRAL satellite, that provides images with 12' resolution from 17 keV to MeV where the SPI spectrometer takes over up, to 10 MeV, but with a reduced 2 degrees resolution. A new method for using the double-layer IBIS imager as a Compton telescope with coded mask aperture. Its performance has been measured. The Compton scattering information and the achieved sensitivity also open a new window for polarimetry in gamma rays. A method has been developed to extract the linear polarization properties and to check the instrument response for fake polarimetric signals in the various backgrounds and projection effects.

  4. Approximative analytic study of fermions in magnetar's crust; ultra-relativistic plane waves, Heun and Mathieu solutions and beyond

    Science.gov (United States)

    Dariescu, Marina-Aura; Dariescu, Ciprian

    2012-10-01

    Working with a magnetic field periodic along Oz and decaying in time, we deal with the Dirac-type equation characterizing the fermions evolving in magnetar's crust. For ultra-relativistic particles, one can employ the perturbative approach, to compute the conserved current density components. If the magnetic field is frozen and the magnetar is treated as a stationary object, the fermion's wave function is expressed in terms of the Heun's Confluent functions. Finally, we are extending some previous investigations on the linearly independent fermionic modes solutions to the Mathieu's equation and we discuss the energy spectrum and the Mathieu Characteristic Exponent.

  5. Plasma relativistic microwave electronics

    International Nuclear Information System (INIS)

    Kuzelev, M.V.; Loza, O.T.; Rukhadze, A.A.; Strelkov, P.S.; Shkvarunets, A.G.

    2001-01-01

    One formulated the principles of plasma relativistic microwave electronics based on the induced Cherenkov radiation of electromagnetic waves at interaction of a relativistic electron beam with plasma. One developed the theory of plasma relativistic generators and accelerators of microwave radiation, designed and studied the prototypes of such devices. One studied theoretically the mechanisms of radiation, calculated the efficiencies and the frequency spectra of plasma relativistic microwave generators and accelerators. The theory findings are proved by the experiment: intensity of the designed sources of microwave radiation is equal to 500 μW, the frequency of microwave radiation is increased by 7 times (from 4 up to 28 GHz), the width of radiation frequency band may vary from several up to 100%. The designed sources of microwave radiation are no else compared in the electronics [ru

  6. The relativistic rocket

    Energy Technology Data Exchange (ETDEWEB)

    Antippa, Adel F [Departement de Physique, Universite du Quebec a Trois-Rivieres, Trois-Rivieres, Quebec G9A 5H7 (Canada)

    2009-05-15

    We solve the problem of the relativistic rocket by making use of the relation between Lorentzian and Galilean velocities, as well as the laws of superposition of successive collinear Lorentz boosts in the limit of infinitesimal boosts. The solution is conceptually simple, and technically straightforward, and provides an example of a powerful method that can be applied to a wide range of special relativistic problems of linear acceleration.

  7. Exact Relativistic `Antigravity' Propulsion

    Science.gov (United States)

    Felber, Franklin S.

    2006-01-01

    The Schwarzschild solution is used to find the exact relativistic motion of a payload in the gravitational field of a mass moving with constant velocity. At radial approach or recession speeds faster than 3-1/2 times the speed of light, even a small mass gravitationally repels a payload. At relativistic speeds, a suitable mass can quickly propel a heavy payload from rest nearly to the speed of light with negligible stresses on the payload.

  8. Relativistic Quantum Revivals

    International Nuclear Information System (INIS)

    Strange, P.

    2010-01-01

    Quantum revivals are now a well-known phenomena within nonrelativistic quantum theory. In this Letter we display the effects of relativity on revivals and quantum carpets. It is generally believed that revivals do not occur within a relativistic regime. Here we show that while this is generally true, it is possible, in principle, to set up wave packets with specific mathematical properties that do exhibit exact revivals within a fully relativistic theory.

  9. Relativistic viscoelastic fluid mechanics

    International Nuclear Information System (INIS)

    Fukuma, Masafumi; Sakatani, Yuho

    2011-01-01

    A detailed study is carried out for the relativistic theory of viscoelasticity which was recently constructed on the basis of Onsager's linear nonequilibrium thermodynamics. After rederiving the theory using a local argument with the entropy current, we show that this theory universally reduces to the standard relativistic Navier-Stokes fluid mechanics in the long time limit. Since effects of elasticity are taken into account, the dynamics at short time scales is modified from that given by the Navier-Stokes equations, so that acausal problems intrinsic to relativistic Navier-Stokes fluids are significantly remedied. We in particular show that the wave equations for the propagation of disturbance around a hydrostatic equilibrium in Minkowski space-time become symmetric hyperbolic for some range of parameters, so that the model is free of acausality problems. This observation suggests that the relativistic viscoelastic model with such parameters can be regarded as a causal completion of relativistic Navier-Stokes fluid mechanics. By adjusting parameters to various values, this theory can treat a wide variety of materials including elastic materials, Maxwell materials, Kelvin-Voigt materials, and (a nonlinearly generalized version of) simplified Israel-Stewart fluids, and thus we expect the theory to be the most universal description of single-component relativistic continuum materials. We also show that the presence of strains and the corresponding change in temperature are naturally unified through the Tolman law in a generally covariant description of continuum mechanics.

  10. Relativistic viscoelastic fluid mechanics.

    Science.gov (United States)

    Fukuma, Masafumi; Sakatani, Yuho

    2011-08-01

    A detailed study is carried out for the relativistic theory of viscoelasticity which was recently constructed on the basis of Onsager's linear nonequilibrium thermodynamics. After rederiving the theory using a local argument with the entropy current, we show that this theory universally reduces to the standard relativistic Navier-Stokes fluid mechanics in the long time limit. Since effects of elasticity are taken into account, the dynamics at short time scales is modified from that given by the Navier-Stokes equations, so that acausal problems intrinsic to relativistic Navier-Stokes fluids are significantly remedied. We in particular show that the wave equations for the propagation of disturbance around a hydrostatic equilibrium in Minkowski space-time become symmetric hyperbolic for some range of parameters, so that the model is free of acausality problems. This observation suggests that the relativistic viscoelastic model with such parameters can be regarded as a causal completion of relativistic Navier-Stokes fluid mechanics. By adjusting parameters to various values, this theory can treat a wide variety of materials including elastic materials, Maxwell materials, Kelvin-Voigt materials, and (a nonlinearly generalized version of) simplified Israel-Stewart fluids, and thus we expect the theory to be the most universal description of single-component relativistic continuum materials. We also show that the presence of strains and the corresponding change in temperature are naturally unified through the Tolman law in a generally covariant description of continuum mechanics.

  11. Dissipative relativistic hydrodynamics

    International Nuclear Information System (INIS)

    Imshennik, V.S.; Morozov, Yu.I.

    1989-01-01

    Using the comoving reference frame in the general non-inertial case, the relativistic hydrodynamics equations are derived with an account for dissipative effects in the matter. From the entropy production equation, the exact from for the dissipative tensor components is obtained. As a result, the closed system of equations of dissipative relativistic hydrodynamics is obtained in the comoving reference frame as a relativistic generalization of the known Navier-Stokes equations for Lagrange coordinates. Equations of relativistic hydrodynamics with account for dissipative effects in the matter are derived using the assocoated reference system in general non-inertial case. True form of the dissipative tensor components is obtained from entropy production equation. Closed system of equations for dissipative relativistic hydrodynamics is obtained as a result in the assocoated reference system (ARS) - relativistic generalization of well-known Navier-Stokes equations for Lagrange coordinates. Equation system, obtained in this paper for ARS, may be effectively used in numerical models of explosive processes with 10 51 erg energy releases which are characteristic for flashes of supernovae, if white dwarf type compact target suggested as presupernova

  12. Consistent resolution of some relativistic quantum paradoxes

    International Nuclear Information System (INIS)

    Griffiths, Robert B.

    2002-01-01

    A relativistic version of the (consistent or decoherent) histories approach to quantum theory is developed on the basis of earlier work by Hartle, and used to discuss relativistic forms of the paradoxes of spherical wave packet collapse, Bohm's formulation of the Einstein-Podolsky-Rosen paradox, and Hardy's paradox. It is argued that wave function collapse is not needed for introducing probabilities into relativistic quantum mechanics, and in any case should never be thought of as a physical process. Alternative approaches to stochastic time dependence can be used to construct a physical picture of the measurement process that is less misleading than collapse models. In particular, one can employ a coarse-grained but fully quantum-mechanical description in which particles move along trajectories, with behavior under Lorentz transformations the same as in classical relativistic physics, and detectors are triggered by particles reaching them along such trajectories. States entangled between spacelike separate regions are also legitimate quantum descriptions, and can be consistently handled by the formalism presented here. The paradoxes in question arise because of using modes of reasoning which, while correct for classical physics, are inconsistent with the mathematical structure of quantum theory, and are resolved (or tamed) by using a proper quantum analysis. In particular, there is no need to invoke, nor any evidence for, mysterious long-range superluminal influences, and thus no incompatibility, at least from this source, between relativity theory and quantum mechanics

  13. Dependence of the multiplicity of relativistic charged particles on the atomic number in interactions between pi /sup -/ mesons with a 17 GeV/sec pulse and between protons with 60 GeV/sec and 67 GeV/sec pulses on photoemulsion nuclei

    CERN Document Server

    Maslennikova, N V; Melnichuk, T A; Tretakova, M I

    1972-01-01

    Full account of experiments with the photo-emulsion G5 being irradiated by pi /sup -/ mesons by the CERN accelerator and the photo- emulsions BR-2 and BRx4y being irradiated by protons by the Serpukhov accelerator is presented, supported by tables and histograms. Nuclear interactions, discovered along the trace, and the division criteria between interactions of light nuclei (CNO) and heavy nuclei (AgBr) are studied. All interactions are grouped under quasi-nuclear, light nuclei and heavy nuclei, and their distribution with differing quantities of relativistic particles n/sub s/ and heavily ionized particles N/sub h/ is explained and discussed. (5 refs).

  14. Development of the MICROMEGAS Detector for Measuring the Energy Spectrum of Alpha Particles by using a 241-Am Source

    CERN Document Server

    Kim, Do Yoon; Shin, Jae Won; Park, Tae-Sun; Hong, Seung-Woo; Andriamonje, Samuel; Kadi, Yacine; Tenreiro, Claudio

    2016-01-01

    We have developed MICROMEGAS (MICRO MEsh GASeous) detectors for detecting {\\alpha} particles emitted from an 241-Am standard source. The voltage applied to the ionization region of the detector is optimized for stable operation at room temperature and atmospheric pressure. The energy of {\\alpha} particles from the 241-Am source can be varied by changing the flight path of the {\\alpha} particle from the 241 Am source. The channel numbers of the experimentally-measured pulse peak positions for different energies of the {\\alpha} particles are associated with the energies deposited by the alpha particles in the ionization region of the detector as calculated by using GEANT4 simulations; thus, the energy calibration of the MICROMEGAS detector for {\\alpha} particles is done. For the energy calibration, the thickness of the ionization region is adjusted so that {\\alpha} particles may completely stop in the ionization region and their kinetic energies are fully deposited in the region. The efficiency of our MICROMEGA...

  15. Electromagnetic radiation from collisions at almost the speed of light: An extremely relativistic charged particle falling into a Schwarzschild black hole

    International Nuclear Information System (INIS)

    Cardoso, Vitor; Lemos, Jose P.S.; Yoshida, Shijun

    2003-01-01

    We investigate the electromagnetic radiation released during the high energy collision of a charged point particle with a four-dimensional Schwarzschild black hole. We show that the spectra is flat, and well described by a classical calculation. We also compare the total electromagnetic and gravitational energies emitted, and find that the former is suppressed in relation to the latter for very high energies. These results could apply to the astrophysical world in the case that charged stars and small charged black holes are out there colliding into large black holes, and to a very high energy collision experiment in a four-dimensional world. In this latter scenario the calculation is to be used for the moments just after black hole formation, when the collision of charged debris with the newly formed black hole is certainly expected. Since the calculation is four dimensional, it does not directly apply to TeV-scale gravity black holes, as these inhabit a world of six to eleven dimensions, although our results should qualitatively hold when extrapolated with some care to higher dimensions

  16. On the Velocity of Moving Relativistic Unstable Quantum Systems

    Directory of Open Access Journals (Sweden)

    K. Urbanowski

    2015-01-01

    Full Text Available We study properties of moving relativistic quantum unstable systems. We show that in contrast to the properties of classical particles and quantum stable objects the velocity of freely moving relativistic quantum unstable systems cannot be constant in time. We show that this new quantum effect results from the fundamental principles of the quantum theory and physics: it is a consequence of the principle of conservation of energy and of the fact that the mass of the quantum unstable system is not defined. This effect can affect the form of the decay law of moving relativistic quantum unstable systems.

  17. Relativistic laser channeling in plasmas for fast ignition

    Science.gov (United States)

    Lei, A. L.; Pukhov, A.; Kodama, R.; Yabuuchi, T.; Adumi, K.; Endo, K.; Freeman, R. R.; Habara, H.; Kitagawa, Y.; Kondo, K.; Kumar, G. R.; Matsuoka, T.; Mima, K.; Nagatomo, H.; Norimatsu, T.; Shorokhov, O.; Snavely, R.; Yang, X. Q.; Zheng, J.; Tanaka, K. A.

    2007-12-01

    We report an experimental observation suggesting plasma channel formation by focusing a relativistic laser pulse into a long-scale-length preformed plasma. The channel direction coincides with the laser axis. Laser light transmittance measurement indicates laser channeling into the high-density plasma with relativistic self-focusing. A three-dimensional particle-in-cell simulation reproduces the plasma channel and reveals that the collimated hot-electron beam is generated along the laser axis in the laser channeling. These findings hold the promising possibility of fast heating a dense fuel plasma with a relativistic laser pulse.

  18. Effectively semi-relativistic Hamiltonians of nonrelativistic form

    International Nuclear Information System (INIS)

    Lucha, W.; Schoeberl, F.F.; Moser, M.

    1993-12-01

    We construct effective Hamiltonians which despite their apparently nonrelativistic form incorporate relativistic effects by involving parameters which depend on the relevant momentum. For some potentials the corresponding energy eigenvalues may be determined analytically. Applied to two-particle bound states, it turns out that in this way a nonrelativistic treatment may indeed be able to simulate relativistic effects. Within the framework of hadron spectroscopy, this lucky circumstance may be an explanation for the sometimes extremely good predictions of nonrelativistic potential models even in relativistic regions. (authors)

  19. Report of seminar on relativistic approach to nuclear reaction and nuclear structure

    International Nuclear Information System (INIS)

    1986-05-01

    A seminar on 'Relativistic Approach to Nuclear Reaction and Nuclear Structure' was held in 1985 at Osaka University. This booklet includes twenty-four reports given at the seminar, which deal with: Conventional Nonrelativistic Description of Nuclear Matter and Nuclear Spin-Orbit Interactions; Relativistic Approach to Nuclear Structure; Atomic and Molecular Structure Calculations; Electromagnetic Interaction in Nucleus and Relativistic Effect; Nuclear Magnetic Moment in the Relativistic Mean Field Theory, Effective Mass and Particle-Vibration Coupling in the Relativistic σ-ω Model; Gauge Invariance in Relativistic Many-Body Theory; Relativistic Description of Nucleon-Nucleon Interaction in Review; σ-Particle in NN Interaction; Nuclear Optical Potentials Based on the Brueckner-Hartree-Fock Approach; Elastic Backscattering and Optical Potential; Description of Intermediate-Energy Nuclear Reactions; Dirac Phenomenology at E(p) = 65 MeV; Relativistic Impulse Approximation; Reaction Studies with Intermediate Energy Deuterons at SATURNE; Folding Model for Intermediate-Energy Deutron Scattering; Folding Model for Polarized Deutron Scattering at 700 MeV; Dirac Approach Problems and a Different Viewpoint; Relativistic Approach and EMC Effect; Quasielastic Electron Scattering; Response Function of Quasielastic Electron Scattering; Relativistic Hartree Response Function for Quasielastic Electron Scattering on 12 C and 40 Ca; Backflow-, Retardation- and Relativistic Effects on the Longitudinal Response Function of Nuclear Matter; Pion-Photoproduction in the σ-ω Model. (Nogami, K.)

  20. Relativistic duality, and relativistic and radiative corrections for heavy-quark systems

    International Nuclear Information System (INIS)

    Durand, B.; Durand, L.

    1982-01-01

    We give a JWKB proof of a relativistic duality relation which relates an appropriate energy average of the physical cross section for e + e - →qq-bar bound states→hadrons to the same energy average of the perturbative cross section for e + e - →qq-bar. We show that the duality relation can be used effectively to estimate relativistic and radiative corrections for bound-quark systems to order α/sub s//sup ts2/. We also present a formula which relates the square of the ''large'' 3 S 1 Salpeter-Bethe-Schwinger wave function for zero space-time separation of the quarks to the square of the nonrelativistic Schroedinger wave function at the origin for an effective potential which reproduces the relativistic spectrum. This formula allows one to use the nonrelativistic wave functions obtained in potential models fitted to the psi and UPSILON spectra to calculate relativistic leptonic widths for qq-bar states via a relativistic version of the van Royen--Weisskopf formula

  1. Physical processes in relativistic plasmas

    International Nuclear Information System (INIS)

    Svensson, R.

    1984-01-01

    The continuum emission in many active galactic nuclei (AGNs) extend to 100 keV and beyond (e.g. Rothschild et al. 1983). In thermal models of the continuum emission this implies temperatures above 10 9 K or kT of order mc 2 . In such a plasma the electrons are at least mildly relativistic and furthermore the particles and the photons are energetic enough to produce electron-positron pairs. The physics of such hot plasmas has only recently been studied in any detail and here we review the results of those studies. Significant electron-positron pair production may also occur in non-thermal models of the continuum emission if the optical depth to photon-photon pair production is greater than unity. We review the few results obtained regarding this interesting but not very well studied possibility. First, however, we briefly discuss the processes taking place in relativistic plasmas and the standard models for the continuum emission from AGNs. We then summarize the effects pair production have on these models and the observational implications of the presence of electron-positron pairs. (orig./WL)

  2. Theoretical particle physics. Progress report, May 1, 1982-April 15, 1983

    International Nuclear Information System (INIS)

    Hendry, A.W.; Lichtenberg, D.B.; Weingarten, D.H.

    1983-04-01

    Our research activities for the past year have ranged from properties of hadrons in quark models to various aspects of grand unified theories and lattice QCD. Specific topics include studies of the hadron spectrum using several types of relativistic wave equations, the scattering of high energy particles from nuclei, intermediate energy scales in a grand unified theory based on SO(10), and calculating masses and decay constants in the valence approximation of lattice gauge theory

  3. Form of relativistic dynamics with world lines

    International Nuclear Information System (INIS)

    Mukunda, N.; Sudarshan, E.C.G.

    1981-01-01

    In any Hamiltonian relativistic theory there are ten generators of the Poincare group which are realized canonically. The dynamical evolution is described by a Hamiltonian which is one of the ten generators in Dirac's generator formalism. The requirement that the canonical transformations reproduce the geometrical transformation of world points generates the world-line conditions. The Dirac identification of the Hamiltonian and the world-line conditions together lead to the no-interaction theorem. Interacting relativistic theories with world-line conditions should go beyond the Dirac theory and have eleven generators. In this paper we present a constraint dynamics formalism which describes an eleven-generator theory of N interacting particles using 8(N+1) variables with suitable constraints. The (N+1)th pair of four-vectors is associated with the uniform motion of a center which coincides with the center of energy for free particles. In such theories dynamics and kinematics cannot be separated out in a simple fashion

  4. Relativistic predictive quantum potential: the N-body case

    International Nuclear Information System (INIS)

    Garuccio, A.; Kyprianidis, A.; Vigier, J.P.

    1984-01-01

    It is generalized to a system of N scalar particles the casual description with action at a distance already given for two-particle systems in EPR type of experiments. The many body quantum potential is shown to satisfy the predictivity constraints established by Droz-Vincent for relativistic mechanics

  5. Electromagnetic interactions in relativistic systems of many bodies

    International Nuclear Information System (INIS)

    Cook, A.H.

    1987-09-01

    In a previous report (Cook, 1986, 1987) on a formulation of a quasi-relativistic quantum mechanical equation of motion for many particles, little was said of the electromagnetic interactions that keep a set of particles in a bound state. That omission is to some extent repaired in this report. (author). 3 refs

  6. Relativistic nuclear photographic emulsion for multilayer piles

    International Nuclear Information System (INIS)

    Bogomolov, K.S.; Romanovskaya, K.M.; Razorenova, I.F.

    1975-01-01

    Nuclear photoemulsion layers having a high sensitivity to relativistic singly charged particles, a high sensitivity stability, time stability of the latent image, as well as a high constancy of the emulsion thickness within the limits of the layer, were developed and fabricated for a large nuclear photoemulsion stack that was exposed in space during the experiments carried out on the artificial earth satellite ''Intercosmos-6''

  7. Status of the Relativistic Heavy Ion Collider

    International Nuclear Information System (INIS)

    Lee, S.Y.

    1990-01-01

    Accelerator Physics issues, such as the dynamical aperture, the beam lifetime and the current--intensity limitation are carefully studied for the Relativistic Heavy Ion Collider at Brookhaven National Laboratory. The single layer superconducting magnets, of 8 cm coil inner diameter, satisfying the beam stability requirements have also been successfully tested. The proposal has generated wide spread interest in the particle and nuclear physics. 1 ref., 4 figs., 3 tabs

  8. Relativistic and non-relativistic studies of nuclear matter

    NARCIS (Netherlands)

    Banerjee, MK; Tjon, JA

    2002-01-01

    We point out that the differences between the results of the non-relativistic lowest order Brueckner theory (LOBT) and the relativistic Dirac-Brueckner analysis predominantly arise from two sources. Besides effects from a nucleon mass modification M* in nuclear medium we have in a relativistic

  9. Decomposition of a laser-Doppler spectrum for estimation of speed distribution of particles moving in an optically turbid medium: Monte Carlo validation study

    International Nuclear Information System (INIS)

    Liebert, A; Zolek, N; Maniewski, R

    2006-01-01

    A method for measurement of distribution of speed of particles moving in an optically turbid medium is presented. The technique is based on decomposition of the laser-Doppler spectrum. The theoretical background is shown together with the results of Monte Carlo simulations, which were performed to validate the proposed method. The laser-Doppler spectra were obtained by Monte Carlo simulations for assumed uniform and Gaussian speed distributions of particles moving in the turbid medium. The Doppler shift probability distributions were calculated by Monte Carlo simulations for several anisotropy factors of the medium, assuming the Hanyey-Greenstein phase function. The results of the spectra decomposition show that the calculated speed distribution of moving particles match well the distribution assumed for Monte Carlo simulations. This result was obtained for the spectra simulated in optical conditions, in which the photon is scattered with the Doppler shift not more than once during its travel between the source and detector. Influence of multiple scattering of the photon is analysed and a perspective of spectrum decomposition under such conditions is considered. Potential applications and limitations of the method are discussed

  10. Isolating relativistic effects in large-scale structure

    Science.gov (United States)

    Bonvin, Camille

    2014-12-01

    We present a fully relativistic calculation of the observed galaxy number counts in the linear regime. We show that besides the density fluctuations and redshift-space distortions, various relativistic effects contribute to observations at large scales. These effects all have the same physical origin: they result from the fact that our coordinate system, namely the galaxy redshift and the incoming photons’ direction, is distorted by inhomogeneities in our Universe. We then discuss the impact of the relativistic effects on the angular power spectrum and on the two-point correlation function in configuration space. We show that the latter is very well adapted to isolate the relativistic effects since it naturally makes use of the symmetries of the different contributions. In particular, we discuss how the Doppler effect and the gravitational redshift distortions can be isolated by looking for a dipole in the cross-correlation function between a bright and a faint population of galaxies.

  11. Relativistic theories of materials

    CERN Document Server

    Bressan, Aldo

    1978-01-01

    The theory of relativity was created in 1905 to solve a problem concerning electromagnetic fields. That solution was reached by means of profound changes in fundamental concepts and ideas that considerably affected the whole of physics. Moreover, when Einstein took gravitation into account, he was forced to develop radical changes also in our space-time concepts (1916). Relativistic works on heat, thermodynamics, and elasticity appeared as early as 1911. However, general theories having a thermodynamic basis, including heat conduction and constitutive equations, did not appear in general relativity until about 1955 for fluids and appeared only after 1960 for elastic or more general finitely deformed materials. These theories dealt with materials with memory, and in this connection some relativistic versions of the principle of material indifference were considered. Even more recently, relativistic theories incorporating finite deformations for polarizable and magnetizable materials and those in which couple s...

  12. Handbook of relativistic quantum chemistry

    International Nuclear Information System (INIS)

    Liu, Wenjian

    2017-01-01

    This handbook focuses on the foundations of relativistic quantum mechanics and addresses a number of fundamental issues never covered before in a book. For instance: How can many-body theory be combined with quantum electrodynamics? How can quantum electrodynamics be interfaced with relativistic quantum chemistry? What is the most appropriate relativistic many-electron Hamiltonian? How can we achieve relativistic explicit correlation? How can we formulate relativistic properties? - just to name a few. Since relativistic quantum chemistry is an integral component of computational chemistry, this handbook also supplements the ''Handbook of Computational Chemistry''. Generally speaking, it aims to establish the 'big picture' of relativistic molecular quantum mechanics as the union of quantum electrodynamics and relativistic quantum chemistry. Accordingly, it provides an accessible introduction for readers new to the field, presents advanced methodologies for experts, and discusses possible future perspectives, helping readers understand when/how to apply/develop the methodologies.

  13. Handbook of relativistic quantum chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wenjian (ed.) [Peking Univ., Beijing (China). Center for Computational Science and Engineering

    2017-03-01

    This handbook focuses on the foundations of relativistic quantum mechanics and addresses a number of fundamental issues never covered before in a book. For instance: How can many-body theory be combined with quantum electrodynamics? How can quantum electrodynamics be interfaced with relativistic quantum chemistry? What is the most appropriate relativistic many-electron Hamiltonian? How can we achieve relativistic explicit correlation? How can we formulate relativistic properties? - just to name a few. Since relativistic quantum chemistry is an integral component of computational chemistry, this handbook also supplements the ''Handbook of Computational Chemistry''. Generally speaking, it aims to establish the 'big picture' of relativistic molecular quantum mechanics as the union of quantum electrodynamics and relativistic quantum chemistry. Accordingly, it provides an accessible introduction for readers new to the field, presents advanced methodologies for experts, and discusses possible future perspectives, helping readers understand when/how to apply/develop the methodologies.

  14. Relativistic motion of charged particles in the interaction of short pulses of intense laser light with plasma; Movimiento relativista de particulas cargadas en la interaccion de pulsos cortos de luz laser intensa con plasma

    Energy Technology Data Exchange (ETDEWEB)

    Gomez R, F

    2004-07-01

    In the chapter 1 we show the foundations of the special relativity in the frame of the classical mechanics and we develop the necessary theory for the theoretical description of the relativistic dynamics of charged particles in the interaction with electromagnetic fields. It will see that starting from the energy conservation principle is derived the Einstein's law that establishes the relationship among this and the mass. Later on, it will take the action of a charged particle in a given radiation field and in the one which only we will take two parts, the action of the free particle and the one that defines the interaction of this with the field. The equations of motion of a charge in an electromagnetic field come given by the Lagrange equations, being obtained an expression for the force, well-known as Lorentz force, which consists of two terms, the first of them is the force that the electric field E exercises on the particle; which doesn't depend on the charge speed and is oriented in the direction of the field, the second term represents the force that exercises the magnetic field B and that it is proportional to the charge speed, being perpendicular to the direction of it. In the chapter 2 an integration method of the Hamilton-Jacobi for the case of a pulse is that allows to found analytical forms for the moment, the energy and the charge position is developed with detail. We will present, also, a discussion of the classical theory of the relativistic dynamic of free electrons. They are also obtained, invariant quantities like the phase, before the frame of the reference inertial changes, well-known as Lorentz invariants of the system. In this part it is considered to the electron in the laboratory frame (frame in which the particle is initially in repose regarding the observer), of which the speed and the acceleration quadrivectors can be calculated. We demonstrate that the {eta} phase is a Lorentz invariant. It is shown, also that the proper time

  15. Relativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Barz, H.W.; Kaempfer, B.; Schulz, H.

    1984-12-01

    An elementary introduction is given into the scenario of relativistic heavy ion collisions. It deals with relativistic kinematics and estimates of energy densities, extrapolations of the present knowledge of hadron-hadron and hadron-nuleus to nucleus-nucleus collisions, the properties of the quark-gluon plasma and the formation of the plasma and possible experimental signatures. Comments are made on a cosmic ray experiment which could be interpreted as a first indication of the quark-gluon phase of the matter. (author)

  16. Pion-cloud corrections to the relativistic S + V harmonic potential model

    International Nuclear Information System (INIS)

    Palladino, B.E.; Ferreira, P.L.

    1988-01-01

    Pionic corrections to the mass spectrum of low-lying s-wave baryons are incorporated in a relativistic independent quark model with equally mixed Lorentz scalar and vector harmonic potentials. (M.W.O.) [pt

  17. Progress in three-particle scattering from LQCD

    Directory of Open Access Journals (Sweden)

    Briceño Raúl A.

    2017-01-01

    Full Text Available We present the status of our formalism for extracting three-particle scattering observables from lattice QCD (LQCD. The method relies on relating the discrete finitevolume energy spectrum of a quantum field theory with its scattering amplitudes. As the finite-volume spectrum can be directly determined in LQCD, this provides a method for determining scattering observables, and associated resonance properties, from the underlying theory. In a pair of papers published over the last two years, two of us have extended this approach to apply to relativistic three-particle scattering states. In this talk we summarize recent progress in checking and further extending this result. We describe an extension of the formalism to include systems in which two-to-three transitions can occur. We then present a check of the previously published formalism, in which we reproduce the known finite-volume energy shift of a three-particle bound state.

  18. The VAK of vacuum fluctuation, Spontaneous self-organization and complexity theory interpretation of high energy particle physics and the mass spectrum

    International Nuclear Information System (INIS)

    El Naschie, M.S.

    2003-01-01

    The paper is a rather informal introduction to the concepts and results of the E-infinity Cantorian theory of quantum physics. The fundamental tools of complexity theory and non-linear dynamics (Hausdorff dimensions, fat fractals, etc.) are used to give what we think to be a new interpretation of high energy physics and to determine the corresponding mass-spectrum. Particular attention is paid to the role played by the VAK, KAM theorem, Arnold diffusion, Newhaus sinks and knot theory in determining the stability of an elementary 'particle-wave' which emerges in self-organizatory manner out of sizzling vacuum fluctuation

  19. Acceleration of particles by electron plasma waves in a moderate magnetic field

    International Nuclear Information System (INIS)

    Smith, D.F.

    1976-01-01

    A general scheme is established to examine any magnetohydrodynamic (MHD) configuration for its acceleration potential including the effects of various types of plasma waves. The analysis is restricted to plasma waves in a magnetic field with electron cyclotron frequency less than, but comparable to, the electron plasma frequency (moderate field). The general role of electron plasma waves is examined in this paper independent of a specific MHD configuration or generating mechanism in the weak turbulence limit. The evolution of arbitrary wave spectra in a non-relativistic plasma is examined, and it is shown that the nonlinear process of induced scattering on the polarization clouds of ions leads to the collapse of the waves to an almost one-dimensional spectrum directed along the magnetic field. The subsequent acceleration of non-relativistic and relativistic particles is considered. It is shown for non-relativistic particles that when the wave distribution has a negative slope the acceleration is retarded for lower velocities and enhanced for higher velocities compared to acceleration by an isotropic distribution of electron plasma waves in a magnetic field. This change in behaviour is expected to affect the development of wave spectra and the subsequent acceleration spectrum. (Auth.)

  20. On general features of warm dark matter with reduced relativistic gas

    Science.gov (United States)

    Hipólito-Ricaldi, W. S.; vom Marttens, R. F.; Fabris, J. C.; Shapiro, I. L.; Casarini, L.

    2018-05-01

    Reduced relativistic gas (RRG) is a useful approach to describe the warm dark matter (WDM) or the warmness of baryonic matter in the approximation when the interaction between the particles is irrelevant. The use of Maxwell distribution leads to the complicated equation of state of the Jüttner model of relativistic ideal gas. The RRG enables one to reproduce the same physical situation but in a much simpler form. For this reason RRG can be a useful tool for the theories with some sort of a "new Physics". On the other hand, even without the qualitatively new physical implementations, the RRG can be useful to describe the general features of WDM in a model-independent way. In this sense one can see, in particular, to which extent the cosmological manifestations of WDM may be dependent on its Particle Physics background. In the present work RRG is used as a complementary approach to derive the main observational features for the WDM in a model-independent way. The only assumption concerns a non-negligible velocity v for dark matter particles which is parameterized by the warmness parameter b. The relatively high values of b ( b^2˜ 10^{-6}) erase the radiation (photons and neutrinos) dominated epoch and cause an early warm matter domination after inflation. Furthermore, RRG approach enables one to quantify the lack of power in linear matter spectrum at small scales and in particular, reproduces the relative transfer function commonly used in context of WDM with accuracy of ≲ 1%. A warmness with b^2≲ 10^{-6} (equivalent to v≲ 300 km/s) does not alter significantly the CMB power spectrum and is in agreement with the background observational tests.

  1. Non-relativistic supersymmetry

    International Nuclear Information System (INIS)

    Clark, T.E.; Love, S.T.

    1984-01-01

    The most general one- and two-body hamiltonian invariant under galilean supersymmetry is constructed in superspace. The corresponding Feynman rules are given for the superfield Green functions. As demonstrated by a simple example, it is straightforward to construct models in which the supersymmetry is spontaneously broken by the non-relativistic vacuum. (orig.)

  2. The Relativistic Rocket

    Science.gov (United States)

    Antippa, Adel F.

    2009-01-01

    We solve the problem of the relativistic rocket by making use of the relation between Lorentzian and Galilean velocities, as well as the laws of superposition of successive collinear Lorentz boosts in the limit of infinitesimal boosts. The solution is conceptually simple, and technically straightforward, and provides an example of a powerful…

  3. Relativistic Polarizable Embedding

    DEFF Research Database (Denmark)

    Hedegård, Erik Donovan; Bast, Radovan; Kongsted, Jacob

    2017-01-01

    Most chemistry, including chemistry where relativistic effects are important, occurs in an environment, and in many cases, this environment has a significant effect on the chemistry. In nonrelativistic quantum chemistry, a lot of progress has been achieved with respect to including environments s...

  4. Relativistic length agony continued

    Directory of Open Access Journals (Sweden)

    Redžić D.V.

    2014-01-01

    Full Text Available We made an attempt to remedy recent confusing treatments of some basic relativistic concepts and results. Following the argument presented in an earlier paper (Redžić 2008b, we discussed the misconceptions that are recurrent points in the literature devoted to teaching relativity such as: there is no change in the object in Special Relativity, illusory character of relativistic length contraction, stresses and strains induced by Lorentz contraction, and related issues. We gave several examples of the traps of everyday language that lurk in Special Relativity. To remove a possible conceptual and terminological muddle, we made a distinction between the relativistic length reduction and relativistic FitzGerald-Lorentz contraction, corresponding to a passive and an active aspect of length contraction, respectively; we pointed out that both aspects have fundamental dynamical contents. As an illustration of our considerations, we discussed briefly the Dewan-Beran-Bell spaceship paradox and the ‘pole in a barn’ paradox. [Projekat Ministarstva nauke Republike Srbije, br. 171028

  5. Relativistic Coulomb excitation

    International Nuclear Information System (INIS)

    Winther, A.; Alder, K.

    1979-01-01

    Coulomb excitation of both target and projectile in relativistic heavy ion collisions is evaluated including the lowest order correction for the deviation from a straight line trajectory. Explicit results for differential and total cross sections are given in the form of tables and figures. (Auth.)

  6. Fundamental Relativistic Rotator

    International Nuclear Information System (INIS)

    Staruszkiewicz, A.

    2008-01-01

    Professor Jan Weyssenhoff was Myron Mathisson's sponsor and collaborator. He introduced a class of objects known in Cracow as '' kreciolki Weyssenhoffa '', '' Weyssenhoff's rotating little beasts ''. The Author describes a particularly simple object from this class. The relativistic rotator described in the paper is such that its both Casimir invariants are parameters rather than constants of motion. (author)

  7. Relativistic corrections for the conventional, classical Nyquist theorem

    International Nuclear Information System (INIS)

    Theimer, O.; Dirk, E.H.

    1983-01-01

    New expressions for the Nyquist theorem are derived under the condition in which the random thermal speed of electrons, in a system of charged particles, can approach the speed of light. Both the case in which, the electron have not drift velocity relative to the ions or neutral particles and the case in which drift occours are investigated. In both instances, the new expressions for the Nyquist theorem are found to contain relativistic correction terms; however for electron temperatures T approx. 10 9 K and drift velocity magnitudes w approx. 0.5c, where c is the speed of light, the effects of these correction terms are generally small. The derivation of these relativistic corrections is carried out by means of procedures developed in an earlier work. A relativistic distribution function, which incorporates a constant drift velocity with a random thermal velocity for a given particle species, is developed

  8. New analytically solvable models of relativistic point interactions

    International Nuclear Information System (INIS)

    Gesztesy, F.; Seba, P.

    1987-01-01

    Two new analytically solvable models of relativistic point interactions in one dimension (being natural extensions of the nonrelativistic δ-resp, δ'-interaction) are considered. Their spectral properties in the case of finitely many point interactions as well as in the periodic case are fully analyzed. Moreover the spectrum is explicitely determined in the case of independent, identically distributed random coupling constants and the analog of the Saxon and Huther conjecture concerning gaps in the energy spectrum of such systems is derived

  9. Lectures on relativistic quantum mechanics and path integration

    International Nuclear Information System (INIS)

    Gunn, J.M.F.

    1989-02-01

    The question posed is why bother with relativistic quantum mechanics? Three reasons are given: First that there are many experimental phenomena which cannot be explained in non-relativistic terms. Secondly it would be unsatisfactory if relativity and quantum mechanics could not be united. Thirdly, there are theoretical reasons why new effects can be expected at relativistic velocities. The objectives of the course are to set up relativistic analogues of the Schroedinger equation and to understand their consequences. In doing so there are some questions which are raised and discussed such as can a first order equation be used to describe spin 0 particles and a second order equation be used to describe spin 1/ 2 (author)

  10. Recent progresses in relativistic beam-plasma instability theory

    Directory of Open Access Journals (Sweden)

    A. Bret

    2010-11-01

    Full Text Available Beam-plasma instabilities are a key physical process in many astrophysical phenomena. Within the fireball model of Gamma ray bursts, they first mediate a relativistic collisionless shock before they produce upstream the turbulence needed for the Fermi acceleration process. While non-relativistic systems are usually governed by flow-aligned unstable modes, relativistic ones are likely to be dominated by normally or even obliquely propagating waves. After reviewing the basis of the theory, results related to the relativistic kinetic regime of the poorly-known oblique unstable modes will be presented. Relevant systems besides the well-known electron beam-plasma interaction are presented, and it is shown how the concept of modes hierarchy yields a criterion to assess the proton to electron mass ratio in Particle in cell simulations.

  11. Polarization transfer in relativistic magnetized plasmas

    Science.gov (United States)

    Heyvaerts, Jean; Pichon, Christophe; Prunet, Simon; Thiébaut, Jérôme

    2013-04-01

    The polarization transfer coefficients of a relativistic magnetized plasma are derived. These results apply to any momentum distribution function of the particles, isotropic or anisotropic. Particles interact with the radiation either in a non-resonant mode when the frequency of the radiation exceeds their characteristic synchrotron emission frequency or quasi-resonantly otherwise. These two classes of particles contribute differently to the polarization transfer coefficients. For a given frequency, this dichotomy corresponds to a regime change in the dependence of the transfer coefficients on the parameters of the particle's population, since these parameters control the relative weight of the contribution of each class of particles. Our results apply to either regimes as well as the intermediate one. The derivation of the transfer coefficients involves an exact expression of the conductivity tensor of the relativistic magnetized plasma that has not been used hitherto in this context. Suitable expansions valid at frequencies much larger than the cyclotron frequency allow us to analytically perform the summation over all resonances at high harmonics of the relativistic gyrofrequency. The transfer coefficients are represented in the form of two-variable integrals that can be conveniently computed for any set of parameters by using Olver's expansion of high-order Bessel functions. We particularize our results to a number of distribution functions, isotropic, thermal or power law, with different multipolar anisotropies of low order, or strongly beamed. Specifically, earlier exact results for thermal distributions are recovered. For isotropic distributions, the Faraday coefficients are expressed in the form of a one-variable quadrature over energy, for which we provide the kernels in the high-frequency limit and in the asymptotic low-frequency limit. An interpolation formula extending over the full energy range is proposed for these kernels. A similar reduction to a

  12. Properties of silicium n-i-p junctions - application to the detection of relativist particles; Propriete des jonctions nip de silicium - Application a la detection des particules relativistes; Svojstva perekhoda p-i-n v kremnii - primenenie k obnaruzheniyu relyativistskikh chastits; Propiedades de estructuras nip de silicio - Aplicacion a la deteccion de particulas relativistas

    Energy Technology Data Exchange (ETDEWEB)

    Koch, L; Messier, J; Valin, J [Centre d' Etudes Nucleaires de Saclay (France)

    1962-04-15

    An account is given of experience gained at the CENS on the detection of nuclear particles by semiconductors. One type of detector, of pin structure, has been specially studied. In comparison with the usual p-n or npp{sup +} structures, and given an equal purity of the base material, it has the advantage of permitting a larger effective volume for the following reasons: (a) with an equal potential difference applied to the crystal, the total thickness of the barrier layers is greater; (b) with an equal reverse current, the maximum potential difference which they can withstand is greater; (c) other things being equal, their capacitance per unit of area is smaller and hence the permitted maximum surface is greater. A detailed description is given of methods of obtaining pin structures in silicon, the intermediate zone reaching 1 mm. Lastly, certain applications of these detectors are described: {alpha} and {gamma} spectroscopy and the measurement of dE/dX for relativistic particles. (author) [French] Les auteurs exposent l'experience acquise au CENS sur la detection des particules nucleaires par les semi-conducteurs. Un type de detecteur, de structure pin, a ete particulierement etudie. U presente par rapport aux structures classiques pn ou npp{sup +}, et a purete egale du materiau de depart, l'avantage de permettre un volume sensible plus grand. En effet: a) a difference de potentiel egale appliquee au cristal, l'epaisseur totale des barrieres est plus importante; b) a courant inverse egal, la d.d.p. maximum qu'ils supportent est plus grande; c) toutes choses egales d'ailleurs, leur capacite par unite d'aire est plus faible et la surface maximum permise est donc plus grande. Les auteurs decrivent en detail quelques procedes permettant d'obtenir des structures pin dans le silicium, la zone intermediaire atteignant 1 mm. Enfin, ils decrivent quelques applications de ces detecteurs: spectroscopie {alpha} et {gamma}, mesure de dE/dX pour les particules relativistes

  13. Search for Exotic Strange Dibaryon in Relativistic Heavy Ion Collisions

    Institute of Scientific and Technical Information of China (English)

    GAO Chong-Shou

    2003-01-01

    The exotic strange dibaryon particle (ΩΩ)0+ with S = -6 can be produced in relativistic heavyioncollisions. The yields of this kind of exotic strange dibaryon particles can increase significantly soon as the formation ofQGP does exhibit after the collision. If there is no phase transition after the collision, the upper bound of the productionof this diomega can be estimated from the free hadronic gas model for nuclear matter. The relative yield ratio of diomegato deuteron is less than 0.000205, this means that if there is no QGP creation it is difficult to observe the production ofdiomega in relativistic heavy ion collisions.

  14. Search for Exotic Strange Dibaryon in Relativistic Heavy Ion Collisions

    Institute of Scientific and Technical Information of China (English)

    GAOChong-Shou

    2003-01-01

    The exotic strange dibaryon particle (ΩΩ)0+ with S = -6 can be produced in relativistic heavy ion collisions. The yields of this kind of exotic strange dibaryon particles can increase signitlcantly soon as the formation of QGP does exhibit after the collision. If there is no phase transition after the collision, the upper bound of the production of this diomega can be estimated from the free hadronic gas model for nuclear matter. The relative yield ratio of diomega to deuteron is less than 0.000205, this means that if there is no QGP creation it is difficult to observe the production of diomega in relativistic heavy ion collisions.

  15. Quasi-relativistic effects in barrier-penetration processes

    International Nuclear Information System (INIS)

    Anchishkin, D.V.

    1991-01-01

    The problem of a particle tunneling through the potential barrier is solved within quasi-relativistic Schroedinger equation. It is shown that the subbarrier relativistic effects give a significant addition to penetration coefficient when some relations between parameters of the barrier and mass of a tunneling particle are satisfied. For instance an account of these effects for penetration of low energy π + -mesons through Coulomb barrier of the 298 U nuclei would give the increasing of penetration coefficient to 30 percent as compared to the nonrelativistic one. Also we give the criteria under which the contribution of the ''under barrier relativism'' to penetration coefficient becomes essential. 3 refs.; 6 figs. (author)

  16. Relativistic heavy ion research

    International Nuclear Information System (INIS)

    1992-01-01

    Experimental work is reported on the following topics: transverse energy production in 10.7-GeV/c/u Au on Au collisions; first results on delta ray production and charged particle multiplicities with the Au beam at 10.7 GeV/c/A; preliminary studies on the feasibility of flow measurement with the E814 participant calorimeter; preliminary results from the E877 telescope; and low-p t baryon distribution in Si+Al, Pb collisions at the AGS. Then the status of the Hadronic Calorimeter project of AGS Experiment E864 (ECOS--Exotic Composite Object Spectrometer) is reviewed. Next, the same is done for work of the STAR RHIC collaboration (Silicon Vertex Tracker (SVT) project evolution and development in FY92, SVT software results from 1992, SVT instrumentation, FY93 SVT pion test beam). The instrumentation section deals with the design and installation of a target rapidity telescope for BNL experiment 814/877 and a repair scheme for the E814/E877 participant calorimeter. Finally, the theory part addresses bosonic kinetics: thermalization of mesons and the pion p perpendicular spectrum in ultrarelativistic heavy-ion collisions and non-equilibrium properties of hadronic mixtures

  17. Relativistic thermodynamics of Fluids. l

    International Nuclear Information System (INIS)

    Havas, P.; Swenson, R.J.

    1979-01-01

    In 1953, Stueckelberg and Wanders derived the basic laws of relativistic linear nonequilibrium thermodynamics for chemically reacting fluids from the relativistic local conservation laws for energy-momentum and the local laws of production of substances and of nonnegative entropy production by the requirement that the corresponding currents (assumed to depend linearly on the derivatives of the state variables) should not be independent. Generalizing their method, we determine the most general allowed form of the energy-momentum tensor T/sup alphabeta/ and of the corresponding rate of entropy production under the same restriction on the currents. The problem of expressing this rate in terms of thermodynamic forces and fluxes is discussed in detail; it is shown that the number of independent forces is not uniquely determined by the theory, and seven possibilities are explored. A number of possible new cross effects are found, all of which persist in the Newtonian (low-velocity) limit. The treatment of chemical reactions is incorporated into the formalism in a consistent manner, resulting in a derivation of the law for rate of production, and in relating this law to transport processes differently than suggested previously. The Newtonian limit is discussed in detail to establish the physical interpretation of the various terms of T/sup alphabeta/. In this limit, the interpretation hinges on that of the velocity field characterizing the fluid. If it is identified with the average matter velocity following from a consideration of the number densities, the usual local conservation laws of Newtonian nonequilibrium thermodynamics are obtained, including that of mass. However, a slightly different identification allows conversion of mass into energy even in this limit, and thus a macroscopic treatment of nuclear or elementary particle reactions. The relation of our results to previous work is discussed in some detail

  18. Relativistic nuclear physics with the spectator model

    International Nuclear Information System (INIS)

    Gross, F.

    1988-01-01

    The spectator model, a general approach to the relativistic treatment of nuclear physics problems in which spectators to nuclear interactions are put on their mass-shell, will be defined nd described. The approach grows out of the relativistic treatment of two and three body systems in which one particle is off-shell, and recent numerical results for the NN interaction will be presented. Two meson-exchange models, one with only 4 mesons (π, σ, /rho/, ω) but with a 25% admixture of γ 5 coupling for the pion, and a second with 6 mesons (π, σ, /rho/, ω, δ, and /eta/) but a pure γ 5 γ/sup mu/ pion coupling, are shown to give very good quantitative fits to NN scattering phase shifts below 400 MeV, and also a good description of the /rho/ 40 Cα elastic scattering observables. 19 refs., 6 figs., 1 tab

  19. Intense EM filamentation in relativistic hot plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Qiang-Lin [Department of Physics, Jinggangshan University, Ji' an, Jiangxi 343009 (China); Chen, Zhong-Ping [Department of Physics and Institute for Fusion Studies, The University of Texas at Austin, Austin, TX 78712 (United States); Mahajan, Swadesh M., E-mail: mahajan@mail.utexas.edu [Department of Physics and Institute for Fusion Studies, The University of Texas at Austin, Austin, TX 78712 (United States); Department of Physics, School of Natural Sciences, Shiv Nadar University, Uttar Pradesh 201314 (India)

    2017-03-03

    Highlights: • Breaking up of an intense EM pulse into filaments is a spectacular demonstration of the nonlinear wave-plasma interaction. • Filaments are spectacularly sharper, highly extended and longer lived at relativistic temperatures. • EM energy concentration can trigger new nonlinear phenomena with absolute consequences for high energy density matter. - Abstract: Through 2D particle-in-cell (PIC) simulations, we demonstrate that the nature of filamentation of a high intensity electromagnetic (EM) pulse propagating in an underdense plasma, is profoundly affected at relativistically high temperatures. The “relativistic” filaments are sharper, are dramatically extended (along the direction of propagation), and live much longer than their lower temperature counterparts. The thermally boosted electron inertia is invoked to understand this very interesting and powerful phenomenon.

  20. Influence of particle size on the magnetic spectrum of NiCuZn ferrites for electromagnetic shielding applications

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Xiaohan; Yan, Shuoqing; Liu, Weihu [School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, Hubei (China); Feng, Zekun, E-mail: fengzekun@mail.hust.edu.cn [School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, Hubei (China); Chen, Yajie; Harris, Vincent G. [Center for Microwave Magnetic Materials and Integrated Circuits, and Department of Electrical and Computer Engineering, Northeastern University, Boston, MA 02115 (United States)

    2016-03-01

    The effect of ferrite particle size on the magnetic spectra (1 MHz to 1 GHz) of NiCuZn polycrystalline ferrites doped with Co{sub 2}O{sub 3} and Bi{sub 2}O{sub 3} were systematically investigated. The experiments indicate that the ferrite particle size tailored by grinding time and corresponding sintering temperatures is crucial to achieving high permeability, high Q-factor and low magnetic loss, at 13.56 MHz for electromagnetic shielding applications especially in the near field communication (NFC) field. It is evident that high-performance NiZnCu ferrite materials are strongly tailored by morphology and microstructure. It is conclusive that fine ferrite particles and relatively low sintering temperatures are favorable to lowering magnetic loss and enhancing permeability. This work has built a foundation for improvement of the ferrite slurry used for fabrication of large area tape-casting ferrite sheets. - Highlights: • Fine particles are favorable to lowering magnetic loss and enhancing permeability.