WorldWideScience

Sample records for relativistic mean-field hadron

  1. Solution of the hyperon puzzle within a relativistic mean-field model

    Energy Technology Data Exchange (ETDEWEB)

    Maslov, K.A. [National Research Nuclear University (MEPhI), 115409 Moscow (Russian Federation); Kolomeitsev, E.E., E-mail: E.Kolomeitsev@gsi.de [Matej Bel University, SK-97401 Banska Bystrica (Slovakia); Voskresensky, D.N. [National Research Nuclear University (MEPhI), 115409 Moscow (Russian Federation)

    2015-09-02

    The equation of state of cold baryonic matter is studied within a relativistic mean-field model with hadron masses and coupling constants depending on the scalar field. All hadron masses undergo a universal scaling, whereas the couplings are scaled differently. The appearance of hyperons in dense neutron star interiors is accounted for, however the equation of state remains sufficiently stiff if the reduction of the ϕ meson mass is included. Our equation of state matches well the constraints known from analyses of the astrophysical data and particle production in heavy-ion collisions.

  2. Solution of the hyperon puzzle within a relativistic mean-field model

    Directory of Open Access Journals (Sweden)

    K.A. Maslov

    2015-09-01

    Full Text Available The equation of state of cold baryonic matter is studied within a relativistic mean-field model with hadron masses and coupling constants depending on the scalar field. All hadron masses undergo a universal scaling, whereas the couplings are scaled differently. The appearance of hyperons in dense neutron star interiors is accounted for, however the equation of state remains sufficiently stiff if the reduction of the ϕ meson mass is included. Our equation of state matches well the constraints known from analyses of the astrophysical data and particle production in heavy-ion collisions.

  3. Relativistic field theory of neutron stars and their hyperon populations

    International Nuclear Information System (INIS)

    Glendenning, N.K.

    1986-01-01

    The nuclear many-body problem is examined by means of the formulation of an effective relativistic field theory of interacting hadrons. A relativistic field theory of hadronic matter is especially appropriate for the description of hot or dense matter, because of the appearance of antiparticles and higher baryon resonances and because it automatically respects causality. 8 refs., 7 figs., 1 tab

  4. Naturalness of Nonlinear Scalar Self-Couplings in a Relativistic Mean Field Theory for Neutron Stars

    International Nuclear Information System (INIS)

    Maekawa, Claudio; Razeira, Moises; Vasconcellos, Cesar A. Z.; Dillig, Manfred; Bodmann, Bardo E. J.

    2004-01-01

    We investigate the role of naturalness in effective field theory. We focus on dense hadronic matter using a generalized relativistic multi-baryon lagrangian density mean field approach which contains nonlinear self-couplings of the σ, δ meson fields and the fundamental baryon octet. We adjust the model parameters to describe bulk static properties of ordinary nuclear matter. Then, we show that our approach represents a natural modelling of nuclear matter under the extreme conditions of density as the ones found in the interior of neutron stars

  5. The relativistic mean-field description of nuclei and nuclear dynamics

    International Nuclear Information System (INIS)

    Reinhard, P.G.

    1989-01-01

    The relativistic mean-field model of the nucleus is reviewed. It describes the nucleus as a system of Dirac-Nucleons which interact in a relativistic covariant manner via meson fields. The meson fields are treated as mean fields, i.e. as non quantal c-number fields. The effects of the Dirac sea of the nucleons is neglected. The model is interpreted as a phenomenological ansatz providing a selfconsistent relativistic description of nuclei and nuclear dynamics. It is viewed, so to say, as the relativistic generalisation of the Skyrme-Hartree-Fock ansatz. The capability and the limitations of the model to describe nuclear properties are discussed. Recent applications to spherical and deformed nuclei and to nuclear dynamics are presented. (orig.)

  6. General Relativistic Mean Field Theory for rotating nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Madokoro, Hideki [Kyushu Univ., Fukuoka (Japan). Dept. of Physics; Matsuzaki, Masayuki

    1998-03-01

    The {sigma}-{omega} model Lagrangian is generalized to an accelerated frame by using the technique of general relativity which is known as tetrad formalism. We apply this model to the description of rotating nuclei within the mean field approximation, which we call General Relativistic Mean Field Theory (GRMFT) for rotating nuclei. The resulting equations of motion coincide with those of Munich group whose formulation was not based on the general relativistic transformation property of the spinor fields. Some numerical results are shown for the yrast states of the Mg isotopes and the superdeformed rotational bands in the A {approx} 60 mass region. (author)

  7. Heavy-ion interactions in relativistic mean-field models

    International Nuclear Information System (INIS)

    Rashdan, M.

    1996-01-01

    The interaction potential between spherical nuclei and the elastic scattering cross section are calculated within relativistic mean-field (linear and non-linear) models, using a generalized relativistic local density approximation. The nuclear densities are calculated self-consistently from the solution of the relativistic mean-field equations. It is found that both the linear and non-linear models predict the characteristic switching-over phenomenon of the heavy-ion nuclear potential, where the potential gets attraction with increasing energy up to some value where it reverses this behaviour. The non-linear NLC model predicts a deeper potential than the linear LW model. The elastic scattering cross section calculated within the non-linear NLC model is in better agreement with experiments than that calculated within the linear LW model. (orig.)

  8. Sensitivity of relativistic impulse approximation proton-nucleus elastic scattering calculations on relativistic mean-field parameterizations

    International Nuclear Information System (INIS)

    Hojsik, M.; Gmuca, S.

    1998-01-01

    Relativistic microscopic calculations are presented for proton elastic scattering from 40 Ca at 500 MeV. The underlying target densities are calculated within the framework of the relativistic mean-field theory with several parameter sets commonly in use. The self consistency of the scalar and vector densities (and thus to relativistic mean-field parameters) is investigated. Recently, the relativistic impulse approximation (RIA) has been widely and repeatedly used for the calculations of proton-nucleus scattering at intermediate energies. These calculations have exhibited significant improvements over the nonrelativistic approaches. The relativistic impulse approximation calculations. in particular, provide a dramatically better description of the spin observables, namely the analyzing power, A y , and the spin-rotation function, Q, at least for energies higher than 400 MeV. In the relativistic impulse approximation, the Dirac optical potential is obtained by folding of the local Lorentz-invariant amplitudes with the corresponding nuclear densities. For the spin zero targets the scalar and vector terms give the dominant contributions. Thus the scalar and vector nuclear densities (both, proton and neutron ones) play the dominant role in the relativistic impulse approximation. While the proton vector densities can be obtained by unfolding from the empirically known charge densities, all other densities used rely to a great extent on theoretical models. The various recipes are used to construct the neutron vector densities and the scalar densities for both, neutrons and protons. In this paper we will study the sensitivity of the relativistic impulse approximation results on the various sets of relativistic mean-field parameters currently in use

  9. Instability in relativistic mean-field theories of nuclear matter

    International Nuclear Information System (INIS)

    Friman, B.L.; Henning, P.A.

    1988-01-01

    We investigate the stability of the nuclear matter ground state with respect to small-perturbations of the meson fields in relativistic mean-field theories. The popular σ-ω model is shown to have an instability at about twice the nuclear density, which gives rise to a new ground state with periodic spin alignment. Taking into account the contributions of the Dirac sea properly, this instability vanishes. Consequences for relativistic heavy-ion-collisions are discussed briefly. (orig.)

  10. Instability in relativistic mean-field theories of nuclear matter

    International Nuclear Information System (INIS)

    Friman, B.L.; Henning, P.A.

    1988-01-01

    We investigate the stability of the nuclear matter ground state with respect to small perturbations of the meson fields in relativistic mean-field theories. The popular σ-ω model is shown to have an instability at about twice the nuclear density, which gives rise to a new ground state with periodic spin alignment. Taking into account the contributions of the Dirac sea properly, this instability vanishes. Consequences for relativistic heavy-ion collisions are discussed briefly. (orig.)

  11. Magnetic moments in present relativistic nuclear theories: a mean-field problem

    International Nuclear Information System (INIS)

    Desplanques, B.

    1986-07-01

    We show that the magnetic moments of LS closed shell nuclei plus or minus one nucleon derived from non-relativistic Hartree-Fock mean-fields are as bad as those obtained in relativistic approaches of nuclear structure. Deviations with respect to more complete results in both cases are ascribed to the mean-field approximation which neglects some degrees of freedom in the nucleus description. 18 refs

  12. Relativistic string dynamics and its connection with hadron physics

    International Nuclear Information System (INIS)

    Barbashov, B.M.; Nesterenko, V.V.

    1976-01-01

    Physical reasons for using the relativistic string as a hadron model are briefly discussed. The classical and quantum dynamics of the string which is the first example of a relativistic elongated object are presented. The connection between the string and the dual-resonance models, together with the Born-Infeld field model is indicated. As it turned out from the study of the string behaviour in a constant electromagnetic field, even in the classical theory states with the negative square of the string mass - tachyons - appear. As an illustration, a series of examples of classical motion of a free string and a string in an external electromagnetic field from a given initial state is presented

  13. Isospin-dependent properties of asymmetric nuclear matter in relativistic mean-field models

    OpenAIRE

    Chen, Lie-Wen; Ko, Che Ming; Li, Bao-An

    2007-01-01

    Using various relativistic mean-field models, including the nonlinear ones with meson field self-interactions, those with density-dependent meson-nucleon couplings, and the point-coupling models without meson fields, we have studied the isospin-dependent bulk and single-particle properties of asymmetric nuclear matter. In particular, we have determined the density dependence of nuclear symmetry energy from these different relativistic mean-field models and compare the results with the constra...

  14. Relativistic mean field calculations in neutron-rich nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Gangopadhyay, G.; Bhattacharya, Madhubrata [Department of Physics, University of Calcutta, 92 Acharya Prafulla Chandra Road, Kolkata 700 009 (India); Roy, Subinit [Saha Institute of Nuclear Physics, Block AF, Sector 1, Kolkata- 700 064 (India)

    2014-08-14

    Relativistic mean field calculations have been employed to study neutron rich nuclei. The Lagrange's equations have been solved in the co-ordinate space. The effect of the continuum has been effectively taken into account through the method of resonant continuum. It is found that BCS approximation performs as well as a more involved Relativistic Continuum Hartree Bogoliubov approach. Calculations reveal the possibility of modification of magic numbers in neutron rich nuclei. Calculation for low energy proton scattering cross sections shows that the present approach reproduces the density in very light neutron rich nuclei.

  15. Halo nuclei studied by relativistic mean-field approach

    International Nuclear Information System (INIS)

    Gmuca, S.

    1997-01-01

    Density distributions of light neutron-rich nuclei are studied by using the relativistic mean-field approach. The effective interaction which parameterizes the recent Dirac-Brueckner-Hartree-Fock calculations of nuclear matter is used. The results are discussed and compared with the experimental observations with special reference to the neutron halo in the drip-line nuclei. (author)

  16. Test of Relativistic Gravity for Propulsion at the Large Hadron Collider

    Science.gov (United States)

    Felber, Franklin

    2010-01-01

    A design is presented of a laboratory experiment that could test the suitability of relativistic gravity for propulsion of spacecraft to relativistic speeds. An exact time-dependent solution of Einstein's gravitational field equation confirms that even the weak field of a mass moving at relativistic speeds could serve as a driver to accelerate a much lighter payload from rest to a good fraction of the speed of light. The time-dependent field of ultrarelativistic particles in a collider ring is calculated. An experiment is proposed as the first test of the predictions of general relativity in the ultrarelativistic limit by measuring the repulsive gravitational field of bunches of protons in the Large Hadron Collider (LHC). The estimated `antigravity beam' signal strength at a resonant detector of each proton bunch is 3 nm/s2 for 2 ns during each revolution of the LHC. This experiment can be performed off-line, without interfering with the normal operations of the LHC.

  17. Parton distribution in relativistic hadrons

    International Nuclear Information System (INIS)

    Kopeliovich, B.Z.; Lapidus, L.I.; Zamolodchikov, Al.B.

    1979-01-01

    The distribution in the slow-parton number in the relativistic hadron is considered as a function of its rapidity (y). Neglecting corrections due to the tarton chain recombination the equation is derived and its explicit solution is found. It describes this distribution depending on the initial distribution at y approximately 1. Comparison with the reggeon diagrams results in relations between the parton model and the regaeon field theory parameters. The interpretation of the cutting rules in the framework of the parton model is presented. The numerical estimation of the parton model parameters is performed. It is shown that the slow-parton density corresponding to accessible energies seems to be close to the saturated density. Therefore, the enhanced graphs contributions turn out to be of considerable importance

  18. Hadron matrix elements of quark operators in the relativistic quark model

    Energy Technology Data Exchange (ETDEWEB)

    Bando, Masako; Toya, Mihoko [Kyoto Univ. (Japan). Dept. of Physics; Sugimoto, Hiroshi

    1979-07-01

    General formulae for evaluating matrix elements of two- and four-quark operators sandwiched by one-hadron states are presented on the basis of the relativistic quark model. Observed hadronic quantities are expressed in terms of those matrix elements of two- and four-quark operators. One observes various type of relativistic expression for the matrix elements which in the non-relativistic case reduce to simple expression of the so-called ''the wave function at the origin /sup +/psi(0)/sup +/''.

  19. Hadronic degrees of freedom in relativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Otuka, Naohiko; Ohnishi, Akira

    2001-01-01

    The observation of temperature and transverse expansion velocity between BNL-AGS and CERN-SPS suggests the change of property of hadronic matter. In order to study the origin of the fact, it is important to check whether or not pure hadronic scenarios are excluded. We have discussed the temperature and transverse expansion in relativistic heavy-ion collisions using pure hadronic cascade model, HANDEL. We conclude the hadronic matter in AGS energies are understandable in the frame of the hadronic cascade model if we care how much hadronic degrees of freedom are counted. (author)

  20. Beyond the relativistic mean-field approximation. II. Configuration mixing of mean-field wave functions projected on angular momentum and particle number

    International Nuclear Information System (INIS)

    Niksic, T.; Vretenar, D.; Ring, P.

    2006-01-01

    The framework of relativistic self-consistent mean-field models is extended to include correlations related to the restoration of broken symmetries and to fluctuations of collective variables. The generator coordinate method is used to perform configuration mixing of angular-momentum and particle-number projected relativistic wave functions. The geometry is restricted to axially symmetric shapes, and the intrinsic wave functions are generated from the solutions of the relativistic mean-field+Lipkin-Nogami BCS equations, with a constraint on the mass quadrupole moment. The model employs a relativistic point-coupling (contact) nucleon-nucleon effective interaction in the particle-hole channel, and a density-independent δ-interaction in the pairing channel. Illustrative calculations are performed for 24 Mg, 32 S, and 36 Ar, and compared with results obtained employing the model developed in the first part of this work, i.e., without particle-number projection, as well as with the corresponding nonrelativistic models based on Skyrme and Gogny effective interactions

  1. Isospin-dependent properties of asymmetric nuclear matter in relativistic mean field models

    Science.gov (United States)

    Chen, Lie-Wen; Ko, Che Ming; Li, Bao-An

    2007-11-01

    Using various relativistic mean-field models, including nonlinear ones with meson field self-interactions, models with density-dependent meson-nucleon couplings, and point-coupling models without meson fields, we have studied the isospin-dependent bulk and single-particle properties of asymmetric nuclear matter. In particular, we have determined the density dependence of nuclear symmetry energy from these different relativistic mean-field models and compared the results with the constraints recently extracted from analyses of experimental data on isospin diffusion and isotopic scaling in intermediate energy heavy-ion collisions as well as from measured isotopic dependence of the giant monopole resonances in even-A Sn isotopes. Among the 23 parameter sets in the relativistic mean-field model that are commonly used for nuclear structure studies, only a few are found to give symmetry energies that are consistent with the empirical constraints. We have also studied the nuclear symmetry potential and the isospin splitting of the nucleon effective mass in isospin asymmetric nuclear matter. We find that both the momentum dependence of the nuclear symmetry potential at fixed baryon density and the isospin splitting of the nucleon effective mass in neutron-rich nuclear matter depend not only on the nuclear interactions but also on the definition of the nucleon optical potential.

  2. Relativistic mean field theory for unstable nuclei

    International Nuclear Information System (INIS)

    Toki, Hiroshi

    2000-01-01

    We discuss the properties of unstable nuclei in the framework of the relativistic mean field (RMF) theory. We take the RMF theory as a phenomenological theory with several parameters, whose form is constrained by the successful microscopic theory (RBHF), and whose values are extracted from the experimental values of unstable nuclei. We find the outcome with the newly obtained parameter sets (TM1 and TMA) is promising in comparison with various experimental data. We calculate systematically the ground state properties of even-even nuclei up to the drip lines; about 2000 nuclei. We find that the neutron magic shells (N=82, 128) at the standard magic numbers stay at the same numbers even far from the stability line and hence provide the feature of the r-process nuclei. However, many proton magic numbers disappear at the neutron numbers far away from the magic numbers due to the deformations. We discuss how to describe giant resonances for the case of the non-linear coupling terms for the sigma and omega mesons in the relativistic RPA. We mention also the importance of the relativistic effect on the spin observables as the Gamow-Teller strength and the longitudinal and transverse spin responses. (author)

  3. Relativistic mean field model for entrainment in general relativistic superfluid neutron stars

    International Nuclear Information System (INIS)

    Comer, G.L.; Joynt, R.

    2003-01-01

    General relativistic superfluid neutron stars have a significantly more intricate dynamics than their ordinary fluid counterparts. Superfluidity allows different superfluid (and superconducting) species of particles to have independent fluid flows, a consequence of which is that the fluid equations of motion contain as many fluid element velocities as superfluid species. Whenever the particles of one superfluid interact with those of another, the momentum of each superfluid will be a linear combination of both superfluid velocities. This leads to the so-called entrainment effect whereby the motion of one superfluid will induce a momentum in the other superfluid. We have constructed a fully relativistic model for entrainment between superfluid neutrons and superconducting protons using a relativistic σ-ω mean field model for the nucleons and their interactions. In this context there are two notions of 'relativistic': relativistic motion of the individual nucleons with respect to a local region of the star (i.e. a fluid element containing, say, an Avogadro's number of particles), and the motion of fluid elements with respect to the rest of the star. While it is the case that the fluid elements will typically maintain average speeds at a fraction of that of light, the supranuclear densities in the core of a neutron star can make the nucleons themselves have quite high average speeds within each fluid element. The formalism is applied to the problem of slowly rotating superfluid neutron star configurations, a distinguishing characteristic being that the neutrons can rotate at a rate different from that of the protons

  4. Relativistic mean-field mass models

    Energy Technology Data Exchange (ETDEWEB)

    Pena-Arteaga, D.; Goriely, S.; Chamel, N. [Universite Libre de Bruxelles, Institut d' Astronomie et d' Astrophysique, CP-226, Brussels (Belgium)

    2016-10-15

    We present a new effort to develop viable mass models within the relativistic mean-field approach with density-dependent meson couplings, separable pairing and microscopic estimations for the translational and rotational correction energies. Two interactions, DD-MEB1 and DD-MEB2, are fitted to essentially all experimental masses, and also to charge radii and infinite nuclear matter properties as determined by microscopic models using realistic interactions. While DD-MEB1 includes the σ, ω and ρ meson fields, DD-MEB2 also considers the δ meson. Both mass models describe the 2353 experimental masses with a root mean square deviation of about 1.1 MeV and the 882 measured charge radii with a root mean square deviation of 0.029 fm. In addition, we show that the Pb isotopic shifts and moments of inertia are rather well reproduced, and the equation of state in pure neutron matter as well as symmetric nuclear matter are in relatively good agreement with existing realistic calculations. Both models predict a maximum neutron-star mass of more than 2.6 solar masses, and thus are able to accommodate the heaviest neutron stars observed so far. However, the new Lagrangians, like all previously determined RMF models, present the drawback of being characterized by a low effective mass, which leads to strong shell effects due to the strong coupling between the spin-orbit splitting and the effective mass. Complete mass tables have been generated and a comparison with other mass models is presented. (orig.)

  5. Neutron fraction and neutrino mean free path predictions in relativistic mean field models

    International Nuclear Information System (INIS)

    Hutauruk, P.T.P.; Williams, C.K.; Sulaksono, A.; Mart, T.

    2004-01-01

    The equation of state (EOS) of dense matter and neutrino mean free path (NMFP) in a neutron star have been studied by using relativistic mean field models motivated by effective field theory. It is found that the models predict too large proton fractions, although one of the models (G2) predicts an acceptable EOS. This is caused by the isovector terms. Except G2, the other two models predict anomalous NMFP's. In order to minimize the anomaly, besides an acceptable EOS, a large M* is favorable. A model with large M* retains the regularity in the NMFP even for a small neutron fraction

  6. Relativistic Chiral Mean Field Model for Finite Nuclei

    Science.gov (United States)

    Ogawa, Y.; Toki, H.; Tamenaga, S.; Haga, A.

    2009-08-01

    We present a relativistic chiral mean field (RCMF) model, which is a method for the proper treatment of pion-exchange interaction in the nuclear many-body problem. There the dominant term of the pionic correlation is expressed in two-particle two-hole (2p-2h) states with particle-holes having pionic quantum number, J^{π}. The charge-and-parity-projected relativistic mean field (CPPRMF) model developed so far treats surface properties of pionic correlation in 2p-2h states with J^{π} = 0^{-} (spherical ansatz). We extend the CPPRMF model by taking 2p-2h states with higher spin quantum numbers, J^{π} = 1^{+}, 2^{-}, 3^{+}, ... to describe the full strength of the pionic correlation in the intermediate range (r > 0.5 fm). We apply the RCMF model to the ^{4}He nucleus as a pilot calculation for the study of medium and heavy nuclei. We study the behavior of energy convergence with the pionic quantum number, J^{π}, and find convergence around J^{π}_{max} = 6^{-}. We include further the effect of the short-range repulsion in terms of the unitary correlation operator method (UCOM) for the central part of the pion-exchange interaction. The energy contribution of about 50% of the net two-body interaction comes from the tensor part and 20% comes from the spin-spin central part of the pion-exchange interaction.}

  7. Hadronic degrees of freedom in relativistic heavy-ion collisions

    International Nuclear Information System (INIS)

    Otsuka, Naohiko

    2001-01-01

    Relativistic heavy-ion collisions at AGS energies are studied by using an new developed hadronic cascade model, HANDEL which includes a few hadronic degrees of freedom. The spectra of hadron-hadron, hadron-nucleus and nucleus-nucleus reactions at AGS energies are well reproduced by HANDEL. It is confirmed that the infinite matter described by HANDEL has particle fractions which are expected from grand canonical ensemble. When we compare the thermal evolution of Au+Au collision from HANDEL with the result from JAM which has larger hadronic degree of freedoms, we find both models give similar evolution of temperature, against naive expectation. We argue that this results can be interpretated if the particles in formation time works as the additional effective hadronic degrees of freedom. (author)

  8. Relativistic mean-field approximation with density-dependent screening meson masses in nuclear matter

    International Nuclear Information System (INIS)

    Sun, Baoxi; Lu, Xiaofu; Shen, Pengnian; Zhao, Enguang

    2003-01-01

    The Debye screening masses of the σ, ω and neutral ρ mesons and the photon are calculated in the relativistic mean-field approximation. As the density of the nucleon increases, all the screening masses of mesons increase. A different result with Brown–Rho scaling is shown, which implies a reduction in the mass of all the mesons in the nuclear matter, except the pion. Replacing the masses of the mesons with their corresponding screening masses in the Walecka-1 model, five saturation properties of the nuclear matter are fixed reasonably, and then a density-dependent relativistic mean-field model is proposed without introducing the nonlinear self-coupling terms of mesons. (author)

  9. Superheavy nuclei in the relativistic mean-field theory

    International Nuclear Information System (INIS)

    Lalazissis, G.A.; Ring, P.; Gambhir, Y.K.

    1996-01-01

    We have carried out a study of superheavy nuclei in the framework of the relativistic mean-field theory. Relativistic Hartree-Bogoliubov (RHB) calculations have been performed for nuclei with large proton and neutron numbers. A finite-range pairing force of Gogny type has been used in the RHB calculations. The ground-state properties of very heavy nuclei with atomic numbers Z=100-114 and neutron numbers N=154-190 have been obtained. The results show that in addition to N=184 the neutron numbers N=160 and N=166 exhibit an extra stability as compared to their neighbors. For the case of protons the atomic number Z=106 is shown to demonstrate a closed-shell behavior in the region of well deformed nuclei about N=160. The proton number Z=114 also indicates a shell closure. Indications for a doubly magic character at Z=106 and N=160 are observed. Implications of shell closures on a possible synthesis of superheavy nuclei are discussed. (orig.)

  10. Surface incompressibility from semiclassical relativistic mean field calculations

    International Nuclear Information System (INIS)

    Patra, S.K.; Centelles, M.; Vinas, X.; Estal, M. del

    2002-01-01

    By using the scaling method and the Thomas-Fermi and extended Thomas-Fermi approaches to relativistic mean field theory the surface contribution to the leptodermous expansion of the finite nuclei incompressibility K A has been self-consistently computed. The validity of the simplest expansion, which contains volume, volume-symmetry, surface, and Coulomb terms, is examined by comparing it with self-consistent results of K A for some currently used nonlinear σ-ω parameter sets. A numerical estimate of higher-order contributions to the leptodermous expansion, namely, the curvature and surface-symmetry terms, is made

  11. Double giant resonances in time-dependent relativistic mean-field theory

    International Nuclear Information System (INIS)

    Ring, P.; Podobnik, B.

    1996-01-01

    Collective vibrations in spherical nuclei are described in the framework of time-dependent relativistic mean-field theory (RMFT). Isoscalar quadrupole and isovector dipole oscillations that correspond to giant resonances are studied, and possible excitations of higher modes are investigated. We find evidence for modes which can be interpreted as double resonances. In a quantized RMFT they correspond to two-phonon states. (orig.)

  12. Photon-photon and photon-hadron processes in relativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Baron, N.C.

    1993-11-01

    Photon-photon and photon-hadron interactions in relativistic heavy ion collisions are studied in the framework of the impact parameter dependent equivalent photon approximation. Improvements of this method, like formfactor inclusion and geometrical modifications are developed. In disruptive relativistic heavy ion collisions where the heavy ions overlapp during the collision, electromagnetic processes are an important background to other mechanisms. In peripheral (non-disruptive) relativistic heavy ion collisions where the ions pass each other without strong interactions, the electromagnetic processes can be studied in their pure form. The lepton pair production is an important diagnostic tool in relativistic heavy ion collisions. The coherent γγ lepton pair production is therefore extensively studied in disruptive but also in non-disruptive collisions. The effects of strong interactions on the coherent γγ lepton pair production in disruptive collisions are discussed in terms of a simple stopping model. Coherent γγ dielectron production contributes to the dilepton production in high energy hadron-hadron collisions. As an example, the coherent dielectron production in π - p collisions is studied in terms of the equivalent photon approximation. Peripheral ultrarelativistic heavy ion collisions open up new possibilities for γγ physics. Taking into account γA background reactions, typical γγ processes in the relevant invariant mass ranges are discussed. The extreme high energy part of the equivalent photon spectrum leads to hard photon-parton reactions. As a potential tool to investigate the gluon distribution function of nucleons, thee q anti q production via the γg fusion in ultrarelativistic heavy ion collisions is studied. It is the purpose of this work to investigate how photon-photon and photon-hadron reactions in relativistic heavy ion collisions may contribute to the understanding of QCD and the standard model. (orig.) [de

  13. Superheavy nuclei: a relativistic mean field outlook

    International Nuclear Information System (INIS)

    Afanasjev, A.V.

    2006-01-01

    The analysis of quasi-particle spectra in the heaviest A∼250 nuclei with spectroscopic data provides an additional constraint for the choice of effective interaction for the description of superheavy nuclei. It strongly suggests that only the parametrizations which predict Z = 120 and N = 172 as shell closures are reliable for superheavy nuclei within the relativistic mean field theory. The influence of the central depression in the density distribution of spherical superheavy nuclei on the shell structure is studied. A large central depression produces large shell gaps at Z = 120 and N = 172. The shell gaps at Z = 126 and N = 184 are favoured by a flat density distribution in the central part of the nucleus. It is shown that approximate particle number projection (PNP) by means of the Lipkin-Nogami (LN) method removes pairing collapse seen at these gaps in the calculations without PNP

  14. The surface compression of nuclei in relativistic mean-field approach

    International Nuclear Information System (INIS)

    Sharma, M.M.

    1991-01-01

    The surface compression properties of nuclei have been studied in the framework of the relativistic non-linear σ-ω model. Using the Thomas-Fermi approximation for semi-infinite nuclear matter, it is shown that by varying the σ-meson mass one can change the surface compression as relative to the bulk compression. This fact is in contrast with the known properties of the phenomenological Skyrme interactions, where the ratio of the surface to the bulk incompressibility (-K S /K V ) is nearly 1 in the scaling mode of compression. The results suggest that the relativistic mean-field model may provide an interaction with the essential ingredients different from those of the Skyrme interactions. (author) 23 refs., 2 figs., 1 tab

  15. Confinement and hadron-hadron interactions by general relativistic methods

    Science.gov (United States)

    Recami, Erasmo

    By postulating covariance of physical laws under global dilations, one can describe gravitational and strong interactions in a unified way. Namely, in terms of the new discrete dilational degree of freedom, our cosmos and hadrons can be regarded as finite, similar systems. And a discrete hierarchy of finite ``universes'' may be defined, which are governed by fields with strengths inversally proportional to their radii; in each universe an Equivalence Principle holds, so that the relevant field can be there geometrized. Scaled-down Einstein equations -with cosmological term- are assumed to hold inside hadrons (= strong micro-cosmoses); and they yield in a natural way classical confinement, as well as ``asymptotic freedom'', of the hadron constituents. In other words, the association of strong micro-universes of Friedmann type with hadrons (i.e., applying the methods of General Relativity to subnuclear particle physics) allows avoiding recourse to phenomenological models such as the Bag Model. Inside hadrons we have to deal with a tensorial field (= strong gravity), and hadron constituents are supposed to exchange spin-2 ``gluons''. Our approach allows us also to write down a tensorial, bi-scale field theory of hadron-hadron interactions, based on modified Einstein-type equations here proposed for strong interactions in our space. We obtain in particular: (i) the correct Yukawa behaviour of the strong scalar potential at the static limit and for r>~l fm; (ii) the value of hadron radii. As a byproduct, we derive a whole ``numerology'', connecting our gravitational cosmos with the strong micro-cosmoses (hadrons), such that it does imply no variation of G with the epoch. Finally, since a structute of the ``micro-universe'' type seems to be characteristic even of leptons, a hope for the future is including also weak interactions in our classical unification of the fundamental forces.

  16. Fission barriers and asymmetric ground states in the relativistic mean-field theory

    International Nuclear Information System (INIS)

    Rutz, K.; Reinhard, P.G.; Greiner, W.

    1995-01-01

    The symmetric and asymmetric fission path for 240 Pu, 232 Th and 226 Ra is investigated within the relativistic mean-field model. Standard parametrizations which are well fitted to nuclear ground-state properties are found to deliver reasonable qualitative and quantitative features of fission, comparable to similar nonrelativistic calculations. Furthermore, stable octupole deformations in the ground states of radium isotopes are investigated. They are found in a series of isotopes, qualitatively in agreement with nonrelativistic models. But the quantitative details differ amongst the models and between the various relativistic parametrizations. (orig.)

  17. Relativistic direct interaction and hadron models

    International Nuclear Information System (INIS)

    Biswas, T.

    1984-01-01

    Direct interaction theories at a nonrelativistic level have been used successfully in several areas earlier (e.g. nuclear physics). But for hadron spectroscopy relativistic effects are important and hence the need for a relativistic direct interaction theory arises. It is the goal of this thesis to suggest such a theory which has the simplicity and the flexibility required for phenomenological model building. In general the introduction of relativity in a direct interaction theory is shown to be non-trivial. A first attempt leads to only an approximate form for allowed interactions. Even this is far too complex for phenomenological applicability. To simplify the model an extra spacelike particle called the vertex is introduced in any set of physical (timelike) particles. The vertex model is successfully used to fit and to predict experimental data on hadron spectra, γ and psi states fit very well with an interaction function inspired by QCD. Light mesons also fit reasonably well. Better forms of hyperfine interaction functions would be needed to improve the fitting of light mesons. The unexpectedly low pi meson mass is partially explained. Baryon ground states are fitted with unprecedented accuracy with very few adjustable parameters. For baryon excited states it is shown that better QCD motivated interaction functions are needed for a fit. Predictions for bb states in e + e - experiments are made to assist current experiments

  18. RPA correlations and nuclear densities in relativistic mean field approach

    International Nuclear Information System (INIS)

    Van Giai, N.; Liang, H.Z.; Meng, J.

    2007-02-01

    The relativistic mean field approach (RMF) is well known for describing accurately binding energies and nucleon distributions in atomic nuclei throughout the nuclear chart. The random phase approximation (RPA) built on top of the RMF is also a good framework for the study of nuclear excitations. Here, we examine the consequences of long range correlations brought about by the RPA on the neutron and proton densities as given by the RMF approach. (authors)

  19. Nuclear matter in relativistic mean field theory with isovector scalar meson.

    Energy Technology Data Exchange (ETDEWEB)

    Kubis, S.; Kutschera, M. [Institute of Nuclear Physics, Cracow (Poland)

    1996-12-01

    Relativistic mean field (RMF) theory of nuclear matter with the isovector scalar mean field corresponding to the {delta}-meson [a{sub 0}(980)] is studied. While the {delta}-meson field vanishes in symmetric nuclear matter, it can influence properties of asymmetric nuclear matter in neutron stars. The RMF contribution due to {delta}-field to the nuclear symmetry energy is negative. To fit the empirical value, E{sub s}{approx}30 MeV, a stronger {rho}-meson coupling is required than in absence of the {delta}-field. The energy per particle of neutron star matter is than larger at high densities than the one with no {delta}-field included. Also, the proton fraction of {beta}-stable matter increases. Splitting of proton and neutron effective masses due to the {delta}-field can affect transport properties of neutron star matter. (author). 4 refs, 6 figs.

  20. Nuclear matter in relativistic mean field theory with isovector scalar meson

    International Nuclear Information System (INIS)

    Kubis, S.; Kutschera, M.

    1996-12-01

    Relativistic mean field (RMF) theory of nuclear matter with the isovector scalar mean field corresponding to the δ-meson [a 0 (980)] is studied. While the δ-meson field vanishes in symmetric nuclear matter, it can influence properties of asymmetric nuclear matter in neutron stars. The RMF contribution due to δ-field to the nuclear symmetry energy is negative. To fit the empirical value, E s ∼30 MeV, a stronger ρ-meson coupling is required than in absence of the δ-field. The energy per particle of neutron star matter is than larger at high densities than the one with no δ-field included. Also, the proton fraction of β-stable matter increases. Splitting of proton and neutron effective masses due to the δ-field can affect transport properties of neutron star matter. (author). 4 refs, 6 figs

  1. One-pion exchange current corrections for nuclear magnetic moments in relativistic mean field theory

    International Nuclear Information System (INIS)

    Li Jian; Yao, J.M.; Meng Jie; Arima, Akito

    2011-01-01

    The one-pion exchange current corrections to isoscalar and isovector magnetic moments of double-closed shell nuclei plus and minus one nucleon with A = 15, 17, 39 and 41 have been studied in the relativistic mean field (RMF) theory and compared with previous relativistic and non-relativistic results. It has been found that the one-pion exchange current gives a negligible contribution to the isoscalar magnetic moments but a significant correction to the isovector ones. However, the one-pion exchange current enhances the isovector magnetic moments further and does not improve the corresponding description for the concerned nuclei in the present work. (author)

  2. Dynamics of hadronization in ultra-relativistic nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Friman, B.L.

    1986-01-01

    One of the main problems in the search for quark-gluon plasma in ultra-relativistic nucleus-nucleus collisions is finding a reliable signature for deconfinement. Several signatures have been suggested, e.g., dileptons with a spectrum characteristic of the plasma, an increase in the number of strange particles and effects due to the hadronization of the plasma. In this talk I will describe some recent work on the effects of the hadronization transition in the central rapidity region within the hydrodynamic model of Bjorken, Kajantie and McLerran. (orig.)

  3. The time-dependent relativistic mean-field theory and the random phase approximation

    International Nuclear Information System (INIS)

    Ring, P.; Ma, Zhong-yu; Van Giai, Nguyen; Vretenar, D.; Wandelt, A.; Cao, Li-gang

    2001-01-01

    The Relativistic Random Phase Approximation (RRPA) is derived from the Time-Dependent Relativistic Mean-Field (TD RMF) theory in the limit of small amplitude oscillations. In the no-sea approximation of the RMF theory, the RRPA configuration space includes not only the usual particle-hole ph-states, but also αh-configurations, i.e. pairs formed from occupied states in the Fermi sea and empty negative-energy states in the Dirac sea. The contribution of the negative-energy states to the RRPA matrices is examined in a schematic model, and the large effect of Dirac-sea states on isoscalar strength distributions is illustrated for the giant monopole resonance in 116 Sn. It is shown that, because the matrix elements of the time-like component of the vector-meson fields which couple the αh-configurations with the ph-configurations are strongly reduced with respect to the corresponding matrix elements of the isoscalar scalar meson field, the inclusion of states with unperturbed energies more than 1.2 GeV below the Fermi energy has a pronounced effect on giant resonances with excitation energies in the MeV region. The influence of nuclear magnetism, i.e. the effect of the spatial components of the vector fields is examined, and the difference between the nonrelativistic and relativistic RPA predictions for the nuclear matter compression modulus is explained

  4. Hadron interactions

    International Nuclear Information System (INIS)

    Fischer, J.; Kolar, P.; Kundrat, V.

    1988-01-01

    The proceedings contain invited lectures and papers presente at the symposium. Attention was devoted to hadron interactions a high energy in QCD, to the structure and decay of hadrons, the production of hadrons and supersymmetric particles in e + e - and ep collisions, to perturbation theory in quantum field theory, and new supersymmetric extensions of relativistic algebra. (Z.J

  5. Should the coupling constants be mass dependent in the relativistic mean field models

    International Nuclear Information System (INIS)

    Levai, P.; Lukacs, B.

    1986-05-01

    Mass dependent coupling constants are proposed for baryonic resonances in the relativistic mean field model, according to the mass splitting of the SU-6 multiplet. With this choice the negative effective masses are avoided and the system remains nucleon dominated with moderate antidelta abundance. (author)

  6. Neutron stars in relativistic mean field theory with isovector scalar meson

    International Nuclear Information System (INIS)

    Kubis, S.; Kutschera, M.; Stachniewicz, S.

    1996-12-01

    We study the equation of state (EOS) of neutron star matter in a relativistic mean field (RMF) theory with the isovector scalar mean field corresponding to the δ-meson [a 0 (980)]. A range of values of the δ-meson coupling compatible with the Bonn potentials is explored. Parameters of the model in the isovector sector are constrained to fit the nuclear symmetry energy, E s ∼ 30 MeV. We find that proton fraction of neutron star matter is higher in the presence of the δ-field whereas the energy per particle is lower. The EOS becomes slightly stiffer and the maximum mass of the neutron star increased with increasing δmeson coupling. The effect is stronger for soft EOS. (author). 7 refs, 6 figs, 1 tab

  7. Neutron stars in relativistic mean field theory with isovector scalar meson

    International Nuclear Information System (INIS)

    Kubis, S.; Kutschera, M.; Stachniewicz, S.

    1998-01-01

    We study the equation of state (EOS) of β-stable dense matter and models of neutron stars in the relativistic mean field (RMF) theory with the isovector scalar mean field corresponding to the δ-meson (a 0 (980)). A range of values of the δ-meson coupling compatible with the Bonn potentials is explored. Parameters of the model in the isovector sector are constrained to fit the nuclear symmetry energy, E s ∼30 MeV. We find that the quantity most sensitive to the δ-meson coupling is the proton fraction of neutron star matter. It increases significantly in the presence of the δ-field. The energy per baryon also increases but the effect is smaller. The EOS becomes slightly stiffer and the maximum neutron star mass increases for stronger δ-meson coupling. (author)

  8. Neutron stars in relativistic mean field theory with isovector scalar meson

    Energy Technology Data Exchange (ETDEWEB)

    Kubis, S.; Kutschera, M.; Stachniewicz, S. [Institute of Nuclear Physics, Cracow (Poland)

    1996-12-01

    We study the equation of state (EOS) of neutron star matter in a relativistic mean field (RMF) theory with the isovector scalar mean field corresponding to the {delta}-meson [a{sub 0}(980)]. A range of values of the {delta}-meson coupling compatible with the Bonn potentials is explored. Parameters of the model in the isovector sector are constrained to fit the nuclear symmetry energy, E{sub s} {approx} 30 MeV. We find that proton fraction of neutron star matter is higher in the presence of the {delta}-field whereas the energy per particle is lower. The EOS becomes slightly stiffer and the maximum mass of the neutron star increased with increasing {delta}meson coupling. The effect is stronger for soft EOS. (author). 7 refs, 6 figs, 1 tab.

  9. Equation of state of isospin-asymmetric nuclear matter in relativistic mean-field models with chiral limits

    International Nuclear Information System (INIS)

    Jiang Weizhou; Li Baozn; Chen Liewen

    2007-01-01

    Using in-medium hadron properties according to the Brown-Rho scaling due to the chiral symmetry restoration at high densities and considering naturalness of the coupling constants, we have newly constructed several relativistic mean-field Lagrangians with chiral limits. The model parameters are adjusted such that the symmetric part of the resulting equation of state at supra-normal densities is consistent with that required by the collective flow data from high energy heavy-ion reactions, while the resulting density dependence of the symmetry energy at sub-saturation densities agrees with that extracted from the recent isospin diffusion data from intermediate energy heavy-ion reactions. The resulting equations of state have the special feature of being soft at intermediate densities but stiff at high densities naturally. With these constrained equations of state, it is found that the radius of a 1.4M o canonical neutron star is in the range of 11.9 km≤R≤13.1 km, and the maximum neutron star mass is around 2.0M o close to the recent observations

  10. Density dependent hadron field theory

    International Nuclear Information System (INIS)

    Fuchs, C.; Lenske, H.; Wolter, H.H.

    1995-01-01

    A fully covariant approach to a density dependent hadron field theory is presented. The relation between in-medium NN interactions and field-theoretical meson-nucleon vertices is discussed. The medium dependence of nuclear interactions is described by a functional dependence of the meson-nucleon vertices on the baryon field operators. As a consequence, the Euler-Lagrange equations lead to baryon rearrangement self-energies which are not obtained when only a parametric dependence of the vertices on the density is assumed. It is shown that the approach is energy-momentum conserving and thermodynamically consistent. Solutions of the field equations are studied in the mean-field approximation. Descriptions of the medium dependence in terms of the baryon scalar and vector density are investigated. Applications to infinite nuclear matter and finite nuclei are discussed. Density dependent coupling constants obtained from Dirac-Brueckner calculations with the Bonn NN potentials are used. Results from Hartree calculations for energy spectra, binding energies, and charge density distributions of 16 O, 40,48 Ca, and 208 Pb are presented. Comparisons to data strongly support the importance of rearrangement in a relativistic density dependent field theory. Most striking is the simultaneous improvement of charge radii, charge densities, and binding energies. The results indicate the appearance of a new ''Coester line'' in the nuclear matter equation of state

  11. Neutron-skin thickness of finite nuclei in relativistic mean-field models with chiral limits

    International Nuclear Information System (INIS)

    Jiang Weizhou; Li Baoan; Chen Liewen

    2007-01-01

    We study several structure properties of finite nuclei using relativistic mean-field Lagrangians constructed according to the Brown-Rho scaling due to the chiral symmetry restoration at high densities. The models are consistent with current experimental constraints for the equations of state of symmetric matter at both normal and supranormal densities and of asymmetric matter at subsaturation densities. It is shown that these models can successfully describe the binding energies and charge radii of finite nuclei. Compared to calculations with usual relativistic mean-field models, these models give a reduced thickness of neutron skin in 208 Pb between 0.17 fm and 0.21 fm. The reduction of the predicted neutron skin thickness is found to be due to not only the softening of the symmetry energy but also the scaling property of ρ meson required by the partial restoration of chiral symmetry

  12. Simulations of intermediate-energy heavy-ion collisions within relativistic mean-field two-fluid model

    International Nuclear Information System (INIS)

    Ivanov, Y.B.; Russkikh, V.N.; Pokrovsky, Y.E. Kurchatov; Ivanov, Y.B.; Russkikh, V.N.; Polrovsky, Y.E.; Henning, P.A.; Henning, P.A.

    1995-01-01

    A three-dimensional realization of the relativistic mean-field 2-fluid model is described. The first results of analyzing the inclusive data on the yield of nuclear fragments and pions, as well as the Plastic-Ball rapidity distributions of nuclear fragments are presented. For comparison, the calculations within the conventional relativistic hydrodynamical model with the same mean fields are also performed. It is found that all the analysed observables, except the pion spectra, appeared to be fairly insensitive to the nuclear EOS. The sensitivity to the nuclear stopping power is slightly higher. The original sensitivity of the rapidity distributions to the stopping power is smeared out by the Plastic-Ball filter and selection criterion. Nevertheless, one can conclude that the stopping power induced by the Cugnon cross-sections is not quite sufficient for a more adequate reproduction of the experimental data. (authors)

  13. Neutron stars in relativistic mean field theory with isovector scalar meson

    Energy Technology Data Exchange (ETDEWEB)

    Kubis, S.; Kutschera, M.; Stachniewicz, S. [H. Niewodniczanski Institute of Nuclear Physics, Cracow (Poland)

    1998-03-01

    We study the equation of state (EOS) of {beta}-stable dense matter and models of neutron stars in the relativistic mean field (RMF) theory with the isovector scalar mean field corresponding to the {delta}-meson (a{sub 0}(980)). A range of values of the {delta}-meson coupling compatible with the Bonn potentials is explored. Parameters of the model in the isovector sector are constrained to fit the nuclear symmetry energy, E{sub s}{approx}30 MeV. We find that the quantity most sensitive to the {delta}-meson coupling is the proton fraction of neutron star matter. It increases significantly in the presence of the {delta}-field. The energy per baryon also increases but the effect is smaller. The EOS becomes slightly stiffer and the maximum neutron star mass increases for stronger {delta}-meson coupling. (author) 8 refs, 6 figs, 2 tabs

  14. Pion interferometry of ultra-relativistic hadronic collisions

    International Nuclear Information System (INIS)

    Kolehmainen, K.

    1986-05-01

    Pion interferometry of ultra-relativistic hadronic collisions is described in the context of the inside-outside cascade model using a current ensemble method capable of describing an arbitrary distribution of pion sources with an arbitrary velocity distribution. The results are quite distinct from the usual Gaussian and Kopylov parameterizations. Extraction of the temperature parameter, effective source lifetime, and transverse size requires a full three-dimensional analysis of the correlation function in terms of the momentum difference. 7 refs., 4 figs

  15. Space-time picture of relativistic propagation of medium energy hadrons through nuclei

    International Nuclear Information System (INIS)

    Bleszynski, M.; Jaroszewicz, T.

    1985-01-01

    Relativistic virtual pair creation effects in hadron-nucleus scattering at medium energies are discussed. A close analogy is found between these effects (particle propagation backwards in time) and some of noneikonal correlations to the Glauber theory, arising from particle propagation backwards in space. In multiple scattering both effects appear only for configurations involving overlapping scatterers and lead to the non-additivity of phase shifts. The proper-time path-integral formalism is found to provide an intuitive geometrical picture of these phenomena. The relativistic corrections are estimated to be of the order k/(aE/sup 2/), k being the particle momentum, E its energy, and a the target size. At medium energies they are comparable to noneikonal corrections, of order 1/(ak). Both effects vanish at high energy, when particle propagation in space-time can be described by means of geometrical optics

  16. Relativistic approach to superfluidity in nuclear matter. Constructing effective pair wave function from relativistic mean field theory with a cutoff

    Energy Technology Data Exchange (ETDEWEB)

    Matsuzaki, M. [Fukuoka Univ. of Education, Dept. of Physics, Munakata, Fukuoka (Japan); Tanigawa, T.

    1999-08-01

    We propose a simple method to reproduce the {sup 1}S{sub 0} pairing properties of nuclear matter, which are obtained by a sophisticated model, by introducing a density-independent cutoff into the relativistic mean field model. This applies well to the physically relevant density range. (author)

  17. Re-hardening of hadron transverse mass spectra in relativistic heavy-ion collisions

    International Nuclear Information System (INIS)

    Ohnishi, A.; Otuka, N.; Sahu, P.K.; Isse, M.; Nara, Y.

    2001-01-01

    We analyze the spectra of pions and protons in heavy-ion collisions at relativistic energies from 2 A GeV to 65 + 65 A GeV by using a jet-implemented hadron-string cascade model. In this energy region, hadron transverse mass spectra first show softening until SPS energies, and re-hardening may emerge at RHIC energies. Since hadronic matter is expected to show only softening at higher energy densities, this re-hardening of spectra can be interpreted as a good signature of the quark-gluon plasma formation. (author)

  18. Relativistic form factors for hadrons with quark-model wave functions

    International Nuclear Information System (INIS)

    Stanley, D.P.; Robson, D.

    1982-01-01

    The relationship between relativistic form factors and quark-potential-model wave functions is examined using an improved version of an approach by Licht and Pagnamenta. Lorentz-contraction effects are expressed in terms of an effective hadron mass which varies as the square root of the number of quark constituents. The effective mass is calculated using the rest-frame wave functions from the mean-square momentum along the direction of the momentum transfer. Applications with the parameter-free approach are made to the elastic form factors of the pion, proton, and neutron using a Hamiltonian which simultaneously describes mesons and baryons. A comparison of the calculated radii for pions and kaons suggests that the measured kaon radius should be slightly smaller than the corresponding pion radius. The large negative squared charge radius for the neutron is partially explained via the quark model but a full description requires the inclusion of a small component of a pion ''cloud'' configuration. The problematic connection between the sizes of hadrons deduced from form factors and the ''measured'' values of average transverse momenta is reconciled in the present model

  19. Pionic atoms, the relativistic mean-field theory and the pion-nucleon scattering lenghts

    International Nuclear Information System (INIS)

    Goudsmit, P.F.A.; Leisi, H.J.; Matsinos, E.

    1991-01-01

    Analysing pionic-atom data of isoscalar nuclei within the relativistic mean-field (RMF) theory, we determine the pseudoscalar πNN mixing parameter x=0.24±0.06 (syst.) and the strength of the nuclear scalar meson field for pions, S π =-34±14 (syst.) MeV. We show that these values are compatible with the elementary π-N interaction. Our RMF model provides a solution to the long-standing problem of the s-wave repulsion. (orig.)

  20. Relativistic transport theory for hadronic matter

    International Nuclear Information System (INIS)

    Shun-Jin Wang; Bao-An Li; Bauer, W.; Randrup, J.

    1991-01-01

    We derive coupled equations of motion for the density matrices for nucleons, Δ resonances, and π mesons, as well as for the pion--baryon interaction vertex function for the description of nuclear reactions at intermediate energies. We start from an effective hadronic Lagrangian density with minimal coupling between baryons and mesons. By truncating at the level of three-body correlations and using the G-matrix method to solve the equations of motion for the two-body correlation functions, a closed equation of motion for the one-body density matrices is obtained. A subsequent Wigner transformation then leads to a tractable set of relativistic transport equations for interacting nucleons, deltas, and pions. copyright 1991 Academic Press, Inc

  1. On the binding energy of double Λ hypernuclei in the relativistic mean field theory

    International Nuclear Information System (INIS)

    Marcos, S.; Lombard, R.J.

    1997-01-01

    The binding energy of two Λ hyperons bound to a nuclear core is calculated within the relativistic mean field theory. The starting point is a two body relativistic equation of the Breit type suggested by the RMFT, and corrected for the two-particle interaction. The 2 Λ correlation energy is evaluated and the contribution of the δ and φ mesons, acting solely between hyperons, to the bond energy σB ΛΛ of ( ΛΛ ) 6 He, ( ΛΛ ) 10 Be and ( ΛΛ ) 13 B is calculated. Predictions of the ΔB ΛΛ A dependence are made for heavier Λ-hypernuclei. (K.A.)

  2. Dynamical evolution of hadronic matter in relativistic collisions

    International Nuclear Information System (INIS)

    Dean, D.J.; Umar, A.S.; Strayer, M.R.

    1993-01-01

    We use the (3+1)-dimensional string-parton model to study relativistic collisions of heavy ions at CERN energies. Various inclusive hadronic observables, such as transverse energy, dE T /dη, and rapidity distributions, are calculated and compared with WA80 and NA35 data. We study secondary interactions that occur during the dynamical evolution, and show that these interactions tend to fill the midrapidity region. The dynamical evolution of the energy density of produced mesons and their thermodynamic properties are also studied

  3. Relativistic deformed mean-field calculation of binding energy differences of mirror nuclei

    International Nuclear Information System (INIS)

    Koepf, W.; Barreiro, L.A.

    1996-01-01

    Binding energy differences of mirror nuclei for A=15, 17, 27, 29, 31, 33, 39 and 41 are calculated in the framework of relativistic deformed mean-field theory. The spatial components of the vector meson fields and the photon are fully taken into account in a self-consistent manner. The calculated binding energy differences are systematically smaller than the experimental values and lend support to the existence of the Okamoto-Nolen-Schiffer anomaly found decades ago in nonrelativistic calculations. For the majority of the nuclei studied, however, the results are such that the anomaly is significantly smaller than the one obtained within state-of-the-art nonrelativistic calculations. (author). 35 refs

  4. The limits of the mean field

    International Nuclear Information System (INIS)

    Guerra, E.M. de

    2001-01-01

    In these talks, we review non relativistic selfconsistent mean field theories, their scope and limitations. We first discuss static and time dependent mean field approaches for particles and quasiparticles, together with applications. We then discuss extensions that go beyond the non-relativistic independent particle limit. On the one hand, we consider extensions concerned with restoration of symmetries and with the treatment of collective modes, particularly by means of quantized ATDHF. On the other hand, we consider extensions concerned with the relativistic dynamics of bound nucleons. We present data on nucleon momentum distributions that show the need for relativistic mean field approach and probe the limits of the mean field concept. Illustrative applications of various methods are presented stressing the role that selfconsistency plays in providing a unifying reliable framework to study all sorts of properties and phenomena. From global properties such as size, mass, lifetime,.., to detailed structure in excitation spectra (high spin, RPA modes,..), as well as charge, magnetization and velocity distributions. (orig.)

  5. A field theory for composite particles (hadrons): Pt. 2

    International Nuclear Information System (INIS)

    Biswas, T.

    1986-01-01

    Interaction between composite units (hadrons) is introduced in a fashion similar to QED. Quark-quark interactions within hadrons are considered to be of direct-interaction nature. This provides a completely relativistic and self-consistent theory for strong interactions that can be used as a tool for phenomenology. Hadron scattering and bound states have a simple description and their computation is expected to be laborious but straightforward

  6. Nuclear matter descriptions including quark structure of the hadrons

    International Nuclear Information System (INIS)

    Huguet, R.

    2008-07-01

    It is nowadays well established that nucleons are composite objects made of quarks and gluons, whose interactions are described by Quantum chromodynamics (QCD). However, because of the non-perturbative character of QCD at the energies of nuclear physics, a description of atomic nuclei starting from quarks and gluons is still not available. A possible alternative is to construct effective field theories based on hadronic degrees of freedom, in which the interaction is constrained by QCD. In this framework, we have constructed descriptions of infinite nuclear matter in relativistic mean field theories taking into account the quark structure of hadrons. In a first approach, the in medium modifications of mesons properties is dynamically obtained in a Nambu-Jona-Lasinio (NJL) quark model. This modification is taken into account in a relativistic mean field theory based on a meson exchange interaction between nucleons. The in-medium modification of mesons masses and the properties of infinite nuclear matter have been studied. In a second approach, the long and short range contributions to the in-medium modification of the nucleon are determined. The short range part is obtained in a NJL quark model of the nucleon. The long range part, related to pions exchanges between nucleons, has been determined in the framework of Chiral Perturbation theory. These modifications have been used to constrain the couplings of a point coupling relativistic mean field model. A realistic description of the saturation properties of nuclear matter is obtained. (author)

  7. Giant halos in medium nuclei within modified relativistic mean field (MRMF) model

    Energy Technology Data Exchange (ETDEWEB)

    Nugraha, A. M., E-mail: alpi.mahisha@gmail.com; Sulaksono, A. [Departemen Fisika, FMIPA, Universitas Indonesia, Kampus UI Depok (Indonesia); Sumaryada, T. [Department of Physics, Bogor Agricultural University, Jalan Meranti Kampus IPB Dramaga Bogor 16680 (Indonesia)

    2016-04-19

    The large number of neutrons in a region beyond a closed shell core indicates the presence of giant halos in nuclei. In this work, by using the Rotival method within a modified relativistic mean field (MRMF) model, we predict theoretically the formation of giant halos in Cr and Zr isotopes. The MRMF model is a modification of standard RMF model augmented with isoscalar and isovector tensor terms, isovector-isoscalar vector cross coupling term and electromagnetic exchange term for Coulomb interaction in local density approximation (LDA).

  8. Finite Volume Effect of Baryons in Strange Hadronic Matter

    Institute of Scientific and Technical Information of China (English)

    SUN Bao-Xi; LI Lei; NING Ping-Zhi; ZHAO En-Guang

    2001-01-01

    The finite volume effect of baryons in strange hadronic matter (SHM) is studied within the framework of relativistic mean-field theory. As this effect is concerned, the saturation density of SHM turns lower, and the binding energy per baryon decreases. Its influence to the compression modulus of SHM is also discussed.

  9. Relativistic mean field theory for deformed nuclei with pairing correlations

    International Nuclear Information System (INIS)

    Geng, Lisheng; Toki, Hiroshi; Sugimoto, Satoru; Meng, Jie

    2003-01-01

    We develop a relativistic mean field (RMF) description of deformed nuclei with pairing correlations in the BCS approximation. The treatment of the pairing correlations for nuclei whose Fermi surfaces are close to the threshold of unbound states needs special attention. With this in mind, we use a delta function interaction for the pairing interaction to pick up those states whose wave functions are concentrated in the nuclear region and employ the standard BCS approximation for the single-particle states obtained from the BMF theory with deformation. We apply the RMF + BCS method to the Zr isotopes and obtain a good description of the binding energies and the nuclear radii of nuclei from the proton drip line to the neutron drip line. (author)

  10. Instabilities constraint and relativistic mean field parametrization

    International Nuclear Information System (INIS)

    Sulaksono, A.; Kasmudin; Buervenich, T.J.; Reinhard, P.-G.; Maruhn, J.A.

    2011-01-01

    Two parameter sets (Set 1 and Set 2) of the standard relativistic mean field (RMF) model plus additional vector isoscalar nonlinear term, which are constrained by a set of criteria 20 determined by symmetric nuclear matter stabilities at high densities due to longitudinal and transversal particle–hole excitation modes are investigated. In the latter parameter set, δ meson and isoscalar as well as isovector tensor contributions are included. The effects in selected finite nuclei and nuclear matter properties predicted by both parameter sets are systematically studied and compared with the ones predicted by well-known RMF parameter sets. The vector isoscalar nonlinear term addition and instability constraints have reasonably good effects in the high-density properties of the isoscalar sector of nuclear matter and certain finite nuclei properties. However, even though the δ meson and isovector tensor are included, the incompatibility with the constraints from some experimental data in certain nuclear properties at saturation point and the excessive stiffness of the isovector nuclear matter equation of state at high densities as well as the incorrect isotonic trend in binding the energies of finite nuclei are still encountered. It is shown that the problem may be remedied if we introduce additional nonlinear terms not only in the isovector but also in the isoscalar vectors. (author)

  11. Relativistic few quark dynamics for hadrons

    International Nuclear Information System (INIS)

    Mitra, A.N.

    1983-07-01

    A microscopic confinement approach is presented to a few quarks systems through an effective (harmonic) kernel inserted at the level of q-q-bar and q-q pairs, using the vehicle of the Bethe-Salpeter equation for each such system. The formalism, which is realistic for light quark systems (which require an intrinsically relativistic treatment), has been developed in a simple enough form so as to be applicable in practice to a large class of phenomena amenable to experimental test. The comparison over a wide range of hadronic properties (from mass spectra to current matrix elements), all within a single integrated framework, would seem to strongly support the ansatz of universality of the reduced spring constant (ω-tilde) which plays a role analogous to the bag radius, but at a far more microscopic level

  12. Pairing in hadron structure

    International Nuclear Information System (INIS)

    Chela-Flores, J.

    1981-08-01

    A many-body approach to hadron structure is presented, in which we consider two parton species: spin-0 (b-partons), and spin-1/2 (f-partons). We extend a boson and a fermion pairing scheme for the b-, and f-partons respectively, into a Yang-Mills gauge theory. The main feature of this theory is that the gauge field is not identified with the usual gluon field variable in QCD. We study the confinement problem of the hadron constituents, and obtain, for low temperatures, partons that are confined by energy gaps. As the critical temperatures for the corresponding phase transitions are approached, the energy gap gradually disappears, and confinement is lost. The theory goes beyond the non-relativistic harmonic oscillator quark model, in the sense of giving physical reasons why a non-relativistic approximation is adequate in describing the internal dynamics of hadron structure. (author)

  13. Relativistic mean-field theory for unstable nuclei with non-linear σ and ω terms

    International Nuclear Information System (INIS)

    Sugahara, Y.; Toki, H.

    1994-01-01

    We search for a new parameter set for the description of stable as well as unstable nuclei in the wide mass range within the relativistic mean-field theory. We include a non-linear ω self-coupling term in addition to the non-linear σ self-coupling terms, the necessity of which is suggested by the relativistic Brueckner-Hartree-Fock (RBHF) theory of nuclear matter. We find two parameter sets, one of which is for nuclei above Z=20 and the other for nuclei below that. The calculated results agree very well with the existing data for finite nuclei. The parameter set for the heavy nuclei provides the equation of state of nuclear matter similar to the one of the RBHF theory. ((orig.))

  14. In-medium Modifications of Hadron Masses and Chemical Freeze-out in Ultra-relativistic Heavy-ion Collisions

    International Nuclear Information System (INIS)

    Florkowski, W.; Broniowski, W.

    1999-10-01

    We confront the hypothesis of chemical freeze-out in ultra-relativistic heavy-ion collisions with the hypothesis of large modifications of hadron masses in nuclear medium. We find that the thermal-model predictions for the ratios of particle multiplicities are sensitive to the values of in-medium hadronic masses. In particular, the π + /p ratio decreases by 35% when the masses of all hadrons (except for pseudo-Goldstone bosons) are scaled down by 30%. (author)

  15. Target size dependence of relativistic hadron emission from S-32 nuclear collisions at 3.7-A-GeV and 200-A-GeV

    CERN Document Server

    Abdelsalam, A; Hafiz, M E

    2012-01-01

    The behavior of the relativistic hadron (shower particle) multiplicity for (32)S-nucleus interactions is investigated. The experiment is carried out at 3.7A GeV (Dubna energy) and 200A GeV (SPS energy) to search for the incident energy effect on the interactions inside the different emulsion target nuclei. Data are presented in terms of the number of emitted relativistic hadrons in both forward and backward angular zones. The dependence on the target size is presented. For this purpose the statistical events are separated into groups according to the interactions with H, CNO, Em, and AgBr target nuclei. The separation of events, into these groups, is executed based on predictions of Glauber's multiple scattering theory. Features suggestive of a decay mechanism seem to be a characteristic of the backward emission of relativistic hadrons. The results strongly support the assumption that the relativistic hadrons may already be emitted during the de-excitation of the excited target nucleus, in a behavior like tha...

  16. Regular and chaotic dynamics in time-dependent relativistic mean-field theory

    International Nuclear Information System (INIS)

    Vretenar, D.; Ring, P.; Lalazissis, G.A.; Poeschl, W.

    1997-01-01

    Isoscalar and isovector monopole oscillations that correspond to giant resonances in spherical nuclei are described in the framework of time-dependent relativistic mean-field theory. Time-dependent and self-consistent calculations that reproduce experimental data on monopole resonances in 208 Pb show that the motion of the collective coordinate is regular for isoscalar oscillations, and that it becomes chaotic when initial conditions correspond to the isovector mode. Regular collective dynamics coexists with chaotic oscillations on the microscopic level. Time histories, Fourier spectra, state-space plots, Poincare sections, autocorrelation functions, and Lyapunov exponents are used to characterize the nonlinear system and to identify chaotic oscillations. Analogous considerations apply to higher multipolarities. copyright 1997 The American Physical Society

  17. Second quantization of classical nonlinear relativistic field theory. Pt. 2

    International Nuclear Information System (INIS)

    Balaban, T.

    1976-01-01

    The construction of a relativistic interacting local quantum field is given in two steps: first the classical nonlinear relativistic field theory is written down in terms of Poisson brackets, with initial conditions as canonical variables: next a representation of Poisson bracket Lie algebra by means of linear operators in the topological vector space is given and an explicit form of a local interacting relativistic quantum field PHI is obtained. (orig./BJ) [de

  18. Critical behavior of mean-field hadronic models for warm nuclear matter

    International Nuclear Information System (INIS)

    Silva, J.B.; Lourenco, O.; Delfino, A.; Martins, J.S. Sa; Dutra, M.

    2008-01-01

    We study a set of hadronic mean-field models in the liquid-gas phase transition regime and calculate their critical parameters. The discussion is unified by scaling the coexistence curves in terms of these critical parameters. We study the models close to spinodal points, where they also present critical behavior. Inspired by signals of criticality shown in fragmentation experiments, we analyze two different scenarios in which such behavior would be expected: (i) the stability limits of a metastable system with vanishing external pressure; and (ii) the critical point of a gas-liquid phase equilibrium system for which the Maxwell construction applies. Spinodal and coexistence curves show the regions in which model dependence arises. Unexpectedly, this model dependence does not manifest if one calculates the thermal incompressibility of the models

  19. Relativistic Few-Body Hadronic Physics Calculations

    Energy Technology Data Exchange (ETDEWEB)

    Polyzou, Wayne [Univ. of Iowa, Iowa City, IA (United States)

    2016-06-20

    The goal of this research proposal was to use ``few-body'' methods to understand the structure and reactions of systems of interacting hadrons (neutrons, protons, mesons, quarks) over a broad range of energy scales. Realistic mathematical models of few-hadron systems have the advantage that they are sufficiently simple that they can be solved with mathematically controlled errors. These systems are also simple enough that it is possible to perform complete accurate experimental measurements on these systems. Comparison between theory and experiment puts strong constraints on the structure of the models. Even though these systems are ``simple'', both the experiments and computations push the limits of technology. The important property of ``few-body'' systems is that the ``cluster property'' implies that the interactions that appear in few-body systems are identical to the interactions that appear in complicated many-body systems. Of particular interest are models that correctly describe physics at distance scales that are sensitive to the internal structure of the individual nucleons. The Heisenberg uncertainty principle implies that in order to be sensitive to physics on distance scales that are a fraction of the proton or neutron radius, a relativistic treatment of quantum mechanics is necessary. The research supported by this grant involved 30 years of effort devoted to studying all aspects of interacting two and three-body systems. Realistic interactions were used to compute bound states of two- and three-nucleon, and two- and three-quark systems. Scattering observables for these systems were computed for a broad range of energies - from zero energy scattering to few GeV scattering, where experimental evidence of sub-nucleon degrees of freedom is beginning to appear. Benchmark calculations were produced, which when compared with calculations of other groups provided an essential check on these complicated calculations. In

  20. arXiv Isothermal compressibility of hadronic matter formed in relativistic nuclear collisions

    CERN Document Server

    Mukherjee, Maitreyee; Chatterjee, Arghya; Chatterjee, Sandeep; Adhya, Souvik Priyam; Thakur, Sanchari; Nayak, Tapan K.

    We present the first estimates of isothermal compressibility (\\kT) of hadronic matter formed in relativistic nuclear collisions (\\sNN=7.7~GeV to 2.76~TeV) using experimentally observed quantities. \\kT~is related to the fluctuation in particle multiplicity, temperature and volume of the system formed in the collisions. Multiplicity fluctuations are obtained from the event-by-event distributions of charged particle multiplicities in narrow centrality bins. The dynamical components of the fluctuations are extracted by removing the contributions to the fluctuations from the number of participating nucleons. From the available experimental data, a constant value of \\kT~has been observed as a function of collision energy. The results are compared with calculations from UrQMD, AMPT and EPOS event generators, and estimations of \\kT~are made for Pb-Pb collisions at the CERN Large Hadron Collider. A hadron resonance gas (HRG) model has been used to calculate \\kT~as a function of collision energy. Our results show a dec...

  1. Characteristics of the interactions of 12 C, 22 Ne and 28 Si with emulsion nuclei accompanied with relativistic hadrons in the backward hemisphere at Dubna energy. Vol. 2

    International Nuclear Information System (INIS)

    El-Nadi, N.; Abdel-salam, A.; Mossa, N.A.; Krasnov, S.A.

    1996-01-01

    A detailed study of the characteristics of the interactions accompanied by relativistic hadrons in the backward hemisphere in the collisions of 12 C, 22 Ne and 26 Si projectiles with emulsion nuclei at incident momentum in the range (4.1-4.5) a GeV/C was carried out. For this purpose, random samples of 819, 3812, and 1209 events in case of 22 C, 22 Ne and 26 Si interactions are analyzed, respectively. The behaviour of the shower particles multiplicities, and the pseudorapidity distributions for the different interactions were investigated in terms of the number of emitted shower particles. The pseudorapidity distribution of the shower particles from the interactions accompanied by the emission of backward relativistic hadrons are found to be satisfactorily fitted by a single spindle Gaussian distribution. On the other hand, the pseudorapidity for the shower particles emitted in the interactions not accompanied by backward relativistic hadron are fitted by two Gaussian distributions with two distinct average values. The dispersion of the pseudorapidity distributions are insensitive to the number of the backward relativistic hadrons n b s . However, the average pseudorapidity decreases with increase of number of backward relativistic hadrons. The dependence of the average number of the shower particles produced in the backward and forward hemispheres on the projectile mass number and the impact parameter are also presented. The results yield quite interesting information regarding the production of such backward relativistic hadrons in heavy ions interactions. 9 figs., 3 tabs

  2. Antikaon condensation in neutron stars by a new nonlinear mean-field model

    CERN Document Server

    Miyazaki, K

    2005-01-01

    We have investigated both the K^- and \\bar{K}^0 condensations in beta-equilibrated neutron star (NS) matter using the relativistic mean-field model with the renormalized meson-baryon coupling constants. Adopting the antikaon optical potential of -120MeV, our model predicts the K^- condensation as the second-order phase transition inside the neutron star of maximum mass, while the deeper potential than -160MeV is ruled out. This is in contrast to the result of the density-dependent hadron field theory. Our model also predicts remarkable softening of the equation of state by the \\bar{K}^0 condensation at high densities. Although this is contrasted with the result of the nonlinear Walecka model, only the K^- condensation can be formed in NSs.

  3. Strong-field relativistic processes in highly charged ions

    Energy Technology Data Exchange (ETDEWEB)

    Postavaru, Octavian

    2010-12-08

    In this thesis we investigate strong-field relativistic processes in highly charged ions. In the first part, we study resonance fluorescence of laser-driven highly charged ions in the relativistic regime by solving the time-dependent master equation in a multi-level model. Our ab initio approach based on the Dirac equation allows for investigating highly relativistic ions, and, consequently, provides a sensitive means to test correlated relativistic dynamics, bound-state quantum electrodynamic phenomena and nuclear effects by applying coherent light with x-ray frequencies. Atomic dipole or multipole moments may be determined to unprecedented accuracy by measuring the interference-narrowed fluorescence spectrum. Furthermore, we investigate the level structure of heavy hydrogenlike ions in laser beams. Interaction with the light field leads to dynamic shifts of the electronic energy levels, which is relevant for spectroscopic experiments. We apply a fully relativistic description of the electronic states by means of the Dirac equation. Our formalism goes beyond the dipole approximation and takes into account non-dipole effects of retardation and interaction with the magnetic field components of the laser beam. We predicted cross sections for the inter-shell trielectronic recombination (TR) and quadruelectronic recombination processes which have been experimentally confirmed in electron beam ion trap measurements, mainly for C-like ions, of Ar, Fe and Kr. For Kr{sup 30}+, inter-shell TR contributions of nearly 6% to the total resonant photorecombination rate were found. (orig.)

  4. Relativistic shocks in the systems containing domains with anomalous equation of state and quark baryonic matter hadronization

    International Nuclear Information System (INIS)

    Bugaev, K.A.; Gorenshtejn, M.I.; Zhdanov, V.I.

    1987-01-01

    Theoretical basis for general stability criterion of relativistic shocks in baryonic matter is proposed. Different formulations of shock mechanical stability are considered and applied to the analysis of rarefaction shock hadronization transition. 13 refs.; 2 figs

  5. Electroweak interactions in a relativistic Fermi gas

    International Nuclear Information System (INIS)

    Vantournhout, K.; Jachowicz, N.; Ryckebusch, J.

    2006-01-01

    We present a relativistic model for computing the neutrino mean free path in neutron matter. In this model, neutron matter is described as a noninteracting Fermi gas in β equilibrium. We present results for the neutrino mean free path for temperatures of 0 to 50 MeV and a broad range of neutrino energies. We show that relativistic effects cause a considerable enhancement of neutrino-scattering cross sections in neutron matter. The influence of the Q 2 dependence in the electroweak form factors and the inclusion of a weak-magnetic term in the hadron current is discussed. The weak-magnetic term in the hadron current is at the origin of some selective spin dependence for the nucleons that are subject to neutrino interactions

  6. Mean-field models and superheavy elements

    International Nuclear Information System (INIS)

    Reinhard, P.G.; Bender, M.; Maruhn, J.A.; Frankfurt Univ.

    2001-03-01

    We discuss the performance of two widely used nuclear mean-field models, the relativistic mean-field theory (RMF) and the non-relativistic Skyrme-Hartree-Fock approach (SHF), with particular emphasis on the description of superheavy elements (SHE). We provide a short introduction to the SHF and RMF, the relations between these two approaches and the relations to other nuclear structure models, briefly review the basic properties with respect to normal nuclear observables, and finally present and discuss recent results on the binding properties of SHE computed with a broad selection of SHF and RMF parametrisations. (orig.)

  7. Light-Front Dynamics in Hadron Physics

    International Nuclear Information System (INIS)

    Ji, C.-R.; Bakker, B.L.G.; Choi, H.-M.

    2013-01-01

    Light-front dynamics(LFD) plays an important role in the analyses of relativistic few-body systems. As evidenced from the recent studies of generalized parton distributions (GPDs) in hadron physics, a natural framework for a detailed study of hadron structures is LFD due to its direct application in Minkowski space as well as its distinct feature of accounting for the vacuum fluctuations in quantum field theories. In the last few years, however, it has been emphasized that treacherous points such as LF singularities and zero-modes should be taken into account for successful LFD applications to hadron phenomenology. In this paper, we discuss a typical example of the contemporary relativistic hadron physics in which the fundamental issues should be taken into account for the successful application of LFD. In particular, we focus on the kinematic issue of GPDs in deeply virtual Compton scattering (DVCS). Although this fundamental issue has been glossed over in the literature, it must be taken care of for the correct analysis of DVCS data. (author)

  8. Light-cone quantization and hadron structure

    International Nuclear Information System (INIS)

    Brodsky, S.J.

    1996-04-01

    Quantum chromodynamics provides a fundamental description of hadronic and nuclear structure and dynamics in terms of elementary quark and gluon degrees of freedom. In practice, the direct application of QCD to reactions involving the structure of hadrons is extremely complex because of the interplay of nonperturbative effects such as color confinement and multi-quark coherence. In this talk, the author will discuss light-cone quantization and the light-cone Fock expansion as a tractable and consistent representation of relativistic many-body systems and bound states in quantum field theory. The Fock state representation in QCD includes all quantum fluctuations of the hadron wavefunction, including fax off-shell configurations such as intrinsic strangeness and charm and, in the case of nuclei, hidden color. The Fock state components of the hadron with small transverse size, which dominate hard exclusive reactions, have small color dipole moments and thus diminished hadronic interactions. Thus QCD predicts minimal absorptive corrections, i.e., color transparency for quasi-elastic exclusive reactions in nuclear targets at large momentum transfer. In other applications, such as the calculation of the axial, magnetic, and quadrupole moments of light nuclei, the QCD relativistic Fock state description provides new insights which go well beyond the usual assumptions of traditional hadronic and nuclear physics

  9. Characteristics of the interactions of {sup 12} C, {sup 22} Ne and {sup 28} Si with emulsion nuclei accompanied with relativistic hadrons in the backward hemisphere at Dubna energy. Vol. 2

    Energy Technology Data Exchange (ETDEWEB)

    El-Nadi, N; Abdel-salam, A [Department of Physics, Faculty of Sciences, Cairo University, Cairo (Egypt); Mossa, N A [Basic science Department, Faculty of Engineering-Shoubra, Zagazig University, Cairo (Egypt); Krasnov, S A [Jinr, Dubna, (Russian Federation)

    1996-03-01

    A detailed study of the characteristics of the interactions accompanied by relativistic hadrons in the backward hemisphere in the collisions of {sup 12} C, {sup 22} Ne and {sup 26} Si projectiles with emulsion nuclei at incident momentum in the range (4.1-4.5) a GeV/C was carried out. For this purpose, random samples of 819, 3812, and 1209 events in case of {sup 22} C, {sup 22} Ne and {sup 26} Si interactions are analyzed, respectively. The behaviour of the shower particles multiplicities, and the pseudorapidity distributions for the different interactions were investigated in terms of the number of emitted shower particles. The pseudorapidity distribution of the shower particles from the interactions accompanied by the emission of backward relativistic hadrons are found to be satisfactorily fitted by a single spindle Gaussian distribution. On the other hand, the pseudorapidity for the shower particles emitted in the interactions not accompanied by backward relativistic hadron are fitted by two Gaussian distributions with two distinct average values. The dispersion of the pseudorapidity distributions are insensitive to the number of the backward relativistic hadrons n{sup b}{sub s}. However, the average pseudorapidity decreases with increase of number of backward relativistic hadrons. The dependence of the average number of the shower particles produced in the backward and forward hemispheres on the projectile mass number and the impact parameter are also presented. The results yield quite interesting information regarding the production of such backward relativistic hadrons in heavy ions interactions. 9 figs., 3 tabs.

  10. A Study of Multi-Λ Hypernuclei Within Spherical Relativistic Mean-Field Approach

    Science.gov (United States)

    Rather, Asloob A.; Ikram, M.; Usmani, A. A.; Kumar, B.; Patra, S. K.

    2017-12-01

    This research article is a follow up of an earlier work by M. Ikram et al., reported in Int. J. Mod. Phys. E 25, 1650103 (2016) where we searched for Λ magic numbers in experimentally confirmed doubly magic nucleonic cores in light to heavy mass region (i.e., 16 O-208 P b) by injecting Λ's into them. In the present manuscript, working within the state of the art relativistic mean field theory with the inclusion of Λ N and ΛΛ interaction in addition to nucleon-meson NL 3∗ effective force, we extend the search of lambda magic numbers in multi- Λ hypernuclei using the predicted doubly magic nucleonic cores 292120, 304120, 360132, 370132, 336138, 396138 of the elusive superheavy mass regime. In analogy to well established signatures of magicity in conventional nuclear theory, the prediction of hypernuclear magicities is made on the basis of one-, two- Λ separation energy ( S Λ, S 2Λ) and two lambda shell gaps ( δ 2Λ) in multi- Λ hypernuclei. The calculations suggest that the Λ numbers 92, 106, 126, 138, 184, 198, 240, and 258 might be the Λ shell closures after introducing the Λ's in the elusive superheavy nucleonic cores. The appearance of new lambda shell closures apart from the nucleonic ones predicted by various relativistic and non-relativistic theoretical investigations can be attributed to the relatively weak strength of the spin-orbit coupling in hypernuclei compared to normal nuclei. Further, the predictions made in multi- Λ hypernuclei under study resembles closely the magic numbers in conventional nuclear theory suggested by various relativistic and non-relativistic theoretical models. Moreover, in support of the Λ shell closure, the investigation of Λ pairing energy and effective Λ pairing gap has been made. We noticed a very close agreement of the predicted Λ shell closures with the survey made on the pretext of S Λ, S 2Λ, and δ 2Λ except for the appearance of magic numbers corresponding to Λ = 156 which manifest in Λ effective

  11. Classification of integrable two-dimensional models of relativistic field theory by means of computer

    International Nuclear Information System (INIS)

    Getmanov, B.S.

    1988-01-01

    The results of classification of two-dimensional relativistic field models (1) spinor; (2) essentially-nonlinear scalar) possessing higher conservation laws using the system of symbolic computer calculations are presented shortly

  12. Relativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Barz, H.W.; Kaempfer, B.; Schulz, H.

    1984-12-01

    An elementary introduction is given into the scenario of relativistic heavy ion collisions. It deals with relativistic kinematics and estimates of energy densities, extrapolations of the present knowledge of hadron-hadron and hadron-nuleus to nucleus-nucleus collisions, the properties of the quark-gluon plasma and the formation of the plasma and possible experimental signatures. Comments are made on a cosmic ray experiment which could be interpreted as a first indication of the quark-gluon phase of the matter. (author)

  13. Properties of general relativistic kink solution

    International Nuclear Information System (INIS)

    Kodama, T.; Oliveira, L.C.S. de; Santos, F.C.

    1978-12-01

    Properties of the general relativistic kink solution of a nonlinear scalar field recently obtained, are discussed. It has been shown that the kink solution is stable against radical perturbations. Possible applications to Hadron physics from the geometrodynamic point of view are suggested [pt

  14. Quasiparticle method in relativistic mean-field theories of nuclear structure

    International Nuclear Information System (INIS)

    Ai, H.

    1988-01-01

    In recent years, in order to understand the success of Dirac phenomenology, relativistic Brueckner-Hartree-Fock (RBHF) theory has been developed. This theory is a relativistic many-body theory of nuclear structure. Based upon the RBHF theory, which is characterized as having no free parameters other than those introduced in fitting free-space nucleon-nucleon scattering data, we construct an effective interaction. This interaction, when treated in a relativistic Hartree-Fock approximation, reproduces, rather accurately, the nucleon self-energy in nuclear matter, Migdal parameters obtained via relativistic Brueckner-Hartree-Fock calculations, and the saturation curves calculated with the full relativistic Brueckner-Hartree-Fock theory. This effective interaction is constructed by adding a number of pseudoparticles to the mesons used to construct one-boson-exchange (OBE) models of the nuclear force. The pseudoparticles have relatively large masses and either real or imaginary coupling constants. (For example, exchange of a pseudo-sigma with an imaginary coupling constant has the effect of reducing the scalar attraction arising from sigma exchange, while exchange of a pseudo-omega with an imaginary coupling constant has the effect of reducing the repulsion arising from omega exchange. The terms beyond the Born term in the case of pion exchange are well simulated by pseudo-sigma exchange with a real coupling constant.) The effective interaction constructed here may be used for calculations of the properties of finite nuclei in a relativistic Hartree-Fock approximation

  15. Mean-field models and exotic nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Bender, M; Buervenich, T; Maruhn, J A; Greiner, W [Inst. fuer Theoretische Physik, Univ. Frankfurt (Germany); Rutz, K [Inst. fuer Theoretische Physik, Univ. Frankfurt (Germany); [Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany); Reinhard, P G [Inst. fuer Theoretische Physik, Univ. Erlangen (Germany)

    1998-06-01

    We discuss two widely used nuclear mean-field models, the relativistic mean-field model and the (nonrelativistic) Skyrme-Hartree-Fock model, and their capability to describe exotic nuclei. Test cases are superheavy nuclei and neutron-rich Sn isotopes. New information in this regime helps to fix hitherto loosely determined aspects of the models. (orig.)

  16. Mean-field models and exotic nuclei

    International Nuclear Information System (INIS)

    Bender, M.; Buervenich, T.; Maruhn, J.A.; Greiner, W.; Rutz, K.; Reinhard, P.G.

    1998-01-01

    We discuss two widely used nuclear mean-field models, the relativistic mean-field model and the (nonrelativistic) Skyrme-Hartree-Fock model, and their capability to describe exotic nuclei. Test cases are superheavy nuclei and neutron-rich Sn isotopes. New information in this regime helps to fix hitherto loosely determined aspects of the models. (orig.)

  17. Hadron structure functions

    International Nuclear Information System (INIS)

    Martin, F.

    1981-03-01

    The x dependence of hadron structure functions is investigated. If quarks can exist in very low mass states (10 MeV for d and u quarks) the pion structure function is predicted to behave like (1-x) and not (1-x) 2 in a x-region around 1. Relativistic and non-relativistic quark bound state pictures of hadrons are considered together with their relation with the Q 2 evolution of structure functions. Good agreement with data is in general obtained

  18. Relativistic stars with purely toroidal magnetic fields

    International Nuclear Information System (INIS)

    Kiuchi, Kenta; Yoshida, Shijun

    2008-01-01

    We investigate the effects of the purely toroidal magnetic field on the equilibrium structures of the relativistic stars. The basic equations for obtaining equilibrium solutions of relativistic rotating stars containing purely toroidal magnetic fields are derived for the first time. To solve these basic equations numerically, we extend the Cook-Shapiro-Teukolsky scheme for calculating relativistic rotating stars containing no magnetic field to incorporate the effects of the purely toroidal magnetic fields. By using the numerical scheme, we then calculate a large number of the equilibrium configurations for a particular distribution of the magnetic field in order to explore the equilibrium properties. We also construct the equilibrium sequences of the constant baryon mass and/or the constant magnetic flux, which model the evolution of an isolated neutron star as it loses angular momentum via the gravitational waves. Important properties of the equilibrium configurations of the magnetized stars obtained in this study are summarized as follows: (1) For the nonrotating stars, the matter distribution of the stars is prolately distorted due to the toroidal magnetic fields. (2) For the rapidly rotating stars, the shape of the stellar surface becomes oblate because of the centrifugal force. But, the matter distribution deep inside the star is sufficiently prolate for the mean matter distribution of the star to be prolate. (3) The stronger toroidal magnetic fields lead to the mass shedding of the stars at the lower angular velocity. (4) For some equilibrium sequences of the constant baryon mass and magnetic flux, the stars can spin up as they lose angular momentum.

  19. Shock wave produced by hadron-quark phase transition in neutron star

    Energy Technology Data Exchange (ETDEWEB)

    Gustavo de Almeida, Luis, E-mail: lgalmeida@cbpf.br [Universidade Federal do Acre – Campus Floresta, Estrada do Canela Fina, km 12, CEP 69980-000, Cruzeiro do Sul, AC (Brazil); Centro Brasileiro de Pesquisas Físicas, Rua Dr. Xavier Sigaud, 150, CEP 22290-180, Rio de Janeiro, RJ (Brazil); Duarte, Sérgio José Barbosa, E-mail: sbd@cbpf.br [Centro Brasileiro de Pesquisas Físicas, Rua Dr. Xavier Sigaud, 150, CEP 22290-180, Rio de Janeiro, RJ (Brazil); Rodrigues, Hilário, E-mail: harg.astrophys@gmail.com [Centro Federal de Educação Tecnológica Celso Suckow da Fonseca Av. Maracanã, 229, CEP 20271-110, Rio de Janeiro, RJ (Brazil)

    2015-12-17

    In this work we present a schematic description of the detonation wave in hadronic matter inside a neutron star core. We have used a simplified two shells model where the inner shell medium is initially composed of a small lump of strange quark matter surrounded by a large outer shell composed of hadronic matter. We have utilized an equation of state (EOS) based on Relativistic Mean Field Theory with the parameter set NL3 to describe the nuclear and subnuclear phases. We use the MIT bag model to describe the strange quark matter. The hadron-quark phase transition actually induces highly non equilibrium modes, which may become a detonation process (faster) or a burning process (slower). The main purpose of the work is to study the formation of a remnant quark star and the possibility of mass ejection caused by the hadron-quark phase transition. We have found that the total amount of ejected mass is dependant of the bag constant utilized in the strange matter description.

  20. Finite nuclei in relativistic models with a light chiral scalar meson

    International Nuclear Information System (INIS)

    Serot, B.D.; Furnstahl, R.J.

    1993-01-01

    Relativistic chiral models with a light scalar, meson appear to provide an economical marriage of successful relativistic mean-field theories and chiral symmetry. In these models, the scalar meson serves as both the chiral partner of the pion and the mediator of the intermediate-range nucleon-nucleon (NN) attraction. However, while some of these models can reproduce the empirical nuclear matter saturation point, they fail to reproduce observed properties of finite nuclei, such as spin-orbit splittings, shell structure, charge densities, and surface energetics. There deficiencies imply that this realization of chiral symmetry is incorrect. An alternative scenario for chiral hadronic models, which features a heavy chiral scalar and dynamical generation of the NN attraction, is discussed

  1. Relativistic stability of interacting Fermi gas in a strong magnetic field

    International Nuclear Information System (INIS)

    Wang Lilin; Tian Jincheng; Men Fudian; Zhang Yipeng

    2013-01-01

    By means of the single particle energy spectrum of weak interaction between fermions and Poisson formula, the thermodynamic potential function of relativistic Fermi gas in a strong magnetic field is derived. Based on this, we obtained the criterion of stability for the system. The results show that the mechanics stability of a Fermi gas with weak interacting is influenced by the interacting. While the magnetic field is able to regulate the influence and the relativistic effect has almost no effect on it. (authors)

  2. Exotic nuclei in self-consistent mean-field models

    International Nuclear Information System (INIS)

    Bender, M.; Rutz, K.; Buervenich, T.; Reinhard, P.-G.; Maruhn, J. A.; Greiner, W.

    1999-01-01

    We discuss two widely used nuclear mean-field models, the relativistic mean-field model and the (nonrelativistic) Skyrme-Hartree-Fock model, and their capability to describe exotic nuclei with emphasis on neutron-rich tin isotopes and superheavy nuclei. (c) 1999 American Institute of Physics

  3. Composite hadrons and relativistic nuclei

    International Nuclear Information System (INIS)

    Blankenbecler, R.

    1978-01-01

    Lectures are presented describing a model of hadronic scattering at large momentum transfer, either transverse or longitudinal. This model emphasizes in this regime the importance of forces involving the interchange of constituents of the hadrons, hence its name, the constituent interchange model CIM. The CIM is a rearrangement of standard perturbation theory to take into account the fact that the binding force is very strong in color singlet states (singlet dominance). The hard scattering expansion, incoherence problems, nuclear wave functions and counting rules, interaction between nuclei, pion and proton yields and form factors, structure functions and nonscaling, massive lepton pairs, hadrons at large transverse momentum, and quark-quark scattering are treated. 49 references

  4. Massive neutron star with strangeness in a relativistic mean-field model with a high-density cutoff

    Science.gov (United States)

    Zhang, Ying; Hu, Jinniu; Liu, Peng

    2018-01-01

    The properties of neutron stars with the strangeness degree of freedom are studied in the relativistic mean-field (RMF) model via including a logarithmic interaction as a function of the scalar meson field. This interaction, named the σ -cut potential, can largely reduce the attractive contributions of the scalar meson field at high density without any influence on the properties of nuclear structure around the normal saturation density. In this work, the TM1 parameter set is chosen as the RMF interaction, while the strengths of σ -cut potential are constrained by the properties of finite nuclei so that we can obtain a reasonable effective nucleon-nucleon interaction. The hyperons Λ ,Σ , and Ξ are considered in neutron stars within this framework, whose coupling constants with mesons are determined by the latest hyperon-nucleon and Λ -Λ potentials extracted from the available experimental data of hypernuclei. The maximum mass of neutron star can be larger than 2 M⊙ with these hyperons in the present framework. Furthermore, the nucleon mass at high density will be saturated due to this additional σ -cut potential, which is consistent with the conclusions obtained by other calculations such as Brueckner-Hartree-Fock theory and quark mean-field model.

  5. Ground-state properties of exotic nuclei near Z=40 in the relativistic mean-field theory

    International Nuclear Information System (INIS)

    Lalazissis, G.A.

    1995-01-01

    Study of the ground-state properties of Kr, Sr and Zr isotopes has been performed in the framework of the relativistic mean-field (RMF) theory using the recently proposed relativistic parameter set NL-SH. It is shown that the RMF theory provides an unified and excellent description of the binding energies, isotope shifts and deformation properties of nuclei over a large range of isospin in the Z=40 region. It is observed that the RMF theory with the force NL-SH is able to describe the anomalous kinks in isotope shifts in Kr and Sr nuclei, the problem which has hitherto remained unresolved. This is in contrast with the density-dependent Skyrme-Hartree-Fock approach which does not reproduce the behaviour of the isotope shifts about shell closure. On the Zr chain we predict that the isotope shifts exhibit a trend similar to that of the Kr and Sr nuclei. The RMF theory also predicts shape coexistence in heavy Sr isotopes. Several dramatic shape transitions in the isotopic chains are shown to be a general feature of nuclei in this region. A comparison of the properties with the available mass models shows that the results of the RMF theory are generally in accord with the predictions of the finite-range droplet model. ((orig.))

  6. Physical meaning of the yields from hadron-nucleon, hadron-nucleus, and nucleus-nucleus collisions observed in experiments

    International Nuclear Information System (INIS)

    Strugalski, Z.

    1995-01-01

    A physical meaning of the outcomes from hadronic and nuclear collision processes at high energies is presented, as prompted experimentally. The fast and slow stages in hadron-nucleus collisions are distinguished. Hadrons are produced via intermediate objects observed in hadron-nucleus collisions. The intermediate objects may be treated as the groups of quarks or the quark bags. 37 refs

  7. Effective interaction for relativistic mean-field theories of nuclear structure

    International Nuclear Information System (INIS)

    Ai, H.B.; Celenza, L.S.; Harindranath, A.; Shakin, C.M.

    1987-01-01

    We construct an effective interaction, which when treated in a relativistic Hartree-Fock approximation, reproduces rather accurately the nucleon self-energy in nuclear matter and the Migdal parameters obtained via relativistic Brueckner-Hartree-Fock calculations. This effective interaction is constructed by adding Born terms, describing the exchange of pseudoparticles, to the Born terms of the Dirac-Hartree-Fock analysis. The pseudoparticles have relatively large masses and either real or imaginary coupling constants. (For example, exchange of a pseudo-sigma with an imaginary coupling constant has the effect of reducing the scalar attraction arising from sigma exchange while exchange of a pseudo-omega with an imaginary coupling constant has the effect of reducing the repulsion arising from omega exchange. The terms beyond the Born term in the case of pion exchange are well simulated by pseudo-sigma exchange with a real coupling constant.) The effective interaction constructed here may be used for calculations of the properties of finite nuclei in a relativistic Hartree-Fock approximation

  8. Relativistic Many-Body Theory A New Field-Theoretical Approach

    CERN Document Server

    Lindgren, Ingvar

    2011-01-01

    Relativistic Many-Body Theory treats — for the first time — the combination of relativistic atomic many-body theory with quantum-electrodynamics (QED) in a unified manner. This book can be regarded as a continuation of the book by Lindgren and Morrison, Atomic Many-Body Theory (Springer 1986), which deals with the non-relativistic theory of many-electron systems, describing several means of treating the electron correlation to essentially all orders of perturbation theory. The treatment of the present book is based upon quantum-field theory, and demonstrates that when the procedure is carried to all orders of perturbation theory, two-particle systems are fully compatible with the relativistically covariant Bethe-Salpeter equation. This procedure can be applied to arbitrary open-shell systems, in analogy with the standard many-body theory, and it is also applicable to systems with more than two particles. Presently existing theoretical procedures for treating atomic systems are, in several cases, insuffici...

  9. Relativistic quantum mechanics and introduction to field theory

    Energy Technology Data Exchange (ETDEWEB)

    Yndurain, F.J. [Universidad Autonoma de Madrid (Spain). Dept. de Fisica Teorica

    1996-12-01

    The following topics were dealt with: relativistic transformations, the Lorentz group, Klein-Gordon equation, spinless particles, spin 1/2 particles, Dirac particle in a potential, massive spin 1 particles, massless spin 1 particles, relativistic collisions, S matrix, cross sections, decay rates, partial wave analysis, electromagnetic field quantization, interaction of radiation with matter, interactions in quantum field theory and relativistic interactions with classical sources.

  10. Relativistic quantum mechanics and introduction to field theory

    International Nuclear Information System (INIS)

    Yndurain, F.J.

    1996-01-01

    The following topics were dealt with: relativistic transformations, the Lorentz group, Klein-Gordon equation, spinless particles, spin 1/2 particles, Dirac particle in a potential, massive spin 1 particles, massless spin 1 particles, relativistic collisions, S matrix, cross sections, decay rates, partial wave analysis, electromagnetic field quantization, interaction of radiation with matter, interactions in quantum field theory and relativistic interactions with classical sources

  11. Hadronization of the quark-gluon plasma

    International Nuclear Information System (INIS)

    Mueller, B.; Sano, M.; Sato, H.; Schaefer, A.

    1986-11-01

    We construct a model for hadronization of the quark-gluon plasma, based on the relativistic coalescence model. We relate the coalescence amplitude to the one-particle Wigner function for quarks in the plasma. The relation between the Wigner function and the nucleon structure function is pointed out. We derive explicit expressions for the production of mesons and baryons in the framework of the relativistic harmonic oscillator model of hadronic structure. (author)

  12. Strange hadrons and antiprotons as probes of hot and dense nuclear matter in relativistic heavy-ion collisions; Seltsame Hadronen und Antiprotonen als Proben heisser und dichter Kernmaterie in relativistischen Schwerionenkollisionen

    Energy Technology Data Exchange (ETDEWEB)

    Schade, Henry

    2010-09-15

    Strange particles play an important role as probes of relativistic heavy-ion collisions where hot and dense matter is studied. The focus of this thesis is on the production of strange particles within a transport model of Boltzmann-Uehling-Uhlenbeck (BUU) type. Current data of the HADES Collaboration concerning K{sup {+-}} and {phi} spectra provide the appropriate experimental framework. Moreover, the double-strange hyperon {xi}{sup -} is analyzed below the free NN production threshold. Hadron multiplicities, transversemomentum and rapidity spectra are compared with recent experimental data. Further important issues are in-medium mass shifts, the nuclear equation of state as well as the mean field of nucleons. Besides the study of AA collisions a comparison with recent ANKE data regarding the {phi} yield in pA collisions is done. Transparency ratios are determined and primarily investigated for absorption of {phi} mesons by means of the BUU transport code. Thereby, secondary {phi} production channels, isospin asymmetry and detector acceptance are important issues. A systematic analysis is presented for different system sizes. The momentum integrated Boltzmann equations describe dense nuclear matter on a hadronic level appearing in the Big Bang as well as in little bangs, in the context of kinetic off-equilibrium dynamics. This theory is applied to antiprotons and numerically calculated under consideration of various expansion models. Here, the evolution of proton- and antiproton densities till freeze-out is analyzed for ultra-relativistic heavy-ion collisions within a hadrochemic resonance gas model acting as a possible ansatz for solving the ''antiproton puzzle''. Furthermore, baryonic matter and antimatter is investigated in the early universe and the adiabatic path of cosmic matter is sketched in the QCD phase diagram. (orig.)

  13. Point form relativistic quantum mechanics and relativistic SU(6)

    Science.gov (United States)

    Klink, W. H.

    1993-01-01

    The point form is used as a framework for formulating a relativistic quantum mechanics, with the mass operator carrying the interactions of underlying constituents. A symplectic Lie algebra of mass operators is introduced from which a relativistic harmonic oscillator mass operator is formed. Mass splittings within the degenerate harmonic oscillator levels arise from relativistically invariant spin-spin, spin-orbit, and tensor mass operators. Internal flavor (and color) symmetries are introduced which make it possible to formulate a relativistic SU(6) model of baryons (and mesons). Careful attention is paid to the permutation symmetry properties of the hadronic wave functions, which are written as polynomials in Bargmann spaces.

  14. Relativistic quantum chaos-An emergent interdisciplinary field.

    Science.gov (United States)

    Lai, Ying-Cheng; Xu, Hong-Ya; Huang, Liang; Grebogi, Celso

    2018-05-01

    Quantum chaos is referred to as the study of quantum manifestations or fingerprints of classical chaos. A vast majority of the studies were for nonrelativistic quantum systems described by the Schrödinger equation. Recent years have witnessed a rapid development of Dirac materials such as graphene and topological insulators, which are described by the Dirac equation in relativistic quantum mechanics. A new field has thus emerged: relativistic quantum chaos. This Tutorial aims to introduce this field to the scientific community. Topics covered include scarring, chaotic scattering and transport, chaos regularized resonant tunneling, superpersistent currents, and energy level statistics-all in the relativistic quantum regime. As Dirac materials have the potential to revolutionize solid-state electronic and spintronic devices, a good understanding of the interplay between chaos and relativistic quantum mechanics may lead to novel design principles and methodologies to enhance device performance.

  15. Relativistic quantum chaos—An emergent interdisciplinary field

    Science.gov (United States)

    Lai, Ying-Cheng; Xu, Hong-Ya; Huang, Liang; Grebogi, Celso

    2018-05-01

    Quantum chaos is referred to as the study of quantum manifestations or fingerprints of classical chaos. A vast majority of the studies were for nonrelativistic quantum systems described by the Schrödinger equation. Recent years have witnessed a rapid development of Dirac materials such as graphene and topological insulators, which are described by the Dirac equation in relativistic quantum mechanics. A new field has thus emerged: relativistic quantum chaos. This Tutorial aims to introduce this field to the scientific community. Topics covered include scarring, chaotic scattering and transport, chaos regularized resonant tunneling, superpersistent currents, and energy level statistics—all in the relativistic quantum regime. As Dirac materials have the potential to revolutionize solid-state electronic and spintronic devices, a good understanding of the interplay between chaos and relativistic quantum mechanics may lead to novel design principles and methodologies to enhance device performance.

  16. Radial modes of slowly rotating compact stars in the presence of magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Panda, N.R. [Institute of Physics, Bhubaneswar (India); Siksha ' O' Anusandhan University, Bhubaneswar (India); Mohanta, K.K. [Rairangpur College, Rairangpur, Odisha (India); Sahu, P.K. [Institute of Physics, Bhubaneswar (India)

    2016-09-15

    Compact stars are composed of very high-density hadron matter. When the matter is above nuclear matter density, then there is a chance of different phases of matter such as hadron matter to quark matter. There is a possible phase which, having the quark core surrounded by a mixed phase followed by hadronic matter, may be considered as a hybrid phase inside the stars called hybrid star (HS). The star which consists of only u, d and s quarks is called quark star (QS) and the star which has only hadronic matter is called neutron star (NS). For the equation of state (EOS) of hadronic matter, we have considered the Relativistic Mean Field (RMF) theory and we incorporated the effect of strong magnetic fields. For the EOS of the quark phase we use the simple MIT bag model. We have assumed Gaussian parametrization to make the density dependent for both bag pressure in quark matter and magnetic field. We have constructed the intermediate mixed phase by using the Glendenning conjecture. Eigenfrequencies of radial pulsations of slowly rotating magnetized compact stars (NS, QS, HS) are calculated in a general relativistic formalism given by Chandrasekhar and Friedman. We have studied the effect of central density on the square of the frequencies of the compact stars in the presence of zero and strong magnetic field. (orig.)

  17. Electromagnetic polarizabilities of hadrons

    International Nuclear Information System (INIS)

    Friar, J.L.

    1988-01-01

    Electromagnetic polarizabilities of hadrons are reviewed, after a discussion of classical analogues. Differences between relativistic and non-relativistic approaches can lead to conflicts with conventional nuclear physics sum rules and calculational techniques. The nucleon polarizabilities are discussed in the context of the non-relativistic valence quark model, which provides a good qualitative description. The recently measured pion polarizabilities are discussed in the context of chiral symmetry and quark-loop models. 58 refs., 5 figs

  18. Mean transverse momenta correlations in hadron-hadron collisions in MC toy model with repulsing strings

    International Nuclear Information System (INIS)

    Altsybeev, Igor

    2016-01-01

    In the present work, Monte-Carlo toy model with repulsing quark-gluon strings in hadron-hadron collisions is described. String repulsion creates transverse boosts for the string decay products, giving modifications of observables. As an example, long-range correlations between mean transverse momenta of particles in two observation windows are studied in MC toy simulation of the heavy-ion collisions

  19. Relativistic n-body wave equations in scalar quantum field theory

    International Nuclear Information System (INIS)

    Emami-Razavi, Mohsen

    2006-01-01

    The variational method in a reformulated Hamiltonian formalism of Quantum Field Theory (QFT) is used to derive relativistic n-body wave equations for scalar particles (bosons) interacting via a massive or massless mediating scalar field (the scalar Yukawa model). Simple Fock-space variational trial states are used to derive relativistic n-body wave equations. The equations are shown to have the Schroedinger non-relativistic limits, with Coulombic interparticle potentials in the case of a massless mediating field and Yukawa interparticle potentials in the case of a massive mediating field. Some examples of approximate ground state solutions of the n-body relativistic equations are obtained for various strengths of coupling, for both massive and massless mediating fields

  20. Charged Hadron Properties in Background Electric Fields

    International Nuclear Information System (INIS)

    Detmold, William; Tiburzi, Brian C.; Walker-Loud, Andre

    2010-01-01

    We report on a lattice calculation demonstrating a novel new method to extract the electric polarizability of charged pseudo-scalar mesons by analyzing two point correlation functions computed in classical background electric fields. A staple component of any electrodynamics or quantum mechanics course is the electric polarizability. Neutral material immersed in a weak external field polarizes, internally setting up an electric dipole moment, aligned so as to minimize the energy. At the atomic level, the electron clouds are distorted creating these microscopic dipole moments. The same process occurs at the hadronic level but the polarization effects are now constrained by the strong force. Polarizabilities of these bound QCD states can be viewed as a distortion of the charged pion cloud of a given hadron. One can use lattice QCD to non-perturbatively compute the quark and gluon interactions in the presence of background electric (or magnetic) fields. For sufficiently weak background fields, the low energy properties of the hadrons can be rigorously computed using effective field theory. With this treatment, a picture of hadrons emerges from chiral dynamics: that of a hadronic core surrounded by a pseudoscalar meson cloud. As some pseudoscalar mesons are charged, polarizabilities of hadrons encode the stiffness of the charged meson cloud (as well as that of the core). The form of pseudoscalar meson polarizabilities is consequently strongly constrained by chiral dynamics. However, beyond the leading order, the results depend upon essentially unknown low-energy constants, which must currently be estimated in a model-dependent fashion. In the case of the charged pion, the experimental measurement of the polarizability has proven difficult, both in the original measurement as well as the most recent published result. Currently, there is a 2-3 sigma discrepancy between the two-loop cPT prediction and the measured charged pion polarizability. New results with higher

  1. Hadron-nucleon inelastic collision mean free path in nuclear matter

    International Nuclear Information System (INIS)

    Strugalski, Z.

    1980-01-01

    Characteristics of atomic nuclei, used as targets in high energy hadron-nucleus collision experiments, are defined on the basis of the data on the nuclei sizes and radial nucleon density distributions in nuclei. Average mean free path for inelastic hadron-nucleon collisions in nuclei is estimated using existing experimental data on the pion-xenon nucleus collisions and the connection of it with the cross-section for hadron-nucleon elementary inelastic collisions is discussed

  2. Relativistic quantum mechanics of leptons and fields

    International Nuclear Information System (INIS)

    Grandy, W.T. Jr.

    1991-01-01

    This book serves as an advanced text on the Dirac theory, and provides a monograph summarizing the description of relativistic quantum mechanics and quantum electrodynamics as classical field theories. It presents a broad, detailed, and up-to-date exposition of relativistic quantum mechanics, including the two-body problem. It also demonstrates the extent to which the behavior of stable particles and their interactions can be understood without introducing operator (second-quantized) fields. The subsequent difficulties are studied in detail and possible resolutions are presented through quantum field theory

  3. Electromagnetic processes in relativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Bertulani, C.A.; Universidade Federal do Rio de Janeiro; Baur, G.

    1987-10-01

    A study of the processes generated by the electromagnetic interaction in relativistic nuclear, and atomic collisions is presented. There is nowadays a vivid interest in this field due to the construction of relativistic heavy ion accelerators. Certainly, the most important purpose of these relativistic heavy ion machines is the study of nuclear matter under extreme conditions. In central nucleus-nucleus collisions one hopes to observe new forms of nuclear matter, like the quark-gluon plasma. On the other hand, very strong electromagnetic fields for a very short time are present in distant collisions with no nuclear contact. Such fields can also lead to interesting effects, which are discussed here. There has been many interesting theoretical and experimental developments on this subject, and new areas of research were opened. Of special interest is, e.g., the case of nuclear fragmentation. This is accomplished through the excitation of giant resonances or by direct breakt-up of the nuclei by means of their electromagnetic interaction. It is shown that this process can be used to study nuclear structure properties which are not accessible by means of the traditional electromagnetic excitation at nonrelativistic energies. The creation of particles is also of interest due the large cross sections, specially in the case of electron-positron pair creation. Although to explain the many processes originated in this way one can develop very elaborate and complicated calculations, the results can be understood in very simple terms because of our almost complete comprehension of the electromagntic interaction. For those processes where the electromagntic interaction plays the dominant role this is clearly a very useful tool for the investigation of the structures created by the strong interaction in the nuclei or hadrons. (orig.)

  4. A systematic study of even-even nuclei up to the drip lines within the relativistic mean field framework

    International Nuclear Information System (INIS)

    Hirata, D.; Sumiyoshi, K.; Tanihata, I.; Sugahara, Y.; Tachibana, T.; Toki, H.

    1997-01-01

    We apply the relativistic mean field theory to study the ground state properties of about 2000 even-even nuclei from Z=8 to Z=120 up to the proton and neutron drip lines. The calculations have been done under the axial symmetry assumption and a quadratic constraint method in order to obtain all possible ground state configurations. We do not take into account the pairing correlation in the present study. The calculations are performed with the TMA parameter set. We explore the generaI trend of masses, radii and deformations in the whole region of the nuclear chart. Using the masses obtained from RMF theory, we calculate the r-process abundances and the r-process path. (orig.)

  5. The symmetry energy {\\boldsymbol{\\gamma }} parameter of relativistic mean-field models

    Science.gov (United States)

    Dutra, Mariana; Lourenço, Odilon; Hen, Or; Piasetzky, Eliezer; Menezes, Débora P.

    2018-05-01

    The relativistic mean-field models tested in previous works against nuclear matter experimental values, critical parameters and macroscopic stellar properties are revisited and used in the evaluation of the symmetry energy γ parameter obtained in three different ways. We have checked that, independent of the choice made to calculate the γ values, a trend of linear correlation is observed between γ and the symmetry energy ({{\\mathscr{S}}}0) and a more clear linear relationship is established between γ and the slope of the symmetry energy (L 0). These results directly contribute to the arising of other linear correlations between γ and the neutron star radii of {R}1.0 and {R}1.4, in agreement with recent findings. Finally, we have found that short-range correlations induce two specific parametrizations, namely, IU-FSU and DD-MEδ, simultaneously compatible with the neutron star mass constraint of 1.93≤slant {M}{{\\max }}/{M}ȯ ≤slant 2.05 and with the overlap band for the {L}0× {{\\mathscr{S}}}0 region, to present γ in the range of γ =0.25+/- 0.05. This work is a part of the project INCT-FNA Proc. No. 464898/2014-5 and was partially supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Brazil under grants 300602/2009-0 and 306786/2014-1. E. P. acknowledges support from the Israel Science Foundation. O. H. acknowledges the U.S. Department of Energy Office of Science, Office of Nuclear Physics program under award number DE-FG02-94ER40818

  6. Relativistic Bosons in Time-Harmonic Electric Fields

    Science.gov (United States)

    Buhucianu, Ovidiu; Dariescu, Marina-Aura; Dariescu, Ciprian

    2012-02-01

    In the present paper, we consider a bi-dimensional thin sample, placed in a strong harmonically oscillating electric field and a static magnetic induction, both directed along the normal to the sample's plane. The Klein-Gordon equation describing the relativistic bosons leads to a Mathieu's type equation for the temporal part of the wave functions. It follows that, for the electric field pulsation inside a computable range, depending on the external fields intensities, the amplitude functions are turning from oscillatory to exponentially growing modes. For ultra-relativistic particles, one can recover the periodic stationary amplitude behavior.

  7. Hadron Correlations and Parton Recombination

    Energy Technology Data Exchange (ETDEWEB)

    Fries, R.J. [School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States)]. E-mail: rjfries@comp.tamu.edu

    2007-02-15

    Parton recombination has been found to be an extremely useful model to understand hadron production at the Relativistic Heavy Ion Collider. It is particularly important to explore its connections with hard processes. This article reviews some of the aspects of the quark recombination model and places particular emphasis on hadron correlations.

  8. Inclusive charged-current neutrino-nucleus reactions calculated with the relativistic quasiparticle random-phase approximation

    International Nuclear Information System (INIS)

    Paar, N.; Vretenar, D.; Marketin, T.; Ring, P.

    2008-01-01

    Inclusive neutrino-nucleus cross sections are calculated using a consistent relativistic mean-field theoretical framework. The weak lepton-hadron interaction is expressed in the standard current-current form, the nuclear ground state is described with the relativistic Hartree-Bogoliubov model, and the relevant transitions to excited nuclear states are calculated in the relativistic quasiparticle random-phase approximation. Illustrative test calculations are performed for charged-current neutrino reactions on 12 C, 16 O, 56 Fe, and 208 Pb, and results compared with previous studies and available data. Through the use of the experimental neutrino fluxes, the averaged cross sections are evaluated for nuclei of interest for neutrino detectors. We analyze the total neutrino-nucleus cross sections and the evolution of the contribution of the different multipole excitations as a function of neutrino energy. The cross sections for reactions of supernova neutrinos on 16 O and 208 Pb target nuclei are analyzed as functions of the temperature and chemical potential

  9. Study of two-proton radioactivity within the relativistic mean-field plus BCS approach

    International Nuclear Information System (INIS)

    Singh, D.; Saxena, G.

    2012-01-01

    Inspired by recent experimental studies of two-proton radioactivity in the light-medium mass region, we have employed relativistic mean-field plus state-dependent BCS approach (RMF+BCS) to study the ground state properties of selected even-Z nuclei in the region 20 ≤ Z ≤ 40. It is found that the effective potential barrier provided by the Coulomb interaction and that due to centrifugal force may cause a long delay in the decay of some of the nuclei even with small negative proton separation energy. This may cause the existence of proton-rich nuclei beyond the proton drip-line. Nuclei 38 Ti, 42 Cr, 45 Fe, 48 Ni, 55 Zn, 60 Ge, 63, 64 Se, 68 Kr, 72 Sr and 76 Zr are found to be the potential candidates for exhibiting two-proton radioactivity in the region 20 ≤ Z ≤ 40. The reliability of these predictions is further strengthened by the agreement of the calculated results for the ground state properties such as binding energy, one- and two-proton separation energy, proton and neutron radii, and deformation with the available experimental data for the entire chain of the isotopes of the nuclei in the region 20 ≤ Z ≤ 40. (author)

  10. Relativistic Scott correction in self-generated magnetic fields

    DEFF Research Database (Denmark)

    Erdos, Laszlo; Fournais, Søren; Solovej, Jan Philip

    2012-01-01

    /3}$ and it is unchanged by including the self-generated magnetic field. We prove the first correction term to this energy, the so-called Scott correction of the form $S(\\alpha Z) Z^2$. The current paper extends the result of \\cite{SSS} on the Scott correction for relativistic molecules to include a self......-generated magnetic field. Furthermore, we show that the corresponding Scott correction function $S$, first identified in \\cite{SSS}, is unchanged by including a magnetic field. We also prove new Lieb-Thirring inequalities for the relativistic kinetic energy with magnetic fields....

  11. Spinning relativistic particles in external fields

    International Nuclear Information System (INIS)

    Pomeranskii, Andrei A; Sen'kov, Roman A; Khriplovich, Iosif B

    2000-01-01

    The motion of spinning relativistic particles in external electromagnetic and gravitational fields is considered. The self-consistent equations of motion are built with the noncovariant description of spin and with the usual, 'naive' definition of the coordinate of a relativistic particle. A simple derivation of the gravitational interaction of first order in spin is presented for a relativistic particle. The approach developed allows one to consider effects of higher order in spin. Concrete calculations are performed for the second order. The gravimagnetic moment is discussed, a special spin effect in general relativity. We also consider the contributions of the spin interactions of first and second order to the gravitational radiation of compact binary stars. (from the current literature)

  12. Hadrons in dense and/or hot hadronic matter

    International Nuclear Information System (INIS)

    Bertrand, T.; Chanfray, G.; Davesne, D.; Delorme, J.; Ericson, M.; Marteau, J.

    1998-01-01

    Medium effects on various properties of hadrons have been considered. We have studied the mixing between axial and vector currents which accompanies the partial restoration of chiral symmetry. We have improved in several ways our interpretation of the modifications of the ρ mass spectrum in the CERN heavy ion experiment CERES. Still in the domain of relativistic heavy ion collisions, a Boltzmann transport equation has been solved with the aim of incorporating medium effects on the pion spectra. More formally, studies have been conducted with promising results on non perturbative methods in field theory. Other topics cover nuclear effects in the atmospheric neutrino problem and a semi-classical approach to exclusive (e,e'p) reactions. (authors)

  13. Application of the relativistic mean-field mass model to the r-process and the influence of mass uncertainties

    International Nuclear Information System (INIS)

    Sun, B.; Montes, F.; Geng, L. S.; Geissel, H.; Litvinov, Yu. A.; Meng, J.

    2008-01-01

    A new mass table calculated by the relativistic mean-field approach with the state-dependent BCS method for the pairing correlation is applied for the first time to study r-process nucleosynthesis. The solar r-process abundance is well reproduced within a waiting-point approximation approach. Using an exponential fitting procedure to find the required astrophysical conditions, the influence of mass uncertainty is investigated. The r-process calculations using the FRDM, ETFSI-Q, and HFB-13 mass tables have been used for that purpose. It is found that the nuclear physical uncertainty can significantly influence the deduced astrophysical conditions for the r-process site. In addition, the influence of the shell closure and shape transition have been examined in detail in the r-process simulations

  14. Photons from Ultra-Relativistic Heavy Ion Collisions

    CERN Document Server

    Sarkar, S

    2000-01-01

    It is believed that a novel state of matter - Quark Gluon Plasma (QGP) will be transiently produced if normal hadronic matter is subjected to sufficiently high temperature and/or density. We have investigated the possibility of QGP formation in the ultra-relativistic collisions of heavy ions through the electromagnetic probes - photons and dileptons. The formulation of the real and virtual photon production rate from strongly interacting matter is studied in the framework of Thermal Field Theory. Since signals from the QGP will pick up large backgrounds from hadronic matter we have performed a detailed study of the changes in the hadronic properties induced by temperature within the ambit of the Quantum Hadrodynamic model, gauged linear and non-linear sigma models, hidden local symmetry approach and QCD sum rule approach. The possibility of observing the direct thermal photons and lepton pairs from quark gluon plasma has been contrasted with that from hot hadronic matter with and without medium effects for va...

  15. Using field theory in hadron physics

    International Nuclear Information System (INIS)

    Abarbanel, H.D.I.

    1978-03-01

    Topics are covered on the connection of field theory and hadron physics. The renormalization group and infrared and ultraviolet limits of field theory, in particular quantum chromodynamics, spontaneous mass generation, color confinement, instantons, and the vacuum state in quantum chromodynamics are treated. 21 references

  16. Effect of deformation on structure and reaction of Al isotopes using relativistic mean field densities in Glauber model

    Science.gov (United States)

    Panda, R. N.; Sharma, Mahesh K.; Panigrahi, M.; Patra, S. K.

    2018-06-01

    We have examined the ground state properties of Al isotopes towards the proton rich side from A = 22 to 28 using the well known relativistic mean field (RMF) formalism with NLSH parameter set. The calculated results are compared with the predictions of finite range droplet model and experimental data. The calculation is extended to estimate the reaction cross section for ^{22-28}Al as projectiles with ^{12}C as target. The incident energy of the projectiles are taken as 950 MeV/nucleon, for both spherical and deformed RMF densities as inputs in the Glauber model approximation. Further investigation of enhanced values of total reaction cross section for ^{23}Al and ^{24}Al in comparison to rest of the isotopes indicates the proton skin structure of these isotopes. Specifically, the large value of root mean square radius and total reaction cross section of ^{23}Al could not be ruled out the formation of proton halo.

  17. Light-Front Dynamics in Hadron Physics

    NARCIS (Netherlands)

    Ji, C.R.; Bakker, B.L.G.; Choi, H.M.

    2013-01-01

    Light-front dynamics(LFD) plays an important role in the analyses of relativistic few-body systems. As evidenced from the recent studies of generalized parton distributions (GPDs) in hadron physics, a natural framework for a detailed study of hadron structures is LFD due to its direct application in

  18. Relativistic mean field theory with density dependent coupling constants for nuclear matter and finite nuclei with large charge asymmetry

    Energy Technology Data Exchange (ETDEWEB)

    Typel, S; Wolter, H H [Sektion Physik, Univ. Muenchen, Garching (Germany)

    1998-06-01

    Nuclear matter and ground state properties for (proton and neutron) semi-closed shell nuclei are described in relativistic mean field theory with coupling constants which depend on the vector density. The parametrization of the density dependence for {sigma}-, {omega}- and {rho}-mesons is obtained by fitting to properties of nuclear matter and some finite nuclei. The equation of state for symmetric and asymmetric nuclear matter is discussed. Finite nuclei are described in Hartree approximation, including a charge and an improved center-of-mass correction. Pairing is considered in the BCS approximation. Special attention is directed to the predictions for properties at the neutron and proton driplines, e.g. for separation energies, spin-orbit splittings and density distributions. (orig.)

  19. Mean free paths for high energy hadron collisions in nuclear matter

    International Nuclear Information System (INIS)

    Strugalski, Z.

    1983-01-01

    The mean free paths for various collisions of high energy pion in nuclear matter are determined experimentally using pion-xenon nucleus collision events at 3.5 GeV/c momentum. The relation between the mean free path lambdasub(i) for hadron-nucleon particle producing collisions in nuclear matter and corresponding cross section σsub(i) for particle producing collisions of this hadron with free nucleon is derived and discussed. This relation is lambdasub(i)=k/σsub(i), where lambdasub(i) is in nucleons per fm 2 and σ sub(i) - in fm 2 per nucleon, correspondingly, k=3.00+-0.26 is a coefficient accounting for the display of the nucleon inner structure in hadron-nucleus collisions

  20. Particle Acceleration, Magnetic Field Generation in Relativistic Shocks

    Science.gov (United States)

    Nishikawa, Ken-Ichi; Hardee, P.; Hededal, C. B.; Richardson, G.; Sol, H.; Preece, R.; Fishman, G. J.

    2005-01-01

    Shock acceleration is an ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., the Buneman instability, two-streaming instability, and the Weibel instability) created in the shocks are responsible for particle (electron, positron, and ion) acceleration. Using a 3-D relativistic electromagnetic particle (REMP) code, we have investigated particle acceleration associated with a relativistic jet front propagating through an ambient plasma with and without initial magnetic fields. We find only small differences in the results between no ambient and weak ambient parallel magnetic fields. Simulations show that the Weibel instability created in the collisionless shock front accelerates particles perpendicular and parallel to the jet propagation direction. New simulations with an ambient perpendicular magnetic field show the strong interaction between the relativistic jet and the magnetic fields. The magnetic fields are piled up by the jet and the jet electrons are bent, which creates currents and displacement currents. At the nonlinear stage, the magnetic fields are reversed by the current and the reconnection may take place. Due to these dynamics the jet and ambient electron are strongly accelerated in both parallel and perpendicular directions.

  1. Relativistic bound state approach to fundamental forces including gravitation

    Directory of Open Access Journals (Sweden)

    Morsch H.P.

    2012-06-01

    Full Text Available To describe the structure of particle bound states of nature, a relativistic bound state formalism is presented, which requires a Lagrangian including scalar coupling of two boson fields. The underlying mechanisms are quite complex and require an interplay of overlapping boson fields and fermion-antifermion production. This gives rise to two potentials, a boson-exchange potential and one identified with the long sought confinement potential in hadrons. With minimal requirements, two elementary massless fermions (quantons - with and without charge - and one gauge boson, hadrons and leptons but also atoms and gravitational systems are described by bound states with electric and magnetic coupling between the charges and spins of quantons. No need is found for colour, Higgs-coupling and supersymmetry.

  2. Theoretical studies in hadronic and nuclear physics. Progress report, December 1, 1993--June 30, 1994

    International Nuclear Information System (INIS)

    Cohen, T.D.; Banerjee, M.K.

    1994-07-01

    Under Hadrons in Nuclei and Nuclear Matter the authors research the ways in which the properties of nucleons and mesons are modified in the nuclear medium. Research progress is reported on a number of topics in this general area, including studies of the role of chiral symmetry for finite density or temperature nuclear matter, the use of QCD sum rules to describe baryons in nuclear matter, and color transparency. In the general field of Hadron Physics broad progress included studies of perturbative QCD, heavy quark physics, QCD sum rules, and QCD-based models. Notable progress was also achieved in Relativistic Dynamics in Quark, Hadron, and Nuclear Physics, where an explicit model of composite particles shows how the z-graph physics (which is an essential part of Dirac phenomenology) comes about. In addition, calculations of elastic electron-deuteron scattering based on two-body relativistic dynamics and meson exchange currents were completed, as were studies of quark-anti-quark bound states based on a relativistic quark model. Progress is also reported on the relativistic few-body problem. In the area of Heavy Ion Dynamics and Sharp Lepton Pairs, work continues on the Composite Particle Scenario for the 'Sharp Lepton Problem'. In particular, the scenario can now encompass the anomalous sharp leptons reported from positron irradiation of heavy neutral atoms, establishing such irradiations as an alternative experimental window to the heavy ion experiments

  3. Momentum projection and relativistic boost of solitons: Coherent states and projection

    International Nuclear Information System (INIS)

    Luebeck, E.G.; Birse, M.C.; Henley, E.M.; Wilets, L.

    1986-01-01

    We present a method for calculating center-of-mass corrections to hadron properties in soliton models and we apply the method to the soliton bag model. A coherent state is used to provide a quantum wave function corresponding to the mean-field approximation. This state is projected onto a zero-momentum eigenstate. States of nonzero momentum can be constructed from this with a Lorentz boost operator. Hence center-of-mass corrections can be made in a properly relativistic way. The energy of the projected zero-momentum state is the hadron mass with spurious center-of-mass energy removed. We apply a variational principle to our projected state and use three ''virial theorems'' to test our approximate solution. We also study projection of general one-mode states. Projection reduces the nucleon energy by up to 25%. Variation after projection gives a further reduction of less than 20%. Somewhat larger reductions in the energy are found for meson states

  4. Parton-hadron cascade approach at SPS and RHIC

    Energy Technology Data Exchange (ETDEWEB)

    Nara, Yasushi [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-07-01

    A parton-hadron cascade model which is the extension of hadronic cascade model incorporating hard partonic scattering based on HIJING is presented to describe the space-time evolution of parton/hadron system produced by ultra-relativistic nuclear collisions. Hadron yield, baryon stopping and transverse momentum distribution are calculated and compared with HIJING and VNI. Baryon density, energy density and temperature for RHIC are calculated within this model. (author)

  5. Hartree-type approximation applied to a phi4 field theory

    International Nuclear Information System (INIS)

    Chang, S.-J.

    1976-01-01

    Recently, there has been considerable interest in studying the relativistic field theories by means of nonperturbative method. These studies are partially motivated by the now fashionable physical picture that the hadrons are created from an 'abnormal vacuum state'. This abnormal vacuum state is the ground state associated with a spontaneously broken symmetry and is usually characterized by the non-vanishing expectation value of one or more scale fields. Presently, nearly all understandings of hadrons in the above description are based on semi-classical calculations. It is important to know how significant are the effects of the quantum corrections. Some results on the quantum fluctuations in a phi 4 field theory based in a self-consistent Hartree-type approximation are described. (Auth.)

  6. Mean free paths and in-medium scattering cross sections of energetic nucleons in neutron-rich nucleonic matter within the relativistic impulse approximation

    International Nuclear Information System (INIS)

    Jiang Weizhou; Li Baoan; Chen Liewen

    2007-01-01

    The mean free paths and in-medium scattering cross sections of energetic nucleons in neutron-rich nucleonic matter are investigated using the nucleon optical potential obtained within the relativistic impulse approximation with the empirical nucleon-nucleon scattering amplitudes and the nuclear densities obtained in the relativistic mean-field model. It is found that the isospin-splitting of nucleon mean free paths, sensitive to the imaginary part of the symmetry potential, changes its sign at certain high kinetic energy. The in-medium nucleon-nucleon cross sections are analytically and numerically demonstrated to be essentially independent of the isospin asymmetry of the medium and increase linearly with density in the high-energy region where the relativistic impulse approximation is applicable

  7. Effects of bulk viscosity and hadronic rescattering in heavy ion collisions at energies available at the BNL Relativistic Heavy Ion Collider and at the CERN Large Hadron Collider

    Science.gov (United States)

    Ryu, Sangwook; Paquet, Jean-François; Shen, Chun; Denicol, Gabriel; Schenke, Björn; Jeon, Sangyong; Gale, Charles

    2018-03-01

    We describe ultrarelativistic heavy ion collisions at the BNL Relativistic Heavy Ion Collider and the CERN Large Hadron Collider with a hybrid model using the IP-Glasma model for the earliest stage and viscous hydrodynamics and microscopic transport for the later stages of the collision. We demonstrate that within this framework the bulk viscosity of the plasma plays an important role in describing the experimentally observed radial flow and azimuthal anisotropy simultaneously. We further investigate the dependence of observables on the temperature below which we employ the microscopic transport description.

  8. OPE convergence in non-relativistic conformal field theories

    Energy Technology Data Exchange (ETDEWEB)

    Goldberger, Walter D.; Khandker, Zuhair University; Prabhu, Siddharth [Department of Physics, Yale University,New Haven, CT 06511 (United States); Physics Department, Boston University,Boston, MA 02215 (United States)

    2015-12-09

    Motivated by applications to the study of ultracold atomic gases near the unitarity limit, we investigate the structure of the operator product expansion (OPE) in non-relativistic conformal field theories (NRCFTs). The main tool used in our analysis is the representation theory of charged (i.e. non-zero particle number) operators in the NRCFT, in particular the mapping between operators and states in a non-relativistic “radial quantization” Hilbert space. Our results include: a determination of the OPE coefficients of descendant operators in terms of those of the underlying primary state, a demonstration of convergence of the (imaginary time) OPE in certain kinematic limits, and an estimate of the decay rate of the OPE tail inside matrix elements which, as in relativistic CFTs, depends exponentially on operator dimensions. To illustrate our results we consider several examples, including a strongly interacting field theory of bosons tuned to the unitarity limit, as well as a class of holographic models. Given the similarity with known statements about the OPE in SO(2,d) invariant field theories, our results suggest the existence of a bootstrap approach to constraining NRCFTs, with applications to bound state spectra and interactions. We briefly comment on a possible implementation of this non-relativistic conformal bootstrap program.

  9. Derivation of mean-field dynamics for fermions

    International Nuclear Information System (INIS)

    Petrat, Soeren

    2014-01-01

    In this work, we derive the time-dependent Hartree(-Fock) equations as an effective dynamics for fermionic many-particle systems. Our main results are the first for a quantum mechanical mean-field dynamics for fermions; in previous works, the mean-field limit is usually either coupled to a semiclassical limit, or the interaction is scaled down so much, that the system behaves freely for large particle number N. We mainly consider systems with total kinetic energy bounded by const.N and long-range interaction potentials, e.g., Coulomb interaction. Examples for such systems are large molecules or certain solid states. Our analysis also applies to attractive interactions, as, e.g., in fermionic stars. The fermionic Hartree(-Fock) equations are a standard tool to describe, e.g., excited states or chemical reactions of large molecules (like proteins). A deeper understanding of these equations as an approximation to the time evolution of a many body quantum system is thus highly relevant. We consider the fermionic Hartree equations (i.e., the Hartree-Fock equations without exchange term) in this work, since the exchange term is subleading in our setting. The main result is that the fermionic Hartree dynamics approximates the Schroedinger dynamics well for large N. This statement becomes exact in the thermodynamic limit N→∞. We give explicit values for the rates of convergence. We prove two types of results. The first type is very general and concerns arbitrary free Hamiltonians (e.g., relativistic, non-relativistic, with external fields) and arbitrary interactions. The theorems give explicit conditions on the solutions to the fermionic Hartree equations under which a derivation of the mean-field dynamics succeeds. The second type of results scrutinizes situations where the conditions are fulfilled. These results are about non-relativistic free Hamiltonians with external fields, systems with total kinetic energy bounded by const.N and with long-range interactions of

  10. Theory and Experiment for Hadrons on the Light-Front

    CERN Document Server

    Salme, Giovanni

    2016-01-01

    LC2015 belongs to a Conference series that started in 1991 under the supervision of the International Light Cone Advisory Committee (ILCAC), with the aim of promoting the research towards a rigorous description of hadrons and nuclei, based on Light-Cone quantization methods. A strong relation with the experimental activity was always pursued and it will be emphasized in the next edition, in order to meet one of the main goals of the whole Light-Cone community "to assist in the development of crucial experimental tests of hadron facilities". The scientific program will feature invited as well as contributed talks, selected in collaboration with the Scientific Advisory Committee and the ILCAC. The main topics to be addressed are: * Hadron physics at present and future facilities; * Nonperturbative methods in quantum field theory * AdS/CFT: theory and applications * Light-front theories in QCD and QED * Relativistic methods for nuclear and hadronic structures * Few-body problems onto the Light cone * Lattice gau...

  11. How to detect colour field topologies in hadronic interactions

    International Nuclear Information System (INIS)

    Andersson, B.; Bengtsson, H.U.

    1987-06-01

    We discuss the different colour field topologies of QCD interactions, and demonstrate how the existence of two different colour topologies in qg scattering will lead to an experimentally observable asymmetry in the production of K + K - pairs in hadron-hadron collisions. (authors)

  12. Self-consistent mean-field models for nuclear structure

    International Nuclear Information System (INIS)

    Bender, Michael; Heenen, Paul-Henri; Reinhard, Paul-Gerhard

    2003-01-01

    The authors review the present status of self-consistent mean-field (SCMF) models for describing nuclear structure and low-energy dynamics. These models are presented as effective energy-density functionals. The three most widely used variants of SCMF's based on a Skyrme energy functional, a Gogny force, and a relativistic mean-field Lagrangian are considered side by side. The crucial role of the treatment of pairing correlations is pointed out in each case. The authors discuss other related nuclear structure models and present several extensions beyond the mean-field model which are currently used. Phenomenological adjustment of the model parameters is discussed in detail. The performance quality of the SCMF model is demonstrated for a broad range of typical applications

  13. Gravitationally confined relativistic neutrinos

    Science.gov (United States)

    Vayenas, C. G.; Fokas, A. S.; Grigoriou, D.

    2017-09-01

    Combining special relativity, the equivalence principle, and Newton’s universal gravitational law with gravitational rather than rest masses, one finds that gravitational interactions between relativistic neutrinos with kinetic energies above 50 MeV are very strong and can lead to the formation of gravitationally confined composite structures with the mass and other properties of hadrons. One may model such structures by considering three neutrinos moving symmetrically on a circular orbit under the influence of their gravitational attraction, and by assuming quantization of their angular momentum, as in the Bohr model of the H atom. The model contains no adjustable parameters and its solution, using a neutrino rest mass of 0.05 eV/c2, leads to composite state radii close to 1 fm and composite state masses close to 1 GeV/c2. Similar models of relativistic rotating electron - neutrino pairs give a mass of 81 GeV/c2, close to that of W bosons. This novel mechanism of generating mass suggests that the Higgs mass generation mechanism can be modeled as a latent gravitational field which gets activated by relativistic neutrinos.

  14. The common elements of atomic and hadronic physics

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, Stanley J., E-mail: sjbth@slac.stanford.edu [Stanford University, SLAC National Accelerator Laboratory (United States)

    2015-08-15

    Atomic physics and hadronic physics are both governed by the Yang Mills gauge theory Lagrangian; in fact, Abelian quantum electrodynamics can be regarded as the zero-color limit of quantum chromodynamics. I review a number of areas where the techniques of atomic physics can provide important insight into hadronic eigenstates in QCD. For example, the Dirac-Coulomb equation, which predicts the spectroscopy and structure of hydrogenic atoms, has an analog in hadron physics in the form of frame-independent light-front relativistic equations of motion consistent with light-front holography which give a remarkable first approximation to the spectroscopy, dynamics, and structure of light hadrons. The production of antihydrogen in flight can provide important insight into the dynamics of hadron production in QCD at the amplitude level. The renormalization scale for the running coupling is unambiguously set in QED; an analogous procedure sets the renormalization scales in QCD, leading to scheme-independent scale-fixed predictions. Conversely, many techniques which have been developed for hadron physics, such as scaling laws, evolution equations, the quark-interchange process and light-front quantization have important applicants for atomic physics and photon science, especially in the relativistic domain.

  15. The Common Elements of Atomic and Hadronic Physics

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, Stanley J. [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2015-02-26

    Atomic physics and hadronic physics are both governed by the Yang Mills gauge theory Lagrangian; in fact, Abelian quantum electrodynamics can be regarded as the zero-color limit of quantum chromodynamics. I review a number of areas where the techniques of atomic physics can provide important insight into hadronic eigenstates in QCD. For example, the Dirac-Coulomb equation, which predicts the spectroscopy and structure of hydrogenic atoms, has an analog in hadron physics in the form of frame-independent light-front relativistic equations of motion consistent with light-front holography which give a remarkable first approximation to the spectroscopy, dynamics, and structure of light hadrons. The production of antihydrogen in flight can provide important insight into the dynamics of hadron production in QCD at the amplitude level. The renormalization scale for the running coupling is unambiguously set in QED; an analogous procedure sets the renormalization scales in QCD, leading to scheme-independent scale-fixed predictions. Conversely, many techniques which have been developed for hadron physics, such as scaling laws, evolution equations, the quark-interchange process and light-front quantization have important applicants for atomic physics and photon science, especially in the relativistic domain.

  16. Relativistic nuclear fluid dynamics and VUU kinetic theory

    International Nuclear Information System (INIS)

    Molitoris, J.J.; Hahn, D.; Alonso, C.; Collazo, I.; D'Alessandris, P.; McAbee, T.; Wilson, J.; Zingman, J.

    1987-01-01

    Relativistic kinetic theory may be used to understand hot dense hadronic matter. We address the questions of collective flow and pion production in a 3 D relativistic fluid dynamic model and in the VUU microscopic theory. The GSI/LBL collective flow and pion data point to a stiff equation of state. The effect of the nuclear equation of state on the thermodynamic parameters is discussed. The properties of dense hot hadronic matter are studied in Au + Au collisions from 0.1 to 10 GeV/nucleon. 22 refs., 5 figs

  17. Second relativistic mean field and virial equation of state for astrophysical simulations

    International Nuclear Information System (INIS)

    Shen, G.; Horowitz, C. J.; O'Connor, E.

    2011-01-01

    We generate a second equation of state (EOS) of nuclear matter for a wide range of temperatures, densities, and proton fractions for use in supernovae, neutron star mergers, and black hole formation simulations. We employ full relativistic mean field (RMF) calculations for matter at intermediate density and high density, and the virial expansion of a nonideal gas for matter at low density. For this EOS we use the RMF effective interaction FSUGold, whereas our earlier EOS was based on the RMF effective interaction NL3. The FSUGold interaction has a lower pressure at high densities compared to the NL3 interaction. We calculate the resulting EOS at over 100 000 grid points in the temperature range T=0 to 80 MeV, the density range n B =10 -8 to 1.6 fm -3 , and the proton fraction range Y p =0 to 0.56. We then interpolate these data points using a suitable scheme to generate a thermodynamically consistent equation of state table on a finer grid. We discuss differences between this EOS, our NL3-based EOS, and previous EOSs by Lattimer-Swesty and H. Shen et al. for the thermodynamic properties, composition, and neutron star structure. The original FSUGold interaction produces an EOS, which we call FSU1.7, that has a maximum neutron star mass of 1.7 solar masses. A modification in the high-density EOS is introduced to increase the maximum neutron star mass to 2.1 solar masses and results in a slightly different EOS that we call FSU2.1. The EOS tables for FSU1.7 and FSU2.1 are available for download.

  18. Refitting density dependent relativistic model parameters including Center-of-Mass corrections

    International Nuclear Information System (INIS)

    Avancini, Sidney S.; Marinelli, Jose R.; Carlson, Brett Vern

    2011-01-01

    Full text: Relativistic mean field models have become a standard approach for precise nuclear structure calculations. After the seminal work of Serot and Walecka, which introduced a model Lagrangian density where the nucleons interact through the exchange of scalar and vector mesons, several models were obtained through its generalization, including other meson degrees of freedom, non-linear meson interactions, meson-meson interactions, etc. More recently density dependent coupling constants were incorporated into the Walecka-like models, which are then extensively used. In particular, for these models a connection with the density functional theory can be established. Due to the inherent difficulties presented by field theoretical models, only the mean field approximation is used for the solution of these models. In order to calculate finite nuclei properties in the mean field approximation, a reference set has to be fixed and therefore the translational symmetry is violated. It is well known that in such case spurious effects due to the center-of-mass (COM) motion are present, which are more pronounced for light nuclei. In a previous work we have proposed a technique based on the Pierls-Yoccoz projection operator applied to the mean-field relativistic solution, in order to project out spurious COM contributions. In this work we obtain a new fitting for the density dependent parameters of a density dependent hadronic model, taking into account the COM corrections. Our fitting is obtained taking into account the charge radii and binding energies for He 4 , O 16 , Ca 40 , Ca 48 , Ni 56 , Ni 68 , Sn 100 , Sn 132 and Pb 208 . We show that the nuclear observables calculated using our fit are of a quality comparable to others that can be found in the literature, with the advantage that now a translational invariant many-body wave function is at our disposal. (author)

  19. Treating Coulomb exchange contributions in relativistic mean field calculations: why and how

    International Nuclear Information System (INIS)

    Giai, Nguyen Van; Liang, Haozhao; Gu, Huai-Qiang; Long, Wenhui; Meng, Jie

    2014-01-01

    The energy density functional (EDF) method is very widely used in nuclear physics, and among the various existing functionals those based on the relativistic Hartree (RH) approximation are very popular because the exchange contributions (Fock terms) are numerically rather onerous to calculate. Although it is possible to somehow ‘mock up’ the effects of meson-induced exchange terms by adjusting the meson–nucleon couplings, the lack of Coulomb exchange contributions hampers the accuracy of predictions. In this work, we show that the Coulomb exchange effects can be easily included with good accuracy in a perturbative approach. Therefore, it would be desirable for future relativistic EDF models to incorporate Coulomb exchange effects, at least to some order of perturbation

  20. Relativistic quantum theory of composite systems

    International Nuclear Information System (INIS)

    Sogami, I.

    1978-01-01

    A relativistic quantum theory free from the difficulties of tachyons and ghosts is formulated to describe the scattering processes between composite systems of spinless quarks. To evade the complication brewed by introducing gluon fields or strings, valence quarks are effectively assumed to be in the relative motion of harmonic oscillation correlating with the motion of the composite system as a whole. A quark-antiquark system is represented by a bilocal field describing a sequence of mesons and every meson is identified with the composite system in a definite eigenstate of relative motion. The quantization is performed in the interaction picture, so that the microcausal condition is satisfied by local fields which result from the decomposition of bilocal fields. Imposing a weakened macrocausal condition on the whole motion of the extended system, a causal bilocal propagator is defined and a consistent time ordering among bilocal fields is defined. The invariant S-matrix is obtained and the graphical method for the calculation of its elements is developed in parallel with the conventional local field theory. For the (bilocal field) 3 interaction any malignant divergence does not appear excepting those in the renormalizable local field theory. The theory provides one promising and comprehensive phenomenology of hadrons which is suitable especially to describe the hard structure of hadrons. (author)

  1. Temperature dependent relativistic microscopic optical potential and mean free paths of nucleons

    International Nuclear Information System (INIS)

    Han Yinlu; Shen Qingbiao; Zhuo Yizhong

    1993-01-01

    The relativistic microscopic optical potential, mean free paths and Schroedinger equivalent potential of nucleons at finite temperature in nuclear matter are studied based on Walecka's model and thermo field dynamics. We let only the Hartree-Fock self-energy of nucleon represent to be the real part of the microscopic optical potential and the fourth order of meson exchange diagrams, i.e. the core polarization represent the imaginary part of microscopic optical potential in nuclear matter. The microscopic optical potential of finite nuclei is obtained with the local density approximation

  2. Back-reaction beyond the mean field approximation

    International Nuclear Information System (INIS)

    Kluger, Y.

    1993-01-01

    A method for solving an initial value problem of a closed system consisting of an electromagnetic mean field and its quantum fluctuations coupled to fermions is presented. By tailoring the large N f expansion method to the Schwinger-Keldysh closed time path (CTP) formulation of the quantum effective action, causality of the resulting equations of motion is ensured, and a systematic energy conserving and gauge invariant expansion about the electromagnetic mean field in powers of 1/N f is developed. The resulting equations may be used to study the quantum nonequilibrium effects of pair creation in strong electric fields and the scattering and transport processes of a relativistic e + e - plasma. Using the Bjorken ansatz of boost invariance initial conditions in which the initial electric mean field depends on the proper time only, we show numerical results for the case in which the N f expansion is truncated in the lowest order, and compare them with those of a phenomenological transport equation

  3. Composite models of hadrons and relativistic bound states

    International Nuclear Information System (INIS)

    Filippov, A.T.

    1977-01-01

    The following problems are considered: what the constituents of the hadrons are; what their quantum numbers and their broken and unbroken symmetries are; what the dynamics of the constituents (equations, binding forces and the origin of symmetry violations) is. The most puzzling question is: why the constituents ''escape from freedom'' and are confined inside the hadrons; what experimentalists can report about the hadron constituents and their dynamics if not finding them. There are no final answers to all these questions. The achievements of quark model are described, some problems concerning the comparison of the quark model with experiment are considered. The attempt is also made to present alternative views on the same problems

  4. Magnetic Field Structure in Relativistic Jets

    Directory of Open Access Journals (Sweden)

    Jermak Helen

    2013-12-01

    Full Text Available Relativistic jets are ubiquitous when considering an accreting black hole. Two of the most extreme examples of these systems are blazars and gamma-ray bursts (GRBs, the jets of which are thought to be threaded with a magnetic field of unknown structure. The systems are made up of a black hole accreting matter and producing, as a result, relativistic jets of plasma from the poles of the black hole. Both systems are viewed as point sources from Earth, making it impossible to spatially resolve the jet. In order to explore the structure of the magnetic field within the jet we take polarisation measurements with the RINGO polarimeters on the world’s largest fully autonomous, robotic optical telescope: The Liverpool Telescope. Using the polarisation degree and angle measured by the RINGO polarimeters it is possible to distinguish between global magnetic fields created in the central engine and random tangled magnetic fields produced locally in shocks. We also monitor blazar sources regularly during quiescence with periods of flaring monitored more intensively. Reported here are the early polarisation results for GRBs 060418 and 090102, along with future prospects for the Liverpool Telescope and the RINGO polarimeters.

  5. Relativistic quantum mechanics an introduction to relativistic quantum fields

    CERN Document Server

    Maiani, Luciano

    2016-01-01

    Written by two of the world's leading experts on particle physics and the standard model - including an award-winning former Director General of CERN - this textbook provides a completely up-to-date account of relativistic quantum mechanics and quantum field theory. It describes the formal and phenomenological aspects of the standard model of particle physics, and is suitable for advanced undergraduate and graduate students studying both theoretical and experimental physics.

  6. Relativistic duality, and relativistic and radiative corrections for heavy-quark systems

    International Nuclear Information System (INIS)

    Durand, B.; Durand, L.

    1982-01-01

    We give a JWKB proof of a relativistic duality relation which relates an appropriate energy average of the physical cross section for e + e - →qq-bar bound states→hadrons to the same energy average of the perturbative cross section for e + e - →qq-bar. We show that the duality relation can be used effectively to estimate relativistic and radiative corrections for bound-quark systems to order α/sub s//sup ts2/. We also present a formula which relates the square of the ''large'' 3 S 1 Salpeter-Bethe-Schwinger wave function for zero space-time separation of the quarks to the square of the nonrelativistic Schroedinger wave function at the origin for an effective potential which reproduces the relativistic spectrum. This formula allows one to use the nonrelativistic wave functions obtained in potential models fitted to the psi and UPSILON spectra to calculate relativistic leptonic widths for qq-bar states via a relativistic version of the van Royen--Weisskopf formula

  7. Using field theory in hadron physics

    International Nuclear Information System (INIS)

    Abarbanel, H.D.I.

    1979-01-01

    The author gives an introductory review about the development of applications of quantum field theory in hadron physics. Especially he discusses the renormalization group and the use of this group for the selection of a field theory. In this framework he compares quantum chromodynamics with quantum electrodynamics. Finally he discusses dynamic mass generation and quark confinement in the framework of quantum chromodynamics. (HSI) [de

  8. Mean charged hadron multiplicities in high-energy collisions

    Energy Technology Data Exchange (ETDEWEB)

    Albini, E [Istituto di Matematica dell' Universita Cattolica di Brescia (Italy); Capiluppi, P; Giacomelli, G; Rossi, A M [Bologna Univ. (Italy). Istituto di Fisica

    1976-03-01

    A collection of mean charged hadron multiplicities per inelastic collision in various high-energy processes is presented. An extensive list of fits of as a function of energy is presented and discussed. As the energy increases the multiplicities for different collisions tend to a unique curve, independent of the type of colliding particles.

  9. Quantum theory of relativistic charged particles in external fields

    International Nuclear Information System (INIS)

    Ruijsenaars, S.N.M.

    1976-01-01

    A study was made on external field theories in which the quantized field corresponds to relativistic elementary particles with non-zero rest mass. These particles are assumed to be charged, thus they have distinct antiparticles. The thesis consists of two parts. The first tries to accommodate the general features of theories of relativistic charged particles in external fields. Spin and dynamics in particular are not specified. In the second part, the results are applied to charged spin-1/2 and spin-0 particles, the dynamics of which are given by the Dirac resp. Klein-Gordon equation. The greater emphasis is on external fields which are rapidly decreasing, infinitely differentiable functions of space-time, but also considers time-independent fields. External fields, other than electromagnetic fields are also considered, e.g. scalar fields

  10. Search for Exotic Strange Dibaryon in Relativistic Heavy Ion Collisions

    Institute of Scientific and Technical Information of China (English)

    GAO Chong-Shou

    2003-01-01

    The exotic strange dibaryon particle (ΩΩ)0+ with S = -6 can be produced in relativistic heavyioncollisions. The yields of this kind of exotic strange dibaryon particles can increase significantly soon as the formation ofQGP does exhibit after the collision. If there is no phase transition after the collision, the upper bound of the productionof this diomega can be estimated from the free hadronic gas model for nuclear matter. The relative yield ratio of diomegato deuteron is less than 0.000205, this means that if there is no QGP creation it is difficult to observe the production ofdiomega in relativistic heavy ion collisions.

  11. Search for Exotic Strange Dibaryon in Relativistic Heavy Ion Collisions

    Institute of Scientific and Technical Information of China (English)

    GAOChong-Shou

    2003-01-01

    The exotic strange dibaryon particle (ΩΩ)0+ with S = -6 can be produced in relativistic heavy ion collisions. The yields of this kind of exotic strange dibaryon particles can increase signitlcantly soon as the formation of QGP does exhibit after the collision. If there is no phase transition after the collision, the upper bound of the production of this diomega can be estimated from the free hadronic gas model for nuclear matter. The relative yield ratio of diomega to deuteron is less than 0.000205, this means that if there is no QGP creation it is difficult to observe the production of diomega in relativistic heavy ion collisions.

  12. A relativistic theory for continuous measurement of quantum fields

    International Nuclear Information System (INIS)

    Diosi, L.

    1990-04-01

    A formal theory for the continuous measurement of relativistic quantum fields is proposed. The corresponding scattering equations were derived. The proposed formalism reduces to known equations in the Markovian case. Two recent models for spontaneous quantum state reduction have been recovered in the framework of this theory. A possible example of the relativistic continuous measurement has been outlined in standard Quantum Electrodynamics. The continuous measurement theory possesses an alternative formulation in terms of interacting quantum and stochastic fields. (author) 23 refs

  13. Scaling and mean normalized multiplicity in hadron-nucleus collisions

    International Nuclear Information System (INIS)

    Khan, M.Q.R.; Ahmad, M.S.; Hasan, R.

    1987-01-01

    Recently it has been reported that the dependence of the mean normalized multiplicity, R A , in hadron-nucleus collisions upon the effective number of projectile encounters, , is projectile independent. We report the failure of this kind of scaling using the world data at accelerator and cosmic ray energies. Infact, we have found that the dependence of R A upon the number of projectile encounters hA is projectile independent. This leads to a new kind of scaling. Further, the scaled multiplicity distributions are found independent on the nature and energy of the incident hadron in the energy range ≅ (17.2-300) GeV. (orig.)

  14. Identifying Multiquark Hadrons from Heavy Ion Collisions

    International Nuclear Information System (INIS)

    Cho, Sungtae; Furumoto, Takenori; Yazaki, Koichi; Hyodo, Tetsuo; Jido, Daisuke; Ohnishi, Akira; Ko, Che Ming; Lee, Su Houng; Nielsen, Marina; Sekihara, Takayasu; Yasui, Shigehiro

    2011-01-01

    Identifying hadronic molecular states and/or hadrons with multiquark components either with or without exotic quantum numbers is a long-standing challenge in hadronic physics. We suggest that studying the production of these hadrons in relativistic heavy ion collisions offers a promising resolution to this problem as yields of exotic hadrons are expected to be strongly affected by their structures. Using the coalescence model for hadron production, we find that, compared to the case of a nonexotic hadron with normal quark numbers, the yield of an exotic hadron is typically an order of magnitude smaller when it is a compact multiquark state and a factor of 2 or more larger when it is a loosely bound hadronic molecule. We further find that some of the newly proposed heavy exotic states could be produced and realistically measured in these experiments.

  15. Quest of halo in 31Ne using Glauber model formalism with deformed relativistic mean field density

    International Nuclear Information System (INIS)

    Sharma, Mahesh K.; Patra, S.K.

    2012-01-01

    The advancement of radio active ion beam (RIB) explored the structure of exotic nuclei, which are away from the β stability line. Such nuclei with weak binding lie at the limit of stability and exhibit some fascinating phenomena. One of them is the formation of one or more nucleon halo structure. It is well established that the interaction cross section of halo nuclei like 11 Li, 11 Be and 19 C show anomalously large interaction cross sections and matter radius than that of their neighboring nuclei. Some recent investigations for 31 Ne predict that has a halo nature. The first experimental evidence also suggests 31 Ne as a halo candidate. The isotope 31 Ne having N=21, which breaks the shell closer structure as a consequence of deformation associated with the strong intruder configuration and having special interest, because it lie at island of inversion. Here we apply the well known Glauber approach with conjunction of deformed relativistic mean field densities of projectile and target nuclei. It is to be noted that Panda et al has done the similar calculation using a spherical density

  16. Quarkonium+{gamma} production in coherent hadron-hadron interactions at LHC energies

    Energy Technology Data Exchange (ETDEWEB)

    Goncalves, V.P. [Universidade Federal de Pelotas, Instituto de Fisica e Matematica, Caixa Postal 354, Pelotas, RS (Brazil); Machado, M.M. [IF - Farroupilha, Instituto Federal de Educacao, Ciencia e Tecnologia, Sao Borja, RS (Brazil)

    2012-11-15

    In this paper we study the H+{gamma} (H=J/{Psi} and and upsilon;) production in coherent hadron-hadron interactions at LHC energies. Considering the ultrarelativistic protons as a source of photons, we estimate the {gamma}+p{yields}H+{gamma}+X cross section using the non-relativistic QCD (NRQCD) factorization formalism and considering different sets of values for the matrix elements. Our results for the total p+p{yields}p+H+{gamma}+X cross sections and rapidity distributions at {radical}(s) = 7 and 14 TeV demonstrate that the experimental analysis of the J/{Psi}+{gamma} production at LHC is feasible. (orig.)

  17. Relativistic derivation of the ponderomotive force produced by two intense laser fields

    International Nuclear Information System (INIS)

    Stroscio, M.A.

    1985-01-01

    The ponderomotive force plays a fundamental role in the absorption of laser light on self-consistent plasma density profiles, in multiple-photon ionization, and in intense field electrodynamics. The relativistic corrections to the ponderomotive force of a transversely polarized electromagnetic wave lead to an approximately 20-percent reduction in the single particle ponderomotive force produced by a 10-γm 10 16 -W/cm 2 laser field. Recent experimental investigations are based on using two intense laser fields to produce desired lasermatter interactions. This paper presents the first derivation of the nonlinear relativistic ponderomotive force produced by two intense laser fields. The results demonstrate that relativistic ponderomotive forces are not additive

  18. Hadronic form factor models and spectroscopy within the gauge/gravity correspondence

    International Nuclear Information System (INIS)

    de Teramond, Guy

    2012-01-01

    We show that the nonperturbative light-front dynamics of relativistic hadronic bound states has a dual semiclassical gravity description on a higher dimensional warped AdS space in the limit of zero quark masses. This mapping of AdS gravity theory to the boundary quantum field theory, quantized at fixed light-front time, allows one to establish a precise relation between holographic wave functions in AdS space and the light-front wavefunctions describing the internal structure of hadrons. The resulting AdS/QCD model gives a remarkably good accounting of the spectrum, elastic and transition form factors of the light-quark hadrons in terms of one parameter, the QCD gap scale. The light-front holographic approach described here thus provides a frame-independent first approximation to the light-front Hamiltonian problem for QCD. This article is based on lectures at the Niccolo Cabeo International School of Hadronic Physics, Ferrara, Italy, May 2011.

  19. Hadronic form factor models and spectroscopy within the gauge/gravity correspondence

    Energy Technology Data Exchange (ETDEWEB)

    de Teramond, Guy F.; /Costa Rica U.; Brodsky, Stanley J.; /SLAC

    2012-03-20

    We show that the nonperturbative light-front dynamics of relativistic hadronic bound states has a dual semiclassical gravity description on a higher dimensional warped AdS space in the limit of zero quark masses. This mapping of AdS gravity theory to the boundary quantum field theory, quantized at fixed light-front time, allows one to establish a precise relation between holographic wave functions in AdS space and the light-front wavefunctions describing the internal structure of hadrons. The resulting AdS/QCD model gives a remarkably good accounting of the spectrum, elastic and transition form factors of the light-quark hadrons in terms of one parameter, the QCD gap scale. The light-front holographic approach described here thus provides a frame-independent first approximation to the light-front Hamiltonian problem for QCD. This article is based on lectures at the Niccolo Cabeo International School of Hadronic Physics, Ferrara, Italy, May 2011.

  20. Chameleon scalar fields in relativistic gravitational backgrounds

    Energy Technology Data Exchange (ETDEWEB)

    Tsujikawa, Shinji [Department of Physics, Faculty of Science, Tokyo University of Science, 1-3, Kagurazaka, Shinjuku-ku, Tokyo 162-8601 (Japan); Tamaki, Takashi [Department of Physics, Waseda University, Okubo 3-4-1, Tokyo 169-8555 (Japan); Tavakol, Reza, E-mail: shinji@rs.kagu.tus.ac.jp, E-mail: tamaki@gravity.phys.waseda.ac.jp, E-mail: r.tavakol@qmul.ac.uk [Astronomy Unit, School of Mathematical Sciences, Queen Mary University of London, London E1 4NS (United Kingdom)

    2009-05-15

    We study the field profile of a scalar field {phi} that couples to a matter fluid (dubbed a chameleon field) in the relativistic gravitational background of a spherically symmetric spacetime. Employing a linear expansion in terms of the gravitational potential {Phi}{sub c} at the surface of a compact object with a constant density, we derive the thin-shell field profile both inside and outside the object, as well as the resulting effective coupling with matter, analytically. We also carry out numerical simulations for the class of inverse power-law potentials V({phi}) = M{sup 4+n}{phi}{sup -n} by employing the information provided by our analytical solutions to set the boundary conditions around the centre of the object and show that thin-shell solutions in fact exist if the gravitational potential {Phi}{sub c} is smaller than 0.3, which marginally covers the case of neutron stars. Thus the chameleon mechanism is present in the relativistic gravitational backgrounds, capable of reducing the effective coupling. Since thin-shell solutions are sensitive to the choice of boundary conditions, our analytic field profile is very helpful to provide appropriate boundary conditions for {Phi}{sub c}{approx}

  1. Chameleon scalar fields in relativistic gravitational backgrounds

    International Nuclear Information System (INIS)

    Tsujikawa, Shinji; Tamaki, Takashi; Tavakol, Reza

    2009-01-01

    We study the field profile of a scalar field φ that couples to a matter fluid (dubbed a chameleon field) in the relativistic gravitational background of a spherically symmetric spacetime. Employing a linear expansion in terms of the gravitational potential Φ c at the surface of a compact object with a constant density, we derive the thin-shell field profile both inside and outside the object, as well as the resulting effective coupling with matter, analytically. We also carry out numerical simulations for the class of inverse power-law potentials V(φ) = M 4+n φ −n by employing the information provided by our analytical solutions to set the boundary conditions around the centre of the object and show that thin-shell solutions in fact exist if the gravitational potential Φ c is smaller than 0.3, which marginally covers the case of neutron stars. Thus the chameleon mechanism is present in the relativistic gravitational backgrounds, capable of reducing the effective coupling. Since thin-shell solutions are sensitive to the choice of boundary conditions, our analytic field profile is very helpful to provide appropriate boundary conditions for Φ c ∼< O(0.1)

  2. Cluster radioactive decay within the preformed cluster model using relativistic mean-field theory densities

    International Nuclear Information System (INIS)

    Singh, BirBikram; Patra, S. K.; Gupta, Raj K.

    2010-01-01

    We have studied the (ground-state) cluster radioactive decays within the preformed cluster model (PCM) of Gupta and collaborators [R. K. Gupta, in Proceedings of the 5th International Conference on Nuclear Reaction Mechanisms, Varenna, edited by E. Gadioli (Ricerca Scientifica ed Educazione Permanente, Milano, 1988), p. 416; S. S. Malik and R. K. Gupta, Phys. Rev. C 39, 1992 (1989)]. The relativistic mean-field (RMF) theory is used to obtain the nuclear matter densities for the double folding procedure used to construct the cluster-daughter potential with M3Y nucleon-nucleon interaction including exchange effects. Following the PCM approach, we have deduced empirically the preformation probability P 0 emp from the experimental data on both the α- and exotic cluster-decays, specifically of parents in the trans-lead region having doubly magic 208 Pb or its neighboring nuclei as daughters. Interestingly, the RMF-densities-based nuclear potential supports the concept of preformation for both the α and heavier clusters in radioactive nuclei. P 0 α(emp) for α decays is almost constant (∼10 -2 -10 -3 ) for all the parent nuclei considered here, and P 0 c(emp) for cluster decays of the same parents decrease with the size of clusters emitted from different parents. The results obtained for P 0 c(emp) are reasonable and are within two to three orders of magnitude of the well-accepted phenomenological model of Blendowske-Walliser for light clusters.

  3. Nuclear sub-structure in 112–122Ba nuclei within relativistic mean field theory

    International Nuclear Information System (INIS)

    Bhuyan, M.; Patra, S.K.; Arumugam, P.; Gupta, Raj K.

    2011-01-01

    Working within the framework of relativistic mean field theory, we study for the first time the clustering structure (nuclear sub-structure) of 112–122 Ba nuclei in an axially deformed cylindrical coordinate. We calculate the individual neutrons and protons density distributions for Ba-isotopes. From the analysis of the clustering configurations in total (neutrons-plus-protons) density distributions for various shapes of both the ground and excited states, we find different sub-structures inside the Ba nuclei considered here. The important step, carried out here for the first time, is the counting of number of protons and neutrons present in the clustering region(s). 12 C is shown to constitute the cluster configuration in prolate-deformed ground-states of 112–116 Ba and oblate-deformed first excited states of 118–122 Ba nuclei. Presence of other lighter clusters such as 2 H, 3 H and nuclei in the neighborhood of N = Z, 14 N, 34–36 Cl, 36 Ar and 42 Ca are also indicated in the ground and excited states of these nuclei. Cases with no cluster configuration are shown for 112–116 Ba in their first and second excited states. All these results are of interest for the observed intermediate-mass-fragments and fusion–fission processes, and the so far unobserved evaporation residues from the decaying Ba* compound nuclei formed in heavy ion reactions. (author)

  4. BRST field theory of relativistic particles

    International Nuclear Information System (INIS)

    Holten, J.W. van

    1992-01-01

    A generalization of BRST field theory is presented, based on wave operators for the fields constructed out of, but different from the BRST operator. The authors discuss their quantization, gauge fixing and the derivation of propagators. It is shown, that the generalized theories are relevant to relativistic particle theories in the Brink-Di Vecchia-Howe-Polyakov (BDHP) formulation, and argue that the same phenomenon holds in string theories. In particular it is shown, that the naive BRST formulation of the BDHP theory leads to trivial quantum field theories with vanishing correlation functions. (author). 22 refs

  5. Relativistic covariant wave equations and acausality in external fields

    International Nuclear Information System (INIS)

    Pijlgroms, R.B.J.

    1980-01-01

    The author considers linear, finite dimensional, first order relativistic wave equations: (βsup(μ)ideltasub(μ)-β)PSI(x) = 0 with βsup(μ) and β constant matrices. Firstly , the question of the relativistic covariance conditions on these equations is considered. Then the theory of these equations with β non-singular is summarized. Theories with βsup(μ), β square matrices and β singular are also discussed. Non-square systems of covariant relativistic wave equations for arbitrary spin > 1 are then considered. Finally, the interaction with external fields and the acausality problem are discussed. (G.T.H.)

  6. Particle Acceleration, Magnetic Field Generation, and Emission in Relativistic Shocks

    Science.gov (United States)

    Nishikawa, Ken-IchiI.; Hededal, C.; Hardee, P.; Richardson, G.; Preece, R.; Sol, H.; Fishman, G.

    2004-01-01

    Shock acceleration is an ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., the Buneman instability, two-streaming instability, and the Weibel instability) created in the shocks are responsible for particle (electron, positron, and ion) acceleration. Using a 3-D relativistic electromagnetic particle (m) code, we have investigated particle acceleration associated with a relativistic jet front propagating through an ambient plasma with and without initial magnetic fields. We find only small differences in the results between no ambient and weak ambient parallel magnetic fields. Simulations show that the Weibel instability created in the collisionless shock front accelerates particles perpendicular and parallel to the jet propagation direction. New simulations with an ambient perpendicular magnetic field show the strong interaction between the relativistic jet and the magnetic fields. The magnetic fields are piled up by the jet and the jet electrons are bent, which creates currents and displacement currents. At the nonlinear stage, the magnetic fields are reversed by the current and the reconnection may take place. Due to these dynamics the jet and ambient electron are strongly accelerated in both parallel and perpendicular directions.

  7. PREFACE: Focus section on Hadronic Physics Focus section on Hadronic Physics

    Science.gov (United States)

    Roberts, Craig; Swanson, Eric

    2007-07-01

    Hadronic physics is the study of strongly interacting matter and its underlying theory, Quantum Chromodynamics (QCD). The field had its beginnings after World War Two, when hadrons were discovered in ever increasing numbers. Today, it encompasses topics like the quark-gluon structure of hadrons at varying scales, the quark-gluon plasma and hadronic matter at extreme temperature and density; it also underpins nuclear physics and has significant impact on particle physics, astrophysics, and cosmology. Among the goals of hadronic physics are to determine the parameters of QCD, understand the origin and characteristics of confinement, understand the dynamics and consequences of dynamical chiral symmetry breaking, explore the role of quarks and gluons in nuclei and in matter under extreme conditions and understand the quark and gluon structure of hadrons. In general, the process is one of discerning the relevant degrees of freedom and relating these to the fundamental fields of QCD. The emphasis is on understanding QCD, rather than testing it. The papers gathered in this special focus section of Journal of Physics G: Nuclear and Particle Physics attempt to cover this broad range of subjects. Alkofer and Greensite examine the issue of quark and gluon confinement with the focus on models of the QCD vacuum, lattice gauge theory investigations, and the relationship to the AdS/CFT correspondence postulate. Arrington et al. review nucleon form factors and their role in determining quark orbital momentum, the strangeness content of the nucleon, meson cloud effects, and the transition from nonperturbative to perturbative QCD dynamics. The physics associated with hadronic matter at high temperature and density and at low Bjorken-x at the Relativistic Heavy Ion Collider (RHIC), the SPS at CERN, and at the future LHC is summarized by d'Enterria. The article of Lee and Smith examines experiment and theory associated with electromagnetic meson production from nucleons and

  8. Effectively semi-relativistic Hamiltonians of nonrelativistic form

    International Nuclear Information System (INIS)

    Lucha, W.; Schoeberl, F.F.; Moser, M.

    1993-12-01

    We construct effective Hamiltonians which despite their apparently nonrelativistic form incorporate relativistic effects by involving parameters which depend on the relevant momentum. For some potentials the corresponding energy eigenvalues may be determined analytically. Applied to two-particle bound states, it turns out that in this way a nonrelativistic treatment may indeed be able to simulate relativistic effects. Within the framework of hadron spectroscopy, this lucky circumstance may be an explanation for the sometimes extremely good predictions of nonrelativistic potential models even in relativistic regions. (authors)

  9. Relativistic degenerate electron plasma in an intense magnetic field

    International Nuclear Information System (INIS)

    Delsante, A.E.; Frankel, N.E.

    1978-01-01

    The dielectric response function for a dense, ultra-degenerate relativistic electron plasma in an intense uniform magnetic field is presented. Dispersion relations for plasma oscillations parallel and perpendicular to the magnetic field are obtained

  10. Electron-deuteron scattering in a relativistic theory of hadrons

    International Nuclear Information System (INIS)

    Phillips, D.

    1998-11-01

    The author reviews a three-dimensional formalism that provides a systematic way to include relativistic effects including relativistic kinematics, the effects of negative-energy states, and the boosts of the two-body system in calculations of two-body bound-states. He then explains how to construct a conserved current within this relativistic three-dimensional approach. This general theoretical framework is specifically applied to electron-deuteron scattering both in impulse approximation and when the ρπγ meson-exchange current is included. The experimentally-measured quantities A, B, and T 20 are calculated over the kinematic range that is probed in Jefferson Lab experiments. The role of both negative-energy states and meson retardation appears to be small in the region of interest

  11. Single photons, dileptons and hadrons from relativistic heavy ion collisions and quark-hadron phase transition

    CERN Document Server

    Srivastava, D K

    2001-01-01

    The production of single photons in Pb+Pb collisions at the CERN SPS as measured by the WA98 experiment is analysed. A quark gluon plasma is assumed to be formed initially, which expands, cools, hadronizes, and undergoes freeze-out. A rich hadronic equation of state is used and the transverse expansion of the interacting system is taken into account. The recent estimates of photon production in quark-matter (at two loop level) along with the dominant reactions in the hadronic matter leading to photons are used. About half of the radiated photons are seen to have a thermal origin. The same treatment and the initial conditions provide a very good description to hadronic spectra measured by several groups and the intermediate mass dileptons measured by the NA50 experiment, lending a strong support to the conclusion that quark gluon plasma has been formed in these collisions. Predictions for RHIC and LHC energies are also given. (37 refs).

  12. Relativistic quantum information in detectors–field interactions

    International Nuclear Information System (INIS)

    Hu, B L; Lin, Shih-Yuin; Louko, Jorma

    2012-01-01

    We review Unruh–DeWitt detectors and other models of detector–field interaction in a relativistic quantum field theory setting as a tool for extracting detector–detector, field–field and detector–field correlation functions of interest in quantum information science, from entanglement dynamics to quantum teleportation. In particular, we highlight the contrast between the results obtained from linear perturbation theory which can be justified provided switching effects are properly accounted for, and the nonperturbative effects from available analytic expressions which incorporate the backreaction effects of the quantum field on the detector behavior. (paper)

  13. Draws on a relativistic pinch with a longitudinal magnetic field

    International Nuclear Information System (INIS)

    Trubnikov, B.A.

    1991-01-01

    The problems of draws on a relativistic pinch with longitudinal magnetic field are discussed. The absence of collisions promoting the energy exchange between different degrees of particle freedom is assumed. The calculations are conducted using the ideal relativistic anisotropic magnetic hydrodynamics equations. The spectrum of particles accelerated in the draws, is determined

  14. Particle Acceleration, Magnetic Field Generation, and Emission in Relativistic Pair Jets

    Science.gov (United States)

    Nishikawa, K.-I.; Ramirez-Ruiz, E.; Hardee, P.; Hededal, C.; Mizuno, Y.

    2005-01-01

    Shock acceleration is a ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., the Buneman instability, two-streaming instability, and the Weibel instability) created by relativistic pair jets are responsible for particle (electron, positron, and ion) acceleration. Using a 3-D relativistic electromagnetic particle (REMP) code, we have investigated particle acceleration associated with a relativistic jet propagating through an ambient plasma with and without initial magnetic fields. The growth rates of the Weibel instability depends on the distribution of pair jets. Simulations show that the Weibel instability created in the collisionless shock accelerates particles perpendicular and parallel to the jet propagation direction. The simulation results show that this instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields, which contribute to the electron's transverse deflection behind the jet head. The "jitter" radiation from deflected electrons has different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants.

  15. Scaling of nuclear modification factors for hadrons and light nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, C.S. [Chinese Academy of Sciences, Shanghai Institute of Applied Physics, Shanghai (China); University of Chinese Academy of Sciences, Beijing (China); Ma, Y.G. [Chinese Academy of Sciences, Shanghai Institute of Applied Physics, Shanghai (China); ShanghaiTech University, Shanghai (China); Zhang, S. [Chinese Academy of Sciences, Shanghai Institute of Applied Physics, Shanghai (China)

    2016-12-15

    The number of constituent quarks (NCQ) scaling for hadrons and the number of constituent nucleons (NCN) scaling for light nuclei are proposed for nuclear modification factors (R{sub cp}) of hadrons and light nuclei, respectively, according to the experimental investigations in relativistic heavy-ion collisions. Based on the coalescence mechanism the scalings are performed for pions and protons at the quark level, and for light nuclei d(anti d) and {sup 3}He at the nucleonic level, respectively, formed in Au+Au and Pb+Pb collisions, and a nice scaling behaviour emerges. The NCQ or NCN scaling law of R{sub cp} can be, respectively, taken as a probe for the quark or nucleon coalescence mechanism for the formation of hadron or light nuclei in relativistic heavy-ion collisions. (orig.)

  16. On the relativistic extended Thomas-Fermi method

    International Nuclear Information System (INIS)

    Centelles, M.; Vinas, X.; Barranco, M.; Schuck, P.

    1990-01-01

    We have derived the semiclassical relativistic energy functional for a set of fermions moving in the mean field arising from scalar and vector fields, including up to ℎ 2 corrective terms. The method is applied to a relativistic harmonic oscillator model for which the semiclassical result can be compared with the exact solution of the Dirac equation. (orig.)

  17. On the relativistic extended Thomas-Fermi method

    International Nuclear Information System (INIS)

    Centelles, M.; Vinas, X.; Barranco, M.; Schuck, P.

    1990-01-01

    We have derived the semiclassical relativistic energy functional for a set of fermions moving in the mean field arising from scalar and vector fields, including up to ℎ 2 corrective terms. The method is applied to a relativistic harmonic oscillator model for which the semiclassical result can be compared with the exact solution of the Dirac equation

  18. Aspects of hadronic structure

    International Nuclear Information System (INIS)

    Ferreira, P.L.

    1984-01-01

    An overview of the current phenomenological models of hadron structure, whose theoretical basis is the Quantum Chromodynamics (QCD), is presented. A short introduction to the QCD permits to focalize the relevant properties which are attached to those models. Following, bag-like models (in particular, MIT bag and chiral extensions) and potential-like models among them the Karl and Isgur non-relativistic model and a semi-relativistic model, free of the Klein paradox, with equal scalar-vetorial mixture of confinement potential are shortly studied. Enphasis is given to the baryons, treated, basically, as three-quarks systems. (L.C.) [pt

  19. Dielectric response of a relativistic degenerate electron plasma in a strong magnetic field

    International Nuclear Information System (INIS)

    Delsante, A.E.; Frankel, N.E.

    1979-01-01

    The longitudinal dielectric response of a relativistic ultradegenerate electron plasma in a strong magnetic field is obtained via a relativistic generalization of the Hartree self-consistent field method. Dispersion relations and damping conditions for plasma oscillations both parallel and perpendicular to the magnetic field are obtained. Detailed results for the zero-field case, and applications to white dwarf stars and pulsars are given

  20. The Mesozoic Era of relativistic heavy ion physics and beyond

    International Nuclear Information System (INIS)

    Harris, J.W.

    1994-03-01

    In order to understand how matter 15 billion years ago in the form of quarks, gluons and leptons at a temperature of 2 x 10 12 degrees K evolved to become today's Universe, the goal of relativistic and ultra-relativistic heavy ion physics is to understand the equation of state of nuclear, hadronic and partonic matter. This quest is of cross-disciplinary interest. The phase transition from partonic matter to hadronic matter tens of micro-seconds after the beginning of the universe is of interest to cosmology. Fluctuations during this phase transition would influence nucleosynthesis and the understanding of baryonic inhomogeneities in the universe. The nuclear matter equation of state, which describes the incompressibility of nuclear matter, governs neutron star stability. It determines the possible existence of strange quark matter stars and the dynamics of supernova expansion in astrophysics. The existence of collective nuclear phenomena in nuclear physics is also determined by the nuclear equation of state. In relativistic heavy ion collisions collective nuclear flow has been observed and is being studied extensively to obtain a better understanding of the incompressibility of nuclear matter. In high energy nuclear and particle physics, production and excitations of hadronic final states have been studied in detail and are important to an overall understanding of the equation of state of nuclear matter at finite temperature. The possibility in ultra-relativistic heavy ion collisions to create and study highly excited hadronic and partonic degrees of freedom provides a unique opportunity for understanding the behavior of nuclear, hadronic and partonic matter. Study of the QCD vacuum, of particular interest in particle physics, would provide a better understanding of symmetry-breaking mechanisms and the origins of the masses of the various quarks and particles

  1. Neutrino emissivity in the quark-hadron mixed phase of neutron stars

    Energy Technology Data Exchange (ETDEWEB)

    Spinella, William M. [Computational Science Research Center San Diego State University, San Diego, CA (United States); San Diego State University, Department of Physics, San Diego, CA (United States); Weber, Fridolin [San Diego State University, Department of Physics, San Diego, CA (United States); University of California San Diego, Center for Astrophysics and Space Sciences, La Jolla, CA (United States); Contrera, Gustavo A. [CONICET, Buenos Aires (Argentina); CONICET - Dept. de Fisica, UNLP, IFLP, La Plata (Argentina); Universidad Nacional de La Plata, Grupo de Gravitacion, Astrofisica y Cosmologia, Facultad de Ciencias Astronomicas y Geofisicas, La Plata (Argentina); Orsaria, Milva G. [CONICET, Buenos Aires (Argentina); Universidad Nacional de La Plata, Grupo de Gravitacion, Astrofisica y Cosmologia, Facultad de Ciencias Astronomicas y Geofisicas, La Plata (Argentina)

    2016-03-15

    Numerous theoretical studies using various equation of state models have shown that quark matter may exist at the extreme densities in the cores of high-mass neutron stars. It has also been shown that a phase transition from hadronic matter to quark matter would result in an extended mixed phase region that would segregate phases by net charge to minimize the total energy of the phase, leading to the formation of a crystalline lattice. The existence of quark matter in the core of a neutron star may have significant consequences for its thermal evolution, which for thousands of years is facilitated primarily by neutrino emission. In this work we investigate the effect a crystalline quark-hadron mixed phase can have on the neutrino emissivity from the core. To this end we calculate the equation of state using the relativistic mean-field approximation to model hadronic matter and a nonlocal extension of the three-flavor Nambu-Jona-Lasinio model for quark matter. Next we determine the extent of the quark-hadron mixed phase and its crystalline structure using the Glendenning construction, allowing for the formation of spherical blob, rod, and slab rare phase geometries. Finally we calculate the neutrino emissivity due to electron-lattice interactions utilizing the formalism developed for the analogous process in neutron star crusts. We find that the contribution to the neutrino emissivity due to the presence of a crystalline quark-hadron mixed phase is substantial compared to other mechanisms at fairly low temperatures (

  2. Scaling of Elliptic Flow, Recombination and Sequential Freeze-Out of Hadrons in Heavy-Ion Collisions

    Energy Technology Data Exchange (ETDEWEB)

    Fries, R.; He, M., and Rapp, R.

    2010-09-21

    The scaling properties of elliptic flow of hadrons produced in ultrarelativistic heavy-ion collisions are investigated at low transverse momenta, p{sub T} {le} 2 GeV. Utilizing empirical parametrizations of a thermalized fireball with collective-flow fields, the resonance recombination model (RRM) is employed to describe hadronization via quark coalescence at the hadronization transition. We reconfirm that RRM converts equilibrium quark distribution functions into equilibrated hadron spectra including the effects of space-momentum correlations on elliptic flow. This provides the basis for a controlled extraction of quark distributions of the bulk matter at hadronization from spectra of multistrange hadrons which are believed to decouple close to the critical temperature. The resulting elliptic flow from empirical fits at the BNL Relativistic Heavy Ion Collider exhibits transverse kinetic-energy and valence-quark scaling. Utilizing the well-established concept of sequential freeze-out, the scaling at low momenta extends to bulk hadrons ({pi}, K, p) at thermal freeze-out, albeit with different source parameters compared to chemical freeze-out. Elliptic-flow scaling is thus compatible with both equilibrium hydrodynamics and quark recombination.

  3. Relativistic mechanics with reduced fields

    International Nuclear Information System (INIS)

    Sokolov, S.N.

    1996-01-01

    A new relativistic classical mechanics of interacting particles using a concept of a reduced field (RF) os proposed. RF is a mediator of interactions, the state of which is described by a finite number of two-argument functions. Ten of these functions correspond to the generators of the Poincare group. Equations of motion contain the retardation of interactions required by the causality principle and have form of a finite system of ordinary hereditary differential equations [ru

  4. ULTRA-RELATIVISTIC NUCLEI: A NEW FRONTIER

    International Nuclear Information System (INIS)

    MCLERRAN, L.

    1999-01-01

    The collisions of ultra-relativistic nuclei provide a window on the behavior of strong interactions at asymptotically high energies. They also will allow the authors to study the bulk properties of hadronic matter at very high densities

  5. Atoms in Flight: The Remarkable Connections between Atomic and Hadronic Physics

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, Stanley J.; /SLAC

    2012-02-16

    Atomic physics and hadron physics are both based on Yang Mills gauge theory; in fact, quantum electrodynamics can be regarded as the zero-color limit of quantum chromodynamics. I review a number of areas where the techniques of atomic physics provide important insight into the theory of hadrons in QCD. For example, the Dirac-Coulomb equation, which predicts the spectroscopy and structure of hydrogenic atoms, has an analog in hadron physics in the form of light-front relativistic equations of motion which give a remarkable first approximation to the spectroscopy, dynamics, and structure of light hadrons. The renormalization scale for the running coupling, which is unambiguously set in QED, leads to a method for setting the renormalization scale in QCD. The production of atoms in flight provides a method for computing the formation of hadrons at the amplitude level. Conversely, many techniques which have been developed for hadron physics, such as scaling laws, evolution equations, and light-front quantization have equal utility for atomic physics, especially in the relativistic domain. I also present a new perspective for understanding the contributions to the cosmological constant from QED and QCD.

  6. Wave functions for a relativistic electron in superstrong magnetic fields

    International Nuclear Information System (INIS)

    Dumitrescu, Gh.

    2003-01-01

    In the past decade few authors attempted to search interesting features of the radiation of a specific neutron star, the magnetar. In this paper we investigate some features of the motion of an electron in a strong magnetic field as it occurs in a magnetar atmosphere. We have applied the conditions of the super relativistic electrons in super-strong magnetic fields proposed by Gonthier et al. to express two specific spin operators and their eigenfunctions. We have done this in order to investigate into a further paper an estimation of the cross section in Compton process in strong and superstrong magnetic fields in relativistic regime. (author)

  7. On the relativistic partition function of ideal gases

    International Nuclear Information System (INIS)

    Sinyukov, Yu.M.

    1983-01-01

    The covariant partition function method for ideal Boltzmann and Bose gases is developed within quantum field theory. This method is a basis to describe the statistical and thermodynamical properties of the gases in canonical, grand canonical and pressure ensembles in an arbitrary inertial system. It is shown that when statistical systems are described relativistically it is very important to take into account the boundary conditions. This is due to the fact that an equilibrium system is not closed mechanically. The results may find application in hadron physics. (orig.)

  8. Charged Hadron Multiplicity Distribution at Relativistic Heavy-Ion Colliders

    Directory of Open Access Journals (Sweden)

    Ashwini Kumar

    2013-01-01

    Full Text Available The present paper reviews facts and problems concerning charge hadron production in high energy collisions. Main emphasis is laid on the qualitative and quantitative description of general characteristics and properties observed for charged hadrons produced in such high energy collisions. Various features of available experimental data, for example, the variations of charged hadron multiplicity and pseudorapidity density with the mass number of colliding nuclei, center-of-mass energies, and the collision centrality obtained from heavy-ion collider experiments, are interpreted in the context of various theoretical concepts and their implications. Finally, several important scaling features observed in the measurements mainly at RHIC and LHC experiments are highlighted in the view of these models to draw some insight regarding the particle production mechanism in heavy-ion collisions.

  9. On the relativistic particle dynamics in external gravitational fields

    International Nuclear Information System (INIS)

    Kuz'menkov, L.S.; Naumov, N.D.

    1977-01-01

    On the base of the Riemann metrics of an event space, leading to the Newton mechanics at nonrelativistic velocities and not obligatory weak gravitational fields relativistic particle dynamics in external gravitation fields has been considered. Found are trajectories, motion laws and light ray equations for the homogeneous and Newton fields

  10. [Pion interferometry search for a phase change in hadronic matter in relativistic heavy ion collisions and its application to RHIC: Progress report

    Energy Technology Data Exchange (ETDEWEB)

    Cherney, M.

    1992-05-01

    The purpose of this research is to assist in the investigation of the behavior of hadronic matter under extreme conditions. Specifically, this project intends to actively involve Creighton students and faculty in the search for indications of a phase transition from hadronic to quark matter. It is believed that the conditions necessary for the formation of this quark-gluon plasma include large energy densities over extended volumes. The technique of boson interferometry may prove to be the effective tool in verifying the existence of a quark-gluon plasma. This project continues active collaboration with Department of Energy research centers working on the NA36, NA44, and STAR experiments. It involves the effective development of the hardware, software and analytical skills required for a large relativistic heavy ion facility at Brookhaven National Laboratory (RHIC). Integral to this endeavor are educational opportunities for students at Creighton University.

  11. (Pion interferometry search for a phase change in hadronic matter in relativistic heavy ion collisions and its application to RHIC: Progress report)

    Energy Technology Data Exchange (ETDEWEB)

    Cherney, M.

    1992-01-01

    The purpose of this research is to assist in the investigation of the behavior of hadronic matter under extreme conditions. Specifically, this project intends to actively involve Creighton students and faculty in the search for indications of a phase transition from hadronic to quark matter. It is believed that the conditions necessary for the formation of this quark-gluon plasma include large energy densities over extended volumes. The technique of boson interferometry may prove to be the effective tool in verifying the existence of a quark-gluon plasma. This project continues active collaboration with Department of Energy research centers working on the NA36, NA44, and STAR experiments. It involves the effective development of the hardware, software and analytical skills required for a large relativistic heavy ion facility at Brookhaven National Laboratory (RHIC). Integral to this endeavor are educational opportunities for students at Creighton University.

  12. [Pion interferometry search for a phase change in hadronic matter in relativistic heavy ion collisions and its application to RHIC: Progress report

    International Nuclear Information System (INIS)

    Cherney, M.

    1992-01-01

    The purpose of this research is to assist in the investigation of the behavior of hadronic matter under extreme conditions. Specifically, this project intends to actively involve Creighton students and faculty in the search for indications of a phase transition from hadronic to quark matter. It is believed that the conditions necessary for the formation of this quark-gluon plasma include large energy densities over extended volumes. The technique of boson interferometry may prove to be the effective tool in verifying the existence of a quark-gluon plasma. This project continues active collaboration with Department of Energy research centers working on the NA36, NA44, and STAR experiments. It involves the effective development of the hardware, software and analytical skills required for a large relativistic heavy ion facility at Brookhaven National Laboratory (RHIC). Integral to this endeavor are educational opportunities for students at Creighton University

  13. Electromagnetic field of a circular beam of relativistic particles

    International Nuclear Information System (INIS)

    Vybiral, B.

    1978-01-01

    The generalized Coulomb law and the generalized Biot-Savart-Laplace law are derived for an element of a beam of charged relativistic particles moving generally irregularly. These laws are utilized for the description of an electromagnetic field of a circular beam of relativistic regularly moving particles. It is shown that in the points on the axis of the beam the intensity of the electric field is given by an expression precisely corresponding to the classical Coulomb law for charges at rest and the induction of the magnetic field corresponds to the classical Biot-Savart-Laplace law for conductive currents. From the numerical solution it follows that in the points outside the axis the induction of the magnetic field rises with the velocity of the particles. For a velocity nearing that of light in vacuum it assumes a definite value (with the exception of the points lying on the beam). (author)

  14. Fermion: field nontopological solitons. II. Models for hadrons

    International Nuclear Information System (INIS)

    Friedberg, R.; Lee, T.D.

    1977-01-01

    The possibility, and its consequences, are examined that in a relativistic local field theory, consisting of color quarks q, scalar gluon sigma, color gauge field V/sub mu/ and color Higgs field phi, the mass of the soliton solution may be much lower than any mass of the plane wave solutions; i.e., m/sub q/ the quark mass, m/sub sigma/ the gluon mass, etc. There appears a rather clean separation between the physics of these low mass solitons and that of the high energy excitations, in the range of m/sub q/ and m/sub sigma/, provided that the parameters xi identical with (μ/m/sub q/) 2 and eta identical with μ/m/sub sigma/ are both much less than 1, where μ is an overall low energy scale appropriate for the solitons (but the ratio eta/xi is assumed to be O(1), though otherwise arbitrary). Under very general assumptions, it is shown that independently of the number of parameters in the original Lagrangian, the mathematical problem of finding the quasiclassical soliton solutions reduces, through scaling, to that of a simple set of two coupled first-order differential equations, neither of which contains any explicit free parameters. The general properties and the numerical solutions of this reduced set of differential equations are given. The resulting solitons exhibit physical characteristics very similar to those of a ''gas bubble'' immersed in a ''medium'': there is a constant surface tension and a constant pressure exerted by the medium on the gas; in addition, there are the ''thermodynamical'' energy of the gas and the related gas pressure, which are determined by the solutions of the reduced equations. Both a SLAC-like bag and the Creutz-Soh version of the MIT bag may appear, but only as special limiting cases. These soliton solutions are applied to the physical hadrons; their static properties are calculated and, within a 10 to 15 percent accuracy, agree with observations

  15. Particle Acceleration, Magnetic Field Generation and Emission from Relativistic Jets

    Science.gov (United States)

    Nishikawa, K.-I.; Hardee, P.; Hededal, C.; Mizuno, Yosuke; Fishman, G. Jerry; Hartmann, D. H.

    2006-01-01

    Nonthermal radiation observed from astrophysical systems containing relativistic jets and shocks, e.g., active galactic nuclei (AGNs), gamma-ray bursts (GRBs), supernova remnants, and Galactic microquasar systems usually have power-law emission spectra. Fermi acceleration is the mechanism usually assumed for the acceleration of particles in astrophysical environments. Recent PIC simulations using injected relativistic electron-ion (electro-positron) jets show that particle acceleration occurs within the downstream jet, rather than by the scattering of particles back and forth across the shock as in Fermi acceleration. Shock acceleration' is a ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., the Buneman instability, other two-streaming instability, and the Weibel instability) created in the shocks are responsible for particle (electron, positron, and ion) acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields. These magnetic fields contribute to the electron's transverse deflection behind the jet head. The "jitter" radiation from deflected electrons has different spectral properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants. We will review recent PIC simulations of relativistic jets and try to make a connection with observations.

  16. Numerical magneto-hydrodynamics for relativistic nuclear collisions

    Energy Technology Data Exchange (ETDEWEB)

    Inghirami, Gabriele [Frankfurt Institute for Advanced Studies, Frankfurt am Main (Germany); Goethe-Universitaet, Institute for Theoretical Physics, Frankfurt am Main (Germany); GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Forschungszentrum Juelich, John von Neumann Institute for Computing, Juelich (Germany); Del Zanna, Luca [Universita di Firenze, Dipartimento di Fisica e Astronomia, Firenze (Italy); INAF - Osservatorio Astrofisico di Arcetri, Firenze (Italy); INFN - Sezione di Firenze, Firenze (Italy); Beraudo, Andrea [INFN - Sezione di Torino, Torino (Italy); Moghaddam, Mohsen Haddadi [INFN - Sezione di Torino, Torino (Italy); Hakim Sabzevari University, Department of Physics, P. O. Box 397, Sabzevar (Iran, Islamic Republic of); Becattini, Francesco [Universita di Firenze, Dipartimento di Fisica e Astronomia, Firenze (Italy); INFN - Sezione di Firenze, Firenze (Italy); Bleicher, Marcus [Frankfurt Institute for Advanced Studies, Frankfurt am Main (Germany); Goethe-Universitaet, Institute for Theoretical Physics, Frankfurt am Main (Germany); GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Forschungszentrum Juelich, John von Neumann Institute for Computing, Juelich (Germany)

    2016-12-15

    We present an improved version of the ECHO-QGP numerical code, which self-consistently includes for the first time the effects of electromagnetic fields within the framework of relativistic magneto-hydrodynamics (RMHD). We discuss results of its application in relativistic heavy-ion collisions in the limit of infinite electrical conductivity of the plasma. After reviewing the relevant covariant 3 + 1 formalisms, we illustrate the implementation of the evolution equations in the code and show the results of several tests aimed at assessing the accuracy and robustness of the implementation. After providing some estimates of the magnetic fields arising in non-central high-energy nuclear collisions, we perform full RMHD simulations of the evolution of the quark-gluon plasma in the presence of electromagnetic fields and discuss the results. In our ideal RMHD setup we find that the magnetic field developing in non-central collisions does not significantly modify the elliptic flow of the final hadrons. However, since there are uncertainties in the description of the pre-equilibrium phase and also in the properties of the medium, a more extensive survey of the possible initial conditions as well as the inclusion of dissipative effects are indeed necessary to validate this preliminary result. (orig.)

  17. Observer dependence of quantum states in relativistic quantum field theories

    International Nuclear Information System (INIS)

    Malin, S.

    1982-01-01

    Quantum states can be understood as either (i) describing quantum systems or (ii) representing observers' knowledge about quantum systems. These different meanings are shown to imply different transformation properties in relativistic field theories. The rules for the reduction of quantum states and the transformation properties of quantum states under Lorentz transformations are derived for case (ii). The results obtained are applied to a quantum system recently presented and analyzed by Aharonov and Albert. It is shown that the present results, combined with Aharonov and Albert's, amount to a proof of Bohr's view that quantum states represent observers' knowledge about quantum systems

  18. Unraveling the Structure of Hadrons with Effective Field Theories of QCD

    International Nuclear Information System (INIS)

    Iain Stewart

    2004-01-01

    Effective Field theory is a powerful framework based on controlled expansions for problems with a natural separation of energy scales. This technique is particularly important for QCD, the theory of strong interactions, due to the vast diversity of phenomena that it describes. Stewart and collaborators have invented a new class of effective theories that can be used in processes with energetic hadrons. These Soft-Collinear Effective Theories provide a unified framework for describing hadronic processes which involve hard probes or the release of a large amount of energy. Many interesting issues about hadronic physics can be addressed with the soft-collinear effective theory. Examples include the size and shape of hadronic form factors, the universality of hadronic distribution functions for a plethora of processes, and the importance of subleading corrections at intermediate energy scales. Effective field theories allow these issues to be addressed using only the underlying symmetries and scales in QCD. Understanding these issues also has a direct impact on other areas of physics, such as on devising clean methods for the measurement of CP violation in the decay of B-mesons. Current progress on the soft-collinear effective theory and related methods is discussed in this report

  19. Rare-earth nuclei: Radii, isotope-shifts and deformation properties in the relativistic mean-field theory

    International Nuclear Information System (INIS)

    Lalazissis, G.A.; Ring, P.

    1996-01-01

    A systematic study of the ground-state properties of even-even rare earth nuclei has been performed in the framework of the Relativistic Mean-Field (RMF) theory using the parameter set NL-SH. Nuclear radii, isotope shifts and deformation properties of the heavier rare-earth nuclei have been obtained, which encompass atomic numbers ranging from Z=60 to Z=70 and include a large range of isospin. It is shown that RMF theory is able to provide a good and comprehensive description of the empirical binding energies of the isotopic chains. At the same time the quadrupole deformations β 2 obtained in the RMF theory are found to be in good agreement with the available empirical values. The theory predicts a shape transition from prolate to oblate for nuclei at neutron number N=78 in all the chains. A further addition of neutrons up to the magic number 82 brings about the spherical shape. For nuclei above N=82, the RMF theory predicts the well-known onset of prolate deformation at about N=88, which saturates at about N=102. The deformation properties display an identical behaviour for all the nuclear chains. A good description of the above deformation transitions in the RMF theory in all the isotopic chains leads to a successful reproduction of the anomalous behaviour of the empirical isotopic shifts of the rare-earth nuclei. The RMF theory exhibits a remarkable success in providing a unified and microscopic description of various empirical data. (orig.)

  20. Relativistic nonlinear electrodynamics the QED vacuum and matter in super-strong radiation fields

    CERN Document Server

    Avetissian, Hamlet K

    2016-01-01

    This revised edition of the author’s classic 2006 text offers a comprehensively updated review of the field of relativistic nonlinear electrodynamics. It explores the interaction of strong and super-strong electromagnetic/laser radiation with the electromagnetic quantum vacuum and diverse types of matter – including free charged particles and antiparticles, acceleration beams, plasma and plasmous media.  The appearance of laser sources of relativistic and ultra-relativistic intensities over the last decade has stimulated investigation of a large class of processes under such super-strong radiation fields. Revisions for this second edition reflect these developments and the book includes new chapters on Bremsstrahlung and nonlinear absorption of superintense radiation in plasmas, the nonlinear interaction of relativistic atoms with intense laser radiation, nonlinear interaction of strong laser radiation with Graphene, and relativistic nonlinear phenomena in solid-plasma targets under supershort laser pul...

  1. Relativistic rotators: a quantum mechanical de Sitter bundle

    International Nuclear Information System (INIS)

    Boehm, A.

    1976-02-01

    If de Sitter fiber bundle over space time is the classical picture of hadrons then for a quantum mechanical description one has to generalize the concept of a principal fiber bundle to a bundle that contains the representation of the group of motion. This idea is related to the relativistic rotator model, and the radius of the de Sitter fiber is determined from the experimental hadron spectrum

  2. Probing dense matter with strange hadrons

    CERN Document Server

    Rafelski, Johann; Rafelski, Johann; Letessier, Jean

    2002-01-01

    Analysis of hadron production experimental data allows to understand the properties of the dense matter fireball produced in relativistic heavy ion collisions. We interpret the analysis results and argue that color deconfined state has been formed at highest CERN-SPS energies and at BNL-RHIC.

  3. Relativistic astrophysics

    CERN Document Server

    Demianski, Marek

    2013-01-01

    Relativistic Astrophysics brings together important astronomical discoveries and the significant achievements, as well as the difficulties in the field of relativistic astrophysics. This book is divided into 10 chapters that tackle some aspects of the field, including the gravitational field, stellar equilibrium, black holes, and cosmology. The opening chapters introduce the theories to delineate gravitational field and the elements of relativistic thermodynamics and hydrodynamics. The succeeding chapters deal with the gravitational fields in matter; stellar equilibrium and general relativity

  4. Implications of confining force field structures in hard hadronic processes

    International Nuclear Information System (INIS)

    Bengtsson, H.-U.

    1983-04-01

    This thesis is centered on the study of confining force field structures in hard scattering processes. Perturbative QCD provides the means of calculating any process on the parton level, but to be able accurately to describe the actual outcome of an event, one still needs a phenomenological model for how quarks and gluons transform into observable hadrons. One such model is based on the assumption that the particles are produced by the confining fields stretched between the partons. The actual particle distributions will then depend on the topology of the confining fields. We have developed a Monte Carlo program to simulate complete events in hard scattering, and we use this to study the properties of the confining field in different trigger situations. We further look at the amount of hard processes that can be expected in experiments that trigger on transverse energy sum (calorimeter experiments). Finally, we investigate charm production within our model. (author)

  5. Transition to Δ matter from hot, dense nuclear matter within a relativistic mean field formulation of the nonlinear σ and ω model

    International Nuclear Information System (INIS)

    Li, Z.; Zhuo, Y.; Li, Z.; Mao, G.; Zhuo, Y.; Mao, G.; Greiner, W.

    1997-01-01

    An investigation of the transition to Δ matter is performed based on a relativistic mean field formulation of the nonlinear σ and ω model. We demonstrate that in addition to the Δ-meson coupling, the occurrence of the baryon resonance isomer also depends on the nucleon-meson coupling. Our results show that for the favored phenomenological value of m * and K, the Δ isomer exists at baryon density ∼2 3ρ 0 if β=1.31 is adopted. For universal coupling of the nucleon and Δ, the Δ density at baryon density ∼2 3ρ 0 and temperature ∼0.4 0.5 fm -1 is about normal nuclear matter density, which is in accord with a recent experimental finding. copyright 1997 The American Physical Society

  6. Interplanetary Magnetic Field Guiding Relativistic Particles

    Science.gov (United States)

    Masson, S.; Demoulin, P.; Dasso, S.; Klein, K. L.

    2011-01-01

    The origin and the propagation of relativistic solar particles (0.5 to few Ge V) in the interplanetary medium remains a debated topic. These relativistic particles, detected at the Earth by neutron monitors have been previously accelerated close to the Sun and are guided by the interplanetary magnetic field (IMF) lines, connecting the acceleration site and the Earth. Usually, the nominal Parker spiral is considered for ensuring the magnetic connection to the Earth. However, in most GLEs the IMF is highly disturbed, and the active regions associated to the GLEs are not always located close to the solar footprint of the nominal Parker spiral. A possible explanation is that relativistic particles are propagating in transient magnetic structures, such as Interplanetary Coronal Mass Ejections (ICMEs). In order to check this interpretation, we studied in detail the interplanetary medium where the particles propagate for 10 GLEs of the last solar cycle. Using the magnetic field and the plasma parameter measurements (ACE/MAG and ACE/SWEPAM), we found widely different IMF configurations. In an independent approach we develop and apply an improved method of the velocity dispersion analysis to energetic protons measured by SoHO/ERNE. We determined the effective path length and the solar release time of protons from these data and also combined them with the neutron monitor data. We found that in most of the GLEs, protons propagate in transient magnetic structures. Moreover, the comparison between the interplanetary magnetic structure and the interplanetary length suggest that the timing of particle arrival at Earth is dominantly determined by the type of IMF in which high energetic particles are propagating. Finally we find that these energetic protons are not significantly scattered during their transport to Earth.

  7. Multiplicity fluctuations in a hadron gas with exact conservation laws

    International Nuclear Information System (INIS)

    Becattini, Francesco; Keraenen, Antti; Ferroni, Lorenzo; Gabbriellini, Tommaso

    2005-01-01

    The study of fluctuations of particle multiplicities in relativistic heavy-ion reactions has drawn much attention in recent years, because they have been proposed as a probe for underlying dynamics and possible formation of quark-gluon plasma. Thus it is of uttermost importance to describe the baseline of statistical fluctuations in the hadron gas phase in a correct way. We performed a comprehensive study of multiplicity distributions in the full ideal hadron-resonance gas in different ensembles, namely grand canonical, canonical, and microcanonical, by using two different methods: Asymptotic expansions and full Monte Carlo simulations. The method based on asymptotic expansion allows a quick numerical calculation of dispersions in the hadron gas with three conserved charges at the primary hadron level, while the Monte Carlo simulation is suitable for studying the effect of resonance decays. Even though mean multiplicities converge to the same values, major differences in fluctuations for these ensembles persist in the thermodynamic limit, as pointed out in recent studies. We observe that this difference is ultimately related to the nonadditivity of the variances in the ensembles with exact conservation of extensive quantities

  8. Hard processes and fragmentation in a unified model for interactions at ultra-relativistic energies; Les processus durs et la fragmentation dans un modele unifie pour les interactions aux energies ultra-relativistes

    Energy Technology Data Exchange (ETDEWEB)

    Drescher, H.J

    1999-06-11

    In this work we have developed hard processes and string fragmentation in the framework of interactions at relativistic energies. The hypothesis of the universality of high energy interactions means that many elements of heavy ion collisions can be studied and simulated in simpler nuclear reactions. In particular this hypothesis implies that the fragmentation observed in the reaction e{sup +}e{sup -} follows the same rules as in the collision of 2 lead ions. This work deals with 2 nuclear processes: the e{sup +}e{sup -} annihilation reaction and the deep inelastic diffusion. For the first process the string model has been developed to simulate fragmentation by adding an artificial breaking of string due to relativistic effects. A monte-Carlo method has been used to determine the points in a Minkowski space where this breaking occurs. For the second reaction, the theory of semi-hard pomerons is introduced in order to define elementary hadron-hadron interactions. The model of fragmentation proposed in this work can be applied to more complicated reactions such as proton-proton or ion-ion collisions.

  9. Relativistic four-component multiconfigurational self-consistent-field theory for molecules

    DEFF Research Database (Denmark)

    Jensen, Hans Jørgen Aa; Dyall, Kenneth G.; Saue, Trond

    1996-01-01

    A formalism for relativistic four-component multiconfigurational self-consistent-field calculations on molecules is presented. The formalism parallels a direct second-order restricted-step algorithm developed for nonrelativistic molecular calculations. The presentation here focuses on the differe......A formalism for relativistic four-component multiconfigurational self-consistent-field calculations on molecules is presented. The formalism parallels a direct second-order restricted-step algorithm developed for nonrelativistic molecular calculations. The presentation here focuses...... the memory used by the largest nonrelativistic calculation in the equivalent basis, due to the complex arithmetic. The feasibility of the calculations is then determined more by the disk space for storage of integrals and N-particle expansion vectors....

  10. Relativistic models of nuclear structure

    International Nuclear Information System (INIS)

    Gillet, V.; Kim, E.J.; Cauvin, M.; Kohmura, T.; Ohnaka, S.

    1991-01-01

    The introduction of the relativistic field formalism for the description of nuclear structure has improved our understanding of fundamental nuclear mechanisms such as saturation or many body forces. We discuss some of these progresses, both in the semi-classical mean field approximation and in a quantized meson field approach. (author)

  11. Electromagnetic pair production in relativistic heavy-ion collisions

    International Nuclear Information System (INIS)

    Bottcher, C.; Strayer, M.R.

    1988-01-01

    We survey the production of electron, muon and tauon pairs in collisions between nuclei at ultra-relativistic energies. Such studies enhance our understanding of the role of the vacuum in field theory, and provide essential input for several experimental programs. A variety of models for the nuclear and nucleon form factors have been considered, revealing some degree of sensitivity to assumptions about sub-nuclear structure. We predict that the cross sections, even at high invariant masses and transverse momenta, are large on hadronic scales, and should act as useful probes of nuclear and nucleon form factors. 21 refs., 5 figs

  12. On relativistic irreducible quantum fields fulfilling CCR

    International Nuclear Information System (INIS)

    Baumann, K.

    1987-01-01

    Let phi be a relativistic scalar field fulfilling canonical commutation relations (CCR). Furthermore it is assumed that the time zero fields and momenta form an irreducible set. Based on estimates given by Herbst [I. W. Herbst, J. Math. Phys. 17, 1210 (1976)], and by methods developed by Powers [R. T. Powers, Commun. Math. Phys. 4, 145 (1967)], it is shown that phi has to be a free field in n>3 space dimensions. For n = 3 (resp. n = 2) restrictions that look similar to the restriction in a formal :phi 4 : 3 /sub +/ 1 (resp. :phi 6 : 2 /sub +/ 1 ) theory are obtained

  13. Weyl consistency conditions in non-relativistic quantum field theory

    Energy Technology Data Exchange (ETDEWEB)

    Pal, Sridip; Grinstein, Benjamín [Department of Physics, University of California,San Diego, 9500 Gilman Drive, La Jolla, CA 92093 (United States)

    2016-12-05

    Weyl consistency conditions have been used in unitary relativistic quantum field theory to impose constraints on the renormalization group flow of certain quantities. We classify the Weyl anomalies and their renormalization scheme ambiguities for generic non-relativistic theories in 2+1 dimensions with anisotropic scaling exponent z=2; the extension to other values of z are discussed as well. We give the consistency conditions among these anomalies. As an application we find several candidates for a C-theorem. We comment on possible candidates for a C-theorem in higher dimensions.

  14. Inelastic quarkonium photoproduction in hadron-hadron interactions at LHC energies

    Energy Technology Data Exchange (ETDEWEB)

    Goncalves, V.P. [Universidade Federal de Pelotas, Instituto de Fisica e Matematica, Pelotas, RS (Brazil); Machado, M.M. [Ciencia e Tecnologia, IF - Farroupilha, Instituto Federal de Educacao, Sao Borja, RS (Brazil)

    2014-04-15

    In this paper we study the inelastic quarkonium photoproduction in coherent pp/p Pb/PbPb interactions. Considering the ultra-relativistic hadrons as a source of photons, we estimate the total h{sub 1}+h{sub 2} → h x V+X (V=J/Ψ and Υ) cross sections and rapidity distributions at LHC energies. Our results demonstrate that the experimental analysis of this process can be used to understand the underlying mechanism governing heavy quarkonium production. (orig.)

  15. Quadrupole moments of hadrons

    International Nuclear Information System (INIS)

    Krivoruchenko, M.I.

    1985-01-01

    In chiral bag model an expression is obtained for the quark wave functions with account of color and pion interaction of quarks. The quadrupole moments of nonstrange hadrons are calculated. Quadrupole moment of nucleon isobar is found to be Q(Δ)=-6.3x10 -28 esub(Δ)(cm)sup(2). Fredictions of the chiral bag model are in strong disagreement with the non-relativistic quark model

  16. Hadron spectroscopy and dynamics from light-front holography and conformal symmetry

    Directory of Open Access Journals (Sweden)

    de Téramond Guy F.

    2014-06-01

    Full Text Available To a first semiclassical approximation one can reduce the multi-parton light-front problem in QCD to an effective one-dimensional quantum field theory, which encodes the fundamental conformal symmetry of the classical QCD Lagrangian. This procedure leads to a relativistic light-front wave equation for arbitrary spin which incorporates essential spectroscopic and non-perturbative dynamical features of hadron physics. The mass scale for confinement and higher dimensional holographic mapping to AdS space are also emergent properties of this framework.

  17. HBT interferometry and the parton-hadron phase transition

    International Nuclear Information System (INIS)

    Soff, S.

    2002-01-01

    We discuss predictions for the pion and kaon interferometry measurements in relativistic heavy ion collisions at SPS and RHIC energies. In particular, we confront relativistic transport model calculations that include explicitly a first-order phase transition from a thermalized quark-gluon plasma to a hadron gas with recent data from the RHIC experiments. We critically examine the HBT puzzle both from the theoretical as well as from the experimental point of view. Alternative scenarios are briefly explained. (orig.)

  18. Solution of relativistic quantum optics problems using clusters of graphical processing units

    Energy Technology Data Exchange (ETDEWEB)

    Gordon, D.F., E-mail: daviel.gordon@nrl.navy.mil; Hafizi, B.; Helle, M.H.

    2014-06-15

    Numerical solution of relativistic quantum optics problems requires high performance computing due to the rapid oscillations in a relativistic wavefunction. Clusters of graphical processing units are used to accelerate the computation of a time dependent relativistic wavefunction in an arbitrary external potential. The stationary states in a Coulomb potential and uniform magnetic field are determined analytically and numerically, so that they can used as initial conditions in fully time dependent calculations. Relativistic energy levels in extreme magnetic fields are recovered as a means of validation. The relativistic ionization rate is computed for an ion illuminated by a laser field near the usual barrier suppression threshold, and the ionizing wavefunction is displayed.

  19. Heavy flavours in ultra-relativistic heavy ions collisions; Les saveurs lourdes dans les collisions d'ions lourds ultra-relativistes

    Energy Technology Data Exchange (ETDEWEB)

    Rosnet, Ph

    2008-01-15

    The ultra-relativistic collisions of heavy ions are the today's only means to tackle in laboratory conditions the phase diagram in quantum chromodynamics and the strong interaction. The most recent theoretical studies predict a phase transition between the cold nuclear matter (a hadronic gas) and a plasma of quarks and gluons. Heavy flavour can characterize the nuclear matter produced in a heavy ion collision as well as its spatial-temporal evolution. Their study can be made through their decay into muons. The first part of this work presents the issue of ultra-relativistic heavy ion collisions and the role of heavy flavours. In the second part the author reviews the results of experiments performed at RHIC and particularly presents the analysis of the mass spectrum of dimuons in the Phenix experiment. The third part describes the muon trigger system of the Alice experiment at CERN and the expected performances for the study of di-muons.

  20. Ionization, photoelectron dynamics and elastic scattering in relativistic, ultra-strong field

    Science.gov (United States)

    Luo, Sui

    Ultrastrong laser-matter interaction has direct bearing to next generation technologies including plasma acceleration, laser fusion and attosecond X-ray generation. The commonly known physics in strong field becomes different as one progress to ultrastrong field. The works presented in this dissertation theoretically study the influence of relativistic effect and magnetic component of the laser field on the ionization, photoelectron dynamics and elastic scattering processes. The influence of magnetic component (B laser) of circularly polarized (CP) ultrastrong fields (up to3 x 1022 W/cm2) on atomic bound state dynamics is investigated. The Poincare plots are used to find the changes in trajectory energies are on the order of a few percent for intensities up to1 x 1022 W/cm2. It is found that at intensities where ionization approaches 50% for the bound state, the small changes from Blaser of the circular polarized light can actually result in a several-fold decrease in ionization probability. The force on the bound electron exerted by the Lorentz force from B laser is perpendicular to the rotating plane of the circular polarized light, and this nature makes those trajectories which are aligned away from the minimum in the potential barrier stabilized against tunneling ionization. Our results provide a classical understanding for ionization in ultrastrong fields and indicate that relativistic effects in ultrastrong field ionization may most easily be seen with CP fields. The photoelectron energy spectra from elastic rescattering in ultrastrong laser fields (up to 2x1019 W/cm2) is studied by using a relativistic adaption of a semi-classical three-step recollision model. The Hartree-Fock scattering potentials are used in calculating the elastic rescattering for both hydrogenlike and noble gas species. It is found that there is a reduction in elastic rescattering for intensities beyond 6 x 1016 W/cm2 when the laser Lorentz deflection of the photoelectron exceeds its

  1. Hadron-structure

    International Nuclear Information System (INIS)

    De, S.S.

    1989-01-01

    The paper deals with the space-time structure of the sub-atomic world and attempts to construct the fields of the constitutents of the hadrons. Then it is attempted to construct the fields of the hadrons from these micro-fields. (autho r). 24 refs

  2. Relativistic jets without large-scale magnetic fields

    Science.gov (United States)

    Parfrey, K.; Giannios, D.; Beloborodov, A.

    2014-07-01

    The canonical model of relativistic jets from black holes requires a large-scale ordered magnetic field to provide a significant magnetic flux through the ergosphere--in the Blandford-Znajek process, the jet power scales with the square of the magnetic flux. In many jet systems the presence of the required flux in the environment of the central engine is questionable. I will describe an alternative scenario, in which jets are produced by the continuous sequential accretion of small magnetic loops. The magnetic energy stored in these coronal flux systems is amplified by the differential rotation of the accretion disc and by the rotating spacetime of the black hole, leading to runaway field line inflation, magnetic reconnection in thin current layers, and the ejection of discrete bubbles of Poynting-flux-dominated plasma. For illustration I will show the results of general-relativistic force-free electrodynamic simulations of rotating black hole coronae, performed using a new resistivity model. The dissipation of magnetic energy by coronal reconnection events, as demonstrated in these simulations, is a potential source of the observed high-energy emission from accreting compact objects.

  3. Overview of electromagnetic probe production in ultra-relativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Paquet, Jean-François

    2017-01-01

    An introductory overview of electromagnetic probe production in ultra-relativistic heavy ion collisions is provided. Experimental evidence supporting the production of thermal photons and dileptons in heavy ion collisions at the Relativistic Heavy Ion Collider (RHIC) and the Large Hadron Collider (LHC) are reviewed. Thermal electromagnetic probe production from hydrodynamical models of collisions is discussed. (paper)

  4. Heavy flavours in ultra-relativistic heavy ions collisions

    International Nuclear Information System (INIS)

    Rosnet, Ph.

    2008-01-01

    The ultra-relativistic collisions of heavy ions are the today's only means to tackle in laboratory conditions the phase diagram in quantum chromodynamics and the strong interaction. The most recent theoretical studies predict a phase transition between the cold nuclear matter (a hadronic gas) and a plasma of quarks and gluons. Heavy flavour can characterize the nuclear matter produced in a heavy ion collision as well as its spatial-temporal evolution. Their study can be made through their decay into muons. The first part of this work presents the issue of ultra-relativistic heavy ion collisions and the role of heavy flavours. In the second part the author reviews the results of experiments performed at RHIC and particularly presents the analysis of the mass spectrum of dimuons in the Phenix experiment. The third part describes the muon trigger system of the Alice experiment at CERN and the expected performances for the study of di-muons

  5. A systematic study of superheavy nuclei for Z = 114 and beyond using the relativistic mean field approach

    International Nuclear Information System (INIS)

    Patra, S.K.; Wu, Cheng-Li; Praharaj, C.R.; Gupta, Raj K.

    1999-01-01

    We have studied the structural properties of even-even, neutron deficient, Z=114-126, superheavy nuclei in the mass region A ∼ 270-320, using an axially deformed relativistic mean field model. The calculations are performed with three parameter sets (NL1, TM1 and NL-SH), in order to see the dependence of the structural properties on the force used. The calculated ground state shapes are found to be parameter dependent. For some parameter sets, many of the nuclei are degenerate in their ground state configuration. Special attention is given to the investigation of the magic structures (spherical shell closures) in the superheavy region. We find that some known magic numbers are absent and new closed shells are predicted. Large shell gaps appear at Z=80, 92, (114), 120 and 138, N=138, (164), (172), 184, (198), (228) and 258, irrespective of the parameter sets used. The numbers in parenthesis are those which correspond to relatively smaller gaps. The existence of new magic numbers in the valley of superheavy elements is discussed. It is suggested that nuclei around Z=114 and N = 164 ∼ 172 could be considered as candidates for the next search of superheavy nuclei. The existence of superheavy islands around Z=120 and N=172 or N 184 double shell closure is also discussed

  6. Study of bubble structure in N = 20 isotones within relativistic mean-field plus BCS approach

    International Nuclear Information System (INIS)

    Kumawat, M.; Singh, U.K.; Jain, S.K.; Saxena, G.; Aggarwal, Mamta; Singh, S. Somorendro; Kaushik, M.

    2017-01-01

    Guided by various theoretical studies and encouraged with recent first experimental evidence of proton density depletion in "3"4Si, we have applied relativistic mean field plus BCS approach for systematic study of bubble structure in magic nuclei with N = 20 isotones. Our present investigations include single particle energies, deformations, separation energies as well as neutron and proton densities etc. It is found that proton sd shells (1d_5_/_2,2s_1_/_2,1d_3_/_2) in N = 20 isotones play very important role in the formation of bubble structure. The unoccupied 2s_1_/_2 state gives rise to bubble since this 2s_1_/_2 state does not have any centrifugal barrier, therefore for Z = 8 - 14 in the isotonic chain radial distributions of such state is found with peak in the interior of the nucleus with corresponding wave functions extending into the surface region. Consequently, in these nuclei with unoccupied s-state the central density found depleted as compared to the nucleus wherein this state is fully occupied. It is important to note here that in these nuclei depletion in proton density for "3"4Si is found with most significance which is in accord with the recent experiment. Moving further for higher Z value, Z = 16 and Z = 18 the 2s_1_/_2 state remains semi-occupied and contributing partially in the depletion of central density resulting semi-bubble structure for Z = 16 and 18. For Z≥20, 2s_1_/_2 state get fully occupied and no sign of bubble structures are seen for higher isotones

  7. Production of light flavor hadrons and anti-nuclei at the LHC

    CERN Document Server

    Kalweit, Alexander

    With the recording of the first collisions of the Large Hadron Collider (LHC) in November 2009, a new era in the domain of high energy and relativistic heavy-ion physics has started. As one of the early observables which can be addressed, the measurement of light quark flavor production is presented in this thesis. Hadrons that consist only of u, d, and s quarks constitute the majority of the produced particles in pp and Pb–Pb collisions. Their measurement forms the basis for a detailed understanding of the collision and for the answer of the question if hadronic matter undergoes a phase transition to the deconfined quark-gluon plasma at high temperatures. The basics of ultra-relativistic heavy- ion physics are briefly introduced in the first chapter followed by a short description of the ALICE experiment. A particular focus is put on the unique particle identification (PID) capabilities as they provide the basis of the measurements which are presented in the following chapters. The particle identification ...

  8. Structure and applications of point form relativistic quantum mechanics

    International Nuclear Information System (INIS)

    Klink, W.H.

    2003-01-01

    The framework of point form relativistic quantum mechanics is used to construct mass and current operators for hadronic systems with finite degree of freedom. For the point form all of the interactions are in the four-momentum operator and, since Lorentz transformations are kinematic, the theory is manifestly covariant. In the Bakamjian-Thomas version of the point form the four-momentum operator is written as a product of the four-velocity operator and mass operator, where the mass operator is the sum of free and interacting mass operators. Interacting mass operators can be constructed from vertices, matrix elements of local field operators evaluated at the space-time point zero, where the states are eigenstates of the four-velocity. Applications include the study of the spectra and widths of vector mesons, viewed as bound states of quark-antiquark pairs. Besides mass operators, current operators are needed to compute form factors. Form factors are matrix elements of current operators on mass operator eigenstates and are often calculated with one-body current operators (in the point form this is called the point form spectator approximation); but in a properly relativistic theory there must also be many-body current operators. Minimal currents needed to satisfy current conservation in the presence of hadronic interactions (called dynamically determined currents) are shown to be easily calculated in the point form. (author)

  9. Production of high energy neutrinos in relativistic supernova shock waves

    International Nuclear Information System (INIS)

    Weaver, T.A.

    1979-01-01

    The possibility of producing high-energy neutrinos (> approx. 10 GeV) in relativistic supernova shock waves is considered. It is shown that, even if the dissipation in such shocks is due to hard hadron--hadron collisions, the resulting flux of neutrinos is too small to be observed by currently envisioned detectors. The associated burst of hard γ-rays, however, may be detectable. 3 tables

  10. Particle Acceleration, Magnetic Field Generation and Emission from Relativistic Jets and Supernova Remnants

    Science.gov (United States)

    Nishikawa, K.-I.; Hartmann, D. H.; Hardee, P.; Hededal, C.; Mizunno, Y.; Fishman, G. J.

    2006-01-01

    We performed numerical simulations of particle acceleration, magnetic field generation, and emission from shocks in order to understand the observed emission from relativistic jets and supernova remnants. The investigation involves the study of collisionless shocks, where the Weibel instability is responsible for particle acceleration as well as magnetic field generation. A 3-D relativistic particle-in-cell (RPIC) code has been used to investigate the shock processes in electron-positron plasmas. The evolution of theWeibe1 instability and its associated magnetic field generation and particle acceleration are studied with two different jet velocities (0 = 2,5 - slow, fast) corresponding to either outflows in supernova remnants or relativistic jets, such as those found in AGNs and microquasars. Slow jets have intrinsically different structures in both the generated magnetic fields and the accelerated particle spectrum. In particular, the jet head has a very weak magnetic field and the ambient electrons are strongly accelerated and dragged by the jet particles. The simulation results exhibit jitter radiation from inhomogeneous magnetic fields, generated by the Weibel instability, which has different spectral properties than standard synchrotron emission in a homogeneous magnetic field.

  11. Field theory of relativistic strings: I. Trees

    International Nuclear Information System (INIS)

    Kaku, M.; Kikkawa, K.

    1985-01-01

    The authors present an entirely new kind of field theory, a field theory quantized not at space-time points, but quantized along an extended set of multilocal points on a string. This represents a significant departure from the usual quantum field theory, whose free theory represents a definite set of elementary particles, because the field theory on relativistic strings can accommodate an infinite set of linearly rising Regge trajectories. In this paper, the authors (1) present canonical quantization and the Green's function of the free string, (2) introduce three-string interactions, (3) resolve the question of multiple counting, (4) complete the counting arguments for all N-point trees, and (5) introduce four-string interactions which yield a Yang-Mills structure when the zero-slope limit is taken

  12. Heavy quarks and strong binding: A field theory of hadron structure

    International Nuclear Information System (INIS)

    Bardeen, W.A.; Chanowitz, M.S.; Drell, S.D.; Weinstein, M.; Yan, T.

    1975-01-01

    We investigate in canonical field theory the possibility that quarks may exist in isolation as very heavy particles, M/sub quark/) very-much-greater-than 1 GeV, yet form strongly bound hadronic states, M/sub hadron/) approx. 1 GeV. In a model with spin-1/2 quarks coupled to scalar gluons we find that a mechanism exists for the formation of bound states which are much lighter than the free constituents. Following Nambu, we introduce a color interaction mediated by gauge vector mesons to guarantee that all states with nonvanishing triality have masses much larger than 1 GeV. The possibility of such a solution to a stronly coupled field theory is exhibited by a calculation employing the variational principle in tree approximation. This procedure reduces the field-theoretical problem to a set of coupled differential equations for classical fields which are just the free parameters of the variational state. A striking property of the solution is that the quark wave function is confined to a thin shell at the surface of the hadronic bound state. Though the quantum corrections to this procedure remain to be investigated systematically, we explore some of the phenomenological implications of the trial wave functions so obtained. In particular, we exhibit the low-lying meson and baryon multiplets of SU(6); their magnetic moments, charge radii, and radiative decays, and the axial charge of the baryons. States of nonvanishing momenta are constructed and the softness of the hadron shell to deformations in scattering processes is discussed qualitatively along with the implications for deep-inelastic electron scattering and dual resonance models

  13. Temperature-dependent relativistic microscopic optical potential and the mean free path of a nucleon based on Walecka's model

    International Nuclear Information System (INIS)

    Han Yinlu; Shen Qingbiao; Zhuo Yizhong

    1994-01-01

    The relativistic microscopic optical potential, the Schroedinger equivalent potential, and mean free paths of a nucleon at finite temperature in nuclear matter and finite nuclei are studied based on Walecka's model and thermo-field dynamics. We let only the Hartree-Fock self-energy of a nucleon represent the real part of the microscopic optical potential and the fourth order of meson exchange diagrams, i.e. the polarization diagrams represent the imaginary part of the microscopic optical potential in nuclear matter. The microscopic optical potential of finite nuclei is obtained by means of the local density approximation. (orig.)

  14. Method of taking into account meson and quark-gluon degrees of freedom in hadron-hadron interactions at low and intermediate energies. Application to NN scattering

    International Nuclear Information System (INIS)

    Safronov, A.N.

    1983-01-01

    A system of nonsingular integral equations is formulated for the calculation of hadron-hadron partial amplitudes in the low-and intermediate-energy range taking into account meson and quark-gluon degrees of freedom. The quark-gluon degrees of freedom are included in the framework of the composite-quark-bag model, and the meson degrees of freedom are treated by the methods of the relativistic quantum field theory. It is shown that including the quark-gluon degrees of freedom leads to suppression of meson exchange effects, mostly of heavy meson (rho, ω) exchanges. The method has been applied to the calculation of the 3 S 1 , 1 S 0 , 3 P 0 , 3 P 1 , and 1 P 1 phase shifts for the nucleon-nucleon scattering at the incident nucleon energies T=0-1050 MeV, as well as to the S-wave scattering lengths and effective radii

  15. Light-front field theory in the description of hadrons

    Directory of Open Access Journals (Sweden)

    Ji Chueng-Ryong

    2017-01-01

    Full Text Available We discuss the use of light-front field theory in the descriptions of hadrons. In particular, we clarify the confusion in the prevailing notion of the equivalence between the infinite momentum frame and the light-front dynamics and the advantage of the light-front dynamics in hadron physics. As an application, we present our recent work on the flavor asymmetry in the proton sea and identify the presence of the delta-function contributions associated with end-point singularities arising from the chiral effective theory calculation. The results pave the way for phenomenological applications of pion cloud models that are manifestly consistent with the chiral symmetry properties of QCD.

  16. Light-front field theory in the description of hadrons

    Science.gov (United States)

    Ji, Chueng-Ryong

    2017-03-01

    We discuss the use of light-front field theory in the descriptions of hadrons. In particular, we clarify the confusion in the prevailing notion of the equivalence between the infinite momentum frame and the light-front dynamics and the advantage of the light-front dynamics in hadron physics. As an application, we present our recent work on the flavor asymmetry in the proton sea and identify the presence of the delta-function contributions associated with end-point singularities arising from the chiral effective theory calculation. The results pave the way for phenomenological applications of pion cloud models that are manifestly consistent with the chiral symmetry properties of QCD.

  17. PREFACE: Focus section on Hadronic Physics

    Science.gov (United States)

    Roberts, Craig; Swanson, Eric

    2007-07-01

    Hadronic physics is the study of strongly interacting matter and its underlying theory, Quantum Chromodynamics (QCD). The field had its beginnings after World War Two, when hadrons were discovered in ever increasing numbers. Today, it encompasses topics like the quark-gluon structure of hadrons at varying scales, the quark-gluon plasma and hadronic matter at extreme temperature and density; it also underpins nuclear physics and has significant impact on particle physics, astrophysics, and cosmology. Among the goals of hadronic physics are to determine the parameters of QCD, understand the origin and characteristics of confinement, understand the dynamics and consequences of dynamical chiral symmetry breaking, explore the role of quarks and gluons in nuclei and in matter under extreme conditions and understand the quark and gluon structure of hadrons. In general, the process is one of discerning the relevant degrees of freedom and relating these to the fundamental fields of QCD. The emphasis is on understanding QCD, rather than testing it. The papers gathered in this special focus section of Journal of Physics G: Nuclear and Particle Physics attempt to cover this broad range of subjects. Alkofer and Greensite examine the issue of quark and gluon confinement with the focus on models of the QCD vacuum, lattice gauge theory investigations, and the relationship to the AdS/CFT correspondence postulate. Arrington et al. review nucleon form factors and their role in determining quark orbital momentum, the strangeness content of the nucleon, meson cloud effects, and the transition from nonperturbative to perturbative QCD dynamics. The physics associated with hadronic matter at high temperature and density and at low Bjorken-x at the Relativistic Heavy Ion Collider (RHIC), the SPS at CERN, and at the future LHC is summarized by d'Enterria. The article of Lee and Smith examines experiment and theory associated with electromagnetic meson production from nucleons and

  18. Hadronic resonances at FAIR energies

    International Nuclear Information System (INIS)

    Vogel, Sascha

    2013-01-01

    These proceedings cover the analysis of hadronic resonances in heavy ion collisions. The model used for these studies is the Ultra-relativistic Quantum Molecular Dynamics (UrQMD) model. The model will be briefly explained, resonance observables will be highlighted and various kinematical issues will be investigated. Special emphasis will be put on the FAIR energy regime, especially highlighting the Compressed Baryonic Matter (CBM) program.

  19. Quark-Meson-Coupling (QMC) model for finite nuclei, nuclear matter and beyond

    Science.gov (United States)

    Guichon, P. A. M.; Stone, J. R.; Thomas, A. W.

    2018-05-01

    The Quark-Meson-Coupling model, which self-consistently relates the dynamics of the internal quark structure of a hadron to the relativistic mean fields arising in nuclear matter, provides a natural explanation to many open questions in low energy nuclear physics, including the origin of many-body nuclear forces and their saturation, the spin-orbit interaction and properties of hadronic matter at a wide range of densities up to those occurring in the cores of neutron stars. Here we focus on four aspects of the model (i) a full comprehensive survey of the theory, including the latest developments, (ii) extensive application of the model to ground state properties of finite nuclei and hypernuclei, with a discussion of similarities and differences between the QMC and Skyrme energy density functionals, (iii) equilibrium conditions and composition of hadronic matter in cold and warm neutron stars and their comparison with the outcome of relativistic mean-field theories and, (iv) tests of the fundamental idea that hadron structure changes in-medium.

  20. Particle Acceleration, Magnetic Field Generation and Associated Emission in Collisionless Relativistic Jets

    Science.gov (United States)

    Nishikawa, K. I.; Ramirez-Ruiz, E.; Hardee, P.; Mizuno, Y.; Fishman. G. J.

    2007-01-01

    Nonthermal radiation observed from astrophysical systems containing relativistic jets and shocks, e.g., active galactic nuclei (AGNs), gamma-ray bursts (GRBs), and Galactic microquasar systems usually have power-law emission spectra. Recent PIC simulations using injected relativistic electron-ion (electro-positron) jets show that acceleration occurs within the downstream jet. Shock acceleration is a ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., the Buneman instability, other two-streaming instability, and the Weibel instability) created in the shocks are responsible for particle (electron, positron, and ion) acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields. These magnetic fields contribute to the electron's transverse deflection behind the jet head. The "jitter" radiation from deflected electrons has different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants.

  1. Strange Hadronic Matter in a Chiral Model

    Institute of Scientific and Technical Information of China (English)

    ZHANG Li-Liang; SONG Hong-Qiu; WANG Ping; SU Ru-Keng

    2000-01-01

    The strange hadronic matter with nucleon, Λ-hyperon and E-hyperon is studied by using a chiral symmetry model in a mean-field approximation. The saturation properties and stabilities of the strange hadronic matter are discussed. The result indicates a quite large strangeness fraction (fs) region where the strange hadronic matter is stable against particle emission. In the large fs region, the component dominates, resulting in a deep minimum in the curve of the binding energy per baryon EB versus the strangeness fraction fs with (EB, fs) -~ (-26.0MeV, 1.23).

  2. Stochastic aspects of multiparticle production in relativistic nuclear reactions

    International Nuclear Information System (INIS)

    Tachung, M.

    1988-01-01

    Midrapidity multiparticle production process in ordinary hadron and heavy-ion induced reactions at sufficiently high incident energies are analyzed. It is shown that stochastic aspects of multiparticle production process in relativistic range plays a dominating role in understanding the observable phenomena. The basic idea and the main results of the multisource model for hadron-nucleus and nucleus-nucleus collisions are shown. The concept of the NES (number of effective sources) scaling is discussed. 16 refs.; 7 figs

  3. Relativistic many-body theory a new field-theoretical approach

    CERN Document Server

    Lindgren, Ingvar

    2016-01-01

    This revised second edition of the author’s classic text offers readers a comprehensively updated review of relativistic atomic many-body theory, covering the many developments in the field since the publication of the original title.  In particular, a new final section extends the scope to cover the evaluation of QED effects for dynamical processes. The treatment of the book is based upon quantum-field theory, and demonstrates that when the procedure is carried to all orders of perturbation theory, two-particle systems are fully compatible with the relativistically covariant Bethe-Salpeter equation. This procedure can be applied to arbitrary open-shell systems, in analogy with the standard many-body theory, and it is also applicable to systems with more than two particles. Presently existing theoretical procedures for treating atomic systems are, in several cases, insufficient to explain the accurate experimental data recently obtained, particularly for highly charged ions. The main text is divided into...

  4. Relativistic Hartree-Bogoliubov description of thorium and uranium isotopes

    International Nuclear Information System (INIS)

    Naz, Tabassum; Ahmad, Shakeb

    2016-01-01

    The relativistic Hartree-Bogoliubov (RHB) theory is a relativistic extension of the Hartree-Fock- Bogoliubov theory. It is a unified description of mean-field and pairing correlations and successfully describe the various phenomenon of nuclear structure. In the present work, RHB is applied to study the thorium and uranium isotopes

  5. Particle Acceleration and Magnetic Field Generation in Electron-Positron Relativistic Shocks

    Science.gov (United States)

    Nishikawa, K.-I.; Hardee, P.; Richardson, G.; Preece, R.; Sol, H.; Fishman, G. J.

    2005-01-01

    Shock acceleration is a ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., Buneman, Weibel, and other two-stream instabilities) created in collisionless shocks are responsible for particle (electron, positron, and ion) acceleration. Using a three-dimensional relativistic electromagnetic particle (REMP) code, we have investigated particle acceleration associated with a relativistic electron-positron jet front propagating into an ambient electron-positron plasma with and without initial magnetic fields. We find small differences in the results for no ambient and modest ambient magnetic fields. New simulations show that the Weibel instability created in the collisionless shock front accelerates jet and ambient particles both perpendicular and parallel to the jet propagation direction. Furthermore, the nonlinear fluctuation amplitudes of densities, currents, and electric and magnetic fields in the electron-positron shock are larger than those found in the electron-ion shock studied in a previous paper at a comparable simulation time. This comes from the fact that both electrons and positrons contribute to generation of the Weibel instability. In addition, we have performed simulations with different electron skin depths. We find that growth times scale inversely with the plasma frequency, and the sizes of structures created by tine Weibel instability scale proportionally to the electron skin depth. This is the expected result and indicates that the simulations have sufficient grid resolution. While some Fermi acceleration may occur at the jet front, the majority of electron and positron acceleration takes place behind the jet front and cannot be characterized as Fermi acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying nonuniform, small-scale magnetic fields, which contribute to the electron s (positron s) transverse deflection behind the jet head. This

  6. Relativistic equation of the orbit of a particle in a arbitrary central force field

    International Nuclear Information System (INIS)

    Aaron, Francisc D.

    2005-01-01

    The equation of the orbit of a relativistic particle moving in an arbitrary central force field is derived. Straightforward generalizations of well-known first and second order differential equations are given. It is pointed out that the relativistic equation of the orbit has the same form as in the non-relativistic case, the only changes consisting in the appearance of additional terms proportional to 1/c 2 in both potential and total energies. (author)

  7. Relativistic theory of vector mesons in laser fields

    Energy Technology Data Exchange (ETDEWEB)

    Becker, W; Mitter, H [Tuebingen Univ. (F.R. Germany). Inst. fuer Theoretische Physik

    1975-01-01

    The relativistic wave equation for a particle with spin 1 and an anomalous magnetic moment ..mu.. in an external wave field is reduced to a set of coupled ordinary differential equations for three amplitudes, which multiply the exponential known from the spin 0 case. These amplitudes are constant for ..mu..=1 (and not ..mu..=0). Exact solutions are given for a linear polarized laser wave of finite pulse shape and for an infinitely extended plane wave with circular polarization. In contrast to the situation in a constant magnetic field there are no internal inconsistencies.

  8. Skyrme-Hartree-Fock in the realm of nuclear mean field models

    International Nuclear Information System (INIS)

    Reinhard, P.G.; Reiss, C.; Maruhn, J.; Bender, M.; Buervenich, T.; Greiner, W.

    2000-01-01

    We discuss and compare two brands of nuclear mean field models, the Skyrme-Hartree-Fock scheme (SHF) and the relativistic mean field model (RMF). Similarities and differences are worked out on a formal basis and with respect to the models performance in describing nuclear data. The bulk observables of stable nuclei are all described very well. Differences come up when extrapolating to exotic nuclei. The typically larger asymmetry energy in RMF leads to a larger neutron skin. Superheavy nuclei are found to be very sensitive on the single particle levels particularly on the spin orbit splitting. Ground state correlations from collective surface vibrations can have a significant effect on difference observables, as two-nucleon separation energy and two-nucleon shell gap. (author)

  9. Attractive versus repulsive interactions in the Bose-Einstein condensation dynamics of relativistic field theories

    Science.gov (United States)

    Berges, J.; Boguslavski, K.; Chatrchyan, A.; Jaeckel, J.

    2017-10-01

    We study the impact of attractive self-interactions on the nonequilibrium dynamics of relativistic quantum fields with large occupancies at low momenta. Our primary focus is on Bose-Einstein condensation and nonthermal fixed points in such systems. For a model system, we consider O (N ) -symmetric scalar field theories. We use classical-statistical real-time simulations as well as a systematic 1 /N expansion of the quantum (two-particle-irreducible) effective action to next-to-leading order. When the mean self-interactions are repulsive, condensation occurs as a consequence of a universal inverse particle cascade to the zero-momentum mode with self-similar scaling behavior. For attractive mean self-interactions, the inverse cascade is absent, and the particle annihilation rate is enhanced compared to the repulsive case, which counteracts the formation of coherent field configurations. For N ≥2 , the presence of a nonvanishing conserved charge can suppress number-changing processes and lead to the formation of stable localized charge clumps, i.e., Q balls.

  10. The Lund Monte Carlo programme for high energy interactions between hadrons and nuclei

    International Nuclear Information System (INIS)

    Nilsson-Almqvist, B.; Stenlund, E.

    1985-07-01

    In high energy hadron-nucleus and hadron-hadron collisions low Psub(T) is the dominating feature, not explained by QCD and related to quark confinement. Nevertheless QCD inspired formulations have been used to explain low Psub(T) interactions. Experimentally observed features like cascades are still not fully explained and we do not know when and in what way the hadronization take place. We present a Monte Carlo programme for ultra relativistic nucleus-nucleus interactions where we let the projectile nucleon rescatter inside the target nucleus, get excited and then fragment according to the Lund fragmentation scheme for particle production. (Author)

  11. Auxiliary fields in the geometrical relativistic particle dynamics

    International Nuclear Information System (INIS)

    Amador, A; Bagatella, N; Rojas, E; Cordero, R

    2008-01-01

    We describe how to construct the dynamics of relativistic particles, following either timelike or null curves, by means of an auxiliary variables method instead of the standard theory of deformations for curves. There are interesting physical particle models governed by actions that involve higher order derivatives of the embedding functions of the worldline. We point out that the mechanical content of such models can be extracted wisely from a lower order action, which can be performed by implementing in the action a finite number of constraints that involve the geometrical relationship structures inherent to a curve and by using a covariant formalism. We emphasize our approach for null curves. For such systems, the natural time parameter is a pseudo-arclength whose properties resemble those of the standard proper time. We illustrate the formalism by applying it to some models for relativistic particles

  12. Auxiliary fields in the geometrical relativistic particle dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Amador, A; Bagatella, N; Rojas, E [Departamento de Fisica, Facultad de Fisica e Inteligencia Artificial, Universidad Veracruzana, 91000 Xalapa, Veracruz (Mexico); Cordero, R [Departamento de Fisica, Escuela Superior de Fisica y Matematicas del I.P.N, Edificio 9, 07738 Mexico D.F (Mexico)], E-mail: aramador@gmail.com, E-mail: nbagatella@uv.mx, E-mail: cordero@esfm.ipn.mx, E-mail: efrojas@uv.mx

    2008-03-21

    We describe how to construct the dynamics of relativistic particles, following either timelike or null curves, by means of an auxiliary variables method instead of the standard theory of deformations for curves. There are interesting physical particle models governed by actions that involve higher order derivatives of the embedding functions of the worldline. We point out that the mechanical content of such models can be extracted wisely from a lower order action, which can be performed by implementing in the action a finite number of constraints that involve the geometrical relationship structures inherent to a curve and by using a covariant formalism. We emphasize our approach for null curves. For such systems, the natural time parameter is a pseudo-arclength whose properties resemble those of the standard proper time. We illustrate the formalism by applying it to some models for relativistic particles.

  13. The determination of the hadron mean free path for particle-producing collisions in intranuclear matter by measurement

    International Nuclear Information System (INIS)

    Strugalski, Z.; Mousa, M.

    1987-01-01

    It is shown how it is possible to determine the hadron mean free path in > for particle-producing collisions in intranuclear matter by measurement. The mean free path for the collisions of pions inside 54 131 Xe nuclei at 3.5 GeV/c momentum has been measured. The relation between in > in units nucleons/S and the hadron-nucleon inelastic cross section σ in in units S/nucleon is found: in >k1/σ in , where S∼10 fm 2 , k=3.0±0.15; physical meaning of S is given in this paper

  14. Population of multi-quark states in exotic multiplets and thermalization in ultra-relativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Scherer, S.; Bleicher, M.; Haussler, S.; Stoecker, H.

    2008-01-01

    The recent discussion about experimental evidence for pentaquark states has revitalized the interest in exotic hadrons. If such states really exist, it is natural to assume that they will be formed at the late hadronization stage of ultra-relativistic heavy ion collisions, given the success of quark recombination models in the description of hadronization. Here, we apply the qMD model to study the formation of color neutral exotic multi-quark clusters at hadronization. We search for color neutral clusters made up of up to six color charges, respectively. We thus obtain estimates for the numbers and phase space distributions of exotic hadronic states produced by clustering in heavy ion collisions, including the members of the pentaquark multiplets. We obtain particle abundances that are smaller than thermal model predictions. Moreover, the results obtained in recombination from ultra-relativistic heavy ion collisions can be compared to the estimates based on equal population of the corresponding multiplets, and to results from fully thermalized systems. We find that the distribution of exotic hadrons from recombination over large multiplets provides a sensitive signal for thermalization and decorrelation of the initial, non-equilibrium state of the collision. (author)

  15. Photon-Photon Luminosities in Relativistic Heavy Ion Collisions at LHC Energies

    OpenAIRE

    Hencken, Kai; Trautmann, Dirk; Baur, Gerhard

    1994-01-01

    Effective photon-photon luminosities are calculated for various realistic hadron collider scenarios. The main characteristics of photon-photon processes at relativistic heavy-ion colliders are established and compared to the corresponding photon-photon luminosities at electron-positron and future Photon Linear Colliders (PLC). Higher order corrections as well as inelastic processes are discussed. It is concluded that feasible high luminosity Ca-Ca collisions at the Large Hadron Collider (LHC)...

  16. Time-odd mean fields in covariant density functional theory: Rotating systems

    International Nuclear Information System (INIS)

    Afanasjev, A. V.; Abusara, H.

    2010-01-01

    Time-odd mean fields (nuclear magnetism) and their impact on physical observables in rotating nuclei are studied in the framework of covariant density functional theory (CDFT). It is shown that they have profound effect on the dynamic and kinematic moments of inertia. Particle number, configuration, and rotational frequency dependencies of their impact on the moments of inertia have been analyzed in a systematic way. Nuclear magnetism can also considerably modify the band crossing features such as crossing frequencies and the properties of the kinematic and dynamic moments of inertia in the band crossing region. The impact of time-odd mean fields on the moments of inertia in the regions away from band crossing only weakly depends on the relativistic mean-field parametrization, reflecting good localization of the properties of time-odd mean fields in CDFT. The moments of inertia of normal-deformed nuclei considerably deviate from the rigid-body value. On the contrary, superdeformed and hyperdeformed nuclei have the moments of inertia which are close to rigid-body value. The structure of the currents in rotating frame, their microscopic origin, and the relations to the moments of inertia have been systematically analyzed. The phenomenon of signature separation in odd-odd nuclei, induced by time-odd mean fields, has been analyzed in detail.

  17. Problems of describing the cumulative effect in relativistic nuclear physics

    International Nuclear Information System (INIS)

    Baldin, A.M.

    1979-01-01

    The problem of describing the cumulative effect i.e., the particle production on nuclei in the range kinematically forbidden for one-nucleon collisions, is studied. Discrimination of events containing cumulative particles fixes configurations in the wave function of a nucleus, when several nucleons are closely spaced and their quark-parton components are collectivized. For the cumulative processes under consideration large distances between quarks are very important. The fundamental facts and theoretical interpretation of the quantum field theory and of the condensed media theory in the relativistic nuclear physics are presented in brief. The collisions of the relativistic nuclei with low momentum transfers is considered in a fast moving coordinate system. The basic parameter determining this type of collisions is the energy of nucleon binding in nuclei. It has been shown that the short-range correlation model provides a good presentation of many characteristics of the multiple particle production and it may be regarded as an approximate universal property of hadron interactions

  18. Mass differences of light hadron isomultiplets

    International Nuclear Information System (INIS)

    Palladino, B.E.; Ferreira, P.L.

    1989-01-01

    Mass differences of low-lying, non-strange, hadron isomultiplets are investigated in the framework of a relativistic, independent quark potential model, implemented by center-of-mass, one-gluon-exchange and pion-cloud corrections. The introduction of pionic self-energy corrections with non-degenerate intermediate states is instrumental in our analysis, playing also a fundamental role for a successful description of the ρ-ω mass splitting. The effect of the supersposition of all these corrections is discussed in some detail for the p-n, Π + -Π 0 , ρ + -ρ 0 and Δ ++ -Δ 0 mass differences. The corresponding hadronic masses are also calculated with suitable values for the hardronic sizes and quark masses. (author) [pt

  19. The nuclear equation of state in effective relativistic field theories and pion yields in heavy-ion collisions

    International Nuclear Information System (INIS)

    Schoenhofen, M.; Cubero, M.; Gering, M.; Sambataro, M.; Feldmeier, H.; Noerenberg, W.

    1989-06-01

    Within the framework of relativistic field theory for nucleons, deltas, scalar and vector mesons, a systematic study of the nuclear equation of state and its relation to pion yields in heavy-ion collisions is presented. Not the compressibility but the effective nucleon mass at normal nuclear density turns out to be the most sensitive parameter. Effects from vaccum fluctuations are well modelled within the mean-field no-sea approximation by self-interaction terms for the scalar meson field. Incomplete thermalization in the fireball may be the reason for the low pion yields observed in heavy-ion collisions. (orig.)

  20. Method of taking into account the meson and quark-gluon degrees of freedom in hadron-hadron interactions at low and intermediate energies. Application to NN scattering

    International Nuclear Information System (INIS)

    Safronov, A.N.

    1983-01-01

    A system of nonsingular integral equations is formulated for calculation of the partial-wave amplitudes of hadron-hadron scattering in the region of low and intermediate energies with allowance for the meson and quark-gluon degrees of freedom. The quark-gluon degrees of freedom are taken into account in the framework of the model of composite quark bags, and the meson degrees of freedom by the methods of relativistic quantum field theory. It is shown that inclusion of the quark-gluon degrees of freedom leads to suppression of meson exchange effects, for the most part exchanges of heavy mesons (rho,ω). The method is applied to the calculation of the 3 S 1 , 1 S 0 , 3 P 0 , 3 P 1 , and 1 P 1 phase shifts of nucleon-nucleon scattering in the range of incident-nucleon energies T = 0--1050 MeV, as well as the S-wave scattering lengths and effective ranges

  1. Relativistic reconnection in near critical Schwinger field

    Science.gov (United States)

    Schoeffler, Kevin; Grismayer, Thomas; Fonseca, Ricardo; Silva, Luis; Uzdensky, Dmitri

    2017-10-01

    Magnetic reconnection in relativistic pair plasma with QED radiation and pair-creation effects in the presence of strong magnetic fields is investigated using 2D particle-in-cell simulations. The simulations are performed with the QED module of the OSIRIS framework that includes photon emission by electrons and positrons and single photon decay into pairs (non-linear Breit-Wheeler). We investigate the effectiveness of reconnection as a pair- and gamma-ray production mechanism across a broad range of reconnecting magnetic fields, including those approaching the critical quantum (Schwinger) field, and we also explore how the radiative cooling and pair-production processes affect reconnection. We find that in the extreme field regime, the magnetic energy is mostly converted into radiation rather than into particle kinetic energy. This study is a first concrete step towards better understanding of magnetic reconnection as a possible mechanism powering gamma-ray flares in magnetar magnetospheres.

  2. Motions in the relativistic fields of a charged dust

    International Nuclear Information System (INIS)

    Fonseca Teixeira, A.F. da.

    1980-04-01

    The general relativistic motion of arbitrarily charged test particles is investigated, in the spherically symmetric fields of a charged, static, incoherent matter with T 0 0 = const. The condition for existence of stable circular orbits is established, inside and outside the diffused source. The null geodesics are also investigated, as a limiting case. (Author) [pt

  3. Relativistic beam self-contraction in the inhomogeneous magnetic field with a neck

    International Nuclear Information System (INIS)

    Grishin, V.K.

    1979-01-01

    For production of short bunches of relativistic electrons and accompanying electromagnetic fields with amplitudes (up to MW/cm), considered was self-contraction of a relativistic electron beam (REB) in a magnetic field with a neck. REB dynamics in a ferrodielectric channel with permeability >> 1 was considered as well. It is shown, that in a such system, 10 m beam with a current up to ten kA is contracted to a length of approximately 0.5 m. Also the possible ways of application of the considered method of REB contraction are shown. For instance, a slow REB, fearing a great field, can be used for the capture and subsequent acceleration of heavy ions. The contracted beam application for generating powerful pulses of a h.f. field with, in fact, a homogeneous spectrum up to 100-300 MHz and total field energy up to 10-15% of initial beam energy is of great interest as well

  4. A systematic study of even-even nuclei in the nuclear chart by the relativistic mean field theory

    Energy Technology Data Exchange (ETDEWEB)

    Sumiyoshi, K.; Hirata, D.; Tanihata, I.; Sugahara, Y.; Toki, H. [Institute of Physical and Chemical Research, Wako, Saitama (Japan)

    1997-03-01

    We study systematically the properties of nuclei in the whole mass range up to the drip lines by the relativistic mean field (RMF) theory with deformations as a microscopic framework to provide the data of nuclear structure in the nuclear chart. The RMF theory is a phenomenological many-body framework, in which the self-consistent equations for nucleons and mesons are solved with arbitrary deformation, and has a potential ability to provide all the essential information of nuclear structure such as masses, radii and deformations together with single particle states and wave functions from the effective lagrangian containing nuclear interaction. As a first step toward the whole project, we study the ground state properties of even-even nuclei ranging from Z=8 to Z=120 up to the proton and neutron drip lines in the RMF theory. We adopt the parameter set TMA, which has been determined by the experimental masses and charge radii in a wide mass range, for the effective lagrangian of the RMF theory. We take into account the axially symmetric deformation using the constrained method on the quadrupole moment. We provide the properties of all even-even nuclei with all the possible ground state deformations extracted from the deformation energy curves by the constrained calculations. By studying the calculated ground state properties systematically, we aim to explore the general trend of masses, radii and deformations in the whole region of the nuclear chart. We discuss the agreement with experimental data and the predictions such as magicness and triaxial deformations beyond the experimental frontier. (author)

  5. ERL-BASED LEPTON-HADRON COLLIDERS: eRHIC AND LHeC

    CERN Document Server

    Zimmermann, F

    2013-01-01

    Two hadron-ERL colliders are being proposed. The Large Hadron electron Collider (LHeC) plans to collide the high-energy protons and heavy ions in the Large Hadron Collider (LHC) at CERN with 60-GeV polarized electrons or positrons. The baseline scheme for this facility adds to the LHC a separate recirculating superconducting (SC) lepton linac with energy recovery, delivering a lepton current of 6.4mA. The electron-hadron collider project eRHIC aims to collide polarized (and unpolarized) electrons with a current of 50 (220) mA and energies in the range 5–30 GeV with a variety of hadron beams— heavy ions as well as polarized light ions— stored in the existing Relativistic Heavy Ion Collider (RHIC) at BNL. The eRHIC electron beam will be generated in an energy recovery linac (ERL) installed inside the RHIC tunnel.

  6. Relativistic motion of spinning particles in a gravitational field

    International Nuclear Information System (INIS)

    Chicone, C.; Mashhoon, B.; Punsly, B.

    2005-01-01

    The relative motion of a classical relativistic spinning test particle is studied with respect to a nearby free test particle in the gravitational field of a rotating source. The effects of the spin-curvature coupling force are elucidated and the implications of the results for the motion of rotating plasma clumps in astrophysical jets are discussed

  7. Investigation of the surface current excitation by a relativistic electron electromagnetic field

    International Nuclear Information System (INIS)

    Naumenko, G; Shevelev, M; Potylitsyn, A; Popov, Yu; Sukhikh, L

    2010-01-01

    Surface current method and pseudo-photon ones are widely used in the problems of diffraction and transition radiation of relativistic electron in conductive targets. The simple analysis disclosed the contradiction between these methods in respect to the surface current excitation on target surfaces. This contradiction was resolved experimentally by the measurement of a surface current on the upstream and downstream target surfaces in diffraction radiation geometry. The experimental test showed, that no surface current is induced on the target downstream surface under the influence of a relativistic electron electromagnetic field in contrast to the upstream surface. This is important for the understanding of a forward transition and diffraction radiation nature and electromagnetic field evolution in interaction processes.

  8. Neutrino-nucleus reaction rates based on the relativistic quasiparticle random phase approximation

    International Nuclear Information System (INIS)

    Paar, N.; Vretenar, D.; Marketin, T.; Ring, P.

    2008-01-01

    Neutrino-nucleus cross sections are described in a novel theoretical framework where the weak interaction of leptons with hadrons is expressed in the standard current-current form, the nuclear ground state is described in the relativistic Hartree-Bogoliubov model, and the relevant transitions to excited states are calculated in the relativistic quasiparticle random phase approximation. The model is employed in studies of neutrino-nucleus reactions in several test cases

  9. A new nonlinear mean-field model of neutron star matter

    CERN Document Server

    Miyazaki, K

    2005-01-01

    A new relativistic mean-field model of neutron star matter is developed. It is a generalization of the Zimanyi-Moszkowski (ZM) model based on the constituent quark picture of baryons. The renormalized meson-hyperon coupling constants in medium are uniquely determined in contrast to the naive extention of ZM model and so the application of the model to high-density neutron star (NS) matter is possible. Our results of the particle composition and the mass-radius relation of NSs agree well with those obtained from the phenomenologically-determined realistic equation-of-state.

  10. Form factor of relativistic two-particle system and covariant hamiltonian formulation of quantum field theory

    International Nuclear Information System (INIS)

    Skachkov, N.; Solovtsov, I.

    1979-01-01

    Based on the hamiltonian formulation of quantum field theory proposed by Kadyshevsky the three-dimensional relativistic approach is developed for describing the form factors of composite systems. The main features of the diagram technique appearing in the covariant hamiltonian formulation of field theory are discussed. The three-dimensional relativistic equation for the vertex function is derived and its connection with that for the quasipotential wave function is found. The expressions are obtained for the form factor of the system through equal-time two-particle wave functions both in momentum and relativistic configurational representations. An explicit expression for the form factor is found for the case of two-particle interaction through the Coulomb potential

  11. Relativistic local quantum field theory for m=0 particles

    International Nuclear Information System (INIS)

    Morales Villasevil, A.

    1965-01-01

    A method is introduced ta deal with relativistic quantum field theory for particles with m=0. Two mappings I and J, giving rise respectively to particle and anti particle states, are defined between a test space and the physical Hilbert space. The intrinsic field operator is then defined as the minimal causal linear combinations of operators belonging to the annihilation-creation algebra associated to the germ and antigerm parts of the element. Local elements are introduced as improper test elements and local field operators are constructed in the same way as the intrinsic ones. Commutation rules are given. (Author) 17 refs

  12. Dynamical theory of hadron interactions based upon extended particle picture, 2

    International Nuclear Information System (INIS)

    Hara, Osamu

    1977-01-01

    The interaction of hadron is discussed on the basis of an extended particle model. We assume that the interaction between hadrons is due to the coupling between currents carried by excitons excited in the particles, which is mediated by some intermediate field. This picture enables us to write down all hadron interactions once this original interaction between excitons is given -- thus leading to a more unified and a dynamical understanding of the hadron interactions. As examples π-π, anti K-N and π-N interactions are discussed. As far as the comparison is possible, the resulting meson-meson interactions and the meson-baryon interactions are in agreement with those obtained by SU 6 or its relativistic generalization. But a great advantage of our model is that it gives furthermore new relations between these meson-meson interactions and meson-baryon interactions because of its unified structure. For example, we find that in our model the coupling constant for the rho ππ interaction g sub(rhoππ) is related to the (pseudo-scalar) π-N coupling constant g by g sub(rhoππ)sup(2)/4π = (6/5) 2 (m sub(rho) m sub(π)/M 2 )(G 2 /4π), where m sub(rho), m sub(π) and M denote respectively the mass for rho, π and the nucleon. This relation is satisfied very well experimentally. (auth.)

  13. Slowly rotating general relativistic superfluid neutron stars with relativistic entrainment

    International Nuclear Information System (INIS)

    Comer, G.L.

    2004-01-01

    Neutron stars that are cold enough should have two or more superfluids or supercondutors in their inner crusts and cores. The implication of superfluidity or superconductivity for equilibrium and dynamical neutron star states is that each individual particle species that forms a condensate must have its own, independent number density current and equation of motion that determines that current. An important consequence of the quasiparticle nature of each condensate is the so-called entrainment effect; i.e., the momentum of a condensate is a linear combination of its own current and those of the other condensates. We present here the first fully relativistic modeling of slowly rotating superfluid neutron stars with entrainment that is accurate to the second-order in the rotation rates. The stars consist of superfluid neutrons, superconducting protons, and a highly degenerate, relativistic gas of electrons. We use a relativistic σ-ω mean field model for the equation of state of the matter and the entrainment. We determine the effect of a relative rotation between the neutrons and protons on a star's total mass, shape, and Kepler, mass-shedding limit

  14. Relativistic theories of materials

    CERN Document Server

    Bressan, Aldo

    1978-01-01

    The theory of relativity was created in 1905 to solve a problem concerning electromagnetic fields. That solution was reached by means of profound changes in fundamental concepts and ideas that considerably affected the whole of physics. Moreover, when Einstein took gravitation into account, he was forced to develop radical changes also in our space-time concepts (1916). Relativistic works on heat, thermodynamics, and elasticity appeared as early as 1911. However, general theories having a thermodynamic basis, including heat conduction and constitutive equations, did not appear in general relativity until about 1955 for fluids and appeared only after 1960 for elastic or more general finitely deformed materials. These theories dealt with materials with memory, and in this connection some relativistic versions of the principle of material indifference were considered. Even more recently, relativistic theories incorporating finite deformations for polarizable and magnetizable materials and those in which couple s...

  15. Relativistic quantum mechanics; Mecanique quantique relativiste

    Energy Technology Data Exchange (ETDEWEB)

    Ollitrault, J.Y. [CEA Saclay, 91 - Gif-sur-Yvette (France). Service de Physique Theorique]|[Universite Pierre et Marie Curie, 75 - Paris (France)

    1998-12-01

    These notes form an introduction to relativistic quantum mechanics. The mathematical formalism has been reduced to the minimum in order to enable the reader to calculate elementary physical processes. The second quantification and the field theory are the logical followings of this course. The reader is expected to know analytical mechanics (Lagrangian and Hamiltonian), non-relativistic quantum mechanics and some basis of restricted relativity. The purpose of the first 3 chapters is to define the quantum mechanics framework for already known notions about rotation transformations, wave propagation and restricted theory of relativity. The next 3 chapters are devoted to the application of relativistic quantum mechanics to a particle with 0,1/5 and 1 spin value. The last chapter deals with the processes involving several particles, these processes require field theory framework to be thoroughly described. (A.C.) 2 refs.

  16. Hadronic and nuclear interactions in QCD

    International Nuclear Information System (INIS)

    1982-01-01

    Despite the evidence that QCD - or something close to it - gives a correct description of the structure of hadrons and their interactions, it seems paradoxical that the theory has thus far had very little impact in nuclear physics. One reason for this is that the application of QCD to distances larger than 1 fm involves coherent, non-perturbative dynamics which is beyond present calculational techniques. For example, in QCD the nuclear force can evidently be ascribed to quark interchange and gluon exchange processes. These, however, are as complicated to analyze from a fundamental point of view as is the analogous covalent bond in molecular physics. Since a detailed description of quark-quark interactions and the structure of hadronic wavefunctions is not yet well-understood in QCD, it is evident that a quantitative first-principle description of the nuclear force will require a great deal of theoretical effort. Another reason for the limited impact of QCD in nuclear physics has been the conventional assumption that nuclear interactions can for the most part be analyzed in terms of an effective meson-nucleon field theory or potential model in isolation from the details of short distance quark and gluon structure of hadrons. These lectures, argue that this view is untenable: in fact, there is no correspondence principle which yields traditional nuclear physics as a rigorous large-distance or non-relativistic limit of QCD dynamics. On the other hand, the distinctions between standard nuclear physics dynamics and QCD at nuclear dimensions are extremely interesting and illuminating for both particle and nuclear physics

  17. Phase transition dynamics in ultra-relativistic heavy-ion collisions

    International Nuclear Information System (INIS)

    Csernai, L.P.; Kapusta, J.I.; Kluge, G.Y.; Zabrodin, E.E.

    1992-11-01

    The authors investigate various problems related to the dynamics of a first-order phase transition from quark-gluon plasma to hadronic matter in ultra-relativistic heavy ion collisions. These include nucleation, growth and fusion of hadronic bubbles in either the Bjorken longitudinal hydrodynamic expansion model or the Cooper-Frye-Schonberg spherical hydrodynamic expansion model. With reasonable input parameters the conversion of one phase into the other is relatively close to the idealized adiabatic Maxwell construction, although one can choose parameters such that the conversion is strongly out of equilibrium. 10 refs., 7 figs

  18. High field terahertz emission from relativistic laser-driven plasma wakefields

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Zi-Yu, E-mail: Ziyu.Chen@uni-duesseldorf.de [Institut für Theoretische Physik I, Heinrich-Heine-Universität Düsseldorf, Düsseldorf 40225 (Germany); LSD, Institute of Fluid Physics, China Academy of Engineering Physics, Mianyang 621999 (China); Pukhov, Alexander [Institut für Theoretische Physik I, Heinrich-Heine-Universität Düsseldorf, Düsseldorf 40225 (Germany)

    2015-10-15

    We propose a method to generate high field terahertz (THz) radiation with peak strength of GV/cm level in the THz frequency gap range of 1–10 THz using a relativistic laser interaction with a gaseous plasma target. Due to the effect of local pump depletion, an initially Gaussian laser pulse undergoes leading edge erosion and eventually evolves to a state with leading edge being step function. Interacting with such a pulse, electrons gain transverse residual momentum and excite net transverse currents modulated by the relativistic plasma frequency. These currents give rise to the low frequency THz emission. We demonstrate this process with one and two dimensional particle-in-cell simulations.

  19. Magnetic Field Generation, Particle Energization and Radiation at Relativistic Shear Boundary Layers

    Science.gov (United States)

    Liang, Edison; Fu, Wen; Spisak, Jake; Boettcher, Markus

    2015-11-01

    Recent large scale Particle-in-Cell (PIC) simulations have demonstrated that in unmagnetized relativistic shear flows, strong transverse d.c. magnetic fields are generated and sustained by ion-dominated currents on the opposite sides of the shear interface. Instead of dissipating the shear flow free energy via turbulence formation and mixing as it is usually found in MHD simulations, the kinetic results show that the relativistic boundary layer stabilizes itself via the formation of a robust vacuum gap supported by a strong magnetic field, which effectively separates the opposing shear flows, as in a maglev train. Our new PIC simulations have extended the runs to many tens of light crossing times of the simulation box. Both the vacuum gap and supporting magnetic field remain intact. The electrons are energized to reach energy equipartition with the ions, with 10% of the total energy in electromagnetic fields. The dominant radiation mechanism is similar to that of a wiggler, due to oscillating electron orbits around the boundary layer.

  20. Multiplicity of secondaries in hadron-nucleus collisions and constituent quark rescattering

    International Nuclear Information System (INIS)

    Shabelsky, Yu.M.; Shekhter, V.M.

    1980-01-01

    A ratio of the relativistic secondary multiplicities for hadron-nucleus and hadron-nucleon interactions, Rsub(s)(hA), is considered in the central region and a part of the target nucleus fragmentation region. The multiplicities are obtained from the experimental average numbers of relativistic charged or negative particles by subtraction of the projectile fragment numbers estimated theoretically. Two hypotheses on the A dependence of the secondary multiplicity in a constituent quark interaction with a nucleus are discussed. An assumption that this multiplicity is independent of A leads to Rsub(s)(hA) = antiνsub(hA)/antiνsub(qA). An alternative assumption that the qA multiplicity increases with A due to quark rescattering from several nucleons gives Rsub(s)(hA) = antiνsub(hA). Comparison with experiment in the former case requires a great number of positively charged hadrons, probably protons, emitted from the nucleus. This number must rise significantly with both A and incident energy. The latter hypothesis is consistent with all data on as well as in pA collisions but disagrees by approximately 20% with in π - A interactions. (author)

  1. Theoretical studies in hadronic and nuclear physics. Progress report, July 1, 1994--June 1, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, M.K.; Griffin, J.J.

    1995-06-01

    This progress report contains 36 items of research work done by ten members of the University of Maryland Nuclear Theory Group with 21 outside collaborators from various institutions in the US, Canada, Korea and Europe. The report is in four sections, each representing major and basic areas of interest in nuclear theory. The sections are as follows: (1) hadrons in nuclei and nuclear matter; (2) hadron physics; (3) relativistic dynamics in quark, hadron and nuclear physics; (4) heavy ion dynamics and related processes.

  2. Theoretical studies in hadronic and nuclear physics. Progress report, July 1, 1994--June 1, 1995

    International Nuclear Information System (INIS)

    Banerjee, M.K.; Griffin, J.J.

    1995-06-01

    This progress report contains 36 items of research work done by ten members of the University of Maryland Nuclear Theory Group with 21 outside collaborators from various institutions in the US, Canada, Korea and Europe. The report is in four sections, each representing major and basic areas of interest in nuclear theory. The sections are as follows: (1) hadrons in nuclei and nuclear matter; (2) hadron physics; (3) relativistic dynamics in quark, hadron and nuclear physics; (4) heavy ion dynamics and related processes

  3. Introduction to the renormalization group study in relativistic quantum field theory

    International Nuclear Information System (INIS)

    Mignaco, J.A.; Roditi, I.

    1985-01-01

    An introduction to the renormalization group approach in relativistic quantum field theories is presented, beginning with a little historical about the subject. Further, this problem is discussed from the point of view of the perturbation theory. (L.C.) [pt

  4. Theoretical summary of the 8th International Conference on Hadron Spectroscopy

    International Nuclear Information System (INIS)

    Lipkin, H. J.

    1999-01-01

    The Constituent Quark Model has provided a remarkable description of the experimentally observed hadron spectrum but still has no firm theoretical basis. Attempts to provide a QCD justification discussed at Hadron99 include QCD Sum Rules, instantons, relativistic potential models and the lattice. Phenomenological analyses to clarify outstanding problems like the nature of the scalar and pseudoscalar mesons and the low branching ratio for ψ prime > ρ > π were presented. New experimental puzzles include the observation of anti pp > φπ

  5. Relativistic electron flux dropout due to field line curvature during the storm on 1 June 2013

    Science.gov (United States)

    Kang, S. B.; Fok, M. C. H.; Engebretson, M. J.; Li, W.; Glocer, A.

    2017-12-01

    Significant electron flux depletion over a wide range of L-shell and energy, referred as a dropout, was observed by Van Allen Probes during the storm main phase on June 1, 2013. During the same period, MeV electron precipitation with isotropic pitch-angle distribution was also observed in the evening sector from POES but no EMIC waves were detected from either space- or ground-based magnetometers. Based on Tsyganenko empirical magnetic field model, magnetic field lines are highly non-dipolar and stretched at the night side in the inner magnetosphere. This condition can break the first adiabatic invariant (conservation of magnetic moment) and generate pitch-angle scattering of relativistic electron to the loss cone. To understand the relative roles of different physical mechanisms on this dropout event, we simulate flux and phase space density of relativistic electrons with event specific plasma wave intensities using the Comprehensive Inner Magnetosphere and Ionosphere (CIMI) model, as a global 4-D inner magnetosphere model. We also employ pitch-angle scattering due to field line curvature in the CIMI model. We re-configure magnetic field every minute and update electric field every 20 seconds to capture radial transport. CIMI-simulation with pitch-angle scattering due to field line curvature shows more depletion of relativistic electron fluxes and better agreement to observation than CIMI-simulation with radial transport only. We conclude that pitch-angle scattering due to field line curvature is one of the dominant processes for the relativistic electron flux dropout.

  6. Non-relativistic scalar field on the quantum plane

    International Nuclear Information System (INIS)

    Jahan, A.

    2005-01-01

    We apply the coherent state approach to the non-commutative plane to check the one-loop finiteness of the two-point and four-point functions of a non-relativistic scalar field theory in 2+1 dimensions. We show that the two-point and four-point functions of the model are finite at one-loop level and one recovers the divergent behavior of the model in the limit θ->0 + by appropriate redefinition of the non-commutativity parameter

  7. Suppression of Back-to-Back Hadron Pairs at Forward Rapidity in d+Au Collisions at √(sNN)=200 GeV

    International Nuclear Information System (INIS)

    Adare, A.; Ellinghaus, F.; Kinney, E.; Linden Levy, L. A.; Nagle, J. L.; Rosen, C. A.; Seele, J.; Wysocki, M.; Afanasiev, S.; Isupov, A.; Litvinenko, A.; Malakhov, A.; Peresedov, V.; Rukoyatkin, P.; Zolin, L.; Aidala, C.; Datta, A.; Ajitanand, N. N.; Alexander, J.; Chung, P.

    2011-01-01

    Back-to-back hadron pair yields in d+Au and p+p collisions at √(s NN )=200 GeV were measured with the PHENIX detector at the Relativistic Heavy Ion Collider. Rapidity separated hadron pairs were detected with the trigger hadron at pseudorapidity |η| T , and η points to cold nuclear matter effects arising at high parton densities.

  8. Hydrodynamic modelling for relativistic heavy-ion collisions at RHIC ...

    Indian Academy of Sciences (India)

    model, to describe the microscopic evolution and decoupling of the hadronic ... progress on hydrodynamic modelling, investigation on the flow data and the ... and to describe and predict the soft particle physics in relativistic heavy-ion collisions [4]. It is based on the conservation laws of energy, momentum and net charge ...

  9. Photon production in relativistic nuclear collisions at SPS and RHIC energies

    CERN Document Server

    Turbide, S; Rapp, R; 10.1142/S0217751X0402258X

    2004-01-01

    Chiral Lagrangians are used to compute the production rate of photons from the hadronic phase of relativistic nuclear collisions. Special attention is paid to the role of the a/sub 1/ pseudovector. Calculations that include strange meson reactions, form factors, the use of consistent vector spectral densities, the emission from a quark-gluon plasma, and primordial nucleon-nucleon collisions reproduce the photon spectra measured at the Super Proton Synchrotron (SPS). Some predictions for the Relativistic Heavy Ion Collider (RHIC) are made.

  10. Theoretical studies in medium-energy nuclear and hadronic physics

    International Nuclear Information System (INIS)

    Horowitz, C.J.; Macfarlane, M.H.; Matsui, T.; Serot, B.D.

    1993-01-01

    A proposal for theoretical nuclear physics research is made for the period April 1, 1993 through March 31, 1996. Research is proposed in the following areas: relativistic many-body theory of nuclei and nuclear matter, quasifree electroweak scattering and strange quarks in nuclei, dynamical effects in (e,e'p) scattering at large momentum transfer, investigating the nucleon's parton sea with polarized leptoproduction, physics of ultrarelativistic nucleus endash nucleus collisions, QCD sum rules and hadronic properties, non-relativistic models of nuclear reactions, and spin and color correlations in a quark-exchange model of nuclear matter. Highlights of recent research, vitae of principal investigators, and lists of publications and invited talks are also given. Recent research dealt primarily with medium-energy nuclear physics, relativistic theories of nuclei and the nuclear response, the nuclear equation of state under extreme conditions, the dynamics of the quark endash gluon plasma in relativistic heavy-ion collisions, and theories of the nucleon endash nucleon force

  11. SO(4,1) as a structure group of a fibre bundle and SO(3,2) as a relativistic spectrum-generating group

    International Nuclear Information System (INIS)

    Bohm, A.

    1979-12-01

    A collective model for hadrons is presented that has two aspects: the description of nonlocal objects and the construction of spectrum-generating groups in a relativistic theory. The experimental data for this model are the mass and spin spectrum of hadron towers; each tower is characterized by a system constant α. The mass formula derived is m 2 = lambda 2 (α 2 - 9/4) + lambda 2 s(s+1), where R = 1/lambda is the radius of micro-de Sitter spaces. The subject is treated under the following topics: relativistic spectrum-generating SO(3,2); nonlocal objects and SO(4,1); the SO(4,1) constraint relation for the relativistic spectrum-generating SO(3,2); and generalization of the remarkable representation and generalization of the de Sitter fiber bundle - the general relativistic rotator. 1 figure, 1 table

  12. Rotating relativistic neutron stars

    Energy Technology Data Exchange (ETDEWEB)

    Weber, F.; Glendenning, N.K.

    1991-07-21

    Models of rotating neutron stars are constructed in the framework of Einstein's theory of general relativity. For this purpose a refined version of Hartle's method is applied. The properties of these objects, e.g. gravitational mass, equatorial and polar radius, eccentricity, red- and blueshift, quadrupole moment, are investigated for Kepler frequencies of 4000 s{sup {minus}1} {le} {Omega}{sub K} {le} 9000 s{sup {minus}1}. Therefore a self-consistency problem inherent in the determination of {Omega}{sub K} must be solved. The investigation is based on neutron star matter equations of state derived from the relativistic Martin-Schwinger hierarch of coupled Green's functions. By means of introducing the Hartree, Hartree-Fock, and ladder ({Lambda}) approximations, models of the equation of state derived. A special feature of the latter approximation scheme is the inclusion of dynamical two-particle correlations. These have been calculated from the relativistic T-matrix applying both the HEA and Bonn meson-exchange potentials of the nucleon-nucleon force. The nuclear forces of the former two treatments are those of the standard scalar-vector-isovector model of quantum hadron dynamics, with parameters adjusted to the nuclear matter data. An important aspect of this work consists in testing the compatibility of different competing models of the nuclear equation of state with data on pulsar periods. By this the fundamental problem of nuclear physics concerning the behavior of the equation of state at supernuclear densities can be treated.

  13. Isoscalar compression modes in relativistic random phase approximation

    International Nuclear Information System (INIS)

    Ma, Zhong-yu; Van Giai, Nguyen.; Wandelt, A.; Vretenar, D.; Ring, P.

    2001-01-01

    Monopole and dipole compression modes in nuclei are analyzed in the framework of a fully consistent relativistic random phase approximation (RRPA), based on effective mean-field Lagrangians with nonlinear meson self-interaction terms. The large effect of Dirac sea states on isoscalar strength distribution functions is illustrated for the monopole mode. The main contribution of Fermi and Dirac sea pair states arises through the exchange of the scalar meson. The effect of vector meson exchange is much smaller. For the monopole mode, RRPA results are compared with constrained relativistic mean-field calculations. A comparison between experimental and calculated energies of isoscalar giant monopole resonances points to a value of 250-270 MeV for the nuclear matter incompressibility. A large discrepancy remains between theoretical predictions and experimental data for the dipole compression mode

  14. Liouville equation of relativistic charged fermion

    International Nuclear Information System (INIS)

    Wang Renchuan; Zhu Dongpei; Huang Zhuoran; Ko Che-ming

    1991-01-01

    As a form of density martrix, the Wigner function is the distribution in quantum phase space. It is a 2 X 2 matrix function when one uses it to describe the non-relativistic fermion. While describing the relativistic fermion, it is usually represented by 4 x 4 matrix function. In this paper authors obtain a Wigner function for the relativistic fermion in the form of 2 x 2 matrix, and the Liouville equation satisfied by the Wigner function. this equivalent to the Dirac equation of changed fermion in QED. The equation is also equivalent to the Dirac equation in the Walecka model applied to the intermediate energy nuclear collision while the nucleon is coupled to the vector meson only (or taking mean field approximation for the scalar meson). Authors prove that the 2 x 2 Wigner function completely describes the quantum system just the same as the relativistic fermion wave function. All the information about the observables can be obtained with above Wigner function

  15. Relativistic-particle quantum mechanics (applications and approximations) II

    International Nuclear Information System (INIS)

    Coester, F.

    1981-01-01

    In this lecture I hope to show that relativistic-particle quantum mechanics with direct interactions is a useful tool for building models applicable to hadron systems at intermediate energies. To do this I will first describe a class of models designed to incorporate nucleon-nucleon interactions, pion production, absorption and scattering into a single dynamical framework without dressing the nucleons with pion clouds. The second major topic concerns electromagnetic interactions. In the previous lecture I specifically excluded long-rang forces and zero-mass particles. Since many of the experimental data in hadron physics involve electromagnetic interactions this limitation is a major defect which must be addressed

  16. Messung der Produktion von aus leichten Quarks zusammengesetzten Hadronen und Anti-Kernen am Large Hadron Collider

    CERN Document Server

    Kalweit, Alexander; Wambach, Jochen

    With the recording of the first collisions of the Large Hadron Collider (LHC) in November 2009, a new era in the domain of high energy and relativistic heavy-ion physics has started. As one of the early observables which can be addressed, the measurement of light quark flavor production is presented in this thesis. Hadrons that consist only of u, d, and s quarks constitute the majority of the produced particles in pp and Pb–Pb collisions. Their measurement forms the basis for a detailed understanding of the collision and for the answer of the question if hadronic matter undergoes a phase transition to the deconfined quark-gluon plasma at high temperatures. The basics of ultra-relativistic heavyion physics are briefly introduced in the first chapter followed by a short description of the ALICE experiment. A particular focus is put on the unique particle identification (PID) capabilities as they provide the basis of the measurements which are presented in the following chapters. The particle identification vi...

  17. A study on the steady-state solutions of a relativistic Bursian diode in the presence of a transverse magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Pramanik, Sourav; Chakrabarti, Nikhil [Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700 064 (India); Kuznetsov, V. I.; Bakaleinikov, L. A. [Ioffe Institute, St. Petersburg 194021 (Russian Federation)

    2016-08-15

    A comprehensive study on the steady states of a planar vacuum diode driven by a cold relativistic electron beam in the presence of an external transverse magnetic field is presented. The regimes, where no electrons are turned around by the external magnetic field and where they are reflected back to the emitter by the magnetic field, are both considered in a generalized way. The problem is solved by two methods: with the Euler and the Lagrange formulation. Taking non-relativistic limit, the solutions are compared with the similar ones which were obtained for the Bursian diode with a non-relativistic electron beam in previous work [Pramanik et al., Phys. Plasmas 22, 112108 (2015)]. It is shown that, at a moderate value of the relativistic factor of the injected beam, the region of the ambiguous solutions located to the right of the SCL bifurcation point (space charge limit) in the non-relativistic regime disappears. In addition, the dependencies of the characteristic bifurcation points and the transmitted current on the Larmor frequency as well as on the relativistic factor are explored.

  18. Optics of relativistic sources in a spherically symmetric gravitational field

    International Nuclear Information System (INIS)

    Campbell, G.A.

    1975-01-01

    The effects of spectral shifts and gravitational focussing on radiation from sources moving geodesically in the Schwarzschild gravitational field is analyzed using the general-relativistic equations for geodesic motion and for the propagation of radiation along null geodesics in the geometrical optics approximation. The exact solutions of the Schwarzschild geodesic equations are briefly discussed for the null and time-like cases, and the method of classifying the orbital types of motion based on the effective radial potential is presented. A method of finding the stability of these orbits using this technique is discussed. The geometrical optics approximation for the propagation of radiation is discussed, and the area-intensity law for the Schwarzschild field is derived. The particularly interesting region near R = 3m is investigated by means of expansions of the exact equations. Numerical techniques for calculating radiation patterns from the propagation equations are discussed, including techniques for obtaining the time variation along geodesics and differences in propagation time along different null geodesics. Finally, the implications of these calculations for the apparent contradiction in energy requirements set by Joseph Weber's observations of galactic gravitational radiation and by astronomical observation are discussed. (Diss. Abstr. Int., B)

  19. Effective field theory and the quark model

    International Nuclear Information System (INIS)

    Durand, Loyal; Ha, Phuoc; Jaczko, Gregory

    2001-01-01

    We analyze the connections between the quark model (QM) and the description of hadrons in the low-momentum limit of heavy-baryon effective field theory in QCD. By using a three-flavor-index representation for the effective baryon fields, we show that the 'nonrelativistic' constituent QM for baryon masses and moments is completely equivalent through O(m s ) to a parametrization of the relativistic field theory in a general spin-flavor basis. The flavor and spin variables can be identified with those of effective valence quarks. Conversely, the spin-flavor description clarifies the structure and dynamical interpretation of the chiral expansion in effective field theory, and provides a direct connection between the field theory and the semirelativistic models for hadrons used in successful dynamical calculations. This allows dynamical information to be incorporated directly into the chiral expansion. We find, for example, that the striking success of the additive QM for baryon magnetic moments is a consequence of the relative smallness of the non-additive spin-dependent corrections

  20. Hadronic interactions from effective chiral Lagrangians of quarks and gluons

    International Nuclear Information System (INIS)

    Krein, G.

    1996-06-01

    We discuss the combined used of the techniques of effective chiral field theory and the field theoretic method known as Fock-Tani representation to derive effective hadron interactions. The Fock-Tani method is based on a change of representation by means of a unitary transformation such that the composite hadrons are redescribed by elementary-particle field operators. Application of the unitary transformation on the microscopic quark-quark interaction derived from a chiral effective Lagrangian leads to chiral effective interactions describing all possible processes involving hadrons and their constituents. The formalism is illustrated by deriving the one-pion-exchange potential between the nucleons using the quark-gluon effective chiral Lagrangian of Manohar and Georgi. We also present the results of a study of the saturation properties of the nuclear matter using this formalism. (author). 9 refs., 2 figs

  1. High-pT hadron spectra at RHIC: an overview

    International Nuclear Information System (INIS)

    Klay, Jennifer L

    2005-01-01

    Recent results on high transverse momentum (p T ) hadron production in p+p, d+Au and Au+Au collisions at the relativistic heavy-ion collider (RHIC) are reviewed. Comparison of the nuclear modification factors, R dAu (p T ) and R AA (p T ), demonstrates that the large suppression in central Au+Au collisions is due to strong final-state effects. Theoretical models which incorporate jet quenching via gluon bremsstrahlung in the dense partonic medium that is expected in central Au+Au collisions at ultra-relativistic energies are shown to reproduce the shape and magnitude of the observed suppression over the range of collision energies so far studied at RHIC

  2. Report on the Oak Ridge workshop on Monte Carlo codes for relativistic heavy-ion collisions

    International Nuclear Information System (INIS)

    Awes, T.C.; Sorensen, S.P.

    1988-01-01

    In order to make detailed predictions for the case of purely hadronic matter, several Monte Carlo codes have been developed to describe relativistic nucleus-nucleus collisions. Although these various models build upon models of hadron-hadron interactions and have been fitted to reproduce hadron-hadron collision data, they have rather different pictures of the underlying hadron collision process and of subsequent particle production. Until now, the different Monte Carlo codes have, in general, been compared to different sets of experimental data, according to which results were readily available to the model builder or which Monte Carlo code was readily available to an experimental group. As a result, it has been difficult to draw firm conclusions about whether the observed deviations between experiments and calculations were due to deficiencies in the particular model, experimental discrepancies, or interesting effects beyond a simple superposition of nucleon-nucleon collisions. For this reason, it was decided that it would be productive to have a structured confrontation between the available experimental data and the many models of high-energy nuclear collisions in a manner in which it could be ensured that the computer codes were run correctly and the experimental acceptances were properly taken into account. With this purpose in mind, a Workshop on Monte Carlo Codes for Relativistic Heavy-Ion Collisions was organized at the Joint Institute for Heavy Ion Research at Oak Ridge National Laboratory from September 12--23, 1988. This paper reviews this workshop. 11 refs., 6 figs

  3. Meson spectra using relativistic quark models

    International Nuclear Information System (INIS)

    Eggers, M.C.

    1985-01-01

    The complexity of QCD has led to the use of simpler, phenomenological models for hadrons, notably potential models. A short overview of the origin, rationale, merits and demerits of such models is given. Nonrelativistic models and scaling laws are discussed using the WKB technique for illustrative purposes. The failure of nonrelativistic models to describe the lighter mesons motivates the introduction of relativistic equations. Relativistic kinematics are incorporated into a Schroedinger formalism using equations derived by A. Barut, while two-body kinematics are brought into a one-body form via a substitution related to the Todorov equation. The potential used involves a semi-analytic solution to a harmonic oscillator modified by a spin-spin interaction term. The results seem to indicate that such a harmonic oscillator is unsuitable to describe diquark systems adequately

  4. Electromagnetic properties of light and heavy baryons in the relativistic quark model

    International Nuclear Information System (INIS)

    Nicmorus Marinescu, Diana

    2007-01-01

    One of the main challenges of nowadays low-energy physics remains the description of the internal structure of hadrons, strongly connected to the electromagnetic properties of matter. In this vein, the success of the relativistic quark model in the analysis of the hadron structure constitutes a solid motivation for the study carried out throughout this work. The relativistic quark model is extended to the investigation of static electromagnetic properties of both heavy and light baryons. The bare contributions to the magnetic moments of the single-, double- and triple-heavy baryons are calculated. Moreover, the relativistic quark model allows the study of the electromagnetic properties of the light baryon octet incorporating meson cloud contributions in a perturbative manner. The long disputed values of the multipole ratios E2/M1 and C2/M1 and the electromagnetic form factors of the N→Δγ transition are successfully reproduced. The relativistic quark model can be viewed as a quantum field theory approach based on a phenomenological Lagrangian coupling light and heavy baryons to their constituent quarks. In our approach the baryon is a composite object of three constituent quarks, at least in leading order. The effective interaction Lagrangian is written in terms of baryon and constituent quark fields. The effective action preserves Lorentz covariance and gauge invariance. The main ingredients of the model are already introduced at the level of the interaction Lagrangian: the three-quark baryon currents, the Gaussian distribution of the constituent quarks inside the baryon and the compositeness condition which sets an upper limit for the baryon-quark vertex. The S-matrix elements are expressed by a set of Feynman quark-diagrams. The model contains only few parameters, namely, the cut-off parameter of the Gaussian quark distribution and the free quark propagator, which are unambiguously determined from the best fit to the data. The heavy quark limit within this

  5. Electromagnetic properties of light and heavy baryons in the relativistic quark model

    Energy Technology Data Exchange (ETDEWEB)

    Nicmorus Marinescu, Diana

    2007-06-14

    One of the main challenges of nowadays low-energy physics remains the description of the internal structure of hadrons, strongly connected to the electromagnetic properties of matter. In this vein, the success of the relativistic quark model in the analysis of the hadron structure constitutes a solid motivation for the study carried out throughout this work. The relativistic quark model is extended to the investigation of static electromagnetic properties of both heavy and light baryons. The bare contributions to the magnetic moments of the single-, double- and triple-heavy baryons are calculated. Moreover, the relativistic quark model allows the study of the electromagnetic properties of the light baryon octet incorporating meson cloud contributions in a perturbative manner. The long disputed values of the multipole ratios E2/M1 and C2/M1 and the electromagnetic form factors of the N{yields}{delta}{gamma} transition are successfully reproduced. The relativistic quark model can be viewed as a quantum field theory approach based on a phenomenological Lagrangian coupling light and heavy baryons to their constituent quarks. In our approach the baryon is a composite object of three constituent quarks, at least in leading order. The effective interaction Lagrangian is written in terms of baryon and constituent quark fields. The effective action preserves Lorentz covariance and gauge invariance. The main ingredients of the model are already introduced at the level of the interaction Lagrangian: the three-quark baryon currents, the Gaussian distribution of the constituent quarks inside the baryon and the compositeness condition which sets an upper limit for the baryon-quark vertex. The S-matrix elements are expressed by a set of Feynman quark-diagrams. The model contains only few parameters, namely, the cut-off parameter of the Gaussian quark distribution and the free quark propagator, which are unambiguously determined from the best fit to the data. The heavy quark limit

  6. Analytic approach to the relativistic problem of constructing effective nucleon-nucleon and pion-nucleon interaction operators at low and intermediate energies

    International Nuclear Information System (INIS)

    Safronov, A.N.; Safronov, A.A.

    2006-01-01

    Full text: A nonperturbative character of QCD at low and intermediate energies generates serious mathematical difficulties in describing the dynamics of hadron-hadron interactions in terms quark-gluon degrees of freedom. Therefore much effort has gone in past years into developing QCD-motivated approaches that formulate the theory of strong interaction in terms of hadron degrees of freedom. The path-integral technique together with idea of spontaneous chiral-symmetry breaking leads to Effective Field Theory (EFT) [1]. Unfortunately EFT can be applied to description of hadron-hadron interactions only at very low energies. On the other hand, meson theories of nuclear forces have long since been used to describe the properties of nucleon systems and scattering processes. Now it is not quite clear, up to what distances the meson-exchange pattern of nuclear forces is valid. Recently the new relativistic approach to the problem of constructing effective hadron-hadron interaction operators has been proposed [2-4] on the basis of analytic S-matrix theory and Gelfand-Levitan-Marchenko-Martin methods for solving the inverse quantum scattering problem. In this approach effective potential is defined as a local operator in a partial-wave equation of the quasipotential type such that it generates on-shell relativistic (Feynman) scattering amplitude that has required discontinuities at dynamical cuts. The discontinuities of partial-wave amplitudes are determined by model-independent quantities (renormalized vertex constants and amplitudes of subprocesses involving on-mass-shell particles off the physical region) and can be calculated by methods of relativistic quantum field theory within various dynamical approaches. In particular, EFT can be used to calculate the discontinuities across dynamical-cut segments closest to the physical region. In [2-4] we have examined the basic features of the proposed approach. Attention has been given primarily to analyzing the new mechanism of

  7. Advantage of nonlinear relativistic mean-field model in studying neutron star matter

    CERN Document Server

    Miyazaki, K

    2006-01-01

    We test the extended Zimanyi-Moszkowski model of relativistic nuclear matter for reproducing the density dependence of the symmetry energy, the direct URCA constraint M_{G}^{DU} \\geq 1.5M_{\\odot} on the gravitational mass of neutron star (NS), the large radii of NSs in RX J1856.5-3754 and qLMXB X7, the massive NSs in PSR J0751+1807 and 4U1700-37, and the baryonic mass of J0737-3039B. The two sets of NN\\rho coupling constant are considered. The first (EZM1) is the same as the Bonn A potential. The second (EZM2) is chosen so as to reproduce the symmetry energy E_s=32MeV of nuclear matter. The EZM1 can pass 6 tests among 7, while the EZM2 passes 5 tests. We can therefore conclude that the EZM model has unique and excellent features and is the most prospective one for studying the dense baryonic matter.

  8. Electromagnetic moments of hadrons and quarks in a hybrid model

    International Nuclear Information System (INIS)

    Gerasimov, S.B.

    1989-01-01

    Magnetic moments of baryons are analyzed on the basis of general sum rules following from the theory of broken symmetries and quark models including the relativistic effects and hadronic corrections due to the meson exchange currents. A new sum rule is proposed for the hyperon magnetic moments, which is in accord with the most precise new data and also with a theory of the electromagnetic ΛΣ 0 mixing. The numerical values of the quark electromagnetic moments are obtained within a hybrid model treating the pion cloud effects through the local coupling of the pion field with the constituent massive quarks. Possible sensitivity of the weak neutral current magnetic moments to violation of the Okubo-Zweig-Izuki rule is emphasized nand discussed. 39 refs.; 1 fig

  9. Field quality evaluation of the superconducting magnets of the relativistic heavy ion collider

    International Nuclear Information System (INIS)

    Wei, J.; Gupta, R.C.; Jain, A.; Peggs, S.G.; Trahern, C.G.; Trbojevic, D.; Wanderer, P.

    1995-01-01

    In this paper, the authors first present the procedure established to evaluate the field quality, quench performance, and alignment of the superconducting magnets manufactured for the Relativistic Heavy Ion Collider (RHIC), and then discuss the strategies used to improve the field quality and to minimize undesirable effects by sorting the magnets. The field quality of the various RHIC magnets is briefly summarized

  10. Quasistationary model of high current relativistic electron beam. 2. The own magnetic field of relativistic electron beam in cylindrical Drift space

    International Nuclear Information System (INIS)

    Brenner, S.E.; Gandul', E.M.; Podkopaev, A.P.

    1995-01-01

    This paper is devoted to obtaining the components of own magnetic field of high current relativistic electron beam passing through the cylindrical drift space superconducting walls: the peculiarities of applied numerical scheme have been also described briefly. (author). 6 refs

  11. Spinors in self-dual Yang-Mills fields in minkowski space

    International Nuclear Information System (INIS)

    Pervushin, V.N.

    1981-01-01

    Yang-Mills theory with infrared divergences removed by spontaneous vacuum symmetry breaking is considered. The corresponding vacuum fields are self-dual and are defined in the Minkowski space. The complete set of solutions of Dirac equations with self-dual fields, depending on certain arbitrary function, is found. Physical observables (charge, energy, spin) for the spinor fields within the self-dual vacuum are calculated and a Hermitean Hamiltonian is obtained. The physical picture corresponds to a relativistic generalization of the hadron bag model [ru

  12. Heavy baryon spectroscopy with relativistic kinematics

    International Nuclear Information System (INIS)

    Valcarce, A.; Garcilazo, H.; Vijande, J.

    2014-01-01

    We present a comparative Faddeev study of heavy baryon spectroscopy with nonrelativistic and relativistic kinematics. We show results for different standard hyperfine interactions with both kinematics in an attempt to learn about the light quark dynamics. We highlight the properties of particular states accessible in nowadays laboratories that would help in discriminating between different dynamical models. The advance in the knowledge of light quark dynamics is a key tool for the understanding of the existence of exotic hadrons.

  13. Hawking-Unruh Hadronization and Strangeness Production in High Energy Collisions

    CERN Document Server

    Castorina, P

    2014-01-01

    The thermal multihadron production observed in different high energy collisions poses many basic problems: why do even elementary, $e^+e^-$ and hadron-hadron, collisions show thermal behaviour? Why is there in such interactions a suppression of strange particle production? Why does the strangeness suppression almost disappear in relativistic heavy ion collisions? Why in these collisions is the thermalization time less than $\\simeq 0.5$ fm/c? We show that the recently proposed mechanism of thermal hadron production through Hawking-Unruh radiation can naturally answer the previous questions. Indeed, the interpretation of quark- antiquark pairs production, by the sequential string breaking, as tunneling through the event horizon of colour confinement leads to thermal behavior with a universal temperature, $T \\simeq 170$ Mev,related to the quark acceleration, a, by $T=a/2\\pi$. The resulting temperature depends on the quark mass and then on the content of the produced hadrons, causing a deviation from full equilib...

  14. Towards relativistic quantum geometry

    Energy Technology Data Exchange (ETDEWEB)

    Ridao, Luis Santiago [Instituto de Investigaciones Físicas de Mar del Plata (IFIMAR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mar del Plata (Argentina); Bellini, Mauricio, E-mail: mbellini@mdp.edu.ar [Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Funes 3350, C.P. 7600, Mar del Plata (Argentina); Instituto de Investigaciones Físicas de Mar del Plata (IFIMAR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mar del Plata (Argentina)

    2015-12-17

    We obtain a gauge-invariant relativistic quantum geometry by using a Weylian-like manifold with a geometric scalar field which provides a gauge-invariant relativistic quantum theory in which the algebra of the Weylian-like field depends on observers. An example for a Reissner–Nordström black-hole is studied.

  15. Theoretical studies in hadronic and nuclear physics

    International Nuclear Information System (INIS)

    Griffin, J.J.; Cohen, T.D.

    1993-07-01

    Research in the Maryland Nuclear Theory Group focusses on problems in four basic areas of current relevance. The section on Hadrons in Nuclei reports research into the ways in which the properties of nucleons and the mesons which play a role in the nuclear force are modified in the nuclear medium. QCD sum rules supply a new insight into the decrease of the nucleon's mass in the nuclear medium. The quark condensate decreases in nuclear matter, and this is responsible for the decrease of the nucleon's mass. The section on the Structure of Hadrons reports progress in understanding the structure of the nucleon. These results cover widely different approaches -- lattice gauge calculations, QCD sum rules, quark-meson models with confinement and other hedgehog models. Progress in Relativistic Nuclear Physics is reported on electromagnetic interactions in a relativistic bound state formalism, with applications to elastic electron scattering by deuterium, and on application of a two-body quasipotential equation to calculate the spectrum of mesons formed as bound states of a quark and antiquark. A Lorentz-invariant description of the nuclear force suggests a decrease of the nucleon's mass in the nuclear medium similar to that found from QCD sum rules. Calculations of three-body bound states with simple forms of relativistic dynamics are also discussed. The section on Heavy Ion Dynamics and Related Processes describes progress on the (e + e - ) problem and heavy-on dynamics. In particular, the sharp electrons observed in β + irradiation of heavy atoms have recently been subsumed into the ''Composite Particle Scenario,'' generalizing the ''(e + e - -Puzzle'' of the pairs from heavy ion collisions to the ''Sharp Lepton Problem.''

  16. Relativistic nuclear physics: symmetry and the correlation depletion principle

    International Nuclear Information System (INIS)

    Baldin, A.M.

    1996-01-01

    The author's view on the role of symmetry in fundamental physics is presented. The concept of the 'symmetry of solutions' is analyzed. It is stressed that it is impossible to deduce the basic laws of relativistic nuclear physics from the QCD Lagrangians without recourse to additional hypotheses about the symmetry of solutions (Green functions). The test of these hypotheses is the major prospect of the study of hadron and nuclear collisions. Special importance is given to the Correlation Depletions Principle that makes it possible to construct mathematical models of relativistic nuclear physics, and analyze, by using simple terms, topologically complicated events of nucleus-nucleus collisions. 15 refs., 4 figs

  17. Long-range Correlations of Charged Hadrons in Nucleus–Nucleus Collisions at the CERN SPS

    CERN Document Server

    Szuba, Marek Krzysztof

    Abstract It has been believed since the 1960s that hadrons — most artificially-produced particles as well as protons and neutrons making up atomic nuclei — consist in fact of even smaller particles called quarks. At the same time it is believed that it is impossible to free a quark from inside a hadron; this phenomenon is called confinement and has so far been confirmed by all experimental observations. On the other hand the opposite effect, asymptotic freedom, has led physicists to believe that under appropriate environmental conditions quark matter could undergo a phase transition into states in which quarks along with gluons (carriers of the strong force) could be considered deconfined; one of such states, characterised by high temperature, is called quark-gluon plasma (QGP). Even though the QGP is thought no longer to naturally exist in our universe, we are capable of recreating appropriate conditions through the means of high-energy collisions of heavy atomic nuclei, hurried to relativistic speeds in...

  18. Heavy-ion collisions at the dawn of the large hadron collider era

    International Nuclear Information System (INIS)

    Takahashi, J.

    2011-01-01

    In this paper I present a review of the main topics associated with the study of heavy-ion collisions, intended for students starting or interested in the field. It is impossible to summarize in a few pages the large amount of information that is available today, after a decade of operations of the Relativistic Heavy Ion Collider and the beginning of operations at the Large Hadron Collider. Thus, I had to choose some of the results and theories in order to present the main ideas and goals. All results presented here are from publicly available references, but some of the discussions and opinions are my personal view, where I have made that clear in the text (author)

  19. Extended hadron and two-hadron operators of definite momentum for spectrum calculations in lattice QCD

    CERN Document Server

    Morningstar, C; Fahy, B; Foley, J; Jhang, Y C; Juge, K J; Lenkner, D; Wong, C C H

    2013-01-01

    Multi-hadron operators are crucial for reliably extracting the masses of excited states lying above multi-hadron thresholds in lattice QCD Monte Carlo calculations. The construction of multi-hadron operators with significant coupling to the lowest-lying states of interest involves combining single hadron operators of various momenta. The design and implementation of large sets of spatially-extended single-hadron operators of definite momentum and their combinations into two-hadron operators are described. The single hadron operators are all assemblages of gauge-covariantly-displaced, smeared quark fields. Group-theoretical projections onto the irreducible representations of the symmetry group of a cubic spatial lattice are used in all isospin channels. Tests of these operators on 24^3 x 128 and 32^3 x 256 anisotropic lattices using a stochastic method of treating the low-lying modes of quark propagation which exploits Laplacian Heaviside quark-field smearing are presented. The method provides reliable estimat...

  20. On relation of momenta of structure functions of the composite systems with their simultaneous wave functions

    International Nuclear Information System (INIS)

    Linkevich, A.D.; Savrin, V.I.; Sanadze, V.V.; Skachkov, N.B.

    1984-01-01

    Calculation of hadron structure function (SF) comprising point objects is carried out. The obtained hadron SF is expressed by means of simultaneous relativistic wave functions of a composite particle. Exact calculation of hadron SF momenta in simultaneous formulation of quantum field theory off-energy surface is conducted. The given calculation of hadron SF is shown to result in their dependence on momentum transferred square (or square of total vector of energy-momentum of Compton scattering on a quark) whih is determined by the set of simultaneous hadron wave functions as bound state of quark (partons) in the considered case of non-structural quarks

  1. Hadronic Lorentz violation in chiral perturbation theory including the coupling to external fields

    Science.gov (United States)

    Kamand, Rasha; Altschul, Brett; Schindler, Matthias R.

    2018-05-01

    If any violation of Lorentz symmetry exists in the hadron sector, its ultimate origins must lie at the quark level. We continue the analysis of how the theories at these two levels are connected, using chiral perturbation theory. Considering a 2-flavor quark theory, with dimension-4 operators that break Lorentz symmetry, we derive a low-energy theory of pions and nucleons that is invariant under local chiral transformations and includes the coupling to external fields. The pure meson and baryon sectors, as well as the couplings between them and the couplings to external electromagnetic and weak gauge fields, contain forms of Lorentz violation which depend on linear combinations of quark-level coefficients. In particular, at leading order the electromagnetic couplings depend on the very same combinations as appear in the free particle propagators. This means that observations of electromagnetic processes involving hadrons—such as vacuum Cerenkov radiation, which may be allowed in Lorentz-violating theories—can only reliably constrain certain particular combinations of quark coefficients.

  2. Nonlinear dynamics in the relativistic field equation

    International Nuclear Information System (INIS)

    Tanaka, Yosuke; Mizuno, Yuji; Kado, Tatsuhiko; Zhao, Hua-An

    2007-01-01

    We have investigated relativistic equations and chaotic behaviors of the gravitational field with the use of general relativity and nonlinear dynamics. The space component of the Friedmann equation shows chaotic behaviors in case of the inflation (h=G-bar /G>0) and open (ζ=-1) universe. In other cases (h= 0 andx-bar 0 ) and the parameters (a, b, c and d); (2) the self-similarity of solutions in the x-x-bar plane and the x-ρ plane. We carried out the numerical calculations with the use of the microsoft EXCEL. The self-similarity and the hierarchy structure of the universe have been also discussed on the basis of E-infinity theory

  3. General Relativistic Theory of the VLBI Time Delay in the Gravitational Field of Moving Bodies

    Science.gov (United States)

    Kopeikin, Sergei

    2003-01-01

    The general relativistic theory of the gravitational VLBI experiment conducted on September 8, 2002 by Fomalont and Kopeikin is explained. Equations of radio waves (light) propagating from the quasar to the observer are integrated in the time-dependent gravitational field of the solar system by making use of either retarded or advanced solutions of the Einstein field equations. This mathematical technique separates explicitly the effects associated with the propagation of gravity from those associated with light in the integral expression for the relativistic VLBI time delay of light. We prove that the relativistic correction to the Shapiro time delay, discovered by Kopeikin (ApJ, 556, L1, 2001), changes sign if one retains direction of the light propagation but replaces the retarded for the advanced solution of the Einstein equations. Hence, this correction is associated with the propagation of gravity. The VLBI observation measured its speed, and that the retarded solution is the correct one.

  4. Parton dynamics in hadronic processes. Final report

    International Nuclear Information System (INIS)

    Sukhatme, U.P.

    1984-07-01

    We have elucidated several aspects of the dual parton fragmentation model for low transverse momentum multiparticle production in hadronic collisions previously developed by the author and collaborators at Orsay, France. In particular, we have verified that the dual parton model correctly reproduces recently obtained two particle inclusive distributions and particle ratios in the central region of pp and anti pp collisions. This work sheds light on the dynamics of partons in a hadronic collision since it strongly indicates that a valence quark from each initial hadron is held back with a small momentum fraction. Also, we have extended the dual parton approach to include diffraction dissocation and studied the consequences on inclusive pion production in pp interactions. We have investigated the virtues and limitations of logarithmic perturbation theory, which is often a much simpler alternative to standard Rayleigh-Schroedinger perturbation theory. Finally, we have developed and studied the shifted 1/N expansion for the enrgy eigenstates in non-relativistic quantum mechanics. Our results provide an accurate, rapidly convergent, powerful new way of handling any spherically symmetric potential. 18 references

  5. Visualizing Special Relativity: The Field of An Electric Dipole Moving at Relativistic Speed

    Science.gov (United States)

    Smith, Glenn S.

    2011-01-01

    The electromagnetic field is determined for a time-varying electric dipole moving with a constant velocity that is parallel to its moment. Graphics are used to visualize this field in the rest frame of the dipole and in the laboratory frame when the dipole is moving at relativistic speed. Various phenomena from special relativity are clearly…

  6. High energy hadron-nucleus scattering

    International Nuclear Information System (INIS)

    Koplik, J.; Mueller, A.H.

    1975-01-01

    Theoretical expectations for hadron-nucleus scattering at high energy if the basic hadron-hadron interaction is due to Regge poles and cuts arising in multiperipheral or soft field theory models are described. Experiments at Fermilab may provide a critical test of such models

  7. High-sensitivity broadband infrared monitor of spatial structure of relativistic bunches and thermal fields

    International Nuclear Information System (INIS)

    Mal'tsev, A.A.; Mal'tsev, M.A.; Maslova, M.V.

    2004-01-01

    The monitor is intended for registration of spatial distribution of density of energy of pulsing radiation of thermal fields and bunches of relativistic electrons and protons in a wide spectral range 0,4 - 4 μm. In a measuring system of a monitor effective means of active and passive increase of the relation of a useful signal to noise, in view of particular conditions and requirements are used. The measuring channel can confidently allocate a useful signal on a background of handicaps, the size of which can make about 20 kE in a pulse [1]. The accuracy of measurement of amplitude of a signal of radiation makes 0,2% of maximum significances of a registrar scale. (author)

  8. Some connections between relativistic classical mechanics, statistical mechanics, and quantum field theory

    International Nuclear Information System (INIS)

    Remler, E.A.

    1977-01-01

    A gauge-invariant version of the Wigner representation is used to relate relativistic mechanics, statistical mechanics, and quantum field theory in the context of the electrodynamics of scalar particles. A unified formulation of quantum field theory and statistical mechanics is developed which clarifies the physics interpretation of the single-particle Wigner function. A covariant form of Ehrenfest's theorem is derived. Classical electrodynamics is derived from quantum field theory after making a random-phase approximation. The validity of this approximation is discussed

  9. Time-dependent field equations for paraxial relativistic electron beams: Beam Research Program

    International Nuclear Information System (INIS)

    Sharp, W.M.; Yu, S.S.; Lee, E.P.

    1987-01-01

    A simplified set of field equations for a paraxial relativistic electron beam is presented. These equations for the beam electrostatic potential phi and pinch potential Phi identical to A/sub z/ - phi retain previously neglected time-dependent terms and for axisymmetric beams reduce exactly to Maxwell's equations

  10. Relativistic wave mechanics

    CERN Document Server

    Corinaldesi, Ernesto

    1963-01-01

    Geared toward advanced undergraduate and graduate students of physics, this text provides readers with a background in relativistic wave mechanics and prepares them for the study of field theory. The treatment originated as a series of lectures from a course on advanced quantum mechanics that has been further amplified by student contributions.An introductory section related to particles and wave functions precedes the three-part treatment. An examination of particles of spin zero follows, addressing wave equation, Lagrangian formalism, physical quantities as mean values, translation and rotat

  11. Four-dimensional jets of hadrons: universal characteristics of multiple production of particles

    International Nuclear Information System (INIS)

    Baldin, A.M.; Batyunya, B.V.; Gramenitskii, I.M.; Grishin, V.G.; Didenko, L.A.; Kuznetsov, A.A.; Metreveli, Z.V.

    1986-01-01

    In a new relativistically invariant approach, data on multiple production of particles are analyzed in pp, p-barp, π - p, π - C, pC, and pTa interactions in the momentum range from 6 to 205 GeV/c. Distributions of hadrons (π - , K 0 /sub S/, Λ) in the square of the 4-velocity (b/sub k/) relative to the jet axis are obtained. It is shown that at a momentum p/sub lab/ ≥22 GeV/c these distributions do not depend on energy and are identical for hadronization of quarks and of multiquark systems. The observed universal properties of 4-dimensional jets of hadrons apparently are fundamental characteristics of interactions of color charges with the vacuum

  12. Fourth workshop on experiments and detectors for a relativistic heavy ion collider

    International Nuclear Information System (INIS)

    Fatyga, M.; Moskowitz, B.

    1990-01-01

    This report contains papers on the following topics: physics at RHIC; flavor flow from quark-gluon plasma; space-time quark-gluon cascade; jets in relativistic heavy ion collisions; parton distributions in hard nuclear collisions; experimental working groups, two-arm electron/photon spectrometer collaboration; total and elastic pp cross sections; a 4π tracking TPC magnetic spectrometer; hadron spectroscopy; efficiency and background simulations for J/ψ detection in the RHIC dimuon experiment; the collision regions beam crossing geometries; Monte Carlo simulations of interactions and detectors; proton-nucleus interactions; the physics of strong electromagnetic fields in collisions of relativistic heavy ions; a real time expert system for experimental high energy/nuclear physics; the development of silicon multiplicity detectors; a pad readout detector for CRID/tracking; RHIC TPC R ampersand D progress and goals; development of analog memories for RHIC detector front-end electronic systems; calorimeter/absorber optimization for a RHIC dimuon experiment; construction of a highly segmented high resolution TOF system; progress report on a fast, particle-identifying trigger based on ring-imaging and highly integrated electronics for a TPC detector

  13. Fourth workshop on experiments and detectors for a relativistic heavy ion collider

    Energy Technology Data Exchange (ETDEWEB)

    Fatyga, M.; Moskowitz, B. (eds.)

    1990-01-01

    This report contains papers on the following topics: physics at RHIC; flavor flow from quark-gluon plasma; space-time quark-gluon cascade; jets in relativistic heavy ion collisions; parton distributions in hard nuclear collisions; experimental working groups, two-arm electron/photon spectrometer collaboration; total and elastic pp cross sections; a 4{pi} tracking TPC magnetic spectrometer; hadron spectroscopy; efficiency and background simulations for J/{psi} detection in the RHIC dimuon experiment; the collision regions beam crossing geometries; Monte Carlo simulations of interactions and detectors; proton-nucleus interactions; the physics of strong electromagnetic fields in collisions of relativistic heavy ions; a real time expert system for experimental high energy/nuclear physics; the development of silicon multiplicity detectors; a pad readout detector for CRID/tracking; RHIC TPC R D progress and goals; development of analog memories for RHIC detector front-end electronic systems; calorimeter/absorber optimization for a RHIC dimuon experiment; construction of a highly segmented high resolution TOF system; progress report on a fast, particle-identifying trigger based on ring-imaging and highly integrated electronics for a TPC detector.

  14. Fully relativistic coupled cluster and DFT study of electric field gradients at Hg in 199Hg compounds

    DEFF Research Database (Denmark)

    Arcisauskaité, Vaida; Knecht, Stefan; Sauer, Stephan P. A.

    2012-01-01

    We investigate the magnitude and interplay of relativistic and electron correlation effects on the electric field gradient (EFG) at the position of Hg in linear and bent HgL2 (L=CH3, Cl, Br, I) and trigonal planar [HgCl3]- complexes using four-component relativistic Dirac-Coulomb (DC) and non...

  15. Mean multiplicity of secondary particles in hadron-nuclear interactions

    International Nuclear Information System (INIS)

    Alaverdyan, G.B.; Pak, A.S.

    1980-01-01

    The mean multiplicity of secondary particles in hA interactions is examined in the framework of the multiplex scattering theory. The dependence of the secondary particle multiplicity coefficient Rsub(6)=anti nsub(hA)/anti nsub(hN) (where anti nsub(hA) and anti nsub(hN) are mean multiplicities of secondary relativistic particles in hA and hN interactions, respectively) on the energy and type of incident particles and atomic number of a target nucleus is analysed. It is shown that predictions of the leading particle cascade model are in satisfactory agreement with the experimental data if the uncertainties of the inelasticity in hN interactions are taken into account. The value Rsub(A) weakly depends both on the incident particle energy and the form of parametrization anti nsub(hN)(E). Allowance of energy losses fluctuation of leading particle results in the Rsub(A) value decrease. From the model of leading particles it does not follow that Rsub(a) strictly depends on the type of incident particles at the fixed value of mean number of collisions. But quantitative values of Rsub(A) for different types of particles and at one value of anti ν, (i.e. at properly chosen value) coincide. The value of Rsub(A) is profoundly dependent on the values of inelasticity factor in hN interactions

  16. Notes on Translational and Rotational Properties of Tensor Fields in Relativistic Quantum Mechanics

    Science.gov (United States)

    Dvoeglazov, V. V.

    Recently, several discussions on the possible observability of 4-vector fields have been published in literature. Furthermore, several authors recently claimed existence of the helicity=0 fundamental field. We re-examine the theory of antisymmetric tensor fields and 4-vector potentials. We study the massless limits. In fact, a theoretical motivation for this venture is the old papers of Ogievetskiĭ and Polubarinov, Hayashi, and Kalb and Ramond. Ogievetskiĭ and Polubarinov proposed the concept of the notoph, whose helicity properties are complementary to those of the photon. We analyze the quantum field theory with taking into account mass dimensions of the notoph and the photon. It appears to be possible to describe both photon and notoph degrees of freedom on the basis of the modified Bargmann-Wigner formalism for the symmetric second-rank spinor. Next, we proceed to derive equations for the symmetric tensor of the second rank on the basis of the Bargmann-Wigner formalism in a straightforward way. The symmetric multispinor of the fourth rank is used. Due to serious problems with the interpretation of the results obtained on using the standard procedure we generalize it and obtain the spin-2 relativistic equations, which are consistent with the general relativity. Thus, in fact we deduced the gravitational field equations from relativistic quantum mechanics. The relations of this theory with the scalar-tensor theories of gravitation and f(R) are discussed. Particular attention has been paid to the correct definitions of the energy-momentum tensor and other Nöther currents in the electromagnetic theory, the relativistic theory of gravitation, the general relativity, and their generalizations. We estimate possible interactions, fermion-notoph, graviton-notoph, photon-notoph, and we conclude that they can probably be seen in experiments in the next few years.

  17. The effect of nonlinearity in relativistic nucleon–nucleon potential

    Indian Academy of Sciences (India)

    2014-04-01

    Apr 1, 2014 ... the popular M3Y form using the relativistic mean field theory (RMFT) with ... are fitted to deuteron properties and available phase shifts. ..... 2.2 Optical potential and the half-lives study using the preformed cluster model (PCM).

  18. Explicit symplectic algorithms based on generating functions for relativistic charged particle dynamics in time-dependent electromagnetic field

    Science.gov (United States)

    Zhang, Ruili; Wang, Yulei; He, Yang; Xiao, Jianyuan; Liu, Jian; Qin, Hong; Tang, Yifa

    2018-02-01

    Relativistic dynamics of a charged particle in time-dependent electromagnetic fields has theoretical significance and a wide range of applications. The numerical simulation of relativistic dynamics is often multi-scale and requires accurate long-term numerical simulations. Therefore, explicit symplectic algorithms are much more preferable than non-symplectic methods and implicit symplectic algorithms. In this paper, we employ the proper time and express the Hamiltonian as the sum of exactly solvable terms and product-separable terms in space-time coordinates. Then, we give the explicit symplectic algorithms based on the generating functions of orders 2 and 3 for relativistic dynamics of a charged particle. The methodology is not new, which has been applied to non-relativistic dynamics of charged particles, but the algorithm for relativistic dynamics has much significance in practical simulations, such as the secular simulation of runaway electrons in tokamaks.

  19. Relativistic solitons and pulsars

    Energy Technology Data Exchange (ETDEWEB)

    Karpman, V I [Inst. of Terrestrial Magnetism, Ionosphere, and Radio-Wave Propagation, Moscow; Norman, C A; ter Haar, D; Tsytovich, V N

    1975-05-01

    A production mechanism for stable electron bunches or sheets of localized electric fields is investigated which may account for pulsar radio emission. Possible soliton phenomena in a one-dimensional relativistic plasma are analyzed, and it is suggested that the motion of a relativistic soliton, or ''relaton'', along a curved magnetic-field line may produce radio emission with the correct polarization properties. A general MHD solution is obtained for relatons, the radiation produced by a relativistic particle colliding with a soliton is evaluated, and the emission by a soliton moving along a curved field line is estimated. It is noted that due to a number of severe physical restrictions, curvature radiation is not a very likely solution to the problem of pulsar radio emission. (IAA)

  20. Relativistic motion of particle in photogravitational field of star

    International Nuclear Information System (INIS)

    Zubko, O.L.

    2014-01-01

    Relativistic motion of particle in photogravitational field of star has been considered at different levels. It is shown that taking into account direct light pressure, elliptical orbit of the particle increases in sizes. Taking into account longitudinal Doppler effect and aberration of light leads to the motion of the particle by decreasing in size ellipse, which also has decreasing and eccentricity. Taking into account forces proportional to v 1 2 /c 2 leads to a faster reduction of the ellipse and its eccentricity. (authors)

  1. Beyond the hall effect: pratical engineering from relativistic quantum field theory

    International Nuclear Information System (INIS)

    Srivastava, Y.

    1986-01-01

    The author discusses the successful microscopic relativistic quantum field theory viz., quantum electrodynamic (QED) as applied to condensed matter systems. A circuit version of the Heisenberg argument is presented to show that the electric and magnetic flux cannot be measured simultaneously if the usual position/momentum uncertainty of a charged particle confined in a circuit is to be preserved. The author suggests that the electronic transport of a microchip itself obeys some of the same field equations for QED in particular. A comparative list is presented

  2. Relativistic gravitation theory

    International Nuclear Information System (INIS)

    Logunov, A.A.; Mestvirishvili, M.A.

    1984-01-01

    On the basis of the special relativity and geometrization principle a relativistic gravitation theory (RGT) is unambiguously constructed with the help of a notion of a gravitational field as a physical field in Faraday-Maxwell spirit, which posesses energy momentum and spins 2 and 0. The source of gravitation field is a total conserved energy-momentum tensor for matter and for gravitation field in Minkowski space. In the RGT conservation laws for the energy momentum and angular momentum of matter and gravitational field hold rigorously. The theory explains the whole set of gravitation experiments. Here, due to the geometrization principle the Riemannian space is of a field origin since this space arises effectively as a result of the gravitation field origin since this space arises effectively as a result of the gravitation field action on the matter. The RGT astonishing prediction is that the Universe is not closed but ''flat''. It means that in the Universe there should exist a ''missing'' mass in some form of matter

  3. Hadronic currents in the infinite momentum frame

    International Nuclear Information System (INIS)

    Toth, K.

    1975-01-01

    The problem of the transformation properties of hadronic currents in the infinite momentum frame (IMF) is investigated. A general method is proposed to deal with the problem which is based upon the concept of group contraction. The two-dimensional aspects of the IMF description are studied in detail, and the current matrix elements of a three-dimensional Poincare covariant theory are reduced to those of a two-dimensional one. It is explicitlyshown that the covariance group of the two-dimensional theory may either be a 'non-relativistic' (Galilei) group, or a 'relativistic' (Poincare) one depending on the value of a parameter reminiscent of the light velocity in the three-dimensional theory. The value of this parameter cannot be determined by kinematical argument. These results offer a natural generalization of models which assume Galilean symmetry in the infinite momentum frame

  4. Challenges in Hadron Physics

    OpenAIRE

    Meißner, Ulf-G.

    2004-01-01

    The status of hadron physics at the end of the HADRON07 Conference is reviewed. The latest results presented at the conference, as well as those important developments in the field which were not represented, are included.

  5. On parasupersymmetric oscillators and relativistic vector mesons in constant magnetic fields

    Science.gov (United States)

    Debergh, Nathalie; Beckers, Jules

    1995-01-01

    Johnson-Lippmann considerations on oscillators and their connection with the minimal coupling schemes are visited in order to introduce a new Sakata-Taketani equation describing vector mesons in interaction with a constant magnetic field. This new proposal, based on a specific parasupersymmetric oscillator-like system, is characterized by real energies as opposed to previously pointed out relativistic equations corresponding to this interacting context.

  6. Unraveling hadron structure with generalized parton distributions

    Energy Technology Data Exchange (ETDEWEB)

    Andrei Belitsky; Anatoly Radyushkin

    2004-10-01

    The recently introduced generalized parton distributions have emerged as a universal tool to describe hadrons in terms of quark and gluonic degrees of freedom. They combine the features of form factors, parton densities and distribution amplitudes - the functions used for a long time in studies of hadronic structure. Generalized parton distributions are analogous to the phase-space Wigner quasi-probability function of non-relativistic quantum mechanics which encodes full information on a quantum-mechanical system. We give an extensive review of main achievements in the development of this formalism. We discuss physical interpretation and basic properties of generalized parton distributions, their modeling and QCD evolution in the leading and next-to-leading orders. We describe how these functions enter a wide class of exclusive reactions, such as electro- and photo-production of photons, lepton pairs, or mesons.

  7. Relativistic Quantum Mechanics

    International Nuclear Information System (INIS)

    Antoine, J-P

    2004-01-01

    The aim of relativistic quantum mechanics is to describe the finer details of the structure of atoms and molecules, where relativistic effects become nonnegligible. It is a sort of intermediate realm, between the familiar nonrelativistic quantum mechanics and fully relativistic quantum field theory, and thus it lacks the simplicity and elegance of both. Yet it is a necessary tool, mostly for quantum chemists. Pilkuhn's book offers to this audience an up-to-date survey of these methods, which is quite welcome since most previous textbooks are at least ten years old. The point of view of the author is to start immediately in the relativistic domain, following the lead of Maxwell's equations rather than classical mechanics, and thus to treat the nonrelativistic version as an approximation. Thus Chapter 1 takes off from Maxwell's equations (in the noncovariant Coulomb gauge) and gradually derives the basic aspects of Quantum Mechanics in a rather pedestrian way (states and observables, Hilbert space, operators, quantum measurement, scattering,. Chapter 2 starts with the Lorentz transformations, then continues with the Pauli spin equation and the Dirac equation and some of their applications (notably the hydrogen atom). Chapter 3 is entitled 'Quantum fields and particles', but falls short of treating quantum field theory properly: only creation/annihilation operators are considered, for a particle in a box. The emphasis is on two-electron states (the Pauli principle, the Foldy--Wouthuysen elimination of small components of Dirac spinors, Breit projection operators. Chapter 4 is devoted to scattering theory and the description of relativistic bound states. Chapter 5, finally, covers hyperfine interactions and radiative corrections. As we said above, relativistic quantum mechanics is by nature limited in scope and rather inelegant and Pilkuhn's book is no exception. The notation is often heavy (mostly noncovariant) and the mathematical level rather low. The central topic

  8. Special traits of the millimeter wave relativistic magnetron

    International Nuclear Information System (INIS)

    Berdin, S.A.; Chizhov, K.V.; Gadetski, N.P.; Korenev, V.G.; Lebedenko, A.N.; Marchenko, M.I.; Magda, I.I.; Melezhik, O.G.; Sinitsin, V.G.; Soshenko, V.A.

    2014-01-01

    A 8 mm band relativistic magnetron is investigated experimentally and by means of numerical simulation. The physical effects are analyzed which influence negatively the r.f. generation. The processes capable of reducing effectiveness of the generation and duration of the generated pulse include forward and backward axial flows of electrons, and intense electric fields - the generated microwaves and the fields owing to the space charge

  9. Relativistic gas in a Schwarzschild metric

    International Nuclear Information System (INIS)

    Kremer, Gilberto M

    2013-01-01

    A relativistic gas in a Schwarzschild metric is studied within the framework of a relativistic Boltzmann equation in the presence of gravitational fields, where Marle’s model for the collision operator of the Boltzmann equation is employed. The transport coefficients of the bulk and shear viscosities and thermal conductivity are determined from the Chapman–Enskog method. It is shown that the transport coefficients depend on the gravitational potential. Expressions for the transport coefficients in the presence of weak gravitational fields in the non-relativistic (low temperature) and ultra-relativistic (high temperature) limiting cases are given. Apart from the temperature gradient the heat flux has two relativistic terms. The first one, proposed by Eckart, is due to the inertia of energy and represents an isothermal heat flux when matter is accelerated. The other, suggested by Tolman, is proportional to the gravitational potential gradient and indicates that—in the absence of an acceleration field—a state of equilibrium of a relativistic gas in a gravitational field can be attained only if the temperature gradient is counterbalanced by a gravitational potential gradient. (paper)

  10. A relativistic self-consistent model for studying enhancement of space charge limited field emission due to counter-streaming ions

    International Nuclear Information System (INIS)

    Lin, M. C.; Lu, P. S.; Chang, P. C.; Ragan-Kelley, B.; Verboncoeur, J. P.

    2014-01-01

    Recently, field emission has attracted increasing attention despite the practical limitation that field emitters operate below the Child-Langmuir space charge limit. By introducing counter-streaming ion flow to neutralize the electron charge density, the space charge limited field emission (SCLFE) current can be dramatically enhanced. In this work, we have developed a relativistic self-consistent model for studying the enhancement of SCLFE by a counter-streaming ion current. The maximum enhancement is found when the ion effect is saturated, as shown analytically. The solutions in non-relativistic, intermediate, and ultra-relativistic regimes are obtained and verified with 1-D particle-in-cell simulations. This self-consistent model is general and can also serve as a benchmark or comparison for verification of simulation codes, as well as extension to higher dimensions

  11. Relativistic many-body theory of atomic transitions. The relativistic equation-of-motion approach

    International Nuclear Information System (INIS)

    Huang, K.

    1982-01-01

    An equation-of-motion approach is used to develop the relativistic many-body theory of atomic transitions. The relativistic equations of motion for transition matrices are formulated with the use of techniques of quantum-field theory. To reduce the equations of motion to a tractable form which is appropriate for numerical calculations, a graphical method to resolve the complication arising from the antisymmetrization and angular-momentum coupling is employed. The relativistic equation-of-motion method allows an ab initio treatment of correlation and relativistic effects in both closed- and open-shell many-body systems. A special case of the present formulation reduces to the relativistic random-phase approximation

  12. Relativistic many-body theory of atomic transitions: the relativistic equation-of-motion approach

    International Nuclear Information System (INIS)

    Huang, K.N.

    1981-01-01

    An equation-of-motion approach is used to develop the relativistic many-body theory of atomic transitions. The relativistic equations of motion for transition matrices are formulated using techniques of quantum field theory. To reduce the equation of motion to a tractable form which is appropriate for numerical calculations, a graphical method is employed to resolve the complication arising from the antisymmetrization and angular momentum coupling. The relativistic equation-of-motion method allows an ab initio treatment of correlation and relativistic effects in both closed- and open-shell many-body systems. A special case of the present formulation reduces to the relativistic random-phase approximation

  13. Quark models in hadron physics

    International Nuclear Information System (INIS)

    Phatak, Shashikant C.

    2007-01-01

    In this talk, we review the role played by the quark models in the study of interaction of strong, weak and electromagnetic probes with hadrons at intermediate and high momentum transfers. By hadrons, we mean individual nucleons as well as nuclei. We argue that at these momentum transfers, the structure of hadrons plays an important role. The hadron structure of the hadrons is because of the underlying quark structure of hadrons and therefore the quark models play an important role in determining the hadron structure. Further, the properties of hadrons are likely to change when these are placed in nuclear medium and this change should arise from the underlying quark structure. We shall consider some quark models to look into these aspects. (author)

  14. Relativistic Killingbeck energy states under external magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Eshghi, M. [Islamic Azad University, Researchers and Elite Club, Central Tehran Branch, Tehran (Iran, Islamic Republic of); Mehraban, H. [Semnan University, Faculty of Physics, Semnan (Iran, Islamic Republic of); Ikhdair, S.M. [An-Najah National University, Department of Physics, Faculty of Science, Nablus, West Bank, Palestine (Country Unknown); Near East University, Department of Electrical Engineering, Nicosia, Northern Cyprus (Turkey)

    2016-07-15

    We address the behavior of the Dirac equation with the Killingbeck radial potential including the external magnetic and Aharonov-Bohm (AB) flux fields. The spin and pseudo-spin symmetries are considered. The correct bound state spectra and their corresponding wave functions are obtained. We seek such a solution using the biconfluent Heun's differential equation method. Further, we give some of our results at the end of this study. Our final results can be reduced to their non-relativistic forms by simply using some appropriate transformations. The spectra, in the spin and pseudo-spin symmetries, are very similar with a slight difference in energy spacing between different states. (orig.)

  15. Relativistic Killingbeck energy states under external magnetic fields

    International Nuclear Information System (INIS)

    Eshghi, M.; Mehraban, H.; Ikhdair, S.M.

    2016-01-01

    We address the behavior of the Dirac equation with the Killingbeck radial potential including the external magnetic and Aharonov-Bohm (AB) flux fields. The spin and pseudo-spin symmetries are considered. The correct bound state spectra and their corresponding wave functions are obtained. We seek such a solution using the biconfluent Heun's differential equation method. Further, we give some of our results at the end of this study. Our final results can be reduced to their non-relativistic forms by simply using some appropriate transformations. The spectra, in the spin and pseudo-spin symmetries, are very similar with a slight difference in energy spacing between different states. (orig.)

  16. Hadrons at finite temperature

    CERN Document Server

    Mallik, Samirnath

    2016-01-01

    High energy laboratories are performing experiments in heavy ion collisions to explore the structure of matter at high temperature and density. This elementary book explains the basic ideas involved in the theoretical analysis of these experimental data. It first develops two topics needed for this purpose, namely hadron interactions and thermal field theory. Chiral perturbation theory is developed to describe hadron interactions and thermal field theory is formulated in the real-time method. In particular, spectral form of thermal propagators is derived for fields of arbitrary spin and used to calculate loop integrals. These developments are then applied to find quark condensate and hadron parameters in medium, including dilepton production. Finally, the non-equilibrium method of statistical field theory to calculate transport coefficients is reviewed. With technical details explained in the text and appendices, this book should be accessible to researchers as well as graduate students interested in thermal ...

  17. Formation time of hadrons and density of matter produced in relativistic heavy-ion collisions

    International Nuclear Information System (INIS)

    Pisut, J.; Zavada, P.

    1994-06-01

    Densities of interacting hadronic matter produced in Oxygen-Lead and Sulphur-Lead collisions at 200 GeV/nucleon are estimated as a function of the formation time of hadrons. Uncertainties in our knowledge of the critical temperature T c and of the formation time of hadrons τ 0 permit at present three scenarios: an optimistic one (QGP has already been produced in collisions of Oxygen and Sulphur with heavy ions and will be copiously in Lead collisions), a pessimistic one (QGP cannot be produced at 200 GeV/nucleon) and an intermediate one (QGP has not been produced in Oxygen and Sulphur Interactions with heavy ions and will be at best produced only marginally in Pb-collisions). The last option is found to be the most probable. (author)

  18. Gamma rays from relativistic electrons undergoing Compton losses in isotropic photon fields

    International Nuclear Information System (INIS)

    Zdziarski, A.A.

    1989-01-01

    The kinetic equation describing Compton losses of relativistic electrons in an isotropic field of soft background photons is solved exactly including both continuous energy losses in the classical Thomson regime and catastrophic losses in the quantum Klein-Nishina regime. This extends the previous treatments of this problem, which assumed the validity of either one of these regimes alone. The problem is relevant to astrophysical sources containing relativistic electrons. Analytical solutions for the steady state electron and gamma-ray spectra in the case of power-law soft photons and monoenergetic and power-law electron injections are obtained. Numerical solutions are presented for monoenergetic, blackbody, and power-law soft photons. A comparison between the numerical and the available analytic solutions is made. 15 refs

  19. Spontaneous spin-polarization and phase transition in the relativistic approach

    International Nuclear Information System (INIS)

    Maruyama, Tomoyuki; Tatsumi, Toshitaka

    2001-01-01

    We study the spin-polarization mechanism in the highly dense nuclear matter with the relativistic mean-field approach. In the relativistic Hartree-Fock framework we find that there are two kinds of spin-spin interaction channels, which are the axial-vector and tensor exchange ones. If each interaction is strong and different sign, the system loses the spherical symmetry and holds the spin-polarization in the high-density region. When the axial-vector interaction is negative enough, the system holds ferromagnetism. (author)

  20. On model-independent analyses of elastic hadron scattering

    International Nuclear Information System (INIS)

    Avila, R.F.; Campos, S.D.; Menon, M.J.; Montanha, J.

    2007-01-01

    By means of an almost model-independent parametrization for the elastic hadron-hadron amplitude, as a function of the energy and the momentum transfer, we obtain good descriptions of the physical quantities that characterize elastic proton-proton and antiproton-proton scattering (total cross section, r parameter and differential cross section). The parametrization is inferred on empirical grounds and selected according to high energy theorems and limits from axiomatic quantum field theory. Based on the predictive character of the approach we present predictions for the above physical quantities at the Brookhaven RHIC, Fermilab Tevatron and CERN LHC energies. (author)

  1. RELATIVISTIC HEAVY ION COLLISIONS: EXPERIMENT

    Energy Technology Data Exchange (ETDEWEB)

    Friedlander, Erwin M.; Heckman, Harry H.

    1982-04-01

    Relativistic heavy ion physics began as a 'no man's land' between particle and nuclear physics, with both sides frowning upon it as 'unclean', because on one hand, hadronic interactions and particle production cloud nuclear structure effects, while on the other, the baryonic environment complicates the interpretation of production experiments. They have attempted to review here the experimental evidence on RHI collisions from the point of view that it represents a new endeavor in the understanding of strong interaction physics. Such an approach appears increasingly justified; first, by the accumulation of data and observations of new features of hadronic interactions that could not have been detected outside a baryonic environment; second, by the maturation of the field owing to the advances made over the past several years in experimental inquiries on particle production by RHI, including pions, kaons, hyperons, and searches for antiprotons; and third, by the steady and progressive increase in the energy and mass ranges of light nuclear beams that have become available to the experiment; indeed the energy range has widened from the {approx} 0.2 to 2 AGeV at the Bevalac to {approx}4 AGeV at Dubna and recently, to the quantum jump in energies to {approx} 1000 equivalent AGeV at the CERN PS-ISR. Accompanying these expansions in the energy frontier are the immediate prospects for very heavy ion beams at the Bevalac up to, and including, 1 AGeV {sup 238}U, thereby extending the 'mass frontier' to its ultimate extent.

  2. Cooling and focusing of a relativistic charged particle beam in crossed laser field

    International Nuclear Information System (INIS)

    Li Fuli

    1987-01-01

    A new method to focus a relativistic charged particle beam is suggested and studied. This idea is based on the use of the ponderomotive force which arises when a periodic electromagnetic field is created, as in the case of two crossed laser beams. (author)

  3. Multiphoton ionization of many-electron atoms and highly-charged ions in intense laser fields: a relativistic time-dependent density functional theory approach

    Science.gov (United States)

    Tumakov, Dmitry A.; Telnov, Dmitry A.; Maltsev, Ilia A.; Plunien, Günter; Shabaev, Vladimir M.

    2017-10-01

    We develop an efficient numerical implementation of the relativistic time-dependent density functional theory (RTDDFT) to study multielectron highly-charged ions subject to intense linearly-polarized laser fields. The interaction with the electromagnetic field is described within the electric dipole approximation. The resulting time-dependent relativistic Kohn-Sham (RKS) equations possess an axial symmetry and are solved accurately and efficiently with the help of the time-dependent generalized pseudospectral method. As a case study, we calculate multiphoton ionization probabilities of the neutral argon atom and argon-like xenon ion. Relativistic effects are assessed by comparison of our present results with existing non-relativistic data.

  4. An introduction to relativistic hydrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Font, Jose A [Departamento de AstronomIa y AstrofIsica, Universidad de Valencia, Dr. Moliner 50, 46100 Burjassot (Valencia) (Spain)

    2007-11-15

    We review formulations of the equations of (inviscid) general relativistic hydrodynamics and (ideal) magnetohydrodynamics, along with methods for their numerical solution. Both systems can be cast as first-order, hyperbolic systems of conservation laws, following the explicit choice of an Eulerian observer and suitable fluid and magnetic field variables. During the last fifteen years, the so-called (upwind) high-resolution shock-capturing schemes based on Riemann solvers have been successfully extended from classical to relativistic fluid dynamics, both special and general. Nowadays, general relativistic hydrodynamical simulations in relativistic astrophysics are routinely performed, particularly within the test-fluid approximation but also for dynamical spacetimes. While such advances also hold true in the case of the MHD equations, the astrophysical applications investigated so far are still limited, yet the field is bound to witness major developments in the near future. The article also presents a brief overview of numerical techniques, providing state-of-the-art examples of their applicability to general relativistic fluids and magneto-fluids in characteristic scenarios of relativistic astrophysics.

  5. Universality of hadron jets in soft and hard particle interactions at high energies

    International Nuclear Information System (INIS)

    Baldin, A.M.; Didenko, L.A.; Grishin, V.G.; Kuznetsov, A.A.

    1985-01-01

    The hadron jet production in soft π - p- and cumulative π - pC-interactions at a 40 GeV/c momentum is studied. The collective characteristics of jets and the functions of the quark and diquark fragmentation into charged pions and neutral strange particles are analysed. The results obtained are compared with analogous data for e + e - - and ν(anti ν)p- interactions. The hadron jet properties are also studied using relativistic invariant variables - the squared relative 4-velocities b sub(ik).-(Psub(i)/msub(i)-Psub(k)sup(2)/msub(k) (where Psub(i), Psub(k) are 4-momenta of i-th and K-th particles and msub(i), msub(k) are their masses). The results obtained show that the quark (diquark) fragmentation proceed in a similar manner in soft hadron-hadron collisions, cumulative interactions on light nuclei, in e + e - -annihilation and deep inelastic ν(anti ν)p-scattering

  6. Relativistic Kinetic Theory

    Science.gov (United States)

    Vereshchagin, Gregory V.; Aksenov, Alexey G.

    2017-02-01

    Preface; Acknowledgements; Acronyms and definitions; Introduction; Part I. Theoretical Foundations: 1. Basic concepts; 2. Kinetic equation; 3. Averaging; 4. Conservation laws and equilibrium; 5. Relativistic BBGKY hierarchy; 6. Basic parameters in gases and plasmas; Part II. Numerical Methods: 7. The basics of computational physics; 8. Direct integration of Boltzmann equations; 9. Multidimensional hydrodynamics; Part III. Applications: 10. Wave dispersion in relativistic plasma; 11. Thermalization in relativistic plasma; 12. Kinetics of particles in strong fields; 13. Compton scattering in astrophysics and cosmology; 14. Self-gravitating systems; 15. Neutrinos, gravitational collapse and supernovae; Appendices; Bibliography; Index.

  7. Relativistic gravitational potential and its relation to mass-energy

    International Nuclear Information System (INIS)

    Voracek, P.

    1979-01-01

    From the general theory of relativity a relation is deduced between the mass of a particle and the gravitational field at the position of the particle. For this purpose the fall of a particle of negligible mass in the gravitational field of a massive body is used. After establishing the relativistic potential and its relationship to the rest mass of the particle, we show, assuming conservation of mass-energy, that the difference between two potential-levels depends upon the value of the radial metric coefficient at the position of an observer. Further, it is proved that the relativistic potential is compatible with the general concept of the potential also from the standpoint of kinematics. In the third section it is shown that, although the mass-energy of a body is a function of the distance from it, this does not influence the relativistic potential of the body itself. From this conclusion it follows that the mass-energy of a particle in a gravitational field is anisotropic; isotropic is the mass only. Further, the possibility of an incidental feed-back between two masses is ruled out, and the law of the composition of the relativistic gravitational potentials is deduced. Finally, it is shown, by means of a simple model, that local inhomogeneities in the ideal fluid filling the Universe have negligible influence on the total potential in large regions. (orig.)

  8. Hadron Physics at FAIR

    International Nuclear Information System (INIS)

    Wiedner, Ulrich

    2011-01-01

    The new FAIR facility in Darmstadt has a broad program in the field of hadron and nuclear physics utilizing ion beams with unprecedented intensity and accuracy. The hadron physics program centers around the the high-energy storage ring HESR for antiprotons and the PANDA experiment that is integrated in it. The physics program includes among others topics like hadron spectroscopy in the charmonium mass region and below, hyperon physics, electromagnetic processes and charm in nuclei.

  9. Transport mean free path related to trajectory patterns: Comparison of nonrelativistic and highly relativistic electron penetration through matter

    International Nuclear Information System (INIS)

    Liljequist, D.; Ismail, M.

    1987-01-01

    This analysis is based on the similarity between multiple scattering and slowing down (random walk) processes described by the same transport mean-free-path function λ/sub tr/(s) (s = path length). We discuss the connection between λ/sub tr/(s) and the characteristic appearance and scale of the trajectory pattern. Straggling is considered by means by stochastically discontinuous λ/sub tr/(s) functions. In the application to electron penetration, we show that while nonrelativistic electron penetration is modeled by λ/sub tr/ = (r-s)/α, where r is the range and α is a material-dependent dimensionless constant, highly relativistic electron penetration is modeled by λ/sub tr/proportionalexp(-s/Λ), where Λ is a length characteristic for the penetrated material. The respective trajectory patterns are distinctly different. The effect of straggling on the trajectory pattern in the highly relativistic case is demonstrated by means of a simple model of the stochastic λ/sub tr/(s) behavior

  10. Novel Perspectives for Hadron Physics

    International Nuclear Information System (INIS)

    Brodsky, Stanley

    2012-01-01

    I discuss several novel and unexpected aspects of quantum chromodynamics. These include: (a) the nonperturbative origin of intrinsic strange, charm and bottom quarks in the nucleon at large x; the breakdown of pQCD factorization theorems due to the lensing effects of initial- and final-state interactions; (b) important corrections to pQCD scaling for inclusive reactions due to processes in which hadrons are created at high transverse momentum directly in the hard processes and their relation to the baryon anomaly in high-centrality heavy-ion collisions; and (c) the nonuniversality of quark distributions in nuclei. I also discuss some novel theoretical perspectives in QCD: (a) light-front holography - a relativistic color-confining first approximation to QCD based on the AdS/CFT correspondence principle; (b) the principle of maximum conformality - a method which determines the renormalization scale at finite order in perturbation theory yielding scheme independent results; (c) the replacement of quark and gluon vacuum condensates by 'in-hadron condensates' and how this helps to resolve the conflict between QCD vacuum and the cosmological constant.

  11. Novel Perspectives for Hadron Physics

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, Stanley J.; /SLAC

    2012-03-09

    I discuss several novel and unexpected aspects of quantum chromodynamics. These include: (a) the nonperturbative origin of intrinsic strange, charm and bottom quarks in the nucleon at large x; the breakdown of pQCD factorization theorems due to the lensing effects of initial- and final-state interactions; (b) important corrections to pQCD scaling for inclusive reactions due to processes in which hadrons are created at high transverse momentum directly in the hard processes and their relation to the baryon anomaly in high-centrality heavy-ion collisions; and (c) the nonuniversality of quark distributions in nuclei. I also discuss some novel theoretical perspectives in QCD: (a) light-front holography - a relativistic color-confining first approximation to QCD based on the AdS/CFT correspondence principle; (b) the principle of maximum conformality - a method which determines the renormalization scale at finite order in perturbation theory yielding scheme independent results; (c) the replacement of quark and gluon vacuum condensates by 'in-hadron condensates' and how this helps to resolve the conflict between QCD vacuum and the cosmological constant.

  12. Pion propagator in relativistic quantum field theories of the nuclear many-body problem

    International Nuclear Information System (INIS)

    Matsui, T.; Serot, B.D.

    1982-01-01

    Pion interactions in the nuclear medium are studied using renormalizable relativistic quantum field theories. Previous studies using pseudoscalar πN coupling encountered difficulties due to the large strength of the πNN vertex. We therefore formulate renormalizable field theories with pseudovector πN coupling using techniques introduced by Weinberg and Schwinger. Calculations are performed for two specific models; the scalar-vector theory of Walecka, extended to include π and rho mesons in a non-chiral fashion, and the linear sigma-model with an additional neutral vector meson. Both models qualitatively reproduce low-energy πN phenomenology and lead to nuclear matter saturation in the relativistic Hartree formalism, which includes baryon vacuum fluctuations. The pions propagator is evaluated in the one-nucleon-loop approximation, which corresponds to a relativistic random-phase approximation built on the Hartree ground state. Virtual NN-bar loops are included, and suitable renormalization techniques are illustrated. The local-density approximation is used to compare the threshold pion self-energy to the s-wave pion-nucleus optical potential. In the non-chiral model, s-wave pion-nucleus scattering is too large in both pseudoscalar and pseudovector calculations, indicating that additional constraints must be imposed on the Lagrangian. In the chiral model, the threshold self-energy vanishes automatically in the pseudovector case, but does so for pseudoscalar coupling only if the baryon effective mass is chosen self-consistently Since extrapolation from free space to nuclear density can lead to large effects, pion propagation in the medium can determine which πN coupling is more suitable for the relativistic nuclear many-body problem. Conversely, pion interactions constrain the model Lagrangian and the nuclear matter equation of state. An approximately chiral model with pseudovector coupling is favored

  13. Proposal for Research and Development of a Hadron Calorimeter for High Magnetic Fields

    CERN Multimedia

    2002-01-01

    RD43 : We intend to pursue the R\\&D necessary to demonstrate that a Cu-scintillator hadron calorimeter can operate reliably and well at the LHC at large pseudorapidities (\\mid $\\eta$\\mid~$\\leq$~2.6) and in a high magnetic field (4~T). The chosen technique consists of embedding a wavelength shifting (WLS) fibre in a scintillator plate in the form of a $\\sigma$. A clear fibre, spliced on to the WLS fibre, transports the shifted light to a photodetector. This technique was chosen by the SDC Collaboration for their electromagnetic and hadronic calorimetry. R\\&D efforts will concentrate on radiation tolerant scintillator/WLS combinations, transducers that can provide gain and operate in high magnetic fields, the effect on the performance of dead material (e.g. coil of~$\\leq$~1 $\\lambda $) placed after 5-7 $\\lambda $, the effect on performance of a high resolution electromagnetic calorimeter, the design of a hermetic mechanical structure, the issues of calibration and monitoring.

  14. Hadron spectroscopy and form factors at quark level

    International Nuclear Information System (INIS)

    Chakrabarty, S.; Gupta, K.K.; Singh, N.N.; Mitra, A.N.

    1988-01-01

    The theoretical status of hadrons as quark composites is examined from the point of view of a simultaneous understanding of their on-shell (mass spectra) and off-shell (form factors, transition amplitudes) properties. Greater stress is laid on light quark systems which are more sensitive to the confinement regime, and more prone to relativistic effects than on heavy quarkonia (on which many reviews exist). Two broad theoretical approaches obeying Lorentz and gauge invariance are identified: (i) QCD sum rules as a means of extrapolation from high to low energies; and (ii) dynamical equations for providing a microcausal link in the opposite direction (from low to high energies). The latter represents the major focus of attention in this article, with the Bethe-Salpeter Equation (BSE) providing a formal plank for a comparative assessment of several models. The Null-plane ansatz which facilitates the reduction of the 4-D BSE to a covariant 3-D form also provides the language for its comparison with other covariant 3-D equations. In particular, attention is drawn to the interesting possibility of reconstructing the 4-D BS wave function from its 3-D form (in a two-tier fashion) as a practical tool for generating higher Fock-space components (qq effects) in the BS wave function, and (more interestingly) for a clean separation between soft and hard QCD effects. To illustrate one such practical tool for an integrated view of different hadronic sectors within a single framework, the results of a two-tier BS model are presented in respect of qq-bar, qqq, gg, ggg, gqq-bar states and compared with experiment as well as with the results of other contemporary models. The N.R Resonating Group Method, which becomes necessary for bigger (six-quark) systems is briefly discussed from the point of view of its compatibility with a relativistic form of quark dynamics motivated from the BSC. (Author)

  15. A Comprehensive Comparison of Relativistic Particle Integrators

    Science.gov (United States)

    Ripperda, B.; Bacchini, F.; Teunissen, J.; Xia, C.; Porth, O.; Sironi, L.; Lapenta, G.; Keppens, R.

    2018-03-01

    We compare relativistic particle integrators commonly used in plasma physics, showing several test cases relevant for astrophysics. Three explicit particle pushers are considered, namely, the Boris, Vay, and Higuera–Cary schemes. We also present a new relativistic fully implicit particle integrator that is energy conserving. Furthermore, a method based on the relativistic guiding center approximation is included. The algorithms are described such that they can be readily implemented in magnetohydrodynamics codes or Particle-in-Cell codes. Our comparison focuses on the strengths and key features of the particle integrators. We test the conservation of invariants of motion and the accuracy of particle drift dynamics in highly relativistic, mildly relativistic, and non-relativistic settings. The methods are compared in idealized test cases, i.e., without considering feedback onto the electrodynamic fields, collisions, pair creation, or radiation. The test cases include uniform electric and magnetic fields, {\\boldsymbol{E}}× {\\boldsymbol{B}} fields, force-free fields, and setups relevant for high-energy astrophysics, e.g., a magnetic mirror, a magnetic dipole, and a magnetic null. These tests have direct relevance for particle acceleration in shocks and in magnetic reconnection.

  16. Relativistic quantum mechanics

    International Nuclear Information System (INIS)

    Ollitrault, J.Y.

    1998-12-01

    These notes form an introduction to relativistic quantum mechanics. The mathematical formalism has been reduced to the minimum in order to enable the reader to calculate elementary physical processes. The second quantification and the field theory are the logical followings of this course. The reader is expected to know analytical mechanics (Lagrangian and Hamiltonian), non-relativistic quantum mechanics and some basis of restricted relativity. The purpose of the first 3 chapters is to define the quantum mechanics framework for already known notions about rotation transformations, wave propagation and restricted theory of relativity. The next 3 chapters are devoted to the application of relativistic quantum mechanics to a particle with 0,1/5 and 1 spin value. The last chapter deals with the processes involving several particles, these processes require field theory framework to be thoroughly described. (A.C.)

  17. Theory of Thomson scattering in a strong magnetic field, 2. [Relativistic quantum theory, cross sections

    Energy Technology Data Exchange (ETDEWEB)

    Hamada, T [Ibaraki Univ., Mito (Japan). Dept. of Physics

    1975-07-01

    A relativistic quantum theory is formulated for the Compton scattering by electrons in a strong magnetic field. It is shown that the relativistic quantum (Klein-Nishina) cross section in the center of drift system reduces exactly to the classical Thomson cross section in the limit h..omega../2..pi..<field. There is one special case for which the Thomson cross section is valid irrespective of the magnitudes of ..omega.. and ..omega..sub(c); the forward scattering in the direction of the magnetic field by an electron in the ground state.

  18. Softening and re-hardening of hadron transverse mass spectra in relativistic heavy-ion collisions

    International Nuclear Information System (INIS)

    Isse, M.; Otuka, N.; Ohnishi, A.; Sahu, P.K.; Nara, Y.

    2002-01-01

    At RHIC experiments, started at 2000, the data obtained recently seem to exhibit QGP formation, but the conclusion is not drawn yet. Here, we pay out attention to the collective motion at hadronic freeze-out as an evidence of QGP formation. The transverse mass spectra may show softening to re-hardening with increasing incident energy. We compare simulated results obtained in JAM' - a hadronic cascade model - with experimental data, and discuss weather the QGP is formed or not. (author)

  19. Report of seminar on relativistic approach to nuclear reaction and nuclear structure

    International Nuclear Information System (INIS)

    1986-05-01

    A seminar on 'Relativistic Approach to Nuclear Reaction and Nuclear Structure' was held in 1985 at Osaka University. This booklet includes twenty-four reports given at the seminar, which deal with: Conventional Nonrelativistic Description of Nuclear Matter and Nuclear Spin-Orbit Interactions; Relativistic Approach to Nuclear Structure; Atomic and Molecular Structure Calculations; Electromagnetic Interaction in Nucleus and Relativistic Effect; Nuclear Magnetic Moment in the Relativistic Mean Field Theory, Effective Mass and Particle-Vibration Coupling in the Relativistic σ-ω Model; Gauge Invariance in Relativistic Many-Body Theory; Relativistic Description of Nucleon-Nucleon Interaction in Review; σ-Particle in NN Interaction; Nuclear Optical Potentials Based on the Brueckner-Hartree-Fock Approach; Elastic Backscattering and Optical Potential; Description of Intermediate-Energy Nuclear Reactions; Dirac Phenomenology at E(p) = 65 MeV; Relativistic Impulse Approximation; Reaction Studies with Intermediate Energy Deuterons at SATURNE; Folding Model for Intermediate-Energy Deutron Scattering; Folding Model for Polarized Deutron Scattering at 700 MeV; Dirac Approach Problems and a Different Viewpoint; Relativistic Approach and EMC Effect; Quasielastic Electron Scattering; Response Function of Quasielastic Electron Scattering; Relativistic Hartree Response Function for Quasielastic Electron Scattering on 12 C and 40 Ca; Backflow-, Retardation- and Relativistic Effects on the Longitudinal Response Function of Nuclear Matter; Pion-Photoproduction in the σ-ω Model. (Nogami, K.)

  20. Nuclear symmetry energy in density dependent hadronic models

    International Nuclear Information System (INIS)

    Haddad, S.

    2008-12-01

    The density dependence of the symmetry energy and the correlation between parameters of the symmetry energy and the neutron skin thickness in the nucleus 208 Pb are investigated in relativistic Hadronic models. The dependency of the symmetry energy on density is linear around saturation density. Correlation exists between the neutron skin thickness in the nucleus 208 Pb and the value of the nuclear symmetry energy at saturation density, but not with the slope of the symmetry energy at saturation density. (author)

  1. Relativistic Coulomb Fission

    Science.gov (United States)

    Norbury, John W.

    1992-01-01

    Nuclear fission reactions induced by the electromagnetic field of relativistic nuclei are studied for energies relevant to present and future relativistic heavy ion accelerators. Cross sections are calculated for U-238 and Pu-239 fission induced by C-12, Si-28, Au-197, and U-238 projectiles. It is found that some of the cross sections can exceed 10 b.

  2. Relativistic nucleus-nucleus collisions: from the BEVALAC to RHIC

    International Nuclear Information System (INIS)

    Stock, Reinhard

    2004-01-01

    I briefly describe the initial goals of relativistic nuclear collision research, focusing on the LBL Bevatron/Bevalac facility in the 1970s. An early concept of high hadronic density fireball formation, and subsequent isentropic decay (preserving information of the high-density stage), led to an outline of physics observables that could determine the nuclear matter equation of state at several times the nuclear ground state matter density. With the advent of QCD the goal of locating and characterizing the hadron-parton deconfinement phase transformation suggested the need for higher √s, the research thus shifting to the BNL AGS and CERN SPS, and finally to RHIC at BNL. A set of physics observables is discussed where present data span the entire √s domain, from Bevalac and SIS at GSI, to high RHIC energy. Referring, selectively, to data concerning bulk hadron production, the overall √s evolution of directed and radial flow observables, and of pion pair Bose-Einstein correlation is discussed. The hadronization process is studied in the grand canonical statistical model. The resulting hadronization points in the plane T versus μ B converge onto the parton-hadron phase boundary predicted by finite μ B lattice QCD, from high SPS to RHIC energy. At lower SPS and high AGS energy a steep strangeness maximum occurs at which the Wroblewski parameter λ s ∼ 0.6; a possible connection to the QCD critical point is discussed. Finally the unique new RHIC physics is addressed: high-p T hadron suppression and jet 'tomography'

  3. Handbook of relativistic quantum chemistry

    International Nuclear Information System (INIS)

    Liu, Wenjian

    2017-01-01

    This handbook focuses on the foundations of relativistic quantum mechanics and addresses a number of fundamental issues never covered before in a book. For instance: How can many-body theory be combined with quantum electrodynamics? How can quantum electrodynamics be interfaced with relativistic quantum chemistry? What is the most appropriate relativistic many-electron Hamiltonian? How can we achieve relativistic explicit correlation? How can we formulate relativistic properties? - just to name a few. Since relativistic quantum chemistry is an integral component of computational chemistry, this handbook also supplements the ''Handbook of Computational Chemistry''. Generally speaking, it aims to establish the 'big picture' of relativistic molecular quantum mechanics as the union of quantum electrodynamics and relativistic quantum chemistry. Accordingly, it provides an accessible introduction for readers new to the field, presents advanced methodologies for experts, and discusses possible future perspectives, helping readers understand when/how to apply/develop the methodologies.

  4. Relativistic effects in elastic scattering of electrons in TEM

    International Nuclear Information System (INIS)

    Rother, Axel; Scheerschmidt, Kurt

    2009-01-01

    Transmission electron microscopy typically works with highly accelerated thus relativistic electrons. Consequently the scattering process is described within a relativistic formalism. In the following, we will examine three different relativistic formalisms for elastic electron scattering: Dirac, Klein-Gordon and approximated Klein-Gordon, the standard approach. This corresponds to a different consideration of spin effects and a different coupling to electromagnetic potentials. A detailed comparison is conducted by means of explicit numerical calculations. For this purpose two different formalisms have been applied to the approaches above: a numerical integration with predefined boundary conditions and the multislice algorithm, a standard procedure for such simulations. The results show a negligibly small difference between the different relativistic equations in the vicinity of electromagnetic potentials, prevailing in the electron microscope. The differences between the two numeric approaches are found to be small for small-angle scattering but eventually grow large for large-angle scattering, recorded for instance in high-angle annular dark field.

  5. Estimations for the Schwinger functions of relativistic quantum field theories

    International Nuclear Information System (INIS)

    Mayer, C.D.

    1981-01-01

    Schwinger functions of a relativistic neutral scalar field the basing test function space of which is S or D are estimated by methods of the analytic continuation. Concerning the behaviour in coincident points it is shown: The two-point singularity of the n-point Schwinger function of a field theory is dominated by an inverse power of the distance of both points modulo a multiplicative constant, if the other n-2 points a sufficiently distant and remain fixed. The power thereby, depends only on n. Using additional conditions on the field the independence of the power on n may be proved. Concerning the behaviour at infinite it is shown: The n-point Schwinger functions of a field theory are globally bounded, if the minimal distance of the arguments is positive. The bound depends only on n and the minimal distance of the arguments. (orig.) [de

  6. Fundamental relativistic rotator: Hessian singularity and the issue of the minimal interaction with electromagnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Bratek, Lukasz, E-mail: lukasz.bratek@ifj.edu.pl [Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskego 152, PL-31342 Krakow (Poland)

    2011-05-13

    There are two relativistic rotators with Casimir invariants of the Poincare group being fixed parameters. The particular models of spinning particles were studied in the past both at the classical and quantum level. Recently, a minimal interaction with electromagnetic field has been considered. We show that the dynamical systems can be uniquely singled out from among other relativistic rotators by the unphysical requirement that the Hessian referring to the physical degrees of freedom should be singular. Closely related is the fact that the equations of free motion are not independent, making the evolution indeterminate. We show that the Hessian singularity cannot be removed by the minimal interaction with the electromagnetic field. By making use of a nontrivial Hessian null space, we show that a single constraint appears in the external field for consistency of the equations of motion with the Hessian singularity. The constraint imposes unphysical limitation on the initial conditions and admissible motions. We discuss the mechanism of appearance of unique solutions in external fields on an example of motion in the uniform magnetic field. We give a simple model to illustrate that similarly constrained evolution cannot be determinate in arbitrary fields.

  7. Hadron production at SPEAR

    International Nuclear Information System (INIS)

    Schwitters, R.F.

    1975-01-01

    A report is given of the knowledge obtained from SPEAR about hadron production in e + e - annihilation since the discovery of the new particles. Included are the SPEAR magnetic detector, the total cross sections, mean charged multiplicity and energy, inclusive momentum spectra, and hadron angular distribution

  8. Properties of hadronic matter near the phase transition

    International Nuclear Information System (INIS)

    Noronha-Hostler, Jacquelyn

    2010-01-01

    According to Hagedorn, hadrons should follow an exponential mass spectrum, which the known hadrons follow only up to masses of M∼2 GeV. Beyond this point the mass spectrum is flat, which indicates that there are ''missing'' hadrons, that could potentially contribute significantly to experimental observables. In this thesis I investigate the influence of these ''missing'' Hagedorn states on various experimental signatures of QGP. Strangeness enhancement is considered a signal for QGP because hadronic interactions (even including multi-mesonic reactions) underpredict the hadronic yields (especially for strange particles) at the Relativistic Heavy Ion Collider, RHIC. We show here that the missing Hagedorn states provide extra degrees of freedom that can contribute to fast chemical equilibration times for a hadron gas. We develop a dynamical scheme in which possible Hagedorn states contribute to fast chemical equilibration times of X anti X pairs (where X=p, K, Λ, or Ω) inside a hadron gas and just below the critical temperature. Within this scheme, we use master equations and derive various analytical estimates for the chemical equilibration times. Applying a Bjorken picture to the expanding fireball, the hadrons can, indeed, quickly chemically equilibrate for both an initial overpopulation or underpopulation of Hagedorn resonances. Our hadron resonance gas model, including the additional Hagedorn states, is used to obtain an upper bound on the shear viscosity to entropy density ratio, η/s, of hadronic matter near T c that is close to 1/(4/π). We show how the measured particle ratios can be used to provide non-trivial information about T c of the QCD phase transition. This is obtained by including the effects of highly massive Hagedorn resonances on statistical models, which are generally used to describe hadronic yields. The inclusion of the ''missing'' Hagedorn states creates a dependence of the thermal fits on the Hagedorn temperature, T H , and leads to a

  9. Relativistic viscous hydrodynamics for heavy-ion collisions with ECHO-QGP

    CERN Document Server

    Del Zanna, L; Inghirami, G; Rolando, V; Beraudo, A; De Pace, A; Pagliara, G; Drago, A; Becattini, F

    2013-01-01

    We present ECHO-QGP, a numerical code for $(3+1)$-dimensional relativistic viscous hydrodynamics designed for the modeling of the space-time evolution of the matter created in high energy nuclear collisions. The code has been built on top of the \\emph{Eulerian Conservative High-Order} astrophysical code for general relativistic magneto-hydrodynamics [\\emph{Del Zanna et al., Astron. Astrophys. 473, 11, 2007}] and here it has been upgraded to handle the physics of the Quark-Gluon Plasma. ECHO-QGP features second-order treatment of causal relativistic viscosity effects in both Minkowskian or Bjorken coordinates; partial or complete chemical equilibrium of hadronic species before kinetic freeze-out; initial conditions based on the optical Glauber model, including a Monte-Carlo routine for event-by-event fluctuating initial conditions; a freeze-out procedure based on the Cooper-Frye prescription. The code is extensively validated against several test problems and results always appear accurate, as guaranteed by th...

  10. Nonlinear mean field theory for nuclear matter and surface properties

    International Nuclear Information System (INIS)

    Boguta, J.; Moszkowski, S.A.

    1983-01-01

    Nuclear matter properties are studied in a nonlinear relativistic mean field theory. We determine the parameters of the model from bulk properties of symmetric nuclear matter and a reasonable value of the effective mass. In this work, we stress the nonrelativistic limit of the theory which is essentially equivalent to a Skyrme hamiltonian, and we show that most of the results can be obtained, to a good approximation, analytically. The strength of the required parameters is determined from the binding energy and density of nuclear matter and the effective nucleon mass. For realistic values of the parameters, the nonrelativistic approximation turns out to be quite satisfactory. Using reasonable values of the parameters, we can account for other key properties of nuclei, such as the spin-orbit coupling, surface energy, and diffuseness of the nuclear surface. Also the energy dependence of the nucleon-nucleus optical model is accounted for reasonably well except near the Fermi surface. It is found, in agreement with empirical results, that the Landau parameter F 0 is quite small in normal nuclear matter. Both density dependence and momentum dependence of the NN interaction, but especially the former, are important for nuclear saturation. The required scalar and vector coupling constants agree fairly well with those obtained from analyses of NN scattering phase shifts with one-boson-exchange models. The mean field theory provides a semiquantitative justification for the weak Skyrme interaction in odd states. The strength of the required nonlinear term is roughly consistent with that derived using a new version of the chiral mean field theory in which the vector mass as well as the nucleon mass is generated by the sigma-field. (orig.)

  11. Anomalous correlation between hadrons and electromagnetic particles in hadron and gamma-ray families

    International Nuclear Information System (INIS)

    Tamada, Masanobu; Funayama, Yoshimi

    1986-01-01

    Correlations in relative (energy-weighted) distance between hadrons and electromagnetic particles are studied in the families observed in Chacaltaya emulsion chamber experiment. It is found that the observed number of hadrons which accompany electromagnetic in very close vicinity, say -5 , and it means there exists anomalous correlation between hadrons and electromagnetic particles in the characteristic spread of atmospheric electromagnetic cascade. The results are also compared with those of Japan-USSR joint chamber exposed at Pamir observatory. (author)

  12. Handbook of relativistic quantum chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wenjian (ed.) [Peking Univ., Beijing (China). Center for Computational Science and Engineering

    2017-03-01

    This handbook focuses on the foundations of relativistic quantum mechanics and addresses a number of fundamental issues never covered before in a book. For instance: How can many-body theory be combined with quantum electrodynamics? How can quantum electrodynamics be interfaced with relativistic quantum chemistry? What is the most appropriate relativistic many-electron Hamiltonian? How can we achieve relativistic explicit correlation? How can we formulate relativistic properties? - just to name a few. Since relativistic quantum chemistry is an integral component of computational chemistry, this handbook also supplements the ''Handbook of Computational Chemistry''. Generally speaking, it aims to establish the 'big picture' of relativistic molecular quantum mechanics as the union of quantum electrodynamics and relativistic quantum chemistry. Accordingly, it provides an accessible introduction for readers new to the field, presents advanced methodologies for experts, and discusses possible future perspectives, helping readers understand when/how to apply/develop the methodologies.

  13. Relativistic ion acceleration by ultraintense laser interactions

    International Nuclear Information System (INIS)

    Nakajima, K.; Koga, J.K.; Nakagawa, K.

    2001-01-01

    There has been a great interest in relativistic particle generation by ultraintense laser interactions with matter. We propose the use of relativistically self-focused laser pulses for the acceleration of ions. Two dimensional PIC simulations are performed, which show the formation of a large positive electrostatic field near the front of a relativistically self-focused laser pulse. Several factors contribute to the acceleration including self-focusing distance, pulse depletion, and plasma density. Ultraintense laser-plasma interactions are capable of generating enormous electrostatic fields of ∼3 TV/m for acceleration of protons with relativistic energies exceeding 1 GeV

  14. Update on J /ψ regeneration in a hadron gas

    Science.gov (United States)

    Abreu, L. M.; Khemchandani, K. P.; Torres, A. Martínez; Navarra, F. S.; Nielsen, M.

    2018-04-01

    In heavy-ion collisions, after the quark-gluon plasma there is a hadronic gas phase. Using effective Lagrangians, we study the interactions of charmed mesons which lead to J /ψ production and absorption in this gas. We update and extend previous calculations introducing strange meson interactions and also including the interactions mediated by the recently measured exotic charmonium resonances Z (3900 ) and Z (4025 ) . These resonances open new reaction channels for the J /ψ , which could potentially lead to changes in its multiplicity. We compute the J /ψ production cross section in processes such as D(s) (*)+D¯(*)→J /ψ +(π ,ρ ,K ,K*) and also the J /ψ absorption cross section in the corresponding inverse processes. Using the obtained cross sections as input to solve the appropriate rate equation, we conclude that the interactions in the hadron gas phase lead to a 20-24% reduction of the J /ψ abundance. Within the uncertainties of the calculation, this reduction is the same at the Relativistic Heavy Ion Collider and the large Hadron Collider.

  15. Nonequilibrium quantum field theories

    International Nuclear Information System (INIS)

    Niemi, A.J.

    1988-01-01

    Combining the Feynman-Vernon influence functional formalism with the real-time formulation of finite-temperature quantum field theories we present a general approach to relativistic quantum field theories out of thermal equilibrium. We clarify the physical meaning of the additional fields encountered in the real-time formulation of quantum statistics and outline diagrammatic rules for perturbative nonequilibrium computations. We derive a generalization of Boltzmann's equation which gives a complete characterization of relativistic nonequilibrium phenomena. (orig.)

  16. Spinor and isospinor structure of relativistic particle propagators

    International Nuclear Information System (INIS)

    Gitman, D.M.; Shvartsman, Sh.M.

    1993-07-01

    Representations by means of path integrals are used to find spinor and isospinor structure of relativistic particle propagators in external fields. For Dirac propagator in an external electromagnetic field all Grassmannian integrations are performed and a general result is presented via a bosonic path integral. The spinor structure of the integrand is given explicitly by its decomposition in the independent γ-matrix structures. A similar technique is used to get the isospinor structure of the scalar particle propagator in an external non-Abelian field. (author). 21 refs

  17. Systematics of light nuclei in a relativistic model

    International Nuclear Information System (INIS)

    Price, C.E.

    1988-01-01

    The results of relativistic mean field calculations for non-spherical nuclei are presented and discussed. The need for non-linear scalar meson self-couplings in order to describe the properties of s-d shell nuclei is emphasized along with the importance of self-consistency in calculations of magnetic moments of odd-mass nuclei. 16 refs., 3 figs., 2 tabs

  18. Relativistic and nonrelativistic classical field theory on fivedimensional space-time

    International Nuclear Information System (INIS)

    Kunzle, H.P.; Duval, C.

    1985-07-01

    This paper is a sequel to earlier ones in which, on the one hand, classical field theories were described on a curved Newtonian space-time, and on the other hand, the Newtonian gravitation theory was formulated on a fivedimensional space-time with a metric of signature and a covariantly constant vector field. Here we show that Lagrangians for matter fields are easily formulated on this extended space-time from simple invariance arguments and that stress-energy tensors can be derived from them in the usual manner so that four-dimensional space-time expressions are obtained that are consistent in the relativistic as well as in the Newtonian case. In the former the theory is equivalent to General Relativity. When the magnitude of the distinguished vector field vanishes equations for the (covariant) Newtonian limit follow. We demonstrate this here explicity in the case of the Klein-Gordon/Schroedinger and the Dirac field and its covariant nonrelativistic analogue, the Levy-Leblond field. Especially in the latter example the covariant Newtonian theory simplifies dramatically in this fivedimensional form

  19. Are Hadrons and Nuclei Open Systems ?

    International Nuclear Information System (INIS)

    Musulmanbekov, G.

    1998-01-01

    Fulltext We propose to consider the structure of hadrons in the frame of stochastic interpretation of quantum mechanics, or stochastic theory, which is based on classical mechanics in stochastic environment. This environment is associated with subquantal vacuum. Stochastic theory is a classical physics without the hypothesis that there are isolated systems in the universe. It has been shown by some authors that stochastic theory is justified by fractal space-time considerations. In our approach hadron is a set of embedded into stochastic vacuum (SV) valence quarks (VQ) ( quark-antiquark in mesons and three quarks in baryons ) oscillating near center of proper frame of the hadron VQ being placed into SV behaves itself as a dislocation (antidislocation) in solids or vortex ( antivortex ) in liquids. Effective interaction between VQs comes from specific polarization of SV around VQs leading to outside suppression on VQs. Polarization of SV around VQ characterizes the distribution of hardonic matter inside a hadron. Oscillation motion of VQs around the origin, going from their interaction with SV, is strongly correlated. VQs being in equilibrium with SV exchange energy at all times with it. Neighborhood of two or more nucleons changes SV polarization around their VQs in such a way that they tend to occupy the state with minimum energy arrange crystalline like structure. Therefore the behavior of hadrons and nuclei is typical for open systems exchanging energy with environment .In this approach the relation between constituent (nonrelativistic ) quarks and current ( relativistic) ones becomes clear and transparent, because it composes the features of both NRQM and bag models. It gives qualitative and in some cases quantitative description of experimental facts concerning nucleon and nuclear structure searched in scattering experiments. Some proposals and predictions for future experiments are given

  20. On the degree of collectivization of interaction of relativistic hadrons with nuclei

    International Nuclear Information System (INIS)

    Kalinkin, B.N.; Cherbu, A.V.; Shmonin, V.L.

    1979-01-01

    Based on the analysis of data on the cumulative meson production, production of muon pairs and of particles with large transverse momenta in nuclei, it is shown that the mechanism of coherent interaction of hadrons with nucleon tubes is not realized. (author)

  1. Theoretical physics vol. 2. Quantum mechanics, relativistic quantum mechanics, quantum field theory, elementar-particle theory, thermodynamics and statistics

    International Nuclear Information System (INIS)

    Rebhan, E.

    2005-01-01

    The present second volume treats quantum mechanics, relativistic quantum mechanics, the foundations of quantum-field and elementary-particle theory as well as thermodynamics and statistics. Both volumes comprehend all fields, which are usually offered in a course about theoretical physics. In all treated fields a very careful introduction to the basic natural laws forms the starting point, whereby it is thoroughly analysed, which of them is based on empirics, which is logically deducible, and which role play basic definitions. Extendingly the matter extend of the corresponding courses starting from the relativistic quantum theory an introduction to the elementary particles is developed. All problems are very thoroughly and such extensively studied, that each step is singularly reproducible. On motivation and good understandability is cared much about. The mixing of mathematical difficulties with problems of physical nature often obstructive in the learning is so circumvented, that important mathematical methods are presented in own chapters (for instance Hilbert spaces, Lie groups). By means of many examples and problems (for a large part with solutions) the matter worked out is deepened and exercised. Developments, which are indeed important, but seem for the first approach abandonable, are pursued in excurses. This book starts from courses, which the author has held at the Heinrich-Heine university in Duesseldorf, and was in many repetitions fitted to the requirements of the students. It is conceived in such a way, that it is also after the study suited as dictionary or for the regeneration

  2. Toward the Limits of Matter: Ultra-relativistic nuclear collisions at CERN

    CERN Document Server

    Schukraft, Jurgen

    2015-01-01

    Strongly interacting matter as described by the thermodynamics of QCD undergoes a phase transition, from a low temperature hadronic medium to a high temperature quark-gluon plasma state. In the early universe this transition occurred during the early microsecond era. It can be investigated in the laboratory, in collisions of nuclei at relativistic energy, which create "fireballs" of sufficient energy density to cross the QCD Phase boundary. We describe 3 decades of work at CERN, devoted to the study of the QCD plasma and the phase transition. From modest beginnings at the SPS, ultra-relativistic heavy ion physics has evolved today into a central pillar of contemporary nuclear physics and forms a significant part of the LHC program.

  3. Probing two-photon decay widths of mesons at energies available at the CERN Large Hadron Collider (LHC)

    International Nuclear Information System (INIS)

    Bertulani, C. A.

    2009-01-01

    Meson production cross sections in ultraperipheral relativistic heavy ion collisions at the CERN Large Hadron Collider are revisited. The relevance of meson models and of exotic QCD states is discussed. This study includes states that have not been considered before in the literature.

  4. Scaling for deuteron structure functions in a relativistic light-front model

    International Nuclear Information System (INIS)

    Polyzou, W.N.; Gloeckle, W.

    1996-01-01

    Scaling limits of the structure functions [B.D. Keister, Phys. Rev. C 37, 1765 (1988)], W 1 and W 2 , are studied in a relativistic model of the two-nucleon system. The relativistic model is defined by a unitary representation, U(Λ,a), of the Poincaracute e group which acts on the Hilbert space of two spinless nucleons. The representation is in Dirac close-quote s [P.A.M. Dirac, Rev. Mod. Phys. 21, 392 (1949)] light-front formulation of relativistic quantum mechanics and is designed to give the experimental deuteron mass and n-p scattering length. A model hadronic current operator that is conserved and covariant with respect to this representation is used to define the structure tensor. This work is the first step in a relativistic extension of the results of Hueber, Gloeckle, and Boemelburg. The nonrelativistic limit of the model is shown to be consistent with the nonrelativistic model of Hueber, Gloeckle, and Boemelburg. [D. Hueber et al. Phys. Rev. C 42, 2342 (1990)]. The relativistic and nonrelativistic scaling limits, for both Bjorken and y scaling are compared. The interpretation of y scaling in the relativistic model is studied critically. The standard interpretation of y scaling requires a soft wave function which is not realized in this model. The scaling limits in both the relativistic and nonrelativistic case are related to probability distributions associated with the target deuteron. copyright 1996 The American Physical Society

  5. Relativistic Hartree-Bogoliubov description of the halo nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Meng, J.; Ring, P. [Universitaet Muenchen, Garching (Germany)

    1996-12-31

    Here the authors report the development of the relativistic Hartree-Bogoliubov theory in coordinate space. Pairing correlations are taken into account by both density dependent force of zero range and finite range Gogny force. As a primary application the relativistic HB theory is used to describe the chain of Lithium isotopes reaching from {sup 6}Li to {sup 11}Li. In contrast to earlier investigations within a relativistic mean field theory and a density dependent Hartree Fock theory, where the halo in {sup 11}Li could only be reproduced by an artificial shift of the 1p{sub 1/2} level close to the continuum limit, the halo is now reproduced in a self-consistent way without further modifications using the scattering of Cooper pairs to the 2s{sub 1/2} level in the continuum. Excellent agreement with recent experimental data is observed.

  6. Luminosity Tuning at the Large Hadron Collider

    CERN Document Server

    Wittmer, W

    2006-01-01

    By measuring and adjusting the beta-functions at the interaction point (IP the luminosity is being optimized. In LEP (Large Electron Positron Collider) this was done with the two closest doublet magnets. This approach is not applicable for the LHC (Large Hadron Collider) and RHIC (Relativistic Heavy Ion Collider) due to the asymmetric lattice. In addition in the LHC both beams share a common beam pipe through the inner triplet magnets (in these region changes of the magnetic field act on both beams). To control and adjust the beta-functions without perturbation of other optics functions, quadrupole groups situated on both sides further away from the IP have to be used where the two beams are already separated. The quadrupoles are excited in specific linear combinations, forming the so-called "tuning knobs" for the IP beta-functions. For a specific correction one of these knobs is scaled by a common multiplier. The different methods which were used to compute such knobs are discussed: (1) matching in MAD, (2)i...

  7. On relativistic generalization of Perelman's W-entropy and thermodynamic description of gravitational fields and cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Vacaru, Olivia [National College of Iasi (Romania); Vacaru, Sergiu I. [Quantum Gravity Research, Topanga, CA (United States); University ' ' Al.I. Cuza' ' Iasi, Project IDEI, Iasi (Romania); Werner-Heisenberg-Institute, Max-Planck-Institute for Physics, Munich (Germany); Leibniz University of Hannover, Institute for Theoretical Physics (Germany); Ruchin, Vyacheslav

    2017-03-15

    Using double 2 + 2 and 3 + 1 nonholonomic fibrations on Lorentz manifolds, we extend the concept of W-entropy for gravitational fields in general relativity (GR). Such F- and W-functionals were introduced in the Ricci flow theory of three dimensional (3-d) Riemannian metrics by Perelman (the entropy formula for the Ricci flow and its geometric applications. arXiv:math.DG/0211159). Non-relativistic 3-d Ricci flows are characterized by associated statistical thermodynamical values determined by W-entropy. Generalizations for geometric flows of 4-d pseudo-Riemannian metrics are considered for models with local thermodynamical equilibrium and separation of dissipative and non-dissipative processes in relativistic hydrodynamics. The approach is elaborated in the framework of classical field theories (relativistic continuum and hydrodynamic models) without an underlying kinetic description, which will be elaborated in other work. The 3 + 1 splitting allows us to provide a general relativistic definition of gravitational entropy in the Lyapunov-Perelman sense. It increases monotonically as structure forms in the Universe. We can formulate a thermodynamic description of exact solutions in GR depending, in general, on all spacetime coordinates. A corresponding 2 + 2 splitting with nonholonomic deformation of linear connection and frame structures is necessary for generating in very general form various classes of exact solutions of the Einstein and general relativistic geometric flow equations. Finally, we speculate on physical macrostates and microstate interpretations of the W-entropy in GR, geometric flow theories and possible connections to string theory (a second unsolved problem also contained in Perelman's work) in Polyakov's approach. (orig.)

  8. A new approach to experiments with non-relativistic antiprotons

    International Nuclear Information System (INIS)

    Poth, H.

    1990-05-01

    Is low-energy antiproton physics phasing out with the present round of experiments or are there good reasons to continue at an improved slow antiproton facility which could be located at a high intensity hadron accelerator? We point out, that there are four frontiers where substantial advances could be made. In particular, we discuss the low-energy frontier and emphasize that experiments with no-relativistic antiprotons would increase drastically the sensitivity and would reveal new effects. (orig.)

  9. Hadronization of QCD and effective interactions

    International Nuclear Information System (INIS)

    Frank, M.R.

    1994-01-01

    An introductory treatment of hadronization through functional integral calculus and bifocal Bose fields is given. Emphasis is placed on the utility of this approach for providing a connection between QCD and effective hadronic field theories. The hadronic interactions obtained by this method are nonlocal due to the QCD substructure, yet, in the presence of an electromagnetic field, maintain the electromagnetic gauge invariance manifest at the quark level. A local chiral model which is structurally consistent with chiral perturbation theory is obtained through a derivative expansion of the nonlocalities with determined, finite coefficients. Tree-level calculations of the pion form factor and π - π scattering, which illustrate the dual constituent-quark-chiral-model nature of this approach, are presented

  10. Initial state fluctuations and final state correlations in relativistic heavy-ion collisions

    International Nuclear Information System (INIS)

    Luzum, Matthew; Petersen, Hannah

    2014-01-01

    We review the phenomenology and theory of bulk observables in ultra-relativistic heavy-ion collisions, focusing on recent developments involving event-by-event fluctuations in the initial stages of a heavy-ion collision, and how they manifest in observed correlations. We first define the relevant observables and show how each measurement is related to underlying theoretical quantities. Then we review the prevailing picture of the various stages of a collision, including the state-of-the-art modeling of the initial stages of a collision and subsequent hydrodynamic evolution, as well as hadronic scattering and freeze-out in the later stages. We then discuss the recent results that have shaped our current understanding and identify the challenges that remain. Finally, we point out open issues and the potential for progress in the field. (topical review)

  11. Relativistic electron beams above thunderclouds

    DEFF Research Database (Denmark)

    Füellekrug, M.; Roussel-Dupre, R.; Symbalisty, E. M. D.

    2011-01-01

    Non-luminous relativistic electron beams above thunderclouds have been detected by the radio signals of low frequency similar to 40-400 kHz which they radiate. The electron beams occur similar to 2-9 ms after positive cloud-to-ground lightning discharges at heights between similar to 22-72 km above...... thunderclouds. Intense positive lightning discharges can also cause sprites which occur either above or prior to the electron beam. One electron beam was detected without any luminous sprite which suggests that electron beams may also occur independently of sprites. Numerical simulations show that beams...... of electrons partially discharge the lightning electric field above thunderclouds and thereby gain a mean energy of similar to 7MeV to transport a total charge of similar to-10mC upwards. The impulsive current similar to 3 x 10(-3) Am-2 associated with relativistic electron beams above thunderclouds...

  12. Hadronic electroweak processes in a finite volume

    Energy Technology Data Exchange (ETDEWEB)

    Agadjanov, Andria

    2017-11-07

    In the present thesis, we study a number of hadronic electroweak processes in a finite volume. Our work is motivated by the ongoing and future lattice simulations of the strong interaction theory called quantum chromodynamics. According to the available computational resources, the numerical calculations are necessarily performed on lattices with a finite spatial extension. The first part of the thesis is based on the finite volume formalism which is a standard method to investigate the processes with the final state interactions, and in particular, the elastic hadron resonances, on the lattice. Throughout the work, we systematically apply the non-relativistic effective field theory. The great merit of this approach is that it encodes the low-energy dynamics directly in terms of the effective range expansion parameters. After a brief introduction into the subject, we formulate a framework for the extraction of the ΔNγ{sup *} as well as the B→K{sup *} transition form factors from lattice data. Both processes are of substantial phenomenological interest, including the search for physics beyond the Standard Model. Moreover, we provide a proper field-theoretical definition of the resonance matrix elements, and advocate it in comparison to the one based on the infinitely narrow width approximation. In the second part we consider certain aspects of the doubly virtual nucleon Compton scattering. The main objective of the work is to answer the question whether there is, in the Regge language, a so-called fixed pole in the process. To answer this question, the unknown subtraction function, which enters one of the dispersion relations for the invariant amplitudes, has to be determined. The external field method provides a feasible approach to tackle this problem on the lattice. Considering the nucleon in a periodic magnetic field, we derive a simple relation for the ground state energy shift up to a second order in the field strength. The obtained result encodes the

  13. Hadronic electroweak processes in a finite volume

    International Nuclear Information System (INIS)

    Agadjanov, Andria

    2017-01-01

    In the present thesis, we study a number of hadronic electroweak processes in a finite volume. Our work is motivated by the ongoing and future lattice simulations of the strong interaction theory called quantum chromodynamics. According to the available computational resources, the numerical calculations are necessarily performed on lattices with a finite spatial extension. The first part of the thesis is based on the finite volume formalism which is a standard method to investigate the processes with the final state interactions, and in particular, the elastic hadron resonances, on the lattice. Throughout the work, we systematically apply the non-relativistic effective field theory. The great merit of this approach is that it encodes the low-energy dynamics directly in terms of the effective range expansion parameters. After a brief introduction into the subject, we formulate a framework for the extraction of the ΔNγ * as well as the B→K * transition form factors from lattice data. Both processes are of substantial phenomenological interest, including the search for physics beyond the Standard Model. Moreover, we provide a proper field-theoretical definition of the resonance matrix elements, and advocate it in comparison to the one based on the infinitely narrow width approximation. In the second part we consider certain aspects of the doubly virtual nucleon Compton scattering. The main objective of the work is to answer the question whether there is, in the Regge language, a so-called fixed pole in the process. To answer this question, the unknown subtraction function, which enters one of the dispersion relations for the invariant amplitudes, has to be determined. The external field method provides a feasible approach to tackle this problem on the lattice. Considering the nucleon in a periodic magnetic field, we derive a simple relation for the ground state energy shift up to a second order in the field strength. The obtained result encodes the value of the

  14. A Demonstration Experiment for the Forecast of Magnetic Field and Field Errors in the Large Hadron Collider

    CERN Document Server

    Sammut, N J; Bottura, L; Deferne, G; Lamont, M; Miles, J; Sanfilippo, S; Strzelczyk, M; Venturini-Delsolaro, W; Xydi, P

    2008-01-01

    In order to reduce the burden on the beam-based feedback, the Large Hadron Collider control system is equipped with the Field Description for the LHC (FiDeL) which provides a forecast of the magnetic field and the multipole field errors. FiDeL has recently been extensively tested at CERN to determine main field tracking, multipole forecasting and compensation accuracy. This paper describes the rationale behind the tests, the procedures employed to power the main magnets and their correctors, and finally, we present the results obtained. We also give an indication of the prediction accuracy that the system can deliver during the operation of the LHC and we discuss the implications that these will have on the machine performance.

  15. Dynamical structure of hadron emission sources

    International Nuclear Information System (INIS)

    Zhao Xi; Huang Bangrong; Zhao Shusong

    2000-01-01

    NA22 experimental data of the triplet seagull effects show that the Doppler effects of the hadron emission sources exist exactly in the hadron-hadron collisions. Every source possesses the same average energy (CMS) approximately. The collective seagull effects can be also explained by the (aQ) ν K ν (aQ) distributions (Generalized functions). The dynamical structure of a hadron emission source is described by the (aQ) ν K ν (aQ) distributions. The anomalous dimensions of the pionic quantum fields are γ B (g R ) = - 0.045 +- 0.012, which control the singularities of the production amplitude in quantum field theory. The mathematical parameter ε = 4-D (the dimension D of space time) in the Feynman integrals can be replaced by the anomalous γ B (g R ) of the quantum fields for the regularization. (-2γ B (g R )↔ε/2 1/ln(Λ 2 /m 2 )Λ→∞)

  16. Quark–hadron phase structure, thermodynamics, and magnetization of QCD matter

    Science.gov (United States)

    Nasser Tawfik, Abdel; Magied Diab, Abdel; Hussein, M. T.

    2018-05-01

    The SU(3) Polyakov linear-sigma model (PLSM) is systematically implemented to characterize the quark-hadron phase structure and to determine various thermodynamic quantities and the magnetization of quantum chromodynamic (QCD) matter. Using mean-field approximation, the dependence of the chiral order parameter on a finite magnetic field is also calculated. Under a wide range of temperatures and magnetic field strengths, various thermodynamic quantities including trace anomaly, speed of sound squared, entropy density, and specific heat are presented, and some magnetic properties are described as well. Where available these results are compared to recent lattice QCD calculations. The temperature dependence of these quantities confirms our previous finding that the transition temperature is reduced with the increase in the magnetic field strength, i.e. QCD matter is characterized by an inverse magnetic catalysis. Furthermore, the temperature dependence of the magnetization showing that QCD matter has paramagnetic properties slightly below and far above the pseudo-critical temperature is confirmed as well. The excellent agreement with recent lattice calculations proves that our QCD-like approach (PLSM) seems to possess the correct degrees of freedom in both the hadronic and partonic phases and describes well the dynamics deriving confined hadrons to deconfined quark-gluon plasma.

  17. Relativistic quantum Hall conductivity for 3D and 2D electron plasma in an external magnetic field

    International Nuclear Information System (INIS)

    Gonzalez Felipe, R.; Perez Martinez, A.; Perez-Rojas, H.

    1990-05-01

    The complete antisymmetric form of the conductivity tensor in the static limit, as well as the expression for the Hall conductivity, is obtained for the relativistic 3D and 2D electron gas in a magnetic field. The non-relativistic 2D limit is also discussed. The typical step form of the 2D Hall conductivity at zero temperature is obtained under the simple hypothesis of constancy of the chemical potential. (author). 6 refs, 1 fig

  18. Non-relativistic Limit of a Dirac Polaron in Relativistic Quantum Electrodynamics

    CERN Document Server

    Arai, A

    2006-01-01

    A quantum system of a Dirac particle interacting with the quantum radiation field is considered in the case where no external potentials exist. Then the total momentum of the system is conserved and the total Hamiltonian is unitarily equivalent to the direct integral $\\int_{{\\bf R}^3}^\\oplus\\overline{H({\\bf p})}d{\\bf p}$ of a family of self-adjoint operators $\\overline{H({\\bf p})}$ acting in the Hilbert space $\\oplus^4{\\cal F}_{\\rm rad}$, where ${\\cal F}_{\\rm rad}$ is the Hilbert space of the quantum radiation field. The fibre operator $\\overline{H({\\bf p})}$ is called the Hamiltonian of the Dirac polaron with total momentum ${\\bf p} \\in {\\bf R}^3$. The main result of this paper is concerned with the non-relativistic (scaling) limit of $\\overline{H({\\bf p})}$. It is proven that the non-relativistic limit of $\\overline{H({\\bf p})}$ yields a self-adjoint extension of a Hamiltonian of a polaron with spin $1/2$ in non-relativistic quantum electrodynamics.

  19. Naturalness in an Effective Field Theory for Neutron Star Matter

    International Nuclear Information System (INIS)

    Razeira, Moises; Vasconcellos, Cesar A.Z.; Bodmann, Bardo E.J.; Coelho, Helio T.; Dillig, Manfred

    2004-01-01

    High density hadronic matter is studied in a generalized relativistic multi-baryon lagrangian density. By comparing the predictions of our model with estimates obtained within a phenomenological naive dimensional analysis based on the naturalness of the coefficients of the theory, we show that naturalness plays a major role in effective field theory and, in combination with experiment, could represent a relevant criterium to select a model among others in the description of global static properties of neutron stars

  20. Expectations and realities in relativistic heavy-ion collisions

    International Nuclear Information System (INIS)

    Hwa, R.C.

    1988-06-01

    Interpretations of some recent results from experiments done at the CERN-SPS on relativistic heavy-ion collisions are discussed. A cautionary note is given for the observed J//Psi/ suppression due to the hadronic interaction of J//Psi/ in the final state. The multiplicity dependence of average transverse momentum has many complications, and is unsuitable as an indicator of phase transition. Multiplicity fluctuation may be a better diagnostic tool. No indication of any collective behavior has been seen in the recent experiments. 30 refs., 3 figs

  1. Radiation reaction for the classical relativistic spinning particle in scalar, tensor and linearized gravitational fields

    International Nuclear Information System (INIS)

    Barut, A.O.; Cruz, M.G.

    1992-08-01

    We use the method of analytic continuation of the equation of motion including the self-fields to evaluate the radiation reaction for a classical relativistic spinning point particle in interaction with scalar, tensor and linearized gravitational fields in flat spacetime. In the limit these equations reduce to those of spinless particles. We also show the renormalizability of these theories. (author). 10 refs

  2. Normal ground state of dense relativistic matter in a magnetic field

    International Nuclear Information System (INIS)

    Gorbar, E. V.; Miransky, V. A.; Shovkovy, I. A.

    2011-01-01

    The properties of the ground state of relativistic matter in a magnetic field are examined within the framework of a Nambu-Jona-Lasinio model. The main emphasis of this study is the normal ground state, which is realized at sufficiently high temperatures and/or sufficiently large chemical potentials. In contrast to the vacuum state, which is characterized by the magnetic catalysis of chiral symmetry breaking, the normal state is accompanied by the dynamical generation of the chiral shift parameter Δ. In the chiral limit, the value of Δ determines a relative shift of the longitudinal momenta (along the direction of the magnetic field) in the dispersion relations of opposite chirality fermions. We argue that the chirality remains a good approximate quantum number even for massive fermions in the vicinity of the Fermi surface and, therefore, the chiral shift is expected to play an important role in many types of cold dense relativistic matter, relevant for applications in compact stars. The qualitative implications of the revealed structure of the normal ground state on the physics of protoneutron stars are discussed. A noticeable feature of the Δ parameter is that it is insensitive to temperature when T 0 , where μ 0 is the chemical potential, and increases with temperature for T>μ 0 . The latter implies that the chiral shift parameter is also generated in the regime relevant for heavy ion collisions.

  3. Pivotal issues on relativistic electrons in ITER

    Science.gov (United States)

    Boozer, Allen H.

    2018-03-01

    The transfer of the plasma current from thermal to relativistic electrons is a threat to ITER achieving its mission. This danger is significantly greater in the nuclear than in the non-nuclear phase of ITER operations. Two issues are pivotal. The first is the extent and duration of magnetic surface breaking in conjunction with the thermal quenches. The second is the exponential sensitivity of the current transfer to three quantities: (1) the poloidal flux change required to e-fold the number of relativistic electrons, (2) the time τa after the beginning of the thermal quench before the accelerating electric field exceeds the Connor-Hastie field for runaway, and (3) the duration of the period τ_op in which magnetic surfaces remain open. Adequate knowledge does not exist to devise a reliable strategy for the protection of ITER. Uncertainties are sufficiently large that a transfer of neither a negligible nor the full plasma current to relativistic electrons can be ruled out during the non-nuclear phase of ITER. Tritium decay can provide a sufficiently strong seed for a dangerous relativistic-electron current even if τa and τ_op are sufficiently long to avoid relativistic electrons during non-nuclear operations. The breakup of magnetic surfaces that is associated with thermal quenches occurs on a time scale associated with fast magnetic reconnection, which means reconnection at an Alfvénic rather than a resistive rate. Alfvénic reconnection is well beyond the capabilities of existing computational tools for tokamaks, but its effects can be studied using its property of conserving magnetic helicity. Although the dangers to ITER from relativistic electrons have been known for twenty years, the critical issues have not been defined with sufficient precision to formulate an effective research program. Studies are particularly needed on plasma behavior in existing tokamaks during thermal quenches, behavior which could be clarified using methods developed here.

  4. Relativistic Descriptions of Few-Body Systems

    International Nuclear Information System (INIS)

    Karmanov, V. A.

    2011-01-01

    A brief review of relativistic effects in few-body systems, of theoretical approaches, recent developments and applications is given. Manifestations of relativistic effects in the binding energies, in the electromagnetic form factors and in three-body observables are demonstrated. The three-body forces of relativistic origin are also discussed. We conclude that relativistic effects in nuclei can be important in spite of small binding energy. At high momenta they clearly manifest themselves and are necessary to describe the deuteron e.m. form factors. At the same time, there is still a discrepancy in three-body observables which might be a result of less clarity in understanding the corresponding relativistic effects, the relativistic NN kernel and the three-body forces. Relativistic few-body physics remains to be a field of very intensive and fruitful researches. (author)

  5. Hadronic model for the non-thermal radiation from the binary system AR Scorpii

    Science.gov (United States)

    Bednarek, W.

    2018-05-01

    AR Scorpii is a close binary system containing a rotation powered white dwarf and a low-mass M type companion star. This system shows non-thermal emission extending up to the X-ray energy range. We consider hybrid (lepto-hadronic) and pure hadronic models for the high energy non-thermal processes in this binary system. Relativistic electrons and hadrons are assumed to be accelerated in a strongly magnetised, turbulent region formed in collision of a rotating white dwarf magnetosphere and a magnetosphere/dense atmosphere of the M-dwarf star. We propose that the non-thermal X-ray emission is produced either by the primary electrons or the secondary e± pairs from decay of charged pions created in collisions of hadrons with the companion star atmosphere. We show that the accompanying γ-ray emission from decay of neutral pions, which are produced by these same protons, is expected to be on the detectability level of the present and/or the future satellite and Cherenkov telescopes. The γ-ray observations of the binary system AR Sco should allow us to constrain the efficiency of hadron and electron acceleration and also the details of the radiation processes.

  6. Effective hadronic supersymmetry based on octonionic color algebras

    International Nuclear Information System (INIS)

    Catto, S.

    1993-01-01

    Algebraic realizations of dynamical supersymmetry through SU(m/n) type superalgebras are developed. Their application to a bilocal quark/antiquark and quark-diquark systems will be shown. Color algebra based on octonions allows the introduction of a new supermultiplet that puts hadrons, quarks, antiquarks and exotics together, and naturally suppresses quark configurations that are symmetrical in color space and antisymmetrical in remaining flavor, spin and position variables. The authors shall also present preliminary work on the first order relativistic formulation through the spin realization of Wess-Zumino super-Poincare algebra

  7. Coherent quantum states of a relativistic particle in an electromagnetic plane wave and a parallel magnetic field

    International Nuclear Information System (INIS)

    Colavita, E.; Hacyan, S.

    2014-01-01

    We analyze the solutions of the Klein–Gordon and Dirac equations describing a charged particle in an electromagnetic plane wave combined with a magnetic field parallel to the direction of propagation of the wave. It is shown that the Klein–Gordon equation admits coherent states as solutions, while the corresponding solutions of the Dirac equation are superpositions of coherent and displaced-number states. Particular attention is paid to the resonant case in which the motion of the particle is unbounded. -- Highlights: •We study a relativistic electron in a particular electromagnetic field configuration. •New exact solutions of the Klein–Gordon and Dirac equations are obtained. •Coherent and displaced number states can describe a relativistic particle

  8. A Precise Measurement of the $B^{+}, B^{0}$ and Mean b-hadron Lifetime with the DELPHI Detector at LEP I

    CERN Document Server

    Abdallah, J; Adam, W; Adzic, P; Albrecht, T; Alderweireld, T; Alemany-Fernandez, R; Allmendinger, T; Allport, P P; Amaldi, Ugo; Amapane, N; Amato, S; Anashkin, E; Andreazza, A; Andringa, S; Anjos, N; Antilogus, P; Apel, W D; Arnoud, Y; Ask, S; Åsman, B; Augustin, J E; Augustinus, A; Baillon, Paul; Ballestrero, A; Bambade, P; Barbier, R; Bardin, Dimitri Yuri; Barker, G J; Baroncelli, A; Battaglia, Marco; Baubillier, M; Becks, K H; Begalli, M; Behrmann, A; Ben-Haim, E; Benekos, N C; Benvenuti, Alberto C; Bérat, C; Berggren, M; Berntzon, L; Bertrand, D; Besançon, M; Besson, N; Bloch, D; Blom, M; Bluj, M; Bonesini, M; Boonekamp, M; Booth, P S L; Borisov, G; Botner, O; Bouquet, B; Bowcock, T J V; Boyko, I; Bracko, M; Brenner, R; Brodet, E; Brückman, P; Brunet, J M; Bugge, L; Buschmann, P; Calvi, M; Camporesi, T; Canale, V; Carena, F; Castro, N; Cavallo, F R; Chapkin, M M; Charpentier, P; Checchia, P; Chierici, R; Shlyapnikov, P; Chudoba, J; Chung, S U; Cieslik, K; Collins, P; Contri, R; Cosme, G; Cossutti, F; Costa, M J; Crawley, B; Crennell, D J; Cuevas-Maestro, J; D'Hondt, J; Dalmau, J; Da Silva, T; Da Silva, W; Della Ricca, G; De Angelis, A; de Boer, Wim; De Clercq, C; De Lotto, B; De Maria, N; De Min, A; De Paula, L S; Di Ciaccio, Lucia; Di Simone, A; Doroba, K; Drees, J; Dris, M; Eigen, G; Ekelöf, T J C; Ellert, M; Elsing, M; Espirito-Santo, M C; Fanourakis, G K; Fassouliotis, D; Feindt, M; Fernández, J; Ferrer, A; Ferro, F; Flagmeyer, U; Föth, H; Fokitis, E; Fulda-Quenzer, F; Fuster, J A; Gandelman, M; García, C; Gavillet, P; Gazis, E N; Gokieli, R; Golob, B; Gómez-Ceballos, G; Gonçalves, P; Graziani, E; Grosdidier, G; Grzelak, K; Guy, J; Haag, C; Hallgren, A; Hamacher, K; Hamilton, K; Hansen, J; Haug, S; Hauler, F; Hedberg, V; Hennecke, M; Herr, H; Hoffman, J; Holmgren, S O; Holt, P J; Houlden, M A; Hultqvist, K; Jackson, J N; Jarlskog, G; Jarry, P; Jeans, D; Johansson, E K; Johansson, P D; Jonsson, P; Joram, C; Jungermann, L; Kapusta, F; Katsanevas, S; Katsoufis, E C; Kernel, G; Kersevan, Borut P; Kiiskinen, A P; King, B T; Kjaer, N J; Kluit, P; Kokkinias, P; Kourkoumelis, C; Kuznetsov, O; Krumshtein, Z; Kucharczyk, M; Lamsa, J; Leder, G; Ledroit, F; Leinonen, L; Leitner, R; Lemonne, J; Lepeltier, V; Lesiak, T; Liebig, W; Liko, D; Lipniacka, A; Lopes, J H; López, J M; Loukas, D; Lutz, P; Lyons, L; MacNaughton, J; Malek, A; Maltezos, S; Mandl, F; Marco, J; Marco, R; Maréchal, B; Margoni, M; Marin, J C; Mariotti, C; Markou, A; Martínez-Rivero, C; Masik, J; Mastroyiannopoulos, N; Matorras, F; Matteuzzi, C; Mazzucato, F; Mazzucato, M; McNulty, R; Meroni, C; Meyer, W T; Migliore, E; Mitaroff, W A; Mjörnmark, U; Moa, T; Moch, M; Mönig, K; Monge, R; Montenegro, J; Moraes, D; Moreno, S; Morettini, P; Müller, U; Münich, K; Mulders, M; Mundim, L M; Murray, W; Muryn, B; Myatt, Gerald; Myklebust, T; Nassiakou, M; Navarria, Francesco Luigi; Nawrocki, K; Nicolaidou, R; Nikolenko, M; Oblakowska-Mucha, A; Obraztsov, V F; Olshevskii, A G; Onofre, A; Orava, Risto; Österberg, K; Ouraou, A; Oyanguren, A; Paganoni, M; Paiano, S; Palacios, J P; Palka, H; Papadopoulou, T D; Pape, L; Parkes, C; Parodi, F; Parzefall, U; Passeri, A; Passon, O; Peralta, L; Perepelitsa, V F; Perrotta, A; Petrolini, A; Piedra, J; Pieri, L; Pierre, F; Pimenta, M; Piotto, E; Podobnik, T; Poireau, V; Pol, M E; Polok, G; Poropat, P; Pozdnyakov, V; Pukhaeva, N; Pullia, Antonio; Rames, J; Ramler, L; Read, A; Rebecchi, P; Rehn, J; Reid, D; Reinhardt, R; Renton, P B; Richard, F; Rídky, J; Rivero, M; Rodríguez, D; Romero, A; Ronchese, P; Rosenberg, E I; Roudeau, Patrick; Rovelli, T; Ruhlmann-Kleider, V; Ryabtchikov, D; Sadovskii, A; Salmi, L; Salt, J; Savoy-Navarro, A; Schwickerath, U; Segar, A; Sekulin, R L; Siebel, M; Sissakian, A N; Smadja, G; Smirnova, O G; Sokolov, A; Sopczak, A; Sosnowski, R; Spassoff, Tz; Stanitzki, M; Stocchi, A; Strauss, J; Stugu, B; Szczekowski, M; Szeptycka, M; Szumlak, T; Tabarelli de Fatis, T; Taffard, A C; Tegenfeldt, F; Timmermans, J; Tkatchev, L G; Tobin, M; Todorovova, S; Tomé, B; Tonazzo, A; Tortosa, P; Travnicek, P; Treille, D; Tristram, G; Trochimczuk, M; Troncon, C; Turluer, M L; Tyapkin, I A; Tyapkin, P; Tzamarias, S; Uvarov, V; Valenti, G; van Dam, P; Van Eldik, J; Van Lysebetten, A; Van Remortel, N; Van Vulpen, I B; Vegni, G; Veloso, F; Venus, W A; Verbeure, F; Verdier, P; Verzi, V; Vilanova, D; Vitale, L; Vrba, V; Wahlen, H; Washbrook, A J; Weiser, C; Wicke, D; Wickens, J H; Wilkinson, G; Winter, M; Witek, M; Yushchenko, O P; Zalewska-Bak, A; Zalewski, Piotr; Zavrtanik, D; Zhuravlov, V; Zimin, N I; Zinchenko, A I; Zupan, M

    2004-01-01

    Final results from the DELPHI Collaboration on the lifetime of B+ and B0 mesons and the mean b-hadron lifetime, are presented using the data collected at the Z0 peak in 1994 and 1995. Elaborate, inclusive, secondary vertexing methods have been employed to ensure a b-hadron reconstruction with good efficiency. To separate samples of B+ and B0 mesons, high performance neural network techniques are used that achieve very high purity signals. The results obtained are: tau_B+ = 1.624 +/- 0.014 (stat) +/- 0.018 (syst) ps tau_B0 = 1.531 +/- 0.021 (stat) +/- 0.031 (syst) ps tau_B+/tau_B0 = 1.060 +/- 0.021 (stat) +/- 0.024 (syst) and for the average b-hadron lifetime: tau_b = 1.570 +/- 0.005 (stat) +/- 0.008 (syst) ps.

  9. Evaluating results from the Relativistic Heavy Ion Collider with perturbative QCD and hydrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Fries, R.J.; Nonaka, C.

    2011-07-01

    We review the basic concepts of perturbative quantum chromodynamics (QCD) and relativistic hydrodynamics, and their applications to hadron production in high energy nuclear collisions. We discuss results from the Relativistic Heavy Ion Collider (RHIC) in light of these theoretical approaches. Perturbative QCD and hydrodynamics together explain a large amount of experimental data gathered during the first decade of RHIC running, although some questions remain open. We focus primarily on practical aspects of the calculations, covering basic topics like perturbation theory, initial state nuclear effects, jet quenching models, ideal hydrodynamics, dissipative corrections, freeze-out and initial conditions. We conclude by comparing key results from RHIC to calculations.

  10. Elastic and radiative heavy quark interactions in ultra-relativistic heavy-ion collisions

    International Nuclear Information System (INIS)

    Uphoff, Jan; Fochler, Oliver; Xu, Zhe; Greiner, Carsten

    2015-01-01

    Elastic and radiative heavy quark interactions with light partons are studied with the partonic transport model named the Boltzmann approach to multiparton scatterings (BAMPSs). After calculating the cross section of radiative processes for finite masses in the improved Gunion–Bertsch approximation and verifying this calculation by comparing to the exact result, we study elastic and radiative heavy quark energy loss in a static medium of quarks and gluons. Furthermore, the full 3 + 1D space–time evolution of gluons, light quarks, and heavy quarks in ultra-relativistic heavy-ion collisions at the BNL Relativistic Heavy-Ion Collider (RHIC) and the CERN Large Hadron Collider (LHC) are calculated with BAMPS including elastic and radiative heavy flavor interactions. Treating light and heavy particles on the same footing in the same framework, we find that the experimentally measured nuclear modification factor of charged hadrons and D mesons at the LHC can be simultaneously described. In addition, we calculate the heavy flavor evolution with an improved screening procedure from hard-thermal-loop calculations and confront the results with experimental data of the nuclear modification factor and the elliptic flow of heavy flavor particles at the RHIC and the LHC. (paper)

  11. How to deal with relativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Hagedorn, R.

    1981-01-01

    A qualitative review is given of the theoretical problems and possibilities arising when one tries to understand what happens in relativistic heavy ion collisions. The striking similarity between these and pp collisions suggests the use of techniques similar to those used five to twelve years ago in pp collisions to disentangle collective motions from thermodynamics. A very heuristic and qualitative sketch of statistical bootstrap thermodynamics concludes an idealized picture in which a relativistic heavy ion collision appears as a superposition of moving 'fireballs' with equilibrium thermodynamics in the rest frames of these fireballs. The interesting problems arise where this theoretician's picture deviates from reality: non-equilibrium, more complicated motion (shock waves, turbulence, spin) and the collision history. Only if these problems have been solved or shown to be irrelevant can we safely identify signatures of unusual states of hadronic matter as, for example, a quark-gluon plasma or density isomers. (orig.)

  12. Stabilization effect of a strong HF electrical field on beam-plasma interaction in a relativistic plasma waveguide

    International Nuclear Information System (INIS)

    El-Shorbagy, K.H.

    2000-07-01

    The influence effect of a strong HF electrical field on the excitation of surface waves by an electron beam under the development of instability of low-density electron beam passing through plane relativistic plasma is investigated. Starting from the two fluid plasma model we separate the problem into two parts. The 'temporal' (dynamical) part enables us to find the frequencies and growth rates of unstable waves. This part within the redefinition of natural (eigen) frequencies coincide with the system describing HF suppression of the Buneman instability in a uniform unbounded plasma. Natural frequencies of oscillations and spatial distribution of the amplitude of the self-consistent electrical field are obtained by solving a boundary value problem ('spatial' part) considering a specific spatial distribution of plasma density. Plasma electrons are considered to have a relativistic velocity. It is shown that a HF electric field has no essential influence on dispersion characteristics of unstable surface waves excited in a relativistic plasma waveguide by a low-density electron beam. The region of instability only slightly narrowing and the growth rate decreases by a small parameter and this result has been reduced compared to nonrelativistic plasma. Also, it is found that the plasma electrons have not affected the solution of the space part of the problem. (author)

  13. Final-state interactions and superscaling in the semi-relativistic approach to quasielastic electron and neutrino scattering

    International Nuclear Information System (INIS)

    Amaro, J. E.; Barbaro, M. B.; Caballero, J. A.; Donnelly, T. W.; Udias, J. M.

    2007-01-01

    The semi-relativistic approach to electron and neutrino quasielastic scattering from nuclei is extended to include final-state interactions. Starting with the usual nonrelativistic continuum shell model, the problem is relativized by using the semi-relativistic expansion of the current in powers of the initial nucleon momentum and relativistic kinematics. Two different approaches are considered for the final-state interactions: the Smith-Wambach 2p-2h damping model and the Dirac-equation-based potential extracted from a relativistic mean-field plus the Darwin factor. Using the latter, the scaling properties of (e,e ' ) and (ν μ ,μ - ) cross sections for intermediate momentum transfers are investigated

  14. Chaos and maps in relativistic rynamical systems

    Directory of Open Access Journals (Sweden)

    L. P. Horwitz

    2000-01-01

    Full Text Available The basic work of Zaslavskii et al showed that the classical non-relativistic electromagnetically kicked oscillator can be cast into the form of an iterative map on the phase space; the resulting evolution contains a stochastic flow to unbounded energy. Subsequent studies have formulated the problem in terms of a relativistic charged particle in interaction with the electromagnetic field. We review the structure of the covariant Lorentz force used to study this problem. We show that the Lorentz force equation can be derived as well from the manifestly covariant mechanics of Stueckelberg in the presence of a standard Maxwell field, establishing a connection between these equations and mass shell constraints. We argue that these relativistic generalizations of the problem are intrinsically inaccurate due to an inconsistency in the structure of the relativistic Lorentz force, and show that a reformulation of the relativistic problem, permitting variations (classically in both the particle mass and the effective “mass” of the interacting electromagnetic field, provides a consistent system of classical equations for describing such processes.

  15. Interacting hadron resonance gas model in the K -matrix formalism

    Science.gov (United States)

    Dash, Ashutosh; Samanta, Subhasis; Mohanty, Bedangadas

    2018-05-01

    An extension of hadron resonance gas (HRG) model is constructed to include interactions using relativistic virial expansion of partition function. The noninteracting part of the expansion contains all the stable baryons and mesons and the interacting part contains all the higher mass resonances which decay into two stable hadrons. The virial coefficients are related to the phase shifts which are calculated using K -matrix formalism in the present work. We have calculated various thermodynamics quantities like pressure, energy density, and entropy density of the system. A comparison of thermodynamic quantities with noninteracting HRG model, calculated using the same number of hadrons, shows that the results of the above formalism are larger. A good agreement between equation of state calculated in K -matrix formalism and lattice QCD simulations is observed. Specifically, the lattice QCD calculated interaction measure is well described in our formalism. We have also calculated second-order fluctuations and correlations of conserved charges in K -matrix formalism. We observe a good agreement of second-order fluctuations and baryon-strangeness correlation with lattice data below the crossover temperature.

  16. Properties of hadronic matter near the phase transition

    Energy Technology Data Exchange (ETDEWEB)

    Noronha-Hostler, Jacquelyn

    2010-12-08

    According to Hagedorn, hadrons should follow an exponential mass spectrum, which the known hadrons follow only up to masses of M{approx}2 GeV. Beyond this point the mass spectrum is flat, which indicates that there are ''missing'' hadrons, that could potentially contribute significantly to experimental observables. In this thesis I investigate the influence of these ''missing'' Hagedorn states on various experimental signatures of QGP. Strangeness enhancement is considered a signal for QGP because hadronic interactions (even including multi-mesonic reactions) underpredict the hadronic yields (especially for strange particles) at the Relativistic Heavy Ion Collider, RHIC. We show here that the missing Hagedorn states provide extra degrees of freedom that can contribute to fast chemical equilibration times for a hadron gas. We develop a dynamical scheme in which possible Hagedorn states contribute to fast chemical equilibration times of X anti X pairs (where X=p, K, {lambda}, or {omega}) inside a hadron gas and just below the critical temperature. Within this scheme, we use master equations and derive various analytical estimates for the chemical equilibration times. Applying a Bjorken picture to the expanding fireball, the hadrons can, indeed, quickly chemically equilibrate for both an initial overpopulation or underpopulation of Hagedorn resonances. Our hadron resonance gas model, including the additional Hagedorn states, is used to obtain an upper bound on the shear viscosity to entropy density ratio, {eta}/s, of hadronic matter near T{sub c} that is close to 1/(4/{pi}). We show how the measured particle ratios can be used to provide non-trivial information about T{sub c} of the QCD phase transition. This is obtained by including the effects of highly massive Hagedorn resonances on statistical models, which are generally used to describe hadronic yields. The inclusion of the ''missing'' Hagedorn states

  17. Non-relativistic and relativistic quantum kinetic equations in nuclear physics

    International Nuclear Information System (INIS)

    Botermans, W.M.M.

    1989-01-01

    In this thesis an attempt is made to draw up a quantummechanical tranport equation for the explicit calculation oof collision processes between two (heavy) ions, by making proper approaches of the exact equations (non-rel.: N-particles Schroedinger equation; rel.: Euler-Lagrange field equations.). An important starting point in the drag-up of the theory is the behaviour of nuclear matter in equilibrium which is determined by individual as well as collective effects. The central point in this theory is the effective interaction between two nucleons both surrounded by other nucleons. In the derivation of the tranport equations use is made of the green's function formalism as developed by Schwinger and Keldys. For the Green's function kinematic equations are drawn up and are solved by choosing a proper factorization of three- and four-particle Green's functions in terms of one- and two-particle Green's functions. The necessary boundary condition is obtained by explicitly making use of Boltzmann's assumption that colliding particles are statistically uncorrelated. Finally a transport equation is obtained in which the mean field as well as the nucleon-nucleon collisions are given by the same (medium dependent) interaction. This interaction is the non-equilibrium extension of the interaction as given in the Brueckner theory of nuclear matter. Together, kinetic equation and interaction, form a self-consistent set of equations for the case of a non-relativistic as well as for the case of a relativistic starting point. (H.W.) 148 refs.; 6 figs.; 411 schemes

  18. Diffeomorphism Group Representations in Relativistic Quantum Field Theory

    Energy Technology Data Exchange (ETDEWEB)

    Goldin, Gerald A. [Rutgers Univ., Piscataway, NJ (United States); Sharp, David H. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-12-20

    We explore the role played by the di eomorphism group and its unitary representations in relativistic quantum eld theory. From the quantum kinematics of particles described by representations of the di eomorphism group of a space-like surface in an inertial reference frame, we reconstruct the local relativistic neutral scalar eld in the Fock representation. An explicit expression for the free Hamiltonian is obtained in terms of the Lie algebra generators (mass and momentum densities). We suggest that this approach can be generalized to elds whose quanta are spatially extended objects.

  19. Langevin dynamics of heavy flavors in relativistic heavy-ion collisions

    CERN Document Server

    Alberico, W M; De Pace, A; Molinari, A; Monteno, M; Nardi, M; Prino, F

    2011-01-01

    We study the stochastic dynamics of c and b quarks, produced in hard initial processes, in the hot medium created after the collision of two relativistic heavy ions. This is done through the numerical solution of the relativistic Langevin equation. The latter requires the knowledge of the friction and diffusion coefficients, whose microscopic evaluation is performed treating separately the contribution of soft and hard collisions. The evolution of the background medium is described by ideal/viscous hydrodynamics. Below the critical temperature the heavy quarks are converted into hadrons, whose semileptonic decays provide single-electron spectra to be compared with the current experimental data measured at RHIC. We focus on the nuclear modification factor R_AA and on the elliptic-flow coefficient v_2, getting, for sufficiently large p_T, a reasonable agreement.

  20. Contraint's theory and relativistic dynamics

    International Nuclear Information System (INIS)

    Longhi, G.; Lusanna, L.

    1987-01-01

    The purpose of this Workshop was to examine the current situation of relativistic dynamics. In particular, Dirac-Bergmann's theory of constraints, which lies at the heart of gauge theories, general relativity, relativistic mechanics and string theories, was chosen as the unifying theoretical framework best suited to investigate such a field. The papers discussed were on general relativity; relativistic mechanics; particle physics and mathematical physics. Also discussed were the problems of classical and quantum level, namely the identification of the classical observables of constrained systems, the equivalence of the nonequivalence of the various ways to quantize such systems; the problem of the anomalies; the best geometrical approach to the theory of constraints; the possibility of unifying all the treatments of relativistic mechanics. This book compiles the papers presented at proceedings of relativistic dynamics and constraints theory

  1. Visualizing special relativity: the field of an electric dipole moving at relativistic speed

    International Nuclear Information System (INIS)

    Smith, Glenn S

    2011-01-01

    The electromagnetic field is determined for a time-varying electric dipole moving with a constant velocity that is parallel to its moment. Graphics are used to visualize this field in the rest frame of the dipole and in the laboratory frame when the dipole is moving at relativistic speed. Various phenomena from special relativity are clearly illustrated by these graphics and explained with simple calculations; these include the constancy of the speed of light in inertial frames, the Doppler effect, the headlight effect, and the concentration of field lines. In addition, the energy and linear momentum of the radiated field are determined and shown to satisfy the transformation and invariance required by special relativity.

  2. Spin as a probe of hadron structure

    International Nuclear Information System (INIS)

    Ali, R.

    1995-01-01

    In this thesis, hadron structure was explored by studying three problems. In each case some underlying hard process, or a characteristic hard momentum, yielded important physical information such as structure and fragmentation functions describing hadrons. This provided a test of QCD predictions. In the first problem, spin dependent quark structure functions were estimated for nuclei. The multipole L=2 structure function, measurable in deeply inelastic scattering of unpolarized leptons off a polarized J > 1 nuclear target, is a good indicator of exotic quark gluon components in the nucleus. I estimated this structure function for two different classes of nuclei light nuclei describable in an independent particle model approach, as well as for heavy nuclei described by slowly rotating collective variables. In the second problem, spin dependent gluonic structure functions in a transversely polarized proton were identified and the classification according to twist was discussed. I found that there were two twist three transverse spin gluonic structure functions, called herein H1(x,Q2) and H2(x,Q2). Cross section formulae were calculated for a variety of polarization states, assuming a simple effective interaction for X2 production from gluon fusion. In the third, and final problem, the emphasis shifted from spin dependent structure functions of polarised hadrons to the formulation of an effective, low energy, field theory of s wave quarkonia, constituent heavy quarks, and gluons. and radiative transitions were shown to be easily recovered. The light-cone gluon momentum distribution at very small x was calculated and shown to be uniquely determined by the non relativistic wave function. I found that the emission of low momentum gluons made this process quite sensitive to assumptions about the binding energy of heavy quarks in quarkonia. This gauge invariant theory is extend able to p-wave quarkonia where the non locality of the meson state is enhanced by the

  3. XIII International Workshop on Hadron Physics

    CERN Document Server

    2015-01-01

    The XIII International Workshop on Hadron Physics, XIII Hadron Physics, is intended for graduate students, postdocs and researchers in Hadronic Physics, High Energy Physics, Astrophysics and Effective Field Theories, who wish to improve their theoretical background, learn about recent experimental results and develop collaboration projects. The series Hadron Physics, in activity since 1988, has the format of an advanced school and has the objective to introduce, in a series of pedagogical lectures, new lines of research in Strong Interaction Physics, mainly concerned with QCD. It envisages also to stimulate collaborations in international level.

  4. Mean field games

    KAUST Repository

    Gomes, Diogo A.

    2014-01-06

    In this talk we will report on new results concerning the existence of smooth solutions for time dependent mean-field games. This new result is established through a combination of various tools including several a-priori estimates for time-dependent mean-field games combined with new techniques for the regularity of Hamilton-Jacobi equations.

  5. Mean field games

    KAUST Repository

    Gomes, Diogo A.

    2014-01-01

    In this talk we will report on new results concerning the existence of smooth solutions for time dependent mean-field games. This new result is established through a combination of various tools including several a-priori estimates for time-dependent mean-field games combined with new techniques for the regularity of Hamilton-Jacobi equations.

  6. Non-relativistic Bondi-Metzner-Sachs algebra

    Science.gov (United States)

    Batlle, Carles; Delmastro, Diego; Gomis, Joaquim

    2017-09-01

    We construct two possible candidates for non-relativistic bms4 algebra in four space-time dimensions by contracting the original relativistic bms4 algebra. bms4 algebra is infinite-dimensional and it contains the generators of the Poincaré algebra, together with the so-called super-translations. Similarly, the proposed nrbms4 algebras can be regarded as two infinite-dimensional extensions of the Bargmann algebra. We also study a canonical realization of one of these algebras in terms of the Fourier modes of a free Schrödinger field, mimicking the canonical realization of relativistic bms4 algebra using a free Klein-Gordon field.

  7. Comparison of two forms of Vlasov-type relativistic kinetic equations in hadrodynamics

    International Nuclear Information System (INIS)

    Mashnik, S.G.; Maino, G.

    1996-01-01

    A comparison of two methods in the relativistic kinetic theory of the Fermi systems is carried out assuming, as an example, the simplest σω-version of quantum hadrodynamics with allowance for strong mean meson fields. It is shown that the Vlasov-type relativistic kinetic equation (VRKE) obtained by means of the procedure of squaring at an intermediate step is responsible for unphysical features. A direct method of derivation of kinetic equations is proposed. This method does not contain such drawback and gives rise to VRKE in hydrodynamics of a non-contradictory form in which both spin degrees of freedom and states with positive and negative energies are taken into account. 17 refs

  8. PREFACE: 5th DAE-BRNS Workshop on Hadron Physics (Hadron 2011)

    Science.gov (United States)

    Jyoti Roy, Bidyut; Chatterjee, A.; Kailas, S.

    2012-07-01

    The 5th DAE-BRNS Workshop on Hadron Physics was held at the Bhabha Atomic Research Centre (BARC), Mumbai from 31 October to 4 November 2011. This workshop series, supported by the Board of Research in Nuclear Sciences, Department of Atomic Energy (BRNS, DAE), Govt. of India, began ten years ago with the first one being held at BARC, Mumbai in October 2002. The second one was held at Puri in 2005, organized jointly by Institute of Physics, Bhubneswar and Saha Institute of Nuclear Physics, Kolkata. The 3rd and 4th ones took place, respectively, at Shantineketan in 2006, organized by Visva Bharati University, and at Aligarh in 2008, organized by Aligarh Muslim University, Aligarh. The aim of the present workshop was to bring together the experts and young researchers in the field of hadron physics (both experiment and theory) and to have in-depth discussions on the current research activities in this field. The format of the workshop was: a series of review lectures by various experts from India and abroad, the presentation of advanced research results by researchers in the field, and a review of major experimental programs being planned and pursued in major laboratories in the field of hadron physics, with the aim of providing a platform for the young participants for interaction with their peers. The upcoming international FAIR facility at GSI is a unique future facility for studies of hadron physics in the charm sector and hyper nuclear physics. The Indian hadron physics community is involved in this mega science project and is working with the PANDA collaboration on the development of detectors, simulation and software tools for the hadron physics programme with antiprotons at FAIR. A one-day discussion session was held at this workshop to discuss India-PANDA activities, the current collaboration status and the work plan. This volume presents the workshop proceedings consisting of lectures and seminars which were delivered during the workshop. We are thankful to

  9. Dynamical structure of hadron emission sources

    CERN Document Server

    Zhao Xi; Zhao Shu Song

    2000-01-01

    NA22 experimental data of the triplet seagull effects show that the Doppler effects of hadron emission sources exist exactly in hadron- hadron collisions. Every source possesses the same average energy (CMS) approximately. The collective seagull effects can be also explained by the (aQ)/sup nu /K/sub nu / (aQ) distributions (generalized functions). The dynamical structure of a hadron emission source is described by the (aQ)/sup nu /K/sub nu / (aQ) distributions. The anomalous dimensions of the pionic quantum fields are gamma /sub B/(g/sub R/)=-0.045+or-0.012, which control the singularities of the production amplitude in quantum field theory. The mathematical parameter epsilon =4-D (the dimension D of space time) in the Feynman integrals can be replaced by the anomalous gamma /sub B/(g/sub R/) of the quantum fields for the regularization. (-2 gamma /sub B/(g/sub R/) to or from epsilon /2=1/ln( Lambda /sup 2//m /sup 2/) Lambda to infinity ). (26 refs).

  10. Radiatively driven relativistic spherical winds under relativistic radiative transfer

    Science.gov (United States)

    Fukue, J.

    2018-05-01

    We numerically investigate radiatively driven relativistic spherical winds from the central luminous object with mass M and luminosity L* under Newtonian gravity, special relativity, and relativistic radiative transfer. We solve both the relativistic radiative transfer equation and the relativistic hydrodynamical equations for spherically symmetric flows under the double-iteration processes, to obtain the intensity and velocity fields simultaneously. We found that the momentum-driven winds with scattering are quickly accelerated near the central object to reach the terminal speed. The results of numerical solutions are roughly fitted by a relation of \\dot{m}=0.7(Γ _*-1)\\tau _* β _* β _out^{-2.6}, where \\dot{m} is the mass-loss rate normalized by the critical one, Γ* the central luminosity normalized by the critical one, τ* the typical optical depth, β* the initial flow speed at the central core of radius R*, and βout the terminal speed normalized by the speed of light. This relation is close to the non-relativistic analytical solution, \\dot{m} = 2(Γ _*-1)\\tau _* β _* β _out^{-2}, which can be re-expressed as β _out^2/2 = (Γ _*-1)GM/c^2 R_*. That is, the present solution with small optical depth is similar to that of the radiatively driven free outflow. Furthermore, we found that the normalized luminosity (Eddington parameter) must be larger than unity for the relativistic spherical wind to blow off with intermediate or small optical depth, i.e. Γ _* ≳ \\sqrt{(1+β _out)^3/(1-β _out)}. We briefly investigate and discuss an isothermal wind.

  11. On the theory of magnetic field generation by relativistically strong laser radiation

    International Nuclear Information System (INIS)

    Berezhiani, V.I.; Shatashvili, N.L.; Mahajan, S.M.

    1996-07-01

    The authors consider the interaction of subpicosecond relativistically strong short laser pulses with an underdense cold unmagnetized electron plasma. It is shown that the strong plasma inhomogeneity caused by laser pulses results in the generation of a low frequency (quasistatic) magnetic field. Since the electron density distribution is determined completely by the pump wave intensity, the generated magnetic field is negligibly small for nonrelativistic laser pulses but increases rapidly in the ultrarelativistic case. Due to the possibility of electron cavitation (complete expulsion of electrons from the central region) for narrow and intense beams, the increase in the generated magnetic field slows down as the beam intensity is increased. The structure of the magnetic field closely resembles that of the field produced by a solenoid; the field is maximum and uniform in the cavitation region, then it falls, changes polarity and vanishes. In extremely dense plasmas, highly intense laser pulses in the self-channeling regime can generate magnetic fields ∼ 100 Mg and greater

  12. Production of highly charged ions of argon by optical field ionization in a relativistic laser field

    International Nuclear Information System (INIS)

    Sagisaka, Akito; Akahane, Yutaka; Aoyama, Makoto; Nakano, Fumihiko; Yamakawa, Koichi

    2001-01-01

    We observed the highly charged ions of argon by optical field ionization in a relativistic intensity regime. Charge states up to Ar 15+ were produced at the highest intensity of 800 nm, linearly polarized 20 fs Ti: sapphire laser pulses. The peak intensity of the pulse is determined by comparing the measured ion production curve for Ar 9+ with ADK theory. The results of these measurements of the ionization indicate that the maximum peak intensity is achieved to ∼2x10 19 W/cm 2 . (author)

  13. Nuclear Matter Bulk Parameter Scales and Correlations

    International Nuclear Information System (INIS)

    Santos, B. M.; Delfino, A.; Dutra, M.; Lourenço, O.

    2015-01-01

    We study the arising of correlations among some isovector bulk parameters in nonrelativistic and relativistic hadronic mean-field models. For the former, we investigate correlations in the nonrelativistic (NR) limit of relativistic point-coupling models. We provide analytical correlations, for the NR limit model, between the symmetry energy and its derivatives, namely, the symmetry energy slope, curvature, skewness and fourth order derivative, discussing the conditions in which they are linear ones. We also show that some correlations presented in the NR limit model are reproduced for relativistic models presenting cubic and quartic self-interactions in its scalar field. As a direct application of such linear correlations, we remark its association with possible crossing points in the density dependence of the linearly correlated bulk parameter. (author)

  14. Relativistic Wigner functions

    Directory of Open Access Journals (Sweden)

    Bialynicki-Birula Iwo

    2014-01-01

    Full Text Available Original definition of the Wigner function can be extended in a natural manner to relativistic domain in the framework of quantum field theory. Three such generalizations are described. They cover the cases of the Dirac particles, the photon, and the full electromagnetic field.

  15. Relativistic description of atomic nuclei

    International Nuclear Information System (INIS)

    Krutov, V.A.

    1985-01-01

    Papers on the relativistic description of nuclei are reviewed. The Brown and Rho ''small'' bag'' model is accepted for hardrons. Meson exchange potentials of the nucleon-nucleon interaction have been considered. Then the transition from a system of two interacting nucleons has been performed to the relativistic nucleus description as a multinucleon system on the basis of OBEP (one-boson exchange potential). The proboem of OPEP (one-pion-exchange potential) inclusion to a relativistic scheme is discussed. Simplicity of calculations and attractiveness of the Walecka model for specific computations and calculations was noted. The relativistic model of nucleons interacting through ''effective'' scalar and vector boson fields was used in the Walacka model for describing neutronaand nuclear mater matters

  16. Current Status of Exotic Hadrons

    International Nuclear Information System (INIS)

    Saeed, M.A.; Ahmed, Maqsood; Fazal-e-Aleem

    2005-01-01

    Physics of exotic hadrons is in the limelight these days. The models for these baryons are discussed as well as their production and decay processes and methods of their identification. The results of recent experiments in this field are presented, in which some unusual states are observed. These states are candidates for exotic hadrons

  17. HERWIG for Hadron-Hadron physics

    International Nuclear Information System (INIS)

    Seymour, M.H.

    1993-05-01

    HERWIG is a general-purpose particle physics event generator, which includes the simulation of any combination of hard lepton, hadron or photon scattering and soft hadron-hadron collisions in one package. It uses the parton-shower approach for initial-state and final-state QCD radiation, including colour coherence effects and azimuthal correlations both within and between jets. This article describes HERWIG version 5.6, and gives a brief review of the physics underlying HERWIG, with particular emphasis on hadron-hadron collisions. Details are given of the input and control parameters used by the program

  18. Supersymmetry across the light and heavy-light hadronic spectrum

    Energy Technology Data Exchange (ETDEWEB)

    Dosch, Hans Gunter [Institut fur Theoretische Physik, Heidelberg (Germany); de Teramond, Guy F. [Univ. de Costa Rica, San Pedro de Montes de Oca (Costa Rica); Brodsky, Stanley J. [SLAC National Accelerator Lab., Menlo Park, CA (United States)

    2015-10-07

    Relativistic light-front bound-state equations for mesons and baryons can be constructed in the chiral limit from the supercharges of a superconformal algebra which connect baryon and meson spectra. Quark masses break the conformal invariance, but the basic underlying supersymmetric mechanism, which transforms meson and baryon wave functions into each other, still holds and gives remarkable connections across the entire spectrum of light and heavy-light hadrons. As a result, we also briefly examine the consequences of extending the supersymmetric relations to double-heavy mesons and baryons.

  19. Normal gravity field in relativistic geodesy

    Science.gov (United States)

    Kopeikin, Sergei; Vlasov, Igor; Han, Wen-Biao

    2018-02-01

    intrinsically connected to the existence of the residual gauge freedom, and derive the post-Newtonian normal gravity field of the rotating spheroid both inside and outside of the rotating fluid body. The normal gravity field is given, similarly to the Newtonian gravity, in a closed form by a finite number of the ellipsoidal harmonics. We employ transformation from the ellipsoidal to spherical coordinates to deduce a more conventional post-Newtonian multipolar expansion of scalar and vector gravitational potentials of the rotating spheroid. We compare these expansions with that of the normal gravity field generated by the Kerr metric and demonstrate that the Kerr metric has a fairly limited application in relativistic geodesy as it does not match the normal gravity field of the Maclaurin ellipsoid already in the Newtonian limit. We derive the post-Newtonian generalization of the Somigliana formula for the normal gravity field measured on the surface of the rotating spheroid and employed in practical work for measuring Earth's gravitational field anomalies. Finally, we discuss the possible choice of the gauge-dependent parameters of the normal gravity field model for practical applications and compare it with the existing EGM2008 model of a gravitational field.

  20. Hadronic jets an introduction

    CERN Document Server

    Banfi, Andrea

    2016-01-01

    Jet physics is an incredibly rich subject detailing the narrow cone of hadrons and other particles produced by the hadronization of a quark or gluon in a particle physics or heavy ion experiment. This book is a general overview of jet physics for scientists not directly involved in the field. It presents the basic experimental and theoretical problems arising when dealing with jets, and describing the solutions proposed in recent years.

  1. Hadron cancer therapy complex using nonscaling fixed field alternating gradient accelerator and gantry design

    Directory of Open Access Journals (Sweden)

    E. Keil

    2007-05-01

    Full Text Available Nonscaling fixed field alternating gradient (FFAG rings for cancer hadron therapy offer reduced physical aperture and large dynamic aperture as compared to scaling FFAGs. The variation of tune with energy implies the crossing of resonances during acceleration. Our design avoids intrinsic resonances, although imperfection resonances must be crossed. We consider a system of three nonscaling FFAG rings for cancer therapy with 250 MeV protons and 400   MeV/u carbon ions. Hadrons are accelerated in a common radio frequency quadrupole and linear accelerator, and injected into the FFAG rings at v/c=0.1294. H^{+}/C^{6+} ions are accelerated in the two smaller/larger rings to 31 and 250  MeV/68.8 and 400   MeV/u kinetic energy, respectively. The lattices consist of doublet cells with a straight section for rf cavities. The gantry with triplet cells accepts the whole required momentum range at fixed field. This unique design uses either high-temperature superconductors or superconducting magnets reducing gantry magnet size and weight. Elements with a variable field at the beginning and at the end set the extracted beam at the correct position for a range of energies.

  2. General relativistic model for the gravitational field of active galactic nuclei surrounded by a disk

    NARCIS (Netherlands)

    Vogt, D.; Letelier, P.S.

    2005-01-01

    An exact but simple general relativistic model for the gravitational field of active galactic nuclei is constructed, based on the superposition in Weyl coordinates of a black hole, a Chazy-Curzon disk and two rods, which represent matter jets. The influence of the rods on the matter properties of

  3. Energy-range relations for hadrons in nuclear matter

    Science.gov (United States)

    Strugalski, Z.

    1985-01-01

    Range-energy relations for hadrons in nuclear matter exist similarly to the range-energy relations for charged particles in materials. When hadrons of GeV kinetic energies collide with atomic nuclei massive enough, events occur in which incident hadron is stopped completely inside the target nucleus without causing particle production - without pion production in particular. The stoppings are always accompanied by intensive emission of nucleons with kinetic energy from about 20 up to about 400 MeV. It was shown experimentally that the mean number of the emitted nucleons is a measure of the mean path in nuclear matter in nucleons on which the incident hadrons are stopped.

  4. Hartree Fock-type equations in relativistic quantum electrodynamics with non-linear gauge fixing

    International Nuclear Information System (INIS)

    Dietz, K.; Hess, B.A.

    1990-08-01

    Relativistic mean-field equations are obtained by minimizing the effective energy obtained from the gauge-invariant energy density by eliminating electro-magnetic degrees of freedom in certain characteristic non-linear gauges. It is shown that by an appropriate choice of gauge many-body correlations, e.g. screening, three-body 'forces' etc. can be included already at the mean-field level. The many-body perturbation theory built on the latter is then expected to show improved 'convergence'. (orig.)

  5. On the physics of relativistic double layers

    International Nuclear Information System (INIS)

    Carlqvist, P.

    1982-06-01

    A model of a strong, time-independent, and relativistic double layer is studied. Besides double layers having the electric field parallel to the current the model also describes a certain type of oblique double layers. The 'Langmuir condition' (ratio of ion current density to electron current density) as well as an expression for the potential drop of the double layer are derived. Furthermore, the distribution of charged particles, electric field, and potential within the double layer are clarified and discussed. It is found that the properties of relativistic double layers differ substantially from the properties of corresponding non-relativistic double layers. (Author)

  6. 10th Biennial Conference on Classical and Quantum Relativistic Dynamics of Particles and Fields

    International Nuclear Information System (INIS)

    2017-01-01

    Preface The International Association for Relativistic Dynamics was organized in February 1998 in Houston, Texas, with John R. Fanchi as president. Although the subject of relativistic dynamics has been explored, from both classical and quantum mechanical points of view, since the work of Einstein and Dirac, its most striking development has been in the framework of quantum field theory. The very accurate calculations of spectral and scattering properties, for example, of the anomalous magnetic moment of the electron and the Lamb shift in quantum electrodynamics, and many qualitative features of the strong and electroweak interactions, demonstrate the very great power of description achieved in this framework. Yet, many fundamental questions remain to be clarified, such as the structure of classical relativistic dynamical theories on the level of Hamilton and Lagrange in Minkowski space as well as on the curved manifolds of general relativity. There, moreover, remained the important questions of the covariant classical description of systems at high energy for which particle production effects are not large, such as discussed in Synge’s book, The Relativistic Gas , and in Balescu’s book on relativistic statistical mechanics, and the development of a consistent single and many body relativistic quantum theory. In recent years, the very high accuracy of telescopes and advanced facilities for computation have brought a high level of interest in cosmological problems such as the structure of galaxies (dark matter) and the apparently anomalous expansion of the universe (dark energy). Some of the papers reported here deal with these problems, as well as other fundamental related issues. It was for this purpose, to bring together researchers from a wide variety of fields, such as particle physics, astrophysics, cosmology, foundations of relativity theory, and mathematical physics, with a common interest in relativistic dynamics, to investigate fundamental questions of

  7. Ionization and bound-state relativistic quantum dynamics in laser-driven multiply charged ions

    International Nuclear Information System (INIS)

    Hetzheim, Henrik

    2009-01-01

    The interaction of ultra-strong laser fields with multiply charged hydrogen-like ions can be distinguished in an ionization and a bound dynamics regime. Both are investigated by means of numerically solving the Dirac equation in two dimensions and by a classical relativistic Monte-Carlo simulation. For a better understanding of highly nonlinear physical processes the development of a well characterized ultra-intense relativistic laser field strength has been driven forward, capable of studying e.g. the magnetic field effects of the laser resulting in an additional electron motion in the laser propagation direction. A novel method to sensitively measure these ultra-strong laser intensities is developed and employed from the optical via the UV towards the XUV frequency regime. In the bound dynamics field, the determination of multiphoton transition matrixelements has been investigated between different bound states via Rabi oscillations. (orig.)

  8. Ionization and bound-state relativistic quantum dynamics in laser-driven multiply charged ions

    Energy Technology Data Exchange (ETDEWEB)

    Hetzheim, Henrik

    2009-01-14

    The interaction of ultra-strong laser fields with multiply charged hydrogen-like ions can be distinguished in an ionization and a bound dynamics regime. Both are investigated by means of numerically solving the Dirac equation in two dimensions and by a classical relativistic Monte-Carlo simulation. For a better understanding of highly nonlinear physical processes the development of a well characterized ultra-intense relativistic laser field strength has been driven forward, capable of studying e.g. the magnetic field effects of the laser resulting in an additional electron motion in the laser propagation direction. A novel method to sensitively measure these ultra-strong laser intensities is developed and employed from the optical via the UV towards the XUV frequency regime. In the bound dynamics field, the determination of multiphoton transition matrixelements has been investigated between different bound states via Rabi oscillations. (orig.)

  9. Spin physics in the high energy hadron productions. A systematic study of the spin asymmetries induced by pp, γp, ep and νp collisions

    International Nuclear Information System (INIS)

    Kubo, K.-I.; Suzuki, K.; Nakajima, N.

    2002-01-01

    The spin polarizations of hadrons inclusively produced by pp, γp and νp collisions are studied by the quark rearrangement model. The present model is a phenomenological one based on the relativistic spin equations of motion and using the quark distribution functions in hadrons and photon. A general success of the model is demonstrated. We find usefulness of the present formulation for studying the dynamics producing spin asymmetry distributions and the statics determining signs and magnitudes of the spin polarization by reflecting the characteristic quark structure in hadrons. (author)

  10. Relativistic hydrodynamics

    CERN Document Server

    Luciano, Rezzolla

    2013-01-01

    Relativistic hydrodynamics is a very successful theoretical framework to describe the dynamics of matter from scales as small as those of colliding elementary particles, up to the largest scales in the universe. This book provides an up-to-date, lively, and approachable introduction to the mathematical formalism, numerical techniques, and applications of relativistic hydrodynamics. The topic is typically covered either by very formal or by very phenomenological books, but is instead presented here in a form that will be appreciated both by students and researchers in the field. The topics covered in the book are the results of work carried out over the last 40 years, which can be found in rather technical research articles with dissimilar notations and styles. The book is not just a collection of scattered information, but a well-organized description of relativistic hydrodynamics, from the basic principles of statistical kinetic theory, down to the technical aspects of numerical methods devised for the solut...

  11. Relativistic Kinematics

    OpenAIRE

    Sahoo, Raghunath

    2016-01-01

    This lecture note covers Relativistic Kinematics, which is very useful for the beginners in the field of high-energy physics. A very practical approach has been taken, which answers "why and how" of the kinematics useful for students working in the related areas.

  12. Quadratic hamiltonians and relativistic quantum mechanics

    International Nuclear Information System (INIS)

    Razumov, A.V.; Solov'ev, V.O.; Taranov, A.Yu.

    1981-01-01

    For the case of a charged scalar field described by a quadratic hamiltonian the equivalent relativistic quantum mechanics is constructed in one-particle sector. Complete investigation of a charged relativistic particle motion in the Coulomb field is carried out. Subcritical as well as supercritical cases are considered. In the course of investigation of the charged scalar particle in the Coulomb field the diagonalization of the quadratic hamiltonian describing the charged scalar quantized field interaction with the external Coulomb field has taken place. Mathematically this problem is bound to the construction of self-conjugated expansions of the symmetric operator. The construction of such expansion is necessary at any small external field magnitude [ru

  13. Hadronic wavefunctions in light-cone quantization

    International Nuclear Information System (INIS)

    Hyer, T.

    1994-05-01

    The analysis of light-cone wavefunctions seems the most promising theoretical approach to a detailed understanding of the structure of relativistic bound states, particularly hadrons. However, there are numerous complications in this approach. Most importantly, the light-cone approach sacrifices manifest rotational invariance in exchange for the elimination of negative-energy states. The requirement of rotational invariance of the full theory places important constraints on proposed light-cone wavefunctions, whether they are modelled or extracted from some numerical procedure. A formulation of the consequences of the hidden rotational symmetry has been sought for some time; it is presented in Chapter 2. In lattice gauge theory or heavy-quark effective theory, much of the focus is on the extraction of numerical values of operators which are related to the hadronic wavefunction. These operators are to some extent interdependent, with relations induced by fundamental constraints on the underlying wavefunction. The consequences of the requirement of unitarity are explored in Chapter 3, and are found to have startling phenomenological relevance. To test model light-cone wavefunctions, experimental predictions must be made. The reliability of perturbative QCD as a tool for making such predictions has been questioned. In Chapter 4, the author presents a computation of the rates for nucleon-antinucleon annihilation, improving the reliability of the perturbative computation by taking into account the Sudakov suppression of exclusive processes at large transverse impact parameter. In Chapter 5, he develops the analysis of semiexclusive production. This work focuses on processes in which a single isolated meson is produced perturbatively and recoils against a wide hadronizing system. At energies above about 10 GeV, semiexclusive processes are shown to be the most sensitive experimental probes of hadronic structure

  14. LATTICE SIMULATIONS OF THE THERMODYNAMICS OF STRONGLY INTERACTING ELEMENTARY PARTICLES AND THE EXPLORATION OF NEW PHASES OF MATTER IN RELATIVISTIC HEAVY ION COLLISIONS

    International Nuclear Information System (INIS)

    KARSCH, F.

    2006-01-01

    At high temperatures or densities matter formed by strongly interacting elementary particles (hadronic matter) is expected to undergo a transition to a new form of matter--the quark gluon plasma--in which elementary particles (quarks and gluons) are no longer confined inside hadrons but are free to propagate in a thermal medium much larger in extent than the typical size of a hadron. The transition to this new form of matter as well as properties of the plasma phase are studied in large scale numerical calculations based on the theory of strong interactions--Quantum Chromo Dynamics (QCD). Experimentally properties of hot and dense elementary particle matter are studied in relativistic heavy ion collisions such as those currently performed at the relativistic heavy ion collider (RHIC) at BNL. We review here recent results from studies of thermodynamic properties of strongly interacting elementary particle matter performed on Teraflops-Computer. We present results on the QCD equation of state and discuss the status of studies of the phase diagram at non-vanishing baryon number density

  15. The Role of Isospin Components of the Scalar σ-Meson in the Structure of Neutron Stars

    International Nuclear Information System (INIS)

    Vasconcellos, Cesan A.Z.; Luetz, Eduardo; Razeira, Moises; Bodmann, Bardo E. J.; Dillig, Manfred

    2004-01-01

    Based on non-crossed, crossed and correlated ππ exchanges with irreducible N,Δ intermediate states, we predict an isovector component for the δ meson. We study dense hadronic matter in a generalized relativistic mean field approach with nonlinear self-couplings of the I = 0, 1 components of the scalar field and compare its predictions for neutron star properties with results from different models found in the literature

  16. Relativistic many-body bound systems. Monograph report

    International Nuclear Information System (INIS)

    Danos, M.; Gillet, V.

    1975-04-01

    The principles and the mathematical details of a fully relativistic nuclear theory are given. Since the concept of nuclear forces is a strictly non-relativistic construct, it must be abandoned, and the forces must be replaced explicitly by their physical origin, i.e., by the interaction between nucleons and mesons. Thus, in this monograph the description of a nucleus has been formulated as a problem of relativistic quantum field theory which is solved by nuclear physics methods; to wit: the physics is described by specifying a Lagrangian which is a functional of the constituent fields (= of the parton fields); the solutions for the physical systems then are obtained in a time-independent treatment as expansions in the parton fields: both particles and nuclei are composite systems, made up of parton configurations, which define a representation of the Hamiltonian (associated with the specified Lagrangian)

  17. High energy hadron-hadron collisions

    International Nuclear Information System (INIS)

    Chou, T.T.

    1990-01-01

    Results of a study on high energy collision with the geometrical model are summarized in three parts: (i) the elastic hadron-hadron collision, (ii) the inelastic hadron-hadron collision, and (iii) the e + e - annihilation. The geometrical description of high-energy elastic scattering developed earlier is still in general agreement with experiments at the CERN-S bar ppS energies. A simple one-parameter expression for the blackness of bar pp system has been proposed recently which describes very well all existing data from ISR to S bar ppS energies. The geometrical description has also been extended to include processes of fragmentation and diffraction dissociation and other phenomena. In the past five years, a unified physical picture for multiparticle emission in hadron-hadron and e + e - collisions was developed. It focuses on the idea of the wide range of values for the total angular momentum in hadron-hadron collisions. An extension of this consideration yields a theory for the momentum distribution of the outgoing particles which agrees with bar pp and e + e - collision experiments. The results and conclusions of this theory have been extrapolated to higher energies and yielded many predictions which can be experimentally tested. 37 refs

  18. Exact Relativistic `Antigravity' Propulsion

    Science.gov (United States)

    Felber, Franklin S.

    2006-01-01

    The Schwarzschild solution is used to find the exact relativistic motion of a payload in the gravitational field of a mass moving with constant velocity. At radial approach or recession speeds faster than 3-1/2 times the speed of light, even a small mass gravitationally repels a payload. At relativistic speeds, a suitable mass can quickly propel a heavy payload from rest nearly to the speed of light with negligible stresses on the payload.

  19. Late effects from hadron therapy

    Energy Technology Data Exchange (ETDEWEB)

    Blakely, Eleanor A.; Chang, Polly Y.

    2004-06-01

    Successful cancer patient survival and local tumor control from hadron radiotherapy warrant a discussion of potential secondary late effects from the radiation. The study of late-appearing clinical effects from particle beams of protons, carbon, or heavier ions is a relatively new field with few data. However, new clinical information is available from pioneer hadron radiotherapy programs in the USA, Japan, Germany and Switzerland. This paper will review available data on late tissue effects from particle radiation exposures, and discuss its importance to the future of hadron therapy. Potential late radiation effects are associated with irradiated normal tissue volumes at risk that in many cases can be reduced with hadron therapy. However, normal tissues present within hadron treatment volumes can demonstrate enhanced responses compared to conventional modes of therapy. Late endpoints of concern include induction of secondary cancers, cataract, fibrosis, neurodegeneration, vascular damage, and immunological, endocrine and hereditary effects. Low-dose tissue effects at tumor margins need further study, and there is need for more acute molecular studies underlying late effects of hadron therapy.

  20. Measuring Relativistic effects in the field of the Earth with Laser Ranged Satellites and the LARASE research program

    Science.gov (United States)

    Lucchesi, David; Anselmo, Luciano; Bassan, Massimo; Magnafico, Carmelo; Pardini, Carmen; Peron, Roberto; Pucacco, Giuseppe; Stanga, Ruggero; Visco, Massimo

    2017-04-01

    The main goal of the LARASE (LAser RAnged Satellites Experiment) research program is to obtain refined tests of Einstein's theory of General Relativity (GR) by means of very precise measurements of the round-trip time among a number of ground stations of the International Laser Ranging Service (ILRS) network and a set of geodetic satellites. These measurements are guaranteed by means of the powerful and precise Satellite Laser Ranging (SLR) technique. In particular, a big effort of LARASE is dedicated to improve the dynamical models of the LAGEOS, LAGEOS II and LARES satellites, with the objective to obtain a more precise and accurate determination of their orbit. These activities contribute to reach a final error budget that should be robust and reliable in the evaluation of the main systematic errors sources that come to play a major role in masking the relativistic precession on the orbit of these laser-ranged satellites. These error sources may be of gravitational and non-gravitational origin. It is important to stress that a more accurate and precise orbit determination, based on more reliable dynamical models, represents a fundamental prerequisite in order to reach a sub-mm precision in the root-mean-square of the SLR range residuals and, consequently, to gather benefits in the fields of geophysics and space geodesy, such as stations coordinates knowledge, geocenter determination and the realization of the Earth's reference frame. The results reached over the last year will be presented in terms of the improvements achieved in the dynamical model, in the orbit determination and, finally, in the measurement of the relativistic precessions that act on the orbit of the satellites considered.