WorldWideScience

Sample records for relativistic mass ejecta

  1. (U) An Analytic Study of Piezoelectric Ejecta Mass Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Tregillis, Ian Lee [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-02-16

    We consider the piezoelectric measurement of the areal mass of an ejecta cloud, for the specific case where ejecta are created by a single shock at the free surface and fly ballistically through vacuum to the sensor. To do so, we define time- and velocity-dependent ejecta “areal mass functions” at the source and sensor in terms of typically unknown distribution functions for the ejecta particles. Next, we derive an equation governing the relationship between the areal mass function at the source (which resides in the rest frame of the free surface) and at the sensor (which resides in the laboratory frame). We also derive expressions for the analytic (“true”) accumulated ejecta mass at the sensor and the measured (“inferred”) value obtained via the standard method for analyzing piezoelectric voltage traces. This approach enables us to derive an exact expression for the error imposed upon a piezoelectric ejecta mass measurement (in a perfect system) by the assumption of instantaneous creation. We verify that when the ejecta are created instantaneously (i.e., when the time dependence is a delta function), the piezoelectric inference method exactly reproduces the correct result. When creation is not instantaneous, the standard piezo analysis will always overestimate the true mass. However, the error is generally quite small (less than several percent) for most reasonable velocity and time dependences. In some cases, errors exceeding 10-15% may require velocity distributions or ejecta production timescales inconsistent with experimental observations. These results are demonstrated rigorously with numerous analytic test problems.

  2. (U) An Analytic Examination of Piezoelectric Ejecta Mass Measurements

    Energy Technology Data Exchange (ETDEWEB)

    Tregillis, Ian Lee [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-02-02

    Ongoing efforts to validate a Richtmyer-Meshkov instability (RMI) based ejecta source model [1, 2, 3] in LANL ASC codes use ejecta areal masses derived from piezoelectric sensor data [4, 5, 6]. However, the standard technique for inferring masses from sensor voltages implicitly assumes instantaneous ejecta creation [7], which is not a feature of the RMI source model. To investigate the impact of this discrepancy, we define separate “areal mass functions” (AMFs) at the source and sensor in terms of typically unknown distribution functions for the ejecta particles, and derive an analytic relationship between them. Then, for the case of single-shock ejection into vacuum, we use the AMFs to compare the analytic (or “true”) accumulated mass at the sensor with the value that would be inferred from piezoelectric voltage measurements. We confirm the inferred mass is correct when creation is instantaneous, and furthermore prove that when creation is not instantaneous, the inferred values will always overestimate the true mass. Finally, we derive an upper bound for the error imposed on a perfect system by the assumption of instantaneous ejecta creation. When applied to shots in the published literature, this bound is frequently less than several percent. Errors exceeding 15% may require velocities or timescales at odds with experimental observations.

  3. Supernova ejecta with a relativistic wind from a central compact object: a unified picture for extraordinary supernovae

    Science.gov (United States)

    Suzuki, Akihiro; Maeda, Keiichi

    2017-04-01

    The hydrodynamical interaction between freely expanding supernova ejecta and a relativistic wind injected from the central region is studied in analytic and numerical ways. As a result of the collision between the ejecta and the wind, a geometrically thin shell surrounding a hot bubble forms and expands in the ejecta. We use a self-similar solution to describe the early dynamical evolution of the shell and carry out a two-dimensional special relativistic hydrodynamic simulation to follow further evolution. The Rayleigh-Taylor instability inevitably develops at the contact surface separating the shocked wind and ejecta, leading to the complete destruction of the shell and the leakage of hot gas from the hot bubble. The leaking hot materials immediately catch up with the outermost layer of the supernova ejecta and thus different layers of the ejecta are mixed. We present the spatial profiles of hydrodynamical variables and the kinetic energy distributions of the ejecta. We stop the energy injection when a total energy of 1052 erg, which is 10 times larger than the initial kinetic energy of the supernova ejecta, is deposited into the ejecta and follow the subsequent evolution. From the results of our simulations, we consider expected emission from supernova ejecta powered by the energy injection at the centre and discuss the possibility that superluminous supernovae and broad-lined Ic supernovae could be produced by similar mechanisms.

  4. Mass loading of the Earth's magnetosphere by micron size lunar ejecta. 1: Ejecta production and orbital dynamics in cislunar space

    Science.gov (United States)

    Alexander, W. M.; Tanner, W. G.; Anz, P. D.; Chen, A. L.

    1986-01-01

    Particulate matter possessing lunar escape velocity sufficient to enhance the cislunar meteroid flux was investigated. While the interplanetary flux was extensively studied, lunar ejecta created by the impact of this material on the lunar surface is only now being studied. Two recently reported flux models are employed to calculate the total mass impacting the lunar surface due to sporadic meteor flux. There is ample evidence to support the contention that the sporadic interplanetary meteoroid flux enhances the meteroid flux of cislunar space through the creation of micron and submicron lunar ejecta with lunar escape velocity.

  5. Einstein Never Approved of Relativistic Mass

    Science.gov (United States)

    Hecht, Eugene

    2009-01-01

    During much of the 20th century it was widely believed that one of the significant insights of special relativity was "relativistic mass." Today there are two schools on that issue: the traditional view that embraces speed-dependent "relativistic mass," and the more modern position that rejects it, maintaining that there is only one mass and it's…

  6. Mass loading of the Earth's magnetosphere by micron size lunar ejecta. 2: Ejecta dynamics and enhanced lifetimes in the Earth's magnetosphere

    Science.gov (United States)

    Alexander, W. M.; Tanner, W. G.; Anz, P. D.; Chen, A. L.

    1986-01-01

    Extensive studies were conducted concerning the indivdual mass, temporal and positional distribution of micron and submicron lunar ejecta existing in the Earth-Moon gravitational sphere of influence. Initial results show a direct correlation between the position of the Moon, relative to the Earth, and the percentage of lunar ejecta leaving the Moon and intercepting the magnetosphere of the Earth at the magnetopause surface. It is seen that the Lorentz Force dominates all other forces, thus suggesting that submicron dust particles might possibly be magnetically trapped in the well known radiation zones.

  7. On the relativistic mass conception

    International Nuclear Information System (INIS)

    Kard, P.

    1979-01-01

    Mass of light is generally substantiated with the use of the Einstein known mental experiment with a cylinder displacing under the pressure of light flare emitted at one of its ends and absorbed at the other. This experiment is not rigorous however and involves a logical circle. Another method is presented to substantiate mass of light. The initial conditions are as follows: the law of momentum conservation, evailability of light pulse, momentum parallelism to a velocity, and the general ralativistic formula of velocity transformation. A consideration is given to directed emission of light flux by a body in two internal systems, viz. in the system of initial rest of the body and in the system moving relatively to it with an arbitrary velocity. The law of momentum conservation being used in both systems, as well as formulae for velocity transformation, the formulae are obtained which show that light has mass. The general law of mass conservation is derived as a consequence of the formulae for mass and momentum transformations

  8. Relativistic mean-field mass models

    Energy Technology Data Exchange (ETDEWEB)

    Pena-Arteaga, D.; Goriely, S.; Chamel, N. [Universite Libre de Bruxelles, Institut d' Astronomie et d' Astrophysique, CP-226, Brussels (Belgium)

    2016-10-15

    We present a new effort to develop viable mass models within the relativistic mean-field approach with density-dependent meson couplings, separable pairing and microscopic estimations for the translational and rotational correction energies. Two interactions, DD-MEB1 and DD-MEB2, are fitted to essentially all experimental masses, and also to charge radii and infinite nuclear matter properties as determined by microscopic models using realistic interactions. While DD-MEB1 includes the σ, ω and ρ meson fields, DD-MEB2 also considers the δ meson. Both mass models describe the 2353 experimental masses with a root mean square deviation of about 1.1 MeV and the 882 measured charge radii with a root mean square deviation of 0.029 fm. In addition, we show that the Pb isotopic shifts and moments of inertia are rather well reproduced, and the equation of state in pure neutron matter as well as symmetric nuclear matter are in relatively good agreement with existing realistic calculations. Both models predict a maximum neutron-star mass of more than 2.6 solar masses, and thus are able to accommodate the heaviest neutron stars observed so far. However, the new Lagrangians, like all previously determined RMF models, present the drawback of being characterized by a low effective mass, which leads to strong shell effects due to the strong coupling between the spin-orbit splitting and the effective mass. Complete mass tables have been generated and a comparison with other mass models is presented. (orig.)

  9. The relativistic invariant and the Galilean mass of bodies

    International Nuclear Information System (INIS)

    Kapuscik, E.

    1992-02-01

    We generalize the concept of the Galilean mass to the relativistic case. In the case of inequality of Galilean and inertial masses we calculate the relativistic invariant being constant along the trajectory of the moving body. It enables us to define an invariant measure of inertia of bodies. 4 refs. (author)

  10. Gravitational mass of relativistic matter and antimatter

    Directory of Open Access Journals (Sweden)

    Tigran Kalaydzhyan

    2015-12-01

    Full Text Available The universality of free fall, the weak equivalence principle (WEP, is a cornerstone of the general theory of relativity, the most precise theory of gravity confirmed in all experiments up to date. The WEP states the equivalence of the inertial, m, and gravitational, mg, masses and was tested in numerous occasions with normal matter at relatively low energies. However, there is no confirmation for the matter and antimatter at high energies. For the antimatter the situation is even less clear – current direct observations of trapped antihydrogen suggest the limits −65mass of relativistic electrons and positrons coming from the absence of the vacuum Cherenkov radiation at the Large Electron–Positron Collider (LEP and stability of photons at the Tevatron collider in presence of the annual variations of the solar gravitational potential. Our result clearly rules out the speculated antigravity. By considering the absolute potential of the Local Supercluster (LS, we also predict the bounds 1−4×10−7

  11. A STUBBORNLY LARGE MASS OF COLD DUST IN THE EJECTA OF SUPERNOVA 1987A

    Energy Technology Data Exchange (ETDEWEB)

    Matsuura, M.; Barlow, M. J. [Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT (United Kingdom); Dwek, E. [Observational Cosmology Laboratory Code 665, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Babler, B. [Department of Astronomy, 475 North Charter Street, University of Wisconsin, Madison, WI 53706 (United States); Baes, M.; Fritz, Jacopo [Sterrenkundig Observatorium, Universiteit Gent, Krijgslaan 281 S9, B-9000 Gent (Belgium); Meixner, M. [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); Cernicharo, José [Departamento de Astrofísica, Centro de Astrobiología, CSIC-INTA, Ctra. de Torrejón a Ajalvir km 4, E-28850 Madrid (Spain); Clayton, Geoff C. [Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803 (United States); Dunne, L. [Department of Physics and Astronomy, University of Canterbury, Private Bag 4800, Christchurch 8140 (New Zealand); Fransson, C.; Lundqvist, P. [The Oskar Klein Centre, Department of Astronomy, Stockholm University, Albanova, SE-10691 Stockholm (Sweden); Gear, Walter; Gomez, H. L. [School of Physics and Astronomy, Cardiff University, Cardiff CF24 3AA (United Kingdom); Groenewegen, M. A. T. [Koninklijke Sterrenwacht van België, Ringlaan 3, 1180 Brussel (Belgium); Indebetouw, R. [Department of Astronomy, University of Virginia, P.O. Box 400325, Charlottesville, VA 22904 (United States); Ivison, R. J. [SUPA, Institute for Astronomy, University of Edinburgh, Blackford Hill, Edinburgh EH9 3HJ (United Kingdom); Jerkstrand, A. [Astrophysics Research Centre, School of Mathematics and Physics, Queen' s University Belfast, Belfast BT7 1NN (United Kingdom); Lebouteiller, V. [AIM, CEA/Saclay, L' Orme des Merisiers, F-91191 Gif-sur-Yvette (France); Lim, T. L., E-mail: mikako@star.ucl.ac.uk [RAL Space, Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire OX11 0QX (United Kingdom); and others

    2015-02-10

    We present new Herschel photometric and spectroscopic observations of Supernova 1987A, carried out in 2012. Our dedicated photometric measurements provide new 70 μm data and improved imaging quality at 100 and 160 μm compared to previous observations in 2010. Our Herschel spectra show only weak CO line emission, and provide an upper limit for the 63 μm [O I] line flux, eliminating the possibility that line contaminations distort the previously estimated dust mass. The far-infrared spectral energy distribution (SED) is well fitted by thermal emission from cold dust. The newly measured 70 μm flux constrains the dust temperature, limiting it to nearly a single temperature. The far-infrared emission can be fitted by 0.5 ± 0.1 M {sub ☉} of amorphous carbon, about a factor of two larger than the current nucleosynthetic mass prediction for carbon. The observation of SiO molecules at early and late phases suggests that silicates may also have formed and we could fit the SED with a combination of 0.3 M {sub ☉} of amorphous carbon and 0.5 M {sub ☉} of silicates, totalling 0.8 M {sub ☉} of dust. Our analysis thus supports the presence of a large dust reservoir in the ejecta of SN 1987A. The inferred dust mass suggests that supernovae can be an important source of dust in the interstellar medium, from local to high-redshift galaxies.

  12. Relativistic corrections to the Cooperon mass: BCS versus BEC picture

    Energy Technology Data Exchange (ETDEWEB)

    Lipavský, P., E-mail: lipavsky@karlov.mff.cuni.cz

    2017-02-15

    Highlights: • Tate's measurement of relativistic effects on the Cooper pair mass show the increase while a decrease was expected. • This disagreement raised a question whether it has fundamental significance or is due to the details of the particular physical system being studied. • The most fundamental were speculations about gravitomagnetic forces enhanced by the Higgs mechanism. • These were recently disproved experimentally. • This paper shows that the relativistic mass corrections might be sensitive to the pairing scenario: the predicted mass decrease corresponds to the Bose–Einstein condensation of preformed Cooper pairs, while the pairing in the Bardeen–Cooper–Schrieffer condensate leads to an increase of experimentally observed magnitude. - Abstract: Relativistic corrections to the Cooperon mass are discussed for preformed Cooper pairs that become superconductive via the Bose–Einstein condensation (BEC) and for Cooperons in the Bardeen–Copper–Schrieffer (BCS) condensate. The distinction explains experimental results of Tate et al. (1989).

  13. Relativistic gravitational potential and its relation to mass-energy

    International Nuclear Information System (INIS)

    Voracek, P.

    1979-01-01

    From the general theory of relativity a relation is deduced between the mass of a particle and the gravitational field at the position of the particle. For this purpose the fall of a particle of negligible mass in the gravitational field of a massive body is used. After establishing the relativistic potential and its relationship to the rest mass of the particle, we show, assuming conservation of mass-energy, that the difference between two potential-levels depends upon the value of the radial metric coefficient at the position of an observer. Further, it is proved that the relativistic potential is compatible with the general concept of the potential also from the standpoint of kinematics. In the third section it is shown that, although the mass-energy of a body is a function of the distance from it, this does not influence the relativistic potential of the body itself. From this conclusion it follows that the mass-energy of a particle in a gravitational field is anisotropic; isotropic is the mass only. Further, the possibility of an incidental feed-back between two masses is ruled out, and the law of the composition of the relativistic gravitational potentials is deduced. Finally, it is shown, by means of a simple model, that local inhomogeneities in the ideal fluid filling the Universe have negligible influence on the total potential in large regions. (orig.)

  14. Physical stress, mass, and energy for non-relativistic matter

    Science.gov (United States)

    Geracie, Michael; Prabhu, Kartik; Roberts, Matthew M.

    2017-06-01

    For theories of relativistic matter fields there exist two possible definitions of the stress-energy tensor, one defined by a variation of the action with the coframes at fixed connection, and the other at fixed torsion. These two stress-energy tensors do not necessarily coincide and it is the latter that corresponds to the Cauchy stress measured in the lab. In this note we discuss the corresponding issue for non-relativistic matter theories. We point out that while the physical non-relativistic stress, momentum, and mass currents are defined by a variation of the action at fixed torsion, the energy current does not admit such a description and is naturally defined at fixed connection. Any attempt to define an energy current at fixed torsion results in an ambiguity which cannot be resolved from the background spacetime data or conservation laws. We also provide computations of these quantities for some simple non-relativistic actions.

  15. Relativistic theory of gravitation and the graviton rest mass

    International Nuclear Information System (INIS)

    Logunsov, A.A.; Mestvirishvili, M.A.

    1986-01-01

    This paper examines a graviton rest mass (m) introduced in the framework of the relativistic theory of gravitation and obtains equations that describe a massive gravitational field. Under the assumption that the entire hidden mass of the matter in the Universe is due to the existence of a massive gravitational field, an upper bound on the rest mass is obtained: m ≤ 0.64 x 10 --65 g

  16. Mass, Momentum and Kinetic Energy of a Relativistic Particle

    Science.gov (United States)

    Zanchini, Enzo

    2010-01-01

    A rigorous definition of mass in special relativity, proposed in a recent paper, is recalled and employed to obtain simple and rigorous deductions of the expressions of momentum and kinetic energy for a relativistic particle. The whole logical framework appears as the natural extension of the classical one. Only the first, second and third laws of…

  17. Relativistic bound states: a mass formula for vector mesons

    International Nuclear Information System (INIS)

    Richard, J.L.; Sorba, P.

    1975-07-01

    In the framework of a relativistic description of two particles bound states, a mass formula for vector mesons considered as quark-antiquark systems bound by harmonic oscillator like forces is proposed. Results in good agreement with experimental values are obtained [fr

  18. Gravitational mass of relativistic matter and antimatter

    Science.gov (United States)

    Kalaydzhyan, Tigran

    2015-12-01

    The universality of free fall, the weak equivalence principle (WEP), is a cornerstone of the general theory of relativity, the most precise theory of gravity confirmed in all experiments up to date. The WEP states the equivalence of the inertial, m, and gravitational, mg, masses and was tested in numerous occasions with normal matter at relatively low energies. However, there is no confirmation for the matter and antimatter at high energies. For the antimatter the situation is even less clear - current direct observations of trapped antihydrogen suggest the limits - 65 antigravity phenomenon, i.e. repulsion of the antimatter by Earth. Here we demonstrate an indirect bound 0.96 antigravity. By considering the absolute potential of the Local Supercluster (LS), we also predict the bounds 1 - 4 ×10-7

  19. PDV-based estimation of ejecta particles' mass-velocity function from shock-loaded tin experiment

    Science.gov (United States)

    Franzkowiak, J.-E.; Prudhomme, G.; Mercier, P.; Lauriot, S.; Dubreuil, E.; Berthe, L.

    2018-03-01

    A metallic tin plate with a given surface finish of wavelength λ ≃ 60 μm and amplitude h ≃ 8 μm is explosively driven by an electro-detonator with a shock-induced breakout pressure PSB = 28 GPa (unsupported). The resulting dynamic fragmentation process, the so-called "micro-jetting," is the creation of high-speed jets of matter moving faster than the bulk metallic surface. Hydrodynamic instabilities result in the fragmentation of these jets into micron-sized metallic particles constituting a self-expanding cloud of droplets, whose areal mass, velocity, and particle size distributions are unknown. Lithium-niobate-piezoelectric sensor measured areal mass and Photonic Doppler Velocimetry (PDV) was used to get a time-velocity spectrogram of the cloud. In this article, we present both experimental mass and velocity results and we relate the integrated areal mass of the cloud to the PDV power spectral density with the assumption of a power law particle size distribution. Two models of PDV spectrograms are described. The first one accounts for the speckle statistics of the spectrum and the second one describes an average spectrum for which speckle fluctuations are removed. Finally, the second model is used for a maximum likelihood estimation of the cloud's parameters from PDV data. The estimated integrated areal mass from PDV data is found to agree well with piezoelectric results. We highlight the relevance of analyzing PDV data and correlating different diagnostics to retrieve the physical properties of ejecta particles.

  20. A Magnetar Origin for the Kilonova Ejecta in GW170817

    Science.gov (United States)

    Metzger, Brian D.; Thompson, Todd A.; Quataert, Eliot

    2018-04-01

    The neutron star (NS) merger GW170817 was followed over several days by optical-wavelength (“blue”) kilonova (KN) emission likely powered by the radioactive decay of light r-process nuclei synthesized by ejecta with a low neutron abundance (electron fraction Y e ≈ 0.25–0.35). While the composition and high velocities of the blue KN ejecta are consistent with shock-heated dynamical material, the large quantity is in tension with the results of numerical simulations. We propose an alternative ejecta source: the neutrino-heated, magnetically accelerated wind from the strongly magnetized hypermassive NS (HMNS) remnant. A rapidly spinning HMNS with an ordered surface magnetic field of strength B ≈ (1–3) × 1014 G and lifetime t rem ∼ 0.1–1 s can simultaneously explain the velocity, total mass, and electron fraction of the blue KN ejecta. The inferred HMNS lifetime is close to its Alfvén crossing time, suggesting that global magnetic torques could be responsible for bringing the HMNS into solid-body rotation and instigating its gravitational collapse. Different origins for the KN ejecta may be distinguished by their predictions for the emission in the first hours after the merger, when the luminosity is enhanced by heating from internal shocks; the latter are likely generic to any temporally extended ejecta source (e.g., magnetar or accretion disk wind) and are not unique to the emergence of a relativistic jet. The same shocks could mix and homogenize the composition to a low but nonzero lanthanide mass fraction, {X}La}≈ {10}-3, as advocated by some authors, but only if the mixing occurs after neutrons are consumed in the r-process on a timescale ≳1 s.

  1. The γ-rays that accompanied GW170817 and the observational signature of a magnetic jet breaking out of NS merger ejecta

    Science.gov (United States)

    Bromberg, O.; Tchekhovskoy, A.; Gottlieb, O.; Nakar, E.; Piran, T.

    2018-04-01

    We present the first relativistic magnetohydrodynamics numerical simulation of a magnetic jet that propagates through and emerges from the dynamical ejecta of a binary neutron star merger. Generated by the magnetized rotation of the merger remnant, the jet propagates through the ejecta and produces an energetic cocoon that expands at mildly relativistic velocities and breaks out of the ejecta. We show that if the ejecta has a low-mass (˜10-7 M⊙) high-velocity (v ˜ 0.85c) tail, the cocoon shock breakout will generate γ-ray emission that is comparable to the observed short GRB170817A that accompanied the recent gravitational wave event GW170817. Thus, we propose that this gamma-ray burst (GRB), which is quite different from all other short GRBs observed before, was produced by a different mechanism. We expect, however, that such events are numerous and many will be detected in coming LIGO-Virgo runs.

  2. Butterfly Ejecta

    Science.gov (United States)

    2003-01-01

    [figure removed for brevity, see original site] Released 4 September 2003In the heavily cratered southern highlands of Mars, the type of crater seen in this THEMIS visible image is relatively rare. Elliptical craters with 'butterfly' ejecta patterns make up roughly 5% of the total crater population of Mars. They are caused by impactors which hit the surface at oblique, or very shallow angles. Similar craters are also seen in about the same abundance on the Moon and Venus.Image information: VIS instrument. Latitude -24.6, Longitude 41 East (319 West). 19 meter/pixel resolution.Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time. NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.

  3. The Importance of Physical Models for Deriving Dust Masses and Grain Size Distributions in Supernova Ejecta. I. Radiatively Heated Dust in the Crab Nebula

    Science.gov (United States)

    Temim, Tea; Dwek, Eli

    2013-01-01

    Recent far-infrared (IR) observations of supernova remnants (SNRs) have revealed significantly large amounts of newly condensed dust in their ejecta, comparable to the total mass of available refractory elements. The dust masses derived from these observations assume that all the grains of a given species radiate at the same temperature, regardless of the dust heating mechanism or grain radius. In this paper, we derive the dust mass in the ejecta of the Crab Nebula, using a physical model for the heating and radiation from the dust. We adopt a power-law distribution of grain sizes and two different dust compositions (silicates and amorphous carbon), and calculate the heating rate of each dust grain by the radiation from the pulsar wind nebula. We find that the grains attain a continuous range of temperatures, depending on their size and composition. The total mass derived from the best-fit models to the observed IR spectrum is 0.019-0.13 Solar Mass, depending on the assumed grain composition. We find that the power-law size distribution of dust grains is characterized by a power-law index of 3.5-4.0 and a maximum grain size larger than 0.1 micron. The grain sizes and composition are consistent with what is expected for dust grains formed in a Type IIP supernova (SN). Our derived dust mass is at least a factor of two less than the mass reported in previous studies of the Crab Nebula that assumed more simplified two-temperature models. These models also require a larger mass of refractory elements to be locked up in dust than was likely available in the ejecta. The results of this study show that a physical model resulting in a realistic distribution of dust temperatures can constrain the dust properties and affect the derived dust masses. Our study may also have important implications for deriving grain properties and mass estimates in other SNRs and for the ultimate question of whether SNe are major sources of dust in the Galactic interstellar medium and in

  4. Should the coupling constants be mass dependent in the relativistic mean field models

    International Nuclear Information System (INIS)

    Levai, P.; Lukacs, B.

    1986-05-01

    Mass dependent coupling constants are proposed for baryonic resonances in the relativistic mean field model, according to the mass splitting of the SU-6 multiplet. With this choice the negative effective masses are avoided and the system remains nucleon dominated with moderate antidelta abundance. (author)

  5. SUN-TO-EARTH CHARACTERISTICS OF TWO CORONAL MASS EJECTIONS INTERACTING NEAR 1 AU: FORMATION OF A COMPLEX EJECTA AND GENERATION OF A TWO-STEP GEOMAGNETIC STORM

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Ying D.; Yang, Zhongwei; Wang, Rui [State Key Laboratory of Space Weather, National Space Science Center, Chinese Academy of Sciences, Beijing 100190 (China); Luhmann, Janet G. [Space Sciences Laboratory, University of California, Berkeley, CA 94720 (United States); Richardson, John D. [Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge, MA 02139 (United States); Lugaz, Noé, E-mail: liuxying@spaceweather.ac.cn [Space Science Center, University of New Hampshire, Durham, NH 03824 (United States)

    2014-10-01

    On 2012 September 30-October 1 the Earth underwent a two-step geomagnetic storm. We examine the Sun-to-Earth characteristics of the coronal mass ejections (CMEs) responsible for the geomagnetic storm with combined heliospheric imaging and in situ observations. The first CME, which occurred on 2012 September 25, is a slow event and shows an acceleration followed by a nearly invariant speed in the whole Sun-Earth space. The second event, launched from the Sun on 2012 September 27, exhibits a quick acceleration, then a rapid deceleration, and finally a nearly constant speed, a typical Sun-to-Earth propagation profile for fast CMEs. These two CMEs interacted near 1 AU as predicted by the heliospheric imaging observations and formed a complex ejecta observed at Wind, with a shock inside that enhanced the pre-existing southward magnetic field. Reconstruction of the complex ejecta with the in situ data indicates an overall left-handed flux-rope-like configuration with an embedded concave-outward shock front, a maximum magnetic field strength deviating from the flux rope axis, and convex-outward field lines ahead of the shock. While the reconstruction results are consistent with the picture of CME-CME interactions, a magnetic cloud-like structure without clear signs of CME interactions is anticipated when the merging process is finished.

  6. SUN-TO-EARTH CHARACTERISTICS OF TWO CORONAL MASS EJECTIONS INTERACTING NEAR 1 AU: FORMATION OF A COMPLEX EJECTA AND GENERATION OF A TWO-STEP GEOMAGNETIC STORM

    International Nuclear Information System (INIS)

    Liu, Ying D.; Yang, Zhongwei; Wang, Rui; Luhmann, Janet G.; Richardson, John D.; Lugaz, Noé

    2014-01-01

    On 2012 September 30-October 1 the Earth underwent a two-step geomagnetic storm. We examine the Sun-to-Earth characteristics of the coronal mass ejections (CMEs) responsible for the geomagnetic storm with combined heliospheric imaging and in situ observations. The first CME, which occurred on 2012 September 25, is a slow event and shows an acceleration followed by a nearly invariant speed in the whole Sun-Earth space. The second event, launched from the Sun on 2012 September 27, exhibits a quick acceleration, then a rapid deceleration, and finally a nearly constant speed, a typical Sun-to-Earth propagation profile for fast CMEs. These two CMEs interacted near 1 AU as predicted by the heliospheric imaging observations and formed a complex ejecta observed at Wind, with a shock inside that enhanced the pre-existing southward magnetic field. Reconstruction of the complex ejecta with the in situ data indicates an overall left-handed flux-rope-like configuration with an embedded concave-outward shock front, a maximum magnetic field strength deviating from the flux rope axis, and convex-outward field lines ahead of the shock. While the reconstruction results are consistent with the picture of CME-CME interactions, a magnetic cloud-like structure without clear signs of CME interactions is anticipated when the merging process is finished

  7. Relativistic mean-field approximation with density-dependent screening meson masses in nuclear matter

    International Nuclear Information System (INIS)

    Sun, Baoxi; Lu, Xiaofu; Shen, Pengnian; Zhao, Enguang

    2003-01-01

    The Debye screening masses of the σ, ω and neutral ρ mesons and the photon are calculated in the relativistic mean-field approximation. As the density of the nucleon increases, all the screening masses of mesons increase. A different result with Brown–Rho scaling is shown, which implies a reduction in the mass of all the mesons in the nuclear matter, except the pion. Replacing the masses of the mesons with their corresponding screening masses in the Walecka-1 model, five saturation properties of the nuclear matter are fixed reasonably, and then a density-dependent relativistic mean-field model is proposed without introducing the nonlinear self-coupling terms of mesons. (author)

  8. Relativistic point dynamics general equations, constant proper masses, interactions between electric charges, variable proper masses, collisions

    CERN Document Server

    Arzeliès, Henri

    1972-01-01

    Relativistic Point Dynamics focuses on the principles of relativistic dynamics. The book first discusses fundamental equations. The impulse postulate and its consequences and the kinetic energy theorem are then explained. The text also touches on the transformation of main quantities and relativistic decomposition of force, and then discusses fields of force derivable from scalar potentials; fields of force derivable from a scalar potential and a vector potential; and equations of motion. Other concerns include equations for fields; transfer of the equations obtained by variational methods int

  9. NEUTRON-STAR MERGER EJECTA AS OBSTACLES TO NEUTRINO-POWERED JETS OF GAMMA-RAY BURSTS

    Energy Technology Data Exchange (ETDEWEB)

    Just, O.; Janka, H.-T.; Schwarz, N. [Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, D-85748 Garching (Germany); Obergaulinger, M. [Departament d´Astronomia i Astrofísica, Universitat de València, Edifici d´Investigació Jeroni Muñoz, C/ Dr. Moliner, 50, E-46100 Burjassot (València) (Spain); Bauswein, A., E-mail: ojust@mpa-garching.mpg.de, E-mail: thj@mpa-garching.mpg.de [Department of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki (Greece)

    2016-01-10

    We present the first special relativistic, axisymmetric hydrodynamic simulations of black hole-torus systems (approximating general relativistic gravity) as remnants of binary-neutron star (NS–NS) and neutron star–black hole (NS–BH) mergers, in which the viscously driven evolution of the accretion torus is followed with self-consistent energy-dependent neutrino transport and the interaction with the cloud of dynamical ejecta expelled during the NS–NS merging is taken into account. The modeled torus masses, BH masses and spins, and the ejecta masses, velocities, and spatial distributions are adopted from relativistic merger simulations. We find that energy deposition by neutrino annihilation can accelerate outflows with initially high Lorentz factors along polar low-density funnels, but only in mergers with extremely low baryon pollution in the polar regions. NS–BH mergers, where polar mass ejection during the merging phase is absent, provide sufficiently baryon-poor environments to enable neutrino-powered, ultrarelativistic jets with terminal Lorentz factors above 100 and considerable dynamical collimation, favoring short gamma-ray bursts (sGRBs), although their typical energies and durations might be too small to explain the majority of events. In the case of NS–NS mergers, however, neutrino emission of the accreting and viscously spreading torus is too short and too weak to yield enough energy for the outflows to break out from the surrounding ejecta shell as highly relativistic jets. We conclude that neutrino annihilation alone cannot power sGRBs from NS–NS mergers.

  10. NEUTRON-STAR MERGER EJECTA AS OBSTACLES TO NEUTRINO-POWERED JETS OF GAMMA-RAY BURSTS

    International Nuclear Information System (INIS)

    Just, O.; Janka, H.-T.; Schwarz, N.; Obergaulinger, M.; Bauswein, A.

    2016-01-01

    We present the first special relativistic, axisymmetric hydrodynamic simulations of black hole-torus systems (approximating general relativistic gravity) as remnants of binary-neutron star (NS–NS) and neutron star–black hole (NS–BH) mergers, in which the viscously driven evolution of the accretion torus is followed with self-consistent energy-dependent neutrino transport and the interaction with the cloud of dynamical ejecta expelled during the NS–NS merging is taken into account. The modeled torus masses, BH masses and spins, and the ejecta masses, velocities, and spatial distributions are adopted from relativistic merger simulations. We find that energy deposition by neutrino annihilation can accelerate outflows with initially high Lorentz factors along polar low-density funnels, but only in mergers with extremely low baryon pollution in the polar regions. NS–BH mergers, where polar mass ejection during the merging phase is absent, provide sufficiently baryon-poor environments to enable neutrino-powered, ultrarelativistic jets with terminal Lorentz factors above 100 and considerable dynamical collimation, favoring short gamma-ray bursts (sGRBs), although their typical energies and durations might be too small to explain the majority of events. In the case of NS–NS mergers, however, neutrino emission of the accreting and viscously spreading torus is too short and too weak to yield enough energy for the outflows to break out from the surrounding ejecta shell as highly relativistic jets. We conclude that neutrino annihilation alone cannot power sGRBs from NS–NS mergers

  11. Heavy meson mass spectra by general relativistic methods

    International Nuclear Information System (INIS)

    Italiano, A.; Lattuada, M.; Maccarrone, G.D.; Recami, E.; Riggi, F.; Vinciguerra, D.

    1984-01-01

    By applying the classical methods of general relativity to elementary particles one can get, in a natural way, the observed confinement of their constituents, avoiding any recourse to phenome-nological models such as bag model and allowing the deduction of the heavy meson (i.e. charmonium (J/psi) and bottomium (UPSILON)) mass spectra

  12. SIMULTANEOUS CONSTRAINTS ON THE NUMBER AND MASS OF RELATIVISTIC SPECIES

    International Nuclear Information System (INIS)

    Riemer-Sørensen, Signe; Parkinson, David; Davis, Tamara M.; Blake, Chris

    2013-01-01

    Recent indications from both particle physics and cosmology suggest the possible existence of more than three neutrino species. In cosmological analyses the effects of neutrino mass and number of species can in principle be disentangled for fixed cosmological parameters. However, since we do not have perfect measurements of the standard Λ cold dark matter model parameters, some correlation remains between the neutrino mass and number of species, and both parameters should be included in the analysis. Combining the newest observations of several cosmological probes (cosmic microwave background, large-scale structure, expansion rate), we obtain N eff = 3.58 +0.15 –0.16 (68% CL) +0.55 –0.53 (95% CL) and Σm ν eff and Σm ν from an analysis including both parameters. The preference for N eff >3 is at the 2σ level.

  13. On the mass spectra of the pseudoscalar mesons in the relativistic independent quark model

    International Nuclear Information System (INIS)

    Khrushchev, V.V.; Semenov, S.V.

    2002-01-01

    In the framework of the relativistic independent quark model with the QCD-motivated static potential, the masses of the ground states of pseudoscalar mesons and their radial excitations are calculated for both observed mesons and unobserved ones. The strength of the spin-spin interaction and the magnitude of the mean field contribution are estimated for both the light and heavy 0 -+ mesons. The calculated masses are in agreement with experimental values within an accuracy of 30 - 40 MeV, and the predictions are obtained for the mass values of a number of unobserved yet radial excitations of pseudoscalar mesons

  14. Definition of mass spectrum of mesons taking into account relativistic character of interactions

    International Nuclear Information System (INIS)

    Dinejkhan, M.; Zhaugasheva, S.A.; Karimzhan, K.

    2009-01-01

    Taking into account relativistic and nonlocal character of interactions, the mass spectrum of the mesons consisting of the light-light and light-heavy quarks with orbital and radial excitations, is determined. Our result show that good agreement with the experimental data for the slope and the intercept of the Regge trajectory can be obtained, only taking into account the nonperturbative and the nonlocal character of interactions. Dependence of constituent mass of constituent particles on mass of a free state is certain. When quarks are light the difference of current and valent masses of quarks is greater than valent masses of quarks, and when quarks are heavy the difference of these masses is insignificant. One of alternative variants of the account of nonlocality is suggested for the definition of properties of hadrons at large distances. Dependence of constituent mass on the radius of confinement is studied

  15. Mass-velocity and size-velocity distributions of ejecta cloud from shock-loaded tin surface using atomistic simulations

    Energy Technology Data Exchange (ETDEWEB)

    Durand, O.; Soulard, L. [CEA, DAM, DIF, F-91297 Arpajon (France)

    2015-04-28

    The mass (volume and areal densities) versus velocity as well as the size versus velocity distributions of a shock-induced cloud of particles are investigated using large scale molecular dynamics simulations. A generic three-dimensional tin crystal with a sinusoidal free surface roughness (single wavelength) is set in contact with vacuum and shock-loaded so that it melts directly on shock. At the reflection of the shock wave onto the perturbations of the free surface, two-dimensional sheets/jets of liquid metal are ejected. The simulations show that the distributions may be described by an analytical model based on the propagation of a fragmentation zone, from the tip of the sheets to the free surface, in which the kinetic energy of the atoms decreases as this zone comes closer to the free surface on late times. As this kinetic energy drives (i) the (self-similar) expansion of the zone once it has broken away from the sheet and (ii) the average size of the particles which result from fragmentation in the zone, the ejected mass and the average size of the particles progressively increase in the cloud as fragmentation occurs closer to the free surface. Though relative to nanometric scales, our model may help in the analysis of experimental profiles.

  16. The ρ - ω mass difference in a relativistic potential model with pion corrections

    International Nuclear Information System (INIS)

    Palladino, B.E.; Ferreira, P.L.

    1988-01-01

    The problem of the ρ - ω mass difference is studied in the framework of the relativistic, harmonic, S+V independent quark model implemented by center-of-mass, one-gluon exchange and plon-cloud corrections stemming from the requirement of chiral symmetry in the (u,d) SU(2) flavour sector of the model. The plonic self-energy corrections with different intermediate energy states are instrumental of the analysis of the problem, which requires and appropriate parametrization of the mesonic sector different from that previously used to calculate the mass spectrum of the S-wave baryons. The right ρ - ω mass splitting is found, together with a satisfactory value for the mass of the pion, calculated as a bound-state of a quark-antiquark pair. An analogous discussion based on the cloudy-bag model is also presented. (author) [pt

  17. Reinterpretation of the ''relativistic mass'' correction to the spin magnetic moment of a moving particle

    International Nuclear Information System (INIS)

    Hegstrom, R.A.; Lhuillier, C.

    1977-01-01

    Starting from a classical covariant equation of motion for the spin of a particle moving in a homogeneous electromagnetic field (the Bargmann-Michel-Telegdi equation), we show that the ''relativistic mass'' correction to the electron spin magnetic moment, which has been obtained previously from relativistic quantum-mechanical treatments of the Zeeman effect, may be reinterpreted as the combination of three classical effects: (i) the difference in time scales in the electron rest frame vis-a-vis the lab frame, (ii) the Lorentz transformation of the magnetic field between the two frames, and (iii) the Thomas precession of the electron spin due to the acceleration of the electron produced by the magnetic field

  18. Evolutionary signatures in complex ejecta and their driven shocks

    Directory of Open Access Journals (Sweden)

    C. J. Farrugia

    2004-11-01

    Full Text Available We examine interplanetary signatures of ejecta-ejecta interactions. To this end, two time intervals of inner-heliospheric (≤1AU observations separated by 2 solar cycles are chosen where ejecta/magnetic clouds are in the process of interacting to form complex ejecta. At the Sun, both intervals are characterized by many coronal mass ejections (CMEs and flares. In each case, a complement of observations from various instruments on two spacecraft are examined in order to bring out the in-situ signatures of ejecta-ejecta interactions and their relation to solar observations. In the first interval (April 1979, data are shown from Helios-2 and ISEE-3, separated by ~0.33AU in radial distance and 28° in heliographic longitude. In the second interval (March-April 2001, data from the SOHO and Wind probes are combined, relating effects at the Sun and their manifestations at 1AU on one of Wind's distant prograde orbits. At ~0.67AU, Helios-2 observes two individual ejecta which have merged by the time they are observed at 1AU by ISEE-3. In March 2001, two distinct Halo CMEs (H-CMEs are observed on SOHO on 28-29 March approaching each other with a relative speed of 500kms-1 within 30 solar radii. In order to isolate signatures of ejecta-ejecta interactions, the two event intervals are compared with expectations for pristine (isolated ejecta near the last solar minimum, extensive observations on which were given by Berdichevsky et al. (2002. The observations from these two event sequences are then intercompared. In both event sequences, coalescence/merging was accompanied by the following signatures: heating of the plasma, acceleration of the leading ejecta and deceleration of the trailing ejecta, compressed field and plasma in the leading ejecta, disappearance of shocks and the strengthening of shocks driven by the accelerated ejecta. A search for reconnection signatures at the interface between the two ejecta in the March 2001 event was inconclusive

  19. Using Statistical Multivariable Models to Understand the Relationship Between Interplanetary Coronal Mass Ejecta and Magnetic Flux Ropes

    Science.gov (United States)

    Riley, P.; Richardson, I. G.

    2012-01-01

    In-situ measurements of interplanetary coronal mass ejections (ICMEs) display a wide range of properties. A distinct subset, "magnetic clouds" (MCs), are readily identifiable by a smooth rotation in an enhanced magnetic field, together with an unusually low solar wind proton temperature. In this study, we analyze Ulysses spacecraft measurements to systematically investigate five possible explanations for why some ICMEs are observed to be MCs and others are not: i) An observational selection effect; that is, all ICMEs do in fact contain MCs, but the trajectory of the spacecraft through the ICME determines whether the MC is actually encountered; ii) interactions of an erupting flux rope (PR) with itself or between neighboring FRs, which produce complex structures in which the coherent magnetic structure has been destroyed; iii) an evolutionary process, such as relaxation to a low plasma-beta state that leads to the formation of an MC; iv) the existence of two (or more) intrinsic initiation mechanisms, some of which produce MCs and some that do not; or v) MCs are just an easily identifiable limit in an otherwise corntinuous spectrum of structures. We apply quantitative statistical models to assess these ideas. In particular, we use the Akaike information criterion (AIC) to rank the candidate models and a Gaussian mixture model (GMM) to uncover any intrinsic clustering of the data. Using a logistic regression, we find that plasma-beta, CME width, and the ratio O(sup 7) / O(sup 6) are the most significant predictor variables for the presence of an MC. Moreover, the propensity for an event to be identified as an MC decreases with heliocentric distance. These results tend to refute ideas ii) and iii). GMM clustering analysis further identifies three distinct groups of ICMEs; two of which match (at the 86% level) with events independently identified as MCs, and a third that matches with non-MCs (68 % overlap), Thus, idea v) is not supported. Choosing between ideas i) and

  20. Optimality with feedback control in relativistic dynamics of a mass point. Part 1

    International Nuclear Information System (INIS)

    Blaquiere, A.; Pauchard, M.; Tahri-Yousfi, N.; Wickers, D.

    1984-01-01

    This article is an account of part of a research task currently in progress; it deals with relativistic dynamics of a mass-point from the point of view of the theory of optimal feedback control. In the first part, the theoretical frame is presented with an application to the case of special Relativity. This application shows that the way followed in this article is a natural one for approaching Wave mechanics, and that it closely parallels the way along which Louis de Broglie introduced Wave mechanics [fr

  1. Non-Noether Conserved Quantity for Relativistic Nonholonomic System with Variable Mass

    International Nuclear Information System (INIS)

    Qiao Yongfen; Li Renjie; Ma Yongsheng

    2005-01-01

    Using form invariance under special infinitesimal transformations in which time is not variable, the non-Noether conserved quantity of the relativistic nonholonomic system with variable mass is studied. The differential equations of motion of the system are established. The definition and criterion of the form invariance of the system under infinitesimal transformations are studied. The necessary and sufficient condition under which the form invariance is a Lie symmetry is given. The condition under which the form invariance can be led to a non-Noether conserved quantity and the form of the conserved quantity are obtained. Finally, an example is given to illustrate the application of the result.

  2. Re-hardening of hadron transverse mass spectra in relativistic heavy-ion collisions

    International Nuclear Information System (INIS)

    Ohnishi, A.; Otuka, N.; Sahu, P.K.; Isse, M.; Nara, Y.

    2001-01-01

    We analyze the spectra of pions and protons in heavy-ion collisions at relativistic energies from 2 A GeV to 65 + 65 A GeV by using a jet-implemented hadron-string cascade model. In this energy region, hadron transverse mass spectra first show softening until SPS energies, and re-hardening may emerge at RHIC energies. Since hadronic matter is expected to show only softening at higher energy densities, this re-hardening of spectra can be interpreted as a good signature of the quark-gluon plasma formation. (author)

  3. Application of the relativistic mean-field mass model to the r-process and the influence of mass uncertainties

    International Nuclear Information System (INIS)

    Sun, B.; Montes, F.; Geng, L. S.; Geissel, H.; Litvinov, Yu. A.; Meng, J.

    2008-01-01

    A new mass table calculated by the relativistic mean-field approach with the state-dependent BCS method for the pairing correlation is applied for the first time to study r-process nucleosynthesis. The solar r-process abundance is well reproduced within a waiting-point approximation approach. Using an exponential fitting procedure to find the required astrophysical conditions, the influence of mass uncertainty is investigated. The r-process calculations using the FRDM, ETFSI-Q, and HFB-13 mass tables have been used for that purpose. It is found that the nuclear physical uncertainty can significantly influence the deduced astrophysical conditions for the r-process site. In addition, the influence of the shell closure and shape transition have been examined in detail in the r-process simulations

  4. Schooner ejecta studies

    Energy Technology Data Exchange (ETDEWEB)

    Henny, Robert W [University of New Mexico (United States)

    1970-05-15

    This paper presents a preliminary analysis of the Schooner ejecta and missile population. Our work on the Schooner event results from a continuing interest in cratering phenomenology with emphasis directed towards development of photographic techniques for the documentation of static and dynamic aspects of large ejecta and missile populations. Project Schooner was a nuclear experiment in a layered tuffaceous medium executed as part of the Plowshare program for development of nuclear excavation. Schooner was detonated on December 8, 1968 at approximately 0800:00.149.6 (PST), 1600:00.149.6 (GMT), in area 20, Nevada Test Site (NTS). The resultant yield was 31 {+-} 4 KT. The emplacement hole was U20u at geodetic coordinates: Longitude: W 116 diameter 33* 57.1419'' Latitude: N 37'' 20* 36.3187'' Surface ground zero (GZ) was 5,562.4 feet mean sea level (MSL); emplacement depth (to the working point) was 108.2 meters (355 feet). The basic crater and ejecta data are listed.

  5. Relativistic Mechanics in Gravitational Fields Exterior to Rotating Homogeneous Mass Distributions within Spherical Geometry

    Directory of Open Access Journals (Sweden)

    Chifu E. N.

    2009-07-01

    Full Text Available General Relativistic metric tensors for gravitational fields exterior to homogeneous spherical mass distributions rotating with constant angular velocity about a fixed di- ameter are constructed. The coeffcients of affine connection for the gravitational field are used to derive equations of motion for test particles. The laws of conservation of energy and angular momentum are deduced using the generalized Lagrangian. The law of conservation of angular momentum is found to be equal to that in Schwarzschild’s gravitational field. The planetary equation of motion and the equation of motion for a photon in the vicinity of the rotating spherical mass distribution have rotational terms not found in Schwarzschild’s field.

  6. The physics of the relativistic counter-streaming instability that drives mass inflation inside black holes

    International Nuclear Information System (INIS)

    Hamilton, Andrew J.S.; Avelino, Pedro P.

    2010-01-01

    If you fall into a real astronomical black hole (choosing a supermassive black hole, to make sure that the tidal forces do not get you first), then you will probably meet your fate not at a central singularity, but rather in the exponentially growing, relativistic counter-streaming instability at the inner horizon first pointed out by Poisson and Israel (1990), who called it mass inflation. The chief purpose of this paper is to present a clear exposition of the physical cause and consequence of inflation in spherical, charged black holes. Inflation acts like a particle accelerator in that it accelerates cold ingoing and outgoing streams through each other to prodigiously high energies. Inflation feeds on itself: the acceleration is powered by the gravity produced by the streaming energy. The paper: (1) uses physical arguments to develop simple approximations that follow the evolution of inflation from ignition, through inflation itself, to collapse; (2) confirms that the simple approximations capture accurately the results of fully nonlinear one- and two-fluid self-similar models; (3) demonstrates that, counter-intuitively, the smaller the accretion rate, the more rapidly inflation exponentiates; (4) shows that in single perfect fluid models, inflation occurs only if the sound speed equals the speed of light, supporting the physical idea that inflation in single fluids is driven by relativistic counter-streaming of waves; (5) shows that what happens during inflation up to the Planck curvature depends not on the distant past or future, but rather on events happening only a few hundred black hole crossing times into the past or future; (6) shows that, if quantum gravity does not intervene, then the generic end result of inflation is not a general relativistic null singularity, but rather a spacelike singularity at zero radius.

  7. General Relativistic Simulations of Low-Mass Magnetized Binary Neutron Star Mergers

    Science.gov (United States)

    Giacomazzo, Bruno

    2017-01-01

    We will present general relativistic magnetohydrodynamic (GRMHD) simulations of binary neutron star (BNS) systems that produce long-lived neutron stars (NSs) after merger. While the standard scenario for short gamma-ray bursts (SGRBs) requires the formation after merger of a spinning black hole surrounded by an accretion disk, other theoretical models, such as the time-reversal scenario, predict the formation of a long-lived magnetar. The formation of a long-lived magnetar could in particular explain the X-ray plateaus that have been observed in some SGRBs. Moreover, observations of NSs with masses of 2 solar masses indicate that the equation of state of NS matter should support masses larger than that. Therefore a significant fraction of BNS mergers will produce long-lived NSs. This has important consequences both on the emission of gravitational wave signals and on their electromagnetic counterparts. We will discuss GRMHD simulations of ``low-mass'' magnetized BNS systems with different equations of state and mass ratios. We will describe the properties of their post-merger remnants and of their gravitational and electromagnetic emission.

  8. General relativistic dynamics of an extreme mass-ratio binary interacting with an external body

    Science.gov (United States)

    Yang, Huan; Casals, Marc

    2017-10-01

    We study the dynamics of a hierarchical three-body system in the general relativistic regime: an extreme mass-ratio inner binary under the tidal influence of an external body. The inner binary consists of a central Schwarzschild black hole and a test body moving around it. We discuss three types of tidal effects on the orbit of the test body. First, the angular momentum of the inner binary precesses around the angular momentum of the outer binary. Second, the tidal field drives a "transient resonance" when the radial and azimuthal frequencies are commensurable. In contrast with resonances driven by the gravitational self-force, this tidal-driven resonance may boost the orbital angular momentum and eccentricity (a relativistic version of the Kozai-Lidov effect). Finally, for an orbit-dynamical effect during the nonresonant phase, we calculate the correction to the innermost stable circular (mean) orbit due to the tidal interaction. Hierarchical three-body systems are potential sources for future space-based gravitational wave missions, and the tidal effects that we find could contribute significantly to their waveform.

  9. In-medium Modifications of Hadron Masses and Chemical Freeze-out in Ultra-relativistic Heavy-ion Collisions

    International Nuclear Information System (INIS)

    Florkowski, W.; Broniowski, W.

    1999-10-01

    We confront the hypothesis of chemical freeze-out in ultra-relativistic heavy-ion collisions with the hypothesis of large modifications of hadron masses in nuclear medium. We find that the thermal-model predictions for the ratios of particle multiplicities are sensitive to the values of in-medium hadronic masses. In particular, the π + /p ratio decreases by 35% when the masses of all hadrons (except for pseudo-Goldstone bosons) are scaled down by 30%. (author)

  10. On the stability and maximum mass of differentially rotating relativistic stars

    Science.gov (United States)

    Weih, Lukas R.; Most, Elias R.; Rezzolla, Luciano

    2018-01-01

    The stability properties of rotating relativistic stars against prompt gravitational collapse to a black hole are rather well understood for uniformly rotating models. This is not the case for differentially rotating neutron stars, which are expected to be produced in catastrophic events such as the merger of binary system of neutron stars or the collapse of a massive stellar core. We consider sequences of differentially rotating equilibrium models using the j-constant law and by combining them with their dynamical evolution, we show that a sufficient stability criterion for differentially rotating neutron stars exists similar to the one of their uniformly rotating counterparts. Namely: along a sequence of constant angular momentum, a dynamical instability sets in for central rest-mass densities slightly below the one of the equilibrium solution at the turning point. In addition, following Breu & Rezzolla, we show that 'quasi-universal' relations can be found when calculating the turning-point mass. In turn, this allows us to compute the maximum mass allowed by differential rotation, Mmax,dr, in terms of the maximum mass of the non-rotating configuration, M_{_TOV}, finding that M_{max, dr} ˜eq (1.54 ± 0.05) M_{_TOV} for all the equations of state we have considered.

  11. Gravitational mass and Newton's universal gravitational law under relativistic conditions

    International Nuclear Information System (INIS)

    Vayenas, Constantinos G; Grigoriou, Dimitrios; Fokas, Athanasios

    2015-01-01

    We discuss the predictions of Newton's universal gravitational law when using the gravitational, m g , rather than the rest masses, m o , of the attracting particles. According to the equivalence principle, the gravitational mass equals the inertial mass, m i , and the latter which can be directly computed from special relativity, is an increasing function of the Lorentz factor, γ, and thus of the particle velocity. We consider gravitationally bound rotating composite states, and we show that the ratio of the gravitational force for gravitationally bound rotational states to the force corresponding to low (γ ≈ 1) particle velocities is of the order of (m Pl /m o ) 2 where mpi is the Planck mass (ħc/G) 1/2 . We also obtain a similar result, within a factor of two, by employing the derivative of the effective potential of the Schwarzschild geodesics of GR. Finally, we show that for certain macroscopic systems, such as the perihelion precession of planets, the predictions of this relativistic Newtonian gravitational law differ again by only a factor of two from the predictions of GR. (paper)

  12. Self-focusing of electromagnetic waves as a result of relativistic electron-mass variation

    International Nuclear Information System (INIS)

    Spatschek, K.H.

    1977-01-01

    Relativistic electron-mass variations due to the presence of intense electromagnetic radiation in the plasma cause a nonlinear refractive index. Using a variational principle the latter is obtained up to fourth order in the electric field amplitude and it is shown that nonlinear effects of the second order lead to self-focusing of a beam of radiation. By nonlinear optics considerations, the self-focusing length of an axially symmetric beam is obtained. Including higher-order dispersive effects it is shown that within the thin-beam approximation the complex electric field envelope obeys a cubic nonlinear Schroedinger equation with an attractive self-consistent potential. The cylindrically symmetric nonlinear Schroedinger equation predicts collapse of the radiation at the self-focusing distance. The nature of the self-focusing singularity is analysed and it is shown that higher-order nonlinearities saturate the amplitude. Then oscillations of the beam radius along the axial direction occur. (author)

  13. Ejecta from Ocean Impacts

    Science.gov (United States)

    Kyte, Frank T.

    2003-01-01

    Numerical simulations of deep-ocean impact provide some limits on the size of a projectile that will not mix with the ocean floor during a deep-ocean impact. For a vertical impact at asteroidal velocities (approx. 20 km/s), mixing is only likely when the projectile diameter is greater than 112 of the water depth. For oblique impacts, even larger projectiles will not mix with ocean floor silicates. Given the typical water depths of 4 to 5 km in deep-ocean basins, asteroidal projectiles with diameters as large as 2 or 3 km may commonly produce silicate ejecta that is composed only of meteoritic materials and seawater salts. However, the compressed water column beneath the projectile can still disrupt and shock metamorphose the ocean floor. Therefore, production of a separate, terrestrial ejecta component is not ruled out in the most extreme case. With increasing projectile size (or energy) relative to water depths, there must be a gradation between oceanic impacts and more conventional continental impacts. Given that 60% of the Earth's surface is covered by oceanic lithosphere and 500 m projectiles impact the Earth on 10(exp 5) y timescales, there must be hundreds of oceanic impact deposits in the sediment record awaiting discovery.

  14. Refitting density dependent relativistic model parameters including Center-of-Mass corrections

    International Nuclear Information System (INIS)

    Avancini, Sidney S.; Marinelli, Jose R.; Carlson, Brett Vern

    2011-01-01

    Full text: Relativistic mean field models have become a standard approach for precise nuclear structure calculations. After the seminal work of Serot and Walecka, which introduced a model Lagrangian density where the nucleons interact through the exchange of scalar and vector mesons, several models were obtained through its generalization, including other meson degrees of freedom, non-linear meson interactions, meson-meson interactions, etc. More recently density dependent coupling constants were incorporated into the Walecka-like models, which are then extensively used. In particular, for these models a connection with the density functional theory can be established. Due to the inherent difficulties presented by field theoretical models, only the mean field approximation is used for the solution of these models. In order to calculate finite nuclei properties in the mean field approximation, a reference set has to be fixed and therefore the translational symmetry is violated. It is well known that in such case spurious effects due to the center-of-mass (COM) motion are present, which are more pronounced for light nuclei. In a previous work we have proposed a technique based on the Pierls-Yoccoz projection operator applied to the mean-field relativistic solution, in order to project out spurious COM contributions. In this work we obtain a new fitting for the density dependent parameters of a density dependent hadronic model, taking into account the COM corrections. Our fitting is obtained taking into account the charge radii and binding energies for He 4 , O 16 , Ca 40 , Ca 48 , Ni 56 , Ni 68 , Sn 100 , Sn 132 and Pb 208 . We show that the nuclear observables calculated using our fit are of a quality comparable to others that can be found in the literature, with the advantage that now a translational invariant many-body wave function is at our disposal. (author)

  15. The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/Virgo GW170817. VI. Radio Constraints on a Relativistic Jet and Predictions for Late-time Emission from the Kilonova Ejecta

    Energy Technology Data Exchange (ETDEWEB)

    Alexander, K. D.; Berger, E.; Fong, W.; Williams, P. K. G.; Guidorzi, C.; Margutti, R.; Metzger, B. D.; Annis, J.; Blanchard, P. K.; Brout, D.; Brown, D. A.; Chen, H. -Y.; Chornock, R.; Cowperthwaite, P. S.; Drout, M.; Eftekhari, T.; Frieman, J.; Holz, D. E.; Nicholl, M.; Rest, A.; Sako, M.; Soares-Santos, M.; Villar, V. A.

    2017-10-16

    We present Very Large Array (VLA) and Atacama Large Millimeter/sub-millimeter Array ALMA radio observations of GW\\,170817, the first Laser Interferometer Gravitational-wave Observatory (LIGO)/Virgo gravitational wave (GW) event from a binary neutron star merger and the first GW event with an electromagnetic (EM) counterpart. Our data include the first observations following the discovery of the optical transient at both the centimeter ($13.7$ hours post merger) and millimeter ($2.41$ days post merger) bands. We detect faint emission at 6 GHz at 19.47 and 39.23 days after the merger, but not in an earlier observation at 2.46 d. We do not detect cm/mm emission at the position of the optical counterpart at frequencies of 10-97.5 GHz at times ranging from 0.6 to 30 days post merger, ruling out an on-axis short gamma-ray burst (SGRB) for energies $\\gtrsim 10^{48}$ erg. For fiducial SGRB parameters, our limits require an observer viewer angle of $\\gtrsim 20^{\\circ}$. The radio and X-ray data can be jointly explained as the afterglow emission from an SGRB with a jet energy of $\\sim 10^{49}-10^{50}$ erg that exploded in a uniform density environment with $n\\sim 10^{-4}-10^{-2}$ cm$^{-3}$, viewed at an angle of $\\sim 20^{\\circ}-40^{\\circ}$ from the jet axis. Using the results of our light curve and spectral modeling, in conjunction with the inference of the circumbinary density, we predict the emergence of late-time radio emission from the deceleration of the kilonova (KN) ejecta on a timescale of $\\sim 5-10$ years that will remain detectable for decades with next-generation radio facilities, making GW\\,170817 a compelling target for long-term radio monitoring.

  16. Evolutionary signatures in complex ejecta and their driven shocks

    Directory of Open Access Journals (Sweden)

    C. J. Farrugia

    2004-11-01

    Full Text Available We examine interplanetary signatures of ejecta-ejecta interactions. To this end, two time intervals of inner-heliospheric (≤1AU observations separated by 2 solar cycles are chosen where ejecta/magnetic clouds are in the process of interacting to form complex ejecta. At the Sun, both intervals are characterized by many coronal mass ejections (CMEs and flares. In each case, a complement of observations from various instruments on two spacecraft are examined in order to bring out the in-situ signatures of ejecta-ejecta interactions and their relation to solar observations. In the first interval (April 1979, data are shown from Helios-2 and ISEE-3, separated by ~0.33AU in radial distance and 28° in heliographic longitude. In the second interval (March-April 2001, data from the SOHO and Wind probes are combined, relating effects at the Sun and their manifestations at 1AU on one of Wind's distant prograde orbits. At ~0.67AU, Helios-2 observes two individual ejecta which have merged by the time they are observed at 1AU by ISEE-3. In March 2001, two distinct Halo CMEs (H-CMEs are observed on SOHO on 28-29 March approaching each other with a relative speed of 500kms-1 within 30 solar radii. In order to isolate signatures of ejecta-ejecta interactions, the two event intervals are compared with expectations for pristine (isolated ejecta near the last solar minimum, extensive observations on which were given by Berdichevsky et al. (2002. The observations from these two event sequences are then intercompared. In both event sequences, coalescence/merging was accompanied by the following signatures: heating of the plasma, acceleration of the leading ejecta and deceleration of the trailing ejecta, compressed field and plasma in the leading ejecta, disappearance of shocks and the strengthening of shocks driven by the accelerated ejecta. A search for reconnection signatures at the interface between the two ejecta in the March 2001 event was

  17. Ejecta evolution during cone impact

    KAUST Repository

    Marston, Jeremy

    2014-07-07

    We present findings from an experimental investigation into the impact of solid cone-shaped bodies onto liquid pools. Using a variety of cone angles and liquid physical properties, we show that the ejecta formed during the impact exhibits self-similarity for all impact speeds for very low surface tension liquids, whilst for high-surface tension liquids similarity is only achieved at high impact speeds. We find that the ejecta tip can detach from the cone and that this phenomenon can be attributed to the air entrainment phenomenon. We analyse of a range of cone angles, including some ogive cones, and impact speeds in terms of the spatiotemporal evolution of the ejecta tip. Using superhydrophobic cones, we also examine the entry of cones which entrain an air layer.

  18. Imaging the Ejecta in Classical Novae

    Science.gov (United States)

    Linford, Justin

    2016-10-01

    A nova outburst results when sufficient mass accretes from a companion star onto the surface of a white dwarf, triggering a thermonuclear explosion. In classical novae the bulk of the emission comes from the warm, expanding ejecta. The prevailing theories assume that the explosion occurs as a single, spherically symmetric ejection event and predict a simple relationship between the white dwarf mass, the accretion rate, and the mass loss and energetics of the explosion. However, observations with modern instruments indicate that nova eruptions are far from simple. There is now evidence for multiple ejection events, common envelopes, non-spherical geometry, and even jet-like structures in the ejecta. Our ENova collaboration combines radio, mm, optical, and X-ray observations and detailed theoretical modelling to study the most common major explosions in the universe. Among our results so far are the direct demonstration of the importance of shocks in novae, including the detection of gamma-ray producing shocks in several sources, and the realization that multiple, long-lived outflows are much more common than previously assumed. Here we propose to continue these highly successful observations with coordinated detailed VLA radio interferometry and HST optical imaging and spectroscropy of several recent novae with substantial VLA monitoring already in progress.

  19. A class of ejecta transport test problems

    International Nuclear Information System (INIS)

    Hammerberg, James E.; Buttler, William T.; Oro, David M.; Rousculp, Christopher L.; Morris, Christopher; Mariam, Fesseha G.

    2011-01-01

    Hydro code implementations of ejecta dynamics at shocked interfaces presume a source distribution function ofparticulate masses and velocities, f 0 (m, v;t). Some of the properties of this source distribution function have been determined from extensive Taylor and supported wave experiments on shock loaded Sn interfaces of varying surface and subsurface morphology. Such experiments measure the mass moment of f o under vacuum conditions assuming weak particle-particle interaction and, usually, fully inelastic capture by piezo-electric diagnostic probes. Recently, planar Sn experiments in He, Ar, and Kr gas atmospheres have been carried out to provide transport data both for machined surfaces and for coated surfaces. A hydro code model of ejecta transport usually specifies a criterion for the instantaneous temporal appearance of ejecta with source distribution f 0 (m, v;t 0 ). Under the further assumption of separability, f 0 (m,v;t 0 ) = f 1 (m)f 2 (v), the motion of particles under the influence of gas dynamic forces is calculated. For the situation of non-interacting particulates, interacting with a gas via drag forces, with the assumption of separability and simplified approximations to the Reynolds number dependence of the drag coefficient, the dynamical equation for the time evolution of the distribution function, f(r,v,m;t), can be resolved as a one-dimensional integral which can be compared to a direct hydro simulation as a test problem. Such solutions can also be used for preliminary analysis of experimental data. We report solutions for several shape dependent drag coefficients and analyze the results of recent planar dsh experiments in Ar and Xe.

  20. Ejecta evolution during cone impact

    KAUST Repository

    Marston, Jeremy; Thoroddsen, Sigurdur T

    2014-01-01

    -similarity for all impact speeds for very low surface tension liquids, whilst for high-surface tension liquids similarity is only achieved at high impact speeds. We find that the ejecta tip can detach from the cone and that this phenomenon can be attributed

  1. Imaging Shock Fronts in the Outer Ejecta of Eta Carinae

    Science.gov (United States)

    Smith, Nathan

    2017-08-01

    Although Eta Car has been imaged many times with HST to monitor the central star and the bright Homunculus Nebula, we propose the first WFC3 imaging of Eta Car to study the more extended Outer Ejecta from previous eruptions. WFC3 has two key filters that have not been used before to image Eta Car, which will provide critical physical information about its eruptive history: (1) F280N with WFC3/UVIS will produce the first Mg II 2800 image of Eta Car, the sharpest image of its complex Outer Ejecta, and will unambiguously trace shock fronts, and (2) F126N with WFC3/IR will sample [Fe II] 12567 arising in the densest post-shock gas. Eta Car is surrounded by a bright, soft X-ray shell seen in Chandra images, which arises from the fastest 1840s ejecta overtaking slower older material. Our recent proper motion measurements show that the outer knots were ejected in two outbursts several hundred years before the 1840s eruption, and spectroscopy of light echoes has recently revealed extremely fast ejecta during the 1840s that indicate an explosive event. Were those previous eruptions explosive as well? If so, were they as energetic, did they also have such fast ejecta, and did they have the same geometry? The structure and excitation of the Outer Ejecta hold unique clues for reconstructing Eta Car's violent mass loss history. The locations of shock fronts in circumstellar material provide critical information, because they identify past discontinuities in the mass loss. This is one of the only ways to investigate the long term (i.e. centuries) evolution and duty cycle of eruptive mass loss in the most massive stars.

  2. Interstellar and ejecta dust in the cas a supernova remnant

    Energy Technology Data Exchange (ETDEWEB)

    Arendt, Richard G. [CRESST, University of Maryland, Baltimore County, Baltimore, MD 21250 (United States); Dwek, Eli; Kober, Gladys [NASA Goddard Space Flight Center, Code 665, Greenbelt, MD 20771 (United States); Rho, Jeonghee [SETI Institute, 189 Bernardo Avenue, Mountain View, CA 94043 (United States); Hwang, Una, E-mail: Richard.G.Arendt@nasa.gov [NASA Goddard Space Flight Center, Code 662, Greenbelt, MD 20771 (United States)

    2014-05-01

    Infrared continuum observations provide a means of investigating the physical composition of the dust in the ejecta and swept up medium of the Cas A supernova remnant (SNR). Using low-resolution Spitzer IRS spectra (5-35 μm), and broad-band Herschel PACS imaging (70, 100, and 160 μm), we identify characteristic dust spectra, associated with ejecta layers that underwent distinct nuclear burning histories. The most luminous spectrum exhibits strong emission features at ∼9 and 21 μm and is closely associated with ejecta knots with strong Ar emission lines. The dust features can be reproduced by magnesium silicate grains with relatively low Mg to Si ratios. Another dust spectrum is associated with ejecta having strong Ne emission lines. It has no indication of any silicate features and is best fit by Al{sub 2}O{sub 3} dust. A third characteristic dust spectrum shows features that are best matched by magnesium silicates with a relatively high Mg to Si ratio. This dust is primarily associated with the X-ray-emitting shocked ejecta, but it is also evident in regions where shocked interstellar or circumstellar material is expected. However, the identification of dust composition is not unique, and each spectrum includes an additional featureless dust component of unknown composition. Colder dust of indeterminate composition is associated with emission from the interior of the SNR, where the reverse shock has not yet swept up and heated the ejecta. Most of the dust mass in Cas A is associated with this unidentified cold component, which is ≲ 0.1 M {sub ☉}. The mass of warmer dust is only ∼0.04 M {sub ☉}.

  3. Mass Ejection from the Remnant of a Binary Neutron Star Merger: Viscous-radiation Hydrodynamics Study

    Science.gov (United States)

    Fujibayashi, Sho; Kiuchi, Kenta; Nishimura, Nobuya; Sekiguchi, Yuichiro; Shibata, Masaru

    2018-06-01

    We perform long-term general relativistic neutrino radiation hydrodynamics simulations (in axisymmetry) for a massive neutron star (MNS) surrounded by a torus, which is a canonical remnant formed after the binary neutron star merger. We take into account the effects of viscosity, which is likely to arise in the merger remnant due to magnetohydrodynamical turbulence. The viscous effect plays key roles for the mass ejection from the remnant in two phases of the evolution. In the first t ≲ 10 ms, a differential rotation state of the MNS is changed to a rigidly rotating state. A shock wave caused by the variation of its quasi-equilibrium state induces significant mass ejection of mass ∼(0.5–2.0) × {10}-2 {M}ȯ for the α-viscosity parameter of 0.01–0.04. For the longer-term evolution with ∼0.1–10 s, a significant fraction of the torus material is ejected. We find that the total mass of the viscosity-driven ejecta (≳ {10}-2 {M}ȯ ) could dominate over that of the dynamical ejecta (≲ {10}-2 {M}ȯ ). The electron fraction, Y e , of the ejecta is always high enough (Y e ≳ 0.25) that this post-merger ejecta is lanthanide-poor; hence, the opacity of the ejecta is likely to be ∼10–100 times lower than that of the dynamical ejecta. This indicates that the electromagnetic signal from the ejecta would be rapidly evolving, bright, and blue if it is observed from a small viewing angle (≲45°) for which the effect of the dynamical ejecta is minor.

  4. Baryons in the relativistic jets of the stellar-mass black-hole candidate 4U 1630-47.

    Science.gov (United States)

    Trigo, María Díaz; Miller-Jones, James C A; Migliari, Simone; Broderick, Jess W; Tzioumis, Tasso

    2013-12-12

    Accreting black holes are known to power relativistic jets, both in stellar-mass binary systems and at the centres of galaxies. The power carried away by the jets, and, hence, the feedback they provide to their surroundings, depends strongly on their composition. Jets containing a baryonic component should carry significantly more energy than electron-positron jets. Energetic considerations and circular-polarization measurements have provided conflicting circumstantial evidence for the presence or absence of baryons in jets, and the only system in which they have been unequivocally detected is the peculiar X-ray binary SS 433 (refs 4, 5). Here we report the detection of Doppler-shifted X-ray emission lines from a more typical black-hole candidate X-ray binary, 4U 1630-47, coincident with the reappearance of radio emission from the jets of the source. We argue that these lines arise from baryonic matter in a jet travelling at approximately two-thirds the speed of light, thereby establishing the presence of baryons in the jet. Such baryonic jets are more likely to be powered by the accretion disk than by the spin of the black hole, and if the baryons can be accelerated to relativistic speeds, the jets should be strong sources of γ-rays and neutrino emission.

  5. Mass dependence of spectral and angular distributions of Cherenkov radiation from relativistic isotopes in solid radiators and its possible application as mass selector

    Science.gov (United States)

    Bogdanov, O. V.; Rozhkova, E. I.; Pivovarov, Yu. L.; Kuzminchuk-Feuerstein, N.

    2018-02-01

    The first proof of principle experiment with a prototype of a Time-of-Flight (TOF) - Cherenkov detector of relativistic heavy ions (RHI) exploiting a liquid Iodine Naphthalene radiator has been performed at Cave C at GSI (Darmstadt, Germany). A conceptual design for a liquid Cherenkov detector was proposed as a prototype for the future TOF measurements at the Super-FRS by detection of total number of Cherenkov photons. The ionization energy loss of RHI in a liquid radiator decreases only slightly this number, while in a solid radiator changes sufficiently not the total number of ChR photons, but ChR angular and spectral distributions. By means of computer simulations, we showed that these distributions are very sensitive to the isotope mass, due to different stopping powers of isotopes with initial equal relativistic factors. The results of simulations for light (Li, Be) and heavy (Xe) isotopes at 500-1000 MeV/u are presented indicating the possibility to use the isotopic effect in ChR of RHI as the mass selector.

  6. THE MORPHOLOGY OF IRC+10420's CIRCUMSTELLAR EJECTA

    International Nuclear Information System (INIS)

    Tiffany, Chelsea; Humphreys, Roberta M.; Jones, Terry J.; Davidson, Kris

    2010-01-01

    Images of the circumstellar ejecta associated with the post-red supergiant IRC+10420 show a complex ejecta with visual evidence for episodic mass loss. In this paper, we describe the transverse motions of numerous knots, arcs, and condensations in the inner ejecta measured from second epoch Hubble Space Telescope/WFPC2 images. When combined with the radial motions for several of the features, the total space motion and direction of the outflows show that they were ejected at different times, in different directions, and presumably from separate regions on the surface of the star. These discrete structures in the ejecta are kinematically distinct from the general expansion of the nebula and their motions are dominated by their transverse velocities. They are apparently all moving within a few degrees of the plane of the sky. We are thus viewing IRC+10420 nearly pole-on and looking nearly directly down onto its equatorial plane. We also discuss the role of surface activity and magnetic fields on IRC+10420's recent mass-loss history.

  7. Relativistic and non-relativistic studies of nuclear matter

    NARCIS (Netherlands)

    Banerjee, MK; Tjon, JA

    2002-01-01

    We point out that the differences between the results of the non-relativistic lowest order Brueckner theory (LOBT) and the relativistic Dirac-Brueckner analysis predominantly arise from two sources. Besides effects from a nucleon mass modification M* in nuclear medium we have in a relativistic

  8. Measurement of mass stopping power of chitosan polymer loaded with TiO2 for relativistic electron interaction

    Science.gov (United States)

    Babu, S. Ramesh; Badiger, N. M.; Karidurgannavar, M. Y.; Varghese, Jolly. G.

    2018-04-01

    The Mass Stopping Power (MSP) of relativistic electrons in chitosan loaded with TiO2 of different proportions has been measured by recording the spectrum of internal conversion electrons. The internal conversion electrons of energies 614 keV from Cs137, 942 keV and 1016 keV from Bi207 source are allowed to pass through chitosan-TiO2 alloy and transmitted electrons are detected with a Si (Li) detector coupled to an 8 K multichannel analyzer. By knowing the energies of incident electrons and transmitted electrons, the energy loss and the MSP are determined. Thus measured MSP values of the alloys are compared with the values calculated using Braggs additivity rule. The disagreement between theory and experiment is found to increases with increasing TiO2 concentration in chitosan, indicating the influence of chemical environment in the properties of such polymeric membrane.

  9. Exact Relativistic `Antigravity' Propulsion

    Science.gov (United States)

    Felber, Franklin S.

    2006-01-01

    The Schwarzschild solution is used to find the exact relativistic motion of a payload in the gravitational field of a mass moving with constant velocity. At radial approach or recession speeds faster than 3-1/2 times the speed of light, even a small mass gravitationally repels a payload. At relativistic speeds, a suitable mass can quickly propel a heavy payload from rest nearly to the speed of light with negligible stresses on the payload.

  10. Properties of Neutrino-driven Ejecta from the Remnant of a Binary Neutron Star Merger: Pure Radiation Hydrodynamics Case

    Energy Technology Data Exchange (ETDEWEB)

    Fujibayashi, Sho [Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502 (Japan); Sekiguchi, Yuichiro [Department of Physics, Toho University, Funabashi, Chiba 274-8510 (Japan); Kiuchi, Kenta; Shibata, Masaru, E-mail: sho.fujibayashi@yukawa.kyoto-u.ac.jp [Center for Gravitational Physics, Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502 (Japan)

    2017-09-10

    We performed general relativistic, long-term, axisymmetric neutrino radiation hydrodynamics simulations for the remnant formed after a binary neutron star merger, which consists of a massive neutron star and a torus surrounding it. As an initial condition, we employ the result derived in a three-dimensional, numerical relativity simulation for the binary neutron star merger. We investigate the properties of neutrino-driven ejecta. Due to the pair-annihilation heating, the dynamics of the neutrino-driven ejecta are significantly modified. The kinetic energy of the ejecta is about two times larger than that in the absence of pair-annihilation heating. This suggests that the pair-annihilation heating plays an important role in the evolution of merger remnants. The relativistic outflow, which is required for driving gamma-ray bursts, is not observed because the specific heating rate around the rotational axis is not sufficiently high, due to the baryon loading caused by the neutrino-driven ejecta from the massive neutron star. We discuss the condition for launching the relativistic outflow and the nucleosynthesis in the ejecta.

  11. Point form relativistic quantum mechanics and relativistic SU(6)

    Science.gov (United States)

    Klink, W. H.

    1993-01-01

    The point form is used as a framework for formulating a relativistic quantum mechanics, with the mass operator carrying the interactions of underlying constituents. A symplectic Lie algebra of mass operators is introduced from which a relativistic harmonic oscillator mass operator is formed. Mass splittings within the degenerate harmonic oscillator levels arise from relativistically invariant spin-spin, spin-orbit, and tensor mass operators. Internal flavor (and color) symmetries are introduced which make it possible to formulate a relativistic SU(6) model of baryons (and mesons). Careful attention is paid to the permutation symmetry properties of the hadronic wave functions, which are written as polynomials in Bargmann spaces.

  12. High precision mass measurements of thermalized relativistic uranium projectile and fission fragments with a multiple-reflection time-of-flight mass spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Ayet San Andres, Samuel [GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Justus Liebig Universitaet, Giessen (Germany); Collaboration: FRS Ion Catcher-Collaboration

    2016-07-01

    At the FRS Ion Catcher at GSI, a relativistic beam of {sup 238}U at 1GeV/u was used to produce fission and projectile fragments on a beryllium target. The ions were separated in-flight at the FRS, thermalized in a cryogenic stopping cell and transferred to a multiple-reflection time-of-flight mass spectrometer (MR-TOF-MS) where high precision mass measurements were performed. The masses of several fission and projectile fragments were measured (including short-lived nuclei with half-lives down to 18 ms) and the possibility of tailoring an isomerically clean beam for other experiments was demonstrated. With the demonstrated performance of the MR-TOF-MS and the expected production rates of exotic nuclei far from stability at the next-generation facilities such as FAIR, novel mass measurements of nuclei close to the neutron drip line will be possible and key information for understanding the r-process will be available. The results from the last experiment and an outlook of possible future mass measurements close to the neutron drip line at FAIR with the MR-TOF-MS are presented.

  13. LCROSS Impact Conditions and Ejecta Evolution: Insight from Experiments

    Science.gov (United States)

    Hermalyn, B.; Schultz, P. H.; Colaprete, A.

    2009-12-01

    The ejecta distribution resulting from an impact event reflects the impact conditions and target material properties. The Lunar CRater Observation and Sensing Satellite (LCROSS) mission will provide a rare look at subsurface materials. The LCROSS impact will excavate regolith from a permanently shadowed crater on the south pole of the moon. The impactor, named the Earth-Departure-Upper-Stage (EDUS), will impact the surface at ~2.5km/s at an angle of greater than 80° from horizontal. The trailing Shepherding Spacecraft (SSc) will record the impact and take measurements of the ejecta in coordination with a comprehensive earth-based observational campaign. Prior studies have explored the predicted ejecta mass/velocity distribution and general ejecta dynamics through computational modeling (Korycansky, et al 2009) and scaling laws(Schultz, 2006, Heldmann et al 2007). At very early times, however, these models and scaling laws break down. It is this high-speed component of the ejected material that will reach the sunlight horizon first and will be recorded by the SSc. Thus to interpret the initial conditions of the impact from the LCROSS ejecta plume, the early-time ejecta distribution must be understood. A suite of impact experiments (performed at the NASA Ames Vertical Gun Range, or AVGR) were designed to interpret LCROSS conditions. These experiments reveal that early in the cratering process, when the projectile is still coupling its energy and momentum to the target surface, ejection velocity is higher than predicted by dimensional scaling laws (Housen, et al 1983). Moreover, the ejection angles of this early-time component are initially lower than predicted, and sweep upward tens of degrees to reach nominal ejection angles (~45° for impacts into sand). Low-density projectiles (such as the EDUS) yield even lower ejection angles throughout much of crater growth, thereby indicating a shallower depth of coupling. An estimate of mass above a given height calculated

  14. Effect of impact angles on ejecta and crater shape of aluminum alloy 6061-T6 targets in hypervelocity impacts

    Directory of Open Access Journals (Sweden)

    Hayashi K.

    2012-08-01

    Full Text Available The effect of the impact angle of projectiles on the crater shape and ejecta in thick aluminum alloy targets was investigated in hypervelocity impacts. When polycarbonate projectiles and aluminum alloy 6061-T6 target were used, the impact angle of the projectiles clearly affected the crater shape, as expected. The impact angle also affected the ejecta mass, ejecta size and scatter angle. However, the effect at 15∘ and 22.5∘ was not great. When the impact angles were 30∘ and 45∘, the effect was clearly confirmed. The impact angle clearly affected the axial ratio of ejecta fragments, c/a.

  15. Ejecta from single-charge cratering explosions

    Energy Technology Data Exchange (ETDEWEB)

    Carlson, R H

    1970-05-15

    The objective was to obtain experimental data tracing the location of ejecta to its origin within the crater region. The experiment included ten high-explosive spherical charges weighing from 8 to 1000 pounds and detonated in a playa dry lake soil on the Tonopah Test Range. Each event included from 24 to 40 locations of distinctly different tracer material embedded in a plane in the expected crater region. Tracers consisted of glass, ceramic and bugle beads, chopped metal, and plastic wire. Results of this experiment yielded data on tracer dispersion as a function of charge weight, charge burial depth and tracer emplacement position. Tracer pattern parameters such as center-of-tracer mass, range to center-of-tracer mass, and angle to center-of-tracer mass were determined. There is a clear tendency for range (to center-of-tracer mass) and the size of the dispersion pattern to decrease as tracer emplacement depth increases. Increasing tracer emplacement depth and range tends to decrease the area over which tracers are dispersed on the ground surface. Tracers at the same scaled position relative to the charge were deposited closer to the crater (on a scaled basis) as charge weight was increased. (author)

  16. Production of intermediate-mass dileptons in relativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Kvasnikova, Ioulia; Gale, Charles; Kumar Srivastava, Dinesh

    2002-01-01

    The production of intermediate-mass dileptons in ultrarelativistic nuclear collisions at SPS energies is studied. The acceptance and detector resolution inherent to measurements by the NA50 experimental collaboration are accurately modeled. The measured centrality dependence of the intermediate mass lepton pair excess is also addressed

  17. Relativistic deflection of background starlight measures the mass of a nearby white dwarf star.

    Science.gov (United States)

    Sahu, Kailash C; Anderson, Jay; Casertano, Stefano; Bond, Howard E; Bergeron, Pierre; Nelan, Edmund P; Pueyo, Laurent; Brown, Thomas M; Bellini, Andrea; Levay, Zoltan G; Sokol, Joshua; Dominik, Martin; Calamida, Annalisa; Kains, Noé; Livio, Mario

    2017-06-09

    Gravitational deflection of starlight around the Sun during the 1919 total solar eclipse provided measurements that confirmed Einstein's general theory of relativity. We have used the Hubble Space Telescope to measure the analogous process of astrometric microlensing caused by a nearby star, the white dwarf Stein 2051 B. As Stein 2051 B passed closely in front of a background star, the background star's position was deflected. Measurement of this deflection at multiple epochs allowed us to determine the mass of Stein 2051 B-the sixth-nearest white dwarf to the Sun-as 0.675 ± 0.051 solar masses. This mass determination provides confirmation of the physics of degenerate matter and lends support to white dwarf evolutionary theory. Copyright © 2017, American Association for the Advancement of Science.

  18. Mass spectrum of vector mesons in the relativistic model of quasi-independent quarks

    International Nuclear Information System (INIS)

    Savrin, V.I.; Khrushchev, V.V.; Semenov, S.V.

    1988-01-01

    Mass values of mesons with J PC =1 -- built of u-, d-, s-, c-, b-quarks in S-states have been found with the help of numerical solutions of Dirac equation. The potential entering the equation consists of the scalar linear potential and the Coulomb vector one. The main contribution into spectra dependence on the radial quantum number for light quarks is shown to give the cnfinement scalar flavour independent potential: V c (r)=κ 2 r, at parameter value κ∼ 0.42 GeV. The calculated mass values are in agreement with ∼ 5% accuracy with the data for well established mesons

  19. Gravitational radiation in relativistic theory of gravity with a nonzero graviton mass

    International Nuclear Information System (INIS)

    Vlasov, A.A.; Chugreev, Yu.V.

    1987-01-01

    Radiation of gravitation waves have been analysed in the linear approximation of the relative theory of gravity, with the mass of graviton being nonzero. It is shown that the main contribution to the energy loss due to gravitational radiation has been described by the well-known quadrupole formula. Linear approximation applicability conditions have been analysed

  20. Isochoric heating of reduced mass targets by ultra-intense laser produced relativistic electrons

    Energy Technology Data Exchange (ETDEWEB)

    Neumayer, P; Lee, H J; Offerman, D; Shipton, E; Kemp, A; Kritcher, A L; Doppner, T; Back, C A; Glenzer, S H

    2009-02-04

    We present measurements of the chlorine K-alpha emission from reduced mass targets, irradiated with ultra-high intensity laser pulses. Chlorinated plastic targets with diameters down to 50 micrometers and mass of a few 10{sup -8} g were irradiated with up to 7 J of laser energy focused to intensities of several 10{sup 19} W/cm{sup 2}. The conversion of laser energy to K-alpha radiation is measured, as well as high resolution spectra that allow observation of line shifts, indicating isochoric heating of the target up to 18 eV. A zero-dimensional 2-temperature equilibration model, combined with electron impact K-shell ionization and post processed spectra from collisional radiative calculations reproduces the observed K-alpha yields and line shifts, and shows the importance of target expansion due to the hot electron pressure.

  1. On a model of a classical relativistic particle of constant and universal mass and spin

    Energy Technology Data Exchange (ETDEWEB)

    Kassandrov, V; Markova, N [Institute of Gravitation and Cosmology, Russian Peoples' Friendship University, Moscow (Russian Federation); Schaefer, G; Wipf, A [Institute of Theoretical Physics, Friedrich-Schiller University, Jena (Germany)

    2009-08-07

    The deformation of the classical action for a point-like particle recently suggested by Staruszkiewicz gives rise to a spin structure which constrains the values of the invariant mass and the invariant spin to be the same for any solution of the equations of motion. Both these Casimir invariants, the square of the 4-momentum vector and the square of the Pauli-Lubanski vector, are shown to preserve the same fixed values also in the presence of an arbitrary external electromagnetic field. In the 'free' case, in the centre-of-mass reference frame, the particle moves along a circle of fixed radius with arbitrary varying frequency. In a homogeneous magnetic field, a number of rotational 'states' are possible with frequencies slightly different from the cyclotron frequency, and 'phase-like' transitions with spin flops occur at some critical values of the particle's 3-momentum.

  2. Softening and re-hardening of hadron transverse mass spectra in relativistic heavy-ion collisions

    International Nuclear Information System (INIS)

    Isse, M.; Otuka, N.; Ohnishi, A.; Sahu, P.K.; Nara, Y.

    2002-01-01

    At RHIC experiments, started at 2000, the data obtained recently seem to exhibit QGP formation, but the conclusion is not drawn yet. Here, we pay out attention to the collective motion at hadronic freeze-out as an evidence of QGP formation. The transverse mass spectra may show softening to re-hardening with increasing incident energy. We compare simulated results obtained in JAM' - a hadronic cascade model - with experimental data, and discuss weather the QGP is formed or not. (author)

  3. CONSERATION LAWS OF RELATIVISTIC VARLABLE MASS SYSTEM%相对论性变质量系统的守恒律

    Institute of Scientific and Technical Information of China (English)

    方建会

    2001-01-01

    研究相对论性变质量系统的守恒律. 给出相对论性变质量系统的 d'Alembert-Lagrange原理,利用其在无限小变换下的不变性条件,得到相对论性变质量 系统的守恒律存在的条件和形式,并举例说明结果的应用.%The conservation laws of relativistic variable mass system were studied. The d' Alembert-Lagrange principle of relativistic variable mass system are given. By using invariant condition of The d'Alembert-Lagrange principle under the infin itesimal transformations, the conditions and forms which the conserved quantities of the system do exist were obtained. An example is given to illustrate the ap plication of the result..

  4. Relativistic equations

    International Nuclear Information System (INIS)

    Gross, F.

    1986-01-01

    Relativistic equations for two and three body scattering are discussed. Particular attention is paid to relativistic three body kinetics because of recent form factor measurements of the Helium 3 - Hydrogen 3 system recently completed at Saclay and Bates and the accompanying speculation that relativistic effects are important for understanding the three nucleon system. 16 refs., 4 figs

  5. Existence of charges and mass-spliting in relativistic quantum field theory

    International Nuclear Information System (INIS)

    Gal-Ezer, E.; Horwitz, L.P.

    1976-01-01

    The existence of charge operators associated with integrals of local densities in the (Wightman) framework of quantum field theory, in the presence of explicit symmetry breaking, can be demonstrated in certain cases. Their construction, in terms of null-plane integrals, is rather delicate. The possibility that a finite number of null-plane charges, which includes the Poincare generators, close on an algebra whose irreducible representations contain particles with different masses is considered; domain problems are shown to invalidate the basic hypotheses of the O'Raifeartaigh theorem. Null-plane Fourier transforms, which enter into the discussion of current algebra at infinite momentum, are also studied. It is shown that slns behavior is the maximal growth of high energy off mass shell amplitudes consistent with the existence of null-plane charges and null-plane Fourier transforms. Under the assumption that asymptotic states exist, these results also hold in the case of spontaneously broken chiral symmetry, with massless pseudoscalar Goldstone bosons

  6. Relativistic time-dependent Fermion-mass renormalization using statistical regularization

    Science.gov (United States)

    Kutnink, Timothy; McMurray, Christian; Santrach, Amelia; Hockett, Sarah; Barcus, Scott; Petridis, Athanasios

    2017-09-01

    The time-dependent electromagnetically self-coupled Dirac equation is solved numerically by means of the staggered-leap-frog algorithm with reflecting boundary conditions. The stability region of the method versus the interaction strength and the spatial-grid size over time-step ratio is established. The expectation values of several dynamic operators are then evaluated as functions of time. These include the fermion and electromagnetic energies and the fermion dynamic mass. There is a characteristic, non-exponential, oscillatory dependence leading to asymptotic constants of these expectation values. In the case of the fermion mass this amounts to renormalization. The dependence of the expectation values on the spatial-grid size is evaluated in detail. Furthermore, the contribution of positive and negative energy states to the asymptotic values and the gauge fields is analyzed. Statistical regularization, employing a canonical ensemble whose temperature is the inverse of the grid size, is used to remove the grid-size and momentum-dependence and produce a finite result in the continuum limit.

  7. Phase Doppler anemometry as an ejecta diagnostic

    Science.gov (United States)

    Bell, D. J.; Chapman, D. J.

    2017-01-01

    When a shock wave is incident on a free surface, micron sized pieces of the material can be ejected from that surface. Phase Doppler Anemometry (PDA) is being developed to simultaneously measure the sizes and velocities of the individual shock induced ejecta particles; providing an important insight into ejecta phenomena. The results from experiments performed on the 13 mm bore light gas gun at the Institute of Shock Physics, Imperial College London are presented. Specially grooved tin targets were shocked at pressures of up to 14 GPa, below the melt on release pressure, to generate ejecta particles. These experiments are the first time that PDA has been successfully fielded on dynamic ejecta experiments. The results and current state of the art of the technique are discussed along with the future improvements required to optimise performance and increase usability.

  8. The Signature of the Central Engine in the Weakest Relativistic Explosions: GRB 100316D

    Science.gov (United States)

    Margutti, R.; Soderberg, A. M.; Wieringa, M. H.; Edwards, P. G.; Chevalier, R. A.; Morsony, B. J.; Barniol Duran, R.; Sironi, L.; Zauderer, B. A.; Milisavljevic, D.; Kamble, A.; Pian, E.

    2013-11-01

    We present late-time radio and X-ray observations of the nearby sub-energetic gamma-ray burst (GRB)100316D associated with supernova (SN) 2010bh. Our broad-band analysis constrains the explosion properties of GRB 100316D to be intermediate between highly relativistic, collimated GRBs and the spherical, ordinary hydrogen-stripped SNe. We find that ~1049 erg is coupled to mildly relativistic (Γ = 1.5-2), quasi-spherical ejecta, expanding into a medium previously shaped by the progenitor mass-loss with a rate of \\dot{M}\\, {\\sim }\\, 10^{-5}\\,M_{\\odot }\\,yr^{-1} (for an assumed wind density profile and wind velocity vw = 1000 km s-1). The kinetic energy profile of the ejecta argues for the presence of a central engine and identifies GRB 100316D as one of the weakest central-engine-driven explosions detected to date. Emission from the central engine is responsible for an excess of soft X-ray radiation that dominates over the standard afterglow at late times (t > 10 days). We connect this phenomenology with the birth of the most rapidly rotating magnetars. Alternatively, accretion onto a newly formed black hole might explain the excess of radiation. However, significant departure from the standard fall-back scenario is required.

  9. The signature of the central engine in the weakest relativistic explosions: GRB 100316D

    International Nuclear Information System (INIS)

    Margutti, R.; Soderberg, A. M.; Sironi, L.; Zauderer, B. A.; Milisavljevic, D.; Kamble, A.; Wieringa, M. H.; Edwards, P. G.; Chevalier, R. A.; Morsony, B. J.; Duran, R. Barniol; Pian, E.

    2013-01-01

    We present late-time radio and X-ray observations of the nearby sub-energetic gamma-ray burst (GRB)100316D associated with supernova (SN) 2010bh. Our broad-band analysis constrains the explosion properties of GRB 100316D to be intermediate between highly relativistic, collimated GRBs and the spherical, ordinary hydrogen-stripped SNe. We find that ∼10 49 erg is coupled to mildly relativistic (Γ = 1.5-2), quasi-spherical ejecta, expanding into a medium previously shaped by the progenitor mass-loss with a rate of M-dot ∼ 10 −5 M ⊙ yr −1 (for an assumed wind density profile and wind velocity v w = 1000 km s –1 ). The kinetic energy profile of the ejecta argues for the presence of a central engine and identifies GRB 100316D as one of the weakest central-engine-driven explosions detected to date. Emission from the central engine is responsible for an excess of soft X-ray radiation that dominates over the standard afterglow at late times (t > 10 days). We connect this phenomenology with the birth of the most rapidly rotating magnetars. Alternatively, accretion onto a newly formed black hole might explain the excess of radiation. However, significant departure from the standard fall-back scenario is required.

  10. Erosion and Ejecta Reaccretion on 243 Ida and Its Moon

    Science.gov (United States)

    Geissler, Paul; Petit, Jean-Marc; Durda, Daniel D.; Greenberg, Richard; Bottke, William; Nolan, Michael; Moore, Jeffrey

    1996-03-01

    northern and western hemispheres of the asteroid can be explained as the result of reaccretion of impact ejecta from the large and evidently recent crater “Azzurra.” Initial ejection speeds required to match the color observations are on the order of a few meters per second, consistent with models (e.g., M. C. Nolan, E. Asphaug, H. J. Melosh, and R. Greenberg 1996,Icarus, submitted; E. Asphaug, J. Moore, D. Morrison, W. Benz, and R. Sullivan 1996,Icarus120, 158-184) that multikilometer craters on Ida form in the gravity-dominated regime and are net producers of locally retained regolith. Azzurra ejecta launched in the direction of rotation at speeds near 10 m/sec are lofted over the asteroid and swept up onto the rotational leading surface on the opposite side. The landing locations of these particles closely match the distribution of large ejecta blocks observed in high resolution images of Ida (P. Lee, J. Veverka, P. Thomas, P. Helfstein, M. J. S. Belton, C. Chapman, R. Greeley, R. Pappalardo, R. Sullivan, and J. W. Head 1996,Icarus120, 87-105). Ida's shape and rotation allow escape of ejecta launched at speeds far below the escape velocity of a nonrotating sphere of Ida's volume and presumed density. While little ejecta from Ida is captured by Dactyl, about half of the mass ejected from Dactyl at speeds of up to 20 m/sec eventually falls on Ida. Particles launched at speeds just barely exceeding Dactyl's escape velocity can enter relatively long-term orbit around Ida, but few are ultimately reaccreted by the satellite. Because of its low gravity, erosion of Dactyl would take place on exceedingly short time scales if unconsolidated materials compose the satellite and crater formation is in the gravity regime. If Dactyl is a solid rock, then its shape has evolved from a presumably irregular initial fragment to its present remarkably rounded figure by collision with a population of impactors too small to be detected by counting visible craters. As the smallest solar

  11. Searching for Biosignatures in Exoplanetary Impact Ejecta.

    Science.gov (United States)

    Cataldi, Gianni; Brandeker, Alexis; Thébault, Philippe; Singer, Kelsi; Ahmed, Engy; de Vries, Bernard L; Neubeck, Anna; Olofsson, Göran

    2017-08-01

    With the number of confirmed rocky exoplanets increasing steadily, their characterization and the search for exoplanetary biospheres are becoming increasingly urgent issues in astrobiology. To date, most efforts have concentrated on the study of exoplanetary atmospheres. Instead, we aim to investigate the possibility of characterizing an exoplanet (in terms of habitability, geology, presence of life, etc.) by studying material ejected from the surface during an impact event. For a number of impact scenarios, we estimate the escaping mass and assess its subsequent collisional evolution in a circumstellar orbit, assuming a Sun-like host star. We calculate the fractional luminosity of the dust as a function of time after the impact event and study its detectability with current and future instrumentation. We consider the possibility to constrain the dust composition, giving information on the geology or the presence of a biosphere. As examples, we investigate whether calcite, silica, or ejected microorganisms could be detected. For a 20 km diameter impactor, we find that the dust mass escaping the exoplanet is roughly comparable to the zodiacal dust, depending on the exoplanet's size. The collisional evolution is best modeled by considering two independent dust populations, a spalled population consisting of nonmelted ejecta evolving on timescales of millions of years, and dust recondensed from melt or vapor evolving on much shorter timescales. While the presence of dust can potentially be inferred with current telescopes, studying its composition requires advanced instrumentation not yet available. The direct detection of biological matter turns out to be extremely challenging. Despite considerable difficulties (small dust masses, noise such as exozodiacal dust, etc.), studying dusty material ejected from an exoplanetary surface might become an interesting complement to atmospheric studies in the future. Key Words: Biosignatures

  12. Spall strength and ejecta production of gold under explosively driven shock wave compression

    International Nuclear Information System (INIS)

    La Lone, B. M.; Stevens, G. D.; Turley, W. D.; Veeser, L. R.; Holtkamp, D. B.

    2013-01-01

    Explosively driven shock wave experiments were conducted to characterize the spall strength and ejecta production of high-purity cast gold samples. The samples were from 0.75 to 1.84 mm thick and 30 mm in diameter. Peak stresses up to 44 GPa in gold were generated using PBX-9501 high explosive. Sample free surface and ejecta velocities were recorded using photonic Doppler velocimetry techniques. Lithium niobate pins were used to quantify the time dependence of the ejecta density and the total ejected mass. An optical framing camera for time-resolved imaging and a single-image x-ray radiograph were used for additional characterization. Free surface velocities exhibited a range of spall strengths from 1.7 to 2.4 GPa (mean: 2.0 ±0.3 GPa). The pullback signals were faint, minimal ringing was observed in the velocity records, and the spall layer continued to decelerate after first pull back. These results suggest finite tensile strength was present for some time after the initial void formation. Ejecta were observed for every sample with a roughened free surface, and the ejecta density increased with increased surface roughness, which was different in every experiment. The total ejected mass is consistent with the missing mass model.

  13. Relativistic astrophysics

    CERN Document Server

    Demianski, Marek

    2013-01-01

    Relativistic Astrophysics brings together important astronomical discoveries and the significant achievements, as well as the difficulties in the field of relativistic astrophysics. This book is divided into 10 chapters that tackle some aspects of the field, including the gravitational field, stellar equilibrium, black holes, and cosmology. The opening chapters introduce the theories to delineate gravitational field and the elements of relativistic thermodynamics and hydrodynamics. The succeeding chapters deal with the gravitational fields in matter; stellar equilibrium and general relativity

  14. X-RAY EJECTA KINEMATICS OF THE GALACTIC CORE-COLLAPSE SUPERNOVA REMNANT G292.0+1.8

    Energy Technology Data Exchange (ETDEWEB)

    Bhalerao, Jayant; Park, Sangwook [Department of Physics, University of Texas at Arlington, P.O. Box 19059, Arlington, TX 76019 (United States); Dewey, Daniel [MIT Kavli Institute, Cambridge, MA 02139 (United States); Hughes, John P. [Department of Physics and Astronomy, Rutgers University, 136 Frelinghuysen Road, Piscataway, NJ 08854-8019 (United States); Mori, Koji [Department of Applied Physics, University of Miyazaki, 1-1 Gakuen Kibanadai-nishi, Miyazaki 889-2192 (Japan); Lee, Jae-Joon, E-mail: jayant.bhalerao@mavs.uta.edu [Korea Astronomy and Space Science Institute, Daejeon 305-348 (Korea, Republic of)

    2015-02-10

    We report on the results from the analysis of our 114 ks Chandra High Energy Transmision Grating Spectrometer observation of the Galactic core-collapse supernova remnant G292.0+1.8. To probe the three-dimensional structure of the clumpy X-ray emitting ejecta material in this remnant, we measured Doppler shifts in emission lines from metal-rich ejecta knots projected at different radial distances from the expansion center. We estimate radial velocities of ejecta knots in the range of –2300 ≲ v{sub r}  ≲ 1400 km s{sup –1}. The distribution of ejecta knots in velocity versus projected-radius space suggests an expanding ejecta shell with a projected angular thickness of ∼90'' (corresponding to ∼3 pc at d = 6 kpc). Based on this geometrical distribution of the ejecta knots, we estimate the location of the reverse shock approximately at the distance of ∼4 pc from the center of the supernova remnant, putting it in close proximity to the outer boundary of the radio pulsar wind nebula. Based on our observed remnant dynamics and the standard explosion energy of 10{sup 51} erg, we estimate the total ejecta mass to be ≲8 M {sub ☉}, and we propose an upper limit of ≲35 M {sub ☉} on the progenitor's mass.

  15. In plain sight: the Chesapeake Bay crater ejecta blanket

    Science.gov (United States)

    Griscom, D. L.

    2012-02-01

    idealized calculation of the CBIS ejecta-blanket elevation profile minutes after the impact was carried out founded on well established rules for explosion and impact-generated craters. This profile is shown here to match the volume of the upland deposits ≥170 km from the crater center. Closer to the crater, much of the "postdicted" ejecta blanket has clearly been removed by erosion. Nevertheless the Shirley and fossil-free Bacons Castle Formations, located between the upland deposits and the CBIS interior and veneering the present day surface with units ∼10-20 m deep, are respectively identified as curtain- and excavation-phase ejecta. The neritic-fossil-bearing Calvert Formation external to the crater is deduced to be of Eocene age (as opposed to early Miocene as currently believed), preserved by the armoring effects of the overlying CBIS ejecta composed of the (distal) upland deposits and the (proximal) Bacons Castle Formation. The lithofacies of the in-crater Calvert Formation can only have resulted from inward mass wasting of the postdicted ejecta blanket, vestiges of which (i.e. the Bacons Castle and Shirley Formations) still overlap the crater rim and sag into its interior, consistent with this expectation. Because there appear to be a total of ∼10 000 km2 of CBIS ejecta lying on the present-day surface, future research should center the stratigraphic, lithologic, and petrologic properties of these ejecta versus both radial distance from the crater center (to identify ejecta from different ejection stages) and circumferentially at fixed radial distances (to detect possible anisotropies relating the impact angle and direction of approach of the impactor). The geological units described here may comprise the best preserved, and certainly the most accessible, ejecta blanket of a major crater on the Earth's surface and therefore promise to be a boon to the field of impact geology. As a corollary, a major revision of the current stratigraphic column of the M

  16. A Useful Expression for Relativistic Energy Conservation of a Point Mass in an Isotropic Static Gravitational Field

    Science.gov (United States)

    Augousti, A. T.; Radosz, A.; Ostasiewicz, K.

    2011-01-01

    By using the symmetry and time-independence properties of Schwarzschild spacetime it is demonstrated that an energy conservation law may be expressed in terms of local velocity. From this form three important results may be derived very concisely. This highlights analogies and differences between relativistic and classical approaches to mechanics…

  17. Relativistic dynamics without conservation laws

    OpenAIRE

    Rothenstein, Bernhard; Popescu, Stefan

    2006-01-01

    We show that relativistic dynamics can be approached without using conservation laws (conservation of momentum, of energy and of the centre of mass). Our approach avoids collisions that are not easy to teach without mnemonic aids. The derivations are based on the principle of relativity and on its direct consequence, the addition law of relativistic velocities.

  18. BLACK HOLE-NEUTRON STAR MERGERS AND SHORT GAMMA-RAY BURSTS: A RELATIVISTIC TOY MODEL TO ESTIMATE THE MASS OF THE TORUS

    International Nuclear Information System (INIS)

    Pannarale, Francesco; Tonita, Aaryn; Rezzolla, Luciano

    2011-01-01

    The merger of a binary system composed of a black hole (BH) and a neutron star (NS) may leave behind a torus of hot, dense matter orbiting around the BH. While numerical-relativity simulations are necessary to simulate this process accurately, they are also computationally expensive and unable at present to cover the large space of possible parameters, which include the relative mass ratio, the stellar compactness, and the BH spin. To mitigate this and provide a first reasonable coverage of the space of parameters, we have developed a method for estimating the mass of the remnant torus from BH-NS mergers. The toy model makes use of an improved relativistic affine model to describe the tidal deformations of an extended tri-axial ellipsoid orbiting around a Kerr BH and measures the mass of the remnant torus by considering which of the fluid particles composing the star are on bound orbits at the time of the tidal disruption. We tune the toy model by using the results of fully general-relativistic simulations obtaining relative precisions of a few percent and use it to investigate the space of parameters extensively. In this way, we find that the torus mass is largest for systems with highly spinning BHs, small stellar compactnesses, and large mass ratios. As an example, tori as massive as M b,tor ≅ 1.33 M sun can be produced for a very extended star with compactness C ≅ 0.1 inspiralling around a BH with dimensionless spin parameter a = 0.85 and mass ratio q ≅ 0.3. However, for a more astrophysically reasonable mass ratio q ≅ 0.14 and a canonical value of the stellar compactness C ≅ 0.145, the toy model sets a considerably smaller upper limit of M b,tor ∼ sun .

  19. Preliminary design report of a relativistic-Klystron two-beam-accelerator based power source for a 1 TeV center-of-mass next linear collider

    International Nuclear Information System (INIS)

    Yu, S.; Goffeney, N.; Henestroza, E.

    1995-01-01

    A preliminary point design for an 11.4 GHz power source for a 1 TeV center-of-mass Next Linear Collider (NLC) based on the Relativistic-Klystron Two-Beam-Accelerator (RK-TBA) concept is presented. The present report is the result of a joint LBL-LLNL systems study. consisting of three major thrust areas: physics, engineering, and costing. The new RK-TBA point design, together with our findings in each of these areas, are reported

  20. A crater and its ejecta: An interpretation of Deep Impact

    Science.gov (United States)

    Holsapple, Keith A.; Housen, Kevin R.

    2007-03-01

    We apply recently updated scaling laws for impact cratering and ejecta to interpret observations of the Deep Impact event. An important question is whether the cratering event was gravity or strength-dominated; the answer gives important clues about the properties of the surface material of Tempel 1. Gravity scaling was assumed in pre-event calculations and has been asserted in initial studies of the mission results. Because the gravity field of Tempel 1 is extremely weak, a gravity-dominated event necessarily implies a surface with essentially zero strength. The conclusion of gravity scaling was based mainly on the interpretation that the impact ejecta plume remained attached to the comet during its evolution. We address that feature here, and conclude that even strength-dominated craters would result in a plume that appeared to remain attached to the surface. We then calculate the plume characteristics from scaling laws for a variety of material types, and for gravity and strength-dominated cases. We find that no model of cratering alone can match the reported observation of plume mass and brightness history. Instead, comet-like acceleration mechanisms such as expanding vapor clouds are required to move the ejected mass to the far field in a few-hour time frame. With such mechanisms, and to within the large uncertainties, either gravity or strength craters can provide the levels of estimated observed mass. Thus, the observations are unlikely to answer the questions about the mechanical nature of the Tempel 1 surface.

  1. Relativistic generalization of strong plasma turbulence

    International Nuclear Information System (INIS)

    Chian, A.C.-L.

    1982-01-01

    Two fundamental electrostatic modes of an unmagnetized plasma, namely, ion acoustic mode and Langumir mode are studied. Previous theories are generalized to include the effect of relativistic mass variations. The existence of relativistic ion acoustic solitons is demonstrated. In addition, it is shown that simple, relativistic Langumir solitons do not exist in a infinite plasma. (L.C.) [pt

  2. Integrals of periodic motion and periodic solutions for classical equations of relativistic string with masses at ends. I. Integrals of periodic motion

    International Nuclear Information System (INIS)

    Barbashov, B.M.

    1996-01-01

    Boundary equations for the relativistic string with masses at ends are formulated in terms of geometrical invariants of world trajectories of masses at the string ends. In the three-dimensional Minkowski space E 2 1 , there are two invariants of that sort, the curvature K and torsion κ. Curvatures of trajectories of the string ends with masses are always constant, K i =γ/m i (i=1,2), whereas torsions κ i obey a system of differential equations with deviating arguments. For these equations with periodic κ i (τ+nl)=κ(τ), constants of motion are obtained (part 1) and exact solutions are presented (part 2) for periods l and 2l where l is the string length in the plane of parameters τ and σ(σ 1 =0, σ 2 =l). 7 refs

  3. General relativistic fields of an isolated spin-half charged particle near the spin axis with application to the rest-mass of the electron and positron

    International Nuclear Information System (INIS)

    Lynch, J.T.

    1999-01-01

    Using a lowest-order approximation, the field equations of a general relativistic spinor-connection theory are solved semi-analytically for the fields of a stable, spin-half changed particle near the spin axis. With the exception of the atomic fine-structure constant, all parameters arising in the solution, including the rest mass of the source particle, are found by imposing the standard junction conditions of general relativity and electromagnetism. Using the empirical value for the fine-structure constant, the value derived for the rest mass gives some reason to identify the source particle with the electron. Moreover, since the rest mass is independent of the sign of the electron charge carried by the source, the solution is equally applicable to the positron

  4. Biquaternions and relativistic kinematics

    International Nuclear Information System (INIS)

    Bogush, A.A.; Kurochkin, Yu.A.; Fedorov, F.I.

    1979-01-01

    The problems concerning the use of quaternion interpretation of the Lorentz group vector parametrization are considered for solving relativistic kinematics problems. A vector theory convenient for describing the characteristic features of the Lobachevsky space is suggested. The kinematics of elementary particle scattering is investigated on the basis of this theory. A synthesis of vector parametrization and of quaternion calculation has been shown to lead to natural formulation of the theory of vectors in the three-dimensional Lobachevsky space, realized on mass hyperboloids of relativistic particles

  5. Gravitationally confined relativistic neutrinos

    Science.gov (United States)

    Vayenas, C. G.; Fokas, A. S.; Grigoriou, D.

    2017-09-01

    Combining special relativity, the equivalence principle, and Newton’s universal gravitational law with gravitational rather than rest masses, one finds that gravitational interactions between relativistic neutrinos with kinetic energies above 50 MeV are very strong and can lead to the formation of gravitationally confined composite structures with the mass and other properties of hadrons. One may model such structures by considering three neutrinos moving symmetrically on a circular orbit under the influence of their gravitational attraction, and by assuming quantization of their angular momentum, as in the Bohr model of the H atom. The model contains no adjustable parameters and its solution, using a neutrino rest mass of 0.05 eV/c2, leads to composite state radii close to 1 fm and composite state masses close to 1 GeV/c2. Similar models of relativistic rotating electron - neutrino pairs give a mass of 81 GeV/c2, close to that of W bosons. This novel mechanism of generating mass suggests that the Higgs mass generation mechanism can be modeled as a latent gravitational field which gets activated by relativistic neutrinos.

  6. Radio Emission from Pulsar Wind Nebulae without Surrounding Supernova Ejecta: Application to FRB 121102

    International Nuclear Information System (INIS)

    Dai, Z. G.; Wang, J. S.; Yu, Y. W.

    2017-01-01

    In this paper, we propose a new scenario in which a rapidly rotating strongly magnetized pulsar without any surrounding supernova ejecta repeatedly produces fast radio bursts (FRBs) via a range of possible mechanisms; simultaneously, an ultra-relativistic electron/positron pair wind from the pulsar sweeps up its ambient dense interstellar medium, giving rise to a non-relativistic pulsar wind nebula (PWN). We show that the synchrotron radio emission from such a PWN is bright enough to account for the recently discovered persistent radio source associated with the repeating FRB 121102 within reasonable ranges of the model parameters. Our PWN scenario is consistent with the non-evolution of the dispersion measure inferred from all of the repeating bursts observed in four years.

  7. Radio Emission from Pulsar Wind Nebulae without Surrounding Supernova Ejecta: Application to FRB 121102

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Z. G.; Wang, J. S. [School of Astronomy and Space Science, Nanjing University, Nanjing 210093 (China); Yu, Y. W., E-mail: dzg@nju.edu.cn [Institute of Astrophysics, Central China Normal University, Wuhan 430079 (China)

    2017-03-20

    In this paper, we propose a new scenario in which a rapidly rotating strongly magnetized pulsar without any surrounding supernova ejecta repeatedly produces fast radio bursts (FRBs) via a range of possible mechanisms; simultaneously, an ultra-relativistic electron/positron pair wind from the pulsar sweeps up its ambient dense interstellar medium, giving rise to a non-relativistic pulsar wind nebula (PWN). We show that the synchrotron radio emission from such a PWN is bright enough to account for the recently discovered persistent radio source associated with the repeating FRB 121102 within reasonable ranges of the model parameters. Our PWN scenario is consistent with the non-evolution of the dispersion measure inferred from all of the repeating bursts observed in four years.

  8. Relativistic Electron Response to the Combined Magnetospheric Impact of a Coronal Mass Ejection Overlapping with a High-Speed Stream: Van Allen Probes Observations

    Science.gov (United States)

    Kanekal, S. G.; Baker, D. N.; Henderson, M. G.; Li, W.; Fennell, J. F.; Zheng, Y.; Richardson, I. G.; Jones, A.; Ali, A. F.; Elkington, S. R.; hide

    2015-01-01

    During early November 2013, the magnetosphere experienced concurrent driving by a coronal mass ejection (CME) during an ongoing high-speed stream (HSS) event. The relativistic electron response to these two kinds of drivers, i.e., HSS and CME, is typically different, with the former often leading to a slower buildup of electrons at larger radial distances, while the latter energizing electrons rapidly with flux enhancements occurring closer to the Earth. We present a detailed analysis of the relativistic electron response including radial profiles of phase space density as observed by both Magnetic Electron and Ion Sensor (MagEIS) and Relativistic Electron Proton Telescope instruments on the Van Allen Probes mission. Data from the MagEIS instrument establish the behavior of lower energy (electrons which span both intermediary and seed populations during electron energization. Measurements characterizing the plasma waves and magnetospheric electric and magnetic fields during this period are obtained by the Electric and Magnetic Field Instrument Suite and Integrated Science instrument on board Van Allen Probes, Search Coil Magnetometer and Flux Gate Magnetometer instruments on board Time History of Events and Macroscale Interactions during Substorms, and the low-altitude Polar-orbiting Operational Environmental Satellites. These observations suggest that during this time period, both radial transport and local in situ processes are involved in the energization of electrons. The energization attributable to radial diffusion is most clearly evident for the lower energy (electrons, while the effects of in situ energization by interaction of chorus waves are prominent in the higher-energy electrons.

  9. THE CHEMISTRY OF POPULATION III SUPERNOVA EJECTA. I. FORMATION OF MOLECULES IN THE EARLY UNIVERSE

    International Nuclear Information System (INIS)

    Cherchneff, Isabelle; Dwek, Eli

    2009-01-01

    We study the formation and destruction of molecules in the ejecta of Population III supernovae (SNe) using a chemical kinetic approach to follow the evolution of molecular abundances from day 100 to day 1000 after explosion. The chemical species included in the study range from simple diatomic molecules to more complex dust precursor species. All relevant molecule formation and destruction processes that are unique to the SN environment are considered. Our work focuses on zero-metallicity progenitors with masses of 20, 170, and 270 M sun , and we study the effect of different levels of heavy element mixing and the inward diffusion of hydrogen and helium on the ejecta chemistry. We show that the ejecta chemistry does not reach a steady state within the relevant timespan (∼3 yr) for molecule formation, thus invalidating previous results relying on this assumption. The primary species formed in the harsh SN environment are O 2 , CO, SiS, and SO. The SiO, formed as early as 200 days after explosion, is rapidly depleted by the formation of silica molecular precursors in the ejecta. The rapid conversion of CO to C 2 and its thermal fractionation at temperatures above 5000 K allow for the formation of carbon chains in the oxygen-rich zone of the unmixed models, providing an important pathway for the formation of carbon dust in hot environments where the C/O ratio is less than 1. We show that the fully mixed ejecta of a 170 M sun progenitor synthesizes 11.3 M sun of molecules, whereas 20 M sun and 270 M sun progenitors produce 0.78 M sun and 3.2 M sun of molecules, respectively. The admixing of 10% of hydrogen into the fully mixed ejecta of the 170 M sun progenitor increases its molecular yield to ∼47 M sun . The unmixed ejecta of a 170 M sun progenitor SN without hydrogen penetration synthesizes ∼37 M sun of molecules, whereas its 20 M sun counterpart produces ∼1.2 M sun . This smaller efficiency at forming molecules is due to the large fraction of He + in the

  10. Ejecta cloud from the AIDA space project kinetic impact on the secondary of a binary asteroid: I. mechanical environment and dynamical model

    Science.gov (United States)

    Yu, Yang; Michel, Patrick; Schwartz, Stephen R.; Naidu, Shantanu P.; Benner, Lance A. M.

    2017-01-01

    An understanding of the post-impact dynamics of ejecta clouds are crucial to the planning of a kinetic impact mission to an asteroid, and also has great implications for the history of planetary formation. The purpose of this article is to track the evolution of ejecta produced by AIDA mission, which targets for kinetic impact the secondary of near-Earth binary asteroid (65803) Didymos on 2022, and to feedback essential informations to AIDA's ongoing phase-A study. We present a detailed dynamic model for the simulation of an ejecta cloud from a binary asteroid that synthesizes all relevant forces based on a previous analysis of the mechanical environment. We apply our method to gain insight into the expected response of Didymos to the AIDA impact, including the subsequent evolution of debris and dust. The crater scaling relations from laboratory experiments are employed to approximate the distributions of ejecta mass and launching speed. The size distribution of fragments is modeled with a power law fitted from observations of real asteroid surface. A full-scale demonstration is simulated using parameters specified by the mission. We report the results of the simulation, which include the computed spread of the ejecta cloud and the recorded history of ejecta accretion and escape. The violent period of the ejecta evolution is found to be short, and is followed by a stage where the remaining ejecta is gradually cleared. Solar radiation pressure proves to be efficient in cleaning dust-size ejecta, and the simulation results after two weeks shows that large debris on polar orbits (perpendicular to the binary orbital plane) has a survival advantage over smaller ejecta and ejecta that keeps to low latitudes.

  11. Relativistic few body calculations

    International Nuclear Information System (INIS)

    Gross, F.

    1988-01-01

    A modern treatment of the nuclear few-body problem must take into account both the quark structure of baryons and mesons, which should be important at short range, and the relativistic exchange of mesons, which describes the long range, peripheral interactions. A way to model both of these aspects is described. The long range, peripheral interactions are calculated using the spectator model, a general approach in which the spectators to nucleon interactions are put on their mass-shell. Recent numerical results for a relativistic OBE model of the NN interaction, obtained by solving a relativistic equation with one-particle on mass-shell, will be presented and discussed. Two meson exchange models, one with only four mesons (π,σ,/rho/,ω) but with a 25% admixture of γ 5 coupling for the pion, and a second with six mesons (π,σ,/rho/,ω,δ,/eta/) but pure γ 5 γ/sup μ/ pion coupling, are shown to give very good quantitative fits to the NN scattering phase shifts below 400 MeV, and also a good description of the /rvec p/ 40 Ca elastic scattering observables. Applications of this model to electromagnetic interactions of the two body system, with emphasis on the determination of relativistic current operators consistent with the dynamics and the exact treatment of current conservation in the presence of phenomenological form factors, will be described. 18 refs., 8 figs

  12. Shock Acceleration of Electrons and Synchrotron Emission from the Dynamical Ejecta of Neutron Star Mergers

    Science.gov (United States)

    Lee, Shiu-Hang; Maeda, Keiichi; Kawanaka, Norita

    2018-05-01

    Neutron star mergers (NSMs) eject energetic subrelativistic dynamical ejecta into circumbinary media. Analogous to supernovae and supernova remnants, the NSM dynamical ejecta are expected to produce nonthermal emission by electrons accelerated at a shock wave. In this paper, we present the expected radio and X-ray signals by this mechanism, taking into account nonlinear diffusive shock acceleration (DSA) and magnetic field amplification. We suggest that the NSM is unique as a DSA site, where the seed relativistic electrons are abundantly provided by the decays of r-process elements. The signal is predicted to peak at a few 100–1000 days after the merger, determined by the balance between the decrease of the number of seed electrons and the increase of the dissipated kinetic energy, due to the shock expansion. While the resulting flux can ideally reach the maximum flux expected from near-equipartition, the available kinetic energy dissipation rate of the NSM ejecta limits the detectability of such a signal. It is likely that the radio and X-ray emission are overwhelmed by other mechanisms (e.g., an off-axis jet) for an observer placed in a jet direction (i.e., for GW170817). However, for an off-axis observer, to be discovered once a number of NSMs are identified, the dynamical ejecta component is predicted to dominate the nonthermal emission. While the detection of this signal is challenging even with near-future facilities, this potentially provides a robust probe of the creation of r-process elements in NSMs.

  13. Relativistic hydrodynamics

    CERN Document Server

    Luciano, Rezzolla

    2013-01-01

    Relativistic hydrodynamics is a very successful theoretical framework to describe the dynamics of matter from scales as small as those of colliding elementary particles, up to the largest scales in the universe. This book provides an up-to-date, lively, and approachable introduction to the mathematical formalism, numerical techniques, and applications of relativistic hydrodynamics. The topic is typically covered either by very formal or by very phenomenological books, but is instead presented here in a form that will be appreciated both by students and researchers in the field. The topics covered in the book are the results of work carried out over the last 40 years, which can be found in rather technical research articles with dissimilar notations and styles. The book is not just a collection of scattered information, but a well-organized description of relativistic hydrodynamics, from the basic principles of statistical kinetic theory, down to the technical aspects of numerical methods devised for the solut...

  14. Crater ejecta scaling laws: fundamental forms based on dimensional analysis

    International Nuclear Information System (INIS)

    Housen, K.R.; Schmidt, R.M.; Holsapple, K.A.

    1983-01-01

    A model of crater ejecta is constructed using dimensional analysis and a recently developed theory of energy and momentum coupling in cratering events. General relations are derived that provide a rationale for scaling laboratory measurements of ejecta to larger events. Specific expressions are presented for ejection velocities and ejecta blanket profiles in two limiting regimes of crater formation: the so-called gravity and strength regimes. In the gravity regime, ejectra velocities at geometrically similar launch points within craters vary as the square root of the product of crater radius and gravity. This relation implies geometric similarity of ejecta blankets. That is, the thickness of an ejecta blanket as a function of distance from the crater center is the same for all sizes of craters if the thickness and range are expressed in terms of crater radii. In the strength regime, ejecta velocities are independent of crater size. Consequently, ejecta blankets are not geometrically similar in this regime. For points away from the crater rim the expressions for ejecta velocities and thickness take the form of power laws. The exponents in these power laws are functions of an exponent, α, that appears in crater radius scaling relations. Thus experimental studies of the dependence of crater radius on impact conditions determine scaling relations for ejecta. Predicted ejection velocities and ejecta-blanket profiles, based on measured values of α, are compared to existing measurements of velocities and debris profiles

  15. Leading relativistic corrections for atomic P states calculated with a finite-nuclear-mass approach and all-electron explicitly correlated Gaussian functions

    Science.gov (United States)

    Stanke, Monika; Bralin, Amir; Bubin, Sergiy; Adamowicz, Ludwik

    2018-01-01

    In this work we report progress in the development and implementation of quantum-mechanical methods for calculating bound ground and excited states of small atomic systems. The work concerns singlet states with the L =1 total orbital angular momentum (P states). The method is based on the finite-nuclear-mass (non-Born-Oppenheimer; non-BO) approach and the use of all-particle explicitly correlated Gaussian functions for expanding the nonrelativistic wave function of the system. The development presented here includes derivation and implementation of algorithms for calculating the leading relativistic corrections for singlet states. The corrections are determined in the framework of the perturbation theory as expectation values of the corresponding effective operators using the non-BO wave functions. The method is tested in the calculations of the ten lowest 1P states of the helium atom and the four lowest 1P states of the beryllium atom.

  16. Molecular dynamics simulations of ejecta production from sinusoidal tin surfaces under supported and unsupported shocks

    Science.gov (United States)

    Wu, Bao; Wu, FengChao; Zhu, YinBo; Wang, Pei; He, AnMin; Wu, HengAn

    2018-04-01

    Micro-ejecta, an instability growth process, occurs at metal/vacuum or metal/gas interface when compressed shock wave releases from the free surface that contains surface defects. We present molecular dynamics (MD) simulations to investigate the ejecta production from tin surface shocked by supported and unsupported waves with pressures ranging from 8.5 to 60.8 GPa. It is found that the loading waveforms have little effect on spike velocity while remarkably affect the bubble velocity. The bubble velocity of unsupported shock loading remains nonzero constant value at late time as observed in experiments. Besides, the time evolution of ejected mass in the simulations is compared with the recently developed ejecta source model, indicating the suppressed ejection of unmelted or partial melted materials. Moreover, different reference positions are chosen to characterize the amount of ejecta under different loading waveforms. Compared with supported shock case, the ejected mass of unsupported shock case saturates at lower pressure. Through the analysis on unloading path, we find that the temperature of tin sample increases quickly from tensile stress state to zero pressure state, resulting in the melting of bulk tin under decaying shock. Thus, the unsupported wave loading exhibits a lower threshold pressure causing the solid-liquid phase transition on shock release than the supported shock loading.

  17. Molecular dynamics simulations of ejecta production from sinusoidal tin surfaces under supported and unsupported shocks

    Directory of Open Access Journals (Sweden)

    Bao Wu

    2018-04-01

    Full Text Available Micro-ejecta, an instability growth process, occurs at metal/vacuum or metal/gas interface when compressed shock wave releases from the free surface that contains surface defects. We present molecular dynamics (MD simulations to investigate the ejecta production from tin surface shocked by supported and unsupported waves with pressures ranging from 8.5 to 60.8 GPa. It is found that the loading waveforms have little effect on spike velocity while remarkably affect the bubble velocity. The bubble velocity of unsupported shock loading remains nonzero constant value at late time as observed in experiments. Besides, the time evolution of ejected mass in the simulations is compared with the recently developed ejecta source model, indicating the suppressed ejection of unmelted or partial melted materials. Moreover, different reference positions are chosen to characterize the amount of ejecta under different loading waveforms. Compared with supported shock case, the ejected mass of unsupported shock case saturates at lower pressure. Through the analysis on unloading path, we find that the temperature of tin sample increases quickly from tensile stress state to zero pressure state, resulting in the melting of bulk tin under decaying shock. Thus, the unsupported wave loading exhibits a lower threshold pressure causing the solid-liquid phase transition on shock release than the supported shock loading.

  18. Some problems in relativistic thermodynamics

    International Nuclear Information System (INIS)

    Veitsman, E. V.

    2007-01-01

    The relativistic equations of state for ideal and real gases, as well as for various interface regions, have been derived. These dependences help to eliminate some controversies in the relativistic thermodynamics based on the special theory of relativity. It is shown, in particular, that the temperature of system whose velocity tends to the velocity of light in vacuum varies in accordance with the Ott law T = T 0 /√1 - v 2 /c 2 . Relativistic dependences for heat and mass transfer, for Ohm's law, and for a viscous flow of a liquid have also been derived

  19. Relativistic astrophysics

    CERN Document Server

    Price, R H

    1993-01-01

    Work reported in the workshop on relativistic astrophysics spanned a wide varicy of topics. Two specific areas seemed of particular interest. Much attention was focussed on gravitational wave sources, especially on the waveforms they produce, and progress was reported in theoretical and observational aspects of accretion disks.

  20. Relativistic Kinematics

    OpenAIRE

    Sahoo, Raghunath

    2016-01-01

    This lecture note covers Relativistic Kinematics, which is very useful for the beginners in the field of high-energy physics. A very practical approach has been taken, which answers "why and how" of the kinematics useful for students working in the related areas.

  1. Relativistic Astrophysics

    International Nuclear Information System (INIS)

    Font, J. A.

    2015-01-01

    The relativistic astrophysics is the field of astrophysics employing the theory of relativity Einstein as physical-mathematical model is to study the universe. This discipline analyzes astronomical contexts in which the laws of classical mechanics of Newton's law of gravitation are not valid. (Author)

  2. Postshot distribution and movement of radionuclides in nuclear crater ejecta

    Energy Technology Data Exchange (ETDEWEB)

    Koranda, John J; Martin, John R; Wikkerink, Robert; Stuart, Marshall [Bio-Medical Division, Lawrence Radiation Laboratory, University of California, Livermore, CA (United States)

    1970-05-01

    The distribution and postshot movement of radionuclides in nuclear crater ejecta are discussed in this report. Continuing studies of tritium movement in ejecta at SEDAN crater demonstrate that variations in tritium concentration are correlated with seasonal rainfall and soil water movements. Losses of 27 mCi H{sup 3}/ft{sup 2} are evident on SEDAN crater lip at the end of a three year period of measurements in -which an unusually large flux of rain was received. The distribution of gamma emitting radionuclides and tritium is described in the recently created SCHOONER crater ejecta field. The specific activity of radionuclides in the SCHOONER ejecta continuum is shown for ejecta collected from the crater lip to 17 miles from GZ. The movement of W{sup 181} and tritium into the sub-ejecta preshot soil is described at a site 3000 feet from GZ. (author)

  3. Relativistic Ideal Clock

    OpenAIRE

    Bratek, Łukasz

    2015-01-01

    Two particularly simple ideal clocks exhibiting intrinsic circular motion with the speed of light and opposite spin alignment are described. The clocks are singled out by singularities of an inverse Legendre transformation for relativistic rotators of which mass and spin are fixed parameters. Such clocks work always the same way, no matter how they move. When subject to high accelerations or falling in strong gravitational fields of black holes, the clocks could be used to test the clock hypo...

  4. Relativistic impulse dynamics.

    Science.gov (United States)

    Swanson, Stanley M

    2011-08-01

    Classical electrodynamics has some annoying rough edges. The self-energy of charges is infinite without a cutoff. The calculation of relativistic trajectories is difficult because of retardation and an average radiation reaction term. By reconceptuallizing electrodynamics in terms of exchanges of impulses rather than describing it by forces and potentials, we eliminate these problems. A fully relativistic theory using photonlike null impulses is developed. Numerical calculations for a two-body, one-impulse-in-transit model are discussed. A simple relationship between center-of-mass scattering angle and angular momentum was found. It reproduces the Rutherford cross section at low velocities and agrees with the leading term of relativistic distinguishable-particle quantum cross sections (Møller, Mott) when the distance of closest approach is larger than the Compton wavelength of the particle. Magnetism emerges as a consequence of viewing retarded and advanced interactions from the vantage point of an instantaneous radius vector. Radiation reaction becomes the local conservation of energy-momentum between the radiating particle and the emitted impulse. A net action is defined that could be used in developing quantum dynamics without potentials. A reinterpretation of Newton's laws extends them to relativistic motion.

  5. (U) Physics Validation of the RMI-Based Ejecta Source Model Implementation in FLAG: L2 Milestone #6035 Report

    Energy Technology Data Exchange (ETDEWEB)

    Tregillis, I. L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-09-14

    The Los Alamos Physics and Engineering Models (PEM) program has developed a model for Richtmyer-Meshkov instability (RMI) based ejecta production from shock-melted surfaces, along with a prescription for a self-similar velocity distribution (SSVD) of the resulting ejecta particles. We have undertaken an effort to validate this source model using data from explosively driven tin coupon experiments. The model’s current formulation lacks a crucial piece of physics: a method for determining the duration of the ejecta production interval. Without a mechanism for terminating ejecta production, the model is not predictive. Furthermore, when the production interval is hand-tuned to match time-integrated mass data, the predicted time-dependent mass accumulation on a downstream sensor rises too sharply at early times and too slowly at late times because the SSVD overestimates the amount of mass stored in the fastest particles and underestimates the mass stored in the slowest particles. The functional form of the resulting m(t) is inconsistent with the available time-dependent data; numerical simulations and analytic studies agree on this point. Simulated mass tallies are highly sensitive to radial expansion of the ejecta cloud. It is not clear if the same effect is present in the experimental data but if so, depending on the degree, this may challenge the model’s compatibility with tin coupon data. The current implementation of the model in FLAG is sensitive to the detailed interaction between kinematics (hydrodynamic methods) and thermodynamics (material models); this sensitivity prohibits certain physics modeling choices. The appendices contain an extensive analytic study of piezoelectric ejecta mass measurements, along with test problems, excerpted from a longer work (LA-UR-17-21218).

  6. Properties of Kilonovae from Dynamical and Post-merger Ejecta of Neutron Star Mergers

    Science.gov (United States)

    Tanaka, Masaomi; Kato, Daiji; Gaigalas, Gediminas; Rynkun, Pavel; Radžiūtė, Laima; Wanajo, Shinya; Sekiguchi, Yuichiro; Nakamura, Nobuyuki; Tanuma, Hajime; Murakami, Izumi; Sakaue, Hiroyuki A.

    2018-01-01

    Ejected material from neutron star mergers gives rise to electromagnetic emission powered by radioactive decays of r-process nuclei, the so-called kilonova or macronova. While properties of the emission are largely affected by opacities in the ejected material, available atomic data for r-process elements are still limited. We perform atomic structure calculations for r-process elements: Se (Z = 34), Ru (Z = 44), Te (Z = 52), Ba (Z = 56), Nd (Z = 60), and Er (Z = 68). We confirm that the opacities from bound–bound transitions of open f-shell, lanthanide elements (Nd and Er) are higher than those of the other elements over a wide wavelength range. The opacities of open s-shell (Ba), p-shell (Se and Te), and d-shell (Ru) elements are lower than those of open f-shell elements, and their transitions are concentrated in the ultraviolet and optical wavelengths. We show that the optical brightness can be different by > 2 mag depending on the element abundances in the ejecta such that post-merger, lanthanide-free ejecta produce brighter and bluer optical emission. Such blue emission from post-merger ejecta can be observed from the polar directions if the mass of the preceding dynamical ejecta in these regions is small. For the ejecta mass of 0.01 {M}ȯ , observed magnitudes of the blue emission will reach 21.0 mag (100 Mpc) and 22.5 mag (200 Mpc) in the g and r bands within a few days after the merger, which are detectable with 1 m or 2 m class telescopes.

  7. UNBURNED MATERIAL IN THE EJECTA OF TYPE Ia SUPERNOVAE

    International Nuclear Information System (INIS)

    Folatelli, Gastón; Tanaka, Masaomi; Maeda, Keiichi; Nomoto, Ken'ichi; Phillips, M. M.; Morrell, Nidia; Campillay, Abdo; González, Sergio; Roth, Miguel; Stritzinger, Maximilian; Burns, Christopher R.; Freedman, W. L.; Madore, Barry F; Persson, S. E.; Hamuy, Mario; Mazzali, Paolo; Boldt, Luis; Contreras, Carlos; Salgado, Francisco; Suntzeff, Nicholas B.

    2012-01-01

    The presence of unburned material in the ejecta of normal Type Ia supernovae (SNe Ia) is investigated using early-time spectroscopy obtained by the Carnegie Supernova Project. The tell-tale signature of pristine material from a C+O white dwarf progenitor star is the presence of carbon, as oxygen is also a product of carbon burning. The most prominent carbon lines in optical spectra of SNe Ia are expected to arise from C II. We find that at least 30% of the objects in the sample show an absorption at ≈6300 Å which is attributed to C II λ6580. An alternative identification of this absorption as Hα is considered to be unlikely. These findings imply a larger incidence of carbon in SNe Ia ejecta than previously noted. We show how observational biases and physical conditions may hide the presence of weak C II lines, and account for the scarcity of previous carbon detections in the literature. This relatively large frequency of carbon detections has crucial implications on our understanding of the explosive process. Furthermore, the identification of the 6300 Å absorptions as carbon would imply that unburned material is present at very low expansion velocities, merely ≈1000 km s –1 above the bulk of Si II. Based on spectral modeling, it is found that the detections are consistent with a mass of carbon of 10 –3 to 10 –2 M ☉ . The presence of this material so deep in the ejecta would imply substantial mixing, which may be related to asymmetries of the flame propagation. Another possible explanation for the carbon absorptions may be the existence of clumps of unburned material along the line of sight. However, the uniformity of the relation between C II and Si II velocities is not consistent with such small-scale asymmetries. The spectroscopic and photometric properties of SNe Ia with and without carbon signatures are compared. A trend toward bluer color and lower luminosity at maximum light is found for objects which show carbon.

  8. UNBURNED MATERIAL IN THE EJECTA OF TYPE Ia SUPERNOVAE

    Energy Technology Data Exchange (ETDEWEB)

    Folatelli, Gaston; Tanaka, Masaomi; Maeda, Keiichi; Nomoto, Ken' ichi [Institute for the Physics and Mathematics of the Universe (IPMU), University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8583 (Japan); Phillips, M. M.; Morrell, Nidia; Campillay, Abdo; Gonzalez, Sergio; Roth, Miguel [Las Campanas Observatory, Carnegie Observatories, Casilla 601, La Serena (Chile); Stritzinger, Maximilian [The Oskar Klein Centre, Department of Astronomy, Stockholm University, AlbaNova, 10691 Stockholm (Sweden); Burns, Christopher R.; Freedman, W. L.; Madore, Barry F; Persson, S. E. [Observatories of the Carnegie Institution of Washington, 813 Santa Barbara St., Pasadena, CA 91101 (United States); Hamuy, Mario [Departamento de Astronomia, Universidad de Chile, Casilla 36-D, Santiago (Chile); Mazzali, Paolo [Max-Planck Institut fuer Astrophysik, Karl-Schwarzschild-Str. 1, 85748 Garching (Germany); Boldt, Luis [Argelander Institut fuer Astronomie, Universitaet Bonn, Auf dem Huegel 71, D-53111 Bonn (Germany); Contreras, Carlos [Centre for Astrophysics and Supercomputing, Swinburne University of Technology, P.O. Box 218, Victoria 3122 (Australia); Salgado, Francisco [Leiden Observatory, Leiden University, P.O. Box 9513, NL-2300 RA Leiden (Netherlands); Suntzeff, Nicholas B., E-mail: gaston.folatelli@ipmu.jp [George P. and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy, Department of Physics and Astronomy, Texas A and M University, College Station, TX 77843 (United States)

    2012-01-20

    The presence of unburned material in the ejecta of normal Type Ia supernovae (SNe Ia) is investigated using early-time spectroscopy obtained by the Carnegie Supernova Project. The tell-tale signature of pristine material from a C+O white dwarf progenitor star is the presence of carbon, as oxygen is also a product of carbon burning. The most prominent carbon lines in optical spectra of SNe Ia are expected to arise from C II. We find that at least 30% of the objects in the sample show an absorption at Almost-Equal-To 6300 A which is attributed to C II {lambda}6580. An alternative identification of this absorption as H{alpha} is considered to be unlikely. These findings imply a larger incidence of carbon in SNe Ia ejecta than previously noted. We show how observational biases and physical conditions may hide the presence of weak C II lines, and account for the scarcity of previous carbon detections in the literature. This relatively large frequency of carbon detections has crucial implications on our understanding of the explosive process. Furthermore, the identification of the 6300 A absorptions as carbon would imply that unburned material is present at very low expansion velocities, merely Almost-Equal-To 1000 km s{sup -1} above the bulk of Si II. Based on spectral modeling, it is found that the detections are consistent with a mass of carbon of 10{sup -3} to 10{sup -2} M{sub Sun }. The presence of this material so deep in the ejecta would imply substantial mixing, which may be related to asymmetries of the flame propagation. Another possible explanation for the carbon absorptions may be the existence of clumps of unburned material along the line of sight. However, the uniformity of the relation between C II and Si II velocities is not consistent with such small-scale asymmetries. The spectroscopic and photometric properties of SNe Ia with and without carbon signatures are compared. A trend toward bluer color and lower luminosity at maximum light is found for

  9. The Broad-Lined Type Ic SN 2012ap and the Nature of Relativistic Supernovae Lacking a Gamma-Ray Burst Detection

    Science.gov (United States)

    Milisavljevic, D.; Margutti, R.; Parrent, J. T.; Soderberg, A. M.; Fesen, R. A.; Mazzali, P.; Maeda, K.; Sanders, N. E.; Cenko, S. B.; Silverman, J. M.

    2014-01-01

    We present ultraviolet, optical, and near-infrared observations of SN2012ap, a broad-lined Type Ic supernova in the galaxy NGC 1729 that produced a relativistic and rapidly decelerating outflow without a gamma-ray burst signature. Photometry and spectroscopy follow the flux evolution from -13 to +272 days past the B-band maximum of -17.4 +/- 0.5 mag. The spectra are dominated by Fe II, O I, and Ca II absorption lines at ejecta velocities of v approx. 20,000 km s(exp. -1) that change slowly over time. Other spectral absorption lines are consistent with contributions from photospheric He I, and hydrogen may also be present at higher velocities (v approx. greater than 27,000 km s(exp. -1)). We use these observations to estimate explosion properties and derive a total ejecta mass of 2.7 Solar mass, a kinetic energy of 1.0×1052 erg, and a (56)Ni mass of 0.1-0.2 Solar mass. Nebular spectra (t > 200 d) exhibit an asymmetric double-peaked [O I] lambda lambda 6300, 6364 emission profile that we associate with absorption in the supernova interior, although toroidal ejecta geometry is an alternative explanation. SN2012ap joins SN2009bb as another exceptional supernova that shows evidence for a central engine (e.g., black-hole accretion or magnetar) capable of launching a non-negligible portion of ejecta to relativistic velocities without a coincident gamma-ray burst detection. Defining attributes of their progenitor systems may be related to notable properties including above-average environmental metallicities of Z approx. greater than Solar Z, moderate to high levels of host-galaxy extinction (E(B -V ) > 0.4 mag), detection of high-velocity helium at early epochs, and a high relative flux ratio of [Ca II]/[O I] > 1 at nebular epochs. These events support the notion that jet activity at various energy scales may be present in a wide range of supernovae.

  10. Relativistic klystrons

    International Nuclear Information System (INIS)

    Allen, M.A.; Azuma, O.; Callin, R.S.

    1989-03-01

    Experimental work is underway by a SLAC-LLNL-LBL collaboration to investigate the feasibility of using relativistic klystrons as a power source for future high gradient accelerators. Two different relativistic klystron configurations have been built and tested to date: a high grain multicavity klystron at 11.4 GHz and a low gain two cavity subharmonic buncher driven at 5.7 GHz. In both configurations power is extracted at 11.4 GHz. In order to understand the basic physics issues involved in extracting RF from a high power beam, we have used both a single resonant cavity and a multi-cell traveling wave structure for energy extraction. We have learned how to overcome our previously reported problem of high power RF pulse shortening, and have achieved peak RF power levels of 170 MW with the RF pulse of the same duration as the beam current pulse. 6 refs., 3 figs., 3 tabs

  11. White dwarf stars exceeding the Chandrasekhar mass limit

    Science.gov (United States)

    Tomaschitz, Roman

    2018-01-01

    The effect of nonlinear ultra-relativistic electron dispersion on the mass-radius relation of high-mass white dwarfs is studied. The dispersion is described by a permeability tensor in the Dirac equation, generated by the ionized high-density stellar matter, which constitutes the neutralizing background of the nearly degenerate electron plasma. The electron dispersion results in a stable mass-radius relation for high-mass white dwarfs, in contrast to a mass limit in the case of vacuum permeabilities. In the ultra-relativistic regime, the dispersion relation is a power law whose amplitude and scaling exponent is inferred from mass and radius estimates of two high-mass white dwarfs, Sirius B and LHS 4033. Evidence for the existence of super-Chandrasekhar mass white dwarfs is provided by several Type Ia supernovae (e.g., SN 2013cv, SN 2003fg, SN 2007if and SN 2009dc), whose mass ejecta exceed the Chandrasekhar limit by up to a factor of two. The dispersive mass-radius relation is used to estimate the radii, central densities, Fermi temperatures, bulk and compression moduli and sound velocities of their white dwarf progenitors.

  12. Gravitation relativiste

    CERN Document Server

    Hakim, Rémi

    1994-01-01

    Il existe à l'heure actuelle un certain nombre de théories relativistes de la gravitation compatibles avec l'expérience et l'observation. Toutefois, la relativité générale d'Einstein fut historiquement la première à fournir des résultats théoriques corrects en accord précis avec les faits.

  13. Relativistic klystron

    International Nuclear Information System (INIS)

    Marks, R.

    1985-09-01

    Theoretical analysis is presented of a relativisic klystron; i.e. a high-relativistic bunched electron beam which is sent through a succession of tuned cavities and has its energy replenished by periodic induction accelerator units. Parameters are given for a full-size device and for an experimental device using the FEL at the ETA; namely the ELF Facility. 6 refs., 2 figs

  14. Static properties of the nucleon octet in a relativistic potential model with center-of-mass correction

    International Nuclear Information System (INIS)

    Barik, N.; Dash, B.K.; Das, M.

    1985-01-01

    The static properties, such as magnetic moment, charge radius, and axial-vector coupling constants, of the quark core of baryons in the nucleon octet have been studied in an independent-quark model based on the Dirac equation with equally mixed scalar-vector potential in harmonic form in the current quark mass limit. The results obtained with the corrections due to center-of-mass motion are in reasonable agreement with experimental values

  15. Impact of ejecta morphology and composition on the electromagnetic signatures of neutron star mergers

    Science.gov (United States)

    Wollaeger, Ryan T.; Korobkin, Oleg; Fontes, Christopher J.; Rosswog, Stephan K.; Even, Wesley P.; Fryer, Christopher L.; Sollerman, Jesper; Hungerford, Aimee L.; van Rossum, Daniel R.; Wollaber, Allan B.

    2018-04-01

    The electromagnetic transients accompanying compact binary mergers (γ-ray bursts, afterglows and 'macronovae') are crucial to pinpoint the sky location of gravitational wave sources. Macronovae are caused by the radioactivity from freshly synthesised heavy elements, e.g. from dynamic ejecta and various types of winds. We study macronova signatures by using multi-dimensional radiative transfer calculations. We employ the radiative transfer code SuperNu and state-of-the art LTE opacities for a few representative elements from the wind and dynamical ejecta (Cr, Pd, Se, Te, Br, Zr, Sm, Ce, Nd, U) to calculate synthetic light curves and spectra for a range of ejecta morphologies. The radioactive power of the resulting macronova is calculated with the detailed input of decay products. We assess the detection prospects for our most complex models, based on the portion of viewing angles that are sufficiently bright, at different cosmological redshifts (z). The brighter emission from the wind is unobscured by the lanthanides (or actinides) in some of the models, permitting non-zero detection probabilities for redshifts up to z = 0.07. We also find the nuclear mass model and the resulting radioactive heating rate are crucial for the detectability. While for the most pessimistic heating rate (from the FRDM model) no reasonable increase in the ejecta mass or velocity, or wind mass or velocity, can possibly make the light curves agree with the observed nIR excess after GRB130603B, a more optimistic heating rate (from the Duflo-Zuker model) leads to good agreement. We conclude that future reliable macronova observations would constrain nuclear heating rates, and consequently help constrain nuclear mass models.

  16. Three-dimensional simulations of the interaction between the nova ejecta, accretion disk, and companion star

    Science.gov (United States)

    Figueira, Joana; José, Jordi; García-Berro, Enrique; Campbell, Simon W.; García-Senz, Domingo; Mohamed, Shazrene

    2018-05-01

    Context. Classical novae are thermonuclear explosions hosted by accreting white dwarfs in stellar binary systems. Material piles up on top of the white dwarf star under mildly degenerate conditions, driving a thermonuclear runaway. The energy released by the suite of nuclear processes operating at the envelope, mostly proton-capture reactions and β+-decays, heats the material up to peak temperatures ranging from 100 to 400 MK. In these events, about 10-3-10-7 M⊙, enriched in CNO and, sometimes, other intermediate-mass elements (e.g., Ne, Na, Mg, and Al) are ejected into the interstellar medium. Aims: To date, most of the efforts undertaken in the modeling of classical nova outbursts have focused on the early stages of the explosion and ejection, ignoring the interaction of the ejecta, first with the accretion disk orbiting the white dwarf and ultimately with the secondary star. Methods: A suite of 3D, smoothed-particle hydrodynamics (SPH) simulations of the interaction between the nova ejecta, accretion disk, and stellar companion were performed to fill this gap; these simulations were aimed at testing the influence of the model parameters—that is, the mass and velocity of the ejecta, mass and the geometry of the accretion disk—on the dynamical and chemical properties of the system. Results: We discuss the conditions that lead to the disruption of the accretion disk and to mass loss from the binary system. In addition, we discuss the likelihood of chemical contamination of the stellar secondary induced by the impact with the nova ejecta and its potential effect on the next nova cycle. Movies showing the full evolution of several models are available online at http://https://www.aanda.org and at http://www.fen.upc.edu/users/jjose/Downloads.html

  17. Relativistic corrections to molecular dynamic dipole polarizabilities

    DEFF Research Database (Denmark)

    Kirpekar, Sheela; Oddershede, Jens; Jensen, Hans Jørgen Aagaard

    1995-01-01

    obtained from the use of the Darwin and mass-velocity operators to first order are included at both levels of approximation. We find that correlation and relativistic contributions are not even approximately additive for the two molecules. The importance of the relativistic corrections is smallest...

  18. Search for and study of the effective mass spectra of nucleon clusters produced in relativistic nucleon collisions

    International Nuclear Information System (INIS)

    Didenko, L.A.; Grishin, V.G.; Kuznetsov, A.A.

    1991-01-01

    The effective mass spectra of nucleon clusters, produced in p, d, He and C collisions with carbon nuclei at P=4.2xA GeV/c are studied. The results obtained show that clusters with proton multiplicity n p =2 and 3 can be interpreted as decay products of nucleon resonances with a width from a few MeV to a few tens MeV. 11 refs.; 6 figs.; 4 tabs

  19. Inclusive large mass muon pair production in ultra-relativistic nucleus-nucleus collisions for colliding beams

    International Nuclear Information System (INIS)

    Roberts, L.E.

    1988-01-01

    For colliding beams of several species of ions we compare thermal to perturbative quantum chromodynamic contributions for inclusive large mass muon pair production by using a hydrodynamic model to estimate the temperatures of the quark-gluon plasma produced by each species. The production of high energy dimuons with M ≅-4 GeV, will be favored energetically by the quark-gluon plasma. 10 refs., 4 figs., 2 tabs

  20. Ordinary Chondrites Viewed as Reassembled 'Splash Ejecta'

    Science.gov (United States)

    Sanders, I. S.

    1995-09-01

    A case has already been made favouring chondrites as re-assembled "splash ejecta" following low velocity collisions between molten planetesimals[1]. Here I briefly review this hypothesis, then develop further arguments in its support. The scenario envisaged may be summarized as follows. Planetesimals grew to radii greater than 30 km in less than 1 Ma after the formation of CAIs, and they were heated rapidly by the decay of 26Al. By 2 Ma each planetesimal had a molten interior insulated by a cool, dusty carapace. Low velocity collisions at this stage released enormous, turbulent, expanding clouds of incandescent spray mixed with dust and solid grains from the carapace. The cloud constituted a rather special, transient nebular environment; as it cooled the melt droplets became chondrules. Much of the cloud's contents re-assembled under gravity onto the surface of the hot, residual planetesimal and the accumulated debris became re-heated and metamorphosed. Collisions recurred over the few million years that relative velocities remained low and planetesimals remained molten. Thus, the cumulative debris contained many recycled and broken chondrules. This scenario is apparently reconcilable with chondrule cooling rates, the preservation of clasts of "planetary" rock in chondrites, the retention of volatiles in chondrules, the preservation of solar chemistry and more than a dozen other features. Is it reasonable to claim that 30 km radius bodies existed by 1 Ma, and were substantially molten by 2 Ma? Cameron[2] argued that CAIs were saved from drifting into the sun by their incorporation, soon after formation, into planetesimals whose mass was sufficient to hold them in orbits, decoupled from the drag of nebular gas. Wetherill's models [3] show that many bodies >100 km radius may have formed on a timescale of 10^5 years. In these terms, the proposed 30 km by 1 Ma is quite conservative. Regarding 26Al heating, the remarkably constant initial ratio of 26Al/27Al (5 x 10

  1. Nonlinear dynamics of the relativistic standard map

    International Nuclear Information System (INIS)

    Nomura, Y.; Ichikawa, Y.H.; Horton, W.

    1991-04-01

    Heating and acceleration of charged particles by RF fields have been extensively investigated by the standard map. The question arises as to how the relativistic effects change the nonlinear dynamical behavior described by the classical standard map. The relativistic standard map is a two parameter (K, Β = ω/kc) family of dynamical systems reducing to the standard map when Β → 0. For Β ≠ 0 the relativistic mass increase suppresses the onset of stochasticity. It shown that the speed of light limits the rate of advance of the phase in the relativistic standard map and introduces KAM surfaces persisting in the high momentum region. An intricate structure of mixing in the higher order periodic orbits and chaotic orbits is analyzed using the symmetry properties of the relativistic standard map. The interchange of the stability of the periodic orbits in the relativistic standard map is also observed and is explained by the local linear stability of the orbits. 12 refs., 16 figs

  2. Earth-based radar and LRO Diviner constraints on the recent rate of lunar ejecta processing

    Science.gov (United States)

    Ghent, Rebecca R.; Hayne, Paul O.; Bandfield, Joshua L.; Campbell, Bruce A.; Carter, Lynn M.; Allen, Carlton

    2013-04-01

    Many large craters on the lunar nearside show radar circular polarization ratio (CPR) signatures consistent with the presence of blocky ejecta blankets, to distances of 0.5 to 1.5 crater radii. However, most of these surfaces show very low surface rock concentration values and only limited enhancements in regolith temperatures calculated from Diviner nighttime infrared observations. Because the radar signal is integrated over the radar penetration depth (up to several meters), but the Diviner signal is sensitive only to rocks within the upper meter of the surface, this indicates that ejecta blocks on the surface and in the shallow subsurface are quickly removed by continued bombardment. Deeper subsurface rocks, which are clearly evident in radar CPR maps but are covered by a sufficiently thick layer of thermally insulating regolith material to render them invisible to Diviner, persist for much longer. By matching the results of one-dimensional thermal models to Diviner nighttime temperatures, we can constrain the thermophysical properties of the upper 1 meter of regolith. We find that Diviner nighttime cooling curves are best fit by a density profile that varies exponentially with depth, consistent with a mixture of rocks and regolith fines, with increasing rock content with depth. Using this density profile together with the surface rock abundance, we can estimate the excess rock mass represented by rocks on the surface and within the upper meter of regolith for individual craters. We find that for craters of known age younger than ~1.7Ga, a robust correlation exists between ejecta mass and crater age, which yields the first observational estimate of the rate of lunar ejecta processing. Our results show that crater ejecta are initially removed very quickly (perhaps up to ~1cm / m.y.), with the rate slowing over a short period of time to less than 1 mm / m.y., as the number of blocks on the surface decreases and the volume of protective regolith material increases

  3. Mineral-produced high-pressure striae and clay polish: Key evidence for nonballistic transport of ejecta from Ries crater

    Science.gov (United States)

    Chao, E.C.T.

    1976-01-01

    Recently discovered mineral-produced, deeply incised striae and mirror-like polish on broken surfaces of limestone fragments from the sedimentary ejecta of the Ries impact crater of southern Germany are described. The striae and polish were produced under high confining pressures during high-velocity nonballistic transport of the ejecta mass within the time span of the cratering event (measured in terms of seconds). The striae on these fragments were produced by scouring by small mineral grains embedded in the surrounding clay matrix, and the polish was formed under the same condition, by movements of relatively fragment-free clay against the fragment surfaces. The occurrence of these striae and polish is key evidence for estimating the distribution and determining the relative importance of nonballistic and ballistic transport of ejecta from the shallow Ries stony meteorite impact crater.

  4. THE BROAD-LINED Type Ic SN 2012ap AND THE NATURE OF RELATIVISTIC SUPERNOVAE LACKING A GAMMA-RAY BURST DETECTION

    Energy Technology Data Exchange (ETDEWEB)

    Milisavljevic, D.; Margutti, R.; Parrent, J. T.; Soderberg, A. M.; Sanders, N. E.; Kamble, A.; Chakraborti, S.; Drout, M. R.; Kirshner, R. P. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Fesen, R. A. [Department of Physics and Astronomy, Dartmouth College, 6127 Wilder Laboratory, Hanover, NH 03755 (United States); Mazzali, P. [Astrophysics Research Institute, Liverpool John Moores University, Liverpool L3 5RF (United Kingdom); Maeda, K. [Department of Astronomy, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto 606-8502 (Japan); Cenko, S. B. [Astrophysics Science Division, NASA Goddard Space Flight Center, Mail Code 661, Greenbelt, MD 20771 (United States); Silverman, J. M. [University of Texas at Austin, 1 University Station C1400, Austin, TX 78712-0259 (United States); Filippenko, A. V. [Department of Astronomy, University of California, Berkeley, CA 94720-3411 (United States); Pickering, T. E. [Southern African Large Telescope, P.O. Box 9, Observatory 7935, Cape Town (South Africa); Kawabata, K. [Hiroshima Astrophysical Science Center, Hiroshima University, Higashi-Hiroshima, Hiroshima 739-8526 (Japan); Hattori, T. [Subaru Telescope, National Astronomical Observatory of Japan, Hilo, HI 96720 (United States); Hsiao, E. Y. [Carnegie Observatories, Las Campanas Observatory, Colina El Pino, Casilla 601 (Chile); Stritzinger, M. D., E-mail: dmilisav@cfa.harvard.edu [Department of Physics and Astronomy, Aarhus University, Ny Munkegade, DK-8000 Aarhus C (Denmark); and others

    2015-01-20

    We present ultraviolet, optical, and near-infrared observations of SN 2012ap, a broad-lined Type Ic supernova in the galaxy NGC 1729 that produced a relativistic and rapidly decelerating outflow without a gamma-ray burst signature. Photometry and spectroscopy follow the flux evolution from –13 to +272 days past the B-band maximum of –17.4 ± 0.5 mag. The spectra are dominated by Fe II, O I, and Ca II absorption lines at ejecta velocities of v ≈ 20,000 km s{sup –1} that change slowly over time. Other spectral absorption lines are consistent with contributions from photospheric He I, and hydrogen may also be present at higher velocities (v ≳ 27,000 km s{sup –1}). We use these observations to estimate explosion properties and derive a total ejecta mass of ∼2.7 M {sub ☉}, a kinetic energy of ∼1.0 × 10{sup 52} erg, and a {sup 56}Ni mass of 0.1-0.2 M {sub ☉}. Nebular spectra (t > 200 days) exhibit an asymmetric double-peaked [O I] λλ6300, 6364 emission profile that we associate with absorption in the supernova interior, although toroidal ejecta geometry is an alternative explanation. SN 2012ap joins SN 2009bb as another exceptional supernova that shows evidence for a central engine (e.g., black hole accretion or magnetar) capable of launching a non-negligible portion of ejecta to relativistic velocities without a coincident gamma-ray burst detection. Defining attributes of their progenitor systems may be related to notable observed properties including environmental metallicities of Z ≳ Z {sub ☉}, moderate to high levels of host galaxy extinction (E(B – V) > 0.4 mag), detection of high-velocity helium at early epochs, and a high relative flux ratio of [Ca II]/[O I] >1 at nebular epochs. These events support the notion that jet activity at various energy scales may be present in a wide range of supernovae.

  5. Localization of relativistic particles

    International Nuclear Information System (INIS)

    Omnes, R.

    1997-01-01

    In order to discuss localization experiments and also to extend the consistent history interpretation of quantum mechanics to relativistic properties, the techniques introduced in a previous paper [J. Math. Phys. 38, 697 (1997)] are applied to the localization of a photon in a given region of space. An essential requirement is to exclude arbitrarily large wavelengths. The method is valid for a particle with any mass and spin. Though there is no proper position operator for a photon, one never needs one in practice. Causality is valid up to exponentially small corrections. copyright 1997 American Institute of Physics

  6. Relativistic quarkonium dynamics

    International Nuclear Information System (INIS)

    Sazdjian, H.

    1985-06-01

    We present, in the framework of relativistic quantum mechanics of two interacting particles, a general model for quarkonium systems satisfying the following four requirements: confinement, spontaneous breakdown of chiral symmetry, soft explicit chiral symmetry breaking, short distance interactions of the vector type. The model is characterized by two arbitrary scalar functions entering in the large and short distance interaction potentials, respectively. Using relationships with corresponding quantities of the Bethe-Salpeter equation, we also present the normalization condition of the wave functions, as well as the expressions of the meson decay coupling constants. The quark masses appear in this model as free parameters

  7. Relativistic Astronomy

    Science.gov (United States)

    Zhang, Bing; Li, Kunyang

    2018-02-01

    The “Breakthrough Starshot” aims at sending near-speed-of-light cameras to nearby stellar systems in the future. Due to the relativistic effects, a transrelativistic camera naturally serves as a spectrograph, a lens, and a wide-field camera. We demonstrate this through a simulation of the optical-band image of the nearby galaxy M51 in the rest frame of the transrelativistic camera. We suggest that observing celestial objects using a transrelativistic camera may allow one to study the astronomical objects in a special way, and to perform unique tests on the principles of special relativity. We outline several examples that suggest transrelativistic cameras may make important contributions to astrophysics and suggest that the Breakthrough Starshot cameras may be launched in any direction to serve as a unique astronomical observatory.

  8. Relativistic magnetohydrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez, Juan; Kovtun, Pavel [Department of Physics and Astronomy, University of Victoria,Victoria, BC, V8P 5C2 (Canada)

    2017-05-02

    We present the equations of relativistic hydrodynamics coupled to dynamical electromagnetic fields, including the effects of polarization, electric fields, and the derivative expansion. We enumerate the transport coefficients at leading order in derivatives, including electrical conductivities, viscosities, and thermodynamic coefficients. We find the constraints on transport coefficients due to the positivity of entropy production, and derive the corresponding Kubo formulas. For the neutral state in a magnetic field, small fluctuations include Alfvén waves, magnetosonic waves, and the dissipative modes. For the state with a non-zero dynamical charge density in a magnetic field, plasma oscillations gap out all propagating modes, except for Alfvén-like waves with a quadratic dispersion relation. We relate the transport coefficients in the “conventional” magnetohydrodynamics (formulated using Maxwell’s equations in matter) to those in the “dual” version of magnetohydrodynamics (formulated using the conserved magnetic flux).

  9. Morphology and Scaling of Ejecta Deposits on Icy Satellites

    Science.gov (United States)

    Schenk, Paul M.; Ridolfi, Francis J.; Bredekamp, Joe (Technical Monitor)

    2002-01-01

    Continuous ejecta deposits on Ganymede consist of two major units, or facies: a thick inner hummocky pedestal facies, and a relatively thin outer radially scoured facies defined also by the inner limit of the secondary crater field. Both ejecta facies have a well-defined power-law relationship to crater diameter for craters ranging from 15 to approx. 600 km across. This relationship can be used to estimate the nominal crater diameter for impact features on icy satellites (such as palimpsests and multiring basins) for which the crater rim is no longer recognizable. Ejecta deposits have also been mapped on 4 other icy satellites. Although morphologically similar to eject deposits on the Moon, ejecta deposits for smaller craters are generally significantly broader in extent on the icy satellites, in apparent defiance of predictions of self-similarity. A greater degree of rim collapse and enlargement on the Moon may explain the observed difference.

  10. Radiatively driven relativistic spherical winds under relativistic radiative transfer

    Science.gov (United States)

    Fukue, J.

    2018-05-01

    We numerically investigate radiatively driven relativistic spherical winds from the central luminous object with mass M and luminosity L* under Newtonian gravity, special relativity, and relativistic radiative transfer. We solve both the relativistic radiative transfer equation and the relativistic hydrodynamical equations for spherically symmetric flows under the double-iteration processes, to obtain the intensity and velocity fields simultaneously. We found that the momentum-driven winds with scattering are quickly accelerated near the central object to reach the terminal speed. The results of numerical solutions are roughly fitted by a relation of \\dot{m}=0.7(Γ _*-1)\\tau _* β _* β _out^{-2.6}, where \\dot{m} is the mass-loss rate normalized by the critical one, Γ* the central luminosity normalized by the critical one, τ* the typical optical depth, β* the initial flow speed at the central core of radius R*, and βout the terminal speed normalized by the speed of light. This relation is close to the non-relativistic analytical solution, \\dot{m} = 2(Γ _*-1)\\tau _* β _* β _out^{-2}, which can be re-expressed as β _out^2/2 = (Γ _*-1)GM/c^2 R_*. That is, the present solution with small optical depth is similar to that of the radiatively driven free outflow. Furthermore, we found that the normalized luminosity (Eddington parameter) must be larger than unity for the relativistic spherical wind to blow off with intermediate or small optical depth, i.e. Γ _* ≳ \\sqrt{(1+β _out)^3/(1-β _out)}. We briefly investigate and discuss an isothermal wind.

  11. Venusian extended ejecta deposits as time-stratigraphic markers

    Science.gov (United States)

    Izenberg, Noam R.

    1992-01-01

    Use of impact crater ejects at time-stratigraphic markers was established during lunar geologic mapping efforts. The basic premise is that the deposition of impact ejecta, either by itself or mixed with impact-excavated material, is superimposed on a surface. The deposit becomes an observable, mappable unit produced in a single instant in geologic time. Up to two-thirds of Venus craters exhibit extended ejecta deposits. A reconnaissance survey of 336 craters (about 40 percent of the total population) was conducted. About half the craters examined were located in and around the Beta-Atla-Themis region, and half were spread over the western hemisphere of the planet. The survey was conducted using primarily C1-MIDR images. The preliminary survey shows: (1) of the 336 craters, 223 were found to have extended ejecta deposits. This proportion is higher than that found in other Venus crater databases by up to a factor of 2. (2) 53 percent of all extended ejecta craters were unambiguously superimposed on all volcanic and tectonic units. Crater Annia Faustina's associated parabolic ejecta deposit is clearly superimposed on volcanic flows coming from Gula Mons to the west. Parabola material from Faustina has covered the lava flows, smoothing the surface and reducing its specific backscatter cross section. The stratigraphy implies that the parabola material is the youngest observable unit in the region. (3) 12 percent of extended ejecta deposits are superimposed by volcanic materials. Crater Hwangcini has extended ejecta that has been covered by volcanic flows from a dome field to the northwest, implying that the volcanic units were emplaced subsequent to the ejecta deposit and are the youngest units in the locality. (4) It is difficult to determine the stratigraphic relationships of the remaining extended ejecta deposits in SAR at C1-MIDR resolution. Examination of higher resolution images and application of the other Magellan datasets in systematic manner should resolve

  12. Balance equations for a relativistic plasma. Pt. 1

    International Nuclear Information System (INIS)

    Hebenstreit, H.

    1983-01-01

    Relativistic power moments of the four-momentum are decomposed according to a macroscopic four-velocity. The thus obtained quantities are identified as relativistic generalization of the nonrelativistic orthogonal moments, e.g. diffusion flow, heat flow, pressure, etc. From the relativistic Boltzmann equation we then derive balance equations for these quantities. Explicit expressions for the relativistic mass conservation, energy balance, pressure balance, heat flow balance are presented. The weak relativistic limit is discussed. The derivation of higher order balance equations is sketched. (orig.)

  13. The Ejecta Evolution of Deep Impact: Insight from Experiments

    Science.gov (United States)

    Hermalyn, B.; Schultz, P. H.; Heineck, J. T.

    2010-12-01

    The Deep Impact (DI) probe impacted comet 9P/Tempel 1 at an angle of ~30° from local horizontal with a velocity of 10.2 km/s. Examination of the resulting ballistic (e.g., non-vapor driven) ejecta revealed phenomena that largely followed expectations from laboratory investigations of oblique impacts into low-density porous material, including a downrange bias, uprange zone of avoidance, and cardioid (curved) rays (Schultz, et al, 2005, 2007). Modeling of the impact based on canonical models and scaling laws (Richardson, et al, 2007) allowed a first-order reconstruction of the event, but did not fully represent the three-dimensional nature of the ejecta flow-field in an oblique impact essential for interpretation of the DI data. In this study, we present new experimental measurements of the early-time ejecta dynamics in oblique impacts that allow a more complete reconstruction of the ballistic ejecta from the impact, including visualization of the DI encounter and predictions for the upcoming re-encounter with Tempel 1. A suite of hypervelocity 30° impact experiments into granular materials was performed at the NASA Ames Vertical Gun Range (AVGR) for the purpose of interpreting the Deep Impact event. A technique based on Particle Tracking Velocimetry (PTV) permitted non-intrusive measurement of the ejecta velocity within the ejecta curtain. The PTV system developed at the AVGR utilizes a laser light sheet projected parallel to the impact surface to illuminate horizontal “slices” of the ejecta curtain that are then recorded by multiple cameras. Particle displacement between successive frames and cameras allows determination of the three-component velocity of the ejecta curtain. Pioneering efforts with a similar technique (Anderson, et al, 2003, 2006) characterized the main-stage ejecta velocity distributions and demonstrated that asymmetries in velocity and ejection angle persist well into the far-field for oblique impacts. In this study, high-speed cameras

  14. The relativistic virial theorem

    International Nuclear Information System (INIS)

    Lucha, W.; Schoeberl, F.F.

    1989-11-01

    The relativistic generalization of the quantum-mechanical virial theorem is derived and used to clarify the connection between the nonrelativistic and (semi-)relativistic treatment of bound states. 12 refs. (Authors)

  15. Crater Ejecta by Day and Night

    Science.gov (United States)

    2004-01-01

    [figure removed for brevity, see original site] Released 24 June 2004 This pair of images shows a crater and its ejecta. Day/Night Infrared Pairs The image pairs presented focus on a single surface feature as seen in both the daytime and nighttime by the infrared THEMIS camera. The nighttime image (right) has been rotated 180 degrees to place north at the top. Infrared image interpretation Daytime: Infrared images taken during the daytime exhibit both the morphological and thermophysical properties of the surface of Mars. Morphologic details are visible due to the effect of sun-facing slopes receiving more energy than antisun-facing slopes. This creates a warm (bright) slope and cool (dark) slope appearance that mimics the light and shadows of a visible wavelength image. Thermophysical properties are seen in that dust heats up more quickly than rocks. Thus dusty areas are bright and rocky areas are dark. Nighttime: Infrared images taken during the nighttime exhibit only the thermophysical properties of the surface of Mars. The effect of sun-facing versus non-sun-facing energy dissipates quickly at night. Thermophysical effects dominate as different surfaces cool at different rates through the nighttime hours. Rocks cool slowly, and are therefore relatively bright at night (remember that rocks are dark during the day). Dust and other fine grained materials cool very quickly and are dark in nighttime infrared images. Image information: IR instrument. Latitude -9, Longitude 164.2 East (195.8 West). 100 meter/pixel resolution. Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project

  16. THE CHEMISTRY OF POPULATION III SUPERNOVA EJECTA. II. THE NUCLEATION OF MOLECULAR CLUSTERS AS A DIAGNOSTIC FOR DUST IN THE EARLY UNIVERSE

    International Nuclear Information System (INIS)

    Cherchneff, Isabelle; Dwek, Eli

    2010-01-01

    We study the formation of molecular precursors to dust in the ejecta of Population III supernovae (Pop. III SNe) using a chemical kinetic approach to follow the evolution of small dust cluster abundances from day 100 to day 1000 after explosion. Our work focuses on zero-metallicity 20 M sun and 170 M sun progenitors, and we consider fully macroscopically mixed and unmixed ejecta. The dust precursors comprise molecular chains, rings, and small clusters of chemical composition relevant to the initial elemental composition of the ejecta under study. The nucleation stage for small silica, metal oxides and sulfides, pure metal, and carbon clusters is described with a new chemical reaction network highly relevant to the kinetic description of dust formation in hot circumstellar environments. We consider the effect of the pressure dependence of critical nucleation rates and test the impact of microscopically mixed He + on carbon dust formation. Two cases of metal depletion on silica clusters (full and no depletion) are considered to derive upper limits to the amounts of dust produced in SN ejecta at 1000 days, while the chemical composition of clusters gives a prescription for the type of dust formed in Pop. III SNe. We show that the cluster mass produced in the fully mixed ejecta of a 170 M sun progenitor is ∼ 25 M sun whereas its 20 M sun counterpart forms ∼ 0.16 M sun of clusters. The unmixed ejecta of a 170 M sun progenitor SN synthesize ∼5.6 M sun of small clusters, while its 20 M sun counterpart produces ∼0.103 M sun . Our results point to smaller amounts of dust formed in the ejecta of Pop. III SNe by a factor of ∼ 5 compared to values derived by previous studies, and to different dust chemical compositions. Such deviations result from some erroneous assumptions made, the inappropriate use of classical nucleation theory to model dust formation, and the omission of the synthesis of molecules in SN ejecta. We also find that the unmixed ejecta of massive Pop

  17. The Chemistry of Population III Supernova Ejecta. II. The Nucleation of Molecular Clusters as a Diagnostic for Dust in the Early Universe

    Science.gov (United States)

    Cherchneff, Isabelle; Dwek, Eli

    2010-04-01

    We study the formation of molecular precursors to dust in the ejecta of Population III supernovae (Pop. III SNe) using a chemical kinetic approach to follow the evolution of small dust cluster abundances from day 100 to day 1000 after explosion. Our work focuses on zero-metallicity 20 M sun and 170 M sun progenitors, and we consider fully macroscopically mixed and unmixed ejecta. The dust precursors comprise molecular chains, rings, and small clusters of chemical composition relevant to the initial elemental composition of the ejecta under study. The nucleation stage for small silica, metal oxides and sulfides, pure metal, and carbon clusters is described with a new chemical reaction network highly relevant to the kinetic description of dust formation in hot circumstellar environments. We consider the effect of the pressure dependence of critical nucleation rates and test the impact of microscopically mixed He+ on carbon dust formation. Two cases of metal depletion on silica clusters (full and no depletion) are considered to derive upper limits to the amounts of dust produced in SN ejecta at 1000 days, while the chemical composition of clusters gives a prescription for the type of dust formed in Pop. III SNe. We show that the cluster mass produced in the fully mixed ejecta of a 170 M sun progenitor is ~ 25 M sun whereas its 20 M sun counterpart forms ~ 0.16 M sun of clusters. The unmixed ejecta of a 170 M sun progenitor SN synthesize ~5.6 M sun of small clusters, while its 20 M sun counterpart produces ~0.103 M sun. Our results point to smaller amounts of dust formed in the ejecta of Pop. III SNe by a factor of ~ 5 compared to values derived by previous studies, and to different dust chemical compositions. Such deviations result from some erroneous assumptions made, the inappropriate use of classical nucleation theory to model dust formation, and the omission of the synthesis of molecules in SN ejecta. We also find that the unmixed ejecta of massive Pop. III SNe

  18. Relativistic Light Sails

    Energy Technology Data Exchange (ETDEWEB)

    Kipping, David, E-mail: dkipping@astro.columbia.edu [Department of Astronomy, Columbia University, 550 W. 120th St., New York, NY 10027 (United States)

    2017-06-01

    One proposed method for spacecraft to reach nearby stars is by accelerating sails using either solar radiation pressure or directed energy. This idea constitutes the thesis behind the Breakthrough Starshot project, which aims to accelerate a gram-mass spacecraft up to one-fifth the speed of light toward Proxima Centauri. For such a case, the combination of the sail’s low mass and relativistic velocity renders previous treatments incorrect at the 10% level, including that of Einstein himself in his seminal 1905 paper introducing special relativity. To address this, we present formulae for a sail’s acceleration, first in response to a single photon and then extended to an ensemble. We show how the sail’s motion in response to an ensemble of incident photons is equivalent to that of a single photon of energy equal to that of the ensemble. We use this principle of ensemble equivalence for both perfect and imperfect mirrors, enabling a simple analytic prediction of the sail’s velocity curve. Using our results and adopting putative parameters for Starshot , we estimate that previous relativistic treatments underestimate the spacecraft’s terminal velocity by ∼10% for the same incident energy. Additionally, we use a simple model to predict the sail’s temperature and diffraction beam losses during the laser firing period; this allows us to estimate that, for firing times of a few minutes and operating temperatures below 300°C (573 K), Starshot will require a sail that absorbs less than one in 260,000 photons.

  19. Relativistic Light Sails

    International Nuclear Information System (INIS)

    Kipping, David

    2017-01-01

    One proposed method for spacecraft to reach nearby stars is by accelerating sails using either solar radiation pressure or directed energy. This idea constitutes the thesis behind the Breakthrough Starshot project, which aims to accelerate a gram-mass spacecraft up to one-fifth the speed of light toward Proxima Centauri. For such a case, the combination of the sail’s low mass and relativistic velocity renders previous treatments incorrect at the 10% level, including that of Einstein himself in his seminal 1905 paper introducing special relativity. To address this, we present formulae for a sail’s acceleration, first in response to a single photon and then extended to an ensemble. We show how the sail’s motion in response to an ensemble of incident photons is equivalent to that of a single photon of energy equal to that of the ensemble. We use this principle of ensemble equivalence for both perfect and imperfect mirrors, enabling a simple analytic prediction of the sail’s velocity curve. Using our results and adopting putative parameters for Starshot , we estimate that previous relativistic treatments underestimate the spacecraft’s terminal velocity by ∼10% for the same incident energy. Additionally, we use a simple model to predict the sail’s temperature and diffraction beam losses during the laser firing period; this allows us to estimate that, for firing times of a few minutes and operating temperatures below 300°C (573 K), Starshot will require a sail that absorbs less than one in 260,000 photons.

  20. Relativistic stars in vector-tensor theories

    Science.gov (United States)

    Kase, Ryotaro; Minamitsuji, Masato; Tsujikawa, Shinji

    2018-04-01

    We study relativistic star solutions in second-order generalized Proca theories characterized by a U (1 )-breaking vector field with derivative couplings. In the models with cubic and quartic derivative coupling, the mass and radius of stars become larger than those in general relativity for negative derivative coupling constants. This phenomenon is mostly attributed to the increase of star radius induced by a slower decrease of the matter pressure compared to general relativity. There is a tendency that the relativistic star with a smaller mass is not gravitationally bound for a low central density and hence is dynamically unstable, but that with a larger mass is gravitationally bound. On the other hand, we show that the intrinsic vector-mode couplings give rise to general relativistic solutions with a trivial field profile, so the mass and radius are not modified from those in general relativity.

  1. General Relativistic Calculations for White Dwarf Stars

    OpenAIRE

    Mathew, Arun; Nandy, Malay K.

    2014-01-01

    The mass-radius relations for white dwarf stars are investigated by solving the Newtonian as well as Tolman-Oppenheimer-Volkoff (TOV) equations for hydrostatic equilibrium assuming the electron gas to be non-interacting. We find that the Newtonian limiting mass of $1.4562M_\\odot$ is modified to $1.4166M_\\odot$ in the general relativistic case for $^4_2$He (and $^{12}_{\\ 6}$C) white dwarf stars. Using the same general relativistic treatment, the critical mass for $^{56}_{26}$Fe white dwarf is ...

  2. The Links Between Target Properties and Layered Ejecta Craters in Acidalia and Utopia Planitiae Mars

    Science.gov (United States)

    Jones, E.; Osinski, G. R.

    2013-08-01

    Layered ejecta craters on Mars may form from excavation into subsurface volatiles. We examine a new catalogue of martian craters to decipher differences between the single- and double-layered ejecta populations in Acidalia and Utopia.

  3. Relativistic entanglement from relativistic quantum mechanics in the rest-frame instant form of dynamics

    International Nuclear Information System (INIS)

    Lusanna, Luca

    2011-01-01

    After a review of the problems induced by the Lorentz signature of Minkowski space-time, like the need of a clock synchronization convention for the definition of 3-space and the complexity of the notion of relativistic center of mass, there is the introduction of a new formulation of relativistic quantum mechanics compatible with the theory of relativistic bound states. In it the zeroth postulate of non-relativistic quantum mechanics is not valid and the physics is described in the rest frame by a Hilbert space containing only relative variables. The non-locality of the Poincare' generators imply a kinematical non-locality and non-separability influencing the theory of relativistic entanglement and not connected with the standard quantum non-locality.

  4. Heavy baryons in the relativistic quark model

    International Nuclear Information System (INIS)

    Ebert, D.; Faustov, R.N.; Galkin, V.O.; Martynenko, A.P.; Saleev, V.A.

    1996-07-01

    In the framework of the relativistic quasipotential quark model the mass spectrum of baryons with two heavy quarks is calculated. The quasipotentials for interactions of two quarks and of a quark with a scalar and axial vector diquark are evaluated. The bound state masses of baryons with J P =1/2 + , 3/2 + are computed. (orig.)

  5. Perturbative determination of mass-dependent renormalization and improvement coefficients for the heavy-light vector and axial-vector currents with relativistic heavy and domain-wall light quarks

    International Nuclear Information System (INIS)

    Yamada, Norikazu; Aoki, Sinya; Kuramashi, Yoshinobu

    2005-01-01

    We determine the mass-dependent renormalization as well as improvement coefficients for the heavy-light vector and axial-vector currents consisting of the relativistic heavy and the domain-wall light quarks through the standard matching procedure. The calculation is carried out perturbatively at the one-loop level to remove the systematic error of O(α s (am Q ) n ap) as well as O(α s (am Q ) n ) (n>=0), where p is a typical momentum scale in the heavy-light system. We point out that renormalization and improvement coefficients of the heavy-light vector current agree with those of the axial-vector current, thanks to the exact chiral symmetry for the light quark. The results obtained with three different gauge actions, plaquette, Iwasaki and DBW2, are presented as a function of heavy quark mass and domain-wall height

  6. Slowly rotating general relativistic superfluid neutron stars with relativistic entrainment

    International Nuclear Information System (INIS)

    Comer, G.L.

    2004-01-01

    Neutron stars that are cold enough should have two or more superfluids or supercondutors in their inner crusts and cores. The implication of superfluidity or superconductivity for equilibrium and dynamical neutron star states is that each individual particle species that forms a condensate must have its own, independent number density current and equation of motion that determines that current. An important consequence of the quasiparticle nature of each condensate is the so-called entrainment effect; i.e., the momentum of a condensate is a linear combination of its own current and those of the other condensates. We present here the first fully relativistic modeling of slowly rotating superfluid neutron stars with entrainment that is accurate to the second-order in the rotation rates. The stars consist of superfluid neutrons, superconducting protons, and a highly degenerate, relativistic gas of electrons. We use a relativistic σ-ω mean field model for the equation of state of the matter and the entrainment. We determine the effect of a relative rotation between the neutrons and protons on a star's total mass, shape, and Kepler, mass-shedding limit

  7. MODELING SNR CASSIOPEIA A FROM THE SUPERNOVA EXPLOSION TO ITS CURRENT AGE: THE ROLE OF POST-EXPLOSION ANISOTROPIES OF EJECTA

    Energy Technology Data Exchange (ETDEWEB)

    Orlando, S.; Miceli, M.; Pumo, M. L.; Bocchino, F., E-mail: orlando@astropa.inaf.it [INAF—Osservatorio Astronomico di Palermo “G.S. Vaiana,” Piazza del Parlamento 1, I-90134 Palermo (Italy)

    2016-05-01

    The remnants of core-collapse supernovae (SNe) have complex morphologies that may reflect asymmetries and structures developed during the progenitor SN explosion. Here we investigate how the morphology of the supernova remnant Cassiopeia A (Cas A) reflects the characteristics of the progenitor SN with the aim of deriving the energies and masses of the post-explosion anisotropies responsible for the observed spatial distribution of Fe and Si/S. We model the evolution of Cas A from the immediate aftermath of the progenitor SN to the three-dimensional interaction of the remnant with the surrounding medium. The post-explosion structure of the ejecta is described by small-scale clumping of material and larger-scale anisotropies. The hydrodynamic multi-species simulations consider an appropriate post-explosion isotopic composition of the ejecta. The observed average expansion rate and shock velocities can be well reproduced by models with ejecta mass M {sub ej} ≈ 4 M {sub ⊙} and explosion energy E {sub SN} ≈ 2.3 × 10{sup 51} erg. The post-explosion anisotropies (pistons) reproduce the observed distributions of Fe and Si/S if they had a total mass of ≈0.25 M {sub ⊙} and a total kinetic energy of ≈1.5 × 10{sup 50} erg. The pistons produce a spatial inversion of ejecta layers at the epoch of Cas A, leading to the Si/S-rich ejecta physically interior to the Fe-rich ejecta. The pistons are also responsible for the development of the bright rings of Si/S-rich material which form at the intersection between the reverse shock and the material accumulated around the pistons during their propagation. Our result supports the idea that the bulk of asymmetries observed in Cas A are intrinsic to the explosion.

  8. Evaporation Induced Oxygen Isotope Fractionation in Impact Ejecta

    Science.gov (United States)

    Macris, C. A.; Young, E. D.; Kohl, I. E.; zur Loye, T. E.

    2017-12-01

    Tektites are natural glasses formed as quenched impact melt ejecta. Because they experienced extreme heating while entrained in a hot impact vapor plume, tektites allow insight into the nature of these ephemeral events, which play a critical role in planetary accretion and evolution. During tektite formation, the chemical and isotopic composition of parent materials may be modified by (1) vapor/liquid fractionation at high T in the plume, (2) incorporation of meteoric water at the target site, (3) isotope exchange with atmospheric oxygen (if present), or some combination of the three. Trends from O isotope studies reveal a dichotomy: some tektite δ18O values are 4.0-4.5‰ lower than their protoliths (Luft et al. 1987; Taylor & Epstein 1962), opposite in direction to a vaporization induced fractionation; increases in δ18O with decreasing SiO2 in tektites (Taylor & Epstein 1969) is consistent with vapor fractionation. Using an aerodynamic levitation laser furnace (e.g. Macris et al. 2016), we can experimentally determine the contributions of processes (1), (2) and (3) above to tektite compositions. We conducted a series of evaporation experiments to test process (1) using powdered tektite fused into 2 mm spheres and heated to 2423-2473 K for 50-90 s while levitated in Ar in the furnace. Mass losses were from 23 to 26%, reflecting evaporation of Si and O from the melt. The starting tektite had a δ18O value of 10.06‰ (±0.01 2se) and the residues ranged from 13.136‰ (±0.006) for the least evaporated residue to 14.30‰ (±0.02) for the most evaporated (measured by laser fluorination). The increase in δ18O with increasing mass loss is consistent with Rayleigh fractionation during evaporation, supporting the idea that O isotopes are fractionated due to vaporization at high T in an impact plume. Because atmospheric O2 and water each have distinctive Δ17O values, we should be able to use departures from our measured three-isotope fractionation law to evaluate

  9. The Three-Dimensional Morphology of VY Canis Majoris. I. The Kinematics of the Ejecta

    Science.gov (United States)

    Humphreys, Roberta M.; Helton, L. Andrew; Jones, Terry J.

    2007-06-01

    Images of the complex circumstellar nebula associated with the famous red supergiant VY CMa show evidence for multiple and asymmetric mass-loss events over the past 1000 yr. Doppler velocities of the arcs and knots in the ejecta show that they are not only spatially distinct but also kinematically separate from the surrounding diffuse material. In this paper we describe second-epoch HST WFPC2 images to measure the transverse motions, which when combined with the radial motions provide a complete picture of the kinematics of the ejecta, including the total space motions and directions of the outflows. Our results show that the arcs and clumps of knots are moving at different velocities, in different directions, and at different angles relative to the plane of the sky and to the star, confirming their origin from eruptions at different times and from physically separate regions on the star. We conclude that the morphology and kinematics of the arcs and knots are consistent with a history of mass ejections not aligned with any presumed axis of symmetry. The arcs and clumps represent relatively massive outflows and ejections of gas very likely associated with large-scale convective activity and magnetic fields. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555.

  10. Rotating relativistic neutron stars

    Energy Technology Data Exchange (ETDEWEB)

    Weber, F.; Glendenning, N.K.

    1991-07-21

    Models of rotating neutron stars are constructed in the framework of Einstein's theory of general relativity. For this purpose a refined version of Hartle's method is applied. The properties of these objects, e.g. gravitational mass, equatorial and polar radius, eccentricity, red- and blueshift, quadrupole moment, are investigated for Kepler frequencies of 4000 s{sup {minus}1} {le} {Omega}{sub K} {le} 9000 s{sup {minus}1}. Therefore a self-consistency problem inherent in the determination of {Omega}{sub K} must be solved. The investigation is based on neutron star matter equations of state derived from the relativistic Martin-Schwinger hierarch of coupled Green's functions. By means of introducing the Hartree, Hartree-Fock, and ladder ({Lambda}) approximations, models of the equation of state derived. A special feature of the latter approximation scheme is the inclusion of dynamical two-particle correlations. These have been calculated from the relativistic T-matrix applying both the HEA and Bonn meson-exchange potentials of the nucleon-nucleon force. The nuclear forces of the former two treatments are those of the standard scalar-vector-isovector model of quantum hadron dynamics, with parameters adjusted to the nuclear matter data. An important aspect of this work consists in testing the compatibility of different competing models of the nuclear equation of state with data on pulsar periods. By this the fundamental problem of nuclear physics concerning the behavior of the equation of state at supernuclear densities can be treated.

  11. Relativistic Linear Restoring Force

    Science.gov (United States)

    Clark, D.; Franklin, J.; Mann, N.

    2012-01-01

    We consider two different forms for a relativistic version of a linear restoring force. The pair comes from taking Hooke's law to be the force appearing on the right-hand side of the relativistic expressions: d"p"/d"t" or d"p"/d["tau"]. Either formulation recovers Hooke's law in the non-relativistic limit. In addition to these two forces, we…

  12. Relativistic quantum logic

    International Nuclear Information System (INIS)

    Mittelstaedt, P.

    1983-01-01

    on the basis of the well-known quantum logic and quantum probability a formal language of relativistic quantum physics is developed. This language incorporates quantum logical as well as relativistic restrictions. It is shown that relativity imposes serious restrictions on the validity regions of propositions in space-time. By an additional postulate this relativistic quantum logic can be made consistent. The results of this paper are derived exclusively within the formal quantum language; they are, however, in accordance with well-known facts of relativistic quantum physics in Hilbert space. (author)

  13. An investigation of relativistic microscopic optical potential in terms of relativistic Brueckner-Bethe-Goldstone equation

    International Nuclear Information System (INIS)

    Chen Baoqiu; Ma Zhongyu

    1992-01-01

    Relativistic microscopic optical potential of nucleon-nucleus is derived from the relativistic Brueckner-Bethe-Goldstone (RBBG) equation. The complex effective mass of a nucleon is determined by a fit to 200 MeV p- 40 Ca scattering data. The relativistic microscopic optical potentials with this effective mass are obtained from RBBG for p- 16O , 40 Ca, 90 Zr and 208 Pb scattering in energy range from 160 to 800 MeV. The microscopic optical potential is used to study the proton- 40 Ca scattering problem at 200 MeV. The results, such as differential cross section, analyzing power and spin rotation function are compared with those calculated from phenomenological relativistic optical potential

  14. X-ray emission due to interaction of SN1987A ejecta with its progenitor's stellar-wind matter

    International Nuclear Information System (INIS)

    Masai, Kuniaki.

    1990-06-01

    The progenitor of the supernova 1987A, Sk-69 202 probably had lost a considerable amount of mass in its stellar wind in the past evolutionary track through a red supergiant to a blue supergiant. In about 10 years, the expanding ejecta of SN1987A will catch up to collide with the wind matter ejected in the red supergiant phase. Shocks due to the collision will heat up the ejecta and the wind matter to cause an enhancement of thermal X-ray emission lasting for several decades. We predict the X-ray light curve and the spectrum as well as the epoch of the enhancement intending to encourage future X-ray observations, which will give a clue for the study of such peculiar stellar evolution with a blueward transition as Sk-69 202. (author)

  15. Radiative bow shock wave (?) driven by nuclear ejecta in a Seyfert galaxy

    International Nuclear Information System (INIS)

    Wilson, A.S.; Ulvestad, J.S.; California Institute of Technology, Pasadena)

    1987-01-01

    New VLA maps at 2 cm of the 13-arcsec-scale linear radio source in the center of NGC 1068 are described. The northeast lobe shows a limb-brightened conical morphology, very sharp leading edges, and a magnetic field running parallel to these edges. The spectral index between 2 and 6 cm in these line-brightened regions is near 1.0. The northeast subpeak has a very steep radio spectrum between 18 and 2 cm which is attributed to inverse Compton losses of the relativistic electrons on the infrared photons. The spectral indices in the southwest lobe lie in the range 0.9-1.5 except in its northern parts, where a much larger index is found. The northeast lobe radio emission could arise in either the cocoon of old jet material which has passed through the internal shock in the ejecta and blown out to either side, or in interstellar material compressed by a bow shock wave driven into the galactic ISM. 45 references

  16. Relativistic quantum mechanics; Mecanique quantique relativiste

    Energy Technology Data Exchange (ETDEWEB)

    Ollitrault, J.Y. [CEA Saclay, 91 - Gif-sur-Yvette (France). Service de Physique Theorique]|[Universite Pierre et Marie Curie, 75 - Paris (France)

    1998-12-01

    These notes form an introduction to relativistic quantum mechanics. The mathematical formalism has been reduced to the minimum in order to enable the reader to calculate elementary physical processes. The second quantification and the field theory are the logical followings of this course. The reader is expected to know analytical mechanics (Lagrangian and Hamiltonian), non-relativistic quantum mechanics and some basis of restricted relativity. The purpose of the first 3 chapters is to define the quantum mechanics framework for already known notions about rotation transformations, wave propagation and restricted theory of relativity. The next 3 chapters are devoted to the application of relativistic quantum mechanics to a particle with 0,1/5 and 1 spin value. The last chapter deals with the processes involving several particles, these processes require field theory framework to be thoroughly described. (A.C.) 2 refs.

  17. Towards relativistic quantum geometry

    Energy Technology Data Exchange (ETDEWEB)

    Ridao, Luis Santiago [Instituto de Investigaciones Físicas de Mar del Plata (IFIMAR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mar del Plata (Argentina); Bellini, Mauricio, E-mail: mbellini@mdp.edu.ar [Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Funes 3350, C.P. 7600, Mar del Plata (Argentina); Instituto de Investigaciones Físicas de Mar del Plata (IFIMAR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mar del Plata (Argentina)

    2015-12-17

    We obtain a gauge-invariant relativistic quantum geometry by using a Weylian-like manifold with a geometric scalar field which provides a gauge-invariant relativistic quantum theory in which the algebra of the Weylian-like field depends on observers. An example for a Reissner–Nordström black-hole is studied.

  18. Relativistic Coulomb Fission

    Science.gov (United States)

    Norbury, John W.

    1992-01-01

    Nuclear fission reactions induced by the electromagnetic field of relativistic nuclei are studied for energies relevant to present and future relativistic heavy ion accelerators. Cross sections are calculated for U-238 and Pu-239 fission induced by C-12, Si-28, Au-197, and U-238 projectiles. It is found that some of the cross sections can exceed 10 b.

  19. Relativistic Shock Acceleration

    International Nuclear Information System (INIS)

    Duffy, P.; Downes, T.P.; Gallant, Y.A.; Kirk, J.G.

    1999-01-01

    In this paper we briefly review the basic theory of shock waves in relativistic hydrodynamics and magneto-hydrodynamics, emphasising some astrophysically interesting cases. We then present an overview of the theory of particle acceleration at such shocks describing the methods used to calculate the spectral indices of energetic particles. Recent results on acceleration at ultra-relativistic shocks are discussed. (author)

  20. Relativistic theory of gravity

    International Nuclear Information System (INIS)

    Logunov, A.A.; Mestvirishvili, M.A.

    1985-01-01

    This work presents an unambiguous construction of the relativistic theory of gravity (RTG) in the framework of relativity and the geometrization principle. The gauge principle has been formulated, and the Lagrangian density of the gravitational field has thus been constructed. This theory explains the totality of the available experimental data on the solar system and predicts the existence of gravitational waves of the Faraday-Maxwell type. According to the RTG, the Universe is infinite and ''flat'', hence it follows that its matter density should be equal to its critical density. Therefore, an appreciable ''hidden mass'' exceeding the presently observed mass of the matter almost 40-fold should exist in the Universe in some form of the matter or other. In accordance with the RTG, a massive body having a finite density ceases to contract under gravitational forces within a finite interval of proper time. From the viewpoint of an external reference frame, the brightness of the body decreases exponentially (it is getting darker), but nothing extraordinary happens in this case because its density always remains finite and, for example, for a body with the mass of about 10 8 M 0 it is equal to 2 g/cm 3 . That is why it follows from the RTG that there could be no object whatsoever (black holes) in which gravitational collapse of matter develops to an infinite density. As has been shown, the presence of a cosmological term necessarily requires the introduction of a term with an explicit dependence on the Minkowski metrics. For the long-range gravitational forces the cosmological constant vanishes

  1. Relativistic Binaries in Globular Clusters

    Directory of Open Access Journals (Sweden)

    Matthew J. Benacquista

    2013-03-01

    Full Text Available Galactic globular clusters are old, dense star systems typically containing 10^4 – 10^6 stars. As an old population of stars, globular clusters contain many collapsed and degenerate objects. As a dense population of stars, globular clusters are the scene of many interesting close dynamical interactions between stars. These dynamical interactions can alter the evolution of individual stars and can produce tight binary systems containing one or two compact objects. In this review, we discuss theoretical models of globular cluster evolution and binary evolution, techniques for simulating this evolution that leads to relativistic binaries, and current and possible future observational evidence for this population. Our discussion of globular cluster evolution will focus on the processes that boost the production of tight binary systems and the subsequent interaction of these binaries that can alter the properties of both bodies and can lead to exotic objects. Direct N-body integrations and Fokker–Planck simulations of the evolution of globular clusters that incorporate tidal interactions and lead to predictions of relativistic binary populations are also discussed. We discuss the current observational evidence for cataclysmic variables, millisecond pulsars, and low-mass X-ray binaries as well as possible future detection of relativistic binaries with gravitational radiation.

  2. Dynamical ejecta from precessing neutron star-black hole mergers with a hot, nuclear-theory based equation of state

    International Nuclear Information System (INIS)

    Foucart, F; Kasen, D; Desai, D; Brege, W; Duez, M D; Hemberger, D A; Scheel, M A; Kidder, L E; Pfeiffer, H P

    2017-01-01

    Neutron star-black hole binaries are among the strongest sources of gravitational waves detectable by current observatories. They can also power bright electromagnetic signals (gamma-ray bursts, kilonovae), and may be a significant source of production of r-process nuclei. A misalignment of the black hole spin with respect to the orbital angular momentum leads to precession of that spin and of the orbital plane, and has a significant effect on the properties of the post-merger remnant and of the material ejected by the merger. We present a first set of simulations of precessing neutron star-black hole mergers using a hot, composition dependent, nuclear-theory based equation of state (DD2). We show that the mass of the remnant and of the dynamical ejecta are broadly consistent with the result of simulations using simpler equations of state, while differences arise when considering the dynamics of the merger and the velocity of the ejecta. We show that the latter can easily be understood from assumptions about the composition of low-density, cold material in the different equations of state, and propose an updated estimate for the ejecta velocity which takes those effects into account. We also present an updated mesh-refinement algorithm which allows us to improve the numerical resolution used to evolve neutron star-black hole mergers. (paper)

  3. Chaos and maps in relativistic rynamical systems

    Directory of Open Access Journals (Sweden)

    L. P. Horwitz

    2000-01-01

    Full Text Available The basic work of Zaslavskii et al showed that the classical non-relativistic electromagnetically kicked oscillator can be cast into the form of an iterative map on the phase space; the resulting evolution contains a stochastic flow to unbounded energy. Subsequent studies have formulated the problem in terms of a relativistic charged particle in interaction with the electromagnetic field. We review the structure of the covariant Lorentz force used to study this problem. We show that the Lorentz force equation can be derived as well from the manifestly covariant mechanics of Stueckelberg in the presence of a standard Maxwell field, establishing a connection between these equations and mass shell constraints. We argue that these relativistic generalizations of the problem are intrinsically inaccurate due to an inconsistency in the structure of the relativistic Lorentz force, and show that a reformulation of the relativistic problem, permitting variations (classically in both the particle mass and the effective “mass” of the interacting electromagnetic field, provides a consistent system of classical equations for describing such processes.

  4. Relativistic theory of gravitation

    International Nuclear Information System (INIS)

    Logunov, A.A.; Mestvirishvili, M.A.

    1986-01-01

    In the present paper a relativistic theory of gravitation (RTG) is unambiguously constructed on the basis of the special relativity and geometrization principle. In this a gravitational field is treated as the Faraday--Maxwell spin-2 and spin-0 physical field possessing energy and momentum. The source of a gravitational field is the total conserved energy-momentum tensor of matter and of a gravitational field in Minkowski space. In the RTG the conservation laws are strictly fulfilled for the energy-moment and for the angular momentum of matter and a gravitational field. The theory explains the whole available set of experiments on gravity. By virtue of the geometrization principle, the Riemannian space in our theory is of field origin, since it appears as an effective force space due to the action of a gravitational field on matter. The RTG leads to an exceptionally strong prediction: The universe is not closed but just ''flat.'' This suggests that in the universe a ''missing mass'' should exist in a form of matter

  5. Relativistic theory of gravitation

    International Nuclear Information System (INIS)

    Logunov, A.A.; Mestvirishvilli, M.A.

    1985-01-01

    In the present paper a relativistic theory of gravitation (RTG) is constructed in a unique way on the basis of the special relativity and geometrization principle. In this, a gravitational field is treated as the Faraday-Maxwell spin-2 and spin-0 physical field possessing energy and momentum. The source of a gravitational field is the total conserved energy-momentum tensor of matter and of a gravitational field in Minkowski space. In the RTG, the conservation laws are strictly fulfilled for the energy-momentum and for the angular momentum of matter and a gravitational field. The theory explains the whole available set of experiments on gravitation. In virtue of the geometrization principle, the Riemannian space in our theory is of field origin, since it appears as an effective force space due to the action of a gravitational field on matter. The RTg leads to an exceptionally strong prediction: The Universe is not closed but just ''flat''. This suggests that in the Universe a ''hidden mass'' should exist in some form of matter

  6. Relativistic gravitation theory

    International Nuclear Information System (INIS)

    Logunov, A.A.; Mestvirishvili, M.A.

    1984-01-01

    On the basis of the special relativity and geometrization principle a relativistic gravitation theory (RGT) is unambiguously constructed with the help of a notion of a gravitational field as a physical field in Faraday-Maxwell spirit, which posesses energy momentum and spins 2 and 0. The source of gravitation field is a total conserved energy-momentum tensor for matter and for gravitation field in Minkowski space. In the RGT conservation laws for the energy momentum and angular momentum of matter and gravitational field hold rigorously. The theory explains the whole set of gravitation experiments. Here, due to the geometrization principle the Riemannian space is of a field origin since this space arises effectively as a result of the gravitation field origin since this space arises effectively as a result of the gravitation field action on the matter. The RGT astonishing prediction is that the Universe is not closed but ''flat''. It means that in the Universe there should exist a ''missing'' mass in some form of matter

  7. Relativistic Kinetic Theory

    Science.gov (United States)

    Vereshchagin, Gregory V.; Aksenov, Alexey G.

    2017-02-01

    Preface; Acknowledgements; Acronyms and definitions; Introduction; Part I. Theoretical Foundations: 1. Basic concepts; 2. Kinetic equation; 3. Averaging; 4. Conservation laws and equilibrium; 5. Relativistic BBGKY hierarchy; 6. Basic parameters in gases and plasmas; Part II. Numerical Methods: 7. The basics of computational physics; 8. Direct integration of Boltzmann equations; 9. Multidimensional hydrodynamics; Part III. Applications: 10. Wave dispersion in relativistic plasma; 11. Thermalization in relativistic plasma; 12. Kinetics of particles in strong fields; 13. Compton scattering in astrophysics and cosmology; 14. Self-gravitating systems; 15. Neutrinos, gravitational collapse and supernovae; Appendices; Bibliography; Index.

  8. Solutions to the relativistic precession model

    NARCIS (Netherlands)

    Ingram, A.; Motta, S.

    2014-01-01

    The relativistic precession model (RPM) can be used to obtain a precise measurement of the mass and spin of a black hole when the appropriate set of quasi-periodic oscillations is detected in the power-density spectrum of an accreting black hole. However, in previous studies, the solution of the RPM

  9. Life near the Roche limit - Behavior of ejecta from satellites close to planets

    Science.gov (United States)

    Dobrovolskis, A. R.; Burns, J. A.

    1980-01-01

    A study of the dynamics of nearby debris from impact craters was made to explain the distinctive features seen on Phobos, Deimis, and Amalthea. The planetary tides and satellite rotation were considered, and the usual pseudo-energy (Jacobi) integral was numerically calculated in the framework of a restricted body problem where satellites are modelled as triaxial ellipsoids rather than point masses. Iso-contours of this integral show that Deimos and Amalthea are entirely closed by Roche lobes, and the surfaces of their model ellipsoids lie nearly along equipotentials. Presently, the surface of Phobos overflows its Roche lobe, except for regions within a few km of the sub-Mars and anti-Mars points. The behavior of crater ejecta from the satellites of Mars were also examined by numerical integration of trajectories for particles leaving their surfaces in the equatorial plane.

  10. The Cretaceous-Paleogene boundary in the shallow northeastern Mexican foreland basins: Evidence for paleoseismic liquefaction, tsunami deposition, and Chicxulub ejecta

    Science.gov (United States)

    Schulte, Peter; Smit, Jan; Deutsch, Alex; Friese, Andrea; Beichel, Kilian

    2010-05-01

    Understanding the depositional sequence and composition of impact ejecta is critical for the interpretation of timing and effects of the Chicxulub impact regarding the mass extinction at the Cretaceous-Paleogene (K-Pg) boundary. Preliminary investigations have shown that the shallow La Popa and Parras foreland basins in northeastern Mexico both feature outstanding and continuous 3D exposures of the Chicxulub ejecta-rich, K-Pg boundary event deposit (Lawton et al., 2005). The m-thick sand-siltstone interval directly underlying the ejecta-rich mass flows shows evidence of slumping and liquefaction, locally leading to complete disorganization and disruption of the pre-impact late Cretaceous sedimentary sequence. The subsequent ejecta-rich sequence consists of an up to one m-thick basal carbonate-rich bed that discontinuously fills a valley-like topography. Besides abundant silicic and carbonate ejecta spherules (up to 50%) that are excellently preserved, this bed includes abundant mollusks and gastropod shells, as well as vertebrate bones and teeth. The conglomeratic bed is overlain by a series of alternating fine- to medium grained calcareous sandstones with shell debris and ejecta that were deposited by repeated currents / mass flow events incorporating varying source areas. Hummocky-cross-stratified strata that mark the return to a normal out-shelf depositional regime conformably overly these sandstones. We interpret this sequence as evidence for presumably seismic-induced sediment liquefaction followed by a series of impact-related tsunami deposits. The specific depositional sequence and Fe-Mg-rich ejecta composition as well as the petrography of the sandstones all closely link the K-Pg boundary sequence in the La Popa and Parras basin to the well-known deep-water K-Pg sites in the Gulf of Mexico (e.g. El Mimbral; Smit et al., 1996; Schulte and Kontny, 2005). Lawton, T.F., et al., 2005, Geology, v. 33, p. 81-84. Smit, J. et al., 1996, GSA Special Paper v. 307, p

  11. Plasma relativistic microwave electronics

    International Nuclear Information System (INIS)

    Kuzelev, M.V.; Loza, O.T.; Rukhadze, A.A.; Strelkov, P.S.; Shkvarunets, A.G.

    2001-01-01

    One formulated the principles of plasma relativistic microwave electronics based on the induced Cherenkov radiation of electromagnetic waves at interaction of a relativistic electron beam with plasma. One developed the theory of plasma relativistic generators and accelerators of microwave radiation, designed and studied the prototypes of such devices. One studied theoretically the mechanisms of radiation, calculated the efficiencies and the frequency spectra of plasma relativistic microwave generators and accelerators. The theory findings are proved by the experiment: intensity of the designed sources of microwave radiation is equal to 500 μW, the frequency of microwave radiation is increased by 7 times (from 4 up to 28 GHz), the width of radiation frequency band may vary from several up to 100%. The designed sources of microwave radiation are no else compared in the electronics [ru

  12. Relativistic multiple scattering X-alpha calculations

    International Nuclear Information System (INIS)

    Chermette, H.; Goursot, A.

    1986-01-01

    The necessity to include self-consistent relativistic corrections in molecular calculations has been pointed out for all compounds involving heavy atoms. Most of the changes in the electronic properties are due to the mass-velocity and the so-called Darwin terms so that the use of Wood and Boring's Hamiltonian is very convenient for this purpose as it can be easily included in MSXalpha programs. Although the spin orbit operator effects are only obtained by perturbation theory, the results compare fairly well with experiment and with other relativistic calculations, namely Hartree-Fock-Slater calculations

  13. Constraints on the cosmological relativistic energy density

    International Nuclear Information System (INIS)

    Zentner, Andrew R.; Walker, Terry P.

    2002-01-01

    We discuss bounds on the cosmological relativistic energy density as a function of redshift, reviewing the big bang nucleosynthesis and cosmic microwave background bounds, updating bounds from large scale structure, and introducing a new bound from the magnitude-redshift relation for type Ia supernovae. We conclude that the standard and well-motivated assumption that relativistic energy is negligible during recent epochs is not necessitated by extant data. We then demonstrate the utility of these bounds by constraining the mass and lifetime of a hypothetical massive big bang relic particle

  14. The relativistic rocket

    Energy Technology Data Exchange (ETDEWEB)

    Antippa, Adel F [Departement de Physique, Universite du Quebec a Trois-Rivieres, Trois-Rivieres, Quebec G9A 5H7 (Canada)

    2009-05-15

    We solve the problem of the relativistic rocket by making use of the relation between Lorentzian and Galilean velocities, as well as the laws of superposition of successive collinear Lorentz boosts in the limit of infinitesimal boosts. The solution is conceptually simple, and technically straightforward, and provides an example of a powerful method that can be applied to a wide range of special relativistic problems of linear acceleration.

  15. Relativistic Quantum Revivals

    International Nuclear Information System (INIS)

    Strange, P.

    2010-01-01

    Quantum revivals are now a well-known phenomena within nonrelativistic quantum theory. In this Letter we display the effects of relativity on revivals and quantum carpets. It is generally believed that revivals do not occur within a relativistic regime. Here we show that while this is generally true, it is possible, in principle, to set up wave packets with specific mathematical properties that do exhibit exact revivals within a fully relativistic theory.

  16. Relativistic viscoelastic fluid mechanics

    International Nuclear Information System (INIS)

    Fukuma, Masafumi; Sakatani, Yuho

    2011-01-01

    A detailed study is carried out for the relativistic theory of viscoelasticity which was recently constructed on the basis of Onsager's linear nonequilibrium thermodynamics. After rederiving the theory using a local argument with the entropy current, we show that this theory universally reduces to the standard relativistic Navier-Stokes fluid mechanics in the long time limit. Since effects of elasticity are taken into account, the dynamics at short time scales is modified from that given by the Navier-Stokes equations, so that acausal problems intrinsic to relativistic Navier-Stokes fluids are significantly remedied. We in particular show that the wave equations for the propagation of disturbance around a hydrostatic equilibrium in Minkowski space-time become symmetric hyperbolic for some range of parameters, so that the model is free of acausality problems. This observation suggests that the relativistic viscoelastic model with such parameters can be regarded as a causal completion of relativistic Navier-Stokes fluid mechanics. By adjusting parameters to various values, this theory can treat a wide variety of materials including elastic materials, Maxwell materials, Kelvin-Voigt materials, and (a nonlinearly generalized version of) simplified Israel-Stewart fluids, and thus we expect the theory to be the most universal description of single-component relativistic continuum materials. We also show that the presence of strains and the corresponding change in temperature are naturally unified through the Tolman law in a generally covariant description of continuum mechanics.

  17. Relativistic viscoelastic fluid mechanics.

    Science.gov (United States)

    Fukuma, Masafumi; Sakatani, Yuho

    2011-08-01

    A detailed study is carried out for the relativistic theory of viscoelasticity which was recently constructed on the basis of Onsager's linear nonequilibrium thermodynamics. After rederiving the theory using a local argument with the entropy current, we show that this theory universally reduces to the standard relativistic Navier-Stokes fluid mechanics in the long time limit. Since effects of elasticity are taken into account, the dynamics at short time scales is modified from that given by the Navier-Stokes equations, so that acausal problems intrinsic to relativistic Navier-Stokes fluids are significantly remedied. We in particular show that the wave equations for the propagation of disturbance around a hydrostatic equilibrium in Minkowski space-time become symmetric hyperbolic for some range of parameters, so that the model is free of acausality problems. This observation suggests that the relativistic viscoelastic model with such parameters can be regarded as a causal completion of relativistic Navier-Stokes fluid mechanics. By adjusting parameters to various values, this theory can treat a wide variety of materials including elastic materials, Maxwell materials, Kelvin-Voigt materials, and (a nonlinearly generalized version of) simplified Israel-Stewart fluids, and thus we expect the theory to be the most universal description of single-component relativistic continuum materials. We also show that the presence of strains and the corresponding change in temperature are naturally unified through the Tolman law in a generally covariant description of continuum mechanics.

  18. Dissipative relativistic hydrodynamics

    International Nuclear Information System (INIS)

    Imshennik, V.S.; Morozov, Yu.I.

    1989-01-01

    Using the comoving reference frame in the general non-inertial case, the relativistic hydrodynamics equations are derived with an account for dissipative effects in the matter. From the entropy production equation, the exact from for the dissipative tensor components is obtained. As a result, the closed system of equations of dissipative relativistic hydrodynamics is obtained in the comoving reference frame as a relativistic generalization of the known Navier-Stokes equations for Lagrange coordinates. Equations of relativistic hydrodynamics with account for dissipative effects in the matter are derived using the assocoated reference system in general non-inertial case. True form of the dissipative tensor components is obtained from entropy production equation. Closed system of equations for dissipative relativistic hydrodynamics is obtained as a result in the assocoated reference system (ARS) - relativistic generalization of well-known Navier-Stokes equations for Lagrange coordinates. Equation system, obtained in this paper for ARS, may be effectively used in numerical models of explosive processes with 10 51 erg energy releases which are characteristic for flashes of supernovae, if white dwarf type compact target suggested as presupernova

  19. Relativistic Spacecraft Propelled by Directed Energy

    Science.gov (United States)

    Kulkarni, Neeraj; Lubin, Philip; Zhang, Qicheng

    2018-04-01

    Achieving relativistic flight to enable extrasolar exploration is one of the dreams of humanity and the long-term goal of our NASA Starlight program. We derive a relativistic solution for the motion of a spacecraft propelled by radiation pressure from a directed energy (DE) system. Depending on the system parameters, low-mass spacecraft can achieve relativistic speeds, thus enabling interstellar exploration. The diffraction of the DE system plays an important role and limits the maximum speed of the spacecraft. We consider “photon recycling” as a possible method to achieving higher speeds. We also discuss recent claims that our previous work on this topic is incorrect and show that these claims arise from an improper treatment of causality.

  20. Interferometric Measurement of Acceleration at Relativistic Speeds

    Energy Technology Data Exchange (ETDEWEB)

    Christian, Pierre; Loeb, Abraham, E-mail: pchristian@cfa.harvard.edu, E-mail: aloeb@cfa.harvard.edu [Astronomy Department, Harvard University, 60 Garden Street, Cambridge, MA 02138 (United States)

    2017-01-10

    We show that an interferometer moving at a relativistic speed relative to a point source of light offers a sensitive probe of acceleration. Such an accelerometer contains no moving parts, and is thus more robust than conventional “mass-on-a-spring” accelerometers. In an interstellar mission to Alpha Centauri, such an accelerometer could be used to measure the masses of exoplanets and their host stars as well as test theories of modified gravity.

  1. Mass spectrum of low-lying baryons in the ground state in a relativistic potential model of independent quarks with chiral symmetry

    International Nuclear Information System (INIS)

    Barik, N.; Dash, B.K.

    1986-01-01

    Under the assumption that baryons are an assembly of independent quarks, confined in a first approximation by an effective potential U(r) = 1/2(1+γ 0 )(ar 2 +V 0 ) which presumably represents the nonperturbative gluon interactions, the mass spectrum of the low-lying ground-state baryons has been calculated by considering perturbatively the contributions of the residual quark-pion coupling arising out of the requirement of chiral symmetry and that of the quark-gluon coupling due to one-gluon exchange over and above the necessary center-of-mass correction. The physical masses of the baryons so obtained agree quite well with the corresponding experimental value. The strong coupling constant α/sub c/ = 0.58 required here to describe the QCD mass splittings is quite consistent with the idea of treating one-gluon-exchange effects in lowest-order perturbation theory

  2. Scale-relativistic cosmology

    International Nuclear Information System (INIS)

    Nottale, Laurent

    2003-01-01

    The principle of relativity, when it is applied to scale transformations, leads to the suggestion of a generalization of fundamental dilations laws. These new special scale-relativistic resolution transformations involve log-Lorentz factors and lead to the occurrence of a minimal and of a maximal length-scale in nature, which are invariant under dilations. The minimal length-scale, that replaces the zero from the viewpoint of its physical properties, is identified with the Planck length l P , and the maximal scale, that replaces infinity, is identified with the cosmic scale L=Λ -1/2 , where Λ is the cosmological constant.The new interpretation of the Planck scale has several implications for the structure and history of the early Universe: we consider the questions of the origin, of the status of physical laws at very early times, of the horizon/causality problem and of fluctuations at recombination epoch.The new interpretation of the cosmic scale has consequences for our knowledge of the present universe, concerning in particular Mach's principle, the large number coincidence, the problem of the vacuum energy density, the nature and the value of the cosmological constant. The value (theoretically predicted ten years ago) of the scaled cosmological constant Ω Λ =0.75+/-0.15 is now supported by several different experiments (Hubble diagram of Supernovae, Boomerang measurements, gravitational lensing by clusters of galaxies).The scale-relativity framework also allows one to suggest a solution to the missing mass problem, and to make theoretical predictions of fundamental energy scales, thanks to the interpretation of new structures in scale space: fractal/classical transitions as Compton lengths, mass-coupling relations and critical value 4π 2 of inverse couplings. Among them, we find a structure at 3.27+/-0.26x10 20 eV, which agrees closely with the observed highest energy cosmic rays at 3.2+/-0.9x10 20 eV, and another at 5.3x10 -3 eV, which corresponds to the

  3. Study of quantum spin correlations of relativistic electron pairs - Testing nonlocality of relativistic quantum mechanics

    International Nuclear Information System (INIS)

    Bodek, K.; Rozpędzik, D.; Zejma, J.; Caban, P.; Rembieliński, J.; Włodarczyk, M.; Ciborowski, J.; Enders, J.; Köhler, A.; Kozela, A.

    2013-01-01

    The Polish-German project QUEST aims at studying relativistic quantum spin correlations of the Einstein-Rosen-Podolsky-Bohm type, through measurement of the correlation function and the corresponding probabilities for relativistic electron pairs. The results will be compared to theoretical predictions obtained by us within the framework of relativistic quantum mechanics, based on assumptions regarding the form of the relativistic spin operator. Agreement or divergence will be interpreted in the context of non-uniqueness of the relativistic spin operator in quantum mechanics as well as dependence of the correlation function on the choice of observables representing the spin. Pairs of correlated electrons will originate from the Mo/ller scattering of polarized 15 MeV electrons provided by the superconducting Darmstadt electron linear accelerator S-DALINAC, TU Darmstadt, incident on a Be target. Spin projections will be determined using the Mott polarimetry technique. Measurements (starting 2013) are planned for longitudinal and transverse beam polarizations and different orientations of the beam polarization vector w.r.t. the Mo/ller scattering plane. This is the first project to study relativistic spin correlations for particles with mass

  4. Relativistic effects in resonance absorption

    International Nuclear Information System (INIS)

    Drake, J.F.; Lee, Y.C.

    1976-01-01

    The role of the relativistic-electron-mass variation in the generation of plasma waves by the linear mode conversion of intense electromagnetic waves is investigated. The increase in the electron mass in high intensity regions of the mode-converted wave reduces the local plasma frequency and thereby strongly modifies the plasma-driver resonance. A spatial discontinuity in the structure of the mode-converted wave results and causes the wave to break. Under rather modest restrictions, the wave breaking resulting from these effects occurs before the wave amplitude is limited either by thermal convection or by breaking caused by previously investigated nonrelativistic effects. Consequently, the amplitude of the mode-converted plasma wave should saturate at a much lower level than previously predicted. For simplicity, the analysis is limited to the initial stages of mode conversion where the ion dynamics can be neglected. The validity of this approximation is discussed

  5. Generation and emplacement of fine-grained ejecta in planetary impacts

    Science.gov (United States)

    Ghent, R.R.; Gupta, V.; Campbell, B.A.; Ferguson, S.A.; Brown, J.C.W.; Fergason, R.L.; Carter, L.M.

    2010-01-01

    We report here on a survey of distal fine-grained ejecta deposits on the Moon, Mars, and Venus. On all three planets, fine-grained ejecta form circular haloes that extend beyond the continuous ejecta and other types of distal deposits such as run-out lobes or ramparts. Using Earth-based radar images, we find that lunar fine-grained ejecta haloes represent meters-thick deposits with abrupt margins, and are depleted in rocks 1cm in diameter. Martian haloes show low nighttime thermal IR temperatures and thermal inertia, indicating the presence of fine particles estimated to range from ???10??m to 10mm. Using the large sample sizes afforded by global datasets for Venus and Mars, and a complete nearside radar map for the Moon, we establish statistically robust scaling relationships between crater radius R and fine-grained ejecta run-out r for all three planets. On the Moon, ???R-0.18 for craters 5-640km in diameter. For Venus, radar-dark haloes are larger than those on the Moon, but scale as ???R-0.49, consistent with ejecta entrainment in Venus' dense atmosphere. On Mars, fine-ejecta haloes are larger than lunar haloes for a given crater size, indicating entrainment of ejecta by the atmosphere or vaporized subsurface volatiles, but scale as R-0.13, similar to the ballistic lunar scaling. Ejecta suspension in vortices generated by passage of the ejecta curtain is predicted to result in ejecta run-out that scales with crater size as R1/2, and the wind speeds so generated may be insufficient to transport particles at the larger end of the calculated range. The observed scaling and morphology of the low-temperature haloes leads us rather to favor winds generated by early-stage vapor plume expansion as the emplacement mechanism for low-temperature halo materials. ?? 2010 Elsevier Inc.

  6. The Cretaceous-Paleogene transition and Chicxulub impact ejecta in the northwestern Gulf of Mexico: Paleoenvironments, sequence stratigraphic setting and target lithologies

    Science.gov (United States)

    Schulte, Peter

    2003-07-01

    The Cretaceous-Paleogene (K-P) transition is characterized by a period of mass extinctions, the Chicxulub impact event, sea-level changes, and considerable climate changes (e.g., cooling). The Gulf of Mexico region is a key area for addressing these issues, specifically because of the proximity to the large Chicxulub impact structure in southern Mexico, and because of its shallow shelf areas throughout the Maastrichtian to Danian period. This study presents the results of a multidisciplinary investigation of Chicxulub impact ejecta and marine sediments from the K-P transition in the western Gulf of Mexico. Sedimentological, mineralogical, and geochemical aspects of K-P sections and cores from northeastern Mexico, Texas, and Alabama have been by studied with focus on Chicxulub ejecta, long- or short-term facies change, and sequence stratigraphic setting. CHICXULUB EJECTA: The Chicxulub ejecta (or impact spherule) deposits from northeastern Mexico and Texas revealed an unexpected complex and localized ejecta composition. Fe-Mg-rich chlorite- as well as Si-Al-K-rich glass-spherules are the predominant silicic ejecta components in northeastern Mexico, whereas in Texas, spherules of Mg-rich smectite compositions were encountered. Spherules contain Fe-Ti-K-rich schlieren, Fe-Mg-rich globules, and rare µm-sized metallic and sulfidic Ni-Co-(Ir-?) rich inclusions. This composition provides evidence for a distinct range of target rocks of mafic to intermediate composition, presumably situated in the northwestern sector of the Chicxulub impact structure, in addition to the possibility of contamination by meteoritic material. The absence of spinels and the ubiquitous presence of hematite and goethite points to high oxygen fugacity during the impact process. Besides these silicic phases, the most prominent ejecta component is carbonate.! Carbonate is found in ejecta deposits as unshocked clasts, accretionary lapilli-like grains, melt globules (often with quenching textures

  7. Infrared Spectroscopic Studies of the Properties of Dust in the Ejecta of Galactic Oxygen-Rich Asymptotic Giant Branch Stars

    Science.gov (United States)

    Sargent, Benjamin A.; Srinivasan, Sundar; Kastner, Joel; Meixner, Margaret; Riley, Allyssa

    2018-06-01

    We are conducting a series of infrared studies of large samples of mass-losing asymptotic giant branch (AGB) stars to explore the relationship between the composition of evolved star ejecta and host galaxy metallicity. Our previous studies focused on mass loss from evolved stars in the relatively low-metallicity Large and Small Magellanic Clouds. In our present study, we analyze dust in the mass-losing envelopes of AGB stars in the Galaxy, with special focus on the ejecta of oxygen-rich (O-rich) AGB stars. We have constructed detailed dust opacity models of AGB stars in the Galaxy for which we have infrared spectra from, e.g., the Spitzer Space Telescope Infrared Spectrograph (IRS). This detailed modeling of dust features in IRS spectra informs our choice of dust properties to use in radiative transfer modeling of the broadband SEDs of Bulge AGB stars. We investigate the effects of dust grain composition, size, shape, etc. on the AGB stars' infrared spectra, studying both the silicate dust and the opacity source(s) commonly attributed to alumina (Al2O3). BAS acknowledges funding from NASA ADAP grant 80NSSC17K0057.

  8. Kinetic analysis of thermally relativistic flow with dissipation

    International Nuclear Information System (INIS)

    Yano, Ryosuke; Suzuki, Kojiro

    2011-01-01

    Nonequilibrium flow of thermally relativistic matter with dissipation is considered in the framework of the relativistic kinetic theory. As an object of the analysis, the supersonic rarefied flow of thermally relativistic matter around the triangle prism is analyzed using the Anderson-Witting model. Obtained numerical results indicate that the flow field changes in accordance with the flow velocity and temperature of the uniform flow owing to both effects derived from the Lorentz contraction and thermally relativistic effects, even when the Mach number of the uniform flow is fixed. The profiles of the heat flux along the stagnation streamline can be approximated on the basis of the relativistic Navier-Stokes-Fourier (NSF) law except for a strong nonequilibrium regime such as the middle of the shock wave and the vicinity of the wall, whereas the profile of the heat flux behind the triangle prism cannot be approximated on the basis of the relativistic NSF law owing to rarefied effects via the expansion behind the triangle prism. Additionally, the heat flux via the gradient of the static pressure is non-negligible owing to thermally relativistic effects. The profile of the dynamic pressure is different from that approximated on the basis of the NSF law, which is obtained by the Eckart decomposition. Finally, variations of convections of the mass and momentum owing to the effects derived from the Lorentz contraction and thermally relativistic effects are numerically confirmed.

  9. Relativistic quantum mechanics

    International Nuclear Information System (INIS)

    Ollitrault, J.Y.

    1998-12-01

    These notes form an introduction to relativistic quantum mechanics. The mathematical formalism has been reduced to the minimum in order to enable the reader to calculate elementary physical processes. The second quantification and the field theory are the logical followings of this course. The reader is expected to know analytical mechanics (Lagrangian and Hamiltonian), non-relativistic quantum mechanics and some basis of restricted relativity. The purpose of the first 3 chapters is to define the quantum mechanics framework for already known notions about rotation transformations, wave propagation and restricted theory of relativity. The next 3 chapters are devoted to the application of relativistic quantum mechanics to a particle with 0,1/5 and 1 spin value. The last chapter deals with the processes involving several particles, these processes require field theory framework to be thoroughly described. (A.C.)

  10. Relativistic solitons and pulsars

    Energy Technology Data Exchange (ETDEWEB)

    Karpman, V I [Inst. of Terrestrial Magnetism, Ionosphere, and Radio-Wave Propagation, Moscow; Norman, C A; ter Haar, D; Tsytovich, V N

    1975-05-01

    A production mechanism for stable electron bunches or sheets of localized electric fields is investigated which may account for pulsar radio emission. Possible soliton phenomena in a one-dimensional relativistic plasma are analyzed, and it is suggested that the motion of a relativistic soliton, or ''relaton'', along a curved magnetic-field line may produce radio emission with the correct polarization properties. A general MHD solution is obtained for relatons, the radiation produced by a relativistic particle colliding with a soliton is evaluated, and the emission by a soliton moving along a curved field line is estimated. It is noted that due to a number of severe physical restrictions, curvature radiation is not a very likely solution to the problem of pulsar radio emission. (IAA)

  11. Relativistic quantum mechanics

    CERN Document Server

    Horwitz, Lawrence P

    2015-01-01

    This book describes a relativistic quantum theory developed by the author starting from the E.C.G. Stueckelberg approach proposed in the early 40s. In this framework a universal invariant evolution parameter (corresponding to the time originally postulated by Newton) is introduced to describe dynamical evolution. This theory is able to provide solutions for some of the fundamental problems encountered in early attempts to construct a relativistic quantum theory. A relativistically covariant construction is given for which particle spins and angular momenta can be combined through the usual rotation group Clebsch-Gordan coefficients. Solutions are defined for both the classical and quantum two body bound state and scattering problems. The recently developed quantum Lax-Phillips theory of semigroup evolution of resonant states is described. The experiment of Lindner and coworkers on interference in time is discussed showing how the property of coherence in time provides a simple understanding of the results. Th...

  12. Relativistic theories of materials

    CERN Document Server

    Bressan, Aldo

    1978-01-01

    The theory of relativity was created in 1905 to solve a problem concerning electromagnetic fields. That solution was reached by means of profound changes in fundamental concepts and ideas that considerably affected the whole of physics. Moreover, when Einstein took gravitation into account, he was forced to develop radical changes also in our space-time concepts (1916). Relativistic works on heat, thermodynamics, and elasticity appeared as early as 1911. However, general theories having a thermodynamic basis, including heat conduction and constitutive equations, did not appear in general relativity until about 1955 for fluids and appeared only after 1960 for elastic or more general finitely deformed materials. These theories dealt with materials with memory, and in this connection some relativistic versions of the principle of material indifference were considered. Even more recently, relativistic theories incorporating finite deformations for polarizable and magnetizable materials and those in which couple s...

  13. Handbook of relativistic quantum chemistry

    International Nuclear Information System (INIS)

    Liu, Wenjian

    2017-01-01

    This handbook focuses on the foundations of relativistic quantum mechanics and addresses a number of fundamental issues never covered before in a book. For instance: How can many-body theory be combined with quantum electrodynamics? How can quantum electrodynamics be interfaced with relativistic quantum chemistry? What is the most appropriate relativistic many-electron Hamiltonian? How can we achieve relativistic explicit correlation? How can we formulate relativistic properties? - just to name a few. Since relativistic quantum chemistry is an integral component of computational chemistry, this handbook also supplements the ''Handbook of Computational Chemistry''. Generally speaking, it aims to establish the 'big picture' of relativistic molecular quantum mechanics as the union of quantum electrodynamics and relativistic quantum chemistry. Accordingly, it provides an accessible introduction for readers new to the field, presents advanced methodologies for experts, and discusses possible future perspectives, helping readers understand when/how to apply/develop the methodologies.

  14. Handbook of relativistic quantum chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wenjian (ed.) [Peking Univ., Beijing (China). Center for Computational Science and Engineering

    2017-03-01

    This handbook focuses on the foundations of relativistic quantum mechanics and addresses a number of fundamental issues never covered before in a book. For instance: How can many-body theory be combined with quantum electrodynamics? How can quantum electrodynamics be interfaced with relativistic quantum chemistry? What is the most appropriate relativistic many-electron Hamiltonian? How can we achieve relativistic explicit correlation? How can we formulate relativistic properties? - just to name a few. Since relativistic quantum chemistry is an integral component of computational chemistry, this handbook also supplements the ''Handbook of Computational Chemistry''. Generally speaking, it aims to establish the 'big picture' of relativistic molecular quantum mechanics as the union of quantum electrodynamics and relativistic quantum chemistry. Accordingly, it provides an accessible introduction for readers new to the field, presents advanced methodologies for experts, and discusses possible future perspectives, helping readers understand when/how to apply/develop the methodologies.

  15. Reconstruction and study of the multi-strange baryons in ultra-relativistic heavy ion collisions at a center-of-mass energy of 200 GeV, with the Star experiment at RHIC

    International Nuclear Information System (INIS)

    Faivre, J.

    2004-10-01

    The study of strangeness production is essential for the understanding of processes occurring in ultra-relativistic heavy ion collisions. Strangeness production is directly linked to the phase of deconfined partons that followed these collisions: the quark and gluon plasma. STAR, one of the 4 experiments at RHIC collider, is a perfect tool for studying the multi-strange Ξ and Ω particles. We have devised a Ξ and Ω reconstruction program using signals from the STAR time projection chamber. We have worked out a multi-variable selection method for extracting the signals from the combinative background: the linear discriminant analysis. We have applied it to Au-Au collisions at 200 GeV (in the center of mass frame) to improve the accuracy of previous results. The Ω and anti-Ω production rates have been obtained for 3 ranges of centrality as well as their radial flow and their kinetic uncoupling temperatures. The gain on the relative uncertainty is between 15 and 30% according to the variable. The average speed of the radial flow is 0.50 ± 0.02 and the kinetic uncoupling temperature is 132 ± 20 MeV which indicates that multi-strange baryons uncouple in hadronic medium earlier that lighter particles like pions, kaons and protons. However, uncertainty intervals remain too broad to draw strong conclusions. (A.C.)

  16. Relativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Barz, H.W.; Kaempfer, B.; Schulz, H.

    1984-12-01

    An elementary introduction is given into the scenario of relativistic heavy ion collisions. It deals with relativistic kinematics and estimates of energy densities, extrapolations of the present knowledge of hadron-hadron and hadron-nuleus to nucleus-nucleus collisions, the properties of the quark-gluon plasma and the formation of the plasma and possible experimental signatures. Comments are made on a cosmic ray experiment which could be interpreted as a first indication of the quark-gluon phase of the matter. (author)

  17. Relativistic particle in a box

    OpenAIRE

    Alberto, P.; Fiolhais, Carlos; Gil, Victor

    1996-01-01

    The problem of a relativistic spin 1/2 particle confined to a one-dimensional box is solved in a way that resembles closely the solution of the well known quantum-mechanical textbook problem of a non-relativistic particle in a box. The energy levels and probability density are computed and compared with the non-relativistic case

  18. On the Velocity of Moving Relativistic Unstable Quantum Systems

    Directory of Open Access Journals (Sweden)

    K. Urbanowski

    2015-01-01

    Full Text Available We study properties of moving relativistic quantum unstable systems. We show that in contrast to the properties of classical particles and quantum stable objects the velocity of freely moving relativistic quantum unstable systems cannot be constant in time. We show that this new quantum effect results from the fundamental principles of the quantum theory and physics: it is a consequence of the principle of conservation of energy and of the fact that the mass of the quantum unstable system is not defined. This effect can affect the form of the decay law of moving relativistic quantum unstable systems.

  19. Nucleon and isobar properties in a relativistic Hartree-Fock calculation with vector Richardson potential and various radial forms for scalar mass terms

    International Nuclear Information System (INIS)

    Dey, J.; Dey, M.; Mukhopadhyay, G.; Samanta, B.C.

    1989-01-01

    Mean field models of the nucleon and the delta are established with the two-quark vector Richardson potential along with various prescriptions for a running quark mass. This is taken to be a one-particle operator in the Dirac-Hartree Fock formalism. An effective density dependent one body potential U(ρ) for quarks at a given density ρ inside the nucleon is derived. It shows an interesting structure. Asymptotic freedom and confinement properties are built-in at high and low densities in U (ρ) and the model dependence is restricted to the intermediate desnsities. (author) [pt

  20. Near-Earth Reconnection Ejecta at Lunar Distances

    Science.gov (United States)

    Runov, A.; Angelopoulos, V.; Artemyev, A.; Lu, S.; Zhou, X.-Z.

    2018-04-01

    Near-Earth magnetotail reconnection leads to formation of earthward and tailward directed plasma outflows with an increased north-south magnetic field strength(|Bz|) at their leading edges. We refer to these regions of enhanced |Bz| and magnetic flux transport Ey as reconnection ejecta. They are composed of what have been previously referred to as earthward dipolarizing flux bundles (DFBs) and tailward rapid flux transport (RFT) events. Using two-point observations of magnetic and electric fields and particle fluxes by the Acceleration, Reconnection, Turbulence, and Electrodynamics of Moon's Interaction with the Sun probes orbiting around Moon at geocentric distances R ˜ 60RE, we statistically studied plasma moments and particle energy spectra in RFTs and compared them with those observed within DFBs in the near-Earth plasma sheet by the Time History of Events and Macroscale Interactions during Substorms probes. We found that the ion average temperatures and spectral slopes in RFTs at R ˜ 60RE are close to those in DFBs observed at 15 balance, the average RFT ion temperature corresponds to a lobe field BL˜20 nT. This leads us to suggest that the ion population within the tailward ejecta originated in the midtail plasma sheet at 20≤R≤30RE and propagated to the Acceleration, Reconnection, Turbulence, and Electrodynamics of Moon's Interaction with the Sun location without undergoing any further energy gain. Conversely, electron temperatures in DFBs at 15 < R < 25RE are a factor of 2.5 higher than those in RFTs at R ˜ 60RE.

  1. MEASURING EJECTA VELOCITY IMPROVES TYPE Ia SUPERNOVA DISTANCES

    International Nuclear Information System (INIS)

    Foley, Ryan J.; Kasen, Daniel

    2011-01-01

    We use a sample of 121 spectroscopically normal Type Ia supernovae (SNe Ia) to show that their intrinsic color is correlated with their ejecta velocity, as measured from the blueshift of the Si II λ6355 feature near maximum brightness, v SiII . The SN Ia sample was originally used by Wang et al. to show that the relationship between color excess and peak magnitude, which in the absence of intrinsic color differences describes a reddening law, was different for two subsamples split by v SiII (defined as 'Normal' and 'High Velocity'). We verify this result, but find that the two subsamples have the same reddening law when extremely reddened events (E(B - V)>0.35 mag) are excluded. We also show that (1) the High-Velocity subsample is offset by ∼0.06 mag to the red from the Normal subsample in the (B max - V max )-M V plane, (2) the B max - V max cumulative distribution functions of the two subsamples have nearly identical shapes, but the High-Velocity subsample is offset by ∼0.07 mag to the red in B max - V max , and (3) the bluest High-Velocity SNe Ia are ∼0.10 mag redder than the bluest Normal SNe Ia. Together, this evidence indicates a difference in intrinsic color for the subsamples. Accounting for this intrinsic color difference reduces the scatter in Hubble residuals from 0.190 mag to 0.130 mag for SNe Ia with A V ∼ V found in large SN Ia samples. We explain the correlation between ejecta velocity and color as increased line blanketing in the High-Velocity SNe Ia, causing them to become redder. We discuss some implications of this result, and stress the importance of spectroscopy for future SN Ia cosmology surveys, with particular focus on the design of WFIRST.

  2. Distal Ejecta from Lunar Impacts: Extensive Regions of Rocky Deposits

    Science.gov (United States)

    Bandfield, Joshua L.; Cahill, Joshua T. S.; Carter, Lynn M.; Neish, Catherine D.; Patterson, G. Wesley; Williams, Jean-Pierre; Paige, David A.

    2016-01-01

    Lunar Reconnaissance Orbiter (LRO) Diviner Radiometer, Mini-RF, and LRO Camera data were used to identify and characterize rocky lunar deposits that appear well separated from any potential source crater. Two regions are described: 1) A approximate 18,000 sq km area with elevated rock abundance and extensive melt ponds and veneers near the antipode of Tycho crater (167.5 deg E, 42.5 deg N). This region has been identified previously, using radar and aging data. 2) A much larger and more diffuse region, covering approximately 730,000 sq km, centered near 310 deg E, 35 deg S, containing elevated rock abundance and numerous granular flow deposits on crater walls. The rock distributions in both regions favor certain slope azimuths over others, indicating a directional component to the formation of these deposits. The spatial distribution of rocks is consistent with the arrival of ejecta from the west and northwest at low angles (approximately 10-30 deg) above the horizon in both regions. The derived age and slope orientations of the deposits indicate that the deposits likely originated as ejecta from the Tycho impact event. Despite their similar origin, the deposits in the two regions show significant differences in the datasets. The Tycho crater antipode deposit covers a smaller area, but the deposits are pervasive and appear to be dominated by impact melts. By contrast, the nearside deposits cover a much larger area and numerous granular flows were triggered. However, the features in this region are less prominent with no evidence for the presence of impact melts. The two regions appear to be surface expressions of a distant impact event that can modify surfaces across wide regions, resulting in a variety of surface morphologies. The Tycho impact event may only be the most recent manifestation of these processes, which likely have played a role in the development of the regolith throughout lunar history

  3. Non-relativistic supersymmetry

    International Nuclear Information System (INIS)

    Clark, T.E.; Love, S.T.

    1984-01-01

    The most general one- and two-body hamiltonian invariant under galilean supersymmetry is constructed in superspace. The corresponding Feynman rules are given for the superfield Green functions. As demonstrated by a simple example, it is straightforward to construct models in which the supersymmetry is spontaneously broken by the non-relativistic vacuum. (orig.)

  4. Relativistic stellar dynamics

    International Nuclear Information System (INIS)

    Contopoulos, G.

    1983-01-01

    In this paper, three main areas of relativistic stellar dynamics are reviewed: (a) The dynamics of clusters, or nuclei of galaxies, of very high density; (b) The dynamics of systems containing a massive black hole; and (c) The dynamics of particles (and photons) in an expanding Universe. The emphasis is on the use of orbit perturbations. (Auth.)

  5. Relativistic Wigner functions

    Directory of Open Access Journals (Sweden)

    Bialynicki-Birula Iwo

    2014-01-01

    Full Text Available Original definition of the Wigner function can be extended in a natural manner to relativistic domain in the framework of quantum field theory. Three such generalizations are described. They cover the cases of the Dirac particles, the photon, and the full electromagnetic field.

  6. The Relativistic Rocket

    Science.gov (United States)

    Antippa, Adel F.

    2009-01-01

    We solve the problem of the relativistic rocket by making use of the relation between Lorentzian and Galilean velocities, as well as the laws of superposition of successive collinear Lorentz boosts in the limit of infinitesimal boosts. The solution is conceptually simple, and technically straightforward, and provides an example of a powerful…

  7. Relativistic Polarizable Embedding

    DEFF Research Database (Denmark)

    Hedegård, Erik Donovan; Bast, Radovan; Kongsted, Jacob

    2017-01-01

    Most chemistry, including chemistry where relativistic effects are important, occurs in an environment, and in many cases, this environment has a significant effect on the chemistry. In nonrelativistic quantum chemistry, a lot of progress has been achieved with respect to including environments s...

  8. Relativistic length agony continued

    Directory of Open Access Journals (Sweden)

    Redžić D.V.

    2014-01-01

    Full Text Available We made an attempt to remedy recent confusing treatments of some basic relativistic concepts and results. Following the argument presented in an earlier paper (Redžić 2008b, we discussed the misconceptions that are recurrent points in the literature devoted to teaching relativity such as: there is no change in the object in Special Relativity, illusory character of relativistic length contraction, stresses and strains induced by Lorentz contraction, and related issues. We gave several examples of the traps of everyday language that lurk in Special Relativity. To remove a possible conceptual and terminological muddle, we made a distinction between the relativistic length reduction and relativistic FitzGerald-Lorentz contraction, corresponding to a passive and an active aspect of length contraction, respectively; we pointed out that both aspects have fundamental dynamical contents. As an illustration of our considerations, we discussed briefly the Dewan-Beran-Bell spaceship paradox and the ‘pole in a barn’ paradox. [Projekat Ministarstva nauke Republike Srbije, br. 171028

  9. Relativistic Coulomb excitation

    International Nuclear Information System (INIS)

    Winther, A.; Alder, K.

    1979-01-01

    Coulomb excitation of both target and projectile in relativistic heavy ion collisions is evaluated including the lowest order correction for the deviation from a straight line trajectory. Explicit results for differential and total cross sections are given in the form of tables and figures. (Auth.)

  10. Fundamental Relativistic Rotator

    International Nuclear Information System (INIS)

    Staruszkiewicz, A.

    2008-01-01

    Professor Jan Weyssenhoff was Myron Mathisson's sponsor and collaborator. He introduced a class of objects known in Cracow as '' kreciolki Weyssenhoffa '', '' Weyssenhoff's rotating little beasts ''. The Author describes a particularly simple object from this class. The relativistic rotator described in the paper is such that its both Casimir invariants are parameters rather than constants of motion. (author)

  11. Relativistic quantum thermodynamics of ideal gases in two dimensions.

    Science.gov (United States)

    Blas, H; Pimentel, B M; Tomazelli, J L

    1999-11-01

    In this work we study the behavior of relativistic ideal Bose and Fermi gases in two space dimensions. Making use of polylogarithm functions we derive a closed and unified expression for their densities. It is shown that both type of gases are essentially inequivalent, and only in the non-relativistic limit the spinless and equal mass Bose and Fermi gases are equivalent as known in the literature.

  12. Relativistic Quantum Thermodynamics of Ideal Gases in 2 Dimensions

    OpenAIRE

    Blas, H.; Pimentel, B. M.; Tomazelli, J. L.

    1999-01-01

    In this work we study the behavior of relativistic ideal Bose and Fermi gases in two space dimensions. Making use of polylogarithm functions we derive a closed and unified expression for their densities. It is shown that both type of gases are essentially inequivalent, and only in the non-relativistic limit the spinless and equal mass Bose and Fermi gases are equivalent as known in the literature.

  13. Persistent X-Ray Emission from ASASSN-15lh: Massive Ejecta and Pre-SLSN Dense Wind?

    Science.gov (United States)

    Huang, Yan; Li, Zhuo

    2018-06-01

    The persistent soft X-ray emission from the location of the most luminous supernova (SN) so far, ASASSN-15lh (or SN 2015L), with L∼ {10}42 {erg} {{{s}}}-1, is puzzling. We show that it can be explained by radiation from electrons accelerated by the SN shock inverse-Compton scattering the intense UV photons. The non-detection in radio requires strong free–free absorption in the dense medium. In these interpretations, the circumstellar medium is derived to be a wind (n ∝ R ‑2) with mass-loss rate of \\dot{{M}}≳ 3× {10}-3{{M}}ȯ ({{v}}{{w}}/{10}3 {{k}}{{m}} {{{s}}}-1) {{{y}}{{r}}}-1, and the initial velocity of the bulk SN ejecta is ≲ 0.02c. These constraints imply a massive ejecta mass of ≳ 60({E}0/2× {10}52 {erg}){M}ȯ in ASASSN-15lh, and a strong wind ejected by the progenitor star within ∼ 8{({v}{{w}}/{10}3{km}{{{s}}}-1)}-1 yr before explosion.

  14. Relativistic Quantum Mechanics

    International Nuclear Information System (INIS)

    Antoine, J-P

    2004-01-01

    The aim of relativistic quantum mechanics is to describe the finer details of the structure of atoms and molecules, where relativistic effects become nonnegligible. It is a sort of intermediate realm, between the familiar nonrelativistic quantum mechanics and fully relativistic quantum field theory, and thus it lacks the simplicity and elegance of both. Yet it is a necessary tool, mostly for quantum chemists. Pilkuhn's book offers to this audience an up-to-date survey of these methods, which is quite welcome since most previous textbooks are at least ten years old. The point of view of the author is to start immediately in the relativistic domain, following the lead of Maxwell's equations rather than classical mechanics, and thus to treat the nonrelativistic version as an approximation. Thus Chapter 1 takes off from Maxwell's equations (in the noncovariant Coulomb gauge) and gradually derives the basic aspects of Quantum Mechanics in a rather pedestrian way (states and observables, Hilbert space, operators, quantum measurement, scattering,. Chapter 2 starts with the Lorentz transformations, then continues with the Pauli spin equation and the Dirac equation and some of their applications (notably the hydrogen atom). Chapter 3 is entitled 'Quantum fields and particles', but falls short of treating quantum field theory properly: only creation/annihilation operators are considered, for a particle in a box. The emphasis is on two-electron states (the Pauli principle, the Foldy--Wouthuysen elimination of small components of Dirac spinors, Breit projection operators. Chapter 4 is devoted to scattering theory and the description of relativistic bound states. Chapter 5, finally, covers hyperfine interactions and radiative corrections. As we said above, relativistic quantum mechanics is by nature limited in scope and rather inelegant and Pilkuhn's book is no exception. The notation is often heavy (mostly noncovariant) and the mathematical level rather low. The central topic

  15. The Electromagnetic Counterpart of the Binary Neutron Star Merger LIGO/Virgo GW170817. III. Optical and UV Spectra of a Blue Kilonova from Fast Polar Ejecta

    Energy Technology Data Exchange (ETDEWEB)

    Nicholl, M.; Berger, E.; Kasen, D.; Metzger, B. D.; Elias, J.; Briceño, C.; Alexander, K. D.; Blanchard, P. K.; Chornock, R.; Cowperthwaite, P. S.; Eftekhari, T.; Fong, W.; Margutti, R.; Villar, V. A.; Williams, P. K. G.; Brown, W.; Annis, J.; Bahramian, A.; Brout, D.; Brown, D. A.; Chen, H. -Y.; Clemens, J. C.; Dennihy, E.; Dunlap, B.; Holz, D. E.; Marchesini, E.; Massaro, F.; Moskowitz, N.; Pelisoli, I.; Rest, A.; Ricci, F.; Sako, M.; Soares-Santos, M.; Strader, J.

    2017-10-16

    We present optical and ultraviolet spectra of the first electromagnetic counterpart to a gravitational wave (GW) source, the binary neutron star merger GW170817. Spectra were obtained nightly between 1.5 and 9.5 days post-merger, using the SOAR and Magellan telescopes; the UV spectrum was obtained with the \\textit{Hubble Space Telescope} at 5.5 days. Our data reveal a rapidly-fading blue component ($T\\approx5500$ K at 1.5 days) that quickly reddens; spectra later than $\\gtrsim 4.5$ days peak beyond the optical regime. The spectra are mostly featureless, although we identify a possible weak emission line at $\\sim 7900$ \\AA\\ at $t\\lesssim 4.5$ days. The colours, rapid evolution and featureless spectrum are consistent with a "blue" kilonova from polar ejecta comprised mainly of light $r$-process nuclei with atomic mass number $A\\lesssim 140$. This indicates a sight-line within $\\theta_{\\rm obs}\\lesssim 45^{\\circ}$ of the orbital axis. Comparison to models suggests $\\sim0.03$ M$_\\odot$ of blue ejecta, with a velocity of $\\sim 0.3c$. The required lanthanide fraction is $\\sim 10^{-4}$, but this drops to $<10^{-5}$ in the outermost ejecta. The large velocities point to a dynamical origin, rather than a disk wind, for this blue component, suggesting that both binary constituents are neutron stars (as opposed to a binary consisting of a neutron star and a black hole). For dynamical ejecta, the high mass favors a small neutron star radius of $\\lesssim 12$ km. This mass also supports the idea that neutron star mergers are a major contributor to $r$-process nucleosynthesis.

  16. Relativistic thermodynamics of Fluids. l

    International Nuclear Information System (INIS)

    Havas, P.; Swenson, R.J.

    1979-01-01

    In 1953, Stueckelberg and Wanders derived the basic laws of relativistic linear nonequilibrium thermodynamics for chemically reacting fluids from the relativistic local conservation laws for energy-momentum and the local laws of production of substances and of nonnegative entropy production by the requirement that the corresponding currents (assumed to depend linearly on the derivatives of the state variables) should not be independent. Generalizing their method, we determine the most general allowed form of the energy-momentum tensor T/sup alphabeta/ and of the corresponding rate of entropy production under the same restriction on the currents. The problem of expressing this rate in terms of thermodynamic forces and fluxes is discussed in detail; it is shown that the number of independent forces is not uniquely determined by the theory, and seven possibilities are explored. A number of possible new cross effects are found, all of which persist in the Newtonian (low-velocity) limit. The treatment of chemical reactions is incorporated into the formalism in a consistent manner, resulting in a derivation of the law for rate of production, and in relating this law to transport processes differently than suggested previously. The Newtonian limit is discussed in detail to establish the physical interpretation of the various terms of T/sup alphabeta/. In this limit, the interpretation hinges on that of the velocity field characterizing the fluid. If it is identified with the average matter velocity following from a consideration of the number densities, the usual local conservation laws of Newtonian nonequilibrium thermodynamics are obtained, including that of mass. However, a slightly different identification allows conversion of mass into energy even in this limit, and thus a macroscopic treatment of nuclear or elementary particle reactions. The relation of our results to previous work is discussed in some detail

  17. Multiple electromagnetic excitations of relativistic projectiles

    International Nuclear Information System (INIS)

    Llope, W.J.; Braun-Munzinger, P.

    1992-01-01

    Conditions optimum for the first experimental verification of the multiplication electromagnetic excitations of nuclei in relativistic nucleus-nucleus collisions are described. The relative magnitudes of three important physical processes that might interfere with such a measurement are compared to the predicted strengths for the single and multiple electromagnetic excitations for various choices of the projectile mass and beam energy. Strategies are presented for making inferences concerning the presence of multiple excitation strength in experimental data

  18. Relativistic impulse approximation and deuteron spin structure

    International Nuclear Information System (INIS)

    Tokarev, M.V.

    1992-01-01

    The fragmentation processes were considered of tensor- and vector-polarized deuterons to protons in the framework of the covariant approach in the light cone variables on the basis of the relativistic deuteron wave function with one nucleon on-mass shell. The experimental verification of predicted dependences of T 20 and K is of interest for the research of the momentum and spin distributions of high momentum deuteron constituents. 21 refs.; 6 figs

  19. Geomorphology and Geology of the Southwestern Margaritifer Sinus and Argyre Regions of Mars. Part 4: Flow Ejecta Crater Distribution

    Science.gov (United States)

    Parker, T. J.; Pieri, D. C.

    1985-01-01

    Flow ejecta craters - craters surrounded by lobate ejecta blankets - are found throughout the study area. The ratio of the crater's diameter to that of the flow ejecta in this region is approximately 40 to 45%. Flow ejecta craters are dominantly sharply defined craters, with slightly degraded craters being somewhat less common. This is probably indicative of the ejecta's relatively low resistence to weathering and susceptibility to burial. Flow ejecta craters here seem to occur within a narrow range of crater sizes - the smallest being about 4km in diameter and the largest being about 27km in diameter. Ejecta blankets of craters at 4km are easily seen and those of smaller craters are simply not seen even in images with better than average resolution for the region. This may be due to the depth of excavation of small impacting bodies being insufficient to reach volatile-rich material. Flow ejecta craters above 24km are rare, and those craters above 27km do not display flow ejecta blankets. This may be a result of an excavation depth so great that the volatile content of the ejecta is insufficient to form a fluid ejecta blanket. The geomorphic/geologic unit appears also to play an important role in the formation of flow ejecta craters. Given the typical size range for the occurrence of flow ejecta craters for most units, it can be seen that the percentage of flow ejecta craters to the total number of craters within this size range varies significantly from one unit to the next. The wide variance in flow ejecta crater density over this relatively small geographical area argues strongly for a lithologic control of their distribution.

  20. Quasi-relativistic fermions and dynamical flavour oscillations

    CERN Document Server

    Alexandre, Jean; Mavromatos, Nick E.

    2014-01-01

    We introduce new Lorentz-symmetry violating kinematics for a four-fermion interaction model, where dynamical mass generation is allowed, irrespectively of the strength of the coupling. In addition, these kinematics lead to a quasi-relativistic dispersion relation, in the sense that it is relativistic in both the infrared and the ultraviolet, but not in an intermediate regime, characterized by the mass $M$. For two fermions, we show that a flavour-mixing mass matrix is generated dynamically, and the Lorentz symmetric limit $M\\to\\infty$ leads to two free relativistic fermions, with flavour oscillations. This model, valid for either Dirac or Majorana fermions, can describe any set of phenomenological values for the eigen masses and the mixing angle.

  1. Mass

    International Nuclear Information System (INIS)

    Quigg, Chris

    2007-01-01

    In the classical physics we inherited from Isaac Newton, mass does not arise, it simply is. The mass of a classical object is the sum of the masses of its parts. Albert Einstein showed that the mass of a body is a measure of its energy content, inviting us to consider the origins of mass. The protons we accelerate at Fermilab are prime examples of Einsteinian matter: nearly all of their mass arises from stored energy. Missing mass led to the discovery of the noble gases, and a new form of missing mass leads us to the notion of dark matter. Starting with a brief guided tour of the meanings of mass, the colloquium will explore the multiple origins of mass. We will see how far we have come toward understanding mass, and survey the issues that guide our research today.

  2. Relativistic effects on large amplitude nonlinear Langmuir waves in a two-fluid plasma

    International Nuclear Information System (INIS)

    Nejoh, Yasunori

    1994-07-01

    Large amplitude relativistic nonlinear Langmuir waves are analyzed by the pseudo-potential method. The existence conditions for nonlinear Langmuir waves are confirmed by considering relativistic high-speed electrons in a two-fluid plasma. The significant feature of this investigation is that the propagation of nonlinear Langmuir waves depends on the ratio of the electron streaming velocity to the velocity of light, the normalized potential and the ion mass to electron mass ratio. The constant energy is determined by the specific range of the relativistic effect. In the non-relativistic limit, large amplitude relativistic Langmuir waves do not exist. The present investigation predicts new findings of large amplitude nonlinear Langmuir waves in space plasma phenomena in which relativistic electrons are important. (author)

  3. Report of seminar on relativistic approach to nuclear reaction and nuclear structure

    International Nuclear Information System (INIS)

    1986-05-01

    A seminar on 'Relativistic Approach to Nuclear Reaction and Nuclear Structure' was held in 1985 at Osaka University. This booklet includes twenty-four reports given at the seminar, which deal with: Conventional Nonrelativistic Description of Nuclear Matter and Nuclear Spin-Orbit Interactions; Relativistic Approach to Nuclear Structure; Atomic and Molecular Structure Calculations; Electromagnetic Interaction in Nucleus and Relativistic Effect; Nuclear Magnetic Moment in the Relativistic Mean Field Theory, Effective Mass and Particle-Vibration Coupling in the Relativistic σ-ω Model; Gauge Invariance in Relativistic Many-Body Theory; Relativistic Description of Nucleon-Nucleon Interaction in Review; σ-Particle in NN Interaction; Nuclear Optical Potentials Based on the Brueckner-Hartree-Fock Approach; Elastic Backscattering and Optical Potential; Description of Intermediate-Energy Nuclear Reactions; Dirac Phenomenology at E(p) = 65 MeV; Relativistic Impulse Approximation; Reaction Studies with Intermediate Energy Deuterons at SATURNE; Folding Model for Intermediate-Energy Deutron Scattering; Folding Model for Polarized Deutron Scattering at 700 MeV; Dirac Approach Problems and a Different Viewpoint; Relativistic Approach and EMC Effect; Quasielastic Electron Scattering; Response Function of Quasielastic Electron Scattering; Relativistic Hartree Response Function for Quasielastic Electron Scattering on 12 C and 40 Ca; Backflow-, Retardation- and Relativistic Effects on the Longitudinal Response Function of Nuclear Matter; Pion-Photoproduction in the σ-ω Model. (Nogami, K.)

  4. Mechanism of 238U disintegration induced by relativistic particles

    International Nuclear Information System (INIS)

    Andronenko, L.N.; Zhdanov, A.A.; Kravtsov, A.V.; Solyakin, G.E.

    2002-01-01

    In heavy-nucleus disintegration induced by a relativistic projectile particle, the production of collinear massive fragments accompanied by numerous charged particles and neutrons is explained in terms of the mechanism of projectile-momentum compensation due to the emission of a particle whose mass is greater than the projectile mass

  5. The relativistic gravity train

    Science.gov (United States)

    Seel, Max

    2018-05-01

    The gravity train that takes 42.2 min from any point A to any other point B that is connected by a straight-line tunnel through Earth has captured the imagination more than most other applications in calculus or introductory physics courses. Brachystochron and, most recently, nonlinear density solutions have been discussed. Here relativistic corrections are presented. It is discussed how the corrections affect the time to fall through Earth, the Sun, a white dwarf, a neutron star, and—the ultimate limit—the difference in time measured by a moving, a stationary and the fiducial observer at infinity if the density of the sphere approaches the density of a black hole. The relativistic gravity train can serve as a problem with approximate and exact analytic solutions and as numerical exercise in any introductory course on relativity.

  6. Relativistic gravitational instabilities

    International Nuclear Information System (INIS)

    Schutz, B.F.

    1987-01-01

    The purpose of these lectures is to review and explain what is known about the stability of relativistic stars and black holes, with particular emphases on two instabilities which are due entirely to relativistic effects. The first of these is the post-Newtonian pulsational instability discovered independently by Chandrasekhar (1964) and Fowler (1964). This effectively ruled out the then-popular supermassive star model for quasars, and it sets a limit to the central density of white dwarfs. The second instability was also discovered by Chandrasekhar (1970): the gravitational wave induced instability. This sets an upper bound on the rotation rate of neutron stars, which is near that of the millisecond pulsar PSR 1937+214, and which is beginning to constrain the equation of state of neutron matter. 111 references, 5 figures

  7. Relativistic studies in actinides

    International Nuclear Information System (INIS)

    Weinberger, P.; Gonis, A.

    1987-01-01

    In this review the theoretical background is given for a relativistic description for actinide systems. A short introduction is given of the density functional theory which forms the basis for a fully relativistic single-particle theory. A section on the Dirac Hamiltonian is followed by a brief summary on group theoretical concepts. Single site scattering is presented such that formal extensions to the case of the presence of an internal (external) magnetic field and/or anisotropic scattering are evident. Multiple scattering is discussed such that it can readily be applied also to the problem of dislocations. In connection with the problem of selfconsistency particular attention is drawn to the use of complex energies. Finally the various theoretical aspects discussed are illustrated through the results of numerical calculations. 101 refs.; 37 figs.; 5 tabs

  8. Relativistic charged Bose gas

    International Nuclear Information System (INIS)

    Hines, D.F.; Frankel, N.E.

    1979-01-01

    The charged Bose has been previously studied as a many body problem of great intrinsic interest which can also serve as a model of some real physical systems, for example, superconductors, white dwarf stars and neutron stars. In this article the excitation spectrum of a relativistic spin-zero charged Bose gas is obtained in a dielectric response formulation. Relativity introduces a dip in the spectrum and consequences of this dip for the thermodynamic functions are discussed

  9. Relativistic heavy ion reactions

    Energy Technology Data Exchange (ETDEWEB)

    Brink, D M

    1989-08-01

    The theory of quantum chromodynamics predicts that if nuclear matter is heated to a sufficiently high temperature then quarks might become deconfined and a quark-gluon plasma could be produced. One of the aims of relativistic heavy ion experiments is to search for this new state of matter. These lectures survey some of the new experimental results and give an introduction to the theories used to interpret them. 48 refs., 4 tabs., 11 figs.

  10. Relativistic heavy ion reactions

    International Nuclear Information System (INIS)

    Brink, D.M.

    1989-08-01

    The theory of quantum chromodynamics predicts that if nuclear matter is heated to a sufficiently high temperature then quarks might become deconfined and a quark-gluon plasma could be produced. One of the aims of relativistic heavy ion experiments is to search for this new state of matter. These lectures survey some of the new experimental results and give an introduction to the theories used to interpret them. 48 refs., 4 tabs., 11 figs

  11. Computer simulations of large asteroid impacts into oceanic and continental sites--preliminary results on atmospheric, cratering and ejecta dynamics

    Science.gov (United States)

    Roddy, D.J.; Schuster, S.H.; Rosenblatt, M.; Grant, L.B.; Hassig, P.J.; Kreyenhagen, K.N.

    1987-01-01

    Computer simulations have been completed that describe passage of a 10-km-diameter asteroid through the Earth's atmosphere and the subsequent cratering and ejecta dynamics caused by impact of the asteroid into both oceanic and continental sites. The asteroid was modeled as a spherical body moving vertically at 20 km/s with a kinetic energy of 2.6 ?? 1030 ergs (6.2 ?? 107 Mt ). Detailed material modeling of the asteroid, ocean, crustal units, sedimentary unit, and mantle included effects of strength and fracturing, generic asteroid and rock properties, porosity, saturation, lithostatic stresses, and geothermal contributions, each selected to simulate impact and geologic conditions that were as realistic as possible. Calculation of the passage of the asteroid through a U.S. Standard Atmosphere showed development of a strong bow shock wave followed by a highly shock compressed and heated air mass. Rapid expansion of this shocked air created a large low-density region that also expanded away from the impact area. Shock temperatures in air reached ???20,000 K near the surface of the uplifting crater rim and were as high as ???2000 K at more than 30 km range and 10 km altitude. Calculations to 30 s showed that the shock fronts in the air and in most of the expanding shocked air mass preceded the formation of the crater, ejecta, and rim uplift and did not interact with them. As cratering developed, uplifted rim and target material were ejected into the very low density, shock-heated air immediately above the forming crater, and complex interactions could be expected. Calculations of the impact events showed equally dramatic effects on the oceanic and continental targets through an interval of 120 s. Despite geologic differences in the targets, both cratering events developed comparable dynamic flow fields and by ???29 s had formed similar-sized transient craters ???39 km deep and ???62 km across. Transient-rim uplift of ocean and crust reached a maximum altitude of nearly

  12. Recent progresses in relativistic beam-plasma instability theory

    Directory of Open Access Journals (Sweden)

    A. Bret

    2010-11-01

    Full Text Available Beam-plasma instabilities are a key physical process in many astrophysical phenomena. Within the fireball model of Gamma ray bursts, they first mediate a relativistic collisionless shock before they produce upstream the turbulence needed for the Fermi acceleration process. While non-relativistic systems are usually governed by flow-aligned unstable modes, relativistic ones are likely to be dominated by normally or even obliquely propagating waves. After reviewing the basis of the theory, results related to the relativistic kinetic regime of the poorly-known oblique unstable modes will be presented. Relevant systems besides the well-known electron beam-plasma interaction are presented, and it is shown how the concept of modes hierarchy yields a criterion to assess the proton to electron mass ratio in Particle in cell simulations.

  13. Glass Spherules in Badenian Siliciclastics and Carbonates of N. Croatia, Possible Ries Crater Distal Ejecta

    Science.gov (United States)

    Calogovic, M.; Marjanac, T.; Fazinic, S.; Sremac, J.; Bosnjak, M.; Bosak, L.

    2017-07-01

    We have found glass spherules in Badenian sediments at three locations in Northern Croatia that are good candidates for Ries Crater distal ejecta. Their chemical composition generally fits the composition of suevite glass.

  14. Geology of Southern Quintana Roo (Mexico) and the Chicxulub Ejecta Blanket

    Science.gov (United States)

    Schönian, F.; Tagle, R.; Stöffler, D.; Kenkmann, T.

    2005-03-01

    In southern Quintana Roo (Mexico) the Chicxulub ejecta blanket is discontinuously filling a karstified pre-KT land surface. This suggests a completely new scenario for the geological evolution of the southern Yucatán Peninsula.

  15. Microimpact phenomena on Australasian microtektites: Implications for ejecta plume characteristics and lunar surface processes

    Digital Repository Service at National Institute of Oceanography (India)

    ShyamPrasad, M.; Sudhakar, M.

    . The microimpacts are a consequence of interparticle collisions within the ejecta plume (as suggested by their chemistry) subsequent to a major impact and, therefore, reveal processes inherent in an impact-generated plume. All the impact phenomena observed here have...

  16. Overview of the Chicxulub impactite and proximal ejecta

    Science.gov (United States)

    Claeys, Ph

    2003-04-01

    Several types of impactites have now been recovered from the various wells drilled in the Chicxulub crater in Yucatan. The old Pemex wells (Yucatan 6 and Chicxulub 1) contain a highly heterogeneous and stratified suevite, which upper unit is unusually rich in carbonates, impact breccia and a possibly an impact melt at the very bottom of C1. They are located towards the crater center (C1), on the flank of the peak ring (Y6). The thickness of impactite in this zone exceeds 250 m. The UNAM wells just outside the crater rim reveal sedimentary breccia and a fall-out suevite richer in silicate melt and basement fragments, than its crater equivalent. There, the thickness of the impactite was probably several hundred meters, considering that its top might have been eroded. It can also be speculated that a cover of fall-back suevite extended over the ejecta blanket in Yucatan, all the way to Belize and perhaps even to the region of Tabasco, in Southern Mexico. The recently drilled Yaxcopoil contains about 100 m of impactites, which is currently under study. Preliminary data seem to show less variability than the material recovered from Y6. As in the UNAM well, the impactite is dominated by basement material, and shows alternating severely altered and better preserved horizons.

  17. Relativistic nuclear physics with the spectator model

    International Nuclear Information System (INIS)

    Gross, F.

    1988-01-01

    The spectator model, a general approach to the relativistic treatment of nuclear physics problems in which spectators to nuclear interactions are put on their mass-shell, will be defined nd described. The approach grows out of the relativistic treatment of two and three body systems in which one particle is off-shell, and recent numerical results for the NN interaction will be presented. Two meson-exchange models, one with only 4 mesons (π, σ, /rho/, ω) but with a 25% admixture of γ 5 coupling for the pion, and a second with 6 mesons (π, σ, /rho/, ω, δ, and /eta/) but a pure γ 5 γ/sup mu/ pion coupling, are shown to give very good quantitative fits to NN scattering phase shifts below 400 MeV, and also a good description of the /rho/ 40 Cα elastic scattering observables. 19 refs., 6 figs., 1 tab

  18. Relativistic theory of tidal Love numbers

    International Nuclear Information System (INIS)

    Binnington, Taylor; Poisson, Eric

    2009-01-01

    In Newtonian gravitational theory, a tidal Love number relates the mass multipole moment created by tidal forces on a spherical body to the applied tidal field. The Love number is dimensionless, and it encodes information about the body's internal structure. We present a relativistic theory of Love numbers, which applies to compact bodies with strong internal gravities; the theory extends and completes a recent work by Flanagan and Hinderer, which revealed that the tidal Love number of a neutron star can be measured by Earth-based gravitational-wave detectors. We consider a spherical body deformed by an external tidal field, and provide precise and meaningful definitions for electric-type and magnetic-type Love numbers; and these are computed for polytropic equations of state. The theory applies to black holes as well, and we find that the relativistic Love numbers of a nonrotating black hole are all zero.

  19. Preflow stresses in Martian rampart ejecta blankets - A means of estimating the water content

    Science.gov (United States)

    Woronow, A.

    1981-01-01

    Measurements of extents of rampart ejecta deposits as a function of the size of the parent craters support models which, for craters larger than about 6 km diameter, constrain ejecta blankets to all have a similar maximum thickness regardless of the crater size. These volatile-rich ejecta blankets may have failed under their own weights, then flowed radially outward. Assuming this to be so, some of the physicomechanical properties of the ejecta deposits at the time of their emplacement can then be determined. Finite-element studies of the stress magnitudes, distributions, and directions in hypothetical Martian rampart ejecta blankets reveal that the material most likely failed when the shear stresses were less than 500 kPa and the angle of internal friction was between 26 and 36 deg. These figures imply that the ejecta has a water content between 16 and 72%. Whether the upper limit or the lower limit is more appropriate depends on the mode of failure which one presumes: namely, viscous flow of plastic deformation.

  20. Experiments with stored relativistic exotic nuclei

    International Nuclear Information System (INIS)

    Klepper, O.; Attallah, F.; Beckert, K.; Bosch, F.; Dolinskiy, A.; Eickhoff, H.; Franczak, B.; Franzke, B.; Geissel, H.; Hausmann, M.; Hellstroem, M.; Herfurth, F.; Kluge, H.-J.; Kozhuharov, C.; Muenzenberg, G.; Nolden, F.; Quint, W.; Tradon, T.; Reich, H.; Scheidenberger, C.; Schlitt, B.; Steck, M.; Suemmerer, K.; Vermeeren, L.; Winkler, M.; Winkler, Th.; Falch, M.; Kerscher, Th.; Loebner, K.E.G.; Fujita, Y.; Novikov, Yu.; Patyk, Z.; Stadlmann, J.; Wollnik, H.

    1999-01-01

    Beams of relativistic exotic nuclei were produced, separated and investigated with the combination of the fragment separator FRS and the storage ring ESR. The following experiments are presented: 1) Direct mass measurements of relativistic nickel and bismuth projectile fragments were performed using Schottky spectrometry. Applying electron cooling, the relative velocity spread of the circulating secondary nuclear beams of low intensity was reduced to below 10 -6 . The achieved mass resolving power of m/Δm = 6.5·10 5 (FWHM) in recent measurements represents an improvement by a factor of two compared to authors' previous experiments. The previously unknown masses of more than 100 proton-rich isotopes have been measured in the range of 54≤Z≤84. The results are compared with mass models and estimated values based on extrapolations of experimental values. 2) Exotic nuclei with half-lives shorter than the time required for electron cooling can be investigated by time-of-flight measurements with the ESR being operated in the isochronous mode. This novel experimental technique has been successfully applied in a first measurement with nickel fragments. A mass resolving power of m/Δm = 1.5·10 5 (FWHM) was achieved in this mode of operation. 3) Nuclear half-lives of stored and cooled bare projectile fragments have been measured to study the influence of the ionic charge state on the beta-decay probability

  1. Dynamics of Large-Scale Solar-Wind Streams Obtained by the Double Superposed Epoch Analysis: 2. Comparisons of CIRs vs. Sheaths and MCs vs. Ejecta

    Science.gov (United States)

    Yermolaev, Y. I.; Lodkina, I. G.; Nikolaeva, N. S.; Yermolaev, M. Y.

    2017-12-01

    This work is a continuation of our previous article (Yermolaev et al. in J. Geophys. Res. 120, 7094, 2015), which describes the average temporal profiles of interplanetary plasma and field parameters in large-scale solar-wind (SW) streams: corotating interaction regions (CIRs), interplanetary coronal mass ejections (ICMEs including both magnetic clouds (MCs) and ejecta), and sheaths as well as interplanetary shocks (ISs). As in the previous article, we use the data of the OMNI database, our catalog of large-scale solar-wind phenomena during 1976 - 2000 (Yermolaev et al. in Cosmic Res., 47, 2, 81, 2009) and the method of double superposed epoch analysis (Yermolaev et al. in Ann. Geophys., 28, 2177, 2010a). We rescale the duration of all types of structures in such a way that the beginnings and endings for all of them coincide. We present new detailed results comparing pair phenomena: 1) both types of compression regions ( i.e. CIRs vs. sheaths) and 2) both types of ICMEs (MCs vs. ejecta). The obtained data allow us to suggest that the formation of the two types of compression regions responds to the same physical mechanism, regardless of the type of piston (high-speed stream (HSS) or ICME); the differences are connected to the geometry ( i.e. the angle between the speed gradient in front of the piston and the satellite trajectory) and the jumps in speed at the edges of the compression regions. In our opinion, one of the possible reasons behind the observed differences in the parameters in MCs and ejecta is that when ejecta are observed, the satellite passes farther from the nose of the area of ICME than when MCs are observed.

  2. Relativistic Outflows from ADAFs

    Science.gov (United States)

    Becker, Peter; Subramanian, Prasad; Kazanas, Demosthenes

    2001-04-01

    Advection-dominated accretion flows (ADAFs) have a positive Bernoulli parameter, and are therefore gravitationally bound. The Newtonian ADAF model has been generalized recently to obtain the ADIOS model that includes outflows of energy and angular momentum, thereby allowing accretion to proceed self-consistently. However, the utilization of a Newtonian gravitational potential limits the ability of this model to describe the inner region of the disk, where any relativistic outflows are likely to originate. In this paper we modify the ADIOS scenario to incorporate a seudo - Newtonian potential, which approximates the effects of general relativity. The analysis yields a unique, self - similar solution for the structure of the coupled disk/wind system. Interesting features of the new solution include the relativistic character of the outflow in the vicinity of the radius of marginal stability, which represents the inner edge of the quasi-Keplerian disk in our model. Our self - similar model may therefore help to explain the origin of relativistic jets in active galaxies. At large distances the radial dependence of the accretion rate approachs the unique form dot M ∝ r^1/2, with an associated density variation given by ρ ∝ r-1. This density variation agrees with that implied by the dependence of the X-ray hard time lags on the Fourier frequency for a number of accreting galactic black hole candidates. While intriguing, the results of our self-similar model need to be confirmed in the future by incorporating a detailed physical description of the energization mechanism that drives the outflow, which is likely to be powered by the shear of the underlying accretion disk.

  3. Relativistic twins or sextuplets?

    International Nuclear Information System (INIS)

    Sheldon, Eric

    2003-01-01

    A recent study of the relativistic twin 'paradox' by Soni in this journal affirmed that 'A simple solution of the twin paradox also shows anomalous behaviour of rigidly connected distant clocks' but entailed a pedagogic hurdle which the present treatment aims to surmount. Two scenarios are presented: the first 'flight-plan' is akin to that depicted by Soni, with constant-velocity segments, while the second portrays an alternative mission undertaken with sustained acceleration and deceleration, illustrated quantitatively for a two-way spacecraft flight from Earth to Polaris (465.9 light years distant) and back

  4. Relativistic twins or sextuplets?

    CERN Document Server

    Sheldon, E S

    2003-01-01

    A recent study of the relativistic twin 'paradox' by Soni in this journal affirmed that 'A simple solution of the twin paradox also shows anomalous behaviour of rigidly connected distant clocks' but entailed a pedagogic hurdle which the present treatment aims to surmount. Two scenarios are presented: the first 'flight-plan' is akin to that depicted by Soni, with constant-velocity segments, while the second portrays an alternative mission undertaken with sustained acceleration and deceleration, illustrated quantitatively for a two-way spacecraft flight from Earth to Polaris (465.9 light years distant) and back.

  5. Relativistic quantum cryptography

    Science.gov (United States)

    Kaniewski, Jedrzej

    Special relativity states that information cannot travel faster than the speed of light, which means that communication between agents occupying distinct locations incurs some minimal delay. Alternatively, we can see it as temporary communication constraints between distinct agents and such constraints turn out to be useful for cryptographic purposes. In relativistic cryptography we consider protocols in which interactions occur at distinct locations at well-defined times and we investigate why such a setting allows to implement primitives which would not be possible otherwise. (Abstract shortened by UMI.).

  6. Relativistic distances, sizes, lengths

    International Nuclear Information System (INIS)

    Strel'tsov, V.N.

    1992-01-01

    Such notion as light or retarded distance, field size, formation way, visible size of a body, relativistic or radar length and wave length of light from a moving atom are considered. The relation between these notions is cleared up, their classification is given. It is stressed that the formation way is defined by the field size of a moving particle. In the case of the electromagnetic field, longitudinal sizes increase proportionally γ 2 with growing charge velocity (γ is the Lorentz-factor). 18 refs

  7. Relativistic wave mechanics

    CERN Document Server

    Corinaldesi, Ernesto

    1963-01-01

    Geared toward advanced undergraduate and graduate students of physics, this text provides readers with a background in relativistic wave mechanics and prepares them for the study of field theory. The treatment originated as a series of lectures from a course on advanced quantum mechanics that has been further amplified by student contributions.An introductory section related to particles and wave functions precedes the three-part treatment. An examination of particles of spin zero follows, addressing wave equation, Lagrangian formalism, physical quantities as mean values, translation and rotat

  8. Proton relativistic model

    International Nuclear Information System (INIS)

    Araujo, Wilson Roberto Barbosa de

    1995-01-01

    In this dissertation, we present a model for the nucleon, which is composed by three relativistic quarks interacting through a contract force. The nucleon wave-function was obtained from the Faddeev equation in the null-plane. The covariance of the model under kinematical null-plane boots is discussed. The electric proton form-factor, calculated from the Faddeev wave-function, was in agreement with the data for low-momentum transfers and described qualitatively the asymptotic region for momentum transfers around 2 GeV. (author)

  9. Relativistic nuclear collisions: theory

    International Nuclear Information System (INIS)

    Gyulassy, M.

    1980-07-01

    Some of the recent theoretical developments in relativistic (0.5 to 2.0-GeV/nucleon) nuclear collisions are reviewed. The statistical model, hydrodynamic model, classical equation of motion calculations, billiard ball dynamics, and intranuclear cascade models are discussed in detail. Inclusive proton and pion spectra are analyzed for a variety of reactions. Particular attention is focused on how the complex interplay of the basic reaction mechanism hinders attempts to deduce the nuclear matter equation of state from data. 102 references, 19 figures

  10. [Relativistic heavy ion research

    International Nuclear Information System (INIS)

    1991-01-01

    The present document describes our second-year application for a continuation grant on relativistic heavy-ion research at Nevis Laboratories, Columbia University, over the two-year period starting from November 15, 1990. The progress during the current budget year is presented. This year, construction of RHIC officially began. As a result, the entire Nevis nuclear physics group has made a coherent effort to create new proposal for an Open Axially Symmetric Ion Spectrometer (OASIS) proposal. Future perspectives and our plans for this proposal are described

  11. The fully relativistic foundation of linear transfer theory in electron optics based on the Dirac equation

    NARCIS (Netherlands)

    Ferwerda, H.A.; Hoenders, B.J.; Slump, C.H.

    The fully relativistic quantum mechanical treatment of paraxial electron-optical image formation initiated in the previous paper (this issue) is worked out and leads to a rigorous foundation of the linear transfer theory. Moreover, the status of the relativistic scaling laws for mass and wavelength,

  12. Kadomtsev-Petviashvili solitons propagation in a plasma system with superthermal and weakly relativistic effects

    International Nuclear Information System (INIS)

    Hafeez-Ur-Rehman; Mahmood, S.; Shah, Asif; Haque, Q.

    2011-01-01

    Two dimensional (2D) solitons are studied in a plasma system comprising of relativistically streaming ions, kappa distributed electrons, and positrons. Kadomtsev-Petviashvili (KP) equation is derived through the reductive perturbation technique. Analytical solution of the KP equation has been studied numerically and graphically. It is noticed that kappa parameters of electrons and positrons as well as the ions relativistic streaming factor have an emphatic influence on the structural as well as propagation characteristics of two dimensional solitons in the considered plasma system. Our results may be helpful in the understanding of soliton propagation in astrophysical and laboratory plasmas, specifically the interaction of pulsar relativistic wind with supernova ejecta and the transfer of energy to plasma by intense electric field of laser beams producing highly energetic superthermal and relativistic particles [L. Arons, Astrophys. Space Sci. Lib. 357, 373 (2009); P. Blasi and E. Amato, Astrophys. Space Sci. Proc. 2011, 623; and A. Shah and R. Saeed, Plasma Phys. Controlled Fusion 53, 095006 (2011)].

  13. Relativistic approach to nuclear structure

    International Nuclear Information System (INIS)

    Nguyen Van Giai; Bouyssy, A.

    1987-03-01

    Some recent works related with relativistic models of nuclear structure are briefly reviewed. The Dirac-Hartree-Fock and Dirac-Brueckner-Hartree-Fock are recalled and illustrated by some examples. The problem of isoscalar current and magnetic moments of odd nuclei is discussed. The application of the relativistic model to the nuclear response function is examined

  14. Relativistic non-Hamiltonian mechanics

    International Nuclear Information System (INIS)

    Tarasov, Vasily E.

    2010-01-01

    Relativistic particle subjected to a general four-force is considered as a nonholonomic system. The nonholonomic constraint in four-dimensional space-time represents the relativistic invariance by the equation for four-velocity u μ u μ + c 2 = 0, where c is the speed of light in vacuum. In the general case, four-forces are non-potential, and the relativistic particle is a non-Hamiltonian system in four-dimensional pseudo-Euclidean space-time. We consider non-Hamiltonian and dissipative systems in relativistic mechanics. Covariant forms of the principle of stationary action and the Hamilton's principle for relativistic mechanics of non-Hamiltonian systems are discussed. The equivalence of these principles is considered for relativistic particles subjected to potential and non-potential forces. We note that the equations of motion which follow from the Hamilton's principle are not equivalent to the equations which follow from the variational principle of stationary action. The Hamilton's principle and the principle of stationary action are not compatible in the case of systems with nonholonomic constraint and the potential forces. The principle of stationary action for relativistic particle subjected to non-potential forces can be used if the Helmholtz conditions are satisfied. The Hamilton's principle and the principle of stationary action are equivalent only for a special class of relativistic non-Hamiltonian systems.

  15. Charm mass corrections to the bottomonium mass spectrum

    International Nuclear Information System (INIS)

    Ebert, D.; Faustov, R. N.; Galkin, V. O.

    2002-01-01

    The one-loop corrections to the bottomonium mass spectrum due to the finite charm mass are evaluated in the framework of the relativistic quark model. The obtained corrections are compared with the results of perturbative QCD

  16. Three-Dimensional General-Relativistic Magnetohydrodynamic Simulations of Remnant Accretion Disks from Neutron Star Mergers: Outflows and r-Process Nucleosynthesis.

    Science.gov (United States)

    Siegel, Daniel M; Metzger, Brian D

    2017-12-08

    The merger of binary neutron stars, or of a neutron star and a stellar-mass black hole, can result in the formation of a massive rotating torus around a spinning black hole. In addition to providing collimating media for γ-ray burst jets, unbound outflows from these disks are an important source of mass ejection and rapid neutron capture (r-process) nucleosynthesis. We present the first three-dimensional general-relativistic magnetohydrodynamic (GRMHD) simulations of neutrino-cooled accretion disks in neutron star mergers, including a realistic equation of state valid at low densities and temperatures, self-consistent evolution of the electron fraction, and neutrino cooling through an approximate leakage scheme. After initial magnetic field amplification by magnetic winding, we witness the vigorous onset of turbulence driven by the magnetorotational instability (MRI). The disk quickly reaches a balance between heating from MRI-driven turbulence and neutrino cooling, which regulates the midplane electron fraction to a low equilibrium value Y_{e}≈0.1. Over the 380-ms duration of the simulation, we find that a fraction ≈20% of the initial torus mass is unbound in powerful outflows with asymptotic velocities v≈0.1c and electron fractions Y_{e}≈0.1-0.25. Postprocessing the outflows through a nuclear reaction network shows the production of a robust second- and third-peak r process. Though broadly consistent with the results of previous axisymmetric hydrodynamical simulations, extrapolation of our results to late times suggests that the total ejecta mass from GRMHD disks is significantly higher. Our results provide strong evidence that postmerger disk outflows are an important site for the r process.

  17. Contraint's theory and relativistic dynamics

    International Nuclear Information System (INIS)

    Longhi, G.; Lusanna, L.

    1987-01-01

    The purpose of this Workshop was to examine the current situation of relativistic dynamics. In particular, Dirac-Bergmann's theory of constraints, which lies at the heart of gauge theories, general relativity, relativistic mechanics and string theories, was chosen as the unifying theoretical framework best suited to investigate such a field. The papers discussed were on general relativity; relativistic mechanics; particle physics and mathematical physics. Also discussed were the problems of classical and quantum level, namely the identification of the classical observables of constrained systems, the equivalence of the nonequivalence of the various ways to quantize such systems; the problem of the anomalies; the best geometrical approach to the theory of constraints; the possibility of unifying all the treatments of relativistic mechanics. This book compiles the papers presented at proceedings of relativistic dynamics and constraints theory

  18. Relativistic centrifugal instability

    Science.gov (United States)

    Gourgouliatos, Konstantinos N.; Komissarov, Serguei S.

    2018-03-01

    Near the central engine, many astrophysical jets are expected to rotate about their axis. Further out they are expected to go through the processes of reconfinement and recollimation. In both these cases, the flow streams along a concave surface and hence, it is subject to the centrifugal force. It is well known that such flows may experience the centrifugal instability (CFI), to which there are many laboratory examples. The recent computer simulations of relativistic jets from active galactic nuclei undergoing the process of reconfinement show that in such jets CFI may dominate over the Kelvin-Helmholtz instability associated with velocity shear (Gourgouliatos & Komissarov). In this letter, we generalize the Rayleigh criterion for CFI in rotating fluids to relativistic flows using a heuristic analysis. We also present the results of computer simulations which support our analytic criterion for the case of an interface separating two uniformly rotating cylindrical flows. We discuss the difference between CFI and the Rayleigh-Taylor instability in flows with curved streamlines.

  19. Relativistic heavy ion physics

    International Nuclear Information System (INIS)

    Hill, J.C.; Wohn, F.K.

    1992-01-01

    In 1992 a proposal by the Iowa State University experimental nuclear physics group entitled ''Relativistic Heavy Ion Physics'' was funded by the US Department of Energy, Office of Energy Research, for a three-year period beginning November 15, 1991. This is a progress report for the first six months of that period but, in order to give a wider perspective, we report here on progress made since the beginning of calendar year 1991. In the first section, entitled ''Purpose and Trends,'' we give some background on the recent trends in our research program and its evolution from an emphasis on nuclear structure physics to its present emphasis on relativistic heavy ion and RHIC physics. The next section, entitled, ''Physics Research Programs,'' is divided into three parts. First, we discuss our participation in the program to develop a large detector named PHENIX for the RHIC accelerator. Second, we outline progress made in the study of electromagnetic dissociation (ED). A highlight of this endeavor is experiments carried out with the 197 Au beam from the AGS accelerator in April 1991. Third, we discuss progress in completion of our nuclear structure studies. In the final section a list of publications, invited talks and contributed talks starting in 1991 is given

  20. Surface erosion and sedimentation caused by ejecta from the lunar crater Tycho

    Science.gov (United States)

    Shkuratov, Y.; Basilevsky, A.; Kaydash, V.; Ivanov, B.; Korokhin, V.; Videen, G.

    2018-02-01

    We use Kaguya MI images acquired at wavelengths 415, 750, and 950 nm to map TiO2 and FeO content and the parameter of optical maturity OMAT in lunar regions Lubiniezky E and Taurus-Littrow with a spatial resolution of 20 m using the Lucey method [Lucey et al., JGR 2000, 105. 20,297]. We show that some ejecta from large craters, such as Tycho and Copernicus may cause lunar surface erosion, transportation of the eroded material and its sedimentation. The traces of the erosion resemble wind tails observed on Earth, Mars, and Venus, although the Moon has no atmosphere. The highland material of the local topographic prominences could be mobilized by Tycho's granolometrically fine ejecta and caused by its transportation along the ejecta way to adjacent mare areas and subsequent deposition. The tails of mobilized material reveal lower abundances of Ti and Fe than the surrounding mare surface. We have concluded that high-Ti streaks also seen in the Lubiniezky E site, which show unusual combinations of the TiO2 and FeO content on the correlation diagram, could be the result of erosion by Tycho's ejecta too. In these locations, Tycho's material did not form a consolidated deposit, but resulted in erosion of the mare surface material that became intermixed, consequently, diluting the ejecta. The Taurus-Littrow did provide evidence of the mechanical effect of Tycho's ejecta on the local landforms (landslide, secondary craters) and do not show the compositional signature of Tycho's ejecta probably due to intermixing with local materials and dilution.

  1. A solar-type star polluted by calcium-rich supernova ejecta inside the supernova remnant RCW 86

    Science.gov (United States)

    Gvaramadze, Vasilii V.; Langer, Norbert; Fossati, Luca; Bock, Douglas C.-J.; Castro, Norberto; Georgiev, Iskren Y.; Greiner, Jochen; Johnston, Simon; Rau, Arne; Tauris, Thomas M.

    2017-06-01

    When a massive star in a binary system explodes as a supernova, its companion star may be polluted with heavy elements from the supernova ejecta. Such pollution has been detected in a handful of post-supernova binaries 1 , but none of them is associated with a supernova remnant. We report the discovery of a binary G star strongly polluted with calcium and other elements at the position of the candidate neutron star [GV2003] N within the young galactic supernova remnant RCW 86. Our discovery suggests that the progenitor of the supernova that produced RCW 86 could have been a moving star, which exploded near the edge of its wind bubble and lost most of its initial mass because of common-envelope evolution shortly before core collapse, and that the supernova explosion might belong to the class of calcium-rich supernovae — faint and fast transients 2,3 , the origin of which is strongly debated 4-6 .

  2. Properties of Doubly Heavy Baryons in the Relativistic Quark Model

    International Nuclear Information System (INIS)

    Ebert, D.; Faustov, R.N.; Galkin, V.O.; Martynenko, A.P.

    2005-01-01

    Mass spectra and semileptonic decay rates of baryons consisting of two heavy (b or c) and one light quark are calculated in the framework of the relativistic quark model. The doubly heavy baryons are treated in the quark-diquark approximation. The ground and excited states of both the diquark and quark-diquark bound systems are considered. The quark-diquark potential is constructed. The light quark is treated completely relativistically, while the expansion in the inverse heavy-quark mass is used. The weak transition amplitudes of heavy diquarks bb and bc going, respectively, to bc and cc are explicitly expressed through the overlap integrals of the diquark wave functions in the whole accessible kinematic range. The relativistic baryon wave functions of the quark-diquark bound system are used for the calculation of the decay matrix elements, the Isgur-Wise function, and decay rates in the heavy-quark limit

  3. PDV-based estimation of high-speed ejecta particles density from shock-loaded tin plate

    Science.gov (United States)

    Franzkowiak, Jean-Eloi; Prudhomme, Gabriel; Mercier, Patrick; Lauriot, Séverine; Dubreuil, Estelle; Berthe, Laurent

    2017-06-01

    A machine-grooved metallic tin surface is explosively driven by a detonator with a shock-induced pressure of 25 GPa. The resulting dynamic fragmentation process called micro-jetting is the creation of high-speed jets of matter moving faster than the bulk metallic surface. The resulting fragmentation into micron-sized metallic particles generates a self-expanding cloud of droplets, whose areal mass, velocity and size distributions are unknown. Lithium-Niobate (LN) piezoelectric pin measured areal mass and Photonic Doppler Velocimetry (PDV) was employed to get a time-velocity spectrogram of the cloud. We present both experimental mass and velocity results and relate the integrated areal mass of the cloud to the PDV power spectral density under the assumption of a power law distribution for particle sizes. A model of PDV spectrograms is described, for which speckle fluctuations are averaged out. Finally, we use our model for a Maximum Likelihood Estimation of the cloud's parameters from PDV data. The integrated areal mass deduced from the PDV analysis is in good agreement with piezoelectric results. We underline the relevance of analyzing PDV data and correlating different diagnostics to retrieve the macro-physical properties of ejecta particles.

  4. Relativistic stars with purely toroidal magnetic fields

    International Nuclear Information System (INIS)

    Kiuchi, Kenta; Yoshida, Shijun

    2008-01-01

    We investigate the effects of the purely toroidal magnetic field on the equilibrium structures of the relativistic stars. The basic equations for obtaining equilibrium solutions of relativistic rotating stars containing purely toroidal magnetic fields are derived for the first time. To solve these basic equations numerically, we extend the Cook-Shapiro-Teukolsky scheme for calculating relativistic rotating stars containing no magnetic field to incorporate the effects of the purely toroidal magnetic fields. By using the numerical scheme, we then calculate a large number of the equilibrium configurations for a particular distribution of the magnetic field in order to explore the equilibrium properties. We also construct the equilibrium sequences of the constant baryon mass and/or the constant magnetic flux, which model the evolution of an isolated neutron star as it loses angular momentum via the gravitational waves. Important properties of the equilibrium configurations of the magnetized stars obtained in this study are summarized as follows: (1) For the nonrotating stars, the matter distribution of the stars is prolately distorted due to the toroidal magnetic fields. (2) For the rapidly rotating stars, the shape of the stellar surface becomes oblate because of the centrifugal force. But, the matter distribution deep inside the star is sufficiently prolate for the mean matter distribution of the star to be prolate. (3) The stronger toroidal magnetic fields lead to the mass shedding of the stars at the lower angular velocity. (4) For some equilibrium sequences of the constant baryon mass and magnetic flux, the stars can spin up as they lose angular momentum.

  5. Exploring hotspots of pneumococcal pneumonia and potential impacts of ejecta dust exposure following the Christchurch earthquakes.

    Science.gov (United States)

    Pearson, Amber L; Kingham, Simon; Mitchell, Peter; Apparicio, Philippe

    2013-12-01

    The etiology of pneumococcal pneumonia (PP) is well-known. Yet, some events may increase its incidence. Natural disasters may worsen air quality, a risk factor for PP. We investigated spatial/spatio-temporal clustering of PP pre- and post-earthquakes in Christchurch, New Zealand. The earthquakes resulted in deaths, widespread damage and liquefaction ejecta (a source of air-borne dust). We tested for clusters and associations with ejecta, using 97 cases (diagnosed 10/2008-12/2011), adjusted for age and area-level deprivation. The strongest evidence to support the potential role of ejecta in clusters of PP cases was the: (1) geographic shift in the spatio-temporal cluster after deprivation adjustment to match the post-earthquake clusters and; (2) increased relative risk in the fully-adjusted post-earthquake compared to the pre-earthquake cluster. The application of spatial statistics to study PP and ejecta are novel. Further studies to assess the long-term impacts of ejecta inhalation are recommended particularly in Christchurch, where seismic activity continues. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Beam analysis spectrometer for relativistic heavy ions

    International Nuclear Information System (INIS)

    Schimmerling, W.; Subramanian, T.S.; McDonald, W.J.; Kaplan, S.N.; Sadoff, A.; Gabor, G.

    1983-01-01

    A versatile spectrometer useful for measuring the mass, charge, energy, fluence and angular distribution of primaries and fragments associated with relativistic heavy ion beams is described. The apparatus is designed to provide accurate physical data for biology experiments and medical therapy planning as a function of depth in tissue. The spectrometer can also be used to measure W, the average energy to produce an ion pair, range-energy, dE/dx, and removal cross section data of interest in nuclear physics. (orig.)

  7. Isoscalar giant resonances in a relativistic model

    International Nuclear Information System (INIS)

    L'Huillier, M.; Nguyen Van Giai.

    1988-07-01

    Isoscalar giant resonances in finite nuclei are studied in a relativistic Random Phase Approximation (RRPA) approach. The model is self-consistent in the sense that one set of coupling constants generates the Dirac-Hartree single-particle spectrum and the residual particle-hole interaction. The RRPA is used to calculate response functions of multipolarity L = 0,2,3, and 4 in light and medium nuclei. It is found that monopole and quadrupole modes exhibit a collective character. The peak energies are overestimated, but not as much as one might think if the bulk properties (compression modulus, effective mass) were the only relevant quantities

  8. Relativistic equations of state at finite temperature

    International Nuclear Information System (INIS)

    Santos, A.M.S.; Menezes, D.P.

    2004-01-01

    In this work we study the effects of temperature on the equations of state obtained within a relativistic model with and without β equilibrium, over a wide range of densities. We integrate the TOV equations. We also compare the results of the equation of state, effective mass and strangeness fraction from the TM1, NL3 and GL sets of parameters, as well as investigating the importance of antiparticles in the treatment. The have checked that TM1 and NL3 are not appropriate for the description of neutron and protoneutron stars. (author)

  9. Elementary relativistic atoms

    International Nuclear Information System (INIS)

    Nemenov, L.

    2001-01-01

    The Coulomb interaction which occurs in the final state between two particles with opposite charges allows for creation of the bound state of these particles. In the case when particles are generated with large momentum in lab frame, the Lorentz factors of the bound state will also be much larger than one. The relativistic velocity of the atoms provides the opportunity to observe bound states of (π + μ - ), (π + π - ) and (π + K - ) with a lifetime as short as 10 -16 s, and to measure their parameters. The ultrarelativistic positronium atoms (A 2e ) allow us to observe the e.ect of superpenetration in matter, to study the effects caused by the formation time of A 2e from virtual e + e - pairs and to investigate the process of transformation of two virtual particles into the bound state

  10. Photoionization at relativistic energies

    International Nuclear Information System (INIS)

    Ionescu, D.C.; Technische Univ. Dresden; Soerensen, A.H.; Belkacem, A.

    2000-11-01

    At MeV energies and beyond the inner-shell vacancy production cross section associated with the photoelectric and Compton effect decrease with increasing photon energy. However, when the photon energy exceeds twice the rest energy of the electron, ionization of a bound electron may be catalyzed by the creation of an electron-positron pair. Distinctly different from all other known mechanisms for inner-shell vacancy production by photons, we show that the cross section for this ''vacuum-assisted photoionization'' increases with increasing photon energy and then saturates. As a main result, we predict that vacuum-assisted photoionization will dominate the other known photoionization mechanisms in the highly relativistic energy regime. (orig.)

  11. Relativistic thermodynamics of fluids

    International Nuclear Information System (INIS)

    Souriau, J.-M.

    1977-05-01

    The relativistic covariant definition of a statistical equilibrium, applied to a perfect gas, involves a 'temperature four-vector', whose direction is the mean velocity of the fluid, and whose length is the reciprocal temperature. The hypothesis of this 'temperature four-vector' being a relevant variable for the description of the dissipative motions of a simple fluid is discussed. The kinematics is defined by using a vector field and measuring the number of molecules. Such a dissipative fluid is subject to motions involving null entropy generation; the 'temperature four-vector' is then a Killing vector; the equations of motion can be completely integrated. Perfect fluids can be studied by this way and the classical results of Lichnerowicz are obtained. In weakly dissipative motions two viscosity coefficient appear together with the heat conductibility coefficient. Two other coefficients perharps measurable on real fluids. Phase transitions and shock waves are described with using the model [fr

  12. Relativistic heavy ion physics

    International Nuclear Information System (INIS)

    Hill, J.C.; Wohn, F.K.

    1993-01-01

    This is a progress report for the period May 1992 through April 1993. The first section, entitled ''Purpose and Trends, gives background on the recent trends in the research program and its evolution from an emphasis on nuclear structure physics to its present emphasis on relativistic heavy ion and RHIC physics. The next section, entitled ''Physics Research Progress'', is divided into four parts: participation in the program to develop a large detector named PHENIX for the RHIC accelerator; joining E864 at the AGS accelerator and the role in that experiment; progress made in the study of electromagnetic dissociation highlight of this endeavor is an experiment carried out with the 197 Au beam from the AGS accelerator in April 1992; progress in completion of the nuclear structure studies. In the final section a list of publications, invited talks, and contributed talks is given

  13. Relativistic plasma dispersion functions

    International Nuclear Information System (INIS)

    Robinson, P.A.

    1986-01-01

    The known properties of plasma dispersion functions (PDF's) for waves in weakly relativistic, magnetized, thermal plasmas are reviewed and a large number of new results are presented. The PDF's required for the description of waves with small wave number perpendicular to the magnetic field (Dnestrovskii and Shkarofsky functions) are considered in detail; these functions also arise in certain quantum electrodynamical calculations involving strongly magnetized plasmas. Series, asymptotic series, recursion relations, integral forms, derivatives, differential equations, and approximations for these functions are discussed as are their analytic properties and connections with standard transcendental functions. In addition a more general class of PDF's relevant to waves of arbitrary perpendicular wave number is introduced and a range of properties of these functions are derived

  14. General relativistic Boltzmann equation, II: Manifestly covariant treatment

    NARCIS (Netherlands)

    Debbasch, F.; van Leeuwen, W.A.

    2009-01-01

    In a preceding article we presented a general relativistic treatment of the derivation of the Boltzmann equation. The four-momenta occurring in this formalism were all on-shell four-momenta, verifying the mass-shell restriction p(2) = m(2)c(2). Due to this restriction, the resulting Boltzmann

  15. Stacking the nines: relativistic steps to the stars

    International Nuclear Information System (INIS)

    Claycomb, James R

    2007-01-01

    A pedagogical illustration of special relativity is presented using an example of relativistic space travel. Travel times to several destinations in the cosmos are calculated given a spacecraft with specific force/mass ratio of one-g. Practical limitations are discussed, where new technologies may one day enable humans to travel to the nearest stars and beyond

  16. Losing energy in classical, relativistic and quantum mechanics

    NARCIS (Netherlands)

    Atkinson, David

    A Zenonian supertask involving an infinite number of colliding balls is considered, under the restriction that the total mass of all the balls is finite. Classical mechanics leads to the conclusion that momentum, but not necessarily energy, must be conserved. In relativistic mechanics, however,

  17. RELATIVISTIC HEAVY ION COLLISIONS: EXPERIMENT

    Energy Technology Data Exchange (ETDEWEB)

    Friedlander, Erwin M.; Heckman, Harry H.

    1982-04-01

    Relativistic heavy ion physics began as a 'no man's land' between particle and nuclear physics, with both sides frowning upon it as 'unclean', because on one hand, hadronic interactions and particle production cloud nuclear structure effects, while on the other, the baryonic environment complicates the interpretation of production experiments. They have attempted to review here the experimental evidence on RHI collisions from the point of view that it represents a new endeavor in the understanding of strong interaction physics. Such an approach appears increasingly justified; first, by the accumulation of data and observations of new features of hadronic interactions that could not have been detected outside a baryonic environment; second, by the maturation of the field owing to the advances made over the past several years in experimental inquiries on particle production by RHI, including pions, kaons, hyperons, and searches for antiprotons; and third, by the steady and progressive increase in the energy and mass ranges of light nuclear beams that have become available to the experiment; indeed the energy range has widened from the {approx} 0.2 to 2 AGeV at the Bevalac to {approx}4 AGeV at Dubna and recently, to the quantum jump in energies to {approx} 1000 equivalent AGeV at the CERN PS-ISR. Accompanying these expansions in the energy frontier are the immediate prospects for very heavy ion beams at the Bevalac up to, and including, 1 AGeV {sup 238}U, thereby extending the 'mass frontier' to its ultimate extent.

  18. Pion-cloud corrections to the relativistic S + V harmonic potential model

    International Nuclear Information System (INIS)

    Palladino, B.E.; Ferreira, P.L.

    1988-01-01

    Pionic corrections to the mass spectrum of low-lying s-wave baryons are incorporated in a relativistic independent quark model with equally mixed Lorentz scalar and vector harmonic potentials. (M.W.O.) [pt

  19. Decay constants of heavy mesons in the relativistic potential model with velocity dependent corrections

    International Nuclear Information System (INIS)

    Avaliani, I.S.; Sisakyan, A.N.; Slepchenko, L.A.

    1992-01-01

    In the relativistic model with the velocity dependent potential the masses and leptonic decay constants of heavy pseudoscalar and vector mesons are computed. The possibility of using this potential is discussed. 11 refs.; 4 tabs

  20. New morphological mapping and interpretation of ejecta deposits from Orientale Basin on the Moon

    Science.gov (United States)

    Morse, Zachary R.; Osinski, Gordon R.; Tornabene, Livio L.

    2018-01-01

    Orientale Basin is one of the youngest and best-preserved multi-ring impact basins in the Solar System. The structure is ∼950 km across and is located on the western edge of the nearside of the Moon. The interior of the basin, which possesses three distinct rings and a post-impact mare fill, has been studied extensively using modern high-resolution datasets. Exterior to these rings, Orientale has an extensive ejecta blanket that extends out radially for at least 800 km from the basin rim in all directions and covers portions of both the nearside and farside of the Moon. These deposits, known as the Hevelius Formation, were first mapped using photographic data from the Lunar Orbiter IV probe. In this study, we map in detail the morphology of each distinct facies observed within the Orientale ejecta blanket using high resolution Lunar Reconnaissance Orbiter (LRO) Wide Angle Camera (WAC) and Narrow Angle Camera (NAC) images and Lunar Orbiter Laser Altimeter (LOLA) elevation data. We identified 5 unique facies within the ejecta blanket. Facies A is identified as a region of hummocky plains located in a low-lying topographic region between the Outer Rook and Cordillera rings. This facies is interpreted to be a mix of crater-derived impact melt and km-scale blocks of ballistic ejecta and host rock broken up during the modification stage and formation of the Cordillera ring. Facies B is an inner facies marked by radial grooves extending outward from the direction of the basin center. This facies is interpreted as the continuous ballistic ejecta blanket. Facies C consists of inner and outer groupings of flat smooth-surfaced deposits isolated in local topographic lows. Facies D displays characteristic sinuous ridges and lobate extensions. Facies C and D are interpreted to be impact melt-rich materials, which manifest as flows and ponds. Our observations suggest that these facies were emplaced subsequent to the ballistic ejecta blanket - most likely during the modification

  1. A DETAILED STUDY OF SPITZER-IRAC EMISSION IN HERBIG-HARO OBJECTS. II. INTERACTION BETWEEN EJECTA AND AMBIENT GAS

    International Nuclear Information System (INIS)

    Takami, Michihiro; Karr, Jennifer L.; Nisini, Brunella; Ray, Thomas P.

    2011-01-01

    We present a new analysis of the physical conditions in three Herbig-Haro complexes (HH 54, HH 212, and the L 1157 protostellar jet) using archival data from the Infrared Array Camera on the Spitzer Space Telescope. As described in detail in Paper I, the emission observed using the 4.5 μm filter is enhanced in molecular shocks (T = 1000-4000 K) at relatively high temperatures or densities compared with that observed with the 8.0 μm filter. Using these data sets, we investigate different distributions of gas between high and low temperatures/densities. Our analysis reveals the presence of a number of warm/dense knots, most of which appear to be associated with working surfaces such as the head of bow shocks and cometary features, and reverse shocks in the ejecta. These are distributed not only along the jet axis, as expected, but also across it. While some knotty or fragmenting structures can be explained by instabilities in shocked flows, others can be more simply explained by the scenario that the mass ejection source acts as a 'shot gun', periodically ejecting bullets of material along similar but not identical trajectories. Such an explanation challenges to some degree the present paradigm for jet flows associated with low-mass protostars. It also gives clues to reconciling our understanding of the mass ejection mechanism in high- and low-mass protostars and evolved stars.

  2. The Three-dimensional Expansion of the Ejecta from Tycho's Supernova Remnant

    International Nuclear Information System (INIS)

    Williams, Brian J.; Depasquale, Joseph; Coyle, Nina M.; Yamaguchi, Hiroya; Petre, Robert; Seitenzahl, Ivo R.; Hewitt, John W.; Blondin, John M.; Borkowski, Kazimierz J.; Reynolds, Stephen P.; Ghavamian, Parviz

    2017-01-01

    We present the first 3D measurements of the velocity of various ejecta knots in Tycho’s supernova remnant, known to result from a Type Ia explosion. Chandra X-ray observations over a 12 yr baseline from 2003 to 2015 allow us to measure the proper motion of nearly 60 “tufts” of Si-rich ejecta, giving us the velocity in the plane of the sky. For the line-of-sight velocity, we use two different methods: a nonequilibrium ionization model fit to the strong Si and S lines in the 1.2–2.8 keV regime, and a fit consisting of a series of Gaussian lines. These methods give consistent results, allowing us to determine the redshift or blueshift of each of the knots. Assuming a distance of 3.5 kpc, we find total velocities that range from 2400 to 6600 km s −1 , with a mean of 4430 km s −1 . We find several regions where the ejecta knots have overtaken the forward shock. These regions have proper motions in excess of 6000 km s −1 . Some SN Ia explosion models predict a velocity asymmetry in the ejecta. We find no such velocity asymmetries in Tycho, and we discuss our findings in light of various explosion models, favoring those delayed-detonation models with relatively vigorous and symmetrical deflagrations. Finally, we compare measurements with models of the remnant’s evolution that include both smooth and clumpy ejecta profiles, finding that both ejecta profiles can be accommodated by the observations.

  3. The Three-Dimensional Expansion of the Ejecta from Tycho's Supernova Remnant

    Science.gov (United States)

    Williams, Brian J.; Coyle, Nina; Yamaguchi, Hiroya; DePasquale, Joseph M.; Seitenzahl, Ivo Rolf; Hewitt, John W.; Blondin, John M.; Borkowski, Kazimierz J.; Ghavamian, Parviz; Petre, Robert; Reynolds, Stephen P.

    2017-08-01

    We present the first three-dimensional measurements of the velocity of various ejecta knots in Tycho's supernova remnant, known to result from a Type Ia explosion. Chandra X-ray observations over a 12-year baseline from 2003 to 2015 allow us to measure the proper motion of nearly 60 ``tufts'' of Si-rich ejecta, giving us the velocity in the plane of the sky. For the line of sight velocity, we use two different methods: a non-equilibrium ionization model fit to the strong Si and S lines in the 1.2-2.8 keV regime, and a fit consisting of a series of Gaussian lines. These methods give consistent results, allowing us to determine the red or blue shift of each of the knots. Assuming a distance of 3.5 kpc, we find total velocities that range from 2400 to 6600 km s$^{-1}$, with a mean of 4430 km s$^{-1}$. We find several regions where the ejecta knots have overtaken the forward shock. These regions have proper motions in excess of 6000 km s$^{-1}$. Some Type Ia supernova explosion models predict a velocity asymmetry in the ejecta. We find no such velocity asymmetries in Tycho, and discuss our findings in light of various explosion models, favoring those delayed detonation models with relatively vigorous and symmetrical deflagrations. Finally, we compare measurements with models of the remnant's evolution that include both smooth and clumpy ejecta profiles, finding that both ejecta profiles can be accommodated by the observations.

  4. The Three-dimensional Expansion of the Ejecta from Tycho's Supernova Remnant

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Brian J.; Depasquale, Joseph [Space Telescope Science Institute, Baltimore, MD 21218 (United States); Coyle, Nina M.; Yamaguchi, Hiroya; Petre, Robert [NASA Goddard Space Flight Center, X-ray Astrophysics Laboratory, Greenbelt, MD 20771 (United States); Seitenzahl, Ivo R. [School of Physical, Environmental and Mathematical Sciences, University of New South Wales, Australian Defence Force Academy, Canberra, ACT 2600 (Australia); Hewitt, John W. [University of North Florida, Department of Physics, 1 UNF Drive, Jacksonville, FL 32224 (United States); Blondin, John M.; Borkowski, Kazimierz J.; Reynolds, Stephen P. [Department of Physics, North Carolina State University, Raleigh, NC 27695 (United States); Ghavamian, Parviz, E-mail: bwilliams@stsci.edu [Department of Physics, Astronomy, and Geosciences, Towson University, Towson, MD 21252 (United States)

    2017-06-10

    We present the first 3D measurements of the velocity of various ejecta knots in Tycho’s supernova remnant, known to result from a Type Ia explosion. Chandra X-ray observations over a 12 yr baseline from 2003 to 2015 allow us to measure the proper motion of nearly 60 “tufts” of Si-rich ejecta, giving us the velocity in the plane of the sky. For the line-of-sight velocity, we use two different methods: a nonequilibrium ionization model fit to the strong Si and S lines in the 1.2–2.8 keV regime, and a fit consisting of a series of Gaussian lines. These methods give consistent results, allowing us to determine the redshift or blueshift of each of the knots. Assuming a distance of 3.5 kpc, we find total velocities that range from 2400 to 6600 km s{sup −1}, with a mean of 4430 km s{sup −1}. We find several regions where the ejecta knots have overtaken the forward shock. These regions have proper motions in excess of 6000 km s{sup −1}. Some SN Ia explosion models predict a velocity asymmetry in the ejecta. We find no such velocity asymmetries in Tycho, and we discuss our findings in light of various explosion models, favoring those delayed-detonation models with relatively vigorous and symmetrical deflagrations. Finally, we compare measurements with models of the remnant’s evolution that include both smooth and clumpy ejecta profiles, finding that both ejecta profiles can be accommodated by the observations.

  5. An Observational Approach toward Understanding and Prediction of CME Magnetic Ejecta

    Science.gov (United States)

    Pizzo, V. J.; de Koning, C. A.; Riley, P.

    2017-12-01

    Quantitative knowledge of the magnetic field inside a coronal mass ejection (CME) is an important contributor to an actionable space weather forecast of geomagnetic storms. However, at present it is not possible to predict the magnetic cloud component of a CME with any accuracy. This has led to the development of increasingly sophisticated physics-based models, each promising a path toward more accurate space weather forecasts. Unfortunately, none of these models can provide meaningful output if they lack for reliable quantitative input. Until we can measure magnetic fields at solar distances where CMEs are launched and over their early-stage evolution, this will remain a fundamental obstacle to successful modeling. Instead of continuing to focus primarily on the modeling approach, we suggest an active investigation of direct, up-stream measurement of the CME internal magnetic field. For current forecasting purposes, or even as a science concept mission, the measurements do not need to be of high accuracy or high cadence. Since previous magnetic cloud analyses have demonstrated that a single spacecraft provides insufficient data to robustly reconstruct the CME internal magnetic field, we suggest deploying a swarm of cube-sats in "quasi-satellite" orbits that are known to be horizontally and vertically stable, even at large (several tenths of an AU) distances from Earth. In this presentation, we describe how simulations of CMEs incorporating magnetic clouds can be used to develop and support this mission concept. By taking simulated cuts through model CMEs with a range of magnetic morphologies and field strengths, we aim to determine the minimum number of spacecraft needed for such a mission and their optimum orbital characteristics. Although a host of challenges remain, especially related to communications and cube-sat telemetry in interplanetary space, we believe that these technological issues can be surmounted once it has been demonstrated that a major leap in

  6. Conductivity of a relativistic plasma

    Energy Technology Data Exchange (ETDEWEB)

    Braams, B.J.; Karney, C.F.F.

    1989-03-01

    The collision operator for a relativistic plasma is reformulated in terms of an expansion in spherical harmonics. This formulation is used to calculate the electrical conductivity. 13 refs., 1 fig., 1 tab.

  7. Relativistic description of atomic nuclei

    International Nuclear Information System (INIS)

    Krutov, V.A.

    1985-01-01

    Papers on the relativistic description of nuclei are reviewed. The Brown and Rho ''small'' bag'' model is accepted for hardrons. Meson exchange potentials of the nucleon-nucleon interaction have been considered. Then the transition from a system of two interacting nucleons has been performed to the relativistic nucleus description as a multinucleon system on the basis of OBEP (one-boson exchange potential). The proboem of OPEP (one-pion-exchange potential) inclusion to a relativistic scheme is discussed. Simplicity of calculations and attractiveness of the Walecka model for specific computations and calculations was noted. The relativistic model of nucleons interacting through ''effective'' scalar and vector boson fields was used in the Walacka model for describing neutronaand nuclear mater matters

  8. Conductivity of a relativistic plasma

    International Nuclear Information System (INIS)

    Braams, B.J.; Karney, C.F.F.

    1989-03-01

    The collision operator for a relativistic plasma is reformulated in terms of an expansion in spherical harmonics. This formulation is used to calculate the electrical conductivity. 13 refs., 1 fig., 1 tab

  9. Electronic structure of molecules using relativistic effective core potentials

    International Nuclear Information System (INIS)

    Hay, P.J.

    1983-01-01

    In this review an approach is outlined for studying molecules containing heavy atoms with the use of relativistic effective core potentials (RECP's). These potentials play the dual roles of (1) replacing the chemically-inert core electrons and (2) incorporating the mass velocity and Darwin term into a one-electron effective potential. This reduces the problem to a valence-electron problem and avoids computation of additional matrix elements involving relativistic operators. The spin-orbit effects are subsequently included using the molecular orbitals derived from the RECP calculation as a basis

  10. General Relativistic Mean Field Theory for rotating nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Madokoro, Hideki [Kyushu Univ., Fukuoka (Japan). Dept. of Physics; Matsuzaki, Masayuki

    1998-03-01

    The {sigma}-{omega} model Lagrangian is generalized to an accelerated frame by using the technique of general relativity which is known as tetrad formalism. We apply this model to the description of rotating nuclei within the mean field approximation, which we call General Relativistic Mean Field Theory (GRMFT) for rotating nuclei. The resulting equations of motion coincide with those of Munich group whose formulation was not based on the general relativistic transformation property of the spinor fields. Some numerical results are shown for the yrast states of the Mg isotopes and the superdeformed rotational bands in the A {approx} 60 mass region. (author)

  11. Diffeomorphism Group Representations in Relativistic Quantum Field Theory

    Energy Technology Data Exchange (ETDEWEB)

    Goldin, Gerald A. [Rutgers Univ., Piscataway, NJ (United States); Sharp, David H. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-12-20

    We explore the role played by the di eomorphism group and its unitary representations in relativistic quantum eld theory. From the quantum kinematics of particles described by representations of the di eomorphism group of a space-like surface in an inertial reference frame, we reconstruct the local relativistic neutral scalar eld in the Fock representation. An explicit expression for the free Hamiltonian is obtained in terms of the Lie algebra generators (mass and momentum densities). We suggest that this approach can be generalized to elds whose quanta are spatially extended objects.

  12. Quasi-relativistic effects in barrier-penetration processes

    International Nuclear Information System (INIS)

    Anchishkin, D.V.

    1991-01-01

    The problem of a particle tunneling through the potential barrier is solved within quasi-relativistic Schroedinger equation. It is shown that the subbarrier relativistic effects give a significant addition to penetration coefficient when some relations between parameters of the barrier and mass of a tunneling particle are satisfied. For instance an account of these effects for penetration of low energy π + -mesons through Coulomb barrier of the 298 U nuclei would give the increasing of penetration coefficient to 30 percent as compared to the nonrelativistic one. Also we give the criteria under which the contribution of the ''under barrier relativism'' to penetration coefficient becomes essential. 3 refs.; 6 figs. (author)

  13. The origin of Phobos grooves from ejecta launched from impact craters on Mars: Tests of the hypothesis

    Science.gov (United States)

    Ramsley, Kenneth R.; Head, James W.

    2013-01-01

    The surface of the martian moon Phobos is characterized by parallel and intersecting grooves that bear resemblance to secondary crater chains observed on planetary surfaces. Murray (2011) has hypothesized that the main groove-forming process on Phobos is the intersection of Phobos with ejecta from primary impact events on Mars to produce chains of secondary craters. The hypothesis infers a pattern of parallel jets of ejecta, either fluidized or solidified, that break into equally-spaced fragments and disperse uniformly along-trajectory during the flight from Mars to Phobos. At the moment of impact with Phobos the dispersed fragments emplace secondary craters that are aligned along strike corresponding to the flight pattern of ejecta along trajectory. The aspects of the characteristics of grooves on Phobos cited by this hypothesis that might be explained by secondary ejecta include: their observed linearity, parallelism, planar alignment, pitted nature, change in character along strike, and a "zone of avoidance" where ejecta from Mars is predicted not to impact (Murray, 2011). To test the hypothesis we plot precise Keplerian orbits for ejecta from Mars (elliptical and hyperbolic with periapsis located below the surface of Mars). From these trajectories we: (1) set the fragment dispersion limits of ejecta patterns required to emplace the more typically well-organized parallel grooves observed in returned images from Phobos; (2) plot ranges of the ejecta flight durations from Mars to Phobos and map regions of exposure; (3) utilize the same exposure map to observe trajectory-defined ejecta exposure shadows; (4) observe hemispheric exposure in response to shorter and longer durations of ejecta flight; (5) assess the viability of ejecta emplacing the large family of grooves covering most of the northern hemisphere of Phobos; and (6) plot the arrival of parallel lines of ejecta emplacing chains of craters at oblique incident angles. We also assess the bulk volume of

  14. Relativistic heavy-ion physics

    CERN Document Server

    Herrera Corral, G

    2010-01-01

    The study of relativistic heavy-ion collisions is an important part of the LHC research programme at CERN. This emerging field of research focuses on the study of matter under extreme conditions of temperature, density, and pressure. Here we present an introduction to the general aspects of relativistic heavy-ion physics. Afterwards we give an overview of the accelerator facility at CERN and then a quick look at the ALICE project as a dedicated experiment for heavy-ion collisions.

  15. An introduction to relativistic hydrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Font, Jose A [Departamento de AstronomIa y AstrofIsica, Universidad de Valencia, Dr. Moliner 50, 46100 Burjassot (Valencia) (Spain)

    2007-11-15

    We review formulations of the equations of (inviscid) general relativistic hydrodynamics and (ideal) magnetohydrodynamics, along with methods for their numerical solution. Both systems can be cast as first-order, hyperbolic systems of conservation laws, following the explicit choice of an Eulerian observer and suitable fluid and magnetic field variables. During the last fifteen years, the so-called (upwind) high-resolution shock-capturing schemes based on Riemann solvers have been successfully extended from classical to relativistic fluid dynamics, both special and general. Nowadays, general relativistic hydrodynamical simulations in relativistic astrophysics are routinely performed, particularly within the test-fluid approximation but also for dynamical spacetimes. While such advances also hold true in the case of the MHD equations, the astrophysical applications investigated so far are still limited, yet the field is bound to witness major developments in the near future. The article also presents a brief overview of numerical techniques, providing state-of-the-art examples of their applicability to general relativistic fluids and magneto-fluids in characteristic scenarios of relativistic astrophysics.

  16. Radiation dominated relativistic current sheets

    International Nuclear Information System (INIS)

    Jaroschek, C.H.

    2008-01-01

    Relativistic Current Sheets (RCS) feature plasma instabilities considered as potential key to magnetic energy dissipation and non-thermal particle generation in Poynting flux dominated plasma flows. We show in a series of kinetic plasma simulations that the physical nature of non-linear RCS evolution changes in the presence of incoherent radiation losses: In the ultra-relativistic regime (i.e. magnetization parameter sigma = 104 defined as the ratio of magnetic to plasma rest frame energy density) the combination of non-linear RCS dynamics and synchrotron emission introduces a temperature anisotropy triggering the growth of the Relativistic Tearing Mode (RTM). As direct consequence the RTM prevails over the Relativistic Drift Kink (RDK) Mode as competitive RCS instability. This is in contrast to the previously studied situation of weakly relativistic RCS (sigma ∼ 1) where the RDK is dominant and most of the plasma is thermalized. The simulations witness the typical life cycle of ultra-relativistic RCS evolving from a violent radiation induced collapse towards a radiation quiescent state in rather classical Sweet-Parker topology. Such a transition towards Sweet-Parker configuration in the late non-linear evolution has immediate consequences for the efficiency of magnetic energy dissipation and non-thermal particle generation. Ceasing dissipation rates directly affect our present understanding of non-linear RCS evolution in conventional striped wind scenarios. (author)

  17. Electronic structure of molecules using relativistic effective core potentials

    International Nuclear Information System (INIS)

    Hay, P.J.

    1981-01-01

    Starting with one-component Cowan-Griffin relativistic Hartree-Fock orbitals, which successfully incorporate the mass-velocity and Darwin terms present in more complicated wavefunctions such as Dirac-Hartree-Fock, one can derive relativistic effective core potentials (RECP's) to carry out molecular calculations. These potentials implicitly include the dominant relativistic terms for molecules while allowing one to use the traditional quantum chemical techniques for studying the electronic structure of molecules. The effects of spin-orbit coupling can then be included using orbitals from such calculations using an effective 1-electron, 1-center spin-orbit operator. Applications to molecular systems involving heavy atoms, show good agreement with available spectroscopic data on molecular geometries and excitation energies

  18. On the relativistic quantum mechanics of two interacting spinless particles

    International Nuclear Information System (INIS)

    Rizov, V.A.; Sazdjian, H.; Todorov, I.T.

    1984-05-01

    The L 2 -scalar product ∫ PHI*(x)PSI(x) d 3 x is not appropriate for the space of states describing the center-of-mass relative motion of two relativistic particles whose interaction is given by an energy dependent quasipotential. The problem already appears in the relativistic quantum mechanics of a Klein-Gordon charged particle in an external field. We extend the methods developed for that case to study a two-particle system with an energy independent scalar interaction as well as the relativistic Coulomb problem. We write down a Poincare invariant inner product for which the eigenfunctions corresponding to different energy eigenvalues are orthogonal. We also construct a perturbative expansion for bound-state energy eigenvalues corresponding to an arbitrary energy dependent (quasipotential) correction to an unperturbed Hamiltonian with a known spectrum. The description of observables and transition probabilities for eigenvalue problems with a polynomial dependence on the spectral parameter is also discussed

  19. Relativistic mechanics of two interacting particles and bilocal theory

    International Nuclear Information System (INIS)

    Takabayasi, Takehiko

    1975-01-01

    New relativistic mechanics of two-particle system is set forth, where the two constituent particles are interacting by an arbitrary (central) action-at-a-distance. The fundamental equations are presented in a form covariant under general transformation of parameters parametrizing the world lines of constituent particles. The theory represents the proper relativistic generalization of the usual Newtonian mechanics in the sense that it tends in the non-relativistic (and weak interaction) limit to the usual mechanics of two particles moving under a corresponding non-relativistic potential. For the analysis of theory it is convenient to choose a certain particular gauge (i.e., parametrization) fixed by two gauge relations. This brings the theory to a canonical formalism accompanied by two weak equations, and in this gauge quantization can be performed. The result verifies that the relativistic quantum mechanics for two particles interacting by an action-at-a-distance is just represented by a bilocal wave equation and a subsidiary condition, with the clarification of its correspondence-theoretical foundation and internal dynamics. As an example the case of Hooke-type force is illustrated, where the internal motions are elliptic oscillations in the center-of-mass frame. Its quantum theory just reproduces the original form of bilocal theory giving bound states lying on a straightly rising trajectory and on its daughter trajectories. (auth.)

  20. Relativistic ''potential model'' for N-particle systems

    International Nuclear Information System (INIS)

    Noyes, H.P.

    1986-08-01

    Neither quantum field theory nor S-Matrix theory have a well defined procedure for going over to an approximation that can be reliably used in non-relativistic models for nuclear physics. We meet the problem here by constructing a finite particle number relativistic scattering theory for (scalar) particles and mesons using integral equations of the Faddeev-Yakubovsky type. Restricted to N particles and one meson, we can go from the relativistic theory to a ''potential theory'' in the integral equation formulation by using boundary states which do not contain the meson asymptotically. The meson-particle input amplitudes contain a pole at the particle mass, and the particle-particle input amplitudes are null. This gives unique definition (numerically calculable) to the particle-particle off-shell amplitude, and hence to the covariant ''scattering potential'' (but not to the noninvariant concept of ''potential energy''). As we have commented before, if we take these scattering amplitudes as iput for relativistic Faddeev equations, the results are identical to those obtained from the same model starting from three particles and one meson. In this paper we explore how far we can extend this relativistic ''potential model'' to higher numbers of particles and mesons. 10 refs

  1. Relativistic model for statevector reduction

    International Nuclear Information System (INIS)

    Pearle, P.

    1991-04-01

    A relativistic quantum field model describing statevector reduction for fermion states is presented. The time evolution of the states is governed by a Schroedinger equation with a Hamiltonian that has a Hermitian and a non-Hermitian part. In addition to the fermions, the Hermitian part describes positive and negative energy mesons of equal mass, analogous to the longitudinal and timelike photons of electromagnetism. The meson-field-sum is coupled to the fermion field. This ''dresses'' each fermion so that, in the extreme nonrelativistic limit (non-moving fermions), a fermion in a position eigenstate is also in an eigenstate of the meson-field-difference with the Yukawa-potential as eigenvalue. However, the fermions do not interact: this is a theory of free dressed fermions. It is possible to obtain a stationary normalized ''vacuum'' state which satisfies two conditions analogous to the gauge conditions of electromagnetism (i.e., that the meson-field-difference, as well as its time derivative, give zero when applied to the vacuum state), to any desired degree of accuracy. The non-Hermitian part of the Hamiltonian contains the coupling of the meson-field-difference to an externally imposed c-number fluctuating white noise field, of the CSL (Continuous Spontaneous Localization) form. This causes statevector reduction, as is shown in the extreme nonrelativistic limit. For example, a superposition of spatially separated wavepackets of a fermion will eventually be reduced to a single wavepacket: the meson-field-difference discriminates among the Yukawa-potential ''handles'' attached to each wavepacket, thereby selecting one wavepacket to survive by the CSL mechanism. Analysis beyond that given in this paper is required to see what happens when the fermions are allowed to move. (It is possible that the ''vacuum'' state becomes involved in the dynamics so that the ''gauge'' conditions can no longer be maintained.) It is shown how to incorporate these ideas into quantum

  2. Relativistic quarkonium model with retardation effect, 1

    International Nuclear Information System (INIS)

    Ito, Hitoshi

    1990-01-01

    A new relativistic two-body equation is proposed which has the charge-conjugation symmetry. The renormalization of the wave function at the origin (WFO) is done by incorporating the corresponding vertex equation. By using this model, the heavy-quarkonium phenomenology is developed putting emphasis on the short-distance interaction. The typical scale of the distance restricting the applicability of the ladder model for the mass spectra is found to be 0.13 fm: By assuming the equivalent high-momentum cutoff for the gluonic correction, good results are obtained for the charmonium masses. The improved fine-splittings of the bb-bar states are obtained by inclusion of the retardation. Leptonic decay rates are predicted by assuming the renormalized WFO reduced by another high-momentum cutoff. (author)

  3. Impact ejecta and carbonate sequence in the eastern sector of the Chicxulub crater

    Science.gov (United States)

    Urrutia-Fucugauchi, Jaime; Chavez-Aguirre, Jose Maria; Pérez-Cruz, Ligia; De la Rosa, Jose Luis

    2008-12-01

    The Chicxulub 200 km diameter crater located in the Yucatan platform of the Gulf of Mexico formed 65 Myr ago and has since been covered by Tertiary post-impact carbonates. The sediment cover and absence of significant volcanic and tectonic activity in the carbonate platform have protected the crater from erosion and deformation, making Chicxulub the only large multi-ring crater in which ejecta is well preserved. Ejecta deposits have been studied by drilling/coring in the southern crater sector and at outcrops in Belize, Quintana Roo and Campeche; little information is available from other sectors. Here, we report on the drilling/coring of a section of ˜34 m of carbonate breccias at 250 m depth in the Valladolid area (120 km away from crater center), which are interpreted as Chicxulub proximal ejecta deposits. The Valladolid breccias correlate with the carbonate breccias cored in the Peto and Tekax boreholes to the south and at similar radial distance. This constitutes the first report of breccias in the eastern sector close to the crater rim. Thickness of the Valladolid breccias is less than that at the other sites, which may indicate erosion of the ejecta deposits before reestablishment of carbonate deposition. The region east of the crater rim appears different from regions to the south and west, characterized by high density and scattered distribution of sinkholes.

  4. X-ray emission from reverse-shocked ejecta in supernova remnants

    Science.gov (United States)

    Cioffi, Denis F.; Mckee, Christopher F.

    1990-01-01

    A simple physical model of the dynamics of a young supernova remnant is used to derive a straightforward kinematical description of the reverse shock. With suitable approximations, formulae can then be developed to give the X-ray emission of the reverse-shocked ejecta. The results are found to agree favorably with observations of SN1006.

  5. Evolution of fluid-like granular ejecta generated by sphere impact

    KAUST Repository

    Marston, Jeremy; Li, Erqiang; Thoroddsen, Sigurdur T

    2012-01-01

    We present results from an experimental study of the speed and shape of the ejecta formed when a solid sphere impacts onto a granular bed. We use high-speed imaging at frame rates up to 100 000 f.p.s. to provide direct measurement of individual

  6. Relativistic positioning systems: perspectives and prospects

    Science.gov (United States)

    Coll Bartolomé

    2013-11-01

    Relativistic positioning systems are interesting technical objects for applications around the Earth and in the Solar system. But above all else, they are basic scientific objects allowing developing relativity from its own concepts. Some past and future features of relativistic positioning sys- tems, with special attention to the developments that they suggest for an epistemic relativity (relativistic experimental approach to physics), are analyzed. This includes relativistic stereometry, which, together with relativistic positioning systems, allows to introduce the general relativistic notion of (finite) laboratory (space-time region able to perform experiments of finite size).

  7. Infrared spectroscopy of the remnant of Nova Sco 2014: a symbiotic star with too little circumstellar matter to decelerate the ejecta

    Science.gov (United States)

    Munari, U.; Banerjee, D. P. K.

    2018-03-01

    Pre-outburst 2MASS and WISE photometry of Nova Sco 2014 (V1534 Sco) has suggested the presence of a cool giant at the location of the nova in the sky. The spectral evolution recorded for the nova did not, however, support a direct partnership because no flash-ionized wind and no deceleration of the ejecta were observed, contrary to the behaviour displayed by other novae which erupted within symbiotic binaries like V407 Cyg or RS Oph. We have therefore obtained 0.8-2.5 μm spectra of the remnant of Nova Sco 2014 in order to ascertain if a cool giant is indeed present and if it is physically associated with the nova. The spectrum shows the presence of a M6III giant, reddened by E(B - V) = 1.20, displaying the typical and narrow emission-line spectrum of a symbiotic star, including He I 1.0830 μm with a deep P-Cyg profile. This makes Nova Sco 2014 a new member of the exclusive club of novae that erupt within a symbiotic binary. Nova Sco 2014 shows that a nova erupting within a symbiotic binary does not always come with a deceleration of the ejecta, contrary to the common belief. Many other similar systems may lay hidden in past novae, especially in those that erupted prior to the release of the 2MASS all-sky infrared survey, which could be profitably cross-matched now against them.

  8. Interplanetary Magnetic Field Guiding Relativistic Particles

    Science.gov (United States)

    Masson, S.; Demoulin, P.; Dasso, S.; Klein, K. L.

    2011-01-01

    The origin and the propagation of relativistic solar particles (0.5 to few Ge V) in the interplanetary medium remains a debated topic. These relativistic particles, detected at the Earth by neutron monitors have been previously accelerated close to the Sun and are guided by the interplanetary magnetic field (IMF) lines, connecting the acceleration site and the Earth. Usually, the nominal Parker spiral is considered for ensuring the magnetic connection to the Earth. However, in most GLEs the IMF is highly disturbed, and the active regions associated to the GLEs are not always located close to the solar footprint of the nominal Parker spiral. A possible explanation is that relativistic particles are propagating in transient magnetic structures, such as Interplanetary Coronal Mass Ejections (ICMEs). In order to check this interpretation, we studied in detail the interplanetary medium where the particles propagate for 10 GLEs of the last solar cycle. Using the magnetic field and the plasma parameter measurements (ACE/MAG and ACE/SWEPAM), we found widely different IMF configurations. In an independent approach we develop and apply an improved method of the velocity dispersion analysis to energetic protons measured by SoHO/ERNE. We determined the effective path length and the solar release time of protons from these data and also combined them with the neutron monitor data. We found that in most of the GLEs, protons propagate in transient magnetic structures. Moreover, the comparison between the interplanetary magnetic structure and the interplanetary length suggest that the timing of particle arrival at Earth is dominantly determined by the type of IMF in which high energetic particles are propagating. Finally we find that these energetic protons are not significantly scattered during their transport to Earth.

  9. Scattering in relativistic particle mechanics

    International Nuclear Information System (INIS)

    De Bievre, S.

    1986-01-01

    The problem of direct interaction in relativistic particle mechanics has been extensively studied and a variety of models has been proposed avoiding the conclusions of the so-called no-interaction theorems. In this thesis the authors studied scattering in the relativistic two-body problem. He uses the results to analyze gauge invariance in Hamiltonian constraint models and the uniqueness of the symplectic structure in manifestly covariant relativistic particle mechanics. A general geometric framework that underlies approaches to relativistic particle mechanics is presented and the kinematic properties of the scattering transformation, i.e., those properties that arise solely from the invariance of the theory under the Poincare group are studied. The second part of the analysis of the relativistic two-body scattering problem is devoted to the dynamical properties of the scattering process. Using general geometric arguments, gauge invariance of the scattering transformation in the Todorov-Komar Hamiltonian constraint model is proved. Finally, quantization of the models is discussed

  10. Remote Sensing Observations and Numerical Simulation for Martian Layered Ejecta Craters

    Science.gov (United States)

    Li, L.; Yue, Z.; Zhang, C.; Li, D.

    2018-04-01

    To understand past Martian climates, it is important to know the distribution and nature of water ice on Mars. Impact craters are widely used ubiquitous indicators for the presence of subsurface water or ice on Mars. Remote sensing observations and numerical simulation are powerful tools for investigating morphological and topographic features on planetary surfaces, and we can use the morphology of layered ejecta craters and hydrocode modeling to constrain possible layering and impact environments. The approach of this work consists of three stages. Firstly, the morphological characteristics of the Martian layered ejecta craters are performed based on Martian images and DEM data. Secondly, numerical modeling layered ejecta are performed through the hydrocode iSALE (impact-SALE). We present hydrocode modeling of impacts onto targets with a single icy layer within an otherwise uniform basalt crust to quantify the effects of subsurface H2O on observable layered ejecta morphologies. The model setup is based on a layered target made up of a regolithic layer (described by the basalt ANEOS), on top an ice layer (described by ANEOS equation of H2O ice), in turn on top of an underlying basaltic crust. The bolide is a 0.8 km diameter basaltic asteroid hitting the Martian surface vertically at a velocity of 12.8 km/s. Finally, the numerical results are compared with the MOLA DEM profile in order to analyze the formation mechanism of Martian layered ejecta craters. Our simulations suggest that the presence of an icy layer significantly modifies the cratering mechanics, and many of the unusual features of SLE craters may be explained by the presence of icy layers. Impact cratering on icy satellites is significantly affected by the presence of subsurface H2O.

  11. THE MORPHOLOGY OF THE EJECTA IN SUPERNOVA 1987A: A STUDY OVER TIME AND WAVELENGTH

    Energy Technology Data Exchange (ETDEWEB)

    Larsson, Josefin [KTH, Department of Physics, and the Oskar Klein Centre, AlbaNova, SE-106 91 Stockholm (Sweden); Fransson, Claes; Lundqvist, Peter; Sollerman, Jesper [Department of Astronomy and the Oskar Klein Centre, Stockholm University, AlbaNova, SE-106 91 Stockholm (Sweden); Kjaer, Karina; Leibundgut, Bruno; Spyromilio, Jason [ESO, Karl-Schwarzschild-Strasse 2, D-85748 Garching (Germany); Jerkstrand, Anders [Astrophysics Research Centre, School of Maths and Physics, Queens University Belfast, Belfast BT7 1NN (United Kingdom); Kirshner, Robert P. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, MS-78, Cambridge, MA 02138 (United States); Mattila, Seppo [Finnish Centre for Astronomy with ESO (FINCA), University of Turku, Vaeisaelaentie 20, FI-21500 Piikkioe (Finland); McCray, Richard [JILA, University of Colorado, Boulder, CO 80309-0440 (United States); Wheeler, J. Craig [Department of Astronomy, University of Texas, Austin, TX 78712-0259 (United States)

    2013-05-01

    We present a study of the morphology of the ejecta in Supernova 1987A based on images and spectra from the Hubble Space Telescope (HST) as well as integral field spectroscopy from VLT/SINFONI. The HST observations were obtained between 1994 and 2011 and primarily probe the outer H-rich zones of the ejecta. The SINFONI observations were obtained in 2005 and 2011 and instead probe the [Si I]+[Fe II] emission from the inner regions. We find a strong temporal evolution of the morphology in the HST images, from a roughly elliptical shape before {approx}5000 days, to a more irregular, edge-brightened morphology with a ''hole'' in the middle thereafter. This transition is a natural consequence of the change in the dominant energy source powering the ejecta, from radioactive decay before {approx}5000 days to X-ray input from the circumstellar interaction thereafter. The [Si I]+[Fe II] images display a more uniform morphology, which may be due to a remaining significant contribution from radioactivity in the inner ejecta and the higher abundance of these elements in the core. Both the H{alpha} and the [Si I]+[Fe II] line profiles show that the ejecta are distributed fairly close to the plane of the inner circumstellar ring, which is assumed to define the rotational axis of the progenitor star. The H{alpha} emission extends to higher velocities than [Si I]+[Fe II], as expected from theoretical models. There is no clear symmetry axis for all the emission. Instead, we find that the emission is concentrated to clumps and that the emission is distributed somewhat closer to the ring in the north than in the south. This north-south asymmetry may be partially explained by dust absorption. We compare our results with explosion models and find some qualitative agreement, but note that the observations show a higher degree of large-scale asymmetry.

  12. Radiatively-suppressed spherical accretion under relativistic radiative transfer

    Science.gov (United States)

    Fukue, Jun

    2018-03-01

    We numerically examine radiatively-suppressed relativistic spherical accretion flows on to a central object with mass M under Newtonian gravity and special relativity. We simultaneously solve both the relativistic radiative transfer equation and the relativistic hydrodynamical equations for spherically symmetric flows under the double iteration process in the case of the intermediate optical depth. We find that the accretion flow is suppressed, compared with the freefall case in the nonrelativistic regime. For example, in the case of accretion on to a luminous core with accretion luminosity L*, the freefall velocity v normalized by the speed of light c under the radiative force in the nonrelativistic regime is β (\\hat{r}) = v/c = -√{(1-Γ _*)/(\\hat{r}+1-Γ _*)}, where Γ* (≡ L*/LE, LE being the Eddington luminosity) is the Eddington parameter and \\hat{r} (= r/rS, rS being the Schwarzschild radius) the normalized radius, whereas the infall speed at the central core is ˜0.7β(1), irrespective of the mass-accretion rate. This is due to the relativistic effect; the comoving flux is enhanced by the advective flux. We briefly examine and discuss an isothermal case, where the emission takes place in the entire space.

  13. Power law and exponential ejecta size distributions from the dynamic fragmentation of shock-loaded Cu and Sn metals under melt conditions

    International Nuclear Information System (INIS)

    Durand, O.; Soulard, L.

    2013-01-01

    Large scale molecular dynamics (MD) simulations are performed to study and to model the ejecta production from the dynamic fragmentation of shock-loaded metals under melt conditions. A generic 3D crystal in contact with vacuum containing about 10 8 atoms and with a sinusoidal free surface roughness is shock loaded so as to undergo a solid-liquid phase change on shock. The reflection of the shock wave at the interface metal/vacuum gives rise to the ejection of 2D jets/sheets of atoms (Richtmyer-Meshkov instabilities in the continuum limit), which develop and break up, forming ejecta (fragments) of different volumes (or mass). The fragmentation process is investigated by analyzing the evolution of the resulting volume distribution of the ejecta as a function of time. Two metals are studied (Cu and Sn) and the amplitude of the roughness is varied. The simulations show that the associated distributions exhibit a generic behavior with the sum of two distinct terms of varying weight, following the expansion rate of the jets: in the small size limit, the distribution obeys a power law dependence with an exponent equal to 1.15 ± 0.08; and in the large size limit, it obeys an exponential form. These two components are interpreted, with the help of additional simple simulations, as the signature of two different basic mechanisms of fragmentation. The power law dependence results from the fragmentation of a 2D network of ligaments arranged following a fractal (scale free) geometry and generated when the sheets of liquid metal expand and tear. The exponential distribution results from a 1D Poisson fragmentation process of the largest ligaments previously generated. Unlike the power law distribution, it is governed by a characteristic length scale, which may be provided by energy balance principle

  14. Power law and exponential ejecta size distributions from the dynamic fragmentation of shock-loaded Cu and Sn metals under melt conditions

    Energy Technology Data Exchange (ETDEWEB)

    Durand, O.; Soulard, L. [CEA, DAM, DIF, F-91297 Arpajon (France)

    2013-11-21

    Large scale molecular dynamics (MD) simulations are performed to study and to model the ejecta production from the dynamic fragmentation of shock-loaded metals under melt conditions. A generic 3D crystal in contact with vacuum containing about 10{sup 8} atoms and with a sinusoidal free surface roughness is shock loaded so as to undergo a solid-liquid phase change on shock. The reflection of the shock wave at the interface metal/vacuum gives rise to the ejection of 2D jets/sheets of atoms (Richtmyer-Meshkov instabilities in the continuum limit), which develop and break up, forming ejecta (fragments) of different volumes (or mass). The fragmentation process is investigated by analyzing the evolution of the resulting volume distribution of the ejecta as a function of time. Two metals are studied (Cu and Sn) and the amplitude of the roughness is varied. The simulations show that the associated distributions exhibit a generic behavior with the sum of two distinct terms of varying weight, following the expansion rate of the jets: in the small size limit, the distribution obeys a power law dependence with an exponent equal to 1.15 ± 0.08; and in the large size limit, it obeys an exponential form. These two components are interpreted, with the help of additional simple simulations, as the signature of two different basic mechanisms of fragmentation. The power law dependence results from the fragmentation of a 2D network of ligaments arranged following a fractal (scale free) geometry and generated when the sheets of liquid metal expand and tear. The exponential distribution results from a 1D Poisson fragmentation process of the largest ligaments previously generated. Unlike the power law distribution, it is governed by a characteristic length scale, which may be provided by energy balance principle.

  15. Relativistic Hydrodynamics and Spectral Evolution of GRB Jets

    Science.gov (United States)

    Cuesta-Martínez, C.

    2017-09-01

    dynamical details of the jet propagation and connect them to the generation of thermal radiation in GRB events akin to that of the Christmas burst. A comprehensive parameter study of the jet/environment interaction has been performed and synthetic light curves are confronted with the observational data. The thermal emission in our models originates from the interaction between the jet and the hydrogen envelope ejected during the neutron star/He core merger. We find that the lack of a classical afterglow and the accompanying thermal emission in BBD-GRBs can be explained by the interaction of an ultrarelativistic jet with a toroidally shaped ejecta whose axis coincides with the binary rotation axis. We also find that the synchrotron emission of the forward shock of the jet is dominant during the early phases of the evolution, along which that shock is still moderately relativistic. The contribution of the reverse shock is of the same magnitude as that of the forward shock during the first 80 min after the GRB. Later, it quickly fades because the jet/environment interaction chokes the ultrarelativistic jet beam and effectively dumps the reverse shock. We highlight that, in agreement with observations, we obtain rather flat light curves during the first 2 days after the GRB, and a spectral evolution consistent with the observed reddening of the system. Besides, we obtain that this spectral inversion and reddening happening at about 2 days in the Christmas burst can be related to the time at which the massive shell, ejected in an early phase of the common-envelope evolution of the progenitor system, is completely ablated by the ultrarelativistic jet. In the second part of this thesis, we study more canonical progenitor systems of GRBs, namely single massive stars on the brink of collapse. Motivated by the many associations of GRBs with energetic SN explosions, we study the propagation of relativistic jets within the progenitor star and the circumstellar medium. Particular

  16. Impact Ejecta Layer from the Mid-Devonian: Possible Connection to Global Mass Extinctions

    Science.gov (United States)

    Ellwood, Brooks B.; Benoist, Stephen L.; Hassani, Ahmed El; Wheeler, Christopher; Crick, Rex E.

    2003-06-01

    We have found evidence for a bolide impacting Earth in the mid-Devonian (~380 million years ago), including high concentrations of shocked quartz, Ni, Cr, As, V, and Co anomalies; a large negative carbon isotope shift (-9 per mil); and microspherules and microcrysts at Jebel Mech Irdane in the Anti Atlas desert near Rissani, Morocco. This impact is important because it is coincident with a major global extinction event (Kacák/otomari event), suggesting a possible cause-and-effect relation between the impact and the extinction. The result may represent the extinction of as many as 40% of all living marine animal genera.

  17. Relativistic hydrodynamic evolutions with black hole excision

    International Nuclear Information System (INIS)

    Duez, Matthew D.; Shapiro, Stuart L.; Yo, H.-J.

    2004-01-01

    We present a numerical code designed to study astrophysical phenomena involving dynamical spacetimes containing black holes in the presence of relativistic hydrodynamic matter. We present evolutions of the collapse of a fluid star from the onset of collapse to the settling of the resulting black hole to a final stationary state. In order to evolve stably after the black hole forms, we excise a region inside the hole before a singularity is encountered. This excision region is introduced after the appearance of an apparent horizon, but while a significant amount of matter remains outside the hole. We test our code by evolving accurately a vacuum Schwarzschild black hole, a relativistic Bondi accretion flow onto a black hole, Oppenheimer-Snyder dust collapse, and the collapse of nonrotating and rotating stars. These systems are tracked reliably for hundreds of M following excision, where M is the mass of the black hole. We perform these tests both in axisymmetry and in full 3+1 dimensions. We then apply our code to study the effect of the stellar spin parameter J/M 2 on the final outcome of gravitational collapse of rapidly rotating n=1 polytropes. We find that a black hole forms only if J/M 2 2 >1, the collapsing star forms a torus which fragments into nonaxisymmetric clumps, capable of generating appreciable 'splash' gravitational radiation

  18. Causal localizations in relativistic quantum mechanics

    Science.gov (United States)

    Castrigiano, Domenico P. L.; Leiseifer, Andreas D.

    2015-07-01

    Causal localizations describe the position of quantum systems moving not faster than light. They are constructed for the systems with finite spinor dimension. At the center of interest are the massive relativistic systems. For every positive mass, there is the sequence of Dirac tensor-localizations, which provides a complete set of inequivalent irreducible causal localizations. They obey the principle of special relativity and are fully Poincaré covariant. The boosters are determined by the causal position operator and the other Poincaré generators. The localization with minimal spinor dimension is the Dirac localization. Thus, the Dirac equation is derived here as a mere consequence of the principle of causality. Moreover, the higher tensor-localizations, not known so far, follow from Dirac's localization by a simple construction. The probability of localization for positive energy states results to be described by causal positive operator valued (PO-) localizations, which are the traces of the causal localizations on the subspaces of positive energy. These causal Poincaré covariant PO-localizations for every irreducible massive relativistic system were, all the more, not known before. They are shown to be separated. Hence, the positive energy systems can be localized within every open region by a suitable preparation as accurately as desired. Finally, the attempt is made to provide an interpretation of the PO-localization operators within the frame of conventional quantum mechanics attributing an important role to the negative energy states.

  19. Relativistic and separable classical hamiltonian particle dynamics

    International Nuclear Information System (INIS)

    Sazdjian, H.

    1981-01-01

    We show within the Hamiltonian formalism the existence of classical relativistic mechanics of N scalar particles interacting at a distance which satisfies the requirements of Poincare invariance, separability, world-line invariance and Einstein causality. The line of approach which is adopted here uses the methods of the theory of systems with constraints applied to manifestly covariant systems of particles. The study is limited to the case of scalar interactions remaining weak in the whole phase space and vanishing at large space-like separation distances of the particles. Poincare invariance requires the inclusion of many-body, up to N-body, potentials. Separability requires the use of individual or two-body variables and the construction of the total interaction from basic two-body interactions. Position variables of the particles are constructed in terms of the canonical variables of the theory according to the world-line invariance condition and the subsidiary conditions of the non-relativistic limit and separability. Positivity constraints on the interaction masses squared of the particles ensure that the velocities of the latter remain always smaller than the velocity of light

  20. Relativistic direct interaction and hadron models

    International Nuclear Information System (INIS)

    Biswas, T.

    1984-01-01

    Direct interaction theories at a nonrelativistic level have been used successfully in several areas earlier (e.g. nuclear physics). But for hadron spectroscopy relativistic effects are important and hence the need for a relativistic direct interaction theory arises. It is the goal of this thesis to suggest such a theory which has the simplicity and the flexibility required for phenomenological model building. In general the introduction of relativity in a direct interaction theory is shown to be non-trivial. A first attempt leads to only an approximate form for allowed interactions. Even this is far too complex for phenomenological applicability. To simplify the model an extra spacelike particle called the vertex is introduced in any set of physical (timelike) particles. The vertex model is successfully used to fit and to predict experimental data on hadron spectra, γ and psi states fit very well with an interaction function inspired by QCD. Light mesons also fit reasonably well. Better forms of hyperfine interaction functions would be needed to improve the fitting of light mesons. The unexpectedly low pi meson mass is partially explained. Baryon ground states are fitted with unprecedented accuracy with very few adjustable parameters. For baryon excited states it is shown that better QCD motivated interaction functions are needed for a fit. Predictions for bb states in e + e - experiments are made to assist current experiments

  1. Relativistic meson spectroscopy in momentum space

    International Nuclear Information System (INIS)

    Hersbach, H.

    1994-01-01

    In this paper a relativistic constituent-quark model based on the Ruijgrok--de Groot formalism is presented. The quark model is not defined in configuration space, but in momentum space. The complete meson spectrum, with the exception of the self-conjugate light unflavored mesons, is calculated. The potential used consists of a one-gluon exchange (OGE) part and a confining part. For the confining part a relativistic generalization of the linear plus constant potential was used, which is well defined in momentum space without introducing any singularities. For the OGE part several potentials were investigated. Retardations were included at all places. By the use of a fitting procedure involving 52 well-established mesons, but results were obtained for a potential consisting of a purely vector Richardson potential and a purely scalar confining potential. Reasonable results were also obtained for a modified Richardson potential. Most meson masses, with the exception of the π, the K, and the K 0 * , were found to be quite well described by the model

  2. Instability of extremal relativistic charged spheres

    International Nuclear Information System (INIS)

    Anninos, Peter; Rothman, Tony

    2002-01-01

    With the question 'Can relativistic charged spheres form extremal black holes?' in mind, we investigate the properties of such spheres from a classical point of view. The investigation is carried out numerically by integrating the Oppenheimer-Volkov equation for relativistic charged fluid spheres and finding interior Reissner-Nordstroem solutions for these objects. We consider both constant density and adiabatic equations of state, as well as several possible charge distributions, and examine stability by both a normal mode and an energy analysis. In all cases, the stability limit for these spheres lies between the extremal (Q=M) limit and the black hole limit (R=R + ). That is, we find that charged spheres undergo gravitational collapse before they reach Q=M, suggesting that extremal Reissner-Nordstroem black holes produced by collapse are ruled out. A general proof of this statement would support a strong form of the cosmic censorship hypothesis, excluding not only stable naked singularities, but stable extremal black holes. The numerical results also indicate that although the interior mass-energy m(R) obeys the usual m/R + as Q→M. In the Appendix we also argue that Hawking radiation will not lead to an extremal Reissner-Nordstroem black hole. All our results are consistent with the third law of black hole dynamics, as currently understood

  3. SPECIAL RELATIVISTIC HYDRODYNAMICS WITH GRAVITATION

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Jai-chan [Department of Astronomy and Atmospheric Sciences, Kyungpook National University, Daegu (Korea, Republic of); Noh, Hyerim [Korea Astronomy and Space Science Institute, Daejon (Korea, Republic of)

    2016-12-20

    Special relativistic hydrodynamics with weak gravity has hitherto been unknown in the literature. Whether such an asymmetric combination is possible has been unclear. Here, the hydrodynamic equations with Poisson-type gravity, considering fully relativistic velocity and pressure under the weak gravity and the action-at-a-distance limit, are consistently derived from Einstein’s theory of general relativity. An analysis is made in the maximal slicing, where the Poisson’s equation becomes much simpler than our previous study in the zero-shear gauge. Also presented is the hydrodynamic equations in the first post-Newtonian approximation, now under the general hypersurface condition. Our formulation includes the anisotropic stress.

  4. Methods in relativistic nuclear physics

    International Nuclear Information System (INIS)

    Danos, M.; Gillet, V.; Cauvin, M.

    1984-01-01

    This book is intended to provide the methods and tools for performing actual calculations for finite many-body systems of bound relativistic constituent particles. The aim is to cover thoroughly the methodological aspects of the relativistic many-body problem for bound states while avoiding the presentation of specific models. The many examples contained in the later part of the work are meant to give concrete illustrations of how to actually apply the methods which are given in the first part. The basic framework of the approach is the lagrangian field theory solved in the time-independent Schroedinger picture. (Auth.)

  5. Frontiers in relativistic celestial mechanics

    CERN Document Server

    2014-01-01

    Relativistic celestial mechanics – investigating the motion celestial bodies under the influence of general relativity – is a major tool of modern experimental gravitational physics. With a wide range of prominent authors from the field, this two-volume series consists of reviews on a multitude of advanced topics in the area of relativistic celestial mechanics – starting from more classical topics such as the regime of asymptotically-flat spacetime, light propagation and celestial ephemerides, but also including its role in cosmology and alternative theories of gravity as well as modern experiments in this area.

  6. Multiwavelength Observations of Relativistic Jets from General Relativistic Magnetohydrodynamic Simulations

    Directory of Open Access Journals (Sweden)

    Richard Anantua

    2018-03-01

    Full Text Available This work summarizes a program intended to unify three burgeoning branches of the high-energy astrophysics of relativistic jets: general relativistic magnetohydrodynamic (GRMHD simulations of ever-increasing dynamical range, the microphysical theory of particle acceleration under relativistic conditions, and multiwavelength observations resolving ever-decreasing spatiotemporal scales. The process, which involves converting simulation output into time series of images and polarization maps that can be directly compared to observations, is performed by (1 self-consistently prescribing models for emission, absorption, and particle acceleration and (2 performing time-dependent polarized radiative transfer. M87 serves as an exemplary prototype for this investigation due to its prominent and well-studied jet and the imminent prospect of learning much more from Event Horizon Telescope (EHT observations this year. Synthetic observations can be directly compared with real observations for observational signatures such as jet instabilities, collimation, relativistic beaming, and polarization. The simplest models described adopt the standard equipartition hypothesis; other models calculate emission by relating it to current density or shear. These models are intended for application to the radio jet instead of the higher frequency emission, the disk and the wind, which will be subjects of future investigations.

  7. Dark matter: a problem in relativistic metrology?

    International Nuclear Information System (INIS)

    Lusanna, Luca

    2017-01-01

    Besides the tidal degrees of freedom of Einstein general relativity (GR) (namely the two polarizations of gravitational waves after linearization of the theory) there are the inertial gauge ones connected with the freedom in the choice of the 4-coordinates of the space-time, i.e. in the choice of the notions of time and 3-space (the 3+1 splitting of space-time) and in their use to define a non-inertial frame (the inertial ones being forbidden by the equivalence principle) by means of a set of conventions for the relativistic metrology of the space-time (like the GPS ones near the Earth). The canonical York basis of canonical ADM gravity allows us to identify the Hamiltonian inertial gauge variables in globally hyperbolic asymptotically Minkowskian space-times without super-translations and to define the family of non-harmonic Schwinger time gauges. In these 3+1 splittings of space-time the freedom in the choice of time (the problem of clock synchronization) is described by the inertial gauge variable York time (the trace of the extrinsic curvature of the instantaneous 3-spaces). This inertial gauge freedom and the non-Euclidean nature of the instantaneous 3-spaces required by the equivalence principle need to be incorporated as metrical conventions in a relativistic suitable extension of the existing (essentially Galilean) ICRS celestial reference system. In this paper I make a short review of the existing possibilities to explain the presence of dark matter (or at least of part of it) as a relativistic inertial effect induced by the non- Euclidean nature of the 3-spaces. After a Hamiltonian Post-Minkowskian (HPM) linearization of canonical ADM tetrad gravity with particles, having equal inertial and gravitational masses, as matter, followed by a Post-Newtonian (PN) expansion, we find that the Newtonian equality of inertial and gravitational masses breaks down and that the inertial gauge York time produces an increment of the inertial masses explaining at least

  8. Layered/Pancake-like Ejecta on Ceres: Inferring the Composition and Mechanical Properties of the Cerean Surface through Modeling of Ejecta Emplacement

    Science.gov (United States)

    Hughson, K.; Russell, C. T.; Schmidt, B. E.; Chilton, H.; Scully, J. E. C.; Sizemore, H. G.; Byrne, S.; Platz, T.; Raymond, C. A.

    2017-12-01

    During the Survey, High Altitude Mapping Orbit, and Low Altitude Mapping Orbit phases of the primary mission Dawn's Framing Camera observed a multitude of globally distributed lobate deposits. These flows were broadly interpreted as either similar to ice-cored/ice-cemented flows (Type 1 flows) on Earth and Mars, long run-out terrestrial or martian landslides (Type 2 flows), or highly mobile fluidized ejecta-like deposits (Type 3 flows) (Buczckowski et al., 2016; Schmidt et al., 2017). The Type 3 flows are morphologically similar to layered/pancake ejecta found on Mars and Ganymede where they are thought to be caused by impacts into ground ice rich substrates (Mouginis-Mark, 1979; Boyce et al., 2010). We assess the effects of target material strength, sliding friction, and vapor entrainment on the production of these features by comparing the ejecta mobility (EM: the ratio of the radius of the ejecta blanket to the radius of the parent crater) values for all Type 3 cerean flows to a ballistic/kinematic sliding model similar to the one developed by Weiss et al. (2014) to model EM for impacts into a variety of ground ice rich substrates of differing volatile content on Mars. Initial results suggest that, in order for these features to form, the cerean surface requires a large coefficient of sliding friction (>0.1), and that significant amounts of water be vaporized during impact. However, the model does not tightly constrain the strength of the target material (best-fit values range from granite-like to unconsolidated-sand-like). These results are consistent with a largely dry, rough, and thin surface layer underlain by material rich in pore-filling ground ice, even at low latitudes. Additionally, before the Fall Meeting we will attempt to constrain the thickness of the ice-poor surface layer. This will be done through a combined analysis of model results and morphometric parameters of individual Type 3 flows. Future implementation of this model will further

  9. Apparent unambiguousness of relativistic time dilation

    International Nuclear Information System (INIS)

    Strel'tsov, V.N.

    1992-01-01

    It is indicated on the definite analogy between the dependence of visible sizes of relativistic objects and period of the wave, emitted by the moving source from the observation conditions ('retradition factor'). It is noted that the definition of time for moving extended objects, led to relativistic dilation, corresponds to the definition of the relativistic (radar) length led to the 'elongation formula'. 10 refs

  10. Quantum gates via relativistic remote control

    Energy Technology Data Exchange (ETDEWEB)

    Martín-Martínez, Eduardo, E-mail: emartinm@uwaterloo.ca [Institute for Quantum Computing, University of Waterloo, Waterloo, Ontario, N2L 3G1 (Canada); Dept. Applied Math., University of Waterloo, Ontario, N2L 3G1 (Canada); Perimeter Institute for Theoretical Physics, Waterloo, Ontario N2L 2Y5 (Canada); Sutherland, Chris [Institute for Quantum Computing, University of Waterloo, Waterloo, Ontario, N2L 3G1 (Canada)

    2014-12-12

    We harness relativistic effects to gain quantum control on a stationary qubit in an optical cavity by controlling the non-inertial motion of a different probe atom. Furthermore, we show that by considering relativistic trajectories of the probe, we enhance the efficiency of the quantum control. We explore the possible use of these relativistic techniques to build 1-qubit quantum gates.

  11. Relativistic corrections to one-particle neutron levels in the harmonic oscillator well

    International Nuclear Information System (INIS)

    Yanavichyus, A.I.

    1983-01-01

    Relativistic corrections to mass and potential energy for one-particle levels in the harmonic oscillator well are calculated in the first approximation of the perturbation theory. These corrections are, mainly negliqible, but they sharply increase with growth of the head and orbital quantum numbers. For the state 1s the relativistic correction is of the order of 0.01 MeV, and for 3p it is equal to 0.4 MeV. Thus, the relativistic correction for certain states approaches the energy of spin-orbital interactions and it should be taken into account in calculating the energy of one-particle levels

  12. Relativistic Inverse Scattering Problem for a Superposition of a Nonlocal Separable and a Local Quasipotential

    International Nuclear Information System (INIS)

    Chernichenko, Yu.D.

    2005-01-01

    Within the relativistic quasipotential approach to quantum field theory, the relativistic inverse scattering problem is solved for the case where the total quasipotential describing the interaction of two relativistic spinless particles having different masses is a superposition of a nonlocal separable and a local quasipotential. It is assumed that the local component of the total quasipotential is known and that there exist bound states in this local component. It is shown that the nonlocal separable component of the total interaction can be reconstructed provided that the local component, an increment of the phase shift, and the energies of bound states are known

  13. The investigation of relativistic microscopic optical potential based on RBBG equation

    International Nuclear Information System (INIS)

    Chen Baoqiu; Ma Zhongyu

    1992-01-01

    The relativistic microscopic optical potential is derived from the RBBG equation. The nucleon complex effective mass is determined phenomenologically by a fit to 200 MeV proton-nucleus scattering data. Then the relativistic microscopic optical potentials of proton scattered from different targets: 16 O, 40 Ca, 90 Zr and 208 Pb in the energies range from 160 to 800 MeV have been got. The relativistic microscopic optical potentials have been used to study proton- 40 Ca scattering at 200 MeV. Theoretical predictions for cross section and spin observables are compared with experimental data and phenomenological Dirac optical potential

  14. Relativistic N-body simulations with massive neutrinos

    Science.gov (United States)

    Adamek, Julian; Durrer, Ruth; Kunz, Martin

    2017-11-01

    Some of the dark matter in the Universe is made up of massive neutrinos. Their impact on the formation of large scale structure can be used to determine their absolute mass scale from cosmology, but to this end accurate numerical simulations have to be developed. Due to their relativistic nature, neutrinos pose additional challenges when one tries to include them in N-body simulations that are traditionally based on Newtonian physics. Here we present the first numerical study of massive neutrinos that uses a fully relativistic approach. Our N-body code, gevolution, is based on a weak-field formulation of general relativity that naturally provides a self-consistent framework for relativistic particle species. This allows us to model neutrinos from first principles, without invoking any ad-hoc recipes. Our simulation suite comprises some of the largest neutrino simulations performed to date. We study the effect of massive neutrinos on the nonlinear power spectra and the halo mass function, focusing on the interesting mass range between 0.06 eV and 0.3 eV and including a case for an inverted mass hierarchy.

  15. Evolution of fluid-like granular ejecta generated by sphere impact

    KAUST Repository

    Marston, Jeremy

    2012-05-01

    We present results from an experimental study of the speed and shape of the ejecta formed when a solid sphere impacts onto a granular bed. We use high-speed imaging at frame rates up to 100 000 f.p.s. to provide direct measurement of individual grain velocities and ejecta angles as well as the overall evolution of the granular ejecta. For larger grain sizes, the emergence velocities of the grains during the early stage flow, i.e. before the main ejecta curtain forms, increase with the kinetic energy of the impacting sphere but are inversely proportional to the time from impact. We also observe that the fastest grains, which can obtain velocities up to five times that of the impacting sphere (V g/V 0 = 5), generally emerge at the earliest times and with the lowest ejection angles. As the grain size is decreased, a more fluid-like behaviour is observed whereby the ejected material first emerges as a thin sheet of grains between the sphere and the bed surface, which is also seen when a sphere impacts a liquid pool. In this case, the sheet velocity is approximately double that of the impacting sphere (V s/V 0 = 2) and independent of the bulk packing fraction. For the finest grains we provide evidence of the existence of a vortex ring inside the ejecta curtain where grains following the air flow are entrained through the curtain. In contrast to predictions from previous studies, we find that the temporal evolution of the ejecta neck radius is not initially quadratic but rather approaches a square-root dependence on time, for the finest grains with the highest impact kinetic energy. The evolution therefore approaches that seen for the crown evolution in liquid drop impacts. By using both spherical glass beads and coarse sands, we show that the size and shape distribution are critical in determining the post-impact dynamics whereby the sands exhibit a qualitatively different response to impact, with grains ejected at lower speeds and at later times than for the glass

  16. Instability in relativistic nuclear matter

    International Nuclear Information System (INIS)

    Tezuka, Hirokazu.

    1979-11-01

    The stability of the Fermi gas state in the nuclear matter which satisfies the saturation property is considered relativistically. It is shown that the Fermi gas state is stable at very low density and at high density, but it is unstable for density fluctuation in the intermediate density region including the normal density. (author)

  17. Cyberinfrastructure for Computational Relativistic Astrophysics

    OpenAIRE

    Ott, Christian

    2012-01-01

    Poster presented at the NSF Office of Cyberinfrastructure CyberBridges CAREER PI workshop. This poster discusses the computational challenges involved in the modeling of complex relativistic astrophysical systems. The Einstein Toolkit is introduced. It is an open-source community infrastructure for numerical relativity and computational astrophysics.

  18. Future relativistic heavy ion experiments

    International Nuclear Information System (INIS)

    Pugh, H.G.

    1980-12-01

    Equations of state for nuclear matter and ongoing experimental studies are discussed. Relativistic heavy ion physics is the only opportunity to study in the laboratory the properties of extended multiquark systems under conditions such that quarks might run together into new arrangements previously unobserved. Several lines of further study are mentioned

  19. A relativistic radiation transfer benchmark

    International Nuclear Information System (INIS)

    Munier, A.

    1988-01-01

    We use the integral form of the radiation transfer equation in an one dimensional slab to determine the time-dependent propagation of the radiation energy, flux and pressure in a collisionless homogeneous medium. First order v/c relativistic terms are included and the solution is given in the fluid frame and the laboratory frame

  20. Relativistic models of nuclear structure

    International Nuclear Information System (INIS)

    Gillet, V.; Kim, E.J.; Cauvin, M.; Kohmura, T.; Ohnaka, S.

    1991-01-01

    The introduction of the relativistic field formalism for the description of nuclear structure has improved our understanding of fundamental nuclear mechanisms such as saturation or many body forces. We discuss some of these progresses, both in the semi-classical mean field approximation and in a quantized meson field approach. (author)

  1. Fundamental length and relativistic length

    International Nuclear Information System (INIS)

    Strel'tsov, V.N.

    1988-01-01

    It si noted that the introduction of fundamental length contradicts the conventional representations concerning the contraction of the longitudinal size of fast-moving objects. The use of the concept of relativistic length and the following ''elongation formula'' permits one to solve this problem

  2. Relativistic few quark dynamics for hadrons

    International Nuclear Information System (INIS)

    Mitra, A.N.

    1983-07-01

    A microscopic confinement approach is presented to a few quarks systems through an effective (harmonic) kernel inserted at the level of q-q-bar and q-q pairs, using the vehicle of the Bethe-Salpeter equation for each such system. The formalism, which is realistic for light quark systems (which require an intrinsically relativistic treatment), has been developed in a simple enough form so as to be applicable in practice to a large class of phenomena amenable to experimental test. The comparison over a wide range of hadronic properties (from mass spectra to current matrix elements), all within a single integrated framework, would seem to strongly support the ansatz of universality of the reduced spring constant (ω-tilde) which plays a role analogous to the bag radius, but at a far more microscopic level

  3. Magnetized relativistic electron-ion plasma expansion

    Science.gov (United States)

    Benkhelifa, El-Amine; Djebli, Mourad

    2016-03-01

    The dynamics of relativistic laser-produced plasma expansion across a transverse magnetic field is investigated. Based on a one dimensional two-fluid model that includes pressure, enthalpy, and rest mass energy, the expansion is studied in the limit of λD (Debye length) ≤RL (Larmor radius) for magnetized electrons and ions. Numerical investigation conducted for a quasi-neutral plasma showed that the σ parameter describing the initial plasma magnetization, and the plasma β parameter, which is the ratio of kinetic to magnetic pressure are the key parameters governing the expansion dynamics. For σ ≪ 1, ion's front shows oscillations associated to the break-down of quasi-neutrality. This is due to the strong constraining effect and confinement of the magnetic field, which acts as a retarding medium slowing the plasma expansion.

  4. Cherenkov particle identifier for relativistic heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    Dufour, J P; Olson, D L; Baumgartner, M; Girard, J G; Lindstrom, P J; Greiner, D E; Symons, T J.M.; Crawford, H J

    1985-12-01

    A total internal reflection Cherenkov detector is described. A figure of merit of 84Z/sup 2/sin/sup 2/theta photoelectrons/cm has been measured and the application of the device to charge and velocity measurements of relativistic heavy ions has been tested. We have achieved a charge resolution of ..delta..Zsub(rms)=0.15e for Z=20 with a 3 mm thick glass detector and a velocity resolution of ..delta beta..sub(rms)=2x10/sup -4/ at ..beta..=0.93 and Z=26 with a 6 mm thick fused silica detector. Combining charge and velocity measurements with a magnetic rigidity selection, we have achieved an isotopic mass resolution of ..delta..Msub(rms)=0.1 u with a 2 mm thick fused silica detector for 20

  5. Cherenkov particle identifier for relativistic heavy ions

    Energy Technology Data Exchange (ETDEWEB)

    Dufour, J P; Olson, D L; Baumgartner, M; Girard, J G; Lindstrom, P J; Greiner, D E; Symons, T J.M.; Crawford, H J

    1985-12-01

    A total internal reflection Cherenkov detector is described. A figure of merit of 84Z/sup 2/sin/sup 2/theta photoelectrons/cm has been measured and the application of the device to charge and velocity measurements of relativistic heavy ions has been tested. We have achieved a charge resolution of ..delta..Zsub(rms)=0.15e for Z=20 with a 3 mm thick glass detector and a velocity resolution of ..delta beta..sub(rms)=2 x 10/sup -4/ at ..beta..=0.93 and Z=26 with a 6 mm thick fused silica detector. Combining charge and velocity measurements with a magnetic rigidity selection, we have achieved an isotopic mass resolution of ..delta..Msub(rms)=0.1 u with a 2 mm thick fused silica detector for 20 < A < 40.

  6. The ν process in the innermost supernova ejecta

    Directory of Open Access Journals (Sweden)

    Sieverding Andre

    2017-01-01

    Full Text Available The neutrino-induced nucleosynthesis (ν process in supernova explosions of massive stars of solar metallicity with initial main sequence masses between 13 and 30 M⊙ has been studied with an analytic explosion model using a new extensive set of neutrino-nucleus cross-sections and spectral properties that agree with modern supernova simulations. The production factors for the nuclei 7Li, 11B, 19F, 138La and 180Ta, are still significantly enhanced but do not reproduce the full solar abundances. We study the possible contribution of the innermost supernova eject to the production of the light elements 7Li and 11B with tracer particles based on a 2D supernova simulation of a 12 M⊙ progenitor and conclude, that a contribution exists but is negligible for the total yield for this explosion model.

  7. The ν process in the innermost supernova ejecta

    Energy Technology Data Exchange (ETDEWEB)

    Sieverding, Andre [Institut für Kernphysik, Technische Universität Darmstadt, Germany; Martínez-Pinedo, Gabriel [Institut für Kernphysik, Technische Universität Darmstadt, Germany; Langanke, Karlheinz [Gesellschaft fur Schwerionenforschung (GSI), Germany; Harris, James Austin [ORNL; Hix, William Raphael [ORNL

    2017-12-01

    The neutrino-induced nucleosynthesis (ν process) in supernova explosions of massive stars of solar metallicity with initial main sequence masses between 13 and 30 M⊙ has been studied with an analytic explosion model using a new extensive set of neutrino-nucleus cross-sections and spectral properties that agree with modern supernova simulations. The production factors for the nuclei 7Li, 11B, 19F, 138La and 180Ta, are still significantly enhanced but do not reproduce the full solar abundances. We study the possible contribution of the innermost supernova eject to the production of the light elements 7Li and 11B with tracer particles based on a 2D supernova simulation of a 12 M⊙ progenitor and conclude, that a contribution exists but is negligible for the total yield for this explosion model.

  8. The interaction of supernova ejecta with an ambient medium

    International Nuclear Information System (INIS)

    Chevalier, R.A.

    1983-01-01

    Plausible environments for supernovae are the interstellar medium with constant density or a circumstellar medium built up by mass loss with rho proportional to r -2 . Self-similar solutions for the interaction region between the expanding supernova gas and the ambient gas exist provided that the expanding gas has rho proportional to rsup(-n) with n > 5. The circumstellar medium case is likely to be important for the early evolution of Type II supernovae because their progenitor stars are probably red supergiants. The radio and X-ray emission observed from extragalactic supernovae may be from this interaction region. The early self-similar solutions can also be applied to the young galactic remnants. (Auth.)

  9. Origin of the outer layer of martian low-aspect ratio layered ejecta craters

    Science.gov (United States)

    Boyce, Joseph M.; Wilson, Lionel; Barlow, Nadine G.

    2015-01-01

    Low-aspect ratio layered ejecta (LARLE) craters are one of the most enigmatic types of martian layered ejecta craters. We propose that the extensive outer layer of these craters is produced through the same base surge mechanism as that which produced the base surge deposits generated by near-surface, buried nuclear and high-explosive detonations. However, the LARLE layers have higher aspect ratios compared with base surge deposits from explosion craters, a result of differences in thicknesses of these layers. This characteristics is probably caused by the addition of large amounts of small particles of dust and ice derived from climate-related mantles of snow, ice and dust in the areas where LARLE craters form. These deposits are likely to be quickly stabilized (order of a few days to a few years) from eolian erosion by formation of duricrust produced by diffusion of water vapor out of the deposits.

  10. Formation of dust grains in the ejecta of SN 1987A

    International Nuclear Information System (INIS)

    Kozasa, Takashi; Hasegawa, Hiroichi; Nomoto, Kenichi

    1989-01-01

    Formation of dust grains in the ejecta of SN 1987A is investigated on the basis of a theory of homogeneous nucleation and grain growth. The formation of dust grains in the gas ejected from a heavy element-rich mantle is considered, including the effects of latent heat released during grain growth and of radiation from the photosphere. It is shown that dust grains can condense in the heavy-element-rich mantle, and that the time of formation strongly depends on the temperature structure in the ejecta. Moreover, the formation of dust grains is retarded by the strong SN radiation field and the effect of latent heat deposited during grain growth. 41 refs

  11. The 3D morphology of the ejecta surrounding VY Canis Majoris

    Science.gov (United States)

    Jones, Terry Jay; Humphreys, Roberta M.; Helton, L. Andrew

    2007-03-01

    We use second epoch images taken with WFPC2 on the HST and imaging polarimetry taken with the HST/ACS/HRC to explore the three dimensional structure of the circumstellar dust distribution around the red supergiant VY Canis Majoris. Transverse motions, combined with radial velocities, provide a picture of the kinematics of the ejecta, including the total space motions. The fractional polarization and photometric colors provide an independent method of locating the physical position of the dust along the line-of-sight. Most of the individual arc-like features and clumps seen in the intensity image are also features in the fractional polarization map, and must be distinct geometric objects. The location of these features in the ejecta of VY CMa using kinematics and polarimetry agree well with each other, and strongly suggest they are the result of relatively massive ejections, probably associated with magnetic fields.

  12. Relativistic Descriptions of Few-Body Systems

    International Nuclear Information System (INIS)

    Karmanov, V. A.

    2011-01-01

    A brief review of relativistic effects in few-body systems, of theoretical approaches, recent developments and applications is given. Manifestations of relativistic effects in the binding energies, in the electromagnetic form factors and in three-body observables are demonstrated. The three-body forces of relativistic origin are also discussed. We conclude that relativistic effects in nuclei can be important in spite of small binding energy. At high momenta they clearly manifest themselves and are necessary to describe the deuteron e.m. form factors. At the same time, there is still a discrepancy in three-body observables which might be a result of less clarity in understanding the corresponding relativistic effects, the relativistic NN kernel and the three-body forces. Relativistic few-body physics remains to be a field of very intensive and fruitful researches. (author)

  13. A simple technique to determine the size distribution of nuclear crater fallback and ejecta

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, II, Brooks D [U.S. Army Engineer Nuclear Cratering Group, Lawrence Radiation Laboratory, Livermore, CA (United States)

    1970-05-15

    This report describes the results of an investigation to find an economic method for determining the block size distribution of nuclear crater fallback and ejecta. It is shown that the modal analysis method of determining relative proportions can be applied with the use of a special sampling technique, to provide a size distribution curve for clastic materials similar to one obtainable by sieving and weighing the same materials.

  14. Sesquinary Catenae on the Martian Satellite Phobos from Reaccretion of Escaping Ejecta

    Science.gov (United States)

    2016-08-30

    Form 298 (Rev . 8/98) PrescribM by ANSI Std Z39 18 Adobe Professional 7 .0 ARTICLE Received 25 Nov 2015 | Accepted 14 Jul 2016 | Published 30 Aug...Phobos’ current orbit (o50Ma). Figure 4 illustrates how orbital ejecta lingering in the vicinity of the Phobos orbit can be swallowed up in hemispherical... illustrating how hemispherical catena (Fig. 5) may be formed. NATURE COMMUNICATIONS | DOI: 10.1038/ncomms12591 ARTICLE NATURE COMMUNICATIONS | 7

  15. A simple technique to determine the size distribution of nuclear crater fallback and ejecta

    International Nuclear Information System (INIS)

    Anderson, Brooks D. II

    1970-01-01

    This report describes the results of an investigation to find an economic method for determining the block size distribution of nuclear crater fallback and ejecta. It is shown that the modal analysis method of determining relative proportions can be applied with the use of a special sampling technique, to provide a size distribution curve for clastic materials similar to one obtainable by sieving and weighing the same materials

  16. Systematics of light nuclei in a relativistic model

    International Nuclear Information System (INIS)

    Price, C.E.

    1988-01-01

    The results of relativistic mean field calculations for non-spherical nuclei are presented and discussed. The need for non-linear scalar meson self-couplings in order to describe the properties of s-d shell nuclei is emphasized along with the importance of self-consistency in calculations of magnetic moments of odd-mass nuclei. 16 refs., 3 figs., 2 tabs

  17. Relativistic contributions to the bonding in Cu2

    International Nuclear Information System (INIS)

    Martin, R.L.

    1983-01-01

    The influence of relativity on the spectroscopic parameters of Cu 2 has been investigated by evaluating the mass-velocity and one electron Darwin terms of the Breit--Pauli Hamiltonian in the first order of perturbation theory. The relativistic corrections are of the order of 10% of the SCF and GVB results and result in a deeper (approx.1.5 kcal), stiffer (approx.15 cm - 1 ) well, with the bond length contracted by about 0.1a 0

  18. Bose-Einstein condensation in the relativistic ideal Bose gas.

    Science.gov (United States)

    Grether, M; de Llano, M; Baker, George A

    2007-11-16

    The Bose-Einstein condensation (BEC) critical temperature in a relativistic ideal Bose gas of identical bosons, with and without the antibosons expected to be pair-produced abundantly at sufficiently hot temperatures, is exactly calculated for all boson number densities, all boson point rest masses, and all temperatures. The Helmholtz free energy at the critical BEC temperature is lower with antibosons, thus implying that omitting antibosons always leads to the computation of a metastable state.

  19. Non-relativistic model of two-particle decay

    International Nuclear Information System (INIS)

    Dittrich, J.; Exner, P.

    1986-01-01

    A simple non-relativistic model of a spinless particle decaying into two lighter particles is treated in detail. It is similar to the Lee-model description of V-particle decay. Galilean covariance is formulated properly, by means of a unitary projective representation acting on the state space of the model. After separating the centre-of-mass motion the meromorphic structure of the reduced resolvent is deduced

  20. Coherent oscillations of a ring of relativistic particles

    International Nuclear Information System (INIS)

    Hofmann, I.

    1976-07-01

    The effect of ring curvature on the coherent perturbations of a ring of relativistic particles is studied within the framework of the linearized Vlasov equation. Finite curvature is shown to have a minor effect on the dynamics of the 'negative mass' mode; the 'transverse' mode in radial direction, however, is found to be coupled with a simultaneous longitudinal density modulation which modifies the dispersion relation. In the limit of small mode frequency (ω/Ω [de

  1. Bose-Einstein Condensation in the Relativistic Ideal Bose Gas

    International Nuclear Information System (INIS)

    Grether, M.; Llano, M. de; Baker, George A. Jr.

    2007-01-01

    The Bose-Einstein condensation (BEC) critical temperature in a relativistic ideal Bose gas of identical bosons, with and without the antibosons expected to be pair-produced abundantly at sufficiently hot temperatures, is exactly calculated for all boson number densities, all boson point rest masses, and all temperatures. The Helmholtz free energy at the critical BEC temperature is lower with antibosons, thus implying that omitting antibosons always leads to the computation of a metastable state

  2. SCALING LAW OF RELATIVISTIC SWEET-PARKER-TYPE MAGNETIC RECONNECTION

    International Nuclear Information System (INIS)

    Takahashi, Hiroyuki R.; Kudoh, Takahiro; Masada, Youhei; Matsumoto, Jin

    2011-01-01

    Relativistic Sweet-Parker-type magnetic reconnection is investigated by relativistic resistive magnetohydrodynamic (RRMHD) simulations. As an initial setting, we assume anti-parallel magnetic fields and a spatially uniform resistivity. A perturbation imposed on the magnetic fields triggers magnetic reconnection around a current sheet, and the plasma inflows into the reconnection region. The inflows are then heated due to ohmic dissipation in the diffusion region and finally become relativistically hot outflows. The outflows are not accelerated to ultrarelativistic speeds (i.e., Lorentz factor ≅ 1), even when the magnetic energy dominates the thermal and rest mass energies in the inflow region. Most of the magnetic energy in the inflow region is converted into the thermal energy of the outflow during the reconnection process. The energy conversion from magnetic to thermal energy in the diffusion region results in an increase in the plasma inertia. This prevents the outflows from being accelerated to ultrarelativistic speeds. We find that the reconnection rate R obeys the scaling relation R≅S -0.5 , where S is the Lundquist number. This feature is the same as that of non-relativistic reconnection. Our results are consistent with the theoretical predictions of Lyubarsky for Sweet-Parker-type magnetic reconnection.

  3. Recent development of relativistic molecular theory

    International Nuclear Information System (INIS)

    Takahito, Nakajima; Kimihiko, Hirao

    2005-01-01

    Today it is common knowledge that relativistic effects are important in the heavy-element chemistry. The continuing development of the relativistic molecular theory is opening up rows of the periodic table that are impossible to treat with the non-relativistic approach. The most straightforward way to treat relativistic effects on heavy-element systems is to use the four-component Dirac-Hartree-Fock approach and its electron-correlation methods based on the Dirac-Coulomb(-Breit) Hamiltonian. The Dirac-Hartree-Fock (DHF) or Dirac-Kohn-Sham (DKS) equation with the four-component spinors composed of the large- and small-components demands severe computational efforts to solve, and its applications to molecules including heavy elements have been limited to small- to medium-size systems. Recently, we have developed a very efficient algorithm for the four-component DHF and DKS approaches. As an alternative approach, several quasi-relativistic approximations have also been proposed instead of explicitly solving the four-component relativistic equation. We have developed the relativistic elimination of small components (RESC) and higher-order Douglas-Kroll (DK) Hamiltonians within the framework of the two-component quasi-relativistic approach. The developing four-component relativistic and approximate quasi-relativistic methods have been implemented into a program suite named REL4D. In this article, we will introduce the efficient relativistic molecular theories to treat heavy-atomic molecular systems accurately via the four-component relativistic and the two-component quasi-relativistic approaches. We will also show several chemical applications including heavy-element systems with our relativistic molecular approaches. (author)

  4. RUNAWAY DWARF CARBON STARS AS CANDIDATE SUPERNOVA EJECTA

    Energy Technology Data Exchange (ETDEWEB)

    Plant, Kathryn A.; Margon, Bruce; Guhathakurta, Puragra; Cunningham, Emily C.; Toloba, Elisa [Department of Astronomy and Astrophysics and University of California Observatories, University of California, Santa Cruz, 1156 High Street, Santa Cruz, CA 95064 (United States); Munn, Jeffrey A., E-mail: kaplant@ucsc.edu [US Naval Observatory, Flagstaff Station, 10391 West Naval Observatory Road, Flagstaff, AZ 86005-8521 (United States)

    2016-12-20

    The dwarf carbon (dC) star SDSS J112801.67+004034.6 has an unusually high radial velocity, 531 ± 4 km s{sup −1}. We present proper motion and new spectroscopic observations which imply a large Galactic rest frame velocity, 425 ± 9 km s{sup −1}. Several other SDSS dC stars are also inferred to have very high galactocentric velocities, again each based on both high heliocentric radial velocity and also confidently detected proper motions. Extreme velocities and the presence of C {sub 2} bands in the spectra of dwarf stars are both rare. Passage near the Galactic center can accelerate stars to such extreme velocities, but the large orbital angular momentum of SDSS J1128 precludes this explanation. Ejection from a supernova in a binary system or disruption of a binary by other stars are possibilities, particularly as dC stars are thought to obtain their photospheric C {sub 2} via mass transfer from an evolved companion.

  5. Angular analyses in relativistic quantum mechanics; Analyses angulaires en mecanique quantique relativiste

    Energy Technology Data Exchange (ETDEWEB)

    Moussa, P [Commissariat a l' Energie Atomique, 91 - Saclay (France). Centre d' Etudes Nucleaires

    1968-06-01

    This work describes the angular analysis of reactions between particles with spin in a fully relativistic fashion. One particle states are introduced, following Wigner's method, as representations of the inhomogeneous Lorentz group. In order to perform the angular analyses, the reduction of the product of two representations of the inhomogeneous Lorentz group is studied. Clebsch-Gordan coefficients are computed for the following couplings: l-s coupling, helicity coupling, multipolar coupling, and symmetric coupling for more than two particles. Massless and massive particles are handled simultaneously. On the way we construct spinorial amplitudes and free fields; we recall how to establish convergence theorems for angular expansions from analyticity hypothesis. Finally we substitute these hypotheses to the idea of 'potential radius', which gives at low energy the usual 'centrifugal barrier' factors. The presence of such factors had never been deduced from hypotheses compatible with relativistic invariance. (author) [French] On decrit un formalisme permettant de tenir compte de l'invariance relativiste, dans l'analyse angulaire des amplitudes de reaction entre particules de spin quelconque. Suivant Wigner, les etats a une particule sont introduits a l'aide des representations du groupe de Lorentz inhomogene. Pour effectuer les analyses angulaires, on etudie la reduction du produit de deux representations du groupe de Lorentz inhomogene. Les coefficients de Clebsch-Gordan correspondants sont calcules dans les couplages suivants: couplage l-s couplage d'helicite, couplage multipolaire, couplage symetrique pour plus de deux particules. Les particules de masse nulle et de masse non nulle sont traitees simultanement. Au passage, on introduit les amplitudes spinorielles et on construit les champs libres, on rappelle comment des hypotheses d'analyticite permettent d'etablir des theoremes de convergence pour les developpements angulaires. Enfin on fournit un substitut a la

  6. Structure and applications of point form relativistic quantum mechanics

    International Nuclear Information System (INIS)

    Klink, W.H.

    2003-01-01

    The framework of point form relativistic quantum mechanics is used to construct mass and current operators for hadronic systems with finite degree of freedom. For the point form all of the interactions are in the four-momentum operator and, since Lorentz transformations are kinematic, the theory is manifestly covariant. In the Bakamjian-Thomas version of the point form the four-momentum operator is written as a product of the four-velocity operator and mass operator, where the mass operator is the sum of free and interacting mass operators. Interacting mass operators can be constructed from vertices, matrix elements of local field operators evaluated at the space-time point zero, where the states are eigenstates of the four-velocity. Applications include the study of the spectra and widths of vector mesons, viewed as bound states of quark-antiquark pairs. Besides mass operators, current operators are needed to compute form factors. Form factors are matrix elements of current operators on mass operator eigenstates and are often calculated with one-body current operators (in the point form this is called the point form spectator approximation); but in a properly relativistic theory there must also be many-body current operators. Minimal currents needed to satisfy current conservation in the presence of hadronic interactions (called dynamically determined currents) are shown to be easily calculated in the point form. (author)

  7. Solitary waves in dusty plasmas with weak relativistic effects in electrons and ions

    Energy Technology Data Exchange (ETDEWEB)

    Kalita, B. C., E-mail: bckalita123@gmail.com [Gauhati University, Department of Mathematics (India); Choudhury, M., E-mail: choudhurymamani@gmail.com [Handique Girls’ College, Department of Mathematics (India)

    2016-10-15

    Two distinct classes of dust ion acoustic (DIA) solitary waves based on relativistic ions and electrons, dust charge Z{sub d} and ion-to-dust mass ratio Q’ = m{sub i}/m{sub d} are established in this model of multicomponent plasmas. At the increase of mass ratio Q’ due to increase of relativistic ion mass and accumulation of more negative dust charges into the plasma causing decrease of dust mass, relativistic DIA solitons of negative potentials are abundantly observed. Of course, relativistic compressive DIA solitons are also found to exist simultaneously. Further, the decrease of temperature inherent in the speed of light c causes the nonlinear term to be more active that increases the amplitude of the rarefactive solitons and dampens the growth of compressive solitons for relatively low and high mass ratio Q’, respectively. The impact of higher initial streaming of the massive ions is observed to identify the point of maximum dust density N{sub d} to yield rarefactive relativistic solitons of maximum amplitude.

  8. Relativistic quantum mechanics an introduction to relativistic quantum fields

    CERN Document Server

    Maiani, Luciano

    2016-01-01

    Written by two of the world's leading experts on particle physics and the standard model - including an award-winning former Director General of CERN - this textbook provides a completely up-to-date account of relativistic quantum mechanics and quantum field theory. It describes the formal and phenomenological aspects of the standard model of particle physics, and is suitable for advanced undergraduate and graduate students studying both theoretical and experimental physics.

  9. Scaling for deuteron structure functions in a relativistic light-front model

    International Nuclear Information System (INIS)

    Polyzou, W.N.; Gloeckle, W.

    1996-01-01

    Scaling limits of the structure functions [B.D. Keister, Phys. Rev. C 37, 1765 (1988)], W 1 and W 2 , are studied in a relativistic model of the two-nucleon system. The relativistic model is defined by a unitary representation, U(Λ,a), of the Poincaracute e group which acts on the Hilbert space of two spinless nucleons. The representation is in Dirac close-quote s [P.A.M. Dirac, Rev. Mod. Phys. 21, 392 (1949)] light-front formulation of relativistic quantum mechanics and is designed to give the experimental deuteron mass and n-p scattering length. A model hadronic current operator that is conserved and covariant with respect to this representation is used to define the structure tensor. This work is the first step in a relativistic extension of the results of Hueber, Gloeckle, and Boemelburg. The nonrelativistic limit of the model is shown to be consistent with the nonrelativistic model of Hueber, Gloeckle, and Boemelburg. [D. Hueber et al. Phys. Rev. C 42, 2342 (1990)]. The relativistic and nonrelativistic scaling limits, for both Bjorken and y scaling are compared. The interpretation of y scaling in the relativistic model is studied critically. The standard interpretation of y scaling requires a soft wave function which is not realized in this model. The scaling limits in both the relativistic and nonrelativistic case are related to probability distributions associated with the target deuteron. copyright 1996 The American Physical Society

  10. Multifragmentation in relativistic heavy ion reactions

    International Nuclear Information System (INIS)

    Trautmann, W.

    1996-11-01

    Multifragmentation is the dominant decay mode of heavy nuclear systems with excitation energies in the vicinity of their binding energies. It explores the partition space associated with the number of nucleonic constituents and it is characterized by a multiple production of nuclear fragments with intermediate mass. Reactions at relativistic bombarding energies, exceeding several hundreds of MeV per nucleon, have been found very efficient in creating such highly excited systems. Peripheral collisions of heavy symmetric systems or more central collisions of mass asymmetric systems produce spectator nuclei with properties indicating a high degree of equilibration. The observed decay patterns are well described by statistical multifragmentation models. The present experimental and theoretical studies are particularly motivated by the fact that multifragmentation is being considered a possible manifestation of the liquid-gas phase transition in finite nuclear systems. From the simultaneous measurement of the temperature and of the energy content of excited spectator systems a caloric curve of nuclei has been obtained. The characteristic S-shaped behavior resembles that of ordinary liquids. Signatures of critical phenomena in finite nuclear systems are searched for in multifragmentation data. These studies, supported by the success of percolation in reproducing the experimental mass or charge correlations, concentrate on the fluctuations observed in these observables. Attempts have been made to deduce critical-point exponents associated with multifragmentation. (orig.)

  11. Relativistic quantum mechanics of bosons

    International Nuclear Information System (INIS)

    Ghose, P.; Home, D.; Sinha Roy, M.N.

    1993-01-01

    We show that it is possible to use the Klein-Gordon, Proca and Maxwell formulations to construct multi-component relativistic configuration space wavefunctions of spin-0 and spin-1 bosons in an external field. These wavefunctions satisfy the first-order Kemmer-Duffin equation. The crucial ingredient is the use of the future-causal normal n μ (n μ n μ =1, n 0 >0) to the space-like hypersurfaces foliating space-time, inherent in the concept of a relativistic wavefunction, to construct a conserved future-causal probability current four-vector from the second-rank energy-momentum tensor, following Holland's prescription. The existence of a Hermitian position operator, localized solutions, compatibility with the second quantized theories and the question of interpretation are discussed. (orig.)

  12. Kinetic approach to relativistic dissipation

    Science.gov (United States)

    Gabbana, A.; Mendoza, M.; Succi, S.; Tripiccione, R.

    2017-08-01

    Despite a long record of intense effort, the basic mechanisms by which dissipation emerges from the microscopic dynamics of a relativistic fluid still elude complete understanding. In particular, several details must still be finalized in the pathway from kinetic theory to hydrodynamics mainly in the derivation of the values of the transport coefficients. In this paper, we approach the problem by matching data from lattice-kinetic simulations with analytical predictions. Our numerical results provide neat evidence in favor of the Chapman-Enskog [The Mathematical Theory of Non-Uniform Gases, 3rd ed. (Cambridge University Press, Cambridge, U.K., 1970)] procedure as suggested by recent theoretical analyses along with qualitative hints at the basic reasons why the Chapman-Enskog expansion might be better suited than Grad's method [Commun. Pure Appl. Math. 2, 331 (1949), 10.1002/cpa.3160020403] to capture the emergence of dissipative effects in relativistic fluids.

  13. Relativistic electron beams above thunderclouds

    DEFF Research Database (Denmark)

    Füellekrug, M.; Roussel-Dupre, R.; Symbalisty, E. M. D.

    2011-01-01

    Non-luminous relativistic electron beams above thunderclouds have been detected by the radio signals of low frequency similar to 40-400 kHz which they radiate. The electron beams occur similar to 2-9 ms after positive cloud-to-ground lightning discharges at heights between similar to 22-72 km above...... thunderclouds. Intense positive lightning discharges can also cause sprites which occur either above or prior to the electron beam. One electron beam was detected without any luminous sprite which suggests that electron beams may also occur independently of sprites. Numerical simulations show that beams...... of electrons partially discharge the lightning electric field above thunderclouds and thereby gain a mean energy of similar to 7MeV to transport a total charge of similar to-10mC upwards. The impulsive current similar to 3 x 10(-3) Am-2 associated with relativistic electron beams above thunderclouds...

  14. The relativistic electron wave equation

    International Nuclear Information System (INIS)

    Dirac, P.A.M.

    1977-08-01

    The paper was presented at the European Conference on Particle Physics held in Budapest between the 4th and 9th July of 1977. A short review is given on the birth of the relativistic electron wave equation. After Schroedinger has shown the equivalence of his wave mechanics and the matrix mechanics of Heisenberg, a general transformation theory was developed by the author. This theory required a relativistic wave equation linear in delta/delta t. As the Klein--Gordon equation available at this time did not satisfy this condition the development of a new equation became necessary. The equation which was found gave the value of the electron spin and magnetic moment automatically. (D.P.)

  15. Diffraction radiation from relativistic particles

    CERN Document Server

    Potylitsyn, Alexander Petrovich; Strikhanov, Mikhail Nikolaevich; Tishchenko, Alexey Alexandrovich

    2010-01-01

    This book deals with diffraction radiation, which implies the boundary problems of electromagnetic radiation theory. Diffraction radiation is generated when a charged particle moves in a vacuum near a target edge. Diffraction radiation of non-relativistic particles is widely used to design intense emitters in the cm wavelength range. Diffraction radiation from relativistic charged particles is important for noninvasive beam diagnostics and design of free electron lasers based on Smith-Purcell radiation which is diffraction radiation from periodic structures. Different analytical models of diffraction radiation and results of recent experimental studies are presented in this book. The book may also serve as guide to classical electrodynamics applications in beam physics and electrodynamics. It can be of great use for young researchers to develop skills and for experienced scientists to obtain new results.

  16. Volatility smile as relativistic effect

    Science.gov (United States)

    Kakushadze, Zura

    2017-06-01

    We give an explicit formula for the probability distribution based on a relativistic extension of Brownian motion. The distribution (1) is properly normalized and (2) obeys the tower law (semigroup property), so we can construct martingales and self-financing hedging strategies and price claims (options). This model is a 1-constant-parameter extension of the Black-Scholes-Merton model. The new parameter is the analog of the speed of light in Special Relativity. However, in the financial context there is no ;speed limit; and the new parameter has the meaning of a characteristic diffusion speed at which relativistic effects become important and lead to a much softer asymptotic behavior, i.e., fat tails, giving rise to volatility smiles. We argue that a nonlocal stochastic description of such (Lévy) processes is inadequate and discuss a local description from physics. The presentation is intended to be pedagogical.

  17. Double Relativistic Electron Accelerating Mirror

    Directory of Open Access Journals (Sweden)

    Saltanat Sadykova

    2013-02-01

    Full Text Available In the present paper, the possibility of generation of thin dense relativistic electron layers is shown using the analytical and numerical modeling of laser pulse interaction with ultra-thin layers. It was shown that the maximum electron energy can be gained by optimal tuning between the target width, intensity and laser pulse duration. The optimal parameters were obtained from a self-consistent system of Maxwell equations and the equation of motion of electron layer. For thin relativistic electron layers, the gaining of maximum electron energies requires a second additional overdense plasma layer, thus cutting the laser radiation off the plasma screen at the instant of gaining the maximum energy (DREAM-schema.

  18. Relativistic shocks and particle acceleration

    International Nuclear Information System (INIS)

    Heavens, A.F.

    1988-01-01

    In this paper, we investigate the fluid dynamics of relativistic shock waves, and use the results to calculate the spectral index of particles accelerated by the Fermi process in such shocks. We have calculated the distributions of Fermi-accelerated particles at shocks propagating into cold proton-electron plasma and also cold electron-positron plasma. We have considered two different power spectra for the scattering waves, and find, in contrast to the non-relativistic case, that the spectral index of the accelerated particles depends on the wave power spectrum. On the assumption of thermal equilibrium both upstream and downstream, we present some useful fits for the compression ratio of shocks propagating at arbitrary speeds into gas of any temperature. (author)

  19. Diffraction radiation from relativistic particles

    International Nuclear Information System (INIS)

    Potylitsyn, Alexander Petrovich; Ryazanov, Mikhail Ivanovich; Strikhanov, Mikhail Nikolaevich; Tishchenko, Alexey Alexandrovich

    2010-01-01

    This book deals with diffraction radiation, which implies the boundary problems of electromagnetic radiation theory. Diffraction radiation is generated when a charged particle moves in a vacuum near a target edge. Diffraction radiation of non-relativistic particles is widely used to design intense emitters in the cm wavelength range. Diffraction radiation from relativistic charged particles is important for noninvasive beam diagnostics and design of free electron lasers based on Smith-Purcell radiation which is diffraction radiation from periodic structures. Different analytical models of diffraction radiation and results of recent experimental studies are presented in this book. The book may also serve as guide to classical electrodynamics applications in beam physics and electrodynamics. It can be of great use for young researchers to develop skills and for experienced scientists to obtain new results. (orig.)

  20. Relativistic electron kinetic effects on laser diagnostics in burning plasmas

    Science.gov (United States)

    Mirnov, V. V.; Den Hartog, D. J.

    2018-02-01

    Toroidal interferometry/polarimetry (TIP), poloidal polarimetry (PoPola), and Thomson scattering systems (TS) are major optical diagnostics being designed and developed for ITER. Each of them relies upon a sophisticated quantitative understanding of the electron response to laser light propagating through a burning plasma. Review of the theoretical results for two different applications is presented: interferometry/polarimetry (I/P) and polarization of Thomson scattered light, unified by the importance of relativistic (quadratic in vTe/c) electron kinetic effects. For I/P applications, rigorous analytical results are obtained perturbatively by expansion in powers of the small parameter τ = Te/me c2, where Te is electron temperature and me is electron rest mass. Experimental validation of the analytical models has been made by analyzing data of more than 1200 pulses collected from high-Te JET discharges. Based on this validation the relativistic analytical expressions are included in the error analysis and design projects of the ITER TIP and PoPola systems. The polarization properties of incoherent Thomson scattered light are being examined as a method of Te measurement relevant to ITER operational regimes. The theory is based on Stokes vector transformation and Mueller matrices formalism. The general approach is subdivided into frequency-integrated and frequency-resolved cases. For each of them, the exact analytical relativistic solutions are presented in the form of Mueller matrix elements averaged over the relativistic Maxwellian distribution function. New results related to the detailed verification of the frequency-resolved solutions are reported. The precise analytic expressions provide output much more rapidly than relativistic kinetic numerical codes allowing for direct real-time feedback control of ITER device operation.

  1. Asymptotics of relativistic spin networks

    International Nuclear Information System (INIS)

    Barrett, John W; Steele, Christopher M

    2003-01-01

    The stationary phase technique is used to calculate asymptotic formulae for SO(4) relativistic spin networks. For the tetrahedral spin network this gives the square of the Ponzano-Regge asymptotic formula for the SU(2) 6j-symbol. For the 4-simplex (10j-symbol) the asymptotic formula is compared with numerical calculations of the spin network evaluation. Finally, we discuss the asymptotics of the SO(3, 1) 10j-symbol

  2. Analytic approaches to relativistic hydrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Hatta, Yoshitaka

    2016-12-15

    I summarize our recent work towards finding and utilizing analytic solutions of relativistic hydrodynamic. In the first part I discuss various exact solutions of the second-order conformal hydrodynamics. In the second part I compute flow harmonics v{sub n} analytically using the anisotropically deformed Gubser flow and discuss its dependence on n, p{sub T}, viscosity, the chemical potential and the charge.

  3. Pythagoras Theorem and Relativistic Kinematics

    Science.gov (United States)

    Mulaj, Zenun; Dhoqina, Polikron

    2010-01-01

    In two inertial frames that move in a particular direction, may be registered a light signal that propagates in an angle with this direction. Applying Pythagoras theorem and principles of STR in both systems, we can derive all relativistic kinematics relations like the relativity of simultaneity of events, of the time interval, of the length of objects, of the velocity of the material point, Lorentz transformations, Doppler effect and stellar aberration.

  4. Characteristic manifolds in relativistic hypoelasticity

    Energy Technology Data Exchange (ETDEWEB)

    Giambo, S [Messina Univ. (Italy). Istituto di Matematica

    1978-10-02

    The relativistic hypoelasticity is considered and the characteristic manifolds are determined by using the Cauchy-Kovalevski theorem for the Cauchy problem with analytic initial conditions. Taking into account that the characteristic manifold represents the image of the front-wave in the space-time, it is possible to determine the velocities of propagation. Three wave-species are obtained: material waves, longitudinal waves and transverse waves.

  5. A relativistic quarkonium potential model

    International Nuclear Information System (INIS)

    Klima, B.; Maor, U.

    1984-04-01

    We review a recently developed relativistic quark-antiquark bound state equation using the expansion in intermediate states. Using a QCD motivated potential we succeeded very well to fit both the heavy systems (banti b, canti c) and the light systems (santi s, uanti u and danti d). Here we emphasize our results on heavy-light sustems and on the possible (tanti t) family. (orig.)

  6. Coordinates in relativistic Hamiltonian mechanics

    International Nuclear Information System (INIS)

    Sokolov, S.N.

    1984-01-01

    The physical (covariant and measurable) coordinates of free particles and covariant coordinates of the center of inertia are found for three main forms of relativistic dynamics. In the point form of dynamics, the covariant coordinates of two directly interacting particles are found, and the equations of motion are brought to the explicitly covariant form. These equations are generalized to the case of interaction with an external electromagnetic field

  7. Relativistic mechanics with reduced fields

    International Nuclear Information System (INIS)

    Sokolov, S.N.

    1996-01-01

    A new relativistic classical mechanics of interacting particles using a concept of a reduced field (RF) os proposed. RF is a mediator of interactions, the state of which is described by a finite number of two-argument functions. Ten of these functions correspond to the generators of the Poincare group. Equations of motion contain the retardation of interactions required by the causality principle and have form of a finite system of ordinary hereditary differential equations [ru

  8. Theory of a relativistic peniotron

    International Nuclear Information System (INIS)

    Zhurakhovskii, V.A.

    1986-01-01

    A normalized mathematical model for describing the motion of electrons in a relativistic peniotron with smoothly varying magnetostatic field, which provides a state of exact gyroresonance along the entire length of the device, is constructed. The results of computer calculations of the energetics of this device are presented and an example of an effective choice of its parameterse corresponding to high electronic efficiency of a one-velocity flow are presented

  9. Relativistic beaming and quasar statistics

    International Nuclear Information System (INIS)

    Orr, M.J.L.; Browne, I.W.A.

    1982-01-01

    The statistical predictions of a unified scheme for the radio emission from quasars are explored. This scheme attributes the observed differences between flat- and steep-spectrum quasars to projection and the effects of relativistic beaming of the emission from the nuclear components. We use a simple quasar model consisting of a compact relativistically beamed core with spectral index zero and unbeamed lobes, spectral index - 1, to predict the proportion of flat-spectrum sources in flux-limited samples selected at different frequencies. In our model this fraction depends on the core Lorentz factor, γ and we find that a value of approximately 5 gives satisfactory agreement with observation. In a similar way the model is used to construct the expected number/flux density counts for flat-spectrum quasars from the observed steep-spectrum counts. Again, good agreement with the observations is obtained if the average core Lorentz factor is about 5. Independent estimates of γ from observations of superluminal motion in quasars are of the same order of magnitude. We conclude that the statistical properties of quasars are entirely consistent with the predictions of simple relativistic-beam models. (author)

  10. Atomic physics using relativistic H- beams

    International Nuclear Information System (INIS)

    Bryant, H.C.

    2005-01-01

    Full text: An 8 GeV hydrogen atom can traverse a focused laser beam of width of 1 micron in a time of 353 attoseconds in its rest frame. A design is currently underway at Fermilab for a superconducting linear accelerator that will accelerate H - ions to 8 GeV. This 'Proton Driver' beam is intended to be injected, after stripping down to protons, into the 120 GeV Main Injector for the mass production of neutrinos aimed at a neutrino detector (MINOS) in a mine shaft in Soudan, Minnesota (USA) for the study of neutrino oscillations. It has not passed unnoticed that with some advance planning a few nanoamps from the up-to-250 mA beam could be diverted for atomic physics experiments. Relativistic kinematics enable the creation of extreme conditions for a beam atom. For example, the Doppler shift allows a very large tuning range in the atom's rest frame of a laser beam that is fixed- frequency in the lab. At 8 GeV the rest frame Doppler shift ranges from a factor of 19 in the forward direction to 0.05 backward. The laser intensity is enhanced by the square of the Doppler shift, so that the world's most intense laser beam would be amplified by a factor of 360 in the atom's rest frame. Furthermore, although there are extreme changes in the frequency and intensity in the atom's frame as one changes the intersection angle, the ponderomotive potential remains constant, as it is a relativistic invariant. One of the interesting problems that arises in the planning for this accelerator is the stripping of electrons from the negative ions by photodetachment from Doppler shifted thermal photons. We estimate that, if the transfer lines are kept at 300 K (room temperature), the mean free path at 8 GeV for stripping from collisions with cavity radiation is about 1300 km. The physics of the interactions of such a beam with very thin material foils, again in the attosecond regime, has been treated theoretically, but has not been studied experimentally at such high energies. We will

  11. Motion of the relativistic charged particle in an axisymmetric toroidal system

    Energy Technology Data Exchange (ETDEWEB)

    Chiyoda, K; Sugimoto, H [Electrotechnical Labs., Sakura, Ibaraki (Japan)

    1980-01-01

    The relativistic theory of motion of one particle by Morozov and Solov'ev is summarized for convenience of the present study. Then, a drift equation is given and four constants of motion, E/sub 0/, J perpendicular, J and J parallel, are obtained. These constants of motion are used in analyzing the particle motion in an axisymmetric toroidal system. The displacement of the particle from the magnetic surface, ..delta..r, and the period of the banana motion, tau, are obtained. The relativistic expressions of the displacement, ..delta..r, and the period, tau, are obtained by multiplying the corresponding nonrelativistic expressions by (1 - v parallel/sup 2//c/sup 2/) - 1/2, where the relativistic expression of ..delta..r includes the relativistic mass in terms of Larmor radius r/sub L/.

  12. Relativistic bound state wave functions

    International Nuclear Information System (INIS)

    Micu, L.

    2005-01-01

    A particular method of writing the bound state wave functions in relativistic form is applied to the solutions of the Dirac equation with confining potentials in order to obtain a relativistic description of a quark antiquark bound system representing a given meson. Concerning the role of the effective constituent in the present approach we first observe that without this additional constituent we couldn't expand the bound state wave function in terms of products of free states. Indeed, we notice that if the wave function depends on the relative coordinates only, all the expansion coefficients would be infinite. Secondly we remark that the effective constituent enabled us to give a Lorentz covariant meaning to the potential energy of the bound system which is now seen as the 4th component of a 4-momentum. On the other side, by relating the effective constituent to the quantum fluctuations of the background field which generate the binding, we provided a justification for the existence of some spatial degrees of freedom accompanying the interaction potential. These ones, which are quite unusual in quantum mechanics, in our model are the natural consequence of the the independence of the quarks and can be seen as the effect of the imperfect cancellation of the vector momenta during the quantum fluctuations. Related with all these we remark that the adequate representation for the relativistic description of a bound system is the momentum representation, because of the transparent and easy way of writing the conservation laws and the transformation properties of the wave functions. The only condition to be fulfilled is to find a suitable way to take into account the potential energy of the bound system. A particular feature of the present approach is that the confining forces are due to a kind of glue where both quarks are embedded. This recalls other bound state models where the wave function is factorized in terms of constituent wave functions and the confinement is

  13. Relativistic kinetics of baryon production in hot Universe

    International Nuclear Information System (INIS)

    Ignat'ev, Yu.G.

    1985-01-01

    The process of baryon production in the hot Universe is investigated in the framework of the relativistic kinetic theory. The exact solution of kinetic equations for supermassive bosons is obtained, thus giving the possibility to correct the results of previous papers: the known optimum domain of baryon production m sub(X) > α sub(X)msub(PI)√N js complemented by the small-mass boson domain, m sub(X) << α sub(X) m sub(PI)√N; as a result, the cosmological lower-limit restriction on the superheavy bosons masses js removed

  14. Fragmentation of Relativistic 56Fe Nuclei in Emulsion

    International Nuclear Information System (INIS)

    Chernov, G.M.; Gulamov, K.G.; Gulyamov, U.G.; Navotny, V.Sh.; Petrov, N.V.; Svechnikova, L.N.; Jakobsson, B.; Oskarsson, A.; Otterlund, I.

    1983-03-01

    Experimental data on general characteristics of projectile fragments in inelastic interactions of relativistic 56 Fe nuclei in emulsion (multiplicities, transverse momentum distributions, azimuthal correlations) are presented and discussed. A strong dependence on the mass number of the projectile nucleus is observed for the transverse momenta of the emitted projectile fragments. These fragments exhibit an azimuthal asymmetry caused by the transverse motion of the fragmenting residue, but it is shown that this motion can be responsible only for a part of the increase in the average transverse momentum of the fragments with increasing mass of the projectile. (author)

  15. Nonlinear analysis of a relativistic beam-plasma cyclotron instability

    Science.gov (United States)

    Sprangle, P.; Vlahos, L.

    1986-01-01

    A self-consistent set of nonlinear and relativistic wave-particle equations are derived for a magnetized beam-plasma system interacting with electromagnetic cyclotron waves. In particular, the high-frequency cyclotron mode interacting with a streaming and gyrating electron beam within a background plasma is considered in some detail. This interaction mode may possibly find application as a high-power source of coherent short-wavelength radiation for laboratory devices. The background plasma, although passive, plays a central role in this mechanism by modifying the dielectric properties in which the magnetized electron beam propagates. For a particular choice of the transverse beam velocity (i.e., the speed of light divided by the relativistic mass factor), the interaction frequency equals the nonrelativistic electron cyclotron frequency times the relativistic mass factor. For this choice of transverse beam velocity the detrimental effects of a longitudinal beam velocity spread is virtually removed. Power conversion efficiencies in excess of 18 percent are both analytically calculated and obtained through numerical simulations of the wave-particle equations. The quality of the electron beam, degree of energy and pitch angle spread, and its effect on the beam-plasma cyclotron instability is studied.

  16. Relativistic neoclassical transport coefficients with momentum correction

    International Nuclear Information System (INIS)

    Marushchenko, I.; Azarenkov, N.A.

    2016-01-01

    The parallel momentum correction technique is generalized for relativistic approach. It is required for proper calculation of the parallel neoclassical flows and, in particular, for the bootstrap current at fusion temperatures. It is shown that the obtained system of linear algebraic equations for parallel fluxes can be solved directly without calculation of the distribution function if the relativistic mono-energetic transport coefficients are already known. The first relativistic correction terms for Braginskii matrix coefficients are calculated.

  17. Loading relativistic Maxwell distributions in particle simulations

    International Nuclear Information System (INIS)

    Zenitani, Seiji

    2015-01-01

    Numerical algorithms to load relativistic Maxwell distributions in particle-in-cell (PIC) and Monte-Carlo simulations are presented. For stationary relativistic Maxwellian, the inverse transform method and the Sobol algorithm are reviewed. To boost particles to obtain relativistic shifted-Maxwellian, two rejection methods are proposed in a physically transparent manner. Their acceptance efficiencies are ≈50% for generic cases and 100% for symmetric distributions. They can be combined with arbitrary base algorithms

  18. Loading relativistic Maxwell distributions in particle simulations

    Energy Technology Data Exchange (ETDEWEB)

    Zenitani, Seiji, E-mail: seiji.zenitani@nao.ac.jp [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan)

    2015-04-15

    Numerical algorithms to load relativistic Maxwell distributions in particle-in-cell (PIC) and Monte-Carlo simulations are presented. For stationary relativistic Maxwellian, the inverse transform method and the Sobol algorithm are reviewed. To boost particles to obtain relativistic shifted-Maxwellian, two rejection methods are proposed in a physically transparent manner. Their acceptance efficiencies are ≈50% for generic cases and 100% for symmetric distributions. They can be combined with arbitrary base algorithms.

  19. Ground penetrating radar geologic field studies of the ejecta of Barringer Meteorite Crater, Arizona, as a planetary analog

    Science.gov (United States)

    Russell, Patrick S.; Grant, John A.; Williams, Kevin K.; Carter, Lynn M.; Brent Garry, W.; Daubar, Ingrid J.

    2013-09-01

    penetrating radar (GPR) has been a useful geophysical tool in investigating a variety of shallow subsurface geological environments on Earth. Here we investigate the capabilities of GPR to provide useful geologic information in one of the most common geologic settings of planetary surfaces, impact crater ejecta. Three types of ejecta are surveyed with GPR at two wavelengths (400 MHz, 200 MHz) at Meteor Crater, Arizona, with the goal of capturing the GPR signature of the subsurface rock population. In order to "ground truth" the GPR characterization, subsurface rocks are visually counted and measured in preexisting subsurface exposures immediately adjacent to and below the GPR transect. The rock size-frequency distribution from 10 to 50 cm based on visual counts is well described by both power law and exponential functions, the former slightly better, reflecting the control of fragmentation processes during the impact-ejection event. GPR counts are found to overestimate the number of subsurface rocks in the upper meter (by a factor of 2-3x) and underestimate in the second meter of depth (0.6-1.0x), results attributable to the highly scattering nature of blocky ejecta. Overturned ejecta that is fractured yet in which fragments are minimally displaced from their complement fragments produces fewer GPR returns than well-mixed ejecta. The use of two wavelengths and division of results into multiple depth zones provides multiple aspects by which to characterize the ejecta block population. Remote GPR measurement of subsurface ejecta in future planetary situations with no subsurface exposure can be used to characterize those rock populations relative to that of Meteor Crater.

  20. External Shock in a Multi-bursting Gamma-Ray Burst: Energy Injection Phase Induced by the Later Launched Ejecta

    Science.gov (United States)

    Lin, Da-Bin; Huang, Bao-Quan; Liu, Tong; Gu, Wei-Min; Mu, Hui-Jun; Liang, En-Wei

    2018-01-01

    Central engines of gamma-ray bursts (GRBs) may be intermittent and launch several episodes of ejecta separated by a long quiescent interval. In this scenario, an external shock is formed due to the propagation of the first launched ejecta into the circum-burst medium and the later launched ejecta may interact with the external shock at a later period. Owing to the internal dissipation, the later launched ejecta may be observed at a later time (t jet). In this paper, we study the relation of t b and t jet, where t b is the collision time of the later launched ejecta with the formed external shock. It is found that the relation of t b and t jet depends on the bulk Lorentz factor (Γjet) of the later launched ejecta and the density (ρ) of the circum-burst medium. If the value of Γjet or ρ is low, the t b would be significantly larger than t jet. However, the t b ∼ t jet can be found if the value of Γjet or ρ is significantly large. Our results can explain the large lag of the optical emission relative to the γ-ray/X-ray emission in GRBs, e.g., GRB 111209A. For GRBs with a precursor, our results suggest that the energy injection into the external shock and thus more than one external-reverse shock may appear in the main prompt emission phase. According to our model, we estimate the Lorentz factor of the second launched ejecta in GRB 160625B.

  1. New results with stored exotic nuclei at relativistic energies

    Energy Technology Data Exchange (ETDEWEB)

    Bosch, F. (Fritz); Boutin, D. (Daniel); Fastermann, T. (Thomas); Falch, M. (Markus); Franzke, B. (Bernhard); Hausmann, M. (Marc); Hellstrom, M. (Margarete); Kaza, E. (Evangelia); Kerscher, T. (Thomas); Klepper, O. (Otto); Kluge, H.-Jürgen; Kozhuharov, C. (Christophor); Kratz, K. L.; Litinov, S. A. (Sergei A); Lobner, G. K. E. (Gunther K. E.); Maier, L. (Ludwig); Matos, M. (Milan); Munzenberg, G. (Gottfried); Nolden, F. (Fritz); Novikov, Y. N. (Yuri N.); Ohtsubo, T. (Takashi); Ostrowski, A. (Alexander); Patyk, Z. (Zygmund); Pfeiffer, B.; Portillo, M. (Mauricio); Radon, T. P. (Torsten P.); Scheidenberger, C. (Christoph); Shishkin, V. (Vladimir); Stadlman, J. (Jens); Steck, M. (Markus); Vieira, D. J. (David J.); Weick, H. (Helmut); Winkler, M. (Martin); Wollnik, Hermann; Yamaguchi, T. (Takayuki)

    2004-01-01

    Recently, much progress has been made with stored exotic nuclei at relativistic velocities v/c = 0.7. Fragments of {sup 208}Pb and {sup 209}Bi projectiles and fission fragments from {sup 238}U ions have been produced, separated in flight with the fragment separator FRS, and injected into the storage-cooler ring ESR for precision measurements. Precise masses of neutron-deficient isotopes in the lead region have been measured with time-resolved Schottky Mass Spectrometry (SMS). A new isospin dependence of the pairing energy was observed due to the improved mass accuracy of typical 1.5 x 10{sup -7} (30 keV). New masses of short-lived neutron-rich fission fragments have been obtained with Isochronous Mass Spectrometry (IMS). An innovative field of spectroscopy has been opened up with lifetime measurements of stored bare and few-electron fragments after applying both stochastic and electron cooling.

  2. Relativistic fluids in spherically symmetric space

    International Nuclear Information System (INIS)

    Dipankar, R.

    1977-12-01

    Some of McVittie and Wiltshire's (1977) solutions of Walker's (1935) isotropy conditions for relativistic perfect fluid spheres are generalized. Solutions are spherically symmetric and conformally flat

  3. Relativistic ion acceleration by ultraintense laser interactions

    International Nuclear Information System (INIS)

    Nakajima, K.; Koga, J.K.; Nakagawa, K.

    2001-01-01

    There has been a great interest in relativistic particle generation by ultraintense laser interactions with matter. We propose the use of relativistically self-focused laser pulses for the acceleration of ions. Two dimensional PIC simulations are performed, which show the formation of a large positive electrostatic field near the front of a relativistically self-focused laser pulse. Several factors contribute to the acceleration including self-focusing distance, pulse depletion, and plasma density. Ultraintense laser-plasma interactions are capable of generating enormous electrostatic fields of ∼3 TV/m for acceleration of protons with relativistic energies exceeding 1 GeV

  4. RELATIVISTIC CYCLOTRON INSTABILITY IN ANISOTROPIC PLASMAS

    Energy Technology Data Exchange (ETDEWEB)

    López, Rodrigo A.; Moya, Pablo S.; Muñoz, Víctor; Valdivia, J. Alejandro [Departamento de Física, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago (Chile); Navarro, Roberto E.; Araneda, Jaime A. [Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Concepción, Casilla 160-C, Concepción (Chile); Viñas, Adolfo F., E-mail: rlopez186@gmail.com [NASA Goddard Space Flight Center, Heliophysics Science Division, Geospace Physics Laboratory, Mail Code 673, Greenbelt, MD 20771 (United States)

    2016-11-20

    A sufficiently large temperature anisotropy can sometimes drive various types of electromagnetic plasma micro-instabilities, which can play an important role in the dynamics of relativistic pair plasmas in space, astrophysics, and laboratory environments. Here, we provide a detailed description of the cyclotron instability of parallel propagating electromagnetic waves in relativistic pair plasmas on the basis of a relativistic anisotropic distribution function. Using plasma kinetic theory and particle-in-cell simulations, we study the influence of the relativistic temperature and the temperature anisotropy on the collective and noncollective modes of these plasmas. Growth rates and dispersion curves from the linear theory show a good agreement with simulations results.

  5. Quantum theory of relativistic charged particles in external fields

    International Nuclear Information System (INIS)

    Ruijsenaars, S.N.M.

    1976-01-01

    A study was made on external field theories in which the quantized field corresponds to relativistic elementary particles with non-zero rest mass. These particles are assumed to be charged, thus they have distinct antiparticles. The thesis consists of two parts. The first tries to accommodate the general features of theories of relativistic charged particles in external fields. Spin and dynamics in particular are not specified. In the second part, the results are applied to charged spin-1/2 and spin-0 particles, the dynamics of which are given by the Dirac resp. Klein-Gordon equation. The greater emphasis is on external fields which are rapidly decreasing, infinitely differentiable functions of space-time, but also considers time-independent fields. External fields, other than electromagnetic fields are also considered, e.g. scalar fields

  6. Relativistic string dynamics and its connection with hadron physics

    International Nuclear Information System (INIS)

    Barbashov, B.M.; Nesterenko, V.V.

    1976-01-01

    Physical reasons for using the relativistic string as a hadron model are briefly discussed. The classical and quantum dynamics of the string which is the first example of a relativistic elongated object are presented. The connection between the string and the dual-resonance models, together with the Born-Infeld field model is indicated. As it turned out from the study of the string behaviour in a constant electromagnetic field, even in the classical theory states with the negative square of the string mass - tachyons - appear. As an illustration, a series of examples of classical motion of a free string and a string in an external electromagnetic field from a given initial state is presented

  7. Existence of relativistic stars in f(R) gravity

    International Nuclear Information System (INIS)

    Upadhye, Amol; Hu, Wayne

    2009-01-01

    We refute recent claims in the literature that stars with relativistically deep potentials cannot exist in f(R) gravity. Numerical examples of stable stars, including relativistic (GM * /r * ∼0.1), constant density stars, are studied. As a star is made larger, nonlinear 'chameleon' effects screen much of the star's mass, stabilizing gravity at the stellar center. Furthermore, we show that the onset of this chameleon screening is unrelated to strong gravity. At large central pressures P>ρ/3, f(R) gravity, like general relativity, does have a maximum gravitational potential, but at a slightly smaller value: GM * /r * | max =0.345<4/9 for constant density and one choice of parameters. This difference is associated with negative central curvature R under general relativity not being accessed in the f(R) model, but does not apply to any known astrophysical object.

  8. Characterization of particle states in relativistic classical quantum theory

    International Nuclear Information System (INIS)

    Horwitz, L.P.; Rabin, Y.

    1977-02-01

    Classical and quantum relativistic mechanics are studied. The notion of a ''particle'' is defined in the classical case and the interpretation of mechanics in space-time is clarified. These notions are carried over to the quantum theory, as much as possible. The relation between the results of Feyman's path integral approach and the theory of Horwitz and Piron is discussed. The ''particle'' interpretation is shown to imply an asymptotic condition for scattering. A general method of constructing the dynamical mass spectrum of composite ''particle'' states is discussed. An interference experiment is proposed to affirm the interpretation and applicability of Stueckelberg type wave functions for actual physical phenomena. Some discussion of the relation of this relativistic quantum theory to Feynman's approach to quantum field theory is also given

  9. Approximate relativistic corrections to atomic radial wave functions

    International Nuclear Information System (INIS)

    Cowan, R.D.; Griffin, D.C.

    1976-01-01

    The mass-velocity and Darwin terms of the one-electron-atom Pauli equation have been added to the Hartree-Fock differential equations by using the HX formula to calculate a local central field potential for use in these terms. Introduction of the quantum number j is avoided by omitting the spin-orbit term of the Pauli equation. The major relativistic effects, both direct and indirect, are thereby incorporated into the wave functions, while allowing retention of the commonly used nonrelativistic formulation of energy level calculations. The improvement afforded in calculated total binding energies, excitation energies, spin-orbit parameters, and expectation values of r/sub m/ is comparable with that provided by fully relativistic Dirac-Hartree-Fock calculations

  10. Relativistic electromagnetic waves in an electron-ion plasma

    Science.gov (United States)

    Chian, Abraham C.-L.; Kennel, Charles F.

    1987-01-01

    High power laser beams can drive plasma particles to relativistic energies. An accurate description of strong waves requires the inclusion of ion dynamics in the analysis. The equations governing the propagation of relativistic electromagnetic waves in a cold electron-ion plasma can be reduced to two equations expressing conservation of energy-momentum of the system. The two conservation constants are functions of the plasma stream velocity, the wave velocity, the wave amplitude, and the electron-ion mass ratio. The dynamic parameter, expressing electron-ion momentum conversation in the laboratory frame, can be regarded as an adjustable quantity, a suitable choice of which will yield self-consistent solutions when other plasma parameters were specified. Circularly polarized electromagnetic waves and electrostatic plasma waves are used as illustrations.

  11. Relativistic sonic geometry for isothermal accretion in the Kerr metric

    Science.gov (United States)

    Arif Shaikh, Md

    2018-03-01

    We linearly perturb advective isothermal transonic accretion onto rotating astrophysical black holes to study the emergence of the relativistic acoustic spacetime and to investigate how the salient features of this spacetime is influenced by the spin angular momentum of the black hole. We have perturbed three different quantities—the velocity potential, the mass accretion rate and the relativistic Bernoulli’s constant to show that the acoustic metric obtained for these three cases are the same up to a conformal factor. By constructing the required causal structures, it has been demonstrated that the acoustic black holes are formed at the transonic points of the flow and the acoustic white holes are formed at the shock location. The corresponding acoustic surface gravity has been computed in terms of the relevant accretion variables and the background metric elements. We have performed a linear stability analysis of the background stationary flow.

  12. Heavy flavours in ultra-relativistic heavy ions collisions

    International Nuclear Information System (INIS)

    Rosnet, Ph.

    2008-01-01

    The ultra-relativistic collisions of heavy ions are the today's only means to tackle in laboratory conditions the phase diagram in quantum chromodynamics and the strong interaction. The most recent theoretical studies predict a phase transition between the cold nuclear matter (a hadronic gas) and a plasma of quarks and gluons. Heavy flavour can characterize the nuclear matter produced in a heavy ion collision as well as its spatial-temporal evolution. Their study can be made through their decay into muons. The first part of this work presents the issue of ultra-relativistic heavy ion collisions and the role of heavy flavours. In the second part the author reviews the results of experiments performed at RHIC and particularly presents the analysis of the mass spectrum of dimuons in the Phenix experiment. The third part describes the muon trigger system of the Alice experiment at CERN and the expected performances for the study of di-muons

  13. HCN Production via Impact Ejecta Reentry During the Late Heavy Bombardment

    Science.gov (United States)

    Parkos, Devon; Pikus, Aaron; Alexeenko, Alina; Melosh, H. Jay

    2018-04-01

    Major impact events have shaped the Earth as we know it. The Late Heavy Bombardment is of particular interest because it immediately precedes the first evidence of life. The reentry of impact ejecta creates numerous chemical by-products, including biotic precursors such as HCN. This work examines the production of HCN during the Late Heavy Bombardment in more detail. We stochastically simulate the range of impacts on the early Earth and use models developed from existing studies to predict the corresponding ejecta properties. Using multiphase flow methods and finite-rate equilibrium chemistry, we then find the HCN production due to the resulting atmospheric heating. We use Direct Simulation Monte Carlo to develop a correction factor to account for increased yields due to thermochemical nonequilibrium. We then model 1-D atmospheric turbulent diffusion to find the time accurate transport of HCN to lower altitudes and ultimately surface water. Existing works estimate the necessary HCN molarity threshold to promote polymerization that is 0.01 M. For a mixing depth of 100 m, we find that the Late Heavy Bombardment will produce at least one impact event above this threshold with probability 24.1% for an oxidized atmosphere and 56.3% for a partially reduced atmosphere. For a mixing depth of 10 m, the probability is 79.5% for an oxidized atmosphere and 96.9% for a partially reduced atmosphere. Therefore, Late Heavy Bombardment impact ejecta is likely an HCN source sufficient for polymerization in shallow bodies of water, particularly if the atmosphere were in a partially reduced state.

  14. Fundamentals of the relativistic theory of gravitation

    International Nuclear Information System (INIS)

    Logunov, A.A.; Mestvirishvili, M.A.

    1986-01-01

    An extended exposition of the relativistic theory of gravitation (RTG) proposed by Logunov, Vlasov, and Mestvirishvili is presented. The RTG was constructed uniquely on the basis of the relativity principle and the geometrization principle by regarding the gravitational field as a physical field in the spirit of Faraday and Maxwell possessing energy, momentum, and spins 2 and 0. In the theory, conservation laws for the energy, momentum, and angular momentum for the matter and gravitational field taken together are strictly satisfied. The theory explains all the existing gravitational experiments. When the evolution of the universe is analyzed, the theory leads to the conclusion that the universe is infinite and flat, and it is predicted to contain a large amount of hidden mass. This missing mass exceeds by almost 40 times the amount of matter currently observed in the universe. The RTG predicts that gravitational collapse, which for a comoving observer occurs after a finite proper time, does not lead to infinite compression of matter but is halted at a certain finite density of the collapsing body. Therefore, according to the RTG there cannot be any objects in nature in which the gravitational contraction of matter to infinite density occurs, i.e., there are no black holes

  15. Transfer of impact ejecta material from the surface of Mars to Phobos and Deimos.

    Science.gov (United States)

    Chappaz, Loïc; Melosh, Henry J; Vaquero, Mar; Howell, Kathleen C

    2013-10-01

    The Russian Phobos-Grunt spacecraft originally planned to return a 200 g sample of surface material from Phobos to Earth. Although it was anticipated that this material would mainly be from the body of Phobos, there is a possibility that such a sample may also contain material ejected from the surface of Mars by large impacts. An analysis of this possibility is completed by using current knowledge of aspects of impact cratering on the surface of Mars and the production of high-speed ejecta that might reach Phobos or Deimos.

  16. Description of width and spectra of two relativistic fermions bound states

    International Nuclear Information System (INIS)

    Sidorov, A.V.; Skachkov, N.B.

    1979-01-01

    The formalism for relativistic description of two particles with spin 1/2 is constructed. Used is the two-particle three-dimensional equation, obtained by quasipotential approach. Quasipotential equation in the relativistic configurational space with OBEP potential is reduced to the system of partial equations which is the analog of nonrelativistic Hamada-Jonston system. WKB approach is used to calculate mass spectra and leptonic width of mesons in quark model. The results of the study can be applied to the calculation of mass spectra and widths of electromagnetic decays of systems of e + e - , μ + μ - , c anti c, b anti b, N anti N type

  17. Global and local re-impact and velocity regime of ballistic ejecta of boulder craters on Ceres

    Science.gov (United States)

    Schulzeck, F.; Schröder, S. E.; Schmedemann, N.; Stephan, K.; Jaumann, R.; Raymond, C. A.; Russell, C. T.

    2018-04-01

    Imaging by the Dawn-spacecraft reveals that fresh craters on Ceres below 40 km often exhibit numerous boulders. We investigate how the fast rotating, low-gravity regime on Ceres influences their deposition. We analyze size-frequency distributions of ejecta blocks of twelve boulder craters. Global and local landing sites of boulder crater ejecta and boulder velocities are determined by the analytical calculation of elliptic particle trajectories on a rotating body. The cumulative distributions of boulder diameters follow steep-sloped power-laws. We do not find a correlation between boulder size and the distance of a boulder to its primary crater. Due to Ceres' low gravitational acceleration and fast rotation, ejecta of analyzed boulder craters (8-31 km) can be deposited across the entire surface of the dwarf planet. The particle trajectories are strongly influenced by the Coriolis effect as well as the impact geometry. Fast ejecta of high-latitude craters accumulate close to the pole of the opposite hemisphere. Fast ejecta of low-latitude craters wraps around the equator. Rotational effects are also relevant for the low-velocity regime. Boulders are ejected at velocities up to 71 m/s.

  18. Swift J2058.4+0516: Discovery of a Possible Second Relativistic Tidal Disruption Flare

    Science.gov (United States)

    Cenko, S. Bradely; Krimm, Hans A.; Horesh, Assaf; Rau, Arne; Frail, Dale A.; Kennea, Jamie A.; Levan, Andrew J.; Holland, Stephen T.; Butler, Nathaniel R.; Quimby, Robert M.; hide

    2011-01-01

    We report the discovery by the Swift hard X-ray monitor of the transient source Swift J2058.4+0516 (Sw J2058+05). Our multi-wavelength follow-up campaign uncovered a long-lived (duration approximately greater than months), luminous X-ray (L(sub x.iso) approximates 3 X 10(exp47) erg/s) and radio (vL(sub v.iso) approximates 10(exp 42) erg/s) counterpart. The associated optical emission, however, from which we measure a redshift of 1.1853, is relatively faint, and this is not due to a large amount of dust extinction in the host galaxy. Based on numerous similarities with the recently discovered GRB 110328A / Swift 1164449.3+573451 (Sw 11644+57), we suggest that Sw J2058+05 may be the second member of a new class of relativistic outbursts resulting from the tidal disruption of a star by a supermassive black hole. If so, the relative rarity of these sources implies that either these outflows are extremely narrowly collimated (theta disruptions generate relativistic ejecta. Analogous to the case of long duration gamma-ray bursts and core-collapse supernovae, we speculate that the spin of the black hole may be a necessary condition to generate the relativistic component. Alternatively, if powered by gas accretion (i.e., an active galactic nucleus), this would imply that some galaxies can transition from apparent quiescence to a radiatively efficient state of accretion on quite short time scales.

  19. Relativistic many-body theory of atomic transitions: the relativistic equation-of-motion approach

    International Nuclear Information System (INIS)

    Huang, K.N.

    1981-01-01

    An equation-of-motion approach is used to develop the relativistic many-body theory of atomic transitions. The relativistic equations of motion for transition matrices are formulated using techniques of quantum field theory. To reduce the equation of motion to a tractable form which is appropriate for numerical calculations, a graphical method is employed to resolve the complication arising from the antisymmetrization and angular momentum coupling. The relativistic equation-of-motion method allows an ab initio treatment of correlation and relativistic effects in both closed- and open-shell many-body systems. A special case of the present formulation reduces to the relativistic random-phase approximation

  20. Thermodynamics of polarized relativistic matter

    Energy Technology Data Exchange (ETDEWEB)

    Kovtun, Pavel [Department of Physics and Astronomy, University of Victoria,PO Box 1700 STN CSC, Victoria BC, V8W 2Y2 (Canada)

    2016-07-05

    We give the free energy of equilibrium relativistic matter subject to external gravitational and electromagnetic fields, to one-derivative order in the gradients of the external fields. The free energy allows for a straightforward derivation of bound currents and bound momenta in equilibrium. At leading order, the energy-momentum tensor admits a simple expression in terms of the polarization tensor. Beyond the leading order, electric and magnetic polarization vectors are intrinsically ambiguous. The physical effects of polarization, such as the correlation between the magneto-vortically induced surface charge and the electro-vortically induced surface current, are not ambiguous.

  1. Observation of relativistic antihydrogen atoms

    International Nuclear Information System (INIS)

    Blanford, Glenn DelFosse

    1998-01-01

    An observation of relativistic antihydrogen atoms is reported in this dissertation. Experiment 862 at Fermi National Accelerator Laboratory observed antihydrogen atoms produced by the interaction of a circulating beam of high momentum (3 0 production is outlined within. The cross section corresponds to the process where a high momentum antiproton causes e + e - pair creation near a nucleus with the e + being captured by the antiproton. Antihydrogen is the first atom made exclusively of antimatter to be detected. The observation experiment's results are the first step towards an antihydrogen spectroscopy experiment which would measure the n = 2 Lamb shift and fine structure

  2. Similarity flows in relativistic hydrodynamics

    International Nuclear Information System (INIS)

    Blaizot, J.P.; Ollitrault, J.Y.

    1986-01-01

    In ultra-relativistic heavy ion collisions, one expects in particular to observe a deconfinement transition leading to a formation of quark gluon plasma. In the framework of the hydrodynamic model, experimental signatures of such a plasma may be looked for as observable consequences of a first order transition on the evolution of the system. In most of the possible scenario, the phase transition is accompanied with discontinuities in the hydrodynamic flow, such as shock waves. The method presented in this paper has been developed to treat without too much numerical effort such discontinuous flow. It relies heavily on the use of similarity solutions of the hydrodynamic equations

  3. Relativistic heavy ion facilities: worldwide

    International Nuclear Information System (INIS)

    Schroeder, L.S.

    1986-05-01

    A review of relativistic heavy ion facilities which exist, are in a construction phase, or are on the drawing boards as proposals is presented. These facilities span the energy range from fixed target machines in the 1 to 2 GeV/nucleon regime, up to heavy ion colliders of 100 GeV/nucleon on 100 GeV/nucleon. In addition to specifying the general features of such machines, an outline of the central physics themes to be carried out at these facilities is given, along with a sampling of the detectors which will be used to extract the physics. 22 refs., 17 figs., 3 tabs

  4. Unlimited Relativistic Shock Surfing Acceleration

    International Nuclear Information System (INIS)

    Ucer, D.; Shapiro, V. D.

    2001-01-01

    Nonrelativistic shock surfing acceleration at quasiperpendicular shocks is usually considered to be a preacceleration mechanism for slow pickup ions to initiate diffusive shock acceleration. In shock surfing, the particle accelerates along the shock front under the action of the convective electric field of the plasma flow. However, the particle also gains kinetic energy normal to the shock and eventually escapes downstream. We consider the case when ions are accelerated to relativistic velocities. In this case, the ions are likely to be trapped for infinitely long times, because the energy of bounce oscillations tends to decrease during acceleration. This suggests the possibility of unlimited acceleration by shock surfing

  5. The magnetosphere in relativistic physics

    International Nuclear Information System (INIS)

    Zapffe, C.A.

    1982-01-01

    The present paper takes off from the author's earlier epistemological analysis and criticism of the Special Theory of Relativity, identifies the problem as lying in Einstein's choice of the inertial frame of Newtonian mechanics rather than the electromagnetic frame of the locally embedding Maxwellian field when discussing electrodynamics, then proposes this Maxwellian field of the magnetosphere as the specific rest frame proper to all experimentation of optical or electromagnetic sort conducted within its bounds. The result is shown to remove all paradoxes from relativistic physics. (author)

  6. Relativistic Quantum Transport in Graphene Systems

    Science.gov (United States)

    2015-07-09

    dimensional Dirac material systems. 2 List of Publications 1. X. Ni, L. Huang, Y.-C. Lai, and L. M. Pecora, “Effect of chaos on relativistic quantum...development of relativistic quantum devices based on graphene or alternative two-dimensional Dirac material systems. In the project period, we studied

  7. Relativistic calculations of coalescing binary neutron stars

    Indian Academy of Sciences (India)

    We have designed and tested a new relativistic Lagrangian hydrodynamics code, which treats gravity in the conformally flat approximation to general relativity. We have tested the resulting code extensively, finding that it performs well for calculations of equilibrium single-star models, collapsing relativistic dust clouds, and ...

  8. A Primer to Relativistic MOND Theory

    NARCIS (Netherlands)

    Bekenstein, J.D..; Sanders, R.H.

    2005-01-01

    Abstract: We first review the nonrelativistic lagrangian theory as a framework for the MOND equation. Obstructions to a relativistic version of it are discussed leading up to TeVeS, a relativistic tensor-vector-scalar field theory which displays both MOND and Newtonian limits. The whys for its

  9. Relativistic astrophysics and theory of gravity

    International Nuclear Information System (INIS)

    Zel'dovich, Ya.B.

    1982-01-01

    A brief historical review of the development of astrophysical science in the State Astrophysical Institute named after Shternberg (SAISh) has been given in a popular form. The main directions of the SAISh astrophysical investigations have been presented: relativistic theory of gravity, relativistic astrophysics of interplanetary medium and cosmology

  10. Quasiparticle method in relativistic mean-field theories of nuclear structure

    International Nuclear Information System (INIS)

    Ai, H.

    1988-01-01

    In recent years, in order to understand the success of Dirac phenomenology, relativistic Brueckner-Hartree-Fock (RBHF) theory has been developed. This theory is a relativistic many-body theory of nuclear structure. Based upon the RBHF theory, which is characterized as having no free parameters other than those introduced in fitting free-space nucleon-nucleon scattering data, we construct an effective interaction. This interaction, when treated in a relativistic Hartree-Fock approximation, reproduces, rather accurately, the nucleon self-energy in nuclear matter, Migdal parameters obtained via relativistic Brueckner-Hartree-Fock calculations, and the saturation curves calculated with the full relativistic Brueckner-Hartree-Fock theory. This effective interaction is constructed by adding a number of pseudoparticles to the mesons used to construct one-boson-exchange (OBE) models of the nuclear force. The pseudoparticles have relatively large masses and either real or imaginary coupling constants. (For example, exchange of a pseudo-sigma with an imaginary coupling constant has the effect of reducing the scalar attraction arising from sigma exchange, while exchange of a pseudo-omega with an imaginary coupling constant has the effect of reducing the repulsion arising from omega exchange. The terms beyond the Born term in the case of pion exchange are well simulated by pseudo-sigma exchange with a real coupling constant.) The effective interaction constructed here may be used for calculations of the properties of finite nuclei in a relativistic Hartree-Fock approximation

  11. Characteristics of ejecta and alluvial deposits at Meteor Crater, Arizona and Odessa Craters, Texas: Results from ground penetrating radar

    Science.gov (United States)

    Grant, J. A.; Schultz, P. H.

    1991-01-01

    Previous ground penetrating radar (GRP) studies around 50,000 year old Meteor Crater revealed the potential for rapid, inexpensive, and non-destructive sub-surface investigations for deep reflectors (generally greater than 10 m). New GRP results are summarized focusing the shallow sub-surfaces (1-2 m) around Meteor Crater and the main crater at Odessa. The following subject areas are covered: (1) the thickness, distribution, and nature of the contact between surrounding alluvial deposits and distal ejecta; and (2) stratigraphic relationships between both the ejecta and alluvium derived from both pre and post crater drainages. These results support previous conclusions indicating limited vertical lowering (less than 1 m) of the distal ejecta at Meteor Crater and allow initial assessment of the gradational state if the Odessa craters.

  12. The effect of ambient pressure on ejecta sheets from free-surface ablation

    KAUST Repository

    Marston, J. O.; Mansoor, Mohammad M.; Thoroddsen, Sigurdur T; Truscott, T. T.

    2016-01-01

    We present observations from an experimental study of the ablation of a free liquid surface promoted by a focused laser pulse, causing a rapid discharge of liquid in the form of a very thin conical-shaped sheet. In order to capture the dynamics, we employ a state-of-the-art ultra-high-speed video camera capable of capturing events at (Formula presented.) fps with shutter speeds down to 20 ns, whereby we were able to capture not only the ejecta sheet, but also the shock wave, emerging at speeds of up to 1.75 km/s, which is thus found to be hypersonic (Mach 5). Experiments were performed at a range of ambient pressures in order to study the effect of air drag on the evolution of the sheet, which was always observed to dome over, even at pressures as low as 3.8 kPa. At reduced pressures, the extended sheet evolution led to the formation of interference fringe patterns from which, by comparison with the opening speed of rupture, we were able to determine the ejecta thickness. © 2016, Springer-Verlag Berlin Heidelberg.

  13. 14C ages for the ejecta from Kutcharo and Mashu calderas, eastern Hokkaido, Japan

    International Nuclear Information System (INIS)

    Yamamoto, Takahiro; Ito, Jun-ichi; Nakagawa, Mitsuhiro; Hasegawa, Takeshi; Kishimoto, Hiroshi

    2010-01-01

    Eruption ages of the ejecta from Kutcharo and Mashu calderas were systematically determined by 14 C dating. 16 charred samples were newly obtained from the Mashu and Nakashumbetsu Tephra Formations around the calderas and dated by AMS and β-counting methods. Examined units are Ma-d, Ma-e, Ma-f, Ma-j, Ma-k, Ma-l and Ml-a in the Mashu ejecta and 6 Nakashumbetsu tephra layers including Kutcharo Pumice Flow Deposit I (KpI), which is the youngest caldera-forming product from Kutcharo caldera. Results of the 14 C dating range from 3,660 ±40 yBP to 36,080±1,300 yBP, and are consistent with the tephrostratigraphy. Calendar age for KpI was newly calculated at almost 40 ka and this age shows there was about 70,000 years recurrence interval between KpI and KpIV caldera-forming eruptions. Mashu caldera has appeared on the eastern part of Kutcharo caldera immediately after the KpI eruption, and calendar age for its main caldera-forming eruption were determined at ca. BC 5,600. (author)

  14. The effect of ambient pressure on ejecta sheets from free-surface ablation

    KAUST Repository

    Marston, J. O.

    2016-04-16

    We present observations from an experimental study of the ablation of a free liquid surface promoted by a focused laser pulse, causing a rapid discharge of liquid in the form of a very thin conical-shaped sheet. In order to capture the dynamics, we employ a state-of-the-art ultra-high-speed video camera capable of capturing events at (Formula presented.) fps with shutter speeds down to 20 ns, whereby we were able to capture not only the ejecta sheet, but also the shock wave, emerging at speeds of up to 1.75 km/s, which is thus found to be hypersonic (Mach 5). Experiments were performed at a range of ambient pressures in order to study the effect of air drag on the evolution of the sheet, which was always observed to dome over, even at pressures as low as 3.8 kPa. At reduced pressures, the extended sheet evolution led to the formation of interference fringe patterns from which, by comparison with the opening speed of rupture, we were able to determine the ejecta thickness. © 2016, Springer-Verlag Berlin Heidelberg.

  15. Freely Expanding Knots of X-Ray-emitting Ejecta in Kepler’s Supernova Remnant

    Science.gov (United States)

    Sato, Toshiki; Hughes, John P.

    2017-08-01

    We report measurements of proper motion, radial velocity, and elemental composition for 14 compact X-ray-bright knots in Kepler’s supernova remnant (SNR) using archival Chandra data. The knots with the highest speed show both large proper motions (μ ˜ 0.″11-0.″14 yr-1) and high radial velocities (v ˜ 8700-10,020 km s-1). For these knots the estimated space velocities (9100 km s-1 ≲ v 3D ≲ 10,400 km s-1) are similar to the typical Si velocity seen in supernovae (SNe) Ia near maximum light. High-speed ejecta knots appear only in specific locations and are morphologically and kinematically distinct from the rest of the ejecta. The proper motions of five knots extrapolate back over the age of Kepler’s SNR to a consistent central position. This new kinematic center agrees well with previous determinations, but is less subject to systematic errors and denotes a location about which several prominent structures in the remnant display a high degree of symmetry. These five knots are expanding at close to the free expansion rate (expansion indices of 0.75 ≲ m ≲ 1.0), which we argue indicates either that they were formed in the explosion with a high density contrast (more than 100 times the ambient density) or that they have propagated through regions of relatively low density (n H ruled out.

  16. Random phase approximation in relativistic approach

    International Nuclear Information System (INIS)

    Ma Zhongyu; Yang Ding; Tian Yuan; Cao Ligang

    2009-01-01

    Some special issues of the random phase approximation(RPA) in the relativistic approach are reviewed. A full consistency and proper treatment of coupling to the continuum are responsible for the successful application of the RPA in the description of dynamical properties of finite nuclei. The fully consistent relativistic RPA(RRPA) requires that the relativistic mean filed (RMF) wave function of the nucleus and the RRPA correlations are calculated in a same effective Lagrangian and the consistent treatment of the Dirac sea of negative energy states. The proper treatment of the single particle continuum with scattering asymptotic conditions in the RMF and RRPA is discussed. The full continuum spectrum can be described by the single particle Green's function and the relativistic continuum RPA is established. A separable form of the paring force is introduced in the relativistic quasi-particle RPA. (authors)

  17. Loading relativistic Maxwell distributions in particle simulations

    Science.gov (United States)

    Zenitani, S.

    2015-12-01

    In order to study energetic plasma phenomena by using particle-in-cell (PIC) and Monte-Carlo simulations, we need to deal with relativistic velocity distributions in these simulations. However, numerical algorithms to deal with relativistic distributions are not well known. In this contribution, we overview basic algorithms to load relativistic Maxwell distributions in PIC and Monte-Carlo simulations. For stationary relativistic Maxwellian, the inverse transform method and the Sobol algorithm are reviewed. To boost particles to obtain relativistic shifted-Maxwellian, two rejection methods are newly proposed in a physically transparent manner. Their acceptance efficiencies are 􏰅50% for generic cases and 100% for symmetric distributions. They can be combined with arbitrary base algorithms.

  18. Relativistic theory of spontaneous emission

    International Nuclear Information System (INIS)

    Barut, A.O.; Salamin, Y.I.

    1987-06-01

    We derive a formula for the relativistic decay rates in atoms in a formulation of Quantum Electrodynamics based upon the electron's self energy. Relativistic Coulomb wavefunctions are used, the full spin calculation is carried out and the dipole approximation is not employed. The formula has the correct nonrelativistic limit and is used here for calculating the decay rates in Hydrogen and Muonium for the transitions 2P → 1S 1/2 and 2S 1/2 → 1S 1/2 . The results for Hydrogen are: Γ(2P → 1S 1/2 )=6.2649x10 8 s -1 and Γ(2S 1/2 → 1S 1/2 )=2.4946x10 -6 s -1 . Our result for the 2P → 1S 1/2 transition rate is in perfect agreement with the best nonrelativistic calculations as well as with the results obtained from the best known radiative decay lifetime measurements. As for the Hydrogen 2S 1/2 → 1S 1/2 decay rate, the result obtained here is also in good agreement with the best known magnetic dipole calculations. For Muonium we get: Γ(2P → 1S 1/2 )=6.2382x10 8 s -1 and Γ(2S 1/2 → 1S 1/2 )=2.3997x10 -6 s -1 . (author). 23 refs, 4 tabs

  19. Physical processes in relativistic plasmas

    International Nuclear Information System (INIS)

    Svensson, R.

    1984-01-01

    The continuum emission in many active galactic nuclei (AGNs) extend to 100 keV and beyond (e.g. Rothschild et al. 1983). In thermal models of the continuum emission this implies temperatures above 10 9 K or kT of order mc 2 . In such a plasma the electrons are at least mildly relativistic and furthermore the particles and the photons are energetic enough to produce electron-positron pairs. The physics of such hot plasmas has only recently been studied in any detail and here we review the results of those studies. Significant electron-positron pair production may also occur in non-thermal models of the continuum emission if the optical depth to photon-photon pair production is greater than unity. We review the few results obtained regarding this interesting but not very well studied possibility. First, however, we briefly discuss the processes taking place in relativistic plasmas and the standard models for the continuum emission from AGNs. We then summarize the effects pair production have on these models and the observational implications of the presence of electron-positron pairs. (orig./WL)

  20. 24-Hour Relativistic Bit Commitment.

    Science.gov (United States)

    Verbanis, Ephanielle; Martin, Anthony; Houlmann, Raphaël; Boso, Gianluca; Bussières, Félix; Zbinden, Hugo

    2016-09-30

    Bit commitment is a fundamental cryptographic primitive in which a party wishes to commit a secret bit to another party. Perfect security between mistrustful parties is unfortunately impossible to achieve through the asynchronous exchange of classical and quantum messages. Perfect security can nonetheless be achieved if each party splits into two agents exchanging classical information at times and locations satisfying strict relativistic constraints. A relativistic multiround protocol to achieve this was previously proposed and used to implement a 2-millisecond commitment time. Much longer durations were initially thought to be insecure, but recent theoretical progress showed that this is not so. In this Letter, we report on the implementation of a 24-hour bit commitment solely based on timed high-speed optical communication and fast data processing, with all agents located within the city of Geneva. This duration is more than 6 orders of magnitude longer than before, and we argue that it could be extended to one year and allow much more flexibility on the locations of the agents. Our implementation offers a practical and viable solution for use in applications such as digital signatures, secure voting and honesty-preserving auctions.

  1. Classical relativistic ideal gas in thermodynamic equilibrium in a uniformly accelerated reference frame

    International Nuclear Information System (INIS)

    Louis-Martinez, Domingo J

    2011-01-01

    A classical (non-quantum-mechanical) relativistic ideal gas in thermodynamic equilibrium in a uniformly accelerated frame of reference is studied using Gibbs's microcanonical and grand canonical formulations of statistical mechanics. Using these methods explicit expressions for the particle, energy and entropy density distributions are obtained, which are found to be in agreement with the well-known results of the relativistic formulation of Boltzmann's kinetic theory. Explicit expressions for the total entropy, total energy and rest mass of the gas are obtained. The position of the center of mass of the gas in equilibrium is found. The non-relativistic and ultrarelativistic approximations are also considered. The phase space volume of the system is calculated explicitly in the ultrarelativistic approximation.

  2. Compact objects in relativistic theories of gravity

    Science.gov (United States)

    Okada da Silva, Hector

    2017-05-01

    In this dissertation we discuss several aspects of compact objects, i.e. neutron stars and black holes, in relativistic theories of gravity. We start by studying the role of nuclear physics (encoded in the so-called equation of state) in determining the properties of neutron stars in general relativity. We show that low-mass neutron stars are potentially useful astrophysical laboratories that can be used to constrain the properties of the equation of state. More specifically, we show that various bulk properties of these objects, such as their quadrupole moment and tidal deformability, are tightly correlated. Next, we develop a formalism that aims to capture how generic modifications from general relativity affect the structure of neutron stars, as predicted by a broad class of gravity theories, in the spirit of the parametrized post-Newtonian formalism (PPN). Our "post-Tolman-Oppenheimer-Volkoff" formalism provides a toolbox to study both stellar structure and the interior/exterior geometries of static, spherically symmetric relativistic stars. We also apply the formalism to parametrize deviations from general relativity in various astrophysical observables related with neutron stars, including surface redshift, apparent radius, Eddington luminosity. We then turn our attention to what is arguably the most well-motivated and well-investigated generalization of general relativity: scalar-tensor theory. We start by considering theories where gravity is mediated by a single extra scalar degree of freedom (in addition to the metric tensor). An interesting class of scalar-tensor theories passes all experimental tests in the weak-field regime of gravity, yet considerably deviates from general relativity in the strong-field regime in the presence of matter. A common assumption in modeling neutron stars is that the pressure within these object is spatially isotropic. We relax this assumption and examine how pressure anisotropy affects the mass, radius and moment of inertia

  3. Baryons electromagnetic mass splittings in potential models

    International Nuclear Information System (INIS)

    Genovese, M.; Richard, J.-M.; Silvestre-Brac, B.; Varga, K.

    1998-01-01

    We study electromagnetic mass splittings of charmed baryons. We point out discrepancies among theoretical predictions in non-relativistic potential models; none of these predictions seems supported by experimental data. A new calculation is presented

  4. The Mesozoic Era of relativistic heavy ion physics and beyond

    International Nuclear Information System (INIS)

    Harris, J.W.

    1994-03-01

    In order to understand how matter 15 billion years ago in the form of quarks, gluons and leptons at a temperature of 2 x 10 12 degrees K evolved to become today's Universe, the goal of relativistic and ultra-relativistic heavy ion physics is to understand the equation of state of nuclear, hadronic and partonic matter. This quest is of cross-disciplinary interest. The phase transition from partonic matter to hadronic matter tens of micro-seconds after the beginning of the universe is of interest to cosmology. Fluctuations during this phase transition would influence nucleosynthesis and the understanding of baryonic inhomogeneities in the universe. The nuclear matter equation of state, which describes the incompressibility of nuclear matter, governs neutron star stability. It determines the possible existence of strange quark matter stars and the dynamics of supernova expansion in astrophysics. The existence of collective nuclear phenomena in nuclear physics is also determined by the nuclear equation of state. In relativistic heavy ion collisions collective nuclear flow has been observed and is being studied extensively to obtain a better understanding of the incompressibility of nuclear matter. In high energy nuclear and particle physics, production and excitations of hadronic final states have been studied in detail and are important to an overall understanding of the equation of state of nuclear matter at finite temperature. The possibility in ultra-relativistic heavy ion collisions to create and study highly excited hadronic and partonic degrees of freedom provides a unique opportunity for understanding the behavior of nuclear, hadronic and partonic matter. Study of the QCD vacuum, of particular interest in particle physics, would provide a better understanding of symmetry-breaking mechanisms and the origins of the masses of the various quarks and particles

  5. Studies of relativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Madansky, L.

    1989-01-01

    This report presents the progress in our program of Relativistic Heavy Ion studies. The first phase of experiments on lepton pairs is almost complete and the results from the initial part of this program are presented in copies of three publications. It appears that the origin of lepton pairs is the annihilation of pions. The evidence for this seems to be the shape of the dilepton mass spectrum, the cross-section as a function of energy which seems to scale with pion production, and the general kinematic behavior of the lepton pairs themselves. We present progress on the development of Ring Imaging Cerenkov counters for dilepton observations in general, and a short report on a high resolution method counter proposal that could be adapted to RHIC counters in general. Publication of results on hyperon polarization with incident polarized proton beams is also presented. These results use the phenomenological approach that could be useful in understanding hyperon production in heavy ion collisions. In this connection, a proposal for studying high density nuclear matter with incident antiprotons is presented. Progress on the TPC detectors developed by the BNL group for heavy ion research is reported, along with recent analysis of polarization with incident silicon beams. Finally, the most recent results on subthreshold antiproton production is presented. These latter results are several orders of magnitude more than expected and they point to some kind of coherent hadronic phenomena even at extremely low energies

  6. Maximum stellar iron core mass

    Indian Academy of Sciences (India)

    An analytical method of estimating the mass of a stellar iron core, just prior to core collapse, is described in this paper. The method employed depends, in part, upon an estimate of the true relativistic mass increase experienced by electrons within a highly compressed iron core, just prior to core collapse, and is significantly ...

  7. Probing the Physics of Core-Collapse Supernovae and Ultra-Relativistic Outflows using Pulsar Wind Nebulae

    Science.gov (United States)

    Gelfand, Joseph

    Core-collapse supernovae, the powerful explosions triggered by the gravitational collapse of massive stars, play an important role in evolution of star-forming galaxies like our Milky Way. Not only do these explosions eject the outer envelope of the progenitor star with extremely high velocities, creating a supernova remnant (SNR), the rotational energy of the resultant neutron star powers an ultra-relativistic outflow called a pulsar wind which creates a pulsar wind nebula (PWN) as it expands into its surroundings. Despite almost a century of study, many fundamental questions remain, including: How is a neutron star formed during a core-collapse supernova? How are particles created in the neutron star magnetosphere? How are particles accelerated to the PeV energies inside PWNe? Answering these questions requires measuring the properties of the progenitor star and pulsar wind for a diverse collection of neutron stars. Currently, this is best done by studying those PWNe inside a SNR, since their evolution is very sensitive to the initial spin period of the neutron star, the mass and initial kinetic energy of the supernova ejecta, and the magnetization and particle spectrum of the pulsar wind - quantities critical for answering the above questions. To this end, we propose to measure these properties for 17 neutron stars whose spin-down inferred dipole surface magnetic field strengths and characteristic ages differ by 1.5 orders of magnitude by fitting the broadband spectral energy distribution (SED) and dynamical properties of their associated PWNe with a model for the dynamical and spectral evolution of a PWN inside SNR. To do so, we will first re-analyze all archival X-ray (e.g., XMM, Chandra, INTEGRAL, NuSTAR) and gamma-ray (e.g., Fermi-LAT Pass 8) data on each PWN to ensure consistent measurements of the volume-integrated properties (e.g., X-ray photon index and unabsorbed flux, GeV spectrum) needed for this analysis. Additionally, we will use a Markoff Chain

  8. A finite Zitterbewegung model for relativistic quantum mechanics

    International Nuclear Information System (INIS)

    Noyes, H.P.

    1990-01-01

    Starting from steps of length h/mc and time intervals h/mc 2 , which imply a quasi-local Zitterbewegung with velocity steps ±c, we employ discrimination between bit-strings of finite length to construct a necessary 3+1 dimensional event-space for relativistic quantum mechanics. By using the combinatorial hierarchy to label the strings, we provide a successful start on constructing the coupling constants and mass ratios implied by the scheme. Agreement with experiments is surprisingly accurate. 22 refs., 1 fig

  9. Electromagnetic pair production in relativistic heavy-ion collisions

    International Nuclear Information System (INIS)

    Bottcher, C.; Strayer, M.R.

    1988-01-01

    We survey the production of electron, muon and tauon pairs in collisions between nuclei at ultra-relativistic energies. Such studies enhance our understanding of the role of the vacuum in field theory, and provide essential input for several experimental programs. A variety of models for the nuclear and nucleon form factors have been considered, revealing some degree of sensitivity to assumptions about sub-nuclear structure. We predict that the cross sections, even at high invariant masses and transverse momenta, are large on hadronic scales, and should act as useful probes of nuclear and nucleon form factors. 21 refs., 5 figs

  10. A finite Zitterbewegung model for relativistic quantum mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Noyes, H.P.

    1990-02-19

    Starting from steps of length h/mc and time intervals h/mc{sup 2}, which imply a quasi-local Zitterbewegung with velocity steps {plus minus}c, we employ discrimination between bit-strings of finite length to construct a necessary 3+1 dimensional event-space for relativistic quantum mechanics. By using the combinatorial hierarchy to label the strings, we provide a successful start on constructing the coupling constants and mass ratios implied by the scheme. Agreement with experiments is surprisingly accurate. 22 refs., 1 fig.

  11. Relativistic-particle quantum mechanics (applications and approximations) II

    International Nuclear Information System (INIS)

    Coester, F.

    1981-01-01

    In this lecture I hope to show that relativistic-particle quantum mechanics with direct interactions is a useful tool for building models applicable to hadron systems at intermediate energies. To do this I will first describe a class of models designed to incorporate nucleon-nucleon interactions, pion production, absorption and scattering into a single dynamical framework without dressing the nucleons with pion clouds. The second major topic concerns electromagnetic interactions. In the previous lecture I specifically excluded long-rang forces and zero-mass particles. Since many of the experimental data in hadron physics involve electromagnetic interactions this limitation is a major defect which must be addressed

  12. Freely Expanding Knots of X-Ray-emitting Ejecta in Kepler’s Supernova Remnant

    Energy Technology Data Exchange (ETDEWEB)

    Sato, Toshiki [Department of Physics, Tokyo Metropolitan University, 1-1 Minami-Osawa, Hachioji, Tokyo 192-0397 (Japan); Hughes, John P., E-mail: toshiki@astro.isas.jaxa.jp, E-mail: jph@physics.rutgers.edu [Department of Physics and Astronomy, Rutgers University, 136 Frelinghuysen Road, Piscataway, NJ 08854-8019 (United States)

    2017-08-20

    We report measurements of proper motion, radial velocity, and elemental composition for 14 compact X-ray-bright knots in Kepler’s supernova remnant (SNR) using archival Chandra data. The knots with the highest speed show both large proper motions ( μ ∼ 0.″11–0.″14 yr{sup −1}) and high radial velocities ( v ∼ 8700–10,020 km s{sup −1}). For these knots the estimated space velocities (9100 km s{sup −1} ≲ v {sub 3D} ≲ 10,400 km s{sup −1}) are similar to the typical Si velocity seen in supernovae (SNe) Ia near maximum light. High-speed ejecta knots appear only in specific locations and are morphologically and kinematically distinct from the rest of the ejecta. The proper motions of five knots extrapolate back over the age of Kepler’s SNR to a consistent central position. This new kinematic center agrees well with previous determinations, but is less subject to systematic errors and denotes a location about which several prominent structures in the remnant display a high degree of symmetry. These five knots are expanding at close to the free expansion rate (expansion indices of 0.75 ≲ m ≲ 1.0), which we argue indicates either that they were formed in the explosion with a high density contrast (more than 100 times the ambient density) or that they have propagated through regions of relatively low density ( n {sub H} < 0.1 cm{sup −3}) in the ambient medium. X-ray spectral analysis shows that the undecelerated knots have high Si and S abundances, a lower Fe abundance, and very low O abundance, pointing to an origin in the partial Si-burning zone, which occurs in the outer layer of the exploding white dwarf for models of SNe Ia. Other knots show lower speeds and expansion indices consistent with decelerated ejecta knots or features in the ambient medium overrun by the forward shock. Our new accurate location for the explosion site has well-defined positional uncertainties, allowing for a great reduction in the area to be searched for faint

  13. The rebirth of Supernova 1987A : a study of the ejecta-ring collision

    Science.gov (United States)

    Gröningsson, Per

    Supernovae are some of the most energetic phenomena in the Universe and they have throughout history fascinated people as they appeared as new stars in the sky. Supernova (SN) 1987A exploded in the nearby satellite galaxy, the Large Magellanic Cloud (LMC), at a distance of only 168,000 light years. The proximity of SN 1987A offers a unique opportunity to study the medium surrounding the supernova in great detail. Powered by the dynamical interaction of the ejecta with the inner circumstellar ring, SN 1987A is dramatically evolving at all wavelengths on time scales less than a year. This makes SN 1987A a great ``laboratory'' for studies of shock physics. Repeated observations of the ejecta-ring collision have been carried out using the UVES echelle spectrograph at VLT. This thesis covers seven epochs of high resolution spectra taken between October 1999 and November 2007. Three different emission line components are identified from the spectra. A narrow (~10 km/s) velocity component emerges from the unshocked ring. An intermediate (~250 km/s) component arises in the shocked ring, and a broad component extending to ~15,000 km/s comes from the reverse shock. Thanks to the high spectral resolution of UVES, it has been possible to separate the shocked from the unshocked ring emission. For the unshocked gas, ionization stages from neutral up to Ne V and Fe VII were found. The line fluxes of the low-ionization lines decline during the period of the observations. However, the fluxes of the [O III] and [Ne III] lines appear to increase and this is found to be consistent with the heating of the pre-shock gas by X-rays from the shock interactions. The line emission from the ejecta-ring collision increases rapidly as more gas is swept up by the shocks. This emission comes from ions with a range of ionization stages (e.g., Fe II-XIV). The low-ionization lines show an increase in their line widths which is consistent with that these lines originate from radiative shocks. The

  14. Thermodynamic laws and equipartition theorem in relativistic Brownian motion.

    Science.gov (United States)

    Koide, T; Kodama, T

    2011-06-01

    We extend the stochastic energetics to a relativistic system. The thermodynamic laws and equipartition theorem are discussed for a relativistic Brownian particle and the first and the second law of thermodynamics in this formalism are derived. The relation between the relativistic equipartition relation and the rate of heat transfer is discussed in the relativistic case together with the nature of the noise term.

  15. Parton distribution in relativistic hadrons

    International Nuclear Information System (INIS)

    Kopeliovich, B.Z.; Lapidus, L.I.; Zamolodchikov, Al.B.

    1979-01-01

    The distribution in the slow-parton number in the relativistic hadron is considered as a function of its rapidity (y). Neglecting corrections due to the tarton chain recombination the equation is derived and its explicit solution is found. It describes this distribution depending on the initial distribution at y approximately 1. Comparison with the reggeon diagrams results in relations between the parton model and the regaeon field theory parameters. The interpretation of the cutting rules in the framework of the parton model is presented. The numerical estimation of the parton model parameters is performed. It is shown that the slow-parton density corresponding to accessible energies seems to be close to the saturated density. Therefore, the enhanced graphs contributions turn out to be of considerable importance

  16. Relativistic three-particle theory

    International Nuclear Information System (INIS)

    Hochauser, S.

    1979-01-01

    In keeping with recent developments in experimental nuclear physics, a formalism is developed to treat interactions between three relativistic nuclear particles. The concept of unitarity and a simple form of analyticity are used to construct coupled, integral, Faddeev-type equations and, with the help of analytic separable potentials, these are cast in simple, one-dimensional form. Energy-dependent potentials are introduced so as to take into account the sign-change of some phase shifts in the nucleon-nucleon interaction and parameters for these potentials are obtained. With regard to the success of such local potentials as the Yukawa potential, a recently developed method for expanding these in separable form is discussed. Finally, a new method for the numerical integration of the Faddeev equations along the real axis is introduced, thus avoiding the traditional need for contour rotations into the complex plane. (author)

  17. General relativistic effects in the structure of massive white dwarfs

    Science.gov (United States)

    Carvalho, G. A.; Marinho, R. M.; Malheiro, M.

    2018-04-01

    In this work we investigate the structure of white dwarfs using the Tolman-Oppenheimer-Volkoff equations and compare our results with those obtained from Newtonian equations of gravitation in order to put in evidence the importance of general relativity (GR) for the structure of such stars. We consider in this work for the matter inside white dwarfs two equations of state, frequently found in the literature, namely, the Chandrasekhar and Salpeter equations of state. We find that using Newtonian equilibrium equations, the radii of massive white dwarfs (M>1.3M_{⊙ }) are overestimated in comparison with GR outcomes. For a mass of 1.415M_{⊙ } the white dwarf radius predicted by GR is about 33% smaller than the Newtonian one. Hence, in this case, for the surface gravity the difference between the general relativistic and Newtonian outcomes is about 65%. We depict the general relativistic mass-radius diagrams as M/M_{⊙ }=R/(a+bR+cR^2+dR^3+kR^4), where a, b, c and d are parameters obtained from a fitting procedure of the numerical results and k=(2.08× 10^{-6}R_{⊙ })^{-1}, being R_{⊙ } the radius of the Sun in km. Lastly, we point out that GR plays an important role to determine any physical quantity that depends, simultaneously, on the mass and radius of massive white dwarfs.

  18. Relativistic klystron research for linear colliders

    International Nuclear Information System (INIS)

    Allen, M.A.; Callin, R.S.; Deruyter, H.; Eppley, K.R.; Fant, K.S.; Fowkes, W.R.; Herrmannsfeldt, W.B.; Hoag, H.A.; Koontz, R.F.; Lavine, T.L.; Lee, T.G.; Loew, G.A.; Miller, R.H.; Morton, P.L.; Palmer, R.B.; Paterson, J.M.; Ruth, R.D.; Schwarz, H.D.; Vlieks, A.E.; Wilson, P.B.

    1989-01-01

    Relativistic klystrons are being developed as a power source for high gradient accelerator applications which include large linear electron-positron colliders, compact accelerators, and FEL sources. The authors have attained 200 MW peak power at 11.4 GHz from a relativistic klystron, and 140 MV/m longitudinal gradient in a short 11.4 GHz accelerator section. In this paper the authors report on the design of our relativistic klystrons, the results of our experiments so far, and some of our plans for the near future

  19. Relativistic klystron research for linear colliders

    International Nuclear Information System (INIS)

    Allen, M.A.; Callin, R.S.; Deruyter, H.; Eppley, K.R.; Fant, K.S.; Fowkes, W.R.; Herrmannesfeldt, W.B.; Higo, T.; Hoag, H.A.; Koontz, R.F.; Lavine, T.L.; Lee, T.G.; Loew, G.A.; Miller, R.H.; Morton, P.L.; Palmer, R.B.; Paterson, J.M.; Ruth, R.D.; Schwarz, H.D.; Takeuchi, Y.; Vlieks, A.E.; Wang, J.W.; Wilson, P.B.; Hopkins, D.B.; Sessler, A.M.; Ryne, R.D.; Westenskow, G.A.; Yu, S.S.

    1989-01-01

    Relativistic klystrons are being developed as a power source for high gradient accelerator applications which include large linear electron-positron colliders, compact accelerators, and FEL sources. The authors have attained 200MW peak power at 11.4 GHz from a relativistic klystron, and 140 MV/m longitudinal gradient in a short 11.4 GHz accelerator section. They report here on the design of our relativistic klystrons, the results of our experiments so far, and some of our plans for the near future. 5 refs., 9 figs., 1 tab

  20. New derivation of relativistic dissipative fluid dynamics

    International Nuclear Information System (INIS)

    Jaiswal, Amaresh; Bhalerao, Rajeev S.; Pal, Subrata

    2012-01-01

    Relativistic dissipative hydrodynamics has been quite successful in explaining the spectra and azimuthal anisotropy of particles produced in heavy-ion collisions at the RHIC and recently at the LHC. The first-order dissipative fluid dynamics or the relativistic Navier-Stokes (NS) theory involves parabolic differential equations and suffers from a causality and instability. The second-order or Israel-Stewart (IS) theory with its hyperbolic equations restores causality but may not guarantee stability. The correct formulation of relativistic viscous fluid dynamics is far from settled and is under intense investigation

  1. Relativistic Theory of Few Body Systems

    Energy Technology Data Exchange (ETDEWEB)

    Franz Gross

    2002-11-01

    Very significant advances have been made in the relativistic theory of few body systems since I visited Peter Sauer and his group in Hannover in 1983. This talk provides an opportunity to review the progress in this field since then. Different methods for the relativistic calculation of few nucleon systems are briefly described. As an example, seven relativistic calculations of the deuteron elastic structure functions, A, B, and T{sub 20}, are compared. The covariant SPECTATOR {copyright} theory, among the more successful and complete of these methods, is described in more detail.

  2. Penetration of relativistic heavy ions through matter

    International Nuclear Information System (INIS)

    Scheidenberger, C.; Geissel, H.

    1997-07-01

    New heavy-ion accelerators covering the relativistic and ultra-relativistic energy regime allow to study atomic collisions with bare and few-electron projectiles. High-resolution magnetic spectrometers are used for precise stopping-power and energy-loss straggling measurements. Refined theories beyond the Born approximation have been developed and are confirmed by experiments. This paper summarizes the large progress in the understanding of relativistic heavy-ion penetration through matter, which has been achieved in the last few years. (orig.)

  3. Relativistic klystron research for linear colliders

    International Nuclear Information System (INIS)

    Allen, M.A.; Callin, R.S.; Deruyter, H.

    1988-09-01

    Relativistic klystrons are being developed as a power source for high gradient accelerator applications which include large linear electron-positron colliders, compact accelerators, and FEL sources. We have attained 200 MW peak power at 11.4 GHz from a relativistic klystron, and 140 MV/m longitudinal gradient in a short 11.4 GHz accelerator section. We report here on the design of our relativistic klystrons, the results of our experiments so far, and some of our plans for the near future. 5 refs., 9 figs., 1 tab

  4. Whispering gallery effect in relativistic optics

    Science.gov (United States)

    Abe, Y.; Law, K. F. F.; Korneev, Ph.; Fujioka, S.; Kojima, S.; Lee, S.-H.; Sakata, S.; Matsuo, K.; Oshima, A.; Morace, A.; Arikawa, Y.; Yogo, A.; Nakai, M.; Norimatsu, T.; d'Humières, E.; Santos, J. J.; Kondo, K.; Sunahara, A.; Gus'kov, S.; Tikhonchuk, V.

    2018-03-01

    relativistic laser pulse, confined in a cylindrical-like target, under specific conditions may perform multiple scattering along the internal target surface. This results in the confinement of the laser light, leading to a very efficient interaction. The demonstrated propagation of the laser pulse along the curved surface is just yet another example of the "whispering gallery" effect, although nonideal due to laser-plasma coupling. In the relativistic domain its important feature is a gradual intensity decrease, leading to changes in the interaction conditions. The proccess may pronounce itself in plenty of physical phenomena, including very efficient electron acceleration and generation of relativistic magnetized plasma structures.

  5. Holographic Aspects of a Relativistic Nonconformal Theory

    Directory of Open Access Journals (Sweden)

    Chanyong Park

    2013-01-01

    Full Text Available We study a general D-dimensional Schwarzschild-type black brane solution of the Einstein-dilaton theory and derive, by using the holographic renormalization, its thermodynamics consistent with the geometric results. Using the membrane paradigm, we calculate the several hydrodynamic transport coefficients and compare them with the results obtained by the Kubo formula, which shows the self-consistency of the gauge/gravity duality in the relativistic nonconformal theory. In order to understand more about the relativistic non-conformal theory, we further investigate the binding energy, drag force, and holographic entanglement entropy of the relativistic non-conformal theory.

  6. The de Sitter relativistic top theory

    International Nuclear Information System (INIS)

    Armenta, J.; Nieto, J.A.

    2005-01-01

    We discuss the relativistic top theory from the point of view of the de Sitter (or anti-de Sitter) group. Our treatment rests on the Hanson-Regge spherical relativistic top Lagrangian formulation. We propose an alternative method for studying spinning objects via Kaluza-Klein theory. In particular, we derive the relativistic top equations of motion starting with the geodesic equation for a point particle in 4+N dimensions. We compare our approach with Fukuyama's formulation of spinning objects, which is also based on Kaluza-Klein theory. We also report a generalization of our approach to a 4+N+D dimensional theory

  7. The ionisation equation in a relativistic gas

    International Nuclear Information System (INIS)

    Kichenassamy, S.; Krikorian, R.A.

    1983-01-01

    By deriving the relativistic form of the ionisation equation for a perfect gas it is shown that the usual Saha equation is valid to 3% for temperatures below one hundred million Kelvin. Beyond 10 9 K, the regular Saha equation is seriously incorrect and a relativistic distribution function for electrons must be taken into account. Approximate forms are derived when only the electrons are relativistic (appropriate up to 10 12 K) and also for the ultrarelativistic case (temperatures greater than 10 15 K). (author)

  8. On the physics of relativistic double layers

    International Nuclear Information System (INIS)

    Carlqvist, P.

    1982-06-01

    A model of a strong, time-independent, and relativistic double layer is studied. Besides double layers having the electric field parallel to the current the model also describes a certain type of oblique double layers. The 'Langmuir condition' (ratio of ion current density to electron current density) as well as an expression for the potential drop of the double layer are derived. Furthermore, the distribution of charged particles, electric field, and potential within the double layer are clarified and discussed. It is found that the properties of relativistic double layers differ substantially from the properties of corresponding non-relativistic double layers. (Author)

  9. Local density approximations for relativistic exchange energies

    International Nuclear Information System (INIS)

    MacDonald, A.H.

    1986-01-01

    The use of local density approximations to approximate exchange interactions in relativistic electron systems is reviewed. Particular attention is paid to the physical content of these exchange energies by discussing results for the uniform relativistic electron gas from a new point of view. Work on applying these local density approximations in atoms and solids is reviewed and it is concluded that good accuracy is usually possible provided self-interaction corrections are applied. The local density approximations necessary for spin-polarized relativistic systems are discussed and some new results are presented

  10. On the model of the relativistic particle with curvature and torsion

    International Nuclear Information System (INIS)

    Nesterenko, V.V.

    1992-01-01

    Two integrals along the world trajectory of its curvature and torsion are added to the standard action for the point-like spinless relativistic particle. This enables one to quantize the model canonically and to derive exactly the relation between the spin and mass of the states. 10 refs

  11. Relativistic Equations for Spin Particles: What can We Learn from Noncommutativity?

    International Nuclear Information System (INIS)

    Dvoeglazov, V. V.

    2009-01-01

    We derive relativistic equations for charged and neutral spin particles. The approach for higher-spin particles is based on generalizations of the Bargmann-Wigner formalism. Next, we study, what new physical information can give the introduction of non-commutativity. Additional non-commutative parameters can provide a suitable basis for explanation of the origin of mass.

  12. The intercrater plains of Mercury and the Moon: Their nature, origin and role in terrestrial planet evolution. Estimated thickness of ejecta deposits compared to to crater rim heights. Ph.D. Thesis

    Science.gov (United States)

    Leake, M. A.

    1982-01-01

    The area of the continuous ejecta deposits on mercury was calculated to vary from 2.24 to 0.64 times the crater's area for those of diameter 40 km to 300 km. Because crater boundaries on the geologic map include the detectable continuous ejecta blanket, plains exterior to these deposits must consist of farther-flung ejecta (of that or other craters), or volcanic deposits flooding the intervening areas. Ejecta models are explored.

  13. Electronic structure of FeTiSb using relativistic and scalar-relativistic approaches

    Energy Technology Data Exchange (ETDEWEB)

    Sahariya, Jagrati [Department of Physics, Manipal University Jaipur, Jaipur-303007, Rajasthan (India); Mund, H. S., E-mail: hmoond@gmail.com [Department of Physics, M. L. Sukhadia University, Udaipur-313001, Rajasthan (India)

    2016-05-06

    Electronic and magnetic properties of FeTiSb have been reported. The calculations are performed using spin polarized relativistic Korringa-Kohn-Rostoker scheme based on Green’s function method. Within SPR-KKR a fully relativistic and scalar-relativistic approaches have been used to investigate electronic structure of FeTiSb. Energy bands, total and partial density of states, atom specific magnetic moment along with total moment of FeTiSb alloys are presented.

  14. Ejecta Particle-Size Measurements in Vacuum and Helium Gas using Ultraviolet In-Line Fraunhofer Holography

    Energy Technology Data Exchange (ETDEWEB)

    Sorenson, Danny S. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Pazuchanics, Peter [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Johnson, Randall P. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Malone, R. M. [National Security Technologies, LLC. (NSTec), Los Alamos, NM (United States); Kaufman, M. I. [National Security Technologies, LLC. (NSTec), Los Alamos, NM (United States); Tibbitts, A. [National Security Technologies, LLC. (NSTec), Los Alamos, NM (United States); Tunnell, T. [National Security Technologies, LLC. (NSTec), Los Alamos, NM (United States); Marks, D. [National Security Technologies, LLC. (NSTec), Los Alamos, NM (United States); Capelle, G. A. [National Security Technologies, LLC. (NSTec), Santa Barbara, CA (United States); Grover, M. [National Security Technologies, LLC. (NSTec), Santa Barbara, CA (United States); Marshall, B. [National Security Technologies, LLC. (NSTec), Santa Barbara, CA (United States); Stevens, G. D. [National Security Technologies, LLC. (NSTec), Santa Barbara, CA (United States); Turley, W. D. [National Security Technologies, LLC. (NSTec), Santa Barbara, CA (United States); LaLone, B. [National Security Technologies, LLC. (NSTec), Santa Barbara, CA (United States)

    2014-06-25

    An Ultraviolet (UV) in-line Fraunhofer holography diagnostic has been developed for making high-resolution spatial measurements of ejecta particles traveling at many mm/μsec. This report will discuss the development of the diagnostic including the high-powered laser system and high-resolution optical relay system. In addition, the system required to reconstruct the images from the hologram and the corresponding analysis of those images to extract particles will also be described. Finally, results from six high-explosive (HE), shock-driven Sn ejecta experiments will be presented. Particle size distributions will be shown that cover most of the ejecta velocities for experiments conducted in a vacuum, and helium gas environments. In addition, a modification has been made to the laser system that produces two laser pulses separated by 6.8 ns. This double-pulsed capability allows a superposition of two holograms to be acquired at two different times, thus allowing ejecta velocities to be measured directly. Results from this double pulsed experiment will be described.

  15. Asymmetric ejecta of cool supergiants and hypergiants in the massive cluster Westerlund 1

    Science.gov (United States)

    Andrews, H.; Fenech, D.; Prinja, R. K.; Clark, J. S.; Hindson, L.

    2018-06-01

    We report new 5.5 GHz radio observations of the massive star cluster Westerlund 1, taken by the Australia Telescope Compact Array, detecting nine of the ten yellow hypergiants (YHGs) and red supergiants (RSGs) within the cluster. Eight of nine sources are spatially resolved. The nebulae associated with the YHGs Wd1-4a, -12a, and -265 demonstrate a cometary morphology - the first time this phenomenon has been observed for such stars. This structure is also echoed in the ejecta of the RSGs Wd1-20 and -26; in each case the cometary tails are directed away from the cluster core. The nebular emission around the RSG Wd1-237 is less collimated than these systems but once again appears more prominent in the hemisphere facing the cluster. Considered as a whole, the nebular morphologies provide compelling evidence for sculpting via a physical agent associated with Westerlund 1, such as a cluster wind.

  16. ELEMENTAL ABUNDANCES IN THE EJECTA OF OLD CLASSICAL NOVAE FROM LATE-EPOCH SPITZER SPECTRA

    International Nuclear Information System (INIS)

    Helton, L. Andrew; Vacca, William D.; Gehrz, Robert D.; Woodward, Charles E.; Shenoy, Dinesh P.; Wagner, R. Mark; Evans, Aneurin; Krautter, Joachim; Schwarz, Greg J.; Starrfield, Sumner

    2012-01-01

    We present Spitzer Space Telescope mid-infrared IRS spectra, supplemented by ground-based optical observations, of the classical novae V1974 Cyg, V382 Vel, and V1494 Aql more than 11, 8, and 4 years after outburst, respectively. The spectra are dominated by forbidden emission from neon and oxygen, though in some cases, there are weak signatures of magnesium, sulfur, and argon. We investigate the geometry and distribution of the late time ejecta by examination of the emission line profiles. Using nebular analysis in the low-density regime, we estimate lower limits on the abundances in these novae. In V1974 Cyg and V382 Vel, our observations confirm the abundance estimates presented by other authors and support the claims that these eruptions occurred on ONe white dwarfs (WDs). We report the first detection of neon emission in V1494 Aql and show that the system most likely contains a CO WD.

  17. ELEMENTAL ABUNDANCES IN THE EJECTA OF OLD CLASSICAL NOVAE FROM LATE-EPOCH SPITZER SPECTRA

    Energy Technology Data Exchange (ETDEWEB)

    Helton, L. Andrew; Vacca, William D. [SOFIA Science Center, USRA, NASA Ames Research Center, M.S. N232-11, Moffett Field, CA 94035 (United States); Gehrz, Robert D.; Woodward, Charles E.; Shenoy, Dinesh P. [Minnesota Institute for Astrophysics, School of Physics and Astronomy, 116 Church Street S.E., University of Minnesota, Minneapolis, MN 55455 (United States); Wagner, R. Mark [Department of Astronomy, The Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Evans, Aneurin [Astrophysics Group, Keele University, Keele, Staffordshire ST5 5BG (United Kingdom); Krautter, Joachim [Landessternwarte-Zentrum fuer Astronomie der Universitaet, Koenigstuhl, D-69117 Heidelberg (Germany); Schwarz, Greg J. [American Astronomical Society, 2000 Florida Avenue, NW, Suite 400, Washington, DC 20009 (United States); Starrfield, Sumner, E-mail: ahelton@sofia.usra.edu [School of Earth and Space Exploration, Arizona State University, P.O. Box 871404, Tempe, AZ 85287 (United States)

    2012-08-10

    We present Spitzer Space Telescope mid-infrared IRS spectra, supplemented by ground-based optical observations, of the classical novae V1974 Cyg, V382 Vel, and V1494 Aql more than 11, 8, and 4 years after outburst, respectively. The spectra are dominated by forbidden emission from neon and oxygen, though in some cases, there are weak signatures of magnesium, sulfur, and argon. We investigate the geometry and distribution of the late time ejecta by examination of the emission line profiles. Using nebular analysis in the low-density regime, we estimate lower limits on the abundances in these novae. In V1974 Cyg and V382 Vel, our observations confirm the abundance estimates presented by other authors and support the claims that these eruptions occurred on ONe white dwarfs (WDs). We report the first detection of neon emission in V1494 Aql and show that the system most likely contains a CO WD.

  18. BOOK REVIEW: Relativistic Figures of Equilibrium

    Science.gov (United States)

    Mars, M.

    2009-08-01

    Compact fluid bodies in equilibrium under its own gravitational field are abundant in the Universe and a proper treatment of them can only be carried out using the full theory of General Relativity. The problem is of enormous complexity as it involves two very different regimes, namely the interior and the exterior of the fluid, coupled through the surface of the body. This problem is very challenging both from a purely theoretical point of view, as well as regarding the obtaining of realistic models and the description of their physical properties. It is therefore an excellent piece of news that the book 'Relativistic Figures of Equilibrium' by R Meinel, M Ansorg, A Kleinwächter, G Neugebauer and D Petroff has been recently published. This book approaches the topic in depth and its contents will be of interest to a wide range of scientists working on gravitation, including theoreticians in general relativity, mathematical physicists, astrophysicists and numerical relativists. This is an advanced book that intends to present some of the present-day results on this topic. The most basic results are presented rather succinctly, and without going into the details, of their derivations. Although primarily not intended to serve as a textbook, the presentation is nevertheless self-contained and can therefore be of interest both for experts on the field as well as for anybody wishing to learn more about rotating self-gravitating compact bodies in equilibrium. It should be remarked, however, that this book makes a rather strong selection of topics and concentrates fundamentally on presenting the main results obtained by the authors during their research in this field. The book starts with a chapter where the fundamental aspects of rotating fluids in equilibrium, including its thermodynamic properties, are summarized. Of particular interest are the so-called mass-shedding limit, which is the limit where the body is rotating so fast that it is on the verge of starting

  19. MAGNETIC ENERGY BUILDUP FOR RELATIVISTIC MAGNETAR GIANT FLARES

    International Nuclear Information System (INIS)

    Yu Cong

    2011-01-01

    Motivated by coronal mass ejection studies, we construct general relativistic models of a magnetar magnetosphere endowed with strong magnetic fields. The equilibrium states of the stationary, axisymmetric magnetic fields in the magnetar magnetosphere are obtained as solutions of the Grad-Shafranov equation in a Schwarzschild spacetime. To understand the magnetic energy buildup in the magnetar magnetosphere, a generalized magnetic virial theorem in the Schwarzschild metric is newly derived. We carefully address the question whether the magnetar magnetospheric magnetic field can build up sufficient magnetic energy to account for the work required to open up the magnetic field during magnetar giant flares. We point out the importance of the Aly-Sturrock constraint, which has been widely studied in solar corona mass ejections, as a reference state in understanding magnetar energy storage processes. We examine how the magnetic field can possess enough energy to overcome the Aly-Sturrock energy constraint and open up. In particular, general relativistic (GR) effects on the Aly-Sturrock energy constraint in the Schwarzschild spacetime are carefully investigated. It is found that, for magnetar outbursts, the Aly-Sturrock constraint is more stringent, i.e., the Aly-Sturrock energy threshold is enhanced due to the GR effects. In addition, neutron stars with greater mass have a higher Aly-Sturrock energy threshold and are more difficult to erupt. This indicates that magnetars are probably not neutron stars with extreme mass. For a typical neutron star with mass of 1-2 M sun , we further explore the cross-field current effects, caused by the mass loading, on the possibility of stored magnetic field energy exceeding the Aly-Sturrock threshold.

  20. The Wigner function in the relativistic quantum mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Kowalski, K., E-mail: kowalski@uni.lodz.pl; Rembieliński, J.

    2016-12-15

    A detailed study is presented of the relativistic Wigner function for a quantum spinless particle evolving in time according to the Salpeter equation. - Highlights: • We study the Wigner function for a quantum spinless relativistic particle. • We discuss the relativistic Wigner function introduced by Zavialov and Malokostov. • We introduce relativistic Wigner function based on the standard definition. • We find analytic expressions for relativistic Wigner functions.