Relativistic wave equations for interacting massive particles with arbitrary half-intreger spins
Niederle, J
2001-01-01
New formulation of relativistic wave equations (RWE) for massive particles with arbitrary half-integer spins $s$ interacting with external electromagnetic fields are proposed. They are based on wave functions which are irreducible tensors of rank $2n$ ($n=s-\\frac12$) antisymmetric w.r.t. $n$ pairs of indices, whose components are bispinors. The form of RWE is straightforward and free of inconsistencies associated with the other approaches to equations describing interacting higher spin particles.
Convex Decompositions of Thermal Equilibrium for Non-interacting Non-relativistic Particles
Chenu, Aurelia; Branczyk, Agata; Sipe, John
2016-05-01
We provide convex decompositions of thermal equilibrium for non-interacting non-relativistic particles in terms of localized wave packets. These quantum representations offer a new tool and provide insights that can help relate to the classical picture. Considering that thermal states are ubiquitous in a wide diversity of fields, studying different convex decompositions of the canonical ensemble is an interesting problem by itself. The usual classical and quantum pictures of thermal equilibrium of N non-interacting, non-relativistic particles in a box of volume V are quite different. The picture in classical statistical mechanics is about (localized) particles with a range of positions and velocities; in quantum statistical mechanics, one considers the particles (bosons or fermions) associated with energy eigenstates that are delocalized through the whole box. Here we provide a representation of thermal equilibrium in quantum statistical mechanics involving wave packets with a localized coordinate representation and an expectation value of velocity. In addition to derive a formalism that may help simplify particular calculations, our results can be expected to provide insights into the transition from quantum to classical features of the fully quantum thermal state.
Scattering in Relativistic Particle Mechanics.
de Bievre, Stephan
The problem of direct interaction in relativistic particle mechanics has been extensively studied and a variety of models has been proposed avoiding the conclusions of the so-called no-interaction theorems. In this thesis we study scattering in the relativistic two-body problem. We use our results to analyse gauge invariance in Hamiltonian constraint models and the uniqueness of the symplectic structure in manifestly covariant relativistic particle mechanics. We first present a general geometric framework that underlies approaches to relativistic particle mechanics. This permits a model-independent and geometric definition of the notions of asymptotic completeness and of Moller and scattering operators. Subsequent analysis of these concepts divides into two parts. First, we study the kinematic properties of the scattering transformation, i.e. those properties that arise solely from the invariance of the theory under the Poincare group. We classify all canonical (symplectic) scattering transformations on the relativistic phase space for two free particles in terms of a single function of the two invariants of the theory. We show how this function is determined by the center of mass time delay and scattering angle and vice versa. The second part of our analysis of the relativistic two-body scattering problem is devoted to the dynamical properties of the scattering process. Hence, we turn to two approaches to relativistic particle mechanics: the Hamiltonian constraint models and the manifestly covariant formalism. Using general geometric arguments, we prove "gauge invariance" of the scattering transformation in the Todorov -Komar Hamiltonian constraint model. We conclude that the scattering cross sections of the Todorov-Komar models have the same angular dependence as their non-relativistic counterpart, irrespective of a choice of gauge. This limits the physical relevance of those models. We present a physically non -trivial Hamiltonian constraint model, starting from
Relativistic dynamics of interacting point particles: Central position of the Wheeler-Feynman scheme
Costa de Beauregard, O.
1985-06-01
The Wheeler-Feynman (WF) relativistic theory of interacting point particles, generalized by acceptance of an arbitrary spacelike interaction, is shown to possess a privileged status, reminiscent of the “central force” interactions occurring in Newtonian mechanics. This scheme is shown to be isomorphic to the classical one of the statics of interacting flexible current-carrying wires obeying the Ampère-Laplace (AL) formulas: to the tension T (T 2 =const) of the wire corresponds the momentum-energy pi (pipi=-c2m2) of the particle; to the Laplace linear force density -i H×dr corresponds the Lorentz force QHij drj; to the Laplace potential ir-1 dr corresponds the WF potential Qδ(r2) dri, etc. Among the differences, there is self-action in the AL scheme and no self-action in the WF scheme. A stationary energy principle in the AL scheme is isomorphic to Fokker's stationary action principle in the WF scheme.
H. K. Avetissian
2010-10-01
Full Text Available The nonlinear threshold phenomena of particle reflection and capture of electrons in the induced Compton process that have previously been revealed in the case of plane monochromatic counterpropagating waves, take place also with the actual nonplane laser pulses of ultrashort duration and lead to particle acceleration. In contrast to analogous phenomena in the induced Cherenkov and undulator processes, the Compton reflection-capture mechanism with laser pulses of relativistic intensities practically may be realized for arbitrary initial energies of particles. The acceleration effect for particles initially in rest is explored numerically, taking into account the significance of this case connected with the relativistic electron bunches of high densities, which currently may be realized by relativistic lasers on the ultrathin solid foils where the electrons initially are almost in rest.
Lienert, Matthias, E-mail: lienert@math.lmu.de [Mathematisches Institut, Ludwig-Maximilians-Universität, Theresienstr. 39, 80333 München (Germany)
2015-04-15
The question how to Lorentz transform an N-particle wave function naturally leads to the concept of a so-called multi-time wave function, i.e., a map from (space-time){sup N} to a spin space. This concept was originally proposed by Dirac as the basis of relativistic quantum mechanics. In such a view, interaction potentials are mathematically inconsistent. This fact motivates the search for new mechanisms for relativistic interactions. In this paper, we explore the idea that relativistic interaction can be described by boundary conditions on the set of coincidence points of two particles in space-time. This extends ideas from zero-range physics to a relativistic setting. We illustrate the idea at the simplest model which still possesses essential physical properties like Lorentz invariance and a positive definite density: two-time equations for massless Dirac particles in 1 + 1 dimensions. In order to deal with a spatio-temporally non-trivial domain, a necessity in the multi-time picture, we develop a new method to prove existence and uniqueness of classical solutions: a generalized version of the method of characteristics. Both mathematical and physical considerations are combined to precisely formulate and answer the questions of probability conservation, Lorentz invariance, interaction, and antisymmetry.
Abdelmadjid Maireche
2016-01-01
In this paper, we present a novel theoretical analytical perform further investigation for the exact solvability of relativistic quantum spectrum systems for modified Mie-type potential (m.m.t.) potential is discussed for spin-1/2 particles by means Boopp’s shift method instead to solving deformed Dirac equation with star product, in the framework of noncommutativity three dimensional real space (NC: 3D-RS). The exact corrections for excited states are found straightforwardly for interactions...
Fractional Dynamics of Relativistic Particle
Tarasov, Vasily E
2011-01-01
Fractional dynamics of relativistic particle is discussed. Derivatives of fractional orders with respect to proper time describe long-term memory effects that correspond to intrinsic dissipative processes. Relativistic particle subjected to a non-potential four-force is considered as a nonholonomic system. The nonholonomic constraint in four-dimensional space-time represents the relativistic invariance by the equation for four-velocity u_{\\mu} u^{\\mu}+c^2=0, where c is a speed of light in vacuum. In the general case, the fractional dynamics of relativistic particle is described as non-Hamiltonian and dissipative. Conditions for fractional relativistic particle to be a Hamiltonian system are considered.
Relativistic particle acceleration in developing Alfv\\'{e}n turbulence
Matsukiyo, S; 10.1088/0004-637X/692/2/1004
2009-01-01
A new particle acceleration process in a developing Alfv\\'{e}n turbulence in the course of successive parametric instabilities of a relativistic pair plasma is investigated by utilyzing one-dimensional electromagnetic full particle code. Coherent wave-particle interactions result in efficient particle acceleration leading to a power-law like energy distribution function. In the simulation high energy particles having large relativistic masses are preferentially accelerated as the turbulence spectrum evolves in time. Main acceleration mechanism is simultaneous relativistic resonance between a particle and two different waves. An analytical expression of maximum attainable energy in such wave-particle interactions is derived.
A Bilocal Model for the Relativistic Spinning Particle
Rempel, Trevor
2016-01-01
In this work we show that a relativistic spinning particle can be described at the classical and the quantum level as being composed of two physical constituents which are entangled and separated by a fixed distance. This bilocal model for spinning particles allows for a natural description of particle interactions as a local interaction at each of the constituents. This form of the interaction vertex provides a resolution to a long standing issue on the nature of relativistic interactions for spinning objects in the context of the worldline formalism. It also potentially brings a dynamical explanation for why massive fundamental objects are naturally of lowest spin. We analyze first a non-relativistic system where spin is modeled as an entangled state of two particles with the entanglement encoded into a set of constraints. It is shown that these constraints can be made relativistic and that the resulting description is isomorphic to the usual description of the phase space of massive relativistic particles ...
Wachter, H
2007-01-01
This is the second part of a paper about a q-deformed analog of non-relativistic Schroedinger theory. It applies the general ideas of part I and tries to give a description of one-particle states on q-deformed quantum spaces like the braided line or the q-deformed Euclidean space in three dimensions. Hamiltonian operators for the free q-deformed particle in one as well as three dimensions are introduced. Plane waves as solutions to the corresponding Schroedinger equations are considered. Their completeness and orthonormality relations are written down. Expectation values of position and momentum observables are taken with respect to one-particle states and their time-dependence is discussed. A potential is added to the free-particle Hamiltonians and q-analogs of the Ehrenfest theorem are derived from the Heisenberg equations of motion. The conservation of probability is proved.
Dieckmann, M. E.; Sarri, G.; Markoff, S.; Borghesi, M.; Zepf, M.
2015-05-01
Context. The jets of compact accreting objects are composed of electrons and a mixture of positrons and ions. These outflows impinge on the interstellar or intergalactic medium and both plasmas interact via collisionless processes. Filamentation (beam-Weibel) instabilities give rise to the growth of strong electromagnetic fields. These fields thermalize the interpenetrating plasmas. Aims: Hitherto, the effects imposed by a spatial non-uniformity on filamentation instabilities have remained unexplored. We examine the interaction between spatially uniform background electrons and a minuscule cloud of electrons and positrons. The cloud size is comparable to that created in recent laboratory experiments and such clouds may exist close to internal and external shocks of leptonic jets. The purpose of our study is to determine the prevalent instabilities, their ability to generate electromagnetic fields and the mechanism, by which the lepton micro-cloud transfers energy to the background plasma. Methods: A square micro-cloud of equally dense electrons and positrons impinges in our particle-in-cell (PIC) simulation on a spatially uniform plasma at rest. The latter consists of electrons with a temperature of 1 keV and immobile ions. The initially charge- and current neutral micro-cloud has a temperature of 100 keV and a side length of 2.5 plasma skin depths of the micro-cloud. The side length is given in the reference frame of the background plasma. The mean speed of the micro-cloud corresponds to a relativistic factor of 15, which is relevant for laboratory experiments and for relativistic astrophysical outflows. The spatial distributions of the leptons and of the electromagnetic fields are examined at several times. Results: A filamentation instability develops between the magnetic field carried by the micro-cloud and the background electrons. The electromagnetic fields, which grow from noise levels, redistribute the electrons and positrons within the cloud, which boosts
Pramanik, Souvik; Ghosh, Subir
2013-10-01
We have developed a unified scheme for studying noncommutative algebras based on generalized uncertainty principle (GUP) and Snyder form in a relativistically covariant point particle Lagrangian (or symplectic) framework. Even though the GUP-based algebra and Snyder algebra are very distinct, the more involved latter algebra emerges from an approximation of the Lagrangian model of the former algebra. Deformed Poincaré generators for the systems that keep space-time symmetries of the relativistic particle models have been studied thoroughly. From a purely constrained dynamical analysis perspective the models studied here are very rich and provide insights on how to consistently construct approximate models from the exact ones when nonlinear constraints are present in the system. We also study dynamics of the GUP particle in presence of external electromagnetic field.
Abdelmadjid Maireche
2016-11-01
Full Text Available In this paper, we present a novel theoretical analytical perform further investigation for the exact solvability of relativistic quantum spectrum systems for modified Mie-type potential (m.m.t. potential is discussed for spin-1/2 particles by means Boopp’s shift method instead to solving deformed Dirac equation with star product, in the framework of noncommutativity three dimensional real space (NC: 3D-RS. The exact corrections for excited states are found straightforwardly for interactions in one-electron atoms by means of the standard perturbation theory. Furthermore, the obtained corrections of energies are depended on four infinitesimal parameter ,which induced by position-position noncommutativity, in addition to the discreet atomic quantum numbers: and (the angular momentum quantum number and we have also shown that, the usual states in ordinary two and three dimensional spaces are canceled and has been replaced by new degenerated sub-states in the new quantum symmetries of (NC: 3D-RS and we have also applied our obtained results to the case of modified Krazer-Futes potential.
M.Eshghi; M.Hamzavi; S.M.Ikhdair
2013-01-01
The spatially-dependent mass Dirac equation is solved exactly for attractive scalar and repulsive vector Coulomb potentials,including a tensor interaction under the spin and pseudospin symmetric limits.Closed forms of the energy eigenvalue equation and wave functions are obtained for arbitrary spin-orbit quantum number κ.Some numerical results are also given,and the effect of tensor interaction on the bound states is presented.It is shown that tensor interaction removes the degeneracy between two states in the spin doublets.We also investigate the effects of the spatially-dependent mass on the bound states under spin symmetric limit conditions in the absence of tensor interaction.
Ohnishi, Akira; Furumoto, Takenori
2015-01-01
We investigate $\\Lambda\\Lambda$ interaction dependence of the $\\Lambda\\Lambda$ intensity correlation in high-energy heavy-ion collisions. By analyzing the correlation data recently obtained by the STAR collaboration based on theoretically proposed $\\Lambda\\Lambda$ interactions, we give a constraint on the $\\Lambda\\Lambda$ scattering length, $-1.25~\\text{fm} < a_0 < 0$, suggesting that $\\Lambda\\Lambda$ interaction is weakly attractive and there is no loosely bound state. In addition to the fermionic quantum statistics and the $\\Lambda\\Lambda$ interaction, effects of collective flow, feed-down from $\\Sigma^0$, and the residual source are also found to be important to understand the data. We demonstrate that the correlation data favor negative $\\Lambda\\Lambda$ scattering length with the pair purity parameter $\\lambda=(0.67)^2$ evaluated by using experimental data on the $\\Sigma^0/\\Lambda$ ratio, while the positive scattering length could be favored when we regard $\\lambda$ as a free fitting parameter.
Trans-Relativistic Particle Acceleration in Astrophysical Plasmas
Becker, Peter A.; Subramanian, P.
2014-01-01
Trans-relativistic particle acceleration due to Fermi interactions between charged particles and MHD waves helps to power the observed high-energy emission in AGN transients and solar flares. The trans-relativistic acceleration process is challenging to treat analytically due to the complicated momentum dependence of the momentum diffusion coefficient. For this reason, most existing analytical treatments of particle acceleration assume that the injected seed particles are already relativistic, and therefore they are not suited to study trans-relativistic acceleration. The lack of an analytical model has forced workers to rely on numerical simulations to obtain particle spectra describing the trans-relativistic case. In this work we present the first analytical solution to the global, trans-relativistic problem describing the acceleration of seed particles due to hard-sphere collisions with MHD waves. The new results include the exact solution for the steady-state Green's function resulting from the continual injection of monoenergetic seed particles with an arbitrary energy. We also introduce an approximate treatment of the trans-relativistic acceleration process based on a hybrid form for the momentum diffusion coefficient, given by the sum of the two asymptotic forms. We refer to this process as "quasi hard-sphere scattering." The main advantage of the hybrid approximation is that it allows the extension of the physical model to include (i) the effects of synchrotron and inverse-Compton losses and (ii) time dependence. The new analytical results can be used to model the trans-relativistic acceleration of particles in AGN and solar environments, and can also be used to compute the spectra of the associated synchrotron and inverse-Compton emission. Applications of both types are discussed. We highlight (i) relativistic ion acceleration in black hole accretion coronae, and (ii) the production of gyrosynchrotron microwave emission due to relativistic electron
Turner, Drew; Gkioulidou, Matina; Ukhorskiy, Aleksandr; Gabrielse, Christine; Runov, Andrei; Angelopoulos, Vassilis
2014-05-01
Earth's radiation belts provide a natural laboratory to study a variety of physical mechanisms important for understanding the nature of energetic particles throughout the Universe. The outer electron belt is a particularly variable population, with drastic changes in relativistic electron intensities occurring on a variety of timescales ranging from seconds to decades. Outer belt variability ultimately results from the complex interplay between different source, loss, and transport processes, and all of these processes are related to the dynamics of the inner magnetosphere. Currently, an unprecedented number of spacecraft are providing in situ observations of the inner magnetospheric environment, including missions such as NASA's THEMIS and Van Allen Probes and ESA's Cluster and operational monitors such as NOAA's GOES and POES constellations. From a sampling of case studies using multi-point observations, we present examples showcasing the significant importance of two processes to outer belt dynamics: energetic particle injections and wave-particle interactions. Energetic particle injections are transient events that tie the inner magnetosphere to the near-Earth magnetotail; they involve the rapid inward transport of plasmasheet particles into the trapping zone in the inner magnetosphere. We briefly review key concepts and present new evidence from Van Allen Probes, GOES, and THEMIS of how these injections provide: 1. the seed population of electrons that are subsequently accelerated locally to relativistic energies in the outer belt and 2. the source populations of ions and electrons that produce a variety of ULF and VLF waves, which are also important for driving outer belt dynamics via wave-particle interactions. Cases of electron acceleration by chorus waves, losses by plasmaspheric hiss and EMIC waves, and radial transport driven by ULF waves will also be presented. Finally, we discuss the implications of this developing picture of the system, namely how
Isotropic Forms of Dynamics in the Relativistic Direct Interaction Theory
Duviryak, A A; Tretyak, V I
1998-01-01
The Lagrangian relativistic direct interaction theory in the various forms of dynamics is formulated and its connections with the Fokker-type action theory and with the constrained Hamiltonian mechanics are established. The motion of classical two-particle system with relativistic direct interaction is analysed within the framework of isotropic forms of dynamics in the two- and four-dimensional space-time. Some relativistic exactly solvable quantum-mechanical models are also discussed.
KARSCH, F.
2006-03-26
At high temperatures or densities matter formed by strongly interacting elementary particles (hadronic matter) is expected to undergo a transition to a new form of matter--the quark gluon plasma--in which elementary particles (quarks and gluons) are no longer confined inside hadrons but are free to propagate in a thermal medium much larger in extent than the typical size of a hadron. The transition to this new form of matter as well as properties of the plasma phase are studied in large scale numerical calculations based on the theory of strong interactions--Quantum Chromo Dynamics (QCD). Experimentally properties of hot and dense elementary particle matter are studied in relativistic heavy ion collisions such as those currently performed at the relativistic heavy ion collider (RHIC) at BNL. We review here recent results from studies of thermodynamic properties of strongly interacting elementary particle matter performed on Teraflops-Computer. We present results on the QCD equation of state and discuss the status of studies of the phase diagram at non-vanishing baryon number density.
Problem of interactions: electromagnetic particles interaction
Sannikov-Proskuryakov, S S
2001-01-01
The electromagnetic interactions between charged particles are derived on the basis of the particles dynamic theory, proposed in the work of Sannikov. The electromagnetic interactions exist only in the relativistic model of the bihamiltonian system, based on the Heisenberg algebra. Existence of this type of interactions is connected with the U sub e (1)-degeneration of the basic state of the relativistic bihamiltonian system, lying in the basis of the given theory
Relativistic Particles in Clusters of Galaxies
Ensslin, T A
2002-01-01
A brief overview on the theory and observations of relativistic particle populations in clusters of galaxies is given. The following topics are addressed: (i) the diffuse relativistic electron population within the intra-cluster medium (ICM) as seen in the cluster wide radio halos and possibly also seen in the high energy X-ray and extreme ultraviolet excess emissions of some clusters, (ii) the observed confined relativistic electrons within fresh and old radio plasma and their connection to cluster radio relics at cluster merger shock waves, (iii) the relativistic proton population within the ICM, and its observable consequences (if it exists), and (iv) the confined relativistic proton population (if it exists) within radio plasma. The importance of upcoming, sensitive gamma-ray telescopes for this research area is highlighted.
Deibele, C. E. [Univ. of Wisconsin, Madison, WI (United States)
1996-01-01
The beam impedance and wakefield are quantities which describe the stability of charged particles in their trajectory within an accelerator. The stretched wire measurement technique is a method which estimates the beam impedance and wakefield. Definitions for the beam impedance, the wakefield, and the stretched wire measurement are presented. A pillbox resonator with circular beampipes is studied for its relatively simple profile and mode structure. Theoretical predictions and measurement data are presented for the interaction of various charged particle beams and center conductor geometries between the cavity and beampipe. Time domain predictions for the stretched wire measurement and wakefield are presented and are shown to be a linear interaction.
Zhevago, N. K.; Glebov, V. I.
2017-06-01
We have developed the theory of electromagnetic interaction of relativistic charged particles with metal-organic frameworks (MOFs). The electrostatic potential and electron number density distribution in MOFs were calculated using the most accurate data for the atomic form factors. Peculiarities of axial channeling of fast charged particles and various types of electromagnetic radiation from relativistic particles has been discussed.
Minimal relativistic three-particle equations
Lindesay, J.
1981-07-01
A minimal self-consistent set of covariant and unitary three-particle equations is presented. Numerical results are obtained for three-particle bound states, elastic scattering and rearrangement of bound pairs with a third particle, and amplitudes for breakup into states of three free particles. The mathematical form of the three-particle bound state equations is explored; constraints are set upon the range of eigenvalues and number of eigenstates of these one parameter equations. The behavior of the number of eigenstates as the two-body binding energy decreases to zero in a covariant context generalizes results previously obtained non-relativistically by V. Efimov.
Relativistic mixtures of charged and uncharged particles
Kremer, Gilberto M. [Departamento de Física, Universidade Federal do Paraná, Curitiba (Brazil)
2014-01-14
Mixtures of relativistic gases within the framework of Boltzmann equation are analyzed. Three systems are considered. The first one refers to a mixture of uncharged particles by using Grad’s moment method, where the relativistic mixture is characterized by the moments of the distribution functions: particle four-flows, energy-momentum tensors, and third-order moment tensors. In the second Fick’s law for a mixture of relativistic gases of non-disparate rest masses in a Schwarzschild metric are derived from an extension of Marle and McCormack model equations applied to a relativistic truncated Grad’s distribution function, where it is shown the dependence of the diffusion coefficient on the gravitational potential. The third one consists in the derivation of the relativistic laws of Ohm and Fourier for a binary mixtures of electrons with protons and electrons with photons subjected to external electromagnetic fields and in presence of gravitational fields by using the Anderson and Witting model of the Boltzmann equation.
Relativistic collisions of structured atomic particles
Voitkiv, A.; Ullrich, J. [Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany)
2008-07-01
The book reviews the progress achieved over the last decade in the study of collisions between an ion and an atom in which both the atomic particles carry electrons and can undergo transitions between their internal states - including continua. It presents the detailed considerations of different theoretical approaches, that can be used to describe collisions of structured atomic particles for the very broad interval of impact energies ranging from 0.5-1 MeV/u till extreme relativistic energies where the collision velocity very closely approaches the speed of light. (orig.)
A Signed Particle Formulation of Non-Relativistic Quantum Mechanics
Sellier, Jean Michel
2015-01-01
A formulation of non-relativistic quantum mechanics in terms of Newtonian particles is presented in the shape of a set of three postulates. In this new theory, quantum systems are described by ensembles of signed particles which behave as field-less classical objects which carry a negative or positive sign and interact with an external potential by means of creation and annihilation events only. This approach is shown to be a generalization of the signed particle Wigner Monte Carlo method which reconstructs the time-dependent Wigner quasi-distribution function of a system and, therefore, the corresponding Schroedinger time-dependent wave-function. Its classical limit is discussed and a physical interpretation, based on experimental evidences coming from quantum tomography, is suggested. Moreover, in order to show the advantages brought by this novel formulation, a straightforward extension to relativistic effects is discussed. To conclude, quantum tunnelling numerical experiments are performed to show the val...
Particle dynamics in a relativistic invariant stochastic medium
Cabo-Bizet, A; Cabo-Bizet, Alejandro; Oca, Alejandro Cabo Montes de
2005-01-01
The dynamics of particles moving in a medium defined by its relativistically invariant stochastic properties is investigated. For this aim, the force exerted on the particles by the medium is defined by a stationary random variable as a function of the proper time of the particles. The equations of motion for a single one-dimensional particle are obtained and numerically solved. A conservation law for the drift momentum of the particle during its random motion is shown. Moreover, the conservation of the mean value of the total linear momentum for two particles repelling each other according with the Coulomb interaction is also following. Therefore, the results indicate the realization of a kind of stochastic Noether theorem in the system under study. Possible applications to the stochastic representation of Quantum Mechanics are advanced.
Particle dynamics in a relativistic invariant stochastic medium
Cabo-Bizet, Alejandro [Facultad de Fisica, Universidad de La Habana, Colina Universitaria, Havana (Cuba); Cabo Montes de Oca, Alejandro [Grupo de Fisica Teorica, Instituto de Cibernetica, Matematica y Fisica, Havana (Cuba) and Abdus Salam International Center for Theoretical Physics, Strada Costiera 11, Miramare, Trieste (Italy)]. E-mail: cabo@fis.puc.cl
2006-11-27
The dynamics of particles moving in a medium defined by its relativistically invariant stochastic properties is investigated. For this aim, the force exerted on the particles by the medium is defined by a stationary random variable as a function of the proper time of the particles. The equations of motion for a single one-dimensional particle are obtained and numerically solved. A conservation law for the drift momentum of the particle during its random motion is shown. Moreover, the conservation of the mean value of the total linear momentum for two particles repelling each other according to the Coulomb interaction also follows. Therefore, the results indicate the realization of a kind of stochastic Noether theorem in the system under study.
Artru, X. [Inst. de Physique Nucleaire, Lyon-1 Univ., 69 - Villeurbanne (France); Collaboration: IPN-Lyon, IRMM (Gell), LURE (Orsay); Collaboration: IPN-Lyon, LAL and IEF (Orsay), HIP (Helsinki), INFN (Frascati, Milan)
1998-12-31
We have studied different effects related to electromagnetic interaction of relativistic electrons in matter and investigated their use in beam profile measurements. (authors) 4 refs. Short communication
Thermodynamics of relativistic Newton—Wigner particle in external potential field
Larkin, A. S.; Filinov, V. S.
2015-11-01
Thermodynamic properties of relativistic spinless particle described by the Klein-Gordon equation have been studied using the Newton-Wigner theory of particle in external potential field. Concept of Wiener path integral was extended on relativistic case. A new path integral Monte-Carlo method was developed for relativistic particle in external potential field. The bounds of applicability of available analytical approaches and related results have been specified by comparison with Monte-Carlo calculations. Developed path integral formalism can be directly extended on systems of many identical Newton-Wigner particles, which interact with external field and each other.
Two-source emission of relativistic alpha particles in 16O-Em interactions at 3.7 A GeV
Song Fu; Zhang Dong-Hai; Li Jun-Sheng
2005-01-01
The emission of alpha projectile fragments has been studied in 16O-emulsion interactions at 3.7 A GeV. The angular distributions of relativistic alphas cannot be explained by a clean-cut participant-spectator model. Therefore it is assumed that alphas originate from two distinct sources differing in their temperatures.
Relativistic bound-state equations for fermions with instantaneous interactions
Suttorp, L.G.
1979-01-01
Three types of relativistic bound-state equations for a fermion pair with instantaneous interaction are studied, viz., the instantaneous Bethe-Salpeter equation, the quasi-potential equation, and the two-particle Dirac equation. General forms for the equations describing bound states with arbitrary
Interacting relativistic quantum dynamics for multi-time wave functions
Lienert Matthias
2016-01-01
Full Text Available In this paper, we report on recent progress about a rigorous and manifestly covariant interacting model for two Dirac particles in 1+1 dimensions [9, 10]. It is formulated using the multi-time formalism of Dirac, Tomonaga and Schwinger. The mechanism of interaction is a relativistic generalization of contact interactions, and it is achieved going beyond the usual functional-analytic Hamiltonian method.
Interacting relativistic quantum dynamics for multi-time wave functions
Lienert, Matthias
2016-11-01
In this paper, we report on recent progress about a rigorous and manifestly covariant interacting model for two Dirac particles in 1+1 dimensions [9, 10]. It is formulated using the multi-time formalism of Dirac, Tomonaga and Schwinger. The mechanism of interaction is a relativistic generalization of contact interactions, and it is achieved going beyond the usual functional-analytic Hamiltonian method.
B. Z. Belashev; M. K. Suleymanov; S. Vokál; J. Vrláková; M. Ajaz; Ali Zaman; K. H. Khan; Z. Wazir
2011-01-01
The pseudorapidity spectra of fast particles (with β ＞ 0.7) produced in Au (at 11.6 A GeV) and Pb (at 158 A GeV) induced collisions with emulsion (Em) nuclei contain some visual plateaus and shoulders.The plateau is wider for Pb+Em reactions compared with the Au+Em ones.The existence of a plateau is expected for parton models.The Fourier transformation and maximum entropy methods were used to get additional information about the plateaus.The dependence of the plateaus on the centrality of the collisions was also studied using the number of g-particles to fix centrality.It shows that the maximum entropy method could confirm the existence of the plateau and the shoulder on distributions.
M.E. Dieckmann; G. Sarri; S. Markoff; M. Borghesi; M. Zepf
2015-01-01
Context. The jets of compact accreting objects are composed of electrons and a mixture of positrons and ions. These outflows impinge on the interstellar or intergalactic medium and both plasmas interact via collisionless processes. Filamentation (beam-Weibel) instabilities give rise to the growth of
Spinning relativistic particle: some novel features
Krishna, S; Malik, R P
2012-01-01
For the newly proposed coupled (but equivalent) Lagrangians for the supersymmetric (SUSY) system of a one (0 + 1)-dimensional spinning relativistic particle, we derive the Noether conserved charges corresponding to its (super)gauge, Becchi-Rouet-Stora-Tyutin (BRST), anti-BRST and ghost-scale symmetry transformations. We deduce the underlying algebra amongst the continuous symmetry operators and corresponding conserved charges. We point out some novel observations that emerge, for this specific SUSY system, when we discuss it within the framework of BRST formalism. We also comment on the importance of Curci-Ferrari type restriction (which is also a novel feature of our present SUSY system) in the proof of the absolute anticommutativity of the off-shell nilpotent (anti-)BRST symmetries and corresponding charges.
Radiation reaction in a system of relativistic gravitating particles
Galtsov, D. V.
A Lorentz-covariant approach is developed to the description of electromagnetic and gravitational radiation in general relativity. A model of a relativistic system of gravitating point particles is constructed in which energy losses can be interpreted in terms of radiation-reaction forces. These forces are applied not only to the point particles but also to fields generated by these particles in the near zone. It is concluded that radiation friction in a system of relativistic gravitating particles is collective in character.
Entanglement and nonlocality of a single relativistic particle
Dunningham, Jacob; Vedral, Vlatko
2009-01-01
Recent work has argued that the concepts of entanglement and nonlocality must be taken seriously even in systems consisting of only a single particle. These treatments, however, are nonrelativistic and, if single particle entanglement is fundamental, it should also persist in a relativistic description. Here we consider a spin-1/2 particle in a superposition of two different velocities as viewed by an observer in a different relativistically-boosted inertial frame. We show that the entangleme...
Causal categories: relativistically interacting processes
Coecke, Bob
2011-01-01
A symmetric monoidal category naturally arises as the mathematical structure that organizes physical systems, processes, and composition thereof, both sequentially and in parallel. This structure admits a purely graphical calculus. This paper is concerned with the encoding of a fixed causal structure within a symmetric monoidal category: causal dependencies will correspond to topological connectedness in the graphical language. We show that correlations, either classical or quantum, force terminality of the tensor unit. We also show that well-definedness of the concept of a global state forces the monoidal product to be only partially defined, which in turn results in a relativistic covariance theorem. Except for these assumptions, at no stage do we assume anything more than purely compositional symmetric-monoidal categorical structure. We cast these two structural results in terms of a mathematical entity, which we call a `causal category'. We provide methods of constructing causal categories, and we study t...
Kinematics of a relativistic particle with de Sitter momentum space
Arzano, Michele [Institute for Theoretical Physics and Spinoza Institute, Utrecht University, Leuvenlaan 4, Utrecht 3584 TD (Netherlands); Kowalski-Glikman, Jerzy, E-mail: marzano@uu.nl, E-mail: jkowalskiglikman@ift.uni.wroc.pl [Institute for Theoretical Physics, University of Wroclaw, Pl. Maxa Borna 9, Pl-50-204 Wroclaw (Poland)
2011-05-21
We discuss kinematical properties of a free relativistic particle with deformed phase space in which momentum space is given by (a submanifold of) de Sitter space. We provide a detailed derivation of the action, Hamiltonian structure and equations of motion for such a free particle. We study the action of deformed relativistic symmetries on the phase space and derive explicit formulae for the action of the deformed Poincare group. Finally we provide a discussion on parametrization of the particle worldlines stressing analogies and differences with ordinary relativistic kinematics.
Non-relativistic particles in a thermal bath
Vairo Antonio
2014-04-01
Full Text Available Heavy particles are a window to new physics and new phenomena. Since the late eighties they are treated by means of effective field theories that fully exploit the symmetries and power counting typical of non-relativistic systems. More recently these effective field theories have been extended to describe non-relativistic particles propagating in a medium. After introducing some general features common to any non-relativistic effective field theory, we discuss two specific examples: heavy Majorana neutrinos colliding in a hot plasma of Standard Model particles in the early universe and quarkonia produced in heavy-ion collisions dissociating in a quark-gluon plasma.
Causal Categories: Relativistically Interacting Processes
Coecke, Bob; Lal, Raymond
2013-04-01
A symmetric monoidal category naturally arises as the mathematical structure that organizes physical systems, processes, and composition thereof, both sequentially and in parallel. This structure admits a purely graphical calculus. This paper is concerned with the encoding of a fixed causal structure within a symmetric monoidal category: causal dependencies will correspond to topological connectedness in the graphical language. We show that correlations, either classical or quantum, force terminality of the tensor unit. We also show that well-definedness of the concept of a global state forces the monoidal product to be only partially defined, which in turn results in a relativistic covariance theorem. Except for these assumptions, at no stage do we assume anything more than purely compositional symmetric-monoidal categorical structure. We cast these two structural results in terms of a mathematical entity, which we call a causal category. We provide methods of constructing causal categories, and we study the consequences of these methods for the general framework of categorical quantum mechanics.
Beaming of particles and synchrotron radiation in relativistic magnetic reconnection
Kagan, Daniel; Piran, Tsvi
2016-01-01
Relativistic reconnection has been invoked as a mechanism for particle acceleration in numerous astrophysical systems. According to idealised analytical models reconnection produces a bulk relativistic outflow emerging from the reconnection sites (X-points). The resulting radiation is therefore highly beamed. Using two-dimensional particle-in-cell (PIC) simulations, we investigate particle and radiation beaming, finding a very different picture. Instead of having a relativistic average bulk motion with isotropic electron velocity distribution in its rest frame, we find that the bulk motion of particles in X-points is similar to their Lorentz factor gamma, and the particles are beamed within about 5/gamma. On the way from the X-point to the magnetic islands, particles turn in the magnetic field, forming a fan confined to the current sheet. Once they reach the islands they isotropise after completing a full Larmor gyration and their radiation is not strongly beamed anymore. The radiation pattern at a given freq...
Generalized One-Dimensional Point Interaction in Relativistic and Non-relativistic Quantum Mechanics
Shigehara, T; Mishima, T; Cheon, T; Cheon, Taksu
1999-01-01
We first give the solution for the local approximation of a four parameter family of generalized one-dimensional point interactions within the framework of non-relativistic model with three neighboring $\\delta$ functions. We also discuss the problem within relativistic (Dirac) framework and give the solution for a three parameter family. It gives a physical interpretation for so-called high energy substantially differ between non-relativistic and relativistic cases.
Radiation reaction in a system of relativistic gravitating particles
Galtsov, D.V.
1983-01-01
A Lorentz-covariant approach is developed to the description of electromagnetic and gravitational radiation in general relativity. A model of a relativistic system of gravitating point particles is constructed in which energy losses can be interpreted in terms of radiation-reaction forces. These forces are applied not only to the point particles but also to fields generated by these particles in the near zone. It is concluded that radiation friction in a system of relativistic gravitating particles is collective in character. 16 references.
Nonlinear waves in strongly interacting relativistic fluids
Fogaça, D A; Filho, L G Ferreira
2013-01-01
During the past decades the study of strongly interacting fluids experienced a tremendous progress. In the relativistic heavy ion accelerators, specially the RHIC and LHC colliders, it became possible to study not only fluids made of hadronic matter but also fluids of quarks and gluons. Part of the physics program of these machines is the observation of waves in this strongly interacting medium. From the theoretical point of view, these waves are often treated with li-nearized hydrodynamics. In this text we review the attempts to go beyond linearization. We show how to use the Reductive Perturbation Method to expand the equations of (ideal and viscous) relativistic hydrodynamics to obtain nonlinear wave equations. These nonlinear wave equations govern the evolution of energy density perturbations (in hot quark gluon plasma) or baryon density perturbations (in cold quark gluon plasma and nuclear matter). Different nonlinear wave equations, such as the breaking wave, Korteweg-de Vries and Burgers equations, are...
The Maximum Energy of Accelerated Particles in Relativistic Collisionless Shocks
Sironi, Lorenzo; Arons, Jonathan
2013-01-01
The afterglow emission from gamma-ray bursts (GRBs) is usually interpreted as synchrotron radiation from electrons accelerated at the GRB external shock, that propagates with relativistic velocities into the magnetized interstellar medium. By means of multi-dimensional particle-in-cell simulations, we investigate the acceleration performance of weakly magnetized relativistic shocks, in the magnetization range 0
On the time delay between ultra-relativistic particles
Pierre Fleury
2016-09-01
Full Text Available The time delay between the receptions of ultra-relativistic particles emitted simultaneously is a useful observable for both fundamental physics and cosmology. The expression of the delay when the particles travel through an arbitrary spacetime has been derived recently by Fanizza et al., using a particular coordinate system and self-consistent assumptions. The present article shows that this formula enjoys a simple physical interpretation: the relative velocity between two ultra-relativistic particles is constant. This result reveals an interesting kinematical property of general relativity, namely that the tidal forces experienced by ultra-relativistic particles in the direction of their motion are much smaller than those experienced orthogonally to their motion.
On the time delay between ultra-relativistic particles
Fleury, Pierre
2016-09-01
The time delay between the receptions of ultra-relativistic particles emitted simultaneously is a useful observable for both fundamental physics and cosmology. The expression of the delay when the particles travel through an arbitrary spacetime has been derived recently by Fanizza et al., using a particular coordinate system and self-consistent assumptions. The present article shows that this formula enjoys a simple physical interpretation: the relative velocity between two ultra-relativistic particles is constant. This result reveals an interesting kinematical property of general relativity, namely that the tidal forces experienced by ultra-relativistic particles in the direction of their motion are much smaller than those experienced orthogonally to their motion.
Microengineering laser plasma interactions at relativistic intensities
Jiang, S; Audesirk, H; George, K M; Snyder, J; Krygier, A; Lewis, N S; Schumacher, D W; Pukhov, A; Freeman, R R; Akli, K U
2015-01-01
We report on the first successful proof-of-principle experiment to manipulate laser-matter interactions on the microscale using highly ordered Si microwire arrays. The interaction of a high contrast short pulse laser with a flat target via periodic Si microwires yields a substantial enhancement in both total and cut-off energies of the produced electron beam. The self generated electric and magnetic fields behave as an electromagnetic lens that confines and guides electrons between the microwires as they acquire relativistic energies via direct laser acceleration (DLA).
Microengineering Laser Plasma Interactions at Relativistic Intensities.
Jiang, S; Ji, L L; Audesirk, H; George, K M; Snyder, J; Krygier, A; Poole, P; Willis, C; Daskalova, R; Chowdhury, E; Lewis, N S; Schumacher, D W; Pukhov, A; Freeman, R R; Akli, K U
2016-02-26
We report on the first successful proof-of-principle experiment to manipulate laser-matter interactions on microscales using highly ordered Si microwire arrays. The interaction of a high-contrast short-pulse laser with a flat target via periodic Si microwires yields a substantial enhancement in both the total and cutoff energies of the produced electron beam. The self-generated electric and magnetic fields behave as an electromagnetic lens that confines and guides electrons between the microwires as they acquire relativistic energies via direct laser acceleration.
Carlini, A
1996-01-01
We consider the action principle to derive the classical, relativistic motion of a self-interacting particle in a 4-D Lorentzian spacetime containing a wormhole and which allows the existence of closed time-like curves. In particular, we study the case of a pointlike particle subject to a `hard-sphere' self-interaction potential and which can traverse the wormhole an arbitrary number of times, and show that the only possible trajectories for which the classical action is stationary are those which are globally self-consistent. Generically, the multiplicity of these trajectories (defined as the number of self-consistent solutions to the equations of motion beginning with given Cauchy data) is finite, and it becomes infinite if certain constraints on the same initial data are satisfied. This confirms the previous conclusions (for a non-relativistic model) by Echeverria, Klinkhammer and Thorne that the Cauchy initial value problem in the presence of a wormhole `time machine' is classically `ill-posed' (far too m...
Relativistic Motion of Spinning Particles in a Gravitational Field
Chicone, C.; Mashhoon, B.; Punsly, B.
2005-01-01
The relative motion of a classical relativistic spinning test particle is studied with respect to a nearby free test particle in the gravitational field of a rotating source. The effects of the spin-curvature coupling force are elucidated and the implications of the results for the motion of rotating plasma clumps in astrophysical jets are discussed.
Relativistic motion of spinning particles in a gravitational field
Chicone, C.; Mashhoon, B.; Punsly, B.
2005-08-01
The relative motion of a classical relativistic spinning test particle is studied with respect to a nearby free test particle in the gravitational field of a rotating source. The effects of the spin-curvature coupling force are elucidated and the implications of the results for the motion of rotating plasma clumps in astrophysical jets are discussed.
Relativistic Spinning Particle without Grassmann Variables and the Dirac Equation
A. A. Deriglazov
2011-01-01
Full Text Available We present the relativistic particle model without Grassmann variables which, being canonically quantized, leads to the Dirac equation. Classical dynamics of the model is in correspondence with the dynamics of mean values of the corresponding operators in the Dirac theory. Classical equations for the spin tensor are the same as those of the Barut-Zanghi model of spinning particle.
Theory of non-relativistic three-particle scattering
Malfliet, R.; Ruijgrok, Th.
1967-01-01
A new method, using asymptotically stationary states, is developed to calculate the S-matrix for the scattering of a non-relativistic particle by the bound state of two other particles. For the scattering with breakup of this bound state, we obtain a simplified form of the Faddeev integral
Transport coefficients for relativistic gas mixtures of hard-sphere particles
Kremer, Gilberto M.; Moratto, Valdemar
2017-04-01
In the present work, we calculate the transport coefficients for a relativistic binary mixture of diluted gases of hard-sphere particles. The gas mixture under consideration is studied within the relativistic Boltzmann equation in the presence of a gravitational field described by the isotropic Schwarzschild metric. We obtain the linear constitutive equations for the thermodynamic fluxes. The driving forces for the fluxes of particles and heat will appear with terms proportional to the gradient of gravitational potential. We discuss the consequences of the gravitational dependence on the driving forces. We obtain general integral expressions for the transport coefficients and evaluate them by assuming a hard-sphere interaction amongst the particles when they collide and not very disparate masses and diameters of the particles of each species. The obtained results are expressed in terms of their temperature dependence through the relativistic parameter which gives the ratio of the rest energy of the particles and the thermal energy of the gas mixture. Plots are given to analyze the behavior of the transport coefficients with respect to the temperature when small variations in masses and diameters of the particles of the species are present. We also analyze for each coefficient the corresponding limits to a single gas so the non-relativistic and ultra-relativistic limiting cases are recovered as well. Furthermore, we show that the transport coefficients have a dependence on the gravitational field.
On transition of propagation of relativistic particles from the ballistic to the diffusion regime
Prosekin, A Y; Aharonian, F A
2015-01-01
A stationary distribution function that describes the entire processes of propagation of relativistic particles, including the transition between the ballistic and diffusion regimes, is obtained. The spacial component of the constructed function satisfies to the first two moments of the Boltzmann equation. The angular part of the distribution provides accurate values for the angular moments derived from the Boltzmann equation, and gives a correct expression in the limit of small-angle approximation. Using the derived function, we studied the gamma-ray images produced through the $pp$ interaction of relativistic particles with gas clouds in the proximity of the accelerator. In general, the morphology and the energy spectra of gamma-rays significantly deviate from the "standard" results corresponding to the propagation of relativistic particles strictly in the diffusion regime.
On relativistic particle creation in Bose-Einstein condensates
Sabín, Carlos
2014-01-01
We show that particle creation of Bogoliubov modes in a Bose-Einstein condensate due to the accelerated motion of the trap is a genuinely relativistic effect. To this end we show that Bogoliubov modes can be described by a time rescaling of the Minkowski metric. A consequence of this is that Rindler transformations are perceived by the phonons as generalised Rindler transformations where the speed of light is replaced by the speed of sound, enhancing particle creation at small velocities. Since the non-relativistic limit of a Rindler transformation is just a Galilean transformation entailing no length contraction or time dilation, we show that the effect vanishes in the non-relativistic limit.
Reparametrization of the Relativistic Infinitely Extended Charged Particle Action
Saadat, Hassan; Pourhassan, Behnam
2016-09-01
In this letter, relativistic infinitely extended particles formulated. Correct form of action with possibility of reparametrization obtained and effect of electric field considered. It may be one of the first step to re-introduce theory of every things given by Nakano and Hessaby many years ago.
Particle Acceleration in Relativistic Magnetized Collisionless Electron-Ion Shocks
Sironi, Lorenzo
2010-01-01
We investigate shock structure and particle acceleration in relativistic magnetized collisionless electron-ion shocks by means of 2.5D particle-in-cell simulations with ion-to-electron mass ratios (m_i/m_e) ranging from 16 to 1000. We explore a range of inclination angles between the pre-shock magnetic field and the shock normal. In "subluminal" shocks, where relativistic particles can escape ahead of the shock along the magnetic field lines, ions are efficiently accelerated via a Fermi-like mechanism. The downstream ion spectrum consists of a relativistic Maxwellian and a high-energy power-law tail, which contains ~5% of ions and ~30% of ion energy. Its slope is -2.1. Upstream electrons enter the shock with lower energy than ions, so they are more strongly tied to the field. As a result, only ~1% of the incoming electrons are Fermi-accelerated at the shock before being advected downstream, where they populate a steep power-law tail (with slope -3.5). For "superluminal" shocks, where relativistic particles ca...
Mass, Momentum and Kinetic Energy of a Relativistic Particle
Zanchini, Enzo
2010-01-01
A rigorous definition of mass in special relativity, proposed in a recent paper, is recalled and employed to obtain simple and rigorous deductions of the expressions of momentum and kinetic energy for a relativistic particle. The whole logical framework appears as the natural extension of the classical one. Only the first, second and third laws of…
Non-relativistic classical mechanics for spinning particles
Salesi, G
2004-01-01
We study the classical dynamics of non-relativistic particles endowed with spin. Non-vanishing Zitterbewegung terms appear in the equation of motion also in the small momentum limit. We derive a generalized work-energy theorem which suggests classical interpretations for tunnel effect and quantum potential.
Investigation of rare particle production in relativistic heavy ion collisions
Crawford, H.J.; Engelage, J.
1991-01-01
During FY91 we began our investigation of rare particle production in relativistic nuclear collisions at the Brookhaven National Laboratory. We were funded for a period of one year to perform the initial experimental search, E858, to determine the level of antideuteron ({bar d}) production in Si+Au collisions at the AGS. We accomplished this goal with the discovery of two {bar d}'s in the June 1990 run. We describe in this paper experiment performed and the results obtained. We performed our rare particle search at the A-1 line of the AGS. We instrumented the line with a four time-of-flight (TOF) detectors, two high pressure gas Cerenkox (ck) detectors, and four drift tube (DT) tracking detectors. The TOF detectors achieved time resolution of better than 100ps leading to a mass resolution of <15 MeV at 1 GeV. The Ck detectors were used both to suppress the large {pi}{sup {minus}} signal and in {pi}/K separation at high rigidities. The DT system provided particle trajectories for all of the particles passing the trigger requirements. In this experiment we measured the {pi}{sup {minus}}, K-, and {bar p} momentum spectra at 0{sup o} for rigidities from 2 to 8 GV to a statistical accuracy of 1--3% at all settings. We found that the {bar p} yield as a function of target did not show any evidence for reabsorption within the interaction volume. We also found two {bar d}'s, the first observation of complex antinuclei produced in nucleus-nucleus collisions. The {bar d} yield is at least an order of magnitude smaller than prediced using a simple coalescence model based on the d/p ratio from E802 and the {bar p} spectrum measured in our experiment.
Relativistic thermodynamic properties of a weakly interacting Fermi gas in a weak magnetic field
Men Fu-Dian; Liu Hui; Fan Zhao-Lan; Zhu Hou-Yu
2009-01-01
This paper derives the analytical expression of free energy for a weakly interacting Fermi gas in a weak magnetic field, by using the methods of quantum statistics as well as considering the relativistic effect. Based on the derived expression, the thermodynamic properties of the system at both high and low temperatures are given and the relativistic effect on the properties of the system is discussed. It shows that, in comparison with a nonrelativistic situation,the relativistic effect changes the influence of temperature on the thermodynamic properties of the system at high temperatures, and changes the influence of particle-number density on them at extremely low temperature. But the relativistic effect does not change the influence of the magnetic field and inter-particle interactions on the thermodynamic properties of the system at both high and extremely low temperatures.
Microscopic Processes On Radiation from Accelerated Particles in Relativistic Jets
Nishikawa, K.-I.; Hardee, P. E.; Mizuno, Y.; Medvedev, M.; Zhang, B.; Sol, H.; Niemiec, J.; Pohl, M.; Nordlund, A.; Fredriksen, J.;
2009-01-01
Nonthermal radiation observed from astrophysical systems containing relativistic jets and shocks, e.g., gamma-ray bursts (GRBs), active galactic nuclei (AGNs), and Galactic microquasar systems usually have power-law emission spectra. Recent PIC simulations of relativistic electron-ion (electro-positron) jets injected into a stationary medium show that particle acceleration occurs within the downstream jet. In the collisionless relativistic shock particle acceleration is due to plasma waves and their associated instabilities (e.g., the Buneman instability, other two-streaming instability, and the Weibel (filamentation) instability) created in the shocks are responsible for particle (electron, positron, and ion) acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields. These magnetic fields contribute to the electron's transverse deflection behind the jet head. The jitter'' radiation from deflected electrons has different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants.
Super revivals of a slightly relativistic particle in a box
Ghosh, Suranjana
2010-01-01
The time evolution of a particle, caught in an infinitely deep square well, is an apparently well studied and understood subject. However, unexpected features emerge, when one includes small relativistic effects. Indeed, even the smallest corrections to the nonrelativistic quadratic spectrum manifest themselves in a dramatic way. Our theoretical analysis brings to light a completely new time scale, at which the system exhibits surprisingly perfect revivals. This longer time scale rules the system dynamics and replaces the original revival time of the unperturbed system. We investigate the role and the interplay between these two time scales in the slightly relativistic case. Moreover, the examination of sub-Planck structures in phase space allows us to compare the finest details of wave packet dynamics for different values of the relativistic corrections.
A relativistic spin zero particle in a spherical cavity
Gouveia, Tomé M.; Fiolhais, Miguel C. N.; Birman, Joseph L.
2015-09-01
The problem of a relativistic massive scalar particle trapped in an infinite potential spherical well is pedagogically addressed in this paper. The wave function solutions and probability density of the Klein-Gordon equation in spherical coordinates are derived, as well as the energy levels. The results are compared with the non-relativistic solutions of the Schrödinger equation for different values of the particle’s mass. As expected, for very large masses the non-relativistic results are recovered. For illustration, these results are discussed in the specific case of the standard model Higgs field constrained inside a proton, in the quadratic approximation of the Higgs potential around the expectation value.
Auxiliary fields in the geometrical relativistic particle dynamics
Amador, A; Bagatella, N; Rojas, E [Departamento de Fisica, Facultad de Fisica e Inteligencia Artificial, Universidad Veracruzana, 91000 Xalapa, Veracruz (Mexico); Cordero, R [Departamento de Fisica, Escuela Superior de Fisica y Matematicas del I.P.N, Edificio 9, 07738 Mexico D.F (Mexico)], E-mail: aramador@gmail.com, E-mail: nbagatella@uv.mx, E-mail: cordero@esfm.ipn.mx, E-mail: efrojas@uv.mx
2008-03-21
We describe how to construct the dynamics of relativistic particles, following either timelike or null curves, by means of an auxiliary variables method instead of the standard theory of deformations for curves. There are interesting physical particle models governed by actions that involve higher order derivatives of the embedding functions of the worldline. We point out that the mechanical content of such models can be extracted wisely from a lower order action, which can be performed by implementing in the action a finite number of constraints that involve the geometrical relationship structures inherent to a curve and by using a covariant formalism. We emphasize our approach for null curves. For such systems, the natural time parameter is a pseudo-arclength whose properties resemble those of the standard proper time. We illustrate the formalism by applying it to some models for relativistic particles.
Particle Acceleration in Relativistic Jets Due to Weibel Instability
Nishikawa, K.-I.; Hardee, P.; Richardson, G.; Preece, R.; Sol, H.; Fishman, G. J.
2004-01-01
Shock acceleration is a ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., the Buneman instability, two-streaming instability, and the Weibel instability) created in the shocks are responsible for particle (electron, positron, and ion) acceleration. Using a three-dimensional relativistic electromagnetic particle code, we have investigated particle acceleration associated with a relativistic jet front propagating through an ambient plasma with and without initial magnetic fields. We find only small differences in the results between no ambient and weak ambient magnetic fields. Simulations show that the Weibel instability created in the collisionless shock front accelerates particles perpendicular and parallel to the jet propagation direction. While some Fermi acceleration may occur at the jet front, the majority of electron acceleration takes place behind the jet front and cannot be characterized as Fermi acceleration. The simulation results show that this instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields, which contribute to the electron s transverse deflection behind the jet head. The "jitter" radiation from deflected electrons has different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants.
Particle energisation in a collapsing magnetic trap model: the relativistic regime
Oskoui, Solmaz Eradat
2014-01-01
In solar flares, a large number of charged particles is accelerated to high energies. By which physical processes this is achieved is one of the main open problems in solar physics. It has been suggested that during a flare, regions of the rapidly relaxing magnetic field can form a collapsing magnetic trap (CMT) and that this trap may contribute to particle energisation.} In this Research Note we focus on a particular analytical CMT model based on kinematic magnetohydrodynamics. Previous investigations of particle acceleration for this CMT model focused on the non-relativistic energy regime. It is the specific aim of this Research Note to extend the previous work to relativistic particle energies. Particle orbits were calculated numerically using the relativistic guiding centre equations. We also calculated particle orbits using the non-relativistic guiding centre equations for comparison. For mildly relativistic energies the relativistic and non-relativistic particle orbits mainly agree well, but clear devia...
General Relativistic Smoothed Particle Hydrodynamics code developments: A progress report
Faber, Joshua; Silberman, Zachary; Rizzo, Monica
2017-01-01
We report on our progress in developing a new general relativistic Smoothed Particle Hydrodynamics (SPH) code, which will be appropriate for studying the properties of accretion disks around black holes as well as compact object binary mergers and their ejecta. We will discuss in turn the relativistic formalisms being used to handle the evolution, our techniques for dealing with conservative and primitive variables, as well as those used to ensure proper conservation of various physical quantities. Code tests and performance metrics will be discussed, as will the prospects for including smoothed particle hydrodynamics codes within other numerical relativity codebases, particularly the publicly available Einstein Toolkit. We acknowledge support from NSF award ACI-1550436 and an internal RIT D-RIG grant.
Particle transport in microturbulence and acceleration performances of relativistic shocks
Plotnikov, Illya; Lemoine, Martin
2012-01-01
Collisionless relativistic shocks have been the focus of intense theoretical and numerical investigations and these interesting physics have a direct impact on the generation of energetic particles and the interpretation of gamma ray spectra. The Fermi acceleration process that takes place in these shocks is intimately linked with the excitation of micro-turbulence responsible for the shock formation, electron heating and supra-thermal tail generation that in turn excites micro-turbulence, developing thus a self-sustaining phenomenon. In this paper we discuss the development of the micro-turbulence and we investigate two important issues: firstly the transport of supra-thermal particles in the excited microturbulence upstream of the shock and its consequences for the efficiency of the Fermi process; secondly, the preheating process of the incoming background electrons as they cross the shock precursor and experience relativistic oscillations in the electric field of the micro-turbulence.We emphasize the impor...
Derivation of the classical lagrangian for the relativistic spinning particle
Cho, J; Jin-Ho Cho; Jae-Kwan Kim
1994-01-01
The `classical' model for a massive spinning particle, which was recently proposed, is derived from the isotropic rotator model. Through this derivation, we note that the spin can be understood as the relativistic extension of the isotropic rotator. Furthermore, the variables t_\\m corresponding to the \\p^* of the `pseudo-classical' model, are necessary for the covariant formulation. The dynamical term for these extra variables is naturally obtained and the meaning of the constraint term p^\\s\\L_{\\s\
Analytical mechanics of a relativistic particle in a positional potential
Mignemi, S
2012-01-01
We propose a form for the action of a relativistic particle subject to a positional force that is invariant under time reparametrization and therefore allows for a consistent Hamiltonian formulation of the dynamics. This approach can be useful in the study of phenomenological models. Also the Dirac and Klein-Gordon equation differ from the standard formulation, with corrections of order (E-m)/m in the energy spectra.
Surveying relativistic entanglement of two particles with continuous momenta
Palge, Veiko; Dunningham, Jacob
2014-01-01
In this paper we explore the entanglement of two relativistic spin-$1/2$ particles with continuous momenta. The spin state is described by the Bell state and the momenta are given by Gaussian distributions of product and entangled form. Transformations of the spins are systematically investigated in different boost scenarios by calculating the orbits and concurrence of the spin degree of freedom. By visualizing the behavior of the spin state we get further insight into how and why the entangl...
Ultra-relativistic spinning particle and a rotating body in external fields
Deriglazov, Alexei A
2015-01-01
We use the vector model of spinning particle to analyze the influence of spin-field coupling on the particle's trajectory in ultra-relativistic regime. The Lagrangian with minimal spin-gravity interaction yields the equations equivalent to the Mathisson-Papapetrou-Tulczyjew-Dixon (MPTD) equations of a rotating body. We show that they have unsatisfactory behavior in the ultra-relativistic limit. In particular, three-dimensional acceleration of the particle increases with velocity and becomes infinite in the limit. The reason is that in the equation for trajectory emerges the term which can be thought as an effective metric generated by the minimal spin-gravity coupling. Therefore we examine the non-minimal interaction through the gravimagnetic moment $\\kappa$, and show that the theory with $\\kappa=1$ is free of the problems detected in MPTD-equations. Hence the non-minimally interacting theory seem more promising candidate for description of a relativistic rotating body. The Lagrangian for the particle in an a...
Carlini, A.; Novikov, I. D.
We consider the action principle to derive the classical, relativistic motion of a selfinteracting particle in a 4D Lorentzian spacetime containing a wormhole and which allows the existence of closed time-like curves. In particular, we study the case of a pointlike particle subject to a “hard-sphere” self-interaction potential and which can traverse the wormhole an arbitrary number of times, and show that the only possible trajectories for which the classical action is stationary are those which are globally self-consistent. Generically, the multiplicity of these trajectories (defined as the number of self-consistent solutions to the equations of motion beginning with given Cauchy data) is finite, and it becomes infinite if certain constraints on the same initial data are satisfied. This confirms the previous conclusions (for a nonrelativistic model) by Echeverria, Klinkhammer and Thorne that the Cauchy initial value problem in the presence of a wormhole “time machine” is classically “ill-posed” (far too many solutions). Our results further extend the recent claim by Novikov et al. that the “principle of self-consistency” is a natural consequence of the “principle of minimal action.”
Particle Acceleration and Nonthermal Emission in Relativistic Astrophysical Shocks
Sironi, Lorenzo
The common observational feature of Pulsar Wind Nebulae (PWNe), gamma-ray bursts (GRBs), and AGN jets is a broad nonthermal spectrum of synchrotron and inverse Compton radiation. It is usually assumed that the emitting electrons are accelerated to a power-law distribution at relativistic shocks, via the so-called Fermi mechanism. Despite decades of research, the Fermi acceleration process is still not understood from first principles. An assessment of the micro-physics of particle acceleration in relativistic shocks is of paramount importance to unveil the properties of astrophysical nonthermal sources, and it is the subject of this dissertation. In the first part of this thesis, I explore by means of fully-kinetic first-principle particle-in-cell (PIC) simulations the properties of relativistic shocks that propagate in electron-positron and electron-proton plasmas carrying uniform magnetic fields. I find that nonthermal particle acceleration only occurs if the upstream magnetization is weak (sigma0.01) and quasi-perpendicular, yet they need to be efficient particle accelerators, in order to explain the prominent nonthermal signatures of these sources. Motivated by this discrepancy, I then relax the assumption of uniform pre-shock fields, and investigate the acceleration efficiency of perpendicular shocks that propagate in high-sigma flows with alternating magnetic fields. This is the geometry expected at the termination shock of pulsar winds, but it could also be relevant for Poynting-dominated jets in GRBs and AGNs. I show by means of PIC simulations that compression of the flow at the shock will force annihilation of nearby field lines, a process known as shock-driven reconnection. Magnetic reconnection can efficiently transfer the energy of alternating fields to the particles, generating flat power-law tails containing most of the particles. Finally, I directly relate the results of my PIC simulations to observations of nonthermal sources, by presenting a
One-dimensional quasi-relativistic particle in the box
Kaleta, Kamil; Malecki, Jacek
2011-01-01
Two-term Weyl-type asymptotic law for the eigenvalues of one-dimensional quasi-relativistic Hamiltonian (-h^2 c^2 d^2/dx^2 + m^2 c^4)^(1/2) + V_well(x) (the Klein-Gordon square-root operator with electrostatic potential) with the infinite square well potential V_well(x) is given: the n-th eigenvalue is equal to (n pi/2 - pi/8) h c/a + O(1/n), where 2a is the width of the potential well. Simplicity of eigenvalues is proved. Some L^2 and L^infinity properties of eigenfunctions are also studied. Eigenvalues represent energies of a `massive particle in the box' quasi-relativistic model.
Particle acceleration, magnetization and radiation in relativistic shocks
Derishev, Evgeny V.; Piran, Tsvi
2016-08-01
The mechanisms of particle acceleration and radiation, as well as magnetic field build-up and decay in relativistic collisionless shocks, are open questions with important implications to various phenomena in high-energy astrophysics. While the Weibel instability is possibly responsible for magnetic field build-up and diffusive shock acceleration is a model for acceleration, both have problems and current particle-in-cell simulations show that particles are accelerated only under special conditions and the magnetic field decays on a very short length-scale. We present here a novel model for the structure and the emission of highly relativistic collisionless shocks. The model takes into account (and is based on) non-local energy and momentum transport across the shock front via emission and absorption of high-energy photons. This leads to a pre-acceleration of the fluid and pre-amplification of the magnetic fields in the upstream region. Both have drastic implications on the shock structure. The model explains the persistence of the shock-generated magnetic field at large distances from the shock front. The dissipation of this magnetic field results in a continuous particle acceleration within the downstream region. A unique feature of the model is the existence of an `attractor', towards which any shock will evolve. The model is applicable to any relativistic shock, but its distinctive features show up only for sufficiently large compactness. We demonstrate that prompt and afterglow gamma-ray bursts' shocks satisfy the relevant conditions, and we compare their observations with the predictions of the model.
THE MAXIMUM ENERGY OF ACCELERATED PARTICLES IN RELATIVISTIC COLLISIONLESS SHOCKS
Sironi, Lorenzo [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Spitkovsky, Anatoly [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544-1001 (United States); Arons, Jonathan, E-mail: lsironi@cfa.harvard.edu [Department of Astronomy, Department of Physics, and Theoretical Astrophysics Center, University of California, Berkeley, CA 94720 (United States)
2013-07-01
The afterglow emission from gamma-ray bursts (GRBs) is usually interpreted as synchrotron radiation from electrons accelerated at the GRB external shock that propagates with relativistic velocities into the magnetized interstellar medium. By means of multi-dimensional particle-in-cell simulations, we investigate the acceleration performance of weakly magnetized relativistic shocks, in the magnetization range 0 {approx}< {sigma} {approx}< 10{sup -1}. The pre-shock magnetic field is orthogonal to the flow, as generically expected for relativistic shocks. We find that relativistic perpendicular shocks propagating in electron-positron plasmas are efficient particle accelerators if the magnetization is {sigma} {approx}< 10{sup -3}. For electron-ion plasmas, the transition to efficient acceleration occurs for {sigma} {approx}< 3 Multiplication-Sign 10{sup -5}. Here, the acceleration process proceeds similarly for the two species, since the electrons enter the shock nearly in equipartition with the ions, as a result of strong pre-heating in the self-generated upstream turbulence. In both electron-positron and electron-ion shocks, we find that the maximum energy of the accelerated particles scales in time as {epsilon}{sub max}{proportional_to}t {sup 1/2}. This scaling is shallower than the so-called (and commonly assumed) Bohm limit {epsilon}{sub max}{proportional_to}t, and it naturally results from the small-scale nature of the Weibel turbulence generated in the shock layer. In magnetized plasmas, the energy of the accelerated particles increases until it reaches a saturation value {epsilon}{sub sat}/{gamma}{sub 0} m{sub i}c {sup 2} {approx} {sigma}{sup -1/4}, where {gamma}{sub 0} m{sub i}c {sup 2} is the mean energy per particle in the upstream bulk flow. Further energization is prevented by the fact that the self-generated turbulence is confined within a finite region of thickness {proportional_to}{sigma}{sup -1/2} around the shock. Our results can provide physically
Maslennikova, N V; Melnichuk, T A; Tretakova, M I
1972-01-01
Full account of experiments with the photo-emulsion G5 being irradiated by pi /sup -/ mesons by the CERN accelerator and the photo- emulsions BR-2 and BRx4y being irradiated by protons by the Serpukhov accelerator is presented, supported by tables and histograms. Nuclear interactions, discovered along the trace, and the division criteria between interactions of light nuclei (CNO) and heavy nuclei (AgBr) are studied. All interactions are grouped under quasi-nuclear, light nuclei and heavy nuclei, and their distribution with differing quantities of relativistic particles n/sub s/ and heavily ionized particles N/sub h/ is explained and discussed. (5 refs).
Exploring novel structures for manipulating relativistic laser-plasma interaction
Ji, Liangliang
2016-10-01
The prospect of realizing compact particle accelerators and x-ray sources based on high power lasers has gained numerous attention. Utilization of all the proposed schemes in the field requires the laser-matter-interaction process to be repeatable or moreover, controllable. This has been very challenging at ultra-high light intensities due to the pre-pulse issue and the limitation on target manufacturing. With recent development on pulse cleaning technique, such as XPW and the use of plasma mirror, we now propose a novel approach that leverages recent advancements in 3D nano-printing of materials and high contrast lasers to manipulate the laser-matter interactions on the micro-scales. The current 3D direct laser-writing (DLW) technique can produce repeatable structures with at a resolution as high as 100 nm. Based on 3D PIC simulations, we explored two typical structures, the micro-cylinder and micro-tube targets. The former serves to enhance and control laser-electron acceleration and the latter is dedicated to manipulate relativistic light intensity. First principle-of-proof experiments were carried out in the SCARLET laser facility and confirmed some of our predictions on enhancing direct laser acceleration of electrons and ion acceleration. We believe that the use of the micro-structured elements provides another degree of freedom in LPI and these new results will open new paths towards micro-engineering interaction process that will benefit high field science, laser-based proton therapy, near-QED physics, and relativistic nonlinear optics. This work is supported by the AFOSR Basic Research Initiative (FA9550-14-1-0085).
Ellison, Donald C.; Warren, Donald C.; Bykov, Andrei M.
2016-03-01
We include a general form for the scattering mean free path, λmfp(p), in a nonlinear Monte Carlo model of relativistic shock formation and Fermi acceleration. Particle-in-cell simulations, as well as analytic work, suggest that relativistic shocks tend to produce short-scale, self-generated magnetic turbulence that leads to a scattering mean free path with a stronger momentum dependence than the λmfp ∝ p dependence for Bohm diffusion. In unmagnetized shocks, this turbulence is strong enough to dominate the background magnetic field so the shock can be treated as parallel regardless of the initial magnetic field orientation, making application to γ-ray bursts, pulsar winds, type Ibc supernovae, and extragalactic radio sources more straightforward and realistic. In addition to changing the scale of the shock precursor, we show that, when nonlinear effects from efficient Fermi acceleration are taken into account, the momentum dependence of λmfp(p) has an important influence on the efficiency of cosmic ray production as well as the accelerated particle spectral shape. These effects are absent in non-relativistic shocks and do not appear in relativistic shock models unless nonlinear effects are self-consistently described. We show, for limited examples, how the changes in Fermi acceleration translate to changes in the intensity and spectral shape of γ-ray emission from proton-proton interactions and pion-decay radiation.
Energy shift of interacting non-relativistic fermions in noncommutative space
A. Jahan
2005-06-01
Full Text Available A local interaction in noncommutative space modifies to a non-local one. For an assembly of particles interacting through the contact potential, formalism of the quantum field theory makes it possible to take into account the effect of modification of the potential on the energy of the system. In this paper we calculate the energy shift of an assembly of non-relativistic fermions, interacting through the contact potential in the presence of the two-dimensional noncommutativity.
A String Motivated Approach to the Relativistic Point Particle
Tuite, M P; Tuite, Michael; Sen, Siddhartha
2003-01-01
Using concepts developed in string theory, Cohen, Moore, Nelson and Polchinski calculated the propagator for a relativistic point particle. Following these authors we extend the technique to include the case of closed world lines. The partition function found corresponds to the Feynmann and Schwinger proper time formalism. We also explicitly verify that the partition function is equivalent to the usual path length action partition function. As an example of a sum over closed world lines, we compute the Euler-Heisenberg effective Lagrangian in a novel way.
Path integral polymer propagator of relativistic and non-relativistic particles
Morales-Técotl, Hugo A; Ruelas, Juan C
2016-01-01
A recent proposal to connect the loop quantization with the spin foam model for cosmology via the path integral is hereby adapted to the case of mechanical systems within the framework of the so called polymer quantum mechanics. The mechanical models we consider are deparametrized and thus the group averaging technique is used to deal with the corresponding constraints. The transition amplitudes are written in a vertex expansion form used in the spin foam models, where here a vertex is actually a jump in position. Polymer Propagators previously obtained by spectral methods for a nonrelativistic polymer particle, both free and in a box, are regained with this method. Remarkably, the approach is also shown to yield the polymer propagator of the relativistic particle. This reduces to the standard form in the continuum limit for which the length scale parameter of the polymer quantization is taken to be small. Some possible future developments are commented upon.
Particle acceleration, magnetization and radiation in relativistic shocks
Derishev, Evgeny V
2015-01-01
What are the mechanisms of particle acceleration and radiation, as well as magnetic field build up and decay in relativistic shocks are open questions with important implications to various phenomena in high energy astrophysics. While the Weibel instability is possibly responsible for magnetic field build up and diffusive shock acceleration is a model for acceleration, both have problems and current PIC simulation show that particles are accelerated only under special conditions and the magnetic field decays on a short length scale. We present here a novel model for the structure and the emission of highly relativistic collisionless shocks. The model takes into account (and is based on) non-local energy and momentum transport across the shock front via emission and absorption of high-energy photons. This leads to a pre-acceleration of the fluid and pre-amplificaiton of the magnetic fields in the upstream region. Both have drastic implications on the shock structure. The model explains the persistence of the s...
Particle acceleration in ultra-relativistic parallel shock waves
Meli, A
2003-01-01
Monte-Carlo computations for highly relativistic parallel shock particle acceleration are presented for upstream flow gamma factors, $\\Gamma=(1-V_{1}^{2}/c^{2})^{-0.5}$ with values between 5 and $10^{3}$. The results show that the spectral shape at the shock depends on whether or not the particle scattering is small angle with $\\delta \\theta 2r_{g} \\Gamma^{2}$ where $\\lambda$ is the scattering mean free path along the field line and $r_{g}$ the gyroradius, these quantities being measured in the plasma flow frame. The large angle scattering case exhibits distinctive structure superimposed on the basic power-law spectrum, largely absent in the pitch angle case. Also, both cases yield an acceleration rate faster than estimated by the conventional, non-relativistic expression, $t_{acc}=[c/(V_{1}-V_{2})] [\\lambda_{1}/V_{1}+\\lambda_{2}/V_{2}]$ where '1' and '2' refer to upstream and downstream and $\\lambda$ is the mean free path. A $\\Gamma^{2}$ energy enhancement factor in the first shock crossing cycle and a sign...
Unified relativistic physics from a standing wave particle model
Vera, R A
1995-01-01
An extremely simple and unified base for physics comes out by starting all over from a single postulate on the common nature of matter and stationary forms of radiation quanta. Basic relativistic, gravitational (G) and quantum mechanical properties of a standing wave particle model have been derived. This has been done from just dual properties of radiation's and strictly homogeneous relationships for nonlocal cases in G fields. This way reduces the number of independent variables and puts into relief (and avoid) important inhomogeneity errors of some G theories. It unifies and accounts for basic principles and postulates physics. The results for gravity depend on linear radiation properties but not on arbitrary field relations. They agree with the conventional tests. However they have some fundamental differences with current G theories. The particle model, at a difference of the conventional theories, also fixes well-defined cosmological and astrophysical models that are different from the rather convention...
Characteristics of Nucleus-Nucleus Interaction with Relativistic Heavy-Ions
Das, Gourisankar
A systematic study of relativistic heavy-ion collisions in nuclear emulsion, initiated by ('40)Ar, ('56)Fe at E = 1.8 GeV/N, ('56)Fe at 0.8 GeV/N, and ('12)C at 400 MeV/N, has been made. Projectile fragmentation reactions, where there is no visual indication of target excitation, are studied in terms of multiplicity and projected angular distributions. The standard deviation widths of the projected angular distributions are compared with the first order theory of Lepore and Riddell. In quasi-central collisions, where a part of both the projectile and target nuclei participate, we have undertaken a study of the space angle distributions of the relativistic alpha particles, emitted in ('40)Ar -emulsion interactions at E = 1.8 GeV/N and ('56)Fe-emulsion interactions at E = 0.8 GeV/N. The large angle alpha particle distributions are fitted with moving relativistic Boltzmann distributions, and compared with distributions obtained by Monte Carlo simulation of (alpha)-p hard scattering process. Mean free path of secondary relativistic projectile fragments, emitted in such collisions, are carefully studied to verify the presence of 'anomalous' mfp component among these fragments. This is followed by a study of the mean free path of secondary alpha particles. Finally, in central collisions, the angular distributions of singly charged particles with (beta) > 0.7 are studied with a view to observe collective phenomena, such as nuclear shock wave in nuclear matter.
Gomez R, F
2004-07-01
In the chapter 1 we show the foundations of the special relativity in the frame of the classical mechanics and we develop the necessary theory for the theoretical description of the relativistic dynamics of charged particles in the interaction with electromagnetic fields. It will see that starting from the energy conservation principle is derived the Einstein's law that establishes the relationship among this and the mass. Later on, it will take the action of a charged particle in a given radiation field and in the one which only we will take two parts, the action of the free particle and the one that defines the interaction of this with the field. The equations of motion of a charge in an electromagnetic field come given by the Lagrange equations, being obtained an expression for the force, well-known as Lorentz force, which consists of two terms, the first of them is the force that the electric field E exercises on the particle; which doesn't depend on the charge speed and is oriented in the direction of the field, the second term represents the force that exercises the magnetic field B and that it is proportional to the charge speed, being perpendicular to the direction of it. In the chapter 2 an integration method of the Hamilton-Jacobi for the case of a pulse is that allows to found analytical forms for the moment, the energy and the charge position is developed with detail. We will present, also, a discussion of the classical theory of the relativistic dynamic of free electrons. They are also obtained, invariant quantities like the phase, before the frame of the reference inertial changes, well-known as Lorentz invariants of the system. In this part it is considered to the electron in the laboratory frame (frame in which the particle is initially in repose regarding the observer), of which the speed and the acceleration quadrivectors can be calculated. We demonstrate that the {eta} phase is a Lorentz invariant. It is shown, also that the proper time
The q overlineq relativistic interaction in the Wilson loop approach
Brambilla, N.; Vairo, A.
1998-05-01
We study the q overlineq relativistic interaction starting from the Feynman-Schwinger representation of the gauge-invariant quark-antiquark Green function. We focus on the one-body limit and discuss the obtained non-perturbative interaction kernel of the Dirac equation.
An introduction to relativistic processes and the standard model of electroweak interactions
Becchi, Carlo Maria
2014-01-01
These lectures are meant to be a reference and handbook for an introductory course in Theoretical Particle Physics, suitable for advanced undergraduates or beginning graduate students. Their purpose is to reconcile theoretical rigour and completeness with a careful analysis of more phenomenological aspects of the physics. They aim at filling the gap between quantum field theory textbooks and purely phenomenological treatments of fundamental interactions. The first part provides an introduction to scattering in relativistic quantum field theory. Thanks to an original approach to relativistic processes, the relevant computational techniques are derived cleanly and simply in the semi-classical approximation. The second part contains a detailed presentation of the gauge theory of electroweak interactions with particular focus to the processes of greatest phenomenological interest. The main novelties of the present second edition are a more complete discussion of relativistic scattering theory and an expansion of ...
ELEMENTARY PARTICLE INTERACTIONS
EFREMENKO, YURI; HANDLER, THOMAS; KAMYSHKOV, YURI; SIOPSIS, GEORGE; SPANIER, STEFAN
2013-07-30
The High-Energy Elementary Particle Interactions group at UT during the last three years worked on the following directions and projects: Collider-based Particle Physics; Neutrino Physics, particularly participation in “NOνA”, “Double Chooz”, and “KamLAND” neutrino experiments; and Theory, including Scattering amplitudes, Quark-gluon plasma; Holographic cosmology; Holographic superconductors; Charge density waves; Striped superconductors; and Holographic FFLO states.
Mitigating the hosing instability in relativistic laser-plasma interactions
Ceurvorst, L.; Ratan, N.; Levy, M. C.; Kasim, M. F.; Sadler, J.; Scott, R. H. H.; Trines, R. M. G. M.; Huang, T. W.; Skramic, M.; Vranic, M.; Silva, L. O.; Norreys, P. A.
2016-05-01
A new physical model of the hosing instability that includes relativistic laser pulses and moderate densities is presented and derives the density dependence of the hosing equation. This is tested against two-dimensional particle-in-cell simulations. These simulations further examine the feasibility of using multiple pulses to mitigate the hosing instability in a Nd:glass-type parameter space. An examination of the effects of planar versus cylindrical exponential density gradients on the hosing instability is also presented. The results show that strongly relativistic pulses and more planar geometries are capable of mitigating the hosing instability which is in line with the predictions of the physical model.
Cyclotron resonant interactions in cosmic particle accelerators
Terasawa, T; 10.1007/s11214-012-9878-0
2012-01-01
A review is given for cyclotron resonant interactions in space plasmas. After giving a simple formulation for the test particle approach, illustrative examples for resonant interactions are given. It is shown that for obliquely propagating whistler waves, not only fundamental cyclotron resonance, but also other resonances, such as transit-time resonance, anomalous cyclotron resonance, higher-harmonic cyclotron resonance, and even subharmonic resonance can come into play. A few recent topics of cyclotron resonant interactions, such as electron injection in shocks, cyclotron resonant heating of solar wind heavy ions, and relativistic modifications, are also reviewed.
Particle creation due to tachyonic instability in relativistic stars
Landulfo, Andre G.S. [Universidade Federal do ABC (CCNH/UFABC), Santo Andre, SP (Brazil); Lima, William C.C.; Matsas, George E.A. [Universidade Estadual Paulista Julio de Mesquita Filho (IFT/UNESP), Sao Paulo, SP (Brazil); Vanzella, Daniel A.T. [Universidade de Sao Paulo (IFSC/USP), Sao Carlos, SP (Brazil). Instituto de Fisica
2013-07-01
Full text: It was recently shown that relativistic stars may become unstable due to quantum field effects. The so called vacuum awakening effect occurs for a free scalar field properly coupled to the spacetime curvature. This effect is characterized by an exponential point-dependent increase and decrease of the vacuum expectation value of the stress-energy-momentum tensor. This is caused by a tachyonic-like instability, which induces an exponential growth of the vacuum fluctuations. Once the effect is triggered, the star energy density would be overwhelmed by the vacuum energy density in a few milliseconds. This demands that eventually geometry and field evolve to a new configuration to bring the vacuum back to a stationary regime. Here, we show that the vacuum fluctuations built up during the unstable epoch lead to particle creation in the final stationary state when the tachyonic instability ceases. The amount of created particles depends mostly on the duration of the unstable epoch and final stationary configuration, which are open issues at this point. We emphasize that the particle creation coming from the tachyonic instability will occur even in the adiabatic limit, where the spacetime geometry changes arbitrarily slowly, and therefore is quite distinct from the usual particle creation due to the change in the background geometry. (author)
Dodin, I Y; Fraiman, G M
2003-01-01
The Lagrangian and Hamiltonian functions describing average motion of a relativistic particle under the action of intensive high-frequency electromagnetic radiation are obtained. In weak, low-frequency background fields, such a particle on average drifts with an effective, relativistically invariant mass, which depends on the intensity of the electromagnetic field.
Applying the relativistic quantization condition to a three-particle bound state in a periodic box
Hansen, Maxwell T
2016-01-01
Using our recently developed relativistic three-particle quantization condition, we study the finite-volume energy shift of a three-particle bound state. We reproduce the result obtained using non-relativistic quantum mechanics by Mei{\\ss}ner, R{\\'i}os and Rusetsky, and generalize the result to a moving frame.
Eigenenergies of a Relativistic Particle in an Infinite Range Linear Potential Using WKB Method
Shivalingaswamy, T.; Kagali, B. A.
2011-01-01
Energy eigenvalues for a non-relativistic particle in a linear potential well are available. In this paper we obtain the eigenenergies for a relativistic spin less particle in a similar potential using an extension of the well-known WKB method treating the potential as the time component of a four-vector potential. Since genuine bound states do…
Quasiclassical propagator of a relativistic particle via the path-dependent gauge potential
Yakaboylu, Enderalp; Hatsagortsyan, Karen Z.; Keitel, Christoph H. [Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, 69117 Heidelberg (Germany)
2016-07-01
The proper time formalism for a particle propagator in an external electromagnetic field is combined with the path-dependent formulation of gauge theory to simplify the quasiclassical propagator of a relativistic particle. The latter is achieved due to a specific choice of gauge corresponding to the use of the classical path in the path-dependent formulation of gauge theory, which leads to cancellation of the interaction part of the classical action in the Feynman path integral. A simple expression for the quasiclassical propagator is obtained in all cases of the external field when the classical equations of motion in this field are integrable. As an example, simple expressions for the propagators are derived for a spinless charged particle interacting with the following fields: an arbitrary constant and uniform electromagnetic field, an arbitrary plane wave, and finally an arbitrary plane wave combined with an arbitrary constant and uniform electromagnetic field. In all these cases the quasiclassical propagator coincides with the exact result.
Relativistic ponderomotive Hamiltonian of a Dirac particle in a vacuum laser field
Ruiz, D E; Dodin, I Y
2015-01-01
We report a point-particle ponderomotive model of a Dirac electron oscillating in a high-frequency field. Starting from the Dirac Lagrangian density, we derive a reduced phase-space Lagrangian that describes the relativistic time-averaged dynamics of such a particle in a geometrical optics laser pulse propagating in vacuum. The pulse is allowed to have an arbitrarily large amplitude (provided radiation damping and pair production are negligible) and a wavelength comparable to the particle de Broglie wavelength. The model captures the Bargmann-Michel-Telegdi (BMT) spin dynamics, the Stern-Gerlach spin-orbital coupling, the conventional ponderomotive forces, and the interaction with large-scale background fields. Agreement with the BMT spin precesison equation is shown numerically. The commonly known theory, in which ponderomotive effects are incorporated in the particle effective mass, is reproduced as a special case when the spin-orbital coupling is negligible. This model could be useful for studying laser-pl...
Particle-in-cell Simulations of Global Relativistic Jets with Helical Magnetic Fields
Duţan, Ioana; Mizuno, Yosuke; Niemiec, Jacek; Kobzar, Oleh; Pohl, Martin; Gómez, Jose L; Pe'er, Asaf; Frederiksen, Jacob T; Nordlund, Åke; Meli, Athina; Sol, Helene; Hardee, Philip E; Hartmann, Dieter H
2016-01-01
We study the interaction of relativistic jets with their environment, using 3-dimensional relativistic particle-in-cell simulations for two cases of jet composition: (i) electron-proton ($e^{-}-p^{+}$) and (ii) electron-positron ($e^{\\pm}$) plasmas containing helical magnetic fields. We have performed simulations of "global" jets containing helical magnetic fields in order to examine how helical magnetic fields affect kinetic instabilities such as the Weibel instability, the kinetic Kelvin-Helmholtz instability and the Mushroom instability. We have found that these kinetic instabilities are suppressed and new types of instabilities can grow. For the $e^{-}-p^{+}$ jet, a recollimation-like instability occurs and jet electrons are strongly perturbed, whereas for the $e^{\\pm}$ jet, a recollimation-like instability occurs at early times followed by kinetic instability and the general structure is similar to a simulation without a helical magnetic field. We plan to perform further simulations using much larger sys...
Gomez R, F
2004-07-01
In the chapter 1 we show the foundations of the special relativity in the frame of the classical mechanics and we develop the necessary theory for the theoretical description of the relativistic dynamics of charged particles in the interaction with electromagnetic fields. It will see that starting from the energy conservation principle is derived the Einstein's law that establishes the relationship among this and the mass. Later on, it will take the action of a charged particle in a given radiation field and in the one which only we will take two parts, the action of the free particle and the one that defines the interaction of this with the field. The equations of motion of a charge in an electromagnetic field come given by the Lagrange equations, being obtained an expression for the force, well-known as Lorentz force, which consists of two terms, the first of them is the force that the electric field E exercises on the particle; which doesn't depend on the charge speed and is oriented in the direction of the field, the second term represents the force that exercises the magnetic field B and that it is proportional to the charge speed, being perpendicular to the direction of it. In the chapter 2 an integration method of the Hamilton-Jacobi for the case of a pulse is that allows to found analytical forms for the moment, the energy and the charge position is developed with detail. We will present, also, a discussion of the classical theory of the relativistic dynamic of free electrons. They are also obtained, invariant quantities like the phase, before the frame of the reference inertial changes, well-known as Lorentz invariants of the system. In this part it is considered to the electron in the laboratory frame (frame in which the particle is initially in repose regarding the observer), of which the speed and the acceleration quadrivectors can be calculated. We demonstrate that the {eta} phase is a Lorentz invariant. It is shown, also that the proper time
Collisionless Relativistic Shocks:current driven turbulence and particle acceleration
Pelletier, Guy; Gremillet, Laurent; Plotnikov, Illya
2014-01-01
The physics of collisionless relativistic shocks with a moderate magnetization is presented. Micro-physics is relevant to explain the most energetic radiative phenomena of Nature, namely that of the termination shock of Gamma Ray Bursts. A transition towards Fermi process occurs for decreasing magnetization around a critical value which turns out to be the condition for the scattering to break the mean field inhibition. Scattering is produced by magnetic micro-turbulence driven by the current carried by returning particles, which had not been considered till now, but turns out to be more intense than Weibel's one around the transition. The current is also responsible for a buffer effect on the motion of the incoming flow, on which the threshold for the onset of turbulence depends.
Are non-relativistic neutrinos the dark matter particles?
Nieuwenhuizen, Theo M.
2010-06-01
The dark matter of a spherical, relaxed galaxy cluster is modeled by isothermal, non-interacting fermions; the galaxies and X-ray gas by isothermal classical distributions. A fit to lensing data of the cluster Abell 1689 works well and yields a mass of a few eV. This low value casts doubt on the existence of a Cold Dark Matter particle. The best case is the neutrino, for which in the cluster all 12 left- and righthanded modes are available. The fit gives an average mass 1.45(h/0.70)1/2 eV, with 2% error, while neutrino oscillations bring deviations of order meV. A neutrino mass between 0.2 and 2 eV will be searched in the Katrin experiment in 2012. The ideal value is mν = Yeme = 1.4998 eV, where Ye = 23/4GF1/2me is the Yukawa coupling of the electron. It occurs for reduced Hubble constant h = 0.744 with 4% error, right on top of and slightly sharper than the presently best supernova value of Riess et al. 2009, h = 0.742 with 4.8% error. In the cluster the neutrinos have a temperature of 0.045 K and a de Broglie length of 0.20 mm. They establish a quantum structure of several million light years across, the largest known in the Universe. The virial α-particle temperature of 9.9+/-1.1 keV/kB coincides with the average one of X-rays, while also the gas profile comes out well. Active neutrinos alone with the 1.45 eV mass give some 9.5% dark matter, more than allowed by the cold dark matter papradigm. A dark matter fraction of some 19%, Ων = (h/0.70)-3/20.189 (4), occurs for 12 degrees of freedom, i. e., for 3 families of left plus right handed neutrinos. The sterile modes may be produced in the early universe if there is a small Majorana mass matrix of order meV, on top of the Dirac matrix with ~1.45 eV masses. The neutrinos are free-streaming in the early universe and play no role during the decoupling. But now they are not homogeneous anymore. They condense on the Abell 1689 cluster fairly late, at redshift z~6-8, a prediction testable in future observations
Solitons in relativistic laser-plasma interactions
XIE Bai-song; DU Shu-cheng
2007-01-01
Single or/and multipeak solitons in plasma under relativistic electromagnetic field are reviewed.The incident electromagnetic field iS allowed to have a zero or/and nonzero initial constant amplitude.Some interesting numerical results are obtained that include a high-number multipeak laser pulse and single or/and low-number multipeak plasma wake structures.It is also shown that there exists a combination of soliton and oscillation waves for plasma wake field.Also,the electron density exhibits multi-caviton structure or the combination of caviton and oscillation.A complete eigenvalue spectrum of parameters is given wherein some higher peak numbers of multipeak electromagnetic solitons in the plasma are included.Moreover, some interesting scaling laws are presented for field energy via numerical approaches.Some implications of results are discussed.
Magnetic Field Generation and Particle Energization in Relativistic Shear Flows
Liang, Edison; Boettcher, Markus; Smith, Ian
2012-10-01
We present Particle-in-Cell simulation results of magnetic field generation by relativistic shear flows in collisionless electron-ion (e-ion) and electron-positron (e+e-) plasmas. In the e+e- case, small current filaments are first generated at the shear interface due to streaming instabilities of the interpenetrating particles from boundary perturbations. Such current filaments create transverse magnetic fields which coalesce into larger and larger flux tubes with alternating polarity, eventually forming ordered flux ropes across the entire shear boundary layer. Particles are accelerated across field lines to form power-law tails by semi-coherent electric fields sustained by oblique Langmuir waves. In the e-ion case, a single laminar slab of transverse flux rope is formed at the shear boundary, sustained by thin current sheets on both sides due to different drift velocities of electrons and ions. The magnetic field has a single polarity for the entire boundary layer. Electrons are heated to a fraction of the ion energy, but there is no evidence of power-law tail forming in this case.
Renormalization of NN Interaction with Relativistic Chiral Two Pion Exchange
Higa, R; Valderrama, M Pavon; Arriola, E Ruiz
2007-06-14
The renormalization of the NN interaction with the Chiral Two Pion Exchange Potential computed using relativistic baryon chiral perturbation theory is considered. The short distance singularity reduces the number of counter-terms to about a half as those in the heavy-baryon expansion. Phase shifts and deuteron properties are evaluated and a general overall agreement is observed.
Intense terahertz radiation from relativistic laser-plasma interactions
Liao, G. Q.; Li, Y. T.; Li, C.; Liu, H.; Zhang, Y. H.; Jiang, W. M.; Yuan, X. H.; Nilsen, J.; Ozaki, T.; Wang, W. M.; Sheng, Z. M.; Neely, D.; McKenna, P.; Zhang, J.
2017-01-01
The development of tabletop intense terahertz (THz) radiation sources is extremely important for THz science and applications. This paper presents our measurements of intense THz radiation from relativistic laser-plasma interactions under different experimental conditions. Several THz generation mechanisms have been proposed and investigated, including coherent transition radiation (CTR) emitted by fast electrons from the target rear surface, transient current radiation at the front of the target, and mode conversion from electron plasma waves (EPWs) to THz waves. The results indicate that relativistic laser plasma is a promising driver of intense THz radiation sources.
Relativistic ponderomotive Hamiltonian of a Dirac particle in a vacuum laser field
Ruiz, D. E.; Ellison, C. L.; Dodin, I. Y.
2015-12-01
We report a point-particle ponderomotive model of a Dirac electron oscillating in a high-frequency field. Starting from the Dirac Lagrangian density, we derive a reduced phase-space Lagrangian that describes the relativistic time-averaged dynamics of such a particle in a geometrical-optics laser pulse propagating in vacuum. The pulse is allowed to have an arbitrarily large amplitude provided that radiation damping and pair production are negligible. The model captures the Bargmann-Michel-Telegdi (BMT) spin dynamics, the Stern-Gerlach spin-orbital coupling, the conventional ponderomotive forces, and the interaction with large-scale background fields (if any). Agreement with the BMT spin precession equation is shown numerically. The commonly known theory in which ponderomotive effects are incorporated in the particle effective mass is reproduced as a special case when the spin-orbital coupling is negligible. This model could be useful for studying laser-plasma interactions in relativistic spin-1 /2 plasmas.
Particle production and nonlinear diffusion in relativistic systems
Wolschin, Georg
2008-01-01
The short parton production phase in high-energy heavy-ion collisions is treated analytically as a nonlinear diffusion process. The initial buildup of the rapidity density distributions of produced charged hadrons within tau_p = 0.25 fm/c occurs in three sources during the colored partonic phase. In a two-step approach, the subsequent diffusion in pseudorapidity space during the interaction time of tau_int = 7-10 fm/c (mean duration of the collision) is essentially linear as expressed in the Relativistic Diffusion Model (RDM) which yields excellent agreement with the data at RHIC energies, and allows for predictions at LHC energies. Results for d+Au are discussed in detail.
Simulations of Relativistic Collisionless Shocks: Shock Structure and Particle Acceleration
Spitkovsky, Anatoly; /KIPAC, Menlo Park
2006-04-10
We discuss 3D simulations of relativistic collisionless shocks in electron-positron pair plasmas using the particle-in-cell (PIC) method. The shock structure is mainly controlled by the shock's magnetization (''sigma'' parameter). We demonstrate how the structure of the shock varies as a function of sigma for perpendicular shocks. At low magnetizations the shock is mediated mainly by the Weibel instability which generates transient magnetic fields that can exceed the initial field. At larger magnetizations the shock is dominated by magnetic reflections. We demonstrate where the transition occurs and argue that it is impossible to have very low magnetization collisionless shocks in nature (in more than one spatial dimension). We further discuss the acceleration properties of these shocks, and show that higher magnetization perpendicular shocks do not efficiently accelerate nonthermal particles in 3D. Among other astrophysical applications, this may pose a restriction on the structure and composition of gamma-ray bursts and pulsar wind outflows.
Vitória, R.L.L.; Furtado, C., E-mail: furtado@fisica.ufpb.br; Bakke, K., E-mail: kbakke@fisica.ufpb.br
2016-07-15
The relativistic quantum dynamics of an electrically charged particle subject to the Klein–Gordon oscillator and the Coulomb potential is investigated. By searching for relativistic bound states, a particular quantum effect can be observed: a dependence of the angular frequency of the Klein–Gordon oscillator on the quantum numbers of the system. The meaning of this behaviour of the angular frequency is that only some specific values of the angular frequency of the Klein–Gordon oscillator are permitted in order to obtain bound state solutions. As an example, we obtain both the angular frequency and the energy level associated with the ground state of the relativistic system. Further, we analyse the behaviour of a relativistic position-dependent mass particle subject to the Klein–Gordon oscillator and the Coulomb potential.
Vitória, R. L. L.; Furtado, C.; Bakke, K.
2016-07-01
The relativistic quantum dynamics of an electrically charged particle subject to the Klein-Gordon oscillator and the Coulomb potential is investigated. By searching for relativistic bound states, a particular quantum effect can be observed: a dependence of the angular frequency of the Klein-Gordon oscillator on the quantum numbers of the system. The meaning of this behaviour of the angular frequency is that only some specific values of the angular frequency of the Klein-Gordon oscillator are permitted in order to obtain bound state solutions. As an example, we obtain both the angular frequency and the energy level associated with the ground state of the relativistic system. Further, we analyse the behaviour of a relativistic position-dependent mass particle subject to the Klein-Gordon oscillator and the Coulomb potential.
Sarkadi, L.
2017-03-01
The program MTRDCOUL [1] calculates the matrix elements of the Coulomb interaction between a charged particle and an atomic electron, ∫ ψf∗ (r) ∣ R - r∣-1ψi(r) d r. Bound-free transitions are considered, and relativistic hydrogenic wave functions are used. In this revised version a bug discovered in the F3Y CPC Program Library subprogram [2] is fixed.
Microengineering laser plasma interactions at relativistic intensities
S. Jiang; Ji,L.L.; Audesirk, H.; George, K M; Snyder, J.; Krygier, A.; Lewis, N. S.; Schumacher, D. W.; Pukhov, A.; Freeman, R. R.; Akli, K. U.
2015-01-01
We report on the first successful proof-of-principle experiment to manipulate laser-matter interactions on the microscale using highly ordered Si microwire arrays. The interaction of a high contrast short pulse laser with a flat target via periodic Si microwires yields a substantial enhancement in both total and cut-off energies of the produced electron beam. The self generated electric and magnetic fields behave as an electromagnetic lens that confines and guides electrons between the microw...
The relativistic solar particle event of 2005 January 20: prompt and delayed particle acceleration
Klein, K -L; Bouratzis, C; Grechnev, V; Hillaris, A; Preka-Papadema, P
2014-01-01
The highest energies of solar energetic nucleons detected in space or through gamma-ray emission in the solar atmosphere are in the GeV range. Where and how the particles are accelerated is still controversial. We search for observational evidence on the acceleration region(s) by comparing the timing of relativistic protons detected at Earth and radiative signatures in the solar atmosphere. To this end a detailed comparison is undertaken of the double-peaked time profile of relativistic protons, derived from the worldwide network of neutron monitors during the large particle event of 2005 January 20, with UV imaging and radio petrography over a broad frequency band from the low corona to interplanetary space. We show that both relativistic proton releases to interplanetary space were accompanied by distinct episodes of energy release and electron acceleration in the corona traced by the radio emission and by brightenings of UV kernels in the low solar atmosphere. The timing of electromagnetic emissions and re...
Ratchet effect on a relativistic particle driven by external forces
Quintero, Niurka R [Departamento de Fisica Aplicada I, Escuela Universitaria Politecnica, Universidad de Sevilla, Calle Virgen de Africa 7, E-41011 Sevilla (Spain); Alvarez-Nodarse, Renato [Departamento de Analisis Matematico, Facultad de Matematicas, Universidad de Sevilla, Apdo 1160, E-41080 Sevilla (Spain); Cuesta, Jose A, E-mail: niurka@us.es, E-mail: ran@us.es, E-mail: cuesta@math.uc3m.es [Grupo Interdisciplinar de Sistemas Complejos (GISC), Departamento de Matematicas, Universidad Carlos III de Madrid, Avenida de la Universidad 30, E-28911 Leganes, Madrid (Spain)
2011-10-21
We study the ratchet effect of a damped relativistic particle driven by both asymmetric temporal bi-harmonic and time-periodic piecewise constant forces. This system can be formally solved for any external force, providing the ratchet velocity as a nonlinear functional of the driving force. This allows us to explicitly illustrate the functional Taylor expansion formalism recently proposed for this kind of systems. The Taylor expansion reveals particularly useful to obtain the shape of the current when the force is periodic, piecewise constant. We also illustrate the somewhat counterintuitive effect that introducing damping may induce a ratchet effect. When the force is symmetric under time-reversal and the system is undamped, under symmetry principles no ratchet effect is possible. In this situation increasing damping generates a ratchet current which, upon increasing the damping coefficient eventually reaches a maximum and decreases toward zero. We argue that this effect is not specific of this example and should appear in any ratchet system with tunable damping driven by a time-reversible external force. (paper)
Relativistic particles with rigidity and torsion in D = 3 spacetimes
Barros, Manuel [Departamento de GeometrIa y TopologIa, Universidad de Granada, 18071 Granada (Spain); Ferrandez, Angel [Departamento de Matematicas, Universidad de Murcia, Campus de Espinardo, 30100 Espinardo Murcia (Spain); Javaloyes, Miguel Angel [Departamento de Matematica, Instituto de Matematica e EstatIstica, Universidade de Sao Paulo, Rua do Matao 1010, CEP 05508-900, Sao Paulo, SP (Brazil); Lucas, Pascual [Departamento de Matematicas, Universidad de Murcia, Campus de Espinardo, 30100 Espinardo Murcia (Spain)
2005-02-07
Models describing relativistic particles, where Lagrangian densities depend linearly on both the curvature and the torsion of the trajectories, are revisited in D = 3 Lorentzian spacetimes with constant curvature. The moduli spaces of trajectories are completely and explicitly determined. Trajectories are Lancret curves including ordinary helices. To get the geometric integration of the solutions, we design algorithms that essentially involve the Lancret program as well as the notions of scrolls and Hopf tubes. The most interesting and consistent models appear in anti-de Sitter spaces, where the Hopf mappings, both the standard and the Lorentzian ones, play an important role. The moduli subspaces of closed solitons in anti-de Sitter settings are also obtained. Our main tool is the isoperimetric inequality in the hyperbolic plane. The mass spectra of these models are also obtained. The main characteristic of the anti-de Sitter space comes from the presence of real gravity, which becomes essential to find some system with only massive states. This fact, on one hand, has no equivalent in flat spaces, where spectra necessarily present tachyonic sectors and, on the other hand, solves an early stated problem.
Particle Acceleration in Relativistic Electron-Ion Outlfows
Lloyd-Ronning, Nicole M
2016-01-01
We use the Los Alamos VPIC code to investigate particle acceleration in relativistic, unmagnetized, collisionless electron-ion plasmas. We run our simulations both with a realistic proton-to-electron mass ratio m_p/m_e = 1836, as well as commonly employed mass ratios of m_p/m_e =100 and 25, and show that results differ among the different cases. In particular, for the physically accurate mass ratio, electron acceleration occurs efficiently in a narrow region of a few hundred inertial lengths near the flow front, producing a power law dN/dgamma ~ gamma^(-p) with p ~ -2 developing over a few decades in energy, while acceleration is weak in the region far downstream. We find 20%, 10%, and 0.2% of the total energy given to the electrons for mass ratios of 25, 100, and 1836 respectively at a time of 2500 (w_p)^-1. Our simulations also show significant magnetic field generation just ahead of and behind the the flow front, with about 1% of the total energy going into the magnetic field for a mass ratio of 25 and 100...
Electrostatic interaction of soft particles.
Ohshima, Hiroyuki
2015-12-01
Theories of the electrostatic interaction between two soft particles (i.e., particles covered with an ion-penetrable surface layer of polyelectrolytes) in an electrolyte solution are reviewed. Interactions of soft particles after contact of their surface layers are particularly discussed. Interaction in a salt-free medium and the discrete-charge effect are also treated.
Baryshevsky, V.G. (Inst. of Nuclear Problems, Minsk (Belarus)); Dubovskaya, I.Ya. (Lawrence Berkeley Lab., CA (United States))
1991-12-01
This report discusses: the dispersion characteristics of parametric x-ray radiation (PXR) and diffraction radiation of oscillator; cooperative effects in x-radiation by charged particles in crystals; and diffraction x-radiation by relativistic oscillator.
Radiation of non-relativistic particle on a conducting sphere and a string of spheres
Shul'ga, N F; Larikova, E A
2016-01-01
The radiation arising under uniform motion of non-relativistic charged particle by (or through) perfectly conducting sphere is considered. The rigorous results are obtained using the method of images known from electrostatics.
(Research in elementary particles and interactions). [1992
Adair, R.; Sandweiss, J.; Schmidt, M.
1992-05-01
Research of the Yale University groups in the areas of elementary particles and their interactions are outlined. Work on the following topics is reported: development of CDF trigger system; SSC detector development; study of heavy flavors at TPL; search for composite objects produced in relativistic heavy-ion collisions; high-energy polarized lepton-nucleon scattering; rare K{sup +} decays; unpolarized high-energy muon scattering; muon anomalous magnetic moment; theoretical high-energy physics including gauge theories, symmetry breaking, string theory, and gravitation theory; study of e{sup +}e{sup {minus}} interactions with the SLD detector at SLAC; and the production and decay of particles containing charm and beauty quarks.
Harder, T Mark
2016-01-01
It is shown how Fermionic material particles can emerge from a covariant formulation of the de Broglie-Bohm theory. Material particles are continuous fields, formed as the eigenvalue of the Schrodinger field operator, evaluated along a Bohmian trajectory. The motivation for this work is due to a theorem proved by Malament that states there cannot be a relativistic quantum mechanics of localizable particles.
A search for relativistic particles with fractional electric charge at the Cern collider
Banner, M.; Kofoed-Hansen, O.
1983-01-01
A search for relativistic particles with fractional electric charge has been performed at the CERN collider using a telescope of scintillation counters to detect particles with abnormally low ionisation. The thickness of the detector (40 gr cm−2) limits this search to particles without strong...
Higgs particles interacting via a scalar Dark Matter field
Bhattacharya, Yajnavalkya; Darewych, Jurij
2016-07-01
We study a system of two Higgs particles, interacting via a scalar Dark Matter mediating field. The variational method in the Hamiltonian formalism of QFT is used to derive relativistic wave equations for the two-Higgs system, using a truncated Fock-space trial state. Approximate solutions of the two-body equations are used to examine the existence of Higgs bound states.
Mori, M; Daito, I; Kotaki, H; Hayashi, Y; Yamazaki, A; Ogura, K; Sagisaka, A; Koga, J; Nakajima, K; Daido, H; Bulanov, S V; Kimura, T
2006-01-01
The regimes of quasi-mono-energetic electron beam generation were experimentally studied in the sub-relativistic intensity laser plasma interaction. The observed electron acceleration regime is unfolded with two-dimensional-particle-in-cell simulations of laser-wakefield generation in the self-modulation regime.
EFFECT OF INTERACTING RAREFACTION WAVES ON RELATIVISTICALLY HOT JETS
Matsumoto, Jin; Shibata, Kazunari [Kwasan and Hida Observatories, Kyoto University, Kyoto (Japan); Masada, Youhei, E-mail: jin@kusastro.kyoto-u.ac.jp [Graduate School of System Informatics, Department of Computational Science, Kobe University, Kobe (Japan)
2012-06-01
The effect of rarefaction acceleration on the propagation dynamics and structure of relativistically hot jets is studied through relativistic hydrodynamic simulations. We emphasize the nonlinear interaction of rarefaction waves excited at the interface between a cylindrical jet and the surrounding medium. From simplified one-dimensional (1D) models with radial jet structure, we find that a decrease in the relativistic pressure due to the interacting rarefaction waves in the central zone of the jet transiently yields a more powerful boost of the bulk jet than that expected from single rarefaction acceleration. This leads to a cyclic in situ energy conversion between thermal and bulk kinetic energies, which induces radial oscillating motion of the jet. The oscillation timescale is characterized by the initial pressure ratio of the jet to the ambient medium and follows a simple scaling relation, {tau}{sub oscillation}{proportional_to}(P{sub jet,0}/P{sub amb,0}){sup 1/2}. Extended two-dimensional simulations confirm that this radial oscillating motion in the 1D system manifests as modulation of the structure of the jet in a more realistic situation where a relativistically hot jet propagates through an ambient medium. We find that when the ambient medium has a power-law pressure distribution, the size of the reconfinement region along the propagation direction of the jet in the modulation structure {lambda} evolves according to a self-similar relation {lambda}{proportional_to}t{sup {alpha}/2}, where {alpha} is the power-law index of the pressure distribution.
Relativistic electron mirrors from high intensity laser nanofoil interactions
Kiefer, Daniel
2012-12-21
The reflection of a laser pulse from a mirror moving close to the speed of light could in principle create an X-ray pulse with unprecedented high brightness owing to the increase in photon energy and accompanying temporal compression by a factor of 4γ{sup 2}, where γ is the Lorentz factor of the mirror. While this scheme is theoretically intriguingly simple and was first discussed by A. Einstein more than a century ago, the generation of a relativistic structure which acts as a mirror is demanding in many different aspects. Recently, the interaction of a high intensity laser pulse with a nanometer thin foil has raised great interest as it promises the creation of a dense, attosecond short, relativistic electron bunch capable of forming a mirror structure that scatters counter-propagating light coherently and shifts its frequency to higher photon energies. However, so far, this novel concept has been discussed only in theoretical studies using highly idealized interaction parameters. This thesis investigates the generation of a relativistic electron mirror from a nanometer foil with current state-of-the-art high intensity laser pulses and demonstrates for the first time the reflection from those structures in an experiment. To achieve this result, the electron acceleration from high intensity laser nanometer foil interactions was studied in a series of experiments using three inherently different high power laser systems and free-standing foils as thin as 3nm. A drastic increase in the electron energies was observed when reducing the target thickness from the micrometer to the nanometer scale. Quasi-monoenergetic electron beams were measured for the first time from ultrathin (≤5nm) foils, reaching energies up to ∝35MeV. The acceleration process was studied in simulations well-adapted to the experiments, indicating the transition from plasma to free electron dynamics as the target thickness is reduced to the few nanometer range. The experience gained from those
Massless interacting particles
Kosyakov, B P [Russian Federal Nuclear Center, Sarov, 607190 Nizhnii Novgorod Region (Russian Federation)], E-mail: kosyakov@vniief.ru
2008-11-21
We show that classical electrodynamics of massless charged particles and the Yang-Mills theory of massless quarks do not experience rearranging their initial degrees of freedom into dressed particles and radiation. Massless particles do not radiate. We propose a conformally invariant version of the direct interparticle action theory for these systems.
Decowski, M P
2002-01-01
The properties of quantum chromodynamics (QCD), the modern theory of the strong interaction, can be investigated through the study of relativistic nucleus- nucleus collisions. Recently, the Relativistic Heavy-Ion Collider (RHIC) was completed and started taking data at ten times higher center-of-mass energies than the previous most energetic heavy-ion collisions. This thesis presents some of the first measurements at RHIC from any experiment. The PHOBOS detector is used to measure the charged particle pseudo- rapidity density at mid-rapidity (i.e., in |η| < 1) as a function of collision energy and centrality. The multiplicity is measured by counting short tracks in the silicon spectrometer; the centrality measurement uses two scintillator detectors covering 3 < |η| < 4.5. The charged particle multiplicity at mid-rapidity for the 6% most central collisions is 379 ± 9(stat.) ± 42(syst.), 555 ± 3(stat.) ± 35(syst.) and 661 &plus...
Relativistic formulations with Blankenbecler-Sugar reduction technique for the three-particle system
Morioka, S.; Afnan, I. R.
1981-02-01
We present a critical comparison for two types of three-dimensional covariant equations for the three-particle system obtained by the Blankenbecler-Sugar reduction technique with the Wightman-Gårding momenta and the usual Jacobi variables. We also discuss the relations between the relativistic and nonrelativistic equations in the low-energy limit. NUCLEAR REACTIONS Relativistic Faddeev equations, Blankenbecler-Sugar reduction technique, nonrelativistic limit.
Salazar-Ramírez, M.; Ojeda-Guillén, D.; Mota, R. D.
2016-09-01
We study a relativistic quantum particle in cosmic string spacetime in the presence of a magnetic field and a Coulomb-type scalar potential. It is shown that the radial part of this problem possesses the su(1 , 1) symmetry. We obtain the energy spectrum and eigenfunctions of this problem by using two algebraic methods: the Schrödinger factorization and the tilting transformation. Finally, we give the explicit form of the relativistic coherent states for this problem.
Gray, R. J.; MacLellan, D. A.; Gonzalez-Izquierdo, B.; Powell, H. W.; Carroll, D. C.; Murphy, C. D.; Stockhausen, L. C.; Rusby, D. R.; Scott, G. G.; Wilson, R.; Booth, N.; Symes, D. R.; Hawkes, S. J.; Torres, R.; Borghesi, M.; Neely, D.; McKenna, P.
2014-09-01
Asymmetry in the collective dynamics of ponderomotively-driven electrons in the interaction of an ultraintense laser pulse with a relativistically transparent target is demonstrated experimentally. The 2D profile of the beam of accelerated electrons is shown to change from an ellipse aligned along the laser polarization direction in the case of limited transparency, to a double-lobe structure aligned perpendicular to it when a significant fraction of the laser pulse co-propagates with the electrons. The temporally-resolved dynamics of the interaction are investigated via particle-in-cell simulations. The results provide new insight into the collective response of charged particles to intense laser fields over an extended interaction volume, which is important for a wide range of applications, and in particular for the development of promising new ultraintense laser-driven ion acceleration mechanisms involving ultrathin target foils.
Massless interacting particles
Kosyakov, B P
2007-01-01
We show that classical electrodynamics of massless charged particles and the Yang--Mills--Wong theory of massless quarks do not experience rearranging their initial degrees of freedom into dressed particles and radiation. Massless particles do not radiate. We propose a version of the direct interparticle action theory for such systems, which offers promise as a useful tool in studying the physics of quark-gluon plasma.
Hydrodynamical interaction of mildly relativistic ejecta with an ambient medium
Suzuki, Akihiro; Shigeyama, Toshikazu
2016-01-01
Hydrodynamical interaction of spherical ejecta freely expanding at mildly relativistic speeds into an ambient cold medium is studied in semi-analytical and numerical ways to investigate how ejecta produced in energetic stellar explosions dissipate their kinetic energy through the interaction with the surrounding medium. We especially focus on the case in which the circumstellar medium is well represented by a steady wind at a constant mass-loss rate having been ejected from the stellar surface prior to the explosion. As a result of the hydrodynamical interaction, the ejecta and circumstellar medium are swept by the reverse and forward shocks, leading to the formation of a geometrically thin shell. We present a semi-analytical model describing the dynamical evolution of the shell and compare the results with numerical simulations. The shell can give rise to bright emission as it gradually becomes transparent to photons. while it is optically thick. We develop an emission model for the expected emission from th...
Li, En-Kun; Geng, Jin-Ling
2014-01-01
The modified holographic Ricci dark energy coupled to interacting relativistic and non-relativistic dark matter is considered in the nonflat Friedmann-Robertson-Walker universe. Through examining the deceleration parameter, one can find that the transition time of the Universe from decelerating to accelerating phase in the interacting holographic Ricci dark energy model is close to that in the $\\Lambda$ cold dark matter model. The evolution of modified holographic Ricci dark energy's state parameter and the evolution of dark matter and dark energy's densities shows that the dark energy holds the dominant position from the near past to the future. By studying the statefinder diagnostic and the evolution of the total pressure, one can find that this model could explain the Universe's transition from the radiation to accelerating expansion stage through the dust stage. According to the $Om$ diagnostic, it is easy to find that when the interaction is weak and the proportion of relativistic dark matter in total da...
A Non-Perturbative, Finite Particle Number Approach to Relativistic Scattering Theory
Lindesay, James V
2001-05-11
We present integral equations for the scattering amplitudes of three scalar particles, using the Faddeev channel decomposition, which can be readily extended to any finite number of particles of any helicity. The solution of these equations, which have been demonstrated to be calculable, provide a non-perturbative way of obtaining relativistic scattering amplitudes for any finite number of particles that are Lorentz invariant, unitary, cluster decomposable and reduce unambiguously in the non-relativistic limit to the non-relativistic Faddeev equations. The aim of this program is to develop equations which explicitly depend upon physically observable input variables, and do not require ''renormalization'' or ''dressing'' of these parameters to connect them to the boundary states.
Relativistic quantum mechanics and introduction to field theory
Yndurain, F.J. [Universidad Autonoma de Madrid (Spain). Dept. de Fisica Teorica
1996-12-01
The following topics were dealt with: relativistic transformations, the Lorentz group, Klein-Gordon equation, spinless particles, spin 1/2 particles, Dirac particle in a potential, massive spin 1 particles, massless spin 1 particles, relativistic collisions, S matrix, cross sections, decay rates, partial wave analysis, electromagnetic field quantization, interaction of radiation with matter, interactions in quantum field theory and relativistic interactions with classical sources.
Point-particle effective field theory III: relativistic fermions and the Dirac equation
Burgess, C. P.; Hayman, Peter; Rummel, Markus; Zalavári, László
2017-09-01
We formulate point-particle effective field theory (PPEFT) for relativistic spin-half fermions interacting with a massive, charged finite-sized source using a first-quantized effective field theory for the heavy compact object and a second-quantized language for the lighter fermion with which it interacts. This description shows how to determine the near-source boundary condition for the Dirac field in terms of the relevant physical properties of the source, and reduces to the standard choices in the limit of a point source. Using a first-quantized effective description is appropriate when the compact object is sufficiently heavy, and is simpler than (though equivalent to) the effective theory that treats the compact source in a second-quantized way. As an application we use the PPEFT to parameterize the leading energy shift for the bound energy levels due to finite-sized source effects in a model-independent way, allowing these effects to be fit in precision measurements. Besides capturing finite-source-size effects, the PPEFT treatment also efficiently captures how other short-distance source interactions can shift bound-state energy levels, such as due to vacuum polarization (through the Uehling potential) or strong interactions for Coulomb bound states of hadrons, or any hypothetical new short-range forces sourced by nuclei.
Relativistic collision rate calculations for electron-air interactions
Graham, G. [EG and G Energy Measurements, Inc., Los Alamos, NM (United States); Roussel-Dupre, R. [Los Alamos National Lab., NM (United States). Space Science and Technologies
1992-12-16
The most recent data available on differential cross sections for electron-air interactions are used to calculate the avalanche, momentum transfer, and energy loss rates that enter into the fluid equations. Data for the important elastic, inelastic, and ionizing processes are generally available out to electron energies of 1--10 kev. Prescriptions for extending these cross sections to the relativistic regime are presented. The angular dependence of the cross sections is included where data is available as is the doubly differential cross section for ionizing collisions. The collision rates are computed by taking moments of the Boltzmann collision integrals with the assumption that the electron momentum distribution function is given by the Juettner distribution function which satisfies the relativistic H- theorem and which reduces to the familiar Maxwellian velocity distribution in the nonrelativistic regime. The distribution function is parameterized in terms of the electron density, mean momentum, and thermal energy and the rates are therefore computed on a two-dimensional grid as a function of mean kinetic energy and thermal energy.
Kuzichev, Ilya; Shklyar, David
2016-04-01
One of the most challenging problems of the radiation belt studies is the problem of particles energization. Being related to the process of particle precipitation and posing a threat to scientific instruments on satellites, the problem of highly energetic particles in the radiation belts turns out to be very important. A lot of progress has been made in this field, but still some aspects of the energization process remain open. The main mechanism of particle energization in the radiation belts is the resonant interaction with different waves, mainly, in whistler frequency range. The problem of special interest is the resonant wave-particle interaction of the electrons of relativistic energies. Relativistic resonance condition provides some important features such as the so-called relativistic turning acceleration discovered by Omura et al. [1, 2]. This process appears to be a very efficient mechanism of acceleration in the case of interaction with the whistler-mode waves propagating along geomagnetic field lines. But some whistler-mode waves propagate obliquely to the magnetic field lines, and the efficiency of relativistic turning acceleration in this case is to be studied. In this report, we present the Hamiltonian theory of the resonant interaction of relativistic electrons with oblique monochromatic whistler-mode waves. We have shown that the presence of turning point requires a special treatment when one aims to derive the resonant Hamiltonian, and we have obtained two different resonant Hamiltonians: one to be applied far enough from the turning point, while another is valid in the vicinity of the turning point. We have performed numerical simulation of relativistic electron interaction with whistler-mode waves generated in the ionosphere by a monochromatic source. It could be, for example, a low-frequency transmitter. The wave-field distribution along unperturbed particle trajectory is calculated by means of geometrical optics. We show that the obliquity of
Skin Depth vs. Relativistics Self-focusing at ps Laser-Plasma Interaction
Hora, Heinrich; Peng, Hansheng; Zhang, Weiyan; Osman, Frederick
2002-03-01
Highly charged MeV ions from target irradiated by laser longer than 0.1 ns, can be explained by relativistic self-focusing and subsequent acceleration by the nonlinear (ponderomotive) force [1]. In strong contrast to this, same laser intensities of ps pulses produced hundred times less energetic ions if the contrast ratio for suppression of prepulses was sufficiently high [1]. It was remarkable that the number of ions was constant and the ion energy linear on the laser intensity. We developed a model to explain the measurements as interactions within the skin layer of the target in contrast to relativistic self-focusing. However, if there is an appropriate prepulse applied, the MeV ions appear as before with the ns pulses which can be explained by the then possible relativistic self focusing. Consequences for the fast ignitor laser fusion scheme are elaborated. [1] J. Badziak, et al. Laser and Particle Beams 17, 323 (1999); E. Woryna, J. Wolowski, B. Kralikowa, J. Kraska, L. Laska, M. Pfeifer, K. Rohlena, J. Skala, V. Perina, R. Höpfl, & H. Hora, Rev. Scient. Instrum. 71, 949 (2000).
Andrade, R.P.G. [Instituto de Fisica, Universidade de Sao Paulo (Brazil); Grassi, F., E-mail: grassi@if.usp.br [Instituto de Fisica, Universidade de Sao Paulo (Brazil); Hama, Y. [Instituto de Fisica, Universidade de Sao Paulo (Brazil); Qian, W.-L. [Instituto de Ciencias Exatas, Universidade Federal de Ouro Preto (Brazil)
2012-06-06
Relativistic nuclear collisions data on two-particle correlations exhibit structures as function of relative azimuthal angle and rapidity. A unified description of these near-side and away-side structures is proposed for low to moderate transverse momentum. It is based on the combined effect of tubular initial conditions and hydrodynamical expansion. Contrary to expectations, the hydrodynamics solution shows that the high-energy density tubes (leftover from the initial particle interactions) give rise to particle emission in two directions and this is what leads to the various structures. This description is sensitive to some of the initial tube parameters and may provide a probe of the strong interaction. This explanation is compared with an alternative one where some triangularity in the initial conditions is assumed. A possible experimental test is suggested.
On the quasinormal modes of relativistic stars and interacting fields
Macedo, Caio F B; Crispino, Luís C B; Pani, Paolo
2016-01-01
The quasinormal modes of relativistic compact objects encode important information about the gravitational response associated to astrophysical phenomena. Detecting such oscillations would provide us with a unique understanding of the properties of compact stars, and may give definitive evidence for the existence of black holes. However, computing quasinormal modes in realistic astrophysical environments is challenging, due to the complexity of the spacetime background and of the dynamics of the perturbations. We discuss two complementary methods to compute the quasinormal modes of spherically-symmetric astrophysical systems, namely: the direct integration method and the continued fraction method. We extend these techniques to deal with generic coupled systems of linear equations, with the only assumption that the interaction between different fields is effectively localized within a finite region. In particular, we adapt the continued fraction method to include cases where a series solution can be obtained o...
Radiation from relativistic particles in nongeodesic motion in a strong gravitational field
Aliev, A.N. (AN Gruzinskoj SSR, Abastumani. Abastumanskaya Astrofizicheskaya Observatoriya); Galtsov, D.V. (Moskovskij Gosudarstvennyj Univ. (USSR). Kafedra Teoreticheskoj Fiziki)
1981-10-01
The scalar and electromagnetic radiation emitted by relativistic particles moving along the stable nongeodesic trajectories in the Kerr gravitational field are described. Two particular models of the nongeodesic motion are developed involving a slightly charged rotating black hole and a rotating black hole immersed in an external magnetic field.
Relativistic formulations with Blankenbecler-Sugar reduction technique for the three-particle system
Morioka, S.; Afnan, I.R.
1981-02-01
We present a critical comparison for two types of three-dimensional covariant equations for the three-particle system obtained by the Blankenbecler-Sugar reduction technique with the Wightman-Garding momenta and the usual Jacobi variables. We also discuss the relations between the relativistic and nonrelativistic equations in the low-energy limit.
Bakke, K.
2010-10-01
We obtain the solutions of the Dirac equation when the noninertial effects of the Fermi-Walker reference frame break the relativistic Landau-Aharonov-Casher quantization, but they provide bound states in an analogous way to a Dirac neutral particle subject to Tan-Inkson quantum dot potential [W.-C. Tan, J.C. Inkson, Semicond. Sci. Technol. 11 (1996) 1635].
Brownian motion of interacting particles
Ackerson, B.J.
1976-01-01
Guided by the descriptions which are used to describe noninteracting particles, it is argued that the generalized Smoluchowski equation, including the hydrodynamic interaction and corrections for ion cloud effects may be used to describe interacting particles for the temporal and spatial regimes probed by light beating spectroscopy. This equation is then used to find cumulants of decay of the intermediate scattering function. The generalized Smoluchowski equation is reduced to a simple diffusion equation. The resulting diffusion constant depends upon the interparticle forces and is reminiscent of some early descriptions for interacting systems. The generalized Smoluchowski equation is solved for the model system of a linear chain of colloidal particles interacting via nearest neighbor harmonic couplings. The results for the intermediate scattering function and the static structure factor are very reminiscent of corresponding measurements made for interacting colloidal systems. (GHT)
Radiation of Relativistic Particles in a Quasi-Homogeneous Magnetic Field
Epp, V
2016-01-01
Spectrum of radiation of a relativistic particle moving in a nonhomogeneous magnetic field is considered. The spectrum depends on the pitch-angle $\\alpha$ between the velocity direction and a line tangent to the field line. In case of very small $\\alpha$ the particle generates so-called curvature radiation, in an intermediate case undulator-kind radiation is produced. In this paper we present the calculations of radiation properties in a case when both curvature and undulator radiation is observed.
Gallo, Emanuel
2016-01-01
We present a general approach for the formulation of equations of motion for compact objects in general relativistic theories. The particle is assumed to be moving in a geometric background which in turn is asymptotically flat. By construction, the model incorporates the back reaction due to gravitational radiation generated by the motion of the particle. Our approach differs from other constructions tackling the same kind of problem.
Relativistic description of single-particle resonances via phase shift analysis
ZHANG Zi-Zhen
2009-01-01
Single-particle resonant states in spherical nuclei are studied by the real stabilization method in coordinate space within the framework of self-consistent relativistic mean field theory. Taking 122Zr as an example, the resonant parameters, including the energies and widths are extracted by fitting energy and phase shift. Good agreement with the previous calculations has been found. The details of single-particle resonant states are analysed.
Higgs particles interacting via a scalar Dark Matter field
Bhattacharya Yajnavalkya
2016-01-01
Full Text Available We study a system of two Higgs particles, interacting via a scalar Dark Matter mediating field. The variational method in the Hamiltonian formalism of QFT is used to derive relativistic wave equations for the two-Higgs system, using a truncated Fock-space trial state. Approximate solutions of the two-body equations are used to examine the existence of Higgs bound states.
Ion acceleration beyond 100MeV/amu from relativistic laser-matter interactions
Jung, Daniel; Gautier, Cort; Johnson, Randall; Letzring, Samuel; Shah, Rahul; Palaniyappan, Sasikumar; Shimada, Tsutomu; Fernandez, Juan; Hegelich, Manuel; Yin, Lin; Albright, Brian; Habs, Dieter
2012-10-01
In the past 10 years laser acceleration of protons and ions was mainly achieved by laser light interacting with micrometer scaled solid matter targets in the TNSA regime, favoring acceleration of protons. Ion acceleration based on this acceleration mechanism seems to have stagnated in terms of particle energy, remaining too low for most applications. The high contrast and relativistic intensities available at the Trident laser allow sub-micron solid matter laser interaction dominated by relativistic transparency of the target. This interaction efficiently couples laser momentum into all target ion species, making it a promising alternative to conventional accelerators. However, little experimental research has up to now studied conversion efficiency or beam distributions, which are essential for application, such as ion based fast ignition (IFI) or hadron cancer therapy. We here present experimental data addressing these aspects for C^6+ ions and protons in comparison with the TNSA regime. Unique measurements of angularly resolved ion energy spectra for targets ranging from 30 nm to 25 micron are presented. While the measured conversion efficiency for C^6+ reaches up to ˜7%, peak energies of 1 GeV and 120 MeV have been measured for C^6+ and protons, respectively.
Relativistic high-power laser-matter interactions
Salamin, Yousef I. [Max-Planck-Institute for Nuclear Physics, Saupfercheckweg 1, D-69117 Heidelberg (Germany); Physics Department, American University of Sharjah, POB 26666, Sharjah (United Arab Emirates); Hu, S.X. [Group T-4, Theoretical Division, MS B283, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Hatsagortsyan, Karen Z. [Max-Planck-Institute for Nuclear Physics, Saupfercheckweg 1, D-69117 Heidelberg (Germany); Department of Quantum Electronics, Yerevan State University, A. Manoukian 1, Yerevan 375025 (Armenia); Keitel, Christoph H. [Max-Planck-Institute for Nuclear Physics, Saupfercheckweg 1, D-69117 Heidelberg (Germany)]. E-mail: keitel@mpi-hd.mpg.de
2006-04-15
Recent advances in laser technology have pushed the frontier of maximum intensity achieved to about 10{sup 22}W/cm{sup 2} and investigators currently believe even higher intensities may be reached in the near future. This, combined with other breakthroughs on the fronts of short pulse generation and high repetition rates, have stimulated considerable progress, theoretical as well as experimental, in the field of laser-matter interactions. It is now possible to laser-accelerate electrons to a few hundred MeV and laser-induced pair-production and nuclear physics experiments have made significant progress. This article is devoted to a review of the recent advances in the field and stresses quantum phenomena that require laser field intensities in excess of the relativistic threshold of {approx}10{sup 18}W/cm{sup 2}. Interactions with free electrons, with highly-charged ions and with atoms and clusters, are reviewed. Electron laser acceleration, atomic quantum dynamics, high harmonic generation, quantum electrodynamical effects and nuclear interactions in plasmas and ions, are among the important topics covered in the article.
Relativistic temperature and Higgs-like coupling of thermodynamic interactions
JIANG Wei-zhou
2006-01-01
The thermodynamic interaction at thermodynamic equilibrium in the free fermion gas is described in an alternative way by the coupling of particles with a scalar thermodynamic field that features self-interaction.This alternative coupling is similar to the Higgs coupling and is helpful in understanding the temperature transformation at thermodynamic equilibrium under the Lorentz boost.As this coupling is applied in the abelian interaction fermion gas,nothing nontrivial is obtained.However,an interesting thing happens in the nonabelian interaction fermion gas where the difference appears for the diagonal and off-diagonal intermediate bosons as the Higgs-like coupling is added.
Zhang, Ruili; He, Yang; Xiao, Jianyuan; Liu, Jian; Qin, Hong; Tang, Yifa
2016-01-01
Relativistic dynamics of a charged particle in time-dependent electromagnetic fields has theoretical significance and a wide range of applications. It is often multi-scale and requires accurate long-term numerical simulations using symplectic integrators. For modern large-scale particle simulations in complex, time-dependent electromagnetic field, explicit symplectic algorithms are much more preferable. In this paper, we treat the relativistic dynamics of a particle as a Hamiltonian system on the cotangent space of the space-time, and construct for the first time explicit symplectic algorithms for relativistic charged particles of order 2 and 3 using the sum-split technique and generating functions.
Nishikawa, K.-I.; Hartmann, D. H.; Hardee, P.; Hededal, C.; Mizunno, Y.; Fishman, G. J.
2006-01-01
We performed numerical simulations of particle acceleration, magnetic field generation, and emission from shocks in order to understand the observed emission from relativistic jets and supernova remnants. The investigation involves the study of collisionless shocks, where the Weibel instability is responsible for particle acceleration as well as magnetic field generation. A 3-D relativistic particle-in-cell (RPIC) code has been used to investigate the shock processes in electron-positron plasmas. The evolution of theWeibe1 instability and its associated magnetic field generation and particle acceleration are studied with two different jet velocities (0 = 2,5 - slow, fast) corresponding to either outflows in supernova remnants or relativistic jets, such as those found in AGNs and microquasars. Slow jets have intrinsically different structures in both the generated magnetic fields and the accelerated particle spectrum. In particular, the jet head has a very weak magnetic field and the ambient electrons are strongly accelerated and dragged by the jet particles. The simulation results exhibit jitter radiation from inhomogeneous magnetic fields, generated by the Weibel instability, which has different spectral properties than standard synchrotron emission in a homogeneous magnetic field.
Pondermotive acceleration of charged particles along the relativistic jets of an accreting blackhole
Ebisuzaki, T.; Tajima, T.
2014-05-01
Accreting blackholes such as miniquasars and active galactic nuclei can contribute to the highest energy components of intra- (˜1015 eV) galactic and extra-galactic components (˜1020 eV) of cosmic rays. Alfven wave pulses which are excited in the accretion disk around blackholes propagate in relativistic jets. Because of their highly non-linear nature of the waves, charged particles (protons, ions, and electrons) can be accelerated to high energies in relativistic jets in accreting blackhole systems, the central engine of miniquasars and active galactic nuclei.
Hernandez-Zapata, Sergio; 10.1007/s10701-010-9413-7
2010-01-01
A completely Lorentz-invariant Bohmian model has been proposed recently for the case of a system of non-interacting spinless particles, obeying Klein-Gordon equations. It is based on a multi-temporal formalism and on the idea of treating the squared norm of the wave function as a space-time probability density. The particle's configurations evolve in space-time in terms of a parameter {\\sigma}, with dimensions of time. In this work this model is further analyzed and extended to the case of an interaction with an external electromagnetic field. The physical meaning of {\\sigma} is explored. Two special situations are studied in depth: (1) the classical limit, where the Einsteinian Mechanics of Special Relativity is recovered and the parameter {\\sigma} is shown to tend to the particle's proper time; and (2) the non-relativistic limit, where it is obtained a model very similar to the usual non-relativistic Bohmian Mechanics but with the time of the frame of reference replaced by {\\sigma} as the dynamical temporal...
New particles and interactions
Ellis, J.
1983-07-01
It is intended to indicate how multiparticle dynamics might serve as a valuable means of advancing our knowledge down the more fundamental line of elementary particle physics. The point of view is taken that the Standard SU(3) x SU(2) x U(1) Model is well established, and is now ripe to be used as a tool for analyzing physics beyond the Standard Model. The tool kit should include reliable and efficient ways of distinguishing gluon jets from quark jets, and of discriminating between t,b,c and light quark jets. What the author considers to be the most topical physics issues arising from the recent confirmation of the Standard Model are reviewed. These include the need for dynamical principles which go beyond the gauge princple, and in particular a satisfactory mechanism for gauge symmetry breaking. Some of the ideas proposed for solving these problems, such as technicolor and supersymmetry (SUSY), are reviewed, together with some of the experimental tests that can be performed. SUSY is examined in detail, and some ways of looking for sparticles in e/sup +/e/sup -/ and anti pp collisions are discussed. The author tries to emphasize the crucial role to be played by the multiparticle jet tools in resolving some hot physics issues. It is seen in particular that the ability to discriminate heavy quark jets with high efficiency will be important, as will be good calorimetry and the ability to select (veto) events with (out) leptons. 57 references. (WHK)
Relativistic Reconnection: an Efficient Source of Non-Thermal Particles
Sironi, Lorenzo
2014-01-01
In magnetized astrophysical outflows, the dissipation of field energy into particle energy via magnetic reconnection is often invoked to explain the observed non-thermal signatures. By means of two- and three-dimensional particle-in-cell simulations, we investigate anti-parallel reconnection in magnetically-dominated electron-positron plasmas. Our simulations extend to unprecedentedly long temporal and spatial scales, so we can capture the asymptotic state of the system beyond the initial transients, and without any artificial limitation by the boundary conditions. At late times, the reconnection layer is organized into a chain of large magnetic islands connected by thin X-lines. The plasmoid instability further fragments each X-line into a series of smaller islands, separated by X-points. At the X-points, the particles become unmagnetized and they get accelerated along the reconnection electric field. We provide definitive evidence that the late-time particle spectrum integrated over the whole reconnection r...
Guo, Fan; Li, Hui; Daughton, William; Liu, Yi-Hsin
2014-10-10
Using fully kinetic simulations, we demonstrate that magnetic reconnection in relativistic plasmas is highly efficient at accelerating particles through a first-order Fermi process resulting from the curvature drift of particles in the direction of the electric field induced by the relativistic flows. This mechanism gives rise to the formation of hard power-law spectra in parameter regimes where the energy density in the reconnecting field exceeds the rest mass energy density σ ≡ B(2)/(4πnm(e)c(2))>1 and when the system size is sufficiently large. In the limit σ ≫ 1, the spectral index approaches p = 1 and most of the available energy is converted into nonthermal particles. A simple analytic model is proposed which explains these key features and predicts a general condition under which hard power-law spectra will be generated from magnetic reconnection.
Particle acceleration in explosive relativistic reconnection events and Crab Nebula gamma-ray flares
Lyutikov, Maxim; Komissarov, Sergey; Porth, Oliver
2016-01-01
We develop a model of particle acceleration in explosive reconnection events in relativistic magnetically-dominated plasmas and apply it to explain gamma-ray flares from the Crab Nebula. The model relies on development of current-driven instabilities on macroscopic scales (not related to plasma skin depths). Using analytical and numerical methods (fluid and particle-in-cell simulations), we study a number of model problems in relativistic magnetically-dominated plasma: (i) we extend Syrovatsky's classical model of explosive X-point collapse to magnetically-dominated plasmas; (ii) we consider instability of two-dimensional force-free system of magnetic flux tubes; (iii) we consider merger of two zero total poloidal current magnetic flux tubes. In all cases regimes of spontaneous and driven evolution are investigated. We identify two stages of particle acceleration: (i) fast explosive prompt X-point collapse and (ii) ensuing island merger. The fastest acceleration occurs during the initial catastrophic X-point ...
Geometrical Unification of Gravitation and Dark Energy: The Universe as a Relativistic Particle
Hojman, Sergio A; Rubio, Carlos A
2014-01-01
The Lagrangian, the Hamilton--Jacobi equation and the Schr\\"{o}dinger, Dirac and Klein--Gordon equations for the Friedmann--Robertson--Walker--Quintessence (FRWQ) system are presented and solved exactly for different interesting scenarios. The classical Lagrangian reproduces the usual two (second order) dynamical equations for the radius of the Universe and for the scalar field as well as the (first order) constraint equation. The approach naturally unifies gravity and dark energy, which may be related to the tlaplon (scalar torsion potential). The Lagrangian and the equations of motion are those of a relativistic particle moving on a two dimensional spacetime where the conformal metric factor is related to the dark energy scalar field potential. This allows us to quantize the system, obtaining a Klein-Gordon equation when the Universe is considered as a spinless particle, and a Dirac equation when the Universe is thought as a relativistic spin particle.
Relativistic, model-independent, three-particle quantization condition
Hansen, Maxwell T
2013-01-01
This is a combined write-up for two talks which were given consecutively and which described different aspects of the same topic. We present a generalization of L\\"uscher's relation between the finite-volume spectrum and S-matrix to three particles. Specifically, we consider a scalar field theory, which has a $\\mathbb{Z}_2$ symmetry that prevents even/odd coupling. The theory is assumed to have no two-particle bound states and to have two-particle phase shifts that are bounded by $\\pi/2$ in the regime of elastic scattering. Considering center of mass energies between one and five particle masses, we evaluate a three-to-three finite-volume correlator to all orders in perturbation theory. Only terms which are exponentially suppressed in volume are neglected. From poles in the correlator we then determine the relation between finite-volume spectrum and scattering quantities. In this analysis one must carefully treat the unitary cusp at two-particle threshold. This point, which was neglected in the conference tal...
Radial equilibrium of relativistic particle bunches in plasma wakefield accelerators
Lotov, K V
2016-01-01
Drive particle beams in linear or weakly nonlinear regimes of the plasma wakefield accelerator quickly reach a radial equilibrium with the wakefield, which is described in detail for the first time. The equilibrium beam state and self-consistent wakefields are obtained by combining analytical relationships, numerical integration, and first-principle simulations. In the equilibrium state, the beam density is strongly peaked near the axis, the beam radius is constant along the beam, and longitudinal variation of the focusing strength is balanced by varying beam emittance. The transverse momentum distribution of beam particles depends on the observation radius and is neither separable, nor Gaussian.
Zheng, Chun-Yang; Zhu, Shao-Ping; He, Xian-Tu
2002-07-01
The quasi-static magnetic fields created in the interaction of relativistic laser pulses with under-dense plasmas have been investigated by three-dimensional particle-in-cell simulation. The relativistic ponderomotive force can drive an intense electron current in the laser propagation direction, which is responsible for the generation of a helical magnetic field. The axial magnetic field results from a difference beat of wave-wave, which drives a solenoidal current. In particular, the physical significance of the kinetic model for the generation of the axial magnetic field is discussed.
郑春阳; 朱少平; 贺贤土
2002-01-01
The quasi-static magnetic fields created in the interaction of relativistic laser pulses with under-dense plasmashave been investigated by three-dimensional particle-in-cell simulation. The relativistic ponderomotive force candrive an intense electron current in the laser propagation direction, which is responsible for the generation ofa helical magnetic field. The axial magnetic field results from a difference beat of wave-wave, which drives asolenoidal current. In particular, the physical significance of the kinetic model for the generation of the axialmagnetic field is discussed.
Babatunde J.Falaye; Sameer M.Ikhdair
2013-01-01
The Dirac equation is solved to obtain its approximate bound states for a spin-1/2 particle in the presence of trigonometric P(o)schl-Teller (tPT) potential including a Coulomb-like tensor interaction with arbitrary spin-orbit quantum number κ using an approximation scheme to substitute the centrifugal terms κ(κ ± 1)r-2.In view of spin and pseudo-spin (p-spin) symmetries,the relativistic energy eigenvalues and the corresponding two-component wave functions of a particle moving in the field of attractive and repulsive tPT potentials are obtained using the asymptotic iteration method (AIM).We present numerical results in the absence and presence of tensor coupling A and for various values of spin and p-spin constants and quantum numbers n and κ.The non-relativistic limit is also obtained.
Zhu, Shi-Liang; Zhang, Dan-Wei; Wang, Z D
2009-05-29
We study theoretically the localization of relativistic particles in disordered one-dimensional chains. It is found that the relativistic particles tend to delocalization in comparison with the nonrelativistic particles with the same disorder strength. More intriguingly, we reveal that the massless Dirac particles are entirely delocalized for any energy due to the inherent chiral symmetry, leading to a well-known result that particles are always localized in one-dimensional systems for arbitrary weak disorders to break down. Furthermore, we propose a feasible scheme to detect the delocalization feature of the Dirac particles with cold atoms in a light-induced gauge field.
Relativistic Configuration Interaction Treatment of Generalized Oscillator Strength for Krypton
WANG Huang-Chun; QU Yi-Zhi; LIU Chun-Hua
2007-01-01
A fully relativistic configuration interaction method is developed to investigate the transition energies and general oscillator strengths of the lower lying states of krypton, for both optically allowed and optically forbidden transitions. The calculated results are in agreement with the recent experimental measurements. The calculated transition energies for the 5s and 5s' transitions are 9.970 and 10.717eV, which agree with the experimental data of 10.033 and 10.643 eV. The calculated oscillator strengths are 0.211 and 0.170, comparable with the experimental results 0.214(±0.012) and 0.194 (±0.012), respectively. The momentum transfer positions ( K2 in a.u.) of the minimum and maximum GOSs in the 4s24p6 → 4s24p5 (5s + 5s') transitions are 1.105 and 2.225, comparable with the measurements results 1.24 and 2.97 [Phys. Rev. A 67 (2003) 062708].
The interaction of relativistic spacecrafts with the interstellar medium
Hoang, Thiem; Burkhart, Blakesley; Loeb, Abraham
2016-01-01
The Breakthrough Starshot initiative aims to launch a gram-scale spacecraft to a speed of $v\\sim 0.2$c, capable of reaching the nearest star system, $\\alpha$ Centauri, in about 20 years. However, a critical challenge for the initiative is the damage to the spacecraft by interstellar gas and dust during the journey. In this paper, we quantify the interaction of a relativistic spacecraft with gas and dust in the interstellar medium. For gas bombardment, we find that damage by track formation due to heavy elements is an important effect. We find that gas bombardment can potentially damage the surface of the spacecraft to a depth of $\\sim 0.1$ mm for quartz material after traversing a gas column of $N_{\\rm H}\\sim 2\\times 10^{18}\\rm cm^{-2}$ along the path to $\\alpha$ Centauri, whereas the effect is much weaker for graphite material. The effect of dust bombardment erodes the spacecraft surface and produces numerous craters due to explosive evaporation of surface atoms. For a spacecraft speed $v=0.2c$, we find that...
Mitigating Particle Integration Error in Relativistic Laser-Plasma Simulations
Higuera, Adam; Weichmann, Kathleen; Cowan, Benjamin; Cary, John
2016-10-01
In particle-in-cell simulations of laser wakefield accelerators with a0 greater than unity, errors in particle trajectories produce incorrect beam charges and energies, predicting performance not realized in experiments such as the Texas Petawatt Laser. In order to avoid these errors, the simulation time step must resolve a time scale smaller than the laser period by a factor of a0. If the Yee scheme advances the fields with this time step, the laser wavelength must be over-resolved by a factor of a0 to avoid dispersion errors. Here is presented and demonstrated with Vorpal simulations, a new electromagnetic algorithm, building on previous work, correcting Yee dispersion for arbitrary sub-CFL time steps, reducing simulation times by a0.
Resonant and non-resonant whistlers-particle interaction in the radiation belts
Camporeale, E.
2015-01-01
We study the wave-particle interactions between lower band chorus whistlers and an anisotropic tenuous population of relativistic electrons. We present the first direct comparison of first-principle Particle-in-Cell (PIC) simulations with a quasi-linear diffusion code. In the PIC approach, the waves
Resonant and non-resonant whistlers-particle interaction in the radiation belts
Camporeale, E.
2014-01-01
We study the wave-particle interactions between lower band chorus whistlers and an anisotropic tenuous population of relativistic electrons. We present the first direct comparison of first-principle Particle-in-Cell (PIC) simulations with a quasi-linear diffusion code, in this context. In the PIC ap
Entanglement of two relativistic particles with discrete momenta
Palge, Veiko; Dunningham, Jacob
2014-01-01
We study the structure of maps that Lorentz boosts induce on the spin degree of freedom of a system consisting of two massive spin-$1/2$ particles. We consider the case where the spin state is described by the Werner state and the momenta are discrete. Transformations on the spins are systematically investigated in various boost scenarios by calculating the orbit and concurrence of the bipartite spin state with different kinds of product and entangled momenta. We confirm the general conclusio...
Shukla, Chandrasekhar; Patel, Kartik
2016-01-01
We carry out Particle-in-Cell (PIC) simulations to study the instabilities associated with a 2-D sheared electron flow configuration against a neutralizing background of ions. Both weak and strong relativistic flow velocities are considered. In the weakly relativistic case, we observe the development of electromagnetic Kelvin Helmholtz instability with similar characteristics as that predicted by the electron Magnetohydrodynamic (EMHD) model. On other hand, in strong relativistic case the compressibility effects of electron fluid dominate and introduce upper hybrid electrostatic oscillations transverse to the flow which are very distinct from EMHD fluid behaviour. In the nonlinear regime, both weak and strong relativistic cases lead to turbulence with broad power law spectrum.
Particle Dynamics under Quasi-linear Interaction with Electromagnetic Waves
Castejon, F.; Eguilior, S.
2003-07-01
Langevin equations for quasi-linear wave particle interaction are obtained taking advantage of the unique vocal equivalence between Fokker-Plank equation and the former ones. Langevin equations are solved numerically and, hence, the evolution of a single particle embedded in an electromagnetic field in momentum space is obtained. The equations are relativistic and valid for any wave. It is also shown that the stochastic part of the equations is negligible in comparison with the deterministic term, except for the momentum to the resonance condition for the main parallel refractive index. (Author) 24 refs.
Demonstration of Coherent Terahertz Transition Radiation from Relativistic Laser-Solid Interactions
Liao, Guo-Qian; Li, Yu-Tong; Zhang, Yi-Hang; Liu, Hao; Ge, Xu-Lei; Yang, Su; Wei, Wen-Qing; Yuan, Xiao-Hui; Deng, Yan-Qing; Zhu, Bao-Jun; Zhang, Zhe; Wang, Wei-Min; Sheng, Zheng-Ming; Chen, Li-Ming; Lu, Xin; Ma, Jing-Long; Wang, Xuan; Zhang, Jie
2016-05-01
Coherent transition radiation in the terahertz (THz) region with energies of sub-mJ/pulse has been demonstrated by relativistic laser-driven electron beams crossing the solid-vacuum boundary. Targets including mass-limited foils and layered metal-plastic targets are used to verify the radiation mechanism and characterize the radiation properties. Observations of THz emissions as a function of target parameters agree well with the formation-zone and diffraction model of transition radiation. Particle-in-cell simulations also well reproduce the observed characteristics of THz emissions. The present THz transition radiation enables not only a potential tabletop brilliant THz source, but also a novel noninvasive diagnostic for fast electron generation and transport in laser-plasma interactions.
High density ultrashort relativistic positron beam generation by laser-plasma interaction
Gu, Y. J.; Klimo, O.; Weber, S.; Korn, G.
2016-11-01
A mechanism of high energy and high density positron beam creation is proposed in ultra-relativistic laser-plasma interaction. Longitudinal electron self-injection into a strong laser field occurs in order to maintain the balance between the ponderomotive potential and the electrostatic potential. The injected electrons are trapped and form a regular layer structure. The radiation reaction and photon emission provide an additional force to confine the electrons in the laser pulse. The threshold density to initiate the longitudinal electron self-injection is obtained from analytical model and agrees with the kinetic simulations. The injected electrons generate γ-photons which counter-propagate into the laser pulse. Via the Breit-Wheeler process, well collimated positron bunches in the GeV range are generated of the order of the critical plasma density and the total charge is about nano-Coulomb. The above mechanisms are demonstrated by particle-in-cell simulations and single electron dynamics.
Dieckmann, M E; Markoff, S; Borghesi, M; Zepf, M
2015-01-01
The jets of compact accreting objects are composed of electrons and a mixture of positrons and ions. These outflows impinge on the interstellar or intergalactic medium and both plasmas interact via collisionless processes. Filamentation (beam-Weibel) instabilities give rise to the growth of strong electromagnetic fields. These fields thermalize the interpenetrating plasmas. Hitherto, the effects imposed by a spatial non-uniformity on filamentation instabilities have remained unexplored. We examine the interaction between spatially uniform background electrons and a minuscule cloud of electrons and positrons. A square micro-cloud of equally dense electrons and positrons impinges in our particle-in-cell (PIC) simulation on a spatially uniform plasma at rest. The mean speed of the micro-cloud corresponds to a relativistic factor of 15, which is relevant for laboratory experiments and for relativistic astrophysical outflows. The spatial distributions of the leptons and of the electromagnetic fields are examined a...
Self-modulated dynamics of a relativistic charged particle beam in plasma wake field excitation
Akhter, T.; Fedele, R. [Dipartimento di Fisica ‘Ettore Pancini’, Università di Napoli Federico II and INFN Sezione di Napoli, Napoli (Italy); Nicola, S. De [CNR-SPIN and INFN Sezione di Napoli, Napoli (Italy); Tanjia, F. [Dipartimento di Fisica ‘Ettore Pancini’, Università di Napoli Federico II and INFN Sezione di Napoli, Napoli (Italy); Jovanović, D. [Institute of Physics, University of Belgrade, Belgrade (Serbia); Mannan, A. [Department of Physics, Jahangirnagar University, Savar, Dhaka (Bangladesh)
2016-09-01
The self-modulated dynamics of a relativistic charged particle beam is provided within the context of the theory of plasma wake field excitation. The self-consistent description of the beam dynamics is provided by coupling the Vlasov equation with a Poisson-type equation relating the plasma wake potential to the beam density. An analysis of the beam envelope self-modulation is then carried out and the criteria for the occurrence of the instability are discussed thereby.
Berard, A.; Grandati, Y.; Mohrbach, H. [Universite Paul Verlaine, Institut de Physique, Laboratoire de Physique Moleculaire et des Collisions, ICPMB, IF CNRS 2843, Metz, Cedex 3 (France); Ghosh, Subir [Indian Statistical Institute, Physics and Applied Mathematics Unit, Kolkata (India); Pal, Probir [S.N. Bose National Centre for Basic Sciences, Kolkata (India)
2011-11-15
In this paper we have considered the dynamics of an anomalous (g{ne}2) charged relativistic spinning particle in the presence of an external electromagnetic field. A constraint analysis is done and the complete set of Dirac brackets are provided that generate the canonical Lorentz algebra and dynamics through Hamiltonian equations of motion. The spin-induced effective curvature of spacetime and its possible connection with Analogue Gravity models are commented upon. (orig.)
Relativistic Dirac equation for particles with arbitrary half-integral spin
Guseinov, I I
2008-01-01
The sets of 2(2s+1)-component matrices through the four-component Dirac matrices are suggested, where s=3/2, 5/2,.... Using these matrices sets the Dirac relativistic equation for a description of arbitrary half-integral spin particles is constructed. The new Dirac equation of motion leads to an equation of continuity with a positive-definite probability density.
Melzani, Mickaël; Folini, Doris; Winisdoerffer, Christophe; Favre, Jean M
2014-01-01
Magnetic reconnection is a leading mechanism for magnetic energy conversion and high-energy non-thermal particle production in a variety of high-energy astrophysical objects, including ones with relativistic ion-electron plasmas (e.g., microquasars or AGNs) - a regime where first principle studies are scarce. We present 2D particle-in-cell (PIC) simulations of low $\\beta$ ion-electron plasmas under relativistic conditions, i.e., with inflow magnetic energy exceeding the plasma rest-mass energy. We identify outstanding properties: (i) For relativistic inflow magnetizations (here $10 80$), the reconnection electric field is sustained more by bulk inertia than by thermal inertia. It challenges the thermal-inertia-paradigm and its implications. (iii) The inflows feature sharp transitions at the entrance of the diffusion zones. These are not shocks but results from particle ballistic motions, all bouncing at the same location, provided that the thermal velocity in the inflow is far smaller than the inflow E cross...
Zabalza, Víctor
2015-01-01
The ultimate goal of the observation of nonthermal emission from astrophysical sources is to understand the underlying particle acceleration and evolution processes, and few tools are publicly available to infer the particle distribution properties from the observed photon spectra from X-ray to VHE gamma rays. Here I present naima, an open source Python package that provides models for nonthermal radiative emission from homogeneous distribution of relativistic electrons and protons. Contributions from synchrotron, inverse Compton, nonthermal bremsstrahlung, and neutral-pion decay can be computed for a series of functional shapes of the particle energy distributions, with the possibility of using user-defined particle distribution functions. In addition, naima provides a set of functions that allow to use these models to fit observed nonthermal spectra through an MCMC procedure, obtaining probability distribution functions for the particle distribution parameters. Here I present the models and methods availabl...
Matter and Interactions: A Particle Physics Perspective
Organtini, Giovanni
2011-01-01
In classical mechanics, matter and fields are completely separated; matter interacts with fields. For particle physicists this is not the case; both matter and fields are represented by particles. Fundamental interactions are mediated by particles exchanged between matter particles. In this article we explain why particle physicists believe in…
Cosmology as Relativistic Particle Mechanics: From Big Crunch to Big Bang
Russo, J G
2004-01-01
Cosmology can be viewed as geodesic motion in an appropriate metric on an `augmented' target space; here we obtain these geodesics from an effective relativistic particle action. As an application, we find some exact (flat and curved) cosmologies for models with N scalar fields taking values in a hyperbolic target space for which the augmented target space is a Milne universe. The singularities of these cosmologies correspond to points at which the particle trajectory crosses the Milne horizon, suggesting a novel resolution of them, which we explore via the Wheeler-deWitt equation.
Applying the relativistic quantization condition to a three-particle bound state in a periodic box
Hansen, Maxwell T.; Sharpe, Stephen R.
2017-02-01
Using our recently developed relativistic three-particle quantization condition [Phys. Rev. D 90, 116003 (2014), 10.1103/PhysRevD.90.116003; Phys. Rev. D 92, 114509 (2015), 10.1103/PhysRevD.92.114509], we study the finite-volume energy shift of a spin-zero three-particle bound state. We reproduce the result obtained using nonrelativistic quantum mechanics by Meißner et al. in [Phys. Rev. Lett. 114, 091602 (2015), 10.1103/PhysRevLett.114.091602] and generalize the result to a moving frame.
Cotner, Eric
2016-01-01
Scalar particles are a common prediction of many beyond the Standard Model theories. If they are light and cold enough, there is a possibility they may form Bose-Einstein condensates, which will then become gravitationally bound. These boson stars are solitonic solutions to the Einstein-Klein-Gordon equations, but may be approximated in the non-relativistic regime with a coupled Schr\\"odinger-Poisson system. General properties of single soliton states are derived, including the possibility of quartic self-interactions. Binary collisions between two solitons are then studied, and the effects of different mass ratios, relative phases, self-couplings, and separation distances are characterized, leading to an easy conceptual understanding of how these parameters affect the collision outcome in terms of conservation of energy. Applications to dark matter are discussed.
Particle acceleration by ultra-intense laser-plasma interactions
Nakajima, K
2002-01-01
The mechanism of particle acceleration by ultra-increase laser-plasma interaction is explained. Laser light can generate very high electric field by focusing with electromagnetic field matched phase with frequency. 1018 W/cm sup 2 laser light produce about 3 TV/m electric field. Many laser accelerators, which particle acceleration method satisfies phase matching particle and electric field, are proposed. In these accelerators, the Inverse Cherenkov Accelerator, Inverse FEL Accelerator and Laser-Plasma Accelerator are explained. Three laser-plasma acceleration mechanisms: Plasma Beat Wave Accelerator, Laser Wake-Field Accelerator (LWFA) and Self-Modulated LWFA, showed particle acceleration by experiments. By developing a high speed Z pinch capillary-plasma optical waveguide, 2.2 TW and 90 fs laser pulse could be propagated 2 cm at 40 mu m focusing radius in 1999. Dirac acceleration or ultra-relativistic ponderomotive acceleration mechanism can increase energy exponentially. (S.Y.)
Relativistic Dirac Representation of Dynamically-Generated Elementary-Particle Mass
Chew, Geoffrey F
2008-01-01
Special-relativistic dynamically-generated elementary-particle mass is represented by a self-adjoint energy operator acting on a rigged Hilbert space (RHS) of functions over the 6-dimensional Euclidean-group manifold. Even though this operator's eigenvalues correspond to total energy, it is not the generator of infinitesimal wave-function evolution in classical time. Extending formalism which Dirac invented and applied non-relativistically, unitary Poincar\\'e-group representation is provided by the wave functions of a spacelike entity that we call "preon". Six continuous Feynman-path-contacting preon coordinates specify spatial location (3 coordinates), lightlike-velocity-direction (2 coordinates) and transverse polarization (1 coordinate). [Utility of the the term "preon observable" is dubious.] Velocity and spatial location collaborate to define a preon time operator conjugate to the energy operator. In RHS bases alternative to functions over the group manifold, the wave function depends on a preon "velocit...
Relativistic effects in two-particle emission for electron and neutrino reactions
Simo, I Ruiz; Amaro, J E; Barbaro, M B; Caballero, J A; Donnelly, T W
2014-01-01
Two-particle two-hole contributions to electroweak response functions are computed in a fully relativistic Fermi gas, assuming that the electroweak current matrix elements are independent of the kinematics. We analyze the genuine kinematical and relativistic effects before including a realistic meson-exchange current (MEC) operator. This allows one to study the mathematical properties of the non-trivial seven-dimensional integrals appearing in the calculation and to design an optimal numerical procedure to reduce the computation time. This is required for practical applications to CC neutrino scattering experiments, where an additional integral over the neutrino flux is performed. A check of the feasibility of this model using a more realistic current operator is presented for the case of the contact term of the electroweak MEC.
Quantum-mechanical description of Lense-Thirring effect for relativistic scalar particles
Silenko, Alexander J
2014-01-01
Exact expression for the Foldy-Wouthuysen Hamiltonian of scalar particles is used for a quantum-mechanical description of the relativistic Lense-Thirring effect. The exact evolution of the angular momentum operator in the Kerr field approximated by a spatially isotropic metric is found. The quantum-mechanical description of the full Lense-Thirring effect based on the Laplace-Runge-Lenz vector is given in the nonrelativistic and weak-field approximation. Relativistic quantum-mechanical equations for the velocity and acceleration operators are obtained. The equation for the acceleration defines the Coriolis-like and centrifugal-like accelerations and presents the quantum-mechanical description of the frame-dragging effect.
Ellison, Donald C; Bykov, Andrei M
2015-01-01
We include a general form for the scattering mean free path in a nonlinear Monte Carlo model of relativistic shock formation and Fermi acceleration. Particle-in-cell (PIC) simulations, as well as analytic work, suggest that relativistic shocks tend to produce short-scale, self-generated magnetic turbulence that leads to a scattering mean free path (mfp) with a stronger momentum dependence than the mfp ~ p dependence for Bohm diffusion. In unmagnetized shocks, this turbulence is strong enough to dominate the background magnetic field so the shock can be treated as parallel regardless of the initial magnetic field orientation, making application to gamma-ray bursts (GRBs), pulsar winds, Type Ibc supernovae, and extra-galactic radio sources more straightforward and realistic. In addition to changing the scale of the shock precursor, we show that, when nonlinear effects from efficient Fermi acceleration are taken into account, the momentum dependence of the mfp has an important influence on the efficiency of cosm...
2014-01-01
It has recently been shown within a formal axiomatic framework using a definition of four-momentum based on the Stückelberg-Feynman-Sudarshan-Recami ''switching principle'' that Einstein's relativistic dynamics is logically consistent with the existence of interacting faster-than-light inertial particles. Our results here show, using only basic natural assumptions on dynamics, that this definition is the only possible way to get a consistent theory of such particles moving within the geometry of Minkowskian spacetime. We present a strictly formal proof from a streamlined axiom system that given any slow or fast inertial particle, all inertial observers agree on the value of {m}\\cdot √{|1-v^2|}, where {m} is the particle's relativistic mass and vits speed. This confirms formally the widely held belief that the relativistic mass and momentum of a positive-mass faster-than-light particle must decrease as its speed increases.
Magnetic Moment Fields in Dense Relativistic Plasma Interacting with Laser Radiations
B.Ghosh1* , S.N.Paul 1 , S.Bannerjee2 and C.Das3
2013-04-01
Full Text Available Theory of the generation of magnetic moment field from resonant interaction of three high frequency electromagnetic waves in un-magnetized dense electron plasma is developed including the relativistic change of electron mass. It is shown that the inclusion of relativistic effect enhances the magnetic moment field. For high intensity laser beams this moment field may be of the order of a few mega gauss. Such a high magnetic field can considerably affect the transport of electrons in fusion plasma
``Pheudo-cyclotron'' radiation of non-relativistic particles in small-scale magnetic turbulence
Keenan, Brett; Ford, Alex; Medvedev, Mikhail V.
2014-03-01
Plasma turbulence in some astrophysical objects (e.g., weakly magnetized collisionless shocks in GRBs and SN) has small-scale magnetic field fluctuations. We study spectral characteristics of radiation produced by particles moving in such turbulence. It was shown earlier that relativistic particles produce jitter radiation, which spectral characteristics are markedly different from synchrotron radiation. Here we study radiation produced by non-relativistic particles. In the case of a homogeneous fields, such radiation is cyclotron and its spectrum consists of just a single harmonic at the cyclotron frequency. However, in the sub-Larmor-scale turbulence, the radiation spectrum is much reacher and reflects statistical properties of the underlying magnetic field. We present both analytical estimates and results of ab initio numerical simulations. We also show that particle propagation in such turbulence is diffusive and evaluate the diffusion coefficient. We demonstrate that the diffusion coefficient correlates with some spectral parameters. These results can be very valuable for remote diagnostics of laboratory and astrophysical plasmas. Supported by grant DOE grant DE-FG02-07ER54940 and NSF grant AST-1209665.
Nonthermal Particle Acceleration in 3D Relativistic Magnetic Reconnection in Pair Plasma
Werner, Gregory R.; Uzdensky, Dmitri A.
2017-07-01
As a fundamental process converting magnetic to plasma energy in high-energy astrophysical plasmas, relativistic magnetic reconnection is a leading explanation for the acceleration of particles to the ultrarelativistic energies that are necessary to power nonthermal emission (especially X-rays and gamma-rays) in pulsar magnetospheres and pulsar wind nebulae, coronae and jets of accreting black holes, and gamma-ray bursts. An important objective of plasma astrophysics is therefore the characterization of nonthermal particle acceleration (NTPA) effected by reconnection. Reconnection-powered NTPA has been demonstrated over a wide range of physical conditions using large 2D kinetic simulations. However, its robustness in realistic 3D reconnection—in particular, whether the 3D relativistic drift-kink instability (RDKI) disrupts NTPA—has not been systematically investigated, although pioneering 3D simulations have observed NTPA in isolated cases. Here, we present the first comprehensive study of NTPA in 3D relativistic reconnection in collisionless electron-positron plasmas, characterizing NTPA as the strength of 3D effects is varied systematically via the length in the third dimension and the strength of the guide magnetic field. We find that, while the RDKI prominently perturbs 3D reconnecting current sheets, it does not suppress particle acceleration, even for zero guide field; fully 3D reconnection robustly and efficiently produces nonthermal power-law particle spectra closely resembling those obtained in 2D. This finding provides strong support for reconnection as the key mechanism powering high-energy flares in various astrophysical systems. We also show that strong guide fields significantly inhibit NTPA, slowing reconnection and limiting the energy available for plasma energization, yielding steeper and shorter power-law spectra.
Directional depletion interactions in shaped particles
A. Scala; P.G. De Sanctis Lucentini
2014-01-01
... that such particles can be utilized as "artificial atoms" to build new materials. To elucidate the effects of the shape of particles upon the magnitude of entropic interaction, we analyse the entropic interactions of two cut-spheres...
Superparamagnetic relaxation of weakly interacting particles
Mørup, Steen; Tronc, Elisabeth
1994-01-01
The influence of particle interactions on the superparamagnetic relaxation time has been studied by Mossbauer spectroscopy in samples of maghemite (gamma-Fe2O3) particles with different particle sizes and particle separations. It is found that the relaxation time decreases with decreasing particl...
From physical principles to relativistic classical Hamiltonian and Lagrangian particle mechanics
Carcassi, Gabriele
2015-01-01
We show that classical particle mechanics (Hamiltonian and Lagrangian consistent with relativistic electromagnetism) can be derived from three fundamental assumptions: infinite reducibility, deterministic and reversible evolution, and kinematic equivalence. The core idea is that deterministic and reversible systems preserve the cardinality of a set of states, which puts considerable constraints on the equations of motion. This perspective links different concepts from different branches of math and physics (e.g. cardinality of a set, cotangent bundle for phase space, Hamiltonian flow, locally Minkowskian space-time manifold), providing new insights. The derivation strives to use definitions and mathematical concepts compatible with future extensions to field theories and quantum mechanics.
Melekhin, V. N.
1997-02-01
It is shown that the transverse momentum imparted to a relativistic particle, passing through an accelerating cavity near and parallel to its axis ( z-axis), may be presented as a trajectory integral with an integrand being proportional to z-component of high-frequency magnetic field. The x- and y-component of this momentum are equal in value but opposite in sign. The obtained result is compared with Panofsky-Wenzel theorem. This result gives one more procedure to check the accuracy of high-frequency focusing simulation.
Hadron production in relativistic heavy ion interactions and the search for the quark-gluon plasma
Tannenbaum, M.J.
1989-12-01
The course starts with an introduction, from the experimentalist's point of view, of the challenge of measuring Relativistic Heavy Ion interactions. A review of some theoretical predictions for the expected signatures of the quark gluon plasma will be made, with a purpose to understand how they relate to quantities which may be experimentally measured. A short exposition of experimental techniques and details is given including charged particles in matter, momentum resolution, kinematics and Lorentz Transformations, calorimetry. Principles of particle identification including magnetic spectrometers, time of flight measurement. Illustrations using the E802 spectrometer and other measured results. Resolution smearing of spectra, and binning effects. Parent to daughter effects in decay, with {pi}{sup 0} {yields} {gamma} {gamma} as an example. The experimental situation from the known data in p -- p collisions and proton-nucleus reactions is reviewed and used as a basis for further discussions. The Cronin Effect'' and the Seagull Effect'' being two arcana worth noting. Then, selected experiments from the BNL and CERN heavy ion programs are discussed in detail. 118 refs., 45 figs.
The $q\\overline{q}$ relativistic interaction in the Wilson loop approach
Brambilla, Nora; Brambilla, Nora; Vairo, Antonio
1997-01-01
We study the $q \\bar{q}$ relativistic interaction starting from the Feynman-Schwinger representation of the gauge-invariant quark-antiquark Green function. We focus on the one-body limit and discuss the obtained non-perturbative interaction kernel of the Dirac equation.
The $q \\bar{q}$ relativistic interaction in the Wilson loop approach
Brambilla, Nora; Vairo, Antonio
1997-01-01
We study the $q \\bar{q}$ relativistic interaction starting from the Feynman-Schwinger representation of the gauge-invariant quark-antiquark Green function. We focus on the one-body limit and discuss the obtained non-perturbative interaction kernel of the Dirac equation.
Single twistor description of massless, massive, AdS, and other interacting particles
Bars, Itzhak; Bars, Itzhak; Picon, Moises
2006-01-01
The Penrose transform between twistors and the phase space of massless particles is generalized from the massless case to an assortment of other particle dynamical systems, including special examples of massless or massive particles, relativistic or non-relativistic, interacting or non-interacting, in flat space or curved spaces. Our unified construction involves always the \\it{same} twistor Z^A with only four complex degrees of freedom and subject to the \\it{same} helicity constraint. Only the twistor to phase space transform differs from one case to another. Hence a unification of diverse particle dynamical systems is displayed by the fact that they all share the same twistor description. Our single twistor approach seems to be rather different and strikingly economical construction of twistors compared to other past approaches that introduced multiple twistors to represent some similar but far more limited set of particle phase space systems.
Avetissian, Hamlet
2006-01-01
This book covers a large class of fundamental investigations into Relativistic Nonlinear Electrodynamics. It explores the interaction between charged particles and strong laser fields, mainly concentrating on contemporary problems of x-ray lasers, new type small set-up high-energy accelerators of charged particles, as well as electron-positron pair production from super powerful laser fields of relativistic intensities. It will also discuss nonlinear phenomena of threshold nature that eliminate the concurrent inverse processes in the problems of Laser Accelerator and Free Electron Laser, thus creating new opportunities for solving these problems.
Wallin, Erik; Marklund, Mattias
2014-01-01
We model the emission of high energy photons due to relativistic particles in a plasma interacting with a super-intense laser. This is done in a particle-in-cell code where the high frequency radiation normally cannot be resolved, due to the unattainable demands it would place on the time and space resolution. A simple expression for the synchrotron radiation spectra is used together with a Monte-Carlo method for the emittance. We extend to previous work by accounting acceleration due to arbitrary fields, considering the particles to be in instantaneous circular motion due to an effective magnetic field. Furthermore we implement noise reduction techniques and present estimations of the validity of the method. Finally we perform a rigorous comparison to the mechanism of radiation reaction, with the emitted energy very well in agreement with the radiation reaction loss.
Nalewajko, Krzysztof [Kavli Institute for Particle Astrophysics and Cosmology, SLAC National Accelerator Laboratory, Stanford University, 2575 Sand Hill Road M/S 29, Menlo Park, CA 94025 (United States); Uzdensky, Dmitri A.; Werner, Gregory R. [Center for Integrated Plasma Studies, Physics Department, University of Colorado, UCB 390, Boulder, CO 80309-0390 (United States); Cerutti, Benoit [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Begelman, Mitchell C., E-mail: knalew@stanford.edu [JILA, University of Colorado and National Institute of Standards and Technology, 440 UCB, Boulder, CO 80309 (United States)
2015-12-20
We investigate the distribution of particle acceleration sites, independently of the actual acceleration mechanism, during plasmoid-dominated, relativistic collisionless magnetic reconnection by analyzing the results of a particle-in-cell numerical simulation. The simulation is initiated with Harris-type current layers in pair plasma with no guide magnetic field, negligible radiative losses, no initial perturbation, and using periodic boundary conditions. We find that the plasmoids develop a robust internal structure, with colder dense cores and hotter outer shells, that is recovered after each plasmoid merger on a dynamical timescale. We use spacetime diagrams of the reconnection layers to probe the evolution of plasmoids, and in this context we investigate the individual particle histories for a representative sample of energetic electrons. We distinguish three classes of particle acceleration sites associated with (1) magnetic X-points, (2) regions between merging plasmoids, and (3) the trailing edges of accelerating plasmoids. We evaluate the contribution of each class of acceleration sites to the final energy distribution of energetic electrons: magnetic X-points dominate at moderate energies, and the regions between merging plasmoids dominate at higher energies. We also identify the dominant acceleration scenarios, in order of decreasing importance: (1) single acceleration between merging plasmoids, (2) single acceleration at a magnetic X-point, and (3) acceleration at a magnetic X-point followed by acceleration in a plasmoid. Particle acceleration is absent only in the vicinity of stationary plasmoids. The effect of magnetic mirrors due to plasmoid contraction does not appear to be significant in relativistic reconnection.
[Research in elementary particles and interactions]. Technical progress report
Adair, R.; Sandweiss, J.; Schmidt, M.
1992-05-01
Research of the Yale University groups in the areas of elementary particles and their interactions are outlined. Work on the following topics is reported: development of CDF trigger system; SSC detector development; study of heavy flavors at TPL; search for composite objects produced in relativistic heavy-ion collisions; high-energy polarized lepton-nucleon scattering; rare K{sup +} decays; unpolarized high-energy muon scattering; muon anomalous magnetic moment; theoretical high-energy physics including gauge theories, symmetry breaking, string theory, and gravitation theory; study of e{sup +}e{sup {minus}} interactions with the SLD detector at SLAC; and the production and decay of particles containing charm and beauty quarks.
Seto, Keita; Nagatomo, Hideo; Koga, James; Mima, Kunioki
In the near future, the intensity of the ultra-short pulse laser will reach to 1022 W/cm2. When an electron is irradiated by this laser, the electron's behavior is relativistic with significant bremsstrahlung. This radiation from the electron is regarded as the energy loss of electron. Therefore, the electron's motion changes because of the kinetic energy changing. This radiation effect on the charged particle is the self-interaction, called the “radiation reaction” or the “radiation damping”. For this reason, the radiation reaction appears in laser electron interactions with an ultra-short pulse laser whose intensity becomes larger than 1022 W/cm2. In the classical theory, it is described by the Lorentz-Abraham-Dirac (LAD) equation. But, this equation has a mathematical difficulty, which we call the “run-away”. Therefore, there are many methods for avoiding this problem. However, Dirac's viewpoint is brilliant, based on the idea of quantum electrodynamics. We propose a new equation of motion in the quantum theory with radiation reaction in this paper.
Chen, Zaigao; Wang, Jianguo; Wang, Yue; Qiao, Hailiang; Zhang, Dianhui; Guo, Weijie
2013-11-01
Optimal design method of high-power microwave source using particle simulation and parallel genetic algorithms is presented in this paper. The output power, simulated by the fully electromagnetic particle simulation code UNIPIC, of the high-power microwave device is given as the fitness function, and the float-encoding genetic algorithms are used to optimize the high-power microwave devices. Using this method, we encode the heights of non-uniform slow wave structure in the relativistic backward wave oscillators (RBWO), and optimize the parameters on massively parallel processors. Simulation results demonstrate that we can obtain the optimal parameters of non-uniform slow wave structure in the RBWO, and the output microwave power enhances 52.6% after the device is optimized.
Caprioli, Damiano
2014-01-01
We use large hybrid (kinetic ions-fluid electrons) simulations to study ion acceleration and generation of magnetic turbulence due to the streaming of energetic particles that are self-consistently accelerated at non-relativistic shocks. When acceleration is efficient (at quasi-parallel shocks), we find that the magnetic field develops transverse components and is significantly amplified in the pre-shock medium. The total amplification factor is larger than 10 for shocks with Mach number $M=100$, and scales with the square root of $M$. We find that in the shock precursor the energy spectral density of excited magnetic turbulence is proportional to spectral energy distribution of accelerated particles at corresponding resonant momenta, in good agreement with the predictions of quasilinear theory of diffusive shock acceleration. We discuss the role of Bell's instability, which is predicted and found to grow faster than resonant instability in shocks with $M\\gtrsim 30$. Ahead of these strong shocks we distinguis...
A particle-hole calculation for pion production in relativistic heavy-ion collisions
Norbury, J. W.; Deutchman, P. A.; Townsend, L. W.
1985-01-01
A differential cross section for pi-meson production in peripheral heavy-ion collisions is formulated within the context of a particle-hole model in the Tamm-Dancoff approximation. This is the first attempt at a fully quantum-mechanical particle-hole calculation for pion production in relativistic heavy-ion collisions. The particular reaction studied is an O-16 projectile colliding with a C-12 target at rest. In the projectile a linear combination of isobar-hole states is formed, with the possibility of a coherent isobar giant resonance. The target can be excited to its giant M1 resonance (J-pi = 1(+), T = 1) at 15.11 MeV, or to its isobar analog neighbors, B-12 at 13.4 MeV and N-12 at 17.5 MeV. The theory is compared to recent experimental results.
Development of a relativistic Particle In Cell code PARTDYN for linear accelerator beam transport
Phadte, D.; Patidar, C. B.; Pal, M. K.
2017-04-01
A relativistic Particle In Cell (PIC) code PARTDYN is developed for the beam dynamics simulation of z-continuous and bunched beams. The code is implemented in MATLAB using its MEX functionality which allows both ease of development as well higher performance similar to a compiled language like C. The beam dynamics calculations carried out by the code are compared with analytical results and with other well developed codes like PARMELA and BEAMPATH. The effect of finite number of simulation particles on the emittance growth of intense beams has been studied. Corrections to the RF cavity field expressions were incorporated in the code so that the fields could be calculated correctly. The deviations of the beam dynamics results between PARTDYN and BEAMPATH for a cavity driven in zero-mode have been discussed. The beam dynamics studies of the Low Energy Beam Transport (LEBT) using PARTDYN have been presented.
Radiation from Particles Accelerated in Relativistic Jet Shocks and Shear-flows
Nishikawa, K -I; Dutan, I; Zhang, B; Meli, A; Choi, E J; Min, K; Niemiec, J; Mizuno, Y; Medvedev, M; Nordlund, A; Frederiksen, J T; Sol, H; Pohl, M; Hartmann, D
2014-01-01
We have investigated particle acceleration and emission from shocks and shear flows associated with an unmagnetized relativistic jet plasma propagating into an unmagnetized ambient plasma. Strong electro-magnetic fields are generated in the jet shock via the filamentation (Weibel) instability. Shock field strength and structure depend on plasma composition (($e^{\\pm}$ or $e^-$- $p^+$ plasmas) and Lorentz factor. In the velocity shear between jet and ambient plasmas, strong AC ($e^{\\pm}$ plasmas) or DC ($e^-$- $p^+$ plasmas) magnetic fields are generated via the kinetic Kelvin-Helmholtz instability (kKHI), and the magnetic field structure also depends on the jet Lorentz factor. We have calculated, self-consistently, the radiation from electrons accelerated in shock generated magnetic fields. The spectra depend on the jet's initial Lorentz factor and temperature via the resulting particle acceleration and magnetic field generation. Our ongoing "Global" jet simulations containing shocks and velocity shears will ...
On relativistic motion of a pair of particles having opposite signs of masses
Ivanov, Pavel B.
2012-12-01
In this methodological note, we consider, in a weak-fleld limit, the relativistic linear motion of two particles with masses of opposite signs and a small difference between their absolute values: m_{1,2}=+/- (\\mu+/- \\Delta \\mu) , \\mu \\gt 0, \\vert\\Delta \\mu \\vert \\ll\\mu. In 1957, H Bondi showed in the framework of both Newtonian analysis and General Relativity that, when the relative motion of particles is absent, such a pair can be accelerated indefinitely. We generalize the results of his paper to account for the small nonzero difference between the velocities of the particles. Assuming that the weak-field limit holds and the dynamical system is conservative, an elementary treatment of the problem based on the laws of energy and momentum conservation shows that the system can be accelerated indefinitely, or attain very large asymptotic values of the Lorentz factor \\gamma. The system experiences indefinite acceleration when its energy-momentum vector is null and the mass difference \\Delta \\mu \\le 0. When the modulus of the square of the norm of the energy-momentum vector, \\vert N^{\\,2}\\vert, is sufficiently small, the system can be accelerated to very large \\gamma \\propto \\vert N^{\\,2}\\vert^{-1}. It is stressed that, when only leading terms in the ratio of a characteristic gravitational radius to the distance between the particles are retained, our elementary analysis leads to equations of motion equivalent to those derived from relativistic weak-field equations of motion by Havas and Goldberg in 1962. Thus, in the weak-field approximation it is possible to bring the system to the state with extremely high values of \\gamma. The positive energy carried by the particle with positive mass may be conveyed to other physical bodies, say by intercepting this particle with a target. If we suppose that there is a process of production of such pairs and the particles with positive mass are intercepted, while the negative mass particles are expelled
Horwitz, L. P.; Land, Martin C.; Gill, Tepper; Lusanna, Luca; Salucci, Paolo
2013-04-01
Although the subject of relativistic dynamics has been explored, from both classical and quantum mechanical points of view, since the work of Einstein and Dirac, its most striking development has been in the framework of quantum field theory. The very accurate calculations of spectral and scattering properties, for example, of the anomalous magnetic moment of the electron and the Lamb shift in quantum electrodynamics, and many qualitative features of the strong and electroweak interactions, demonstrate the very great power of description achieved in this framework. Yet, many fundamental questions remain to be clarified, such as the structure of classical relativistic dynamical theories on the level of Hamilton and Lagrange in Minkowski space as well as on the curved manifolds of general relativity. There moreover remains the important question of the covariant classical description of systems at high energy for which particle production effects are not large, such as discussed in Synge's book, The Relativistic Gas, and in Balescu's book on relativistic statistical mechanics. In recent years, the study of high energy plasmas and heavy ion collisions has emphasized the importance of developing the techniques of relativistic mechanics. The results of Lindner et al [Physical Review Letters 95 0040401 (2005)] as well as the more recent proposal of Palacios et al [Phys. Rev. Lett. 103 253001 (2009)] and others, have shown that there must be a quantum theory with coherence in time. Such a theory, manifestly covariant under the transformations of special relativity with an invariant evolution parameter, such as that of Stueckelberg [Helv. Phys. Acta 14 322, 588 (1941); 15 23 (1942); see also R P Feynman Phys. Rev. 80 4401 and J S Schwinger Phys. Rev. 82 664 (1951)] could provide a suitable basis for the study of such questions, as well as many others for which the application of the standard methods of quantum field theory are difficult to manage, involving, in particular
Fan, Peifeng; Liu, Jian; Xiang, Nong; Yu, Zhi
2016-01-01
A manifestly covariant, or geometric, field theory for relativistic classical particle-field system is developed. The connection between space-time symmetry and energy-momentum conservation laws for the system is established geometrically without splitting the space and time coordinates, i.e., space-time is treated as one identity without choosing a coordinate system. To achieve this goal, we need to overcome two difficulties. The first difficulty arises from the fact that particles and field reside on different manifold. As a result, the geometric Lagrangian density of the system is a function of the 4-potential of electromagnetic fields and also a functional of particles' world-lines. The other difficulty associated with the geometric setting is due to the mass-shell condition. The standard Euler-Lagrange (EL) equation for a particle is generalized into the geometric EL equation when the mass-shell condition is imposed. For the particle-field system, the geometric EL equation is further generalized into a w...
Constraints on particle acceleration sites in the Crab Nebula from relativistic MHD simulations
Olmi, Barbara; Amato, Elena; Bucciantini, Niccolò
2015-01-01
The Crab Nebula is one of the most efficient accelerators in the Galaxy and the only galactic source showing direct evidence of PeV particles. In spite of this, the physical process behind such effective acceleration is still a deep mystery. While particle acceleration, at least at the highest energies, is commonly thought to occur at the pulsar wind termination shock, the properties of the upstream flow are thought to be non-uniform along the shock surface, and important constraints on the mechanism at work come from exact knowledge of where along this surface particles are being accelerated. Here we use axisymmetric relativistic MHD simulations to obtain constraints on the acceleration site(s) of particles of different energies in the Crab Nebula. Various scenarios are considered for the injection of particles responsible for synchrotron radiation in the different frequency bands, radio, optical and X-rays. The resulting emission properties are compared with available data on the multi wavelength time varia...
Liu, Ruoyu
2015-06-10
Ultrahigh energy cosmic rays are extreme energetic particles from outer space. They have aroused great interest among scientists for more than fifty years. However, due to the rarity of the events and complexity of the process of their propagation to Earth, they are still one of the biggest puzzles in modern high energy astrophysics. This dissertation is dedicated to study the origin of ultrahigh energy cosmic rays from various aspects. Firstly, we discuss a possible link between recently discovered sub-PeV/PeV neutrinos and ultrahigh energy cosmic rays. If these two kinds of particles share the same origin, the observation of neutrinos may provide additional and non-trivial constraints on the sources of ultrahigh energy cosmic rays. Secondly, we jointly employ the chemical composition measurement and the arrival directions of ultrahigh energy cosmic rays, and find a robust upper limit for distances of sources of ultrahigh energy cosmic rays above ∝55 EeV, as well as a lower limit for their metallicities. Finally, we study the shear acceleration mechanism in relativistic jets, which is a more efficient mechanism for the acceleration of higher energy particle. We compute the acceleration efficiency and the time-dependent particle energy spectrum, and explore the feature of synchrotron radiation of the accelerated particles. The possible realizations of this mechanism for acceleration of ultrahigh energy cosmic rays in different astrophysical environments is also discussed.
Melzani, Mickaël; Folini, Doris; Winisdoerffer, Christophe; Favre, Jean M
2014-01-01
Collisionless magnetic reconnection is a prime candidate to account for flare-like or steady emission, outflow launching, or plasma heating, in a variety of high-energy astrophysical objects, including ones with relativistic ion-electron plasmas. But the fate of the initial magnetic energy in a reconnection event remains poorly known: what is the amount given to kinetic energy, the ion/electron repartition, and the hardness of the particle distributions? We explore these questions with 2D particle-in-cell simulations of ion-electron plasmas. We find that 45 to 75% of the total initial magnetic energy ends up in kinetic energy, this fraction increasing with the inflow magnetization. Depending on the guide field strength, ions get from 30 to 60% of the total kinetic energy. Particles can be separated into two populations that only weakly mix: (i) particles initially in the current sheet, heated by its initial tearing and subsequent contraction of the islands; and (ii) particles from the background plasma that p...
Shukla, Chandrasekhar; Das, Amita; Patel, Kartik
2016-08-01
We carry out particle-in-cell simulations to study the instabilities associated with a 2-D sheared electron flow configuration against a neutralizing background of ions. Both weak and strong relativistic flow velocities are considered. In the weakly relativistic case, we observe the development of electromagnetic Kelvin-Helmholtz instability with similar characteristics as that predicted by the electron Magnetohydrodynamic (EMHD) model. On the contrary, in a strong relativistic case, the compressibility effects of electron fluid dominate and introduce upper hybrid electrostatic oscillations transverse to the flow which are very distinct from EMHD fluid behavior. In the nonlinear regime, both weak and strong relativistic cases lead to turbulence with broad power law spectrum.
Ghosh, D; Bhattacharya, S; Ghosh, J; Das, R
2003-01-01
This paper reports an investigation on the two-particle long-range angular correlation among the target fragments produced in sup 2 sup 8 Si-AgBr interactions at 14.5 AGeV, sup 1 sup 6 O-AgBr interactions at 60 AGeV and sup 3 sup 2 S-AgBr interactions at 200 AGeV. The experimental data have been compared with Monte Carlo simulated events to extract dynamical correlation. The data exhibit two-particle long-range correlation in emission angle space at all energies. (author)
Bai, Xue-Ning; Sironi, Lorenzo; Spitkovsky, Anatoly
2014-01-01
We formulate a magnetohydrodynamic-particle-in-cell (MHD-PIC) method for describing the interaction between collisionless cosmic ray (CR) particles and a thermal plasma. The thermal plasma is treated as a fluid, obeying equations of ideal MHD, while CRs are treated as relativistic Lagrangian particles subject to the Lorentz force. Backreaction from CRs to the gas is included in the form of momentum and energy feedback. In addition, we include the electromagnetic feedback due to CR-induced Hall effect that becomes important when the electron-ion drift velocity of the background plasma induced by CRs approaches the Alfv\\'en velocity. Our method is applicable on scales much larger than the ion inertial length, bypassing the microscopic scales that must be resolved in conventional PIC methods, while retaining the full kinetic nature of the CRs. We have implemented and tested this method in the Athena MHD code, where the overall scheme is second-order accurate and fully conservative. As a first application, we des...
Relativistic Quasimonoenergetic Positron Jets from Intense Laser-Solid Interactions
Chen, Hui; Wilks, S. C.; Meyerhofer, D. D.; Bonlie, J.; Chen, C. D.; Chen, S. N.; Courtois, C.; Elberson, L.; Gregori, G.; Kruer, W.; Landoas, O.; Mithen, J.; Myatt, J.; Murphy, C. D.; Nilson, P.; Price, D.; Schneider, M.; Shepherd, R.; Stoeckl, C.; Tabak, M.; Tommasini, R.; Beiersdorfer, P.
2010-07-01
Detailed angle and energy resolved measurements of positrons ejected from the back of a gold target that was irradiated with an intense picosecond duration laser pulse reveal that the positrons are ejected in a collimated relativistic jet. The laser-positron energy conversion efficiency is ˜2×10-4. The jets have ˜20 degree angular divergence and the energy distributions are quasimonoenergetic with energy of 4 to 20 MeV and a beam temperature of ˜1MeV. The sheath electric field on the surface of the target is shown to determine the positron energy. The positron angular and energy distribution is controlled by varying the sheath field, through the laser conditions and target geometry.
The extent of non-thermal particle acceleration in relativistic, electron-positron reconnection
Werner, Greg [University of Colorado; Guo, Fan [Los Alamos National Laboratory
2015-07-21
Reconnection is studied as an explanation for high-energy flares from the Crab Nebula. The production of synchrotron emission >100 MeV challenges classical models of acceleration. 3D simulation shows that reconnection, converting magnetic energy to kinetic energy, can accelerate beyond γ_{rad}. The power-law index and high-energy cutoff are important for understanding the radiation spectrum dN/dγ = f(γ) ∝ γ^{-α}. α and cutoff were measured vs. L and σ, where L is system (simulation) size and σ is upstream magnetization (σ = B^{2}/4πnmc^{2}). α can affect the high-energy cutoff. In conclusion, for collisionless relativistic reconnection in electron-positron plasma, without guide field, n_{b}/n_{d}=0.1: (1) relativistic magnetic reconnection yields power-law particle spectra, (2) the power law index decreases as σ increases, approaching ≈1.2. (3) the power law is cut off at an energy related to acceleration within a single current layer, which is proportional to the current layer length (for small systems, that length is the system length, yielding γ_{c2} ≈ 0.1 L/ρ_{0}; for large systems, the layer length is limited by secondary tearing instability, yielding γ_{c1} ≈ 4σ; the transition from small to large is around L/ρ_{0} = 40σ.). (4) although the large-system energy cutoff is proportional to the average energy per particle, it is significantly higher than the average energy per particle.
Matter and Interactions: a particle physics perspective
Organtini, Giovanni
2011-01-01
In classical mechanics matter and fields are completely separated. Matter interacts with fields. For particle physicists this is not the case. Both matter and fields are represented by particles. Fundamental interactions are mediated by particles exchanged between matter particles. In this paper we explain why particle physicists believe in such a picture, introducing the technique of Feynman diagrams starting from very basic and popular analogies with classical mechanics, making the physics of elementary particles comprehensible even to high school students, the only prerequisite being the knowledge of the conservation of mechanical energy.
A relativistic correction to semiclassical charmonium
Weiss, J.
1995-09-01
It is shown that the relativistic linear potentials, introduced by the author within the particle à la Wheeler-Feynman direct-interaction (AAD) theory, applied to the semiclassically quantized charmonium, yield energy spectrum comparable to that of some known models. Using the expansion of the relativistic linear AAD potentials in powers ofc -1, the charmonium spectrum, given as a rule by Bohr-Sommerfeld quantization of circular orbits, is extended up to the second order of relativistic corrections.
Velocity operator and velocity field for spinning particles in (non-relativistic) quantum mechanics
Recami, E. [Bergamo Univ. (Italy). Facolta` di Ingegneria]|[INFN, Milan (Italy)]|[Campinas State Univ., SP (Brazil). Dept. of Applied Math.; Salesi, G. [Catania Univ. (Italy). Dip. di Fisica
1995-06-01
Starting from the formal expressions of the hydrodynamical (or local) quantities employed in the applications of Clifford Algebras to quantum mechanics, the paper introduces - in terms of the ordinary tensorial framework - a new definition for the field of a generic quantity. By translating from Clifford into tensor algebra, a new (non-relativistic) velocity operator for a spin 1/2 particle is also proposed. This operator is the sum of the ordinary part p/m describing the mean motion (the motion of the center-of-mass), and of a second part associated with the so-called Zitterbewegung, which is the spin internal motion observed in the center-of- mass frame. This spin component of the velocity operator is non-zero not only in the Pauli theoretical framework, i.e. in presence of external magnetic fields and spin precession, but also in the Schroedinger case, when the wave-function is a spin eigenstate. In the latter case, one gets a decomposition of the velocity field for the Madelueng fluid into two distinct parts: which the constitutes the non-relativistic analogue of the Gordon decomposition for the Dirac current.
Magnetic Field Generation, Particle Energization and Radiation at Relativistic Shear Boundary Layers
Liang, Edison; Fu, Wen; Spisak, Jake; Boettcher, Markus
2015-11-01
Recent large scale Particle-in-Cell (PIC) simulations have demonstrated that in unmagnetized relativistic shear flows, strong transverse d.c. magnetic fields are generated and sustained by ion-dominated currents on the opposite sides of the shear interface. Instead of dissipating the shear flow free energy via turbulence formation and mixing as it is usually found in MHD simulations, the kinetic results show that the relativistic boundary layer stabilizes itself via the formation of a robust vacuum gap supported by a strong magnetic field, which effectively separates the opposing shear flows, as in a maglev train. Our new PIC simulations have extended the runs to many tens of light crossing times of the simulation box. Both the vacuum gap and supporting magnetic field remain intact. The electrons are energized to reach energy equipartition with the ions, with 10% of the total energy in electromagnetic fields. The dominant radiation mechanism is similar to that of a wiggler, due to oscillating electron orbits around the boundary layer.
Wu, Hui-Chun [Los Alamos National Laboratory; Hegelich, B.M. [Los Alamos National Laboratory; Fernandez, J.C. [Los Alamos National Laboratory; Shah, R.C. [Los Alamos National Laboratory; Palaniyappan, S. [Los Alamos National Laboratory; Jung, D. [Los Alamos National Laboratory; Yin, L [Los Alamos National Laboratory; Albright, B.J. [Los Alamos National Laboratory; Bowers, K. [Guest Scientist of XCP-6; Huang, C. [Los Alamos National Laboratory; Kwan, T.J. [Los Alamos National Laboratory
2012-06-19
Two new experimental technologies enabled realization of Break-out afterburner (BOA) - High quality Trident laser and free-standing C nm-targets. VPIC is an powerful tool for fundamental research of relativistic laser-matter interaction. Predictions from VPIC are validated - Novel BOA and Solitary ion acceleration mechanisms. VPIC is a fully explicit Particle In Cell (PIC) code: models plasma as billions of macro-particles moving on a computational mesh. VPIC particle advance (which typically dominates computation) has been optimized extensively for many different supercomputers. Laser-driven ions lead to realization promising applications - Ion-based fast ignition; active interrogation, hadron therapy.
Hanni, Matti; Lantto, Perttu; Ilias, Miroslav
2007-01-01
Relativistic effects on the 129Xe nuclear magnetic resonance shielding and 131Xe nuclear quadrupole coupling (NQC) tensors are examined in the weakly bound Xe2 system at different levels of theory including the relativistic four-component Dirac-Hartree-Fock (DHF) method. The intermolecular...... interaction-induced binary chemical shift d, the anisotropy of the shielding tensor ?s, and the NQC constant along the internuclear axis ?ll are calculated as a function of the internuclear distance. DHF shielding calculations are carried out using gauge-including atomic orbitals. For comparison, the full...... leading-order one-electron Breit-Pauli perturbation theory (BPPT) is applied using a common gauge origin. Electron correlation effects are studied at the nonrelativistic (NR) coupled-cluster singles and doubles with perturbational triples [CCSD(T)] level of theory. The fully relativistic second...
Nagle, J L
2003-01-01
The Relativistic Heavy Ion Collider (RHIC) came online in 2000, and the last three years have provided a wealth of new experimental data and theoretical work in this new energy frontier for nuclear physics. The transition from quarks and gluons bound into hadrons to a deconfined quark-gluon plasma is expected to occur at these energies, and the effort to understand the time evolution of these complex systems has been significantly advanced. The heavy ion parallel session talks from the Conference on the Intersections of Particle and Nuclear Physics (CIPANP) 2003 are posted at: http://www.phenix.bnl.gov/WWW/publish/nagle/CIPANP/. We provide a brief summary of these sessions here.
Relativistic particles with rigidity generating non-standard examples of Willmore-Chen hypersurfaces
Arroyo, Josu; Garay, Oscar J. [Departamento de Matematicas, Universidad del Pais Vasco, Bilbao (Spain)]. E-mails: mtparolj@lg.ehu.es; mtpgabeo@lg.ehu.es; Barros, Manuel [Departamento de Geometria y Topologia, Universidad de Granada, Granada (Spain)]. E-mail: mbarros@ugr.es
2002-08-16
We study a natural extension to higher dimensions of the Nambu-Goto-Polyakov action. In particular, those dynamical objects evolving with SO(3) symmetry in four dimensions. We show that this problem is strongly related to that of relativistic particles with rigidity of order three in a hyperbolic plane. The moduli space of solitonic solutions is completely determined in terms of the so-called rotation number. A quantization principle for closed solutions is also obtained and this gives a rational one-parameter family of Willmore-Chen hypersurfaces in the standard conformal structure of dimension four. Moreover, these are the first non-standard examples of this kind of hypersurfaces. (author)
Belich, H
2015-01-01
The behaviour of a relativistic scalar particle subject to a scalar potential under the effects of the violation of the Lorentz symmetry in the cosmic string spacetime is discussed. It is considered two possible scenarios of the Lorentz symmetry breaking in the CPT-even gauge sector of the Standard Model Extension defined by a tensor $\\left(K_{F}\\right)_{\\mu\
Particle Production In Relativistic Heavy-ion Collisions With Perturbative Qcd
Zhang, Y
2003-01-01
The commissioning of the Relativistic Heavy Ion Collider (RHIC) opened new era in nuclear collision physics, with the study of excited strongly-interacting matter becoming a reality. A primary motivation for studying high-p T hadron production in ultrarelativistic heavy ion collisions is to gain insight into the gluon density of the quark-gluon medium via jet energy loss. The sensitivity of high-pT hadron spectra to initial gluon density may be a probe of the formation of quark-gluon-plasma (QGP). However, a thorough understanding of ultrarelativistic nuclear (AA ) collisions requires the accurate description of proton-proton ( pp) and proton-nucleus (pA) collisions in the same framework. In the present dissertation we follow the evolution of high-p T hadron production in relativistic collisions from pp to pA to AA reactions. The perturbative Quantum Chromodynamics (pQCD) improved parton model is used for the study. We apply leading- order (LO) pQCD throughout, and augment the standard one- dimensional cross ...
Inoue, Yoshiyuki; Tanaka, Yasuyuki T.
2016-09-01
Relativistic jets launched by supermassive black holes, so-called active galactic nuclei (AGNs), are known as the most energetic particle accelerators in the universe. However, the baryon loading efficiency onto the jets from the accretion flows and their particle acceleration efficiencies have been veiled in mystery. With the latest data sets, we perform multi-wavelength spectral analysis of quiescent spectra of 13 TeV gamma-ray detected high-frequency-peaked BL Lacs (HBLs) following one-zone static synchrotron self-Compton (SSC) model. We determine the minimum, cooling break, and maximum electron Lorentz factors following the diffusive shock acceleration (DSA) theory. We find that HBLs have {P}B/{P}e˜ 6.3× {10}-3 and the radiative efficiency {ɛ }{{rad,jet}}˜ 6.7× {10}-4, where P B and P e is the Poynting and electron power, respectively. By assuming 10 leptons per one proton, the jet power relates to the black hole mass as {P}{{jet}}/{L}{{Edd}}˜ 0.18, where {P}{{jet}} and {L}{{Edd}} is the jet power and the Eddington luminosity, respectively. Under our model assumptions, we further find that HBLs have a jet production efficiency of {η }{{jet}}˜ 1.5 and a mass loading efficiency of {ξ }{{jet}}≳ 5× {10}-2. We also investigate the particle acceleration efficiency in the blazar zone by including the most recent Swift/BAT data. Our samples ubiquitously have particle acceleration efficiencies of {η }g˜ {10}4.5, which is inefficient to accelerate particles up to the ultra-high-energy-cosmic-ray (UHECR) regime. This implies that the UHECR acceleration sites should not be the blazar zones of quiescent low power AGN jets, if one assumes the one-zone SSC model based on the DSA theory.
Interaction of Oblique Incident Electromagnetic Wave with Relativistic Ionization Front
无
2005-01-01
Interactions of oblique incident probe wave with oncoming ionization fronts have been investigated using moving boundary conditions. Field conversion coefficients of reflection,transmission and magnetic modes produced in the interactions are derived. Phase matching conditions at the front and frequency up-shifting formulas for the three modes are also presented.
Interactions between Janus particles and membranes
Ding, Hong-Ming; Ma, Yu-Qiang
2012-02-01
Understanding how nanoparticles interact with cell membranes is of great importance in drug/gene delivery. In this paper, we investigate the interactions between Janus particles and membranes by using dissipative particle dynamics, and find that there exist two different modes (i.e., insertion and engulfment) in the Janus particle-membrane interactions. The initial orientation and properties of Janus particles have an important impact on the interactions. When the hydrophilic part of the particle is close to the membrane or the particle has a larger section area and higher hydrophilic coverage, the particle is more likely to be engulfed by the membrane. We also provide insights into the interactions between Janus particles and membranes containing lipid rafts, and find that a Janus particle could easily detach from a membrane after it is engulfed by the raft. The present study suggests a potential way to translocate Janus particles through membranes, which may give some significant suggestions on future nanoparticle design for drug delivery.
Inoue, Yoshiyuki
2016-01-01
Relativistic jets launched by SMBHs are the most energetic particle accelerators in the universe. However, the baryon mass loading efficiency onto the jets from the accretion and the particle acceleration efficiency in the jets have been veiled in mystery. With the latest data sets, we perform multi-wavelength spectral analysis of quiescent spectra of 13 TeV gamma-ray detected HBLs following one-zone synchrotron-self-Compton (SSC) model. We determine the minimum, cooling break, and maximum electron Lorentz factors following the diffusive shock acceleration (DSA) theory. We find that HBLs have $P_B/P_e\\sim0.025$ where $P_B$ and $P_e$ is the Poynting and electron power, respectively. The radiative efficiency of the jets is found to be $P_{\\rm rad}/P_{\\rm jet}\\sim0.026$. $P_{\\rm rad}$ and $P_{\\rm jet}$ is the radiative and total jet power, respectively. We find that the jet power relates to the black hole mass as $P_{\\rm jet}/L_{\\rm Edd}\\sim0.036$. We further find that HBLs have the mass loading efficiency of $\\...
Pacholczyk, A. G.; Stepinski, T. F.
1988-01-01
An accreting cluster of black holes in an active galactic nucleus is a natural site for a system of shock structures with a hierarchy of sizes, corresponding to the distribution of masses in the cluster. Accreted gas containing some magnetic fields and supersonically falling onto the core forms shocks on the outside of each hole and these shocks are capable of accelerating relativistic particles. The energies reached in a single shock are size rather than acceleration time limited and are proportional to the mass of the hole with a proportionality constant being a function of the position of the hole within a cluster and the model of the cluster and the shock formation. These energies are adequate to explain the observed properties of synchrotron and inverse-Compton radiation from these objects. The resulting energy spectrum of particles in the cluster in 'zeroth' approximation has the form of a doubly broken power law with indices of two and three on both extremes of the energy domain respectively, bridged by an index of about 2.5.
Pacholczyk, A.G.; Stepinski, T.F.
1988-01-01
An accreting cluster of black holes in an active galactic nucleus is a natural site for a system of shock structures with a hierarchy of sizes, corresponding to the distribution of masses in the cluster. Accreted gas containing some magnetic fields and supersonically falling onto the core forms shocks on the outside of each hole and these shocks are capable of accelerating relativistic particles. The energies reached in a single shock are size rather than acceleration time limited and are proportional to the mass of the hole with a proportionality constant being a function of the position of the hole within a cluster and the model of the cluster and the shock formation. These energies are adequate to explain the observed properties of synchrotron and inverse-Compton radiation from these objects. The resulting energy spectrum of particles in the cluster in zeroth approximation has the form of a doubly broken power law with indices of two and three on both extremes of the energy domain respectively, bridged by an index of about 2.5. 16 references.
Extra relativistic degrees of freedom without extra particles using Planck data
Mastache, Jorge
2013-01-01
A recent number of analysis of cosmological data have shown indications for the presence of extra radiation beyond the standard model at equality and nucleosynthesis epoch, which has been usually interpreted as an effective number of neutrinos, Neff > 3.046. In this work we establish the theoretical basis for a particle physics-motivated model (Bound Dark Matter, BDM) which explain the need of extra radiation. The BDM model describes dark matter particles which are relativistic at a scale below aac due to non-perturbative methods, as protons and neutrons do, this process is described by a time dependent equation of state, w_bdm(a). We compute the range of values of the BDM model, xc=ac*vc, that explain the values obtain for the 4He at BBN and Neff at equality. Combining different analysis we conclude that this may happen in xc = 5.01 (^{+6.01}_{-5.01}) x 10^{-5} with a vc = 0.56 \\pm 0.39. We conclude that we can account for the apparent extra radiation Nex using phase transition in the dark matter with a time...
Analysis of particle-wall interactions during particle free fall.
Chein, Reiyu; Liao, Wenyuan
2005-08-01
In this study, the vertical motion of a particle in a quiescent fluid falling toward a horizontal plane wall is analyzed, based on simplified models. Using the distance between the particle and wall as a parameter, the effects of various forces acting on the particle and the particle motion are examined. Without the colloidal and Brownian forces being included, the velocity of small particles is found to be approximately equal to the inverse of the drag force correction function used in this study as the particle approaches the near-wall region. Colloidal force is added to the particle equation of motion as the particle moves a distance comparable to its size. It is found that the particle might become suspended above or deposited onto the wall, depending on the Hamaker constant, the surface potentials of the particle and wall, and the thickness of the electrical double layer (EDL). For strong EDL repulsive force and weaker van der Waals (VDW) attractive force, the particle will become suspended above the wall at a distance at which the particle velocity is zero. This location is referred to as the equilibrium distance. The equilibrium distance is found to increase with increased in EDL thickness when a repulsive force barrier appears in the colloidal force interaction. For the weak EDL repulsive force and strong VDW attractive force case, the particle can become deposited onto the wall without the Brownian motion effect. The Brownian jump length was found to be very small. Many Brownian jumps would be required in a direction toward the wall for a suspended particle to become deposited.
Balakin, Alexander B.; Popov, Vladimir A.
2017-04-01
In the framework of the Einstein-aether theory we consider a cosmological model, which describes the evolution of the unit dynamic vector field with activated rotational degree of freedom. We discuss exact solutions of the Einstein-aether theory, for which the space-time is of the Gödel-type, the velocity four-vector of the aether motion is characterized by a non-vanishing vorticity, thus the rotational vectorial modes can be associated with the source of the universe rotation. The main goal of our paper is to study the motion of test relativistic particles with a vectorial internal degree of freedom (spin or polarization), which is coupled to the unit dynamic vector field. The particles are considered as the test ones in the given space-time background of the Gödel-type the spin (polarization) coupling to the unit dynamic vector field is modeled using exact solutions of three types. The first exact solution describes the aether with arbitrary Jacobson's coupling constants; the second one relates to the case, when the Jacobson's constant responsible for the vorticity is vanishing; the third exact solution is obtained using three constraints for the coupling constants. The analysis of the exact expressions, which are obtained for the particle momentum and for the spin (polarization) four-vector components, shows that the interaction of the spin (polarization) with the unit vector field induces a rotation, which is additional to the geodesic precession of the spin (polarization) associated with the universe rotation as a whole.
Quantization of Interacting Non-Relativistic Open Strings using Extended Objects
Arias, P J; Fuenmayor, E; Leal, L; Leal, Lorenzo
2005-01-01
Non-relativistic charged open strings coupled with Abelian gauge fields are quantized in a geometric representation that generalizes the Loop Representation. The model comprises open-strings interacting through a Kalb-Ramond field in four dimensions. It is shown that a consistent geometric-representation can be built using a scheme of ``surfaces and lines of Faraday'', provided that the coupling constant (the ``charge'' of the string) is quantized.
Yerokhin, V A; Fritzsche, S
2014-01-01
Relativistic configuration-interaction calculations have been performed for the energy levels of the low-lying and core-excited states of beryllium-like argon, Ar$^{14+}$. These calculations include the one-loop QED effects as obtained by two different methods, the screening-potential approach as well as the model QED operator approach. The calculations are supplemented by a systematic estimation of uncertainties of theoretical predictions.
Fragmentation of relativistic oxygen nuclei in interactions with a proton
Glagolev, V V; Lipin, V D; Lutpullaev, S L; Olimov, K K; Yuldashev, A A; Yuldashev, B S; Olimov, Kh.K.
2001-01-01
The data on investigation of inelastic interactions of 16O nuclei with a proton at 3.25 A GeV/c momentum by the bubble chamber method are presented. The separate characteristics as fragments isotopic composition and as topo-logical cross sections of fragmentation channels are given. The processes of light fragments formation and breakup of 16O nucleus on multicharge fragments have been investigated. The comparison of experimental data with the calculations by statistical multifragmentation model was conducted.
Kemp, Gregory Elijah [The Ohio State Univ., Columbus, OH (United States)
2013-01-01
Ultra-intense laser (> 1018 W/cm2) interactions with matter are capable of producing relativistic electrons which have a variety of applications in state-of-the-art scientific and medical research conducted at universities and national laboratories across the world. Control of various aspects of these hot-electron distributions is highly desired to optimize a particular outcome. Hot-electron generation in low-contrast interactions, where significant amounts of under-dense pre-plasma are present, can be plagued by highly non-linear relativistic laser-plasma instabilities and quasi-static magnetic field generation, often resulting in less than desirable and predictable electron source characteristics. High-contrast interactions offer more controlled interactions but often at the cost of overall lower coupling and increased sensitivity to initial target conditions. An experiment studying the differences in hot-electron generation between high and low-contrast pulse interactions with solid density targets was performed on the Titan laser platform at the Jupiter Laser Facility at Lawrence Livermore National Laboratory in Livermore, CA. To date, these hot-electrons generated in the laboratory are not directly observable at the source of the interaction. Instead, indirect studies are performed using state-of-the-art simulations, constrained by the various experimental measurements. These measurements, more-often-than-not, rely on secondary processes generated by the transport of these electrons through the solid density materials which can susceptible to a variety instabilities and target material/geometry effects. Although often neglected in these types of studies, the specularly reflected light can provide invaluable insight as it is directly influenced by the interaction. In this thesis, I address the use of (personally obtained) experimental specular reflectivity measurements to indirectly study hot-electron generation in the context of high-contrast, relativistic
Morales Villasevil, A.
1965-07-01
A method is introduced ta deal with relativistic quantum field theory for particles with m=0. Two mappings I and J, giving rise respectively to particle and anti particle states, are defined between a test space and the physical Hilbert space. The intrinsic field operator is then defined as the minimal causal linear combinations of operators belonging to the annihilation-creation algebra associated to the germ and antigerm parts of the element. Local elements are introduced as improper test elements and local field operators are constructed in the same way as the intrinsic ones. Commutation rules are given. (Author) 17 refs.
Matsyuk, Roman
2015-01-01
A variational formulation for the geodesic circles in two-dimensional Riemannian manifold is discovered. Some relations with the uniform relativistic acceleration and the one-dimensional 'spin'-curvature interaction is investigated.
Investigation of plasma particle interactions with variable particle sizes
Dropmann, Michael; Laufer, Rene; Herdrich, Georg; Matthews, Lorin; Hyde, Truell
2015-11-01
In dusty plasmas, the dust particles are subjected to many forces of different origins. Both the gas and plasma directly affect the dust particles through electric fields, neutral drag, ion drag and thermophoretic forces, while the particles themselves interact with one another through a screened coulomb potential, which can be influenced by flowing ions. Recently, micron sized particles have been used as probes to analyze the electric fields in the plasma directly. A proper analysis of the resulting data requires a full understanding of the manner in which these forces couple to the dust particles. In most cases each of the forces exhibit unique characteristics, many of which are partially dependent on the particle size. In this study, five different particle sizes are used to investigate the forces resident in the sheath above the lower electrode of a GEC RF reference cell. The particles are tracked using a high-speed camera, yielding two-dimensional force maps allowing the force on the particles to be described as a polynomial series. It will be shown that the data collected can be analyzed to reveal information about the origins of the various forces. Support from the NSF and the DOE (award numbers PHY-1262031 and PHY-1414523) is gratefully acknowledged.
Fanizza, G.; Marozzi, G.; Veneziano, G.
2016-01-01
Including the metric fluctuations of a realistic cosmological geometry we reconsider an earlier suggestion that measuring the relative time-of-flight of ultra-relativistic particles can provide interesting constraints on fundamental cosmological and/or particle parameters. Using convenient properties of the geodetic light-cone gauge we first compute, to leading order in the Lorentz factor and for a generic (inhomogeneous, anisotropic) space-time, the relative arrival times of two ultra-relativistic particles as a function of their masses and energies as well as of the details of the large-scale geometry. Remarkably, the result can be written as an integral over the unperturbed line-of-sight of a simple function of the local, inhomogeneous redshift. We then evaluate the irreducible scatter of the expected data-points due to first-order metric perturbations, and discuss, for an ideal source of ultra-relativistic particles, the resulting attainable precision on the determination of different physical parameters.
Fanizza, G., E-mail: Giuseppe.Fanizza@ba.infn.it [Dipartimento di Fisica, Università di Bari, Via G. Amendola 173, 70126 Bari (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Bari (Italy); Université de Genève, Département de Physique Théorique and CAP, 24 quai Ernest-Ansermet, CH-1211 Genève 4 (Switzerland); Gasperini, M., E-mail: maurizio.gasperini@ba.infn.it [Dipartimento di Fisica, Università di Bari, Via G. Amendola 173, 70126 Bari (Italy); Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Bari (Italy); Marozzi, G., E-mail: giovanni.marozzi@gmail.com [Université de Genève, Département de Physique Théorique and CAP, 24 quai Ernest-Ansermet, CH-1211 Genève 4 (Switzerland); Centro Brasileiro de Pesquisas Físicas, Rua Dr. Xavier Sigaud 150, Urca, CEP 22290-180, Rio de Janeiro (Brazil); Veneziano, G., E-mail: Gabriele.Veneziano@cern.ch [Collège de France, 11 Place M. Berthelot, 75005 Paris (France); CERN, Theory Unit, Physics Department, CH-1211 Geneva 23 (Switzerland); Dipartimento di Fisica, Università di Roma La Sapienza, Rome (Italy)
2016-06-10
Including the metric fluctuations of a realistic cosmological geometry we reconsider an earlier suggestion that measuring the relative time-of-flight of ultra-relativistic particles can provide interesting constraints on fundamental cosmological and/or particle parameters. Using convenient properties of the geodetic light-cone coordinates we first compute, to leading order in the Lorentz factor and for a generic (inhomogeneous, anisotropic) space–time, the relative arrival times of two ultra-relativistic particles as a function of their masses and energies as well as of the details of the large-scale geometry. Remarkably, the result can be written as an integral over the unperturbed line-of-sight of a simple function of the local, inhomogeneous redshift. We then evaluate the irreducible scatter of the expected data-points due to first-order metric perturbations, and discuss, for an ideal source of ultra-relativistic particles, the resulting attainable precision on the determination of different physical parameters.
Postnikov, Sergey
2013-01-01
This work extends the seminal work of Gottfried on the two-body quantum physics of particles interacting through a delta-shell potential to many-body physics by studying a system of non-relativistic particles when the thermal De-Broglie wavelength of a particle is smaller than the range of the potential and the density is such that average distance between particles is smaller than the range. The ability of the delta-shell potential to reproduce some basic properties of the deuteron are examined. Relations for moments of bound states are derived. The virial expansion is used to calculate the first quantum correction to the ideal gas pressure in the form of the second virial coefficient. Additionally, all thermodynamic functions are calculated up to the first order quantum corrections. For small departures from equilibrium, the net flows of mass, energy and momentum, characterized by the coefficients of diffusion, thermal conductivity and shear viscosity, respectively, are calculated. Properties of the gas are...
Matter and Elementary Particles : Interactions and Qualities
Bezares Roder, Nils Manuel
2005-01-01
The elementary interactions of nature are discussed, based on the structure of the atom. Elementary particles are categorized by their qualities, especially their spin and statistics, but as well charge and compound forms among others. The connection to CP-behaviour and the different elementary interactions are discussed, as well as some open questions and ideas in modern elementary particle physics.The modern physical understanding of matter is reviewed, parting from Quantum Mechanics and Ge...
Shock Interaction with Random Spherical Particle Beds
Neal, Chris; Mehta, Yash; Salari, Kambiz; Jackson, Thomas L.; Balachandar, S. "Bala"; Thakur, Siddharth
2016-11-01
In this talk we present results on fully resolved simulations of shock interaction with randomly distributed bed of particles. Multiple simulations were carried out by varying the number of particles to isolate the effect of volume fraction. Major focus of these simulations was to understand 1) the effect of the shockwave and volume fraction on the forces experienced by the particles, 2) the effect of particles on the shock wave, and 3) fluid mediated particle-particle interactions. Peak drag force for particles at different volume fractions show a downward trend as the depth of the bed increased. This can be attributed to dissipation of energy as the shockwave travels through the bed of particles. One of the fascinating observations from these simulations was the fluctuations in different quantities due to presence of multiple particles and their random distribution. These are large simulations with hundreds of particles resulting in large amount of data. We present statistical analysis of the data and make relevant observations. Average pressure in the computational domain is computed to characterize the strengths of the reflected and transmitted waves. We also present flow field contour plots to support our observations. U.S. Department of Energy, National Nuclear Security Administration, Advanced Simulation and Computing Program, as a Cooperative Agreement under the Predictive Science Academic Alliance Program, under Contract No. DE-NA0002378.
Horwitz, Lawrence; Hu, Bei-Lok; Lee, Da-Shin; Gill, Tepper; Land, Martin
2011-12-01
Although the subject of relativistic dynamics has been explored from both classical and quantum mechanical points of view since the work of Einstein and Dirac, its most striking development has been in the framework of quantum field theory. The very accurate calculations of spectral and scattering properties, for example, of the anamolous magnetic moment of the electron and the Lamb shift in quantum electrodynamics, and many qualitative features of the strong and electroweak interactions, demonstrate the very great power of description achieved in this framework. Yet, many fundamental questions remain to be clarified, such as the structure of classical realtivistic dynamical theories on the level of Hamilton and Lagrange in Minkowski space as well as on the curved manifolds of general relativity. There moreover remains the important question of the covariant classical description of systems at high energy for which particle production effects are not large, such as discussed in Synge's book, The Relativistic Gas, and in Balescu's book on relativistic statistical mechanics. In recent years, the study of high energy plasmas and heavy ion collisions has emphasized the importance of developing the techniques of relativistic mechanics. The results of Linder et al (Phys. Rev. Lett. 95 0040401 (2005)) as well as the more recent work of Palacios et al (Phys. Rev. Lett. 103 253001 (2009)) and others, have shown that there must be a quantum theory with coherence in time. Such a theory, manifestly covariant under the transformations of special relativity with an invariant evolution parameter, such as that of Stueckelberg (Helv. Phys. Acta 14 322, 588 (1941); 15 23 (1942); see also R P Feynman Phys. Rev. 80 4401 and J S Schwinger Phys. Rev. 82 664 (1951)) could provide a suitable basis for the study of such questions, as well as many others for which the application of the standard methods of quantum field theory are difficult to manage, involving, in particular, local
Charged-particle multiplicity at mid-rapidity in Au–Au collisions at relativistic heavy-ion collider
D Silvermyr
2003-05-01
The particle density at mid-rapidity is an essential global variable for the characterization of nuclear collisions at ultra-relativistic energies. It provides information about the initial conditions and energy density reached in these collisions. The pseudorapidity densities of charged particles at mid-rapidity in Au + Au collisions at $\\sqrt{S_{NN}}=130$ and 200 GeV at RHIC (relativistic heavy ion collider) have been measured with the PHENIX detector. The measurements were performed using sets of wire-chambers with pad readout in the two central PHENIX tracking arms. Each arm covers one quarter of the azimuth in the pseudorapidity interval || < 0.35. Data is presented and compared with results from proton–proton collisions and nucleus–nucleus collisions at lower energies. Extrapolations to LHC energies are discussed.
Charged-particle multiplicity at mid-rapidity in Au-Au collisions at relativistic heavy-ion collider
Silvermyr, D
2003-01-01
The particle density at mid-rapidity is an essential global variable for the characterization of nuclear collisions at ultra-relativistic energies. It provides information about the initial conditions and energy density reached in these collisions. The pseudorapidity densities of charged particles at mid-rapidity in Au+Au collisions at root s//N//N = 130 and 200 GeV at RHIC (relativistic heavy ion collider) have been measured with the PHENIX detector. The measurements were performed using sets of wire-chambers with pad readout in the two central PHENIX tracking arms. Each arm covers one quarter of the azimuth in the pseudorapidity interval vertical bar eta vertical bar less than 0.35. Data is presented and compared with results from proton-proton collisions and nucleus-nucleus collisions at lower energies. Extrapolations to LHC energies are discussed. 16 Refs.
Bakke, K
2015-01-01
The behaviour of a relativistic scalar particle in a possible scenario that arises from the violation of the Lorentz symmetry is investigated. The background of the Lorentz symmetry violation is defined by a tensor field that governs the Lorentz symmetry violation out of the Standard Model Extension. Thereby, we show that a Coulomb-type potential can be induced by Lorentz symmetry breaking effects and bound states solutions to the Klein-Gordon equation can be obtained. Further, we discuss the effects of this Coulomb-type potential on the confinement of the relativistic scalar particle to a linear confining potential by showing that bound states solutions to the Klein-Gordon equation can also be achieved, and obtain a quantum effect characterized by the dependence of a parameter of the linear confining potential on the quantum numbers $\\left\\{n,l\\right\\}$ of the system.
Oliveira, Diego F.M., E-mail: diegofregolente@gmail.com [Institute for Multiscale Simulations, Friedrich-Alexander Universität, D-91052, Erlangen (Germany); Leonel, Edson D., E-mail: edleonel@rc.unesp.br [Departamento de Estatística, Matemática Aplicada e Computação, UNESP, Univ. Estadual Paulista, Av. 24A, 1515, Bela Vista, 13506-900, Rio Claro, SP (Brazil); Departamento de Física, UNESP, Univ. Estadual Paulista, Av. 24A, 1515, 13506-900, Rio Claro, SP (Brazil)
2012-11-01
We study some dynamical properties for the problem of a charged particle in an electric field considering both the low velocity and relativistic cases. The dynamics for both approaches is described in terms of a two-dimensional and nonlinear mapping. The structure of the phase spaces is mixed and we introduce a hole in the chaotic sea to let the particles to escape. By changing the size of the hole we show that the survival probability decays exponentially for both cases. Additionally, we show for the relativistic dynamics, that the introduction of dissipation changes the mixed phase space and attractors appear. We study the parameter space by using the Lyapunov exponent and the average energy over the orbit and show that the system has a very rich structure with infinite family of self-similar shrimp shaped embedded in a chaotic region.
Geodesic motions of test particles in a relativistic core-shell spacetime
Liu, Lei; Wu, Xin; Huang, Guoqing
2017-02-01
In this paper, we discuss the geodesic motions of test particles in the intermediate vacuum between a monopolar core and an exterior shell of dipoles, quadrupoles and octopoles. The radii of the innermost stable circular orbits at the equatorial plane depend only on the quadrupoles. A given oblate quadrupolar leads to the existence of two innermost stable circular orbits, and their radii are larger than in the Schwarzschild spacetime. However, a given prolate quadrupolar corresponds to only one innermost stable circular orbit, and its radius is smaller than in the Schwarzschild spacetime. As to the general geodesic orbits, one of the recently developed extended phase space fourth order explicit symplectic-like methods is efficiently applicable to them although the Hamiltonian of the relativistic core-shell system is not separable. With the aid of both this fast integrator without secular growth in the energy errors and gauge invariant chaotic indicators, the effect of these shell multipoles on the geodesic dynamics of order and chaos is estimated numerically.
Cardoso, V; Cardoso, Vitor; Lemos, Jos\\'e P. S.
2003-01-01
In this paper, we consider the gravitational radiation generated by the collision of highly relativistic particles with rotating Kerr black holes. We use the Sasaki-Nakamura formalism to compute the waveform, energy spectra and total energy radiated during this process. We show that the gravitational spectrum for high-energy collisions has definite characteristic universal features, which are independent of the spin of the colliding objects. We also discuss possible connections between these results and the black hole-black hole collision at the speed of light process. With these results at hand, we predict that during the high speed collision of a non-rotating hole with a rotating one, about 35% of the total energy gets converted into gravitational waves. Thus, if one is able to produce black holes at the Large Hadron Collider, 35% of the partons' energy should be emitted during the so called balding phase. This energy will be missing, since we don't have gravitational wave detectors able to measure such amp...
Scott, Tony C.
It has been shown that the Fokker-Wheeler-Feynman (FWF) model could be rewritten to yield a physically acceptable relativistic many-particle Lagrangian. Contrary to Wheeler and Feynman's postulates, the model satisfies causality and can be generalised to include arbitrary forces. The 1/c power series of the FWF Lagrangian to order (1/c) ^4 contains accelerations. A procedure of quantizing the theory for such a Lagrangian is presented and it is then found that the accelerations approximately introduce an independent harmonic mode which is in agreement with resonances recently observed in Positronium collisions processes. This result may be of fundamental physical importance and requires further investigation. However, the refinement of this calculation requires the creation of new computational tools. To this end, a new method is presented in which both the eigenfunctions and eigenenergies are determined algebraically as power series in the order parameter, where each coefficient of the series is obtained in closed form. This method avoids the complications of a basis set and makes extensive use of symbolic computation. It is then applied to two model problems, namely the one-body Dirac equation for testing purposes and a special case of the two-body Dirac equation for which one obtains previously unknown closed form solutions.
On relativistic motion of a pair of particles having opposite signs of masses
Ivanov, Pavel
2012-01-01
(abbreviated) In this note we consider, in a weak-field limit, a relativistic linear motion of two particles with opposite signs of masses having a small difference between their absolute values $m_{1,2}=\\pm (\\mu\\pm \\Delta \\mu) $, $\\mu > 0$, $|\\Delta \\mu | \\ll \\mu$ and a small difference between their velocities. Assuming that the weak-field limit holds and the dynamical system is conservative an elementary treatment of the problem based on the laws of energy and momentum conservation shows that the system can be accelerated indefinitely, or attain very large asymptotic values of the Lorentz factor $\\gamma$. The system experiences indefinite acceleration when its energy-momentum vector is null and the mass difference $\\Delta \\mu \\le 0$. When modulus of the square of the norm of the energy-momentum vector, $|N^2|$, is sufficiently small the system can be accelerated to very large $\\gamma \\propto |N^2|^{-1}$. It is stressed that when only leading terms in the ratio of a characteristic gravitational radius to th...
Fluctuations in charged particle multiplicities in relativistic heavy-ion collisions
Mukherjee, Maitreyee; Basu, Sumit; Choudhury, Subikash; Nayak, Tapan K.
2016-08-01
Multiplicity distributions of charged particles and their event-by-event fluctuations have been compiled for relativistic heavy-ion collisions from the available experimental data at Brookhaven National Laboratory and CERN and also by the use of an event generator. Multiplicity fluctuations are sensitive to QCD phase transition and to the presence of a critical point in the QCD phase diagram. In addition, multiplicity fluctuations provide baselines for other event-by-event measurements. Multiplicity fluctuation expressed in terms of the scaled variance of the multiplicity distribution is an intensive quantity, but is sensitive to the volume fluctuation of the system. The importance of the choice of narrow centrality bins and the corrections of the centrality bin-width effect for controlling volume fluctuations have been discussed. It is observed that the mean and width of the multiplicity distributions monotonically increase as functions of increasing centrality at all collision energies, whereas the multiplicity fluctuations show minimal variations with centrality. The beam-energy dependence shows that the multiplicity fluctuations have a slow rise at lower collision energies and remain constant at higher energies.
Design of a C-band relativistic extended interaction klystron with coaxial output cavity
WU Yang; ZHAO De-Kui; CHEN Yong-Dong
2015-01-01
In order to overcome the disadvantages of conventional high frequency relativistic klystron amplifiers in power capability and RF conversion efficiency,a C-band relativistic extended interaction klystron amplifier with coaxial output cavity is designed with the aid of PIC code MAGIC.In the device,disk-loaded cavities are introduced in the input and intermediate cavity to increase the beam modulation depth,and a coaxial disk-loaded cavity is employed in the output cavity to enhance the RF conversion efficiency.In PIC simulation,when the beam voltage is 680 kV and current is 4 kA,the device can generate 1.11 GW output power at 5.64 GHz with an efficiency of 40.8％.
Sahai, Aakash; Ettlinger, Oliver; Hicks, George; Ditter, Emma-Jane; Najmudin, Zulfikar
2016-10-01
We investigate proton and light-ion acceleration driven by the interaction of relativistic CO2 laser pulses with overdense Argon or other heavy-ion gas targets doped with lighter-ion species. Optically shaping the gas targets allows tuning of the pre-plasma scale-length from a few to several laser wavelengths, allowing the laser to efficiently drive a propagating snowplow through the bunching in the electron density. Preliminary PIC-based modeling shows that the lighter-ion species is accelerated even without any significant motion of the heavier ions which is a signature of the Relativistically Induced Transparency Acceleration mechanism. Some outlines of possible experiments at the TW CO2 laser at the Accelerator Test Facility at Brookhaven National Laboratory are presented.
Charged particle therapy: the physics of interaction.
Lomax, Antony J
2009-01-01
Particle therapy has a long and distinguished history with more than 50,000 patients having been treated, mainly with high-energy proton therapy. Particularly, for proton therapy, there is an increasing interest in exploiting the physical characteristics of charged particles for further improving the potential of radiation therapy. In this article, we review the most important interactions of charged particles with matter and describe the basic physical principles that underlie why particle beams behave the way they do and why such a behavior could bring many benefits in radiation therapy.
Polko, Peter; Markoff, Sera
2012-01-01
We present a new, approximate method for modelling the acceleration and collimation of relativistic jets in the presence of gravity. This method is self-similar throughout the computational domain where gravitational effects are negligible and, where significant, self-similar within a flux tube. These solutions are applicable to jets launched from a small region (e.g., near the inner edge of an accretion disk). As implied by earlier work, the flow can converge onto the rotation axis, potentially creating a collimation shock. In this first version of the method, we derive the gravitational contribution to the relativistic equations by analogy with non-relativistic flow. This approach captures the relativistic kinetic gravitational mass of the flowing plasma, but not that due to internal thermal and magnetic energies. A more sophisticated treatment, derived from the basic general relativistic magnetohydrodynamical equations, is currently being developed. Here we present an initial exploration of parameter space...
Alternative gauge for the description of the light-matter interaction in a relativistic framework
Kjellsson, Tor; Førre, Morten; Simonsen, Aleksander Skjerlie; Selstø, Sølve; Lindroth, Eva
2017-08-01
We present a generalized velocity gauge form of the relativistic laser-matter interaction. In comparison with the (equivalent) regular minimal coupling description, this form of light-matter interaction results in superior convergence properties for the numerical solution of the time-dependent Dirac equation. This applies both to the numerical treatment and, more importantly, to the multipole expansion of the laser field. The advantages of the alternative gauge is demonstrated in hydrogen by studies of the dynamics following the impact of superintense laser pulses of extreme ultraviolet wavelengths and subfemtosecond duration.
Nuclear relativistic Hartree-Fock calculations including pions interacting with a scalar field
Marcos, S.; Lopez-Quelle, M.; Niembro, R.; Savushkin, L. N. [Departamento de Fisica Moderna, Universidad de Cantabria, Santander (Spain); Departamento de Fisica Aplicada, Universidad de Cantabria, Santander (Spain); Departamento de Fisica Moderna, Universidad de Cantabria, Santander (Spain); Department of Physics, St. Petersburg University for Telecommunications, St. Petersburg (Russian Federation)
2012-10-20
The effect of pions on the nuclear shell structure is analyzed in a relativistic Hartree-Fock approximation (RHFA). The Lagrangian includes, in particular, a mixture of {pi}N pseudoscalar (PS) and pseudovector (PV) couplings, self-interactions of the scalar field {sigma} and a {sigma} - {pi} interaction that dresses pions with an effective mass (m*{sub {pi}}). It is found that an increase of m*{sub {pi}} strongly reduces the unrealistic effect of pions, keeping roughly unchanged their contribution to the total binding energy.
Loop Representation of charged particles interacting with Maxwell and Chern-Simons fields
Fuenmayor, E; Revoredo, R; Fuenmayor, Ernesto; Leal, Lorenzo; Revoredo., Ryan
2002-01-01
The loop representation formulation of non-relativistic particles coupled with abelian gauge fields is studied. Both Maxwell and Chern-Simons interactions are separately considered. It is found that the loop-space formulations of these models share significant similarities, although in the Chern-Simons case there exists an unitary transformation that allows to remove the degrees of freedom associated with the paths. As a general result, we find that charge quantization is necessary for the geometric representation to be consistent.
Bulanov, S. V.; Esirkepov, T. Zh.; Koga, J.; Tajima, T.
2004-10-01
The plasma particle interaction with a relativistically intense electromagnetic wave under the conditions when the radiation reaction effects are dominant is considered. We analyze the radiation damping effects on the electron motion inside the circularly polarized planar wave and inside a subcycle crossed-field electromagnetic pulse. We consider the ion acceleration due to the radiation pressure action on a thin plasma slab. The results of 2D and 3D PIC simulations are presented.
Spin Operator for the Relativistic Particle%相对论粒子的自旋算符
张鹏飞; 阮图南
2000-01-01
发展了关于相对论态自旋算符的系统理论.考虑了具有非零静质量的粒子情况.对带自旋的相对论粒子,通常的自旋算符需换为相对论的自旋算符.在Poincaré群不可约表示的框架里,构造了适用于粒子任意正则态的自旋算符,称为运动自旋.本文的讨论限于量子力学.随后将在量子场论中对此作进一步深入研究.%A systematic theory of the appropriate spin operators for the relativistic states is developed. This paper discusses it in particle case, i.e., the quantum mechanics problem. For a massive relativistic particle with arbitrary nonzero spin, the spin operator should be replaced with the relativistic one. In the frame of irreducible representation of Poincargroup, this spin operator, which is named as moving spin and applied to all the canonical states of the particle, is constructed. Further discussion on the concept of moving spin in the quantum field theory will be followed.
Relativistic impulse dynamics.
Swanson, Stanley M
2011-08-01
Classical electrodynamics has some annoying rough edges. The self-energy of charges is infinite without a cutoff. The calculation of relativistic trajectories is difficult because of retardation and an average radiation reaction term. By reconceptuallizing electrodynamics in terms of exchanges of impulses rather than describing it by forces and potentials, we eliminate these problems. A fully relativistic theory using photonlike null impulses is developed. Numerical calculations for a two-body, one-impulse-in-transit model are discussed. A simple relationship between center-of-mass scattering angle and angular momentum was found. It reproduces the Rutherford cross section at low velocities and agrees with the leading term of relativistic distinguishable-particle quantum cross sections (Møller, Mott) when the distance of closest approach is larger than the Compton wavelength of the particle. Magnetism emerges as a consequence of viewing retarded and advanced interactions from the vantage point of an instantaneous radius vector. Radiation reaction becomes the local conservation of energy-momentum between the radiating particle and the emitted impulse. A net action is defined that could be used in developing quantum dynamics without potentials. A reinterpretation of Newton's laws extends them to relativistic motion.
Relativistic diffusion equation from stochastic quantization
Kazinski, P O
2007-01-01
The new scheme of stochastic quantization is proposed. This quantization procedure is equivalent to the deformation of an algebra of observables in the manner of deformation quantization with an imaginary deformation parameter (the Planck constant). We apply this method to the models of nonrelativistic and relativistic particles interacting with an electromagnetic field. In the first case we establish the equivalence of such a quantization to the Fokker-Planck equation with a special force. The application of the proposed quantization procedure to the model of a relativistic particle results in a relativistic generalization of the Fokker-Planck equation in the coordinate space, which in the absence of the electromagnetic field reduces to the relativistic diffusion (heat) equation. The stationary probability distribution functions for a stochastically quantized particle diffusing under a barrier and a particle in the potential of a harmonic oscillator are derived.
Chaos and Maps in Relativistic Dynamical Systems
Horwitz, L P
1999-01-01
The basic work of Zaslavskii et al showed that the classical non-relativistic electromagnetically kicked oscillator can be cast into the form of an iterative map on the phase space; the resulting evolution contains a stochastic flow to unbounded energy. Subsequent studies have formulated the problem in terms of a relativistic charged particle in interaction with the electromagnetic field. We review the structure of the covariant Lorentz force used to study this problem. We show that the Lorentz force equation can be derived as well from the manifestly covariant mechanics of Stueckelberg in the presence of a standard Maxwell field, establishing a connection between these equations and mass shell constraints. We argue that these relativistic generalizations of the problem are intrinsically inaccurate due to an inconsistency in the structure of the relativistic Lorentz force, and show that a reformulation of the relativistic problem, permitting variations (classically) in both the particle mass and the effective...
Role of particle masses in the magnetic field generation driven by the parity violating interaction
Dvornikov, Maxim
2016-01-01
Recently the new model for the generation of strong large scale magnetic fields in neutron stars, driven by the parity violating interaction, was proposed. In this model, the magnetic field instability results from the modification of the chiral magnetic effect in presence of the electroweak interaction between ultrarelativistic electrons and nucleons. In the present work we study how a nonzero mass of charged particles, which are degenerate relativistic electrons and nonrelativistic protons, influences the generation of the magnetic field in frames of this approach. For this purpose we calculate the induced electric current of these charged particles, electroweakly interacting with background neutrons and an external magnetic field, exactly accounting for the particle mass. This current is calculated by two methods: using the exact solution of the Dirac equation for a charged particle in external fields and computing the polarization operator of a photon in matter composed of background neutrons. We show tha...
Azevedo, F S; Castro, Luis B; Filgueiras, Cleverson; Cogollo, D
2015-01-01
The planar quantum dynamics of spin-1/2 neutral particle interacting with electrical fields is considered. A set of first order differential equations are obtained directly from the planar Dirac equation with nonminimum coupling. New solutions of this system, in particular, for the Aharonov-Casher effect, are found and discussed in detail. Pauli equation is also obtained by studying the motion of the particle when it describes a circular path of constant radius. We also analyze the planar dynamics in the full space, including the $r=0$ region. The self-adjoint extension method is used to obtain the energy levels and wave functions of the particle for two particular values for the self-adjoint extension parameter. The energy levels obtained are analogous to the Landau levels and explicitly depend on the spin projection parameter.
Mass spectrum bound state systems with relativistic corrections
Dineykhan, M; Zhaugasheva, S A [Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Dubna (Russian Federation); Toinbaeva, N Sh; Jakhanshir, A [al-Farabi Kazak National University, 480012 Almaty (Kazakhstan)
2009-07-28
Based on the investigation of the asymptotic behaviour of the polarization loop function for charged n scalar particles in an external gauge field, we determine the interaction Hamiltonian including relativistic corrections. The mass spectrum of the bound state is analytically derived. The mechanism for arising of the constituent mass of the relativistic bound-state forming particles is explained. The mass and the constituent mass of the two-, three- and n-body relativistic bound states are calculated taking into account relativistic corrections. The corrections arising due to the one- and two-loop electron polarization to the energy spectrum of muonic hydrogen with orbital and radial excitations are calculated.
Terahertz radiation emission from plasma beat-wave interactions with a relativistic electron beam
Gupta, D. N.; Kulagin, V. V.; Suk, H.
2017-10-01
We present a mechanism to generate terahertz radiation from laser-driven plasma beat-wave interacting with an electron beam. The theory of the energy transfer between the plasma beat-wave and terahertz radiation is elaborated through nonlinear coupling in the presence of a negative-energy relativistic electron beam. An expression of terahertz radiation field is obtained to find out the efficiency of the process. Our results show that the efficiency of terahertz radiation emission is strongly sensitive to the electron beam energy. Emitted field strength of the terahertz radiation is calculated as a function of electron beam velocity.
Geometric Representation of Interacting Non-Relativistic Open Strings using Extended Objects
Arias, P J; Fuenmayor, E; Leal, L
2013-01-01
Non-relativistic charged open strings coupled with Abelian gauge fields are quantized in a geometric representation that generalizes the Loop Representation. The model consists of open-strings interacting through a Kalb-Ramond field in four dimensions. The geometric representation proposed uses lines and surfaces that can be interpreted as an extension of the picture of Faraday's lines of classical electromagnetism. This representation results to be consistent, provided the coupling constant (the "charge" of the string) is quantized. The Schr\\"odinger equation in this representation is also presented.
Nazé, C.; Verdebout, S. [Service de Chimie Quantique et Photophysique, CP160/09, Université Libre de Bruxelles, Avenue F.D. Roosevelt 50, B 1050 Brussels (Belgium); Rynkun, P.; Gaigalas, G. [Vilnius University, Institute of Theoretical Physics and Astronomy, LT-01108 Vilnius (Lithuania); Godefroid, M., E-mail: mrgodef@ulb.ac.be [Service de Chimie Quantique et Photophysique, CP160/09, Université Libre de Bruxelles, Avenue F.D. Roosevelt 50, B 1050 Brussels (Belgium); Jönsson, P. [Group for Materials Science and Applied Mathematics, Malmö University, 205-06 Malmö (Sweden)
2014-09-15
Energy levels, normal and specific mass shift parameters as well as electronic densities at the nucleus are reported for numerous states along the beryllium, boron, carbon, and nitrogen isoelectronic sequences. Combined with nuclear data, these electronic parameters can be used to determine values of level and transition isotope shifts. The calculation of the electronic parameters is done using first-order perturbation theory with relativistic configuration interaction wavefunctions that account for valence, core–valence, and core–core correlation effects as zero-order functions. Results are compared with experimental and other theoretical values, when available.
Off-shell behavior of relativistic NN effective interactions and charge symmetry breaking
Gersten, A.; Thomas, A. W.; Weyrauch, M.
1990-04-01
We examine in detail the suggestion of Iqbal et al. for calculating the class-four charge symmetry breaking amplitude in n-p scattering. By simplifying to a model problem, we show explicitly that the approximation scheme is unreliable if a phenomenological, effective nucleon-nucleon T matrix is used. Our results have wider implications for observables calculated in relativistic impulse approximation calculations. They reinforce the observation made in the literature that the procedure of fitting only positive energy matrix elements can lead to an NN interaction whose off-shell behavior is incorrect.
López, Rodrigo A. [Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Concepción, Concepción 4070386 (Chile); Muñoz, Víctor [Departamento de Física, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago (Chile); Viñas, Adolfo F. [Geospace Physics Laboratory, Heliophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, Maryland 20771 (United States); Valdivia, Juan A. [Departamento de Física, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago (Chile); Centro para el Desarrollo de la Nanociencia y la Nanotecnología (CEDENNA), Santiago 9170124 (Chile)
2015-09-15
We use a particle-in-cell simulation to study the propagation of localized structures in a magnetized electron-positron plasma with relativistic finite temperature. We use as initial condition for the simulation an envelope soliton solution of the nonlinear Schrödinger equation, derived from the relativistic two fluid equations in the strongly magnetized limit. This envelope soliton turns out not to be a stable solution for the simulation and splits in two localized structures propagating in opposite directions. However, these two localized structures exhibit a soliton-like behavior, as they keep their profile after they collide with each other due to the periodic boundary conditions. We also observe the formation of localized structures in the evolution of a spatially uniform circularly polarized Alfvén wave. In both cases, the localized structures propagate with an amplitude independent velocity.
2015-01-01
As a follow-up to a recent study in the spin-0 case [J. Bunao and E. A. Galapon, Ann. Phys. 353, 83-106 (2015)], we construct a one-particle Time of Arrival (TOA) operator conjugate to a Hamiltonian describing a free relativistic spin-1/2 particle in one spatial dimension. Upon transformation in a representation where the Hamiltonian is diagonal, it turns out that the constructed operator consists of an operator term $\\mathcal{\\hat{T}}$ whose action is the same as in the spin-0 case, and anot...
Relativistic scalar-vector models of the N-N and N-nuclear interactions
Green, A.E.S.
1985-01-01
This paper for the Proceedings of Conference an Anti-Nucleon and Nucleon-Nucleus Interactions summarizes work by the principal investigator and his collaborators on the nucleon-nucleon (N-N) and nucleon-nuclear (N-eta) interactions. It draws heavily on a paper presented at the Many Body Conference in Rome in 1972 but also includes a brief review of our phenomenological N-eta interaction studies. We first summarize our 48-49 generalized scalar-vector meson field theory model of the N-N interactions. This is followed by a brief description of our phenomenological work in the 50's on the N-eta interaction sponsored by the Atomic Energy Commission (the present DOE). This work finally led to strong velocity dependent potentials with spin orbit and isospin terms for shell and optical model applications. This is followed by a section on the Emergence of One-Boson Exchange Models describing developments in the 60's of quantitative generalized one boson exchange potentials (GOBEP) including our purely relativistic N-N analyses. Then follows a section on the application of this meson field model to the N-eta interaction, in particular to spherical closed shell nuclei. This work was sponsored by AFOSR but funding was halted with the Mansfield amendment. We conclude with a discussion of subsequent collateral work by former colleagues and by others who have converged upon scalar-vector relativistic models of N-N, antiN-N, N-eta and antiN-eta interactions and some lessons learned from this extended endeavor. 61 refs.
Internal waves interacting with particles in suspension
Micard, Diane
2016-04-01
Internal waves are produced as a consequence of the dynamic balance between buoy- ancy and gravity forces when a particle of fluid is vertically displaced in a stable stratified environment. Geophysical systems such as ocean and atmosphere are naturally stratified and therefore suitable for internal waves to propagate. Furthermore, these two environ- ments stock a vast amount of particles in suspension, which present a large spectrum of physical properties (size, density, shape), and can be organic, mineral or pollutant agents. Therefore, it is reasonable to expect that internal waves will have an active effect over the dynamics of these particles. In order to study the interaction of internal waves and suspended particles, an ide- alized experimental setup has been implemented. A linear stratification is produced in a 80×40×17 cm3 tank, in which two dimensional plane waves are created thanks to the inno- vative wave generator GOAL. In addition, a particle injector has been developed to produce a vertical column of particles within the fluid, displaying the same two-dimensional sym- metry as the waves. The particle injector allows to control the volumic fraction of particles and the size of the column. The presence of internal waves passing through the column of particles allowed to observe two main effects: The column oscillates around an equilibrium position (which is observed in both, the contours an the interior of the column), and the column is displaced as a whole. The column is displaced depending on the characteristics of the column, the gradient of the density, and the intensity and frequency of the wave. When displaced, the particles within the column are sucked towards the source of waves. The direction of the displacement of the column is explained by computing the effect of the Lagrangian drift generated by the wave over the time the particles stay in the wave beam before settling.
"Strong interaction" for particle physics laboratories
2003-01-01
A new Web site pooling the communications resources of particle physics centres all over the world has just been launched. The official launching of the new particle physics website Interactions.org during the Lepton-Proton 2003 Conference at the American laboratory Fermilab was accompanied by music and a flurry of balloons. On the initiative of Fermilab, the site was created by a collaboration of communication teams from over fifteen of the world's particle physics laboratories, including KEK, SLAC, INFN, JINR and, of course, CERN, who pooled their efforts to develop the new tool. The spectacular launching of the new particle physics website Interactions.org at Fermilab on 12 August 2003. A real gateway to particle physics, the site not only contains all the latest news from the laboratories but also offers images, graphics and a video/animation link. In addition, it provides information about scientific policies, links to the universities, a very useful detailed glossary of particle physics and astrophysic...
Wave-particle Interactions In Rotating Mirrors
Abraham J. Fetterman and Nathaniel J. Fisch
2011-01-11
Wave-particle interactions in E×B rotating plasmas feature an unusual effect: particles are diffused by waves in both potential energy and kinetic energy. This wave-particle interaction generalizes the alpha channeling effect, in which radio frequency waves are used to remove alpha particles collisionlessly at low energy. In rotating plasmas, the alpha particles may be removed at low energy through the loss cone, and the energy lost may be transferred to the radial electric field. This eliminates the need for electrodes in the mirror throat, which have presented serious technical issues in past rotating plasma devices. A particularly simple way to achieve this effect is to use a high azimuthal mode number perturbation on the magnetic field. Rotation can also be sustained by waves in plasmas without a kinetic energy source. This type of wave has been considered for plasma centrifuges used for isotope separation. Energy may also be transferred from the electric field to particles or waves, which may be useful for ion heating and energy generation.
Two-Photon Interactions with Nuclear Breakup in Relativistic Heavy Ion Collisions
Baltz, Anthony J.; Gorbunov, Yuri; R Klein, Spencer; Nystrand, Joakim
2010-07-07
Highly charged relativistic heavy ions have high cross-sections for two-photon interactions. The photon flux is high enough that two-photon interactions may be accompanied by additional photonuclear interactions. Except for the shared impact parameter, these interactions are independent. Additional interactions like mutual Coulomb excitation are of experimental interest, since the neutrons from the nuclear dissociation provide a simple, relatively unbiased trigger. We calculate the cross sections, rapidity, mass and transverse momentum (p{sub T}) distributions for exclusive {gamma}{gamma} production of mesons and lepton pairs, and for {gamma}{gamma} reactions accompanied by mutual Coulomb dissociation. The cross-sections for {gamma}{gamma} interactions accompanied by multiple neutron emission (XnXn) and single neutron emission (1n1n) are about 1/10 and 1/100 of that for the unaccompanied {gamma}{gamma} interactions. We discuss the accuracy with which these cross-sections may be calculated. The typical p{sub T} of {gamma}{gamma} final states is several times smaller than for comparable coherent photonuclear interactions, so p{sub T} may be an effective tool for separating the two classes of interactions.
Nakamura, Masanori
2014-01-01
We describe a new paradigm for understanding both relativistic motions and particle acceleration in the M87 jet: a magnetically dominated relativistic flow that naturally produces four relativistic magnetohydrodynamic (MHD) shocks (forward/reverse fast and slow modes). We apply this model to a set of optical super- and subluminal motions discovered by Biretta and coworkers with the {\\em Hubble Space Telescope} during 1994 -- 1998. The model concept consists of ejection of a {\\em single} relativistic Poynting jet, which possesses a coherent helical (poloidal + toroidal) magnetic component, at the remarkably flaring point HST-1. We are able to reproduce quantitatively proper motions of components seen in the {\\em optical} observations of HST-1 with the same model we used previously to describe similar features in radio VLBI observations in 2005 -- 2006. This indicates that the quad relativistic MHD shock model can be applied generally to recurring pairs of super/subluminal knots ejected from the upstream edge o...
Granular segregation driven by particle interactions.
Lozano, C; Zuriguel, I; Garcimartín, A; Mullin, T
2015-05-01
We report the results of an experimental study of particle-particle interactions in a horizontally shaken granular layer that undergoes a second order phase transition from a binary gas to a segregation liquid as the packing fraction C is increased. By focusing on the behavior of individual particles, the effect of C is studied on (1) the process of cluster formation, (2) cluster dynamics, and (3) cluster destruction. The outcomes indicate that the segregation is driven by two mechanisms: attraction between particles with the same properties and random motion with a characteristic length that is inversely proportional to C. All clusters investigated are found to be transient and the probability distribution functions of the separation times display a power law tail, indicating that the splitting probability decreases with time.
About strong interaction of fundamental particles
Sannikov-Proskuryakov, S S
2002-01-01
We concentrate upon the main properties of strong interaction of hadrons. It is demonstrated that, due to the unusual character of the field propagator in a fiber (at very small distances) where strong interaction is switched on, a new symmetric Green function is used as a field propagator. As a result, the unitary scattering matrix of strong interaction is represented as a T sub s -time ordered chronological exponent. It is shown that the particle skeleton algebra plays an important role in finding the full interaction Lagrangian. Coupling constants of strong interactions are determined. In Appendix, the radiative corrections to the nucleon mass and the masses of eta, pi, KAPPA mesons transferring the strong interactions are calculated.
Particle production in relativistic heavy-ion collisions with perturbative QCD
Zhang, Yi
The commissioning of the Relativistic Heavy Ion Collider (RHIC) opened new era in nuclear collision physics, with the study of excited strongly-interacting matter becoming a reality. A primary motivation for studying high-p T hadron production in ultrarelativistic heavy ion collisions is to gain insight into the gluon density of the quark-gluon medium via jet energy loss. The sensitivity of high-pT hadron spectra to initial gluon density may be a probe of the formation of quark-gluon-plasma (QGP). However, a thorough understanding of ultrarelativistic nuclear (AA ) collisions requires the accurate description of proton-proton ( pp) and proton-nucleus (pA) collisions in the same framework. In the present dissertation we follow the evolution of high-p T hadron production in relativistic collisions from pp to pA to AA reactions. The perturbative Quantum Chromodynamics (pQCD) improved parton model is used for the study. We apply leading-order (LO) pQCD throughout, and augment the standard one-dimensional cross section calculation by the intrinsic transverse momentum distribution of partons. We use abundant pion production data from pp collisions at c.m. energies s≲ 60 GeV to extract the width of the transverse momentum distribution of partons in the nucleon. This gives a satisfactory fit of pion and kaon production data in pp collisions in the 2 ≤ pT ≤ 6 GeV window. For the treatment of nuclear systems, we developed a model based on the enhancement of the width of the transverse momentum distribution of partons in the nuclear medium. An additional parameter is fitted to describe the Cronin effect (cross section enhancement in pA collisions relative to pp collisions) at these energies. Shadowing and the isospin asymmetry of heavy nuclei are taken into account. We tested the model on charged pion and kaon production. In AA collisions at SPS energies we find an indication of a need for a mechanism to decrease the calculated cross section of neutral pion production
Azfar, Farrukh
2017-01-01
This book is based on a series of lectures taught by the author to all incoming first year Oxford University postgraduates in experimental particle physics. It begins by deriving the Dirac equation and incorporating the electro-magnetic interaction and calculating several bread and butter processes at tree level using the Feynman Stueckelberg approach: Mott scattering, electron-electron scattering, electron-positron scattering, Compton scattering, Bremsstrahlung and electron-positron to muon-anti-muon. The intention is for the student to become fluent in detail with all the steps leading to the calculation of these processes. Every step is motivated using the most basic arguments.
Collisional effects on the oblique instability in relativistic beam-plasma interactions
Hao, B.; Ding, W. J.; Sheng, Z. M.; Ren, C.; Kong, X.; Mu, J.; Zhang, J.
2012-07-01
The general oblique instability for a relativistic electron beam propagating through a warm and resistive plasma is investigated fully kinetically by a variable rotation method. Analysis shows that the electrostatic part of the oblique instability is attenuated and eventually stabilized by collisional effects. However, the electromagnetic part of the oblique instability (EMOI) is enhanced. Since the current-filamentation instability as a special case of the EMOI has a larger growth rate, it becomes dominant in the collisional case as shown in our two-dimensional particle-in-cell simulations. While the beam diverges in the collisionless case, it can become magnetically collimated in the collisional case due to stabilization of the electrostatic instabilities when the initial beam spreading angle is less than certain magnitude such as a dozen degrees.
Hydrodynamic interaction between particles near elastic interfaces
Daddi-Moussa-Ider, Abdallah
2016-01-01
We present an analytical calculation of the hydrodynamic interaction between two spherical particles near an elastic interface such as a cell membrane. The theory predicts the frequency dependent self- and pair-mobilities accounting for the finite particle size up to the 5th order in the ratio between particle diameter and wall distance as well as between diameter and interparticle distance. We find that particle motion towards a membrane with pure bending resistance always leads to mutual repulsion similar as in the well-known case of a hard-wall. In the vicinity of a membrane with shearing resistance, however, we observe an attractive interaction in a certain parameter range which is in contrast to the behavior near a hard wall. This attraction might facilitate surface chemical reactions. Furthermore, we show that there exists a frequency range in which the pair-mobility for perpendicular motion exceeds its bulk value, leading to short-lived superdiffusive behavior. Using the analytical particle mobilities ...
Interactive visual exploration of a trillion particles
Schatz, Karsten
2017-03-10
We present a method for the interactive exploration of tera-scale particle data sets. Such data sets arise from molecular dynamics, particle-based fluid simulation, and astrophysics. Our visualization technique provides a focus+context view of the data that runs interactively on commodity hardware. The method is based on a hybrid multi-scale rendering architecture, which renders the context as a hierarchical density volume. Fine details in the focus are visualized using direct particle rendering. In addition, clusters like dark matter halos can be visualized as semi-transparent spheres enclosing the particles. Since the detail data is too large to be stored in main memory, our approach uses an out-of-core technique that streams data on demand. Our technique is designed to take advantage of a dual-GPU configuration, in which the workload is split between the GPUs based on the type of data. Structural features in the data are visually enhanced using advanced rendering and shading techniques. To allow users to easily identify interesting locations even in overviews, both the focus and context view use color tables to show data attributes on the respective scale. We demonstrate that our technique achieves interactive performance on a one trillionpar-ticle data set from the DarkSky simulation.
Ardaneh, Kazem; Cai, DongSheng; Nishikawa, Ken-Ichi
2014-11-01
On the basis of a three-dimensional relativistic electromagnetic particle-in-cell (PIC) code, we have analyzed the Weibel instability driven by a relativistic electron-ion beam propagating into an unmagnetized ambient electron-ion plasma. The analysis is focused on the ion contribution in the instability, considering the earliest evolution in shock formation. Simulation results demonstrate that the Weibel instability is responsible for generating and amplifying the small-scale, fluctuating, and dominantly transversal magnetic fields. These magnetic fields deflect particles behind the beam front both perpendicular and parallel to the beam propagation direction. Initially, the incoming electrons respond to field fluctuations growing as the result of the Weibel instability. Therefore, the electron current filaments are generated and the total magnetic energy grows linearly due to the mutual attraction between the filaments, and downstream advection of the magnetic field perturbations. When the magnetic fields become strong enough to deflect the much heavier ions, the ions begin to get involved in the instability. Subsequently, the linear growth of total magnetic energy decreases because of opposite electron-ion currents and topological change in the structure of magnetic fields. The ion current filaments are then merged and magnetic field energy grows more slowly at the expense of the energy stored in ion stream. It has been clearly illustrated that the ion current filaments extend through a larger scale in the longitudinal direction, while extension of the electron filaments is limited. Hence, the ions form current filaments that are the sources of deeply penetrating magnetic fields. The results also reveal that the Weibel instability is further amplified due to the ions streaming, but on a longer time scale. Our simulation predictions are in valid agreement with those reported in the literature.
Tang, A H
2016-01-01
The EM field pattern created by spectators in relativistic heavy-ion collisions plants a seed of positive (negative) magnetic helicity in the hemisphere above (below) the reaction plane. Owing to the chiral anomaly, the magnetic helicity interacts with the fermionic helicity of the collision system, and causes photons emitted in upper- and lower-hemispheres to have different preferences in the circular polarization. In this paper, we lay down a procedure to measure the variation of the circular polarization w.r.t the reaction plane in relativistic heavy-ion collisions for massless photons, as well as similar polarization patterns for vector mesons decaying into two daughters. We propose to study the yield differentially and compare the yield between upper- and lower-hemispheres in order to identify and quantify such effects.
Relativistic Quantum Mechanics of N Particles - The Clebsch-Gordan Method
Polyzou, W N
2002-01-01
A general technique is presented for constructing quantum mechanical theories of a finite number of interacting particles satisfying Poincar\\'e invariance, cluster separability, and the spectral condition. It is distinguished from other solutions of this problem because it does not utilize the existence of kinematic subgroups that arise in Dirac's forms of dynamics. In the generic construction all Poincar\\'e generators have interactions. The central elements of the construction are the representation theory of the Poincar\\'e group, the theory of Birkhoff lattices, and the algebra of asymptotic constants. The role of the dynamics depends on the choice of basis used to label vectors in Poincar\\'e irreducible subspaces. The scattering equivalence and cluster equivalence of the different constructions are established. The dynamical consequences of requiring cluster properties and Poincar\\'e invariance are discussed.
E. V. B. Leite
2015-01-01
Full Text Available Based on the Kaluza-Klein theory, we study the Aharonov-Bohm effect for bound states for a relativistic scalar particle subject to a Coulomb-type potential. We introduce this scalar potential as a modification of the mass term of the Klein-Gordon equation, and a magnetic flux through the line element of the Minkowski spacetime in five dimensions. Then, we obtain the relativistic bound states solutions and calculate the persistent currents.
2002-01-01
% EMU11 \\\\ \\\\ We propose to use nuclear emulsions for the study of nuclear collisions of $^{207}$Pb, $^{197}$Au, and any other heavy-ion beams when they are available. We have, in the past, used $^{32}$S at 200A~GeV and $^{16}$O at 200A and 60A~GeV from CERN (Experiment EMU08) and at present the analysis is going on with $^{28}$Si beam from BNL at 14.5A~GeV. It will be important to compare the previous and the present investigations with the new $^{207}$Pb beam at 60-160A~GeV. We want to measure in nuclear emulsion, on an event by event basis, shower particle multiplicity, pseudorapidity density and density fluctuations of charged particles, charge multiplicity and angular distributions of projectile fragments, production and interaction cross-sections of heavily ionizing particles emitted from the target fragmentation. Special emphasis will be placed on the analysis of events produced in the central collisions which are selected on the basis of low energy fragments emitted from the target excitation. It woul...
Berrilli Francesco
2014-05-01
Full Text Available High-energy charged particles represent a severe radiation risk for astronauts and spacecrafts and could damage ground critical infrastructures related to space services. Different natural sources are the origin of these particles, among them galactic cosmic rays, solar energetic particles and particles trapped in radiation belts. Solar particle events (SPE consist in the emission of high-energy protons, alpha-particles, electrons and heavier particles from solar flares or shocks driven by solar plasma propagating through the corona and interplanetary space. Ground-level enhancements (GLE are rare solar events in which particles are accelerated to near relativistic energies and affect space and ground-based infrastructures. During the current solar cycle 24 a single GLE event was recorded on May 17th, 2012 associated with an M5.1-class solar flare. The investigation of such a special class of solar events permits us to measure conditions in space critical to both scientific and operational research. This event, classified as GLE71, was detected on board the International Space Station (ISS by the active particle detectors of the ALTEA (Anomalous Long Term Effects in Astronauts experiment. The collected data permit us to study the radiation environment inside the ISS. In this work we present the first results of the analysis of data acquired by ALTEA detectors during GLE71 associated with an M5.1-class solar flare. We estimate the energy loss spectrum of the solar particles and evaluate the contribution to the total exposure of ISS astronauts to solar high-energy charged particles.
Polko, P.; Meier, D.L.; Markoff, S.
2013-01-01
We present a new, approximate method for modelling the acceleration and collimation of relativistic jets in the presence of gravity. This method is self-similar throughout the computational domain where gravitational effects are negligible and, where significant, self-similar within a flux tube.
Relativistic Treatment of Spinless Particles Subject to a Tietz-Wei Oscillator
孙国华; 董世海
2012-01-01
The bound state solutions of the relativistic Klein-Gordon equation with the Tietz-Wei diatomic molecular potential are presented for the s wave. It is shown that the solutions can be expressed by the generalized hypergeometric functions. The normalized wavefunctions are also derived.
Bargmann-Michel-Telegdi equation and one-particle relativistic approach
Della Selva, A; Masperi, L
1995-01-01
A reexamination of the semiclassical approach of the relativistic electron indicates a possible variation of its helicity for electric and magnetic static fields applied along its global motion due to zitterbewegung effects, proportional to the anomalous part of the magnetic moment.
Interaction between colloidal particles. Literature Review
Longcheng Liu; Neretnieks, Ivars (Royal Inst. of Technology, Stockholm (Sweden). School of Chemical Science and Engineering, Dept. of Chemical Engineering and Technology)
2010-02-15
This report summarises the commonly accepted theoretical basis describing interaction between colloidal particles in an electrolyte solution. The two main forces involved are the van der Waals attractive force and the electrical repulsive force. The report describes in some depth the origin of these two forces, how they are formulated mathematically as well as how they interact to sometimes result in attraction and sometimes in repulsion between particles. The report also addresses how the mathematical models can be used to quantify the forces and under which conditions the models can be expected to give fair description of the colloidal system and when the models are not useful. This report does not address more recent theories that still are discussed as to their applicability, such as ion-ion correlation effects and the Coulombic attraction theory (CAT). These and other models will be discussed in future reports
Haba, Z
2009-02-01
We discuss relativistic diffusion in proper time in the approach of Schay (Ph.D. thesis, Princeton University, Princeton, NJ, 1961) and Dudley [Ark. Mat. 6, 241 (1965)]. We derive (Langevin) stochastic differential equations in various coordinates. We show that in some coordinates the stochastic differential equations become linear. We obtain momentum probability distribution in an explicit form. We discuss a relativistic particle diffusing in an external electromagnetic field. We solve the Langevin equations in the case of parallel electric and magnetic fields. We derive a kinetic equation for the evolution of the probability distribution. We discuss drag terms leading to an equilibrium distribution. The relativistic analog of the Ornstein-Uhlenbeck process is not unique. We show that if the drag comes from a diffusion approximation to the master equation then its form is strongly restricted. The drag leading to the Tsallis equilibrium distribution satisfies this restriction whereas the one of the Jüttner distribution does not. We show that any function of the relativistic energy can be the equilibrium distribution for a particle in a static electric field. A preliminary study of the time evolution with friction is presented. It is shown that the problem is equivalent to quantum mechanics of a particle moving on a hyperboloid with a potential determined by the drag. A relation to diffusions appearing in heavy ion collisions is briefly discussed.
Charmonium-Nucleon Interaction from Quenched Lattice QCD with Relativistic Heavy Quark Action
Kawanai, Taichi; Sasaki, Shoichi; Hatsuda, Tetsuo
2009-10-01
Low energy charmonium-nucleon interaction is of particular interest in this talk. A heavy quarkonium state like the charmonium does not share the same quark flavor with the nucleon so that cc-nucleon interaction might be described by the gluonic van der Waals interaction, which is weak but attractive. Therefore, the information of the strength of cc-nucleon interaction is vital for considering the possibility of the formation of charmonium bound to nuclei. We will present the preliminary results for the scattering length and the interaction range of charmonium-nucleon s-wave scattering from quenched lattice QCD. These low-energy quantities can provide useful constraints on the phenomenological cc-nucleon potential, which is required for precise prediction of the binding energy of nuclear-bound charmonium in exact few body calculations. Our simulations are performed at a lattice cutoff of 1/a=2.0 GeV with the nonperturbatively O(a) improved Wilson action for the light quark and a relativistic heavy quark action for the charm quark. A new attempt of calculating the cc-nucleon potential through the Bethe-Salpeter wave function will be also discussed.
Luciano, Rezzolla
2013-01-01
Relativistic hydrodynamics is a very successful theoretical framework to describe the dynamics of matter from scales as small as those of colliding elementary particles, up to the largest scales in the universe. This book provides an up-to-date, lively, and approachable introduction to the mathematical formalism, numerical techniques, and applications of relativistic hydrodynamics. The topic is typically covered either by very formal or by very phenomenological books, but is instead presented here in a form that will be appreciated both by students and researchers in the field. The topics covered in the book are the results of work carried out over the last 40 years, which can be found in rather technical research articles with dissimilar notations and styles. The book is not just a collection of scattered information, but a well-organized description of relativistic hydrodynamics, from the basic principles of statistical kinetic theory, down to the technical aspects of numerical methods devised for the solut...
LUO Xiao-hua; WU Mu-ying; HE Wei; SHAO Ming-zhu; LUO Shi-yu
2011-01-01
Under classical mechanics, the general equation of particle motion in the periodic field is derived. In the dampless case, the existence possibility of the higher-order harmonic radiation is explored by using Bessel function expansion of a generalized trigonometrical function and the multi-scale method. In the damping case, the critical properties and a chaotic behavior are discussed by the Melnikov method. The results show that the use of a higher-order harmonic radiation of non-relativistic particles as a short-wavelength laser source is perfectly possible, and the system's critical condition is related to its parameters. Only by adjusting parameters suitablely, the stable higher-order harmonic radiation with bigger intensity can be obtained.
Unification of Relativistic and Quantum Mechanics from Elementary Cycles Theory
Dolce, Donatello
2016-01-01
In Elementary Cycles theory elementary quantum particles are consistently described as the manifestation of ultra-fast relativistic spacetime cyclic dynamics, classical in the essence. The peculiar relativistic geometrodynamics of Elementary Cycles theory yields de facto a unification of ordinary relativistic and quantum physics. In particular its classical-relativistic cyclic dynamics reproduce exactly from classical physics first principles all the fundamental aspects of Quantum Mechanics, such as all its axioms, the Feynman path integral, the Dirac quantisation prescription (second quantisation), quantum dynamics of statistical systems, non-relativistic quantum mechanics, atomic physics, superconductivity, graphene physics and so on. Furthermore the theory allows for the explicit derivation of gauge interactions, without postulating gauge invariance, directly from relativistic geometrodynamical transformations, in close analogy with the description of gravitational interaction in general relativity. In thi...
Whirling Waves and the Aharonov-Bohm Effect for Relativistic Spinning Particles
Girotti, H O
1996-01-01
The formulation of Berry for the Aharonov-Bohm effect is generalized to the relativistic regime. Then, the problem of finding the self-adjoint extensions of the (2+1)-dimensional Dirac Hamiltonian, in an Aharonov-Bohm background potential, is solved in a novel way. The same treatment also solves the problem of finding the self-adjoint extensions of the Dirac Hamiltonian in a background Aharonov-Casher.
Higgs particles interacting via a scalar Dark Matter field
Bhattacharya, Yajnavalkya
2016-01-01
We study a system of two Higgs bound state, interacting via a real scalar Dark Matter mediating field, without imposing $Z_2$ symmetry on the DM sector of the postulated Lagrangian. The variational method in the Hamiltonian formalism of QFT is used to derive relativistic wave equations for the two-Higgs system, using a truncated Fock-space trial state. Approximate solutions of the 2-body relativistic coupled integral equations are presented, and conditions for the existence of Higgs bound states is examined in a broad parameter space of DM mass and coupling constants.
Scott, R H H; Perez, F; Streeter, M J V; Davies, J R; Schlenvoigt, H -P; Santos, J J; Hulin, S; Lancaster, K L; Baton, S D; Rose, S J; Norreys, P A
2013-01-01
A photon detector suitable for the measurement of bremsstrahlung spectra generated in relativistically-intense laser-solid interactions is described. The Monte Carlo techniques used to back-out the fast electron spectrum and laser energy absorbed into fast electrons are detailed. A relativistically-intense laser-solid experiment using frequency doubled laser light is used to demonstrate the effective operation of the detector. The experimental data was interpreted using the 3-spatial-dimension Monte Carlo code MCNPX (Pelowitz 2008), and the fast electron temperature found to be 125 keV.
Scott, R H H; Clark, E L; Pérez, F; Streeter, M J V; Davies, J R; Schlenvoigt, H-P; Santos, J J; Hulin, S; Lancaster, K L; Baton, S D; Rose, S J; Norreys, P A
2013-08-01
A photon detector suitable for the measurement of bremsstrahlung spectra generated in relativistically intense laser-solid interactions is described. The Monte Carlo techniques used to extract the fast electron spectrum and laser energy absorbed into forward-going fast electrons are detailed. A relativistically intense laser-solid experiment using frequency doubled laser light is used to demonstrate the effective operation of the detector. The experimental data were interpreted using the 3-spatial-dimension Monte Carlo code MCNPX [D. Pelowitz, MCNPX User's Manual Version 2.6.0, Los Alamos National Laboratory, 2008], and the fast electron temperature found to be 125 keV.
The problem of interactions in a dynamical theory of particles (general questions).
Sannikov-Proskuryakov, S S
2002-01-01
Proceeding from the dynamics of a relativistic bi-Hamiltonian system based on the Heisenberg algebra h sub 1 sub 6 sup ( sup * sup ) , possible kinds of interactions between fundamental particles are derived. Three kinds of interactions: strong, electromagnetic, and gravitational ones are connected with the degeneration of the ground state f sub z of the system and are described by the degeneration group I = (SU(2) x U(1)) sub i x U sub e (1) x T sub 3 sub , sub 1. The invariance group E (hidden symmetry) of the state is defined. The space-time structure of interacting particle states (bilocal fields) is investigated and equations for these bilocal fields are obtained.
Relativistic quantum mechanics
Wachter, Armin
2010-01-01
Which problems do arise within relativistic enhancements of the Schrödinger theory, especially if one adheres to the usual one-particle interpretation, and to what extent can these problems be overcome? And what is the physical necessity of quantum field theories? In many books, answers to these fundamental questions are given highly insufficiently by treating the relativistic quantum mechanical one-particle concept very superficially and instead introducing field quantization as soon as possible. By contrast, this monograph emphasizes relativistic quantum mechanics in the narrow sense: it extensively discusses relativistic one-particle concepts and reveals their problems and limitations, therefore motivating the necessity of quantized fields in a physically comprehensible way. The first chapters contain a detailed presentation and comparison of the Klein-Gordon and Dirac theory, always in view of the non-relativistic theory. In the third chapter, we consider relativistic scattering processes and develop the...
Deng-Fan Potential for Relativistic Spinless Particles -- an Ansatz Solution
H. Hassanabadi; B.H. Yazarloo; S. Zarrinkamar; H. Rahimov
2012-01-01
Deng-Fan potential originally appeared many years ago as an attractive proposition for molecular systems. On the contrary to the ground state of one-dimensional Schr6dinger equation, this potential fails to admit exact analytical solutions for arbitrary quantum number in both relativistic and nonrelativistic regime. Because of this complexity, there exists only few papers, which discuss this interesting problem. Here, using an elegant ansatz, we have calculated the system spectra as well as the eigenfunctions in the general case of unequal vector and scalar potentials under Klein-Gordon equation.
Relativistic Treatment of Spinless Particles Subject to a q-Deformed Morse Potential
Sami Ortakaya
2013-01-01
The approximate analytical solutions of the Klein-Gordon equation with equal scalar and vector q-deformed Morse potential are presented for arbitrary (l)-states by using Laplace integral transform.The energy eigenvalues and corresponding wave functions are obtained for n and (l) values.In this study,in the non-relativistic limit c → ∞,it has been also provided that the energy eigenfunctions for Klein-Gordon system turn into those for Schr(o)dinger one.
The Beam-Density Effect on Energy Loss of a Relativistic Charged Particle Beam.
1983-09-01
media. t iU NSWC TR 83-348 Folloving the method developed by Sternheimer 24 in his calculations of the Fermi density effect, i l L2 -2in.v-v 2 (2.16...where Z 2v 2 + f.. The Sternheimer factor P is chosen so that the i i i value of the Bethe logarithm, InI, obtained in non-relativistic experiments, is...first three eigenfrequencies were taken from Reference 25. A more recent set has been given by Sternheimer and Peierls,2 6 but the ones of Reference 25
Severin, L.; Richter, M.; Steinbeck, L.
1997-04-01
Local density calculations with self-interaction-corrected core states are reported for the transition-metal ferromagnets Fe, Co, and Ni. The hyperfine field matrix elements have been computed. Good agreement with measurements is obtained for Co, whereas for Fe and Ni the discrepancy between local density theory and experiment remains also in the self-interaction-corrected calculation. Possible changes in the core states due to relativistic exchange corrections are also discussed and found to be of minor importance.
Regularization of ultraviolet divergence for a particle interacting with a scalar quantum field
Skoromnik, Oleg; Keitel, Christoph [Max Planck Institute for Nuclear Physics (Germany); Feranchuk, Ilya; Lu, Dung [Belarusian State University (Belarus)
2016-07-01
When a non-relativistic particle interacts with a scalar quantum field, the standard perturbation theory leads to a dependence of the energy of its ground state on an undefined parameter ''momentum cut-off'' due to the ultraviolet divergence. We show that the use of non-asymptotic states of the system results in a calculation scheme in which all observable quantities remain finite and continuously depend on the coupling constant without any additional parameters. It is furthermore demonstrated that the divergence of traditional perturbation series is caused by the energy being a function with a logarithmic singularity for small values of the coupling constant.
Kagan, Daniel; Piran, Tsvi
2016-01-01
The maximum synchrotron burnoff limit of 160 MeV represents a fundamental limit to radiation resulting from electromagnetic particle acceleration in one-zone ideal plasmas. In magnetic reconnection, however, particle acceleration and radiation are decoupled because the electric field is larger than the magnetic field in the diffusion region. We carry out two-dimensional particle-in-cell simulations to determine the extent to which magnetic reconnection can produce synchrotron radiation above the burnoff limit. We use the test particle comparison (TPC) method to isolate the effects of cooling by comparing the trajectories and acceleration efficiencies of test particles incident on such a reconnection region with and without cooling them. We find that the cooled and uncooled particle trajectories are typically similar during acceleration in the reconnection region, and derive an effective limit on particle acceleration that is inversely proportional to the average magnetic field experienced by the particle duri...
Bostedt, C; van Buuren, T; Willey, T M; Terminello, L J
2004-09-27
The change in the electronic structure of germanium nanocrystals is investigated as their concentration is increased from non-interacting, individual particles to assembled arrays of particles. The electronic structure of the individual nanoclusters shows clear effects due to quantum confinement which are lost in the concentrated assemblies of bare particles. When the surface of the individual particles is passivated, they retain their quantum confinement properties also upon assembly. These effects are interpreted in terms of a particle - particle interaction model.
Planckian Interacting Massive Particles as Dark Matter
Garny, Mathias; Sandora, McCullen; Sloth, Martin S.
2016-03-01
The standard model could be self-consistent up to the Planck scale according to the present measurements of the Higgs boson mass and top quark Yukawa coupling. It is therefore possible that new physics is only coupled to the standard model through Planck suppressed higher dimensional operators. In this case the weakly interacting massive particle miracle is a mirage, and instead minimality as dictated by Occam's razor would indicate that dark matter is related to the Planck scale, where quantum gravity is anyway expected to manifest itself. Assuming within this framework that dark matter is a Planckian interacting massive particle, we show that the most natural mass larger than 0.01 Mp is already ruled out by the absence of tensor modes in the cosmic microwave background (CMB). This also indicates that we expect tensor modes in the CMB to be observed soon for this type of minimal dark matter model. Finally, we touch upon the Kaluza-Klein graviton mode as a possible realization of this scenario within UV complete models, as well as further potential signatures and peculiar properties of this type of dark matter candidate. This paradigm therefore leads to a subtle connection between quantum gravity, the physics of primordial inflation, and the nature of dark matter.
Planckian Interacting Massive Particles as Dark Matter.
Garny, Mathias; Sandora, McCullen; Sloth, Martin S
2016-03-11
The standard model could be self-consistent up to the Planck scale according to the present measurements of the Higgs boson mass and top quark Yukawa coupling. It is therefore possible that new physics is only coupled to the standard model through Planck suppressed higher dimensional operators. In this case the weakly interacting massive particle miracle is a mirage, and instead minimality as dictated by Occam's razor would indicate that dark matter is related to the Planck scale, where quantum gravity is anyway expected to manifest itself. Assuming within this framework that dark matter is a Planckian interacting massive particle, we show that the most natural mass larger than 0.01M_{p} is already ruled out by the absence of tensor modes in the cosmic microwave background (CMB). This also indicates that we expect tensor modes in the CMB to be observed soon for this type of minimal dark matter model. Finally, we touch upon the Kaluza-Klein graviton mode as a possible realization of this scenario within UV complete models, as well as further potential signatures and peculiar properties of this type of dark matter candidate. This paradigm therefore leads to a subtle connection between quantum gravity, the physics of primordial inflation, and the nature of dark matter.
Entropic Ratchet transport of interacting active Brownian particles
Ai, Bao-Quan, E-mail: aibq@hotmail.com [Laboratory of Quantum Engineering and Quantum Materials, School of Physics and Telecommunication Engineering, South China Normal University, 510006 Guangzhou (China); He, Ya-Feng [College of Physics Science and Technology, Hebei University, 071002 Baoding (China); Zhong, Wei-Rong, E-mail: wrzhong@jnu.edu.cn [Department of Physics and Siyuan Laboratory, College of Science and Engineering, Jinan University, 510632 Guangzhou (China)
2014-11-21
Directed transport of interacting active (self-propelled) Brownian particles is numerically investigated in confined geometries (entropic barriers). The self-propelled velocity can break thermodynamical equilibrium and induce the directed transport. It is found that the interaction between active particles can greatly affect the ratchet transport. For attractive particles, on increasing the interaction strength, the average velocity first decreases to its minima, then increases, and finally decreases to zero. For repulsive particles, when the interaction is very weak, there exists a critical interaction at which the average velocity is minimal, nearly tends to zero, however, for the strong interaction, the average velocity is independent of the interaction.
Relativistic quantum dynamics of scalar bosons under a full vector Coulomb interaction
Castro, Luis B. [Universidade Federal do Maranhao (UFMA), Departamento de Fisica, Sao Luis, MA (Brazil); Oliveira, Luiz P. de [Universidade de Sao Paulo (USP), Instituto de Fisica, Sao Paulo, SP (Brazil); Garcia, Marcelo G. [Instituto Tecnologico de Aeronautica (ITA), Departamento de Fisica, Sao Jose dos Campos, SP (Brazil); Universidade Estadual de Campinas (UNICAMP), IMECC, Departamento de Matematica Aplicada, Campinas, SP (Brazil); Castro, Antonio S. de [Universidade Estadual Paulista (UNESP), Departamento de Fisica e Quimica, Guaratingueta, SP (Brazil)
2017-05-15
The relativistic quantum dynamics of scalar bosons in the background of a full vector coupling (minimal plus nonminimal vector couplings) is explored in the context of the Duffin-Kemmer-Petiau formalism. The Coulomb phase shift is determined for a general mixing of couplings and it is shown that the space component of the nonminimal coupling is a sine qua non condition for the exact closed-form scattering amplitude. It follows that the Rutherford cross section vanishes in the absence of the time component of the minimal coupling. Bound-state solutions obtained from the poles of the partial scattering amplitude show that the time component of the minimal coupling plays an essential role. The bound-state solutions depend on the nonminimal coupling and the spectrum consists of particles or antiparticles depending on the sign of the time component of the minimal coupling without chance for pair production even in the presence of strong couplings. It is also shown that an accidental degeneracy appears for a particular mixing of couplings. (orig.)
Wu, Qun-Yan; Lan, Jian-Hui; Wang, Cong-Zhi; Zhao, Yu-Liang; Chai, Zhi-Fang; Shi, Wei-Qun
2014-11-06
Due to the vast application potential of graphene oxide (GO)-based materials in nuclear waste processing, it is of pivotal importance to investigate the interaction mechanisms between actinide cations such as Np(V) and Pu(IV, VI) ions and GO. In this work, we have considered four types of GOs modified by hydroxyl, carboxyl, and carbonyl groups at the edge and epoxy group on the surface, respectively. The structures, bonding nature, and binding energies of Np(V) and Pu(IV, VI) complexes with GOs have been investigated systematically using scalar-relativistic density functional theory (DFT). Geometries and harmonic frequencies suggest that Pu(IV) ions coordinate more easily with GOs compared to Np(V) and Pu(VI) ions. NBO and electron density analyses reveal that the coordination bond between Pu(IV) ions and GO possesses more covalency, whereas for Np(V) and Pu(VI) ions electrostatic interaction dominates the An-OG bond. The binding energies in aqueous solution reveal that the adsorption abilities of all GOs for actinide ions follow the order of Pu(IV) > Pu(VI) > Np(V), which is in excellent agreement with experimental observations. It is expected that this study can provide useful information for developing more efficient GO-based materials for radioactive wastewater treatment.
Belich, H.; Bakke, K.
2016-03-01
The behavior of a relativistic scalar particle subject to a scalar potential under the effects of the violation of the Lorentz symmetry in the cosmic string space-time is discussed. It is considered two possible scenarios of the Lorentz symmetry breaking in the CPT-even gauge sector of the Standard Model Extension defined by a tensor (KF)μναβ. Then, by introducing a scalar potential as a modification of the mass term of the Klein-Gordon equation, it is shown that the Klein-Gordon equation in the cosmic string space-time is modified by the effects of the Lorentz symmetry violation backgrounds and bound state solution to the Klein-Gordon equation can be obtained.
Resonant and non-resonant whistlers-particle interaction in the radiation belts
Camporeale, Enrico
2014-01-01
We study the wave-particle interactions between lower band chorus whistlers and an anisotropic tenuous population of relativistic electrons. We present the first direct comparison of first-principle Particle-in-Cell (PIC) simulations with a quasi-linear diffusion code, in this context. In the PIC approach, the waves are self-consistently generated by a temperature anisotropy instability that quickly saturates and relaxes the system towards marginal stability. We show that the quasi-linear diffusion and PIC results have significant quantitative mismatch in regions of energy/pitch angle where the resonance condition is not satisfied. Moreover, for pitch angles close to the loss cone the diffusion code overestimates the scattering, particularly at low energies. This suggest that higher order nonlinear theories should be taken in consideration in order to capture non-resonant interactions, resonance broadening, and to account for scattering at angles close to $90^\\circ$.
Augusto, Carlos; Navia, Carlos; de Oliveira, Marcel N.; Fauth, Anderson; Nepomuceno, André
2016-02-01
Active region NOAA AR2036, located at S20W34 at the Sun disk, produced a moderately strong (GOES class M7.3) flare on 2014 April 18. The flare itself was long in duration, and a halo coronal mass ejection (CME) was emitted. In addition, a radiation storm, that is, solar energetic particles (SEP), began to reach the Earth at 13:30 UT in the aftermath of the solar blast, meeting the condition of an S1 (minor) radiation storm level. In temporal coincidence with the onset of the S1 radiation storm, the Tupi telescopes located within the South Atlantic Anomaly (SAA) detected a fast rise in the muon counting rate, caused by relativistic protons from this solar blast, with a confidence of up to 3.5% at peak. At the time of the solar blast, of all ground-based detectors, the Tupi telescopes had the best geoeffective location. Indeed, in association with the radiation storm, a gradual increase in the particle intensity was found in some neutron monitors (NMs), all of them in the west region relative to the Sun-Earth line, yet within the geoeffective region. However, their confidence levels are smaller: up to 3%. The fast rising observed at Tupi suggests possible detection of solar particles emitted during the impulsive phase, following by a gradual phase observed also at NMs. Details of these observations, including the expected energy spectrum, are reported.
On the Question of Interference in Radiation Produced by Relativistic Channeled Particles
Boldyshev, V F
2002-01-01
Two approaches used in the description of the channeling radiation emitted from relativistic positrons are compared with each other. In the first (traditional) case, the probability of the process is proportional to a sum of absolute squares of the amplitudes of the transition between two states with definite transverse energy levels of the positrons traversing single crystals. In the second case, we begin with calculation of the sum of amplitudes for transition between states with different transverse energy levels for corresponding radiation frequency, and then the sum is squared. One must keep in mind that the latter approach can be used only in the case when positrons move in a nearly harmonic planar potential with equidistant transverse energy levels. It is shown that the calculation based on the second approach can give rise to a peak structure in the spectrum when the number of transverse energy levels is much greater than one.
ZHANG Peng-Fei; RUAN Tu-Nan
2001-01-01
A systematic theory on the appropriate spin operators for the relativistic states is developed. For a massive relativistic particle with arbitrary nonzero spin, the spin operator should be replaced with the relativistic one, which is called in this paper as moving spin. Further the concept of moving spin is discussed in the quantum field theory. A new is constructed. It is shown that, in virtue of the two operators, problems in quantum field concerned spin can be neatly settled.
Acoustic interaction forces between small particles in an ideal fluid
Silva, Glauber T
2014-01-01
We present a theoretical expression for the acoustic interaction force between small spherical particles suspended in an ideal fluid exposed to an external acoustic wave. The acoustic interaction force is the part of the acoustic radiation force on one given particle involving the scattered waves from the other particles. The particles, either compressible liquid droplets or elastic microspheres, are considered to be much smaller than the acoustic wavelength. In this so-called Rayleigh limit, the acoustic interaction forces between the particles are well approximated by gradients of pair-interaction potentials with no restriction on the inter-particle distance. The theory is applied to studies of the acoustic interaction force on a particle suspension in either standing or traveling plane waves. The results show aggregation regions along the wave propagation direction, while particles may attract or repel each other in the transverse direction. In addition, a mean-field approximation is developed to describe ...
Planckian Interacting Massive Particles as Dark Matter
Garny, Mathias; Sandora, McCullen; Sloth, Martin S.
2016-01-01
. In this case the WIMP miracle is a mirage, and instead minimality as dictated by Occam's razor would indicate that dark matter is related to the Planck scale, where quantum gravity is anyway expected to manifest itself. Assuming within this framework that dark matter is a Planckian Interacting Massive Particle......, we show that the most natural mass larger than $0.01\\,\\textrm{M}_p$ is already ruled out by the absence of tensor modes in the CMB. This also indicates that we expect tensor modes in the CMB to be observed soon for this type of minimal dark matter model. Finally, we touch upon the KK graviton mode...... as a possible realization of this scenario within UV complete models, as well as further potential signatures and peculiar properties of this type of dark matter candidate. This paradigm therefore leads to a subtle connection between quantum gravity, the physics of primordial inflation, and the nature of dark...
Arzeliès, Henri
1972-01-01
Relativistic Point Dynamics focuses on the principles of relativistic dynamics. The book first discusses fundamental equations. The impulse postulate and its consequences and the kinetic energy theorem are then explained. The text also touches on the transformation of main quantities and relativistic decomposition of force, and then discusses fields of force derivable from scalar potentials; fields of force derivable from a scalar potential and a vector potential; and equations of motion. Other concerns include equations for fields; transfer of the equations obtained by variational methods int
Shock Particle Interaction - Fully Resolved Simulations and Modeling
Mehta, Yash; Neal, Chris; Jackson, Thomas L.; Balachandar, S. "Bala"; Thakur, Siddharth
2016-11-01
Currently there is a substantial lack of fully resolved data for shock interacting with multiple particles. In this talk we will fill this gap by presenting results of shock interaction with 1-D array and 3-D structured arrays of particles. Objectives of performing fully resolved simulations of shock propagation through packs of multiple particles are twofold, 1) To understand the complicated physical phenomena occurring during shock particle interaction, and 2) To translate the knowledge from microscale simulations in building next generation point-particle models for macroscale simulations that can better predict the motion (forces) and heat transfer for particles. We compare results from multiple particle simulations against the single particle simulations and make relevant observations. The drag history and flow field for multiple particle simulations are markedly different from those of single particle simluations, highlighting the effect of neighboring particles. We propose new models which capture this effect of neighboring particles. These models are called Pair-wise Interaction Extended Point Particle models (PIEP). Effect of multiple neighboring particles is broken down into pair-wise interactions, and these pair-wise interactions are superimposed to get the final model U.S. Department of Energy, National Nuclear Security Administration, Advanced Simulation and Computing Program, as a Cooperative Agreement under the Predictive Science Academic Alliance Program, under Contract No. DE-NA0002378.
Abdurakhmanov, U.U.; Gulamov, K.G.; Navotny, V.Sh. [Fizika-Solntse Research and Production Association, Uzbek Academy of Sciences, Institute for Physics and Technology, Tashkent (Uzbekistan)
2016-06-15
It is shown that in central collisions of {sup 197}Au nuclei with heavy emulsion nuclei at 11.6 AGeV/c two-particles pseudorapidity correlations for produced particles in terms of correlation functions demonstrate predominantly long-range behaviour in contrast to nucleon-nucleon interactions. The experimental data are compared with calculations based on the FRITIOF-M model and the model of independent emission of particles. (orig.)
Advanced Accelerators: Particle, Photon and Plasma Wave Interactions
Williams, Ronald L. [Florida A & M University, Tallahassee, FL (United States)
2017-06-29
The overall objective of this project was to study the acceleration of electrons to very high energies over very short distances based on trapping slowly moving electrons in the fast moving potential wells of large amplitude plasma waves, which have relativistic phase velocities. These relativistic plasma waves, or wakefields, are the basis of table-top accelerators that have been shown to accelerate electrons to the same high energies as kilometer-length linear particle colliders operating using traditional decades-old acceleration techniques. The accelerating electrostatic fields of the relativistic plasma wave accelerators can be as large as GigaVolts/meter, and our goal was to study techniques for remotely measuring these large fields by injecting low energy probe electron beams across the plasma wave and measuring the beam’s deflection. Our method of study was via computer simulations, and these results suggested that the deflection of the probe electron beam was directly proportional to the amplitude of the plasma wave. This is the basis of a proposed diagnostic technique, and numerous studies were performed to determine the effects of changing the electron beam, plasma wave and laser beam parameters. Further simulation studies included copropagating laser beams with the relativistic plasma waves. New interesting results came out of these studies including the prediction that very small scale electron beam bunching occurs, and an anomalous line focusing of the electron beam occurs under certain conditions. These studies were summarized in the dissertation of a graduate student who obtained the Ph.D. in physics. This past research program has motivated ideas for further research to corroborate these results using particle-in-cell simulation tools which will help design a test-of-concept experiment in our laboratory and a scaled up version for testing at a major wakefield accelerator facility.
Oyewumi, K J; Onate, C A; Oluwadare, O J; Yahya, W A
2014-01-01
In recent years, an extensive survey on various wave equations of relativistic quantum mechanics with different types of potential interactions has been a line of great interest. In this regime, special attention has been given to the Dirac equation because the spin-1/2 fermions represent the most frequent building blocks of the molecules and atoms. Motivated by the considerable interest in this equation and its relativistic symmetries (spin and pseudospin) in the presence of solvable potential model, we attempt to obtain the relativistic bound states solution of the Dirac equation with double ring-shaped Kratzer and oscillator potentials under the condition of spin and pseudospin symmetries. The solutions are reported for arbitrary quantum number in a compact form. the analytic bound state energy eigenvalues and the associated upper- and lower-spinor components of two Dirac particles have been found. Several typical numerical results of the relativistic eigenenergies have also been presented. We found that t...
Suo, Bingbing; Han, Huixian
2014-01-01
We present the fully relativistic multi-reference configuration interaction calculations of the ground and low-lying excited electronic states of IrO for individual spin-orbit component. The lowest states for four spin-orbit components 1/2, 3/2, 5/2, and 7/2 are calculated intensively to clarify the ground state of IrO. Our calculation suggests that the ground state is of 1/2 spin-orbit component, which is highly mixed with $^4\\Sigma^-$ and $^2\\Pi$ states in $\\Lambda-S$ notation. The two low-lying states of the 5/2 and 7/2 spin-orbit components are nearly degenerate with the ground state and locate only 234 and 260 cm$^{-1}$ above, respectively. The equilibrium bond length 1.712 \\AA \\ and harmonic vibrational frequency 903 cm$^{-1}$ of the 5/2 spin-orbit component are close to the experimental measurement of 1.724 \\AA \\ and 909 cm$^{-1}$, which suggests the 5/2 state should be the low-lying state contributed to spectra in experimental study. Moreover, the electronic states that give rise to the observed trans...
Cao, Shanshan; Bass, Steffen A
2015-01-01
We construct a theoretical framework to describe the evolution of heavy flavors produced in relativistic heavy-ion collisions. The in-medium energy loss of heavy quarks is described using our modified Langevin equation that incorporates both quasi-elastic scatterings and the medium-induced gluon radiation. The space-time profiles of the fireball is described by a (2+1)-dimensional hydrodynamics simulation. A hybrid model of fragmentation and coalescence is utilized for heavy quark hadronization, after which the produced heavy mesons together with the soft hadrons produced from the bulk QGP are fed into the hadron cascade UrQMD model to simulate the subsequent hadronic interactions. We find that the medium-induced gluon radiation contributes significantly to heavy quark energy loss at high $p_\\mathrm{T}$; heavy-light quark coalescence enhances heavy meson production at intermediate $p_\\mathrm{T}$; and scatterings inside the hadron gas further suppress the $D$ meson $R_\\mathrm{AA}$ at large $p_\\mathrm{T}$ and e...
Relativistic electron beam interaction and $K_{\\alpha}$-generation in solid targets
Fill, E; Eder, D; Eidmann, K; Saemann, A
1999-01-01
When fs laser pulses interact with solid surfaces at intensities I lambda /sup 2/ >10/sup 18/ W/cm/sup 2/ mu m/sup 2/, collimated relativistic electron beams are generated. These electrons can be used for producing intense X-radiation (bremsstrahlung or K/sub alpha /) for pumping an innershell X-ray laser. The basic concept of such a laser involves the propagation of the electron beam in a material which converts electron energy into appropriate pump photons. Using the ATLAS titanium-sapphire laser at Max-Planck-Institut fur Quantenoptik, we investigate the generation of hot electrons and of characteristic radiation in copper. The laser (200 mJ/130 fs) is focused by means of an off-axis parabola to a diameter of about 10 mu m. By varying the position of the focus, we measure the copper K/sub alpha /-yield as a function of intensity in a range from 10/sup 15/ to 2 x 10/sup 18/ W/cm/sup 2/ while keeping the laser pulse energy constant. Surprisingly, the highest emission is obtained at an intensity of about 10/s...
KRISHNA KUMAR SONI; K P MAHESHWARI
2016-11-01
We present a study of the effect of laser pulse temporal profile on the energy/momentum acquired by the ions as a result of the ultraintense laser pulse focussed on a thin plasma layer in the radiation pressuredominant(RPD) regime. In the RPD regime, the plasma foil is pushed by ultraintense laser pulse when the radiation cannot propagate through the foil, while the electron and ion layers move together. The nonlinear character of laser–matter interaction is exhibited in the relativistic frequency shift, and also change in the wave amplitude as the EM wave gets reflected by the relativistically moving thin dense plasma layer. Relativistic effects in a highenergy plasma provide matching conditions that make it possible to exchange very effectively ordered kineticenergy and momentum between the EM fields and the plasma. When matter moves at relativistic velocities, the efficiency of the energy transfer from the radiation to thin plasma foil is more than 30% and in ultrarelativisticcase it approaches one. The momentum/energy transfer to the ions is found to depend on the temporal profile of the laser pulse. Our numerical results show that for the same laser and plasma parameters, a Lorentzian pulse canaccelerate ions upto 0.2 GeV within 10 fs which is 1.5 times larger than that a Gaussian pulse can.
When do particle ratios freeze out in relativistic heavy ion collisions?
Humanic, Thomas; Bellwied, Rene
1999-10-01
The systematics of CERN SPS data for transverse mass distributions have been shown to imply that thermal equilibrium is achieved at freeze out in these collisions. This conclusion is based on the observation that for p+p, S+S, and Pb+Pb collisions freeze out occurs at a single temperature for all particle species measured if one assumes a certain uniform expansion velocity after hadronization for each colliding system [1]. A recent final- state rescattering calculation for SPS Pb+Pb collisions has shown that these systematics can be described as a consequence of particle rescattering where the system is assumed initially (i.e. at hadronization) to have a common temperature for all particles and no initial expansion velocity [2]. In addition to kinetic observables, it is equally interesting to investigate the time dependence of particle abundances through particle ratios in such a calculation. Two questions immediately arise: 1) is chemical equilibrium established in these collisions, and 2) when does chemical freeze out occur with respect to thermal freeze out for different particle ratios? How rescattering influences particle ratios is clearly of interest if one would like to deduce information about the hadronization stage of the collision from particle ratios measured at freeze out. For the present work we will show results for strange and non-strange particle ratios within the context of a version of the dynamic transport code used in Ref. [2]. [1] NA44 colaboration, I.G. Bearden et al., Phys. Rev. Lett. 78,2080(1997), [2] T. J. Humanic, Phys. Rev. C 57,866(1998)
Kurita, Satoshi; Miyoshi, Yoshizumi; Blake, J. Bernard; Reeves, Geoffery D.; Kletzing, Craig A.
2016-04-01
It has been suggested that whistler mode chorus is responsible for both acceleration of MeV electrons and relativistic electron microbursts through resonant wave-particle interactions. Relativistic electron microbursts have been considered as an important loss mechanism of radiation belt electrons. Here we report on the observations of relativistic electron microbursts and flux variations of trapped MeV electrons during the 8-9 October 2012 storm, using the SAMPEX and Van Allen Probes satellites. Observations by the satellites show that relativistic electron microbursts correlate well with the rapid enhancement of trapped MeV electron fluxes by chorus wave-particle interactions, indicating that acceleration by chorus is much more efficient than losses by microbursts during the storm. It is also revealed that the strong chorus wave activity without relativistic electron microbursts does not lead to significant flux variations of relativistic electrons. Thus, effective acceleration of relativistic electrons is caused by chorus that can cause relativistic electron microbursts.
Simulation for Interaction of Linearly Polarized Relativistic Laser Pulses with Foil Targets
LIU Shi-Bing; TU Qin-Fen; YU Wei; CHEN Zhi-Hua; ZHANG Jie
2001-01-01
One-dimensional particle-in-cell simulation is presented for the interaction of ultra-short, linearly polarized intense laser pulses with thin foil targets. The results indicate that the strong competition between electromagnetic and electrostatic ponderomotive forces produced, respectively, by the laser and the electrostatic fields leads to novel behaviours of target electrons. It shows that the interaction is dominated by the 2ω (ω is laser frequency) component of the electrostatic ponderomotive force as well as that of the electromagnetic ponderomotive force.
On The Relativistic Classical Motion of a Radiating Spinning Particle in a Magnetic Field
Kar, Arnab
2010-01-01
We propose classical equations of motion for a charged particle with magnetic moment, taking radiation reaction into account. This generalizes the Landau-Lifshitz equations for the spinless case. In the special case of spin-polarized motion in a constant magnetic field (synchrotron motion) we verify that the particle does lose energy. Previous proposals did not predict dissipation of energy and also suffered from runaway solutions analogous to those of the Lorentz-Dirac equations of motion.
On the relativistic classical motion of a radiating spinning particle in a magnetic field
Kar, Arnab; Rajeev, S. G.
2011-04-01
We propose classical equations of motion for a charged particle with magnetic moment, taking radiation reaction into account. This generalizes the Landau-Lifshitz equations for the spinless case. In the special case of spin-polarized motion in a constant magnetic field (synchrotron motion) we verify that the particle does lose energy. Previous proposals did not predict dissipation of energy and also suffered from runaway solutions analogous to those of the Lorentz-Dirac equations of motion.
Fedele, Renato; De Nicola, Sergio; Shukla, P K; Jovanovic, Dusan
2011-01-01
Thermal Wave Model is used to study the strong self-consistent Plasma Wake Field interaction (transverse effects) between a strongly magnetized plasma and a relativistic electron/positron beam travelling along the external magnetic field, in the long beam limit, in terms of a nonlocal NLS equation and the virial equation. In the linear regime, vortices predicted in terms of Laguerre-Gauss beams characterized by non-zero orbital angular momentum (vortex charge). In the nonlinear regime, criteria for collapse and stable oscillations is established and the thin plasma lens mechanism is investigated, for beam size much greater than the plasma wavelength. The beam squeezing and the self-pinching equilibrium is predicted, for beam size much smaller than the plasma wavelength, taking the aberrationless solution of the nonlocal Nonlinear Schroeding equation.
Augusto, C R A; de Oliveira, M N; Shigueoka, H; Nepomuceno, A A; Fauth, A C
2015-01-01
Far away from any sunspot, a bright flare erupted on November 1st, 2014, with onset at 4:44 UT and a duration of around three hours, causing a C2.7-class flare. The blast was associated with the sudden disappearance of a large dark solar filament. The rest of the filament flew out into space, forming the core of a massive CME. Despite the location of the explosion over the sun's southeastern region (near the eastern edge of the sun) not be geoeffective, a radiation storm, that is, solar energetic particles (SEP) started to reach the Earth around 14:00 UT, reaching the condition of an S1 (minor) radiation storm level on Nov. 2th. In coincidence with onset of the S1 radiation storm (SEP above 5 MeV), the Tupi telescopes located at $22^090'$S; $43^020'$W, within the South Atlantic Anomaly (SAA) detected a muon enhancement caused by relativistic protons from this solar blast. In addition an increase in the particle intensity was found also at South Pole neutron monitor. This means that there was a transverse prop...
T. Hada
Full Text Available Energetic particles and MHD waves are studied using simultaneous ISEE-3 data to investigate particle propagation and scattering between the source near the Sun and 1 AU. 3 He-rich events are of particular interest because they are typically low intensity "scatter-free" events. The largest solar proton events are of interest because they have been postulated to generate their own waves through beam instabilities. For 3 He-rich events, simultaneous interplanetary magnetic spectra are measured. The intensity of the interplanetary "fossil" turbulence through which the particles have traversed is found to be at the "quiet" to "intermediate" level of IMF activity. Pitch angle scattering rates and the corresponding particle mean free paths lW - P are calculated using the measured wave intensities, polarizations, and k directions. The values of lW - P are found to be ~ 5 times less than the value of lHe , the latter derived from He intensity and anisotropy time profiles. It is demonstrated by computer simulation that scattering rates through a 90° pitch angle are lower than that of other pitch angles, and that this is a possible explanation for the discrepancy between the lW - P and lHe values. At this time the scattering mechanism(s is unknown. We suggest a means where a direct comparison between the two l values could be made. Computer simulations indicate that although scattering through 90° is lower, it still occurs. Possibilities are either large pitch angle scattering through resonant interactions, or particle mirroring off of field compression regions. The largest solar proton events are analyzed to investigate the possibilities of local wave generation at 1 AU. In accordance with the results of a previous calculation (Gary et al., 1985 of beam stability, proton beams at 1 AU are found to be marginally stable. No evidence for substantial wave amplitude was found. Locally generated waves, if present, were less than 10-3 nT 2 Hz-1 at the leading
Pseudopotentials of the particles interactions in complex plasmas
Ramazanov, T. S.; Moldabekov, Zh. A.; Dzhumagulova, K. N.; Muratov, M. M. [Al Farabi Kazakh National University, IETP, Tole bi 96a, Almaty 050012 (Kazakhstan)
2011-10-15
This article discusses the effective interaction potentials in a complex dusty plasma. The interaction of electrons with atoms and the interaction between dusty particles are studied by the method of the dielectric response function. In the effective interaction, potential between electron and atom the quantum effects of diffraction were taken into account. On the curve of the interaction potential between dust particles under certain conditions the oscillations can be observed.
Kucharek, Harald; Galvin, Antoinette; Farrugia, Charles; Klecker, Berndt; Pogorelov, Nikolai
2016-04-01
Wave-particle interactions, ion acceleration, and magnetic turbulence are closely interlinked and the physical processes may occur on different scales. These scales range from the kinetic scale to the macro-scale (MHD-scale). These processes are likely universal and the same basic processes occur at the Earth's environment, at the Earth's bow shock, the solar wind, and around the heliosphere. Undoubtedly, the Earth's environment as well as the close interplanetary space are the best plasma environments to study these processes using satellite measurements. Recently, ACE, STEREO, IBEX and Voyager observations clearly showed that turbulence and wave-particle interactions and turbulence are extremely important in interplanetary space and in the heliosphere. Using data from STEREO, Wind, we have investigated the spectral properties of suprathermal ion distributions. The results show that spectral slopes are very variable and depend on the plasma properties. We have also performed 3D hybrid simulations and studied particle dynamics. These simulations show that the particle dynamics in the turbulent magnetic wave field is Levy-Flight like which leads to a kappa distribution, which is often found in various space environments. This result is very significant of future mission such as THOR and IMAP and current operating missions such as STEREO, IBEX, and MMS.
Dynamical instability in a relativistic cylindrical shell composed of counter rotating particles
Kurita, Yasunari
2011-01-01
We give a perturbative analysis for an infinitesimally thin cylindrical shell composed of counter rotating collisionless particles, originally devised by Apostolatos and Thorne. They found a static solution of the shell and concluded by C-energy argument that it is stable. Recently, the present authors and Ida reanalyzed this system by evaluating the C-energy on the future null infinity and found that the system has an instability, though it was not shown how the system is unstable. In this paper, it is shown in the framework of the linear perturbation theory that, if the constituent particles move slowly, the static shell is unstable in the sense that the perturbation of its circumferential radius oscillates with exponentially growing amplitude, whereas if the speed of the constituent particle exceeds a critical value, the shell just expands or contracts exponentially with time.
Analysis of the dynamic interaction between SVOCs and airborne particles
Liu, Cong; Shi, Shanshan; Weschler, Charles J.
2013-01-01
A proper quantitative understanding of the dynamic interaction between gas-phase semivolatile organic compounds (SVOCs) and airborne particles is important for human exposure assessment and risk evaluation. Questions regarding how to properly address gas/particle interactions have introduced...... uncertainty when predicting SVOC concentrations and assessing exposures to these compounds. In this study, we have developed a dimensionless description for the dynamic interaction between SVOCs and organic particles. A better criterion to judge whether the internal resistance (diffusion in and out...
Interactions of Ultracold Impurity Particles with Bose-Einstein Condensates
2015-06-23
AFRL-OSR-VA-TR-2015-0141 INTERACTIONS OF ULTRACOLD IMPURITY PARTICLES WITH BOSE- EINSTEIN CONDENSATES Georg Raithel UNIVERSITY OF MICHIGAN Final...SUBTITLE Interactions of ultracold impurity particles with Bose- Einstein Condensates 5a. CONTRACT NUMBER FA9550-10-1-0453 5b. GRANT NUMBER 5c...Interactions of ultracold impurity particles with Bose- Einstein Condensates Contract/Grant #: FA9550-10-1-0453 Reporting Period: 8/15/2010 to 2/14
Sahai, Aakash A; Tableman, A R; Mori, W B; Katsouleas, T C
2014-01-01
The relativistically induced transparency acceleration (RITA) scheme of proton and ion acceleration using laser-plasma interactions is introduced, modeled, and compared to the existing schemes. Protons are accelerated with femtosecond relativistic pulses to produce quasimonoenergetic bunches with controllable peak energy. The RITA scheme works by a relativistic laser inducing transparency to densities higher than the cold-electron critical density, while the background heavy ions are stationary. The rising laser pulse creates a traveling acceleration structure at the relativistic critical density by ponderomotively driving a local electron density inflation, creating an electron snowplow and a co-propagating electrostatic potential. The snowplow advances with a velocity determined by the rate of the rise of the laser's intensity envelope and the heavy-ion-plasma density gradient scale length. The rising laser is incrementally rendered transparent to higher densities such that the relativistic-electron plasma ...
BRIGGS,S.L.K.; MUSOLINO,S.V.
2001-06-01
In early 1997 Brookhaven National Laboratory (BNL) discovered that the spent fuel pool of their High Flux Beam Reactor was leaking tritium into the groundwater. Community members, activist groups, politicians and regulators were outraged with the poor environmental management practices at BNL. The reactor was shut down and the Department of Energy (DOE) terminated the contract with the existing Management Company. At this same time, a major new scientific facility, the Relativistic Heavy Ion Collider (RHIC), was nearing the end of construction and readying for commissioning. Although environmental considerations had been incorporated into the design of the facility; some interested parties were skeptical that this new facility would not cause significant environmental impacts. RHIC management recognized that the future of its operation was dependent on preventing pollution and allaying concerns of its stakeholders. Although never done at a DOE National Laboratory before Brookhaven Science Associates, the new management firm, committed to implementing an Environmental Management System (EMS) and RHIC managers volunteered to deploy it within their facility on an extremely aggressive schedule. Several of these IS0 requirements contribute directly to preventing pollution, an area where particular emphasis was placed. This paper describes how Brookhaven used the following key IS0 14001 elements to institutionalize Pollution Prevention concepts: Environmental Policy, Aspects, Objectives and Targets, Environmental Management Program, Structure and Responsibility, Operational Controls, Training, and Management Review. In addition, examples of implementation at the RHIC Project illustrate how BNL's premiere facility was able to demonstrate to interested parties that care had been taken to implement technological and administrative controls to minimize environmental impacts, while at the same time reduce the applicability of regulatory requirements to their operations.
Fauad Rami
2003-05-01
Charged particle pseudorapidity distributions have been measured in Au + Au collisions using the BRAHMS detector at RHIC. The results are presented as a function of the collision centrality and the center of mass energy. They are compared to the predictions of different parton scattering models and the important role of hard scattering processes at RHIC energies is discussed.
Internal bremsstrahlung of strongly interacting charged particles
Kurgalin, S. D. [Voronezh State University (Russian Federation); Tchuvil’sky, Yu. M., E-mail: tchuvl@nucl-th.sinp.msu.ru [Moscow State University, Skobeltsyn Institute of Nuclear Physics (Russian Federation); Churakova, T. A. [Voronezh State University (Russian Federation)
2016-11-15
A universal theoretical model intended for calculating internal-bremsstrahlung spectra is proposed. In this model, which can be applied to describing nuclear decays of various type (such as alpha decay, cluster decay, and proton emission), use is made of realistic nucleus–nucleus potentials. Theoretical internal-bremsstrahlung spectra were obtained for the alpha decay of the {sup 214}Po nucleus, as well as for the decay of the {sup 222}Ra nucleus via the emission of a {sup 14}C cluster and for the decay of the {sup 113}Cs nucleus via proton emission, and the properties of these spectra were studied. The contributions of various regions (internal, subbarrier, and external) to the internal-bremsstrahlung amplitude were analyzed in detail. It is shown that the contribution of the internal region to the amplitude for internal bremsstrahlung generated in nuclear decay via proton emission is quite large, but that this is not so for alpha decay and decay via cluster emission. Thus, a process in which strong interaction of nuclear particles affects the internal-bremsstrahlung spectrum if found.
Planckian Interacting Massive Particles as Dark Matter
Garny, Mathias; Sloth, Martin S
2016-01-01
The Standard Model could be self-consistent up to the Planck scale according to the present measurements of the Higgs mass and top quark Yukawa coupling. It is therefore possible that new physics is only coupled to the Standard Model through Planck suppressed higher dimensional operators. In this case the WIMP miracle is a mirage, and instead minimality as dictated by Occam's razor would indicate that dark matter is related to the Planck scale, where quantum gravity is anyway expected to manifest itself. Assuming within this framework that dark matter is a Planckian Interacting Massive Particle, we show that the most natural mass larger than $0.01\\,\\textrm{M}_p$ is already ruled out by the absence of tensor modes in the CMB. This also indicates that we expect tensor modes in the CMB to be observed soon for this type of minimal dark matter model. Finally, we touch upon the KK graviton mode as a possible realization of this scenario within UV complete models, as well as further potential signatures and peculiar...
Particle-fluid interaction forces as the source of acceleration PDF invariance in particle size
Meller, Yosef
2014-01-01
The conditions allowing particle suspension in turbulent flow are of interest in many applications, but understanding them is complicated both by the nature of turbulence and by the interaction of flow with particles. Observations on small particles indicate an invariance of acceleration PDFs of small particles independent of size. We show to be true the postulated role of particle/fluid interaction forces in maintaining suspension. The 3D-PTV method, applied for two particle phases (tracers and inertial particles) simultaneously, was used to obtain velocity and acceleration data, and through the use of the particle's equation of motion the magnitude of forces representing either the flow or the particle interaction were derived and compared. The invariance of PDFs is shown to extend to the component forces, and lift forces are shown to be significant.
Savukov, I.; Safronova, U. I.; Safronova, M. S.
2015-11-01
Excitation energies, term designations, g factors, transition rates, and lifetimes of U2 + are determined using a relativistic configuration interaction (CI) + linearized-coupled-cluster (LCC) approach. The CI-LCC energies are compared with CI + many-body-perturbation-theory (MBPT) and available experimental energies. Close agreement has been found with experiment, within hundreds of cm-1. In addition, lifetimes of higher levels have been calculated for comparison with three experimentally measured lifetimes, and close agreement has been found within the experimental error. CI-LCC calculations constitute a benchmark test of the CI + all-order method in complex relativistic systems such as actinides and their ions with many valence electrons. The theory yields many energy levels, g factors, transition rates, and lifetimes of U2 + that are not available from experiment. The theory can be applied to other multivalence atoms and ions, which would be of interest to many applications.
On the concentration properties of Interacting particle processes
Del Moral, Pierre; Wu, Liming
2011-01-01
These lecture notes present some new concentration inequalities for Feynman-Kac particle processes. We analyze different types of stochastic particle models, including particle profile occupation measures, genealogical tree based evolution models, particle free energies, as well as backward Markov chain particle models. We illustrate these results with a series of topics related to computational physics and biology, stochastic optimization, signal processing and bayesian statistics, and many other probabilistic machine learning algorithms. Special emphasis is given to the stochastic modeling and the quantitative performance analysis of a series of advanced Monte Carlo methods, including particle filters, genetic type island models, Markov bridge models, interacting particle Markov chain Monte Carlo methodologies.
Gestrina, G N
2005-01-01
The relativistic effect of energy increase in a particle freely moving in vacuum is discussed on the basis of quantum field theory and probability theory using some ideas of super-symmetrical theories. The particle is assumed to consist of a "seed" whose energy is equal to the particle rest energy and whose pulse is equal to the product of the particle mass by its velocity and of a "fur coat" - the system of virtual quanta of the material field - vacuum. Each of these quanta possesses the same energy and pulse as the "seed" but have no mass. The system of the quanta is in a state being the superposition of quantum states with energies and pulses multiple of the "seed" energy and pulse. The virtual quanta is created (or destroyed) in of such states. The probability of creating a quanta in any state is the inverse of the relativistic factor, and the average number of the quanta making up the "fur coat" with a "seed" is equal to this particular factor. The kinetic energy and the relativistic addition to the part...
Effets radiatifs et d'électrodynamique quantique dans l'interaction laser-matière ultra-relativiste
Lobet, Mathieu
2015-01-01
This PhD thesis is concerned with the regime of extreme-intensity laser-matter interaction that should be accessed on upcoming multi-petawatt facilities (e.g. CILEX-Apollon, ELI, IZEST). At intensities IL > 1022 Wcm-2, the relativistic dynamics of the laser-driven electrons becomes significantly modified by high-energy radiation emission through nonlinear inverse Compton scattering. For IL > 1023 Wcm-2, the emitted-ray photons can, in turn, interact with the laser field and decay into electro...
Badarin, A. A.; Kurkin, S. A. [Saratov State University (Russian Federation); Koronovskii, A. A. [Yuri Gagarin State Technical University (Russian Federation); Rak, A. O. [Belorussian State University of Informatics and Radioelectronics (Belarus); Hramov, A. E., E-mail: hramovae@gmail.com [Saratov State University (Russian Federation)
2017-03-15
The development and interaction of Bursian and diocotron instabilities in an annular relativistic electron beam propagating in a cylindrical drift chamber are investigated analytically and numerically as functions of the beam wall thickness and the magnitude of the external uniform magnetic field. It is found that the interaction of instabilities results in the formation of a virtual cathode with a complicated rotating helical structure and several reflection regions (electron bunches) in the azimuthal direction. It is shown that the number of electron bunches in the azimuthal direction increases with decreasing beam wall thickness and depends in a complicated manner on the magnitude of the external magnetic field.
Quantum heat engine in the relativistic limit: The case of a Dirac particle
Muñoz, Enrique; Peña, Francisco J.
2012-12-01
We studied the efficiency of two different schemes for a quantum heat engine, by considering a single Dirac particle trapped in an infinite one-dimensional potential well as the “working substance.” The first scheme is a cycle, composed of two adiabatic and two isoenergetic reversible trajectories in configuration space. The trajectories are driven by a quasistatic deformation of the potential well due to an external applied force. The second scheme is a variant of the former, where isoenergetic trajectories are replaced by isothermal ones, along which the system is in contact with macroscopic thermostats. This second scheme constitutes a quantum analog of the classical Carnot cycle. Our expressions, as obtained from the Dirac single-particle spectrum, converge in the nonrelativistic limit to some of the existing results in the literature for the Schrödinger spectrum.
Self-modulation instability of ultra-relativistic particle bunches with finite rise times
Vieira, J; Fang, Y; Mori, W B; Muggli, P; Silva, L O
2014-01-01
We study the evolution of the self-modulation instability using bunches with finite rise times. Using particle-in-cell simulations we show that unlike long bunches with sharp rise times, there are large variations of the wake amplitudes and wake phase velocity when bunches with finite rise times are used. These results show that use of bunches with sharp rise times is important to seed the self-modulation instability and to ensure stable acceleration regimes.
Spinless relativistic particle in energy-dependent potential and normalization of the wave function
Benchikha, Amar; Chetouani, Lyazid
2014-06-01
The problem of normalization related to a Klein-Gordon particle subjected to vector plus scalar energy-dependent potentials is clarified in the context of the path integral approach. In addition the correction relating to the normalizing constant of wave functions is exactly determined. As examples, the energy dependent linear and Coulomb potentials are considered. The wave functions obtained via spectral decomposition, were found exactly normalized.
Distributed drift chamber design for rare particle detection in relativistic heavy ion collisions
Bellwied, R.; Bennett, M.J.; Bernardo, V.; Caines, H.; Christie, W.; Costa, S.; Crawford, H.J.; Cronqvist, M.; Debbe, R.; Dinnwiddie, R.; Engelage, J. E-mail: jmengelage@lbl.gov; Flores, I.; Fuzesy, R.; Greiner, L.; Hallman, T.; Hoffmann, G.; Huang, H.Z.; Jensen, P.; Judd, E.G.; Kainz, K.; Kaplan, M.; Kelly, S.; Lindstrom, P.J.; Llope, W.J.; LoCurto, G.; Longacre, R.; Milosevich, Z.; Mitchell, J.T.; Mitchell, J.W.; Mogavero, E.; Mutchler, G.; Paganis, S.; Platner, E.; Potenza, R.; Rotondo, F.; Russ, D.; Sakrejda, I.; Saulys, A.; Schambach, J.; Sheen, J.; Smirnoff, N.; Stokeley, C.; Tang, J.; Trattner, A.L.; Trentalange, S.; Visser, G.; Whitfield, J.P.; Witharm, F.; Witharm, R.; Wright, M
2002-06-11
This report describes a multi plane drift chamber that was designed and constructed to function as a topological detector for the BNL AGS E896 rare particle experiment. The chamber was optimized for good spatial resolution, two track separation, and a high uniform efficiency while operating in a 1.6 T magnetic field and subjected to long term exposure from a 11.6 GeV/nucleon beam of 10{sup 6} Au ions per second.
Distributed drift chamber design for rare particle detection in relativistic heavy ion collisions
Bellwied, R.; Bennett, M.J.; Bernardo, V.; Caines, H.; Christie, W.; Costa, S.; Crawford, H.J.; Cronqvist, M.; Debbe, R.; Dinnwiddie, R.; Engelage, J.; Flores, I.; Fuzesy, R.; Greiner, L.; Hallman, T.; Hoffmann, G.; Huang, H.Z.; Jensen, P.; Judd, E.G.; Kainz, K.; Kaplan, M.; Kelly, S.; Lindstrom, P.J; Llope, W.J.; LoCurto, G.; Longacre, R.; Milosevich, Z.; Mitchell, J.T.; Mitchell, J.W.; Mogavero, E.; Mutchler, G.; Paganis, S.; Platner, E.; Potenza, R.; Rotondo, F.; Russ, D.; Sakrejda, I.; Saulys, A.; Schambach, J.; Sheen, J.; Smirnoff, N.; Stokeley, C.; Tang, J.; Trattner, A.L.; Trentalange, S.; Visser, G.; Whitfield, J.P.; Witharm, F.; Witharm, R.; Wright, M.
2001-10-02
This report describes a multi-plane drift chamber that was designed and constructed to function as a topological detector for the BNL AGSE896 rare particle experiment. The chamber was optimized for good spatial resolution, two track separation, and a high uniform efficiency while operating in a 1.6 Tesla magnetic field and subjected to long term exposure from a 11.6 GeV/nucleon beam of 10**6 Au ions per second.
Acoustic interaction forces between small particles in an ideal fluid
Silva, Glauber T.; Bruus, Henrik
2014-01-01
from the other particles. The particles, either compressible liquid droplets or elastic microspheres, are considered to be much smaller than the acoustic wavelength. In this so-called Rayleigh limit, the acoustic interaction forces between the particles are well approximated by gradients of pair...
Itoh, Y
2004-01-01
An equation of motion for relativistic compact binaries is derived through the third post-Newtonian (3 PN) approximation of general relativity. The strong field point particle limit and multipole expansion of the stars are used to solve iteratively the harmonically relaxed Einstein equations. We take into account the Lorentz contraction on the multipole moments defined in our previous works. We then derive a 3 PN acceleration of the binary orbital motion of the two spherical compact stars based on a surface integral approach which is a direct consequence of local energy momentum conservation. Our resulting equation of motion admits a conserved energy (neglecting the 2.5 PN radiation reaction effect), is Lorentz invariant and is unambiguous: there exist no undetermined parameter reported in the previous works. We shall show that our 3 PN equation of motion agrees physically with the Blanchet and Faye 3 PN equation of motion if $\\lambda = - 1987/3080$, where $\\lambda$ is the parameter which is undetermined with...
Wieland, Volkmar; Niemiec, Jacek; Rafighi, Iman; Nishikawa, Ken-Ichi
2016-01-01
For parameters that are applicable to the conditions at young supernova remnants, we present results of 2D3V particle-in-cell simulations of a non-relativistic plasma shock with a large-scale perpendicular magnetic field inclined at 45-deg angle to the simulation plane to approximate 3D physics. We developed an improved clean setup that uses the collision of two plasma slabs with different density and velocity, leading to the development of two distinctive shocks and a contact discontinuity. The shock formation is mediated by Weibel-type filamentation instabilities that generate magnetic turbulence. Cyclic reformation is observed in both shocks with similar period, for which we note global variations on account of shock rippling and local variations arising from turbulent current filaments. The shock rippling occurs on spatial and temporal scales given by gyro-motions of shock-reflected ions. The drift motion of electrons and ions is not a gradient drift, but commensurates with E x B drift. We observe a stabl...
Grigoriyn, G V
1995-01-01
The pseudoclassical hamiltonian and action of the $D=2n$ dimensional Dirac particle with anomalous magnetic moment interacting with the external electromagnetic field is found. The Bargmann-Michel-Telegdi equation of motion for the Pauli-Lubanski vector is deduced. The canonical quantization of $D=2n$ dimensional Dirac spinning particle with anomalous magnetic moment in the external electromagnetic field is carried out in the gauge which allows to describe simultaneously particles and antiparticles (massive and massless) already at the classical level. Pseudoclassical Foldy-Wouthuysen transformation is used to obtain canonical (Newton-Wigner) coordinates and in terms of this variables the theory is quantized. The connection of this quantization with the deGroot and Suttorp's description of Dirac particle with anomalous magnetic moment in the external electromagnetic field is discussed.
Pallocchia, G.; Laurenza, M.; Consolini, G.
2017-03-01
Some interplanetary shocks are associated with short-term and sharp particle flux enhancements near the shock front. Such intensity enhancements, known as shock-spike events (SSEs), represent a class of relatively energetic phenomena as they may extend to energies of some tens of MeV or even beyond. Here we present an SSE case study in order to shed light on the nature of the particle acceleration involved in this kind of event. Our observations refer to an SSE registered on 2011 October 3 at 22:23 UT, by STEREO B instrumentation when, at a heliocentric distance of 1.08 au, the spacecraft was swept by a perpendicular shock moving away from the Sun. The main finding from the data analysis is that a Weibull distribution represents a good fitting function to the measured particle spectrum over the energy range from 0.1 to 30 MeV. To interpret such an observational result, we provide a theoretical derivation of the Weibull spectrum in the framework of the acceleration by “killed” stochastic processes exhibiting power-law growth in time of the velocity expectation, such as the classical Fermi process. We find an overall coherence between the experimental values of the Weibull spectrum parameters and their physical meaning within the above scenario. Hence, our approach based on the Weibull distribution proves to be useful for understanding SSEs. With regard to the present event, we also provide an alternative explanation of the Weibull spectrum in terms of shock-surfing acceleration.
Universal scaling of pT distribution of particles in relativistic nuclear collisions
Zhu, L. L.; Yang, C. B.
2007-04-01
With the experimental data from the STAR, PHENIX, and BRAHMS programs on the centrality and rapidity dependence of the pT spectrum in Au+Au and d+Au collisions, we show that a scaling distribution exists that is independent of the colliding system, centrality, and rapidity. The parameter for the average transverse momentum increases from peripheral to central d+Au collisions. This increase accounts for the enhancement of particle production in those collisions. A nonextensive entropy is used to derive the scaling function.
Interaction of free charged particles with a chirped electromagnetic pulse
Khachatryan, A.G.; Goor, van F.A.; Boller, K.-J.
2004-01-01
We study the effect of chirp on electromagnetic (EM) pulse interaction with a charged particle. Both the one-dimensional (1D) and 3D cases are considered. It is found that, in contrast to the case of a nonchirped pulse, the charged particle energy can be changed after the interaction with a 1D EM ch
Melekhin, Vadim N
1997-01-01
It is shown that change in transverse momentum of a relativistic particle, crossing an accelerating cavity parallel to its axis, may be presented as an integral over trajectory, the integrand of which is proportional to the component of magnetic field parallel to this axis. The changes in two transversal components of momentum are equal in value but opposite in sign. The obtained result is compared with Panofsky-Wenzel theorem.
SIMP (Strongly Interacting Massive Particle) Search
Teplitz, V L; Olness, F I; Stroynowski, R; Teplitz, Vigdor L.; Mohapatra, Rabindra N.; Olness, Fred; Stroynowski, Ryszard
2000-01-01
We consider laboratory experiments that can detect stable, neutral stronglyinteracting massive particles (SIMPs). We explore the SIMP annihilation crosssection from its minimum value (restricted by cosmological bounds) to the barnrange, and vary the mass values from a GeV to a TeV. We also consider the prospects and problems of detecting such particles at theTevatron.
Chaos and maps in relativistic rynamical systems
L. P. Horwitz
2000-01-01
Full Text Available The basic work of Zaslavskii et al showed that the classical non-relativistic electromagnetically kicked oscillator can be cast into the form of an iterative map on the phase space; the resulting evolution contains a stochastic flow to unbounded energy. Subsequent studies have formulated the problem in terms of a relativistic charged particle in interaction with the electromagnetic field. We review the structure of the covariant Lorentz force used to study this problem. We show that the Lorentz force equation can be derived as well from the manifestly covariant mechanics of Stueckelberg in the presence of a standard Maxwell field, establishing a connection between these equations and mass shell constraints. We argue that these relativistic generalizations of the problem are intrinsically inaccurate due to an inconsistency in the structure of the relativistic Lorentz force, and show that a reformulation of the relativistic problem, permitting variations (classically in both the particle mass and the effective “mass” of the interacting electromagnetic field, provides a consistent system of classical equations for describing such processes.
Kinetic equation for nonlinear resonant wave-particle interaction
Artemyev, A. V.; Neishtadt, A. I.; Vasiliev, A. A.; Mourenas, D.
2016-09-01
We investigate the nonlinear resonant wave-particle interactions including the effects of particle (phase) trapping, detrapping, and scattering by high-amplitude coherent waves. After deriving the relationship between probability of trapping and velocity of particle drift induced by nonlinear scattering (phase bunching), we substitute this relation and other characteristic equations of wave-particle interaction into a kinetic equation for the particle distribution function. The final equation has the form of a Fokker-Planck equation with peculiar advection and collision terms. This equation fully describes the evolution of particle momentum distribution due to particle diffusion, nonlinear drift, and fast transport in phase-space via trapping. Solutions of the obtained kinetic equation are compared with results of test particle simulations.
Elementary Particle Interactions with CMS at LHC
Spanier, Stefan [Univ. of Tennessee, Knoxville, TN (United States)
2016-07-31
The High Energy Particle Physics group of the University of Tennessee participates in the search for new particles and forces in proton-proton collisions at the LHC with the Compact Muon Solenoid experiment. Since the discovery of the Higgs boson in 2012, the search has intensified to find new generations of particles beyond the standard model using the higher collision energies and ever increasing luminosity either directly or via deviations from standard model predictions such as the Higgs boson decays. As part of this effort, the UTK group has expanded the search for new particles in four-muon final states, and in final states with jets, has successfully helped and continues to help to implement and operate an instrument for improved measurements of the luminosity needed for all data analyses, and has continued to conduct research of new technologies for charged particle tracking at a high-luminosity LHC.
Elementary Particle Interactions with CMS at LHC
Spanier, Stefan [Univ. of Tennessee, Knoxville, TN (United States)
2016-07-31
The High Energy Particle Physics group of the University of Tennessee participates in the search for new particles and forces in proton-proton collisions at the LHC with the Compact Muon Solenoid experiment. Since the discovery of the Higgs boson in 2012, the search has intensified to find new generations of particles beyond the standard model using the higher collision energies and ever increasing luminosity, either directly or via deviations from standard model predictions such as the Higgs boson decays. As part of this effort, the UTK group has expanded the search for new particles in four-muon final states, and in final states with jets, has successfully helped and continues to help to implement and operate an instrument for improved measurements of the luminosity needed for all data analyses, and has continued to conduct research of new technologies for charged particle tracking at a high-luminosity LHC.
Relativistic corrections to the algebra of position variables and spin-orbital interaction
Deriglazov, Alexei A.; Pupasov-Maksimov, Andrey M.
2016-10-01
In the framework of vector model of spin, we discuss the problem of a covariant formalism [35] concerning the discrepancy between relativistic and Pauli Hamiltonians. We show how the spin-induced non-commutativity of a position accounts the discrepancy on the classical level, without appeal to the Dirac equation and Foldy-Wouthuysen transformation.
Frequency conversion of probe wave produced by 2D interaction with relativistic ionization front
Yan Li-Xin; Zhang Yong-Sheng; Liu Jing-Ru; Lü Min
2005-01-01
Frequency conversion of probe electromagnetic wave induced by relativistic ionization front is theoretically analysed based on ray-tracing equations in different regimes. Downshifting as well as upshifting in frequency produced by the front is predicted. The reflected and transmitted angles can be also dramatically changed in certain cases.
Relativistic corrections to the algebra of position variables and spin-orbital interaction
Alexei A. Deriglazov
2016-10-01
Full Text Available In the framework of vector model of spin, we discuss the problem of a covariant formalism [35] concerning the discrepancy between relativistic and Pauli Hamiltonians. We show how the spin-induced non-commutativity of a position accounts the discrepancy on the classical level, without appeal to the Dirac equation and Foldy–Wouthuysen transformation.
Relativistic corrections to the algebra of position variables and spin-orbital interaction
Deriglazov, Alexei A
2016-01-01
In the framework of vector model of spin, we discuss the problem of a covariant formalism \\cite{Pomeranskii1998} concerning the discrepancy between relativistic and Pauli Hamiltonians. We show how the spin-induced non commutativity of a position accounts the discrepancy on the classical level, without appeal to the Dirac equation and Foldy-Wouthuysen transformation.
Drescher, H.J
1999-06-11
In this work we have developed hard processes and string fragmentation in the framework of interactions at relativistic energies. The hypothesis of the universality of high energy interactions means that many elements of heavy ion collisions can be studied and simulated in simpler nuclear reactions. In particular this hypothesis implies that the fragmentation observed in the reaction e{sup +}e{sup -} follows the same rules as in the collision of 2 lead ions. This work deals with 2 nuclear processes: the e{sup +}e{sup -} annihilation reaction and the deep inelastic diffusion. For the first process the string model has been developed to simulate fragmentation by adding an artificial breaking of string due to relativistic effects. A monte-Carlo method has been used to determine the points in a Minkowski space where this breaking occurs. For the second reaction, the theory of semi-hard pomerons is introduced in order to define elementary hadron-hadron interactions. The model of fragmentation proposed in this work can be applied to more complicated reactions such as proton-proton or ion-ion collisions.
Numerical Calculation of Coupling Impedances in Kicker Modules for Non-Relativistic Particle Beams
Doliwa, B
2004-01-01
In the context of heavy-ion synchrotrons, coupling impedances in ferrite-loaded structures (e.g. fast kicker modules) are known to have a significant influence on beam stability. While bench measurements are feasible today, it is desirable to have the coupling impedances in hands already during the design process of the respective components. To achieve this goal, as a first step, we have carried out numerical analyses of simple ferrite-containing test systems within the framework of the Finite Integration Technique[1]. This amounts to solving the full set of Maxwell's equations in frequency domain, the particle beam being represented by an appropriate excitation current. With the resulting electromagnetic fields, one may then readily compute the corresponding coupling impedances. Despite the complicated material properties of ferrites, our results show that their numerical treatment is possible, thus opening up a way to determine a crucial parameter of kicker devices before construction.
The challenge of turbulent acceleration of relativistic particles in the intra-cluster medium
Brunetti, G
2015-01-01
Acceleration of cosmic-ray electrons (CRe) in the intra-cluster-medium (ICM) is probed by radio observations that detect diffuse, Mpc-scale, synchrotron sources in a fraction of galaxy clusters. Giant radio halos are the most spectacular manifestations of non-thermal activity in the ICM and are currently explained assuming that turbulence driven during massive cluster-cluster mergers reaccelerates CRe at several GeV. This scenario implies a hierarchy of complex mechanisms in the ICM that drain energy from large-scales into electromagnetic fluctuations in the plasma and collisionless mechanisms of particle acceleration at much smaller scales. In this paper we focus on the physics of acceleration by compressible turbulence. The spectrum and damping mechanisms of the electromagnetic fluctuations, and the mean-free-path (mfp) of CRe are the most relevant ingredients that determine the efficiency of acceleration. These ingredients in the ICM are however poorly known and we show that calculations of turbulent accel...
Relativistic particle transport in extragalactic jets: I. Coupling MHD and kinetic theory
Casse, F
2003-01-01
Multidimensional magneto-hydrodynamical (MHD) simulations coupled with stochastic differential equations (SDEs) adapted to test particle acceleration and transport in complex astrophysical flows are presented. The numerical scheme allows the investigation of shock acceleration, adiabatic and radiative losses as well as diffusive spatial transport in various diffusion regimes. The applicability of SDEs to astrophysics is first discussed in regards to the different regimes and the MHD code spatial resolution. The procedure is then applied to 2.5D MHD-SDE simulations of kilo-parsec scale extragalactic jets. The ability of SDE to reproduce analytical solutions of the diffusion-convection equation for electrons is tested through the incorporation of an increasing number of effects: shock acceleration, spatially dependent diffusion coefficients and synchrotron losses. The SDEs prove to be efficient in various shock configuration occurring in the inner jet during the development of the Kelvin-Helmholtz instability. ...
Energy exchange in systems of particles with nonreciprocal interaction
Vaulina, O. S.; Lisina, I. I., E-mail: Irina.Lisina@mail.ru; Lisin, E. A. [Russian Academy of Sciences, Joint Institute for High Temperatures (Russian Federation)
2015-10-15
A model is proposed to describe the sources of additional kinetic energy and its redistribution in systems of particles with a nonreciprocal interaction. The proposed model is shown to explain the qualitative specific features of the dust particle dynamics in the sheath region of an RF discharge. Prominence is given to the systems of particles with a quasi-dipole–dipole interaction, which is similar to the interaction induced by the ion focusing effects that occur in experiments on a laboratory dusty plasma, and with the shadow interaction caused by thermophoretic forces and Le Sage’s forces.
Ding, Mingnan; Liang, Yihao; Xing, Xiangjun
2016-10-01
In this work, we explore the statistical physics of colloidal particles that interact with electrolytes via ion-specific interactions. Firstly we study particles interacting weakly with electrolyte using linear response theory. We find that the mean potential around a particle is linearly determined by the effective charge distribution of the particle, which depends both on the bare charge distribution and on ion-specific interactions. We also discuss the effective interaction between two such particles and show that, in the far field regime, it is bilinear in the effective charge distributions of two particles. We subsequently generalize the above results to the more complicated case where particles interact strongly with the electrolyte. Our results indicate that in order to understand the statistical physics of non-dilute electrolytes, both ion-specific interactions and ionic correlations have to be addressed in a single unified and consistent framework. Project supported by the National Natural Science Foundation of China (Grant Nos. 11174196 and 91130012).
Electrostatic interactions between particles through heterogeneous fluid phases.
Kang, Dong Woo; Lee, Mina; Kim, Kyung Hak; Xia, Ming; Im, Sang Hyuk; Park, Bum Jun
2017-09-27
We investigated the electrostatic interactions between particles acting through heterogeneous fluid phases. An oil lens system floating on the surface of water was used to trap particles at different fluid-fluid interfaces. The inner particles are located at the centrosymmetrically curved oil-water interface inside the oil lens while satellite particles are located at the curved air-water interface, separated by a particular distance from the triple phase boundary. The satellite particles are likely to be captured in an energy minimum state due to electrostatic repulsions by the inner particles balanced with the gravity-induced potential energy. As the size of the oil lens decreases upon evaporation, the satellite particles escape from the gravitational confinement at a critical moment. The self-potential values of the inner particles and the satellite particles were calculated by employing an energy balance and the experimentally obtained geometric parameter values. It was found that the self-potential values of the inner particles decrease as oil evaporates over time and that the magnitude of the self-potential of the satellite particles is a hundred times larger than that of the inner particles. These results demonstrate significant effects of the thickness and shape of the nonpolar superphase on the electrostatic interactions between the particles trapped at different fluid-fluid interfaces.
Switching Behaviour of Magnetic Particles with Dipolar Interaction
XU Chen; HUI Pak-Ming; CHOW Chow-Wang; LI Zhen-Ya
2005-01-01
We study the switching in the magnetic moments of interacting magnetic particles. The dynamics of the magneticmoments is governed by a coupled set of Landau-Lifshitz-Gilbert equations. The magnetic particles are assumed to be spherical in shape, single domain, and have uniaxial anisotropy. Effects of dipolar interaction between the particles, anisotropy energy, an applied switching field with finite spatial extent and a small bias field are considered. When the separation between the particles is small, the dipolar field is significant and it affects the reversal of the magnetic moments. The final configuration attained depends sensitively on the decaying length of the switching field, the inter-particle separation, and the initial configuration. A bias field tends to suppress the effects of a spatially decaying switching field and dipolar interaction between neighbouring particles.
Sun, Lingpeng; Klecker, Berndt; Krucker, Saem; Droege, Wolfgang
2010-01-01
We report for several solar energetic particle events intensity and anisotropy measurements of energetic electrons in the energy range ~ 27 to ~ 500 keV as observed with the Wind and ACE spacecraft in June 2000. The observations onboard Wind show bimodal pitch angle distributions (PAD), whereas ACE shows PADs with one peak, as usually observed for impulsive injection of electrons at the Sun. During the time of observation Wind was located upstream of the Earth's bow shock, in the dawn - noon sector, at distances of ~ 40 to ~ 70 Earth radii away from the Earth, and magnetically well connected to the quasi-parallel bow shock, whereas ACE, located at the libration point L1, was not connected to the bow shock. The electron intensity-time profiles and energy spectra show that the backstreaming electrons observed at Wind are not of magnetospheric origin. The observations rather suggest that the bi-modal electron PADs are due to reflection or scattering at an obstacle located at a distance of less than ~ 150 Earth r...
Particle Production in Strong Electromagnetic Fields in Relativistic Heavy-Ion Collisions
Kirill Tuchin
2013-01-01
Full Text Available I review the origin and properties of electromagnetic fields produced in heavy-ion collisions. The field strength immediately after a collision is proportional to the collision energy and reaches ~mπ2 at RHIC and ~10mπ2 at LHC. I demonstrate by explicit analytical calculation that after dropping by about one-two orders of magnitude during the first fm/c of plasma expansion, it freezes out and lasts for as long as quark-gluon plasma lives as a consequence of finite electrical conductivity of the plasma. Magnetic field breaks spherical symmetry in the direction perpendicular to the reaction plane, and therefore all kinetic coefficients are anisotropic. I examine viscosity of QGP and show that magnetic field induces azimuthal anisotropy on plasma flow even in spherically symmetric geometry. Very strong electromagnetic field has an important impact on particle production. I discuss the problem of energy loss and polarization of fast fermions due to synchrotron radiation, consider photon decay induced by magnetic field, elucidate J/ψ dissociation via Lorentz ionization mechanism, and examine electromagnetic radiation by plasma. I conclude that all processes in QGP are affected by strong electromagnetic field and call for experimental investigation.
Horwitz, L. P.
2015-05-01
The most recent meeting took place at the University of Connecticut, Storrs, on June 9-13, 2014. This meeting forms the basis for the Proceedings that are recorded in this issue of the Journal of Physics: Conference Series. Along with the work of some of the founding members of the Association, we were fortunate to have lecturers from application areas that provided strong challenges for further developments in quantum field theory, cosmological problems, and in the dynamics of systems subject to accelerations and the effects of general relativity. Topics treated in this issue include studies of the dark matter problem, rotation curves, and, in particular, for the (relatively accessible) Milky Way galaxy, compact stellar objects, a composite particle model, and the properties of a conformally invariant theory with spontaneous symmetry breaking. The Stueckelberg theory is further investigated for its properties in producing bremsstrahlung and pair production and apparent superluminal effects, and, as mentioned above, the implications of low energy nuclear reactions for such off-shell theories. Other "proper time" theories are investigated as well, and a study of the clock synchronization problem is presented. A mathematical study of to quantum groupo associated with the Toda lattice and its implications for quantum field theory, as well as a phenomenological discussion of supernova mechanics as well as a semiclassical discussion of electron spin and the question of the compatibility of special relativity and the quantum theory. A careful analysis of the covariant Aharonov-Bohm effect is given as well. The quantization of massless fields and the relation to the Maxwell theory is also discussed. We wish to thank the participants who contributed very much through their lectures, personal discussions, and these papers, to the advancement of the subject and our understanding.
Azevedo, F. S.; Silva, Edilberto O.; Castro, Luis B.; Filgueiras, Cleverson; Cogollo, D.
2015-11-01
The planar quantum dynamics of a spin-1/2 neutral particle interacting with electrical fields is considered. A set of first order differential equations is obtained directly from the planar Dirac equation with nonminimum coupling. New solutions of this system, in particular, for the Aharonov-Casher effect, are found and discussed in detail. Pauli equation is also obtained by studying the motion of the particle when it describes a circular path of constant radius. We also analyze the planar dynamics in the full space, including the r = 0 region. The self-adjoint extension method is used to obtain the energy levels and wave functions of the particle for two particular values for the self-adjoint extension parameter. The energy levels obtained are analogous to the Landau levels and explicitly depend on the spin projection parameter.
Keenan, Brett; Ford, Alex; Medvedev, Mikhail
2014-10-01
Plasma turbulence in some astrophysical objects (e.g., weakly magnetized collisionless shocks in GRBs and SN) has small-scale electro-magnetic field fluctuations. We study spectral characteristics of radiation produced by particles moving in such turbulence and relate it to transport properties (diffusion) of these particles. It was shown earlier that relativistic particles produce jitter radiation, which spectral characteristics are markedly different from synchrotron radiation. Here we study radiation produced by non-relativistic particles. Unlike radiation in homogeneous field, which spectrum consists of a single cyclotron harmonic, radiation in the sub-Larmor-scale turbulence reflects statistical properties of the underlying magnetic field. We present both analytical estimates and results of ab initio numerical simulations. We also show that particle propagation in such turbulence is diffusive and evaluate the diffusion coefficient. We demonstrate that the diffusion coefficient correlates with some spectral parameters. These results can be very valuable for remote diagnostics of laboratory and astrophysical plasmas. Supported by grant DOE grant DE-FG02-07ER54940 and NSF grant AST-1209665.
A semi-relativistic model for tidal interactions in BH-NS coalescing binaries
Ferrari, V; Gualtieri, L; Pannarale, F [Dipartimento di Fisica ' G Marconi' , Sapienza Universita di Roma and Sezione INFN ROMA1, Piazzale Aldo Moro 2, I-00185 Roma (Italy)
2009-06-21
We study the tidal effects of a Kerr black hole on a neutron star in black hole-neutron star (BH-NS) binary systems by using a semi-analytical approach which describes the neutron star as a deformable ellipsoid. Relativistic effects on the neutron star self-gravity are taken into account by employing a scalar potential resulting from relativistic stellar structure equations. We calculate quasi-equilibrium sequences of BH-NS binaries and the critical orbital separation at which the star is disrupted by the black hole tidal field: the latter quantity is of particular interest because when it is greater than the radius of the innermost stable circular orbit, a short gamma-ray burst scenario may develop.
Relativistic dipole interaction and the topological nature for induced HMW and AC phases
He, Xiao-Gang
2016-01-01
In this work we construct relativistic Lagrangian density for the AC and HMW topological phases by induced electric and magnetic dipoles and clarify some of the conditions for producing topological phases which have not been properly discussed in previous studies. We also found that in both cases, the topological phases are induced by the cross product of electric and magnetic fields in the form $\\bm{B} \\times \\bm{E}$ which reinforces the dual nature of these two topological phases.
Adiabatic Wave-Particle Interaction Revisited
Dewar, R L; 10.1585/pfr.4.001
2009-01-01
In this paper we calculate and visualize the dynamics of an ensemble of electrons trapping in an electrostatic wave of slowly increasing amplitude, illustrating that, despite disordering of particles in angle during the trapping transition as they pass close to X-points, there is still an adiabatic invariant for the great majority of particles that allows the long-time distribution function to be predicted. Possible application of this approach to recent work on the nonlinear frequency shift of a driven wave is briefly discussed.
Final state interactions in two-particle interferometry
Anchishkin, D V; Renk, P
1998-01-01
We reconsider the influence of two-particle final state interactions (FSI) on two-particle Bose-Einstein interferometry. We concentrate in particular on the problem of particle emission at different times. Assuming chaoticity of the source, we derive a new general expression for the symmetrized two-particle cross section. We discuss the approximations needed to derive from the general result the Koonin-Pratt formula. Introducing a less stringent version of the so-called smoothness approximation we also derive a more accurate formula. It can be implemented into classical event generators and allows to calculate FSI corrected two-particle correlation functions via modified Bose-Einstein "weights".
Computation of Capillary Interactions among Many Particles at Free Surface
Fujita, Masahiro; Koike, Osamu; Yamaguchi, Yukio
2013-03-01
We have developed a new computational method to efficiently estimate capillary interactions among many moving particles at a free surface. A novelty of the method is the immersed free surface (IFS) model that transforms the surface tension exerted on a three-phase contact line on a particle surface into the surface tension exerted on an artificially created virtual free surface in the particle. Using the IFS model along with a level set method and an immersed boundary method, we have reasonably simulated a capillary-force-induced self-assembly of particles that is common in coating-drying of particle suspension.
Sahai, Aakash A
2014-01-01
We analyze the motion of the plasma critical layer by two different processes in the relativistic-electron laser-plasma interaction regime ($a_0>1$). The differences are highlighted when the critical layer ions are stationary in contrast to when they move with it. Controlling the speed of the plasma critical layer in this regime is essential for creating low-$\\beta$ traveling acceleration structures of sufficient laser-excited potential for laser ion accelerators (LIA). In Relativistically Induced Transparency Acceleration (RITA) scheme the heavy plasma-ions are fixed and only trace-density light-ions are accelerated. The relativistic critical layer and the acceleration structure move longitudinally forward by laser inducing transparency through apparent relativistic increase in electron mass. In the Radiation Pressure Acceleration (RPA) scheme the whole plasma is longitudinally pushed forward under the action of the laser radiation pressure, possible only when plasma ions co-propagate with the laser front. I...
Wang, Junwu; Hoef, van der M.A.; Kuipers, J.A.M.
2009-01-01
Discrete particle simulations are by now well established as an effective tool to study the mechanics of complex gas-solid flows in gas-fluidized beds. In this study, a state-of-the-art discrete particle model is used to explore the role of particle-particle interactions in bubbling gas-fluidized be
Ardaneh, Kazem; Cai, Dongsheng; Nishikawa, Ken-Ichi
2016-08-01
The course of non-thermal electron ejection in relativistic unmagnetized electron-ion shocks is investigated by performing self-consistent particle-in-cell simulations. The shocks are excited through the injection of a relativistic jet into ambient plasma, leading to two distinct shocks (referred to as the trailing shock and leading shock) and a contact discontinuity. The Weibel-like instabilities heat the electrons up to approximately half of the ion kinetic energy. The double layers formed in the trailing and leading edges then accelerate the electrons up to the ion kinetic energy. The electron distribution function in the leading edge shows a clear, non-thermal power-law tail which contains ˜1% of electrons and ˜8% of the electron energy. Its power-law index is -2.6. The acceleration efficiency is ˜23% by number and ˜50% by energy, and the power-law index is -1.8 for the electron distribution function in the trailing edge. The effect of the dimensionality is examined by comparing the results of three-dimensional simulations with those of two-dimensional simulations. The comparison demonstrates that electron acceleration is more efficient in two dimensions.
Ardaneh, Kazem; Nishikawa, Ken-Ichi
2016-01-01
The course of non-thermal electron ejection in relativistic unmagnetized electron-ion shocks is investigated by performing self-consistent particle-in-cell simulations. The shocks are excited through the injection of relativistic jet into ambient plasma, leading to two distinct shocks (named as the trailing shock and leading shock) and a contact discontinuity. The Weibel-like instabilities heat the electrons up to approximately half of ion kinetic energy. The double layers formed in the trailing and leading edges then accelerated the electrons by the ion kinetic energy. The electron distribution function in the leading edge shows a clear non-thermal power-law tail which contains $\\sim1\\%$ of electrons and $\\sim8\\%$ of electron energy. Its power-law index is -2.6. The acceleration efficiency is $\\sim23\\%$ by number and $\\sim50\\%$ by energy and the power-law index is -1.8 for electron distribution function in the trailing edge. The effect of the dimensionality is examined by comparing results of 3D simulation w...
Effects of aerodynamic particle interaction in turbulent non-dilute particle-laden flow
Salewski, Mirko; Fuchs, Laszlo
2008-01-01
decreases by more than 40% in the dense particle region in the near-field of the jet due to the introduction of aerodynamic four-way coupling. The jet of monodisperse particles therefore penetrates further into the crossflow in this case. The strength of the counterrotating vortex pair (CVP) and turbulence...... is applied to simulate monodisperse, rigid, and spherical particles injected into crossflow as an idealization of a spray jet in crossflow. A domain decomposition technique reduces the computational cost of the aerodynamic particle interaction model. It is shown that the average drag on such particles...... particles under such conditions is suggested. In this idealized atomizing mixture, the effect of aerodynamic four-way coupling reverses: The aerodynamic particle interaction results in a stronger CVP and enhances turbulence levels....
Wu, D; Luan, S X; Yu, W
2015-01-01
The generation of super-high energetic electrons influenced by pre-plasma in relativistic intensity laser matter interaction is studied in a one-dimensional slab approximation with particle-in-cell simulations. Different pre-plasma scale-lengths of $1\\ \\mu\\text{m}$, $5\\ \\mu\\text{m}$, $10\\ \\mu\\text{m}$ and $15\\ \\mu\\text{m}$ are considered, showing an increase in both particle number and cut-off kinetic energy of energetic electrons with the increase of pre-plasma scale-length, and the obtained cut-off electron energies greatly exceeding the ponderomotive energies. A two-stage electron acceleration model is proposed to explain the underlying physics. The first stage is attributed to the synergetic acceleration by longitudinal electric field and laser pulse, with the efficiency depending on the pre-plasma scale-length. The fast electrons pre-accelerated in the first stage could build up an intense electrostatic potential with the potential energy several times as large of the initial electron kinetic energy. Par...
Wu, D.; Krasheninnikov, S. I.; Luan, S. X.; Yu, W.
2017-01-01
The generation of super-high energetic electrons influenced by pre-plasma in relativistic intensity laser-matter interaction is studied in a one-dimensional slab approximation with particle-in-cell simulations. Different pre-plasma scale lengths and laser intensities are considered, showing an increase in both particle number and cut-off kinetic energy of electrons with the increase of pre-plasma scale length and laser intensity, the cut-off kinetic energy greatly exceeding the corresponding laser ponderomotive energy. A two-stage electron acceleration model is proposed to explain the underlying physics. The first stage is attributed to the synergetic acceleration by longitudinal electric field and counter-propagating laser pulses, and a scaling law is obtained with efficiency depending on the pre-plasma scale length and laser intensity. These electrons pre-accelerated in the first stage could build up an intense electrostatic potential barrier with maximal value several times as large as the initial electron kinetic energy. Some of the energetic electrons could be further accelerated by reflection off the electrostatic potential barrier, with their finial kinetic energies significantly higher than the values pre-accelerated in the first stage.
Collective Dynamics of Interacting Particles in Unsteady Flows
Abedi, Maryam
2014-01-01
We use the Fokker-Planck equation and its moment equations to study the collective behavior of interacting particles in unsteady one-dimensional flows. Particles interact according to a long-range attractive and a short-range repulsive potential field known as Morse potential. We assume Stokesian drag force between particles and their carrier fluid, and find analytic single-peaked traveling solutions for the spatial density of particles in the catastrophic phase. In steady flow conditions the streaming velocity of particles is identical to their carrier fluid, but we show that particle streaming is asynchronous with an unsteady carrier fluid. Using linear perturbation analysis, the stability of traveling solutions is investigated in unsteady conditions. It is shown that the resulting dispersion relation is an integral equation of the Fredholm type, and yields two general families of stable modes: singular modes whose eigenvalues form a continuous spectrum, and a finite number of discrete global modes. Dependi...
Mohammad Ayaz Ahmad
2016-11-01
Full Text Available In the present articles an attempt has been made for the determination of multiplicity distributions of the secondary charged particles produced in the central region of relativistic heavy ion collisions. Due to sophisticated measurement in the nuclear emulsion experiment only some particles having special criteria could be selected as central collision events with consenting accuracy.
INTERACTING MANY-PARTICLE SYSTEMS OF DIFFERENT PARTICLE TYPES CONVERGE TO A SORTED STATE
Kokkendorff, Simon Lyngby; Starke, Jens; Hummel, N.
2010-01-01
system converges by self-organized pattern formation to a sorted state where particles of the same type share a common position and those of different types are separated from each other. This is proved in the sense that we show that the property of being sorted is asymptotically stable and all other......We consider a model class of interacting many-particle systems consisting of different types of particles defined by a gradient flow. The corresponding potential expresses attractive and repulsive interactions between particles of the same type and different types, respectively. The introduced...
A field theory characterization of interacting adiabatic particles in cosmology
Arteaga, Daniel
2008-01-01
We explore the adiabatic particle excitations of an interacting field in a cosmological background. By following the time-evolution of the quantum state corresponding to the particle excitation, we show how the basic properties characterizing the particle propagation can be recovered from the two-point propagators. As an application, we study the background-induced dissipative effects on the propagation of a two-level atom in an expanding universe.
A field theory characterization of interacting adiabatic particles in cosmology
Arteaga, Daniel [Departament de Fisica Fonamental and Institut de Ciencies del Cosmos, Facultat de Fisica, Universitat de Barcelona, Av. Diagonal 647, 08028 Barcelona (Spain)], E-mail: darteaga@ub.edu
2008-08-07
We explore the adiabatic particle excitations of an interacting field in a cosmological background. By following the time evolution of the quantum state corresponding to the particle excitation, we show how the basic properties characterizing the particle propagation can be recovered from the two-point propagators. As an application, we study the background-induced dissipative effects on the propagation of a two-level atom in an expanding universe.
Relativistic quantum mechanics; Mecanique quantique relativiste
Ollitrault, J.Y. [CEA Saclay, 91 - Gif-sur-Yvette (France). Service de Physique Theorique]|[Universite Pierre et Marie Curie, 75 - Paris (France)
1998-12-01
These notes form an introduction to relativistic quantum mechanics. The mathematical formalism has been reduced to the minimum in order to enable the reader to calculate elementary physical processes. The second quantification and the field theory are the logical followings of this course. The reader is expected to know analytical mechanics (Lagrangian and Hamiltonian), non-relativistic quantum mechanics and some basis of restricted relativity. The purpose of the first 3 chapters is to define the quantum mechanics framework for already known notions about rotation transformations, wave propagation and restricted theory of relativity. The next 3 chapters are devoted to the application of relativistic quantum mechanics to a particle with 0,1/5 and 1 spin value. The last chapter deals with the processes involving several particles, these processes require field theory framework to be thoroughly described. (A.C.) 2 refs.
Charged particle interaction with a chirped electromagnetic pulse
Khachatryan, A.G.; Boller, K.-J.; Goor, van F.A.
2003-01-01
It is found that a charged particle can get a net energy gain from the interaction with an electromagnetic chirped pulse. Theoretically, the energy gain increases with the pulse amplitude and with the relative frequency variation in the pulse.
Parametric resonance and particle stochastic interactions with a periodic medium
Pinheiro, Mario J
2015-01-01
A non-markovian stochastic model shows the emergence of structures in the medium, a self-organization characterized by a relationship between particle's energy, driven frequency $\\omega$ and a frequency of interaction with the medium $\
Electrostatic interactions of colloidal particles at vanishing ionic strength.
Sainis, Sunil K; Merrill, Jason W; Dufresne, Eric R
2008-12-02
Electrostatic interactions of colloidal particles are typically screened by mobile ions in the solvent. We measure the forces between isolated pairs of colloidal polymer microspheres as the density of bulk ions vanishes. The ionic strength is controlled by varying the concentration of surfactant (NaAOT) in a nonpolar solvent (hexadecane). While interactions are well-described by the familiar screened-Coulomb form at high surfactant concentrations, they are experimentally indistinguishable from bare Coulomb interactions at low surfactant concentration. Interactions are strongest just above the critical micelle concentration, where particles can obtain high surface potentials without significant screening, kappaa renormalization, we are able to construct a simple thermodynamic model capturing the role of reverse micelles in charging the particle surface. These measurements provide novel access to electrostatic forces in the limit where the particle size is much less than the screening length, which is relevant not just to the nonpolar suspensions described here, but also to aqueous suspensions of nanoparticles.
Fundamental Particles and Interactions. A Wall Chart of Modern Physics.
Achor, William T.; And Others
1988-01-01
Discusses a wall chart, "The Standard Model of Fundamental Particles and Interactions," for use in introductory physics courses at either high school or college level. Describes the chart development process, introduction and terminology of particle physics, components of the chart, and suggestions for using the chart, booklet, and…
Stochastic transport of interacting particles in periodically driven ratchets
Savel'Ev, Sergey; Marchesoni, Fabio; Nori, Franco
2004-12-01
An open system of overdamped, interacting Brownian particles diffusing on a periodic substrate potential U(x+l)=U(x) is studied in terms of an infinite set of coupled partial differential equations describing the time evolution of the relevant many-particle distribution functions. In the mean-field approximation, this hierarchy of equations can be replaced by a nonlinear integro-differential Fokker-Planck equation. This is applicable when the distance a between particles is much less than the interaction length λ , i.e., a particle interacts with many others, resulting in averaging out fluctuations. The equation obtained in the mean-field approximation is applied to an ensemble of locally (a≪λ≪l) interacting (either repelling or attracting) particles placed in an asymmetric one-dimensional substrate potential, either with an oscillating temperature (temperature rachet) or driven by an ac force (rocked ratchet). In both cases we focus on the high-frequency limit. For the temperature ratchet, we find that the net current is typically suppressed (or can even be inverted) with increasing density of the repelling particles. In contrast, the net current through a rocked ratchet can be enhanced by increasing the density of the repelling particles. In the case of attracting particles, our perturbation technique is valid up to a critical value of the particle density, above which a finite fraction of the particles starts condensing in a liquidlike state near the substrate minima. The dependence of the net transport current on the particle density and the interparticle potential is analyzed in detail for different values of the ratchet parameters.
Interaction of plasma vortices with resonant particles
Jovanovic, D.; Pécseli, Hans; Juul Rasmussen, J.
1990-01-01
Kinetic effects associated with the electron motion along magnetic field lines in low‐beta plasmas are studied. Using the gyrokinetic description of electrons, a kinetic analog of the reduced magnetohydrodynamic equations is derived, and it is shown that in the strongly nonlinear regime they poss......Kinetic effects associated with the electron motion along magnetic field lines in low‐beta plasmas are studied. Using the gyrokinetic description of electrons, a kinetic analog of the reduced magnetohydrodynamic equations is derived, and it is shown that in the strongly nonlinear regime...... particles. The evolution equations indicate the possibility of excitation of plasma vortices by electron beams....
Static interaction between electrically polarisable particles in vacuo
Coïsson, R
2015-01-01
The static interaction of a point charge and a polarisable particle and between two polarisable particles is discussed in vacuo, and force and energy considerations are made. In particular a critical distance is shown (in principle) to appear in the two-dipole case, where the polarisation is self- sustained, and above which it disappears and below which it tends to explode. In the case of a polarisable particle with a nonzero charge interacting with a charge (of the same sign) there is a distance where repulsion and attraction are balanced.
Pair interaction of bilayer-coated nanoscopic particles
Zhang Qi-Yi
2009-01-01
The pair interaction between bilayer membrane-coated nanosized particles has been explored by using the self-consistent field (SCF) theory. The bilayer membranes are composed of amphiphilic polymers. For different system parameters, the pair-interaction free energies are obtained. Particular emphasis is placcd on the analysis of a sequence of structural transformations of bilayers on spherical particles, which occur during their approaching processes. For different head fractions of amphiphilcs, the asymmetrical morphologies between bilayers on two particles and the inverted micellar intermediates have been found in the membrane fusion pathway. These results can benefit the fabrication of vesicles as encapsulation vectors for drug and gene delivery.
Identified Particle Correlations at RHIC: Medium Interactions & Modified Fragmentation
Sickles, Anne
2007-01-01
Azimuthal angle two particle correlations have been shown to be a powerful probe for extracting novel features of jet induced correlations produced in Au+Au collisions at RHIC. At intermediate $p_T$, 2-5GeV/c, the jets have been shown to be significantly modified in both their particle composition and their angular distribution compared to p+p collisions. Two-particle angular correlations with identified particles provide sensitive probes of both the interactions between hard scattered partons and the medium. The systematics of these correlations are essential to understanding the physics of intermediate $p_T$ in heavy ion collisions.
Physics of Nonmagnetic Relativistic Thermal Plasmas. Ph.D. Thesis - Calif. Univ., San Diego
Dermer, C. D.
1984-01-01
A detailed treatment of the kinematics of relativistic systems of particles and photons is presented. In the case of a relativistic Maxwell-Boltzmann distribution of particles, the reaction rate and luminosity are written as single integrals over the invariant cross section, and the production spectrum is written as a double integral over the cross section differential in the energy of the produced particles (or photons) in the center-of-momentum system of two colliding particles. The results are applied to the calculation of the annihilation spectrum of a thermal electron-positron plasma, confirming previous numerical and analytic results. Relativistic thermal electron-ion and electron-electron bremsstrahlung are calculated exactly to lowest order, and relativistic thermal electron-positron bremsstrahlung is calculated in an approximate fashion. An approximate treatment of relativistic Comptonization is developed. The question of thermalization of a relativistic plasma is considered. A formula for the energy loss or exchange rate from the interaction of two relativistic Maxwell-Boltzmann plasmas at different temperatures is derived. Application to a stable, uniform, nonmagnetic relativistic thermal plasma is made. Comparison is made with other studies.
Distribution function approach to irreversible adsorption of interacting colloidal particles
Faraudo, Jordi; Bafaluy, Javier
2000-01-01
A statistical-mechanical description of the irreversible adsorption of interacting colloidal particles is developed. Our approach describes in a consistent way the interaction of particles from the bulk with adsorbed particles during the transport process towards the adsorbing surface. The macroscopic physical quantities corresponding to the actual process are expressed as averages over simpler auxiliary processes which proceed in the presence of a fixed number n of adsorbed particles. The adsorption rate verifies a generalized Langmuir equation, in which the kinetic resistance (the inverse of the kinetic coefficient) is expressed as the sum of a diffusional resistance and a resistance due to interaction with adsorbed particles during the transport process (blocking effect). Contrary to previous approaches, the blocking effect is not due to geometrical exclusion, instead it measures how the transport from the bulk is affected by the adsorbed particles. From the general expressions obtained, we have derived coverage expansions for the adsorption rate and the surface correlation function. The theory is applied to the case of colloidal particles interacting through DLVO potentials. This form of the kinetic coefficient is shown to be in agreement with recent experimental results, in which RSA fails.
High-repetition rate relativistic electron beam generation from intense laser solid interactions
Batson, Thomas; Nees, John; Hou, Bixue; Thomas, A. G. R.; Krushelnick, Karl
2015-05-01
Relativistic electron beams have applications spanning materials science, medicine, and home- land security. Recent advances in short pulse laser technology have enabled the production of very high focused intensities at kHz rep rates. Consequently this has led to the generation of high ux sources of relativistic electrons- which is a necessary characteristic of these laser plasma sources for any potential application. In our experiments, through the generation of a plasma with the lambda cubed laser system at the University of Michigan (a 5 × 1018W=cm2, 500 Hz, Ti:Sapphire laser), we have measured electrons ejected from the surface of fused silica nd Cu targets having energies in excess of an MeV. The spectrum of these electrons was measured with respect to incident laser angle, prepulse timing, and focusing conditions. While taken at a high repetition rate, the pulse energy of the lambda cubed system was consistently on the order of 10 mJ. In order to predict scaling of the electron energy with laser pulse energy, simulations are underway which compare the spectrum generated with the lambda cubed system to the predicted spectrum generated on the petawatt scale HERCULES laser system at the University of Michigan.
Turbulence-radiation interactions in a particle-laden flow
Frankel, Ari; Pouransari, Hadi; Iaccarino, Gianluca; Mani, Ali
2014-11-01
Turbulent fluctuations in a radiatively participating medium can significantly alter the mean heat transfer characteristics in a manner that current RANS models cannot accurately capture. While turbulence-radiation interaction has been studied extensively in traditional combustion systems, such interactions have not yet been studied in the context of particle-laden flows. This work is motivated by applications in particle-based solar receivers in which external radiation is primarily absorbed by a dispersed phase and conductively exchanged with the carrier fluid. Direct numerical simulations of turbulence with Lagrangian particles subject to a collimated radiation source are performed with a flux-limited diffusion approximation to radiative transfer. The dependence of the turbulence-radiation interaction statistics on the particle Stokes number will be demonstrated. Supported by PSAAP II.
Simulation of Au particle interaction on graphene sheets
Mcleod, A.; Vernon, K. C.; Rider, A. E.; Ostrikov, K.
2013-09-01
The interaction of Au particles with few layer graphene is of interest for the formation of the next generation of sensing devices 1. In this paper we investigate the coupling of single gold nanoparticles to a graphene sheet, and multiple gold nanoparticles with a graphene sheet using COMSOL Multiphysics. By using these simulations we are able to determine the electric field strength and associated hot-spots for various gold nanoparticle-graphene systems. The Au nanoparticles were modelled as 8 nm diameter spheres on 1.5 nm thick (5 layers) graphene, with properties of graphene obtained from the refractive index data of Weber 2 and the Au refractive index data from Palik 3. The field was incident along the plane of the sheet with polarisation tested for both s and p. The study showed strong localised interaction between the Au and graphene with limited spread; however the double particle case where the graphene sheet separated two Au nanoparticles showed distinct interaction between the particles and graphene. An offset was introduced (up to 4 nm) resulting in much reduced coupling between the opposed particles as the distance apart increased. Findings currently suggest that the graphene layer has limited interaction with incident fields with a single particle present whilst reducing the coupling region to a very fine area when opposing particles are involved. It is hoped that the results of this research will provide insight into graphene-plasmon interactions and spur the development of the next generation of sensing devices.
Lipkens, Bart, E-mail: blipkens@wne.edu [Mechanical Engineering, Western New England University, Springfield, Massachusetts, 01119 (United States); Ilinskii, Yurii A., E-mail: ilinskii@gmail.com; Zabolotskaya, Evgenia A., E-mail: zheniazabolotskaya@gmail.com [Applied Research Laboratories, The University of Texas at Austin, Austin, Texas 78713–8029 (United States)
2015-10-28
Ultrasonic standing waves are widely used for separation applications. In MEMS applications, a half wavelength standing wave field is generated perpendicular to a laminar flow. The acoustic radiation force exerted on the particle drives the particle to the center of the MEMS channel, where concentrated particles are harvested. In macro-scale applications, the ultrasonic standing wave spans multiple wavelengths. Examples of such applications are oil/water emulsion splitting [1], and blood/lipid separation [2]. In macro-scale applications, particles are typically trapped in the standing wave, resulting in clumping or coalescence of particles/droplets. Subsequent gravitational settling results in separation of the secondary phase. An often used expression for the radiation force on a particle is that derived by Gorkov [3]. The assumptions are that the particle size is small relative to the wavelength, and therefore, only monopole and dipole scattering contributions are used to calculate the radiation force. This framework seems satisfactory for MEMS scale applications where each particle is treated separately by the standing wave, and concentrations are typically low. In macro-scale applications, particle concentration is high, and particle clumping or droplet coalescence results in particle sizes not necessarily small relative to the wavelength. Ilinskii et al. developed a framework for calculation of the acoustic radiation force valid for any size particle [4]. However, this model does not take into account particle to particle effects, which can become important as particle concentration increases. It is known that an acoustic radiation force on a particle or a droplet is determined by the local field. An acoustic radiation force expression is developed that includes the effect of particle to particle interaction. The case of two neighboring particles is considered. The approach is based on sound scattering by the particles. The acoustic field at the location of
Inter-particle Interactions in Composites of Antiferromagnetic Nanoparticles
Frandsen, Cathrine; Mørup, Steen
2003-01-01
We have prepared mixtures of alpha-Fe2O3, CoO, and NiO nanoparticles by drying aqueous suspensions of the particles. The magnetic properties were studied by Mossbauer spectroscopy. The measurements showed that interactions with CoO particles suppress the superparamagnetic relaxation of both alpha......-Fe2O3 and Fe-57-doped NiO particles. The effect of NiO particles on alpha-FeA particles was a shorter relaxation time and an induced Morin transition, which usually is absent in alpha-Fe2O3 nanoparticles. Spectra of alpha-Fe2O3 particles, prepared by drying suspensions with added Co2+ and Ni2+ ions......, showed that the suspension medium can affect the magnetic properties of the alpha-FeA particles significantly, but not in the same way as the CoO or NiO nanoparticles. Therefore, a strong inter-particle exchange interaction between particles of different materials seems to be responsible for the magnetic...
Relativistic nonlinear electrodynamics the QED vacuum and matter in super-strong radiation fields
Avetissian, Hamlet K
2016-01-01
This revised edition of the author’s classic 2006 text offers a comprehensively updated review of the field of relativistic nonlinear electrodynamics. It explores the interaction of strong and super-strong electromagnetic/laser radiation with the electromagnetic quantum vacuum and diverse types of matter – including free charged particles and antiparticles, acceleration beams, plasma and plasmous media. The appearance of laser sources of relativistic and ultra-relativistic intensities over the last decade has stimulated investigation of a large class of processes under such super-strong radiation fields. Revisions for this second edition reflect these developments and the book includes new chapters on Bremsstrahlung and nonlinear absorption of superintense radiation in plasmas, the nonlinear interaction of relativistic atoms with intense laser radiation, nonlinear interaction of strong laser radiation with Graphene, and relativistic nonlinear phenomena in solid-plasma targets under supershort laser pul...
A Model of Elementary Particle Interactions
Khan, I
2000-01-01
There is a second kind of light which does not interact with our electrons. However it interacts with some of our protons (p) and some of our neutrons (n) which are both of two kinds: protons (p, p`), neutrons (n`, n) differing in the two kinds of charges (Q1, Q2) associated with the two kinds of light. p [p`] and n` [n] have (Q1, Q2) values equal to (1, 1) [(1, 0)] and (0, 0) [(0, 1)] respectively. There is also a second kind of electron (Q2 =1, Q1= 0), equal in mass to our electron (Q1 = -1, Q2= 0), which does not interact with our (the first) kind of light. Three major scenarios S1, S2 and X4 arise. In S1, matter in the solar system on large scales is predominantly neutralized in both kinds of charges and the weak forces of attraction among the sun and planets are due to a fundamental force of nature. However in this scenario we must postulate that human consciousness is locked on to chemical reactions in the retina involving the first kind of light and the first kind of electrons only. It is oblivious to ...
Probabilistic approach to nonlinear wave-particle resonant interaction
Artemyev, A. V.; Neishtadt, A. I.; Vasiliev, A. A.; Mourenas, D.
2017-02-01
In this paper we provide a theoretical model describing the evolution of the charged-particle distribution function in a system with nonlinear wave-particle interactions. Considering a system with strong electrostatic waves propagating in an inhomogeneous magnetic field, we demonstrate that individual particle motion can be characterized by the probability of trapping into the resonance with the wave and by the efficiency of scattering at resonance. These characteristics, being derived for a particular plasma system, can be used to construct a kinetic equation (or generalized Fokker-Planck equation) modeling the long-term evolution of the particle distribution. In this equation, effects of charged-particle trapping and transport in phase space are simulated with a nonlocal operator. We demonstrate that solutions of the derived kinetic equations agree with results of test-particle tracing. The applicability of the proposed approach for the description of space and laboratory plasma systems is also discussed.
Brownian dynamics simulations with hard-body interactions: Spherical particles
Behringer, Hans; 10.1063/1.4761827
2012-01-01
A novel approach to account for hard-body interactions in (overdamped) Brownian dynamics simulations is proposed for systems with non-vanishing force fields. The scheme exploits the analytically known transition probability for a Brownian particle on a one-dimensional half-line. The motion of a Brownian particle is decomposed into a component that is affected by hard-body interactions and into components that are unaffected. The hard-body interactions are incorporated by replacing the affected component of motion by the evolution on a half-line. It is discussed under which circumstances this approach is justified. In particular, the algorithm is developed and formulated for systems with space-fixed obstacles and for systems comprising spherical particles. The validity and justification of the algorithm is investigated numerically by looking at exemplary model systems of soft matter, namely at colloids in flow fields and at protein interactions. Furthermore, a thorough discussion of properties of other heurist...
Convergence Time Analysis of Particle Swarm Optimization Based on Particle Interaction
Chao-Hong Chen
2011-01-01
Full Text Available We analyze the convergence time of particle swarm optimization (PSO on the facet of particle interaction. We firstly introduce a statistical interpretation of social-only PSO in order to capture the essence of particle interaction, which is one of the key mechanisms of PSO. We then use the statistical model to obtain theoretical results on the convergence time. Since the theoretical analysis is conducted on the social-only model of PSO, instead of on common models in practice, to verify the validity of our results, numerical experiments are executed on benchmark functions with a regular PSO program.
Quasi locality of the GGE in interacting-to-free quenches in relativistic field theories
Bastianello, Alvise
2016-01-01
We study the quench dynamics in continuous relativistic quantum field theory, more specifically the locality properties of the large time stationary state. After a quantum quench in a one-dimensional integrable model, the expectation values of local observables are expected to relax to a Generalised Gibbs Ensemble (GGE), constructed out of the conserved charges of the model. Quenching to a free bosonic theory, it has been shown that the system indeed relaxes to a GGE described by the momentum mode occupation numbers. Here we address the question whether the latter can be equivalently described by a GGE constructed with only local charges. We show that, in marked contrast to the lattice case, this is always impossible in continuous field theories and instead the recently discovered quasilocal charges are necessary. In particular we show that the discrepancy between the exact steady state and the local GGE is clearly manifested as a difference in the large distance behaviour of the two point correlation functio...
Lu, Wenbin; Krolik, Julian; Crumley, Patrick; Kumar, Pawan
2017-10-01
Reverberation observations yielding a lag spectrum have uncovered an Fe K α fluorescence line in the tidal disruption event (TDE) Swift J1644+57. The discovery paper used the lag spectrum to argue that the source of the X-ray continuum was located very close to the black hole (∼30 gravitational radii) and moved subrelativistically. We reanalyse the lag spectrum, pointing out that dilution effects cause it to indicate a geometric scale an order of magnitude larger than inferred by Kara et al. If the X-ray continuum is produced by a relativistic jet, as suggested by the rapid variability, high luminosity and hard spectrum, this larger scale predicts an Fe ionization state consistent with efficient K α photon production. Moreover, the momentum of the jet X-rays impinging on the surrounding accretion flow on this large scale accelerates a layer of gas to speeds ∼0.1-0.2c, consistent with the blueshifted line profile. Implications of our results on the global picture of jetted TDEs are discussed. A power-law γ/X-ray spectrum may be produced by external ultraviolet (UV)-optical photons being repetitively inverse-Compton scattered by cold electrons in the jet, although our model for the K α reverberation does not depend on the jet radiation mechanism (magnetic reconnection in a Poynting jet is still a viable mechanism). The non-relativistic wind driven by jet radiation may explain the late-time radio rebrightening in Swift J1644+57. This energy injection may also cause the thermal UV-optical emission from jetted TDEs to be systematically brighter than in non-jetted ones.
Simulations of Shock Wave Interaction with a Particle Cloud
Koneru, Rahul; Rollin, Bertrand; Ouellet, Frederick; Annamalai, Subramanian; Balachandar, S.'Bala'
2016-11-01
Simulations of a shock wave interacting with a cloud of particles are performed in an attempt to understand similar phenomena observed in dispersal of solid particles under such extreme environment as an explosion. We conduct numerical experiments in which a particle curtain fills only 87% of the shock tube from bottom to top. As such, the particle curtain upon interaction with the shock wave is expected to experience Kelvin-Helmholtz (KH) and Richtmyer-Meshkov (RM) instabilities. In this study, the initial volume fraction profile matches with that of Sandia Multiphase Shock Tube experiments, and the shock Mach number is limited to M =1.66. In these simulations we use a Eulerian-Lagrangian approach along with state-of-the-art point-particle force and heat transfer models. Measurements of particle dispersion are made at different initial volume fractions of the particle cloud. A detailed analysis of the evolution of the particle curtain with respect to the initial conditions is presented. This work was supported by the U.S. Department of Energy, National Nuclear Security Administration, Advanced Simulation and Computing Program, as a Cooperative Agreement under the Predictive Science Academic Alliance Program, Contract No. DE-NA0002378.
Maxwell, R; Ata, S; Wanless, E J; Moreno-Atanasio, R
2012-09-01
Three dimensional Discrete Element Method (DEM) computer simulations have been carried out to analyse the kinetics of collision of multiple particles against a stationary bubble and the sliding of the particles over the bubble surface. This is the first time that a computational analysis of the sliding time and particle packing arrangements of multiple particles on the surface of a bubble has been carried out. The collision kinetics of monodisperse (33 μm in radius) and polydisperse (12-33 μm in radius) particle systems have been analysed in terms of the time taken by 10%, 50% and 100% of the particles to collide against the bubble. The dependencies of these collision times on the strength of hydrophobic interactions follow relationships close to power laws. However, minimal sensitivity of the collision times to particle size was found when linear and square relationships of the hydrophobic force with particles radius were considered. The sliding time for single particles has corroborated published theoretical expressions. Finally, a good qualitative comparison with experiments has been observed with respect to the particle packing at the bottom of the bubble after sliding demonstrating the usefulness of computer simulations in the studies of particle-bubble systems.
Chen, H; Shepherd, R; Chung, H K; Dyer, G; Faenov, A; Fournier, K B; Hansen, S B; Hunter, J; Kemp, A; Pikuz, T; Ping, Y; Widmann, K; Wilks, S C; Beiersdorfer, P
2006-08-22
The authors have measured the relaxation time of hot electrons in short pulse laser-solid interactions using a picosecond time-resolved x-ray spectrometer and a time-integrated electron spectrometer. Employing laser intensities of 10{sup 17}, 10{sup 18}, and 10{sup 19} W/cm{sup 2}, they find increased laser coupling to hot electrons as the laser intensity becomes relativistic and thermalization of hot electrons at timescales on the order of 10 ps at all laser intensities. They propose a simple model based on collisional coupling and plasma expansion to describe the rapid relaxation of hot electrons. The agreement between the resulting K{sub {alpha}} time-history from this model with the experiments is best at highest laser intensity and less satisfactory at the two lower laser intensities.
Interaction measurement of particles bound to a lipid membrane
Sarfati, Raphael; Dufresne, Eric
2015-03-01
The local shape and dynamics of the plasma membrane play important roles in many cellular processes. Local membrane deformations are often mediated by the adsorption of proteins (notably from the BAR family), and their subsequent self-assembly. The emerging hypothesis is that self-assembly arises from long-range interactions of individual proteins through the membrane's deformation field. We study these interactions in a model system of micron-sized colloidal particles adsorbed onto a lipid bilayer. We use fluorescent microscopy, optical tweezers and particle tracking to measure dissipative and conservative forces as a function of the separation between the particles. We find that particles are driven together with forces of order 100 fN and remain bound in a potential well with a stiffness of order 100 fN/micron.
Simulation of hydrodynamically interacting particles confined by a spherical cavity
Aponte-Rivera, Christian; Zia, Roseanna N.
2016-06-01
We present a theoretical framework to model the behavior of a concentrated colloidal dispersion confined inside a spherical cavity. Prior attempts to model such behavior were limited to a single enclosed particle and attempts to enlarge such models to two or more particles have seen limited success owing to the challenges of accurately modeling many-body and singular hydrodynamic interactions. To overcome these difficulties, we have developed a set of hydrodynamic mobility functions that couple particle motion with hydrodynamic traction moments that, when inverted and combined with near-field resistance functions, form a complete coupling tensor that accurately captures both the far-field and near-field physics and is valid for an arbitrary number of spherical particles enclosed by a spherical cavity of arbitrary relative size a /R , where a and R are the particle and cavity size, respectively. This framework is then utilized to study the effect of spherical confinement on the self- and entrained motion of the colloids, for a range of particle-to-cavity size ratios. The self-motion of a finite-size enclosed particle is studied first, recovering prior results published in the literature: The hydrodynamic mobility of the particle is greatest at the center of the cavity and decays as (a /R ) /(1 -y2) , where y is the particle distance to the cavity center. Near the cavity wall, the no-slip surfaces couple strongly and mobility along the cavity radius vanishes as ξ ≡R -(a +y ) , where y is center-to-center distance from particle to cavity. Corresponding motion transverse to the cavity radius vanishes as [ln(1/ξ ) ] -1. The effect of confinement on entrainment of a particle in the flow created by the motion of others is also studied, where we find that confinement exerts a qualitative effect on the strength and anisotropy of entrainment of a passive particle dragged by the flow of a forced particle. As expected, entrainment strength decays with increased distance
Bliokh, Konstantin Y
2011-01-01
We consider the relativistic deformation of quantum waves and mechanical bodies carrying intrinsic angular momentum (AM). When observed in a moving reference frame, the centroid of the object undergoes an AM-dependent transverse shift. This is the relativistic analogue of the spin Hall effect, which occurs in free space without any external fields. Remarkably, the shifts of the geometric and energy centroids differ by a factor of 2, and both centroids are crucial for the correct Lorentz transformations of the AM tensor. We examine manifestations of the relativistic Hall effect in quantum vortices, mechanical flywheel, and discuss various fundamental aspects of the phenomenon. The perfect agreement of quantum and relativistic approaches allows applications at strikingly different scales: from elementary spinning particles, through classical light, to rotating black-holes.
The impact of surface properties on particle-interface interactions
Wang, Anna; Kaz, David; McGorty, Ryan; Manoharan, Vinothan N.
2013-03-01
The propensity for particles to bind to oil-water interfaces was first noted by Ramsden and Pickering over a century ago, and has been attributed to the huge reduction in surface energy when a particle breaches an oil-water interface and straddles it at its equilibrium height. Since then materials on a variety of length scales have been fabricated using particles at interfaces, from Pickering emulsions to Janus particles. In these applications, it is simply assumed that the particle sits at its hugely energetically favourable equilibrium position. However, it was recently shown that the relaxation of particles towards their equilibrium position is logarithmic in time and could take months, much longer than typical experiments. Here we investigate how surface charge and particle 'hairiness' impact the interaction between micron-sized particles and oil-water interfaces, and explore a molecular kinetic theory model to help understand these results. We use digital holographic microscopy to track micron-sized particles as they approach an oil-water interface with a resolution of 2 nm in all three dimensions at up to thousands of frames per second.
Soft wall effects on interacting particles in billiards.
Oliveira, H A; Manchein, C; Beims, M W
2008-10-01
The effect of physically realizable wall potentials (soft walls) on the dynamics of two interacting particles in a one-dimensional (1D) billiard is examined numerically. The 1D walls are modeled by the error function and the transition from hard to soft walls can be analyzed continuously by varying the softness parameter sigma . For sigma-->0 the 1D hard wall limit is obtained and the corresponding wall force on the particles is the delta function. In this limit the interacting particle dynamics agrees with previous results obtained for the 1D hard walls. We show that the two interacting particles in the 1D soft walls model is equivalent to one particle inside a soft right triangular billiard. Very small values of sigma substantiously change the dynamics inside the billiard and the mean finite-time Lyapunov exponent decreases significantly as the consequence of regular islands which appear due to the low-energy double collisions (simultaneous particle-particle-1D wall collisions). The rise of regular islands and sticky trajectories induced by the 1D wall softness is quantified by the number of occurrences of the most probable finite-time Lyapunov exponent. On the other hand, chaotic motion in the system appears due to the high-energy double collisions. In general we observe that the mean finite-time Lyapunov exponent decreases when sigma increases, but the number of occurrences of the most probable finite-time Lyapunov exponent increases, meaning that the phase-space dynamics tends to be more ergodiclike. Our results suggest that the transport efficiency of interacting particles and heat conduction in periodic structures modeled by billiards will strongly be affected by the smoothness of physically realizable walls.
DUAL CHARACTERS OF INTERACTION BETWEEN PARTICLES AND FLUID
Yong Jin; Yao Wang; Yi Cheng; Xiaotao Bi
2005-01-01
The unique characteristics of gas-solids two-phase flow and fluidization in terms of the flow structures and the apparent behavior of particles and fluid-particle interactions are closely linked to physical properties of the particles, operating conditions and bed configurations. Fluidized beds behave quite differently when solid properties, gas velocities or vessel geometries are varied. An understanding of hydrodynamic changes and how they, in turn, influence the transfer and reaction characteristics of chemical and thermal operations by variations in gas-solid contact, residence time, solid circulation and mixing and gas distribution is very important for the proper design and scale-up of fluidized bed reactors. In this paper, rather than attempting a comprehensive survey, we concentrate on examining some important positive and negative impacts of particle sizes, bubbles, clusters and column walls on the physical and chemical aspects of chemical reactor performance from the engineering application point of view with the aim of forming an adequate concept for guiding the design of multiphase fluidized bed chemical reactors.One unique phenomenon associated with particle size is that fluidized bed behavior does not always vary monotonically with changing the average particle size. Different behaviors of particles with difference sizes can be well understood by analyzing the relationship between particle size and various forces. For both fine and coarse particles, too narrow a distribution is generally not favorable for smooth fluidization. A too wide size distribution, on the other hand, may lead to particle segregation and high particle elutriation. Good fluidization performance can be established with a proper size distribution in which inter-particle cohesive forces are reduced by the lubricating effect of fine particles on coarse particles for Type A, B and D particles or by the spacing effect of coarse particles or aggregates for Type C powders.Much emphasis
Electroweak interaction of particles with accelerated matter and astrophysical applications
Dvornikov, Maxim
2015-01-01
The description of physical processes in accelerated frames opens a window to numerous new phenomena. One can encounter these effects both in the subatomic world and on a macroscale. In the present work we review our recent results on the study of the electroweak interaction of particles with an accelerated background matter. In our analysis we choose the noninertial comoving frame, where matter is at rest. Our study is based on the solution of the Dirac equation, which exactly takes into account both the interaction with matter and the nonintertial effects. First, we study the interaction of ultrarelativistic neutrinos, electrons and quarks with the rotating matter. We consider the influence of the matter rotation on the resonance in neutrino oscillations and the generation of anomalous electric current of charged particles along the rotation axis. Then, we study the creation of neutrino-antineutrino pairs in a linearly accelerated matter. The applications of the obtained results for elementary particle phys...
HE Xin-Kui; SHUAI Bin; GE Xiao-Chun; LI Ru-Xin; XU Zhi-Zhan
2004-01-01
@@ We investigate the influence of the initial laser phase on the interaction between relativistic electron and ultraintense linear polarized laser field in a strong uniform magnetic field. It is found that the dynamic behaviour of the relativistic electron and the emission spectrum varies dramatically with different initial laser field phases.The effect of changing initial phase is contrary in the two parameter regions divided by the resonance condition.The phase dependence of the electron energy and velocity components are also studied. Some beat structure is found when the initial laser phase is zero and this structure is absent when the initial laser phase is a quarter of a period.
Recent progresses in relativistic beam-plasma instability theory
A. Bret
2010-11-01
Full Text Available Beam-plasma instabilities are a key physical process in many astrophysical phenomena. Within the fireball model of Gamma ray bursts, they first mediate a relativistic collisionless shock before they produce upstream the turbulence needed for the Fermi acceleration process. While non-relativistic systems are usually governed by flow-aligned unstable modes, relativistic ones are likely to be dominated by normally or even obliquely propagating waves. After reviewing the basis of the theory, results related to the relativistic kinetic regime of the poorly-known oblique unstable modes will be presented. Relevant systems besides the well-known electron beam-plasma interaction are presented, and it is shown how the concept of modes hierarchy yields a criterion to assess the proton to electron mass ratio in Particle in cell simulations.
Particle-turbulence interaction; Partikkelitihentymien ja turbulenssin vuorovaikutus
Karvinen, R.; Savolainen, K. [Tampere Univ. of Technology (Finland). Energy and Process Technology
1997-10-01
In this work the interaction between solid particles and turbulence of the carrier fluid in two-phase flow is studied. The aim of the study is to find out prediction methods for the interaction of particles and fluid turbulence. Accurate measured results are needed in order to develop numerical simulations. There are very few good experimental data sets concerning the particulate matter and its effect on the gas turbulence. Turbulence of the gas phase in a vertical, dilute gas-particle pipe flow has been measured with the laser-Doppler anemometer in Tampere University of Technology. Special attention was paid to different components of the fluctuating velocity. Numerical simulations were done with the Phoenics-code in which the models of two-phase flows suggested in the literature were implemented. It has been observed that the particulate phase increases the rate of anisotropy of the fluid turbulence. It seems to be so that small rigid particles increase the intensity of the axial and decrease the intensity of the radial component in a vertical pipe flow. The change of the total kinetic energy of turbulence obviously depends on the particle size. In the case of 150 ,{mu} spherical glass particles flowing upwards with air, it seems to be slightly positive near the centerline of the pipe. This observation, i.e. the particles decrease turbulence in the radial direction, is very important; because mass and heat transfer in flows is strongly dependent on the component of fluctuating velocity perpendicular to the main flow direction
Adamczyk, L; Agakishiev, G; Aggarwal, M M; Ahammed, Z; Alekseev, I; Aparin, A; Arkhipkin, D; Aschenauer, E C; Averichev, G S; Bai, X; Bairathi, V; Banerjee, A; Bellwied, R; Bhasin, A; Bhati, A K; Bhattarai, P; Bielcik, J; Bielcikova, J; Bland, L C; Bordyuzhin, I G; Bouchet, J; Brandenburg, D; Brandin, A V; Bunzarov, I; Butterworth, J; Caines, H; Calder{ó}n~de~la~Barca~S{á}nchez, M; Campbell, J M; Cebra, D; Cervantes, M C; Chakaberia, I; Chaloupka, P; Chang, Z; Chattopadhyay, S; Chen, J H; Chen, X; Cheng, J; Cherney, M; Chisman, O; Christie, W; Contin, G; Crawford, H J; Das, S; De Silva, L C; Debbe, R R; Dedovich, T G; Deng, J; Derevschikov, A A; di Ruzza, B; Didenko, L; Dilks, C; Dong, X; Drachenberg, J L; Draper, J E; Du, C M; Dunkelberger, L E; Dunlop, J C; Efimov, L G; Engelage, J; Eppley, G; Esha, R; Evdokimov, O; Eyser, O; Fatemi, R; Fazio, S; Federic, P; Fedorisin, J; Feng, Z; Filip, P; Fisyak, Y; Flores, C E; Fulek, L; Gagliardi, C A; Garand, D; Geurts, F; Gibson, A; Girard, M; Greiner, L; Grosnick, D; Gunarathne, D S; Guo, Y; Gupta, A; Gupta, S; Guryn, W; Hamad, A; Hamed, A; Haque, R; Harris, J W; He, L; Heppelmann, S; Hirsch, A; Hoffmann, G W; Hofman, D J; Horvat, S; Huang, H Z; Huang, B; Huang, X; Huck, P; Humanic, T J; Igo, G; Jacobs, W W; Jang, H; Jia, J; Jiang, K; Judd, E G; Kabana, S; Kalinkin, D; Kang, K; Kauder, K; Ke, H W; Keane, D; Kechechyan, A; Khan, Z H; Kikoła, D P; Kisel, I; Kisiel, A; Kochenda, L; Koetke, D D; Kollegger, T; Kosarzewski, L K; Kraishan, A F; Kravtsov, P; Krueger, K; Kulakov, I; Kumar, L; Kycia, R A; Lamont, M A C; Landgraf, J M; Landry, K D; Lauret, J; Lebedev, A; Lednicky, R; Lee, J H; Li, X; Li, W; Li, C; Li, Z M; Li, Y; Lisa, M A; Liu, F; Ljubicic, T; Llope, W J; Lomnitz, M; Longacre, R S; Luo, X; Ma, G L; Ma, R; Ma, L; Ma, Y G; Magdy, N; Majka, R; Manion, A; Margetis, S; Markert, C; Masui, H; Matis, H S; McDonald, D; Meehan, K; Minaev, N G; Mioduszewski, S; Mishra, D; Mohanty, B; Mondal, M M; Morozov, D A; Mustafa, M K; Nandi, B K; Nasim, Md; Nayak, T K; Nigmatkulov, G; Nogach, L V; Noh, S Y; Novak, J; Nurushev, S B; Odyniec, G; Ogawa, A; Oh, K; Okorokov, V; Olvitt, D; Page, B S; Pak, R; Pan, Y X; Pandit, Y; Panebratsev, Y; Pawlik, B; Pei, H; Perkins, C; Peterson, A; Pile, P; Planinic, M; Pluta, J; Poljak, N; Poniatowska, K; Porter, J; Posik, M; Poskanzer, A M; Pruthi, N K; Putschke, J; Qiu, H; Quintero, A; Ramachandran, S; Raniwala, R; Raniwala, S; Ray, R L; Ritter, H G; Roberts, J B; Rogachevskiy, O V; Romero, J L; Roy, A; Ruan, L; Rusnak, J; Rusnakova, O; Sahoo, N R; Sahu, P K; Salur, S; Sandweiss, J; Sarkar, A; Schambach, J; Scharenberg, R P; Schmah, A M; Schmidke, W B; Schmitz, N; Seger, J; Seyboth, P; Shah, N; Shahaliev, E; Shanmuganathan, P V; Shao, M; Sharma, B; Sharma, M K; Shen, W Q; Shi, S S; Shou, Q Y; Sichtermann, E P; Sikora, R; Simko, M; Singha, S; Skoby, M J; Smirnov, N; Smirnov, D; Song, L; Sorensen, P; Spinka, H M; Srivastava, B; Stanislaus, T D S; Stepanov, M; Stock, R; Strikhanov, M; Stringfellow, B; Sumbera, M; Summa, B; Sun, X; Sun, Z; Sun, X M; Sun, Y; Surrow, B; Svirida, N; Szelezniak, M A; Tang, Z; Tang, A H; Tarnowsky, T; Tawfik, A; Thaeder, J; Thomas, J H; Timmins, A R; Tlusty, D; Todoroki, T; Tokarev, M; Trentalange, S; Tribble, R E; Tribedy, P; Tripathy, S K; Trzeciak, B A; Tsai, O D; Ullrich, T; Underwood, D G; Upsal, I; Van Buren, G; van Nieuwenhuizen, G; Vandenbroucke, M; Varma, R; Vasiliev, A N; Vertesi, R; Videbæk, F; Viyogi, Y P; Vokal, S; Voloshin, S A; Vossen, A; Wang, F; Wang, J S; Wang, Y; Wang, G; Wang, H; Webb, J C; Webb, G; Wen, L; Westfall, G D; Wieman, H; Wissink, S W; Witt, R; Wu,; Wu, Y F; Xiao, Z G; Xie, W; Xin, K; Xu, N; Xu, Q H; Xu, Z; Xu, Y F; Xu, H; Yang, C; Yang, Y; Yang, S; Yang, Q; Ye, Z; Yepes, P; Yi, L; Yip, K; Yoo, I -K; Yu, N; Zbroszczyk, H; Zha, W; Zhang, X P; Zhang, Z; Zhang, S; Zhang, J; Zhang, Y; Zhang, J B; Zhao, J; Zhong, C; Zhou, L; Zhu, X; Zoulkarneeva, Y; Zyzak, M
2016-01-01
Elliptic flow (v_{2}) values for identified particles at midrapidity in Au + Au collisions measured by the STAR experiment in the Beam Energy Scan at the Relativistic Heavy Ion Collider at sqrt{s_{NN}}= 7.7-62.4 GeV are presented for three centrality classes. The centrality dependence and the data at sqrt{s_{NN}}= 14.5 GeV are new. Except at the lowest beam energies we observe a similar relative v_{2} baryon-meson splitting for all centrality classes which is in agreement within 15% with the number-of-constituent quark scaling. The larger v_{2} for most particles relative to antiparticles, already observed for minimum bias collisions, shows a clear centrality dependence, with the largest difference for the most central collisions. Also, the results are compared with AMPT calculations and fit with a Blast Wave model.
Itoh, Y; Asada, H; Itoh, Yousuke; Futamase, Toshifumi; Asada, Hideki
2001-01-01
We study the equation of motion appropriate to an inspiralling binary star system whose constituent stars have strong internal gravity. We use the post-Newtonian approximation with the strong field point particle limit by which we can introduce into general relativity a notion of a point-like particle with strong internal gravity without using Dirac delta distribution. Besides this limit, to deal with strong internal gravity we express the equation of motion in surface integral forms and calculate these integrals explicitly. As a result we obtain the equation of motion for a binary of compact bodies accurate through the second and half post-Newtonian (2.5 PN) order. This equation is derived in the harmonic coordinate. Our resulting equation perfectly agrees with Damour and Deruelle 2.5 PN equation of motion. Hence it is found that the 2.5 PN equation of motion is applicable to a relativistic compact binary.
Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; Aggarwal, M. M.; Ahammed, Z.; Alekseev, I.; Aparin, A.; Arkhipkin, D.; Aschenauer, E. C.; Averichev, G. S.; Bai, X.; Bairathi, V.; Banerjee, A.; Bellwied, R.; Bhasin, A.; Bhati, A. K.; Bhattarai, P.; Bielcik, J.; Bielcikova, J.; Bland, L. C.; Bordyuzhin, I. G.; Bouchet, J.; Brandenburg, D.; Brandin, A. V.; Bunzarov, I.; Butterworth, J.; Caines, H.; Calderón de la Barca Sánchez, M.; Campbell, J. M.; Cebra, D.; Cervantes, M. C.; Chakaberia, I.; Chaloupka, P.; Chang, Z.; Chattopadhyay, S.; Chen, X.; Chen, J. H.; Cheng, J.; Cherney, M.; Chisman, O.; Christie, W.; Contin, G.; Crawford, H. J.; Das, S.; De Silva, L. C.; Debbe, R. R.; Dedovich, T. G.; Deng, J.; Derevschikov, A. A.; di Ruzza, B.; Didenko, L.; Dilks, C.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Du, C. M.; Dunkelberger, L. E.; Dunlop, J. C.; Efimov, L. G.; Engelage, J.; Eppley, G.; Esha, R.; Evdokimov, O.; Eyser, O.; Fatemi, R.; Fazio, S.; Federic, P.; Fedorisin, J.; Feng, Z.; Filip, P.; Fisyak, Y.; Flores, C. E.; Fulek, L.; Gagliardi, C. A.; Garand, D.; Geurts, F.; Gibson, A.; Girard, M.; Greiner, L.; Grosnick, D.; Gunarathne, D. S.; Guo, Y.; Gupta, A.; Gupta, S.; Guryn, W.; Hamad, A.; Hamed, A.; Haque, R.; Harris, J. W.; He, L.; Heppelmann, S.; Heppelmann, S.; Hirsch, A.; Hoffmann, G. W.; Hofman, D. J.; Horvat, S.; Huang, H. Z.; Huang, B.; Huang, X.; Huck, P.; Humanic, T. J.; Igo, G.; Jacobs, W. W.; Jang, H.; Jiang, K.; Judd, E. G.; Kabana, S.; Kalinkin, D.; Kang, K.; Kauder, K.; Ke, H. W.; Keane, D.; Kechechyan, A.; Khan, Z. H.; Kikoła, D. P.; Kisel, I.; Kisiel, A.; Kochenda, L.; Koetke, D. D.; Kollegger, T.; Kosarzewski, L. K.; Kraishan, A. F.; Kravtsov, P.; Krueger, K.; Kulakov, I.; Kumar, L.; Kycia, R. A.; Lamont, M. A. C.; Landgraf, J. M.; Landry, K. D.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, J. H.; Li, X.; Li, Y.; Li, W.; Li, C.; Li, X.; Li, Z. M.; Lisa, M. A.; Liu, F.; Ljubicic, T.; Llope, W. J.; Lomnitz, M.; Longacre, R. S.; Luo, X.; Ma, L.; Ma, Y. G.; Ma, G. L.; Ma, R.; Magdy, N.; Majka, R.; Manion, A.; Margetis, S.; Markert, C.; Masui, H.; Matis, H. S.; McDonald, D.; Meehan, K.; Minaev, N. G.; Mioduszewski, S.; Mishra, D.; Mohanty, B.; Mondal, M. M.; Morozov, D. A.; Mustafa, M. K.; Nandi, B. K.; Nasim, Md.; Nayak, T. K.; Nigmatkulov, G.; Niida, T.; Nogach, L. V.; Noh, S. Y.; Novak, J.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Oh, K.; Okorokov, V.; Olvitt, D.; Page, B. S.; Pak, R.; Pan, Y. X.; Pandit, Y.; Panebratsev, Y.; Pawlik, B.; Pei, H.; Perkins, C.; Peterson, A.; Pile, P.; Planinic, M.; Pluta, J.; Poljak, N.; Poniatowska, K.; Porter, J.; Posik, M.; Poskanzer, A. M.; Pruthi, N. K.; Putschke, J.; Qiu, H.; Quintero, A.; Ramachandran, S.; Raniwala, S.; Raniwala, R.; Ray, R. L.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Roy, A.; Ruan, L.; Rusnak, J.; Rusnakova, O.; Sahoo, N. R.; Sahu, P. K.; Salur, S.; Sandweiss, J.; Sarkar, A.; Schambach, J.; Scharenberg, R. P.; Schmah, A. M.; Schmidke, W. B.; Schmitz, N.; Seger, J.; Seyboth, P.; Shah, N.; Shahaliev, E.; Shanmuganathan, P. V.; Shao, M.; Sharma, B.; Sharma, M. K.; Shen, W. Q.; Shi, S. S.; Shou, Q. Y.; Sichtermann, E. P.; Sikora, R.; Simko, M.; Singha, S.; Skoby, M. J.; Smirnov, N.; Smirnov, D.; Song, L.; Sorensen, P.; Spinka, H. M.; Srivastava, B.; Stanislaus, T. D. S.; Stepanov, M.; Stock, R.; Strikhanov, M.; Stringfellow, B.; Sumbera, M.; Summa, B.; Sun, X.; Sun, Z.; Sun, Y.; Sun, X. M.; Surrow, B.; Svirida, N.; Szelezniak, M. A.; Tang, Z.; Tang, A. H.; Tarnowsky, T.; Tawfik, A.; Thäder, J.; Thomas, J. H.; Timmins, A. R.; Tlusty, D.; Tokarev, M.; Trentalange, S.; Tribble, R. E.; Tribedy, P.; Tripathy, S. K.; Trzeciak, B. A.; Tsai, O. D.; Ullrich, T.; Underwood, D. G.; Upsal, I.; Van Buren, G.; van Nieuwenhuizen, G.; Vandenbroucke, M.; Varma, R.; Vasiliev, A. N.; Vertesi, R.; Videbæk, F.; Viyogi, Y. P.; Vokal, S.; Voloshin, S. A.; Vossen, A.; Wang, F.; Wang, Y.; Wang, G.; Wang, Y.; Wang, J. S.; Wang, H.; Webb, J. C.; Webb, G.; Wen, L.; Westfall, G. D.; Wieman, H.; Wissink, S. W.; Witt, R.; Wu, Y. F.; Wu, Y.; Xiao, Z. G.; Xie, W.; Xin, K.; Xu, Z.; Xu, H.; Xu, Y. F.; Xu, Q. H.; Xu, N.; Yang, Y.; Yang, C.; Yang, S.; Yang, Y.; Yang, Q.; Ye, Z.; Ye, Z.; Yepes, P.; Yi, L.; Yip, K.; Yoo, I.-K.; Yu, N.; Zbroszczyk, H.; Zha, W.; Zhang, J. B.; Zhang, Y.; Zhang, S.; Zhang, J.; Zhang, J.; Zhang, Z.; Zhang, X. P.; Zhao, J.; Zhong, C.; Zhou, L.; Zhu, X.; Zoulkarneeva, Y.; Zyzak, M.; STAR Collaboration
2016-01-01
Elliptic flow (v2) values for identified particles at midrapidity in Au + Au collisions measured by the STAR experiment in the Beam Energy Scan at the Relativistic Heavy Ion Collider at √{sN N}= 7.7 -62.4 GeV are presented for three centrality classes. The centrality dependence and the data at √{sN N}= 14.5 GeV are new. Except at the lowest beam energies, we observe a similar relative v2 baryon-meson splitting for all centrality classes which is in agreement within 15% with the number-of-constituent quark scaling. The larger v2 for most particles relative to antiparticles, already observed for minimum bias collisions, shows a clear centrality dependence, with the largest difference for the most central collisions. Also, the results are compared with a multiphase transport (AMPT) model and fit with a blast wave model.
Exotic Non-relativistic String
Casalbuoni, Roberto; Longhi, Giorgio
2007-01-01
We construct a classical non-relativistic string model in 3+1 dimensions. The model contains a spurion tensor field that is responsible for the non-commutative structure of the model. Under double dimensional reduction the model reduces to the exotic non-relativistic particle in 2+1 dimensions.
Wave-particle interactions in the outer radiation belts
Agapitov, O V; Artemyev, A V; Mourenas, D; Krasnoselskikh, V V
2015-01-01
Data from the Van Allen Probes have provided the first extensive evidence of non-linear (as opposed to quasi-linear) wave-particle interactions in space with the associated rapid (fraction of a bounce period) electron acceleration to hundreds of keV by Landau resonance in the parallel electric fields of time domain structures (TDS) and very oblique chorus waves. The experimental evidence, simulations, and theories of these processes are discussed. {\\bf Key words:} the radiation belts, wave-particle interaction, plasma waves and instabilities
Generation of Energetic Particles in Intense Laser Matter Interaction
Ramakrishna, Bhuvanesh; Muhammad, Tayyab; Bagchi, Suman; Mandal, Tirtha; Chakera, Juzer; Naik, Prasad; Gupta, Parshotam Dass; Department of Physics, Indian Institute of Technology Hyderabad, India. Collaboration; Laser Plasma Division, Raja Ramanna CentreAdvanced Technology, Indore, India. Collaboration
2016-10-01
The acceleration of high energy ion beams up to several tens of MeV per nucleon following the interaction of an ultra-short (t 1018 W.cm-2. μm-2) laser pulse with solid targets, is one of the burgeoning fields of research in the last few years. Mechanisms leading to forward-accelerated, high quality ion beams, operating at currently accessible laser intensities (up to 1021 W/cm2) in laser-matter interactions, are mainly associated with large electric fields set up at the target rear interface by the laser-accelerated electrons leaving the target. In this paper, we present our recent experimental results on MeV ion generation by mildly relativistic (1019 W / cm - 2) short-pulse (45 fs) laser interaction with foil targets of varying thicknesses, structured / uniform targets (e.g. nano structures on thin metallic foils, sandwich targets). Spectral modification / bunching, and divergence from structured targets will be discussed. DST Ramanujan Fellowship (SR/S2/RJN-25/2012).
Separable approximation method for two-body relativistic scattering
Tandy, P.C.; Thaler, R.M.
1988-03-01
A method for defining a separable approximation to a given interaction within a two-body relativistic equation, such as the Bethe-Salpeter equation, is presented. The rank-N separable representation given here permits exact reproduction of the T matrix on the mass shell and half off the mass shell at N selected bound state and/or continuum values of the invariant mass. The method employed is a four-space generalization of the separable representation developed for Schroedinger interactions by Ernst, Shakin, and Thaler, supplemented by procedures for dealing with the relativistic spin structure in the case of Dirac particles.
Separable approximation method for two-body relativistic scattering
Tandy, P. C.; Thaler, R. M.
1988-03-01
A method for defining a separable approximation to a given interaction within a two-body relativistic equation, such as the Bethe-Salpeter equation, is presented. The rank-N separable representation given here permits exact reproduction of the T matrix on the mass shell and half off the mass shell at N selected bound state and/or continuum values of the invariant mass. The method employed is a four-space generalization of the separable representation developed for Schrödinger interactions by Ernst, Shakin, and Thaler, supplemented by procedures for dealing with the relativistic spin structure in the case of Dirac particles.
Palge, Veiko; Dunningham, Jacob; Hasegawa, Yuji
2016-01-01
In quantum physics Wigner's rotation is commonly regarded as confirmed by the Thomas precession in a hydrogen like atom. In this paper we show that a direct experimental verification of Wigner's rotation is in principle accessible in the regime of non-relativistic velocities at $2 \\cdot 10^3\\,$m/s and propose an experiment using thermal neutrons. The experiment can be carried out in a laboratory and it provides a test of relativity in the quantum domain.
Beam transfer functions for relativistic proton bunches with beam–beam interaction
Görgen, P., E-mail: goergen@temf.tu-darmstadt.de [Institut für Theorie Elektromagnetischer Felder (TEMF), Technische Universität Darmstadt, Schloßgartenstr. 8 64289 Darmstadt (Germany); Boine-Frankenheim, O. [Institut für Theorie Elektromagnetischer Felder (TEMF), Technische Universität Darmstadt, Schloßgartenstr. 8 64289 Darmstadt (Germany); Fischer, W. [Brookhaven National Laboratory, Upton, NY 11973 (United States)
2015-03-21
We present a method for the recovery of the transverse tune spread directly from the beam transfer function (BTF). The model is applicable for coasting beams and bunched beams at high energy with a tune spread from transverse nonlinearities induced by the beam–beam effect or by an electron lens. Other sources of tune spread can be added. A method for the recovery of the incoherent tune spread without prior knowledge of the nonlinearity is presented. The approach is based on the analytic model for BTFs of coasting beams, which agrees very well with simulations results for bunched beams at relativistic energies with typically low synchrotron tune. A priori the presented tune spread recovery method is usable only in the absence of coherent modes, but additional simulation data shows its applicability even in the presence of coherent beam–beam modes. Finally agreement of both the analytic and simulation models with measurement data obtained at RHIC is presented. The proposed method successfully recovers the tune spread from analytic, simulated and measured BTF.
Quasi locality of the GGE in interacting-to-free quenches in relativistic field theories
Bastianello, Alvise; Sotiriadis, Spyros
2017-02-01
We study the quench dynamics in continuous relativistic quantum field theory, more specifically the locality properties of the large time stationary state. After a quantum quench in a one-dimensional integrable model, the expectation values of local observables are expected to relax to a generalized Gibbs ensemble (GGE), constructed out of the conserved charges of the model. Quenching to a free bosonic theory, it has been shown that the system indeed relaxes to a GGE described by the momentum mode occupation numbers. We first address the question whether the latter can be written directly in terms of local charges and we find that, in contrast to the lattice case, this is not possible in continuous field theories. We then investigate the less stringent requirement of the existence of a sequence of truncated local GGEs that converges to the correct steady state, in the sense of the expectation values of the local observables. While we show that such a sequence indeed exists, in order to unequivocally determine the so-defined GGE, we find that information about the expectation value of the recently discovered quasi-local charges is in the end necessary, the latter being the suitable generalization of the local charges while passing from the lattice to the continuum. Lastly, we study the locality properties of the GGE and show that the latter is completely determined by the knowledge of the expectation value of a countable set of suitably defined quasi-local charges.
Tidal Interaction between a Fluid Star and a Kerr Black Hole Relativistic Roche-Riemann Model
Wiggins, P; Wiggins, Paul; Lai, Dong
1999-01-01
We present a semi-analytic study of the equilibrium models of close binary systems containing a fluid star (mass $m$ and radius $R_0$) and a Kerr black hole (mass $M$) in circular orbit. We consider the limit $M\\gg m$ where spacetime is described by the Kerr metric. The tidally deformed star is approximated by an ellipsoid, and satisfies the polytropic equation of state. The models also include fluid motion in the stellar interior, allowing binary models with nonsynchronized stellar spin (as expected for coalescing neutron star--black hole binaries) to be constructed. Tidal disruption occurs at orbital radius $r_{\\rm tide}\\sim R_0(M/m)^{1/3}$, but the dimensionless ratio of the black hole as well as on the equation of state and the internal rotation of the star. We find that the general relativistic tidal field disrupts the star at a larger $\\hat r_{\\rm tide}$ than the Newtonian tide; the difference is particularly prominent if the disruption occurs in the vicinity of the black hole's horizon. In general, $\\h...
Interaction of aerosol particles with a standing wave optical field
Curry, John J.
2016-09-01
Trajectories of spherical dielectric particles carried across an optical standing wave by a flowing medium are investigated. Trajectories are determined by a three-dimensional Monte Carlo calculation that includes drag forces, Brownian motion, and optical gradient forces. We analyze the case of polystyrene particles with radii of order 100 nm carried across a Gaussian-mode standing wave by slowly flowing air. Particles are injected into the flowing air from a small source area such as the end of a capillary tube. Different sizes are dispersed continuously in space on the opposite side of the standing wave, demonstrating a practical way to sort particles. Certain discrete values of particle size show no interaction with the optical field, independent of intensity. These particles can be sorted with exceptionally high resolution. For example, particles with radii of 275 nm can be sorted with 1 nm resolution. This sorting scheme has the advantages of accommodating a high throughput, producing a continuous stream of continuously dispersed particles, and exhibiting excellent size resolution. The Monte Carlo results are in agreement with those obtained by a much simpler, and faster, fluid calculation based on effective velocities and effective diffusion coefficients, both obtained by averaging trajectories over multiple fringes of the optical field.
Hydrodynamics of interaction of particles (including cells) with surfaces
Duszyk, Marek; Doroszewski, Jan
particle velocity perpendicular to the streamline direction. This phenomenon is the cause of the lateral migration of particles. Neutrally buoyant rigid particles migrate to a certain concentrical region situated between the tube axis and the wall (tubular pinch region). Deformable neutrally buoyant particles migrate towards the tube axis, and deformable non-neutrally buoyant particles may move either toward the tube axis or toward the wall. In the research on the influence of the flow delimiting surface on the motion of particles in suspension a considerable progress has recently been made. However, the phenomena in this field are extremely complex. At present, two main types of approach may be distinguished. On a microscopic level direct interactions between particles and surfaces are analyzed. A macroscopic approach consists in treating particle suspension as fluid, and overall influence of the surface on its properties are studied. A comprehensive theory linking these two levels has not yet emerged.
Infinite matter properties and zero-range limit of non-relativistic finite-range interactions
Davesne, D.; Becker, P.; Pastore, A.; Navarro, J.
2016-12-01
We discuss some infinite matter properties of two finite-range interactions widely used for nuclear structure calculations, namely Gogny and M3Y interactions. We show that some useful informations can be deduced for the central, tensor and spin-orbit terms from the spin-isospin channels and the partial wave decomposition of the symmetric nuclear matter equation of state. We show in particular that the central part of the Gogny interaction should benefit from the introduction of a third Gaussian and the tensor parameters of both interactions can be deduced from special combinations of partial waves. We also discuss the fact that the spin-orbit of the M3Y interaction is not compatible with local gauge invariance. Finally, we show that the zero-range limit of both families of interactions coincides with the specific form of the zero-range Skyrme interaction extended to higher momentum orders and we emphasize from this analogy its benefits.
Infinite matter properties and zero-range limit of non-relativistic finite-range interactions
Davesne, D. [Université de Lyon, Université Lyon 1, CNRS/IN2P3, Institut de Physique Nucléaire de Lyon, UMR 5822, F-69622 Villeurbanne cedex (France); Becker, P., E-mail: pbecker@ipnl.in2p3.fr [Université de Lyon, Université Lyon 1, CNRS/IN2P3, Institut de Physique Nucléaire de Lyon, UMR 5822, F-69622 Villeurbanne cedex (France); Pastore, A. [Department of Physics, University of York, Heslington, York, Y010 5DD (United Kingdom); Navarro, J. [IFIC (CSIC-Universidad de Valencia), Apartado Postal 22085, E-46.071-Valencia (Spain)
2016-12-15
We discuss some infinite matter properties of two finite-range interactions widely used for nuclear structure calculations, namely Gogny and M3Y interactions. We show that some useful informations can be deduced for the central, tensor and spin–orbit terms from the spin–isospin channels and the partial wave decomposition of the symmetric nuclear matter equation of state. We show in particular that the central part of the Gogny interaction should benefit from the introduction of a third Gaussian and the tensor parameters of both interactions can be deduced from special combinations of partial waves. We also discuss the fact that the spin–orbit of the M3Y interaction is not compatible with local gauge invariance. Finally, we show that the zero-range limit of both families of interactions coincides with the specific form of the zero-range Skyrme interaction extended to higher momentum orders and we emphasize from this analogy its benefits.
Directed Transport of Interacting Particle Systems: Recent Progress
ZHENG Zhi-Gang
2005-01-01
Recent developments in studies of directed transport processes in interacting particle systems are retrospected. Due to the interactions among elements, the directed transport process exhibits complicated and novel cooperative dynamics. We considered various possibilities in achieving ratchet motion by breaking different symmetries of many-body systems. It is shown that the directional transport can even be induced by breaking the coupling symmetry and the spatiotemporal symmetries.
Tsurutani, B. T.; Zhang, L. D.; Mason, G. L.; Lakhina, G. S.; Hada, T.; Arballo, J. K.; Zwickl, R. D.
2002-04-01
Energetic particles and MHD waves are studied using simultaneous ISEE-3 data to investigate particle propagation and scattering between the source near the Sun and 1 AU. 3 He-rich events are of particular interest because they are typically low intensity "scatter-free" events. The largest solar proton events are of interest because they have been postulated to generate their own waves through beam instabilities. For 3 He-rich events, simultaneous interplanetary magnetic spectra are measured. The intensity of the interplanetary "fossil" turbulence through which the particles have traversed is found to be at the "quiet" to "intermediate" level of IMF activity. Pitch angle scattering rates and the corresponding particle mean free paths l
Sanctis, M. de [Universidad Nacional de Colombia, Bogota (Colombia); Ferretti, J. [Universita La Sapienza, Dipartimento di Fisica, Roma (Italy); INFN, Roma (Italy); Santopinto, E.; Vassallo, A. [INFN, Sezione di Genova, Genova (Italy)
2016-05-15
The relativistic interacting quark-diquark model of baryons, recently developed, is here extended introducing in the mass operator a spin-isospin transition interaction. This refined version of the model is used to calculate the non-strange baryon spectrum. The results are compared to the present experimental data. A preliminary calculation of the magnetic moments of the proton and neutron is also presented. (orig.)
Particle Swarm Optimization With Interswarm Interactive Learning Strategy.
Qin, Quande; Cheng, Shi; Zhang, Qingyu; Li, Li; Shi, Yuhui
2016-10-01
The learning strategy in the canonical particle swarm optimization (PSO) algorithm is often blamed for being the primary reason for loss of diversity. Population diversity maintenance is crucial for preventing particles from being stuck into local optima. In this paper, we present an improved PSO algorithm with an interswarm interactive learning strategy (IILPSO) by overcoming the drawbacks of the canonical PSO algorithm's learning strategy. IILPSO is inspired by the phenomenon in human society that the interactive learning behavior takes place among different groups. Particles in IILPSO are divided into two swarms. The interswarm interactive learning (IIL) behavior is triggered when the best particle's fitness value of both the swarms does not improve for a certain number of iterations. According to the best particle's fitness value of each swarm, the softmax method and roulette method are used to determine the roles of the two swarms as the learning swarm and the learned swarm. In addition, the velocity mutation operator and global best vibration strategy are used to improve the algorithm's global search capability. The IIL strategy is applied to PSO with global star and local ring structures, which are termed as IILPSO-G and IILPSO-L algorithm, respectively. Numerical experiments are conducted to compare the proposed algorithms with eight popular PSO variants. From the experimental results, IILPSO demonstrates the good performance in terms of solution accuracy, convergence speed, and reliability. Finally, the variations of the population diversity in the entire search process provide an explanation why IILPSO performs effectively.
Demianski, Marek
2013-01-01
Relativistic Astrophysics brings together important astronomical discoveries and the significant achievements, as well as the difficulties in the field of relativistic astrophysics. This book is divided into 10 chapters that tackle some aspects of the field, including the gravitational field, stellar equilibrium, black holes, and cosmology. The opening chapters introduce the theories to delineate gravitational field and the elements of relativistic thermodynamics and hydrodynamics. The succeeding chapters deal with the gravitational fields in matter; stellar equilibrium and general relativity
A single particle effective potential for interacting positron and positronium
Zubiaga, A; Puska, M
2013-01-01
We have studied small systems composed by an atom and a positron or a positronium atom. We have used many-body quantum mechanical calculations to describe the correlation effects of light particles. Explicitly correlated gaussian for the basis functions and a stochastical variational optimization method has allowed to obtain accurate wavefunctions and energies. We have discussed the chemistry of positrons in those systems by means of analyzing the densities of the light particles (electrons and positrons). During the discussion, we propose an effective potential that describes the properties of the positron in those systems, valid also when it forms a Ps cluster. The effective potential is a mean field description of the interaction of the positron that can be used to calculate the distribution of the positron and its interaction energy. This potential can be a step forward for an accurate single particle description of the positron in cases when it forms positronium, specially molecular soft matter.
Noisy quantum walks of two indistinguishable interacting particles
Siloi, Ilaria; Benedetti, Claudia; Piccinini, Enrico; Piilo, Jyrki; Maniscalco, Sabrina; Paris, Matteo G. A.; Bordone, Paolo
2017-02-01
We investigate the dynamics of continuous-time two-particle quantum walks on a one-dimensional noisy lattice. Depending on the initial condition, we show how the interplay between particle indistinguishability and interaction determines distinct propagation regimes. A realistic model for the environment is considered by introducing non-Gaussian noise as time-dependent fluctuations of the tunneling amplitudes between adjacent sites. We observe that the combined effect of particle interaction and fast noise (weak coupling with the environment) provides a faster propagation compared to the noiseless case. This effect can be understood in terms of the band structure of the Hubbard model, and a detailed analysis as a function of both noise and system parameters is presented.
Bounds on halo-particle interactions from interstellar calorimetry
Chivukula, Sekhar R.; Cohen, Andrew G.; Dimopoulos, Savas; Walker, Terry P.
1990-01-01
It is shown that the existence of neutral interstellar clouds constrains the interaction of any particulate dark-matter candidate with atomic hydrogen to be quite small. Even for a halo particle of mass 1 PeV (10 to the 6 GeV), it is shown that the cross section with hydrogen must be smaller than the typical atomic cross section that is expected for a positively charged particle bound to an electron. The argument presented is that if the clouds are in equilibrium, then the rate at which energy is deposited by collisions with dark-matter particles must be smaller than the rate at which the cloud can cool. This argument is used to constrain the interaction cross section of dark matter with hydrogen. Remarks are made on the general viability of charged dark matter. Comments are also made on a bound which derives from the dynamical stability of the halo.
DLVO interaction energies between hollow spherical particles and collector surfaces
The surface element integration technique was used to systematically study Derjaguin-Landau-Verwey-Overbeek (DLVO) interaction energies/forces between hollow spherical particles (HPs) and a planar surface or two intercepting half planes under different ionic strength conditions. The inner and outer ...
Particle Mesh Ewald's Method and Non-Interacting Dyon Gas
Kiamari, Motahareh
2016-01-01
We study the free energy of a quark-antiquark pair near the deconfinement temperature by particle mesh Ewald's method for non-interacting dyon ensemble. We show that the free energy of the quark-antiquark pair increases linearly by increasing the distance between them. However, close to the deconfinement temperature some signs of string breaking are observed.
Interaction Potential between Parabolic Rotator and an Outside Particle
Dan Wang
2014-01-01
Full Text Available At micro/nanoscale, the interaction potential between parabolic rotator and a particle located outside the rotator is studied on the basis of the negative exponential pair potential 1/Rn between particles. Similar to two-dimensional curved surfaces, we confirm that the potential of the three-dimensional parabolic rotator and outside particle can also be expressed as a unified form of curvatures; that is, it can be written as the function of curvatures. Furthermore, we verify that the driving forces acting on the particle may be induced by the highly curved micro/nano-parabolic rotator. Curvatures and the gradient of curvatures are the essential elements forming the driving forces. Through the idealized numerical experiments, the accuracy of the curvature-based potential is preliminarily proved.