International Nuclear Information System (INIS)
Abramowicz, M.A; Jaroszynski, M.; Sikora, M.
1978-01-01
An analytic theory of the hydrodynamical structure of accreting disks (without self-gravitation but with pressure) orbiting around and axially symmetric, stationary, compact body (e.g. black hole) is presented. The inner edge of the marginally stable accreting disk (i.e. disk with constant angular momentum density) has a sharp cusp located on the equatorial plane between rsub(ms) and rsub(mb). The existence of the cusp is also typical for any angular momentum distribution. The physical importance of the cusp follows from the close analogy with the case of a close binary system (L 1 Lagrange point on the Roche lobe). The existence of the cusp is thus a crucial phenomenon in such problems as boundary condition for the viscous stresses, accretion rate etc. (orig.) [de
Energy Technology Data Exchange (ETDEWEB)
Abramowicz, M A; Jaroszynski, M; Sikora, M [Polska Akademia Nauk, Warsaw
1978-02-01
An analytic theory of the hydrodynamical structure of accreting disks (without self-gravitation but with pressure) orbiting around an axially symmetric, stationary, compact body (e.g. black hole) is presented. The inner edge of the marginally stable accreting disk (i.e. disk with constant angular momentum density) has a sharp cusp located on the equatorial plane between r/sub ms/ and r/sub mb/. The existence of the cusp is also typical for any angular momentum distribution. The physical importance of the cusp follows from the close analogy with the case of a close binary system (L/sub 1/ Lagrange point on the Roche lobe). The existence of the cusp is thus a crucial phenomenon in such problems as boundary condition for the viscous stresses, accretion rate, etc.
CAFE: A NEW RELATIVISTIC MHD CODE
Energy Technology Data Exchange (ETDEWEB)
Lora-Clavijo, F. D.; Cruz-Osorio, A. [Instituto de Astronomía, Universidad Nacional Autónoma de México, AP 70-264, Distrito Federal 04510, México (Mexico); Guzmán, F. S., E-mail: fdlora@astro.unam.mx, E-mail: aosorio@astro.unam.mx, E-mail: guzman@ifm.umich.mx [Instituto de Física y Matemáticas, Universidad Michoacana de San Nicolás de Hidalgo. Edificio C-3, Cd. Universitaria, 58040 Morelia, Michoacán, México (Mexico)
2015-06-22
We introduce CAFE, a new independent code designed to solve the equations of relativistic ideal magnetohydrodynamics (RMHD) in three dimensions. We present the standard tests for an RMHD code and for the relativistic hydrodynamics regime because we have not reported them before. The tests include the one-dimensional Riemann problems related to blast waves, head-on collisions of streams, and states with transverse velocities, with and without magnetic field, which is aligned or transverse, constant or discontinuous across the initial discontinuity. Among the two-dimensional (2D) and 3D tests without magnetic field, we include the 2D Riemann problem, a one-dimensional shock tube along a diagonal, the high-speed Emery wind tunnel, the Kelvin–Helmholtz (KH) instability, a set of jets, and a 3D spherical blast wave, whereas in the presence of a magnetic field we show the magnetic rotor, the cylindrical explosion, a case of Kelvin–Helmholtz instability, and a 3D magnetic field advection loop. The code uses high-resolution shock-capturing methods, and we present the error analysis for a combination that uses the Harten, Lax, van Leer, and Einfeldt (HLLE) flux formula combined with a linear, piecewise parabolic method and fifth-order weighted essentially nonoscillatory reconstructors. We use the flux-constrained transport and the divergence cleaning methods to control the divergence-free magnetic field constraint.
New models of general relativistic static thick disks
Vogt, D.; Letelier, P.S.
2005-01-01
New families of exact general relativistic thick disks are constructed using the "displace, cut, fill, and reflect" method. A class of functions used to fill the disks is derived imposing conditions on the first and second derivatives to generate physically acceptable disks. The analysis of the
Relativistic MHD simulations of stellar core collapse and magnetars
Energy Technology Data Exchange (ETDEWEB)
Font, Jose A; Gabler, Michael [Departamento de AstronomIa y Astrofisica, Universitat de Valencia, 46100 Burjassot (Valencia) (Spain); Cerda-Duran, Pablo; Mueller, Ewald [Max-Planck-Institut fuer Astrophysik, Karl-Schwarzschild-Str. 1, 85741 Garching (Germany); Stergioulas, Nikolaos, E-mail: j.antonio.font@uv.es [Department of Physics, Aristotle University of Thessaloniki, Thessaloniki 54124 (Greece)
2011-02-01
We present results from simulations of magneto-rotational stellar core collapse along with Alfven oscillations in magnetars. These simulations are performed with the CoCoA/CoCoNuT code, which is able to handle ideal MHD flows in dynamical spacetimes in general relativity. Our core collapse simulations highlight the importance of genuine magnetic effects, like the magneto-rotational instability, for the dynamics of the flow. For the modelling of magnetars we use the anelastic approximation to general relativistic MHD, which allows for an effective suppression of fluid modes and an accurate description of Alfven waves. We further compute Alfven oscillation frequencies along individual magnetic field lines with a semi-analytic approach. Our work confirms previous results based on perturbative approaches regarding the existence of two families of quasi-periodic oscillations (QPOs), with harmonics at integer multiples of the fundamental frequency. Additional material is presented in the accompanying contribution by Gabler et al (2010b) in these proceedings.
Energy Technology Data Exchange (ETDEWEB)
NONE
1990-07-01
Experimental disk MHD facilities are predesigned, and commercial-scale (1,000 MWt) MHD/steam systems are investigated. The predesigns of the disk MHD facilities indicate that enthalpy extraction is 8.7% for a 10 MWt open cycle MHD generator, and increases to 37% for a 5 MWt closed cycle MHD generator. Commercial (1,000 MWt) MHD/steam systems are studied for 4 types. Of these types, the open cycle disk MHD generator shows the lowest efficiency of 42.8%, while the closed cycle disk MHD generator the highest efficiency of 50.0%. The open cycle linear generator, although showing an efficiency of 49.4%, may be the lowest-cost type, when the necessary heat source, heat exchangers and the like are taken into consideration. For the design of superconducting magnet, it is necessary to further investigate whether the one for the test facility is applicable to the commercial systems. (NEDO)
International Nuclear Information System (INIS)
Welch, G.E.; Dugan, E.T.; Lear, W.E. Jr.; Appelbaum, J.G.
1990-01-01
A gas core nuclear reactor (GCR)/disk magnetohydrodynamic (MHD) generator direct closed Rankine space power system concept is described. The GCR/disk MHD generator marriage facilitates efficient high electric power density system performance at relatively high operating temperatures. The system concept promises high specific power levels, on the order of 1 kW e /kg. An overview of the disk MHD generator component magnetofluiddynamic and plasma physics theoretical modeling is provided. Results from a parametric design analysis of the disk MHD generator are presented and discussed
Relativistic modeling capabilities in PERSEUS extended MHD simulation code for HED plasmas
Energy Technology Data Exchange (ETDEWEB)
Hamlin, Nathaniel D., E-mail: nh322@cornell.edu [438 Rhodes Hall, Cornell University, Ithaca, NY, 14853 (United States); Seyler, Charles E., E-mail: ces7@cornell.edu [Cornell University, Ithaca, NY, 14853 (United States)
2014-12-15
We discuss the incorporation of relativistic modeling capabilities into the PERSEUS extended MHD simulation code for high-energy-density (HED) plasmas, and present the latest hybrid X-pinch simulation results. The use of fully relativistic equations enables the model to remain self-consistent in simulations of such relativistic phenomena as X-pinches and laser-plasma interactions. By suitable formulation of the relativistic generalized Ohm’s law as an evolution equation, we have reduced the recovery of primitive variables, a major technical challenge in relativistic codes, to a straightforward algebraic computation. Our code recovers expected results in the non-relativistic limit, and reveals new physics in the modeling of electron beam acceleration following an X-pinch. Through the use of a relaxation scheme, relativistic PERSEUS is able to handle nine orders of magnitude in density variation, making it the first fluid code, to our knowledge, that can simulate relativistic HED plasmas.
Stochastic Oscillations of General Relativistic Disks Described
Indian Academy of Sciences (India)
4
spectral slope at high frequencies of the power spectrum density of disk ..... has a negative sign, the process is antipersistence or anti-correlated. ..... We can find that the computation of a Grünwald-Letnikov derivative requires knowledge of.
Application of vertical micro-disk MHD electrode to the analysis of heterogeneous magneto-convection
International Nuclear Information System (INIS)
Sugiyama, Atsushi; Hashiride, Makoto; Morimoto, Ryoichi; Nagai, Yutaka; Aogaki, Ryoichi
2004-01-01
With a micro-disk electrode in vertical magnetic fields, heterogeneous magneto-convection in vertical magnetic fields was quantitatively examined for the redox reaction of ferrocyanide-ferricyanide ions. It was concluded that the current density controlled by the magneto-convection is in proportion to the 1/3rd power of the product of the magnetic flux density and its gradient. Then, by using the same electrode system, the diffusion current induced by the vertical MHD (magnetohydrodynamic) flow was measured for the reduction of cuprous ions to copper atoms. The current density in this case was, as theoretically predicted, a function of the 1st power of the magnetic flux density. Finally, to visualize this characteristic flow pattern of the vertical MHD flow, copper electrodeposition onto the micro-disk electrode in a vertical magnetic field was performed; a typical morphological pattern of the deposit (single micro-mystery circle) was observed, as expected
Application of vertical micro-disk MHD electrode to the analysis of heterogeneous magneto-convection
Energy Technology Data Exchange (ETDEWEB)
Sugiyama, A. [Saitama Industrial Technology Center, Japan Society for the Promotion of Science, Kawaguchi (Japan). Domestic Research Fellowship; Hashiride, M.; Morimoto, R.; Nagai, Y. [Saitama Industrial Technology Center, Kawaguchi (Japan). Materials Engineering Division; Aogaki, R. [Polytechnic University, Sagamihara (Japan). Department of Product Design
2004-11-01
With a micro-disk electrode in vertical magnetic fields, heterogeneous magneto-convection in vertical magnetic fields was quantitatively examined for the redox reaction of ferrocyanide-ferricyanide ions. It was concluded that the current density controlled by the magneto-convection is in proportion to the 1/3rd power of the product of the magnetic flux density and its gradient. Then, by using the same electrode system, the diffusion current induced by the vertical MHD (magnetohydrodynamic) flow was measured for the reduction of cuprous ions to copper atoms. The current density in this case was, as theoretically predicted, a function of the 1st power of the magnetic flux density. Finally, to visualize this characteristic flow pattern of the vertical MHD flow, copper electrodeposition onto the micro-disk electrode in a vertical magnetic field was performed; a typical morphological pattern of the deposit (single micro-mystery circle) was observed, as expected. (author)
Hall effects on unsteady MHD flow between two rotating disks with non-coincident parallel axes
Energy Technology Data Exchange (ETDEWEB)
Barik, R.N., E-mail: barik.rabinarayan@rediffmail.com [Department of Mathematics, Trident Academy of Technology, Bhubaneswar (India); Dash, G.C., E-mail: gcdash@indiatimes.com [Department of Mathematics, S.O.A. University, Bhubaneswar (India); Rath, P.K., E-mail: pkrath_1967@yahoo.in [Department of Mathematics, B.R.M. International Institute of Technology, Bhubaneswar (India)
2013-01-15
Hall effects on the unsteady MHD rotating flow of a viscous incompressible electrically conducting fluid between two rotating disks with non-coincident parallel axes have been studied. There exists an axisymmetric solution to this problem. The governing equations are solved by applying Laplace transform method. It is found that the torque experienced by the disks decreases with an increase in either the Hall parameter, m or the rotation parameter, S{sup 2}. Further, the axis of rotation has no effect on the fluid flow. (author)
Hall effects on unsteady MHD flow between two rotating disks with non-coincident parallel axes
International Nuclear Information System (INIS)
Barik, R.N.; Dash, G.C.; Rath, P.K.
2013-01-01
Hall effects on the unsteady MHD rotating flow of a viscous incompressible electrically conducting fluid between two rotating disks with non-coincident parallel axes have been studied. There exists an axisymmetric solution to this problem. The governing equations are solved by applying Laplace transform method. It is found that the torque experienced by the disks decreases with an increase in either the Hall parameter, m or the rotation parameter, S 2 . Further, the axis of rotation has no effect on the fluid flow. (author)
NON-IDEAL MHD EFFECTS AND MAGNETIC BRAKING CATASTROPHE IN PROTOSTELLAR DISK FORMATION
International Nuclear Information System (INIS)
Li Zhiyun; Krasnopolsky, Ruben; Shang Hsien
2011-01-01
Dense, star-forming cores of molecular clouds are observed to be significantly magnetized. A realistic magnetic field of moderate strength has been shown to suppress, through catastrophic magnetic braking, the formation of a rotationally supported disk (RSD) during the protostellar accretion phase of low-mass star formation in the ideal MHD limit. We address, through two-dimensional (axisymmetric) simulations, the question of whether realistic levels of non-ideal effects, computed with a simplified chemical network including dust grains, can weaken the magnetic braking enough to enable an RSD to form. We find that ambipolar diffusion (AD), the dominant non-ideal MHD effect over most of the density range relevant to disk formation, does not enable disk formation, at least in two dimensions. The reason is that AD allows the magnetic flux that would be dragged into the central stellar object in the ideal MHD limit to pile up instead in a small circumstellar region, where the magnetic field strength (and thus the braking efficiency) is greatly enhanced. We also find that, on the scale of tens of AU or more, a realistic level of Ohmic dissipation does not weaken the magnetic braking enough for an RSD to form, either by itself or in combination with AD. The Hall effect, the least explored of these three non-ideal MHD effects, can spin up the material close to the central object to a significant, supersonic rotation speed, even when the core is initially non-rotating, although the spun-up material remains too sub-Keplerian to form an RSD. The problem of catastrophic magnetic braking that prevents disk formation in dense cores magnetized to realistic levels remains unresolved. Possible resolutions of this problem are discussed.
CosmosDG: An hp-adaptive Discontinuous Galerkin Code for Hyper-resolved Relativistic MHD
Anninos, Peter; Bryant, Colton; Fragile, P. Chris; Holgado, A. Miguel; Lau, Cheuk; Nemergut, Daniel
2017-08-01
We have extended Cosmos++, a multidimensional unstructured adaptive mesh code for solving the covariant Newtonian and general relativistic radiation magnetohydrodynamic (MHD) equations, to accommodate both discrete finite volume and arbitrarily high-order finite element structures. The new finite element implementation, called CosmosDG, is based on a discontinuous Galerkin (DG) formulation, using both entropy-based artificial viscosity and slope limiting procedures for the regularization of shocks. High-order multistage forward Euler and strong-stability preserving Runge-Kutta time integration options complement high-order spatial discretization. We have also added flexibility in the code infrastructure allowing for both adaptive mesh and adaptive basis order refinement to be performed separately or simultaneously in a local (cell-by-cell) manner. We discuss in this report the DG formulation and present tests demonstrating the robustness, accuracy, and convergence of our numerical methods applied to special and general relativistic MHD, although we note that an equivalent capability currently also exists in CosmosDG for Newtonian systems.
CosmosDG: An hp -adaptive Discontinuous Galerkin Code for Hyper-resolved Relativistic MHD
Energy Technology Data Exchange (ETDEWEB)
Anninos, Peter; Lau, Cheuk [Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, CA 94550 (United States); Bryant, Colton [Department of Engineering Sciences and Applied Mathematics, Northwestern University, 2145 Sheridan Road, Evanston, Illinois, 60208 (United States); Fragile, P. Chris [Department of Physics and Astronomy, College of Charleston, 66 George Street, Charleston, SC 29424 (United States); Holgado, A. Miguel [Department of Astronomy and National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801 (United States); Nemergut, Daniel [Operations and Engineering Division, Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States)
2017-08-01
We have extended Cosmos++, a multidimensional unstructured adaptive mesh code for solving the covariant Newtonian and general relativistic radiation magnetohydrodynamic (MHD) equations, to accommodate both discrete finite volume and arbitrarily high-order finite element structures. The new finite element implementation, called CosmosDG, is based on a discontinuous Galerkin (DG) formulation, using both entropy-based artificial viscosity and slope limiting procedures for the regularization of shocks. High-order multistage forward Euler and strong-stability preserving Runge–Kutta time integration options complement high-order spatial discretization. We have also added flexibility in the code infrastructure allowing for both adaptive mesh and adaptive basis order refinement to be performed separately or simultaneously in a local (cell-by-cell) manner. We discuss in this report the DG formulation and present tests demonstrating the robustness, accuracy, and convergence of our numerical methods applied to special and general relativistic MHD, although we note that an equivalent capability currently also exists in CosmosDG for Newtonian systems.
CosmosDG: An hp -adaptive Discontinuous Galerkin Code for Hyper-resolved Relativistic MHD
International Nuclear Information System (INIS)
Anninos, Peter; Lau, Cheuk; Bryant, Colton; Fragile, P. Chris; Holgado, A. Miguel; Nemergut, Daniel
2017-01-01
We have extended Cosmos++, a multidimensional unstructured adaptive mesh code for solving the covariant Newtonian and general relativistic radiation magnetohydrodynamic (MHD) equations, to accommodate both discrete finite volume and arbitrarily high-order finite element structures. The new finite element implementation, called CosmosDG, is based on a discontinuous Galerkin (DG) formulation, using both entropy-based artificial viscosity and slope limiting procedures for the regularization of shocks. High-order multistage forward Euler and strong-stability preserving Runge–Kutta time integration options complement high-order spatial discretization. We have also added flexibility in the code infrastructure allowing for both adaptive mesh and adaptive basis order refinement to be performed separately or simultaneously in a local (cell-by-cell) manner. We discuss in this report the DG formulation and present tests demonstrating the robustness, accuracy, and convergence of our numerical methods applied to special and general relativistic MHD, although we note that an equivalent capability currently also exists in CosmosDG for Newtonian systems.
International Nuclear Information System (INIS)
Vasil'ev, S.A.; Dovganchuk, I.I.; Sozinov, Y.A.
1988-01-01
The laminar flow of a liquid metal in the clearance between rotating disks is examined in an axial magnetic field. A comparison is made between the experimental and calculated values of the potential difference
Gill, Ramandeep; Granot, Jonathan; Lyubarsky, Yuri
2018-03-01
We study the linear and non-linear development of the Kruskal-Schwarzchild instability in a relativisitically expanding striped wind. This instability is the generalization of Rayleigh-Taylor instability in the presence of a magnetic field. It has been suggested to produce a self-sustained acceleration mechanism in strongly magnetized outflows found in active galactic nuclei, gamma-ray bursts, and micro-quasars. The instability leads to magnetic reconnection, but in contrast with steady-state Sweet-Parker reconnection, the dissipation rate is not limited by the current layer's small aspect ratio. We performed two-dimensional (2D) relativistic magnetohydrodynamic (RMHD) simulations featuring two cold and highly magnetized (1 ≤ σ ≤ 103) plasma layers with an anti-parallel magnetic field separated by a thin layer of relativistically hot plasma with a local effective gravity induced by the outflow's acceleration. Our simulations show how the heavier relativistically hot plasma in the reconnecting layer drips out and allows oppositely oriented magnetic field lines to reconnect. The instability's growth rate in the linear regime matches the predictions of linear stability analysis. We find turbulence rather than an ordered bulk flow near the reconnection region, with turbulent velocities up to ˜0.1c, largely independent of model parameters. However, the magnetic energy dissipation rate is found to be much slower, corresponding to an effective ordered bulk velocity inflow into the reconnection region vin = βinc of 10-3 ≲ βin ≲ 5 × 10-3. This occurs due to the slow evacuation of hot plasma from the current layer, largely because of the Kelvin-Helmholtz instability experienced by the dripping plasma. 3D RMHD simulations are needed to further investigate the non-linear regime.
Relativistic MHD modeling of magnetized neutron stars, pulsar winds, and their nebulae
Del Zanna, L.; Pili, A. G.; Olmi, B.; Bucciantini, N.; Amato, E.
2018-01-01
Neutron stars are among the most fascinating astrophysical sources, being characterized by strong gravity, densities about the nuclear one or even above, and huge magnetic fields. Their observational signatures can be extremely diverse across the electromagnetic spectrum, ranging from the periodic and low-frequency signals of radio pulsars, up to the abrupt high-energy gamma-ray flares of magnetars, where energies of ∼ {10}46 {erg} are released in a few seconds. Fast-rotating and highly magnetized neutron stars are expected to launch powerful relativistic winds, whose interaction with the supernova remnants gives rise to the non-thermal emission of pulsar wind nebulae, which are known cosmic accelerators of electrons and positrons up to PeV energies. In the extreme cases of proto-magnetars (magnetic fields of ∼ {10}15 G and millisecond periods), a similar mechanism is likely to provide a viable engine for the still mysterious gamma-ray bursts. The key ingredient in all these spectacular manifestations of neutron stars is the presence of strong magnetic fields in their constituent plasma. Here we will present recent updates of a couple of state-of-the-art numerical investigations by the high-energy astrophysics group in Arcetri: a comprehensive modeling of the steady-state axisymmetric structure of rotating magnetized neutron stars in general relativity, and dynamical 3D MHD simulations of relativistic pulsar winds and their associated nebulae.
Chantry, L.; Cayatte, V.; Sauty, C.; Vlahakis, N.; Tsinganos, K.
2018-04-01
Context. High-resolution radio imaging of active galactic nuclei (AGN) has revealed that the jets of some sources present superluminal knots and transverse stratification. Recent observational projects, such as ALMA and γ-ray telescopes, such as HESS and HESS2 have provided new observational constraints on the central regions of rotating black holes in AGN, suggesting that there is an inner- or spine-jet surrounded by a disk wind. This relativistic spine-jet is likely to be composed of electron-positron pairs extracting energy from the black hole and will be explored by the future γ-ray telescope CTA. Aims: In this article we present an extension to and generalization of relativistic jets in Kerr metric of the Newtonian meridional self-similar mechanism. We aim at modeling the inner spine-jet of AGN as a relativistic light outflow emerging from a spherical corona surrounding a Kerr black hole and its inner accretion disk. Methods: The model is built by expanding the metric and the forces with colatitude to first order in the magnetic flux function. As a result of the expansion, all colatitudinal variations of the physical quantities are quantified by a unique parameter. Unlike previous models, effects of the light cylinder are not neglected. Results: Solutions with high Lorentz factors are obtained and provide spine-jet models up to the polar axis. As in previous publications, we calculate the magnetic collimation efficiency parameter, which measures the variation of the available energy across the field lines. This collimation efficiency is an integral part of the model, generalizing the classical magnetic rotator efficiency criterion to Kerr metric. We study the variation of the magnetic efficiency and acceleration with the spin of the black hole and show their high sensitivity to this integral. Conclusions: These new solutions model collimated or radial, relativistic or ultra-relativistic outflows in AGN or γ-ray bursts. In particular, we discuss the
Numerical analysis of MHD Casson Navier's slip nanofluid flow yield by rigid rotating disk
Rehman, Khalil Ur; Malik, M. Y.; Zahri, Mostafa; Tahir, M.
2018-03-01
An exertion is perform to report analysis on Casson liquid equipped above the rigid disk for z bar > 0 as a semi-infinite region. The flow of Casson liquid is achieve through rotation of rigid disk with constant angular frequency Ω bar . Magnetic interaction is consider by applying uniform magnetic field normal to the axial direction. The nanosized particles are suspended in the Casson liquid and rotation of disk is manifested with Navier's slip condition, heat generation/absorption and chemical reaction effects. The obtain flow narrating differential equations subject to MHD Casson nanofluid are transformed into ordinary differential system. For this purpose the Von Karman way of scheme is executed. To achieve accurate trends a computational algorithm is develop rather than to go on with usual build-in scheme. The effects logs of involved parameters, namely magnetic field parameter, Casson fluid parameter, slip parameter, thermophoresis and Brownian motion parameters on radial, tangential velocities, temperature, nanoparticles concentration, Nusselt and Sherwood numbers are provided by means of graphical and tabular structures. It is observed that both tangential and radial velocities are decreasing function of Casson fluid parameter.
Donmez, Orhan
We present a general procedure to solve the General Relativistic Hydrodynamical (GRH) equations with Adaptive-Mesh Refinement (AMR) and model of an accretion disk around a black hole. To do this, the GRH equations are written in a conservative form to exploit their hyperbolic character. The numerical solutions of the general relativistic hydrodynamic equations is done by High Resolution Shock Capturing schemes (HRSC), specifically designed to solve non-linear hyperbolic systems of conservation laws. These schemes depend on the characteristic information of the system. We use Marquina fluxes with MUSCL left and right states to solve GRH equations. First, we carry out different test problems with uniform and AMR grids on the special relativistic hydrodynamics equations to verify the second order convergence of the code in 1D, 2 D and 3D. Second, we solve the GRH equations and use the general relativistic test problems to compare the numerical solutions with analytic ones. In order to this, we couple the flux part of general relativistic hydrodynamic equation with a source part using Strang splitting. The coupling of the GRH equations is carried out in a treatment which gives second order accurate solutions in space and time. The test problems examined include shock tubes, geodesic flows, and circular motion of particle around the black hole. Finally, we apply this code to the accretion disk problems around the black hole using the Schwarzschild metric at the background of the computational domain. We find spiral shocks on the accretion disk. They are observationally expected results. We also examine the star-disk interaction near a massive black hole. We find that when stars are grounded down or a hole is punched on the accretion disk, they create shock waves which destroy the accretion disk.
Vogt, D.; Letelier, P.S.
2005-01-01
An exact but simple general relativistic model for the gravitational field of active galactic nuclei is constructed, based on the superposition in Weyl coordinates of a black hole, a Chazy-Curzon disk and two rods, which represent matter jets. The influence of the rods on the matter properties of
Modeling X-ray Absorbers in AGNs with MHD-Driven Accretion-Disk Winds
Fukumura, Keigo; Kazanas, D.; Shrader, C. R.; Tombesi, F.; Contopoulos, J.; Behar, E.
2013-04-01
We have proposed a systematic view of the observed X-ray absorbers, namely warm absorbers (WAs) in soft X-ray and highly-ionized ultra-fast outflows (UFOs), in the context of magnetically-driven accretion-disk wind models. While potentially complicated by variability and thermal instability in these energetic outflows, in this simplistic model we have calculated 2D kinematic field as well as density and ionization structure of the wind with density profile of 1/r corresponding to a constant column distribution per decade of ionization parameter. In particular we show semi-analytically that the inner layer of the disk-wind manifests itself as the strongly-ionized fast outflows while the outer layer is identified as the moderately-ionized absorbers. The computed characteristics of these two apparently distinct absorbers are consistent with X-ray data (i.e. a factor of ~100 difference in column and ionization parameters as well as low wind velocity vs. near-relativistic flow). With the predicted contour curves for these wind parameters one can constrain allowed regions for the presence of WAs and UFOs.The model further implies that the UFO's gas pressure is comparable to that of the observed radio jet in 3C111 suggesting that the magnetized disk-wind with density profile of 1/r is a viable agent to help sustain such a self-collimated jet at small radii.
General relativistic razor-thin disks with magnetically polarized matter
Navarro-Noguera, Anamaría; Lora-Clavijo, F. D.; González, Guillermo A.
2018-06-01
The origin of magnetic fields in the universe still remains unknown and constitutes one of the most intriguing questions in astronomy and astrophysics. Their significance is enormous since they have a strong influence on many astrophysical phenomena. In regards of this motivation, theoretical models of galactic disks with sources of magnetic field may contribute to understand the physics behind them. Inspired by this, we present a new family of analytical models for thin disks composed by magnetized material. The solutions are axially symmetric, conformastatic and are obtained by solving the Einstein-Maxwell Field Equations for continuum media without the test field approximation, and assuming that the sources are razor-thin disk of magnetically polarized matter. We find analytical expressions for the surface energy density, the pressure, the polarization vector, the electromagnetic fields, the mass and the rotational velocity for circular orbits, for two particular solutions. In each case, the energy-momentum tensor agrees with the energy conditions and also the convergence of the mass for all the solutions is proved. Since the solutions are well-behaved, they may be used to model astrophysical thin disks, and also may contribute as initial data in numerical simulations. In addition, the process to obtain the solutions is described in detail, which may be used as a guide to find solutions with magnetized material in General Relativity.
Consequences of Relativistic Neutron Outflow beyond the Accretion Disks of Active Galaxies
Ekejiuba, I. E.; Okeke, P. N.
1993-05-01
Three channels of relativistic electron injection in the jets of extragalactic radio sources (EGRSs) are discussed. With the assumption that an active galactic nucleus (AGN) is powered by a spinning supermassive black hole of mass ~ 10(8) M_⊙ which sits at the center of the nucleus and ingests matter and energy through an accretion disk, a model for extracting relativistic neutrons from the AGN is forged. In this model, the inelastic proton--proton and proton--photon interactions within the accretion disk, of relativistic protons with background thermal protons and photons, respectively, produce copious amounts of relativistic neutrons. These neutrons travel ballistically for ~ 10(3gamma_n ) seconds and escape from the disk before they decay. The secondary particles produced from the neutron decays then interact with the ambient magnetic field and/or other particles to produce the radio emissions observed in the jets of EGRSs. IEE acknowledges the support of the World Bank and the Federal University of Technology, Yola, Nigeria as well as the hospitality of Georgia State University.
Relativistic Outflows from Advection-dominated Accretion Disks around Black Holes
Becker, Peter A.; Subramanian, Prasad; Kazanas, Demosthenes
2001-05-01
Advection-dominated accretion flows (ADAFs) have a positive Bernoulli parameter and are therefore gravitationally unbound. The Newtonian ADAF model has been generalized recently to obtain the ADIOS model that includes outflows of energy and angular momentum, thereby allowing accretion to proceed self-consistently. However, the utilization of a Newtonian gravitational potential limits the ability of this model to describe the inner region of the disk, where any relativistic outflows are likely to originate. In this paper we modify the ADIOS scenario to incorporate a pseudo-Newtonian potential, which approximates the effects of general relativity. The analysis yields a unique, self-similar solution for the structure of the coupled disk/wind system. Interesting features of the new solution include the relativistic character of the outflow in the vicinity of the radius of marginal stability, which represents the inner edge of the quasi-Keplerian disk in our model. Hence, our self-similar solution may help to explain the origin of relativistic jets in active galaxies. At large distances the radial dependence of the accretion rate approaches the unique form M~r1/2, with an associated density variation given by ρ~r-1. This density variation agrees with that implied by the dependence of the hard X-ray time lags on the Fourier frequency for a number of accreting galactic black hole candidates. While intriguing, the predictions made using our self-similar solution need to be confirmed in the future using a detailed model that includes a physical description of the energization mechanism that drives the outflow, which is likely to be powered by the shear of the underlying accretion disk.
Self-gravitating axially symmetric disks in general-relativistic rotation
Karkowski, Janusz; Kulczycki, Wojciech; Mach, Patryk; Malec, Edward; Odrzywołek, Andrzej; Piróg, Michał
2018-05-01
We integrate numerically axially symmetric stationary Einstein equations describing self-gravitating disks around spinless black holes. The numerical scheme is based on a method developed by Shibata, but contains important new ingredients. We derive a new general-relativistic Keplerian rotation law for self-gravitating disks around spinning black holes. Former results concerning rotation around spinless black holes emerge in the limit of a vanishing spin parameter. These rotation curves might be used for the description of rotating stars, after appropriate modification around the symmetry axis. They can be applied to the description of compact torus-black hole configurations, including active galactic nuclei or products of coalescences of two neutron stars.
Energy Technology Data Exchange (ETDEWEB)
Takahashi, Hiroyuki R. [Center for Computational Astrophysics, National Astronomical Observatory of Japan, National Institutes of Natural Sciences, Mitaka, Tokyo 181-8588 (Japan); Ohsuga, Ken, E-mail: takahashi@cfca.jp, E-mail: ken.ohsuga@nao.ac.jp [Division of Theoretical Astronomy, National Astronomical Observatory of Japan, National Institutes of Natural Sciences, Mitaka, Tokyo 181-8588 (Japan)
2017-08-10
By performing 2.5-dimensional general relativistic radiation magnetohydrodynamic simulations, we demonstrate supercritical accretion onto a non-rotating, magnetized neutron star, where the magnetic field strength of dipole fields is 10{sup 10} G on the star surface. We found the supercritical accretion flow consists of two parts: the accretion columns and the truncated accretion disk. The supercritical accretion disk, which appears far from the neutron star, is truncated at around ≃3 R {sub *} ( R {sub *} = 10{sup 6} cm is the neutron star radius), where the magnetic pressure via the dipole magnetic fields balances with the radiation pressure of the disks. The angular momentum of the disk around the truncation radius is effectively transported inward through magnetic torque by dipole fields, inducing the spin up of a neutron star. The evaluated spin-up rate, ∼−10{sup −11} s s{sup −1}, is consistent with the recent observations of the ultraluminous X-ray pulsars. Within the truncation radius, the gas falls onto a neutron star along the dipole fields, which results in a formation of accretion columns onto the northern and southern hemispheres. The net accretion rate and the luminosity of the column are ≃66 L {sub Edd}/ c {sup 2} and ≲10 L {sub Edd}, where L {sub Edd} is the Eddington luminosity and c is the light speed. Our simulations support a hypothesis whereby the ultraluminous X-ray pulsars are powered by the supercritical accretion onto the magnetized neutron stars.
Fragile, P. Chris; Etheridge, Sarina M.; Anninos, Peter; Mishra, Bhupendra; Kluźniak, Włodek
2018-04-01
We present results from two-dimensional, general relativistic, viscous, radiation hydrodynamic numerical simulations of Shakura–Sunyaev thin disks accreting onto stellar-mass Schwarzschild black holes. We consider cases on both the gas- and radiation-pressure-dominated branches of the thermal equilibrium curve, with mass accretion rates spanning the range from \\dot{M}=0.01{L}Edd}/{c}2 to 10L Edd/c 2. The simulations directly test the stability of this standard disk model on the different branches. We find clear evidence of thermal instability for all radiation-pressure-dominated disks, resulting universally in the vertical collapse of the disks, which in some cases then settle onto the stable, gas-pressure-dominated branch. Although these results are consistent with decades-old theoretical predictions, they appear to be in conflict with available observational data from black hole X-ray binaries. We also find evidence for a radiation-pressure-driven instability that breaks the unstable disks up into alternating rings of high and low surface density on a timescale comparable to the thermal collapse. Since radiation is included self-consistently in the simulations, we are able to calculate light curves and power density spectra (PDS). For the most part, we measure radiative efficiencies (ratio of luminosity to mass accretion rate) close to 6%, as expected for a nonrotating black hole. The PDS appear as broken power laws, with a break typically around 100 Hz. There is no evidence of significant excess power at any frequencies, i.e., no quasi-periodic oscillations are observed.
The response of relativistic outflowing gas to the inner accretion disk of a black hole.
Parker, Michael L; Pinto, Ciro; Fabian, Andrew C; Lohfink, Anne; Buisson, Douglas J K; Alston, William N; Kara, Erin; Cackett, Edward M; Chiang, Chia-Ying; Dauser, Thomas; De Marco, Barbara; Gallo, Luigi C; Garcia, Javier; Harrison, Fiona A; King, Ashley L; Middleton, Matthew J; Miller, Jon M; Miniutti, Giovanni; Reynolds, Christopher S; Uttley, Phil; Vasudevan, Ranjan; Walton, Dominic J; Wilkins, Daniel R; Zoghbi, Abderahmen
2017-03-01
The brightness of an active galactic nucleus is set by the gas falling onto it from the galaxy, and the gas infall rate is regulated by the brightness of the active galactic nucleus; this feedback loop is the process by which supermassive black holes in the centres of galaxies may moderate the growth of their hosts. Gas outflows (in the form of disk winds) release huge quantities of energy into the interstellar medium, potentially clearing the surrounding gas. The most extreme (in terms of speed and energy) of these-the ultrafast outflows-are the subset of X-ray-detected outflows with velocities higher than 10,000 kilometres per second, believed to originate in relativistic (that is, near the speed of light) disk winds a few hundred gravitational radii from the black hole. The absorption features produced by these outflows are variable, but no clear link has been found between the behaviour of the X-ray continuum and the velocity or optical depth of the outflows, owing to the long timescales of quasar variability. Here we report the observation of multiple absorption lines from an extreme ultrafast gas flow in the X-ray spectrum of the active galactic nucleus IRAS 13224-3809, at 0.236 ± 0.006 times the speed of light (71,000 kilometres per second), where the absorption is strongly anti-correlated with the emission of X-rays from the inner regions of the accretion disk. If the gas flow is identified as a genuine outflow then it is in the fastest five per cent of such winds, and its variability is hundreds of times faster than in other variable winds, allowing us to observe in hours what would take months in a quasar. We find X-ray spectral signatures of the wind simultaneously in both low- and high-energy detectors, suggesting a single ionized outflow, linking the low- and high-energy absorption lines. That this disk wind is responding to the emission from the inner accretion disk demonstrates a connection between accretion processes occurring on very different
Quasi-periodic oscillations and the global modes of relativistic, MHD accretion discs
Dewberry, Janosz W.; Latter, Henrik N.; Ogilvie, Gordon I.
2018-05-01
The high-frequency quasi-periodic oscillations that punctuate the light curves of X-ray binary systems present a window on to the intrinsic properties of stellar-mass black holes and hence a testbed for general relativity. One explanation for these features is that relativistic distortion of the accretion disc's differential rotation creates a trapping region in which inertial waves (r-modes) might grow to observable amplitudes. Local analyses, however, predict that large-scale magnetic fields push this trapping region to the inner disc edge, where conditions may be unfavourable for r-mode growth. We revisit this problem from a pseudo-Newtonian but fully global perspective, deriving linearized equations describing a relativistic, magnetized accretion flow, and calculating normal modes with and without vertical density stratification. In an unstratified model we confirm that vertical magnetic fields drive r-modes towards the inner edge, though the effect depends on the choice of vertical wavenumber. In a global model we better quantify this susceptibility, and its dependence on the disc's vertical structure and thickness. Our calculations suggest that in thin discs, r-modes may remain independent of the inner disc edge for vertical magnetic fields with plasma betas as low as β ≈ 100-300. We posit that the appearance of r-modes in observations may be more determined by a competition between excitation and damping mechanisms near the ISCO than by the modification of the trapping region by magnetic fields.
Mahanthesh, B.; Gireesha, B. J.; Shehzad, S. A.; Rauf, A.; Kumar, P. B. Sampath
2018-05-01
This research is made to visualize the nonlinear radiated flow of hydromagnetic nano-fluid induced due to rotation of the disk. The considered nano-fluid is a mixture of water and Ti6Al4V or AA7072 nano-particles. The various shapes of nanoparticles like lamina, column, sphere, tetrahedron and hexahedron are chosen in the analysis. The irregular heat source and nonlinear radiative terms are accounted in the law of energy. We used the heat flux condition instead of constant surface temperature condition. Heat flux condition is more relativistic and according to physical nature of the problem. The problem is made dimensionless with the help of suitable similarity constraints. The Runge-Kutta-Fehlberg scheme is adopted to find the numerical solutions of governing nonlinear ordinary differential systems. The solutions are plotted by considering the various values of emerging physical constraints. The effects of various shapes of nanoparticles are drawn and discussed.
Energy Technology Data Exchange (ETDEWEB)
Beck, C. [National Solar Observatory, 3665 Discovery Drive, Boulder, CO 80303 (United States); Fabbian, D. [Max-Planck-Institut für Sonnensytemforschung, Justus-von-Liebig-Weg 3, D-37077 Göttingen (Germany); Rezaei, R. [Instituto de Astrofísica de Canarias, C/Vía Láctea S/N, E-38205 La Laguna, Tenerife (Spain); Puschmann, K. G., E-mail: cbeck@nso.edu [Alzenau (Germany)
2017-06-10
Before using three-dimensional (3D) magnetohydrodynamical (MHD) simulations of the solar photosphere in the determination of elemental abundances, one has to ensure that the correct amount of magnetic flux is present in the simulations. The presence of magnetic flux modifies the thermal structure of the solar photosphere, which affects abundance determinations and the solar spectral irradiance. The amount of magnetic flux in the solar photosphere also constrains any possible heating in the outer solar atmosphere through magnetic reconnection. We compare the polarization signals in disk-center observations of the solar photosphere in quiet-Sun regions with those in Stokes spectra computed on the basis of 3D MHD simulations having average magnetic flux densities of about 20, 56, 112, and 224 G. This approach allows us to find the simulation run that best matches the observations. The observations were taken with the Hinode SpectroPolarimeter (SP), the Tenerife Infrared Polarimeter (TIP), the Polarimetric Littrow Spectrograph (POLIS), and the GREGOR Fabry–Pèrot Interferometer (GFPI), respectively. We determine characteristic quantities of full Stokes profiles in a few photospheric spectral lines in the visible (630 nm) and near-infrared (1083 and 1565 nm). We find that the appearance of abnormal granulation in intensity maps of degraded simulations can be traced back to an initially regular granulation pattern with numerous bright points in the intergranular lanes before the spatial degradation. The linear polarization signals in the simulations are almost exclusively related to canopies of strong magnetic flux concentrations and not to transient events of magnetic flux emergence. We find that the average vertical magnetic flux density in the simulation should be less than 50 G to reproduce the observed polarization signals in the quiet-Sun internetwork. A value of about 35 G gives the best match across the SP, TIP, POLIS, and GFPI observations.
Stratified Simulations of Collisionless Accretion Disks
Energy Technology Data Exchange (ETDEWEB)
Hirabayashi, Kota; Hoshino, Masahiro, E-mail: hirabayashi-k@eps.s.u-tokyo.ac.jp [Department of Earth and Planetary Science, The University of Tokyo, Tokyo, 113-0033 (Japan)
2017-06-10
This paper presents a series of stratified-shearing-box simulations of collisionless accretion disks in the recently developed framework of kinetic magnetohydrodynamics (MHD), which can handle finite non-gyrotropy of a pressure tensor. Although a fully kinetic simulation predicted a more efficient angular-momentum transport in collisionless disks than in the standard MHD regime, the enhanced transport has not been observed in past kinetic-MHD approaches to gyrotropic pressure anisotropy. For the purpose of investigating this missing link between the fully kinetic and MHD treatments, this paper explores the role of non-gyrotropic pressure and makes the first attempt to incorporate certain collisionless effects into disk-scale, stratified disk simulations. When the timescale of gyrotropization was longer than, or comparable to, the disk-rotation frequency of the orbit, we found that the finite non-gyrotropy selectively remaining in the vicinity of current sheets contributes to suppressing magnetic reconnection in the shearing-box system. This leads to increases both in the saturated amplitude of the MHD turbulence driven by magnetorotational instabilities and in the resultant efficiency of angular-momentum transport. Our results seem to favor the fast advection of magnetic fields toward the rotation axis of a central object, which is required to launch an ultra-relativistic jet from a black hole accretion system in, for example, a magnetically arrested disk state.
Three-dimensional simulations of MHD disk winds to hundred AU scale from the protostar
Directory of Open Access Journals (Sweden)
Staff Jan
2014-01-01
Full Text Available We present the results of four, large scale, three-dimensional magnetohydrodynamics simulations of jets launched from a Keplerian accretion disk. The jets are followed from the source out to 90 AU, a scale that covers several pixels of HST images of nearby protostellar jets. The four simulations analyzed are for four different initial magnetic field configuration threading the surface of the accretion disk with varying degree of openness of the field lines. Our simulations show that jets are heated along their length by many shocks and we compute the line emission that is produced. We find excellent agreement with the observations and use these diagnostics to discriminate between different magnetic field configurations. A two-component jet emerges in simulations with less open field lines along the disk surface. The two-components are physically and dynamically separated with an inner fast and rotating jet and an outer slow jet. The second component weakens and eventually only one-component jet (i.e. only the inner jet is obtained for the most open field configurations. In all of our simulations we find that the faster inner component inherits the Keplerian profile and preserves it to large distances from the source. On the other hand, the outer component is associated with velocity gradients mimicking rotation.
Energy Technology Data Exchange (ETDEWEB)
Murakami, T.; Okuno, Y.; Kabashima, S. [Tokyo Institute of Technology, Tokyo (Japan)
1998-03-01
Validity of improvement in performance of a nonequilibrium disk-type MHD generator by applying an additional radio-frequency (rf) electromagnetic field is investigated with r-{theta} two-dimensional numerical simulation. In particular, the structure of the plasma is examined in relation to the generator performance. The inductively coupled pre-ionization at an upper region of the charmer results in the increase of the electron temperature of the plasma. Thus, the nonuniformity of the plasma caused by the ionization instability developing in a weakly ionized seed plasma can be relieved and the fluctuation of the electron temperature and the ionization degree of the seed atoms are also suppressed. As the coil current is increased, the plasma behavior changes from the nonuniform state to the uniform stable state through the unstable transient state. As a result, the enthalpy extraction of the generator is improved. The ratio of the required Joule heating by the rf electric field for the sufficient improvement in the performance to the thermal input of generator is estimated to be about 0.35%. 11 refs., 5 figs., 1 tab.
3D relativistic MHD numerical simulations of X-shaped radio sources
Rossi, P.; Bodo, G.; Capetti, A.; Massaglia, S.
2017-10-01
Context. A significant fraction of extended radio sources presents a peculiar X-shaped radio morphology: in addition to the classical double lobed structure, radio emission is also observed along a second axis of symmetry in the form of diffuse wings or tails. In a previous investigation we showed the existence of a connection between the radio morphology and the properties of the host galaxies. Motivated by this connection we performed two-dimensional numerical simulations showing that X-shaped radio sources may naturally form as a jet propagates along the major axis a highly elliptical density distribution, because of the fast expansion of the cocoon along the minor axis of the distribution. Aims: We intend to extend our analysis by performing three-dimensional numerical simulations and investigating the role of different parameters in determining the formation of the X-shaped morphology. Methods: The problem is addressed by numerical means, carrying out three-dimensional relativistic magnetohydrodynamic simulations of bidirectional jets propagating in a triaxial density distribution. Results: We show that only jets with power ≲ 1044 erg s-1 can give origin to an X-shaped morphology and that a misalignment of 30° between the jet axis and the major axis of the density distribution is still favourable to the formation of this kind of morphology. In addition we compute synthetic radio emission maps and polarization maps. Conclusions: In our scenario for the formation of X-shaped radio sources only low power FRII can give origin to such kind of morphology. Our synthetic emission maps show that the different observed morphologies of X-shaped sources can be the result of similar structures viewed under different perspectives.
P.A. Boncz (Peter); L. Liu (Lei); M. Tamer Özsu
2008-01-01
htmlabstractIn disk storage, data is recorded on planar, round and rotating surfaces (disks, discs, or platters). A disk drive is a peripheral device of a computer system, connected by some communication medium to a disk controller. The disk controller is a chip, typically connected to the CPU of
Directory of Open Access Journals (Sweden)
S. Srinivas
2016-01-01
Full Text Available The present work investigates the effects of thermal-diffusion and diffusion-thermo on MHD flow of viscous fluid between expanding or contracting rotating porous disks with viscous dissipation. The partial differential equations governing the flow problem under consideration have been transformed by a similarity transformation into a system of coupled nonlinear ordinary differential equations. An analytical approach, namely the homotopy analysis method is employed in order to obtain the solutions of the ordinary differential equations. The effects of various emerging parameters on flow variables have been discussed numerically and explained graphically. Comparison of the HAM solutions with the numerical solutions is performed.
Disk Emission from Magnetohydrodynamic Simulations of Spinning Black Holes
Schnittman, Jeremy D.; Krolik, Julian H.; Noble, Scott C.
2016-01-01
We present the results of a new series of global, three-dimensional, relativistic magnetohydrodynamic (MHD) simulations of thin accretion disks around spinning black holes. The disks have aspect ratios of H/R approx. 0.05 and spin parameters of a/M = 0, 0.5, 0.9, and 0.99. Using the ray-tracing code Pandurata, we generate broadband thermal spectra and polarization signatures from the MHD simulations. We find that the simulated spectra can be well fit with a simple, universal emissivity profile that better reproduces the behavior of the emission from the inner disk, compared to traditional analyses carried out using a Novikov-Thorne thin disk model. Finally, we show how spectropolarization observations can be used to convincingly break the spin-inclination degeneracy well known to the continuum-fitting method of measuring black hole spin.
Relativistic static thin dust disks with an inner edge: An infinite family of new exact solutions
International Nuclear Information System (INIS)
Gonzalez, Guillermo A.; Gutierrez-Pineres, Antonio C.; Vina-Cervantes, Viviana M.
2009-01-01
An infinite family of new exact solutions of the vacuum Einstein equations is presented. The solutions are static and axially symmetric and correspond to an infinite family of thin dust disks with a central inner edge. The metric functions of all the solutions can be explicitly computed, and can be expressed in a simple manner in terms of oblate spheroidal coordinates. The energy density of all the disks of the family is positive everywhere and well behaved, so that the corresponding energy-momentum tensor is in full agreement with all the energy conditions. Moreover, although the total mass of the disks is infinite, the solutions are asymptotically flat and the Riemann tensor is regular everywhere, as it is shown by computing the curvature scalars. Now, besides its importance as a new family of exact solutions of the vacuum Einstein equations, the main importance of this family of solutions is that it can be easily superposed with the Schwarzschild solution in order to describe thin disks surrounding a central black hole. Accordingly, a detailed analysis of this superposition will be presented in a subsequent paper.
Directory of Open Access Journals (Sweden)
A. Rauf
2015-07-01
Full Text Available This article studies the simultaneous impacts of heat and mass transfer of an incompressible electrically conducting micropolar fluid generated by the stretchable disk in presence of porous medium. The thermal radiation effect is accounted via Rosseland’s approximation. The governing boundary layer equations are reduced into dimensionless form by employing the suitable similarity transformations. A finite difference base algorithm is utilized to obtain the solution expressions. The impacts of physical parameters on dimensionless axial velocity, radial velocity, micro-rotation, temperature and concentrations profiles are presented and examined carefully. Numerical computation is performed to compute shear stress, couple stress, heat and mass rate at the disk.
Energy Technology Data Exchange (ETDEWEB)
Rauf, A., E-mail: raufamar@ciitsahiwal.edu.pk; Meraj, M. A. [Department of Mathematics, CIIT Sahiwal 57000 (Pakistan); Ashraf, M.; Batool, K. [Department of CASPAM, Bahauddin Zakariya University, Multan 63000 (Pakistan); Hussain, M. [Department of Sciences & Humanities, National University of computer & Emerging Sciences, Islamabad 44000 (Pakistan)
2015-07-15
This article studies the simultaneous impacts of heat and mass transfer of an incompressible electrically conducting micropolar fluid generated by the stretchable disk in presence of porous medium. The thermal radiation effect is accounted via Rosseland’s approximation. The governing boundary layer equations are reduced into dimensionless form by employing the suitable similarity transformations. A finite difference base algorithm is utilized to obtain the solution expressions. The impacts of physical parameters on dimensionless axial velocity, radial velocity, micro-rotation, temperature and concentrations profiles are presented and examined carefully. Numerical computation is performed to compute shear stress, couple stress, heat and mass rate at the disk.
Kato, Shoji
2016-01-01
This book presents the current state of research on disk oscillation theory, focusing on relativistic disks and tidally deformed disks. Since the launch of the Rossi X-ray Timing Explorer (RXTE) in 1996, many high-frequency quasiperiodic oscillations (HFQPOs) have been observed in X-ray binaries. Subsequently, similar quasi-periodic oscillations have been found in such relativistic objects as microquasars, ultra-luminous X-ray sources, and galactic nuclei. One of the most promising explanations of their origin is based on oscillations in relativistic disks, and a new field called discoseismology is currently developing. After reviewing observational aspects, the book presents the basic characteristics of disk oscillations, especially focusing on those in relativistic disks. Relativistic disks are essentially different from Newtonian disks in terms of several basic characteristics of their disk oscillations, including the radial distributions of epicyclic frequencies. In order to understand the basic processes...
Reddy, B. Siva Kumar; Rao, K. V. Surya Narayana; Vijaya, R. Bhuvana
2017-07-01
In this paper, we have considered the unsteady magnetohydrodynamic squeezing axi-symmetric flow of water-nanofluid through saturated porous medium between two parallel disks. The equations for the governing flow are solved by Galerkin optimal Homotopy asymptotic method. The effects of non-dimensional parameters on velocity, temperature and concentration have been discussed with the help of graphs. Also we obtained local Nusselt number and computationally discussed with reference to flow parameters.
Choudhury, Kishalay; García, Javier A.; Steiner, James F.; Bambi, Cosimo
2017-12-01
The reflection spectroscopic model RELXILL is commonly implemented in studying relativistic X-ray reflection from accretion disks around black holes. We present a systematic study of the model’s capability to constrain the dimensionless spin and ionization parameters from ∼6000 Nuclear Spectroscopic Telescope Array (NuSTAR) simulations of a bright X-ray source employing the lamp-post geometry. We employ high-count spectra to show the limitations in the model without being confused with limitations in signal-to-noise. We find that both parameters are well-recovered at 90% confidence with improving constraints at higher reflection fraction, high spin, and low source height. We test spectra across a broad range—first at 106–107 and then ∼105 total source counts across the effective 3–79 keV band of NuSTAR, and discover a strong dependence of the results on how fits are performed around the starting parameters, owing to the complexity of the model itself. A blind fit chosen over an approach that carries some estimates of the actual parameter values can lead to significantly worse recovery of model parameters. We further stress the importance to span the space of nonlinear-behaving parameters like {log} ξ carefully and thoroughly for the model to avoid misleading results. In light of selecting fitting procedures, we recall the necessity to pay attention to the choice of data binning and fit statistics used to test the goodness of fit by demonstrating the effect on the photon index Γ. We re-emphasize and implore the need to account for the detector resolution while binning X-ray data and using Poisson fit statistics instead while analyzing Poissonian data.
Siegel, Daniel M; Metzger, Brian D
2017-12-08
The merger of binary neutron stars, or of a neutron star and a stellar-mass black hole, can result in the formation of a massive rotating torus around a spinning black hole. In addition to providing collimating media for γ-ray burst jets, unbound outflows from these disks are an important source of mass ejection and rapid neutron capture (r-process) nucleosynthesis. We present the first three-dimensional general-relativistic magnetohydrodynamic (GRMHD) simulations of neutrino-cooled accretion disks in neutron star mergers, including a realistic equation of state valid at low densities and temperatures, self-consistent evolution of the electron fraction, and neutrino cooling through an approximate leakage scheme. After initial magnetic field amplification by magnetic winding, we witness the vigorous onset of turbulence driven by the magnetorotational instability (MRI). The disk quickly reaches a balance between heating from MRI-driven turbulence and neutrino cooling, which regulates the midplane electron fraction to a low equilibrium value Y_{e}≈0.1. Over the 380-ms duration of the simulation, we find that a fraction ≈20% of the initial torus mass is unbound in powerful outflows with asymptotic velocities v≈0.1c and electron fractions Y_{e}≈0.1-0.25. Postprocessing the outflows through a nuclear reaction network shows the production of a robust second- and third-peak r process. Though broadly consistent with the results of previous axisymmetric hydrodynamical simulations, extrapolation of our results to late times suggests that the total ejecta mass from GRMHD disks is significantly higher. Our results provide strong evidence that postmerger disk outflows are an important site for the r process.
Price, R H
1993-01-01
Work reported in the workshop on relativistic astrophysics spanned a wide varicy of topics. Two speciﬁc areas seemed of particular interest. Much attention was focussed on gravitational wave sources, especially on the waveforms they produce, and progress was reported in theoretical and observational aspects of accretion disks.
DEFF Research Database (Denmark)
Pessah, Martin Elias
2010-01-01
The magnetorotational instability (MRI) is considered a key process for driving efficient angular momentum transport in astrophysical disks. Understanding its nonlinear saturation constitutes a fundamental problem in modern accretion disk theory. The large dynamical range in physical conditions...
rHARM: ACCRETION AND EJECTION IN RESISTIVE GR-MHD
Energy Technology Data Exchange (ETDEWEB)
Qian, Qian; Fendt, Christian [Max Planck Institute for Astronomy, Heidelberg (Germany); Noble, Scott [Department of Physics and Engineering Physics, University of Tulsa, Tulsa (United States); Bugli, Matteo, E-mail: qian@mpia.de, E-mail: fendt@mpia.de [Max Planck Institute for Astrophysics, Garching (Germany)
2017-01-01
Turbulent magnetic diffusivity plays an important role for accretion disks and the launching of disk winds. We have implemented magnetic diffusivity and respective resistivity in the general relativistic MHD code HARM. This paper describes the theoretical background of our implementation, its numerical realization, our numerical tests, and preliminary applications. The test simulations of the new code rHARM are compared to an analytic solution of the diffusion equation and a classical shock tube problem. We have further investigated the evolution of the magnetorotational instability (MRI) in tori around black holes (BHs) for a range of magnetic diffusivities. We find an indication for a critical magnetic diffusivity (for our setup) beyond which no MRI develops in the linear regime and for which accretion of torus material to the BH is delayed. Preliminary simulations of magnetically diffusive thin accretion disks around Schwarzschild BHs that are threaded by a large-scale poloidal magnetic field show the launching of disk winds with mass fluxes of about 50% of the accretion rate. The disk magnetic diffusivity allows for efficient disk accretion that replenishes the mass reservoir of the inner disk area and thus allows for long-term simulations of wind launching for more than 5000 time units.
International Nuclear Information System (INIS)
Falgarone, Edith; Rieutord, Michel; Richard, Denis; Zahn, Jean-Paul; Dauchot, Olivier; Daviaud, Francois; Dubrulle, Berengere; Laval, Jean-Philippe; Noullez, Alain; Bourgoin, Mickael; Odier, Philippe; Pinton, Jean-Francois; Leveque, Emmanuel; Chainais, Pierre; Abry, Patrice; Mordant, Nicolas; Michel, Olivier; Marie, Louis; Chiffaudel, Arnaud; Daviaud, Francois; Petrelis, Francois; Fauve, Stephan; Nore, C.; Brachet, M.-E.; Politano, H.; Pouquet, A.; Leorat, Jacques; Grapin, Roland; Brun, Sacha; Delour, Jean; Arneodo, Alain; Muzy, Jean-Francois; Magnaudet, Jacques; Braza, Marianna; Boree, Jacques; Maurel, S.; Ben, L.; Moreau, J.; Bazile, R.; Charnay, G.; Lewandowski, Roger; Laveder, Dimitri; Bouchet, Freddy; Sommeria, Joel; Le Gal, P.; Eloy, C.; Le Dizes, S.; Schneider, Kai; Farge, Marie; Bottausci, Frederic; Petitjeans, Philippe; Maurel, Agnes; Carlier, Johan; Anselmet, Fabien
2001-05-01
This publication gathers extended summaries of presentations proposed during two days on astrophysics and magnetohydrodynamics (MHD). The first session addressed astrophysics and MHD: The cold interstellar medium, a low ionized turbulent plasma; Turbulent convection in stars; Turbulence in differential rotation; Protoplanetary disks and washing machines; gravitational instability and large structures; MHD turbulence in the sodium von Karman flow; Numerical study of the dynamo effect in the Taylor-Green eddy geometry; Solar turbulent convection under the influence of rotation and of the magnetic field. The second session addressed the description of turbulence: Should we give up cascade models to describe the spatial complexity of the velocity field in a developed turbulence?; What do we learn with RDT about the turbulence at the vicinity of a plane surface?; Qualitative explanation of intermittency; Reduced model of Navier-Stokes equations: quickly extinguished energy cascade; Some mathematical properties of turbulent closure models. The third session addressed turbulence and coherent structures: Alfven wave filamentation and formation of coherent structures in dispersive MHD; Statistical mechanics for quasi-geo-strophic turbulence: applications to Jupiter's coherent structures; Elliptic instabilities; Physics and modelling of turbulent detached unsteady flows in aerodynamics and fluid-structure interaction; Intermittency and coherent structures in a washing machine: a wavelet analysis of joint pressure/velocity measurements; CVS filtering of 3D turbulent mixing layer using orthogonal wavelets. The last session addressed experimental methods: Lagrangian velocity measurements; Energy dissipation and instabilities within a locally stretched vortex; Study by laser imagery of the generation and breakage of a compressed eddy flow; Study of coherent structures of turbulent boundary layer at high Reynolds number
Magnetohydrodynamic (MHD) power generation
International Nuclear Information System (INIS)
Chandra, Avinash
1980-01-01
The concept of MHD power generation, principles of operation of the MHD generator, its design, types, MHD generator cycles, technological problems to be overcome, the current state of the art in USA and USSR are described. Progress of India's experimental 5 Mw water-gas fired open cycle MHD power generator project is reported in brief. (M.G.B.)
Relativistic solitons and pulsars
Energy Technology Data Exchange (ETDEWEB)
Karpman, V I [Inst. of Terrestrial Magnetism, Ionosphere, and Radio-Wave Propagation, Moscow; Norman, C A; ter Haar, D; Tsytovich, V N
1975-05-01
A production mechanism for stable electron bunches or sheets of localized electric fields is investigated which may account for pulsar radio emission. Possible soliton phenomena in a one-dimensional relativistic plasma are analyzed, and it is suggested that the motion of a relativistic soliton, or ''relaton'', along a curved magnetic-field line may produce radio emission with the correct polarization properties. A general MHD solution is obtained for relatons, the radiation produced by a relativistic particle colliding with a soliton is evaluated, and the emission by a soliton moving along a curved field line is estimated. It is noted that due to a number of severe physical restrictions, curvature radiation is not a very likely solution to the problem of pulsar radio emission. (IAA)
Accretion-Ejection Instability in magnetized accretion disk around compact objects
International Nuclear Information System (INIS)
Varniere, Peggy
2002-01-01
The major problem in accretion physics come from the origin of angular momentum transfer in the disk. My PhD deal with a mechanism (the Accretion-Ejection Instability, AEI) able to explain and link together accretion in the inner region of the disk and ejection. This instability occurs in magnetized accretion disk near equipartition with gas pressure. We first study the impact of some relativistic effects on the instability, particularly on the m = 1 mode. And compared the results with the Quasi-Periodic Oscillation (QPO) observed in micro-quasars. In the second part we study analytically and numerically the Alfven wave emission mechanism which re-emit the angular momentum and energy taken from the inner region of the disk into the corona. The last part deals with MHD numerical simulation. First of all a 2D non-linear disk simulation which contribute to QPO modelization. The last chapter is about a beginning collaboration on 3D simulation in order to study the Alfven wave emission in the corona. (author) [fr
International Nuclear Information System (INIS)
Gross, F.
1986-01-01
Relativistic equations for two and three body scattering are discussed. Particular attention is paid to relativistic three body kinetics because of recent form factor measurements of the Helium 3 - Hydrogen 3 system recently completed at Saclay and Bates and the accompanying speculation that relativistic effects are important for understanding the three nucleon system. 16 refs., 4 figs
MHD pilot industrial applications
International Nuclear Information System (INIS)
Freeman, M.; Riviere-Wekstein, G.
1994-01-01
MHD industrial applications (and their historical developments) are sketched in the fields of nuclear fission, nuclear fusion and marine vehicles propelling. Nuclear fission projects resulted in promising prototypes between 1972 and 1980, especially for liquid-metal MHD generators. All of them have been stopped by the scientific policies of the governments. Nuclear fusion projects used mainly the equilibrium plasma of tokamak type reactors; some military projects used pulsed plasma to perform pulsed MHD generators. Marine vehicle propelling is the most advanced field. By june 1992, the japanese sea-going boat 'Yamato 1' was sailing with two MHD propellers. A few months later, the building of 'Yamato 2' has begun
Energy Technology Data Exchange (ETDEWEB)
Okuzumi, Satoshi [Department of Earth and Planetary Sciences, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8551 (Japan); Inutsuka, Shu-ichiro, E-mail: okuzumi@geo.titech.ac.jp [Department of Physics, Nagoya University, Nagoya, Aichi 464-8602 (Japan)
2015-02-10
The ionization state of the gas plays a key role in the magnetohydrodynamics (MHD) of protoplanetary disks. However, the ionization state can depend on the gas dynamics, because electric fields induced by MHD turbulence can heat up plasmas and thereby affect the ionization balance. To study this nonlinear feedback, we construct an ionization model that includes plasma heating by electric fields and impact ionization by heated electrons, as well as charging of dust grains. We show that when plasma sticking onto grains is the dominant recombination process, the electron abundance in the gas decreases with increasing electric field strength. This is a natural consequence of electron-grain collisions whose frequency increases with the electron's random velocity. The decreasing electron abundance may lead to a self-regulation of MHD turbulence. In some cases, not only the electron abundance but also the electric current decreases with increasing field strength in a certain field range. The resulting N-shaped current-field relation violates the fundamental assumption of the non-relativistic MHD that the electric field is uniquely determined by the current density. At even higher field strengths, impact ionization causes an abrupt increase of the electric current as expected by previous studies. We find that this discharge current is multi-valued (i.e., the current-field relation is S-shaped) under some circumstances, and that the intermediate branch is unstable. The N/S-shaped current-field relations may yield hysteresis in the evolution of MHD turbulence in some parts of protoplanetary disks.
Hossein Nouri, Fatemeh; Duez, Matthew D.; Foucart, Francois; Deaton, M. Brett; Haas, Roland; Haddadi, Milad; Kidder, Lawrence E.; Ott, Christian D.; Pfeiffer, Harald P.; Scheel, Mark A.; Szilagyi, Bela
2018-04-01
Black hole-torus systems from compact binary mergers are possible engines for gamma-ray bursts (GRBs). During the early evolution of the postmerger remnant, the state of the torus is determined by a combination of neutrino cooling and magnetically driven heating processes, so realistic models must include both effects. In this paper, we study the postmerger evolution of a magnetized black hole-neutron star binary system using the Spectral Einstein Code (SpEC) from an initial postmerger state provided by previous numerical relativity simulations. We use a finite-temperature nuclear equation of state and incorporate neutrino effects in a leakage approximation. To achieve the needed accuracy, we introduce improvements to SpEC's implementation of general-relativistic magnetohydrodynamics (MHD), including the use of cubed-sphere multipatch grids and an improved method for dealing with supersonic accretion flows where primitive variable recovery is difficult. We find that a seed magnetic field triggers a sustained source of heating, but its thermal effects are largely cancelled by the accretion and spreading of the torus from MHD-related angular momentum transport. The neutrino luminosity peaks at the start of the simulation, and then drops significantly over the first 20 ms but in roughly the same way for magnetized and nonmagnetized disks. The heating rate and disk's luminosity decrease much more slowly thereafter. These features of the evolution are insensitive to grid structure and resolution, formulation of the MHD equations, and seed field strength, although turbulent effects are not fully converged.
On Hydromagnetic Stresses in Accretion Disk Boundary Layers
DEFF Research Database (Denmark)
Pessah, Martin Elias; Chan, Chi-kwan
2012-01-01
Detailed calculations of the physical structure of accretion disk boundary layers, and thus their inferred observational properties, rely on the assumption that angular momentum transport is opposite to the radial angular frequency gradient of the disk. The standard model for turbulent shear...... of efficient angular momentum transport in the inner disk regions. This suggests that the detailed structure of turbulent MHD accretion disk boundary layers could differ appreciably from those derived within the standard framework of turbulent shear viscosity...
An introduction to relativistic hydrodynamics
Energy Technology Data Exchange (ETDEWEB)
Font, Jose A [Departamento de AstronomIa y AstrofIsica, Universidad de Valencia, Dr. Moliner 50, 46100 Burjassot (Valencia) (Spain)
2007-11-15
We review formulations of the equations of (inviscid) general relativistic hydrodynamics and (ideal) magnetohydrodynamics, along with methods for their numerical solution. Both systems can be cast as first-order, hyperbolic systems of conservation laws, following the explicit choice of an Eulerian observer and suitable fluid and magnetic field variables. During the last fifteen years, the so-called (upwind) high-resolution shock-capturing schemes based on Riemann solvers have been successfully extended from classical to relativistic fluid dynamics, both special and general. Nowadays, general relativistic hydrodynamical simulations in relativistic astrophysics are routinely performed, particularly within the test-fluid approximation but also for dynamical spacetimes. While such advances also hold true in the case of the MHD equations, the astrophysical applications investigated so far are still limited, yet the field is bound to witness major developments in the near future. The article also presents a brief overview of numerical techniques, providing state-of-the-art examples of their applicability to general relativistic fluids and magneto-fluids in characteristic scenarios of relativistic astrophysics.
Relativistic Outflows from ADAFs
Becker, Peter; Subramanian, Prasad; Kazanas, Demosthenes
2001-04-01
Advection-dominated accretion flows (ADAFs) have a positive Bernoulli parameter, and are therefore gravitationally bound. The Newtonian ADAF model has been generalized recently to obtain the ADIOS model that includes outflows of energy and angular momentum, thereby allowing accretion to proceed self-consistently. However, the utilization of a Newtonian gravitational potential limits the ability of this model to describe the inner region of the disk, where any relativistic outflows are likely to originate. In this paper we modify the ADIOS scenario to incorporate a seudo - Newtonian potential, which approximates the effects of general relativity. The analysis yields a unique, self - similar solution for the structure of the coupled disk/wind system. Interesting features of the new solution include the relativistic character of the outflow in the vicinity of the radius of marginal stability, which represents the inner edge of the quasi-Keplerian disk in our model. Our self - similar model may therefore help to explain the origin of relativistic jets in active galaxies. At large distances the radial dependence of the accretion rate approachs the unique form dot M ∝ r^1/2, with an associated density variation given by ρ ∝ r-1. This density variation agrees with that implied by the dependence of the X-ray hard time lags on the Fourier frequency for a number of accreting galactic black hole candidates. While intriguing, the results of our self-similar model need to be confirmed in the future by incorporating a detailed physical description of the energization mechanism that drives the outflow, which is likely to be powered by the shear of the underlying accretion disk.
Demianski, Marek
2013-01-01
Relativistic Astrophysics brings together important astronomical discoveries and the significant achievements, as well as the difficulties in the field of relativistic astrophysics. This book is divided into 10 chapters that tackle some aspects of the field, including the gravitational field, stellar equilibrium, black holes, and cosmology. The opening chapters introduce the theories to delineate gravitational field and the elements of relativistic thermodynamics and hydrodynamics. The succeeding chapters deal with the gravitational fields in matter; stellar equilibrium and general relativity
Three-dimensional GRMHD Simulations of Neutrino-cooled Accretion Disks from Neutron Star Mergers
Siegel, Daniel M.; Metzger, Brian D.
2018-05-01
Merging binaries consisting of two neutron stars (NSs) or an NS and a stellar-mass black hole typically form a massive accretion torus around the remnant black hole or long-lived NS. Outflows from these neutrino-cooled accretion disks represent an important site for r-process nucleosynthesis and the generation of kilonovae. We present the first three-dimensional, general-relativistic magnetohydrodynamic (GRMHD) simulations including weak interactions and a realistic equation of state of such accretion disks over viscous timescales (380 ms). We witness the emergence of steady-state MHD turbulence, a magnetic dynamo with an ∼20 ms cycle, and the generation of a “hot” disk corona that launches powerful thermal outflows aided by the energy released as free nucleons recombine into α-particles. We identify a self-regulation mechanism that keeps the midplane electron fraction low (Y e ∼ 0.1) over viscous timescales. This neutron-rich reservoir, in turn, feeds outflows that retain a sufficiently low value of Y e ≈ 0.2 to robustly synthesize third-peak r-process elements. The quasi-spherical outflows are projected to unbind 40% of the initial disk mass with typical asymptotic escape velocities of 0.1c and may thus represent the dominant mass ejection mechanism in NS–NS mergers. Including neutrino absorption, our findings agree with previous hydrodynamical α-disk simulations that the entire range of r-process nuclei from the first to the third r-process peak can be synthesized in the outflows, in good agreement with observed solar system abundances. The asymptotic escape velocities and quantity of ejecta, when extrapolated to moderately higher disk masses, are consistent with those needed to explain the red kilonova emission following the NS merger GW170817.
International Nuclear Information System (INIS)
Takeda, Tatsuoki
1985-01-01
In this article analyses of the MHD stabilities which govern the global behavior of a fusion plasma are described from the viewpoint of the numerical computation. First, we describe the high accuracy calculation of the MHD equilibrium and then the analysis of the linear MHD instability. The former is the basis of the stability analysis and the latter is closely related to the limiting beta value which is a very important theoretical issue of the tokamak research. To attain a stable tokamak plasma with good confinement property it is necessary to control or suppress disruptive instabilities. We, next, describe the nonlinear MHD instabilities which relate with the disruption phenomena. Lastly, we describe vectorization of the MHD codes. The above MHD codes for fusion plasma analyses are relatively simple though very time-consuming and parts of the codes which need a lot of CPU time concentrate on a small portion of the codes, moreover, the codes are usually used by the developers of the codes themselves, which make it comparatively easy to attain a high performance ratio on the vector processor. (author)
Global Simulations of the Inner Regions of Protoplanetary Disks with Comprehensive Disk Microphysics
Bai, Xue-Ning
2017-08-01
The gas dynamics of weakly ionized protoplanetary disks (PPDs) are largely governed by the coupling between gas and magnetic fields, described by three non-ideal magnetohydrodynamical (MHD) effects (Ohmic, Hall, ambipolar). Previous local simulations incorporating these processes have revealed that the inner regions of PPDs are largely laminar and accompanied by wind-driven accretion. We conduct 2D axisymmetric, fully global MHD simulations of these regions (˜1-20 au), taking into account all non-ideal MHD effects, with tabulated diffusion coefficients and approximate treatment of external ionization and heating. With the net vertical field aligned with disk rotation, the Hall-shear instability strongly amplifies horizontal magnetic field, making the overall dynamics dependent on initial field configuration. Following disk formation, the disk likely relaxes into an inner zone characterized by asymmetric field configuration across the midplane, which smoothly transitions to a more symmetric outer zone. Angular momentum transport is driven by both MHD winds and laminar Maxwell stress, with both accretion and decretion flows present at different heights, and modestly asymmetric winds from the two disk sides. With anti-aligned field polarity, weakly magnetized disks settle into an asymmetric field configuration with supersonic accretion flow concentrated at one side of the disk surface, and highly asymmetric winds between the two disk sides. In all cases, the wind is magneto-thermal in nature, characterized by a mass loss rate exceeding the accretion rate. More strongly magnetized disks give more symmetric field configuration and flow structures. Deeper far-UV penetration leads to stronger and less stable outflows. Implications for observations and planet formation are also discussed.
Global Simulations of the Inner Regions of Protoplanetary Disks with Comprehensive Disk Microphysics
Energy Technology Data Exchange (ETDEWEB)
Bai, Xue-Ning, E-mail: xbai@cfa.harvard.edu [Institute for Theory and Computation, Harvard-Smithsonian Center for Astrophysics, 60 Garden St., MS-51, Cambridge, MA 02138 (United States)
2017-08-10
The gas dynamics of weakly ionized protoplanetary disks (PPDs) are largely governed by the coupling between gas and magnetic fields, described by three non-ideal magnetohydrodynamical (MHD) effects (Ohmic, Hall, ambipolar). Previous local simulations incorporating these processes have revealed that the inner regions of PPDs are largely laminar and accompanied by wind-driven accretion. We conduct 2D axisymmetric, fully global MHD simulations of these regions (∼1–20 au), taking into account all non-ideal MHD effects, with tabulated diffusion coefficients and approximate treatment of external ionization and heating. With the net vertical field aligned with disk rotation, the Hall-shear instability strongly amplifies horizontal magnetic field, making the overall dynamics dependent on initial field configuration. Following disk formation, the disk likely relaxes into an inner zone characterized by asymmetric field configuration across the midplane, which smoothly transitions to a more symmetric outer zone. Angular momentum transport is driven by both MHD winds and laminar Maxwell stress, with both accretion and decretion flows present at different heights, and modestly asymmetric winds from the two disk sides. With anti-aligned field polarity, weakly magnetized disks settle into an asymmetric field configuration with supersonic accretion flow concentrated at one side of the disk surface, and highly asymmetric winds between the two disk sides. In all cases, the wind is magneto-thermal in nature, characterized by a mass loss rate exceeding the accretion rate. More strongly magnetized disks give more symmetric field configuration and flow structures. Deeper far-UV penetration leads to stronger and less stable outflows. Implications for observations and planet formation are also discussed.
MHD Flows in Compact Astrophysical Objects Accretion, Winds and Jets
Beskin, Vasily S
2010-01-01
Accretion flows, winds and jets of compact astrophysical objects and stars are generally described within the framework of hydrodynamical and magnetohydrodynamical (MHD) flows. Analytical analysis of the problem provides profound physical insights, which are essential for interpreting and understanding the results of numerical simulations. Providing such a physical understanding of MHD Flows in Compact Astrophysical Objects is the main goal of this book, which is an updated translation of a successful Russian graduate textbook. The book provides the first detailed introduction into the method of the Grad-Shafranov equation, describing analytically the very broad class of hydrodynamical and MHD flows. It starts with the classical examples of hydrodynamical accretion onto relativistic and nonrelativistic objects. The force-free limit of the Grad-Shafranov equation allows us to analyze in detail the physics of the magnetospheres of radio pulsars and black holes, including the Blandford-Znajek process of energy e...
RINGED ACCRETION DISKS: INSTABILITIES
Energy Technology Data Exchange (ETDEWEB)
Pugliese, D.; Stuchlík, Z., E-mail: d.pugliese.physics@gmail.com, E-mail: zdenek.stuchlik@physics.cz [Institute of Physics and Research Centre of Theoretical Physics and Astrophysics, Faculty of Philosophy and Science, Silesian University in Opava, Bezručovo náměstí 13, CZ-74601 Opava (Czech Republic)
2016-04-01
We analyze the possibility that several instability points may be formed, due to the Paczyński mechanism of violation of mechanical equilibrium, in the orbiting matter around a supermassive Kerr black hole. We consider a recently proposed model of a ringed accretion disk, made up by several tori (rings) that can be corotating or counter-rotating relative to the Kerr attractor due to the history of the accretion process. Each torus is governed by the general relativistic hydrodynamic Boyer condition of equilibrium configurations of rotating perfect fluids. We prove that the number of the instability points is generally limited and depends on the dimensionless spin of the rotating attractor.
The CHEASE code for toroidal MHD equilibria
Energy Technology Data Exchange (ETDEWEB)
Luetjens, H. [Ecole Polytechnique, 91 - Palaiseau (France). Centre de Physique Theorique; Bondeson, A. [Chalmers Univ. of Technology, Goeteborg (Sweden). Inst. for Electromagnetic Field Theory and Plasma Physics; Sauter, O. [ITER-San Diego, La Jolla, CA (United States)
1996-03-01
CHEASE solves the Grad-Shafranov equation for the MHD equilibrium of a Tokamak-like plasma with pressure and current profiles specified by analytic forms or sets of data points. Equilibria marginally stable to ballooning modes or with a prescribed fraction of bootstrap current can be computed. The code provides a mapping to magnetic flux coordinates, suitable for MHD stability calculations or global wave propagation studies. The code computes equilibrium quantities for the stability codes ERATO, MARS, PEST, NOVA-W and XTOR and for the global wave propagation codes LION and PENN. The two-dimensional MHD equilibrium (Grad-Shafranov) equation is solved in variational form. The discretization uses bicubic Hermite finite elements with continuous first order derivates for the poloidal flux function {Psi}. The nonlinearity of the problem is handled by Picard iteration. The mapping to flux coordinates is carried out with a method which conserves the accuracy of the cubic finite elements. The code uses routines from the CRAY libsci.a program library. However, all these routines are included in the CHEASE package itself. If CHEASE computes equilibrium quantities for MARS with fast Fourier transforms, the NAG library is required. CHEASE is written in standard FORTRAN-77, except for the use of the input facility NAMELIST. CHEASE uses variable names with up to 8 characters, and therefore violates the ANSI standard. CHEASE transfers plot quantities through an external disk file to a plot program named PCHEASE using the UNIRAS or the NCAR plot package. (author) figs., tabs., 34 refs.
The CHEASE code for toroidal MHD equilibria
International Nuclear Information System (INIS)
Luetjens, H.
1996-03-01
CHEASE solves the Grad-Shafranov equation for the MHD equilibrium of a Tokamak-like plasma with pressure and current profiles specified by analytic forms or sets of data points. Equilibria marginally stable to ballooning modes or with a prescribed fraction of bootstrap current can be computed. The code provides a mapping to magnetic flux coordinates, suitable for MHD stability calculations or global wave propagation studies. The code computes equilibrium quantities for the stability codes ERATO, MARS, PEST, NOVA-W and XTOR and for the global wave propagation codes LION and PENN. The two-dimensional MHD equilibrium (Grad-Shafranov) equation is solved in variational form. The discretization uses bicubic Hermite finite elements with continuous first order derivates for the poloidal flux function Ψ. The nonlinearity of the problem is handled by Picard iteration. The mapping to flux coordinates is carried out with a method which conserves the accuracy of the cubic finite elements. The code uses routines from the CRAY libsci.a program library. However, all these routines are included in the CHEASE package itself. If CHEASE computes equilibrium quantities for MARS with fast Fourier transforms, the NAG library is required. CHEASE is written in standard FORTRAN-77, except for the use of the input facility NAMELIST. CHEASE uses variable names with up to 8 characters, and therefore violates the ANSI standard. CHEASE transfers plot quantities through an external disk file to a plot program named PCHEASE using the UNIRAS or the NCAR plot package. (author) figs., tabs., 34 refs
Energy Technology Data Exchange (ETDEWEB)
McKinney, Jonathan C.; Tchekhovskoy, Alexander; Blandford, Roger D.
2012-04-26
Black hole (BH) accretion flows and jets are qualitatively affected by the presence of ordered magnetic fields. We study fully three-dimensional global general relativistic magnetohydrodynamic (MHD) simulations of radially extended and thick (height H to cylindrical radius R ratio of |H/R| {approx} 0.2-1) accretion flows around BHs with various dimensionless spins (a/M, with BH mass M) and with initially toroidally-dominated ({phi}-directed) and poloidally-dominated (R-z directed) magnetic fields. Firstly, for toroidal field models and BHs with high enough |a/M|, coherent large-scale (i.e. >> H) dipolar poloidal magnetic flux patches emerge, thread the BH, and generate transient relativistic jets. Secondly, for poloidal field models, poloidal magnetic flux readily accretes through the disk from large radii and builds-up to a natural saturation point near the BH. While models with |H/R| {approx} 1 and |a/M| {le} 0.5 do not launch jets due to quenching by mass infall, for sufficiently high |a/M| or low |H/R| the polar magnetic field compresses the inflow into a geometrically thin highly non-axisymmetric 'magnetically choked accretion flow' (MCAF) within which the standard linear magneto-rotational instability is suppressed. The condition of a highly-magnetized state over most of the horizon is optimal for the Blandford-Znajek mechanism that generates persistent relativistic jets with and 100% efficiency for |a/M| {approx}> 0.9. A magnetic Rayleigh-Taylor and Kelvin-Helmholtz unstable magnetospheric interface forms between the compressed inflow and bulging jet magnetosphere, which drives a new jet-disk oscillation (JDO) type of quasi-periodic oscillation (QPO) mechanism. The high-frequency QPO has spherical harmonic |m| = 1 mode period of {tau} {approx} 70GM/c{sup 3} for a/M {approx} 0.9 with coherence quality factors Q {approx}> 10. Overall, our models are qualitatively distinct from most prior MHD simulations (typically, |H/R| << 1 and poloidal flux is
Magnetically Induced Disk Winds and Transport in the HL Tau Disk
Energy Technology Data Exchange (ETDEWEB)
Hasegawa, Yasuhiro; Flock, Mario; Turner, Neal J. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Okuzumi, Satoshi, E-mail: yasuhiro@caltech.edu [Department of Earth and Planetary Sciences, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8551 (Japan)
2017-08-10
The mechanism of angular momentum transport in protoplanetary disks is fundamental to understanding the distributions of gas and dust in the disks. The unprecedented ALMA observations taken toward HL Tau at high spatial resolution and subsequent radiative transfer modeling reveal that a high degree of dust settling is currently achieved in the outer part of the HL Tau disk. Previous observations, however, suggest a high disk accretion rate onto the central star. This configuration is not necessarily intuitive in the framework of the conventional viscous disk model, since efficient accretion generally requires a high level of turbulence, which can suppress dust settling considerably. We develop a simplified, semi-analytical disk model to examine under what condition these two properties can be realized in a single model. Recent, non-ideal MHD simulations are utilized to realistically model the angular momentum transport both radially via MHD turbulence and vertically via magnetically induced disk winds. We find that the HL Tau disk configuration can be reproduced well when disk winds are properly taken into account. While the resulting disk properties are likely consistent with other observational results, such an ideal situation can be established only if the plasma β at the disk midplane is β {sub 0} ≃ 2 × 10{sup 4} under the assumption of steady accretion. Equivalently, the vertical magnetic flux at 100 au is about 0.2 mG. More detailed modeling is needed to fully identify the origin of the disk accretion and quantitatively examine plausible mechanisms behind the observed gap structures in the HL Tau disk.
Magnetically Induced Disk Winds and Transport in the HL Tau Disk
International Nuclear Information System (INIS)
Hasegawa, Yasuhiro; Flock, Mario; Turner, Neal J.; Okuzumi, Satoshi
2017-01-01
The mechanism of angular momentum transport in protoplanetary disks is fundamental to understanding the distributions of gas and dust in the disks. The unprecedented ALMA observations taken toward HL Tau at high spatial resolution and subsequent radiative transfer modeling reveal that a high degree of dust settling is currently achieved in the outer part of the HL Tau disk. Previous observations, however, suggest a high disk accretion rate onto the central star. This configuration is not necessarily intuitive in the framework of the conventional viscous disk model, since efficient accretion generally requires a high level of turbulence, which can suppress dust settling considerably. We develop a simplified, semi-analytical disk model to examine under what condition these two properties can be realized in a single model. Recent, non-ideal MHD simulations are utilized to realistically model the angular momentum transport both radially via MHD turbulence and vertically via magnetically induced disk winds. We find that the HL Tau disk configuration can be reproduced well when disk winds are properly taken into account. While the resulting disk properties are likely consistent with other observational results, such an ideal situation can be established only if the plasma β at the disk midplane is β 0 ≃ 2 × 10 4 under the assumption of steady accretion. Equivalently, the vertical magnetic flux at 100 au is about 0.2 mG. More detailed modeling is needed to fully identify the origin of the disk accretion and quantitatively examine plausible mechanisms behind the observed gap structures in the HL Tau disk.
Petrick, Michael; Pierson, Edward S.; Schreiner, Felix
1980-01-01
According to the present invention, coal combustion gas is the primary working fluid and copper or a copper alloy is the electrodynamic fluid in the MHD generator, thereby eliminating the heat exchangers between the combustor and the liquid-metal MHD working fluids, allowing the use of a conventional coalfired steam bottoming plant, and making the plant simpler, more efficient and cheaper. In operation, the gas and liquid are combined in a mixer and the resulting two-phase mixture enters the MHD generator. The MHD generator acts as a turbine and electric generator in one unit wherein the gas expands, drives the liquid across the magnetic field and thus generates electrical power. The gas and liquid are separated, and the available energy in the gas is recovered before the gas is exhausted to the atmosphere. Where the combustion gas contains sulfur, oxygen is bubbled through a side loop to remove sulfur therefrom as a concentrated stream of sulfur dioxide. The combustor is operated substoichiometrically to control the oxide level in the copper.
Generalized reduced MHD equations
International Nuclear Information System (INIS)
Kruger, S.E.; Hegna, C.C.; Callen, J.D.
1998-07-01
A new derivation of reduced magnetohydrodynamic (MHD) equations is presented. A multiple-time-scale expansion is employed. It has the advantage of clearly separating the three time scales of the problem associated with (1) MHD equilibrium, (2) fluctuations whose wave vector is aligned perpendicular to the magnetic field, and (3) those aligned parallel to the magnetic field. The derivation is carried out without relying on a large aspect ratio assumption; therefore this model can be applied to any general toroidal configuration. By accounting for the MHD equilibrium and constraints to eliminate the fast perpendicular waves, equations are derived to evolve scalar potential quantities on a time scale associated with the parallel wave vector (shear-alfven wave time scale), which is the time scale of interest for MHD instability studies. Careful attention is given in the derivation to satisfy energy conservation and to have manifestly divergence-free magnetic fields to all orders in the expansion parameter. Additionally, neoclassical closures and equilibrium shear flow effects are easily accounted for in this model. Equations for the inner resistive layer are derived which reproduce the linear ideal and resistive stability criterion of Glasser, Greene, and Johnson
Luciano, Rezzolla
2013-01-01
Relativistic hydrodynamics is a very successful theoretical framework to describe the dynamics of matter from scales as small as those of colliding elementary particles, up to the largest scales in the universe. This book provides an up-to-date, lively, and approachable introduction to the mathematical formalism, numerical techniques, and applications of relativistic hydrodynamics. The topic is typically covered either by very formal or by very phenomenological books, but is instead presented here in a form that will be appreciated both by students and researchers in the field. The topics covered in the book are the results of work carried out over the last 40 years, which can be found in rather technical research articles with dissimilar notations and styles. The book is not just a collection of scattered information, but a well-organized description of relativistic hydrodynamics, from the basic principles of statistical kinetic theory, down to the technical aspects of numerical methods devised for the solut...
Angular momentum transport in accretion disk boundary layers around weakly magnetized stars
DEFF Research Database (Denmark)
Pessah, M.E.; Chan, C.-K.
2013-01-01
) is inefficient in disk regions where, as expected in boundary layers, the angular frequency increases with radius. Motivated by the need of a deeper understanding of the behavior of an MHD fluid in a differentially rotating background that deviates from a Keplerian profile, we study the dynamics of MHD waves...
Gravitomagnetic acceleration from black hole accretion disks
International Nuclear Information System (INIS)
Poirier, J; Mathews, G J
2016-01-01
We demonstrate how the motion of the neutral masses in an accretion disk orbiting a black hole creates a general-relativistic magnetic-like (gravitomagnetic) field that vertically accelerates neutral particles near an accretion disk upward and then inward toward the axis of the accretion disk. Even though this gravitomagnetic field is not the only mechanism contributing to the production of jets, it presents a novel means to identify one general relativistic effect from a much more complicated problem. In addition, as the accelerated material above or below the accretion disk nears the axis with a nearly vertical direction, a frame-dragging effect twists the trajectories around the axis thus contributing to the collimation of the jet. (note)
Gravitomagnetic acceleration from black hole accretion disks
Poirier, J.; Mathews, G. J.
2016-05-01
We demonstrate how the motion of the neutral masses in an accretion disk orbiting a black hole creates a general-relativistic magnetic-like (gravitomagnetic) field that vertically accelerates neutral particles near an accretion disk upward and then inward toward the axis of the accretion disk. Even though this gravitomagnetic field is not the only mechanism contributing to the production of jets, it presents a novel means to identify one general relativistic effect from a much more complicated problem. In addition, as the accelerated material above or below the accretion disk nears the axis with a nearly vertical direction, a frame-dragging effect twists the trajectories around the axis thus contributing to the collimation of the jet.
Review of gravitomagnetic acceleration from accretion disks
Poirier, J.; Mathews, G. J.
2015-11-01
We review the development of the equations of gravitoelectromagnetism and summarize how the motion of the neutral masses in an accretion disk orbiting a black hole creates a general-relativistic magnetic-like (gravitomagnetic) field that vertically accelerates neutral particles near the accretion disk upward and then inward toward the axis of the accretion disk. Even though this gravitomagnetic field is not the only mechanism to produce collimated jets, it is a novel means to identify one general relativistic effect from a much more complicated problem. In addition, as the accelerated material above or below the accretion disk nears the axis with a nearly vertical direction, a frame-dragging effect twists the trajectories around the axis thus contributing to the collimation of the jet.
Stratified magnetically driven accretion-disk winds and their relations to jets
International Nuclear Information System (INIS)
Fukumura, Keigo; Tombesi, Francesco; Kazanas, Demosthenes; Shrader, Chris; Behar, Ehud; Contopoulos, Ioannis
2014-01-01
We explore the poloidal structure of two-dimensional magnetohydrodynamic (MHD) winds in relation to their potential association with the X-ray warm absorbers (WAs) and the highly ionized ultra-fast outflows (UFOs) in active galactic nuclei (AGNs), in a single unifying approach. We present the density n(r, θ), ionization parameter ξ(r, θ), and velocity structure v(r, θ) of such ionized winds for typical values of their fluid-to-magnetic flux ratio, F, and specific angular momentum, H, for which wind solutions become super-Alfvénic. We explore the geometrical shape of winds for different values of these parameters and delineate the values that produce the widest and narrowest opening angles of these winds, quantities necessary in the determination of the statistics of AGN obscuration. We find that winds with smaller H show a poloidal geometry of narrower opening angles with their Alfvén surface at lower inclination angles and therefore they produce the highest line of sight (LoS) velocities for observers at higher latitudes with the respect to the disk plane. We further note a physical and spatial correlation between the X-ray WAs and UFOs that form along the same LoS to the observer but at different radii, r, and distinct values of n, ξ, and v consistent with the latest spectroscopic data of radio-quiet Seyfert galaxies. We also show that, at least in the case of 3C 111, the winds' pressure is sufficient to contain the relativistic plasma responsible for its radio emission. Stratified MHD disk winds could therefore serve as a unique means to understand and unify the diverse AGN outflows.
Sahoo, Raghunath
2016-01-01
This lecture note covers Relativistic Kinematics, which is very useful for the beginners in the field of high-energy physics. A very practical approach has been taken, which answers "why and how" of the kinematics useful for students working in the related areas.
International Nuclear Information System (INIS)
Font, J. A.
2015-01-01
The relativistic astrophysics is the field of astrophysics employing the theory of relativity Einstein as physical-mathematical model is to study the universe. This discipline analyzes astronomical contexts in which the laws of classical mechanics of Newton's law of gravitation are not valid. (Author)
Proceedings of the workshop on nonlinear MHD and extended MHD
International Nuclear Information System (INIS)
1998-01-01
Nonlinear MHD simulations have proven their value in interpreting experimental results over the years. As magnetic fusion experiments reach higher performance regimes, more sophisticated experimental diagnostics coupled with ever expanding computer capabilities have increased both the need for and the feasibility of nonlinear global simulations using models more realistic than regular ideal and resistive MHD. Such extended-MHD nonlinear simulations have already begun to produce useful results. These studies are expected to lead to ever more comprehensive simulation models in the future and to play a vital role in fully understanding fusion plasmas. Topics include the following: (1) current state of nonlinear MHD and extended-MHD simulations; (2) comparisons to experimental data; (3) discussions between experimentalists and theorists; (4) /equations for extended-MHD models, kinetic-based closures; and (5) paths toward more comprehensive simulation models, etc. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database
Proceedings of the workshop on nonlinear MHD and extended MHD
Energy Technology Data Exchange (ETDEWEB)
NONE
1998-12-01
Nonlinear MHD simulations have proven their value in interpreting experimental results over the years. As magnetic fusion experiments reach higher performance regimes, more sophisticated experimental diagnostics coupled with ever expanding computer capabilities have increased both the need for and the feasibility of nonlinear global simulations using models more realistic than regular ideal and resistive MHD. Such extended-MHD nonlinear simulations have already begun to produce useful results. These studies are expected to lead to ever more comprehensive simulation models in the future and to play a vital role in fully understanding fusion plasmas. Topics include the following: (1) current state of nonlinear MHD and extended-MHD simulations; (2) comparisons to experimental data; (3) discussions between experimentalists and theorists; (4) /equations for extended-MHD models, kinetic-based closures; and (5) paths toward more comprehensive simulation models, etc. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.
O'Connell, R.; Forest, C. B.; Plard, F.; Kendrick, R.; Lovell, T.; Thomas, M.; Bonazza, R.; Jensen, T.; Politzer, P.; Gerritsen, W.; McDowell, M.
1997-11-01
A MHD experiment is being constructed which will have the possibility of showing dynamo action: the self--generation of currents from fluid motion. The design allows sufficient experimental flexibility and diagnostic access to study a variety of issues central to dynamo theory, including mean--field electrodynamics and saturation (backreaction physics). Initially, helical flows required for dynamo action will be driven by propellers embedded in liquid sodium. The flow fields will first be measured using laser doppler velocimetry in a water experiment with an identical fluid Reynolds number. The magnetic field evolution will then be predicted using a MHD code, replacing the water with sodium; if growing magnetic fields are found, the experiment will be repeated with sodium.
International Nuclear Information System (INIS)
Allen, M.A.; Azuma, O.; Callin, R.S.
1989-03-01
Experimental work is underway by a SLAC-LLNL-LBL collaboration to investigate the feasibility of using relativistic klystrons as a power source for future high gradient accelerators. Two different relativistic klystron configurations have been built and tested to date: a high grain multicavity klystron at 11.4 GHz and a low gain two cavity subharmonic buncher driven at 5.7 GHz. In both configurations power is extracted at 11.4 GHz. In order to understand the basic physics issues involved in extracting RF from a high power beam, we have used both a single resonant cavity and a multi-cell traveling wave structure for energy extraction. We have learned how to overcome our previously reported problem of high power RF pulse shortening, and have achieved peak RF power levels of 170 MW with the RF pulse of the same duration as the beam current pulse. 6 refs., 3 figs., 3 tabs
Hakim, Rémi
1994-01-01
Il existe à l'heure actuelle un certain nombre de théories relativistes de la gravitation compatibles avec l'expérience et l'observation. Toutefois, la relativité générale d'Einstein fut historiquement la première à fournir des résultats théoriques corrects en accord précis avec les faits.
International Nuclear Information System (INIS)
Marks, R.
1985-09-01
Theoretical analysis is presented of a relativisic klystron; i.e. a high-relativistic bunched electron beam which is sent through a succession of tuned cavities and has its energy replenished by periodic induction accelerator units. Parameters are given for a full-size device and for an experimental device using the FEL at the ETA; namely the ELF Facility. 6 refs., 2 figs
Directory of Open Access Journals (Sweden)
Richard Anantua
2018-03-01
Full Text Available This work summarizes a program intended to unify three burgeoning branches of the high-energy astrophysics of relativistic jets: general relativistic magnetohydrodynamic (GRMHD simulations of ever-increasing dynamical range, the microphysical theory of particle acceleration under relativistic conditions, and multiwavelength observations resolving ever-decreasing spatiotemporal scales. The process, which involves converting simulation output into time series of images and polarization maps that can be directly compared to observations, is performed by (1 self-consistently prescribing models for emission, absorption, and particle acceleration and (2 performing time-dependent polarized radiative transfer. M87 serves as an exemplary prototype for this investigation due to its prominent and well-studied jet and the imminent prospect of learning much more from Event Horizon Telescope (EHT observations this year. Synthetic observations can be directly compared with real observations for observational signatures such as jet instabilities, collimation, relativistic beaming, and polarization. The simplest models described adopt the standard equipartition hypothesis; other models calculate emission by relating it to current density or shear. These models are intended for application to the radio jet instead of the higher frequency emission, the disk and the wind, which will be subjects of future investigations.
International Nuclear Information System (INIS)
1991-10-01
The current MHD program being implemented is a result of a consensus established in public meetings held by the Department of Energy in 1984. Essential elements of the current program include: (1) develop technical and environmental data for the integrated MHD topping cycle system through POC testing (1,000 hours); (2) develop technical and environmental data for the integrated MHD bottoming cycle sub system through POC testing (4,000 hours); (3) design, construct, and operate a seed regeneration POC facility (SRPF) capable of processing spent seed materials from the MHD bottoming cycle; (4) prepare conceptual designs for a site specific MHD retrofit plant; and (5) continue system studies and supporting research necessary for system testing. The current MHD program continues to be directed toward coal fired power plant applications, both stand-alone and retrofit. Development of a plant should enhance the attractiveness of MHD for applications other than electrical power. MHD may find application in electrical energy intensive industries and in the defense sector
International Nuclear Information System (INIS)
Petit, J.P.
1995-01-01
Jean-Pierre PETIT, one of the best MHD specialists, is telling this technology story and he is insisting on its military consequences. Civil MHD is only one iceberg emerged part, including a lot of leader technologies, interesting he defense. 3 notes
Directory of Open Access Journals (Sweden)
M. Schüssler
Full Text Available Two aspects of solar MHD are discussed in relation to the work of the MHD simulation group at KIS. Photospheric magneto-convection, the nonlinear interaction of magnetic field and convection in a strongly stratified, radiating fluid, is a key process of general astrophysical relevance. Comprehensive numerical simulations including radiative transfer have significantly improved our understanding of the processes and have become an important tool for the interpretation of observational data. Examples of field intensification in the solar photosphere ('convective collapse' are shown. The second line of research is concerned with the dynamics of flux tubes in the convection zone, which has far-reaching implications for our understanding of the solar dynamo. Simulations indicate that the field strength in the region where the flux is stored before erupting to form sunspot groups is of the order of 10^{5} G, an order of magnitude larger than previous estimates based on equipartition with the kinetic energy of convective flows.
Key words. Solar physics · astrophysics and astronomy (photosphere and chromosphere; stellar interiors and dynamo theory; numerical simulation studies.
DISK FORMATION IN MAGNETIZED CLOUDS ENABLED BY THE HALL EFFECT
International Nuclear Information System (INIS)
Krasnopolsky, Ruben; Shang, Hsien; Li Zhiyun
2011-01-01
Stars form in dense cores of molecular clouds that are observed to be significantly magnetized. A dynamically important magnetic field presents a significant obstacle to the formation of protostellar disks. Recent studies have shown that magnetic braking is strong enough to suppress the formation of rotationally supported disks in the ideal MHD limit. Whether non-ideal MHD effects can enable disk formation remains unsettled. We carry out a first study on how disk formation in magnetic clouds is modified by the Hall effect, the least explored of the three non-ideal MHD effects in star formation (the other two being ambipolar diffusion and Ohmic dissipation). For illustrative purposes, we consider a simplified problem of a non-self-gravitating, magnetized envelope collapsing onto a central protostar of fixed mass. We find that the Hall effect can spin up the inner part of the collapsing flow to Keplerian speed, producing a rotationally supported disk. The disk is generated through a Hall-induced magnetic torque. Disk formation occurs even when the envelope is initially non-rotating, provided that the Hall coefficient is large enough. When the magnetic field orientation is flipped, the direction of disk rotation is reversed as well. The implication is that the Hall effect can in principle produce both regularly rotating and counter-rotating disks around protostars. The Hall coefficient expected in dense cores is about one order of magnitude smaller than that needed for efficient spin-up in these models. We conclude that the Hall effect is an important factor to consider in studying the angular momentum evolution of magnetized star formation in general and disk formation in particular.
International Nuclear Information System (INIS)
Zhu, Zhaohuan; Stone, James M.
2014-01-01
We study particle trapping at the edge of a gap opened by a planet in a protoplanetary disk. In particular, we explore the effects of turbulence driven by the magnetorotational instability on particle trapping, using global three-dimensional magnetohydrodynamic (MHD) simulations including Lagrangian dust particles. We study disks either in the ideal MHD limit or dominated by ambipolar diffusion (AD) which plays an essential role at the outer regions of a protoplanetary disk. With ideal MHD, strong turbulence (the equivalent viscosity parameter α ∼ 10 –2 ) in disks prevents vortex formation at the edge of the gap opened by a 9 M J planet, and most particles (except the particles that drift fastest) pile up at the outer gap edge almost axisymmetrically. When AD is considered, turbulence is significantly suppressed (α ≲ 10 –3 ), and a large vortex forms at the edge of the planet induced gap, which survives ∼1000 orbits. The vortex can efficiently trap dust particles that span 3 orders of magnitude in size within 100 planetary orbits. We have also carried out two-dimensional hydrodynamical (HD) simulations using viscosity as an approximation to MHD turbulence. These HD simulations can reproduce vortex generation at the gap edge as seen in MHD simulations. Finally, we use our simulation results to generate synthetic images for ALMA dust continuum observations on Oph IRS 48 and HD 142527, which show good agreement with existing observations. Predictions for future ALMA cycle 2 observations have been made. We conclude that the asymmetry in ALMA observations can be explained by dust trapping vortices and the existence of vortices could be the evidence that the outer protoplanetary disks are dominated by AD with α < 10 –3 at the disk midplane.
MHD channel performance for potential early commercial MHD power plants
International Nuclear Information System (INIS)
Swallom, D.W.
1981-01-01
The commercial viability of full and part load early commercial MHD power plants is examined. The load conditions comprise a mass flow of 472 kg/sec in the channel, Rosebud coal, 34% by volume oxygen in the oxidizer preheated to 922 K, and a one percent by mass seeding with K. The full load condition is discussed in terms of a combined cycle plant with optimized electrical output by the MHD channel. Various electrical load parameters, pressure ratios, and magnetic field profiles are considered for a baseload MHD generator, with a finding that a decelerating flow rate yields slightly higher electrical output than a constant flow rate. Nominal and part load conditions are explored, with a reduced gas mass flow rate and an enriched oxygen content. An enthalpy extraction of 24.6% and an isentropic efficiency of 74.2% is predicted for nominal operation of a 526 MWe MHD generator, with higher efficiencies for part load operation
Zhang, Bing; Li, Kunyang
2018-02-01
The “Breakthrough Starshot” aims at sending near-speed-of-light cameras to nearby stellar systems in the future. Due to the relativistic effects, a transrelativistic camera naturally serves as a spectrograph, a lens, and a wide-field camera. We demonstrate this through a simulation of the optical-band image of the nearby galaxy M51 in the rest frame of the transrelativistic camera. We suggest that observing celestial objects using a transrelativistic camera may allow one to study the astronomical objects in a special way, and to perform unique tests on the principles of special relativity. We outline several examples that suggest transrelativistic cameras may make important contributions to astrophysics and suggest that the Breakthrough Starshot cameras may be launched in any direction to serve as a unique astronomical observatory.
Relativistic magnetohydrodynamics
Energy Technology Data Exchange (ETDEWEB)
Hernandez, Juan; Kovtun, Pavel [Department of Physics and Astronomy, University of Victoria,Victoria, BC, V8P 5C2 (Canada)
2017-05-02
We present the equations of relativistic hydrodynamics coupled to dynamical electromagnetic fields, including the effects of polarization, electric fields, and the derivative expansion. We enumerate the transport coefficients at leading order in derivatives, including electrical conductivities, viscosities, and thermodynamic coefficients. We find the constraints on transport coefficients due to the positivity of entropy production, and derive the corresponding Kubo formulas. For the neutral state in a magnetic field, small fluctuations include Alfvén waves, magnetosonic waves, and the dissipative modes. For the state with a non-zero dynamical charge density in a magnetic field, plasma oscillations gap out all propagating modes, except for Alfvén-like waves with a quadratic dispersion relation. We relate the transport coefficients in the “conventional” magnetohydrodynamics (formulated using Maxwell’s equations in matter) to those in the “dual” version of magnetohydrodynamics (formulated using the conserved magnetic flux).
Magnetized Disk Winds in NGC 3783
Fukumura, Keigo; Kazanas, Demosthenes; Shrader, Chris; Behar, Ehud; Tombesi, Francesco; Contopoulos, Ioannis
2018-01-01
We analyze a 900 ks stacked Chandra/HETG spectrum of NGC 3783 in the context of magnetically driven accretion-disk wind models in an effort to provide tight constraints on the global conditions of the underlying absorbers. Motivated by the earlier measurements of its absorption measure distribution (AMD) indicating X-ray-absorbing ionic columns that decrease slowly with decreasing ionization parameter, we employ 2D magnetohydrodynamic (MHD) disk wind models to describe the global outflow. We compute its photoionization structure along with the wind kinematic properties, allowing us to further calculate in a self-consistent fashion the shapes of the major X-ray absorption lines. With the wind radial density profile determined by the AMD, the profiles of the ensemble of the observed absorption features are determined by the two global parameters of the MHD wind; i.e., disk inclination {θ }{obs} and wind density normalization n o . Considering the most significant absorption features in the ∼1.8–20 Å range, we show that the MHD wind is best described by n{(r)∼ 6.9× {10}11(r/{r}o)}-1.15 cm‑3 and {θ }{obs}=44^\\circ . We argue that winds launched by X-ray heating or radiation pressure, or even MHD winds but with steeper radial density profiles, are strongly disfavored by data. Considering the properties of Fe K-band absorption features (i.e., Fe XXV and Fe XXVI), while typically prominent in the active galactic nucleus X-ray spectra, they appear to be weak in NGC 3783. For the specific parameters of our model obtained by fitting the AMD and the rest of the absorption features, these features are found to be weak, in agreement with observations.
Magnetic levitation and MHD propulsion
Energy Technology Data Exchange (ETDEWEB)
Tixador, P [CNRS/CRTBT-LEG, 38 - Grenoble (France)
1994-04-01
Magnetic levitation and MHD propulsion are now attracting attention in several countries. Different superconducting MagLev and MHD systems will be described concentrating on, above all, the electromagnetic aspect. Some programmes occurring throughout the world will be described. Magnetic levitated trains could be the new high speed transportation system for the 21st century. Intensive studies involving MagLev trains using superconductivity have been carried our in Japan since 1970. The construction of a 43 km long track is to be the next step. In 1991 a six year programme was launched in the United States to evaluate the performances of MagLev systems for transportation. The MHD (MagnetoHydroDynamic) offers some interesting advantages (efficiency, stealth characteristics, ..) for naval propulsion and increasing attention is being paid towards it nowadays. Japan is also up at the top with the tests of Yamato I, a 260 ton MHD propulsed ship. (orig.).
Magnetic levitation and MHD propulsion
International Nuclear Information System (INIS)
Tixador, P.
1994-01-01
Magnetic levitation and MHD propulsion are now attracting attention in several countries. Different superconducting MagLev and MHD systems will be described concentrating on, above all, the electromagnetic aspect. Some programmes occurring throughout the world will be described. Magnetic levitated trains could be the new high speed transportation system for the 21st century. Intensive studies involving MagLev trains using superconductivity have been carried our in Japan since 1970. The construction of a 43 km long track is to be the next step. In 1991 a six year programme was launched in the United States to evaluate the performances of MagLev systems for transportation. The MHD (MagnetoHydroDynamic) offers some interesting advantages (efficiency, stealth characteristics, ..) for naval propulsion and increasing attention is being paid towards it nowadays. Japan is also up at the top with the tests of Yamato I, a 260 ton MHD propulsed ship. (orig.)
Experimental rigs for MHD studies
International Nuclear Information System (INIS)
Venkataramani, N.; Jayakumar, R.; Iyer, D.R.; Dixit, N.S.
1976-01-01
An MHD experimental rig is a miniature MHD installation consisting of basic equipments necessary for specific investigations. Some of the experimental rigs used in the investigations being carried out at the Bhabha Atomic Research Centre, Bombay (India) are dealt with. The experiments included diagnostics and evaluation of materials in seeded combustion plasmas and argon plasmas. The design specifications, schematics and some of the results of the investigations are also mentioned. (author)
1990-10-01
The current magnetohydrodynamic MHD program being implemented is a result of a consensus established in public meetings held by the Department of Energy in 1984. The public meetings were followed by the formulation of a June 1984 Coal-Fired MHD Preliminary Transition and Program Plan. This plan focused on demonstrating the proof-of-concept (POC) of coal-fired MHD electric power plants by the early 1990s. MHD test data indicate that while there are no fundamental technical barriers impeding the development of MHD power plants, technical risk remains. To reduce the technical risk three key subsystems (topping cycle, bottoming cycle, and seed regeneration) are being assembled and tested separately. The program does not require fabrication of a complete superconducting magnet, but rather the development and testing of superconductor cables. The topping cycle system test objectives can be achieved using a conventional iron core magnet system already in place at a DOE facility. Systems engineering-derived requirements and analytical modeling to support scale-up and component design guide the program. In response to environmental, economic, engineering, and utility acceptance requirements, design choices and operating modes are tested and refined to provide technical specifications for meeting commercial criteria. These engineering activities are supported by comprehensive and continuing systems analyses to establish realistic technical requirements and cost data. Essential elements of the current program are to: develop technical and environmental data for the integrated MHD topping cycle and bottoming cycle systems through POC testing (1000 and 4000 hours, respectively); design, construct, and operate a POC seed regeneration system capable of processing spent seed materials from the MHD bottoming cycle; prepare conceptual designs for a site specific MHD retrofit plant; and continue supporting research necessary for system testing.
Multimegawatt disk generator system for space applications
International Nuclear Information System (INIS)
Solbes, A.; Iwata, H.
1988-01-01
The conceptual design of a 100 megawatt - 500 seconds disk MHD generator system suitable as a burst power source for a space based neutral particle beam (NPB) is presented. The system features two disk generators operated in the magnetic field produced by a single circular superconducting magnet. Gelled reactants are used as the energy source. The oxidizer gel includes the alkali seed. The high heat flux areas of the power train are water cooled. Heat is rejected to a hydrogen stream which is also used for cooling of the exit section. The hydrogen is also used to mitigate the effects of the exhaust products of combustion on the platform. The two disk channels are operated in parallel. A dc to dc converter consolidates the channel's output into a single 100 kilovolt dc output
Seeded inert gas driven disk generator
International Nuclear Information System (INIS)
Joshi, N.K.; Venkatramani, N.; Rohatgi, V.K.
1987-01-01
This report outlines the present status of work being carried out in closed cycle MHD and disk generators. It gives the basic principles and discusses a proposal for setting up an experimental facility to study nonequilibrium plasmas using an inert gas driven disk generator. Disk geometry is a near ideal geometry for plasma studies since it has single or few pair electrodes combined with near perfect insulating walls. The proposed outlay of facility with components and subsystem is given. The facility may also be used to study the concept of fully ionized seed and to develop advanced diagnostic techniques. The absic equation describing the working parameters of such a system is also given in the Appendix. (author). 57 refs
Flow aerodynamics modeling of an MHD swirl combustor - calculations and experimental verification
International Nuclear Information System (INIS)
Gupta, A.K.; Beer, J.M.; Louis, J.F.; Busnaina, A.A.; Lilley, D.G.
1981-01-01
This paper describes a computer code for calculating the flow dynamics of constant density flow in the second stage trumpet shaped nozzle section of a two stage MHD swirl combustor for application to a disk generator. The primitive pressure-velocity variable, finite difference computer code has been developed to allow the computation of inert nonreacting turbulent swirling flows in an axisymmetric MHD model swirl combustor. The method and program involve a staggered grid system for axial and radial velocities, and a line relaxation technique for efficient solution of the equations. Tue produces as output the flow field map of the non-dimensional stream function, axial and swirl velocity. 19 refs
Investigation of the Hall MHD channel operating with the ionized instable plasma of inert gases
International Nuclear Information System (INIS)
Vasi'leva, R.V.; D'yakova, E.A.; Erofeev, A.V.; Zuev, A.D.; Lapushkina, T.A.; Markhotok, A.A.
1997-01-01
Possibility of applying ionization-instable plasma of pure inert gases as perspective working substance for closed-cycle MHD generators is studied. The experiment was produced in the model of the disk Hall MHD channel. The ionized gas flux was produced in a shock tube. Xenon was used as a working substance. Gas pressure, flux velocity, electron concentration and temperature, azimuthal current density, potential distribution in the channel and near-electrode voltage drop values were measured in the experiment. Volt-ampere characteristics were taken by various indices of magnetic field and load resistance
The relativistic virial theorem
International Nuclear Information System (INIS)
Lucha, W.; Schoeberl, F.F.
1989-11-01
The relativistic generalization of the quantum-mechanical virial theorem is derived and used to clarify the connection between the nonrelativistic and (semi-)relativistic treatment of bound states. 12 refs. (Authors)
Linear ideal MHD stability calculations for ITER
International Nuclear Information System (INIS)
Hogan, J.T.
1988-01-01
A survey of MHD stability limits has been made to address issues arising from the MHD--poloidal field design task of the US ITER project. This is a summary report on the results obtained to date. The study evaluates the dependence of ballooning, Mercier and low-n ideal linear MHD stability on key system parameters to estimate overall MHD constraints for ITER. 17 refs., 27 figs
Problems in nonlinear resistive MHD
International Nuclear Information System (INIS)
Turnbull, A.D.; Strait, E.J.; La Haye, R.J.; Chu, M.S.; Miller, R.L.
1998-01-01
Two experimentally relevant problems can relatively easily be tackled by nonlinear MHD codes. Both problems require plasma rotation in addition to the nonlinear mode coupling and full geometry already incorporated into the codes, but no additional physics seems to be crucial. These problems discussed here are: (1) nonlinear coupling and interaction of multiple MHD modes near the B limit and (2) nonlinear coupling of the m/n = 1/1 sawtooth mode with higher n gongs and development of seed islands outside q = 1
MAGNETIC BRAKING AND PROTOSTELLAR DISK FORMATION: AMBIPOLAR DIFFUSION
International Nuclear Information System (INIS)
Mellon, Richard R.; Li Zhiyun
2009-01-01
It is established that the formation of rotationally supported disks during the main accretion phase of star formation is suppressed by a moderately strong magnetic field in the ideal MHD limit. Nonideal MHD effects are expected to weaken the magnetic braking, perhaps allowing the disk to reappear. We concentrate on one such effect, ambipolar diffusion, which enables the field lines to slip relative to the bulk neutral matter. We find that the slippage does not sufficiently weaken the braking to allow rotationally supported disks to form for realistic levels of cloud magnetization and cosmic ray ionization rate; in some cases, the magnetic braking is even enhanced. Only in dense cores with both exceptionally weak fields and unreasonably low ionization rate do such disks start to form in our simulations. We conclude that additional processes, such as Ohmic dissipation or Hall effect, are needed to enable disk formation. Alternatively, the disk may form at late times when the massive envelope that anchors the magnetic brake is dissipated, perhaps by a protostellar wind.
On the driver of relativistic effect strength in Seyfert galaxies
Czech Academy of Sciences Publication Activity Database
Guainazzi, M.; Bianchi, S.; de La Calle, I.; Dovčiak, Michal; Longinotti, A. L.
2011-01-01
Roč. 531, July (2011), A131/1-A131/13 ISSN 0004-6361 Institutional research plan: CEZ:AV0Z10030501 Keywords : accretion disks * relativistic processes * nuclei galaxies * Seyfert galaxy * X-rays Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 4.587, year: 2011
MHD simulation of Columbia HBT
International Nuclear Information System (INIS)
Li, X.L.
1987-01-01
The plasma of Columbia High Beta Tokamak (HBT) is studied numerically by using the two dimensional resistive MHD model. The main object of this work is to understand the high beta formation process of HBT plasma and to compare the simulation with the experiments. 21 refs., 48 figs., 2 tabs
Neoclassical MHD equations for tokamaks
International Nuclear Information System (INIS)
Callen, J.D.; Shaing, K.C.
1986-03-01
The moment equation approach to neoclassical-type processes is used to derive the flows, currents and resistive MHD-like equations for studying equilibria and instabilities in axisymmetric tokamak plasmas operating in the banana-plateau collisionality regime (ν* approx. 1). The resultant ''neoclassical MHD'' equations differ from the usual reduced equations of resistive MHD primarily by the addition of the important viscous relaxation effects within a magnetic flux surface. The primary effects of the parallel (poloidal) viscous relaxation are: (1) Rapid (approx. ν/sub i/) damping of the poloidal ion flow so the residual flow is only toroidal; (2) addition of the bootstrap current contribution to Ohm's laws; and (3) an enhanced (by B 2 /B/sub theta/ 2 ) polarization drift type term and consequent enhancement of the perpendicular dielectric constant due to parallel flow inertia, which causes the equations to depend only on the poloidal magnetic field B/sub theta/. Gyroviscosity (or diamagnetic vfiscosity) effects are included to properly treat the diamagnetic flow effects. The nonlinear form of the neoclassical MHD equations is derived and shown to satisfy an energy conservation equation with dissipation arising from Joule and poloidal viscous heating, and transport due to classical and neoclassical diffusion
Stabilities of MHD rotational discontinuities
International Nuclear Information System (INIS)
Wang, S.
1984-11-01
In this paper, the stabilities of MHD rotational discontinuities are analyzed. The results show that the rotational discontinuities in an incompressible magnetofluid are not always stable with respect to infinitesimal perturbation. The instability condition in a special case is obtained. (author)
MHD stability of tandem mirrors
International Nuclear Information System (INIS)
Poulsen, P.; Molvik, A.; Shearer, J.
1982-01-01
The TMX-Upgrade experiment was described, and the manner in which various plasma parameters could be affected was discussed. The initial analysis of the MHD stability of the tandem mirror was also discussed, with emphasis on the negative tandem configuration
MHD Integrated Topping Cycle Project
Energy Technology Data Exchange (ETDEWEB)
1992-01-01
The overall objective of the project is to design and construct prototypical hardware for an integrated MHD topping cycle, and conduct long duration proof-of-concept tests of integrated system at the US DOE Component Development and Integration Facility in Butte, Montana. The results of the long duration tests will augment the existing engineering design data base on MHD power train reliability, availability, maintainability, and performance, and will serve as a basis for scaling up the topping cycle design to the next level of development, an early commercial scale power plant retrofit. The components of the MHD power train to be designed, fabricated, and tested include: A slagging coal combustor with a rated capacity of 50 MW thermal input, capable of operation with an Eastern (Illinois {number sign}6) or Western (Montana Rosebud) coal, a segmented supersonic nozzle, a supersonic MHD channel capable of generating at least 1.5 MW of electrical power, a segmented supersonic diffuser section to interface the channel with existing facility quench and exhaust systems, a complete set of current control circuits for local diagonal current control along the channel, and a set of current consolidation circuits to interface the channel with the existing facility inverter.
Numerical computation of MHD equilibria
International Nuclear Information System (INIS)
Atanasiu, C.V.
1982-10-01
A numerical code for a two-dimensional MHD equilibrium computation has been carried out. The code solves the Grad-Shafranov equation in its integral form, for both formulations: the free-boundary problem and the fixed boundary one. Examples of the application of the code to tokamak design are given. (author)
Nonlinear evolution of MHD instabilities
International Nuclear Information System (INIS)
Bateman, G.; Hicks, H.R.; Wooten, J.W.; Dory, R.A.
1975-01-01
A 3-D nonlinear MHD computer code was used to study the time evolution of internal instabilities. Velocity vortex cells are observed to persist into the nonlinear evolution. Pressure and density profiles convect around these cells for a weak localized instability, or convect into the wall for a strong instability. (U.S.)
Energy Technology Data Exchange (ETDEWEB)
Ferrari, A; Trussoni, E; Zaninetti, L [Consiglio Nazionale delle Ricerche, Turin (Italy). Lab. di Cosmo-Geofisica; Turin Univ. (Italy). Ist. di Fisica)
1980-11-01
In this paper some unsolved problems of the linear MHD Kelvin-Helmholtz instability are re-examined, starting from the analysis of relativistic (and non-relativistic) flows in the approximation of a plane vortex sheet, for the contact layer between the fluids in relative motion. Results are discussed for a range of physical parameters in specific connection with application to models of jets in extragalactic radio sources. Other physical aspects of the instability will be considered in forthcoming papers.
Measuring a truncated disk in Aquila X-1
DEFF Research Database (Denmark)
King, Ashley L.; Tomsick, John A.; Miller, Jon M.
2016-01-01
We present NuSTAR and Swift observations of the neutron star Aquila X-1 during the peak of its 2014 July outburst. The spectrum is soft with strong evidence for a broad Fe Kα line. Modeled with a relativistically broadened reflection model, we find that the inner disk is truncated with an inner r...
Magnetic levitation and MHD propulsion
Tixador, P.
1994-04-01
Magnetic levitation and MHD propulsion are now attracting attention in several countries. Different superconducting MagLev and MHD systems will be described concentrating on, above all, the electromagnetic aspect. Some programmes occurring throughout the world will be described. Magnetic levitated trains could be the new high speed transportation system for the 21st century. Intensive studies involving MagLev trains using superconductivity have been carried out in Japan since 1970. The construction of a 43 km long track is to be the next step. In 1991 a six year programme was launched in the United States to evaluate the performances of MagLev systems for transportation. The MHD (MagnetoHydroDynamic) offers some interesting advantages (efficiency, stealth characteristics, ...) for naval propulsion and increasing attention is being paid towards it nowadays. Japan is also up at the top with the tests of Yamato I, a 260 ton MHD propulsed ship. Depuis quelques années nous assistons à un redémarrage de programmes concernant la lévitation et la propulsion supraconductrices. Différents systèmes supraconducteurs de lévitation et de propulsion seront décrits en examinant plus particulièrement l'aspect électromagnétique. Quelques programmes à travers le monde seront abordés. Les trains à sustentation magnétique pourraient constituer un nouveau mode de transport terrestre à vitesse élevée (500 km/h) pour le 21^e siècle. Les japonais n'ont cessé de s'intéresser à ce système avec bobine supraconductrice. Ils envisagent un stade préindustriel avec la construction d'une ligne de 43 km. En 1991 un programme américain pour une durée de six ans a été lancé pour évaluer les performances des systèmes à lévitation pour le transport aux Etats Unis. La MHD (Magnéto- Hydro-Dynamique) présente des avantages intéressants pour la propulsion navale et un regain d'intérêt apparaît à l'heure actuelle. Le japon se situe là encore à la pointe des d
MAGNETOHYDRODYNAMIC SIMULATION OF A DISK SUBJECTED TO LENSE-THIRRING PRECESSION
International Nuclear Information System (INIS)
Sorathia, Kareem A.; Krolik, Julian H.; Hawley, John F.
2013-01-01
When matter orbits around a central mass obliquely with respect to the mass's spin axis, the Lense-Thirring effect causes it to precess at a rate declining sharply with radius. Ever since the work of Bardeen and Petterson, it has been expected that when a fluid fills an orbiting disk, the orbital angular momentum at small radii should then align with the mass's spin. Nearly all previous work has studied this alignment under the assumption that a phenomenological 'viscosity' isotropically degrades fluid shears in accretion disks, even though it is now understood that internal stress in flat disks is due to anisotropic MHD turbulence. In this paper we report a pair of matched simulations, one in MHD and one in pure (non-viscous) HD in order to clarify the specific mechanisms of alignment. As in the previous work, we find that disk warps induce radial flows that mix angular momentum of different orientation; however, we also show that the speeds of these flows are generically transonic and are only very weakly influenced by internal stresses other than pressure. In particular, MHD turbulence does not act in a manner consistent with an isotropic viscosity. When MHD effects are present, the disk aligns, first at small radii and then at large; alignment is only partial in the HD case. We identify the specific angular momentum transport mechanisms causing alignment and show how MHD effects permit them to operate more efficiently. Last, we relate the speed at which an alignment front propagates outward (in the MHD case) to the rate at which Lense-Thirring torques deliver angular momentum at smaller radii
Relativistic Linear Restoring Force
Clark, D.; Franklin, J.; Mann, N.
2012-01-01
We consider two different forms for a relativistic version of a linear restoring force. The pair comes from taking Hooke's law to be the force appearing on the right-hand side of the relativistic expressions: d"p"/d"t" or d"p"/d["tau"]. Either formulation recovers Hooke's law in the non-relativistic limit. In addition to these two forces, we…
International Nuclear Information System (INIS)
Mittelstaedt, P.
1983-01-01
on the basis of the well-known quantum logic and quantum probability a formal language of relativistic quantum physics is developed. This language incorporates quantum logical as well as relativistic restrictions. It is shown that relativity imposes serious restrictions on the validity regions of propositions in space-time. By an additional postulate this relativistic quantum logic can be made consistent. The results of this paper are derived exclusively within the formal quantum language; they are, however, in accordance with well-known facts of relativistic quantum physics in Hilbert space. (author)
Several hundred megawatt MHD units
International Nuclear Information System (INIS)
Pishchikov, S.; Pinkhasik, D.; Sidorov, V.
1978-01-01
The features are described of the future MHD unit U-25 tested at the Institute of High Temperatures of the Academy of Sciences of the USSR. The attainable thermal load of the combustion chamber is 290x10 6 kJ/m 3 .h. Three types of channel were tested, i.e., the Faraday channel divided into sections with modular insulating walls, the diagonal channel without metal body, and an improved Faraday channel with an output of 20 MW. The described MHD generator is equipped with an inverter which transforms direct current into alternating current, continuously adjusts the load from no-load operation to short-circuit connection and maintains the desired electrical voltage independently of the changes in loading. A new technique of connecting and disconnecting the oxygen equipment was developed which considerably reduces the time of start-up and shut-down. Natural gas is used for heating the air heaters. All equipment used in the operation of the MHD generator is remote controlled by computer or manually. (J.B.)
Several hundred megawatt MHD units
Energy Technology Data Exchange (ETDEWEB)
Pishchikov, S; Pinkhasik, D; Sidorov, V
1978-07-01
The features are described of the future MHD unit U-25 tested at the Institute of High Temperatures of the Academy of Sciences of the USSR. The attainable thermal load of the combustion chamber is 290x10/sup 6/ kJ/m/sup 3/.h. Three types of channel were tested, i.e., the Faraday channel divided into sections with modular insulating walls, the diagonal channel without metal body, and an improved Faraday channel with an output of 20 MW. The described MHD generator is equipped with an inverter which transforms direct current into alternating current, continuously adjusts the load from no-load operation to short-circuit connection and maintains the desired electrical voltage independently of the changes in loading. A new technique of connecting and disconnecting the oxygen equipment was developed which considerably reduces the time of start-up and shut-down. Natural gas is used for heating the air heaters. All equipment used in the operation of the MHD generator is remote controlled by computer or manually.
Route analysis for MHD equilibria
International Nuclear Information System (INIS)
Kikuchi, Fumio; Aizawa, Tatsuhiko
1982-01-01
In Tokamak facilities which are promising in nuclear fusion reactor development, the plasma in the core is often described by MHD approximation. Specifically, since an axisymmetric torus is approximately assumed as the first wall (shell) shape in actual Tokamak facilities, the Grad-Shafranov equation to be satisfied by an axisymmetric equilibrium solution for ideal MHD fluid must be solved, and the characteristics of its solution must be clarified. This paper shows the outline of the numerical calculation which employs both the incremental method taking the particular incremental nodal point values as the control parameters and the interaction method in accordance with Newton method at the same time, the analysis objective being a non-linear eigenvalue problem dealing the boundary of plasma region with surrounding vacuum region as the free boundary. Next, the detailed route analysis of the equilibrium solution is performed, utilizing the above numerical calculation technique, to clarify the effect of shell shape on the behaviour of the equilibrium solution. As the shape of the shell, a rectangular section torus, which have a notch depression at a part of the shell inner boundary, is considered. In the paper, the fundamental MHD equation and its approximate solution by the finite element method, the behaviour of plasma equilibrium solution in a shell having a notch, and the effect of notch shapes on plasma behaviour are described. This analysis verifies the effectiveness of the calculation method. (Wakatsuki, Y.)
Accretion and ejection in resistive GR-MHD
Energy Technology Data Exchange (ETDEWEB)
Qian, Qian
2017-05-10
In this thesis, the accretion and ejection processes from a black hole accretion system is investigated by means of resistive general relativistic magnetohydrodynamic simulations. As a supplement to the results from prior research with non-relativistic simulations, my results confirm that the winds and outflows originated from thin accretion disks can also be observed in general relativistic simulations. In the first part, the execution of the implementation of resistivity, namely magnetic diffusivity, into the existing non-resistive general relativistic magnetohydrodynamic code HARM is illustrated. The test simulations of the new code rHARM include the comparison with analytical solution of the diffusion equation and a classic shock tube test. rHARM shows reliable performances in these tests. In the second part, rHARM is applied to investigate the evolution of magnetized tori. The results show that the existence of resistivity leads to inefficient accretions of matter from tori onto black holes by weakening the magnetorotational instability inside the tori. An indication for a critical magnetic diffusivity in this simulation setup is found beyond which no magnetorotational instability develops in the linear regime. In the third part, as the main purpose of this PhD project, rHARM is used to perform simulations of magnetically diffusive thin accretion disks that are threaded by a large-scale poloidal magnetic field around non-rotating and rotating black holes. These long-term simulations last 3000 code time units, which are about 195 rotation periods at the disk inner boundary, correspondingly. Their computational domains extend from black hole horizon to 80 Schwarzschild radii. Outflows driven from the accretion disk are clearly seen. These outflows have the typical radial velocity of 0.1 speed of light. In my analyses, I argue that these outflows are driven by the magnetic pressure gradient from the toroidal magnetic field generated by the rotation of the disk
Advanced energy utilization MHD power generation
International Nuclear Information System (INIS)
2008-01-01
The 'Technical Committee on Advanced Energy Utilization MHD Power Generation' was started to establish advanced energy utilization technologies in Japan, and has been working for three years from June 2004 to May 2007. This committee investigated closed cycle MHD, open cycle MHD, and liquid metal MHD power generation as high-efficiency power generation systems on the earth. Then, aero-space application and deep space exploration technologies were investigated as applications of MHD technology. The spin-off from research and development on MHD power generation such as acceleration and deceleration of supersonic flows was expected to solve unstart phenomena in scramjet engine and also to solve abnormal heating of aircrafts by shock wave. In addition, this committee investigated researches on fuel cells, on secondary batteries, on connection of wind power system to power grid, and on direct energy conversion system from nuclear fusion reactor for future. The present technical report described results of investigations by the committee. (author)
International Nuclear Information System (INIS)
Yvars, M.
1979-10-01
The materials considered for the insulating walls of a M.H.D. converter are Al 2 O 3 , and the calcium or strontium zirconates. For the conducting walls electricity conducting oxides are being considered such as ZrO 2 or CrO 3 La essentially. The principle of M.H.D. systems is recalled, the materials considered are described as is their behaviour in the corrosive atmospheres of M.H.D. streams [fr
Relativistic quantum mechanics; Mecanique quantique relativiste
Energy Technology Data Exchange (ETDEWEB)
Ollitrault, J.Y. [CEA Saclay, 91 - Gif-sur-Yvette (France). Service de Physique Theorique]|[Universite Pierre et Marie Curie, 75 - Paris (France)
1998-12-01
These notes form an introduction to relativistic quantum mechanics. The mathematical formalism has been reduced to the minimum in order to enable the reader to calculate elementary physical processes. The second quantification and the field theory are the logical followings of this course. The reader is expected to know analytical mechanics (Lagrangian and Hamiltonian), non-relativistic quantum mechanics and some basis of restricted relativity. The purpose of the first 3 chapters is to define the quantum mechanics framework for already known notions about rotation transformations, wave propagation and restricted theory of relativity. The next 3 chapters are devoted to the application of relativistic quantum mechanics to a particle with 0,1/5 and 1 spin value. The last chapter deals with the processes involving several particles, these processes require field theory framework to be thoroughly described. (A.C.) 2 refs.
Towards relativistic quantum geometry
Energy Technology Data Exchange (ETDEWEB)
Ridao, Luis Santiago [Instituto de Investigaciones Físicas de Mar del Plata (IFIMAR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mar del Plata (Argentina); Bellini, Mauricio, E-mail: mbellini@mdp.edu.ar [Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Funes 3350, C.P. 7600, Mar del Plata (Argentina); Instituto de Investigaciones Físicas de Mar del Plata (IFIMAR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mar del Plata (Argentina)
2015-12-17
We obtain a gauge-invariant relativistic quantum geometry by using a Weylian-like manifold with a geometric scalar field which provides a gauge-invariant relativistic quantum theory in which the algebra of the Weylian-like field depends on observers. An example for a Reissner–Nordström black-hole is studied.
Norbury, John W.
1992-01-01
Nuclear fission reactions induced by the electromagnetic field of relativistic nuclei are studied for energies relevant to present and future relativistic heavy ion accelerators. Cross sections are calculated for U-238 and Pu-239 fission induced by C-12, Si-28, Au-197, and U-238 projectiles. It is found that some of the cross sections can exceed 10 b.
Relativistic Shock Acceleration
International Nuclear Information System (INIS)
Duffy, P.; Downes, T.P.; Gallant, Y.A.; Kirk, J.G.
1999-01-01
In this paper we briefly review the basic theory of shock waves in relativistic hydrodynamics and magneto-hydrodynamics, emphasising some astrophysically interesting cases. We then present an overview of the theory of particle acceleration at such shocks describing the methods used to calculate the spectral indices of energetic particles. Recent results on acceleration at ultra-relativistic shocks are discussed. (author)
Flow of conductive fluid between parallel disks in an axial magnetic field, (2)
International Nuclear Information System (INIS)
Koike, Kazuo; Kamiyama, Shin-ichi
1981-01-01
The basic characteristics of the flow in a disc type non-equilibrium MHD power generator were studied. The flow of conductive fluid between parallel disks in an axial magnetic field was analyzed as the subsonic MHD turbulent approach flow of viscous compressible fluid, taking the electron temperature dependence of conductivity into account. The equations for the flow between disks are described by ordinary electromagnetic hydrodynamic approximation. Practical numerical calculation was performed for the non-equilibrium argon plasma seeded with potassium. The effects of the variation of characteristics of non-equilibrium plasma in main flow and boundary layer on the flow characteristics became clear. The qualitative tendency of the properties of MHD generators can be well explained. (Kato, T.)
MHD stability properties of a system of reduced toroidal MHD equations
International Nuclear Information System (INIS)
Maschke, E.K.; Morros Tosas, J.; Urquijo, G.
1993-01-01
A system of reduced toroidal magneto-hydrodynamic (MHD) equations is derived from a general scalar representation of the complete MHD system, using an ordering in terms of the inverse aspect ratio ε of a toroidal plasma. It is shown that the energy principle for the reduced equations is identical with the usual energy principle of the complete MHD system, to the appropriate order in ε. Thus, the reduced equations have the same ideal MHD stability limits as the full MHD equations. (authors). 6 refs
This model was a disk storage server used in the Data Centre up until 2012. Each tray contains a hard disk drive (see the 5TB hard disk drive on the main disk display section - this actually fits into one of the trays). There are 16 trays in all per server. There are hundreds of these servers mounted on racks in the Data Centre, as can be seen.
Design of MHD generator systems
International Nuclear Information System (INIS)
Buende, R.; Raeder, J.
1975-01-01
By assessment of the influence of the combustion efficiency on the electric output of the MHD generator, it can be shown that the construction and efficiency of the generator strongly depend on these parameters. The solutions of this system of equations are discussed. Following a derivation of criteria and boundary conditions of the design and a determination of the specific construction costs of individual system components, it is shown how the single design parameters influence the operational characteristics of such a system, especially the output, efficiency and energy production costs. (GG/LH) [de
Valentine, Pamela
1980-01-01
The author describes the floppy disk with an analogy to the phonograph record, and discusses the advantages, disadvantages, and capabilities of hard-sectored and soft-sectored floppy disks. She concludes that, at present, the floppy disk will continue to be the primary choice of personal computer manufacturers and their customers. (KC)
Convection Enhances Magnetic Turbulence in AM CVn Accretion Disks
Coleman, Matthew S. B.; Blaes, Omer; Hirose, Shigenobu; Hauschildt, Peter H.
2018-04-01
We present the results of local, vertically stratified, radiation magnetohydrodynamic shearing-box simulations of magnetorotational instability (MRI) turbulence for a (hydrogen poor) composition applicable to accretion disks in AM CVn type systems. Many of these accreting white dwarf systems are helium analogs of dwarf novae (DNe). We utilize frequency-integrated opacity and equation-of-state tables appropriate for this regime to accurately portray the relevant thermodynamics. We find bistability of thermal equilibria in the effective-temperature, surface-mass-density plane typically associated with disk instabilities. Along this equilibrium curve (i.e., the S-curve), we find that the stress to thermal pressure ratio α varied with peak values of ∼0.15 near the tip of the upper branch. Similar to DNe, we found enhancement of α near the tip of the upper branch caused by convection; this increase in α occurred despite our choice of zero net vertical magnetic flux. Two notable differences we find between DN and AM CVn accretion disk simulations are that AM CVn disks are capable of exhibiting persistent convection in outburst, and ideal MHD is valid throughout quiescence for AM CVns. In contrast, DNe simulations only show intermittent convection, and nonideal MHD effects are likely important in quiescence. By combining our previous work with these new results, we also find that convective enhancement of the MRI is anticorrelated with mean molecular weight.
Axisymmetric MHD stable sloshing ion distributions
International Nuclear Information System (INIS)
Berk, H.L.; Dominguez, N.; Roslyakov, G.V.
1986-07-01
The MHD stability of a sloshing ion distribution is investigated in a symmetric mirror cell. Fokker-Planck calculations show that stable configurations are possible for ion injection energies that are at least 150 times greater than the electron temperture. Special axial magnetic field profiles are suggested to optimize the favorable MHD properties
Energy Technology Data Exchange (ETDEWEB)
Santos-Lima, R.; De Gouveia Dal Pino, E. M. [Instituto de Astronomia, Geofisica e Ciencias Atmosfericas, Universidade de Sao Paulo, R. do Matao, 1226, Sao Paulo, SP 05508-090 (Brazil); Lazarian, A. [Department of Astronomy, University of Wisconsin, Madison, WI 53706 (United States)
2012-03-01
The formation of protostellar disks out of molecular cloud cores is still not fully understood. Under ideal MHD conditions, the removal of angular momentum from the disk progenitor by the typically embedded magnetic field may prevent the formation of a rotationally supported disk during the main protostellar accretion phase of low-mass stars. This has been known as the magnetic braking problem and the most investigated mechanism to alleviate this problem and help remove the excess of magnetic flux during the star formation process, the so-called ambipolar diffusion (AD), has been shown to be not sufficient to weaken the magnetic braking at least at this stage of the disk formation. In this work, motivated by recent progress in the understanding of magnetic reconnection in turbulent environments, we appeal to the diffusion of magnetic field mediated by magnetic reconnection as an alternative mechanism for removing magnetic flux. We investigate numerically this mechanism during the later phases of the protostellar disk formation and show its high efficiency. By means of fully three-dimensional MHD simulations, we show that the diffusivity arising from turbulent magnetic reconnection is able to transport magnetic flux to the outskirts of the disk progenitor at timescales compatible with the collapse, allowing the formation of a rotationally supported disk around the protostar of dimensions {approx}100 AU, with a nearly Keplerian profile in the early accretion phase. Since MHD turbulence is expected to be present in protostellar disks, this is a natural mechanism for removing magnetic flux excess and allowing the formation of these disks. This mechanism dismisses the necessity of postulating a hypothetical increase of the ohmic resistivity as discussed in the literature. Together with our earlier work which showed that magnetic flux removal from molecular cloud cores is very efficient, this work calls for reconsidering the relative role of AD in the processes of star
Vereshchagin, Gregory V.; Aksenov, Alexey G.
2017-02-01
Preface; Acknowledgements; Acronyms and definitions; Introduction; Part I. Theoretical Foundations: 1. Basic concepts; 2. Kinetic equation; 3. Averaging; 4. Conservation laws and equilibrium; 5. Relativistic BBGKY hierarchy; 6. Basic parameters in gases and plasmas; Part II. Numerical Methods: 7. The basics of computational physics; 8. Direct integration of Boltzmann equations; 9. Multidimensional hydrodynamics; Part III. Applications: 10. Wave dispersion in relativistic plasma; 11. Thermalization in relativistic plasma; 12. Kinetics of particles in strong fields; 13. Compton scattering in astrophysics and cosmology; 14. Self-gravitating systems; 15. Neutrinos, gravitational collapse and supernovae; Appendices; Bibliography; Index.
MHD (Magnetohydrodynamics) recovery and regeneration
Energy Technology Data Exchange (ETDEWEB)
McIlroy, R. A. [Babcock and Wilcox Co., Alliance, OH (United States). Research Center; Probert, P. B. [Babcock and Wilcox Co., Alliance, OH (United States). Research Center; Lahoda, E. J. [Westinghouse Electric Corp., Pittsburgh, PA (United States); Swift, W. M. [Argonne National Lab. (ANL), Argonne, IL (United States); Jackson, D. M. [Univ. of Tennessee Space Inst. (UTSI), Tullahoma, TN (United States); Prasad, J. [Univ. of Tennessee Space Inst. (UTSI), Tullahoma, TN (United States); Martin, J. [Hudson Engineering (United States); Rogers, C. [Hudson Engineering (United States); Ho, K. K. [Babcock and Wilcox Co., Alliance, OH (United States). Research Center; Senary, M. K. [Babcock and Wilcox Co., Alliance, OH (United States). Research Center; Lee, S. [Univ. of Akron, OH (United States)
1988-10-01
A two-phase program investigating MHD seed regeneration is described. In Phase I, bench scale experiments were carried out to demonstrate the technical feasibility of a proposed Seed Regeneration Process. The Phase I data has been used for the preliminary design of a Proof-of-Concept (POC) plant which will be built and tested in Phase II. The Phase I data will also be used to estimate the costs of a 300 Mw(t) demonstration plant for comparison with other processes. The Seed Regeneration Process consists of two major subprocesses; a Westinghouse Dry Reduction process and a modified Tampella (sulfur) Recovery process. The Westinghouse process reduces the recovered spent seed (i.e., potassium sulfate) to potassium polysulfide in a rotary kiln. The reduction product is dissolved in water to form green liquor, clarified to remove residual coal ash, and sent to the Tampella sulfur release system. The sulfur is released using carbon dioxide from flue gas in a two stage reaction. The sulfur is converted to elemental sulfur as a marketable by product. The potassium is crystallized from the green liquor and dried to the anhydrous form for return to the MHD unit.
International Nuclear Information System (INIS)
Graninger, Dawn; Öberg, Karin I.; Qi, Chunhua; Kastner, Joel
2015-01-01
The distributions and abundances of small organics in protoplanetary disks are potentially powerful probes of disk physics and chemistry. HNC is a common probe of dense interstellar regions and the target of this study. We use the Submillimeter Array (SMA) to observe HNC 3–2 toward the protoplanetary disks around the T Tauri star TW Hya and the Herbig Ae star HD 163296. HNC is detected toward both disks, constituting the first spatially resolved observations of HNC in disks. We also present SMA observations of HCN 3–2 and IRAM 30 m observations of HCN and HNC 1–0 toward HD 163296. The disk-averaged HNC/HCN emission ratio is 0.1–0.2 toward both disks. Toward TW Hya, the HNC emission is confined to a ring. The varying HNC abundance in the TW Hya disk demonstrates that HNC chemistry is strongly linked to the disk physical structure. In particular, the inner rim of the HNC ring can be explained by efficient destruction of HNC at elevated temperatures, similar to what is observed in the ISM. However, to realize the full potential of HNC as a disk tracer requires a combination of high SNR spatially resolved observations of HNC and HCN and disk-specific HNC chemical modeling
Energy Technology Data Exchange (ETDEWEB)
Graninger, Dawn; Öberg, Karin I.; Qi, Chunhua [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Kastner, Joel, E-mail: dgraninger@cfa.harvard.edu [Center for Imaging Science, School of Physics and Astronomy, and Laboratory for Multiwavelength Astrophysics, Rochester Institute of Technology, 54 Lomb Memorial Drive, Rochester, NY 14623 (United States)
2015-07-01
The distributions and abundances of small organics in protoplanetary disks are potentially powerful probes of disk physics and chemistry. HNC is a common probe of dense interstellar regions and the target of this study. We use the Submillimeter Array (SMA) to observe HNC 3–2 toward the protoplanetary disks around the T Tauri star TW Hya and the Herbig Ae star HD 163296. HNC is detected toward both disks, constituting the first spatially resolved observations of HNC in disks. We also present SMA observations of HCN 3–2 and IRAM 30 m observations of HCN and HNC 1–0 toward HD 163296. The disk-averaged HNC/HCN emission ratio is 0.1–0.2 toward both disks. Toward TW Hya, the HNC emission is confined to a ring. The varying HNC abundance in the TW Hya disk demonstrates that HNC chemistry is strongly linked to the disk physical structure. In particular, the inner rim of the HNC ring can be explained by efficient destruction of HNC at elevated temperatures, similar to what is observed in the ISM. However, to realize the full potential of HNC as a disk tracer requires a combination of high SNR spatially resolved observations of HNC and HCN and disk-specific HNC chemical modeling.
Gravitomagnetic acceleration of accretion disk matter to polar jets
Poirier, John; Mathews, Grant
2016-03-01
The motion of the masses of an accretion disk around a black hole creates a general relativistic, gravitomagnetic field (GEM) from the moving matter (be it charged or uncharged) of the accretion disk. This GEM field accelerates moving masses (neutral or charged) near the accretion disk vertically upward and away from the disk, and then inward toward the axis of the disk. As the accelerated material nears the axis with approximately vertical angles, a frame dragging effect contributes to the formation of narrow jets emanating from the poles. This GEM effect is numerically evaluated in the first post Newtonian (1PN) approximation from observable quantities like the mass and velocity of the disk. This GEM force is linear in the total mass of the accretion disk matter and quadratic in the velocity of matter near to the disk with approximately the same velocity. Since these masses and velocities can be quite high in astrophysical contexts, the GEM force, which in other contexts is weak, is quite significant. This GEM effect is compared to the ordinary electromagnetic effects applied to this problem in the past.
Plasma relativistic microwave electronics
International Nuclear Information System (INIS)
Kuzelev, M.V.; Loza, O.T.; Rukhadze, A.A.; Strelkov, P.S.; Shkvarunets, A.G.
2001-01-01
One formulated the principles of plasma relativistic microwave electronics based on the induced Cherenkov radiation of electromagnetic waves at interaction of a relativistic electron beam with plasma. One developed the theory of plasma relativistic generators and accelerators of microwave radiation, designed and studied the prototypes of such devices. One studied theoretically the mechanisms of radiation, calculated the efficiencies and the frequency spectra of plasma relativistic microwave generators and accelerators. The theory findings are proved by the experiment: intensity of the designed sources of microwave radiation is equal to 500 μW, the frequency of microwave radiation is increased by 7 times (from 4 up to 28 GHz), the width of radiation frequency band may vary from several up to 100%. The designed sources of microwave radiation are no else compared in the electronics [ru
Multimegawatt disk generator system for space applications
International Nuclear Information System (INIS)
Solbes, H.; Iwata, H.
1988-01-01
The conceptual design of a 100 megawatt - 500 seconds disk MHD generator system suitable as a burst power source for a space based neutral particle beam (NPB) is presented. The system features two disk generators operated in the magnetic field produced by a single circular superconducting magnet. Gelled reactants are used as the energy source. The oxidizer gel includes the alkali seed. The high heat flux areas of the power train are water cooled. Heat is rejected to a hydrogen stream which is also used for cooling of the exit section. The hydrogen is also used to mitigate the effects of the exhaust products of combustion on the platform. The two disk channels are operated in parallel. A dc to dc converter consolidates the channel's output into a single 100 kilovolt dc output. Critical development issues relevant to the development of such power systems are identified and discussed. A R and D plan aimed at establishing the technical feasibility of the proposed system is also presented
Energy Technology Data Exchange (ETDEWEB)
Antippa, Adel F [Departement de Physique, Universite du Quebec a Trois-Rivieres, Trois-Rivieres, Quebec G9A 5H7 (Canada)
2009-05-15
We solve the problem of the relativistic rocket by making use of the relation between Lorentzian and Galilean velocities, as well as the laws of superposition of successive collinear Lorentz boosts in the limit of infinitesimal boosts. The solution is conceptually simple, and technically straightforward, and provides an example of a powerful method that can be applied to a wide range of special relativistic problems of linear acceleration.
Exact Relativistic `Antigravity' Propulsion
Felber, Franklin S.
2006-01-01
The Schwarzschild solution is used to find the exact relativistic motion of a payload in the gravitational field of a mass moving with constant velocity. At radial approach or recession speeds faster than 3-1/2 times the speed of light, even a small mass gravitationally repels a payload. At relativistic speeds, a suitable mass can quickly propel a heavy payload from rest nearly to the speed of light with negligible stresses on the payload.
International Nuclear Information System (INIS)
Strange, P.
2010-01-01
Quantum revivals are now a well-known phenomena within nonrelativistic quantum theory. In this Letter we display the effects of relativity on revivals and quantum carpets. It is generally believed that revivals do not occur within a relativistic regime. Here we show that while this is generally true, it is possible, in principle, to set up wave packets with specific mathematical properties that do exhibit exact revivals within a fully relativistic theory.
Diskoseismology: Probing accretion disks. I - Trapped adiabatic oscillations
Nowak, Michael A.; Wagoner, Robert V.
1991-01-01
The normal modes of acoustic oscillations within thin accretion disks which are terminated by an innermost stable orbit around a slowly rotating black hole or weakly magnetized compact neutron star are analyzed. The dominant relativistic effects which allow modes to be trapped within the inner region of the disk are approximated via a modified Newtonian potential. A general formalism is developed for investigating the adiabatic oscillations of arbitrary unperturbed disk models. The generic behavior is explored by way of an expansion of the Lagrangian displacement about the plane of symmetry and by assuming separable solutions with the same radial wavelength for the horizontal and vertical perturbations. The lowest eigenfrequencies and eigenfunctions of a particular set of radial and quadrupole modes which have minimum motion normal for the plane are obtained. These modes correspond to the standard dispersion relation of disk theory.
Relativistic viscoelastic fluid mechanics
International Nuclear Information System (INIS)
Fukuma, Masafumi; Sakatani, Yuho
2011-01-01
A detailed study is carried out for the relativistic theory of viscoelasticity which was recently constructed on the basis of Onsager's linear nonequilibrium thermodynamics. After rederiving the theory using a local argument with the entropy current, we show that this theory universally reduces to the standard relativistic Navier-Stokes fluid mechanics in the long time limit. Since effects of elasticity are taken into account, the dynamics at short time scales is modified from that given by the Navier-Stokes equations, so that acausal problems intrinsic to relativistic Navier-Stokes fluids are significantly remedied. We in particular show that the wave equations for the propagation of disturbance around a hydrostatic equilibrium in Minkowski space-time become symmetric hyperbolic for some range of parameters, so that the model is free of acausality problems. This observation suggests that the relativistic viscoelastic model with such parameters can be regarded as a causal completion of relativistic Navier-Stokes fluid mechanics. By adjusting parameters to various values, this theory can treat a wide variety of materials including elastic materials, Maxwell materials, Kelvin-Voigt materials, and (a nonlinearly generalized version of) simplified Israel-Stewart fluids, and thus we expect the theory to be the most universal description of single-component relativistic continuum materials. We also show that the presence of strains and the corresponding change in temperature are naturally unified through the Tolman law in a generally covariant description of continuum mechanics.
Relativistic viscoelastic fluid mechanics.
Fukuma, Masafumi; Sakatani, Yuho
2011-08-01
A detailed study is carried out for the relativistic theory of viscoelasticity which was recently constructed on the basis of Onsager's linear nonequilibrium thermodynamics. After rederiving the theory using a local argument with the entropy current, we show that this theory universally reduces to the standard relativistic Navier-Stokes fluid mechanics in the long time limit. Since effects of elasticity are taken into account, the dynamics at short time scales is modified from that given by the Navier-Stokes equations, so that acausal problems intrinsic to relativistic Navier-Stokes fluids are significantly remedied. We in particular show that the wave equations for the propagation of disturbance around a hydrostatic equilibrium in Minkowski space-time become symmetric hyperbolic for some range of parameters, so that the model is free of acausality problems. This observation suggests that the relativistic viscoelastic model with such parameters can be regarded as a causal completion of relativistic Navier-Stokes fluid mechanics. By adjusting parameters to various values, this theory can treat a wide variety of materials including elastic materials, Maxwell materials, Kelvin-Voigt materials, and (a nonlinearly generalized version of) simplified Israel-Stewart fluids, and thus we expect the theory to be the most universal description of single-component relativistic continuum materials. We also show that the presence of strains and the corresponding change in temperature are naturally unified through the Tolman law in a generally covariant description of continuum mechanics.
Dissipative relativistic hydrodynamics
International Nuclear Information System (INIS)
Imshennik, V.S.; Morozov, Yu.I.
1989-01-01
Using the comoving reference frame in the general non-inertial case, the relativistic hydrodynamics equations are derived with an account for dissipative effects in the matter. From the entropy production equation, the exact from for the dissipative tensor components is obtained. As a result, the closed system of equations of dissipative relativistic hydrodynamics is obtained in the comoving reference frame as a relativistic generalization of the known Navier-Stokes equations for Lagrange coordinates. Equations of relativistic hydrodynamics with account for dissipative effects in the matter are derived using the assocoated reference system in general non-inertial case. True form of the dissipative tensor components is obtained from entropy production equation. Closed system of equations for dissipative relativistic hydrodynamics is obtained as a result in the assocoated reference system (ARS) - relativistic generalization of well-known Navier-Stokes equations for Lagrange coordinates. Equation system, obtained in this paper for ARS, may be effectively used in numerical models of explosive processes with 10 51 erg energy releases which are characteristic for flashes of supernovae, if white dwarf type compact target suggested as presupernova
On the thermal stability of radiation-dominated accretion disks
Energy Technology Data Exchange (ETDEWEB)
Jiang, Yan-Fei; Stone, James M. [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Davis, Shane W. [Canadian Institute for Theoretical Astrophysics, Toronto, ON M5S3H4 (Canada)
2013-11-20
We study the long-term thermal stability of radiation-dominated disks in which the vertical structure is determined self-consistently by the balance of heating due to the dissipation of MHD turbulence driven by magneto-rotational instability (MRI) and cooling due to radiation emitted at the photosphere. The calculations adopt the local shearing box approximation and utilize the recently developed radiation transfer module in the Athena MHD code based on a variable Eddington tensor rather than an assumed local closure. After saturation of the MRI, in many cases the disk maintains a steady vertical structure for many thermal times. However, in every case in which the box size in the horizontal directions are at least one pressure scale height, fluctuations associated with MRI turbulence and dynamo action in the disk eventually trigger a thermal runaway that causes the disk to either expand or contract until the calculation must be terminated. During runaway, the dependence of the heating and cooling rates on total pressure satisfy the simplest criterion for classical thermal instability. We identify several physical reasons why the thermal runaway observed in our simulations differ from the standard α disk model; for example, the advection of radiation contributes a non-negligible fraction to the vertical energy flux at the largest radiation pressure, most of the dissipation does not happen in the disk mid-plane, and the change of dissipation scale height with mid-plane pressure is slower than the change of density scale height. We discuss how and why our results differ from those published previously. Such thermal runaway behavior might have important implications for interpreting temporal variability in observed systems, but fully global simulations are required to study the saturated state before detailed predictions can be made.
The impact of kinetic effects on the properties of relativistic electron–positron shocks
International Nuclear Information System (INIS)
Stockem, Anne; Fiúza, Frederico; Fonseca, Ricardo A; Silva, Luis O
2012-01-01
We assess the impact of non-thermally shock-accelerated particles on the magnetohydrodynamic (MHD) jump conditions of relativistic shocks. The adiabatic constant is calculated directly from first-principles particle-in-cell simulation data, enabling a semi-kinetic approach to improve the standard fluid model and allowing for an identification of the key parameters that define the shock structure. We find that the evolving upstream parameters have a stronger impact than the corrections due to non-thermal particles. We find that the decrease in the upstream bulk speed result in deviations from the standard MHD model up to 10%. Furthermore, we obtain a quantitative definition of the shock transition region from our analysis. For Weibel-mediated shocks the inclusion of a magnetic field in the MHD conservation equations is addressed for the first time. (paper)
Generation of compressible modes in MHD turbulence
Energy Technology Data Exchange (ETDEWEB)
Cho, Jungyeon [Chungnam National Univ., Daejeon (Korea); Lazarian, A. [Univ. of Wisconsin, Madison, WI (United States)
2005-05-01
Astrophysical turbulence is magnetohydrodynamic (MHD) in nature. We discuss fundamental properties of MHD turbulence and in particular the generation of compressible MHD waves by Alfvenic turbulence and show that this process is inefficient. This allows us to study the evolution of different types of MHD perturbations separately. We describe how to separate MHD fluctuations into three distinct families: Alfven, slow, and fast modes. We find that the degree of suppression of slow and fast modes production by Alfvenic turbulence depends on the strength of the mean field. We review the scaling relations of the modes in strong MHD turbulence. We show that Alfven modes in compressible regime exhibit scalings and anisotropy similar to those in incompressible regime. Slow modes passively mimic Alfven modes. However, fast modes exhibit isotropy and a scaling similar to that of acoustic turbulence both in high and low {beta} plasmas. We show that our findings entail important consequences for star formation theories, cosmic ray propagation, dust dynamics, and gamma ray bursts. We anticipate many more applications of the new insight to MHD turbulence and expect more revisions of the existing paradigms of astrophysical processes as the field matures. (orig.)
Planetesimal Formation by the Streaming Instability in a Photoevaporating Disk
Energy Technology Data Exchange (ETDEWEB)
Carrera, Daniel; Johansen, Anders; Davies, Melvyn B. [Lund Observatory, Dept. of Astronomy and Theoretical Physics, Lund University, Box 43, SE-221 00 Lund (Sweden); Gorti, Uma [NASA Ames Research Center, Moffett Field, CA (United States)
2017-04-10
Recent years have seen growing interest in the streaming instability as a candidate mechanism to produce planetesimals. However, these investigations have been limited to small-scale simulations. We now present the results of a global protoplanetary disk evolution model that incorporates planetesimal formation by the streaming instability, along with viscous accretion, photoevaporation by EUV, FUV, and X-ray photons, dust evolution, the water ice line, and stratified turbulence. Our simulations produce massive (60–130 M {sub ⊕}) planetesimal belts beyond 100 au and up to ∼20 M {sub ⊕} of planetesimals in the middle regions (3–100 au). Our most comprehensive model forms 8 M {sub ⊕} of planetesimals inside 3 au, where they can give rise to terrestrial planets. The planetesimal mass formed in the inner disk depends critically on the timing of the formation of an inner cavity in the disk by high-energy photons. Our results show that the combination of photoevaporation and the streaming instability are efficient at converting the solid component of protoplanetary disks into planetesimals. Our model, however, does not form enough early planetesimals in the inner and middle regions of the disk to give rise to giant planets and super-Earths with gaseous envelopes. Additional processes such as particle pileups and mass loss driven by MHD winds may be needed to drive the formation of early planetesimal generations in the planet-forming regions of protoplanetary disks.
Hall-effect-controlled gas dynamics in protoplanetary disks. I. Wind solutions at the inner disk
International Nuclear Information System (INIS)
Bai, Xue-Ning
2014-01-01
The gas dynamics of protoplanetary disks (PPDs) is largely controlled by non-ideal magnetohydrodynamic (MHD) effects including Ohmic resistivity, the Hall effect, and ambipolar diffusion. Among these the role of the Hall effect is the least explored and most poorly understood. In this series, we have included, for the first time, all three non-ideal MHD effects in a self-consistent manner to investigate the role of the Hall effect on PPD gas dynamics using local shearing-box simulations. In this first paper, we focus on the inner region of PPDs, where previous studies (Bai and Stone 2013; Bai 2013) excluding the Hall effect have revealed that the inner disk up to ∼10 AU is largely laminar, with accretion driven by a magnetocentrifugal wind. We confirm this basic picture and show that the Hall effect modifies the wind solutions depending on the polarity of the large-scale poloidal magnetic field B 0 threading the disk. When B 0 ⋅Ω>0, the horizontal magnetic field is strongly amplified toward the disk interior, leading to a stronger disk wind (by ∼50% or less in terms of the wind-driven accretion rate). The enhanced horizontal field also leads to much stronger large-scale Maxwell stress (magnetic braking) that contributes to a considerable fraction of the wind-driven accretion rate. When B 0 ⋅Ω<0, the horizontal magnetic field is reduced, leading to a weaker disk wind (by ≲ 20%) and negligible magnetic braking. Under fiducial parameters, we find that when B 0 ⋅Ω>0, the laminar region extends farther to ∼10-15 AU before the magnetorotational instability sets in, while for B 0 ⋅Ω<0, the laminar region extends only to ∼3-5 AU for a typical accretion rate of ∼10 –8 to10 –7 M ☉ yr –1 . Scaling relations for the wind properties, especially the wind-driven accretion rate, are provided for aligned and anti-aligned field geometries.
Hall-effect-controlled gas dynamics in protoplanetary disks. I. Wind solutions at the inner disk
Energy Technology Data Exchange (ETDEWEB)
Bai, Xue-Ning, E-mail: xbai@cfa.harvard.edu [Institute for Theory and Computation, Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, MS-51, Cambridge, MA 02138 (United States)
2014-08-20
The gas dynamics of protoplanetary disks (PPDs) is largely controlled by non-ideal magnetohydrodynamic (MHD) effects including Ohmic resistivity, the Hall effect, and ambipolar diffusion. Among these the role of the Hall effect is the least explored and most poorly understood. In this series, we have included, for the first time, all three non-ideal MHD effects in a self-consistent manner to investigate the role of the Hall effect on PPD gas dynamics using local shearing-box simulations. In this first paper, we focus on the inner region of PPDs, where previous studies (Bai and Stone 2013; Bai 2013) excluding the Hall effect have revealed that the inner disk up to ∼10 AU is largely laminar, with accretion driven by a magnetocentrifugal wind. We confirm this basic picture and show that the Hall effect modifies the wind solutions depending on the polarity of the large-scale poloidal magnetic field B{sub 0} threading the disk. When B{sub 0}⋅Ω>0, the horizontal magnetic field is strongly amplified toward the disk interior, leading to a stronger disk wind (by ∼50% or less in terms of the wind-driven accretion rate). The enhanced horizontal field also leads to much stronger large-scale Maxwell stress (magnetic braking) that contributes to a considerable fraction of the wind-driven accretion rate. When B{sub 0}⋅Ω<0, the horizontal magnetic field is reduced, leading to a weaker disk wind (by ≲ 20%) and negligible magnetic braking. Under fiducial parameters, we find that when B{sub 0}⋅Ω>0, the laminar region extends farther to ∼10-15 AU before the magnetorotational instability sets in, while for B{sub 0}⋅Ω<0, the laminar region extends only to ∼3-5 AU for a typical accretion rate of ∼10{sup –8} to10{sup –7} M {sub ☉} yr{sup –1}. Scaling relations for the wind properties, especially the wind-driven accretion rate, are provided for aligned and anti-aligned field geometries.
MHD intermediate shock discontinuities: Pt. 1
International Nuclear Information System (INIS)
Kennel, C.F.; Blandford, R.D.; Coppi, P.
1989-01-01
Recent numerical investigations have focused attention once more on the role of intermediate shocks in MHD. Four types of intermediate shock are identified using a graphical representation of the MHD Rankine-Hugoniot conditions. This same representation can be used to exhibit the close relationship of intermediate shocks to switch-on shocks and rotational discontinuities. The conditions under which intermediate discontinuities can be found are elucidated. The variations in velocity, pressure, entropy and magnetic-field jumps with upstream parameters in intermediate shocks are exhibited graphically. The evolutionary arguments traditionally advanced against intermediate shocks may fail because the equations of classical MHD are not strictly hyperbolic. (author)
Statistical thermodynamics of a two-dimensional relativistic gas.
Montakhab, Afshin; Ghodrat, Malihe; Barati, Mahmood
2009-03-01
In this paper we study a fully relativistic model of a two-dimensional hard-disk gas. This model avoids the general problems associated with relativistic particle collisions and is therefore an ideal system to study relativistic effects in statistical thermodynamics. We study this model using molecular-dynamics simulation, concentrating on the velocity distribution functions. We obtain results for x and y components of velocity in the rest frame (Gamma) as well as the moving frame (Gamma;{'}) . Our results confirm that Jüttner distribution is the correct generalization of Maxwell-Boltzmann distribution. We obtain the same "temperature" parameter beta for both frames consistent with a recent study of a limited one-dimensional model. We also address the controversial topic of temperature transformation. We show that while local thermal equilibrium holds in the moving frame, relying on statistical methods such as distribution functions or equipartition theorem are ultimately inconclusive in deciding on a correct temperature transformation law (if any).
Liquid metal MHD generator systems
International Nuclear Information System (INIS)
Satyamurthy, P.; Dixit, N.S.; Venkataramani, N.; Rohatgi, V.K.
1985-01-01
Liquid Metal MHD (LMMHD) Generator Systems are becoming increasingly important in space and terrestrial applications due to their compactness and versatility. This report gives the current status and economic viability of LMMHD generators coupled to solar collectors, fast breeder reactors, low grade heat sources and conventional high grade heat sources. The various thermodynamic cycles in the temperatures range of 100degC-2000degC have been examined. The report also discusses the present understanding of various loss mechanisms inherent in LMMHD systems and the techniques for overcoming these losses. A small mercury-air LMMHD experimental facility being set up in Plasma Physics Division along with proposals for future development of this new technology is also presented in this report. (author)
MHD equilibrium with toroidal rotation
International Nuclear Information System (INIS)
Li, J.
1987-03-01
The present work attempts to formulate the equilibrium of axisymmetric plasma with purely toroidal flow within ideal MHD theory. In general, the inertial term Rho(v.Del)v caused by plasma flow is so complicated that the equilibrium equation is completely different from the Grad-Shafranov equation. However, in the case of purely toroidal flow the equilibrium equation can be simplified so that it resembles the Grad-Shafranov equation. Generally one arbitrary two-variable functions and two arbitrary single variable functions, instead of only four single-variable functions, are allowed in the new equilibrium equations. Also, the boundary conditions of the rotating (with purely toroidal fluid flow, static - without any fluid flow) equilibrium are the same as those of the static equilibrium. So numerically one can calculate the rotating equilibrium as a static equilibrium. (author)
Exploring Disks Around Planets
Kohler, Susanna
2017-07-01
Giant planets are thought to form in circumstellar disks surrounding young stars, but material may also accrete into a smaller disk around the planet. Weve never detected one of these circumplanetary disks before but thanks to new simulations, we now have a better idea of what to look for.Image from previous work simulating a Jupiter-mass planet forming inside a circumstellar disk. The planet has its own circumplanetary disk of accreted material. [Frdric Masset]Elusive DisksIn the formation of giant planets, we think the final phase consists of accretion onto the planet from a disk that surrounds it. This circumplanetary disk is important to understand, since it both regulates the late gas accretion and forms the birthplace of future satellites of the planet.Weve yet to detect a circumplanetary disk thus far, because the resolution needed to spot one has been out of reach. Now, however, were entering an era where the disk and its kinematics may be observable with high-powered telescopes (like the Atacama Large Millimeter Array).To prepare for such observations, we need models that predict the basic characteristics of these disks like the mass, temperature, and kinematic properties. Now a researcher at the ETH Zrich Institute for Astronomy in Switzerland, Judit Szulgyi, has worked toward this goal.Simulating CoolingSzulgyi performs a series of 3D global radiative hydrodynamic simulations of 1, 3, 5, and 10 Jupiter-mass (MJ) giant planets and their surrounding circumplanetary disks, embedded within the larger circumstellar disk around the central star.Density (left column), temperature (center), and normalized angular momentum (right) for a 1 MJ planet over temperatures cooling from 10,000 K (top) to 1,000 K (bottom). At high temperatures, a spherical circumplanetary envelope surrounds the planet, but as the planet cools, the envelope transitions around 64,000 K to a flattened disk. [Szulgyi 2017]This work explores the effects of different planet temperatures and
Maroof, R.; Ali, S.; Mushtaq, A.; Qamar, A.
2015-11-01
Linear properties of high and low frequency waves are studied in an electron-positron-ion (e-p-i) dense plasma with spin and relativity effects. In a low frequency regime, the magnetohydrodynamic (MHD) waves, namely, the magnetoacoustic and Alfven waves are presented in a magnetized plasma, in which the inertial ions are taken as spinless and non-degenerate, whereas the electrons and positrons are treated quantum mechanically due to their smaller mass. Quantum corrections associated with the spin magnetization and density correlations for electrons and positrons are re-considered and a generalized dispersion relation for the low frequency MHD waves is derived to account for relativistic degeneracy effects. On the basis of angles of propagation, the dispersion relations of different modes are discussed analytically in a degenerate relativistic plasma. Numerical results reveal that electron and positron relativistic degeneracy effects significantly modify the dispersive properties of MHD waves. Our present analysis should be useful for understanding the collective interactions in dense astrophysical compact objects, like, the white dwarfs and in atmosphere of neutron stars.
Energy Technology Data Exchange (ETDEWEB)
Maroof, R. [Department of Physics, Abdul Wali Khan University, Mardan 23200 (Pakistan); Department of Physics, University of Peshawar, Peshawar 25000 (Pakistan); National Center for Physics (NCP) at QAU Campus, Shahdra Valley Road, Islamabad 44000 (Pakistan); Ali, S. [National Center for Physics (NCP) at QAU Campus, Shahdra Valley Road, Islamabad 44000 (Pakistan); Mushtaq, A. [Department of Physics, Abdul Wali Khan University, Mardan 23200 (Pakistan); National Center for Physics (NCP) at QAU Campus, Shahdra Valley Road, Islamabad 44000 (Pakistan); Qamar, A. [Department of Physics, University of Peshawar, Peshawar 25000 (Pakistan)
2015-11-15
Linear properties of high and low frequency waves are studied in an electron-positron-ion (e-p-i) dense plasma with spin and relativity effects. In a low frequency regime, the magnetohydrodynamic (MHD) waves, namely, the magnetoacoustic and Alfven waves are presented in a magnetized plasma, in which the inertial ions are taken as spinless and non-degenerate, whereas the electrons and positrons are treated quantum mechanically due to their smaller mass. Quantum corrections associated with the spin magnetization and density correlations for electrons and positrons are re-considered and a generalized dispersion relation for the low frequency MHD waves is derived to account for relativistic degeneracy effects. On the basis of angles of propagation, the dispersion relations of different modes are discussed analytically in a degenerate relativistic plasma. Numerical results reveal that electron and positron relativistic degeneracy effects significantly modify the dispersive properties of MHD waves. Our present analysis should be useful for understanding the collective interactions in dense astrophysical compact objects, like, the white dwarfs and in atmosphere of neutron stars.
Zhu, Zhaohuan; Stone, James M.; Rafikov, Roman R.
2013-01-01
We study wakes and gap opening by low mass planets in gaseous protoplanetary disks threaded by net vertical magnetic fields which drive magnetohydrodynamical (MHD) turbulence through the magnetorotational instabilty (MRI), using three dimensional simulations in the unstratified local shearing box approximation. The wakes, which are excited by the planets, are damped by shocks similar to the wake damping in inviscid hydrodynamic (HD) disks. Angular momentum deposition by shock damping opens ga...
3D simulation studies of tokamak plasmas using MHD and extended-MHD models
International Nuclear Information System (INIS)
Park, W.; Chang, Z.; Fredrickson, E.; Fu, G.Y.
1996-01-01
The M3D (Multi-level 3D) tokamak simulation project aims at the simulation of tokamak plasmas using a multi-level tokamak code package. Several current applications using MHD and Extended-MHD models are presented; high-β disruption studies in reversed shear plasmas using the MHD level MH3D code, ω *i stabilization and nonlinear island saturation of TAE mode using the hybrid particle/MHD level MH3D-K code, and unstructured mesh MH3D ++ code studies. In particular, three internal mode disruption mechanisms are identified from simulation results which agree which agree well with experimental data
Characteristics of laminar MHD fluid hammer in pipe
International Nuclear Information System (INIS)
Huang, Z.Y.; Liu, Y.J.
2016-01-01
As gradually wide applications of MHD fluid, transportation as well as control with pumps and valves is unavoidable, which induces MHD fluid hammer. The paper attempts to combine MHD effect and fluid hammer effect and to investigate the characteristics of laminar MHD fluid hammer. A non-dimensional fluid hammer model, based on Navier–Stocks equations, coupling with Lorentz force is numerically solved in a reservoir–pipe–valve system with uniform external magnetic field. The MHD effect is represented by the interaction number which associates with the conductivity of the MHD fluid as well as the external magnetic field and can be interpreted as the ratio of Lorentz force to Joukowsky force. The transient numerical results of pressure head, average velocity, wall shear stress, velocity profiles and shear stress profiles are provided. The additional MHD effect hinders fluid motion, weakens wave front and homogenizes velocity profiles, contributing to obvious attenuation of oscillation, strengthened line packing and weakened Richardson annular effect. Studying the characteristics of MHD laminar fluid hammer theoretically supplements the gap of knowledge of rapid-transient MHD flow and technically provides beneficial information for MHD pipeline system designers to better devise MHD systems. - Highlights: • Characteristics of laminar MHD fluid hammer are discussed by simulation. • MHD effect has significant influence on attenuation of wave. • MHD effect strengthens line packing. • MHD effect inhibits Richardson annular effect.
International Nuclear Information System (INIS)
Anton, Luis; MartI, Jose M; Ibanez, Jose M; Aloy, Miguel A.; Mimica, Petar; Miralles, Juan A.
2010-01-01
We obtain renormalized sets of right and left eigenvectors of the flux vector Jacobians of the relativistic MHD equations, which are regular and span a complete basis in any physical state including degenerate ones. The renormalization procedure relies on the characterization of the degeneracy types in terms of the normal and tangential components of the magnetic field to the wave front in the fluid rest frame. Proper expressions of the renormalized eigenvectors in conserved variables are obtained through the corresponding matrix transformations. Our work completes previous analysis that present different sets of right eigenvectors for non-degenerate and degenerate states, and can be seen as a relativistic generalization of earlier work performed in classical MHD. Based on the full wave decomposition (FWD) provided by the renormalized set of eigenvectors in conserved variables, we have also developed a linearized (Roe-type) Riemann solver. Extensive testing against one- and two-dimensional standard numerical problems allows us to conclude that our solver is very robust. When compared with a family of simpler solvers that avoid the knowledge of the full characteristic structure of the equations in the computation of the numerical fluxes, our solver turns out to be less diffusive than HLL and HLLC, and comparable in accuracy to the HLLD solver. The amount of operations needed by the FWD solver makes it less efficient computationally than those of the HLL family in one-dimensional problems. However, its relative efficiency increases in multidimensional simulations.
MHD instabilities in heliotron/torsatron
International Nuclear Information System (INIS)
Wakatani, Masahiro; Nakamura, Yuji; Ichiguchi, Katsuji
1992-01-01
Recent theoretical results on MHD instabilities in heliotron/torsatron are reviewed. By comparing the results with experimental data in Heliotron E, Heliotron DR and ATF, it is pointed out that resistive interchange modes are the most crucial instabilities, since the magnetic hill occupies a substantial region of the plasma column. Development of three-dimensional MHD equilibrium codes has made significant progress. By applying the local stability criteria shown by D 1 (ideal MHD mode) and D R (resistive MHD mode) to the equilibria given by the three-dimensional codes such as BETA and VMEC, stability thresholds for the low n ideal modes or the low n resistive modes may be estimated with resonable accuracy, where n is a toroidal mode number. (orig.)
Neoclassical MHD descriptions of tokamak plasmas
International Nuclear Information System (INIS)
Callen, J.D.; Kim, Y.B.; Sundaram, A.K.
1988-01-01
Considerable progress has been made in extending neoclassical MHD theory and in exploring the linear instabilities, nonlinear behavior and turbulence models it implies for tokamak plasmas. The areas highlighted in this paper include: extension of the neoclassical MHD equations to include temperature-gradient and heat flow effects; the free energy and entropy evolution implied by this more complete description; a proper ballooning mode formalism analysis of the linear instabilities; a new rippling mode type instability; numerical simulation of the linear instabilities which exhibit a smooth transition from resistive ballooning modes at high collisionality to neoclassical MHD modes at low collisionality; numerical simulation of the nonlinear growth of a single helicity tearing mode; and a Direct-Interaction-Approximation model of neoclassical MHD turbulence and the anomalous transport it induces which substantially improves upon previous mixing length model estimates. 34 refs., 2 figs
Energy Technology Data Exchange (ETDEWEB)
Zhu Zhaohuan; Stone, James M.; Rafikov, Roman R., E-mail: zhzhu@astro.princeton.edu, E-mail: jstone@astro.princeton.edu, E-mail: rrr@astro.princeton.edu [Department of Astrophysical Sciences, Princeton University, Princeton, NJ, 08544 (United States)
2013-05-10
Some regions in protoplanetary disks are turbulent, while some regions are quiescent (e.g. the dead zone). In order to study how planets open gaps in both inviscid hydrodynamic disk (e.g. the dead zone) and the disk subject to magnetorotational instability (MRI), we carried out both shearing box two-dimensional inviscid hydrodynamical simulations and three-dimensional unstratified magnetohydrodynamical (MHD) simulations (having net vertical magnetic fields) with a planet at the box center. We found that, due to the nonlinear wave steepening, even a low mass planet can open gaps in both cases, in contradiction to the ''thermal criterion'' for gap opening. In order to understand if we can represent the MRI turbulent stress with the viscous {alpha} prescription for studying gap opening, we compare gap properties in MRI-turbulent disks to those in viscous HD disks having the same stress, and found that the same mass planet opens a significantly deeper and wider gap in net vertical flux MHD disks than in viscous HD disks. This difference arises due to the efficient magnetic field transport into the gap region in MRI disks, leading to a larger effective {alpha} within the gap. Thus, across the gap, the Maxwell stress profile is smoother than the gap density profile, and a deeper gap is needed for the Maxwell stress gradient to balance the planetary torque density. Comparison with previous results from net toroidal flux/zero flux MHD simulations indicates that the magnetic field geometry plays an important role in the gap opening process. We also found that long-lived density features (termed zonal flows) produced by the MRI can affect planet migration. Overall, our results suggest that gaps can be commonly produced by low mass planets in realistic protoplanetary disks, and caution the use of a constant {alpha}-viscosity to model gaps in protoplanetary disks.
International Nuclear Information System (INIS)
Zhu Zhaohuan; Stone, James M.; Rafikov, Roman R.
2013-01-01
Some regions in protoplanetary disks are turbulent, while some regions are quiescent (e.g. the dead zone). In order to study how planets open gaps in both inviscid hydrodynamic disk (e.g. the dead zone) and the disk subject to magnetorotational instability (MRI), we carried out both shearing box two-dimensional inviscid hydrodynamical simulations and three-dimensional unstratified magnetohydrodynamical (MHD) simulations (having net vertical magnetic fields) with a planet at the box center. We found that, due to the nonlinear wave steepening, even a low mass planet can open gaps in both cases, in contradiction to the ''thermal criterion'' for gap opening. In order to understand if we can represent the MRI turbulent stress with the viscous α prescription for studying gap opening, we compare gap properties in MRI-turbulent disks to those in viscous HD disks having the same stress, and found that the same mass planet opens a significantly deeper and wider gap in net vertical flux MHD disks than in viscous HD disks. This difference arises due to the efficient magnetic field transport into the gap region in MRI disks, leading to a larger effective α within the gap. Thus, across the gap, the Maxwell stress profile is smoother than the gap density profile, and a deeper gap is needed for the Maxwell stress gradient to balance the planetary torque density. Comparison with previous results from net toroidal flux/zero flux MHD simulations indicates that the magnetic field geometry plays an important role in the gap opening process. We also found that long-lived density features (termed zonal flows) produced by the MRI can affect planet migration. Overall, our results suggest that gaps can be commonly produced by low mass planets in realistic protoplanetary disks, and caution the use of a constant α-viscosity to model gaps in protoplanetary disks.
International Nuclear Information System (INIS)
Dunn, P.F.
1978-01-01
The basic features of the two-phase liquid-metal MHD energy conversion under development at Argonne National Laboratory are presented. The results of system studies on the Rankine-cycle and the open-cycle coal-fired cycle options are discussed. The liquid-metal MHD experimental facilities are described in addition to the system's major components, the generator, mixer and nozzle-separator-diffuser
MHD stability analysis of helical system plasmas
International Nuclear Information System (INIS)
Nakamura, Yuji
2000-01-01
Several topics of the MHD stability studies in helical system plasmas are reviewed with respect to the linear and ideal modes mainly. Difference of the method of the MHD stability analysis in helical system plasmas from that in tokamak plasmas is emphasized. Lack of the cyclic (symmetric) coordinate makes an analysis more difficult. Recent topic about TAE modes in a helical system is also described briefly. (author)
Relativistic and non-relativistic studies of nuclear matter
Banerjee, MK; Tjon, JA
2002-01-01
We point out that the differences between the results of the non-relativistic lowest order Brueckner theory (LOBT) and the relativistic Dirac-Brueckner analysis predominantly arise from two sources. Besides effects from a nucleon mass modification M* in nuclear medium we have in a relativistic
MAGNETOROTATIONAL-INSTABILITY-DRIVEN ACCRETION IN PROTOPLANETARY DISKS
International Nuclear Information System (INIS)
Bai Xuening
2011-01-01
Non-ideal MHD effects play an important role in the gas dynamics in protoplanetary disks (PPDs). This paper addresses the influence of non-ideal MHD effects on the magnetorotational instability (MRI) and angular momentum transport in PPDs using the most up-to-date results from numerical simulations. We perform chemistry calculations using a complex reaction network with standard prescriptions for X-ray and cosmic-ray ionizations. We first show that whether or not grains are included, the recombination time is at least one order of magnitude less than the orbital time within five disk scale heights, justifying the validity of local ionization equilibrium and strong coupling limit in PPDs. The full conductivity tensor at different disk radii and heights is evaluated, with the MRI active region determined by requiring that (1) the Ohmic Elsasser number Λ be greater than 1 and (2) the ratio of gas to magnetic pressure β be greater than β min (Am) as identified in the recent study by Bai and Stone, where Am is the Elsasser number for ambipolar diffusion. With full flexibility as to the magnetic field strength, we provide a general framework for estimating the MRI-driven accretion rate M-dot and the magnetic field strength in the MRI active layer. We find that the MRI active layer always exists at any disk radius as long as the magnetic field in PPDs is sufficiently weak. However, the optimistically predicted M-dot in the inner disk (r = 1-10 AU) appears insufficient to account for the observed range of accretion rates in PPDs (around 10 -8 M sun yr -1 ) even in the grain-free calculation, and the presence of solar abundance sub-micron grains further reduces M-dot by one to two orders of magnitude. Moreover, we find that the predicted M-dot increases with radius in the inner disk where accretion is layered, which would lead to runaway mass accumulation if disk accretion is solely driven by the MRI. Our results suggest that stronger sources of ionization and
Relativistic quantum mechanics
International Nuclear Information System (INIS)
Ollitrault, J.Y.
1998-12-01
These notes form an introduction to relativistic quantum mechanics. The mathematical formalism has been reduced to the minimum in order to enable the reader to calculate elementary physical processes. The second quantification and the field theory are the logical followings of this course. The reader is expected to know analytical mechanics (Lagrangian and Hamiltonian), non-relativistic quantum mechanics and some basis of restricted relativity. The purpose of the first 3 chapters is to define the quantum mechanics framework for already known notions about rotation transformations, wave propagation and restricted theory of relativity. The next 3 chapters are devoted to the application of relativistic quantum mechanics to a particle with 0,1/5 and 1 spin value. The last chapter deals with the processes involving several particles, these processes require field theory framework to be thoroughly described. (A.C.)
Relativistic quantum mechanics
Horwitz, Lawrence P
2015-01-01
This book describes a relativistic quantum theory developed by the author starting from the E.C.G. Stueckelberg approach proposed in the early 40s. In this framework a universal invariant evolution parameter (corresponding to the time originally postulated by Newton) is introduced to describe dynamical evolution. This theory is able to provide solutions for some of the fundamental problems encountered in early attempts to construct a relativistic quantum theory. A relativistically covariant construction is given for which particle spins and angular momenta can be combined through the usual rotation group Clebsch-Gordan coefficients. Solutions are defined for both the classical and quantum two body bound state and scattering problems. The recently developed quantum Lax-Phillips theory of semigroup evolution of resonant states is described. The experiment of Lindner and coworkers on interference in time is discussed showing how the property of coherence in time provides a simple understanding of the results. Th...
Relativistic theories of materials
Bressan, Aldo
1978-01-01
The theory of relativity was created in 1905 to solve a problem concerning electromagnetic fields. That solution was reached by means of profound changes in fundamental concepts and ideas that considerably affected the whole of physics. Moreover, when Einstein took gravitation into account, he was forced to develop radical changes also in our space-time concepts (1916). Relativistic works on heat, thermodynamics, and elasticity appeared as early as 1911. However, general theories having a thermodynamic basis, including heat conduction and constitutive equations, did not appear in general relativity until about 1955 for fluids and appeared only after 1960 for elastic or more general finitely deformed materials. These theories dealt with materials with memory, and in this connection some relativistic versions of the principle of material indifference were considered. Even more recently, relativistic theories incorporating finite deformations for polarizable and magnetizable materials and those in which couple s...
Handbook of relativistic quantum chemistry
International Nuclear Information System (INIS)
Liu, Wenjian
2017-01-01
This handbook focuses on the foundations of relativistic quantum mechanics and addresses a number of fundamental issues never covered before in a book. For instance: How can many-body theory be combined with quantum electrodynamics? How can quantum electrodynamics be interfaced with relativistic quantum chemistry? What is the most appropriate relativistic many-electron Hamiltonian? How can we achieve relativistic explicit correlation? How can we formulate relativistic properties? - just to name a few. Since relativistic quantum chemistry is an integral component of computational chemistry, this handbook also supplements the ''Handbook of Computational Chemistry''. Generally speaking, it aims to establish the 'big picture' of relativistic molecular quantum mechanics as the union of quantum electrodynamics and relativistic quantum chemistry. Accordingly, it provides an accessible introduction for readers new to the field, presents advanced methodologies for experts, and discusses possible future perspectives, helping readers understand when/how to apply/develop the methodologies.
Handbook of relativistic quantum chemistry
Energy Technology Data Exchange (ETDEWEB)
Liu, Wenjian (ed.) [Peking Univ., Beijing (China). Center for Computational Science and Engineering
2017-03-01
This handbook focuses on the foundations of relativistic quantum mechanics and addresses a number of fundamental issues never covered before in a book. For instance: How can many-body theory be combined with quantum electrodynamics? How can quantum electrodynamics be interfaced with relativistic quantum chemistry? What is the most appropriate relativistic many-electron Hamiltonian? How can we achieve relativistic explicit correlation? How can we formulate relativistic properties? - just to name a few. Since relativistic quantum chemistry is an integral component of computational chemistry, this handbook also supplements the ''Handbook of Computational Chemistry''. Generally speaking, it aims to establish the 'big picture' of relativistic molecular quantum mechanics as the union of quantum electrodynamics and relativistic quantum chemistry. Accordingly, it provides an accessible introduction for readers new to the field, presents advanced methodologies for experts, and discusses possible future perspectives, helping readers understand when/how to apply/develop the methodologies.
Investigations on high speed MHD liquid flow
International Nuclear Information System (INIS)
Yamasaki, Takasuke; Kamiyama, Shin-ichi.
1982-01-01
Lately, the pressure drop problem of MHD two-phase flow in a duct has been investigated theoretically and experimentally in conjunction with the problems of liquid metal MHD two-phase flow power-generating cycle or of liquid metal boiling two-phase flow in the blanket of a nuclear fusion reactor. Though many research results have been reported so far for MHD single-phase flow, the hydrodynamic studies on high speed two-phase flow are reported only rarely, specifically the study dealing with the generation of cavitation is not found. In the present investigation, the basic equation was derived, analyzing the high speed MHD liquid flow in a diverging duct as the one-dimensional flow of homogeneous two-phase fluid of small void ratio. Furthermore, the theoretical solution for the effect of magnetic field on cavitation-generating conditions was tried. The pressure distribution in MHD flow in a duct largely varies with load factor, and even if the void ratio is small, the pressure distribution in two-phase flow is considerably different from that in single-phase flow. Even if the MHD two-phase flow in a duct is subsonic flow at the throat, the critical conditions may be achieved sometimes in a diverging duct. It was shown that cavitation is more likely to occur as magnetic field becomes more intense if it is generated downstream of the throat. This explains the experimental results qualitatively. (Wakatsuki, Y.)
Scaling, Intermittency and Decay of MHD Turbulence
International Nuclear Information System (INIS)
Lazarian, A.; Cho, Jungyeon
2005-01-01
We discuss a few recent developments that are important for understanding of MHD turbulence. First, MHD turbulence is not so messy as it is usually believed. In fact, the notion of strong non-linear coupling of compressible and incompressible motions along MHD cascade is not tenable. Alfven, slow and fast modes of MHD turbulence follow their own cascades and exhibit degrees of anisotropy consistent with theoretical expectations. Second, the fast decay of turbulence is not related to the compressibility of fluid. Rates of decay of compressible and incompressible motions are very similar. Third, viscosity by neutrals does not suppress MHD turbulence in a partially ionized gas. Instead, MHD turbulence develops magnetic cascade at scales below the scale at which neutrals damp ordinary hydrodynamic motions. Forth, density statistics does not exhibit the universality that the velocity and magnetic field do. For instance, at small Mach numbers the density is anisotropic, but it gets isotropic at high Mach numbers. Fifth, the intermittency of magnetic field and velocity are different. Both depend on whether the measurements are done in a local system of reference oriented along the local magnetic field or in the global system of reference related to the mean magnetic field
Biquaternions and relativistic kinematics
International Nuclear Information System (INIS)
Bogush, A.A.; Kurochkin, Yu.A.; Fedorov, F.I.
1979-01-01
The problems concerning the use of quaternion interpretation of the Lorentz group vector parametrization are considered for solving relativistic kinematics problems. A vector theory convenient for describing the characteristic features of the Lobachevsky space is suggested. The kinematics of elementary particle scattering is investigated on the basis of this theory. A synthesis of vector parametrization and of quaternion calculation has been shown to lead to natural formulation of the theory of vectors in the three-dimensional Lobachevsky space, realized on mass hyperboloids of relativistic particles
Relativistic heavy ion collisions
International Nuclear Information System (INIS)
Barz, H.W.; Kaempfer, B.; Schulz, H.
1984-12-01
An elementary introduction is given into the scenario of relativistic heavy ion collisions. It deals with relativistic kinematics and estimates of energy densities, extrapolations of the present knowledge of hadron-hadron and hadron-nuleus to nucleus-nucleus collisions, the properties of the quark-gluon plasma and the formation of the plasma and possible experimental signatures. Comments are made on a cosmic ray experiment which could be interpreted as a first indication of the quark-gluon phase of the matter. (author)
Relativistic particle in a box
Alberto, P.; Fiolhais, Carlos; Gil, Victor
1996-01-01
The problem of a relativistic spin 1/2 particle confined to a one-dimensional box is solved in a way that resembles closely the solution of the well known quantum-mechanical textbook problem of a non-relativistic particle in a box. The energy levels and probability density are computed and compared with the non-relativistic case
DUST TRANSPORT IN PROTOSTELLAR DISKS THROUGH TURBULENCE AND SETTLING
International Nuclear Information System (INIS)
Turner, N. J.; Carballido, A.; Sano, T.
2010-01-01
We apply ionization balance and magnetohydrodynamical (MHD) calculations to investigate whether magnetic activity moderated by recombination on dust grains can account for the mass accretion rates and the mid-infrared spectra and variability of protostellar disks. The MHD calculations use the stratified shearing-box approach and include grain settling and the feedback from the changing dust abundance on the resistivity of the gas. The two-decade spread in accretion rates among solar-mass T Tauri stars is too large to result solely from variations in the grain size and stellar X-ray luminosity, but can plausibly be produced by varying these parameters together with the disk magnetic flux. The diverse shapes and strengths of the mid-infrared silicate bands can come from the coupling of grain settling to the distribution of the magnetorotational turbulence, through the following three effects. First, recombination on grains 1 μm or smaller yields a magnetically inactive dead zone extending more than two scale heights from the midplane, while turbulent motions in the magnetically active disk atmosphere overshoot the dead zone boundary by only about one scale height. Second, grains deep in the dead zone oscillate vertically in wave motions driven by the turbulent layer above, but on average settle at the rates found in laminar flow, so that the interior of the dead zone is a particle sink and the disk atmosphere will become dust-depleted unless resupplied from elsewhere. Third, with sufficient depletion, the dead zone is thinner and mixing dredges grains off the midplane. The last of these processes enables evolutionary signatures such as the degree of settling to sometimes decrease with age. The MHD results also show that the magnetic activity intermittently lifts clouds of small grains into the atmosphere. Consequently the photosphere height changes by up to one-third over timescales of a few orbits, while the extinction along lines of sight grazing the disk surface
Belyaev, Mikhail A.; Quataert, Eliot
2018-04-01
We present unstratified 3D MHD simulations of an accretion disk with a boundary layer (BL) that have a duration ˜1000 orbital periods at the inner radius of the accretion disk. We find the surprising result that angular momentum piles up in the boundary layer, which results in a rapidly rotating belt of accreted material at the surface of the star. The angular momentum stored in this belt increases monotonically in time, which implies that angular momentum transport mechanisms in the BL are inefficient and do not couple the accretion disk to the star. This is in spite of the fact that magnetic fields are advected into the BL from the disk and supersonic shear instabilities in the BL excite acoustic waves. In our simulations, these waves only carry a small fraction (˜10%) of the angular momentum required for steady state accretion. Using analytical theory and 2D viscous simulations in the R - ϕ plane, we derive an analytical criterion for belt formation to occur in the BL in terms of the ratio of the viscosity in the accretion disk to the viscosity in the BL. Our MHD simulations have a dimensionless viscosity (α) in the BL that is at least a factor of ˜100 smaller than that in the disk. We discuss the implications of these results for BL dynamics and emission.
MHD stability, operational limits and disruptions
International Nuclear Information System (INIS)
1999-01-01
The present physics understandings of magnetohydrodynamic (MHD) stability of tokamak plasmas, the threshold conditions for onset of MHD instability, and the resulting operational limits on attainable plasma pressure (beta limit) and density (density limit), and the consequences of plasma disruption and disruption related effects are reviewed and assessed in the context of their application to a future DT burning reactor prototype tokamak experiment such as ITER. The principal considerations covered within the MHD stability and beta limit assessments are (i) magnetostatic equilibrium, ideal MHD stability and the resulting ideal MHD beta limit; (ii) sawtooth oscillations and the coupling of sawtooth activity to other types of MHD instability; (iii) neoclassical island resistive tearing modes and the corresponding limits on beta and energy confinement; (iv) wall stabilization of ideal MHD instabilities and resistive wall instabilities; (v) mode locking effects of non-axisymmetric error fields; (vi) edge localized MHD instabilities (ELMs, etc.); and (vii) MHD instabilities and beta/pressure gradient limits in plasmas with actively modified current and magnetic shear profiles. The principal considerations covered within the density limit assessments are (i) empirical density limits; (ii) edge power balance/radiative density limits in ohmic and L-mode plasmas; and (iii) edge parameter related density limits in H-mode plasmas. The principal considerations covered in the disruption assessments are (i) disruption causes, frequency and MHD instability onset; (ii) disruption thermal and current quench characteristics; (iii) vertical instabilities (VDEs), both before and after disruption, and plasma and in-vessel halo currents; (iv) after disruption runaway electron formation, confinement and loss; (v) fast plasma shutdown (rapid externally initiated dissipation of plasma thermal and magnetic energies); (vi) means for disruption avoidance and disruption effect mitigation; and
Magnetohydrodynamics of accretion disks
International Nuclear Information System (INIS)
Torkelsson, U.
1994-04-01
The thesis consists of an introduction and summary, and five research papers. The introduction and summary provides the background in accretion disk physics and magnetohydrodynamics. The research papers describe numerical studies of magnetohydrodynamical processes in accretion disks. Paper 1 is a one-dimensional study of the effect of magnetic buoyancy on a flux tube in an accretion disk. The stabilizing influence of an accretion disk corona on the flux tube is demonstrated. Paper 2-4 present numerical simulations of mean-field dynamos in accretion disks. Paper 11 verifies the correctness of the numerical code by comparing linear models to previous work by other groups. The results are also extended to somewhat modified disk models. A transition from an oscillatory mode of negative parity for thick disks to a steady mode of even parity for thin disks is found. Preliminary results for nonlinear dynamos at very high dynamo numbers are also presented. Paper 3 describes the bifurcation behaviour of the nonlinear dynamos. For positive dynamo numbers it is found that the initial steady solution is replaced by an oscillatory solution of odd parity. For negative dynamo numbers the solution becomes chaotic at sufficiently high dynamo numbers. Paper 4 continues the studies of nonlinear dynamos, and it is demonstrated that a chaotic solution appears even for positive dynamo numbers, but that it returns to a steady solution of mixed parity at very high dynamo numbers. Paper 5 describes a first attempt at simulating the small-scale turbulence of an accretion disk in three dimensions. There is only find cases of decaying turbulence, but this is rather due to limitations of the simulations than that turbulence is really absent in accretion disks
MHD diffuser model test program
Energy Technology Data Exchange (ETDEWEB)
Idzorek, J J
1976-07-01
Experimental results of the aerodynamic performance of seven candidate diffusers are presented to assist in determining their suitability for joining an MHD channel to a steam generator at minimum spacing. The three dimensional diffusers varied in area ratio from 2 to 3.8 and wall half angle from 2 to 5 degrees. The program consisted of five phases: (1) tailoring a diffuser inlet nozzle to a 15 percent blockage; (2) comparison of isolated diffusers at enthalpy ratios 0.5 to 1.0 with respect to separation characteristics and pressure recovery coefficients; (3) recording the optimum diffuser exit flow distribution; (4) recording the internal flow distribution within the steam generator when attached to the diffuser; and (5) observing isolated diffuser exhaust dynamic characteristics. The 2 and 2-1/3 degree half angle rectangular diffusers showed recovery coefficients equal to 0.48 with no evidence of flow separation or instability. Diffusion at angles greater than these produced flow instabilities and with angles greater than 3 degrees random flow separation and reattachment.
MHD diffuser model test program
International Nuclear Information System (INIS)
Idzorek, J.J.
1976-07-01
Experimental results of the aerodynamic performance of seven candidate diffusers are presented to assist in determining their suitability for joining an MHD channel to a steam generator at minimum spacing. The three dimensional diffusers varied in area ratio from 2 to 3.8 and wall half angle from 2 to 5 degrees. The program consisted of five phases: (1) tailoring a diffuser inlet nozzle to a 15 percent blockage; (2) comparison of isolated diffusers at enthalpy ratios 0.5 to 1.0 with respect to separation characteristics and pressure recovery coefficients; (3) recording the optimum diffuser exit flow distribution; (4) recording the internal flow distribution within the steam generator when attached to the diffuser; and (5) observing isolated diffuser exhaust dynamic characteristics. The 2 and 2-1/3 degree half angle rectangular diffusers showed recovery coefficients equal to 0.48 with no evidence of flow separation or instability. Diffusion at angles greater than these produced flow instabilities and with angles greater than 3 degrees random flow separation and reattachment
MHD waveguides in space plasma
International Nuclear Information System (INIS)
Mazur, N. G.; Fedorov, E. N.; Pilipenko, V. A.
2010-01-01
The waveguide properties of two characteristic formations in the Earth's magnetotail-the plasma sheet and the current (neutral) sheet-are considered. The question of how the domains of existence of different types of MHD waveguide modes (fast and slow, body and surface) in the (k, ω) plane and their dispersion properties depend on the waveguide parameters is studied. Investigation of the dispersion relation in a number of particular (limiting) cases makes it possible to obtain a fairly complete qualitative pattern of all the branches of the dispersion curve. Accounting for the finite size of perturbations across the wave propagation direction reveals new additional effects such as a change in the critical waveguide frequencies, the excitation of longitudinal current at the boundaries of the sheets, and a change in the symmetry of the fundamental mode. Knowledge of the waveguide properties of the plasma and current sheets can explain the occurrence of preferred frequencies in the low-frequency fluctuation spectra in the magnetotail. In satellite observations, the type of waveguide mode can be determined from the spectral properties, as well as from the phase relationships between plasma oscillations and magnetic field oscillations that are presented in this paper.
Local protoplanetary disk ionisation by T Tauri star energetic particles
Fraschetti, F.; Drake, J.; Cohen, O.; Garraffo, C.
2017-10-01
The evolution of protoplanetary disks is believed to be driven largely by viscosity. The ionization of the disk that gives rise to viscosity is caused by X-rays from the central star or by energetic particles released by shock waves travelling into the circumstellar medium. We have performed test-particle numerical simulations of GeV-scale protons traversing a realistic magnetised wind of a young solar mass star with a superposed small-scale turbulence. The large-scale field is generated via an MHD model of a T Tauri wind, whereas the isotropic (Kolmogorov power spectrum) turbulent component is synthesised along the particles' trajectories. We have combined Chandra observations of T Tauri flares with solar flare scaling for describing the energetic particle spectrum. In contrast with previous models, we find that the disk ionization is dominated by X-rays except within narrow regions where the energetic particles are channelled onto the disk by the strongly tangled and turbulent field lines; the radial thickness of such regions broadens with the distance from the central star (5 stellar radii or more). In those regions, the disk ionization due to energetic particles can locally dominate the stellar X-rays, arguably, out to large distances (10, 100 AU) from the star.
Relativistic impulse dynamics.
Swanson, Stanley M
2011-08-01
Classical electrodynamics has some annoying rough edges. The self-energy of charges is infinite without a cutoff. The calculation of relativistic trajectories is difficult because of retardation and an average radiation reaction term. By reconceptuallizing electrodynamics in terms of exchanges of impulses rather than describing it by forces and potentials, we eliminate these problems. A fully relativistic theory using photonlike null impulses is developed. Numerical calculations for a two-body, one-impulse-in-transit model are discussed. A simple relationship between center-of-mass scattering angle and angular momentum was found. It reproduces the Rutherford cross section at low velocities and agrees with the leading term of relativistic distinguishable-particle quantum cross sections (Møller, Mott) when the distance of closest approach is larger than the Compton wavelength of the particle. Magnetism emerges as a consequence of viewing retarded and advanced interactions from the vantage point of an instantaneous radius vector. Radiation reaction becomes the local conservation of energy-momentum between the radiating particle and the emitted impulse. A net action is defined that could be used in developing quantum dynamics without potentials. A reinterpretation of Newton's laws extends them to relativistic motion.
Non-relativistic supersymmetry
International Nuclear Information System (INIS)
Clark, T.E.; Love, S.T.
1984-01-01
The most general one- and two-body hamiltonian invariant under galilean supersymmetry is constructed in superspace. The corresponding Feynman rules are given for the superfield Green functions. As demonstrated by a simple example, it is straightforward to construct models in which the supersymmetry is spontaneously broken by the non-relativistic vacuum. (orig.)
International Nuclear Information System (INIS)
Contopoulos, G.
1983-01-01
In this paper, three main areas of relativistic stellar dynamics are reviewed: (a) The dynamics of clusters, or nuclei of galaxies, of very high density; (b) The dynamics of systems containing a massive black hole; and (c) The dynamics of particles (and photons) in an expanding Universe. The emphasis is on the use of orbit perturbations. (Auth.)
Directory of Open Access Journals (Sweden)
Bialynicki-Birula Iwo
2014-01-01
Full Text Available Original definition of the Wigner function can be extended in a natural manner to relativistic domain in the framework of quantum field theory. Three such generalizations are described. They cover the cases of the Dirac particles, the photon, and the full electromagnetic field.
Antippa, Adel F.
2009-01-01
We solve the problem of the relativistic rocket by making use of the relation between Lorentzian and Galilean velocities, as well as the laws of superposition of successive collinear Lorentz boosts in the limit of infinitesimal boosts. The solution is conceptually simple, and technically straightforward, and provides an example of a powerful…
Relativistic few body calculations
International Nuclear Information System (INIS)
Gross, F.
1988-01-01
A modern treatment of the nuclear few-body problem must take into account both the quark structure of baryons and mesons, which should be important at short range, and the relativistic exchange of mesons, which describes the long range, peripheral interactions. A way to model both of these aspects is described. The long range, peripheral interactions are calculated using the spectator model, a general approach in which the spectators to nucleon interactions are put on their mass-shell. Recent numerical results for a relativistic OBE model of the NN interaction, obtained by solving a relativistic equation with one-particle on mass-shell, will be presented and discussed. Two meson exchange models, one with only four mesons (π,σ,/rho/,ω) but with a 25% admixture of γ 5 coupling for the pion, and a second with six mesons (π,σ,/rho/,ω,δ,/eta/) but pure γ 5 γ/sup μ/ pion coupling, are shown to give very good quantitative fits to the NN scattering phase shifts below 400 MeV, and also a good description of the /rvec p/ 40 Ca elastic scattering observables. Applications of this model to electromagnetic interactions of the two body system, with emphasis on the determination of relativistic current operators consistent with the dynamics and the exact treatment of current conservation in the presence of phenomenological form factors, will be described. 18 refs., 8 figs
Relativistic Polarizable Embedding
DEFF Research Database (Denmark)
Hedegård, Erik Donovan; Bast, Radovan; Kongsted, Jacob
2017-01-01
Most chemistry, including chemistry where relativistic effects are important, occurs in an environment, and in many cases, this environment has a significant effect on the chemistry. In nonrelativistic quantum chemistry, a lot of progress has been achieved with respect to including environments s...
Relativistic length agony continued
Directory of Open Access Journals (Sweden)
Redžić D.V.
2014-01-01
Full Text Available We made an attempt to remedy recent confusing treatments of some basic relativistic concepts and results. Following the argument presented in an earlier paper (Redžić 2008b, we discussed the misconceptions that are recurrent points in the literature devoted to teaching relativity such as: there is no change in the object in Special Relativity, illusory character of relativistic length contraction, stresses and strains induced by Lorentz contraction, and related issues. We gave several examples of the traps of everyday language that lurk in Special Relativity. To remove a possible conceptual and terminological muddle, we made a distinction between the relativistic length reduction and relativistic FitzGerald-Lorentz contraction, corresponding to a passive and an active aspect of length contraction, respectively; we pointed out that both aspects have fundamental dynamical contents. As an illustration of our considerations, we discussed briefly the Dewan-Beran-Bell spaceship paradox and the ‘pole in a barn’ paradox. [Projekat Ministarstva nauke Republike Srbije, br. 171028
Relativistic Coulomb excitation
International Nuclear Information System (INIS)
Winther, A.; Alder, K.
1979-01-01
Coulomb excitation of both target and projectile in relativistic heavy ion collisions is evaluated including the lowest order correction for the deviation from a straight line trajectory. Explicit results for differential and total cross sections are given in the form of tables and figures. (Auth.)
Fundamental Relativistic Rotator
International Nuclear Information System (INIS)
Staruszkiewicz, A.
2008-01-01
Professor Jan Weyssenhoff was Myron Mathisson's sponsor and collaborator. He introduced a class of objects known in Cracow as '' kreciolki Weyssenhoffa '', '' Weyssenhoff's rotating little beasts ''. The Author describes a particularly simple object from this class. The relativistic rotator described in the paper is such that its both Casimir invariants are parameters rather than constants of motion. (author)
Relativistic Quantum Mechanics
International Nuclear Information System (INIS)
Antoine, J-P
2004-01-01
The aim of relativistic quantum mechanics is to describe the finer details of the structure of atoms and molecules, where relativistic effects become nonnegligible. It is a sort of intermediate realm, between the familiar nonrelativistic quantum mechanics and fully relativistic quantum field theory, and thus it lacks the simplicity and elegance of both. Yet it is a necessary tool, mostly for quantum chemists. Pilkuhn's book offers to this audience an up-to-date survey of these methods, which is quite welcome since most previous textbooks are at least ten years old. The point of view of the author is to start immediately in the relativistic domain, following the lead of Maxwell's equations rather than classical mechanics, and thus to treat the nonrelativistic version as an approximation. Thus Chapter 1 takes off from Maxwell's equations (in the noncovariant Coulomb gauge) and gradually derives the basic aspects of Quantum Mechanics in a rather pedestrian way (states and observables, Hilbert space, operators, quantum measurement, scattering,. Chapter 2 starts with the Lorentz transformations, then continues with the Pauli spin equation and the Dirac equation and some of their applications (notably the hydrogen atom). Chapter 3 is entitled 'Quantum fields and particles', but falls short of treating quantum field theory properly: only creation/annihilation operators are considered, for a particle in a box. The emphasis is on two-electron states (the Pauli principle, the Foldy--Wouthuysen elimination of small components of Dirac spinors, Breit projection operators. Chapter 4 is devoted to scattering theory and the description of relativistic bound states. Chapter 5, finally, covers hyperfine interactions and radiative corrections. As we said above, relativistic quantum mechanics is by nature limited in scope and rather inelegant and Pilkuhn's book is no exception. The notation is often heavy (mostly noncovariant) and the mathematical level rather low. The central topic
Current status of relativistic core collapse simulations
Energy Technology Data Exchange (ETDEWEB)
Font, Jose A [Departamento de Astronomia y Astrofisica, Universidad de Valencia, Dr. Moliner 50, 46100 Burjassot (Valencia) (Spain)
2007-05-15
With the first generation of ground-based gravitational wave laser interferometers already taking data, the availability of reliable waveform templates from astrophysical sources, which may help extract the signal from the anticipated noisy data, is urgently required. Gravitational stellar core collapse supernova has traditionally been considered among the most important astrophysical sources of potentially detectable gravitational radiation. Only very recently the first multidimensional simulations of relativistic rotational core collapse have been possible (albeit for models with simplified input physics), thanks to the use of conservative formulations of the hydrodynamics equations and advanced numerical methodology, as well as stable formulations of Einstein's equations. In this paper, the current status of relativistic core collapse simulations is discussed, with the emphasis given to the modelling of the collapse dynamics and to the computation of the gravitational radiation in the existing numerical approaches. Work employing the conformally-flat approximation (CFC) of the 3+1 Einstein's equations is reported, as well as extensions of this approximation (CFC+) and investigations within the framework of the so-called BSSN formulation of the 3+1 gravitational field equations (with no approximation for the spacetime dynamics). On the other hand, the incorporation of magnetic fields and the MHD equations in numerical codes to improve the realism of core collapse simulations in general relativity, is currently an emerging field where significant progress is bound to be soon achieved. The paper also contains a brief discussion of magneto-rotational simulations of core collapse, aiming at addressing the effects of magnetic fields on the collapse dynamics and on the gravitational waveforms.
Current status of relativistic core collapse simulations
International Nuclear Information System (INIS)
Font, Jose A
2007-01-01
With the first generation of ground-based gravitational wave laser interferometers already taking data, the availability of reliable waveform templates from astrophysical sources, which may help extract the signal from the anticipated noisy data, is urgently required. Gravitational stellar core collapse supernova has traditionally been considered among the most important astrophysical sources of potentially detectable gravitational radiation. Only very recently the first multidimensional simulations of relativistic rotational core collapse have been possible (albeit for models with simplified input physics), thanks to the use of conservative formulations of the hydrodynamics equations and advanced numerical methodology, as well as stable formulations of Einstein's equations. In this paper, the current status of relativistic core collapse simulations is discussed, with the emphasis given to the modelling of the collapse dynamics and to the computation of the gravitational radiation in the existing numerical approaches. Work employing the conformally-flat approximation (CFC) of the 3+1 Einstein's equations is reported, as well as extensions of this approximation (CFC+) and investigations within the framework of the so-called BSSN formulation of the 3+1 gravitational field equations (with no approximation for the spacetime dynamics). On the other hand, the incorporation of magnetic fields and the MHD equations in numerical codes to improve the realism of core collapse simulations in general relativity, is currently an emerging field where significant progress is bound to be soon achieved. The paper also contains a brief discussion of magneto-rotational simulations of core collapse, aiming at addressing the effects of magnetic fields on the collapse dynamics and on the gravitational waveforms
Measuring a Truncated Disk in Aquila X-1
King, Ashley L.; Tomsick, John A.; Miller, Jon M.; Chenevez, Jerome; Barret, Didier; Boggs, Steven E.; Chakrabarty, Deepto; Christensen, Finn E.; Craig, William W.; Feurst, Felix;
2016-01-01
We present NuSTAR and Swift observations of the neutron star Aquila X-1 during the peak of its 2014 July outburst. The spectrum is soft with strong evidence for a broad Fe K(alpha) line. Modeled with a relativistically broadened reflection model, we find that the inner disk is truncated with an inner radius of 15 +/- 3RG. The disk is likely truncated by either the boundary layer and/or a magnetic field. Associating the truncated inner disk with pressure from a magnetic field gives an upper limit of B < 5+/- 2x10(exp 8) G. Although the radius is truncated far from the stellar surface, material is still reaching the neutron star surface as evidenced by the X-ray burst present in the NuSTAR observation.
Nonequilibrium fluctuations in micro-MHD effects on electrodeposition
International Nuclear Information System (INIS)
Aogaki, Ryoichi; Morimoto, Ryoichi; Asanuma, Miki
2010-01-01
In copper electrodeposition under a magnetic field parallel to electrode surface, different roles of two kinds of nonequilibrium fluctuations for micro-magnetohydrodynamic (MHD) effects are discussed; symmetrical fluctuations are accompanied by the suppression of three dimensional (3D) nucleation by micro-MHD flows (the 1st micro-MHD effect), whereas asymmetrical fluctuations controlling 2D nucleation yield secondary nodules by larger micro-MHD flows (the 2nd micro-MHD effect). Though the 3D nucleation with symmetrical fluctuations is always suppressed by the micro-MHD flows, due to the change in the rate-determining step from electron transfer to mass transfer, the 2D nucleation with asymmetrical fluctuations newly turns unstable, generating larger micro-MHD flows. As a result, round semi-spherical deposits, i.e., secondary nodules are yielded. Using computer simulation, the mechanism of the 2nd micro-MHD effect is validated.
National Aeronautics and Space Administration — How Data Was Acquired: The data presented is from a physical simulator that simulated engine disks. Sample Rates and Parameter Description: All parameters are...
1976-01-01
Introduced under the name "Verbatim", Latin for "literally", these disks that sized more than 5¼ inches have become almost universal on dedicated word processing systems and personal computers. This format was replaced more slowly by the 3½-inch format, introduced for the first time in 1982. Compared to today, these large format disks stored very little data. In reality, they could only contain a few pages of text.
Method of operating a MHD power plant
International Nuclear Information System (INIS)
Wysk, S.R.
1982-01-01
A fossil fuel is burned substoichiometrically in the combustor of a mhd power plant to produce a high temperature, fuelrich product gas. The product gas is passed through a mhd channel to generate electricity. A reducing agent, preferably natural gas or hydrocarbon, is injected into the fuelrich product gas leaving the mhd generator; and the resulting mixture is held at a temperature in the range of 950 to 1500 0 C for about 1 second to permit the reducing agent to decompose a portion of the nitrogen oxides formed in the combustor. The fuel-rich product gas then passes thru an afterburner wherein combustion is completed and any excess reducing agent is consumed
Numerical study of MHD supersonic flow control
Ryakhovskiy, A. I.; Schmidt, A. A.
2017-11-01
Supersonic MHD flow around a blunted body with a constant external magnetic field has been simulated for a number of geometries as well as a range of the flow parameters. Solvers based on Balbas-Tadmor MHD schemes and HLLC-Roe Godunov-type method have been developed within the OpenFOAM framework. The stability of the solution varies depending on the intensity of magnetic interaction The obtained solutions show the potential of MHD flow control and provide insights into for the development of the flow control system. The analysis of the results proves the applicability of numerical schemes, that are being used in the solvers. A number of ways to improve both the mathematical model of the process and the developed solvers are proposed.
COUNTER-ROTATION IN RELATIVISTIC MAGNETOHYDRODYNAMIC JETS
Energy Technology Data Exchange (ETDEWEB)
Cayatte, V.; Sauty, C. [Laboratoire Univers et Théories, Observatoire de Paris, UMR 8102 du CNRS, Université Paris Diderot, F-92190 Meudon (France); Vlahakis, N.; Tsinganos, K. [Department of Astrophysics, Astronomy and Mechanics, Faculty of Physics, University of Athens, 15784 Zografos, Athens (Greece); Matsakos, T. [Department of Astronomy and Astrophysics, The University of Chicago, Chicago, IL 60637 (United States); Lima, J. J. G., E-mail: veronique.cayatte@obspm.fr [Centro de Astrofísica, Universidade do Porto, Rua das Estrelas, 4150-762 Porto (Portugal)
2014-06-10
Young stellar object observations suggest that some jets rotate in the opposite direction with respect to their disk. In a recent study, Sauty et al. showed that this does not contradict the magnetocentrifugal mechanism that is believed to launch such outflows. Motion signatures that are transverse to the jet axis, in two opposite directions, have recently been measured in M87. One possible interpretation of this motion is that of counter-rotating knots. Here, we extend our previous analytical derivation of counter-rotation to relativistic jets, demonstrating that counter-rotation can indeed take place under rather general conditions. We show that both the magnetic field and a non-negligible enthalpy are necessary at the origin of counter-rotating outflows, and that the effect is associated with a transfer of energy flux from the matter to the electromagnetic field. This can be realized in three cases: if a decreasing enthalpy causes an increase of the Poynting flux, if the flow decelerates, or if strong gradients of the magnetic field are present. An illustration of the involved mechanism is given by an example of a relativistic magnetohydrodynamic jet simulation.
Investigations of MHD activity in ASDEX discharges
International Nuclear Information System (INIS)
Stambaugh, R.; Gernhardt, J.; Klueber, O.; Wagner, F.
1984-06-01
This report makes a strong attempt to relate some specific observations of MHD activity in ADEX discharges to observations made on the Doublet III and PDX tokamaks and to theoretical work on high β MHD modes at GA and PPPL. Three topics are discussed. The first topic is the detailed analysis of the time history of MHD activity in a β discharge. The β limit discharge in ASDEX is identified as a discharge in which, during constant neutral beam power, β reaches a maximum and then decreases, often to a lower steady level if the heating pulse is long enough. During the L phase of this discharge, the MHD activity observed in the B coils is both a continuous and bursting coupled m >= 1 mode of the 'fishbone' type. When β is rising in the H phase, this mode disappears; only ELMs are present. At βsub(max), a different mode appears, the m=2, n=1 tearing mode, which grows rapidly as β decreases. The second topic is the very new observation of the fishbone-like mode in a discharge heated by combined neutral beam and ion cyclotron heating power. The mode characteristics are modulated by sawtooth oscillations in a manner consistent with the importance of q(0) in the stability of this mode. The third topic is the search for ELM precursors in discharges designed to have no other competing and complicating MHD activity. In these cases nonaxisymmetric precursors to the Hsub(α) spike were observed. Hence, it appears that an MHD mode, rather than an energy balance problem, must be the origin of the ELM. (orig./GG)
Mass distributions in disk galaxies
Martinsson, Thomas; Verheijen, Marc; Bershady, Matthew; Westfall, Kyle; Andersen, David; Swaters, Rob
We present results on luminous and dark matter mass distributions in disk galaxies from the DiskMass Survey. As expected for normal disk galaxies, stars dominate the baryonic mass budget in the inner region of the disk; however, at about four optical scale lengths (hR ) the atomic gas starts to
Dusty disks around young stars
Verhoeff, A.
2009-01-01
Stars are formed through the collapse of giant molecular clouds. During this contraction the matter spins up and naturally forms a circumstellar disk. Once accretion comes to a halt, these disks are relatively stable. Some disks are known to last up to 10 Myrs. Most disks however, dissipate on
The relativistic gravity train
Seel, Max
2018-05-01
The gravity train that takes 42.2 min from any point A to any other point B that is connected by a straight-line tunnel through Earth has captured the imagination more than most other applications in calculus or introductory physics courses. Brachystochron and, most recently, nonlinear density solutions have been discussed. Here relativistic corrections are presented. It is discussed how the corrections affect the time to fall through Earth, the Sun, a white dwarf, a neutron star, and—the ultimate limit—the difference in time measured by a moving, a stationary and the fiducial observer at infinity if the density of the sphere approaches the density of a black hole. The relativistic gravity train can serve as a problem with approximate and exact analytic solutions and as numerical exercise in any introductory course on relativity.
Relativistic gravitational instabilities
International Nuclear Information System (INIS)
Schutz, B.F.
1987-01-01
The purpose of these lectures is to review and explain what is known about the stability of relativistic stars and black holes, with particular emphases on two instabilities which are due entirely to relativistic effects. The first of these is the post-Newtonian pulsational instability discovered independently by Chandrasekhar (1964) and Fowler (1964). This effectively ruled out the then-popular supermassive star model for quasars, and it sets a limit to the central density of white dwarfs. The second instability was also discovered by Chandrasekhar (1970): the gravitational wave induced instability. This sets an upper bound on the rotation rate of neutron stars, which is near that of the millisecond pulsar PSR 1937+214, and which is beginning to constrain the equation of state of neutron matter. 111 references, 5 figures
Relativistic studies in actinides
International Nuclear Information System (INIS)
Weinberger, P.; Gonis, A.
1987-01-01
In this review the theoretical background is given for a relativistic description for actinide systems. A short introduction is given of the density functional theory which forms the basis for a fully relativistic single-particle theory. A section on the Dirac Hamiltonian is followed by a brief summary on group theoretical concepts. Single site scattering is presented such that formal extensions to the case of the presence of an internal (external) magnetic field and/or anisotropic scattering are evident. Multiple scattering is discussed such that it can readily be applied also to the problem of dislocations. In connection with the problem of selfconsistency particular attention is drawn to the use of complex energies. Finally the various theoretical aspects discussed are illustrated through the results of numerical calculations. 101 refs.; 37 figs.; 5 tabs
International Nuclear Information System (INIS)
Hines, D.F.; Frankel, N.E.
1979-01-01
The charged Bose has been previously studied as a many body problem of great intrinsic interest which can also serve as a model of some real physical systems, for example, superconductors, white dwarf stars and neutron stars. In this article the excitation spectrum of a relativistic spin-zero charged Bose gas is obtained in a dielectric response formulation. Relativity introduces a dip in the spectrum and consequences of this dip for the thermodynamic functions are discussed
Relativistic heavy ion reactions
Energy Technology Data Exchange (ETDEWEB)
Brink, D M
1989-08-01
The theory of quantum chromodynamics predicts that if nuclear matter is heated to a sufficiently high temperature then quarks might become deconfined and a quark-gluon plasma could be produced. One of the aims of relativistic heavy ion experiments is to search for this new state of matter. These lectures survey some of the new experimental results and give an introduction to the theories used to interpret them. 48 refs., 4 tabs., 11 figs.
Bratek, Łukasz
2015-01-01
Two particularly simple ideal clocks exhibiting intrinsic circular motion with the speed of light and opposite spin alignment are described. The clocks are singled out by singularities of an inverse Legendre transformation for relativistic rotators of which mass and spin are fixed parameters. Such clocks work always the same way, no matter how they move. When subject to high accelerations or falling in strong gravitational fields of black holes, the clocks could be used to test the clock hypo...
Relativistic heavy ion reactions
International Nuclear Information System (INIS)
Brink, D.M.
1989-08-01
The theory of quantum chromodynamics predicts that if nuclear matter is heated to a sufficiently high temperature then quarks might become deconfined and a quark-gluon plasma could be produced. One of the aims of relativistic heavy ion experiments is to search for this new state of matter. These lectures survey some of the new experimental results and give an introduction to the theories used to interpret them. 48 refs., 4 tabs., 11 figs
MHD deceleration of fusion reaction products
International Nuclear Information System (INIS)
Chow, S.; Bohachevsky, I.O.
1979-04-01
The feasibility of magnetohydrodynamic (MHD) deceleration of fuel pellet debris ions exiting from an inertial confinement fusion (ICF) reactor cavity is investigated using one-dimensional flow equations. For engineering reasons, induction-type devices are emphasized; their performance characteristics are similar to those of electrode-type decelerators. Results of the analysis presented in this report indicate that MHD decelerators can be designed within conventional magnet technology to not only decelerate the high-energy fusion pellet debris ions but also to produce some net electric power in the process
Safety and reliability in superconducting MHD magnets
International Nuclear Information System (INIS)
Laverick, C.; Powell, J.; Hsieh, S.; Reich, M.; Botts, T.; Prodell, A.
1979-07-01
This compilation adapts studies on safety and reliability in fusion magnets to similar problems in superconducting MHD magnets. MHD base load magnet requirements have been identified from recent Francis Bitter National Laboratory reports and that of other contracts. Information relevant to this subject in recent base load magnet design reports for AVCO - Everett Research Laboratories and Magnetic Corporation of America is included together with some viewpoints from a BNL workshop on structural analysis needed for superconducting coils in magnetic fusion energy. A summary of design codes used in large bubble chamber magnet design is also included
Compact torus theory: MHD equilibrium and stability
International Nuclear Information System (INIS)
Barnes, D.C.; Seyler, C.E.; Anderson, D.V.
1979-01-01
Field reversed theta pinches have demonstrated the production and confinement of compact toroidal configurations with surprisingly good MHD stability. In these observations, the plasma is either lost by diffusion or by the loss of the applied field or is disrupted by an n = 2 (where n is the toroidal mode number) rotating instability only after 30 to 100 MHD times, when the configuration begins to rotate rigidly above a critical speed. These experiments have led one to investigate the equilibrium, stability, and rotation of a very elongated, toroidally axisymmetric configuration with no toroidal field. Many of the above observations are explained by recent results of these investigations which are summarized
Gravitational instability in isotropic MHD plasma waves
Cherkos, Alemayehu Mengesha
2018-04-01
The effect of compressive viscosity, thermal conductivity and radiative heat-loss functions on the gravitational instability of infinitely extended homogeneous MHD plasma has been investigated. By taking in account these parameters we developed the six-order dispersion relation for magnetohydrodynamic (MHD) waves propagating in a homogeneous and isotropic plasma. The general dispersion relation has been developed from set of linearized basic equations and solved analytically to analyse the conditions of instability and instability of self-gravitating plasma embedded in a constant magnetic field. Our result shows that the presence of viscosity and thermal conductivity in a strong magnetic field substantially modifies the fundamental Jeans criterion of gravitational instability.
Free-boundary perturbed MHD equilibria
International Nuclear Information System (INIS)
Nührenberg, C
2012-01-01
The concept of perturbed ideal MHD equilibria [Boozer A H and Nuhrenberg C 2006 Phys. Plasmas 13 102501] is employed to study the influence of external error-fields and of small plasma-pressure changes on toroidal plasma equilibria. In tokamak and stellarator free-boundary calculations, benchmarks were successful of the perturbed-equilibrium version of the CAS3D stability code [Nührenberg C et al. 2009 Phys. Rev. Lett. 102 235001] with the ideal MHD equilibrium code NEMEC [Hirshman S P et al. 1986 Comput. Phys. Commun. 43 143].
MHD power station with coal gasification
International Nuclear Information System (INIS)
Brzozowski, W.S.; Dul, J.; Pudlik, W.
1976-01-01
A description is given of the proposed operating method of a MHD-power station including a complete coal gasification into lean gas with a simultaneous partial gas production for the use of outside consumers. A comparison with coal gasification methods actually being used and full capabilities of power stations heated with coal-derived gas shows distinct advantages resulting from applying the method of coal gasification with waste heat from MHD generators working within the boundaries of the thermal-electric power station. (author)
MHD equilibrium of heliotron J plasmas
International Nuclear Information System (INIS)
Suzuki, Yasuhiro; Nakamura, Yuji; Kondo, Katsumi; Nakajima, Noriyoshi; Hayashi, Takaya
2004-01-01
MHD equilibria of Heliotron J plasma are investigated by using HINT code. By assuming some profiles of the current density, effects of the net toroidal currents on the magnetohydrodynamics (MHD) equilibrium are investigated. If the rotational transform can be controlled by the currents, the generation of good flux surfaces is expected. In order to study equilibria with self-consistent bootstrap current, the boozer coordinates are constructed by converged HINT equilibrium as a preliminary study. Obtained spectra are compared with ones of VMEC code and both results are consistent. (author)
Bifurcation theory for toroidal MHD instabilities
International Nuclear Information System (INIS)
Maschke, E.K.; Morros Tosas, J.; Urquijo, G.
1992-01-01
Using a general representation of magneto-hydrodynamics in terms of stream functions and potentials, proposed earlier, a set of reduced MHD equations for the case of toroidal geometry had been derived by an appropriate ordering with respect to the inverse aspect ratio. When all dissipative terms are neglected in this reduced system, it has the same linear stability limits as the full ideal MHD equations, to the order considered. When including resistivity, thermal conductivity and viscosity, we can apply bifurcation theory to investigate nonlinear stationary solution branches related to various instabilities. In particular, we show that a stationary solution of the internal kink type can be found
PHYSICAL PERFORMANCE AND BODY COMPOSITION IN MAINTENANCE HEMODIALYSIS (MHD PATIENTS
Directory of Open Access Journals (Sweden)
M Zhang
2012-06-01
Conclusions: These findings indicate that adult MHD pts had a higher % body fat. Measures of physical performance were markedly reduced in MHD pts as compared to Normals. Physical performance in MHD, measured especially by 6-MW, correlated negatively with some measures of body composition, particularly with LBMI.
Closed cycle MHD specialist meeting. Progress report, 1971--1972
International Nuclear Information System (INIS)
Rietjens, L.H.
1972-04-01
Abstracts of the conference papers on closed cycle MHD research are presented. The general areas of discussion are the following: results on closed cycle experiments; plasma properties, and instabilities and stabilization in nonequilibrium plasmas; loss mechanisms, current distributions, electrode effects, boundary layers, and gas dynamic effects; and design concepts of large MHD generators, and nuclear MHD power plants. (GRA)
This particular object was used up until 2012 in the Data Centre. It slots into one of the Disk Server trays. Hard disks were invented in the 1950s. They started as large disks up to 20 inches in diameter holding just a few megabytes (link is external). They were originally called "fixed disks" or "Winchesters" (a code name used for a popular IBM product). They later became known as "hard disks" to distinguish them from "floppy disks (link is external)." Hard disks have a hard platter that holds the magnetic medium, as opposed to the flexible plastic film found in tapes and floppies.
Gravitationally confined relativistic neutrinos
Vayenas, C. G.; Fokas, A. S.; Grigoriou, D.
2017-09-01
Combining special relativity, the equivalence principle, and Newton’s universal gravitational law with gravitational rather than rest masses, one finds that gravitational interactions between relativistic neutrinos with kinetic energies above 50 MeV are very strong and can lead to the formation of gravitationally confined composite structures with the mass and other properties of hadrons. One may model such structures by considering three neutrinos moving symmetrically on a circular orbit under the influence of their gravitational attraction, and by assuming quantization of their angular momentum, as in the Bohr model of the H atom. The model contains no adjustable parameters and its solution, using a neutrino rest mass of 0.05 eV/c2, leads to composite state radii close to 1 fm and composite state masses close to 1 GeV/c2. Similar models of relativistic rotating electron - neutrino pairs give a mass of 81 GeV/c2, close to that of W bosons. This novel mechanism of generating mass suggests that the Higgs mass generation mechanism can be modeled as a latent gravitational field which gets activated by relativistic neutrinos.
Point form relativistic quantum mechanics and relativistic SU(6)
Klink, W. H.
1993-01-01
The point form is used as a framework for formulating a relativistic quantum mechanics, with the mass operator carrying the interactions of underlying constituents. A symplectic Lie algebra of mass operators is introduced from which a relativistic harmonic oscillator mass operator is formed. Mass splittings within the degenerate harmonic oscillator levels arise from relativistically invariant spin-spin, spin-orbit, and tensor mass operators. Internal flavor (and color) symmetries are introduced which make it possible to formulate a relativistic SU(6) model of baryons (and mesons). Careful attention is paid to the permutation symmetry properties of the hadronic wave functions, which are written as polynomials in Bargmann spaces.
Heat transfer analysis of GO-water nanofluid flow between two parallel disks
Directory of Open Access Journals (Sweden)
M. Azimi
2015-03-01
Full Text Available In this paper, the unsteady magnetohydrodynamic (MHD squeezing flow between two parallel disks (which is filled with nanofluid is considered. The Galerkin optimal homotopy asymptotic method (GOHAM is used to obtain the solution of the governing equations. The effects of Hartman number, nanoparticle volume fraction, Brownian motion parameter and suction/blowing parameter on nanofluid concentration, temperature and velocity profiles have been discussed. Furthermore, a comparison between obtained solutions and numerical ones have been provided.
Debris Disks: Probing Planet Formation
Wyatt, Mark C.
2018-01-01
Debris disks are the dust disks found around ~20% of nearby main sequence stars in far-IR surveys. They can be considered as descendants of protoplanetary disks or components of planetary systems, providing valuable information on circumstellar disk evolution and the outcome of planet formation. The debris disk population can be explained by the steady collisional erosion of planetesimal belts; population models constrain where (10-100au) and in what quantity (>1Mearth) planetesimals (>10km i...
Fast, Capacious Disk Memory Device
Muller, Ronald M.
1990-01-01
Device for recording digital data on, and playing back data from, memory disks has high recording or playback rate and utilizes available recording area more fully. Two disks, each with own reading/writing head, used to record data at same time. Head on disk A operates on one of tracks numbered from outside in; head on disk B operates on track of same number in sequence from inside out. Underlying concept of device applicable to magnetic or optical disks.
Montgomery, M. M.; Martin, E. L.
2010-01-01
Many different system types retrogradely precess, and retrograde precession could be from a tidal torque by the secondary on a misaligned accretion disk. However, a source to cause and maintain disk tilt is unknown. In this work, we show that accretion disks can tilt due to a force called lift. Lift results from differing gas stream supersonic speeds over and under an accretion disk. Because lift acts at the disk's center of pressure, a torque is applied around a rotation axis passing through...
Exploring the Effects of Disk Thickness on the Black Hole Reflection Spectrum
Taylor, Corbin; Reynolds, Christopher S.
2018-03-01
The relativistically broadened reflection spectrum, observed in both AGN and X-ray binaries, has proven to be a powerful probe of the properties of black holes and the environments in which they reside. Emitted from the innermost regions of the accretion disk, this X-ray spectral component carries with it information not only about the plasma that resides in these extreme conditions, but also the black hole spin, a marker of the formation and accretion history of these objects. The models currently used to interpret the reflection spectrum are often simplistic, however, approximating the disk as an infinitely thin, optically thick plane of material orbiting in circular Keplerian orbits around the central object. Using a new relativistic ray-tracing suite (Fenrir) that allows for more complex disk approximations, we examine the effects that disk thickness may have on the reflection spectrum. Assuming a lamppost corona, we find that finite disk thickness can have a variety of effects on the reflection spectrum, including a truncation of the blue wing (from self-shadowing of the accretion disk) and an enhancement of the red wing (from the irradiation of the central “eye wall” of the inner disk). We deduce the systematic errors on black hole spin and height that may result from neglecting these effects.
3D simulation studies of tokamak plasmas using MHD and extended-MHD models
International Nuclear Information System (INIS)
Park, W.; Chang, Z.; Fredrickson, E.; Fu, G.Y.; Pomphrey, N.; Sugiyama, L.E.
1997-01-01
The M3D (Multi-level 3D) tokamak simulation project aims at the simulation of tokamak plasmas using a multi-level tokamak code package. Several current applications using MHD and Extended-MHD models are presented; high-β disruption studies in reversed shear plasmas using the MHD level MH3D code, ω *i stabilization and nonlinear island rotation studies using the two-fluid level MH3D-T code, studies of nonlinear saturation of TAE modes using the hybrid particle/MHD level MH3D-K code, and unstructured mesh MH3D ++ code studies. In particular, three internal mode disruption mechanisms are identified from simulation results which agree well with experimental data
PLANETESIMAL DISK MICROLENSING
International Nuclear Information System (INIS)
Heng, Kevin; Keeton, Charles R.
2009-01-01
Motivated by debris disk studies, we investigate the gravitational microlensing of background starlight by a planetesimal disk around a foreground star. We use dynamical survival models to construct a plausible example of a planetesimal disk and study its microlensing properties using established ideas of microlensing by small bodies. When a solar-type source star passes behind a planetesimal disk, the microlensing light curve may exhibit short-term, low-amplitude residuals caused by planetesimals several orders of magnitude below Earth mass. The minimum planetesimal mass probed depends on the photometric sensitivity and the size of the source star, and is lower when the planetesimal lens is located closer to us. Planetesimal lenses may be found more nearby than stellar lenses because the steepness of the planetesimal mass distribution changes how the microlensing signal depends on the lens/source distance ratio. Microlensing searches for planetesimals require essentially continuous monitoring programs that are already feasible and can potentially set constraints on models of debris disks, the progeny of the supposed extrasolar analogues of Kuiper Belts.
MHD equilibrium and stability in heliotron plasmas
Energy Technology Data Exchange (ETDEWEB)
Ichiguchi, Katsuji [National Inst. for Fusion Science, Toki, Gifu (Japan)
1999-09-01
Recent topics in the theoretical magnetohydrodynamic (MHD) analysis in the heliotron configuration are overviewed. Particularly, properties of three-dimensional equilibria, stability boundary of the interchange mode, effects of the net toroidal current including the bootstrap current and the ballooning mode stability are focused. (author)
MHD stability of vertically asymmetric tokamak equilibria
International Nuclear Information System (INIS)
Dalhed, H.E.; Grimm, R.C.; Johnson, J.L.
1981-03-01
The ideal MHD stability properties of a special class of vertically asymmetric tokamak equilibria are examined. The calculations confirm that no major new physical effects are introduced and the modifications can be understood by conventional arguments. The results indicate that significant departures from up-down symmetry can be tolerated before the reduction in β becomes important for reactor operation
Principal characteristics of SFC type MHD generator
International Nuclear Information System (INIS)
Kayukawa, Naoyuki; Oikawa, Shun-ichi; Aoki, Yoshiaki; Seidou, Tadashi; Okinaka, Noriyuki
1988-01-01
This paper describes the experimental and analytical results obtained for an MHD channel with a two dimensionally shaped magnetic field configuration called 'the SFC-type'. The power generating performance was examined under various load conditions and B-field intensities with a 2 MWt shock tunnel MHD facility. It is demonstrated that the power output performance and the enthalpy extraction scaling law of the conventional uniform B-field MHD generator (UFC-type) were significantly improved by the SFC-design of the spatial distribution of the magnetic field. The arcing processes were also examined by a high speed camera and the post-test observation of arc spot traces on electrodes. Further, the characteristic frequencies of each of the so-called micro and constricted arcs were clarified by spectral analyses. The critical current densities, which define the transient conditions of each from the diffuse-to micro arc, and from the micro-to constricted arc modes could be clearly obtained by the present spectral analysis method. We also investigated the three-dimensional behavior under strong magnetic field based on the coupled electrical and hydrodynamical equations for both of the middle scale SFC-and UFC-type generators. Finally, it is concluded from the above mentioned various aspects that the shaped 2-D magnetic field design will offer a most useful means for the realization of a compact, high efficiency and a long duration open-cycle MHD generator. (author)
On the stability of dissipative MHD equilibria
International Nuclear Information System (INIS)
Teichmann, J.
1979-04-01
The global stability of stationary equilibria of dissipative MHD is studied uisng the direct Liapunov method. Sufficient and necessary conditions for stability of the linearized Euler-Lagrangian system with the full dissipative operators are given. The case of the two-fluid isentropic flow is discussed. (orig.)
MHD Ballooning Instability in the Plasma Sheet
International Nuclear Information System (INIS)
Cheng, C.Z.; Zaharia, S.
2003-01-01
Based on the ideal-MHD model the stability of ballooning modes is investigated by employing realistic 3D magnetospheric equilibria, in particular for the substorm growth phase. Previous MHD ballooning stability calculations making use of approximations on the plasma compressibility can give rise to erroneous conclusions. Our results show that without making approximations on the plasma compressibility the MHD ballooning modes are unstable for the entire plasma sheet where beta (sub)eq is greater than or equal to 1, and the most unstable modes are located in the strong cross-tail current sheet region in the near-Earth plasma sheet, which maps to the initial brightening location of the breakup arc in the ionosphere. However, the MHD beq threshold is too low in comparison with observations by AMPTE/CCE at X = -(8 - 9)R(sub)E, which show that a low-frequency instability is excited only when beq increases over 50. The difficulty is mitigated by considering the kinetic effects of ion gyrorad ii and trapped electron dynamics, which can greatly increase the stabilizing effects of field line tension and thus enhance the beta(sub)eq threshold [Cheng and Lui, 1998]. The consequence is to reduce the equatorial region of the unstable ballooning modes to the strong cross-tail current sheet region where the free energy associated with the plasma pressure gradient and magnetic field curvature is maximum
Relativistic shock waves and the excitation of plerions
Energy Technology Data Exchange (ETDEWEB)
Arons, J. (California Univ., Berkeley, CA (USA)); Gallant, Y.A. (California Univ., Berkeley, CA (USA). Dept. of Physics); Hoshino, Masahiro; Max, C.E. (California Univ., Livermore, CA (USA). Inst. of Geophysics and Planetary Physics); Langdon, A.B. (Lawrence Livermore National Lab., CA (USA))
1991-01-07
The shock termination of a relativistic magnetohydrodynamic wind from a pulsar is the most interesting and viable model for the excitation of the synchrotron sources observed in plerionic supernova remnants. We have studied the structure of relativistic magnetosonic shock waves in plasmas composed purely of electrons and positrons, as well as those whose composition includes heavy ions as a minority constituent by number. We find that relativistic shocks in symmetric pair plasmas create fully thermalized distributions of particles and fields downstream. Therefore, such shocks are not good candidates for the mechanism which converts rotational energy lost from a pulsar into the nonthermal synchrotron emission observed in plerions. However, when the upstream wind contains heavy ions which are minority constituent by number density, but carry the bulk of the energy density, much of the energy of the shock goes into a downstream, nonthermal power law distribution of positrons with energy distribution N(E)dE {proportional to}E{sup {minus}s}. In a specific model presented in some detail, s = 3. These characteristics are close to those assumed for the pairs in macroscopic MHD wind models of plerion excitation. The essential mechanism is collective synchrotron emission of left-handed extraordinary modes by the ions in the shock front at high harmonics of the ion cyclotron frequency, with the downstream positrons preferentially absorbing almost all of this radiation, mostly at their fundamental (relativistic) cyclotron frequencies. Possible applications to models of plerions and to constraints on theories of energy loss from pulsars are briefly outlines. 27 refs., 5 figs.
Premixed direct injection disk
York, William David; Ziminsky, Willy Steve; Johnson, Thomas Edward; Lacy, Benjamin; Zuo, Baifang; Uhm, Jong Ho
2013-04-23
A fuel/air mixing disk for use in a fuel/air mixing combustor assembly is provided. The disk includes a first face, a second face, and at least one fuel plenum disposed therebetween. A plurality of fuel/air mixing tubes extend through the pre-mixing disk, each mixing tube including an outer tube wall extending axially along a tube axis and in fluid communication with the at least one fuel plenum. At least a portion of the plurality of fuel/air mixing tubes further includes at least one fuel injection hole have a fuel injection hole diameter extending through said outer tube wall, the fuel injection hole having an injection angle relative to the tube axis. The invention provides good fuel air mixing with low combustion generated NOx and low flow pressure loss translating to a high gas turbine efficiency, that is durable, and resistant to flame holding and flash back.
Herniated lumbar intervertebral disk
International Nuclear Information System (INIS)
Hochhauser, L.; Cacayorin, E.D.; Karcnik, T.J.; McGowan, D.P.; Clark, K.G.; Storrs, D.; Kieffer, S.A.
1988-01-01
From a series of 25 patients with low-back pain and sciatica who subsequently underwent surgical exploration, 24 lumbar herniated disks and one asymmetrically bulging disk were correctly diagnosed with use of a 0.5-T MR imaging unit. The radiologic findings on saggital images included a polypoid protrusion beyond the posterior margin of the vertebral bodies more clearly displayed with T1-weighted than with T-2 weighted sequences and a focal extension into the extradural space on axial views. In most, the signal intensity of HNP was isointense to the disk of origin. The study suggests that MR imaging is currently capable of accurately predicting an HNP. The diagnosis is based primarily on morphologic characteristics rather than signal intensity alterations
Chemistry in protoplanetary disks
Semenov, D. A.
2012-01-01
In this lecture I discuss recent progress in the understanding of the chemical evolution of protoplanetary disks that resemble our Solar system during the first ten million years. At the verge of planet formation, strong variations of temperature, density, and radiation intensities in these disks lead to a layered chemical structure. In hot, dilute and heavily irradiated atmosphere only simple radicals, atoms, and atomic ions can survive, formed and destroyed by gas-phase processes. Beneath the atmosphere a partly UV-shielded, warm molecular layer is located, where high-energy radiation drives rich chemistry, both in the gas phase and on dust surfaces. In a cold, dense, dark disk midplane many molecules are frozen out, forming thick icy mantles where surface chemistry is active and where complex (organic) species are synthesized.
Vlahos, Loukas; Archontis, Vasilis; Isliker, Heinz
We consider 3D nonlinear MHD simulations of an emerging flux tube, from the convection zone into the corona, focusing on the coronal part of the simulations. We first analyze the statistical nature and spatial structure of the electric field, calculating histograms and making use of iso-contour visualizations. Then test-particle simulations are performed for electrons, in order to study heating and acceleration phenomena, as well as to determine HXR emission. This study is done by comparatively exploring quiet, turbulent explosive, and mildly explosive phases of the MHD simulations. Also, the importance of collisional and relativistic effects is assessed, and the role of the integration time is investigated. Particular aim of this project is to verify the quasi- linear assumptions made in standard transport models, and to identify possible transport effects that cannot be captured with the latter. In order to determine the relation of our results to Fermi acceleration and Fokker-Planck modeling, we determine the standard transport coefficients. After all, we find that the electric field of the MHD simulations must be downscaled in order to prevent an un-physically high degree of acceleration, and the value chosen for the scale factor strongly affects the results. In different MHD time-instances we find heating to take place, and acceleration that depends on the level of MHD turbulence. Also, acceleration appears to be a transient phenomenon, there is a kind of saturation effect, and the parallel dynamics clearly dominate the energetics. The HXR spectra are not yet really compatible with observations, we have though to further explore the scaling of the electric field and the integration times used.
GRHydro: a new open-source general-relativistic magnetohydrodynamics code for the Einstein toolkit
International Nuclear Information System (INIS)
Mösta, Philipp; Haas, Roland; Ott, Christian D; Reisswig, Christian; Mundim, Bruno C; Faber, Joshua A; Noble, Scott C; Bode, Tanja; Löffler, Frank; Schnetter, Erik
2014-01-01
We present the new general-relativistic magnetohydrodynamics (GRMHD) capabilities of the Einstein toolkit, an open-source community-driven numerical relativity and computational relativistic astrophysics code. The GRMHD extension of the toolkit builds upon previous releases and implements the evolution of relativistic magnetized fluids in the ideal MHD limit in fully dynamical spacetimes using the same shock-capturing techniques previously applied to hydrodynamical evolution. In order to maintain the divergence-free character of the magnetic field, the code implements both constrained transport and hyperbolic divergence cleaning schemes. We present test results for a number of MHD tests in Minkowski and curved spacetimes. Minkowski tests include aligned and oblique planar shocks, cylindrical explosions, magnetic rotors, Alfvén waves and advected loops, as well as a set of tests designed to study the response of the divergence cleaning scheme to numerically generated monopoles. We study the code’s performance in curved spacetimes with spherical accretion onto a black hole on a fixed background spacetime and in fully dynamical spacetimes by evolutions of a magnetized polytropic neutron star and of the collapse of a magnetized stellar core. Our results agree well with exact solutions where these are available and we demonstrate convergence. All code and input files used to generate the results are available on http://einsteintoolkit.org. This makes our work fully reproducible and provides new users with an introduction to applications of the code. (paper)
grmonty: A MONTE CARLO CODE FOR RELATIVISTIC RADIATIVE TRANSPORT
International Nuclear Information System (INIS)
Dolence, Joshua C.; Gammie, Charles F.; Leung, Po Kin; Moscibrodzka, Monika
2009-01-01
We describe a Monte Carlo radiative transport code intended for calculating spectra of hot, optically thin plasmas in full general relativity. The version we describe here is designed to model hot accretion flows in the Kerr metric and therefore incorporates synchrotron emission and absorption, and Compton scattering. The code can be readily generalized, however, to account for other radiative processes and an arbitrary spacetime. We describe a suite of test problems, and demonstrate the expected N -1/2 convergence rate, where N is the number of Monte Carlo samples. Finally, we illustrate the capabilities of the code with a model calculation, a spectrum of the slowly accreting black hole Sgr A* based on data provided by a numerical general relativistic MHD model of the accreting plasma.
Circumstellar and circumplanetary disks
Chiang, Eugene
2000-11-01
This thesis studies disks in three astrophysical contexts: (1)protoplanetary disks; (2)the Edgeworth-Kuiper Belt; and (3)planetary rings. We derive hydrostatic, radiative equilibrium models of passive protoplanetary disks surrounding T Tauri and Herbig Ae/Be stars. Each disk is encased by an optically thin layer of superheated dust grains. This layer is responsible for up to ~70% of the disk luminosity at wavelengths between ~5 and 60 μm. The heated disk flares and absorbs more stellar radiation at a given stellocentric distance than a flat disk would. Spectral energy distributions are computed and found to compare favorably with the observed flattish infrared excesses of several young stellar objects. Spectral features from dust grains in the superheated layer appear in emission if the disk is viewed nearly face-on. We present the results of a pencil-beam survey of the Kuiper Belt using the Keck 10-m telescope. Two new objects are discovered. Data from all surveys are pooled to construct the luminosity function from mR = 20 to 27. The cumulative number of objects per square degree, Σ(surface area but the largest bodies contain most of the mass. To order-of-magnitude, 0.2 M⊕ and 1 × 1010 comet progenitors lie between 30 and 50 AU. The classical Kuiper Belt appears truncated at a distance of 50 AU. We propose that rigid precession of narrow eccentric planetary rings surrounding Uranus and Saturn is maintained by a balance of forces due to ring self- gravity, planetary oblateness, and interparticle collisions. Collisional impulses play an especially dramatic role near ring edges. Pressure-induced accelerations are maximal near edges because there (1)velocity dispersions are enhanced by resonant satellite perturbations, and (2)the surface density declines steeply. Remarkably, collisional forces felt by material in the last ~100 m of a ~10 km wide ring can increase equilibrium masses up to a factor of ~100. New ring surface densities are derived which accord with
Relativistic twins or sextuplets?
International Nuclear Information System (INIS)
Sheldon, Eric
2003-01-01
A recent study of the relativistic twin 'paradox' by Soni in this journal affirmed that 'A simple solution of the twin paradox also shows anomalous behaviour of rigidly connected distant clocks' but entailed a pedagogic hurdle which the present treatment aims to surmount. Two scenarios are presented: the first 'flight-plan' is akin to that depicted by Soni, with constant-velocity segments, while the second portrays an alternative mission undertaken with sustained acceleration and deceleration, illustrated quantitatively for a two-way spacecraft flight from Earth to Polaris (465.9 light years distant) and back
Relativistic twins or sextuplets?
Sheldon, E S
2003-01-01
A recent study of the relativistic twin 'paradox' by Soni in this journal affirmed that 'A simple solution of the twin paradox also shows anomalous behaviour of rigidly connected distant clocks' but entailed a pedagogic hurdle which the present treatment aims to surmount. Two scenarios are presented: the first 'flight-plan' is akin to that depicted by Soni, with constant-velocity segments, while the second portrays an alternative mission undertaken with sustained acceleration and deceleration, illustrated quantitatively for a two-way spacecraft flight from Earth to Polaris (465.9 light years distant) and back.
Relativistic quantum cryptography
Kaniewski, Jedrzej
Special relativity states that information cannot travel faster than the speed of light, which means that communication between agents occupying distinct locations incurs some minimal delay. Alternatively, we can see it as temporary communication constraints between distinct agents and such constraints turn out to be useful for cryptographic purposes. In relativistic cryptography we consider protocols in which interactions occur at distinct locations at well-defined times and we investigate why such a setting allows to implement primitives which would not be possible otherwise. (Abstract shortened by UMI.).
Relativistic distances, sizes, lengths
International Nuclear Information System (INIS)
Strel'tsov, V.N.
1992-01-01
Such notion as light or retarded distance, field size, formation way, visible size of a body, relativistic or radar length and wave length of light from a moving atom are considered. The relation between these notions is cleared up, their classification is given. It is stressed that the formation way is defined by the field size of a moving particle. In the case of the electromagnetic field, longitudinal sizes increase proportionally γ 2 with growing charge velocity (γ is the Lorentz-factor). 18 refs
Localization of relativistic particles
International Nuclear Information System (INIS)
Omnes, R.
1997-01-01
In order to discuss localization experiments and also to extend the consistent history interpretation of quantum mechanics to relativistic properties, the techniques introduced in a previous paper [J. Math. Phys. 38, 697 (1997)] are applied to the localization of a photon in a given region of space. An essential requirement is to exclude arbitrarily large wavelengths. The method is valid for a particle with any mass and spin. Though there is no proper position operator for a photon, one never needs one in practice. Causality is valid up to exponentially small corrections. copyright 1997 American Institute of Physics
Corinaldesi, Ernesto
1963-01-01
Geared toward advanced undergraduate and graduate students of physics, this text provides readers with a background in relativistic wave mechanics and prepares them for the study of field theory. The treatment originated as a series of lectures from a course on advanced quantum mechanics that has been further amplified by student contributions.An introductory section related to particles and wave functions precedes the three-part treatment. An examination of particles of spin zero follows, addressing wave equation, Lagrangian formalism, physical quantities as mean values, translation and rotat
Relativistic quarkonium dynamics
International Nuclear Information System (INIS)
Sazdjian, H.
1985-06-01
We present, in the framework of relativistic quantum mechanics of two interacting particles, a general model for quarkonium systems satisfying the following four requirements: confinement, spontaneous breakdown of chiral symmetry, soft explicit chiral symmetry breaking, short distance interactions of the vector type. The model is characterized by two arbitrary scalar functions entering in the large and short distance interaction potentials, respectively. Using relationships with corresponding quantities of the Bethe-Salpeter equation, we also present the normalization condition of the wave functions, as well as the expressions of the meson decay coupling constants. The quark masses appear in this model as free parameters
International Nuclear Information System (INIS)
Araujo, Wilson Roberto Barbosa de
1995-01-01
In this dissertation, we present a model for the nucleon, which is composed by three relativistic quarks interacting through a contract force. The nucleon wave-function was obtained from the Faddeev equation in the null-plane. The covariance of the model under kinematical null-plane boots is discussed. The electric proton form-factor, calculated from the Faddeev wave-function, was in agreement with the data for low-momentum transfers and described qualitatively the asymptotic region for momentum transfers around 2 GeV. (author)
Relativistic nuclear collisions: theory
International Nuclear Information System (INIS)
Gyulassy, M.
1980-07-01
Some of the recent theoretical developments in relativistic (0.5 to 2.0-GeV/nucleon) nuclear collisions are reviewed. The statistical model, hydrodynamic model, classical equation of motion calculations, billiard ball dynamics, and intranuclear cascade models are discussed in detail. Inclusive proton and pion spectra are analyzed for a variety of reactions. Particular attention is focused on how the complex interplay of the basic reaction mechanism hinders attempts to deduce the nuclear matter equation of state from data. 102 references, 19 figures
[Relativistic heavy ion research
International Nuclear Information System (INIS)
1991-01-01
The present document describes our second-year application for a continuation grant on relativistic heavy-ion research at Nevis Laboratories, Columbia University, over the two-year period starting from November 15, 1990. The progress during the current budget year is presented. This year, construction of RHIC officially began. As a result, the entire Nevis nuclear physics group has made a coherent effort to create new proposal for an Open Axially Symmetric Ion Spectrometer (OASIS) proposal. Future perspectives and our plans for this proposal are described
International Nuclear Information System (INIS)
Parkin, E. R.; Bicknell, G. V.
2013-01-01
Global three-dimensional magnetohydrodynamic (MHD) simulations of turbulent accretion disks are presented which start from fully equilibrium initial conditions in which the magnetic forces are accounted for and the induction equation is satisfied. The local linear theory of the magnetorotational instability (MRI) is used as a predictor of the growth of magnetic field perturbations in the global simulations. The linear growth estimates and global simulations diverge when nonlinear motions—perhaps triggered by the onset of turbulence—upset the velocity perturbations used to excite the MRI. The saturated state is found to be independent of the initially excited MRI mode, showing that once the disk has expelled the initially net flux field and settled into quasi-periodic oscillations in the toroidal magnetic flux, the dynamo cycle regulates the global saturation stress level. Furthermore, time-averaged measures of converged turbulence, such as the ratio of magnetic energies, are found to be in agreement with previous works. In particular, the globally averaged stress normalized to the gas pressure P >bar = 0.034, with notably higher values achieved for simulations with higher azimuthal resolution. Supplementary tests are performed using different numerical algorithms and resolutions. Convergence with resolution during the initial linear MRI growth phase is found for 23-35 cells per scale height (in the vertical direction).
STRONG FIELD EFFECTS ON EMISSION LINE PROFILES: KERR BLACK HOLES AND WARPED ACCRETION DISKS
International Nuclear Information System (INIS)
Wang Yan; Li Xiangdong
2012-01-01
If an accretion disk around a black hole is illuminated by hard X-rays from non-thermal coronae, fluorescent iron lines will be emitted from the inner region of the accretion disk. The emission line profiles will show a variety of strong field effects, which may be used as a probe of the spin parameter of the black hole and the structure of the accretion disk. In this paper, we generalize the previous relativistic line profile models by including both the black hole spinning effects and the non-axisymmetries of warped accretion disks. Our results show different features from the conventional calculations for either a flat disk around a Kerr black hole or a warped disk around a Schwarzschild black hole by presenting, at the same time, multiple peaks, rather long red tails, and time variations of line profiles with the precession of the disk. We show disk images as seen by a distant observer, which are distorted by the strong gravity. Although we are primarily concerned with the iron K-shell lines in this paper, the calculation is general and is valid for any emission lines produced from a warped accretion disk around a black hole.
Energy Technology Data Exchange (ETDEWEB)
Harko, Tiberiu [University College London, Department of Mathematics, London (United Kingdom); Leung, Chun Sing [Polytechnic University, Department of Applied Mathematics, Hong Kong (China); Mocanu, Gabriela [Babes-Bolyai University, Faculty of Physics, Cluj-Napoca (Romania)
2014-05-15
We consider a description of the stochastic oscillations of the general relativistic accretion disks around compact astrophysical objects interacting with their external medium based on a generalized Langevin equation with colored noise and on the fluctuation-dissipation theorems. The former accounts for the general memory and retarded effects of the frictional force. The presence of the memory effects influences the response of the disk to external random interactions, and it modifies the dynamical behavior of the disk, as well as the energy dissipation processes. The generalized Langevin equation of the motion of the disk in the vertical direction is studied numerically, and the vertical displacements, velocities, and luminosities of the stochastically perturbed disks are explicitly obtained for both the Schwarzschild and the Kerr cases. The power spectral distribution of the disk luminosity is also obtained. As a possible astrophysical application of the formalism we investigate the possibility that the intra-day variability of the active galactic nuclei may be due to the stochastic disk instabilities. The perturbations due to colored/nontrivially correlated noise induce a complicated disk dynamics, which could explain some astrophysical observational features related to disk variability. (orig.)
International Nuclear Information System (INIS)
Harko, Tiberiu; Leung, Chun Sing; Mocanu, Gabriela
2014-01-01
We consider a description of the stochastic oscillations of the general relativistic accretion disks around compact astrophysical objects interacting with their external medium based on a generalized Langevin equation with colored noise and on the fluctuation-dissipation theorems. The former accounts for the general memory and retarded effects of the frictional force. The presence of the memory effects influences the response of the disk to external random interactions, and it modifies the dynamical behavior of the disk, as well as the energy dissipation processes. The generalized Langevin equation of the motion of the disk in the vertical direction is studied numerically, and the vertical displacements, velocities, and luminosities of the stochastically perturbed disks are explicitly obtained for both the Schwarzschild and the Kerr cases. The power spectral distribution of the disk luminosity is also obtained. As a possible astrophysical application of the formalism we investigate the possibility that the intra-day variability of the active galactic nuclei may be due to the stochastic disk instabilities. The perturbations due to colored/nontrivially correlated noise induce a complicated disk dynamics, which could explain some astrophysical observational features related to disk variability. (orig.)
Harko, Tiberiu; Leung, Chun Sing; Mocanu, Gabriela
2014-05-01
We consider a description of the stochastic oscillations of the general relativistic accretion disks around compact astrophysical objects interacting with their external medium based on a generalized Langevin equation with colored noise and on the fluctuation-dissipation theorems. The former accounts for the general memory and retarded effects of the frictional force. The presence of the memory effects influences the response of the disk to external random interactions, and it modifies the dynamical behavior of the disk, as well as the energy dissipation processes. The generalized Langevin equation of the motion of the disk in the vertical direction is studied numerically, and the vertical displacements, velocities, and luminosities of the stochastically perturbed disks are explicitly obtained for both the Schwarzschild and the Kerr cases. The power spectral distribution of the disk luminosity is also obtained. As a possible astrophysical application of the formalism we investigate the possibility that the intra-day variability of the active galactic nuclei may be due to the stochastic disk instabilities. The perturbations due to colored/nontrivially correlated noise induce a complicated disk dynamics, which could explain some astrophysical observational features related to disk variability.
Relativistic approach to nuclear structure
International Nuclear Information System (INIS)
Nguyen Van Giai; Bouyssy, A.
1987-03-01
Some recent works related with relativistic models of nuclear structure are briefly reviewed. The Dirac-Hartree-Fock and Dirac-Brueckner-Hartree-Fock are recalled and illustrated by some examples. The problem of isoscalar current and magnetic moments of odd nuclei is discussed. The application of the relativistic model to the nuclear response function is examined
Relativistic dynamics without conservation laws
Rothenstein, Bernhard; Popescu, Stefan
2006-01-01
We show that relativistic dynamics can be approached without using conservation laws (conservation of momentum, of energy and of the centre of mass). Our approach avoids collisions that are not easy to teach without mnemonic aids. The derivations are based on the principle of relativity and on its direct consequence, the addition law of relativistic velocities.
Relativistic non-Hamiltonian mechanics
International Nuclear Information System (INIS)
Tarasov, Vasily E.
2010-01-01
Relativistic particle subjected to a general four-force is considered as a nonholonomic system. The nonholonomic constraint in four-dimensional space-time represents the relativistic invariance by the equation for four-velocity u μ u μ + c 2 = 0, where c is the speed of light in vacuum. In the general case, four-forces are non-potential, and the relativistic particle is a non-Hamiltonian system in four-dimensional pseudo-Euclidean space-time. We consider non-Hamiltonian and dissipative systems in relativistic mechanics. Covariant forms of the principle of stationary action and the Hamilton's principle for relativistic mechanics of non-Hamiltonian systems are discussed. The equivalence of these principles is considered for relativistic particles subjected to potential and non-potential forces. We note that the equations of motion which follow from the Hamilton's principle are not equivalent to the equations which follow from the variational principle of stationary action. The Hamilton's principle and the principle of stationary action are not compatible in the case of systems with nonholonomic constraint and the potential forces. The principle of stationary action for relativistic particle subjected to non-potential forces can be used if the Helmholtz conditions are satisfied. The Hamilton's principle and the principle of stationary action are equivalent only for a special class of relativistic non-Hamiltonian systems.
Contraint's theory and relativistic dynamics
International Nuclear Information System (INIS)
Longhi, G.; Lusanna, L.
1987-01-01
The purpose of this Workshop was to examine the current situation of relativistic dynamics. In particular, Dirac-Bergmann's theory of constraints, which lies at the heart of gauge theories, general relativity, relativistic mechanics and string theories, was chosen as the unifying theoretical framework best suited to investigate such a field. The papers discussed were on general relativity; relativistic mechanics; particle physics and mathematical physics. Also discussed were the problems of classical and quantum level, namely the identification of the classical observables of constrained systems, the equivalence of the nonequivalence of the various ways to quantize such systems; the problem of the anomalies; the best geometrical approach to the theory of constraints; the possibility of unifying all the treatments of relativistic mechanics. This book compiles the papers presented at proceedings of relativistic dynamics and constraints theory
Relativistic centrifugal instability
Gourgouliatos, Konstantinos N.; Komissarov, Serguei S.
2018-03-01
Near the central engine, many astrophysical jets are expected to rotate about their axis. Further out they are expected to go through the processes of reconfinement and recollimation. In both these cases, the flow streams along a concave surface and hence, it is subject to the centrifugal force. It is well known that such flows may experience the centrifugal instability (CFI), to which there are many laboratory examples. The recent computer simulations of relativistic jets from active galactic nuclei undergoing the process of reconfinement show that in such jets CFI may dominate over the Kelvin-Helmholtz instability associated with velocity shear (Gourgouliatos & Komissarov). In this letter, we generalize the Rayleigh criterion for CFI in rotating fluids to relativistic flows using a heuristic analysis. We also present the results of computer simulations which support our analytic criterion for the case of an interface separating two uniformly rotating cylindrical flows. We discuss the difference between CFI and the Rayleigh-Taylor instability in flows with curved streamlines.
Relativistic heavy ion physics
International Nuclear Information System (INIS)
Hill, J.C.; Wohn, F.K.
1992-01-01
In 1992 a proposal by the Iowa State University experimental nuclear physics group entitled ''Relativistic Heavy Ion Physics'' was funded by the US Department of Energy, Office of Energy Research, for a three-year period beginning November 15, 1991. This is a progress report for the first six months of that period but, in order to give a wider perspective, we report here on progress made since the beginning of calendar year 1991. In the first section, entitled ''Purpose and Trends,'' we give some background on the recent trends in our research program and its evolution from an emphasis on nuclear structure physics to its present emphasis on relativistic heavy ion and RHIC physics. The next section, entitled, ''Physics Research Programs,'' is divided into three parts. First, we discuss our participation in the program to develop a large detector named PHENIX for the RHIC accelerator. Second, we outline progress made in the study of electromagnetic dissociation (ED). A highlight of this endeavor is experiments carried out with the 197 Au beam from the AGS accelerator in April 1991. Third, we discuss progress in completion of our nuclear structure studies. In the final section a list of publications, invited talks and contributed talks starting in 1991 is given
Holman, Megan; Tubbs, Drake; Keller, L. D.
2018-01-01
Using spectra models with known parameters and comparing them to spectra gathered from real systems is often the only ways to find out what is going on in those real systems. This project uses the modeling programs of RADMC-3D to generate model spectra for systems containing protoplanetary disks. The parameters can be changed to simulate protoplanetary disks in different stages of planet formation, with different sized gaps in different areas of the disks, as well as protoplanetary disks that contain different types of dust. We are working on producing a grid of models that all have different variations in the parameters in order to generate a miniature database to use for comparisons to gathered spectra. The spectra produced from these simulations will be compared to spectra that have been gathered from systems in the Small Magellanic cloud in order to find out the contents and stage of development of that system. This allows us to see if and how planets are forming in the Small Magellanic cloud, a region which has much less metallicity than our own galaxy. The data we gather from comparisons between the model spectra and the spectra of systems in the Small Magellanic Cloud can then be applied to how planets may have formed in the early universe.
Verheijen, Marc A. W.; Bershady, Matthew A.; Swaters, Rob A.; Andersen, David R.; Westfall, Kyle B.; de Jong, Roelof Sybe
2007-01-01
Little is known about the content and distribution of dark matter in spiral galaxies. To break the degeneracy in galaxy rotation curve decompositions, which allows a wide range of dark matter halo density profiles, an independent measure of the mass surface density of stellar disks is needed. Here,
bhlight: GENERAL RELATIVISTIC RADIATION MAGNETOHYDRODYNAMICS WITH MONTE CARLO TRANSPORT
International Nuclear Information System (INIS)
Ryan, B. R.; Gammie, C. F.; Dolence, J. C.
2015-01-01
We present bhlight, a numerical scheme for solving the equations of general relativistic radiation magnetohydrodynamics using a direct Monte Carlo solution of the frequency-dependent radiative transport equation. bhlight is designed to evolve black hole accretion flows at intermediate accretion rate, in the regime between the classical radiatively efficient disk and the radiatively inefficient accretion flow (RIAF), in which global radiative effects play a sub-dominant but non-negligible role in disk dynamics. We describe the governing equations, numerical method, idiosyncrasies of our implementation, and a suite of test and convergence results. We also describe example applications to radiative Bondi accretion and to a slowly accreting Kerr black hole in axisymmetry
Jets, black holes and disks in blazars
Directory of Open Access Journals (Sweden)
Ghisellini Gabriele
2013-12-01
Full Text Available The Fermi and Swift satellites, together with ground based Cherenkov telescopes, has greatly improved our knowledge of blazars, namely Flat Spectrum Radio Quasars and BL Lac objects, since all but the most powerful emit most of their electro–magnetic output at γ–ray energies, while the very powerful blazars emit mostly in the hard X–ray region of the spectrum. Often they show coordinated variability at different frequencies, suggesting that in these cases the same population of electrons is at work, in a single zone of the jet. The location of this region along the jet is a matter of debate. The jet power correlates with the mass accretion rate, with jets existing at all values of disk luminosities, measured in Eddington units, sampled so far. The most powerful blazars show clear evidence of the emission from their disks, and this has revived methods of finding the black hole mass and accretion rate by modelling a disk spectrum to the data. Being so luminous, blazars can be detected also at very high redshift, and therefore are a useful tool to explore the far universe. One interesting line of research concerns how heavy are their black holes at high redshifts. If we associate the presence of a relativistic jets with a fastly spinning black hole, then we naively expect that the accretion efficiency is larger than for non–spinning holes. As a consequence, the black hole mass in jetted systems should grow at a slower rate. In turn, this would imply that, at high redshifts, the heaviest black holes should be in radio–quiet quasars. We instead have evidences of the opposite, challenging our simple ideas of how a black hole grows.
GRADSPMHD: A parallel MHD code based on the SPH formalism
Vanaverbeke, S.; Keppens, R.; Poedts, S.
2014-03-01
We present GRADSPMHD, a completely Lagrangian parallel magnetohydrodynamics code based on the SPH formalism. The implementation of the equations of SPMHD in the “GRAD-h” formalism assembles known results, including the derivation of the discretized MHD equations from a variational principle, the inclusion of time-dependent artificial viscosity, resistivity and conductivity terms, as well as the inclusion of a mixed hyperbolic/parabolic correction scheme for satisfying the ∇ṡB→ constraint on the magnetic field. The code uses a tree-based formalism for neighbor finding and can optionally use the tree code for computing the self-gravity of the plasma. The structure of the code closely follows the framework of our parallel GRADSPH FORTRAN 90 code which we added previously to the CPC program library. We demonstrate the capabilities of GRADSPMHD by running 1, 2, and 3 dimensional standard benchmark tests and we find good agreement with previous work done by other researchers. The code is also applied to the problem of simulating the magnetorotational instability in 2.5D shearing box tests as well as in global simulations of magnetized accretion disks. We find good agreement with available results on this subject in the literature. Finally, we discuss the performance of the code on a parallel supercomputer with distributed memory architecture. Catalogue identifier: AERP_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AERP_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 620503 No. of bytes in distributed program, including test data, etc.: 19837671 Distribution format: tar.gz Programming language: FORTRAN 90/MPI. Computer: HPC cluster. Operating system: Unix. Has the code been vectorized or parallelized?: Yes, parallelized using MPI. RAM: ˜30 MB for a
Energy Technology Data Exchange (ETDEWEB)
Bednarek, W., E-mail: bednar@uni.lodz.pl [Department of Astrophysics, The University of Lodz, 90-236 Lodz, ul. Pomorska 149/153 (Poland)
2016-12-20
We investigate the consequences of acceleration of nuclei in jets of active galaxies not far from the surface of an accretion disk. The nuclei can be accelerated in the re-connection regions in the jet and/or at the jet boundary, between the relativistic jet and its cocoon. It is shown that the relativistic nuclei can efficiently fragment onto specific nucleons in collisions with the disk radiation. Neutrons, directed toward the accretion disk, take a significant part of energy from the relativistic nuclei. These neutrons develop a cascade in the dense accretion disk. We calculate the neutrino spectra produced in such a hadronic cascade within the accretion disk. We propose that the neutrinos produced in such a scenario, from the whole population of super-massive black holes in active galaxies, can explain the extragalactic neutrino background recently measured by the IceCube neutrino detector, provided that a 5% fraction of galaxies have an active galactic nucleus and a few percent of neutrons reach the accretion disk. We predict that the neutrino signals in the present neutrino detectors, produced in terms of such a model, will not be detectable even from the nearby radio galaxies similar to M87.
Nonlinear MHD dynamo operating at equipartition
DEFF Research Database (Denmark)
Archontis, V.; Dorch, Bertil; Nordlund, Åke
2007-01-01
Context.We present results from non linear MHD dynamo experiments with a three-dimensional steady and smooth flow that drives fast dynamo action in the kinematic regime. In the saturation regime, the system yields strong magnetic fields, which undergo transitions between an energy-equipartition a......Context.We present results from non linear MHD dynamo experiments with a three-dimensional steady and smooth flow that drives fast dynamo action in the kinematic regime. In the saturation regime, the system yields strong magnetic fields, which undergo transitions between an energy......, and that it can saturate at a level significantly higher than intermittent turbulent dynamos, namely at energy equipartition, for high values of the magnetic and fluid Reynolds numbers. The equipartition solution however does not remain time-independent during the simulation but exhibits a much more intricate...
Neoclassical MHD equilibria with ohmic current
International Nuclear Information System (INIS)
Tokuda, Shinji; Takeda, Tatsuoki; Okamoto, Masao.
1989-01-01
MHD equilibria of tokamak plasmas with neoclassical current effects (neoclassical conductivity and bootstrap current) were calculated self-consistently. Neoclassical effects on JFT-2M tokamak plasmas, sustained by ohmic currents, were studied. Bootstrap currents flow little for L-mode type equilibria because of low attainable values of poloidal beta, β J . H-mode type equilibria give bootstrap currents of 30% ohmic currents for β J attained by JFT-2M and 100% for β J ≥ 1.5, both of which are sufficient to change the current profiles and the resultant MHD equilibria. Neoclassical conductivity which has roughly half value of the classical Spitzer conductivity brings peaked ohmic current profiles to yield low safety factor at the magnetic axis. Neoclassical conductivity reduces the value of effective Z(Z eff ) which is necessary to give the observed one-turn voltage but it needs impurities accumulating at the center when such peaked current profiles are not observed. (author)
Regular shock refraction in planar ideal MHD
International Nuclear Information System (INIS)
Delmont, P; Keppens, R
2010-01-01
We study the classical problem of planar shock refraction at an oblique density discontinuity, separating two gases at rest, in planar ideal (magneto)hydrodynamics. In the hydrodynamical case, 3 signals arise and the interface becomes Richtmyer-Meshkov unstable due to vorticity deposition on the shocked contact. In the magnetohydrodynamical case, on the other hand, when the normal component of the magnetic field does not vanish, 5 signals will arise. The interface then typically remains stable, since the Rankine-Hugoniot jump conditions in ideal MHD do not allow for vorticity deposition on a contact discontinuity. We present an exact Riemann solver based solution strategy to describe the initial self similar refraction phase. Using grid-adaptive MHD simulations, we show that after reflection from the top wall, the interface remains stable.
Evolution of the MHD sheet pinch
International Nuclear Information System (INIS)
Matthaeus, W.H.; Montgomery, D.
1979-01-01
A magnetohydrodynamic (MHD) problem of recurrent interest for both astrophysical and laboratory plasmas is the evolution of the unstable sheet pinch, a current sheet across which a dc magnetic field reverses sign. The evolution of such a sheet pinch is followed with a spectral-method, incompressible, two-dimensional, MHD turbulence code. Spectral diagnostics are employed, as are contour plots of vector potential (magnetic field lines), electric current density, and velocity stream function (velocity streamlines). The nonlinear effect which seems most important is seen to be current filamentation: the concentration of the current density onto sets of small measure near a mgnetic X point. A great deal of turbulence is apparent in the current distribution, which, for high Reynolds numbers, requires large spatial grids (greater than or equal to (64) 2 ). 11 figures, 1 table
The outflows accelerated by the magnetic fields and radiation force of accretion disks
Energy Technology Data Exchange (ETDEWEB)
Cao, Xinwu, E-mail: cxw@shao.ac.cn [Key Laboratory for Research in Galaxies and Cosmology, Shanghai Astronomical Observatory, Chinese Academy of Sciences, 80 Nandan Road, Shanghai, 200030 (China)
2014-03-01
The inner region of a luminous accretion disk is radiation-pressure-dominated. We estimate the surface temperature of a radiation-pressure-dominated accretion disk, Θ=c{sub s}{sup 2}/r{sup 2}Ω{sub K}{sup 2}≪(H/r){sup 2}, which is significantly lower than that of a gas-pressure-dominated disk, Θ ∼ (H/r){sup 2}. This means that the outflow can be launched magnetically from the photosphere of the radiation-pressure-dominated disk only if the effective potential barrier along the magnetic field line is extremely shallow or no potential barrier is present. For the latter case, the slow sonic point in the outflow will probably be in the disk, which leads to a slow circular dense flow above the disk. This implies that hot gas (probably in the corona) is necessary for launching an outflow from the radiation-pressure-dominated disk, which provides a natural explanation for the observational evidence that the relativistic jets are related to hot plasma in some X-ray binaries and active galactic nuclei. We investigate the outflows accelerated from the hot corona above the disk by the magnetic field and radiation force of the accretion disk. We find that with the help of the radiation force, the mass loss rate in the outflow is high, which leads to a slow outflow. This may be why the jets in radio-loud narrow-line Seyfert galaxies are in general mildly relativistic compared with those in blazars.
International Nuclear Information System (INIS)
Kersale, Evy
2000-01-01
The first part of this work proposes a new version of the mathematical formalism used to describe pressure-driven instabilities in magnetized accretion-ejection structures. Such processes, occurring in magnetically confined plasmas, pose very stringent limits to thermonuclear fusion devices but their influence in astrophysical objects has rarely been considered. In a framework which eliminates fast magnetosonic waves one develops a system of equations allowing us to follow both ballooning and interchange modes. An application of this result to a cylindrical jet being subject to solid rotation shows that the inner parts of such structures are destabilized by magnetic shear. Furthermore, while clarifying somewhat previous studies, one finds that jets confined by a dominant toroidal magnetic field are generically unstable with respect to interchange modes. Moreover, one has written a numerical code to solve the MHD partial differential equations. Starting with a basic algorithm, one has assessed the effects of the geometry, boundary conditions and artificial dissipation on numerical computation. The code has been tested by solving classical hydrodynamic and MHD Riemann problems. A new mechanism of ultra high energy cosmic ray production in gamma-ray bursts composes the last part of this work. In these objects, particles are accelerated up to energies of the order of 10 21 eV, by means of relativistic Alfven perturbations crossings. A stream instability involving a highly relativistic shell of plasma, the fireball, and baryons going through it produces such Alfven fronts. Then, Brillouin-like backscattering processes redistribute the available energy between the forward and backward Alfven waves and the magnetosonic ones. (author) [fr
Impulsive relaxation process in MHD driven reconnection
International Nuclear Information System (INIS)
Kitabata, H.; Hayashi, T.; Sato, T.
1997-01-01
Compressible magnetohydrodynamic (MHD) simulation is carried out in order to investigate energy relaxation process of the driven magnetic reconnection in an open finite system through a long time calculation. It is found that a very impulsive energy release occurs in an intermittent fashion through magnetic reconnection for a continuous magnetic flux injection on the boundary. We focus our attention on the detailed process in the impulsive phase, which is the reconnection rate is remarkably enhanced up. (author)
MHD simulations on an unstructured mesh
International Nuclear Information System (INIS)
Strauss, H.R.; Park, W.; Belova, E.; Fu, G.Y.; Sugiyama, L.E.
1998-01-01
Two reasons for using an unstructured computational mesh are adaptivity, and alignment with arbitrarily shaped boundaries. Two codes which use finite element discretization on an unstructured mesh are described. FEM3D solves 2D and 3D RMHD using an adaptive grid. MH3D++, which incorporates methods of FEM3D into the MH3D generalized MHD code, can be used with shaped boundaries, which might be 3D
Hopes for commercial use of MHD
International Nuclear Information System (INIS)
1968-01-01
Magnetohydrodynamics (MHD) is the study of the motion of fluids and gases in magnetic fields. After 25 years of theoretical and experimental work, it seems commercially promising for a new type of power station, where heat would be converted directly into electricity by generators without moving parts. Nuclear reactors would be well suited as the heat sources. At an Agency symposium in Warsaw in July it was felt that international cooperation is essential to develop the technique for industrial use. (author)
MHD instability studies in ISX-B
International Nuclear Information System (INIS)
Pare, V.K.; Dunlap, J.L.; Navarro, A.P.; Burris, R.D.
1979-01-01
MHD instabilities in Ohmically and beam heated ISX-B plasmas have been studied using collimated x-ray and Mirnov loop diagnostics. The diagnostic systems will be described and the instability signals will be illustrated for a variety of discharges. The latter will include those observed in connection with low and high β operation, density clamping, pellet injection, and deliberate introduction of toroidal field ripple
Status report on the Indian MHD programme
International Nuclear Information System (INIS)
Ambasankaran, C.
1978-03-01
MHD programme in India, which has been started recently as a collaborative effort by the Bhabha Atomic Research Centre and Bharat Heavy Electricals Ltd., with the technical consultation provided by the High Temperature Institute, Moscow, is described. The basic considerations which led to the launching of this project and the details of the experimental plant for R and D work are spelt out. (K.B.)
Statistical Theory of the Ideal MHD Geodynamo
Shebalin, J. V.
2012-01-01
A statistical theory of geodynamo action is developed, using a mathematical model of the geodynamo as a rotating outer core containing an ideal (i.e., no dissipation), incompressible, turbulent, convecting magnetofluid. On the concentric inner and outer spherical bounding surfaces the normal components of the velocity, magnetic field, vorticity and electric current are zero, as is the temperature fluctuation. This allows the use of a set of Galerkin expansion functions that are common to both velocity and magnetic field, as well as vorticity, current and the temperature fluctuation. The resulting dynamical system, based on the Boussinesq form of the magnetohydrodynamic (MHD) equations, represents MHD turbulence in a spherical domain. These basic equations (minus the temperature equation) and boundary conditions have been used previously in numerical simulations of forced, decaying MHD turbulence inside a sphere [1,2]. Here, the ideal case is studied through statistical analysis and leads to a prediction that an ideal coherent structure will be found in the form of a large-scale quasistationary magnetic field that results from broken ergodicity, an effect that has been previously studied both analytically and numerically for homogeneous MHD turbulence [3,4]. The axial dipole component becomes prominent when there is a relatively large magnetic helicity (proportional to the global correlation of magnetic vector potential and magnetic field) and a stationary, nonzero cross helicity (proportional to the global correlation of velocity and magnetic field). The expected angle of the dipole moment vector with respect to the rotation axis is found to decrease to a minimum as the average cross helicity increases for a fixed value of magnetic helicity and then to increase again when average cross helicity approaches its maximum possible value. Only a relatively small value of cross helicity is needed to produce a dipole moment vector that is aligned at approx.10deg with the
Identifying Likely Disk-hosting M dwarfs with Disk Detective
Silverberg, Steven; Wisniewski, John; Kuchner, Marc J.; Disk Detective Collaboration
2018-01-01
M dwarfs are critical targets for exoplanet searches. Debris disks often provide key information as to the formation and evolution of planetary systems around higher-mass stars, alongside the planet themselves. However, less than 300 M dwarf debris disks are known, despite M dwarfs making up 70% of the local neighborhood. The Disk Detective citizen science project has identified over 6000 new potential disk host stars from the AllWISE catalog over the past three years. Here, we present preliminary results of our search for new disk-hosting M dwarfs in the survey. Based on near-infrared color cuts and fitting stellar models to photometry, we have identified over 500 potential new M dwarf disk hosts, nearly doubling the known number of such systems. In this talk, we present our methodology, and outline our ongoing work to confirm systems as M dwarf disks.
Influence of the solar wind and IMF on Jupiter's magnetosphere: Results from global MHD simulations
Sarkango, Y.; Jia, X.; Toth, G.; Hansen, K. C.
2017-12-01
Due to its large size, rapid rotation and presence of substantial internal plasma sources, Jupiter's magnetosphere is fundamentally different from that of the Earth. How and to what extent do the external factors, such as the solar wind and interplanetary magnetic field (IMF), influence the internally-driven magnetosphere is an open question. In this work, we solve the 3D semi-relativistic magnetohydrodynamic (MHD) equations using a well-established code, BATSRUS, to model the Jovian magnetosphere and study its interaction with the solar wind. Our global model adopts a non-uniform mesh covering the region from 200 RJ upstream to 1800 RJ downstream with the inner boundary placed at a radial distance of 2.5 RJ. The Io plasma torus centered around 6 RJ is generated in our model through appropriate mass-loading terms added to the set of MHD equations. We perform systematic numerical experiments in which we vary the upstream solar wind properties to investigate the impact of solar wind events, such as interplanetary shock and IMF rotation, on the global magnetosphere. From our simulations, we extract the location of the magnetopause boundary, the bow shock and the open-closed field line boundary (OCB), and determine their dependence on the solar wind properties and the IMF orientation. For validation, we compare our simulation results, such as density, temperature and magnetic field, to published empirical models based on in-situ measurements.
Elms: MHD Instabilities at the transport barrier
Energy Technology Data Exchange (ETDEWEB)
Huysmans, G.T.A
2005-07-01
Significant progress has been made in recent years both on the experimental characterisation of ELMs (edge localized modes) and the theory and modelling of ELMs. The observed maximum pressure gradient is in good agreement with the calculated ideal MHD stability limits due to peeling-ballooning modes. The dependence on plasma current and plasma shape are also reproduced by the ideal MHD model. It will be a challenge to verify experimentally the influence of the extensions to the ideal MHD theory such as the possibly incomplete diamagnetic stabilisation, the influence of shear flow, finite resistivity or the stabilizing influence of the separatrix on peeling modes. The observations of the filamentary structures find their explanation in the theory and simulations of the early non-linear phase of the evolution of ballooning modes. One of the remaining open questions is what determines the size of the ELM and its duration. This is related to the loss mechanism of energy and density. Some heuristic descriptions of possible mechanisms have been proposed in literature but none of the models so far makes quantitative predictions on the ELM size. Also the numerical simulations are not yet advanced to the point where the full ELM crash can be modelled. The theory and simulations of the ELMs are necessary to decide between the possible parameters, such as the collisionality or the parallel transport time, that are proposed for the extrapolation of ELM sizes to ITER.
Elms: MHD Instabilities at the transport barrier
International Nuclear Information System (INIS)
Huysmans, G.T.A.
2005-01-01
Significant progress has been made in recent years both on the experimental characterisation of ELMs (edge localized modes) and the theory and modelling of ELMs. The observed maximum pressure gradient is in good agreement with the calculated ideal MHD stability limits due to peeling-ballooning modes. The dependence on plasma current and plasma shape are also reproduced by the ideal MHD model. It will be a challenge to verify experimentally the influence of the extensions to the ideal MHD theory such as the possibly incomplete diamagnetic stabilisation, the influence of shear flow, finite resistivity or the stabilizing influence of the separatrix on peeling modes. The observations of the filamentary structures find their explanation in the theory and simulations of the early non-linear phase of the evolution of ballooning modes. One of the remaining open questions is what determines the size of the ELM and its duration. This is related to the loss mechanism of energy and density. Some heuristic descriptions of possible mechanisms have been proposed in literature but none of the models so far makes quantitative predictions on the ELM size. Also the numerical simulations are not yet advanced to the point where the full ELM crash can be modelled. The theory and simulations of the ELMs are necessary to decide between the possible parameters, such as the collisionality or the parallel transport time, that are proposed for the extrapolation of ELM sizes to ITER
The Statistical Mechanics of Ideal MHD Turbulence
Shebalin, John V.
2003-01-01
Turbulence is a universal, nonlinear phenomenon found in all energetic fluid and plasma motion. In particular. understanding magneto hydrodynamic (MHD) turbulence and incorporating its effects in the computation and prediction of the flow of ionized gases in space, for example, are great challenges that must be met if such computations and predictions are to be meaningful. Although a general solution to the "problem of turbulence" does not exist in closed form, numerical integrations allow us to explore the phase space of solutions for both ideal and dissipative flows. For homogeneous, incompressible turbulence, Fourier methods are appropriate, and phase space is defined by the Fourier coefficients of the physical fields. In the case of ideal MHD flows, a fairly robust statistical mechanics has been developed, in which the symmetry and ergodic properties of phase space is understood. A discussion of these properties will illuminate our principal discovery: Coherent structure and randomness co-exist in ideal MHD turbulence. For dissipative flows, as opposed to ideal flows, progress beyond the dimensional analysis of Kolmogorov has been difficult. Here, some possible future directions that draw on the ideal results will also be discussed. Our conclusion will be that while ideal turbulence is now well understood, real turbulence still presents great challenges.
MHD thrust vectoring of a rocket engine
Labaune, Julien; Packan, Denis; Tholin, Fabien; Chemartin, Laurent; Stillace, Thierry; Masson, Frederic
2016-09-01
In this work, the possibility to use MagnetoHydroDynamics (MHD) to vectorize the thrust of a solid propellant rocket engine exhaust is investigated. Using a magnetic field for vectoring offers a mass gain and a reusability advantage compared to standard gimbaled, elastomer-joint systems. Analytical and numerical models were used to evaluate the flow deviation with a 1 Tesla magnetic field inside the nozzle. The fluid flow in the resistive MHD approximation is calculated using the KRONOS code from ONERA, coupling the hypersonic CFD platform CEDRE and the electrical code SATURNE from EDF. A critical parameter of these simulations is the electrical conductivity, which was evaluated using a set of equilibrium calculations with 25 species. Two models were used: local thermodynamic equilibrium and frozen flow. In both cases, chlorine captures a large fraction of free electrons, limiting the electrical conductivity to a value inadequate for thrust vectoring applications. However, when using chlorine-free propergols with 1% in mass of alkali, an MHD thrust vectoring of several degrees was obtained.
Energetic particle effects on global MHD modes
International Nuclear Information System (INIS)
Cheng, C.Z.
1990-01-01
The effects of energetic particles on MHD type modes are studied by analytical theories and the nonvariational kinetic-MHD stability code (NOVA-K). In particular we address the problems of (1) the stabilization of ideal MHD internal kink modes and the excitation of resonant ''fishbone'' internal modes and (2) the alpha particle destabilization of toroidicity-induced Alfven eigenmodes (TAE) via transit resonances. Analytical theories are presented to help explain the NOVA-K results. For energetic trapped particles generated by neutral-beam injection (NBI) or ion cyclotron resonant heating (ICRH), a stability window for the n=1 internal kink mode in the hot particle beat space exists even in the absence of core ion finite Larmor radius effect (finite ω *i ). On the other hand, the trapped alpha particles are found to resonantly excite instability of the n=1 internal mode and can lower the critical beta threshold. The circulating alpha particles can strongly destabilize TAE modes via inverse Landau damping associated with the spatial gradient of the alpha particle pressure. 23 refs., 5 figs
Magnetohydrodynamic (MHD) simulation of solar prominence formation
International Nuclear Information System (INIS)
Bao, J.
1987-01-01
Formation of Kippenhahn-Schluter type solar prominences by chromospheric mass injection is studied via numerical simulation. The numerical model is based on a two-dimensional, time-dependent magnetohydrodynamic (MHD) theory. In addition, an analysis of gravitational thermal MHD instabilities related to condensation is performed by using the small-perturbation method. The conclusions are: (1) Both quiescent and active-region prominences can be formed by chromospheric mass injection, provided certain optimum conditions are satisfied. (2) Quiescent prominences cannot be formed without condensation, though enough mass is supplied from chromosphere. The mass of a quiescent prominence is composed of both the mass injected from the chromosphere and the mass condensed from the corona. On the other hand, condensation is not important to active region prominence formation. (3) In addition to channeling and supporting effects, the magnetic field plays another important role, i.e. containing the prominence material. (4) In the model cases, prominences are supported by the Lorentz force, the gas-pressure gradient and the mass-injection momentum. (5) Due to gravity, more MHD condensation instability modes appear in addition to the basic condensation mode
International Nuclear Information System (INIS)
Nemenov, L.
2001-01-01
The Coulomb interaction which occurs in the final state between two particles with opposite charges allows for creation of the bound state of these particles. In the case when particles are generated with large momentum in lab frame, the Lorentz factors of the bound state will also be much larger than one. The relativistic velocity of the atoms provides the opportunity to observe bound states of (π + μ - ), (π + π - ) and (π + K - ) with a lifetime as short as 10 -16 s, and to measure their parameters. The ultrarelativistic positronium atoms (A 2e ) allow us to observe the e.ect of superpenetration in matter, to study the effects caused by the formation time of A 2e from virtual e + e - pairs and to investigate the process of transformation of two virtual particles into the bound state
Photoionization at relativistic energies
International Nuclear Information System (INIS)
Ionescu, D.C.; Technische Univ. Dresden; Soerensen, A.H.; Belkacem, A.
2000-11-01
At MeV energies and beyond the inner-shell vacancy production cross section associated with the photoelectric and Compton effect decrease with increasing photon energy. However, when the photon energy exceeds twice the rest energy of the electron, ionization of a bound electron may be catalyzed by the creation of an electron-positron pair. Distinctly different from all other known mechanisms for inner-shell vacancy production by photons, we show that the cross section for this ''vacuum-assisted photoionization'' increases with increasing photon energy and then saturates. As a main result, we predict that vacuum-assisted photoionization will dominate the other known photoionization mechanisms in the highly relativistic energy regime. (orig.)
Relativistic thermodynamics of fluids
International Nuclear Information System (INIS)
Souriau, J.-M.
1977-05-01
The relativistic covariant definition of a statistical equilibrium, applied to a perfect gas, involves a 'temperature four-vector', whose direction is the mean velocity of the fluid, and whose length is the reciprocal temperature. The hypothesis of this 'temperature four-vector' being a relevant variable for the description of the dissipative motions of a simple fluid is discussed. The kinematics is defined by using a vector field and measuring the number of molecules. Such a dissipative fluid is subject to motions involving null entropy generation; the 'temperature four-vector' is then a Killing vector; the equations of motion can be completely integrated. Perfect fluids can be studied by this way and the classical results of Lichnerowicz are obtained. In weakly dissipative motions two viscosity coefficient appear together with the heat conductibility coefficient. Two other coefficients perharps measurable on real fluids. Phase transitions and shock waves are described with using the model [fr
Relativistic heavy ion physics
International Nuclear Information System (INIS)
Hill, J.C.; Wohn, F.K.
1993-01-01
This is a progress report for the period May 1992 through April 1993. The first section, entitled ''Purpose and Trends, gives background on the recent trends in the research program and its evolution from an emphasis on nuclear structure physics to its present emphasis on relativistic heavy ion and RHIC physics. The next section, entitled ''Physics Research Progress'', is divided into four parts: participation in the program to develop a large detector named PHENIX for the RHIC accelerator; joining E864 at the AGS accelerator and the role in that experiment; progress made in the study of electromagnetic dissociation highlight of this endeavor is an experiment carried out with the 197 Au beam from the AGS accelerator in April 1992; progress in completion of the nuclear structure studies. In the final section a list of publications, invited talks, and contributed talks is given
Relativistic plasma dispersion functions
International Nuclear Information System (INIS)
Robinson, P.A.
1986-01-01
The known properties of plasma dispersion functions (PDF's) for waves in weakly relativistic, magnetized, thermal plasmas are reviewed and a large number of new results are presented. The PDF's required for the description of waves with small wave number perpendicular to the magnetic field (Dnestrovskii and Shkarofsky functions) are considered in detail; these functions also arise in certain quantum electrodynamical calculations involving strongly magnetized plasmas. Series, asymptotic series, recursion relations, integral forms, derivatives, differential equations, and approximations for these functions are discussed as are their analytic properties and connections with standard transcendental functions. In addition a more general class of PDF's relevant to waves of arbitrary perpendicular wave number is introduced and a range of properties of these functions are derived
ALMA Survey of Lupus Protoplanetary Disks. II. Gas Disk Radii
Ansdell, M.; Williams, J. P.; Trapman, L.; van Terwisga, S. E.; Facchini, S.; Manara, C. F.; van der Marel, N.; Miotello, A.; Tazzari, M.; Hogerheijde, M.; Guidi, G.; Testi, L.; van Dishoeck, E. F.
2018-05-01
We present Atacama Large Millimeter/Sub-Millimeter Array (ALMA) Band 6 observations of a complete sample of protoplanetary disks in the young (∼1–3 Myr) Lupus star-forming region, covering the 1.33 mm continuum and the 12CO, 13CO, and C18O J = 2–1 lines. The spatial resolution is ∼0.″25 with a medium 3σ continuum sensitivity of 0.30 mJy, corresponding to M dust ∼ 0.2 M ⊕. We apply Keplerian masking to enhance the signal-to-noise ratios of our 12CO zero-moment maps, enabling measurements of gas disk radii for 22 Lupus disks; we find that gas disks are universally larger than millimeter dust disks by a factor of two on average, likely due to a combination of the optically thick gas emission and the growth and inward drift of the dust. Using the gas disk radii, we calculate the dimensionless viscosity parameter, α visc, finding a broad distribution and no correlations with other disk or stellar parameters, suggesting that viscous processes have not yet established quasi-steady states in Lupus disks. By combining our 1.33 mm continuum fluxes with our previous 890 μm continuum observations, we also calculate the millimeter spectral index, α mm, for 70 Lupus disks; we find an anticorrelation between α mm and millimeter flux for low-mass disks (M dust ≲ 5), followed by a flattening as disks approach α mm ≈ 2, which could indicate faster grain growth in higher-mass disks, but may also reflect their larger optically thick components. In sum, this work demonstrates the continuous stream of new insights into disk evolution and planet formation that can be gleaned from unbiased ALMA disk surveys.
Energy Technology Data Exchange (ETDEWEB)
Kipping, David, E-mail: dkipping@astro.columbia.edu [Department of Astronomy, Columbia University, 550 W. 120th St., New York, NY 10027 (United States)
2017-06-01
One proposed method for spacecraft to reach nearby stars is by accelerating sails using either solar radiation pressure or directed energy. This idea constitutes the thesis behind the Breakthrough Starshot project, which aims to accelerate a gram-mass spacecraft up to one-fifth the speed of light toward Proxima Centauri. For such a case, the combination of the sail’s low mass and relativistic velocity renders previous treatments incorrect at the 10% level, including that of Einstein himself in his seminal 1905 paper introducing special relativity. To address this, we present formulae for a sail’s acceleration, first in response to a single photon and then extended to an ensemble. We show how the sail’s motion in response to an ensemble of incident photons is equivalent to that of a single photon of energy equal to that of the ensemble. We use this principle of ensemble equivalence for both perfect and imperfect mirrors, enabling a simple analytic prediction of the sail’s velocity curve. Using our results and adopting putative parameters for Starshot , we estimate that previous relativistic treatments underestimate the spacecraft’s terminal velocity by ∼10% for the same incident energy. Additionally, we use a simple model to predict the sail’s temperature and diffraction beam losses during the laser firing period; this allows us to estimate that, for firing times of a few minutes and operating temperatures below 300°C (573 K), Starshot will require a sail that absorbs less than one in 260,000 photons.
International Nuclear Information System (INIS)
Kipping, David
2017-01-01
One proposed method for spacecraft to reach nearby stars is by accelerating sails using either solar radiation pressure or directed energy. This idea constitutes the thesis behind the Breakthrough Starshot project, which aims to accelerate a gram-mass spacecraft up to one-fifth the speed of light toward Proxima Centauri. For such a case, the combination of the sail’s low mass and relativistic velocity renders previous treatments incorrect at the 10% level, including that of Einstein himself in his seminal 1905 paper introducing special relativity. To address this, we present formulae for a sail’s acceleration, first in response to a single photon and then extended to an ensemble. We show how the sail’s motion in response to an ensemble of incident photons is equivalent to that of a single photon of energy equal to that of the ensemble. We use this principle of ensemble equivalence for both perfect and imperfect mirrors, enabling a simple analytic prediction of the sail’s velocity curve. Using our results and adopting putative parameters for Starshot , we estimate that previous relativistic treatments underestimate the spacecraft’s terminal velocity by ∼10% for the same incident energy. Additionally, we use a simple model to predict the sail’s temperature and diffraction beam losses during the laser firing period; this allows us to estimate that, for firing times of a few minutes and operating temperatures below 300°C (573 K), Starshot will require a sail that absorbs less than one in 260,000 photons.
Rotating relativistic neutron stars
Energy Technology Data Exchange (ETDEWEB)
Weber, F.; Glendenning, N.K.
1991-07-21
Models of rotating neutron stars are constructed in the framework of Einstein's theory of general relativity. For this purpose a refined version of Hartle's method is applied. The properties of these objects, e.g. gravitational mass, equatorial and polar radius, eccentricity, red- and blueshift, quadrupole moment, are investigated for Kepler frequencies of 4000 s{sup {minus}1} {le} {Omega}{sub K} {le} 9000 s{sup {minus}1}. Therefore a self-consistency problem inherent in the determination of {Omega}{sub K} must be solved. The investigation is based on neutron star matter equations of state derived from the relativistic Martin-Schwinger hierarch of coupled Green's functions. By means of introducing the Hartree, Hartree-Fock, and ladder ({Lambda}) approximations, models of the equation of state derived. A special feature of the latter approximation scheme is the inclusion of dynamical two-particle correlations. These have been calculated from the relativistic T-matrix applying both the HEA and Bonn meson-exchange potentials of the nucleon-nucleon force. The nuclear forces of the former two treatments are those of the standard scalar-vector-isovector model of quantum hadron dynamics, with parameters adjusted to the nuclear matter data. An important aspect of this work consists in testing the compatibility of different competing models of the nuclear equation of state with data on pulsar periods. By this the fundamental problem of nuclear physics concerning the behavior of the equation of state at supernuclear densities can be treated.
Some problems in relativistic thermodynamics
International Nuclear Information System (INIS)
Veitsman, E. V.
2007-01-01
The relativistic equations of state for ideal and real gases, as well as for various interface regions, have been derived. These dependences help to eliminate some controversies in the relativistic thermodynamics based on the special theory of relativity. It is shown, in particular, that the temperature of system whose velocity tends to the velocity of light in vacuum varies in accordance with the Ott law T = T 0 /√1 - v 2 /c 2 . Relativistic dependences for heat and mass transfer, for Ohm's law, and for a viscous flow of a liquid have also been derived
One-dimensional disk model simulation for klystron design
International Nuclear Information System (INIS)
Yonezawa, H.; Okazaki, Y.
1984-05-01
In 1982, one of the authors (Okazaki), of Toshiba Corporation, wrote a one-dimensional, rigid-disk model computer program to serve as a reliable design tool for the 150 MW klystron development project. This is an introductory note for the users of this program. While reviewing the so-called disk programs presently available, hypotheses such as gridded interaction gaps, a linear relation between phase and position, and so on, were found. These hypotheses bring serious limitations and uncertainties into the computational results. JPNDISK was developed to eliminate these defects, to follow the equations of motion as rigorously as possible, and to obtain self-consistent solutions for the gap voltages and the electron motion. Although some inaccuracy may be present in the relativistic region, JPNDISK, in its present form, seems a most suitable tool for klystron design; it is both easy and inexpensive to use
Energy Technology Data Exchange (ETDEWEB)
Ricci, L.; Isella, A. [Department of Astronomy, California Institute of Technology, MC 249-17, Pasadena, CA 91125 (United States); Testi, L.; De Gregorio-Monsalvo, I. [European Southern Observatory, Karl-Schwarzschild-Strasse 2, D-85748 Garching (Germany); Natta, A. [INAF-Osservatorio Astrofisico di Arcetri, Largo E. Fermi 5, I-50125 Firenze (Italy); Scholz, A., E-mail: lricci@astro.caltech.edu [School of Cosmic Physics, Dublin Institute for Advanced Studies, 31 Fitzwilliam Place, Dublin 2 (Ireland)
2014-08-10
We present Atacama Large Millimeter/submillimeter Array continuum and spectral line data at 0.89 mm and 3.2 mm for three disks surrounding young brown dwarfs and very low mass stars in the Taurus star forming region. Dust thermal emission is detected and spatially resolved for all the three disks, while CO(J = 3-2) emission is seen in two disks. We analyze the continuum visibilities and constrain the disks' physical structure in dust. The results of our analysis show that the disks are relatively large; the smallest one has an outer radius of about 70 AU. The inferred disk radii, radial profiles of the dust surface density, and disk to central object mass ratios lie within the ranges found for disks around more massive young stars. We derive from our observations the wavelength dependence of the millimeter dust opacity. In all the three disks, data are consistent with the presence of grains with at least millimeter sizes, as also found for disks around young stars, and confirm that the early stages of the solid growth toward planetesimals occur also around very low-mass objects. We discuss the implications of our findings on models of solids evolution in protoplanetary disks, the main mechanisms proposed for the formation of brown dwarfs and very low-mass stars, as well as the potential of finding rocky and giant planets around very low-mass objects.
Vibration of imperfect rotating disk
Directory of Open Access Journals (Sweden)
Půst L.
2011-12-01
Full Text Available This study is concerned with the theoretical and numerical calculations of the flexural vibrations of a bladed disk. The main focus of this study is to elaborate the basic background for diagnostic and identification methods for ascertaining the main properties of the real structure or an experimental model of turbine disks. The reduction of undesirable vibrations of blades is proposed by using damping heads, which on the experimental model of turbine disk are applied only on a limited number of blades. This partial setting of damping heads introduces imperfection in mass, stiffness and damping distribution on the periphery and leads to more complicated dynamic properties than those of a perfect disk. Calculation of FEM model and analytic—numerical solution of disk behaviour in the limited (two modes frequency range shows the splitting of resonance with an increasing speed of disk rotation. The spectrum of resonance is twice denser than that of a perfect disk.
Evolution of magnetic disk subsystems
Kaneko, Satoru
1994-06-01
The higher recording density of magnetic disk realized today has brought larger storage capacity per unit and smaller form factors. If the required access performance per MB is constant, the performance of large subsystems has to be several times better. This article describes mainly the technology for improving the performance of the magnetic disk subsystems and the prospects of their future evolution. Also considered are 'crosscall pathing' which makes the data transfer channel more effective, 'disk cache' which improves performance coupling with solid state memory technology, and 'RAID' which improves the availability and integrity of disk subsystems by organizing multiple disk drives in a subsystem. As a result, it is concluded that since the performance of the subsystem is dominated by that of the disk cache, maximation of the performance of the disk cache subsystems is very important.
THE DISK-WIND-JET CONNECTION IN THE BLACK HOLE H 1743-322
Energy Technology Data Exchange (ETDEWEB)
Miller, J. M.; King, A. L. [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48109-1042 (United States); Raymond, J. [Smithsonian Astrophysical Observatory, 60 Garden Street, Cambridge, MA 02138 (United States); Fabian, A. C. [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 OHA (United Kingdom); Reynolds, C. S. [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States); Kallman, T. R. [Laboratory for High Energy Astrophysics, NASA Goddard Space Flight Center, Code 662, Greenbelt, MD 20771 (United States); Cackett, E. M. [Department of Physics and Astronomy, Wayne State University, 666 West Hancock Street, Detroit, MI 48201 (United States); Van der Klis, M. [Astronomical Institute ' Anton Pannekoek' , University of Amsterdam, Science Park 904, 1098-XH, Amsterdam (Netherlands); Steeghs, D. T. H., E-mail: jonmm@umich.edu [Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom)
2012-11-01
X-ray disk winds are detected in spectrally soft, disk-dominated phases of stellar-mass black hole outbursts. In contrast, compact, steady, relativistic jets are detected in spectrally hard states that are dominated by non-thermal X-ray emission. Although these distinctive outflows appear to be almost mutually exclusive, it is possible that a disk wind persists in hard states but cannot be detected via X-ray absorption lines owing to very high ionization. Here, we present an analysis of a deep, 60 ks Chandra/HETGS observation of the black hole candidate H 1743-322 in the low/hard state. The spectrum shows no evidence of a disk wind, with tight limits, and within the range of ionizing flux levels that were measured in prior Chandra observations wherein a wind was clearly detected. In H 1743-322, at least, disk winds are actually diminished in the low/hard state, and disk winds and jets are likely state dependent and anti-correlated. These results suggest that although the launching radii of winds and jets may differ by orders of magnitude, they may both be tied to a fundamental property of the inner accretion flow, such as the mass accretion rate and/or the magnetic field topology of the disk. We discuss these results in the context of disk winds and jets in other stellar-mass black holes, and possible launching mechanisms for black hole outflows.
THE DISK-WIND-JET CONNECTION IN THE BLACK HOLE H 1743–322
International Nuclear Information System (INIS)
Miller, J. M.; King, A. L.; Raymond, J.; Fabian, A. C.; Reynolds, C. S.; Kallman, T. R.; Cackett, E. M.; Van der Klis, M.; Steeghs, D. T. H.
2012-01-01
X-ray disk winds are detected in spectrally soft, disk-dominated phases of stellar-mass black hole outbursts. In contrast, compact, steady, relativistic jets are detected in spectrally hard states that are dominated by non-thermal X-ray emission. Although these distinctive outflows appear to be almost mutually exclusive, it is possible that a disk wind persists in hard states but cannot be detected via X-ray absorption lines owing to very high ionization. Here, we present an analysis of a deep, 60 ks Chandra/HETGS observation of the black hole candidate H 1743–322 in the low/hard state. The spectrum shows no evidence of a disk wind, with tight limits, and within the range of ionizing flux levels that were measured in prior Chandra observations wherein a wind was clearly detected. In H 1743–322, at least, disk winds are actually diminished in the low/hard state, and disk winds and jets are likely state dependent and anti-correlated. These results suggest that although the launching radii of winds and jets may differ by orders of magnitude, they may both be tied to a fundamental property of the inner accretion flow, such as the mass accretion rate and/or the magnetic field topology of the disk. We discuss these results in the context of disk winds and jets in other stellar-mass black holes, and possible launching mechanisms for black hole outflows.
International Nuclear Information System (INIS)
Ross, J.S.; Masaryk, T.J.; Modic, M.T.; Bohlman, H.; Wilber, G.; Carter, J.
1988-01-01
Thirty patients with symptoms of disk herniation and no previous surgery were examined with Gd-DTPA-enhanced MR imaging. Studies obtained before and after administration of Gd-DTPA included the following sequences: sagittal and axial spin echo (SE) 500/17 (repetition time, msec/echo time, msec), sagittal SE 2,000/60, sagittal FLASH 200/13/60. Studies were interpreted separately for presence of extradural disease (EDD) characterized by morphology, mass effect, and enhancement. Post Gd-DTPA diagnoses were: normal, n = 1; herniation, n = 28; neoplasm, n = 1. Tissue diagnosis was obtained in 13. The Gd-DTPA examination correctly changed the diagnosis in one case, provided increased confidence in the diagnosis in four, and was equivalent to the precontrast study in eight. Increased conspicuity of EDD with Gd-DTPA was related to the enhancement of epidural space analogous to IV CT and enhancement of scar surrounding disk herniation. Histologically, this scar was identical to that seen in postoperative spines, Gd-DTPA appears to be a useful adjunct in cervical and thoracic degenerative disk disease
MHD power generation for the synthetic-fuels industry
International Nuclear Information System (INIS)
Jones, M.S. Jr.
1982-01-01
The integration of open cycle MHD with various processes for the recovery of hydrocarbons for heavy oil deposits, oil sands, and oil shales are examined along with its use in producing medium Btu gas, synthetic natural gas and solvent refined coal. The major features of the MHD cycle which are of interest are: (a) the ability to produce hydrogen through the shift reaction by introducing H 2 O into the substoichiometric combustion product flow exiting the MHD diffuser, (b) the use of high temperature waste heat in the MHD exhaust, and (c) the ability of the seed in the MHD flow to remove sulfur from the combustion products. Therefore the use of the MHD cycle allows coal to be used in an environmentally acceptable manner in place of hydrocarbons which are now used to produce process heat and hydrogen. The appropriate plant sizes are in the range of 25 to 50 MWe and the required MHD generator enthalpy extraction efficiencies are low. Sale of electricity produced, over and above that used in the process, can provide a revenue stream which can improve the economics of the hydrocarbon processing. This, coupled with the replacement of coal for hydrocarbons in certain phases of the process, should improve the overall economics, while not requiring a high level of performance by the MHD components. Therefore, this area should be an early target of opportunity for the commercialization of MHD
MHD power plants - a reality of the 80's
International Nuclear Information System (INIS)
Pishchikov, S.
1981-01-01
A 300 MW MHD generator and a conventional turbogenerator of the same capacity will be used for the first MHD power block assembly projected in the USSR. The power plant's own consumption will not exceed 12% and the availability will be approximately 50%. Compared with a conventional power generating unit of a capacity of 500 MW the projected unit will provide fuel savings of at least 23%. The project is based on almost seven years long experience with the U-25 experimental MHD facility. Similar to the U-25, the MHD power plant projected will be fired with natural gas. (B.S.)
MHD power plants - a reality of the 80's
Energy Technology Data Exchange (ETDEWEB)
Pishchikov, S
1981-02-01
A 300 MW MHD generator and a conventional turbogenerator of the same capacity will be used for the first MHD power block assembly projected in the USSR. The power plant's own consumption will not exceed 12% and the availability will be approximately 50%. Compared with a conventional power generating unit of a capacity of 500 MW the projected unit will provide fuel savings of at least 23%. The project is based on almost seven years long experience with the U-25 experimental MHD facility. Similar to the U-25, the MHD power plant projected will be fired with natural gas.
Conductivity of a relativistic plasma
Energy Technology Data Exchange (ETDEWEB)
Braams, B.J.; Karney, C.F.F.
1989-03-01
The collision operator for a relativistic plasma is reformulated in terms of an expansion in spherical harmonics. This formulation is used to calculate the electrical conductivity. 13 refs., 1 fig., 1 tab.
Relativistic description of atomic nuclei
International Nuclear Information System (INIS)
Krutov, V.A.
1985-01-01
Papers on the relativistic description of nuclei are reviewed. The Brown and Rho ''small'' bag'' model is accepted for hardrons. Meson exchange potentials of the nucleon-nucleon interaction have been considered. Then the transition from a system of two interacting nucleons has been performed to the relativistic nucleus description as a multinucleon system on the basis of OBEP (one-boson exchange potential). The proboem of OPEP (one-pion-exchange potential) inclusion to a relativistic scheme is discussed. Simplicity of calculations and attractiveness of the Walecka model for specific computations and calculations was noted. The relativistic model of nucleons interacting through ''effective'' scalar and vector boson fields was used in the Walacka model for describing neutronaand nuclear mater matters
Conductivity of a relativistic plasma
International Nuclear Information System (INIS)
Braams, B.J.; Karney, C.F.F.
1989-03-01
The collision operator for a relativistic plasma is reformulated in terms of an expansion in spherical harmonics. This formulation is used to calculate the electrical conductivity. 13 refs., 1 fig., 1 tab
The Accretion Disk Wind in the Black Hole GRS 1915 + 105
Miller, J.M.; Raymond, J.; Fabian, A. C.; Gallo, E.; Kaastra, J.; Kallman, T.; King, A. L.; Proga, D.; Reynolds, C. S.; Zoghbi, A.
2016-01-01
We report on a 120 kiloseconds Chandra/HETG spectrum of the black hole GRS 1915+105. The observation was made during an extended and bright soft state in 2015 June. An extremely rich disk wind absorption spectrum is detected, similar to that observed at lower sensitivity in 2007. The very high resolution of the third-order spectrum reveals four components to the disk wind in the Fe K band alone; the fastest has a blueshift of v = 0.03 c (velocity equals 0.03 the speed of light). Broadened reemission from the wind is also detected in the first-order spectrum, giving rise to clear accretion disk P Cygni profiles. Dynamical modeling of the re-emission spectrum gives wind launching radii of r approximately equal to 10 (sup 2-4) GM (Gravitational constant times Mass) divided by c (sup 2) (the speed of light squared). Wind density values of n approximately equal to 10 (sup 13-16) per cubic centimeter are then required by the ionization parameter formalism. The small launching radii, high density values, and inferred high mass outflow rates signal a role for magnetic driving. With simple, reasonable assumptions, the wind properties constrain the magnitude of the emergent magnetic field to be B approximately equal to 10 (sup 3-4) G (Gravitational constant) if the wind is driven via magnetohydrodynamic (MHD) pressure from within the disk and B approximately equal to 10 (sup 4-5) G (Gravitational constant) if the wind is driven by magnetocentrifugal acceleration. The MHD estimates are below upper limits predicted by the canonical alpha-disk model. We discuss these results in terms of fundamental disk physics and black hole accretion modes.
Relativistic heavy-ion physics
Herrera Corral, G
2010-01-01
The study of relativistic heavy-ion collisions is an important part of the LHC research programme at CERN. This emerging field of research focuses on the study of matter under extreme conditions of temperature, density, and pressure. Here we present an introduction to the general aspects of relativistic heavy-ion physics. Afterwards we give an overview of the accelerator facility at CERN and then a quick look at the ALICE project as a dedicated experiment for heavy-ion collisions.
Radiation dominated relativistic current sheets
International Nuclear Information System (INIS)
Jaroschek, C.H.
2008-01-01
Relativistic Current Sheets (RCS) feature plasma instabilities considered as potential key to magnetic energy dissipation and non-thermal particle generation in Poynting flux dominated plasma flows. We show in a series of kinetic plasma simulations that the physical nature of non-linear RCS evolution changes in the presence of incoherent radiation losses: In the ultra-relativistic regime (i.e. magnetization parameter sigma = 104 defined as the ratio of magnetic to plasma rest frame energy density) the combination of non-linear RCS dynamics and synchrotron emission introduces a temperature anisotropy triggering the growth of the Relativistic Tearing Mode (RTM). As direct consequence the RTM prevails over the Relativistic Drift Kink (RDK) Mode as competitive RCS instability. This is in contrast to the previously studied situation of weakly relativistic RCS (sigma ∼ 1) where the RDK is dominant and most of the plasma is thermalized. The simulations witness the typical life cycle of ultra-relativistic RCS evolving from a violent radiation induced collapse towards a radiation quiescent state in rather classical Sweet-Parker topology. Such a transition towards Sweet-Parker configuration in the late non-linear evolution has immediate consequences for the efficiency of magnetic energy dissipation and non-thermal particle generation. Ceasing dissipation rates directly affect our present understanding of non-linear RCS evolution in conventional striped wind scenarios. (author)
MHD instabilities in astrophysical plasmas: very different from MHD instabilities in tokamaks!
Goedbloed, J. P.
2018-01-01
The extensive studies of MHD instabilities in thermonuclear magnetic confinement experiments, in particular of the tokamak as the most promising candidate for a future energy producing machine, have led to an 'intuitive' description based on the energy principle that is very misleading for
Relativistic theory of gravitation
International Nuclear Information System (INIS)
Logunov, A.A.; Mestvirishvili, M.A.
1986-01-01
In the present paper a relativistic theory of gravitation (RTG) is unambiguously constructed on the basis of the special relativity and geometrization principle. In this a gravitational field is treated as the Faraday--Maxwell spin-2 and spin-0 physical field possessing energy and momentum. The source of a gravitational field is the total conserved energy-momentum tensor of matter and of a gravitational field in Minkowski space. In the RTG the conservation laws are strictly fulfilled for the energy-moment and for the angular momentum of matter and a gravitational field. The theory explains the whole available set of experiments on gravity. By virtue of the geometrization principle, the Riemannian space in our theory is of field origin, since it appears as an effective force space due to the action of a gravitational field on matter. The RTG leads to an exceptionally strong prediction: The universe is not closed but just ''flat.'' This suggests that in the universe a ''missing mass'' should exist in a form of matter
Relativistic theory of gravitation
International Nuclear Information System (INIS)
Logunov, A.A.; Mestvirishvilli, M.A.
1985-01-01
In the present paper a relativistic theory of gravitation (RTG) is constructed in a unique way on the basis of the special relativity and geometrization principle. In this, a gravitational field is treated as the Faraday-Maxwell spin-2 and spin-0 physical field possessing energy and momentum. The source of a gravitational field is the total conserved energy-momentum tensor of matter and of a gravitational field in Minkowski space. In the RTG, the conservation laws are strictly fulfilled for the energy-momentum and for the angular momentum of matter and a gravitational field. The theory explains the whole available set of experiments on gravitation. In virtue of the geometrization principle, the Riemannian space in our theory is of field origin, since it appears as an effective force space due to the action of a gravitational field on matter. The RTg leads to an exceptionally strong prediction: The Universe is not closed but just ''flat''. This suggests that in the Universe a ''hidden mass'' should exist in some form of matter
Relativistic gravitation theory
International Nuclear Information System (INIS)
Logunov, A.A.; Mestvirishvili, M.A.
1984-01-01
On the basis of the special relativity and geometrization principle a relativistic gravitation theory (RGT) is unambiguously constructed with the help of a notion of a gravitational field as a physical field in Faraday-Maxwell spirit, which posesses energy momentum and spins 2 and 0. The source of gravitation field is a total conserved energy-momentum tensor for matter and for gravitation field in Minkowski space. In the RGT conservation laws for the energy momentum and angular momentum of matter and gravitational field hold rigorously. The theory explains the whole set of gravitation experiments. Here, due to the geometrization principle the Riemannian space is of a field origin since this space arises effectively as a result of the gravitation field origin since this space arises effectively as a result of the gravitation field action on the matter. The RGT astonishing prediction is that the Universe is not closed but ''flat''. It means that in the Universe there should exist a ''missing'' mass in some form of matter
Nonlinear MHD Waves in a Prominence Foot
Ofman, L.; Knizhnik, K.; Kucera, T.; Schmieder, B.
2015-11-01
We study nonlinear waves in a prominence foot using a 2.5D MHD model motivated by recent high-resolution observations with Hinode/Solar Optical Telescope in Ca ii emission of a prominence on 2012 October 10 showing highly dynamic small-scale motions in the prominence material. Observations of Hα intensities and of Doppler shifts show similar propagating fluctuations. However, the optically thick nature of the emission lines inhibits a unique quantitative interpretation in terms of density. Nevertheless, we find evidence of nonlinear wave activity in the prominence foot by examining the relative magnitude of the fluctuation intensity (δI/I ˜ δn/n). The waves are evident as significant density fluctuations that vary with height and apparently travel upward from the chromosphere into the prominence material with quasi-periodic fluctuations with a typical period in the range of 5-11 minutes and wavelengths <2000 km. Recent Doppler shift observations show the transverse displacement of the propagating waves. The magnetic field was measured with the THEMIS instrument and was found to be 5-14 G. For the typical prominence density the corresponding fast magnetosonic speed is ˜20 km s-1, in qualitative agreement with the propagation speed of the detected waves. The 2.5D MHD numerical model is constrained with the typical parameters of the prominence waves seen in observations. Our numerical results reproduce the nonlinear fast magnetosonic waves and provide strong support for the presence of these waves in the prominence foot. We also explore gravitational MHD oscillations of the heavy prominence foot material supported by dipped magnetic field structure.
MHD dynamo action in space plasmas
International Nuclear Information System (INIS)
Faelthammar, C.G.
1984-05-01
Electric currents are now recognized to play a major role in the physical process of the Earths magnetosphere as well as in distant astrophysical plasmas. In driving these currents MHD dynamos as well as generators of a thermoelectric nature are important. The primary source of power for the Earths magnetospheric process is the solar wind, which supplies a voltage of the order of 200 kV across the magnetosphere. The direction of the large-scale solar wind electric field varies of many different time scales. The power input to the magnetosphere is closely correlated with the direction of the large-scale solar wind electric field in such a fashion as to mimick the response of a half-wave rectifier with a down-to-dusk conduction direction. Behind this apparently simple response there are complex plasma physical processes that are still very incompletely understood. They are intimately related to auroras, magnetic storms, radiation belts and changes in magnetospheric plasma populations. Similar dynamo actions should occur at other planets having magnetospheres. Recent observations seem to indicate that part of the power input to the Earths magnetosphere comes through MHD dynamo action of a forced plasma flow inside the flanks of the magnetopause and may play a role in other parts of the magnetosphere, too. An example of a cosmical MHD connected to a solid load is the corotating plasma of Jupiters inner magnetosphere, sweeping past the plants inner satelites. In particular the electric currents thereby driven to and from the satellite Io have attracted considerable interest.(author)
NONLINEAR MHD WAVES IN A PROMINENCE FOOT
Energy Technology Data Exchange (ETDEWEB)
Ofman, L. [Catholic University of America, Washington, DC 20064 (United States); Knizhnik, K.; Kucera, T. [NASA Goddard Space Flight Center, Code 671, Greenbelt, MD 20771 (United States); Schmieder, B. [LESIA, Observatoire de Paris, PSL Research University, CNRS, Sorbonne Universités, UPMC Univ. Paris 06, Univ. Paris-Diderot, Sorbonne Paris Cit, 5 place Jules Janssen, F-92195 Meudon (France)
2015-11-10
We study nonlinear waves in a prominence foot using a 2.5D MHD model motivated by recent high-resolution observations with Hinode/Solar Optical Telescope in Ca ii emission of a prominence on 2012 October 10 showing highly dynamic small-scale motions in the prominence material. Observations of Hα intensities and of Doppler shifts show similar propagating fluctuations. However, the optically thick nature of the emission lines inhibits a unique quantitative interpretation in terms of density. Nevertheless, we find evidence of nonlinear wave activity in the prominence foot by examining the relative magnitude of the fluctuation intensity (δI/I ∼ δn/n). The waves are evident as significant density fluctuations that vary with height and apparently travel upward from the chromosphere into the prominence material with quasi-periodic fluctuations with a typical period in the range of 5–11 minutes and wavelengths <2000 km. Recent Doppler shift observations show the transverse displacement of the propagating waves. The magnetic field was measured with the THEMIS instrument and was found to be 5–14 G. For the typical prominence density the corresponding fast magnetosonic speed is ∼20 km s{sup −1}, in qualitative agreement with the propagation speed of the detected waves. The 2.5D MHD numerical model is constrained with the typical parameters of the prominence waves seen in observations. Our numerical results reproduce the nonlinear fast magnetosonic waves and provide strong support for the presence of these waves in the prominence foot. We also explore gravitational MHD oscillations of the heavy prominence foot material supported by dipped magnetic field structure.
Annular MHD Physics for Turbojet Energy Bypass
Schneider, Steven J.
2011-01-01
The use of annular Hall type MHD generator/accelerator ducts for turbojet energy bypass is evaluated assuming weakly ionized flows obtained from pulsed nanosecond discharges. The equations for a 1-D, axisymmetric MHD generator/accelerator are derived and numerically integrated to determine the generator/accelerator performance characteristics. The concept offers a shockless means of interacting with high speed inlet flows and potentially offers variable inlet geometry performance without the complexity of moving parts simply by varying the generator loading parameter. The cycle analysis conducted iteratively with a spike inlet and turbojet flying at M = 7 at 30 km altitude is estimated to have a positive thrust per unit mass flow of 185 N-s/kg. The turbojet allowable combustor temperature is set at an aggressive 2200 deg K. The annular MHD Hall generator/accelerator is L = 3 m in length with a B(sub r) = 5 Tesla magnetic field and a conductivity of sigma = 5 mho/m for the generator and sigma= 1.0 mho/m for the accelerator. The calculated isentropic efficiency for the generator is eta(sub sg) = 84 percent at an enthalpy extraction ratio, eta(sub Ng) = 0.63. The calculated isentropic efficiency for the accelerator is eta(sub sa) = 81 percent at an enthalpy addition ratio, eta(sub Na) = 0.62. An assessment of the ionization fraction necessary to achieve a conductivity of sigma = 1.0 mho/m is n(sub e)/n = 1.90 X 10(exp -6), and for sigma = 5.0 mho/m is n(sub e)/n = 9.52 X 10(exp -6).
Experimental and theoretical studies of the effects of nonuniformities in equilibrium MHD generators
International Nuclear Information System (INIS)
Rosenbaum, M.; Shamma, S.E.; Louis, J.F.
1980-01-01
An experimental study of the effects of thermal and velocity nonuniformities is performed in an equilibrium plasma for a range of Hall parameters. An electrodeless MHD disk generator with radial flow is chosen as the ideal geometry for these experiments. By introducing equally spaced cold blades in the flow, it is possible to create well defined two-dimensional wake nonuniformities with strong variations of the plasma properties in the direction normal to the magnetic field and the flow. This type of nonuniformity is predicted to provide the strongest reduction of Hall coefficient and effective conductivity for high values of Hall parameter. This degradation is controlled by both the level of nonuniformities and the value of the ideal Hall parameter. The former is dependent upon the number of blades (root mean square deviation of the conductivity), and the latter is dependent upon the values of the magnetic field intensities. The results provide basic quantitative information about the effects of conductivity and velocity nonuniformities on the performance of equilibrium MHD generators over a wide range of Hall coefficients, between 2 and 7. Reduction formulae are established between the effective and ideal Hall parameters for different levels of nonuniformities intensities. Theoretical predictions are derived from a detailed two-dimensional electrodynamic analysis and a simplified engineering model based on a generalization of Rosa's layer model. These experiments validate the analytical studies and support the use of the theoretical layer models in describing the effect of boundary layers on the performance of linear generators
MHD simulations of molybdenum X-pinches
International Nuclear Information System (INIS)
Ivanenkov, G.V.; Stepnevski, V.
2002-01-01
One investigates into compression of molybdenum X-pinches applying numerical MHD-models with parabolic and conical initial geometry. The second model describing plasma axial motion in greater detail offers a real geometry of a discharge and is applicable to loads characterized by higher masses in contrast to the first one. Both models enabled to describe all basic phases of compression including origination of a minidiode, occurrence of a narrow neck, microexplosion of a hot point and origination of shock waves followed by sausage instability [ru
MHD oxidant intermediate temperature ceramic heater study
Carlson, A. W.; Chait, I. L.; Saari, D. P.; Marksberry, C. L.
1981-09-01
The use of three types of directly fired ceramic heaters for preheating oxygen enriched air to an intermediate temperature of 1144K was investigated. The three types of ceramic heaters are: (1) a fixed bed, periodic flow ceramic brick regenerative heater; (2) a ceramic pebble regenerative heater. The heater design, performance and operating characteristics under conditions in which the particulate matter is not solidified are evaluated. A comparison and overall evaluation of the three types of ceramic heaters and temperature range determination at which the particulate matter in the MHD exhaust gas is estimated to be a dry powder are presented.
MHD power conversion employing liquid metals
International Nuclear Information System (INIS)
Houben, J.W.M.A.; Massee, P.
1969-02-01
The work performed in the field of MHD generation of electricity by means of liquid metals is described. It is shown that the study of two-phase flows is essential in this topic of research; two-phase flows are therefore described. Two types of generators which can be utilized with liquid metals have been studied. The results of this study are described. A short survey of the prospects of other liquid metal systems which emerge from a study of the literature is given. Finally, conclusions are drawn concerning possibilities for further investigation
MHD equilibrium identification on ASDEX-Upgrade
International Nuclear Information System (INIS)
McCarthy, P.J.; Schneider, W.; Lakner, K.; Zehrfeld, H.P.; Buechl, K.; Gernhardt, J.; Gruber, O.; Kallenbach, A.; Lieder, G.; Wunderlich, R.
1992-01-01
A central activity accompanying the ASDEX-Upgrade experiment is the analysis of MHD equilibria. There are two different numerical methods available, both using magnetic measurements which reflect equilibrium states of the plasma. The first method proceeds via a function parameterization (FP) technique, which uses in-vessel magnetic measurements to calculate up to 66 equilibrium parameters. The second method applies an interpretative equilibrium code (DIVA) for a best fit to a different set of magnetic measurements. Cross-checks with the measured particle influxes from the inner heat shield and the divertor region and with visible camera images of the scrape-off layer are made. (author) 3 refs., 3 figs
Audit: Automated Disk Investigation Toolkit
Directory of Open Access Journals (Sweden)
Umit Karabiyik
2014-09-01
Full Text Available Software tools designed for disk analysis play a critical role today in forensics investigations. However, these digital forensics tools are often difficult to use, usually task specific, and generally require professionally trained users with IT backgrounds. The relevant tools are also often open source requiring additional technical knowledge and proper configuration. This makes it difficult for investigators without some computer science background to easily conduct the needed disk analysis. In this paper, we present AUDIT, a novel automated disk investigation toolkit that supports investigations conducted by non-expert (in IT and disk technology and expert investigators. Our proof of concept design and implementation of AUDIT intelligently integrates open source tools and guides non-IT professionals while requiring minimal technical knowledge about the disk structures and file systems of the target disk image.
Light-Curve Diagnosis of a Hot Spot for Accretion-Disk Models
FUKUE, Jun
2003-01-01
Light curves of a hot spot rotating in a relativistic Keplerian disk were found to be periodic with typically two peaks, originating from a gravitational focusing effect and a Doppler boost. On the other hand, we found that light curves of a hot spot spirally infalling in a sub-Keplerian advective disk are aperiodic with typically a single peak, originating from a gravitational focusing effect or a Doppler boost. Such a difference in the light curves of a hot spot can discriminate background ...
International Nuclear Information System (INIS)
Huysmans, G.
1998-03-01
One of the aims of the JET, the Joint European Torus, project is to optimise the maximum fusion performance as measured by the neutron rate. At present, two different scenarios are developed at JET to achieve the high performance the so-called Hot-Ion H-mode scenario and the more recent development of the Optimised Shear scenario. Both scenarios have reached similar values of the neutron rate in Deuterium plasmas, up to 5 10 17 neutrons/second. Both scenarios are characterised by a transport barrier, i.e., a region in the plasma where the confinement is improved. The Hot-Ion H-mode has a transport barrier at the plasma boundary just inside the separatrix, an Optimised Shear plasma exhibits a transport barrier at about mid radius. Associated with the improved confinement of the transport barriers are locally large pressure gradients. It is these pressure gradients which, either directly or indirectly, can drive MHD instabilities. The instabilities limit the maximum performance. In the optimised shear scenario a global MHD instability leads to a disruptive end of the discharge. In the Hot-Ion H-mode plasmas, so-called Outer Modes can occur which are localised at the plasma boundary and lead to a saturation of the plasma performance. In this paper, two examples of the MHD instabilities are discussed and identified by comparing the experimentally observed modes with theoretical calculations from the ideal MHD code MISHKA-1. Also, the MHD stability boundaries of the two scenarios are presented. Section 3 contains a discussion of the mode observed just before the disruption
On nonlinear MHD-stability of toroidal magnetized plasma
International Nuclear Information System (INIS)
Ilgisonis, V.I.; Pastukhov, V.P.
1994-01-01
The variational approach to analyze the nonlinear MHD stability of ideal plasma in toroidal magnetic field is proposed. The potential energy functional to be used is expressed in terms of complete set of independent Lagrangian invariants, that allows to take strictly into account all the restrictions inherent in the varied functions due to MHD dynamic equations. (author). 3 refs
Dust evolution in protoplanetary disks
Gonzalez , Jean-François; Fouchet , Laure; T. Maddison , Sarah; Laibe , Guillaume
2007-01-01
6 pages, 5 figures, to appear in the Proceedings of IAU Symp. 249: Exoplanets: Detection, Formation and Dynamics (Suzhou, China); International audience; We investigate the behaviour of dust in protoplanetary disks under the action of gas drag using our 3D, two-fluid (gas+dust) SPH code. We present the evolution of the dust spatial distribution in global simulations of planetless disks as well as of disks containing an already formed planet. The resulting dust structures vary strongly with pa...
Fallback disks & magnetars: prospects & possibilities
Alpar, M. A.
Some bound matter in the form of a fallback disk may be an initial parameter of isolated neutron stars at birth which along with the initial rotation rate and dipole and higher multipole magnetic moments determines the evolution of neutron stars and the categories into which they fall This talk reviews the strengths and difficulties of fallback disk models in explaining properties of isolated neutron stars of different categories Evidence for and observational limits on fallback disks will also be discussed
1991-01-01
The 3390 disks rotated faster than those in the previous model 3380. Faster disk rotation reduced rotational delay (ie. the time required for the correct area of the disk surface to move to the point where data could be read or written). In the 3390's initial models, the average rotational delay was reduced to 7.1 milliseconds from 8.3 milliseconds for the 3380 family.
STELLAR MASS DEPENDENT DISK DISPERSAL
International Nuclear Information System (INIS)
Kennedy, Grant M.; Kenyon, Scott J.
2009-01-01
We use published optical spectral and infrared (IR) excess data from nine young clusters and associations to study the stellar mass dependent dispersal of circumstellar disks. All clusters older than ∼3 Myr show a decrease in disk fraction with increasing stellar mass for solar to higher mass stars. This result is significant at about the 1σ level in each cluster. For the complete set of clusters we reject the null hypothesis-that solar and intermediate-mass stars lose their disks at the same rate-with 95%-99.9% confidence. To interpret this behavior, we investigate the impact of grain growth, binary companions, and photoevaporation on the evolution of disk signatures. Changes in grain growth timescales at fixed disk temperature may explain why early-type stars with IR excesses appear to evolve faster than their later-type counterparts. Little evidence that binary companions affect disk evolution suggests that photoevaporation is the more likely mechanism for disk dispersal. A simple photoevaporation model provides a good fit to the observed disk fractions for solar and intermediate-mass stars. Although the current mass-dependent disk dispersal signal is not strong, larger and more complete samples of clusters with ages of 3-5 Myr can improve the significance and provide better tests of theoretical models. In addition, the orbits of extra-solar planets can constrain models of disk dispersal and migration. We suggest that the signature of stellar mass dependent disk dispersal due to photoevaporation may be present in the orbits of observed extra-solar planets. Planets orbiting hosts more massive than ∼1.6 M sun may have larger orbits because the disks in which they formed were dispersed before they could migrate.
Effect of Grain Size on Differential Desorption of Volatile Species and on Non-ideal MHD Diffusivity
Zhao, Bo; Caselli, Paola; Li, Zhi-Yun
2018-05-01
We developed a chemical network for modeling the chemistry and non-ideal MHD effects from the collapsing dense molecular clouds to protostellar disks. First, we re-formulated the cosmic-ray desorption rate by considering the variations of desorption rate over the grain size distribution. We find that the differential desorption of volatile species is amplified by the grains larger than 0.1 μm, because larger grains are heated to a lower temperature by cosmic-rays and hence more sensitive to the variations in binding energies. As a result, atomic nitrogen N is ˜2 orders of magnitude more abundant than CO; N2H+ also becomes a few times more abundant than HCO+ due to the increased gas-phase N2. However, the changes in ionization fraction due to freeze-out and desorption only have minor effects on the non-ideal MHD diffusivities. Our chemical network confirms that the very small grains (VSGs: below a few 100 Å) weakens the efficiency of both ambipolar diffusion and Hall effect. In collapsing dense cores, a maximum ambipolar diffusion is achieved when truncating the MRN size distribution at 0.1 μm, and for a maximum Hall effect, the truncation occurs at 0.04 μm. We conclude that the grain size distribution is crucial to the differential depletion between CO and N2 related molecules, as well as to the non-ideal MHD diffusivities in dense cores.
Convection causes enhanced magnetic turbulence in accretion disks in outburst
Energy Technology Data Exchange (ETDEWEB)
Hirose, Shigenobu [Department of Mathematical Science and Advanced Technology, JAMSTEC, Yokohama, Kanagawa 236-0001 (Japan); Blaes, Omer; Coleman, Matthew S. B. [Department of Physics, University of California, Santa Barbara, CA 93106 (United States); Krolik, Julian H. [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 (United States); Sano, Takayoshi, E-mail: shirose@jamstec.go.jp [Institute of Laser Engineering, Osaka University, Suita, Osaka 565-0871 (Japan)
2014-05-20
We present the results of local, vertically stratified, radiation magnetohydrodynamic (MHD) shearing box simulations of magneto-rotational instability (MRI) turbulence appropriate for the hydrogen ionizing regime of dwarf nova and soft X-ray transient outbursts. We incorporate the frequency-integrated opacities and equation of state for this regime, but neglect non-ideal MHD effects and surface irradiation, and do not impose net vertical magnetic flux. We find two stable thermal equilibrium tracks in the effective temperature versus surface mass density plane, in qualitative agreement with the S-curve picture of the standard disk instability model. We find that the large opacity at temperatures near 10{sup 4} K, a corollary of the hydrogen ionization transition, triggers strong, intermittent thermal convection on the upper stable branch. This convection strengthens the magnetic turbulent dynamo and greatly enhances the time-averaged value of the stress to thermal pressure ratio α, possibly by generating vertical magnetic field that may seed the axisymmetric MRI, and by increasing cooling so that the pressure does not rise in proportion to the turbulent dissipation. These enhanced stress to pressure ratios may alleviate the order of magnitude discrepancy between the α-values observationally inferred in the outburst state and those that have been measured from previous local numerical simulations of magnetorotational turbulence that lack net vertical magnetic flux.
Relativistic positioning systems: perspectives and prospects
Coll Bartolomé
2013-11-01
Relativistic positioning systems are interesting technical objects for applications around the Earth and in the Solar system. But above all else, they are basic scientific objects allowing developing relativity from its own concepts. Some past and future features of relativistic positioning sys- tems, with special attention to the developments that they suggest for an epistemic relativity (relativistic experimental approach to physics), are analyzed. This includes relativistic stereometry, which, together with relativistic positioning systems, allows to introduce the general relativistic notion of (finite) laboratory (space-time region able to perform experiments of finite size).
Technical support for open-cycle MHD program
Energy Technology Data Exchange (ETDEWEB)
None
1978-05-01
The support program for open-cycle MHD at Argonne National Lab is developing the analytical tools needed to investigate the performance of the major components in the combined-cycle MHD/steam power system. The analytical effort is centered on the primary components of the system that are unique to MHD and also on the integration of these analytical representations into a model of the entire power producing system. The present project activities include modeling of the combustor, MHD channel, slag separator, and the high-temperature air preheater. In addition, these models are combined into a complete system model, which is at present capable of carrying out optimizations of the entire system on either thermodynamic efficiency or with less confidence, cost of electrical power. Also, in support of the open-cycle program, considerable effort has gone into the formulation of a CDIF Test Plan and a National MHD Test Program.
Priority pollutant analysis of MHD-derived combustion products
Parks, Katherine D.
An important factor in developing Magnetohydrodynamics (MHD) for commercial applications is environmental impact. Consequently, an effort was initiated to identify and quantify any possible undesirable minute chemical constituents in MHD waste streams, with special emphasis on the priority pollutant species. This paper discusses how priority pollutant analyses were used to accomplish the following goals at the University of Tennessee Space Institute (UTSI): comparison of the composition of solid combustion products collected from various locations along a prototypical MHD flow train during the firing of Illinois No. 6 and Montana Rosebud coals; comparison of solid waste products generated from MHD and conventional power plant technologies; and identification of a suitable disposal option for various MHD derived combustion products. Results from our ongoing research plans for gas phase sampling and analysis of priority pollutant volatiles, semi-volatiles, and metals are discussed.
Preliminary results of MHD stability in HL-1 tokamak
International Nuclear Information System (INIS)
Zheng Yongzhen; Ma Tengcai; Xiao Zhenggui Cai Renfang
1987-01-01
In this paper, MHD activities of HL-1 tokamak plasma are studied with Fourier transform and correlatio analysis. The poloidal modes m = 1, 2, 3,4 and toroidal modes n of MHD magnetic fluctuation signals are detected. Methods for suppressing MHD instabilities are suggested and tested, after MHD instabilities are studied in HL-1. The effects of MHD characteristics in the beginning stage of discharge on the whole process of discharge are analyzed. The disruption, in HL-1 device could be divided into three kinds: internal disruption, minor disruption and major disruption. The result shows that HL-1 will have a better operation condition if internal disruption appears. In is end, the stable operation region of HL-1 tokamak is also given
[Disk calcifications in children].
Schmit, P; Fauré, C; Denarnaud, L
1985-05-01
It is not unusual for intervertebral disk calcifications to be detected in pediatric practice, the 150 or so cases reported in the literature probably representing only a small proportion of lesions actually diagnosed. Case reports of 33 children with intervertebral disk calcifications were analyzed. In the majority of these patients (31 of 33) a diagnosis of "idiopathic" calcifications had been made, the cervical localization of the lesions being related to repeated ORL infections and/or trauma. A pre-existing pathologic factor was found in two cases (one child with juvenile rheumatoid arthritis treated by corticoids and one child with Williams and Van Beuren's syndrome). An uncomplicated course was noted in 31 cases, the symptomatology (pain, spinal stiffness and febricula) improving after several days. Complications developed in two cases: one child had very disabling dysphagia due to an anteriorly protruding cervical herniated disc and surgery was necessary; the other child developed cervicobrachial neuralgia due to herniated disc protrusion into the cervical spinal canal, but symptoms regressed within several days although calcifications persisted unaltered. These findings and the course of the rare complications documented in the literature suggest the need for the most conservative treatment possible in cases of disc calcifications in children.
Mascetti, L; Chan, B; Espinal, X; Fiorot, A; Labrador, H Gonz; Iven, J; Lamanna, M; Presti, G Lo; Mościcki, JT; Peters, AJ; Ponce, S; Rousseau, H; van der Ster, D
2015-01-01
CERN IT DSS operates the main storage resources for data taking and physics analysis mainly via three system: AFS, CASTOR and EOS. The total usable space available on disk for users is about 100 PB (with relative ratios 1:20:120). EOS actively uses the two CERN Tier0 centres (Meyrin and Wigner) with 50:50 ratio. IT DSS also provide sizeable on-demand resources for IT services most notably OpenStack and NFS-based clients: this is provided by a Ceph infrastructure (3 PB) and few proprietary servers (NetApp). We will describe our operational experience and recent changes to these systems with special emphasis to the present usages for LHC data taking, the convergence to commodity hardware (nodes with 200-TB each with optional SSD) shared across all services. We also describe our experience in coupling commodity and home-grown solution (e.g. CERNBox integration in EOS, Ceph disk pools for AFS, CASTOR and NFS) and finally the future evolution of these systems for WLCG and beyond.
Mascetti, L.; Cano, E.; Chan, B.; Espinal, X.; Fiorot, A.; González Labrador, H.; Iven, J.; Lamanna, M.; Lo Presti, G.; Mościcki, JT; Peters, AJ; Ponce, S.; Rousseau, H.; van der Ster, D.
2015-12-01
CERN IT DSS operates the main storage resources for data taking and physics analysis mainly via three system: AFS, CASTOR and EOS. The total usable space available on disk for users is about 100 PB (with relative ratios 1:20:120). EOS actively uses the two CERN Tier0 centres (Meyrin and Wigner) with 50:50 ratio. IT DSS also provide sizeable on-demand resources for IT services most notably OpenStack and NFS-based clients: this is provided by a Ceph infrastructure (3 PB) and few proprietary servers (NetApp). We will describe our operational experience and recent changes to these systems with special emphasis to the present usages for LHC data taking, the convergence to commodity hardware (nodes with 200-TB each with optional SSD) shared across all services. We also describe our experience in coupling commodity and home-grown solution (e.g. CERNBox integration in EOS, Ceph disk pools for AFS, CASTOR and NFS) and finally the future evolution of these systems for WLCG and beyond.
GRAVITATIONAL WAVE SIGNATURES OF HYPERACCRETING COLLAPSAR DISKS
International Nuclear Information System (INIS)
Kotake, Kei; Takiwaki, Tomoya; Harikae, Seiji
2012-01-01
By performing two-dimensional special relativistic (SR) magnetohydrodynamic simulations, we study possible signatures of gravitational waves (GWs) in the context of the collapsar model for long-duration gamma-ray bursts. In our SR simulations, the central black hole is treated as an absorbing boundary. By doing so, we focus on the GWs generated by asphericities in neutrino emission and matter motions in the vicinity of the hyperaccreting disks. We compute nine models by adding initial angular momenta and magnetic fields parametrically to a precollapse core of a 35 M ☉ progenitor star. As for the microphysics, a realistic equation of state is employed and the neutrino cooling is taken into account via a multi-flavor neutrino leakage scheme. To accurately estimate GWs produced by anisotropic neutrino emission, we perform a ray-tracing analysis in general relativity by a post-processing procedure. By employing a stress formula that includes contributions from both magnetic fields and SR corrections, we also study the effects of magnetic fields on the gravitational waveforms. We find that the GW amplitudes from anisotropic neutrino emission show a monotonic increase with time, whose amplitudes are much larger than those from matter motions of the accreting material. We show that the increasing trend of the neutrino GWs stems from the excess of neutrino emission in the direction near parallel to the spin axis illuminated from the hyperaccreting disks. We point out that a recently proposed future space-based interferometer like Fabry-Perot-type DECIGO would permit the detection of these GW signals within ≈100 Mpc.
Relativistic theory of gravity
International Nuclear Information System (INIS)
Logunov, A.A.; Mestvirishvili, M.A.
1985-01-01
This work presents an unambiguous construction of the relativistic theory of gravity (RTG) in the framework of relativity and the geometrization principle. The gauge principle has been formulated, and the Lagrangian density of the gravitational field has thus been constructed. This theory explains the totality of the available experimental data on the solar system and predicts the existence of gravitational waves of the Faraday-Maxwell type. According to the RTG, the Universe is infinite and ''flat'', hence it follows that its matter density should be equal to its critical density. Therefore, an appreciable ''hidden mass'' exceeding the presently observed mass of the matter almost 40-fold should exist in the Universe in some form of the matter or other. In accordance with the RTG, a massive body having a finite density ceases to contract under gravitational forces within a finite interval of proper time. From the viewpoint of an external reference frame, the brightness of the body decreases exponentially (it is getting darker), but nothing extraordinary happens in this case because its density always remains finite and, for example, for a body with the mass of about 10 8 M 0 it is equal to 2 g/cm 3 . That is why it follows from the RTG that there could be no object whatsoever (black holes) in which gravitational collapse of matter develops to an infinite density. As has been shown, the presence of a cosmological term necessarily requires the introduction of a term with an explicit dependence on the Minkowski metrics. For the long-range gravitational forces the cosmological constant vanishes
Energy Technology Data Exchange (ETDEWEB)
NONE
1970-07-01
Compiled are the results of studies conducted in fiscal 1970 on MHD (magnetohydrodynamic) power generation. In the operation test and modification of the 1000kW-class MHD power generator, modification is carried out involving the combustion system, seed collecting method, and power generation channel, and reviews through experiments are conducted about the analysis and control of the boundary layer structure. In the operation test of the MHD power generator designed for prolonged operation, a test operation for resistance to heat and seeds continues more than 100 hours using a cold wall type power generation channel constituted of water cooled ceramics, and the ceramics are analyzed for failure and loss. Studies are also conducted involving MHD power generator heat exchangers, seed collecting methods, electrode materials for MHD power generators, heat-resistant materials for MHD power generators, thermal performance rating for MHD power plants, etc. In the research and development of superconductive electromagnets, superconductive electromagnets are developed and tested for 1000kW-class MHD power generators, and studies are conducted on turbine type helium liquefiers, superinsulated superconductive electromagnetic field generators, etc. (NEDO)
Radiatively driven relativistic spherical winds under relativistic radiative transfer
Fukue, J.
2018-05-01
We numerically investigate radiatively driven relativistic spherical winds from the central luminous object with mass M and luminosity L* under Newtonian gravity, special relativity, and relativistic radiative transfer. We solve both the relativistic radiative transfer equation and the relativistic hydrodynamical equations for spherically symmetric flows under the double-iteration processes, to obtain the intensity and velocity fields simultaneously. We found that the momentum-driven winds with scattering are quickly accelerated near the central object to reach the terminal speed. The results of numerical solutions are roughly fitted by a relation of \\dot{m}=0.7(Γ _*-1)\\tau _* β _* β _out^{-2.6}, where \\dot{m} is the mass-loss rate normalized by the critical one, Γ* the central luminosity normalized by the critical one, τ* the typical optical depth, β* the initial flow speed at the central core of radius R*, and βout the terminal speed normalized by the speed of light. This relation is close to the non-relativistic analytical solution, \\dot{m} = 2(Γ _*-1)\\tau _* β _* β _out^{-2}, which can be re-expressed as β _out^2/2 = (Γ _*-1)GM/c^2 R_*. That is, the present solution with small optical depth is similar to that of the radiatively driven free outflow. Furthermore, we found that the normalized luminosity (Eddington parameter) must be larger than unity for the relativistic spherical wind to blow off with intermediate or small optical depth, i.e. Γ _* ≳ \\sqrt{(1+β _out)^3/(1-β _out)}. We briefly investigate and discuss an isothermal wind.
MHD simulations on an unstructured mesh
International Nuclear Information System (INIS)
Strauss, H.R.; Park, W.
1996-01-01
We describe work on a full MHD code using an unstructured mesh. MH3D++ is an extension of the PPPL MH3D resistive full MHD code. MH3D++ replaces the structured mesh and finite difference / fourier discretization of MH3D with an unstructured mesh and finite element / fourier discretization. Low level routines which perform differential operations, solution of PDEs such as Poisson's equation, and graphics, are encapsulated in C++ objects to isolate the finite element operations from the higher level code. The high level code is the same, whether it is run in structured or unstructured mesh versions. This allows the unstructured mesh version to be benchmarked against the structured mesh version. As a preliminary example, disruptions in DIIID reverse shear equilibria are studied numerically with the MH3D++ code. Numerical equilibria were first produced starting with an EQDSK file containing equilibrium data of a DIII-D L-mode negative central shear discharge. Using these equilibria, the linearized equations are time advanced to get the toroidal mode number n = 1 linear growth rate and eigenmode, which is resistively unstable. The equilibrium and linear mode are used to initialize 3D nonlinear runs. An example shows poloidal slices of 3D pressure surfaces: initially, on the left, and at an intermediate time, on the right
Resistive MHD studies of TFTR discharges
International Nuclear Information System (INIS)
Hughes, M.H.; Phillips, M.W.; Sabbagh, S.A.; Budny, R.V.
1991-01-01
MHD instabilities, thought to be resistive in character, are frequently observed in the supershot operating regime of TFTR (var-epsilon β p ≤ 0.7). These instabilities are always accompanied by substantial degradation of the confinement. Similarly of interest are recent experiments at much larger β p (var-epsilon β p ≤ 1.6), achieved through ramping the current during the beam heating phase of the discharge. In this latter regime the confinement can exceed three times the corresponding L-mode value and the β value normalized to I/aB can be as large as 4.7. Representative discharges from each of these operating regimes have been analyzed using a linear resistive MHD stability code with equilibrium pressure and q profiles obtained initially from the TRANSP analysis code. The main difference between the two types of discharge, as far as stability is concerned is shown to be the shape of the current density profile. The sensitivity to the assumed parameters is discussed. 1 ref
A civil engineering approach to ideal MHD
International Nuclear Information System (INIS)
Jensen, V.O.
1992-01-01
It is well known that a magnetic field can be conceived as a medium where an isotropic compressive stress, B 2 /2μ 0 , is superimposed on a tensile stress, B 2 /μ 0 , parallel to the lines of force. When a stationary ideal MHD plasma is present in the magnetic field, the particle pressure adds to the magnetic stresses to form a combined stress tensor. Calculations of plasma equilibria based on this concept are very similar to calculations in civil engineering of static structures based on compressive, tensile, and shear stresses. Therefore the very simple physical pictures known from civil engineering when used in plasma physics provide simple physical understanding and facilitate the physical interpretation of the results. In an earlier paper the concept was used to derive and discuss the equilibrium equations for θ-, Z-, and screw pinches and the Grad-Shafranov shift in a tokamak plasma with circular cross sections of the flux surfaces. Here the concept is used to discuss the virial theorem and to obtain a simple physical interpretation of this theorem. We also reconsider the Grad-Shafranov shift in a tokamak plasma and show that a situation where all flux surfaces have circular cross sections cannot be an exact solution to the ideal MHD equations. (author) 3 refs., 3 figs
Scattering in relativistic particle mechanics
International Nuclear Information System (INIS)
De Bievre, S.
1986-01-01
The problem of direct interaction in relativistic particle mechanics has been extensively studied and a variety of models has been proposed avoiding the conclusions of the so-called no-interaction theorems. In this thesis the authors studied scattering in the relativistic two-body problem. He uses the results to analyze gauge invariance in Hamiltonian constraint models and the uniqueness of the symplectic structure in manifestly covariant relativistic particle mechanics. A general geometric framework that underlies approaches to relativistic particle mechanics is presented and the kinematic properties of the scattering transformation, i.e., those properties that arise solely from the invariance of the theory under the Poincare group are studied. The second part of the analysis of the relativistic two-body scattering problem is devoted to the dynamical properties of the scattering process. Using general geometric arguments, gauge invariance of the scattering transformation in the Todorov-Komar Hamiltonian constraint model is proved. Finally, quantization of the models is discussed
Fast and Slow Precession of Gaseous Debris Disks around Planet-accreting White Dwarfs
Miranda, Ryan; Rafikov, Roman R.
2018-04-01
Spectroscopic observations of some metal-rich white dwarfs (WDs), believed to be polluted by planetary material, reveal the presence of compact gaseous metallic disks orbiting them. The observed variability of asymmetric, double-peaked emission-line profiles in about half of such systems could be interpreted as the signature of precession of an eccentric gaseous debris disk. The variability timescales—from decades down to 1.4 year (recently inferred for the debris disk around HE 1349–2305)—are in rough agreement with the rate of general relativistic (GR) precession in the test-particle limit. However, it has not been demonstrated that this mechanism can drive such a fast, coherent precession of a radially extended (out to 1 {R}ȯ ) gaseous disk mediated by internal stresses (pressure). Here, we use the linear theory of eccentricity evolution in hydrodynamic disks to determine several key properties of eccentric modes in gaseous debris disks around WDs. We find a critical dependence of both the precession period and radial eccentricity distribution of the modes on the inner disk radius, r in. For small inner radii, {r}in}≲ (0.2{--}0.4) {R}ȯ , the modes are GR-driven, with periods of ≈1–10 year. For {r}in}≳ (0.2{--}0.4) {R}ȯ , the modes are pressure dominated, with periods of ≈3–20 year. Correspondence between the variability periods and inferred inner radii of the observed disks is in general agreement with this trend. In particular, the short period of HE 1349–2305 is consistent with its small r in. Circum-WD debris disks may thus serve as natural laboratories for studying the evolution of eccentric gaseous disks.
IRON OPACITY BUMP CHANGES THE STABILITY AND STRUCTURE OF ACCRETION DISKS IN ACTIVE GALACTIC NUCLEI
Energy Technology Data Exchange (ETDEWEB)
Jiang, Yan-Fei [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Davis, Shane W. [Department of Astronomy, University of Virginia, P.O. Box 400325, Charlottesville, VA 22904-4325 (United States); Stone, James M. [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States)
2016-08-10
Accretion disks around supermassive black holes have regions where the Rosseland mean opacity can be larger than the electron scattering opacity due to the large number of bound–bound transitions in iron. We study the effects of this iron opacity “bump” on the thermal stability and vertical structure of radiation-pressure-dominated accretion disks, utilizing three-dimensional radiation magnetohydrodynamic (MHD) simulations in the local shearing box approximation. The simulations self-consistently calculate the heating due to MHD turbulence caused by magneto-rotational instability and radiative cooling by using the radiative transfer module based on a variable Eddington tensor in Athena. For a 5 × 10{sup 8} solar mass black hole with ∼3% of the Eddington luminosity, a model including the iron opacity bump maintains its structure for more than 10 thermal times without showing significant signs of thermal runaway. In contrast, if only electron scattering and free–free opacity are included as in the standard thin disk model, the disk collapses on the thermal timescale. The difference is caused by a combination of (1) an anti-correlation between the total optical depth and the midplane pressure, and (2) enhanced vertical advective energy transport. These results suggest that the iron opacity bump may have a strong impact on the stability and structure of active galactic nucleus (AGN) accretion disks, and may contribute to a dependence of AGN properties on metallicity. Since this opacity is relevant primarily in UV emitting regions of the flow, it may help to explain discrepancies between observation and theory that are unique to AGNs.
Melting of polydisperse hard disks
Pronk, S.; Frenkel, D.
2004-01-01
The melting of a polydisperse hard-disk system is investigated by Monte Carlo simulations in the semigrand canonical ensemble. This is done in the context of possible continuous melting by a dislocation-unbinding mechanism, as an extension of the two-dimensional hard-disk melting problem. We find
Westfall, K. B.; Andersen, D. R.; Bershady, M. A.; Martinsson, T. P. K.; Swaters, R. A.; Verheijen, M. A. W.; Seigar, M.S.; Treuthardt, P.
2014-01-01
We calculate the stellar surface mass density (Σ*) and two-component (gas+stars) disk stability (QRW) for 25 late-type galaxies from the DiskMass Survey. These calculations are based on fits of a dynamical model to our ionized-gas and stellar kinematic data performed using a Markov Chain Monte Carlo
Vibration of imperfect rotating disk
Czech Academy of Sciences Publication Activity Database
Půst, Ladislav; Pešek, Luděk
2011-01-01
Roč. 5, č. 2 (2011), s. 205-216 ISSN 1802-680X R&D Projects: GA ČR GA101/09/1166 Institutional research plan: CEZ:AV0Z20760514 Keywords : bladed disk * imperfect disk * travelling waves Subject RIV: BI - Acoustics http://www.kme.zcu.cz/acm/index.php/acm/article/view/86
RINGED ACCRETION DISKS: EQUILIBRIUM CONFIGURATIONS
Energy Technology Data Exchange (ETDEWEB)
Pugliese, D.; Stuchlík, Z., E-mail: d.pugliese.physics@gmail.com, E-mail: zdenek.stuchlik@physics.cz [Institute of Physics and Research Centre of Theoretical Physics and Astrophysics, Faculty of Philosophy and Science, Silesian University in Opava, Bezručovo náměstí 13, CZ-74601 Opava (Czech Republic)
2015-12-15
We investigate a model of a ringed accretion disk, made up by several rings rotating around a supermassive Kerr black hole attractor. Each toroid of the ringed disk is governed by the general relativity hydrodynamic Boyer condition of equilibrium configurations of rotating perfect fluids. Properties of the tori can then be determined by an appropriately defined effective potential reflecting the background Kerr geometry and the centrifugal effects. The ringed disks could be created in various regimes during the evolution of matter configurations around supermassive black holes. Therefore, both corotating and counterrotating rings have to be considered as being a constituent of the ringed disk. We provide constraints on the model parameters for the existence and stability of various ringed configurations and discuss occurrence of accretion onto the Kerr black hole and possible launching of jets from the ringed disk. We demonstrate that various ringed disks can be characterized by a maximum number of rings. We present also a perturbation analysis based on evolution of the oscillating components of the ringed disk. The dynamics of the unstable phases of the ringed disk evolution seems to be promising in relation to high-energy phenomena demonstrated in active galactic nuclei.
International Nuclear Information System (INIS)
Nottale, Laurent
2003-01-01
The principle of relativity, when it is applied to scale transformations, leads to the suggestion of a generalization of fundamental dilations laws. These new special scale-relativistic resolution transformations involve log-Lorentz factors and lead to the occurrence of a minimal and of a maximal length-scale in nature, which are invariant under dilations. The minimal length-scale, that replaces the zero from the viewpoint of its physical properties, is identified with the Planck length l P , and the maximal scale, that replaces infinity, is identified with the cosmic scale L=Λ -1/2 , where Λ is the cosmological constant.The new interpretation of the Planck scale has several implications for the structure and history of the early Universe: we consider the questions of the origin, of the status of physical laws at very early times, of the horizon/causality problem and of fluctuations at recombination epoch.The new interpretation of the cosmic scale has consequences for our knowledge of the present universe, concerning in particular Mach's principle, the large number coincidence, the problem of the vacuum energy density, the nature and the value of the cosmological constant. The value (theoretically predicted ten years ago) of the scaled cosmological constant Ω Λ =0.75+/-0.15 is now supported by several different experiments (Hubble diagram of Supernovae, Boomerang measurements, gravitational lensing by clusters of galaxies).The scale-relativity framework also allows one to suggest a solution to the missing mass problem, and to make theoretical predictions of fundamental energy scales, thanks to the interpretation of new structures in scale space: fractal/classical transitions as Compton lengths, mass-coupling relations and critical value 4π 2 of inverse couplings. Among them, we find a structure at 3.27+/-0.26x10 20 eV, which agrees closely with the observed highest energy cosmic rays at 3.2+/-0.9x10 20 eV, and another at 5.3x10 -3 eV, which corresponds to the
MHD stability limits in the TCV Tokamak
International Nuclear Information System (INIS)
Reimerdes, H.
2001-07-01
Magnetohydrodynamic (MHD) instabilities can limit the performance and degrade the confinement of tokamak plasmas. The Tokamak a Configuration Variable (TCV), unique for its capability to produce a variety of poloidal plasma shapes, has been used to analyse various instabilities and compare their behaviour with theoretical predictions. These instabilities are perturbations of the magnetic field, which usually extend to the plasma edge where they can be detected with magnetic pick-up coils as magnetic fluctuations. A spatially dense set of magnetic probes, installed inside the TCV vacuum vessel, allows for a fast observation of these fluctuations. The structure and temporal evolution of coherent modes is extracted using several numerical methods. In addition to the setup of the magnetic diagnostic and the implementation of analysis methods, the subject matter of this thesis focuses on four instabilities, which impose local and global stability limits. All of these instabilities are relevant for the operation of a fusion reactor and a profound understanding of their behaviour is required in order to optimise the performance of such a reactor. Sawteeth, which are central relaxation oscillations common to most standard tokamak scenarios, have a significant effect on central plasma parameters. In TCV, systematic scans of the plasma shape have revealed a strong dependence of their behaviour on elongation κ and triangularity δ, with high κ, and low δ leading to shorter sawteeth with smaller crashes. This shape dependence is increased by applying central electron cyclotron heating. The response to additional heating power is determined by the role of ideal or resistive MHD in triggering the sawtooth crash. For plasma shapes where additional heating and consequently, a faster increase of the central pressure shortens the sawteeth, the low experimental limit of the pressure gradient within the q = 1 surface is consistent with ideal MHD predictions. The observed decrease
SPECIAL RELATIVISTIC HYDRODYNAMICS WITH GRAVITATION
Energy Technology Data Exchange (ETDEWEB)
Hwang, Jai-chan [Department of Astronomy and Atmospheric Sciences, Kyungpook National University, Daegu (Korea, Republic of); Noh, Hyerim [Korea Astronomy and Space Science Institute, Daejon (Korea, Republic of)
2016-12-20
Special relativistic hydrodynamics with weak gravity has hitherto been unknown in the literature. Whether such an asymmetric combination is possible has been unclear. Here, the hydrodynamic equations with Poisson-type gravity, considering fully relativistic velocity and pressure under the weak gravity and the action-at-a-distance limit, are consistently derived from Einstein’s theory of general relativity. An analysis is made in the maximal slicing, where the Poisson’s equation becomes much simpler than our previous study in the zero-shear gauge. Also presented is the hydrodynamic equations in the first post-Newtonian approximation, now under the general hypersurface condition. Our formulation includes the anisotropic stress.
Methods in relativistic nuclear physics
International Nuclear Information System (INIS)
Danos, M.; Gillet, V.; Cauvin, M.
1984-01-01
This book is intended to provide the methods and tools for performing actual calculations for finite many-body systems of bound relativistic constituent particles. The aim is to cover thoroughly the methodological aspects of the relativistic many-body problem for bound states while avoiding the presentation of specific models. The many examples contained in the later part of the work are meant to give concrete illustrations of how to actually apply the methods which are given in the first part. The basic framework of the approach is the lagrangian field theory solved in the time-independent Schroedinger picture. (Auth.)
Frontiers in relativistic celestial mechanics
2014-01-01
Relativistic celestial mechanics – investigating the motion celestial bodies under the influence of general relativity – is a major tool of modern experimental gravitational physics. With a wide range of prominent authors from the field, this two-volume series consists of reviews on a multitude of advanced topics in the area of relativistic celestial mechanics – starting from more classical topics such as the regime of asymptotically-flat spacetime, light propagation and celestial ephemerides, but also including its role in cosmology and alternative theories of gravity as well as modern experiments in this area.
Experiments and models of MHD jets and their relevance to astrophysics and solar physics
Bellan, Paul
2017-10-01
simulations. Upon attaining a critical length, laboratory jets develop a complex but resolvable sequence of instabilities which is effectively a cascade from the large-scale MHD regime to the small-scale two-fluid and kinetic regimes. This cascade involves kinking, Rayleigh-Taylor instabilities, magnetic reconnection, whistler waves, ion and electron heating, and generation of hard X-rays. An extended model shows how clumps of particles in a weakly ionized accretion disk move like a metaparticle having its charge to mass ratio reduced from that of an ion by the fractional ionization. These weakly charged metaparticles follow an inward spiral trajectory that is neither a cyclotron nor a Kepler orbit and accumulate at small radius where they produce a disk-plane radial EMF that drives astrophysical jets. Supported by DOE, NSF, and AFOSR.
MHD generator performance analysis for the Advanced Power Train study
Pian, C. C. P.; Hals, F. A.
1984-01-01
Comparative analyses of different MHD power train designs for early commercial MHD power plants were performed for plant sizes of 200, 500, and 1000 MWe. The work was conducted as part of the first phase of a planned three-phase program to formulate an MHD Advanced Power Train development program. This paper presents the results of the MHD generator design and part-load analyses. All of the MHD generator designs were based on burning of coal with oxygen-enriched air preheated to 1200 F. Sensitivities of the MHD generator design performance to variations in power plant size, coal type, oxygen enrichment level, combustor heat loss, channel length, and Mach number were investigated. Basd on these sensitivity analyses, together with the overall plant performance and cost-of-electricity analyses, as well as reliability and maintenance considerations, a recommended MHD generator design was selected for each of the three power plants. The generators for the 200 MWe and 500 MWe power plant sizes are supersonic designs. A subsonic generator design was selected for the 1000 MWe plant. Off-design analyses of part-load operation of the supersonic channel selected for the 200 MWe power plant were also conductd. The results showed that a relatively high overall net plant efficiency can be maintained during part-laod operation with a supersonic generator design.
Apparent unambiguousness of relativistic time dilation
International Nuclear Information System (INIS)
Strel'tsov, V.N.
1992-01-01
It is indicated on the definite analogy between the dependence of visible sizes of relativistic objects and period of the wave, emitted by the moving source from the observation conditions ('retradition factor'). It is noted that the definition of time for moving extended objects, led to relativistic dilation, corresponds to the definition of the relativistic (radar) length led to the 'elongation formula'. 10 refs
Relativistic generalization of strong plasma turbulence
International Nuclear Information System (INIS)
Chian, A.C.-L.
1982-01-01
Two fundamental electrostatic modes of an unmagnetized plasma, namely, ion acoustic mode and Langumir mode are studied. Previous theories are generalized to include the effect of relativistic mass variations. The existence of relativistic ion acoustic solitons is demonstrated. In addition, it is shown that simple, relativistic Langumir solitons do not exist in a infinite plasma. (L.C.) [pt
Quantum gates via relativistic remote control
Energy Technology Data Exchange (ETDEWEB)
Martín-Martínez, Eduardo, E-mail: emartinm@uwaterloo.ca [Institute for Quantum Computing, University of Waterloo, Waterloo, Ontario, N2L 3G1 (Canada); Dept. Applied Math., University of Waterloo, Ontario, N2L 3G1 (Canada); Perimeter Institute for Theoretical Physics, Waterloo, Ontario N2L 2Y5 (Canada); Sutherland, Chris [Institute for Quantum Computing, University of Waterloo, Waterloo, Ontario, N2L 3G1 (Canada)
2014-12-12
We harness relativistic effects to gain quantum control on a stationary qubit in an optical cavity by controlling the non-inertial motion of a different probe atom. Furthermore, we show that by considering relativistic trajectories of the probe, we enhance the efficiency of the quantum control. We explore the possible use of these relativistic techniques to build 1-qubit quantum gates.
Energy Technology Data Exchange (ETDEWEB)
None
1979-01-01
Progress is reported on the following tasks: characterization of coal for open-cycle MHD power generation systems; compressive creep and strength studies of MHD preheater materials; preparation of coals for utilization in direct coal-fired MHD generation; characterization of volatile matter in coal; MHD materials evaluation; operability of the Moderate Temperature Slag Flow Facility; slag-seed equilibria and separations related to the MHD system; thermionic emission of coal and electrode materials; MHD instrumentation, consolidated inversion simulator, and data acquisition; combined MHD-steam plant cycle analysis and control; and slag physical properties - electrical and thermal conductivity. (WHK)
X-Ray Spectra from MHD Simulations of Accreting Black Holes
Schnittman, Jeremy D.; Krolik, Julian H.; Noble, Scott C.
2012-01-01
We present the results of a new global radiation transport code coupled to a general relativistic magneto-hydrodynamic simulation of an accreting, nonrotating black hole. For the first time, we are able to explain from first principles in a self-consistent way the X-ray spectra observed from stellar-mass black holes, including a thermal peak, Compton reflection hump, power-law tail, and broad iron line. Varying only the mass accretion rate, we are able to reproduce the low/hard, steep power-law, and thermal-dominant states seen in most galactic black hole sources. The temperature in the corona is T(sub e) 10 keV in a boundary layer near the disk and rises smoothly to T(sub e) greater than or approximately 100 keV in low-density regions far above the disk. Even as the disk's reflection edge varies from the horizon out to approximately equal to 6M as the accretion rate decreases, we find that the shape of the Fe Ka line is remarkably constant. This is because photons emitted from the plunging region are strongly beamed into the horizon and never reach the observer. We have also carried out a basic timing analysis of the spectra and find that the fractional variability increases with photon energy and viewer inclination angle, consistent with the coronal hot spot model for X-ray fluctuations.
Mechanism of power generation - the MHD way
International Nuclear Information System (INIS)
Rangachari, S.; Ramash, V.R.; Subramanian, C.K.
1975-01-01
The basic physical principles of magnetohydrodynamics and the application of this principle for power generation (direct energy conversion) are explained. A magnetohydrodynamic generator (MHDG) is described both in the Faraday and Hall modes. The advantages of the Faraday mode and the Hall mode for different geometries of the generator are mentioned. The conductor used is a fluid - an ionised gas (plasma) or a liquid metal at high temperature. The difficulties in maintaining high temperature and high velocity for the gas and very low temperature at the same time side by side for superconducting magnets to produce a strong magnetic field, are pointed out. The most commonly used gas is purified air. The advantages of MHD generators and the present power crisis have compelled further research in this field in spite of the high costs involved. (A.K.)
Measured MHD equilibrium in Alcator C
International Nuclear Information System (INIS)
Pribyl, P.A.
1986-03-01
A method of processing data from a set of partial Rogowski loops is developed to study the MHD equilibrium in Alcator C. Time dependent poloidal fields in the vicinity of the plasma are calculated from measured currents, with field penetration effects being accounted for. Fields from eddy currents induced by the plasma in the tokamak structure are estimated as well. Each of the set of twelve B/sub θ/ measurements can then be separated into a component from the plasma current and a component from currents external to the pickup loops. Harmonic solutions to Maxwell's equations in toroidal coordinates are fit to these measurements in order to infer the fields everywhere in the vacuum region surrounding the plasma. Using this diagnostic, plasma current, position, shape, and the Shafranov term Λ = β/sub p/ + l/sub i//2 - 1 may be computed, and systematic studies of these plasma parameters are undertaken for Alcator C plasmas
Ideal MHD properties for proposed noncircular tokamaks
International Nuclear Information System (INIS)
Helton, F.J.; Greene, J.M.
1986-01-01
We obtain Double Dee, TFXC-C, Big Dee, and JET equlibria which are optimized with respect to both shape and current profile for stability to ideal MHD modes. With a wall reasonably far from the plasma surface we find that the external kink constrains q 1 to be above two, where q 1 is the plasma surface value of the safety factor, and the ballooning mode limits the value of β. Then a relevant stable β value for the Double Dee reactor design is over 7%. Such a Double Dee equilibrium is not in a separated second stability region and thus does not have a problem with accessibility. A relevant stable β value for the TFCX-C reactor design is over 6%. Equivalent relevant stable β values for the Big Dee (17%) and JET (7%) are included for calibration purposes. We compare these relevant stable β values with the β's determined by two recent scaling laws
MHD simulation of the Bastille day event
Energy Technology Data Exchange (ETDEWEB)
Linker, Jon, E-mail: linkerj@predsci.com; Torok, Tibor; Downs, Cooper; Lionello, Roberto; Titov, Viacheslav; Caplan, Ronald M.; Mikić, Zoran; Riley, Pete [Predictive Science Inc., 9990 Mesa Rim Road, Suite 170, San Diego CA, USA 92121 (United States)
2016-03-25
We describe a time-dependent, thermodynamic, three-dimensional MHD simulation of the July 14, 2000 coronal mass ejection (CME) and flare. The simulation starts with a background corona developed using an MDI-derived magnetic map for the boundary condition. Flux ropes using the modified Titov-Demoulin (TDm) model are used to energize the pre-event active region, which is then destabilized by photospheric flows that cancel flux near the polarity inversion line. More than 10{sup 33} ergs are impulsively released in the simulated eruption, driving a CME at 1500 km/s, close to the observed speed of 1700km/s. The post-flare emission in the simulation is morphologically similar to the observed post-flare loops. The resulting flux rope that propagates to 1 AU is similar in character to the flux rope observed at 1 AU, but the simulated ICME center passes 15° north of Earth.
Magnetic stresses in ideal MHD plasmas
DEFF Research Database (Denmark)
Jensen, V.O.
1995-01-01
The concept of magnetic stresses in ideal MHD plasma theory is reviewed and revisited with the aim of demonstrating its advantages as a basis for calculating and understanding plasma equilibria. Expressions are derived for the various stresses that transmit forces in a magnetized plasma...... and it is shown that the resulting magnetic forces on a finite volume element can be obtained by integrating the magnetic stresses over the surface of the element. The concept is used to rederive and discuss the equilibrium conditions for axisymmetric toroidal plasmas, including the virial theorem...... and the Shafranov shift. The method had pedagogical merits as it simplifies the calculations, improves the physical understanding and facilitates an assessment of the approximations made in the calculations....
3-D nonlinear evolution of MHD instabilities
International Nuclear Information System (INIS)
Bateman, G.; Hicks, H.R.; Wooten, J.W.
1977-03-01
The nonlinear evolution of ideal MHD internal instabilities is investigated in straight cylindrical geometry by means of a 3-D initial-value computer code. These instabilities are characterized by pairs of velocity vortex cells rolling off each other and helically twisted down the plasma column. The cells persist until the poloidal velocity saturates at a few tenths of the Alfven velocity. The nonlinear phase is characterized by convection around these essentially fixed vortex cells. For example, the initially centrally peaked temperature profile is convected out and around to form an annulus of high temperature surrounding a small region of lower temperature. Weak, centrally localized instabilities do not alter the edge of the plasma. Strong, large-scale instabilities, resulting from a stronger longitudinal equilibrium current, drive the plasma against the wall. After three examples of instability are analyzed in detail, the numerical methods and their verification are discussed
The Biermann catastrophe of numerical MHD
Graziani, C.; Tzeferacos, P.; Lee, D.; Lamb, D. Q.; Weide, K.; Fatenejad, M.; Miller, J.
2016-05-01
The Biermann Battery effect is frequently invoked in cosmic magnetogenesis and studied in High-Energy Density laboratory physics experiments. Unfortunately, direct implementation of the Biermann effect in MHD codes is known to produce unphysical magnetic fields at shocks whose value does not converge with resolution. We show that this convergence breakdown is due to naive discretization, which fails to account for the fact that discretized irrotational vector fields have spurious solenoidal components that grow without bound near a discontinuity. We show that careful consideration of the kinetics of ion viscous shocks leads to a formulation of the Biermann effect that gives rise to a convergent algorithm. We note a novel physical effect a resistive magnetic precursor in which Biermann-generated field in the shock “leaks” resistively upstream. The effect appears to be potentially observable in experiments at laser facilities.
Nonlinear MHD analysis for LHD plasmas
International Nuclear Information System (INIS)
Ichiguchi, K.; Nakajima, N.; Wakatani, M.; Carreras, B.A.
2003-01-01
The nonlinear behavior of the interchange modes with multi-helicity in the Large Helical Device is analyzed based on the reduced MHD equations. In the equilibrium at sufficiently low beta value, the saturation of a single mode and the following excitation of other single mode whose resonant surface is close to that of the saturated mode are slowly repeated. This sequence leads to the local deformation of the pressure profile. Increasing the beta value with the pressure profile fixed, a bursting phenomenon due to the overlap of multiple modes is observed in the kinetic energy, which results in the global reduction of the pressure profile. Increasing the beta value using the pressure profile saturated at the lower beta value suppresses the bursting behavior. This result indicates the possibility that the pressure profile is self-organized so that the LHD plasma should attain the high beta regime through a stable path. (author)
Averaged description of 3D MHD equilibrium
International Nuclear Information System (INIS)
Medvedev, S.Yu.; Drozdov, V.V.; Ivanov, A.A.; Martynov, A.A.; Pashekhonov, Yu.Yu.; Mikhailov, M.I.
2001-01-01
A general approach by S.A.Galkin et al. in 1991 to 2D description of MHD equilibrium and stability in 3D systems was proposed. The method requires a background 3D equilibrium with nested flux surfaces to generate the metric of a Riemannian space in which the background equilibrium is described by the 2D equation of Grad-Shafranov type. The equation can be solved then varying plasma profiles and shape to get approximate 3D equilibria. In the framework of the method both planar axis conventional stellarators and configurations with spatial magnetic axis can be studied. In the present report the formulation and numerical realization of the equilibrium problem for stellarators with planar axis is reviewed. The input background equilibria with nested flux surfaces are taken from vacuum magnetic field approximately described by analytic scalar potential
Two dimensional MHD flows between porous boundaries
International Nuclear Information System (INIS)
Gratton, F.T.
1994-01-01
Similarity solutions of dissipative MHD equations representing conducting fluids injected through porous walls and flowing out in both directions from the center of the channel, are studied as a function of four non dimensional parameters, Reynolds number R e , magnetic Reynolds number R m , Alfvenic Mach number, M A , and pressure gradient coefficient, C. The effluence is restrained by an external magnetic field normal to the walls. When R m m >>1, the solution may model a collision of plasmas of astrophysical interest. In this case the magnetic field lines help to drive the outflow acting jointly with the pressure gradient. The law for C as a function of the other parameters is given for several asymptotic limits. (author). 3 refs, 6 figs
The Stellar IMF from Isothermal MHD Turbulence
Haugbølle, Troels; Padoan, Paolo; Nordlund, Åke
2018-02-01
We address the turbulent fragmentation scenario for the origin of the stellar initial mass function (IMF), using a large set of numerical simulations of randomly driven supersonic MHD turbulence. The turbulent fragmentation model successfully predicts the main features of the observed stellar IMF assuming an isothermal equation of state without any stellar feedback. As a test of the model, we focus on the case of a magnetized isothermal gas, neglecting stellar feedback, while pursuing a large dynamic range in both space and timescales covering the full spectrum of stellar masses from brown dwarfs to massive stars. Our simulations represent a generic 4 pc region within a typical Galactic molecular cloud, with a mass of 3000 M ⊙ and an rms velocity 10 times the isothermal sound speed and 5 times the average Alfvén velocity, in agreement with observations. We achieve a maximum resolution of 50 au and a maximum duration of star formation of 4.0 Myr, forming up to a thousand sink particles whose mass distribution closely matches the observed stellar IMF. A large set of medium-size simulations is used to test the sink particle algorithm, while larger simulations are used to test the numerical convergence of the IMF and the dependence of the IMF turnover on physical parameters predicted by the turbulent fragmentation model. We find a clear trend toward numerical convergence and strong support for the model predictions, including the initial time evolution of the IMF. We conclude that the physics of isothermal MHD turbulence is sufficient to explain the origin of the IMF.
Resonant MHD modes with toroidal coupling
International Nuclear Information System (INIS)
Connor, J.W.; Hastie, R.J.; Taylor, J.B.
1990-07-01
This is part 2 of a study of resonant perturbations, such as resistive tearing and ballooning modes, in a torus. These are described by marginal ideal mhd equations in the regions between resonant surfaces; matching across these surfaces provides the dispersion relation. In part 1 we described how all the necessary information from the ideal mhd calculations could be represented by a so-called E-matrix. We also described the calculation of this E-matrix for tearing modes (even parity in perturbed magnetic field) in a large aspect ratio torus. There the toroidal modes comprise coupled cylinder tearing modes and the E-matrix is a generalization of the familiar Δ' quantity in a cylinder. In the present paper we discuss resistive ballooning, or twisting-modes, which have odd-parity in perturbed magnetic field. We show that, unlike the tearing modes, these odd-parity modes are instrinsically toroidal and are not directly related to the odd-parity modes in a cylinder. This is evident from the analysis of the high-n limit in ballooning-space, where a transition from a stable Δ' to an unstable Δ' occurs for the twisting mode when the ballooning effect exceeds the interchange effect, which can occur even at large aspect ratio (as in a tokamak). Analysis of the high-n limit in coordinate space, rather than ballooning space, clarifies this singular behaviour and indicates how one may define twisting-mode Δ'. It also yields a prescription for treating low-n twisting modes and a method for calculating an E-matrix for resistive ballooning modes in a large aspect ratio tokamak. The elements of this matrix are given in terms of cylindrical tearing mode solutions
Thin accretion disks around cold Bose-Einstein condensate stars
Energy Technology Data Exchange (ETDEWEB)
Danila, Bogdan [Babes-Bolyai University, Department of Physics, Cluj-Napoca (Romania); Harko, Tiberiu [University College London, Department of Mathematics, London (United Kingdom); Kovacs, Zoltan
2015-05-15
Due to their superfluid properties some compact astrophysical objects, like neutron or quark stars, may contain a significant part of their matter in the form of a Bose-Einstein condensate (BEC). Observationally distinguishing between neutron/quark stars and BEC stars is a major challenge for this latter theoretical model. An observational possibility of indirectly distinguishing BEC stars from neutron/quark stars is through the study of the thin accretion disks around compact general relativistic objects. In the present paper, we perform a detailed comparative study of the electromagnetic and thermodynamic properties of the thin accretion disks around rapidly rotating BEC stars, neutron stars and quark stars, respectively. Due to the differences in the exterior geometry, the thermodynamic and electromagnetic properties of the disks (energy flux, temperature distribution, equilibrium radiation spectrum, and efficiency of energy conversion) are different for these classes of compact objects. Hence in this preliminary study we have pointed out some astrophysical signatures that may allow one to observationally discriminate between BEC stars and neutron/quark stars. (orig.)
Ringed Accretion Disks: Evolution of Double Toroidal Configurations
Energy Technology Data Exchange (ETDEWEB)
Pugliese, D.; Stuchlík, Z., E-mail: daniela.pugliese@fpf.slu.cz, E-mail: zdenek.stuchlik@physics.cz [Institute of Physics and Research Centre of Theoretical Physics and Astrophysics, Faculty of Philosophy and Science, Silesian University in Opava, Bezručovo náměstí 13, CZ-74601 Opava (Czech Republic)
2017-04-01
We investigate ringed accretion disks composed of two tori (rings) orbiting on the equatorial plane of a central supermassive Kerr black hole. We discuss the emergence of the instability phases of each ring of the macro-configuration (ringed disk) according to the Paczynski violation of mechanical equilibrium. In the full general relativistic treatment, we consider the effects of the geometry of the Kerr spacetimes relevant to the characterization of the evolution of these configurations. The discussion of ring stability in different spacetimes enables us to identify particular classes of central Kerr attractors depending on their dimensionless spin. As a result of this analysis, we set constraints on the evolutionary schemes of the ringed disks relative to the torus morphology and on their rotation relative to the central black hole and to each other. The dynamics of the unstable phases of this system is significant for the high-energy phenomena related to accretion onto supermassive black holes in active galactic nuclei and the extremely energetic phenomena in quasars, which could be observed in their X-ray emission.
Energy Technology Data Exchange (ETDEWEB)
NONE
1980-03-01
Examination was conducted in detail on an MHD generation system by coal combustion, with the results reported. Concerning a gas table calculation program in coal combustion, it was prepared assuming 100% slag removal ratio in the combustor as the primary approximation. A combustor for MHD generation needs to efficiently burn fuel using high temperature pre-heated air as the oxidant, to fully dissociate/electrolytically dissociate seed, and to supply to the generation channel a high speed combustion gas plasma having a high electrical conductivity which is required for MHD generation. This year, an examination was conducted on technological problems in burning coal in an MHD combustor. As for the NOx elimination system in an MHD generation plant, an examination was made if the method studied so far in MHD generation using heavy oil as the fuel is applicable to coal. Also investigated and reviewed were various characteristics, change in physical properties, recovery method, etc., in a mixed state of seed and slag in the case of coal combustion MHD. (NEDO)
Energy Technology Data Exchange (ETDEWEB)
NONE
1969-07-01
Compiled are the results of studies conducted in fiscal 1969 on MHD (magnetohydrodynamic) power generation. In the operation test and modification of the 1,000kW-class MHD power generator, the operation test continues from the preceding fiscal year using high-temperature air as oxidant, and the growth of boundary layer in the channel is determined. In the operation test of the MHD power generator designed for prolonged operation, insulation walls, electrode materials, and structures capable of prolonged operation are developed and tested. In the research of MHD power generator heat exchangers, studies are made about the bulkhead type and heat accumulator types (stationary type, rotary type, and falling-grain type). In addition, studies are conducted about seed collecting methods, MHD power generator electrode materials, heat-resisting insulators, and thermal performance rating. In the research and development of superconductive electromagnets, studies are conducted about superconductive electromagnets for 1kW MHD power generators, ferromagnetic superconductive electromagnets for 1,000kW-class MHD power generators, 45-kilogauss col type superconductive electromagnets, turbine type helium liquefier, high current density col type superconductive electromagnets, superinsulated magnetic field generators, etc. (NEDO)
Relativistic Turbulence with Strong Synchrotron and Synchrotron-Self-Compton Cooling
Uzdensky, D. A.
2018-03-01
Many relativistic plasma environments in high-energy astrophysics, including pulsar wind nebulae, hot accretion flows onto black holes, relativistic jets in active galactic nuclei and gamma-ray bursts, and giant radio lobes, are naturally turbulent. The plasma in these environments is often so hot that synchrotron and inverse-Compton (IC) radiative cooling becomes important. In this paper we investigate the general thermodynamic and radiative properties (and hence the observational appearance) of an optically thin relativistically hot plasma stirred by driven magnetohydrodynamic (MHD) turbulence and cooled by radiation. We find that if the system reaches a statistical equilibrium where turbulent heating is balanced by radiative cooling, the effective electron temperature tends to attain a universal value θ = kT_e/m_e c^2 ˜ 1/√{τ_T}, where τT = neσTL ≪ 1 is the system's Thomson optical depth, essentially independent of the strength of turbulent driving and hence of the magnetic field. This is because both MHD turbulent dissipation and synchrotron cooling are proportional to the magnetic energy density. We also find that synchrotron self-Compton (SSC) cooling and perhaps a few higher-order IC components are automatically comparable to synchrotron in this regime. The overall broadband radiation spectrum then consists of several distinct components (synchrotron, SSC, etc.), well separated in photon energy (by a factor ˜ τ_T^{-1}) and roughly equal in power. The number of IC peaks is checked by Klein-Nishina effects and depends logarithmically on τT and the magnetic field. We also examine the limitations due to synchrotron self-absorption, explore applications to Crab PWN and blazar jets, and discuss links to radiative magnetic reconnection.
MHD stability limits in the TCV Tokamak
Energy Technology Data Exchange (ETDEWEB)
Reimerdes, H. [Ecole Polytechnique Federale de Lausanne, Centre de Recherches en Physique des Plasmas (CRPP), CH-1015 Lausanne (Switzerland)
2001-07-01
Magnetohydrodynamic (MHD) instabilities can limit the performance and degrade the confinement of tokamak plasmas. The Tokamak a Configuration Variable (TCV), unique for its capability to produce a variety of poloidal plasma shapes, has been used to analyse various instabilities and compare their behaviour with theoretical predictions. These instabilities are perturbations of the magnetic field, which usually extend to the plasma edge where they can be detected with magnetic pick-up coils as magnetic fluctuations. A spatially dense set of magnetic probes, installed inside the TCV vacuum vessel, allows for a fast observation of these fluctuations. The structure and temporal evolution of coherent modes is extracted using several numerical methods. In addition to the setup of the magnetic diagnostic and the implementation of analysis methods, the subject matter of this thesis focuses on four instabilities, which impose local and global stability limits. All of these instabilities are relevant for the operation of a fusion reactor and a profound understanding of their behaviour is required in order to optimise the performance of such a reactor. Sawteeth, which are central relaxation oscillations common to most standard tokamak scenarios, have a significant effect on central plasma parameters. In TCV, systematic scans of the plasma shape have revealed a strong dependence of their behaviour on elongation {kappa} and triangularity {delta}, with high {kappa}, and low {delta} leading to shorter sawteeth with smaller crashes. This shape dependence is increased by applying central electron cyclotron heating. The response to additional heating power is determined by the role of ideal or resistive MHD in triggering the sawtooth crash. For plasma shapes where additional heating and consequently, a faster increase of the central pressure shortens the sawteeth, the low experimental limit of the pressure gradient within the q = 1 surface is consistent with ideal MHD predictions. The
Instability in relativistic nuclear matter
International Nuclear Information System (INIS)
Tezuka, Hirokazu.
1979-11-01
The stability of the Fermi gas state in the nuclear matter which satisfies the saturation property is considered relativistically. It is shown that the Fermi gas state is stable at very low density and at high density, but it is unstable for density fluctuation in the intermediate density region including the normal density. (author)
Cyberinfrastructure for Computational Relativistic Astrophysics
Ott, Christian
2012-01-01
Poster presented at the NSF Office of Cyberinfrastructure CyberBridges CAREER PI workshop. This poster discusses the computational challenges involved in the modeling of complex relativistic astrophysical systems. The Einstein Toolkit is introduced. It is an open-source community infrastructure for numerical relativity and computational astrophysics.
Future relativistic heavy ion experiments
International Nuclear Information System (INIS)
Pugh, H.G.
1980-12-01
Equations of state for nuclear matter and ongoing experimental studies are discussed. Relativistic heavy ion physics is the only opportunity to study in the laboratory the properties of extended multiquark systems under conditions such that quarks might run together into new arrangements previously unobserved. Several lines of further study are mentioned
A relativistic radiation transfer benchmark
International Nuclear Information System (INIS)
Munier, A.
1988-01-01
We use the integral form of the radiation transfer equation in an one dimensional slab to determine the time-dependent propagation of the radiation energy, flux and pressure in a collisionless homogeneous medium. First order v/c relativistic terms are included and the solution is given in the fluid frame and the laboratory frame
Relativistic models of nuclear structure
International Nuclear Information System (INIS)
Gillet, V.; Kim, E.J.; Cauvin, M.; Kohmura, T.; Ohnaka, S.
1991-01-01
The introduction of the relativistic field formalism for the description of nuclear structure has improved our understanding of fundamental nuclear mechanisms such as saturation or many body forces. We discuss some of these progresses, both in the semi-classical mean field approximation and in a quantized meson field approach. (author)
Fundamental length and relativistic length
International Nuclear Information System (INIS)
Strel'tsov, V.N.
1988-01-01
It si noted that the introduction of fundamental length contradicts the conventional representations concerning the contraction of the longitudinal size of fast-moving objects. The use of the concept of relativistic length and the following ''elongation formula'' permits one to solve this problem
Hydrogen Cyanide In Protoplanetary Disks
Walker, Ashley L.; Oberg, Karin; Cleeves, L. Ilsedore
2018-01-01
The chemistry behind star and planet formation is extremely complex and important in the formation of habitable planets. Life requires molecules containing carbon, oxygen, and importantly, nitrogen. Hydrogen cyanide, or HCN, one of the main interstellar nitrogen carriers, is extremely dangerous here on Earth. However, it could be used as a vital tool for tracking the chemistry of potentially habitable planets. As we get closer to identifying other habitable planets, we must understand the beginnings of how those planets are formed in the early protoplanetary disk. This project investigates HCN chemistry in different locations in the disk, and what this might mean for forming planets at different distances from the star. HCN is a chemically diverse molecule. It is connected to the formation for other more complex molecules and is commonly used as a nitrogen tracer. Using computational chemical models we look at how the HCN abundance changes at different locations. We use realistic and physically motivated conditions for the gas in the protoplanetary disk: temperature, density, and radiation (UV flux). We analyze the reaction network, formation, and destruction of HCN molecules in the disk environment. The disk environment informs us about stability of habitable planets that are created based on HCN molecules. We reviewed and compared the difference in the molecules with a variety of locations in the disk and ultimately giving us a better understanding on how we view protoplanetary disks.
Alpha-Driven MHD and MHD-Induced Alpha Loss in TFTR DT Experiments
Chang, Zuoyang
1996-11-01
Theoretical calculation and numerical simulation indicate that there can be interesting interactions between alpha particles and MHD activity which can adversely affect the performance of a tokamak reactor (e.g., ITER). These interactions include alpha-driven MHD, like the toroidicity-induced-Alfven-eigenmode (TAE) and MHD induced alpha particle losses or redistribution. Both phenomena have been observed in recent TFTR DT experiments. Weak alpha-driven TAE activity was observed in a NBI-heated DT experiment characterized by high q0 ( >= 2) and low core magnetic shear. The TAE mode appears at ~30-100 ms after the neutral beam turning off approximately as predicted by theory. The mode has an amplitude measured by magnetic coils at the edge tildeB_p ~1 mG, frequency ~150-190 kHz and toroidal mode number ~2-3. It lasts only ~ 30-70 ms and has been seen only in DT discharges with fusion power level about 1.5-2.0 MW. Numerical calculation using NOVA-K code shows that this type of plasma has a big TAE gap. The calculated TAE frequency and mode number are close to the observation. (2) KBM-induced alpha particle loss^1. In some high-β, high fusion power DT experiments, enhanced alpha particle losses were observed to be correlated to the high frequency MHD modes with f ~100-200 kHz (the TAE frequency would be two-times higher) and n ~5-10. These modes are localized around the peak plasma pressure gradient and have ballooning characteristics. Alpha loss increases by 30-100% during the modes. Particle orbit simulations show the added loss results from wave-particle resonance. Linear instability analysis indicates that the plasma is unstable to the kinetic MHD ballooning modes (KBM) driven primarily by strong local pressure gradients. ----------------- ^1Z. Chang, et al, Phys. Rev. Lett. 76 (1996) 1071. In collaberation with R. Nazikian, G.-Y. Fu, S. Batha, R. Budny, L. Chen, D. Darrow, E. Fredrickson, R. Majeski, D. Mansfield, K. McGuire, G. Rewoldt, G. Taylor, R. White, K
Disk tides and accretion runaway
Ward, William R.; Hahn, Joseph M.
1995-01-01
It is suggested that tidal interaction of an accreting planetary embryo with the gaseous preplanetary disk may provide a mechanism to breach the so-called runaway limit during the formation of the giant planet cores. The disk tidal torque converts a would-be shepherding object into a 'predator,' which can continue to cannibalize the planetesimal disk. This is more likely to occur in the giant planet region than in the terrestrial zone, providing a natural cause for Jupiter to predate the inner planets and form within the O(10(exp 7) yr) lifetime of the nebula.
1971-01-01
The 8-inch floppy disk was a magnetic storage disk for the data introduced commercially by IBM in 1971. It was designed by an IBM team as an inexpensive way to load data into the IBM System / 370. Plus it was a read-only bare disk containing 80 KB of data. The first read-write version was introduced in 1972 by Memorex and could contain 175 KB on 50 tracks (with 8 sectors per track). Other improvements have led to various coatings and increased capacities. Finally, it was surpassed by the mini diskette of 5.25 inches introduced in 1976.
Bershady, Matthew A.; Andersen, David R.
We report on aspects of an observational study to probe the mass assembly of large galaxy disks. In this contribution we focus on a new survey of integral-field Hα velocity-maps of nearby, face on disks. Preliminary results yield disk asymmetry amplitudes consistent with estimates based on the scatter in the local Tully-Fisher relation. We also show how the high quality of integral-field echelle spectroscopy enables determinations of kinematic inclinations to i ~20 °. This holds the promise that nearly-face-on galaxies can be included in the Tully-Fisher relation. Finally, we discuss the prospects for measuring dynamical asymmetries of distant galaxies.
Relativistic Descriptions of Few-Body Systems
International Nuclear Information System (INIS)
Karmanov, V. A.
2011-01-01
A brief review of relativistic effects in few-body systems, of theoretical approaches, recent developments and applications is given. Manifestations of relativistic effects in the binding energies, in the electromagnetic form factors and in three-body observables are demonstrated. The three-body forces of relativistic origin are also discussed. We conclude that relativistic effects in nuclei can be important in spite of small binding energy. At high momenta they clearly manifest themselves and are necessary to describe the deuteron e.m. form factors. At the same time, there is still a discrepancy in three-body observables which might be a result of less clarity in understanding the corresponding relativistic effects, the relativistic NN kernel and the three-body forces. Relativistic few-body physics remains to be a field of very intensive and fruitful researches. (author)
Directory of Open Access Journals (Sweden)
António M. Monge Soares
2017-07-01
Full Text Available We have used EDXRF, Micro-PIXE and optical microscopy (metallographic analysis, complemented with SEM-EDS, to first determine the elemental content, and second, to identify the process used to join the components (disk, peripheral rod and tab of several Iron Age gold buttons. These have a very similar typology and were found at three archaeological sites in the South-Western part of the Iberian Peninsula. A set of 35 buttons from Castro dos Ratinhos (7, Outeiro da Cabeça (23 and Fortios (5 were analyzed and the results published in Trabajos de Prehistoria (Soares et al. 2010. Recently Perea et al. (2016 have published analyses of other 4 gold buttons from Fortios with the same purpose, but only using one technique, SEM-EDS. As they only analysed the rough surface layer, the results are neither effective nor reliable, taking into account the constraints associated with the technique, namely the small depth reached (< 2 ?m by the incident beam and, consequently, its sensitivity to the topography of the analyzed surface. Despite these constraints, they have accepted uncritically their results and, at the same time, question our own analyses and results and the interpretation we have made. Here we discuss the approach of Perea et al. in order to determine not only the elemental content of the Fortios gold buttons, but also to identify the joining process used in their manufacture.
Conversion software for ANSYS APDL 2 FLUENT MHD magnetic file
International Nuclear Information System (INIS)
Ghita, G.; Ionescu, S.; Prisecaru, I.
2016-01-01
The present paper describes the improvements made to the conversion software for ANSYS APDL 2 FLUENT MHD Magnetic File which is able to extract the data from ANSYS APDL file and write down a file containing the magnetic field data in FLUENT magneto hydro dynamics (MHD) format. The MHD module has some features for the uniform and non uniform magnetic field but it is limited for sinusoidal or pulsed, square wave, having a fixed duty cycle of 50%. The present software, ANSYS APDL 2 FLUENT MHD Magnetic File, suffered major modifications in comparison with the last one. The most important improvement consists in a new graphical interface, which has 3D graphical interface for the input file but also for the output file. Another improvement has been made for processing time, the new version is two times faster comparing with the old one. (authors)
Numerical Simulation of 3D Viscous MHD Flows
National Research Council Canada - National Science Library
Golovachov, Yurii P; Kurakin, Yurii A; Schmidt, Alexander A; Van Wie, David M
2003-01-01
.... Flows in hypersonic intakes are considered. Preliminary results showed that local MHD interaction in the inlet part of the intake model was the most effective for control over plasma flow field...
Diagnostic development and support of MHD (magnetohydrodynamics) test facilities
Energy Technology Data Exchange (ETDEWEB)
1989-07-01
Mississippi State University (MSU) is developing diagnostic instruments for Magnetohydrodynamics (MHD) power train data acquisition and for support of MHD component development test facilities. Microprocessor-controlled optical instruments, initially developed for HRSR support, are being refined, and new systems to measure temperatures and gas-seed-slag stream characteristics are being developed. To further data acquisition and analysis capabilities, the diagnostic systems are being interfaced with MHD Energy Center computers. Technical support for the diagnostic needs of the national MHD research effort is being provided. MSU personnel will also cooperate with government agencies and private industries to improve the transformation of research and development results into processes, products and services applicable to their needs.
Formation, structure, and stability of MHD intermediate shocks
International Nuclear Information System (INIS)
Wu, C.C.
1990-01-01
Contrary to the usual belief that MHD intermediate shocks are extraneous, the author has recently shown by numerical solutions of dissipative MHD equations that intermediate shocks are admissible and can be formed through nonlinear wave steepening from continuous waves. In this paper, the formation, structure and stability of intermediate shocks in dissipative MHD are considered in detail. The differences between the conventional theory and his are pointed out and clarified. He shows that all four types of intermediate shocks can be formed from smooth waves. He also shows that there are free parameters in the structure of the intermediate shocks, and that these parameters are related to the shock stability. In addition, he shows that a rotational discontinuity can not exist with finite width, indicate how this is related to the existence of time-dependent intermediate shocks, and show why the conventional theory is not a good approximation to dissipative MHD solutions whenever there is rotation in magnetic field
Unsteady MHD free convective flow past a vertical porous plate ...
African Journals Online (AJOL)
user
International Journal of Engineering, Science and Technology .... dimensional MHD boundary layer on the body with time varying temperature. ... flow of an electrically conducting fluid past an infinite vertical porous flat plate coinciding with.
Generalized similarity method in unsteady two-dimensional MHD ...
African Journals Online (AJOL)
user
International Journal of Engineering, Science and Technology. Vol. 1, No. 1, 2009 ... temperature two-dimensional MHD laminar boundary layer of incompressible fluid. ...... Φ η is Blasius solution for stationary boundary layer on the plate,. ( ). 0.
Combined effects of radiation and chemical reaction on MHD flow ...
African Journals Online (AJOL)
(2016) have studied unsteady MHD flow in porous media over exponentially accelerated plate ... boundary layer flow of heat and mass transfer over a moving vertical plate with suction. ... flow considering free convection over a porous plate.
Recent development of relativistic molecular theory
International Nuclear Information System (INIS)
Takahito, Nakajima; Kimihiko, Hirao
2005-01-01
Today it is common knowledge that relativistic effects are important in the heavy-element chemistry. The continuing development of the relativistic molecular theory is opening up rows of the periodic table that are impossible to treat with the non-relativistic approach. The most straightforward way to treat relativistic effects on heavy-element systems is to use the four-component Dirac-Hartree-Fock approach and its electron-correlation methods based on the Dirac-Coulomb(-Breit) Hamiltonian. The Dirac-Hartree-Fock (DHF) or Dirac-Kohn-Sham (DKS) equation with the four-component spinors composed of the large- and small-components demands severe computational efforts to solve, and its applications to molecules including heavy elements have been limited to small- to medium-size systems. Recently, we have developed a very efficient algorithm for the four-component DHF and DKS approaches. As an alternative approach, several quasi-relativistic approximations have also been proposed instead of explicitly solving the four-component relativistic equation. We have developed the relativistic elimination of small components (RESC) and higher-order Douglas-Kroll (DK) Hamiltonians within the framework of the two-component quasi-relativistic approach. The developing four-component relativistic and approximate quasi-relativistic methods have been implemented into a program suite named REL4D. In this article, we will introduce the efficient relativistic molecular theories to treat heavy-atomic molecular systems accurately via the four-component relativistic and the two-component quasi-relativistic approaches. We will also show several chemical applications including heavy-element systems with our relativistic molecular approaches. (author)
Electrode materials for an open-cycle MHD generator channel
International Nuclear Information System (INIS)
Telegin, G.P.; Romanov, A.I.; Akopov, F.A.; Gokhshtejn, Ya.P.; Rekov, A.I.
1983-01-01
The results of investigations, technological developments and tests of high temperature materials for MHD electrodes on the base of zirconium dioxide, stabilized with oxides of calcium, yttrium, neodymium, and dioxide of cerium, chromites, tamping masses from stabilized dioxide of zirconium, cermets are considered. It is established that binary and ternary solutions on the base of zirconium dioxide and alloyed chromites are the perspective materials for the MHD electrodes on pure fuel
Relativistic fluid theories - Self organization
International Nuclear Information System (INIS)
Mahajan, S.M.; Hazeltine, R.D.; Yoshida, Z.
2003-01-01
Developments in two distinct but related subjects are reviewed: 1) Formulation and investigation of closed fluid theories which transcend the limitations of standard magnetohydrodynamics (MHD), in particular, theories which are valid in the long mean free path limit and in which pressure anisotropy, heat flow, and arbitrarily strong sheared flows are treated consistently, and 2) Exploitation of the two-fluid theories to derive new plasma configurations in which the flow-field is a co-determinant of the overall dynamics; some of these states belong to the category of self-organized relaxed states. Physical processes which may provide a route to self-organization and complexity are also explored. (author)
Hayat, T.; Khan, M. Waleed Ahmed; Khan, M. Ijaz; Waqas, M.; Alsaedi, A.
2018-06-01
Flow of magnetohydrodynamic (MHD) viscous fluid between two rotating disks is modeled. Angular velocities of two disks are different. Flow is investigated for nonlinear mixed convection. Heat transfer is analyzed for nonlinear thermal radiation and heat generation/absorption. Chemical reaction is also implemented. Convective conditions of heat and mass transfer are studied. Transformations used lead to reduction of PDEs into the ODEs. The impacts of important physical variables like Prandtl number, Reynold number, Hartman number, mixed convection parameter, chemical reaction and Schmidt number on velocities, temperature and concentration are elaborated. In addition velocity and temperature gradients are physically interpreted. Our obtained results indicate that radial, axial and tangential velocities decrease for higher estimation of Hartman number.
Radiation magnetohydrodynamic simulations of the formation of hot accretion disk coronae
Energy Technology Data Exchange (ETDEWEB)
Jiang, Yan-Fei [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Stone, James M. [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Davis, Shane W. [Canadian Institute for Theoretical Astrophysics. Toronto, ON M5S3H4 (Canada)
2014-04-01
A new mechanism to form a magnetic pressure supported, high temperature corona above the photosphere of an accretion disk is explored using three dimensional radiation magnetohydrodynamic (MHD) simulations. The thermal properties of the disk are calculated self-consistently by balancing radiative cooling through the surfaces of the disk with heating due to dissipation of turbulence driven by magneto-rotational instability (MRI). As has been noted in previous work, we find the dissipation rate per unit mass increases dramatically with height above the mid-plane, in stark contrast to the α-disk model which assumes this quantity is a constant. Thus, we find that in simulations with a low surface density (and therefore a shallow photosphere), the fraction of energy dissipated above the photosphere is significant (about 3.4% in our lowest surface density model), and this fraction increases as surface density decreases. When a significant fraction of the accretion energy is dissipated in the optically thin photosphere, the gas temperature increases substantially and a high temperature, magnetic pressure supported corona is formed. The volume-averaged temperature in the disk corona is more than 10 times larger than at the disk mid-plane. Moreover, gas temperature in the corona is strongly anti-correlated with gas density, which implies the corona formed by MRI turbulence is patchy. This mechanism to form an accretion disk corona may help explain the observed relation between the spectral index and luminosity from active galactic nucleus (AGNs), and the soft X-ray excess from some AGNs. It may also be relevant to spectral state changes in X-ray binaries.
SIGNATURES OF MRI-DRIVEN TURBULENCE IN PROTOPLANETARY DISKS: PREDICTIONS FOR ALMA OBSERVATIONS
Energy Technology Data Exchange (ETDEWEB)
Simon, Jacob B. [Department of Space Studies, Southwest Research Institute, Boulder, CO 80302 (United States); Hughes, A. Meredith; Flaherty, Kevin M. [Astronomy Department, Van Vleck Observatory, Wesleyan University, 96 Foss Hill Dr., Middletown, CT 06459 (United States); Bai, Xue-Ning [Harvard-Smithsonian Center for Astrophysics, 60 Garden St., MS-51, Cambridge, MA 02138 (United States); Armitage, Philip J., E-mail: jbsimon.astro@gmail.com [JILA, University of Colorado and NIST, 440 UCB, Boulder, CO 80309-0440 (United States)
2015-08-01
Spatially resolved observations of molecular line emission have the potential to yield unique constraints on the nature of turbulence within protoplanetary disks. Using a combination of local non-ideal magnetohydrodynamics (MHD) simulations and radiative transfer calculations, tailored to properties of the disk around HD 163296, we assess the ability of ALMA to detect turbulence driven by the magnetorotational instability (MRI). Our local simulations show that the MRI produces small-scale turbulent velocity fluctuations that increase in strength with height above the mid-plane. For a set of simulations at different disk radii, we fit a Maxwell–Boltzmann distribution to the turbulent velocity and construct a turbulent broadening parameter as a function of radius and height. We input this broadening into radiative transfer calculations to quantify observational signatures of MRI-driven disk turbulence. We find that the ratio of the peak line flux to the flux at line center is a robust diagnostic of turbulence that is only mildly degenerate with systematic uncertainties in disk temperature. For the CO(3–2) line, which we expect to probe the most magnetically active slice of the disk column, variations in the predicted peak-to-trough ratio between our most and least turbulent models span a range of approximately 15%. Additional independent constraints can be derived from the morphology of spatially resolved line profiles, and we estimate the resolution required to detect turbulence on different spatial scales. We discuss the role of lower optical depth molecular tracers, which trace regions closer to the disk mid-plane where velocities in MRI-driven models are systematically lower.
Polarization and Structure of Relativistic Parsec-Scale AGN Jets
International Nuclear Information System (INIS)
Lyutikov, M
2004-01-01
mildly relativistic jets, when a counter jet can be seen, the polarization of the counter jet is preferentially orthogonal to the axis, unless the jet is strongly dominated by the toroidal magnetic field in its rest frame. (6) For resolved jets, the polarization pattern is not symmetric with respect to jet axis. Under certain conditions, this can be used to deduce the direction of the spin of the central object (black hole or disk), whether it is aligned or anti-aligned with the jet axis. (7) In resolved ''cylindrical shell'' type jets, the central parts of the jet are polarized along the axis, while the outer parts are polarized orthogonal to it, in accordance with observations. We conclude that large-scale magnetic fields can explain the salient polarization properties of parsec-scale AGN jets. Since the typical degrees of polarization are (le) 15%, the emitting parts of the jets must have comparable rest-frame toroidal and poloidal fields. In this case, most relativistic jets are strongly dominated by the toroidal magnetic field component in the observer's frame, B φ /B z ∼ Λ. We also discuss the possibility that relativistic AGN jets may be electromagnetically (Poynting flux) dominated. In this case, dissipation of the toroidal magnetic field (and not fluid shocks) may be responsible for particle acceleration
Present state of research and development of MHD power generation
International Nuclear Information System (INIS)
Ikeda, Shigeru
1978-01-01
MHD power generation can obtain electric energy directly from the heat energy of high speed plasma flow, and the power generating plant of 1 million kW can be realized by this method. When the MHD power generation method is combined before conventional thermal power generation method, the thermal efficiency can be raised to about 60% as compared with 38% in thermal power generation plants. The research and development of MHD power generation are in progress in USA and USSR. The research and development in Japan are in the second stage now after the first stage project for 10 years, and the Mark 7 generator with 100 kW electric output for 200 hr continuous operation is under construction. The MHD power generation is divided into three types according to the conductive fluids used, namely combustion type for thermal power generation, unequilibrated type and liquid metal type for nuclear power generation. The principle of MHD power generation and the constitution of the plant are explained. In Japan, the Mark 2 generator generated 1,180 kW for 1 min in 1971, and the Mark 3 generator generated 1.9 kW continuously for 110 hr in 1967. The MHD generator with superconducting magnet succeeded in 1969 to generate 25 kW for 6 min. The second stage project aimes at collecting design data and obtaining operational experience for the construction of 10 MW class pilot plant, and the Mark 7 and 8 generators are planned. (Kako, I.)
Relativistic quantum mechanics an introduction to relativistic quantum fields
Maiani, Luciano
2016-01-01
Written by two of the world's leading experts on particle physics and the standard model - including an award-winning former Director General of CERN - this textbook provides a completely up-to-date account of relativistic quantum mechanics and quantum field theory. It describes the formal and phenomenological aspects of the standard model of particle physics, and is suitable for advanced undergraduate and graduate students studying both theoretical and experimental physics.
Gravitational Instabilities in Circumstellar Disks
Kratter, Kaitlin; Lodato, Giuseppe
2016-09-01
Star and planet formation are the complex outcomes of gravitational collapse and angular momentum transport mediated by protostellar and protoplanetary disks. In this review, we focus on the role of gravitational instability in this process. We begin with a brief overview of the observational evidence for massive disks that might be subject to gravitational instability and then highlight the diverse ways in which the instability manifests itself in protostellar and protoplanetary disks: the generation of spiral arms, small-scale turbulence-like density fluctuations, and fragmentation of the disk itself. We present the analytic theory that describes the linear growth phase of the instability supplemented with a survey of numerical simulations that aim to capture the nonlinear evolution. We emphasize the role of thermodynamics and large-scale infall in controlling the outcome of the instability. Despite apparent controversies in the literature, we show a remarkable level of agreement between analytic predictions and numerical results. In the next part of our review, we focus on the astrophysical consequences of the instability. We show that the disks most likely to be gravitationally unstable are young and relatively massive compared with their host star, Md/M*≥0.1. They will develop quasi-stable spiral arms that process infall from the background cloud. Although instability is less likely at later times, once infall becomes less important, the manifestations of the instability are more varied. In this regime, the disk thermodynamics, often regulated by stellar irradiation, dictates the development and evolution of the instability. In some cases the instability may lead to fragmentation into bound companions. These companions are more likely to be brown dwarfs or stars than planetary mass objects. Finally, we highlight open questions related to the development of a turbulent cascade in thin disks and the role of mode-mode coupling in setting the maximum angular
Bend testing for miniature disks
International Nuclear Information System (INIS)
Huang, F.H.; Hamilton, M.L.; Wire, G.L.
1982-01-01
A bend test was developed to obtain ductility measurements on a large number of alloy variants being irradiated in the form of miniature disks. Experimental results were shown to be in agreement with a theoretical analysis of the bend configuration. Disk specimens fabricated from the unstrained grip ends of previously tested tensile specimens were used for calibration purposes; bend ductilities and tensile ductilities were in good agreement. The criterion for estimating ductility was judged acceptable for screening purposes
Thermodynamics of the dead zone inner edge in protoplanetary disks
International Nuclear Information System (INIS)
Faure, Julien
2014-01-01
The dead zone, a quiescent region enclosed in the turbulent flow of a protoplanetary disk, seems to be a promising site for planet formation. Indeed, the development of a density maximum at the dead zone inner edge, that has the property to trap the infalling dust, is a natural outcome of the accretion mismatch at this interface. Moreover, the flow here may be unstable and organize itself into vortical structures that efficiently collect dust grains. The inner edge location is however loosely constrained. In particular, it depends on the thermodynamical prescriptions of the disk model that is considered. It has been recently proposed that the inner edge is not static and that the variations of young stars accretion luminosity are the signature of this interface displacements. This thesis address the question of the impact of the gas thermodynamics onto its dynamics around the dead zone inner edge. MHD simulations including the complex interplay between thermodynamical processes and the dynamics confirmed the dynamical behaviour of the inner edge. A first measure of the interface velocity has been realised. This result has been compared to the predictions of a mean field model. It revealed the crucial role of the energy transport by density waves excited at the interface. These simulations also exhibit a new intriguing phenomenon: vortices forming at the interface follow a cycle of formation-migration-destruction. This vortex cycle may compromise the formation of planetesimals at the inner edge. This thesis claims that thermodynamical processes are at the heart of how the region around the dead zone inner edge in protoplanetary disks works. (author) [fr
RADIATION HYDRODYNAMICS MODELS OF THE INNER RIM IN PROTOPLANETARY DISKS
Energy Technology Data Exchange (ETDEWEB)
Flock, M.; Turner, N. J. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Fromang, S. [Laboratoire AIM, CEA/DSM-CNRS-Université Paris 7, Irfu/Service d’Astrophysique, CEA-Saclay, F-91191 Gif-sur-Yvette (France); Benisty, M., E-mail: mflock@caltech.edu [Université Grenoble Alpes, CNRS, IPAG, F-38000 Grenoble (France)
2016-08-20
Many stars host planets orbiting within a few astronomical units (AU). The occurrence rate and distributions of masses and orbits vary greatly with the host star’s mass. These close planets’ origins are a mystery that motivates investigating protoplanetary disks’ central regions. A key factor governing the conditions near the star is the silicate sublimation front, which largely determines where the starlight is absorbed, and which is often called the inner rim. We present the first radiation hydrodynamical modeling of the sublimation front in the disks around the young intermediate-mass stars called Herbig Ae stars. The models are axisymmetric and include starlight heating; silicate grains sublimating and condensing to equilibrium at the local, time-dependent temperature and density; and accretion stresses parameterizing the results of MHD magnetorotational turbulence models. The results compare well with radiation hydrostatic solutions and prove to be dynamically stable. Passing the model disks into Monte Carlo radiative transfer calculations, we show that the models satisfy observational constraints on the inner rim’s location. A small optically thin halo of hot dust naturally arises between the inner rim and the star. The inner rim has a substantial radial extent, corresponding to several disk scale heights. While the front’s overall position varies with the stellar luminosity, its radial extent depends on the mass accretion rate. A pressure maximum develops near the location of thermal ionization at temperatures of about 1000 K. The pressure maximum is capable of halting solid pebbles’ radial drift and concentrating them in a zone where temperatures are sufficiently high for annealing to form crystalline silicates.
Slowly rotating general relativistic superfluid neutron stars with relativistic entrainment
International Nuclear Information System (INIS)
Comer, G.L.
2004-01-01
Neutron stars that are cold enough should have two or more superfluids or supercondutors in their inner crusts and cores. The implication of superfluidity or superconductivity for equilibrium and dynamical neutron star states is that each individual particle species that forms a condensate must have its own, independent number density current and equation of motion that determines that current. An important consequence of the quasiparticle nature of each condensate is the so-called entrainment effect; i.e., the momentum of a condensate is a linear combination of its own current and those of the other condensates. We present here the first fully relativistic modeling of slowly rotating superfluid neutron stars with entrainment that is accurate to the second-order in the rotation rates. The stars consist of superfluid neutrons, superconducting protons, and a highly degenerate, relativistic gas of electrons. We use a relativistic σ-ω mean field model for the equation of state of the matter and the entrainment. We determine the effect of a relative rotation between the neutrons and protons on a star's total mass, shape, and Kepler, mass-shedding limit
The Fabulous Four Debris Disks
Werner, Michael; Stapelfeldt, Karl
2004-09-01
This program is a comprehensive study of the four bright debris disks that were spatially resolved by IRAS: Beta Pictoris, Epsilon Eridani, Fomalhaut, and Vega. All SIRTF instruments and observing modes will be used. The program has three major objectives: (1) Study of the disk spatial structure from MIPS and IRAC imaging; (2) Study of the dust grain composition using the IRS and MIPS SED mode; and (3) companion searches using IRAC. The data from this program should lead to a detailed understanding of these four systems, and will provide a foundation for understanding all of the debris disks to be studied with SIRTF. Images and spectra will be compared with models for disk structure and dust properties. Dynamical features indicative of substellar companions' effects on the disks will be searched for. This program will require supporting observations of PSF stars, some of which have been included explicitly. In the majority of cases, the spectral observations require a preferred orientation to align the slits along the disk position angles. Detector saturation issues are still being worked for this program, and will lead to AOR modifications in subsequent submissions. The results from this program will be analyzed collaboratively by the IRAC, IRS, and MIPS teams and by general GTOs Jura and Werner.
Electromagnetic properties of a modular MHD thruster
Kom, C. H.; Brunet, Y.
1999-04-01
The magnetic field of an annular MHD thruster made of independent superconducting modules has been studied with analytical and numerical methods. This configuration allows to obtain large magnetized volumes and high induction levels with rapidly decreasing stray fields. When some inductors are out of order, the thruster remains still operational, but the stray fields increase in the vicinity of the failure. For given structural materials and superconductors, it is possible to determine the size of the conductor in order to reduce the electromagnetic forces and the peak field supported by the conductors. For an active field of 10 T in a 6 m ray annular active channel of a thruster with 24 modules, the peak field is exactly 15.6 T in the Nb3Sn conductors and the structure has to sustain 10^8 N/m forces. The necessity to place some magnetic or superconducting shield is discussed, particularly when the thruster is in a degraded regime. Nous présentons une étude analytique et numérique du champ magnétique d'un propulseur MHD naval annulaire, constitué de secteurs inducteurs supraconducteurs. Cette configuration nécessite des champs magnétiques élevés dans des volumes importants, et permet une décroissance rapide des champs de fuite. Lorsque quelques inducteurs sont en panne, le propulseur reste toujours opérationnel, mais les champs de fuite sont importants aux environs des modules hors service. Étant donné un matériau supraconducteur, il est possible de déterminer la forme des inducteurs dans le but de réduire à la fois les forces électromagnétiques et le surchamp supporté par le bobinage. Pour un propulseur annulaire constitué de 24 modules inducteurs, et un champ actif de 10 T au centre de la partie active du canal (r = 6 m) on obtient avec du Nb3Sn un champ maximun sur le conducteur de 15,5 T et la structure supporte une force de 10^8 N/m. De plus, la nécessité de placer des écrans magnétique ou supraconducteur en régime dégradé (mise
Global and kinetic MHD simulation by the Gpic-MHD code
International Nuclear Information System (INIS)
Naitou, Hiroshi; Yamada, Yusuke; Kajiwara, Kenji; Lee, Wei-li; Tokuda, Shinji; Yagi, Masatoshi
2011-01-01
In order to implement large-scale and high-beta tokamak simulation, a new algorithm of the electromagnetic gyrokinetic PIC (particle-in-cell) code was proposed and installed on the Gpic-MHD code [Gyrokinetic PIC code for magnetohydrodynamic (MHD) simulation]. In the new algorithm, the vortex equation and the generalized ohm's law along the magnetic field are derived from the basic equations of the gyrokinetic Vlasov, Poisson, and Ampere system and are used to describe the spatio-temporal evolution of the field quantities of the electrostatic potential φ and the longitudinal component of the vector potential A z . Particle information is mainly used to estimate second order moments in the generalized ohm's law. Because the lower order moments of the charge density and the longitudinal current density are not used explicitly to determine φ and A z , the numerical noise induced by the discreteness of particle quantities reduces drastically. Another advantage of the algorithm is that the longitudinal induced electric field, E Tz =-∂A z /∂t, is explicitly estimated by the generalized ohm's law and used in the equations of motion. The particle velocities along the magnetic field are used (v z -formulation) instead of generalized momentums (p z -formulation), hence there is no problem of 'cancellation', which appear when estimating A z from the Ampere's law in the p z -formulation. The successful simulation of the collisionless internal kink mode by new Gpic-MHD with the realistic values of the large-scale and high-beta, revealed the usefulness of the new algorithm. (author)
EVIDENCE OF ACTIVE MHD INSTABILITY IN EULAG-MHD SIMULATIONS OF SOLAR CONVECTION
Energy Technology Data Exchange (ETDEWEB)
Lawson, Nicolas; Strugarek, Antoine; Charbonneau, Paul, E-mail: nicolas.laws@gmail.ca, E-mail: strugarek@astro.umontreal.ca, E-mail: paulchar@astro.umontreal.ca [Département de Physique, Université de Montréal, C.P. 6128 Succ. Centre-ville, Montréal, Qc H3C 3J7 (Canada)
2015-11-10
We investigate the possible development of magnetohydrodynamical instabilities in the EULAG-MHD “millennium simulation” of Passos and Charbonneau. This simulation sustains a large-scale magnetic cycle characterized by solar-like polarity reversals taking place on a regular multidecadal cadence, and in which zonally oriented bands of strong magnetic fields accumulate below the convective layers, in response to turbulent pumping from above in successive magnetic half-cycles. Key aspects of this simulation include low numerical dissipation and a strongly sub-adiabatic fluid layer underlying the convectively unstable layers corresponding to the modeled solar convection zone. These properties are conducive to the growth and development of two-dimensional instabilities that are otherwise suppressed by stronger dissipation. We find evidence for the action of a non-axisymmetric magnetoshear instability operating in the upper portions of the stably stratified fluid layers. We also investigate the possibility that the Tayler instability may be contributing to the destabilization of the large-scale axisymmetric magnetic component at high latitudes. On the basis of our analyses, we propose a global dynamo scenario whereby the magnetic cycle is driven primarily by turbulent dynamo action in the convecting layers, but MHD instabilities accelerate the dissipation of the magnetic field pumped down into the overshoot and stable layers, thus perhaps significantly influencing the magnetic cycle period. Support for this scenario is found in the distinct global dynamo behaviors observed in an otherwise identical EULAG-MHD simulations, using a different degree of sub-adiabaticity in the stable fluid layers underlying the convection zone.
Energy Technology Data Exchange (ETDEWEB)
NONE
1981-03-01
'Research on MHD generation system' was implemented by its expert committee in the electric joint study group, with the results of fiscal 1980 reported. This year, a detailed conceptual design was carried out on a coal fired MHD generation system, with points for the technological development concretely examined. In addition, investigation was conducted on the progress of MHD generation technology, development situation of other generation systems, state of energy resources, etc., in various foreign countries. In the conceptual design of the coal fired MHD generation plant, the system structure of a 2,000 MWt class commercial MHD generation plant was explained, as were the conceptual design of the structural elements and proposals for a 500 MWt class demonstration plant and an 100 MWt class experimental plant, for example. In the overseas trend of R and D on MHD generation, investigations were made concerning the U.S., Soviet Union, and China, with details compiled for such items as generation plants, combustors, generation channels, heat resisting materials, superconducting magnets, heat exchangers, seed slags, inverters, boilers and environments, and commercial plants. (NEDO)
Relativistic quantum mechanics of bosons
International Nuclear Information System (INIS)
Ghose, P.; Home, D.; Sinha Roy, M.N.
1993-01-01
We show that it is possible to use the Klein-Gordon, Proca and Maxwell formulations to construct multi-component relativistic configuration space wavefunctions of spin-0 and spin-1 bosons in an external field. These wavefunctions satisfy the first-order Kemmer-Duffin equation. The crucial ingredient is the use of the future-causal normal n μ (n μ n μ =1, n 0 >0) to the space-like hypersurfaces foliating space-time, inherent in the concept of a relativistic wavefunction, to construct a conserved future-causal probability current four-vector from the second-rank energy-momentum tensor, following Holland's prescription. The existence of a Hermitian position operator, localized solutions, compatibility with the second quantized theories and the question of interpretation are discussed. (orig.)
Kinetic approach to relativistic dissipation
Gabbana, A.; Mendoza, M.; Succi, S.; Tripiccione, R.
2017-08-01
Despite a long record of intense effort, the basic mechanisms by which dissipation emerges from the microscopic dynamics of a relativistic fluid still elude complete understanding. In particular, several details must still be finalized in the pathway from kinetic theory to hydrodynamics mainly in the derivation of the values of the transport coefficients. In this paper, we approach the problem by matching data from lattice-kinetic simulations with analytical predictions. Our numerical results provide neat evidence in favor of the Chapman-Enskog [The Mathematical Theory of Non-Uniform Gases, 3rd ed. (Cambridge University Press, Cambridge, U.K., 1970)] procedure as suggested by recent theoretical analyses along with qualitative hints at the basic reasons why the Chapman-Enskog expansion might be better suited than Grad's method [Commun. Pure Appl. Math. 2, 331 (1949), 10.1002/cpa.3160020403] to capture the emergence of dissipative effects in relativistic fluids.
Relativistic electron beams above thunderclouds
DEFF Research Database (Denmark)
Füellekrug, M.; Roussel-Dupre, R.; Symbalisty, E. M. D.
2011-01-01
Non-luminous relativistic electron beams above thunderclouds have been detected by the radio signals of low frequency similar to 40-400 kHz which they radiate. The electron beams occur similar to 2-9 ms after positive cloud-to-ground lightning discharges at heights between similar to 22-72 km above...... thunderclouds. Intense positive lightning discharges can also cause sprites which occur either above or prior to the electron beam. One electron beam was detected without any luminous sprite which suggests that electron beams may also occur independently of sprites. Numerical simulations show that beams...... of electrons partially discharge the lightning electric field above thunderclouds and thereby gain a mean energy of similar to 7MeV to transport a total charge of similar to-10mC upwards. The impulsive current similar to 3 x 10(-3) Am-2 associated with relativistic electron beams above thunderclouds...
The relativistic electron wave equation
International Nuclear Information System (INIS)
Dirac, P.A.M.
1977-08-01
The paper was presented at the European Conference on Particle Physics held in Budapest between the 4th and 9th July of 1977. A short review is given on the birth of the relativistic electron wave equation. After Schroedinger has shown the equivalence of his wave mechanics and the matrix mechanics of Heisenberg, a general transformation theory was developed by the author. This theory required a relativistic wave equation linear in delta/delta t. As the Klein--Gordon equation available at this time did not satisfy this condition the development of a new equation became necessary. The equation which was found gave the value of the electron spin and magnetic moment automatically. (D.P.)
Diffraction radiation from relativistic particles
Potylitsyn, Alexander Petrovich; Strikhanov, Mikhail Nikolaevich; Tishchenko, Alexey Alexandrovich
2010-01-01
This book deals with diffraction radiation, which implies the boundary problems of electromagnetic radiation theory. Diffraction radiation is generated when a charged particle moves in a vacuum near a target edge. Diffraction radiation of non-relativistic particles is widely used to design intense emitters in the cm wavelength range. Diffraction radiation from relativistic charged particles is important for noninvasive beam diagnostics and design of free electron lasers based on Smith-Purcell radiation which is diffraction radiation from periodic structures. Different analytical models of diffraction radiation and results of recent experimental studies are presented in this book. The book may also serve as guide to classical electrodynamics applications in beam physics and electrodynamics. It can be of great use for young researchers to develop skills and for experienced scientists to obtain new results.
Volatility smile as relativistic effect
Kakushadze, Zura
2017-06-01
We give an explicit formula for the probability distribution based on a relativistic extension of Brownian motion. The distribution (1) is properly normalized and (2) obeys the tower law (semigroup property), so we can construct martingales and self-financing hedging strategies and price claims (options). This model is a 1-constant-parameter extension of the Black-Scholes-Merton model. The new parameter is the analog of the speed of light in Special Relativity. However, in the financial context there is no ;speed limit; and the new parameter has the meaning of a characteristic diffusion speed at which relativistic effects become important and lead to a much softer asymptotic behavior, i.e., fat tails, giving rise to volatility smiles. We argue that a nonlocal stochastic description of such (Lévy) processes is inadequate and discuss a local description from physics. The presentation is intended to be pedagogical.
Double Relativistic Electron Accelerating Mirror
Directory of Open Access Journals (Sweden)
Saltanat Sadykova
2013-02-01
Full Text Available In the present paper, the possibility of generation of thin dense relativistic electron layers is shown using the analytical and numerical modeling of laser pulse interaction with ultra-thin layers. It was shown that the maximum electron energy can be gained by optimal tuning between the target width, intensity and laser pulse duration. The optimal parameters were obtained from a self-consistent system of Maxwell equations and the equation of motion of electron layer. For thin relativistic electron layers, the gaining of maximum electron energies requires a second additional overdense plasma layer, thus cutting the laser radiation off the plasma screen at the instant of gaining the maximum energy (DREAM-schema.
Relativistic shocks and particle acceleration
International Nuclear Information System (INIS)
Heavens, A.F.
1988-01-01
In this paper, we investigate the fluid dynamics of relativistic shock waves, and use the results to calculate the spectral index of particles accelerated by the Fermi process in such shocks. We have calculated the distributions of Fermi-accelerated particles at shocks propagating into cold proton-electron plasma and also cold electron-positron plasma. We have considered two different power spectra for the scattering waves, and find, in contrast to the non-relativistic case, that the spectral index of the accelerated particles depends on the wave power spectrum. On the assumption of thermal equilibrium both upstream and downstream, we present some useful fits for the compression ratio of shocks propagating at arbitrary speeds into gas of any temperature. (author)
Diffraction radiation from relativistic particles
International Nuclear Information System (INIS)
Potylitsyn, Alexander Petrovich; Ryazanov, Mikhail Ivanovich; Strikhanov, Mikhail Nikolaevich; Tishchenko, Alexey Alexandrovich
2010-01-01
This book deals with diffraction radiation, which implies the boundary problems of electromagnetic radiation theory. Diffraction radiation is generated when a charged particle moves in a vacuum near a target edge. Diffraction radiation of non-relativistic particles is widely used to design intense emitters in the cm wavelength range. Diffraction radiation from relativistic charged particles is important for noninvasive beam diagnostics and design of free electron lasers based on Smith-Purcell radiation which is diffraction radiation from periodic structures. Different analytical models of diffraction radiation and results of recent experimental studies are presented in this book. The book may also serve as guide to classical electrodynamics applications in beam physics and electrodynamics. It can be of great use for young researchers to develop skills and for experienced scientists to obtain new results. (orig.)
Asymptotics of relativistic spin networks
International Nuclear Information System (INIS)
Barrett, John W; Steele, Christopher M
2003-01-01
The stationary phase technique is used to calculate asymptotic formulae for SO(4) relativistic spin networks. For the tetrahedral spin network this gives the square of the Ponzano-Regge asymptotic formula for the SU(2) 6j-symbol. For the 4-simplex (10j-symbol) the asymptotic formula is compared with numerical calculations of the spin network evaluation. Finally, we discuss the asymptotics of the SO(3, 1) 10j-symbol
Analytic approaches to relativistic hydrodynamics
Energy Technology Data Exchange (ETDEWEB)
Hatta, Yoshitaka
2016-12-15
I summarize our recent work towards finding and utilizing analytic solutions of relativistic hydrodynamic. In the first part I discuss various exact solutions of the second-order conformal hydrodynamics. In the second part I compute flow harmonics v{sub n} analytically using the anisotropically deformed Gubser flow and discuss its dependence on n, p{sub T}, viscosity, the chemical potential and the charge.
Pythagoras Theorem and Relativistic Kinematics
Mulaj, Zenun; Dhoqina, Polikron
2010-01-01
In two inertial frames that move in a particular direction, may be registered a light signal that propagates in an angle with this direction. Applying Pythagoras theorem and principles of STR in both systems, we can derive all relativistic kinematics relations like the relativity of simultaneity of events, of the time interval, of the length of objects, of the velocity of the material point, Lorentz transformations, Doppler effect and stellar aberration.
Characteristic manifolds in relativistic hypoelasticity
Energy Technology Data Exchange (ETDEWEB)
Giambo, S [Messina Univ. (Italy). Istituto di Matematica
1978-10-02
The relativistic hypoelasticity is considered and the characteristic manifolds are determined by using the Cauchy-Kovalevski theorem for the Cauchy problem with analytic initial conditions. Taking into account that the characteristic manifold represents the image of the front-wave in the space-time, it is possible to determine the velocities of propagation. Three wave-species are obtained: material waves, longitudinal waves and transverse waves.
A relativistic quarkonium potential model
International Nuclear Information System (INIS)
Klima, B.; Maor, U.
1984-04-01
We review a recently developed relativistic quark-antiquark bound state equation using the expansion in intermediate states. Using a QCD motivated potential we succeeded very well to fit both the heavy systems (banti b, canti c) and the light systems (santi s, uanti u and danti d). Here we emphasize our results on heavy-light sustems and on the possible (tanti t) family. (orig.)
Coordinates in relativistic Hamiltonian mechanics
International Nuclear Information System (INIS)
Sokolov, S.N.
1984-01-01
The physical (covariant and measurable) coordinates of free particles and covariant coordinates of the center of inertia are found for three main forms of relativistic dynamics. In the point form of dynamics, the covariant coordinates of two directly interacting particles are found, and the equations of motion are brought to the explicitly covariant form. These equations are generalized to the case of interaction with an external electromagnetic field
Relativistic mechanics with reduced fields
International Nuclear Information System (INIS)
Sokolov, S.N.
1996-01-01
A new relativistic classical mechanics of interacting particles using a concept of a reduced field (RF) os proposed. RF is a mediator of interactions, the state of which is described by a finite number of two-argument functions. Ten of these functions correspond to the generators of the Poincare group. Equations of motion contain the retardation of interactions required by the causality principle and have form of a finite system of ordinary hereditary differential equations [ru
Theory of a relativistic peniotron
International Nuclear Information System (INIS)
Zhurakhovskii, V.A.
1986-01-01
A normalized mathematical model for describing the motion of electrons in a relativistic peniotron with smoothly varying magnetostatic field, which provides a state of exact gyroresonance along the entire length of the device, is constructed. The results of computer calculations of the energetics of this device are presented and an example of an effective choice of its parameterse corresponding to high electronic efficiency of a one-velocity flow are presented
Covering and piercing disks with two centers
Ahn, Heekap; Kim, Sangsub; Knauer, Christian; Schlipf, Lena; Shin, Chansu; Vigneron, Antoine E.
2013-01-01
We give exact and approximation algorithms for two-center problems when the input is a set D of disks in the plane. We first study the problem of finding two smallest congruent disks such that each disk in D intersects one of these two disks. Then we study the problem of covering the set D by two smallest congruent disks. © 2012 Elsevier B.V.
Covering and piercing disks with two centers
Ahn, Heekap
2013-04-01
We give exact and approximation algorithms for two-center problems when the input is a set D of disks in the plane. We first study the problem of finding two smallest congruent disks such that each disk in D intersects one of these two disks. Then we study the problem of covering the set D by two smallest congruent disks. © 2012 Elsevier B.V.
Covering and piercing disks with two centers
Ahn, Heekap; Kim, Sangsub; Knauer, Christian; Schlipf, Lena; Shin, Chansu; Vigneron, Antoine E.
2011-01-01
We consider new versions of the two-center problem where the input consists of a set D of disks in the plane. We first study the problem of finding two smallest congruent disks such that each disk in intersects one of these two disks. Then we study the problem of covering the set D by two smallest congruent disks. We give exact and approximation algorithms for these versions. © 2011 Springer-Verlag.
Relativistic beaming and quasar statistics
International Nuclear Information System (INIS)
Orr, M.J.L.; Browne, I.W.A.
1982-01-01
The statistical predictions of a unified scheme for the radio emission from quasars are explored. This scheme attributes the observed differences between flat- and steep-spectrum quasars to projection and the effects of relativistic beaming of the emission from the nuclear components. We use a simple quasar model consisting of a compact relativistically beamed core with spectral index zero and unbeamed lobes, spectral index - 1, to predict the proportion of flat-spectrum sources in flux-limited samples selected at different frequencies. In our model this fraction depends on the core Lorentz factor, γ and we find that a value of approximately 5 gives satisfactory agreement with observation. In a similar way the model is used to construct the expected number/flux density counts for flat-spectrum quasars from the observed steep-spectrum counts. Again, good agreement with the observations is obtained if the average core Lorentz factor is about 5. Independent estimates of γ from observations of superluminal motion in quasars are of the same order of magnitude. We conclude that the statistical properties of quasars are entirely consistent with the predictions of simple relativistic-beam models. (author)
Relativistic Binaries in Globular Clusters
Directory of Open Access Journals (Sweden)
Matthew J. Benacquista
2013-03-01
Full Text Available Galactic globular clusters are old, dense star systems typically containing 10^4 – 10^6 stars. As an old population of stars, globular clusters contain many collapsed and degenerate objects. As a dense population of stars, globular clusters are the scene of many interesting close dynamical interactions between stars. These dynamical interactions can alter the evolution of individual stars and can produce tight binary systems containing one or two compact objects. In this review, we discuss theoretical models of globular cluster evolution and binary evolution, techniques for simulating this evolution that leads to relativistic binaries, and current and possible future observational evidence for this population. Our discussion of globular cluster evolution will focus on the processes that boost the production of tight binary systems and the subsequent interaction of these binaries that can alter the properties of both bodies and can lead to exotic objects. Direct N-body integrations and Fokker–Planck simulations of the evolution of globular clusters that incorporate tidal interactions and lead to predictions of relativistic binary populations are also discussed. We discuss the current observational evidence for cataclysmic variables, millisecond pulsars, and low-mass X-ray binaries as well as possible future detection of relativistic binaries with gravitational radiation.
The structure of ideal MHD Alfven modes
International Nuclear Information System (INIS)
Turnbull, A.D.; Chu, M.S.; Lao, L.L.; Greene, J.M.; Strait, E.J.; Chance, M.S.
1991-01-01
Continuum Alfven modes have undergone a resurgence in interest with the recent realization that so-called Toroidicity-Induced Alfven Eigenmodes (TAE modes) can be destabilized either by energetic beam ions in a strongly heated plasma or by alpha particles in a burning plasma. The GATO Ideal MHD Stability code, which minimizes the potential energy according to a variational formulation, has now been modified to isolate and calculate stable continuum eigenmodes. The existence of the TAE mode and its associated gap has been verified, using this code, for a circular cross-section, finite aspect ratio equilibrium. Moreover, the eigenfrequencies and eigenmodes obtained from this variational calculation are found to be in extremely good quantitative agreement with those obtained from the non-variational NOVA code. A systematic survey of the stable continuum has further revealed a surprising diversity in the structure of the continuum Alfven modes; the logarithmic singularity can be so broad, in some cases, as to occupy the whole cross-section. This has important implications for heating experiments which aim to locally excite the plasma by rf waves in the Alfven frequency range. The structure of several representative examples is discussed. The Alfven continuum, in general, and the TAE mode and its associated gap, in particular, are also found to be strongly modified by cross-sectional shaping. The dependence of the spectrum on various shaping factors is explored
Analysis of Linear MHD Power Generators
Energy Technology Data Exchange (ETDEWEB)
Witalis, E A
1965-02-15
The finite electrode size effects on the performance of an infinitely long MHD power generation duct are calculated by means of conformal mapping. The general conformal transformation is deduced and applied in a graphic way. The analysis includes variations in the segmentation degree, the Hall parameter of the gas and the electrode/insulator length ratio as well as the influence of the external circuitry and loading. A general criterion for a minimum of the generator internal resistance is given. The same criterion gives the conditions for the occurrence of internal current leakage between adjacent electrodes. It is also shown that the highest power output at a prescribed efficiency is always obtained when the current is made to flow between exactly opposed electrodes. Curves are presented showing the power-efficiency relations and other generator properties as depending on the segmentation degree and the Hall parameter in the cases of axial and transverse power extraction. The implications of limiting the current to flow between a finite number of identical electrodes are introduced and combined with the condition for current flow between opposed electrodes. The characteristics of generators with one or a few external loads can then be determined completely and examples are given in a table. It is shown that the performance of such generators must not necessarily be inferior to that of segmented generators with many independent loads. However, the problems of channel end losses and off-design loading have not been taken into consideration.
Perturbed solutions of fixed boundary MHD equilibria
International Nuclear Information System (INIS)
Portone, A.
2004-01-01
In this study, the fixed boundary plasma MHD equilibrium problem is solved by the finite element method; then, by perturbing the flux at the plasma boundary nodes, linear formulae are derived linking the variation of several plasma parameters of interest to the variation of the currents flowing in the external circuits. On the basis of these formulae it is shown how it is possible to efficiently solve two central problems in plasma engineering, namely (1) the optimization of the currents in a given set of coils necessary to maintain a specified equilibrium configuration and (2) the derivation of a linear dynamic model describing the plasma axisymmetric displacement (n = 0 mode) about a given magnetic configuration. A case study-based on the ITER reference equilibrium magnetic configuration at burn-is analysed both in terms of equilibrium currents optimality as well as axisymmetric stability features. The results obtained by these formulae are also compared with the predictions of a non-linear free boundary code and of a linear, dynamic model. As shown, the formulae derived here are in good agreement with such predictions, confirming the validity of the present approach. (author)
Alpha particle effects on MHD ballooning
International Nuclear Information System (INIS)
1991-01-01
During the period, as the first step towards the goal of detail understanding of the effects of alpha particle on MHD Ballooning Modes, a new numerical approach to investigate the stability of low-frequency fluctuations in high temperature tokamaks was developed by solving the gyrokinetic equations for the ion and electron directly as an initial value problem. The advantage of this approach is the inclusion of many important kinetic features of the problem without approximations and computationally more economical than particle-pushing simulation. The ion-temperature-gradient-mode was investigated to benchmark this new simulation technique. Previous results in literature were recovered. Both the adiabatic electron model and the full drift-kinetic electron model are studied. Numerical result shows that the full drift-kinetic electron model is more unstable. The development of subcycling technique to handle the fast electron bounce time is particularly significant to apply this new approach to the alpha particle problem since alpha particle bounce frequency is also significantly higher than the mode frequency. This new numerical technique will be the basis of future study of the microstability in high temperature tokamaks with alpha particles (or any energetic species). 15 refs., 13 figs
Nonlinear dynamics of the relativistic standard map
International Nuclear Information System (INIS)
Nomura, Y.; Ichikawa, Y.H.; Horton, W.
1991-04-01
Heating and acceleration of charged particles by RF fields have been extensively investigated by the standard map. The question arises as to how the relativistic effects change the nonlinear dynamical behavior described by the classical standard map. The relativistic standard map is a two parameter (K, Β = ω/kc) family of dynamical systems reducing to the standard map when Β → 0. For Β ≠ 0 the relativistic mass increase suppresses the onset of stochasticity. It shown that the speed of light limits the rate of advance of the phase in the relativistic standard map and introduces KAM surfaces persisting in the high momentum region. An intricate structure of mixing in the higher order periodic orbits and chaotic orbits is analyzed using the symmetry properties of the relativistic standard map. The interchange of the stability of the periodic orbits in the relativistic standard map is also observed and is explained by the local linear stability of the orbits. 12 refs., 16 figs
Relativistic bound state wave functions
International Nuclear Information System (INIS)
Micu, L.
2005-01-01
A particular method of writing the bound state wave functions in relativistic form is applied to the solutions of the Dirac equation with confining potentials in order to obtain a relativistic description of a quark antiquark bound system representing a given meson. Concerning the role of the effective constituent in the present approach we first observe that without this additional constituent we couldn't expand the bound state wave function in terms of products of free states. Indeed, we notice that if the wave function depends on the relative coordinates only, all the expansion coefficients would be infinite. Secondly we remark that the effective constituent enabled us to give a Lorentz covariant meaning to the potential energy of the bound system which is now seen as the 4th component of a 4-momentum. On the other side, by relating the effective constituent to the quantum fluctuations of the background field which generate the binding, we provided a justification for the existence of some spatial degrees of freedom accompanying the interaction potential. These ones, which are quite unusual in quantum mechanics, in our model are the natural consequence of the the independence of the quarks and can be seen as the effect of the imperfect cancellation of the vector momenta during the quantum fluctuations. Related with all these we remark that the adequate representation for the relativistic description of a bound system is the momentum representation, because of the transparent and easy way of writing the conservation laws and the transformation properties of the wave functions. The only condition to be fulfilled is to find a suitable way to take into account the potential energy of the bound system. A particular feature of the present approach is that the confining forces are due to a kind of glue where both quarks are embedded. This recalls other bound state models where the wave function is factorized in terms of constituent wave functions and the confinement is
Study on closed cycle MHD generation systems; Closed cycle MHD hatsuden system no kento
Energy Technology Data Exchange (ETDEWEB)
NONE
1988-03-01
The closed cycle noble gas MHD generation systems are surveyed and studied. The concept of closed cycle noble gas MHD generation is confirmed to extract high enthalpy, and now going into the engineering demonstration stage from the basic research stage. These systems have various characteristics. The highest working temperature is around 1,700 degrees C, which is close to that associated with the existing techniques. Use of helium or argon gas as the working fluid makes the system relatively free of various problems, e.g., corrosion. It can attain a much higher efficiency than the combined cycle involving gas turbine. It suffers less heat loss in the passages, is suitable for small- to medium-capacity power generation systems, and copes with varying load. The compact power generation passages decrease required size of the superconducting magnet. The technical problems to be solved include optimization of power generation conditions, demonstration of durability of the power generation passages, injection/recovery of the seed material, treatment of the working gas to remove molecular impurities, and development of heat exchangers serviceable at high temperature produced by direct combustion of coal. The conceptual designs of the triple combined system are completed. (NEDO)
Report on studies on closed cycle MHD power generation; Closed cycle MHD hatsuden kento hokokusho
Energy Technology Data Exchange (ETDEWEB)
NONE
1991-04-01
Summarized herein are results of the studies on closed cycle MHD (CCMHD) power generation by the study committee. The studied system is based on the MHD gas turbine combined Brayton cycle of about 500,000 kW in output power, firing natural gas as the fuel, and the conceptual design works therefor are completed. The major findings are: the overall plant efficiency: 54.2% at the power transmission side, plot area required per unit power output: 0.04 m{sup 2}/KW, unit construction cost: 251,000 yen/KW, and unit power generation cost: 10.2 yen/KWh. This system will be more operable than the gas turbine combined cycle with steam system, because start-up time, output change rate, optimum load and so on are constrained not on the power generator side but on the gas turbine side. The expected environmental effects include the exhaust gas NOX concentration being equivalent with that associated with the conventional power generator of 2-stage combustion system, quantity of combustion gases to be treated being approximately 40% of that associated with the gas turbine combined cycle, and reduced CO2 gas emissions, resulting from enhanced power generation efficiency. It is expected that the CCMHD system can exhibit higher efficiency than the high-temperature gas turbine combined cycle system. (NEDO)
Relativistic neoclassical transport coefficients with momentum correction
International Nuclear Information System (INIS)
Marushchenko, I.; Azarenkov, N.A.
2016-01-01
The parallel momentum correction technique is generalized for relativistic approach. It is required for proper calculation of the parallel neoclassical flows and, in particular, for the bootstrap current at fusion temperatures. It is shown that the obtained system of linear algebraic equations for parallel fluxes can be solved directly without calculation of the distribution function if the relativistic mono-energetic transport coefficients are already known. The first relativistic correction terms for Braginskii matrix coefficients are calculated.
Loading relativistic Maxwell distributions in particle simulations
International Nuclear Information System (INIS)
Zenitani, Seiji
2015-01-01
Numerical algorithms to load relativistic Maxwell distributions in particle-in-cell (PIC) and Monte-Carlo simulations are presented. For stationary relativistic Maxwellian, the inverse transform method and the Sobol algorithm are reviewed. To boost particles to obtain relativistic shifted-Maxwellian, two rejection methods are proposed in a physically transparent manner. Their acceptance efficiencies are ≈50% for generic cases and 100% for symmetric distributions. They can be combined with arbitrary base algorithms
Loading relativistic Maxwell distributions in particle simulations
Energy Technology Data Exchange (ETDEWEB)
Zenitani, Seiji, E-mail: seiji.zenitani@nao.ac.jp [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan)
2015-04-15
Numerical algorithms to load relativistic Maxwell distributions in particle-in-cell (PIC) and Monte-Carlo simulations are presented. For stationary relativistic Maxwellian, the inverse transform method and the Sobol algorithm are reviewed. To boost particles to obtain relativistic shifted-Maxwellian, two rejection methods are proposed in a physically transparent manner. Their acceptance efficiencies are ≈50% for generic cases and 100% for symmetric distributions. They can be combined with arbitrary base algorithms.
THE SPINDLE: AN IRRADIATED DISK AND BENT PROTOSTELLAR JET IN ORION
Energy Technology Data Exchange (ETDEWEB)
Bally, John; Youngblood, Allison; Ginsburg, Adam, E-mail: John.Bally@colorado.edu, E-mail: Allison.Youngblood@colorado.edu, E-mail: Adam.Ginsburg@colorado.edu [Department of Astrophysical and Planetary Sciences, University of Colorado, UCB 389, Boulder, CO 80309 (United States)
2012-09-10
We present Hubble Space Telescope observations of a bent, pulsed Herbig-Haro jet, HH 1064, emerging from the young star Parenago 2042 embedded in the H II region NGC 1977 located about 30' north of the Orion Nebula. This outflow contains eight bow shocks in the redshifted western lobe and five bow shocks in the blueshifted eastern lobe. Shocks within a few thousand AU of the source star exhibit proper motions of {approx}160 km s{sup -1} but motions decrease with increasing distance. Parenago 2042 is embedded in a proplyd-a photoevaporating protoplanetary disk. A remarkable set of H{alpha} arcs resembling a spindle surround the redshifted (western) jet. The largest arc with a radius of 500 AU may trace the ionized edge of a circumstellar disk inclined by {approx}30 Degree-Sign . The spindle may be the photoionized edge of either a {approx}3 km s{sup -1} FUV-driven wind from the outer disk or a faster MHD-powered flow from an inner disk. The HH 1064 jet appears to be deflected north by photoablation of the south-facing side of a mostly neutral jet beam. V2412 Ori, located 1' west of Parenago 2042 drives a second bent flow, HH 1065. Both HH 1064 and 1065 are surrounded by LL Ori-type bows marking the boundary between the outflow cavity and the surrounding nebula.
Ultrafast disk lasers and amplifiers
Sutter, Dirk H.; Kleinbauer, Jochen; Bauer, Dominik; Wolf, Martin; Tan, Chuong; Gebs, Raphael; Budnicki, Aleksander; Wagenblast, Philipp; Weiler, Sascha
2012-03-01
Disk lasers with multi-kW continuous wave (CW) output power are widely used in manufacturing, primarily for cutting and welding applications, notably in the automotive industry. The ytterbium disk technology combines high power (average and/or peak power), excellent beam quality, high efficiency, and high reliability with low investment and operating costs. Fundamental mode picosecond disk lasers are well established in micro machining at high throughput and perfect precision. Following the world's first market introduction of industrial grade 50 W picosecond lasers (TruMicro 5050) at the Photonics West 2008, the second generation of the TruMicro series 5000 now provides twice the average power (100 W at 1030 nm, or 60 W frequency doubled, green output) at a significantly reduced footprint. Mode-locked disk oscillators achieve by far the highest average power of any unamplified lasers, significantly exceeding the 100 W level in laboratory set-ups. With robust long resonators their multi-microjoule pulse energies begin to compete with typical ultrafast amplifiers. In addition, significant interest in disk technology has recently come from the extreme light laser community, aiming for ultra-high peak powers of petawatts and beyond.
MAGNETICALLY DRIVEN ACCRETION DISK WINDS AND ULTRA-FAST OUTFLOWS IN PG 1211+143
International Nuclear Information System (INIS)
Fukumura, Keigo; Tombesi, Francesco; Kazanas, Demosthenes; Shrader, Chris; Behar, Ehud; Contopoulos, Ioannis
2015-01-01
We present a study of X-ray ionization of MHD accretion-disk winds in an effort to constrain the physics underlying the highly ionized ultra-fast outflows (UFOs) inferred by X-ray absorbers often detected in various sub classes of Seyfert active galactic nuclei (AGNs). Our primary focus is to show that magnetically driven outflows are indeed physically plausible candidates for the observed outflows accounting for the AGN absorption properties of the present X-ray spectroscopic observations. Employing a stratified MHD wind launched across the entire AGN accretion disk, we calculate its X-ray ionization and the ensuing X-ray absorption-line spectra. Assuming an appropriate ionizing AGN spectrum, we apply our MHD winds to model the absorption features in an XMM-Newton/EPIC spectrum of the narrow-line Seyfert, PG 1211+143. We find, through identifying the detected features with Fe Kα transitions, that the absorber has a characteristic ionization parameter of log (ξ c [erg cm s −1 ]) ≃ 5–6 and a column density on the order of N H ≃ 10 23 cm −2 outflowing at a characteristic velocity of v c /c ≃ 0.1–0.2 (where c is the speed of light). The best-fit model favors its radial location at r c ≃ 200 R o (R o is the black hole’s innermost stable circular orbit), with an inner wind truncation radius at R t ≃ 30 R o . The overall K-shell feature in the data is suggested to be dominated by Fe xxv with very little contribution from Fe xxvi and weakly ionized iron, which is in good agreement with a series of earlier analyses of the UFOs in various AGNs, including PG 1211+143
Relativistic fluids in spherically symmetric space
International Nuclear Information System (INIS)
Dipankar, R.
1977-12-01
Some of McVittie and Wiltshire's (1977) solutions of Walker's (1935) isotropy conditions for relativistic perfect fluid spheres are generalized. Solutions are spherically symmetric and conformally flat
Relativistic ion acceleration by ultraintense laser interactions
International Nuclear Information System (INIS)
Nakajima, K.; Koga, J.K.; Nakagawa, K.
2001-01-01
There has been a great interest in relativistic particle generation by ultraintense laser interactions with matter. We propose the use of relativistically self-focused laser pulses for the acceleration of ions. Two dimensional PIC simulations are performed, which show the formation of a large positive electrostatic field near the front of a relativistically self-focused laser pulse. Several factors contribute to the acceleration including self-focusing distance, pulse depletion, and plasma density. Ultraintense laser-plasma interactions are capable of generating enormous electrostatic fields of ∼3 TV/m for acceleration of protons with relativistic energies exceeding 1 GeV
RELATIVISTIC CYCLOTRON INSTABILITY IN ANISOTROPIC PLASMAS
Energy Technology Data Exchange (ETDEWEB)
López, Rodrigo A.; Moya, Pablo S.; Muñoz, Víctor; Valdivia, J. Alejandro [Departamento de Física, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago (Chile); Navarro, Roberto E.; Araneda, Jaime A. [Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Concepción, Casilla 160-C, Concepción (Chile); Viñas, Adolfo F., E-mail: rlopez186@gmail.com [NASA Goddard Space Flight Center, Heliophysics Science Division, Geospace Physics Laboratory, Mail Code 673, Greenbelt, MD 20771 (United States)
2016-11-20
A sufficiently large temperature anisotropy can sometimes drive various types of electromagnetic plasma micro-instabilities, which can play an important role in the dynamics of relativistic pair plasmas in space, astrophysics, and laboratory environments. Here, we provide a detailed description of the cyclotron instability of parallel propagating electromagnetic waves in relativistic pair plasmas on the basis of a relativistic anisotropic distribution function. Using plasma kinetic theory and particle-in-cell simulations, we study the influence of the relativistic temperature and the temperature anisotropy on the collective and noncollective modes of these plasmas. Growth rates and dispersion curves from the linear theory show a good agreement with simulations results.
CT recognition of lateral lumbar disk herniation
International Nuclear Information System (INIS)
Williams, A.L.; Haughton, V.M.; Daniels, D.L.; Thornton, R.S.
1982-01-01
Although computed tomography (CT) has been shown to be useful in diagnosing posterolateral and central lumbar disk herniations, its effectiveness in demonstrating lateral herniated disks has not been emphasized. The myelographic recognition of those herniations may be difficult because root sheaths or dural sacs may not be deformed. A total of 274 CT scans interpreted as showing lumbar disk herniation was reviewed. Fourteen (5%) showed a lateral disk herniation. The CT features of a lateral herniated disk included: (1) focal protrusion of the disk margin within or lateral to the intervertebral foramen: (2) displacement of epidural fat within the intervertebral foramen; (3) absence of dural sac deformity; and (4) soft-tissue mass within or lateral to the intervertebral foramen. Because it can image the disk margin and free disk fragments irrespective of dural sac or root sheath deformity, CT may be more effective than myelography for demonstrating the presence and extent of lateral disk herniation
A MHD channel study for the ETF conceptual design
Wang, S. Y.; Staiger, P. J.; Smith, J. M.
1981-01-01
The procedures and computations used to identify an MHD channel for a 540 mW(I) EFT-scale plant are presented. Under the assumed constraints of maximum E(x), E(y), J(y) and Beta; results show the best plant performance is obtained for active length, L is approximately 12 M, whereas in the initial ETF studies, L is approximately 16 M. As MHD channel length is reduced from 16 M, the channel enthalpy extraction falls off, slowly. This tends to reduce the MHD power output; however, the shorter channels result in lower heat losses to the MHD channel cooling water which allows for the incorporation of more low pressure boiler feedwater heaters into the system and an increase in steam plant efficiency. The net result of these changes is a net increase in the over all MHD/steam plant efficiency. In addition to the sensitivity of various channel parameters, the trade-offs between the level of oxygen enrichment and the electrical stress on the channel are also discussed.
Linear and Nonlinear MHD Wave Processes in Plasmas. Final Report
International Nuclear Information System (INIS)
Tataronis, J. A.
2004-01-01
This program treats theoretically low frequency linear and nonlinear wave processes in magnetized plasmas. A primary objective has been to evaluate the effectiveness of MHD waves to heat plasma and drive current in toroidal configurations. The research covers the following topics: (1) the existence and properties of the MHD continua in plasma equilibria without spatial symmetry; (2) low frequency nonresonant current drive and nonlinear Alfven wave effects; and (3) nonlinear electron acceleration by rf and random plasma waves. Results have contributed to the fundamental knowledge base of MHD activity in symmetric and asymmetric toroidal plasmas. Among the accomplishments of this research effort, the following are highlighted: Identification of the MHD continuum mode singularities in toroidal geometry. Derivation of a third order ordinary differential equation that governs nonlinear current drive in the singular layers of the Alfven continuum modes in axisymmetric toroidal geometry. Bounded solutions of this ODE implies a net average current parallel to the toroidal equilibrium magnetic field. Discovery of a new unstable continuum of the linearized MHD equation in axially periodic circular plasma cylinders with shear and incompressibility. This continuum, which we named ''accumulation continuum'' and which is related to ballooning modes, arises as discrete unstable eigenfrequency accumulate on the imaginary frequency axis in the limit of large mode numbers. Development of techniques to control nonlinear electron acceleration through the action of multiple coherent and random plasmas waves. Two important elements of this program aye student participation and student training in plasma theory
Further analysis of MHD acceleration for a hypersonic wind tunnel
International Nuclear Information System (INIS)
Christiansen, M.J.; Schmidt, H.J.; Chapman, J.N.
1995-01-01
A previously completed MHD study of the use of an MHD accelerator with seeded air from a state-of-the-art arc heater, was generally hailed as showing that the system studied has some promise of meeting the most critical hypersonic testing requirements. However, some concerns existed about certain aspects of the results. This paper discusses some of these problems and presents analysis of potential solutions. Specifically the problems addressed are; reducing the amount of seed in the flow, reducing test chamber temperatures, and reducing the oxygen dissociation. Modeling techniques are used to study three design variables of the MHD accelerator. The accelerator channel inlet Mach number, the accelerator channel divergence angle, and the magnetic field strength are all studied. These variables are all optimized to meet the goals for seed, temperature, and dissociated oxygen reduction. The results of this paper are encouraging, showing that all three goals can be met. General relationships are observed as to how the design variables affect the performance of the MHD accelerator facility. This paper expands on the results presented in the UTSI report and further supports the feasibility of MHD acceleration as a means to provide hypersonic flight simulation
Resistive MHD Stability Analysis in Near Real-time
Glasser, Alexander; Kolemen, Egemen
2017-10-01
We discuss the feasibility of a near real-time calculation of the tokamak Δ' matrix, which summarizes MHD stability to resistive modes, such as tearing and interchange modes. As the operational phase of ITER approaches, solutions for active feedback tokamak stability control are needed. It has been previously demonstrated that an ideal MHD stability analysis is achievable on a sub- O (1 s) timescale, as is required to control phenomena comparable with the MHD-evolution timescale of ITER. In the present work, we broaden this result to incorporate the effects of resistive MHD modes. Such modes satisfy ideal MHD equations in regions outside narrow resistive layers that form at singular surfaces. We demonstrate that the use of asymptotic expansions at the singular surfaces, as well as the application of state transition matrices, enable a fast, parallelized solution to the singular outer layer boundary value problem, and thereby rapidly compute Δ'. Sponsored by US DOE under DE-SC0015878 and DE-FC02-04ER54698.
Results from a large-scale MHD propulsion experiment
International Nuclear Information System (INIS)
Petrick, M.; Libera, J.; Bouillard, J.X.; Pierson, E.S.; Hill, D.
1992-01-01
This paper reports on magnetohydrodynamic (MHD) thrusters which have long been recognized as potentially attractive candidates for ship propulsion because such systems eliminate the conventional rotating drive components. The MHD thruster is essentially an electromagnet (EM) pump operating in seawater. An electrical current is passed directly through the seawater and interacts with an applied magnetic field; the interaction of the magnetic field and the electrode current in the seawater results in a Lorentz force acting on the water, and the reaction to this force propels the vessel forward. The concept of EM propulsion has been examined periodically during the past 35 years as an alternative method of propulsion for surface ships and submersibles. The conclusions reached in early studies were that MHD thrusters restricted to fields of 2T (the state-of-the-art at that time) were impractical and very inefficient. With the evolution of superconducting magnet technology, later studies investigated the performance of MHD thrusters with much higher magnetic field strengths and concluded that at higher fields (>6 T) practical MHD propulsion systems appear possible
Mass Flux and Terminal Velocities of Magnetically Driven Jets from Accretion Disks
Kudoh, Takahiro; Shibata, Kazunari
1995-10-01
In order to investigate astrophysical jets from accretion disks, we solve 1.5-dimensional steady MHD equations for a wide range of parameters, assuming the shape of poloidal magnetic field lines. We include a thermal effect to obtain the relation between the mass flux of the jet and the magnetic energy at the disk, although the jet is mainly accelerated by the magnetic force. It is found that the mass flux of the jets ( M dot ) is dependent on the magnetic energy at the disk surface, i.e., M dot ~ (rho Aa|Bp/B|)_{{slow}} ~ (rho Aa|Bp/Bphi|)_{{slow}} ~ Ealpha_{{mg}} [where rho is the density, a is the sound velocity, A is the cross section of the magnetic flux, B = (B2p + B2phi)^{1/2} , Bp and B phi are the poloidal and toroidal magnetic field strength, respectively, Emg is the magnetic energy in unit of the gravitational energy at the disk surface, and the suffix "slow" denotes the value at a slow point], when the magnetic energy is not too large. The parameter alpha increases from 0 to 0.5 with decreasing magnetic energy. Since the scaling law of Michel's minimum energy solution nearly holds in the magnetically driven flows, the dependence of the terminal velocity on the magnetic energy becomes weaker than had been expected, i.e., v_∞ ~ E^{(1-alpha)/3}_{{mg}} . It is shown that the terminal velocity of the jet is an order of Keplerian velocity at the footpoint of the jets for a wide range of values of Emg expected for accretion disks in star-forming regions and active galactic nuclei. We argue that the mass-loss rates observed in the star-forming regions would constrain the magnetic energies at the disk surfaces.
Dust in protoplanetary disks: observations*
Directory of Open Access Journals (Sweden)
Waters L.B.F.M.
2015-01-01
Full Text Available Solid particles, usually referred to as dust, are a crucial component of interstellar matter and of planet forming disks surrounding young stars. Despite the relatively small mass fraction of ≈1% (in the solar neighborhood of our galaxy; this number may differ substantially in other galaxies that interstellar grains represent of the total mass budget of interstellar matter, dust grains play an important role in the physics and chemistry of interstellar matter. This is because of the opacity dust grains at short (optical, UV wavelengths, and the surface they provide for chemical reactions. In addition, dust grains play a pivotal role in the planet formation process: in the core accretion model of planet formation, the growth of dust grains from the microscopic size range to large, cm-sized or larger grains is the first step in planet formation. Not only the grain size distribution is affected by planet formation. Chemical and physical processes alter the structure and chemical composition of dust grains as they enter the protoplanetary disk and move closer to the forming star. Therefore, a lot can be learned about the way stars and planets are formed by observations of dust in protoplanetary disks. Ideally, one would like to measure the dust mass, the grain size distribution, grain structure (porosity, fluffiness, the chemical composition, and all of these as a function of position in the disk. Fortunately, several observational diagnostics are available to derive constrains on these quantities. In combination with rapidly increasing quality of the data (spatial and spectral resolution, a lot of progress has been made in our understanding of dust evolution in protoplanetary disks. An excellent review of dust evolution in protoplanetary disks can be found in Testi et al. (2014.
Relativistic four-component multiconfigurational self-consistent-field theory for molecules
DEFF Research Database (Denmark)
Jensen, Hans Jørgen Aa; Dyall, Kenneth G.; Saue, Trond
1996-01-01
A formalism for relativistic four-component multiconfigurational self-consistent-field calculations on molecules is presented. The formalism parallels a direct second-order restricted-step algorithm developed for nonrelativistic molecular calculations. The presentation here focuses on the differe......A formalism for relativistic four-component multiconfigurational self-consistent-field calculations on molecules is presented. The formalism parallels a direct second-order restricted-step algorithm developed for nonrelativistic molecular calculations. The presentation here focuses...... the memory used by the largest nonrelativistic calculation in the equivalent basis, due to the complex arithmetic. The feasibility of the calculations is then determined more by the disk space for storage of integrals and N-particle expansion vectors....
Tilghman, Chris; Askey, William; Hopkins, Steven
1989-01-01
Isothermal-forging apparatus produces long shafts integral with disks. Equipment based on modification of conventional isothermal-forging equipment, required stroke cut by more than half. Enables forging of shafts as long as 48 in. (122 cm) on typical modified conventional forging press, otherwise limited to making shafts no longer than 18 in. (46cm). Removable punch, in which forged material cools after plastic deformation, essential novel feature of forging apparatus. Technology used to improve such products as components of gas turbines and turbopumps and of other shaft/disk parts for powerplants, drive trains, or static structures.