Resistive Magnetohydrodynamic Simulations of Relativistic Magnetic Reconnection
Zenitani, Seiji; Hesse, Michael; Klimas, Alex
2010-01-01
Resistive relativistic magnetohydrodynamic (RRMHD) simulations are applied to investigate the system evolution of relativistic magnetic reconnection. A time-split Harten-Lan-van Leer method is employed. Under a localized resistivity, the system exhibits a fast reconnection jet with an Alfv enic Lorentz factor inside a narrow Petschek-type exhaust. Various shock structures are resolved in and around the plasmoid such as the post-plasmoid vertical shocks and the "diamond-chain" structure due to multiple shock reflections. Under a uniform resistivity, Sweet-Parker-type reconnection slowly evolves. Under a current-dependent resistivity, plasmoids are repeatedly formed in an elongated current sheet. It is concluded that the resistivity model is of critical importance for RRMHD modeling of relativistic magnetic reconnection.
Resistive Magnetohydrodynamic Simulations of Relativistic Magnetic Reconnection
Zenitani, Seiji; Klimas, Alex
2010-01-01
Resistive relativistic magnetohydrodynamic (RRMHD) simulations are applied to investigate the system evolution of relativistic magnetic reconnection. A time-split Harten--Lan--van Leer (HLL) method is employed. Under a localized resistivity, the system exhibits a fast reconnection jet with an Alfv\\'{e}nic Lorentz factor inside a narrow Petschek-type exhaust. Various shock structures are resolved in and around the plasmoid such as the post-plasmoid vertical shocks and the "diamond--chain" structure due to multiple shock reflections. Under a uniform resistivity, Sweet--Parker-type reconnection slowly evolves. Under a current-dependent resistivity, plasmoids are repeatedly formed in an elongated current sheet. It is concluded that the resistivity model is of critical importance for RRMHD modeling of relativistic magnetic reconnection.
Relativistic magnetohydrodynamics
Hernandez, Juan; Kovtun, Pavel
2017-05-01
We present the equations of relativistic hydrodynamics coupled to dynamical electromagnetic fields, including the effects of polarization, electric fields, and the derivative expansion. We enumerate the transport coefficients at leading order in derivatives, including electrical conductivities, viscosities, and thermodynamic coefficients. We find the constraints on transport coefficients due to the positivity of entropy production, and derive the corresponding Kubo formulas. For the neutral state in a magnetic field, small fluctuations include Alfvén waves, magnetosonic waves, and the dissipative modes. For the state with a non-zero dynamical charge density in a magnetic field, plasma oscillations gap out all propagating modes, except for Alfvén-like waves with a quadratic dispersion relation. We relate the transport coefficients in the "conventional" magnetohydrodynamics (formulated using Maxwell's equations in matter) to those in the "dual" version of magnetohydrodynamics (formulated using the conserved magnetic flux).
General relativistic magnetohydrodynamic simulations of collapsars: Rotating black hole cases
Mizuno, Y. [Kyoto Univ., Kyoto (Japan). Department of Astronomy; Yamada, S. [Waseda Univ., Tokyo (Japan). Science and Engineering; Koide, S. [Toyama Univ., Toyama (Japan). Department of Engineering; Shibata, K. [Kyoto Univ., Kyoto (Japan). Kwasan and Hida Observatory
2005-06-01
We have performed 2.5-dimensional general relativistic magnetohydrodynamic (MHD) simulations of coIIapsars including a rotating black hole. InitiaIIy, we assume that the care collapse has failed in this star. A rotating black hole of a few solar masses is inserted by hand into the calculation. The simulation results show the formation of a diskIike structure and the generation of a jetIike outflow near the central black hole. The jetIike outflow propagates and accelerated mainly by the magnetic field. The total jet velocity is {approx} 0.3c. When the rotation of the black hole is faster, the magnetic field is twisted strongly owing to the frame-dragging effect. The magnetic energy stored by the twisting magnetic field is directly converted to kinetic energy of the jet rather than propagating as an Alfven wave. Thus, as the rotation of the black hole becomes faster, the poloidal velocity of the jet becomes faster.
Fragile, P Chris
2008-01-01
(Abridged) We present one of the first physically-motivated two-dimensional general relativistic magnetohydrodynamic (GRMHD) numerical simulations of a radiatively-cooled black-hole accretion disk. The fiducial simulation combines a total-energy-conserving formulation with a radiative cooling function, which includes bremsstrahlung, synchrotron, and Compton effects. By comparison with other simulations we show that in optically thin advection-dominated accretion flows, radiative cooling can significantly affect the structure, without necessarily leading to an optically thick, geometrically thin accretion disk. We further compare the results of our radiatively-cooled simulation to the predictions of a previously developed analytic model for such flows. For the very low stress parameter and accretion rate found in our simulated disk, we closely match a state called the "transition" solution between an outer advection-dominated accretion flow and what would be a magnetically-dominated accretion flow (MDAF) in th...
A General Relativistic Magnetohydrodynamics Simulation of Jet Formation with a State Transition
Nishikawa, K. I.; Richardson, G.; Koide, S.; Shibata, K.; Kudoh, T.; Hardee, P.; Fushman, G. J.
2004-01-01
We have performed the first fully three-dimensional general relativistic magnetohydrodynamic (GRMHD) simulation of jet formation from a thin accretion disk around a Schwarzschild black hole with a free-falling corona. The initial simulation results show that a bipolar jet (velocity sim 0.3c) is created as shown by previous two-dimensional axisymmetric simulations with mirror symmetry at the equator. The 3-D simulation ran over one hundred light-crossing time units which is considerably longer than the previous simulations. We show that the jet is initially formed as predicted due in part to magnetic pressure from the twisting the initially uniform magnetic field and from gas pressure associated with shock formation. At later times, the accretion disk becomes thick and the jet fades resulting in a wind that is ejected from the surface of the thickened (torus-like) disk. It should be noted that no streaming matter from a donor is included at the outer boundary in the simulation (an isolated black hole not binary black hole). The wind flows outwards with a wider angle than the initial jet. The widening of the jet is consistent with the outward moving shock wave. This evolution of jet-disk coupling suggests that the low/hard state of the jet system may switch to the high/soft state with a wind, as the accretion rate diminishes.
Shiokawa, Hotaka; Dolence, Joshua C.; Gammie, Charles F. [Department of Astronomy, University of Illinois at Urbana-Champaign, 1002 West Green Street, Urbana, IL 61801 (United States); Noble, Scott C. [Center for Computational Relativity and Gravitation, School of Mathematical Sciences, Rochester Institute of Technology, Rochester, NY 14623 (United States)
2012-01-10
Global, general relativistic magnetohydrodynamic (GRMHD) simulations of non-radiative, magnetized disks are widely used to model accreting black holes. We have performed a convergence study of GRMHD models computed with HARM3D. The models span a factor of four in linear resolution, from 96 Multiplication-Sign 96 Multiplication-Sign 64 to 384 Multiplication-Sign 384 Multiplication-Sign 256. We consider three diagnostics of convergence: (1) dimensionless shell-averaged quantities such as plasma {beta}; (2) the azimuthal correlation length of fluid variables; and (3) synthetic spectra of the source including synchrotron emission, absorption, and Compton scattering. Shell-averaged temperature is, except for the lowest resolution run, nearly independent of resolution; shell-averaged plasma {beta} decreases steadily with resolution but shows signs of convergence. The azimuthal correlation lengths of density, internal energy, and temperature decrease steadily with resolution but show signs of convergence. In contrast, the azimuthal correlation length of magnetic field decreases nearly linearly with grid size. We argue by analogy with local models, however, that convergence should be achieved with another factor of two in resolution. Synthetic spectra are, except for the lowest resolution run, nearly independent of resolution. The convergence behavior is consistent with that of higher physical resolution local model ({sup s}hearing box{sup )} calculations and with the recent non-relativistic global convergence studies of Hawley et al.
Penna, Robert F; Sadowski, Aleksander
2013-01-01
Recently it has been observed that the scaling of jet power with black hole spin in galactic X-ray binaries is consistent with the predictions of the Blandford-Znajek (BZ) jet model. These observations motivate us to revisit the BZ model using general relativistic magnetohydrodynamic simulations of magnetized jets from accreting (h/r ~ 0.3), spinning (0 < a_* < 0.98) black holes. We have three main results. First, we quantify the discrepancies between the BZ jet power and our simulations: assuming maximum efficiency and uniform fields on the horizon leads to a ~10% overestimate of jet power, while ignoring the accretion disk leads to a further ~50% overestimate. Simply reducing the standard BZ jet power prediction by 60% gives a good fit to our simulation data. Our second result is to show that the membrane formulation of the BZ model correctly describes the physics underlying simulated jets: torques, dissipation, and electromagnetic fields on the horizon. This provides intuitive yet rigorous pictures f...
Relativistic magnetohydrodynamics in one dimension.
Lyutikov, Maxim; Hadden, Samuel
2012-02-01
We derive a number of solutions for one-dimensional dynamics of relativistic magnetized plasma that can be used as benchmark estimates in relativistic hydrodynamic and magnetohydrodynamic numerical codes. First, we analyze the properties of simple waves of fast modes propagating orthogonally to the magnetic field in relativistically hot plasma. The magnetic and kinetic pressures obey different equations of state, so that the system behaves as a mixture of gases with different polytropic indices. We find the self-similar solutions for the expansion of hot strongly magnetized plasma into vacuum. Second, we derive linear hodograph and Darboux equations for the relativistic Khalatnikov potential, which describe arbitrary one-dimensional isentropic relativistic motion of cold magnetized plasma and find their general and particular solutions. The obtained hodograph and Darboux equations are very powerful: A system of highly nonlinear, relativistic, time-dependent equations describing arbitrary (not necessarily self-similar) dynamics of highly magnetized plasma reduces to a single linear differential equation.
Endrizzi, A.; Ciolfi, R.; Giacomazzo, B.; Kastaun, W.; Kawamura, T.
2016-08-01
We present new results of fully general relativistic magnetohydrodynamic simulations of binary neutron star (BNS) mergers performed with the Whisky code. All the models use a piecewise polytropic approximation of the APR4 equation of state for cold matter, together with a ‘hybrid’ part to incorporate thermal effects during the evolution. We consider both equal and unequal-mass models, with total masses such that either a supramassive NS or a black hole is formed after merger. Each model is evolved with and without a magnetic field initially confined to the stellar interior. We present the different gravitational wave (GW) signals as well as a detailed description of the matter dynamics (magnetic field evolution, ejected mass, post-merger remnant/disk properties). Our simulations provide new insights into BNS mergers, the associated GW emission and the possible connection with the engine of short gamma-ray bursts (both in the ‘standard’ and in the ‘time-reversal’ scenarios) and other electromagnetic counterparts.
Endrizzi, Andrea; Giacomazzo, Bruno; Kastaun, Wolfgang; Kawamura, Takumu
2016-01-01
We present new results of fully general relativistic magnetohydrodynamic (GRMHD) simulations of binary neutron star (BNS) mergers performed with the Whisky code. All the models use a piecewise polytropic approximation of the APR4 equation of state (EOS) for cold matter, together with a "hybrid" part to incorporate thermal effects during the evolution. We consider both equal and unequal-mass models, with total masses such that either a supramassive NS or a black hole (BH) is formed after merger. Each model is evolved with and without a magnetic field initially confined to the stellar interior. We present the different gravitational wave (GW) signals as well as a detailed description of the matter dynamics (magnetic field evolution, ejected mass, post-merger remnant/disk properties). Our simulations provide new insights into BNS mergers, the associated GW emission and the possible connection with the engine of short gamma-ray bursts (both in the "standard" and in the "time-reversal" scenarios) and other electro...
Zhang, Haocheng; Li, Hui; Guo, Fan; Taylor, Greg
2017-02-01
Kink instabilities are likely to occur in the current-carrying magnetized plasma jets. Recent observations of the blazar radiation and polarization signatures suggest that the blazar emission region may be considerably magnetized. While the kink instability has been studied with first-principle magnetohydrodynamic (MHD) simulations, the corresponding time-dependent radiation and polarization signatures have not been investigated. In this paper, we perform comprehensive polarization-dependent radiation modeling of the kink instability in the blazar emission region based on relativistic MHD (RMHD) simulations. We find that the kink instability may give rise to strong flares with polarization angle (PA) swings or weak flares with polarization fluctuations, depending on the initial magnetic topology and magnetization. These findings are consistent with observations. Compared with the shock model, the kink model generates polarization signatures that are in better agreement with the general polarization observations. Therefore, we suggest that kink instabilities may widely exist in the jet environment and provide an efficient way to convert the magnetic energy and produce multiwavelength flares and polarization variations.
Matsumoto, Jin; Masada, Youhei; Asano, Eiji; Shibata, Kazunari
2011-06-01
The nonlinear dynamics of the outflow driven by magnetic explosion on the surface of compact object is investigated through special relativistic magnetohydrodynamic simulations. We adopt, as an initial equilibrium state, a spherical stellar object embedded in the hydrostatic plasma which has a density ρ(r) ~ r-α and is threaded by a dipole magnetic field. The injection of magnetic energy at the surface of compact star breaks the dynamical equilibrium and triggers two-component outflow. At the early evolutionary stage, the magnetic pressure increases rapidly in time around the stellar surface, initiating a magnetically driven outflow. Then it excites a strong forward shock, shock driven outflow. The expansion velocity of the magnetically driven outflow is characterized by the Alfvén velocity on the stellar surface, and follows a simple scaling relation υmag ~ υA1/2. When the initial density profile declines steeply with radius, the strong shock is accelerated self-similarly to relativistic velocity ahead of the magnetically driven component. We find that the evolution of the strong forward shock can be described by a self-similar relation Γsh ~ rsh, where Γsh is the Lorentz factor of the plasma measured at the shock surface rsh. It should be stressed that the pure hydrodynamic process is responsible for the acceleration of the shock driven outflow. Our two-component outflow model, which is the natural outcome of the magnetic explosion, would deepen the understanding of the magnetic active phenomena on various magnetized stellar objects.
McKinney, Jonathan C.; Tchekhovskoy, Alexander; Blandford, Roger D.
2012-04-26
Black hole (BH) accretion flows and jets are qualitatively affected by the presence of ordered magnetic fields. We study fully three-dimensional global general relativistic magnetohydrodynamic (MHD) simulations of radially extended and thick (height H to cylindrical radius R ratio of |H/R| {approx} 0.2-1) accretion flows around BHs with various dimensionless spins (a/M, with BH mass M) and with initially toroidally-dominated ({phi}-directed) and poloidally-dominated (R-z directed) magnetic fields. Firstly, for toroidal field models and BHs with high enough |a/M|, coherent large-scale (i.e. >> H) dipolar poloidal magnetic flux patches emerge, thread the BH, and generate transient relativistic jets. Secondly, for poloidal field models, poloidal magnetic flux readily accretes through the disk from large radii and builds-up to a natural saturation point near the BH. While models with |H/R| {approx} 1 and |a/M| {le} 0.5 do not launch jets due to quenching by mass infall, for sufficiently high |a/M| or low |H/R| the polar magnetic field compresses the inflow into a geometrically thin highly non-axisymmetric 'magnetically choked accretion flow' (MCAF) within which the standard linear magneto-rotational instability is suppressed. The condition of a highly-magnetized state over most of the horizon is optimal for the Blandford-Znajek mechanism that generates persistent relativistic jets with and 100% efficiency for |a/M| {approx}> 0.9. A magnetic Rayleigh-Taylor and Kelvin-Helmholtz unstable magnetospheric interface forms between the compressed inflow and bulging jet magnetosphere, which drives a new jet-disk oscillation (JDO) type of quasi-periodic oscillation (QPO) mechanism. The high-frequency QPO has spherical harmonic |m| = 1 mode period of {tau} {approx} 70GM/c{sup 3} for a/M {approx} 0.9 with coherence quality factors Q {approx}> 10. Overall, our models are qualitatively distinct from most prior MHD simulations (typically, |H/R| << 1 and poloidal flux is
Magnetohydrodynamics of Chiral Relativistic Fluids
Boyarsky, Alexey; Ruchayskiy, Oleg
2015-01-01
We study the dynamics of a plasma of charged relativistic fermions at very high temperature $T\\gg m$, where $m$ is the fermion mass, coupled to the electromagnetic field. In particular, we derive a magneto-hydrodynamical description of the evolution of such a plasma. We show that, as compared to conventional MHD for a plasma of non-relativistic particles, the hydrodynamical description of the relativistic plasma involves new degrees of freedom described by a pseudo-scalar field originating in a local asymmetry in the densities of left-handed and right-handed fermions. This field can be interpreted as an effective axion field. Taking into account the chiral anomaly we present dynamical equations for the evolution of this field, as well as of other fields appearing in the MHD description of the plasma. Due to its non-linear coupling to helical magnetic fields, the axion field significantly affects the dynamics of a magnetized plasma and can give rise to a novel type of inverse cascade.
Matsumoto, Jin; Masada, Youhei; Asano, Eiji; Shibata, Kazunari
2011-05-01
The nonlinear dynamics of outflows driven by magnetic explosion on the surface of a compact star is investigated through special relativistic magnetohydrodynamic simulations. We adopt, as the initial equilibrium state, a spherical stellar object embedded in hydrostatic plasma which has a density ρ(r) vprop r -α and is threaded by a dipole magnetic field. The injection of magnetic energy at the surface of a compact star breaks the equilibrium and triggers a two-component outflow. At the early evolutionary stage, the magnetic pressure increases rapidly around the stellar surface, initiating a magnetically driven outflow. A strong forward shock driven outflow is then excited. The expansion velocity of the magnetically driven outflow is characterized by the Alfvén velocity on the stellar surface and follows a simple scaling relation v mag vprop v A 1/2. When the initial density profile declines steeply with radius, the strong shock is accelerated self-similarly to relativistic velocity ahead of the magnetically driven component. We find that it evolves according to a self-similar relation Γsh vprop r sh, where Γsh is the Lorentz factor of the plasma measured at the shock surface r sh. A purely hydrodynamic process would be responsible for the acceleration mechanism of the shock driven outflow. Our two-component outflow model, which is the natural outcome of the magnetic explosion, can provide a better understanding of the magnetic active phenomena on various magnetized compact stars.
A Magnetohydrodynamic Boost for Relativistic Jets
Mizuno, Yosuke; Hardee, Philip; Hartmann, Dieter H.; Nishikawa, Ken-Ichi; Zhang, Bing
2007-01-01
We performed relativistic magnetohydrodynamic simulations of the hydrodynamic boosting mechanism for relativistic jets explored by Aloy & Rezzolla (2006) using the RAISHIN code. Simulation results show that the presence of a magnetic field changes the properties of the shock interface between the tenuous, overpressured jet (V^z j) flowing tangentially to a dense external medium. We find that magnetic fields can lead to more efficient acceleration of the jet, in comparison to the pure-hydrodynamic case. A "poloidal" magnetic field (B^z), tangent to the interface and parallel to the jet flow, produces both a stronger outward moving shock and a stronger inward moving rarefaction wave. This leads to a large velocity component normal to the interface in addition to acceleration tangent to the interface, and the jet is thus accelerated to larger Lorentz factors than those obtained in the pure-hydrodynamic case. Likewise, a strong "toroidal" magnetic field (B^y), tangent to the interface but perpendicular to the jet flow, also leads to stronger acceleration tangent to the shock interface relative to the pure-hydrodynamic case. Thus. the presence and relative orientation of a magnetic field in relativistic jets can significant modify the hydrodynamic boost mechanism studied by Aloy & Rezzolla (2006).
Mizuno, Yosuke; Lyubarsky, Yuri; ishikawa, Ken-Ichi; Hardee, Philip E.
2010-01-01
We have investigated the development of current-driven (CD) kink instability through three-dimensional relativistic MHD simulations. A static force-free equilibrium helical magnetic configuration is considered in order to study the influence of the initial configuration on the linear and nonlinear evolution of the instability. We found that the initial configuration is strongly distorted but not disrupted by the kink instability. The instability develops as predicted by linear theory. In the non-linear regime the kink amplitude continues to increase up to the terminal simulation time, albeit at different rates, for all but one simulation. The growth rate and nonlinear evolution of the CD kink instability depends moderately on the density profile and strongly on the magnetic pitch profile. The growth rate of the kink mode is reduced in the linear regime by an increase in the magnetic pitch with radius and the non-linear regime is reached at a later time than for constant helical pitch. On the other hand, the growth rate of the kink mode is increased in the linear regime by a decrease in the magnetic pitch with radius and reaches the non-linear regime sooner than the case with constant magnetic pitch. Kink amplitude growth in the non-linear regime for decreasing magnetic pitch leads to a slender helically twisted column wrapped by magnetic field. On the other hand, kink amplitude growth in the non-linear regime nearly ceases for increasing magnetic pitch.
Lattice Boltzmann model for resistive relativistic magnetohydrodynamics
Mohseni, F; Succi, S; Herrmann, H J
2015-01-01
In this paper, we develop a lattice Boltzmann model for relativistic magnetohydrodynamics (MHD). Even though the model is derived for resistive MHD, it is shown that it is numerically robust even in the high conductivity (ideal MHD) limit. In order to validate the numerical method, test simulations are carried out for both ideal and resistive limits, namely the propagation of Alfv\\'en waves in the ideal MHD and the evolution of current sheets in the resistive regime, where very good agreement is observed comparing to the analytical results. Additionally, two-dimensional magnetic reconnection driven by Kelvin-Helmholtz instability is studied and the effects of different parameters on the reconnection rate are investigated. It is shown that the density ratio has negligible effect on the magnetic reconnection rate, while an increase in shear velocity decreases the reconnection rate. Additionally, it is found that the reconnection rate is proportional to $\\sigma^{-\\frac{1}{2}}$, $\\sigma$ being the conductivity, w...
Generalized magnetofluid connections in relativistic magnetohydrodynamics.
Asenjo, Felipe A; Comisso, Luca
2015-03-20
The concept of magnetic connections is extended to nonideal relativistic magnetohydrodynamical plasmas. Adopting a general set of equations for relativistic magnetohydrodynamics including thermal-inertial, thermal electromotive, Hall, and current-inertia effects, we derive a new covariant connection equation showing the existence of generalized magnetofluid connections that are preserved during the dissipationless plasma dynamics. These connections are intimately linked to a general antisymmetric tensor that unifies the electromagnetic and fluid fields, allowing the extension of the magnetic connection notion to a much broader concept.
Takahashi, Hiroyuki R; Kawashima, Tomohisa; Sekiguchi, Yuichiro
2016-01-01
Using three-dimensional general relativistic radiation magnetohydrodynamics simulations of accretion flows around stellar mass black holes, we report that the relatively cold disk ($\\gtrsim 10^{7}$K) is truncated near the black hole. Hot and less-dense regions, of which the gas temperature is $ \\gtrsim 10^9$K and more than ten times higher than the radiation temperature (overheated regions), appear within the truncation radius. The overheated regions also appear above as well as below the disk, and sandwich the cold disk, leading to the effective Compton upscattering. The truncation radius is $\\sim 30 r_{\\rm g}$ for $\\dot{M} \\sim L_{\\rm Edd}/c^2$, where $r_{\\rm g}, \\dot M, L_\\mathrm{Edd}, c$ are the gravitational radius, mass accretion rate, Eddington luminosity, and light speed. Our results are consistent with observations of very high state, whereby the truncated disk is thought to be embedded in the hot rarefied regions. The truncation radius shifts inward to $\\sim 10 r_{\\rm g}$ with increasing mass accret...
COUNTER-ROTATION IN RELATIVISTIC MAGNETOHYDRODYNAMIC JETS
Cayatte, V.; Sauty, C. [Laboratoire Univers et Théories, Observatoire de Paris, UMR 8102 du CNRS, Université Paris Diderot, F-92190 Meudon (France); Vlahakis, N.; Tsinganos, K. [Department of Astrophysics, Astronomy and Mechanics, Faculty of Physics, University of Athens, 15784 Zografos, Athens (Greece); Matsakos, T. [Department of Astronomy and Astrophysics, The University of Chicago, Chicago, IL 60637 (United States); Lima, J. J. G., E-mail: veronique.cayatte@obspm.fr [Centro de Astrofísica, Universidade do Porto, Rua das Estrelas, 4150-762 Porto (Portugal)
2014-06-10
Young stellar object observations suggest that some jets rotate in the opposite direction with respect to their disk. In a recent study, Sauty et al. showed that this does not contradict the magnetocentrifugal mechanism that is believed to launch such outflows. Motion signatures that are transverse to the jet axis, in two opposite directions, have recently been measured in M87. One possible interpretation of this motion is that of counter-rotating knots. Here, we extend our previous analytical derivation of counter-rotation to relativistic jets, demonstrating that counter-rotation can indeed take place under rather general conditions. We show that both the magnetic field and a non-negligible enthalpy are necessary at the origin of counter-rotating outflows, and that the effect is associated with a transfer of energy flux from the matter to the electromagnetic field. This can be realized in three cases: if a decreasing enthalpy causes an increase of the Poynting flux, if the flow decelerates, or if strong gradients of the magnetic field are present. An illustration of the involved mechanism is given by an example of a relativistic magnetohydrodynamic jet simulation.
Lattice Boltzmann model for resistive relativistic magnetohydrodynamics.
Mohseni, F; Mendoza, M; Succi, S; Herrmann, H J
2015-08-01
In this paper, we develop a lattice Boltzmann model for relativistic magnetohydrodynamics (MHD). Even though the model is derived for resistive MHD, it is shown that it is numerically robust even in the high conductivity (ideal MHD) limit. In order to validate the numerical method, test simulations are carried out for both ideal and resistive limits, namely the propagation of Alfvén waves in the ideal MHD and the evolution of current sheets in the resistive regime, where very good agreement is observed comparing to the analytical results. Additionally, two-dimensional magnetic reconnection driven by Kelvin-Helmholtz instability is studied and the effects of different parameters on the reconnection rate are investigated. It is shown that the density ratio has a negligible effect on the magnetic reconnection rate, while an increase in shear velocity decreases the reconnection rate. Additionally, it is found that the reconnection rate is proportional to σ-1/2, σ being the conductivity, which is in agreement with the scaling law of the Sweet-Parker model. Finally, the numerical model is used to study the magnetic reconnection in a stellar flare. Three-dimensional simulation suggests that the reconnection between the background and flux rope magnetic lines in a stellar flare can take place as a result of a shear velocity in the photosphere.
On the convexity of Relativistic Ideal Magnetohydrodynamics
Ibáñez, José-María; Aloy, Miguel-Ángel; Martí, José-María; Miralles, Juan-Antonio
2015-01-01
We analyze the influence of the magnetic field in the convexity properties of the relativistic magnetohydrodynamics system of equations. To this purpose we use the approach of Lax, based on the analysis of the linearly degenerate/genuinely non-linear nature of the characteristic fields. Degenerate and non-degenerate states are discussed separately and the non-relativistic, unmagnetized limits are properly recovered. The characteristic fields corresponding to the material and Alfv\\'en waves are linearly degenerate and, then, not affected by the convexity issue. The analysis of the characteristic fields associated with the magnetosonic waves reveals, however, a dependence of the convexity condition on the magnetic field. The result is expressed in the form of a generalized fundamental derivative written as the sum of two terms. The first one is the generalized fundamental derivative in the case of purely hydrodynamical (relativistic) flow. The second one contains the effects of the magnetic field. The analysis ...
McKinney, Jonathan C; Sadowski, Aleksander; Narayan, Ramesh
2013-01-01
Black hole (BH) accretion flows and jets are dynamic hot relativistic magnetized plasma flows whose radiative opacity can significantly affect flow structure and behavior. We describe a numerical scheme, tests, and an astrophysically relevant application using the M1 radiation closure within a new three-dimensional (3D) general relativistic (GR) radiation (R) magnetohydrodynamics (MHD) massively parallel code called HARMRAD. Our 3D GRRMHD simulation of super-Eddington accretion (about $20$ times Eddington) onto a rapidly rotating BH (dimensionless spin $j=0.9375$) shows sustained non-axisymmemtric disk turbulence, a persistent electromagnetic jet driven by the Blandford-Znajek effect, and a total radiative output consistently near the Eddington rate. The total accretion efficiency is of order $20\\%$, the large-scale electromagnetic jet efficiency is of order $10\\%$, and the total radiative efficiency that reaches large distances remains low at only order $1\\%$. However, the radiation jet and the electromagnet...
Efficient Acceleration of Relativistic Magnetohydrodynamic Jets
Toma, Kenji
2013-01-01
Relativistic jets in active galactic nuclei, galactic microquasars, and gamma-ray bursts are widely considered to be magnetohydrodynamically driven by black hole accretion systems, although conversion mechanism from Poynting into particle kinetic energy flux is still open. Recent detailed numerical and analytical studies of global structures of steady, axisymmetric magnetohydrodynamic (MHD) flows with specific boundary conditions have not reproduced as rapid an energy conversion as required by observations. In order to find more suitable boundary conditions, we focus on the flow along a poloidal magnetic field line just inside the external boundary, without treating transfield force balance in detail. We find some examples of the poloidal field structure and corresponding external pressure profile for an efficient and rapid energy conversion as required by observations, and that the rapid acceleration requires a rapid decrease of the external pressure above the accretion disk. We also clarify the differences ...
Formation of relativistic jets. Magnetohydrodynamics and synchrotron radiation
Porth, Oliver Joachim Georg
2011-11-09
In this thesis, the formation of relativistic jets is investigated by means of special relativistic magnetohydrodynamic simulations and synchrotron radiative transfer. Our results show that the magnetohydrodynamic jet self-collimation paradigm can also be applied to the relativistic case. In the first part, jets launched from rotating hot accretion disk coronae are explored, leading to well collimated, but only mildly relativistic flows. Beyond the light-cylinder, the electric charge separation force balances the classical trans-field Lorentz force almost entirely, resulting in a decreased efficiency of acceleration and collimation in comparison to non-relativistic disk winds. In the second part, we examine Poynting dominated flows of various electric current distributions. By following the outflow for over 3000 Schwarzschild radii, highly relativistic jets of Lorentz factor Γ>or similar 8 and half-opening angles below 1 are obtained, providing dynamical models for the parsec scale jets of active galactic nuclei. Applying the magnetohydrodynamic structure of the quasi-stationary simulation models, we solve the relativistically beamed synchrotron radiation transport. This yields synthetic radiation maps and polarization patterns that can be used to confront high resolution radio and (sub-) mm observations of nearby active galactic nuclei. Relativistic motion together with the helical magnetic fields of the jet formation site imprint a clear signature on the observed polarization and Faraday rotation. In particular, asymmetries in the polarization direction across the jet can disclose the handedness of the magnetic helix and thus the spin direction of the central engine. Finally, we show first results from fully three-dimensional, high resolution adaptive mesh refinement simulations of jet formation from a rotating magnetosphere and examine the jet stability. Relativistic field-line rotation leads to an electric charge separation force that opposes the magnetic
Anomalous magnetohydrodynamics in the extreme relativistic domain
Giovannini, Massimo
2016-01-01
The evolution equations of anomalous magnetohydrodynamics are derived in the extreme relativistic regime and contrasted with the treatment of hydromagnetic nonlinearities pioneered by Lichnerowicz in the absence of anomalous currents. In particular we explore the situation where the conventional vector currents are complemented by the axial-vector currents arising either from the pseudo Nambu-Goldstone bosons of a spontaneously broken symmetry or because of finite fermionic density effects. After expanding the generally covariant equations in inverse powers of the conductivity, the relativistic analog of the magnetic diffusivity equation is derived in the presence of vortical and magnetic currents. While the anomalous contributions are generally suppressed by the diffusivity, they are shown to disappear in the perfectly conducting limit. When the flow is irrotational, boost-invariant and with vanishing four-acceleration the corresponding evolution equations are explicitly integrated so that the various physic...
Rarefaction wave in relativistic steady magnetohydrodynamic flows
Sapountzis, Konstantinos, E-mail: ksapountzis@phys.uoa.gr; Vlahakis, Nektarios, E-mail: vlahakis@phys.uoa.gr [Faculty of Physics, University of Athens, 15784 Zografos, Athens (Greece)
2014-07-15
We construct and analyze a model of the relativistic steady-state magnetohydrodynamic rarefaction that is induced when a planar symmetric flow (with one ignorable Cartesian coordinate) propagates under a steep drop of the external pressure profile. Using the method of self-similarity, we derive a system of ordinary differential equations that describe the flow dynamics. In the specific limit of an initially homogeneous flow, we also provide analytical results and accurate scaling laws. We consider that limit as a generalization of the previous Newtonian and hydrodynamic solutions already present in the literature. The model includes magnetic field and bulk flow speed having all components, whose role is explored with a parametric study.
Linear wave propagation in relativistic magnetohydrodynamics
Keppens, R
2008-01-01
The properties of linear Alfv\\'en, slow, and fast magnetoacoustic waves for uniform plasmas in relativistic magnetohydrodynamics (MHD) are discussed, augmenting the well-known expressions for their phase speeds with knowledge on the group speed. A 3+1 formalism is purposely adopted to make direct comparison with the Newtonian MHD limits easier and to stress the graphical representation of their anisotropic linear wave properties using the phase and group speed diagrams. By drawing these for both the fluid rest frame and for a laboratory Lorentzian frame which sees the plasma move with a three-velocity having an arbitrary orientation with respect to the magnetic field, a graphical view of the relativistic aberration effects is obtained for all three MHD wave families. Moreover, it is confirmed that the classical Huygens construction relates the phase and group speed diagram in the usual way, even for the lab frame viewpoint. Since the group speed diagrams correspond to exact solutions for initial conditions co...
Imbalanced Relativistic Force-Free Magnetohydrodynamic Turbulence
Cho, Jungyeon
2013-01-01
When magnetic energy density is much larger than that of matter, as in pulsar/black hole magnetospheres, the medium becomes force-free and we need relativity to describe it. As in non-relativistic magnetohydrodynamics (MHD), Alfv\\'enic MHD turbulence in the relativistic limit can be described by interactions of counter-traveling wave packets. In this paper we numerically study strong imbalanced MHD turbulence in such environments. Here, imbalanced turbulence means the waves traveling in one direction (dominant waves) have higher amplitudes than the opposite-traveling waves (sub-dominant waves). We find that (1) spectrum of the dominant waves is steeper than that of sub-dominant waves, (2) the anisotropy of the dominant waves is weaker than that of sub-dominant waves, and (3) the dependence of the ratio of magnetic energy densities of dominant and sub-dominant waves on the ratio of energy injection rates is steeper than quadratic (i.e., \\$b_+^2/b_-^2 \\propto (\\epsilon_+/\\epsilon_-)^n \\$ with n>2). These result...
Parallel, grid-adaptive approaches for relativistic hydro and magnetohydrodynamics
Keppens, R.; Meliani, Z.; van Marle, A. J.; Delmont, P.; Vlasis, A.; van der Holst, B.
2012-01-01
Relativistic hydro and magnetohydrodynamics provide continuum fluid descriptions for gas and plasma dynamics throughout the visible universe. We present an overview of state-of-the-art modeling in special relativistic regimes, targeting strong shock-dominated flows with speeds approaching the speed
Acceleration and Collimation of Relativistic Magnetohydrodynamic Disk Winds
Porth, Oliver; Fendt, Christian
2010-02-01
We perform axisymmetric relativistic magnetohydrodynamic simulations to investigate the acceleration and collimation of jets and outflows from disks around compact objects. Newtonian gravity is added to the relativistic treatment in order to establish the physical boundary condition of an underlying accretion disk in centrifugal and pressure equilibrium. The fiducial disk surface (respectively a slow disk wind) is prescribed as boundary condition for the outflow. We apply this technique for the first time in the context of relativistic jets. The strength of this approach is that it allows us to run a parameter study in order to investigate how the accretion disk conditions govern the outflow formation. Substantial effort has been made to implement a current-free, numerical outflow boundary condition in order to avoid artificial collimation present in the standard outflow conditions. Our simulations using the PLUTO code run for 500 inner disk rotations and on a physical grid size of 100 × 200 inner disk radii. The simulations evolve from an initial state in hydrostatic equilibrium and an initially force-free magnetic field configuration. Two options for the initial field geometries are applied—an hourglass-shaped potential magnetic field and a split monopole field. Most of our parameter runs evolve into a steady state solution which can be further analyzed concerning the physical mechanism at work. In general, we obtain collimated beams of mildly relativistic speed with Lorentz factors up to 6 and mass-weighted half-opening angles of 3-7 deg. The split-monopole initial setup usually results in less collimated outflows. The light surface of the outflow magnetosphere tends to align vertically—implying three relativistically distinct regimes in the flow—an inner subrelativistic domain close to the jet axis, a (rather narrow) relativistic jet and a surrounding subrelativistic outflow launched from the outer disk surface—similar to the spine-sheath structure
Propagation of linear waves in relativistic anisotropic magnetohydrodynamics.
Gebretsadkan, W B; Kalra, G L
2002-11-01
Gedalin [Phys. Rev. E 47, 4354 (1993)] derived a dispersion relation for linear waves in relativistic anisotropic Magnetohydrodynamics (MHD). This dispersion relation is used to point out the regions where the relativistic anisotropic MHD leads to new results that cannot be obtained using usual collisional relativistic MHD. This is highlighted by plotting a Fresnal ray surface. Conditions for the onset of firehose and mirror instabilities are also indicated. Such a study can be applied to astrophysical features such as pulsar winds, propagation of cosmic rays, etc.
Numerical magneto-hydrodynamics for relativistic nuclear collisions
Inghirami, Gabriele; Beraudo, Andrea; Moghaddam, Mohsen Haddadi; Becattini, Francesco; Bleicher, Marcus
2016-01-01
We present an improved version of the ECHO-QGP numerical code, which self-consistently includes for the first time the effects of electromagnetic fields within the framework of relativistic magnetohydrodynamics (RMHD). We discuss results of its application in relativistic heavy-ion collisions in the limit of infinite electrical conductivity of the plasma. After reviewing the relevant covariant $3\\!+\\!1$ formalisms, we illustrate the implementation of the evolution equations in the code and show the results of several tests aimed at assessing the accuracy and robustness of the implementation. After providing some estimates of the magnetic fields arising in non-central high-energy nuclear collisions, we perform full RMHD simulations of the evolution of the Quark-Gluon Plasma in the presence of electromagnetic fields and discuss the results. In our ideal RMHD setup we find that the magnetic field developing in non-central collisions does not significantly modify the elliptic-flow of the final hadrons. However, s...
Numerical magneto-hydrodynamics for relativistic nuclear collisions
Inghirami, Gabriele; Del Zanna, Luca; Beraudo, Andrea; Moghaddam, Mohsen Haddadi; Becattini, Francesco; Bleicher, Marcus
2016-12-01
We present an improved version of the ECHO-QGP numerical code, which self-consistently includes for the first time the effects of electromagnetic fields within the framework of relativistic magneto-hydrodynamics (RMHD). We discuss results of its application in relativistic heavy-ion collisions in the limit of infinite electrical conductivity of the plasma. After reviewing the relevant covariant 3+1 formalisms, we illustrate the implementation of the evolution equations in the code and show the results of several tests aimed at assessing the accuracy and robustness of the implementation. After providing some estimates of the magnetic fields arising in non-central high-energy nuclear collisions, we perform full RMHD simulations of the evolution of the quark-gluon plasma in the presence of electromagnetic fields and discuss the results. In our ideal RMHD setup we find that the magnetic field developing in non-central collisions does not significantly modify the elliptic flow of the final hadrons. However, since there are uncertainties in the description of the pre-equilibrium phase and also in the properties of the medium, a more extensive survey of the possible initial conditions as well as the inclusion of dissipative effects are indeed necessary to validate this preliminary result.
Numerical magneto-hydrodynamics for relativistic nuclear collisions
Inghirami, Gabriele [Frankfurt Institute for Advanced Studies, Frankfurt am Main (Germany); Goethe-Universitaet, Institute for Theoretical Physics, Frankfurt am Main (Germany); GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Forschungszentrum Juelich, John von Neumann Institute for Computing, Juelich (Germany); Del Zanna, Luca [Universita di Firenze, Dipartimento di Fisica e Astronomia, Firenze (Italy); INAF - Osservatorio Astrofisico di Arcetri, Firenze (Italy); INFN - Sezione di Firenze, Firenze (Italy); Beraudo, Andrea [INFN - Sezione di Torino, Torino (Italy); Moghaddam, Mohsen Haddadi [INFN - Sezione di Torino, Torino (Italy); Hakim Sabzevari University, Department of Physics, P. O. Box 397, Sabzevar (Iran, Islamic Republic of); Becattini, Francesco [Universita di Firenze, Dipartimento di Fisica e Astronomia, Firenze (Italy); INFN - Sezione di Firenze, Firenze (Italy); Bleicher, Marcus [Frankfurt Institute for Advanced Studies, Frankfurt am Main (Germany); Goethe-Universitaet, Institute for Theoretical Physics, Frankfurt am Main (Germany); GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Forschungszentrum Juelich, John von Neumann Institute for Computing, Juelich (Germany)
2016-12-15
We present an improved version of the ECHO-QGP numerical code, which self-consistently includes for the first time the effects of electromagnetic fields within the framework of relativistic magneto-hydrodynamics (RMHD). We discuss results of its application in relativistic heavy-ion collisions in the limit of infinite electrical conductivity of the plasma. After reviewing the relevant covariant 3 + 1 formalisms, we illustrate the implementation of the evolution equations in the code and show the results of several tests aimed at assessing the accuracy and robustness of the implementation. After providing some estimates of the magnetic fields arising in non-central high-energy nuclear collisions, we perform full RMHD simulations of the evolution of the quark-gluon plasma in the presence of electromagnetic fields and discuss the results. In our ideal RMHD setup we find that the magnetic field developing in non-central collisions does not significantly modify the elliptic flow of the final hadrons. However, since there are uncertainties in the description of the pre-equilibrium phase and also in the properties of the medium, a more extensive survey of the possible initial conditions as well as the inclusion of dissipative effects are indeed necessary to validate this preliminary result. (orig.)
Mizuno, Yosuke; Nishikawa, Ken-Ichi; Hardee, Philip E
2010-01-01
We have investigated the relaxation of a hydrostatic hot plasma column containing toroidal magnetic field by the Current-Driven (CD) kink instability as a model of pulsar wind nebulae. In our simulations the CD kink instability is excited by a small initial velocity perturbation and develops turbulent structure inside the hot plasma column. We demonstrate that, as envisioned by Begelman, the hoop stress declines and the initial gas pressure excess near the axis decreases. The magnetization parameter \\sigma, the ratio of the Poynting to the kinetic energy flux, declines from an initial value of 0.3 to about 0.01 when the CD kink instability saturates. Our simulations demonstrate that axisymmetric models strongly overestimate the elongation of the pulsar wind nebulae. Therefore, the previous requirement for an extremely low pulsar wind magnetization can be abandoned. The observed structure of the pulsar wind nebulae do not contradict the natural assumption that the magnetic energy flux still remains a good frac...
Resistive relativistic magnetohydrodynamics from a charged multi-fluids perspective
Andersson, N
2012-01-01
We consider general relativistic magnetohydrodynamics from a charged multifluids point-of-view, taking a variational approach as our starting point. We develop the case of two charged components in detail, accounting for a phenomenological resistivity, providing specific examples for pair plasmas and proton-electron systems. We discuss both cold, low velocity, plasmas and hot systems where we account for a dynamical entropy component. The results for the cold case (which accord with recent work in the literature) provide a complete model for resistive relativistic magnetohydrodynamics, clarifying the assumptions that lead to various models that have been used in astrophysical applications. The analysis of the hot case is (as far as we are aware) novel, accounting for the relaxation times that are required to ensure causality and demonstrating the explicit coupling between fluxes of heat and charge.
Relativistic Radiation Magnetohydrodynamics in Dynamical Spacetimes: Numerical Methods and Tests
2008-01-01
Many systems of current interest in relativistic astrophysics require a knowledge of radiative transfer in a magnetized gas flowing in a strongly-curved, dynamical spacetime. Such systems include coalescing compact binaries containing neutron stars or white dwarfs, disks around merging black holes, core collapse supernovae, collapsars, and gamma-ray burst sources. To model these phenomena, all of which involve general relativity, radiation (photon and/or neutrino), and magnetohydrodynamics, w...
Fast reconnection in relativistic plasmas: the magnetohydrodynamics tearing instability revisited
Del Zanna, L; Landi, S; Bugli, M; Bucciantini, N
2016-01-01
Fast reconnection operating in magnetically dominated plasmas is often invoked in models for magnetar giant flares, for magnetic dissipation in pulsar winds, or to explain the gamma-ray flares observed in the Crab nebula, hence its investigation is of paramount importance in high-energy astrophysics. Here we study, by means of two dimensional numerical simulations, the linear phase and the subsequent nonlinear evolution of the tearing instability within the framework of relativistic resistive magnetohydrodynamics, as appropriate in situations where the Alfven velocity approaches the speed of light. It is found that the linear phase of the instability closely matches the analysis in classical MHD, where the growth rate scales with the Lundquist number S as S^-1/2, with the only exception of an enhanced inertial term due to the thermal and magnetic energy contributions. In addition, when thin current sheets of inverse aspect ratio scaling as S^-1/3 are considered, the so-called "ideal" tearing regime is retriev...
HARM A Numerical Scheme for General Relativistic Magnetohydrodynamics
Gammie, C F; Tóth, G; Gammie, Charles F.; Kinney, Jonathan C. Mc
2003-01-01
We describe a conservative, shock-capturing scheme for evolving the equations of general relativistic magnetohydrodynamics. The fluxes are calculated using the Harten, Lax, and van Leer scheme. A variant of constrained transport, proposed earlier by T\\'oth, is used to maintain a divergence free magnetic field. Only the covariant form of the metric in a coordinate basis is required to specify the geometry. We describe code performance on a full suite of test problems in both special and general relativity. On smooth flows we show that it converges at second order. We conclude by showing some results from the evolution of a magnetized torus near a rotating black hole.
Fast reconnection in relativistic plasmas: the magnetohydrodynamics tearing instability revisited
Del Zanna, L.; Papini, E.; Landi, S.; Bugli, M.; Bucciantini, N.
2016-08-01
Fast reconnection operating in magnetically dominated plasmas is often invoked in models for magnetar giant flares, for magnetic dissipation in pulsar winds, or to explain the gamma-ray flares observed in the Crab nebula; hence, its investigation is of paramount importance in high-energy astrophysics. Here we study, by means of two-dimensional numerical simulations, the linear phase and the subsequent non-linear evolution of the tearing instability within the framework of relativistic resistive magnetohydrodynamics (MHD), as appropriate in situations where the Alfvén velocity approaches the speed of light. It is found that the linear phase of the instability closely matches the analysis in classical MHD, where the growth rate scales with the Lundquist number S as S-1/2, with the only exception of an enhanced inertial term due to the thermal and magnetic energy contributions. In addition, when thin current sheets of inverse aspect ratio scaling as S-1/3 are considered, the so-called ideal tearing regime is retrieved, with modes growing independently of S and extremely fast, on only a few light crossing times of the sheet length. The overall growth of fluctuations is seen to solely depend on the value of the background Alfvén velocity. In the fully non-linear stage, we observe an inverse cascade towards the fundamental mode, with Petschek-type supersonic jets propagating at the external Alfvén speed from the X-point, and a fast reconnection rate at the predicted value {R}˜ (ln S)^{-1}.
General-Relativistic Resistive Magnetohydrodynamics in three dimensions: formulation and tests
Dionysopoulou, Kyriaki; Palenzuela, Carlos; Rezzolla, Luciano; Giacomazzo, Bruno
2013-01-01
We present a new numerical implementation of the general-relativistic resistive magnetohydrodynamics (MHD) equations within the Whisky code. The numerical method adopted exploits the properties of Implicit-Explicit Runge-Kutta numerical schemes to treat the stiff terms that appear in the equations for small electrical conductivities. Using tests in one, two, and three dimensions, we show that our implementation is robust and recovers the ideal-MHD limit in regimes of very high conductivity. Moreover, the results illustrate that the code is capable of describing physical setups in all ranges of conductivities. In addition to tests in flat spacetime, we report simulations of magnetized nonrotating relativistic stars, both in the Cowling approximation and in dynamical spacetimes. Finally, because of its astrophysical relevance and because it provides a severe testbed for general-relativistic codes with dynamical electromagnetic fields, we study the collapse of a nonrotating star to a black hole. We show that als...
WhiskyMHD: Numerical Code for General Relativistic Magnetohydrodynamics
Baiotti, Luca; Giacomazzo, Bruno; Hawke, Ian; et al.
2010-10-01
Whisky is a code to evolve the equations of general relativistic hydrodynamics (GRHD) and magnetohydrodynamics (GRMHD) in 3D Cartesian coordinates on a curved dynamical background. It was originally developed by and for members of the EU Network on Sources of Gravitational Radiation and is based on the Cactus Computational Toolkit. Whisky can also implement adaptive mesh refinement (AMR) if compiled together with Carpet. Whisky has grown from earlier codes such as GR3D and GRAstro_Hydro, but has been rewritten to take advantage of some of the latest research performed here in the EU. The motivation behind Whisky is to compute gravitational radiation waveforms for systems that involve matter. Examples would include the merger of a binary system containing a neutron star, which are expected to be reasonably common in the universe and expected to produce substantial amounts of radiation. Other possible sources are given in the projects list.
An introduction to relativistic magnetohydrodynamics I. The force-free approximation
Karas, Vladimír
2005-12-01
This lecture summarizes basic equations of relativistic magnetohydrodynamics (MHD). The aim of the lecture is to present important relations and approximations that have been often employed and found useful in the astrophysical context, namely, in situations when plasma motion is governed by magnetohydrodynamic and gravitational effects competing with each other near a black hole.
Takamoto, Makoto
2016-01-01
In this Letter, we report compressible mode effects on relativistic magnetohydrodynamic (RMHD) turbulence in Poynting-dominated plasmas using 3-dimensional numerical simulations. We decomposed fluctuations in the turbulence into 3 MHD modes (fast, slow, and Alfv\\'en) following the procedure mode decomposition in (Cho & Lazarian 2002), and analyzed their energy spectra and structure functions separately. We also analyzed the ratio of compressible mode to Alfv\\'en mode energy with respect to its Mach number. We found the ratio of compressible mode increases not only with the Alfv\\'en Mach number but with the background magnetization, which indicates a strong coupling between the fast and Alfv\\'en modes and appearance of a new regime of RMHD turbulence in Poynting-dominated plasmas where the fast and Alfv\\'en modes strongly couples and cannot be distinguished, different from the non-relativistic MHD case. This finding will affect particle acceleration efficiency obtained by assuming Alfv\\'enic critical balan...
General-relativistic resistive magnetohydrodynamics in three dimensions: Formulation and tests
Dionysopoulou, Kyriaki; Alic, Daniela; Palenzuela, Carlos; Rezzolla, Luciano; Giacomazzo, Bruno
2013-08-01
We present a new numerical implementation of the general-relativistic resistive magnetohydrodynamics (MHD) equations within the Whisky code. The numerical method adopted exploits the properties of implicit-explicit Runge-Kutta numerical schemes to treat the stiff terms that appear in the equations for large electrical conductivities. Using tests in one, two, and three dimensions, we show that our implementation is robust and recovers the ideal-MHD limit in regimes of very high conductivity. Moreover, the results illustrate that the code is capable of describing scenarios in a very wide range of conductivities. In addition to tests in flat spacetime, we report simulations of magnetized nonrotating relativistic stars, both in the Cowling approximation and in dynamical spacetimes. Finally, because of its astrophysical relevance and because it provides a severe tested for general-relativistic codes with dynamical electromagnetic fields, we study the collapse of a nonrotating star to a black hole. We show that also in this case our results on the quasinormal mode frequencies of the excited electromagnetic fields in the Schwarzschild background agree with the perturbative studies within 0.7% and 5.6% for the real and the imaginary part of the ℓ=1 mode eigenfrequency, respectively. Finally we provide an estimate of the electromagnetic efficiency of this process.
Simulating relativistic binaries with Whisky
Baiotti, L.
We report about our first tests and results in simulating the last phase of the coalescence and the merger of binary relativistic stars. The simulations were performed using our code Whisky and mesh refinement through the Carpet driver.
Polko, Peter; Markoff, Sera
2012-01-01
We present a new, approximate method for modelling the acceleration and collimation of relativistic jets in the presence of gravity. This method is self-similar throughout the computational domain where gravitational effects are negligible and, where significant, self-similar within a flux tube. These solutions are applicable to jets launched from a small region (e.g., near the inner edge of an accretion disk). As implied by earlier work, the flow can converge onto the rotation axis, potentially creating a collimation shock. In this first version of the method, we derive the gravitational contribution to the relativistic equations by analogy with non-relativistic flow. This approach captures the relativistic kinetic gravitational mass of the flowing plasma, but not that due to internal thermal and magnetic energies. A more sophisticated treatment, derived from the basic general relativistic magnetohydrodynamical equations, is currently being developed. Here we present an initial exploration of parameter space...
Kawazura, Yohei; Morrison, Philip J
2016-01-01
Two types of Eulerian action principles for relativistic extended magnetohydrodynamics (MHD) are formulated. With the first, the action is extremized under the constraints of density, entropy, and Lagrangian label conservation, which leads to a Clebsch representation for a generalized momentum and a generalized vector potential. The second action arises upon transformation to physical field variables, giving rise to a covariant bracket action principle, i.e., a variational principle in which constrained variations are generated by a degenerate Poisson bracket. Upon taking appropriate limits, the action principles lead to relativistic Hall MHD and well-known relativistic ideal MHD. For the first time, the Hamiltonian formulation of relativistic Hall MHD with electron thermal inertia (akin to [Comisso \\textit{et al.}, Phys. Rev. Lett. {\\bf 113}, 045001 (2014)] for the electron--positron plasma) is introduced. This thermal inertia effect allows for violation of the frozen-in magnetic flux condition in marked con...
Bjorken flow in one-dimensional relativistic magnetohydrodynamics with magnetization
Pu, Shi; Rezzolla, Luciano; Rischke, Dirk H
2016-01-01
We study the one-dimensional, longitudinally boost-invariant motion of an ideal fluid with infinite conductivity in the presence of a transverse magnetic field, i.e., in the ideal transverse magnetohydrodynamical limit. In an extension of our previous work [1], we consider the fluid to have a non-zero magnetization. First, we assume a constant magnetic susceptibility $\\chi_{m}$ and consider an ultrarelativistic ideal gas equation of state. For a paramagnetic fluid (i.e., with $\\chi_{m}>0$), the decay of the energy density slows down since the fluid gains energy from the magnetic field. For a diamagnetic fluid (i.e., with $\\chi_{m}<0$), the energy density decays faster because it feeds energy into the magnetic field. Furthermore, when the magnetic field is taken to be external and to decay in proper time $\\tau$ with a power law $\\sim\\tau^{-a}$, two distinct solutions can be found depending on the values of $a$ and $\\chi_m$. Finally, we also solve the ideal magnetohydrodynamical equations for one-dimensional...
Bjorken flow in one-dimensional relativistic magnetohydrodynamics with magnetization
Pu, Shi; Roy, Victor; Rezzolla, Luciano; Rischke, Dirk H.
2016-04-01
We study the one-dimensional, longitudinally boost-invariant motion of an ideal fluid with infinite conductivity in the presence of a transverse magnetic field, i.e., in the ideal transverse magnetohydrodynamical limit. In an extension of our previous work Roy et al., [Phys. Lett. B 750, 45 (2015)], we consider the fluid to have a nonzero magnetization. First, we assume a constant magnetic susceptibility χm and consider an ultrarelativistic ideal gas equation of state. For a paramagnetic fluid (i.e., with χm>0 ), the decay of the energy density slows down since the fluid gains energy from the magnetic field. For a diamagnetic fluid (i.e., with χmlaw ˜τ-a, two distinct solutions can be found depending on the values of a and χm. Finally, we also solve the ideal magnetohydrodynamical equations for one-dimensional Bjorken flow with a temperature-dependent magnetic susceptibility and a realistic equation of state given by lattice-QCD data. We find that the temperature and energy density decay more slowly because of the nonvanishing magnetization. For values of the magnetic field typical for heavy-ion collisions, this effect is, however, rather small. It is only for magnetic fields about an order of magnitude larger than expected for heavy-ion collisions that the system is substantially reheated and the lifetime of the quark phase might be extended.
Numerical Simulations of Driven Supersonic Relativistic MHD Turbulence
Zrake, Jonathan; 10.1063/1.3621748
2011-01-01
Models for GRB outflows invoke turbulence in relativistically hot magnetized fluids. In order to investigate these conditions we have performed high-resolution three-dimensional numerical simulations of relativistic magneto-hydrodynamical (RMHD) turbulence. We find that magnetic energy is amplified to several percent of the total energy density by turbulent twisting and folding of magnetic field lines. Values of epsilon_B near 1% are thus naturally expected. We study the dependence of saturated magnetic field energy fraction as a function of Mach number and relativistic temperature. We then present power spectra of the turbulent kinetic and magnetic energies. We also present solenoidal (curl-like) and dilatational (divergence-like) power spectra of kinetic energy. We propose that relativistic effects introduce novel couplings between these spectral components. The case we explore in most detail is for equal amounts of thermal and rest mass energy, corresponding to conditions after collisions of shells with re...
Magnetohydrodynamics simulations on graphics processing units
Wong, Hon-Cheng; Feng, Xueshang; Tang, Zesheng
2009-01-01
Magnetohydrodynamics (MHD) simulations based on the ideal MHD equations have become a powerful tool for modeling phenomena in a wide range of applications including laboratory, astrophysical, and space plasmas. In general, high-resolution methods for solving the ideal MHD equations are computationally expensive and Beowulf clusters or even supercomputers are often used to run the codes that implemented these methods. With the advent of the Compute Unified Device Architecture (CUDA), modern graphics processing units (GPUs) provide an alternative approach to parallel computing for scientific simulations. In this paper we present, to the authors' knowledge, the first implementation to accelerate computation of MHD simulations on GPUs. Numerical tests have been performed to validate the correctness of our GPU MHD code. Performance measurements show that our GPU-based implementation achieves speedups of 2 (1D problem with 2048 grids), 106 (2D problem with 1024^2 grids), and 43 (3D problem with 128^3 grids), respec...
Lattice kinetic simulation of nonisothermal magnetohydrodynamics.
Chatterjee, Dipankar; Amiroudine, Sakir
2010-06-01
In this paper, a lattice kinetic algorithm is presented to simulate nonisothermal magnetohydrodynamics in the low-Mach number incompressible limit. The flow and thermal fields are described by two separate distribution functions through respective scalar kinetic equations and the magnetic field is governed by a vector distribution function through a vector kinetic equation. The distribution functions are only coupled via the macroscopic density, momentum, magnetic field, and temperature computed at the lattice points. The novelty of the work is the computation of the thermal field in conjunction with the hydromagnetic fields in the lattice Boltzmann framework. A 9-bit two-dimensional (2D) lattice scheme is used for the numerical computation of the hydrodynamic and thermal fields, whereas the magnetic field is simulated in a 5-bit 2D lattice. Simulation of Hartmann flow in a channel provides excellent agreement with corresponding analytical results.
Beyond ideal magnetohydrodynamics: Resistive, reactive and relativistic plasmas
Andersson, N; Hawke, I; Comer, G L
2016-01-01
We develop a new framework for the modelling of charged fluid dynamics in general relativity. The model, which builds on a recently developed variational multi-fluid model for dissipative fluids, accounts for relevant effects like the inertia of both charge currents and heat and, for mature systems, the decoupling of superfluid components. We discuss how the model compares to standard relativistic magnetohydronamics and consider the connection between the fluid dynamics, the microphysics and the underlying equation of state. As illustrations of the formalism, we consider three distinct two-fluid models describing i) an Ohm's law for resistive charged flows, ii) a relativistic heat equation, and iii) an equation representing the momentum of a decoupled superfluid component. As a more complex example, we also formulate a three-fluid model which demonstrates the thermo-electric effect. This framework allows us to model neutron stars (and related systems) at a hierarchy of increasingly complex levels, and should ...
Anton, L; Marti, J M; Ibanez, J M; Aloy, M A; Mimica, P
2009-01-01
We obtain renormalized sets of right and left eigenvectors of the flux vector Jacobians of the relativistic MHD equations, which are regular and span a complete basis in any physical state including degenerate ones. The renormalization procedure relies on the characterization of the degeneracy types in terms of the normal and tangential components of the magnetic field to the wavefront in the fluid rest frame. Proper expressions of the renormalized eigenvectors in conserved variables are obtained through the corresponding matrix transformations. Our work completes previous analysis that present different sets of right eigenvectors for non-degenerate and degenerate states, and can be seen as a relativistic generalization of earlier work performed in classical MHD. Based on the full wave decomposition (FWD) provided by the the renormalized set of eigenvectors in conserved variables, we have also developed a linearized (Roe-type) Riemann solver. Extensive testing against one- and two-dimensional standard numeric...
Magnetohydrodynamical simulations of a tidal disruption in general relativity
Sadowski, A; Gafton, E; Rosswog, S; Abarca, D
2015-01-01
We perform hydro- and magnetohydrodynamical general relativistic simulations of a tidal disruption of a $0.1\\,M_\\odot$ red dwarf approaching a $10^5\\,M_\\odot$ non-rotating massive black hole on a close (impact parameter $\\beta=10$) elliptical (eccentricity $e=0.97$) orbit. We track the debris self-interaction, circularization, and the accompanying accretion through the black hole horizon. We find that the relativistic precession leads to the formation of a self-crossing shock. The dissipated kinetic energy heats up the incoming debris and efficiently generates a quasi-spherical outflow. The self-interaction is modulated because of the feedback exerted by the flow on itself. The debris quickly forms a thick, almost marginally bound disc that remains turbulent for many orbital periods. Initially, the accretion through the black hole horizon results from the self-interaction, while in the later stages it is dominated by the debris originally ejected in the shocked region, as it gradually falls back towards the h...
GRHydro: A new open source general-relativistic magnetohydrodynamics code for the Einstein Toolkit
Moesta, Philipp; Faber, Joshua A; Haas, Roland; Noble, Scott C; Bode, Tanja; Loeffler, Frank; Ott, Christian D; Reisswig, Christian; Schnetter, Erik
2013-01-01
We present the new general-relativistic magnetohydrodynamics (GRMHD) capabilities of the Einstein Toolkit, an open-source community-driven numerical relativity and computational relativistic astrophysics code. The GRMHD extension of the Toolkit builds upon previous releases and implements the evolution of relativistic magnetised fluids in the ideal MHD limit in fully dynamical spacetimes using the same shock-capturing techniques previously applied to hydrodynamical evolution. In order to maintain the divergence-free character of the magnetic field, the code implements both hyperbolic divergence cleaning and constrained transport schemes. We present test results for a number of MHD tests in Minkowski and curved spacetimes. Minkowski tests include aligned and oblique planar shocks, cylindrical explosions, magnetic rotors, Alfv\\'en waves and advected loops, as well as a set of tests designed to study the response of the divergence cleaning scheme to numerically generated monopoles. We study the code's performanc...
Magnetohydrodynamic Simulation Code CANS+: Assessments and Applications
Matsumoto, Yosuke; Kudoh, Yuki; Kawashima, Tomohisa; Matsumoto, Jin; Takahashi, Hiroyuki R; Minoshima, Takashi; Zenitani, Seiji; Miyoshi, Takahiro; Matsumoto, Ryoji
2016-01-01
We present a new magnetohydrodynamic (MHD) simulation code with the aim of providing accurate numerical solutions to astrophysical phenomena where discontinuities, shock waves, and turbulence are inherently important. The code implements the HLLD approximate Riemann solver, the fifth-order-monotonicity-preserving interpolation scheme, and the hyperbolic divergence cleaning method for a magnetic field. This choice of schemes significantly improved numerical accuracy and stability, and saved computational costs in multidimensional problems. Numerical tests of one- and two-dimensional problems showed the advantages of using the high-order scheme by comparing with results from a standard second-order TVD scheme. The present code enabled us to explore long-term evolution of a three-dimensional global accretion disk, in which compressible MHD turbulence saturated at much higher levels via the magneto-rotational instability than that given by the second-order scheme owing to the adoption of the high-resolution, nume...
Computer simulation of a magnetohydrodynamic dynamo. II
Kageyama, Akira; Sato, Tetsuya; Complexity Simulation Group
1995-05-01
A computer simulation of a magnetohydrodynamic dynamo in a rapidly rotating spherical shell is performed. Extensive parameter runs are carried out changing electrical resistivity. When resistivity is sufficiently small, total magnetic energy can grow more than ten times larger than total kinetic energy of convection motion which is driven by an unlimited external energy source. When resistivity is relatively large and magnetic energy is comparable or smaller than kinetic energy, the convection motion maintains its well-organized structure. However, when resistivity is small and magnetic energy becomes larger than kinetic energy, the well-organized convection motion is highly irregular. The magnetic field is organized in two ways. One is the concentration of component parallel to the rotation axis and the other is the concentration of perpendicular component. The parallel component tends to be confined inside anticyclonic columnar convection cells, while the perpendicular component is confined outside convection cells.
NIMROD Resistive Magnetohydrodynamic Simulations of Spheromak Physics
Hooper, E B; Cohen, B I; McLean, H S; Wood, R D; Romero-Talamas, C A; Sovinec, C R
2007-12-11
The physics of spheromak plasmas is addressed by time-dependent, three-dimensional, resistive magneto-hydrodynamic simulations with the NIMROD code. Included in some detail are the formation of a spheromak driven electrostatically by a coaxial plasma gun with a flux-conserver geometry and power systems that accurately model the Sustained Spheromak Physics Experiment (SSPX) (R. D. Wood, et al., Nucl. Fusion 45, 1582 (2005)). The controlled decay of the spheromak plasma over several milliseconds is also modeled as the programmable current and voltage relax, resulting in simulations of entire experimental pulses. Reconnection phenomena and the effects of current profile evolution on the growth of symmetry-breaking toroidal modes are diagnosed; these in turn affect the quality of magnetic surfaces and the energy confinement. The sensitivity of the simulation results address variations in both physical and numerical parameters, including spatial resolution. There are significant points of agreement between the simulations and the observed experimental behavior, e.g., in the evolution of the magnetics and the sensitivity of the energy confinement to the presence of symmetry-breaking magnetic fluctuations.
Three-Dimensional Magnetohydrodynamic Simulations of the Crab Nebula
Porth, Oliver; Keppens, Rony
2013-01-01
In this paper we give a detailed account of the first 3D relativistic magnetohydrodynamic (MHD) simulations of Pulsar Wind Nebulae (PWN), with parameters most suitable for the Crab Nebula. In order to clarify the new features specific to 3D models, reference 2D simulations have been carried out as well. Compared to the previous 2D simulations, we considered pulsar winds with much stronger magnetisation, up to \\sigma=3, and accounted more accurately for the anticipated magnetic dissipation in the striped zone of these winds. While the 3D models preserve the separation of the post termination shock flow into the equatorial and polar components, their relative strength and significance differ. Whereas the highly magnetised 2D models produce highly coherent and well collimated polar jets capable of efficient "drilling" through the supernova shell, in the corresponding 3D models the jets are disrupted by the kink mode current driven instability and "dissolve" into the main body of PWN after propagation of several ...
RAISHIN: A High-Resolution Three-Dimensional General Relativistic Magnetohydrodynamics Code
Mizuno, Y; Koide, S; Hardee, P; Fishman, G J; Mizuno, Yosuke; Nishikawa, Ken-Ichi; Koide, Shinji; Hardee, Philip; Fishman, Gerald J.
2006-01-01
We have developed a new three-dimensional general relativistic magnetohydrodynamic (GRMHD) code, RAISHIN, using a conservative, high resolution shock-capturing scheme. The numerical fluxes are calculated using the Harten, Lax, & van Leer (HLL) approximate Riemann solver scheme. The flux-interpolated, constrained transport scheme is used to maintain a divergence-free magnetic field. In order to examine the numerical accuracy and the numerical efficiency, the code uses four different reconstruction methods: piecewise linear methods with Minmod and MC slope-limiter function, convex essentially non-oscillatory (CENO) method, and piecewise parabolic method (PPM) using multistep TVD Runge-Kutta time advance methods with second and third-order time accuracy. We describe code performance on an extensive set of test problems in both special and general relativity. Our new GRMHD code has proven to be accurate in second order and has successfully passed with all tests performed, including highly relativistic and mag...
RAISHIN: A High-Resolution Three-Dimensional General Relativistic Magnetohydrodynamics Code
Mizuno, Yosuke; Nishikawa, Ken-Ichi; Koide, Shinji; Hardee, Philip; Fishman, Gerald J.
2006-01-01
We have developed a new three-dimensional general relativistic magnetohydrodynamic (GRMHD) code, RAISHIN, using a conservative, high resolution shock-capturing scheme. The numerical fluxes are calculated using the Harten, Lax, & van Leer (HLL) approximate Riemann solver scheme. The flux-interpolated, constrained transport scheme is used to maintain a divergence-free magnetic field. In order to examine the numerical accuracy and the numerical efficiency, the code uses four different reconstruction methods: piecewise linear methods with Minmod and MC slope-limiter function, convex essentially non-oscillatory (CENO) method, and piecewise parabolic method (PPM) using multistep TVD Runge-Kutta time advance methods with second and third-order time accuracy. We describe code performance on an extensive set of test problems in both special and general relativity. Our new GRMHD code has proven to be accurate in second order and has successfully passed with all tests performed, including highly relativistic and magnetized cases in both special and general relativity.
Zhang, Haocheng; Li, Hui; Böttcher, Markus
2015-01-01
The optical radiation and polarization signatures in blazars are known to be highly variable during flaring activities. It is frequently argued that shocks are the main driver of the flaring events. However, the spectral variability modelings generally lack detailed considerations of the self-consistent magnetic field evolution modeling, thus so far the associated optical polarization signatures are poorly understood. We present the first simultaneous modeling of the optical radiation and polarization signatures based on 3D magnetohydrodynamic simulations of relativistic shocks in the blazar emission environment, with the simplest physical assumptions. By comparing the results with observations, we find that shocks in a weakly magnetized environment will largely lead to significant changes in the optical polarization signatures, which are seldom seen in observations. Hence an emission region with relatively strong magnetization is preferred. In such an environment, slow shocks may produce minor flares with ei...
Kawazura, Yohei; Miloshevich, George; Morrison, Philip J.
2017-02-01
Two types of Eulerian action principles for relativistic extended magnetohydrodynamics (MHD) are formulated. With the first, the action is extremized under the constraints of density, entropy, and Lagrangian label conservation, which leads to a Clebsch representation for a generalized momentum and a generalized vector potential. The second action arises upon transformation to physical field variables, giving rise to a covariant bracket action principle, i.e., a variational principle in which constrained variations are generated by a degenerate Poisson bracket. Upon taking appropriate limits, the action principles lead to relativistic Hall MHD and well-known relativistic ideal MHD. For the first time, the Hamiltonian formulation of relativistic Hall MHD with electron thermal inertia (akin to Comisso et al., Phys. Rev. Lett. 113, 045001 (2014) for the electron-positron plasma) is introduced. This thermal inertia effect allows for violation of the frozen-in magnetic flux condition in marked contrast to nonrelativistic Hall MHD that does satisfy the frozen-in condition. We also find the violation of the frozen-in condition is accompanied by freezing-in of an alternative flux determined by a generalized vector potential. Finally, we derive a more general 3 + 1 Poisson bracket for nonrelativistic extended MHD, one that does not assume smallness of the electron ion mass ratio.
A five-wave Harten-Lax-van Leer Riemann solver for relativistic magnetohydrodynamics
Mignone, A.; Ugliano, M.; Bodo, G.
2009-03-01
We present a five-wave Riemann solver for the equations of ideal relativistic magneto-hydrodynamics. Our solver can be regarded as a relativistic extension of the five-wave HLLD Riemann solver initially developed by Miyoshi & Kusano for the equations of ideal magnetohydrodynamics. The solution to the Riemann problem is approximated by a five-wave pattern, comprising two outermost fast shocks, two rotational discontinuities and a contact surface in the middle. The proposed scheme is considerably more elaborate than in the classical case since the normal velocity is no longer constant across the rotational modes. Still, proper closure to the Rankine-Hugoniot jump conditions can be attained by solving a non-linear scalar equation in the total pressure variable which, for the chosen configuration, has to be constant over the whole Riemann fan. The accuracy of the new Riemann solver is validated against one-dimensional tests and multidimensional applications. It is shown that our new solver considerably improves over the popular Harten-Lax-van Leer solver or the recently proposed HLLC schemes.
Magneto-hydrodynamics Simulation in Astrophysics
Pang, Bijia
2011-08-01
Magnetohydrodynamics (MHD) studies the dynamics of an electrically conducting fluid under the influence of a magnetic field. Many astrophysical phenomena are related to MHD, and computer simulations are used to model these dynamics. In this thesis, we conduct MHD simulations of non-radiative black hole accretion as well as fast magnetic reconnection. By performing large scale three dimensional parallel MHD simulations on supercomputers and using a deformed-mesh algorithm, we were able to conduct very high dynamical range simulations of black hole accretion of Sgr A* at the Galactic Center. We find a generic set of solutions, and make specific predictions for currently feasible observations of rotation measure (RM). The magnetized accretion flow is subsonic and lacks outward convection flux, making the accretion rate very small and having a density slope of around -1. There is no tendency for the flows to become rotationally supported, and the slow time variability of th! e RM is a key quantitative signature of this accretion flow. We also provide a constructive numerical example of fast magnetic reconnection in a three-dimensional periodic box. Reconnection is initiated by a strong, localized perturbation to the field lines and the solution is intrinsically three-dimensional. Approximately 30% of the magnetic energy is released in an event which lasts about one Alfvén time, but only after a delay during which the field lines evolve into a critical configuration. In the co-moving frame of the reconnection regions, reconnection occurs through an X-like point, analogous to the Petschek reconnection. The dynamics appear to be driven by global flows rather than local processes. In addition to issues pertaining to physics, we present results on the acceleration of MHD simulations using heterogeneous computing systems te{shan2006heterogeneous}. We have implemented the MHD code on a variety of heterogeneous and multi-core architectures (multi-core x86, Cell, Nvidia and
Nagataki, S
2009-01-01
In order to investigate formation of relativistic jets at the center of a progenitor of a long gamma-ray burst (GRB), we develop a two-dimensional general relativistic magnetohydrodynamic (GRMHD) code. We show the code passes many, well-known test calculations, by which the reliability of the code is confirmed. Then we perform a numerical simulation of a collapsar using a realistic progenitor model. It is shown that a jet is launched from the center of the progenitor. We also find that the mass accretion rate after the launch of the jet shows rapid time variability that resembles to a typical time profile of a GRB. The structure of the jet is similar to the previous study: a poynting flux jet is surrounded by a funnel-wall jet. Even at the final stage of the simulation, bulk Lorentz factor of the jet is still low, and total energy of the jet is still as small as 10^48 erg. However, we find that the energy flux per unit rest-mass flux is as high as 10^2 at the bottom of the jet. Thus we conclude that the bulk ...
Real vs. simulated relativistic jets
Gómez, J L; Agudo, I; Marscher, A P; Jorstad, S G; Aloy, M A
2005-01-01
Intensive VLBI monitoring programs of jets in AGN are showing the existence of intricate emission patterns, such as upstream motions or slow moving and quasi-stationary componentes trailing superluminal features. Relativistic hydrodynamic and emission simulations of jets are in very good agreement with these observations, proving as a powerful tool for the understanding of the physical processes taking place in the jets of AGN, microquasars and GRBs. These simulations show that the variability of the jet emission is the result of a complex combination of phase motions, viewing angle selection effects, and non-linear interactions between perturbations and the underlying jet and/or ambient medium. Both observations and simulations suggest that shock-in-jet models may be an overly simplistic idealization when interpreting the emission structure observed in actual jets.
Maroof, R. [Department of Physics, Abdul Wali Khan University, Mardan 23200 (Pakistan); Department of Physics, University of Peshawar, Peshawar 25000 (Pakistan); National Center for Physics (NCP) at QAU Campus, Shahdra Valley Road, Islamabad 44000 (Pakistan); Ali, S. [National Center for Physics (NCP) at QAU Campus, Shahdra Valley Road, Islamabad 44000 (Pakistan); Mushtaq, A. [Department of Physics, Abdul Wali Khan University, Mardan 23200 (Pakistan); National Center for Physics (NCP) at QAU Campus, Shahdra Valley Road, Islamabad 44000 (Pakistan); Qamar, A. [Department of Physics, University of Peshawar, Peshawar 25000 (Pakistan)
2015-11-15
Linear properties of high and low frequency waves are studied in an electron-positron-ion (e-p-i) dense plasma with spin and relativity effects. In a low frequency regime, the magnetohydrodynamic (MHD) waves, namely, the magnetoacoustic and Alfven waves are presented in a magnetized plasma, in which the inertial ions are taken as spinless and non-degenerate, whereas the electrons and positrons are treated quantum mechanically due to their smaller mass. Quantum corrections associated with the spin magnetization and density correlations for electrons and positrons are re-considered and a generalized dispersion relation for the low frequency MHD waves is derived to account for relativistic degeneracy effects. On the basis of angles of propagation, the dispersion relations of different modes are discussed analytically in a degenerate relativistic plasma. Numerical results reveal that electron and positron relativistic degeneracy effects significantly modify the dispersive properties of MHD waves. Our present analysis should be useful for understanding the collective interactions in dense astrophysical compact objects, like, the white dwarfs and in atmosphere of neutron stars.
Using high performance Fortran for magnetohydrodynamic simulations
Keppens, R.; Toth, G.
2000-01-01
Two scientific application programs, the Versatile Advection Code (VAC) and the HEating by Resonant Absorption (HERA) code are adapted to parallel computer platforms. Both programs can solve the time-dependent nonlinear partial differential equations of magnetohydrodynamics (MHD) with different nume
Fuerst, Steven V.; /KIPAC, Menlo Park; Mizuno, Yosuke; /USRA, Huntsville; Nishikawa, Ken-Ichi; /USRA, Huntsville /Alabama U., Huntsville; Wu, Kinwah; /Mullard Space Sci.
2007-01-05
We calculate the emission from relativistic flows in black hole systems using a fully general relativistic radiative transfer formulation, with flow structures obtained by general relativistic magneto-hydrodynamic simulations. We consider thermal free-free emission and thermal synchrotron emission. Bright filament-like features protrude (visually) from the accretion disk surface, which are enhancements of synchrotron emission where the magnetic field roughly aligns with the line-of-sight in the co-moving frame. The features move back and forth as the accretion flow evolves, but their visibility and morphology are robust. We propose that variations and drifts of the features produce certain X-ray quasi-periodic oscillations (QPOs) observed in black-hole X-ray binaries.
Shukla, Chandrasekhar; Patel, Kartik
2016-01-01
We carry out Particle-in-Cell (PIC) simulations to study the instabilities associated with a 2-D sheared electron flow configuration against a neutralizing background of ions. Both weak and strong relativistic flow velocities are considered. In the weakly relativistic case, we observe the development of electromagnetic Kelvin Helmholtz instability with similar characteristics as that predicted by the electron Magnetohydrodynamic (EMHD) model. On other hand, in strong relativistic case the compressibility effects of electron fluid dominate and introduce upper hybrid electrostatic oscillations transverse to the flow which are very distinct from EMHD fluid behaviour. In the nonlinear regime, both weak and strong relativistic cases lead to turbulence with broad power law spectrum.
Approximate Harten-Lax-van Leer Riemann solvers for relativistic magnetohydrodynamics
Mignone, Andrea; Bodo, G.; Ugliano, M.
2012-11-01
We review a particular class of approximate Riemann solvers in the context of the equations of ideal relativistic magnetohydrodynamics. Commonly prefixed as Harten-Lax-van Leer (HLL), this family of solvers approaches the solution of the Riemann problem by providing suitable guesses to the outermots characteristic speeds, without any prior knowledge of the solution. By requiring consistency with the integral form of the conservation law, a simplified set of jump conditions with a reduced number of characteristic waves may be obtained. The degree of approximation crucially depends on the wave pattern used in prepresnting the Riemann fan arising from the initial discontinuity breakup. In the original HLL scheme, the solution is approximated by collapsing the full characteristic structure into a single average state enclosed by two outermost fast mangnetosonic speeds. On the other hand, HLLC and HLLD improves the accuracy of the solution by restoring the tangential and Alfvén modes therefore leading to a representation of the Riemann fan in terms of 3 and 5 waves, respectively.
General Relativistic Simulations of Magnetized Binary Neutron Stars
Giacomazzo, Bruno
2011-04-01
Binary neutron stars are among the most important sources of gravitational waves which are expected to be detected by the current or next generation of gravitational wave detectors, such as LIGO and Virgo, and they are also thought to be at the origin of very important astrophysical phenomena, such as short gamma-ray bursts. I will report on some recent results obtained using the fully general relativistic magnetohydrodynamic code Whisky in simulating equal-mass binary neutron star systems during the last phases of inspiral, merger and collapse to black hole surrounded by a torus. I will in particular describe how magnetic fields can affect the gravitational wave signal emitted by these sources and their possible role in powering short gamma-ray bursts.
Formation and collimation of relativistic MHD jets - simulations and radio maps
Fendt, Christian; Sheikhnezami, Somayeh
2013-01-01
We present results of magnetohydrodynamic (MHD) simulations of jet formation and propagation, discussing a variety of astrophysical setups. In the first approach we consider simulations of relativistic MHD jet formation, considering jets launched from the surface of a Keplerian disk, demonstrating numerically - for the first time - the self-collimating ability of relativistic MHD jets. We obtain Lorentz factors up to about 10 while acquiring a high degree of collimation of about 1 degree. We then present synchrotron maps calculated from the intrinsic jet structure derived from the MHD jet formation simulation. We finally present (non-relativistic) MHD simulations of jet lauching, treating the transition between accretion and ejection. These setups include a physical magnetic diffusivity which is essential for loading the accretion material onto the outflow. We find relatively high mass fluxes in the outflow, of the order of 20-40 % of the accretion rate.
Lattice kinetic simulations in three-dimensional magnetohydrodynamics.
Breyiannis, G; Valougeorgis, D
2004-06-01
A lattice kinetic algorithm to simulate three-dimensional (3D) incompressible magnetohydrodynamics is presented. The fluid is monitored by a distribution function, which obeys a scalar kinetic equation, subject to an external force due to the imposed magnetic field. Following the work of J. Comput. Phys. 179, 95 (2002)], the magnetic field is represented by a different three-component vector distribution function, which obeys a corresponding vector kinetic equation. Discretization of the 3D phase space is based on a 19-bit scheme for the hydrodynamic part and on a 7-bit scheme for the magnetic part. Numerical results for magnetohydrodynamic (MHD) flow in a rectangular duct with insulating and conducting walls provide excellent agreement with corresponding analytical solutions. The scheme maintains in all cases tested the MHD constraint inverted Delta.B=0 within machine round-off error.
Numerical Simulations and Diagnostics in Astrophysics:. a Few Magnetohydrodynamics Examples
Peres, Giovanni; Bonito, Rosaria; Orlando, Salvatore; Reale, Fabio
2007-12-01
We discuss some issues related to numerical simulations in Astrophysics and, in particular, to their use both as a theoretical tool and as a diagnostic tool, to gain insight into the physical phenomena at work. We make our point presenting some examples of Magneto-hydro-dynamic (MHD) simulations of astrophysical plasmas and illustrating their use. In particular we show the need for appropriate tools to interpret, visualize and present results in an adequate form, and the importance of spectral synthesis for a direct comparison with observations.
Modelling interplanetary CMEs using magnetohydrodynamic simulations
P. J. Cargill
Full Text Available The dynamics of Interplanetary Coronal Mass Ejections (ICMEs are discussed from the viewpoint of numerical modelling. Hydrodynamic models are shown to give a good zero-order picture of the plasma properties of ICMEs, but they cannot model the important magnetic field effects. Results from MHD simulations are shown for a number of cases of interest. It is demonstrated that the strong interaction of the ICME with the solar wind leads to the ICME and solar wind velocities being close to each other at 1 AU, despite their having very different speeds near the Sun. It is also pointed out that this interaction leads to a distortion of the ICME geometry, making cylindrical symmetry a dubious assumption for the CME field at 1 AU. In the presence of a significant solar wind magnetic field, the magnetic fields of the ICME and solar wind can reconnect with each other, leading to an ICME that has solar wind-like field lines. This effect is especially important when an ICME with the right sense of rotation propagates down the heliospheric current sheet. It is also noted that a lack of knowledge of the coronal magnetic field makes such simulations of little use in space weather forecasts that require knowledge of the ICME magnetic field strength.
Key words. Interplanetary physics (interplanetary magnetic fields Solar physics, astrophysics, and astronomy (flares and mass ejections Space plasma physics (numerical simulation studies
Smoothed Particle Magnetohydrodynamics Simulations of Protostellar Jets and Turbulent Dynamos
Tricco, Terrence S; Federrath, Christoph; Bate, Matthew R
2013-01-01
We presents results from Smoothed Particle Magnetohydrodynamics simulations of collapsing molecular cloud cores, and dynamo amplification of the magnetic field in the presence of Mach 10 magnetised turbulence. Our star formation simulations have produced, for the first time ever, highly collimated magnetised protostellar jets from the first hydrostatic core phase. Up to 40% of the initial core mass may be ejected through this outflow. The primary difficulty in performing these simulations is maintaining the divergence free constraint of the magnetic field, and to address this issue, we have developed a new divergence cleaning method which has allowed us to stably follow the evolution of these protostellar jets for long periods. The simulations performed of supersonic MHD turbulence are able to exponentially amplify magnetic energy by up to 10 orders of magnitude via turbulent dynamo. To reduce numerical dissipation, a new shock detection algorithm is utilised which is able to track magnetic shocks throughout ...
Relativistic MHD simulations of core-collapse GRB jets: 3D instabilities and magnetic dissipation
Bromberg, Omer
2015-01-01
Relativistic jets naturally occur in astrophysical systems that involve accretion onto compact objects, such as core collapse of massive stars in gamma-ray bursts (GRBs) and accretion onto supermassive black holes in active galactic nuclei (AGN). It is generally accepted that these jets are powered electromagnetically, by the magnetised rotation of a central compact object. However, how they produce the observed emission and survive the propagation for many orders of magnitude in distance without being disrupted by current-driven non-axisymmetric instabilities is the subject of active debate. We carry out time-dependent 3D relativistic magnetohydrodynamic simulations of relativistic, Poynting flux dominated jets. The jets are launched self-consistently by the rotation of a strongly magnetised central compact object. This determines the natural degree of azimuthal magnetic field winding, a crucial factor that controls jet stability. We find that the jets are susceptible to two types of instability: (i) a globa...
Efficient magnetohydrodynamic simulations on graphics processing units with CUDA
Wong, Hon-Cheng; Wong, Un-Hong; Feng, Xueshang; Tang, Zesheng
2011-10-01
Magnetohydrodynamic (MHD) simulations based on the ideal MHD equations have become a powerful tool for modeling phenomena in a wide range of applications including laboratory, astrophysical, and space plasmas. In general, high-resolution methods for solving the ideal MHD equations are computationally expensive and Beowulf clusters or even supercomputers are often used to run the codes that implemented these methods. With the advent of the Compute Unified Device Architecture (CUDA), modern graphics processing units (GPUs) provide an alternative approach to parallel computing for scientific simulations. In this paper we present, to the best of the author's knowledge, the first implementation of MHD simulations entirely on GPUs with CUDA, named GPU-MHD, to accelerate the simulation process. GPU-MHD supports both single and double precision computations. A series of numerical tests have been performed to validate the correctness of our code. Accuracy evaluation by comparing single and double precision computation results is also given. Performance measurements of both single and double precision are conducted on both the NVIDIA GeForce GTX 295 (GT200 architecture) and GTX 480 (Fermi architecture) graphics cards. These measurements show that our GPU-based implementation achieves between one and two orders of magnitude of improvement depending on the graphics card used, the problem size, and the precision when comparing to the original serial CPU MHD implementation. In addition, we extend GPU-MHD to support the visualization of the simulation results and thus the whole MHD simulation and visualization process can be performed entirely on GPUs.
Relativistic hydro and magnetohydrodynamic models for AGN jet propagation and deceleration
Keppens, R.; Meliani, Z.
2009-01-01
We present grid-adaptive computational studies of both magnetized and unmagnetized jet flows, with significantly relativistic bulk speeds, as appropriate for AGN jets. Our relativistic jet studies shed light on the observationally established classification of Fanaroff-Riley galaxies, where the appe
General relativistic simulations of magnetized binary neutron star mergers
Liu, Yuk Tung; Etienne, Zachariah B; Taniguchi, Keisuke
2008-01-01
Binary neutron stars (NSNS) are expected to be among the leading sources of gravitational waves observable by ground-based laser interferometers and may be the progenitors of short-hard gamma ray bursts. We present a series of general relativistic NSNS coalescence simulations both for unmagnetized and magnetized stars. We adopt quasiequilibrium initial data for circular, irrotational binaries constructed in the conformal thin-sandwich (CTS) framework. We adopt the BSSN formulation for evolving the metric and a high-resolution shock-capturing scheme to handle the magnetohydrodynamics. Our simulations of unmagnetized binaries confirm the results of Shibata, Taniguchi and Uryu (2003). In cases in which the mergers result in a prompt collapse to a black hole, we are able to use puncture gauge conditions to extend the evolution and determine the mass of the material that forms a disk. We find that the disk mass is less than 2% of the total mass in all cases studied. We then add a small poloidal magnetic field to t...
Relativistic Positioning Systems: Numerical Simulations
Puchades, Neus
2014-01-01
The motion of satellite constellations similar to GPS and Galileo is numerically simulated and, then, the region where bifurcation (double positioning) occurs is appropriately represented. In the cases of double positioning, the true location may be found using additional information (angles or times). The zone where the Jacobian, J, of the transformation from inertial to emission coordinates vanishes is also represented and interpreted. It is shown that the uncertainties in the satellite world lines produce positioning errors, which depend on the value of |J|. The smaller this quantity the greater the expected positioning errors. Among all the available 4-tuples of satellites, the most appropriate one -for a given location- should minimize positioning errors (large enough |J| values) avoiding bifurcation. Our study is particularly important to locate objects which are far away from Earth, e.g., satellites.
A new framework for magnetohydrodynamic simulations with anisotropic pressure
Hirabayashi, Kota; Amano, Takanobu
2016-01-01
We describe a new theoretical and numerical framework of the magnetohydrodynamic simulation incorporated with an anisotropic pressure tensor, which can play an important role in a collisionless plasma. A classical approach to handle the anisotropy is based on the double adiabatic approximation assuming that a pressure tensor is well described only by the components parallel and perpendicular to the local magnetic field. This gyrotropic assumption, however, fails around a magnetically neutral region, where the cyclotron period may get comparable to or even longer than a dynamical time in a system, and causes a singularity in the mathematical expression. In this paper, we demonstrate that this singularity can be completely removed away by the combination of direct use of the 2nd-moment of the Vlasov equation and an ingenious gyrotropization model. Numerical tests also verify that the present model properly reduces to the standard MHD or the double adiabatic formulation in an asymptotic manner under an appropria...
COMPARISONS OF COSMOLOGICAL MAGNETOHYDRODYNAMIC GALAXY CLUSTER SIMULATIONS TO RADIO OBSERVATIONS
Xu Hao; Li Hui; Collins, David C. [Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Govoni, Federica; Murgia, Matteo [INAF-Osservatorio Astronomico di Cagliari, Poggio dei Pini, Strada 54, I-09012 Capoterra (Italy); Norman, Michael L. [Center for Astrophysics and Space Science, University of California at San Diego, 9500 Gilman Drive, La Jolla, CA 92093 (United States); Cen Renyue [Department of Astrophysical Science, Princeton University, Princeton, NJ 08544 (United States); Feretti, Luigina; Giovannini, Gabriele, E-mail: hao_xu@lanl.gov, E-mail: hli@lanl.gov, E-mail: dccollins@lanl.gov, E-mail: mlnorman@ucsd.edu, E-mail: fgovoni@oa-cagliari.inaf.it, E-mail: matteo@oa-cagliari.inaf.it, E-mail: cen@astro.princeton.edu, E-mail: lferetti@ira.inaf.it, E-mail: ggiovann@ira.inaf.it [INAF-Istituto di Radioastronomia, Via P.Gobetti 101, I-40129 Bologna (Italy)
2012-11-01
Radio observations of galaxy clusters show that there are {mu}G magnetic fields permeating the intracluster medium (ICM), but it is hard to accurately constrain the strength and structure of the magnetic fields without the help of advanced computer simulations. We present qualitative comparisons of synthetic Very Large Array observations of simulated galaxy clusters to radio observations of Faraday rotation measure (RM) and radio halos. The cluster formation is modeled using adaptive mesh refinement magnetohydrodynamic simulations with the assumption that the initial magnetic fields are injected into the ICM by active galactic nuclei (AGNs) at high redshift. In addition to simulated clusters in Xu et al., we present a new simulation with magnetic field injections from multiple AGNs. We find that the cluster with multiple injection sources is magnetized to a similar level as in previous simulations with a single AGN. The RM profiles from simulated clusters, both |RM| and the dispersion of RM ({sigma}{sub RM}), are consistent at a first order with the radial distribution from observations. The correlations between the {sigma}{sub RM} and X-ray surface brightness from simulations are in a broad agreement with the observations, although there is an indication that the simulated clusters could be slightly overdense and less magnetized with respect to those in the observed sample. In addition, the simulated radio halos agree with the observed correlations between the radio power versus the cluster X-ray luminosity and between the radio power versus the radio halo size. These studies show that the cluster-wide magnetic fields that originate from AGNs and are then amplified by the ICM turbulence match observations of magnetic fields in galaxy clusters.
Balsara, Dinshaw S
2016-01-01
The relativistic magnetohydrodynamics (RMHD) set of equations has recently seen increased use in astrophysical computations. Even so, RMHD codes remain fragile. The reconstruction can sometimes yield superluminal velocities in certain parts of the mesh. In this paper we present a reconstruction strategy that overcomes this problem by making a single conservative to primitive transformation per cell followed by higher order WENO reconstruction on a carefully chosen set of primitives that guarantee subluminal reconstruction of the flow variables. For temporal evolution via a predictor step we also present second, third and fourth order accurate ADER methods that keep the velocity subluminal during the predictor step. The RMHD system also requires the magnetic field to be evolved in a divergence-free fashion. In the treatment of classical numerical MHD the analogous issue has seen much recent progress with the advent of multidimensional Riemann solvers. By developing multidimensional Riemann solvers for RMHD, we...
Nakamura, Masanori
2014-01-01
We describe a new paradigm for understanding both relativistic motions and particle acceleration in the M87 jet: a magnetically dominated relativistic flow that naturally produces four relativistic magnetohydrodynamic (MHD) shocks (forward/reverse fast and slow modes). We apply this model to a set of optical super- and subluminal motions discovered by Biretta and coworkers with the {\\em Hubble Space Telescope} during 1994 -- 1998. The model concept consists of ejection of a {\\em single} relativistic Poynting jet, which possesses a coherent helical (poloidal + toroidal) magnetic component, at the remarkably flaring point HST-1. We are able to reproduce quantitatively proper motions of components seen in the {\\em optical} observations of HST-1 with the same model we used previously to describe similar features in radio VLBI observations in 2005 -- 2006. This indicates that the quad relativistic MHD shock model can be applied generally to recurring pairs of super/subluminal knots ejected from the upstream edge o...
Simulations and Transport Models for Imbalanced Magnetohydrodynamic Turbulence
Ng, Chung-Sang; Dennis, T.
2016-10-01
We present results from a series of three-dimensional simulations of magnetohydrodynamic (MHD) turbulence based on reduced MHD equations. Alfven waves are launched from both ends of a long tube along the background uniform magnetic field so that turbulence develops due to collision between counter propagating Alfven waves in the interior region. Waves are launched randomly with specified correlation time Tc such that the length of the tube, L, is greater than (but of the same order of) VA *Tc such that turbulence can fill most of the tube. While waves at both ends are launched with equal power, turbulence generated is imbalanced in general, with normalized cross-helicity gets close to -1 at one end and 1 at the other end. This simulation setup allows easier comparison of turbulence properties with one-dimensional turbulence transport models, which have been applied rather successfully in modeling solar wind turbulence. However, direct comparison of such models with full simulations of solar wind turbulence is difficult due to much higher level of complexity involved. We will present our latest simulations at different resolutions with decreasing dissipation (resistivity and viscosity) levels and compare with model outputs from turbulence transport models. This work is supported by a NASA Grant NNX15AU61G.
Classical simulation of relativistic Zitterbewegung in photonic lattices.
Dreisow, Felix; Heinrich, Matthias; Keil, Robert; Tünnermann, Andreas; Nolte, Stefan; Longhi, Stefano; Szameit, Alexander
2010-10-01
We present the first experimental realization of an optical analog for relativistic quantum mechanics by simulating the Zitterbewegung (trembling motion) of a free Dirac electron in an optical superlattice. Our photonic setting enables a direct visualization of Zitterbewegung as a spatial oscillatory motion of an optical beam. Direct measurements of the wave packet expectation values in superlattices with tuned miniband gaps clearly show the transition from weak-relativistic to relativistic and far-relativistic regimes.
Observations and Simulations of Magnetohydrodynamic Turbulence in the Solar Wind
Goldstein, M. L.
2006-12-01
Alfvénic fluctuations are a ubiquitous component of the solar wind. Evidence from many spacecraft indicates that the fluctuations are convected out of the solar corona with relatively flat power spectra and constitute a source of free energy for a turbulent cascade of magnetic and kinetic energy to high wave numbers. Observations and simulations support the conclusion that the cascade evolves most rapidly in the vicinity of velocity shears and current sheets. Numerical solutions of the magnetohydrodynamic equations have elucidated the role of expansion on the evolution of the turbulence. Such studies are clarifying not only how a turbulent cascade develops, but also the nature of the symmetries of the turbulence. Of particular interest is the origin of the two-component correlation function of magnetic fluctuations that was deduced from ISEE-3 data. A central issue to be resolved is whether the correlation function indicates the existence of a quasi-two- dimensional component of the turbulence, or reflects another origin, such as pressure-balanced structures or small velocity shears. In our efforts to simulate solar wind turbulence we have included a tilted rotating current heliospheric sheet as well as variety of waves (e.g., Alfvénic, quasi-two-dimensional, pressure balance structures) and microstreams. These simulations have replicated many of the observations, but challenges remain.
Observations of "wisps" in magnetohydrodynamic simulations of the Crab Nebula
Camus, N F; Buccantini, N; Hughes, P A
2009-01-01
In this letter, we describe results of new high-resolution axisymmetric relativistic MHD simulations of Pulsar Wind Nebulae. The simulations reveal strong breakdown of the equatorial symmetry and highly variable structure of the pulsar wind termination shock. The synthetic synchrotron maps, constructed using a new more accurate approach, show striking similarity with the well known images of the Crab Nebula obtained by Chandra, and the Hubble Space Telescope. In addition to the \\textit{jet-torus} structure, these maps reproduce the Crab's famous moving wisps whose speed and rateof production agree with the observations. The variability is then analyzed using various statistical methods, including the method of structure function and wavelet transform. The results point towards the quasi-periodic behaviour with the periods of 1.5-3yr and MHD turbulence on scales below 1yr. The full account of this study will be presented in a follow up paper.
Shukla, Chandrasekhar; Das, Amita; Patel, Kartik
2016-08-01
We carry out particle-in-cell simulations to study the instabilities associated with a 2-D sheared electron flow configuration against a neutralizing background of ions. Both weak and strong relativistic flow velocities are considered. In the weakly relativistic case, we observe the development of electromagnetic Kelvin-Helmholtz instability with similar characteristics as that predicted by the electron Magnetohydrodynamic (EMHD) model. On the contrary, in a strong relativistic case, the compressibility effects of electron fluid dominate and introduce upper hybrid electrostatic oscillations transverse to the flow which are very distinct from EMHD fluid behavior. In the nonlinear regime, both weak and strong relativistic cases lead to turbulence with broad power law spectrum.
Flux canceling in three-dimensional radiative magnetohydrodynamic simulations
Thaler, Irina; Spruit, H. C.
2017-05-01
We aim to study the processes involved in the disappearance of magnetic flux between regions of opposite polarity on the solar surface using realistic three-dimensional (3D) magnetohydrodynamic (MHD) simulations. "Retraction" below the surface driven by magnetic forces is found to be a very effective mechanism of flux canceling of opposite polarities. The speed at which flux disappears increases strongly with initial mean flux density. In agreement with existing inferences from observations we suggest that this is a key process of flux disappearance within active complexes. Intrinsic kG strength concentrations connect the surface to deeper layers by magnetic forces, and therefore the influence of deeper layers on the flux canceling process is studied. We do this by comparing simulations extending to different depths. For average flux densities of 50 G, and on length scales on the order of 3 Mm in the horizontal and 10 Mm in depth, deeper layers appear to have only a mild influence on the effective rate of diffusion.
SOLAR WIND COLLISIONAL AGE FROM A GLOBAL MAGNETOHYDRODYNAMICS SIMULATION
Chhiber, R; Usmanov, AV; Matthaeus, WH [Department of Physics and Astronomy and Bartol Research Institute, University of Delaware, Newark, DE 19716 (United States); Goldstein, ML [NASA Goddard Space Flight Center, Greenbelt MD 20771 (United States)
2016-04-10
Simple estimates of the number of Coulomb collisions experienced by the interplanetary plasma to the point of observation, i.e., the “collisional age”, can be usefully employed in the study of non-thermal features of the solar wind. Usually these estimates are based on local plasma properties at the point of observation. Here we improve the method of estimation of the collisional age by employing solutions obtained from global three-dimensional magnetohydrodynamics simulations. This enables evaluation of the complete analytical expression for the collisional age without using approximations. The improved estimation of the collisional timescale is compared with turbulence and expansion timescales to assess the relative importance of collisions. The collisional age computed using the approximate formula employed in previous work is compared with the improved simulation-based calculations to examine the validity of the simplified formula. We also develop an analytical expression for the evaluation of the collisional age and we find good agreement between the numerical and analytical results. Finally, we briefly discuss the implications for an improved estimation of collisionality along spacecraft trajectories, including Solar Probe Plus.
Equation of State in Relativistic Magnetohydrodynamics: variable versus constant adiabatic index
Mignone, A
2007-01-01
The role of the equation of state for a perfectly conducting, relativistic magnetized fluid is the main subject of this work. The ideal constant $\\Gamma$-law equation of state, commonly adopted in a wide range of astrophysical applications, is compared with a more realistic equation of state that better approximates the single-specie relativistic gas. The paper focus on three different topics. First, the influence of a more realistic equation of state on the propagation of fast magneto-sonic shocks is investigated. This calls into question the validity of the constant $\\Gamma$-law equation of state in problems where the temperature of the gas substantially changes across hydromagnetic waves. Second, we present a new inversion scheme to recover primitive variables (such as rest-mass density and pressure) from conservative ones that allows for a general equation of state and avoids catastrophic numerical cancellations in the non-relativistic and ultrarelativistic limits. Finally, selected numerical tests of ast...
Polko, P.; Meier, D.L.; Markoff, S.
2013-01-01
We present a new, approximate method for modelling the acceleration and collimation of relativistic jets in the presence of gravity. This method is self-similar throughout the computational domain where gravitational effects are negligible and, where significant, self-similar within a flux tube.
General Relativistic Simulations of Magnetized Plasmas around Merging Supermassive Black Holes
Giacomazzo, Bruno; Miller, M Coleman; Reynolds, Christopher S; van Meter, James R
2012-01-01
Coalescing supermassive black hole binaries are produced by the mergers of galaxies and are the most powerful sources of gravitational waves accessible to space-based gravitational observatories. Some such mergers may occur in the presence of matter and magnetic fields and hence generate an electromagnetic counterpart. In this paper we present the first general relativistic simulations of magnetized plasma around merging supermassive black holes using the general relativistic magnetohydrodynamic code Whisky. By considering different magnetic field strengths, going from non-magnetically dominated to magnetically dominated regimes, we explore how magnetic fields affect the dynamics of the plasma and the possible emission of electromagnetic signals. In particular we observe a total amplification of the magnetic field of ~2 orders of magnitude which is driven by the accretion onto the binary and that leads to much stronger electromagnetic signals, more than a factor of 10^4 larger than comparable calculations don...
General Relativistic Simulations of Magnetized Plasmas around Merging Supermassive Black Holes
Giacomazzo, Bruno; Baker, John G.; Miller, M. Coleman; Reynolds, Christopher S.; van Meter, James R.
2012-06-01
Coalescing supermassive black hole binaries are produced by the mergers of galaxies and are the most powerful sources of gravitational waves accessible to space-based gravitational observatories. Some such mergers may occur in the presence of matter and magnetic fields and hence generate an electromagnetic counterpart. In this Letter, we present the first general relativistic simulations of magnetized plasma around merging supermassive black holes using the general relativistic magnetohydrodynamic code Whisky. By considering different magnetic field strengths, going from non-magnetically dominated to magnetically dominated regimes, we explore how magnetic fields affect the dynamics of the plasma and the possible emission of electromagnetic signals. In particular, we observe a total amplification of the magnetic field of ~2 orders of magnitude, which is driven by the accretion onto the binary and that leads to much stronger electromagnetic signals, more than a factor of 104 larger than comparable calculations done in the force-free regime where such amplifications are not possible.
Magnetohydrodynamic simulation of the inverse-pinch plasma discharge
Esaulov, A.; Bauer, B. S.; Lindemuth, I. R.; Makhin, V.; Presura, R.; Ryutov, D. D.; Sheehey, P. T.; Siemon, R. E.; Sotnikov, V. I.
2004-04-01
A wall confined plasma in an inverse-pinch configuration holds potential as a plasma target for Magnetized Target Fusion (MTF) as well as a simple geometry to study wall-confined plasma. An experiment is planned to study the inverse-pinch configuration using the Zebra Z pinch [B. S. Bauer et al., AIP Conference Proceedings Vol. 409 (American Institute of Physics, Melville, 1997), p. 153] of the Nevada Terawatt Facility at the University of Nevada, Reno (UNR). The dynamics of the discharge formation have been analyzed using analytic models and numerical methods. Strong heating occurs by thermalization of directed energy when an outward moving current sheet (the inverse pinch effect) collides with the outer wall of the experimental chamber. Two-dimensional magnetohydrodynamic simulations show Rayleigh-Taylor and Richtmyer-Meshkov like modes of instability, as expected because of the shock acceleration during plasma formation phase. The instabilities are not disruptive, but give rise to a mild level of turbulence. The conclusion from this work is that an interesting experiment relevant to wall confinement for MTF could be done using existing equipment at UNR.
Spectral magnetohydrodynamic simulations of the sun and stars
Brun, A. S.
The purpose of this lecture is two fold: first, to describe a powerful numerical technic, namely the spectral method, to solve the compressible (anelastic) magnetohydrodynamic (MHD) equations in spherical geometry and then to discuss some recent numerical applications to study stellar dynamics and magnetism. We thus start by describing the semi-implicit, anelastic spherical harmonic (ASH) code. In this code, the main field variables are projected into spherical harmonics for their horizontal dimensions and into Chebyshev polynomials for their radial direction. We then present, high resolution 3 D MHD simulations of the convective region of A- and G-type stars in spherical shells. We have chosen to model A and G-type stars because they represent good proxies to study and understand stellar dynamics and magnetism given their strikingly different internal “up-side-down” structure and magnetic activity level. In particular, we discuss the nonlinear interactions between turbulent convection, rotation and magnetic fields and the possibility for such flows and fields to lead to dynamo action. We find that both core and envelope turbulent convective zones are efficient at inducing strong mostly non-axisymmetric fields near equipartition but at the expense of damping the differential rotation present in the purely hydrodynamic progenitor solutions.
Coupled neoclassical-magnetohydrodynamic simulations of axisymmetric plasmas
Lyons, Brendan C.
2014-10-01
Neoclassical effects (e.g., the bootstrap current and neoclassical toroidal viscosity [NTV]) have a profound impact on many magnetohydrodynamic (MHD) instabilities, including tearing modes, edge-localized modes (ELMs), and resistive wall modes. High-fidelity simulations of such phenomena require a multiphysics code that self-consistently couples the kinetic and fluid models. We present the first results of the DK4D code, a dynamic drift-kinetic equation (DKE) solver being developed for this application. In this study, DK4D solves a set of time-dependent, axisymmetric DKEs for the non-Maxwellian part of the electron and ion distribution functions (fNM) with linearized Fokker-Planck-Landau collision operators. The plasma is formally assumed to be in the low- to finite-collisionality regimes. The form of the DKEs used were derived in a Chapman-Enskog-like fashion, ensuring that fNM carries no density, momentum, or temperature. Rather, these quantities are contained within the background Maxwellian and are evolved by an appropriate set of extended MHD equations. We will discuss computational methods used and benchmarks to other neoclassical models and codes. Furthermore, DK4D has been coupled to a reduced, transport-timescale MHD code, allowing for self-consistent simulations of the dynamic formation of the ohmic and bootstrap currents. Several applications of this hybrid code will be presented, including an ELM-like pressure collapse. We will also discuss plans for coupling to the spatially three-dimensional, extended MHD code M3D-C1 and generalizing to nonaxisymmetric geometries, with the goal of performing self-consistent hybrid simulations of tokamak instabilities and calculations of NTV torque. This work supported by the U.S. Department of Energy (DOE) under Grant Numbers DE-FC02-08ER54969 and DE-AC02-09CH11466.
Broderick, Avery E
2010-01-01
For the first time it has become possible to compare global 3D general relativistic magnetohydrodynamic (GRMHD) jet formation simulations directly to very-long baseline interferometric multi-frequency polarization observations of the pc-scale structure of active galactic nucleus (AGN) jets. Unlike the jet emission, which requires post hoc modeling of the non-thermal electrons, the Faraday rotation measures (RMs) depend primarily upon simulated quantities and thus provide a robust way in which to confront simulations with observations. We compute RM distributions of 3D global GRMHD jet formation simulations, with which we explore the dependence upon model and observational parameters, emphasizing the signatures of structures generic to the theory of MHD jets. With typical parameters, we find that it is possible to reproduce the observed magnitudes and many of the structures found in AGN jet RMs, including the presence of transverse RM gradients. In our simulations the RMs are generated within a smooth extensio...
Time-dependent magnetohydrodynamic simulations of the inner heliosphere
Merkin, V. G.; Lyon, J. G.; Lario, D.; Arge, C. N.; Henney, C. J.
2016-04-01
This paper presents results from a simulation study exploring heliospheric consequences of time-dependent changes at the Sun. We selected a 2 month period in the beginning of year 2008 that was characterized by very low solar activity. The heliosphere in the equatorial region was dominated by two coronal holes whose changing structure created temporal variations distorting the classical steady state picture of the heliosphere. We used the Air Force Data Assimilate Photospheric Flux Transport (ADAPT) model to obtain daily updated photospheric magnetograms and drive the Wang-Sheeley-Arge (WSA) model of the corona. This leads to a formulation of a time-dependent boundary condition for our three-dimensional (3-D) magnetohydrodynamic (MHD) model, LFM-helio, which is the heliospheric adaptation of the Lyon-Fedder-Mobarry MHD simulation code. The time-dependent coronal conditions were propagated throughout the inner heliosphere, and the simulation results were compared with the spacecraft located near 1 astronomical unit (AU) heliocentric distance: Advanced Composition Explorer (ACE), Solar Terrestrial Relations Observatory (STEREO-A and STEREO-B), and the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft that was in cruise phase measuring the heliospheric magnetic field between 0.35 and 0.6 AU. In addition, during the selected interval MESSENGER and ACE aligned radially allowing minimization of the effects of temporal variation at the Sun versus radial evolution of structures. Our simulations show that time-dependent simulationsreproduce the gross-scale structure of the heliosphere with higher fidelity, while on smaller spatial and faster time scales (e.g., 1 day) they provide important insights for interpretation of the data. The simulations suggest that moving boundaries of slow-fast wind transitions at 0.1 AU may result in the formation of inverted magnetic fields near pseudostreamers which is an intrinsically time-dependent process
Equation of state in relativistic magnetohydrodynamics: variable versus constant adiabatic index
Mignone, A.; McKinney, Jonathan C.
2007-07-01
The role of the equation of state (EoS) for a perfectly conducting, relativistic magnetized fluid is the main subject of this work. The ideal constant Γ-law EoS, commonly adopted in a wide range of astrophysical applications, is compared with a more realistic EoS that better approximates the single-specie relativistic gas. The paper focuses on three different topics. First, the influence of a more realistic EoS on the propagation of fast magnetosonic shocks is investigated. This calls into question the validity of the constant Γ-law EoS in problems where the temperature of the gas substantially changes across hydromagnetic waves. Secondly, we present a new inversion scheme to recover primitive variables (such as rest-mass density and pressure) from conservative ones that allows for a general EoS and avoids catastrophic numerical cancellations in the non-relativistic and ultrarelativistic limits. Finally, selected numerical tests of astrophysical relevance (including magnetized accretion flows around Kerr black holes) are compared using different equations of state. Our main conclusion is that the choice of a realistic EoS can considerably bear upon the solution when transitions from cold to hot gas (or vice versa) are present. Under these circumstances, a polytropic EoS can significantly endanger the solution.
Ultra-Relativistic Magneto-Hydro-Dynamic Jets in the context of Gamma Ray Bursts
Fendt, C; Fendt, Christian; Ouyed, Rachid
2004-01-01
We present a detailed numerical study of the dynamics and evolution of ultrarelativistic magnetohydrodynamic jets in the black hole-disk system under extreme magnetization conditions. We find that Lorentz factors of up to 3000 are achieved and derived a modifiedMichel scaling (Gamma ~ sigma) which allows for a wide variation in the flow Lorentz factor. Pending contamination induced by mass-entrainment, the linear Michel scaling links modulations in the ultrarelativistic wind to variations in mass accretion in the disk for a given magnetization. The jet is asymptotically dominated by the toroidal magnetic field allowing for efficient collimation. We discuss our solutions (jets) in the context of Gamma ray bursts and describe the relevant features such as the high variability in the Lorentz factor and how high collimation angles (~ 0-5 degrees), or cylindrical jets, can be achieved. We isolate a jet instability mechanism we refer to as the "bottle-neck" instability which essentially relies on a high magnetizati...
Bai, Xue-Ning; Sironi, Lorenzo; Spitkovsky, Anatoly
2014-01-01
We formulate a magnetohydrodynamic-particle-in-cell (MHD-PIC) method for describing the interaction between collisionless cosmic ray (CR) particles and a thermal plasma. The thermal plasma is treated as a fluid, obeying equations of ideal MHD, while CRs are treated as relativistic Lagrangian particles subject to the Lorentz force. Backreaction from CRs to the gas is included in the form of momentum and energy feedback. In addition, we include the electromagnetic feedback due to CR-induced Hall effect that becomes important when the electron-ion drift velocity of the background plasma induced by CRs approaches the Alfv\\'en velocity. Our method is applicable on scales much larger than the ion inertial length, bypassing the microscopic scales that must be resolved in conventional PIC methods, while retaining the full kinetic nature of the CRs. We have implemented and tested this method in the Athena MHD code, where the overall scheme is second-order accurate and fully conservative. As a first application, we des...
Mizuno, Y.; Nishikawa, K.I.; Zhang, B.; Giacomazzo, B.; Hardee, P.E.; Nagataki, S.; Hartmann, D.H.
2008-01-01
We solve the Riemann problem for the deceleration of arbitrarily magnetized relativistic ejecta injected into a static unmagnetized medium. We find that for the same initial Lorentz factor, the reverse shock becomes progressively weaker with increasing magnetization s (the Poynting-to-kinetic energy flux ratio), and the shock becomes a rarefaction wave when s exceeds a critical value, sc, defined by the balance between the magnetic pressure in the ejecta and the thermal pressure in the forward shock. In the rarefaction wave regime, we find that the rarefied region is accelerated to a Lorentz factor that is significantly larger than the initial value. This acceleration mechanism is due to the strong magnetic pressure in the ejecta.
General Relativistic Simulations of the Collapsar Scenario
DeBrye, N; Aloy, M A; Font, J A
2013-01-01
We are exploring the viability of the collapsar model for long-soft gamma-ray bursts. For this we perform state-of-the-art general relativistic hydrodynamic simulations in a dynamically evolving space-time with the CoCoNuT code. We start from massive low metallicity stellar models evolved up to core gravitational instability, and then follow the subsequent evolution until the system collapses forming a compact remnant. A preliminary study of the collapse outcome is performed by varying the typical parameters of the scenario, such as the initial stellar mass, metallicity, and rotational profile of the stellar progenitor. 1D models (without rotation) have been used to test our newly developed neutrino leakage scheme. This is a fundamental piece of our approach as it allows the central remnant (in all cases considered, a metastable high-mass neutron star) to cool down, eventually collapsing to a black hole. In two dimensions, we show that sufficiently fast rotating cores lead to the formation of Kerr black holes...
Masson, S.
2010-10-15
Solar activity manifests itself through highly dynamical events, such as flares and coronal mass ejections, which result in energy release by magnetic reconnection. This thesis focuses on two manifestations of this energy release: solar energetic particles and dynamics of magnetic reconnection. The first part of my work consists in the detailed temporal analysis of several electromagnetic signatures, produced by energetic particles in the solar atmosphere, with respect to the energetic particle flux at Earth. Using multi-instrument observations, I highlighted that particles can be accelerated by the flare to relativistic energies during a specific episode of acceleration in the impulsive phase. This showed that particles traveled a longer path length than the theoretical length generally assumed. Using in-situ measurements of magnetic field and plasma, I identified the interplanetary magnetic field for 10 particle events, and performing a velocity dispersion analysis I obtained the interplanetary length traveled by particles. I showed that the magnetic structure of the interplanetary medium play a crucial role in the association of the particle flux at Earth and the acceleration signatures of particles at the Sun. The second part of my work focuses on the dynamics of magnetic reconnection. Observationally, the best evidence for magnetic reconnection is the appearance of brightnesses at the solar surface. Performing the first data-driven 3 dimensional magneto-hydrodynamic (MHD) simulation of an observed event, I discovered that the evolution of brightnesses can be explained by the succession of two different reconnection regimes, induced by a new topological association where null-point separatrix lines are embedded in quasi-separatrix layers. This new topological association induces a change of field line connectivity, but also a continuous reconnection process, leading to an apparent slipping motion of reconnected field lines. From a MHD simulation I showed that
3D Relativistic MHD Simulation of a Tilted Accretion Disk Around a Rapidly Rotating Black Hole
Fragile, P Chris; Blaes, Omer M; Salmonson, Jay D
2016-01-01
We posit that accreting compact objects, including stellar mass black holes and neutron stars as well as supermassive black holes, may undergo extended periods of accretion during which the angular momentum of the disk at large scales is misaligned with that of the compact object. In such a scenario, Lense-Thirring precession caused by the rotating compact object can dramatically affect the disk. In this presentation we describe results from a three-dimensional relativistic magnetohydrodynamic simulation of an MRI turbulent disk accreting onto a tilted rapidly rotating black hole. For this case, the disk does not achieve the commonly described Bardeen-Petterson configuration; rather, it remains nearly planar, undergoing a slow global precession. Accretion from the disk onto the hole occurs predominantly through two opposing plunging streams that start from high latitudes with respect to both the black-hole and disk midplanes. This is a consequence of the non-sphericity of the gravitational spacetime of the bl...
Balsara, Dinshaw S.; Kim, Jinho
2016-05-01
The relativistic magnetohydrodynamics (RMHD) set of equations has recently seen an increased use in astrophysical computations. Even so, RMHD codes remain fragile. The reconstruction can sometimes yield superluminal velocities in certain parts of the mesh. The current generation of RMHD codes does not have any particularly good strategy for avoiding such an unphysical situation. In this paper we present a reconstruction strategy that overcomes this problem by making a single conservative to primitive transformation per cell followed by higher order WENO reconstruction on a carefully chosen set of primitives that guarantee subluminal reconstruction of the flow variables. For temporal evolution via a predictor step we also present second, third and fourth order accurate ADER methods that keep the velocity subluminal during the predictor step. The methods presented here are very general and should apply to other PDE systems where physical realizability is most easily asserted in the primitive variables. The RMHD system also requires the magnetic field to be evolved in a divergence-free fashion. In the treatment of classical numerical MHD the analogous issue has seen much recent progress with the advent of multidimensional Riemann solvers. By developing multidimensional Riemann solvers for RMHD, we show that similar advances extend to RMHD. As a result, the face-centered magnetic fields can be evolved much more accurately using the edge-centered electric fields in the corrector step. Those edge-centered electric fields come from a multidimensional Riemann solver for RMHD which we present in this paper. The overall update results in a one-step, fully conservative scheme that is suited for AMR. In this paper we also develop several new test problems for RMHD. We show that RMHD vortices can be designed that propagate on the computational mesh as self-preserving structures. These RMHD vortex test problems provide a means to do truly multidimensional accuracy testing for
Mininni, P; Dmitruk, P; Odier, P; Pinton, J-F; Plihon, N; Verhille, G; Volk, R; Bourgoin, M
2014-05-01
We analyze time series stemming from experiments and direct numerical simulations of hydrodynamic and magnetohydrodynamic turbulence. Simulations are done in periodic boxes, but with a volumetric forcing chosen to mimic the geometry of the flow in the experiments, the von Kármán swirling flow between two counterrotating impellers. Parameters in the simulations are chosen to (within computational limitations) allow comparisons between the experiments and the numerical results. Conducting fluids are considered in all cases. Two different configurations are considered: a case with a weak externally imposed magnetic field and a case with self-sustained magnetic fields. Evidence of long-term memory and 1/f noise is observed in experiments and simulations, in the case with weak magnetic field associated with the hydrodynamic behavior of the shear layer in the von Kármán flow, and in the dynamo case associated with slow magnetohydrodynamic behavior of the large-scale magnetic field.
Mininni, Pablo; Odier, Philippe; Pinton, Jean-François; Plihon, Nicolas; Verhille, Gautier; Volk, Romain; Bourgoin, Mickael
2014-01-01
We analyze time series stemming from experiments and direct numerical simulations of hydrodynamic and magnetohydrodynamic turbulence. Simulations are done in periodic boxes, but with a volumetric forcing chosen to mimic the geometry of the flow in the experiments, the von K\\'arm\\'an swirling flow between two counter-rotating impellers. Parameters in the simulations are chosen to (within computational limitations) allow comparisons between the experiments and the numerical results. Conducting fluids are considered in all cases. Two different configurations are considered: a case with a weak externally imposed magnetic field, and a case with self-sustained magnetic fields. Evidence of long-term memory and $1/f$ noise is observed in experiments and simulations, in the case with weak magnetic field associated with the hydrodynamic behavior of the shear layer in the von K\\'arm\\'an flow, and in the dynamo case associated with slow magnetohydrodynamic behavior of the large scale magnetic field.
Large-eddy simulations of fluid and magnetohydrodynamic turbulence using renormalized parameters
Mahendra K Verma; Shishir Kumar
2004-09-01
In this paper a procedure for large-eddy simulation (LES) has been devised for fluid and magnetohydrodynamic turbulence in Fourier space using the renormalized parameters; The parameters calculated using field theory have been taken from recent papers by Verma [1, 2]. We have carried out LES on 643 grid. These results match quite well with direct numerical simulations of 1283. We show that proper choice of parameter is necessary in LES.
Zhang, Weiqun; Wang, Peng
2008-01-01
Magnetic field strengths inferred for relativistic outflows including gamma-ray bursts (GRB) and active galactic nuclei (AGN) are larger than naively expected by orders of magnitude. We present three-dimensional relativistic magnetohydrodynamics (MHD) simulations demonstrating amplification and saturation of magnetic field by a macroscopic turbulent dynamo triggered by the Kelvin-Helmholtz shear instability. We find rapid growth of electromagnetic energy due to the stretching and folding of field lines in the turbulent velocity field resulting from non-linear development of the instability. Using conditions relevant for GRB internal shocks and late phases of GRB afterglow, we obtain amplification of the electromagnetic energy fraction to $\\epsilon_B \\sim 5 \\times 10^{-3}$. This value decays slowly after the shear is dissipated and appears to be largely independent of the initial field strength. The conditions required for operation of the dynamo are the presence of velocity shear and some seed magnetization b...
GENERAL RELATIVISTIC SIMULATIONS OF MAGNETIZED PLASMAS AROUND MERGING SUPERMASSIVE BLACK HOLES
Giacomazzo, Bruno [JILA, University of Colorado and National Institute of Standards and Technology, 440 UCB, Boulder, CO 80309 (United States); Baker, John G.; Van Meter, James R. [Gravitational Astrophysics Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD 21114 (United States); Coleman Miller, M.; Reynolds, Christopher S. [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States)
2012-06-10
Coalescing supermassive black hole binaries are produced by the mergers of galaxies and are the most powerful sources of gravitational waves accessible to space-based gravitational observatories. Some such mergers may occur in the presence of matter and magnetic fields and hence generate an electromagnetic counterpart. In this Letter, we present the first general relativistic simulations of magnetized plasma around merging supermassive black holes using the general relativistic magnetohydrodynamic code Whisky. By considering different magnetic field strengths, going from non-magnetically dominated to magnetically dominated regimes, we explore how magnetic fields affect the dynamics of the plasma and the possible emission of electromagnetic signals. In particular, we observe a total amplification of the magnetic field of {approx}2 orders of magnitude, which is driven by the accretion onto the binary and that leads to much stronger electromagnetic signals, more than a factor of 10{sup 4} larger than comparable calculations done in the force-free regime where such amplifications are not possible.
Relativistic Interpretation of Newtonian Simulations for Cosmic Structure Formation
Fidler, Christian; Rampf, Cornelius; Crittenden, Robert; Koyama, Kazuya; Wands, David
2016-01-01
The standard numerical tools for studying non-linear collapse of matter are Newtonian $N$-body simulations. Previous work has shown that these simulations are in accordance with General Relativity (GR) up to first order in perturbation theory, provided that the effects from radiation can be neglected. In this paper we show that the present day matter density receives more than 1% corrections from radiation on large scales if Newtonian simulations are initialised before $z=50$. We provide a relativistic framework in which unmodified Newtonian simulations are compatible with linear GR even in the presence of radiation. Our idea is to use GR perturbation theory to keep track of the evolution of relativistic species and the relativistic spacetime consistent with the Newtonian trajectories computed in $N$-body simulations. If metric potentials are sufficiently small, they can be computed using a first-order Einstein-Boltzmann code such as CLASS. We make this idea rigorous by defining a class of GR gauges, the Newt...
Magnetohydrodynamic simulation of reconnection in turbulent astrophysical plasmas
Widmer, Fabien
2016-07-19
Turbulence is ubiquitous at large-Reynolds-number astrophysical plasmas like in the Solar corona. In such environments, the turbulence is thought to enhance the energy conversion rate by magnetic reconnection above the classical model predictions. Since turbulence cannot be simulated together with the large scale behaviour of the plasma, magnetic reconnection is studied through the average properties of turbulence. A Reynolds-averaged turbulence model is explored in which turbulence is self-sustained and -generated by the large scales (mean-) field inhomogeneities. Employing that model, the influence of turbulence is investigated by large-scale MHD numerical simulations solving evolution equations of the energy and cross-helicity of the turbulence together with the MHD equations. Magnetic reconnection is found to be either rapidly enhanced or suppressed by turbulence depending on the turbulence timescale. If the turbulence timescale is self-consistently calculated, reconnection is always strongly enhanced. Since the solar corona bears strong guide magnetic fields perpendicular to the reconnecting magnetic fields, the influences of a strong guide field on turbulent reconnection is separately investigated. A slow down of reconnection, obtained in the presence of a finite guide field, can be understood by a finite residual helicity working against the enhancement of reconnection by the turbulence. The influence of turbulence on magnetic reconnection is further studied by means of high resolution simulations of plasmoid-unstable current sheets. These simulations revealed the importance of turbulence for reaching fast reconnection.
Relativistic MHD with Adaptive Mesh Refinement
Anderson, M; Liebling, S L; Neilsen, D; Anderson, Matthew; Hirschmann, Eric; Liebling, Steven L.; Neilsen, David
2006-01-01
We solve the relativistic magnetohydrodynamics (MHD) equations using a finite difference Convex ENO method (CENO) in 3+1 dimensions within a distributed parallel adaptive mesh refinement (AMR) infrastructure. In flat space we examine a Balsara blast wave problem along with a spherical blast wave and a relativistic rotor test both with unigrid and AMR simulations. The AMR simulations substantially improve performance while reproducing the resolution equivalent unigrid simulation results. We also investigate the impact of hyperbolic divergence cleaning for the spherical blast wave and relativistic rotor. We include unigrid and mesh refinement parallel performance measurements for the spherical blast wave.
Relativistic modeling capabilities in PERSEUS extended MHD simulation code for HED plasmas
Hamlin, Nathaniel D., E-mail: nh322@cornell.edu [438 Rhodes Hall, Cornell University, Ithaca, NY, 14853 (United States); Seyler, Charles E., E-mail: ces7@cornell.edu [Cornell University, Ithaca, NY, 14853 (United States)
2014-12-15
We discuss the incorporation of relativistic modeling capabilities into the PERSEUS extended MHD simulation code for high-energy-density (HED) plasmas, and present the latest hybrid X-pinch simulation results. The use of fully relativistic equations enables the model to remain self-consistent in simulations of such relativistic phenomena as X-pinches and laser-plasma interactions. By suitable formulation of the relativistic generalized Ohm’s law as an evolution equation, we have reduced the recovery of primitive variables, a major technical challenge in relativistic codes, to a straightforward algebraic computation. Our code recovers expected results in the non-relativistic limit, and reveals new physics in the modeling of electron beam acceleration following an X-pinch. Through the use of a relaxation scheme, relativistic PERSEUS is able to handle nine orders of magnitude in density variation, making it the first fluid code, to our knowledge, that can simulate relativistic HED plasmas.
Numerical simulations of dynamics and emission from relativistic astrophysical jets
Mimica, Petar; Rueda-Becerril, Jesus Misrayim; Tabik, Siham; Aloy, Carmen
2012-01-01
Broadband emission from relativistic outflows (jets) of active galactic nuclei (AGN) and gamma-ray bursts (GRBs) contains valuable information about the nature of the jet itself, and about the central engine which launches it. Using special relativistic hydrodynamics and magnetohydronamics simulations we study the dynamics of the jet and its interaction with the surrounding medium. The observational signature of the simulated jets is computed using a radiative transfer code developed specifically for the purpose of computing multi-wavelength, time-dependent, non-thermal emission from astrophysical plasmas. We present results of a series of long-term projects devoted to understanding the dynamics and emission of jets in parsec-scale AGN jets, blazars and the afterglow phase of the GRBs.
One dimensional PIC simulation of relativistic Buneman instability
Rajawat, Roopendra Singh
2016-01-01
Spatio-temporal evolution of the relativistic Buneman instability has been investigated in one dimension using an in-house developed particle-in-cell simulation code. Starting from the excitation of the instability, its evolution has been followed numerically till its quenching and beyond. As compared to the well understood non-relativistic case, it is found that the maximum growth rate ($\\gamma_{max}$) reduces due to relativistic effects and varies with $\\gamma_{e0}$ and m/M as $\\gamma_{max} \\sim \\frac{\\sqrt{3}}{2\\sqrt{\\gamma_{e0}}}\\biglb(\\frac{m}{2M}\\bigrb)^{1/3}$, where $\\gamma_{e0}$ is Lorentz factor associated with the initial electron drift velocity ($v_{0}$) and (m/M) is the electron to ion mass ratio. Further it is observed that in contrast to the non-relativistic results[Hirose,Plasma Phys. 20, 481(1978)] at the saturation point, ratio of electrostatic field energy density ($\\sum\\limits_{k} |E_{k}|^{2}/8\\pi$) to initial drift kinetic energy density ($W_{0}$) scales with $\\gamma_{e0}$ as $\\sim 1/\\gamm...
Three-Dimensional Magnetohydrodynamic Simulation of Slapper Initiation Systems
Christensen, J S; Hrousis, C A
2010-03-09
Although useful information can be gleaned from 2D and even 1D simulations of slapper type initiation systems, these systems are inherently three-dimensional and therefore require full 3D representation to model all relevant details. Further, such representation provides additional insight into optimizing the design of such devices from a first-principles perspective and can thereby reduce experimental costs. We discuss in this paper several ongoing efforts in modeling these systems, our pursuit of validation, and extension of these methods to other systems. Our results show the substantial dependence upon highly accurate global equations of state and resistivity models in these analyses.
PIC Simulation of Relativistic Electromagnetic Plasma Expansion with Radiation Damping
Noguchi, Koichi; Liang, Edison; Wilks, Scott
2004-11-01
One of the unsolved problems in astrophysics is the acceleration of nonthermal high-energy particles. Nonthermal radiation is observed from pulsars, blazers, gamma-ray bursts and black holes. Recently, a new mechanism of relativistic nonthermal particle acceleration, called the Diamagnetic Relativistic Pulse Accelerator(DRPA), discovered using multi-dimensional Particle-in-Cell(PIC) simulations. When a plasma-loaded electromagnetic pulse expands relativistically, the self-induced drift current creates ponderomotive trap, which drags only the fast particles in the trap and leave slow ones behind. Here we study the effect of radiation on an electron-positron plasma accelerated by the DRPA, by introducing the radiation force in our 2D PIC code. In the radiation case, particles are accelerated by the EM pulse but decelerated by the radiation reaction simultaneously, whereas particles are accelerated indefinitely in the non-radiation case. We find that even with the radiation dumping the DRPA mechanism remains robust and particles are accelerated to over γ>100. After the simulation reaches the quasi-equilibrium state, kinetic energy becomes constant, and field energy is converted to radiation using particles as the transfer agent. We will also produce sample light waves of the radiation output.
One dimensional PIC simulation of relativistic Buneman instability
Rajawat, Roopendra Singh; Sengupta, Sudip
2016-10-01
Spatio-temporal evolution of the relativistic Buneman instability has been investigated in one dimension using an in-house developed particle-in-cell simulation code. Starting from the excitation of the instability, its evolution has been followed numerically till its quenching and beyond. The simulation results have been quantitatively compared with the fluid theory and are found to be in conformity with the well known fact that the maximum growth rate (γmax) reduces due to relativistic effects and varies with γ e 0 and m/M as γ m a x ˜ /√{ 3 } 2 √{ γ e 0 } ( /m 2 M ) 1 / 3 , where γ e 0 is the Lorentz factor associated with the initial electron drift velocity (v0) and (m/M) is the electron to ion mass ratio. Further it is observed that in contrast to the non-relativistic results [A. Hirose, Plasma Phys. 20, 481 (1978)] at the saturation point, the ratio of electrostatic field energy density ( ∑ k | E k | 2 / 8 π ) to initial drift kinetic energy density (W0) scales with γ e 0 as ˜ 1 / γe 0 2 . This novel result on the scaling of energy densities has been found to be in quantitative agreement with the scalings derived using fluid theory.
无
2000-01-01
Two dimensional Magnetohydrodynamic (MHD) equations with and without the momentum addi-tion respectively have been used to simulate the solar wind structure on the meridian plane. The results show that far away from the sun it isn't solar magnetic field that induces the concave solar wind speed. Instead, there may be the fast speed streamer driven by the momentum addition and an interface between high and low speed streamers. The interaction between high and low speed streamers causes the sharp division.
Simulated annealing applied to two-dimensional low-beta reduced magnetohydrodynamics
Chikasue, Y., E-mail: chikasue@ppl.k.u-tokyo.ac.jp [Graduate School of Frontier Sciences, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa-shi, Chiba 277-8561 (Japan); Furukawa, M., E-mail: furukawa@damp.tottori-u.ac.jp [Graduate School of Engineering, Tottori University, Minami 4-101, Koyama-cho, Tottori-shi, Tottori 680-8552 (Japan)
2015-02-15
The simulated annealing (SA) method is applied to two-dimensional (2D) low-beta reduced magnetohydrodynamics (R-MHD). We have successfully obtained stationary states of the system numerically by the SA method with Casimir invariants preserved. Since the 2D low-beta R-MHD has two fields, the relaxation process becomes complex compared to a single field system such as 2D Euler flow. The obtained stationary state can have fine structure. We have found that the fine structure appears because the relaxation processes are different between kinetic energy and magnetic energy.
Extragalactic jets with helical magnetic fields: relativistic MHD simulations
Keppens, R; van der Holst, B; Casse, F
2008-01-01
Extragalactic jets are inferred to harbor dynamically important, organized magnetic fields which presumably aid in the collimation of the relativistic jet flows. We here explore by means of grid-adaptive, high resolution numerical simulations the morphology of AGN jets pervaded by helical field and flow topologies. We concentrate on morphological features of the bow shock and the jet beam behind the Mach disk, for various jet Lorentz factors and magnetic field helicities. We investigate the influence of helical magnetic fields on jet beam propagation in overdense external medium. We use the AMRVAC code, employing a novel hybrid block-based AMR strategy, to compute ideal plasma dynamics in special relativity. The helicity of the beam magnetic field is effectively transported down the beam, with compression zones in between diagonal internal cross-shocks showing stronger toroidal field regions. In comparison with equivalent low-relativistic jets which get surrounded by cocoons with vortical backflows filled by ...
Conservation of Circulation in Magnetohydrodynamics
Bekenstein, J D; Bekenstein, Jacob D.; Oron, Asaf
2000-01-01
We demonstrate, both at the Newtonian and (general) relativistic levels, theexistence of a generalization of Kelvin's circulation theorem (for pure fluids)which is applicable to perfect magnetohydrodynamics. The argument is based onthe least action principle for magnetohydrodynamic flow. Examples of the newconservation law are furnished. The new theorem should be helpful inidentifying new kinds of vortex phenomena distinct from magnetic ropes or fluidvortices.
Nonlinear electron-magnetohydrodynamic simulations of three dimensional current shear instability
Jain, Neeraj [Max Planck Institute for Solar System Research, Max-Planck-Str. 2, 37191 Katlenburg-Lindau (Germany); Das, Amita; Sengupta, Sudip; Kaw, Predhiman [Institute for Plasma Research, Bhat, Gandhinagar 382428 (India)
2012-09-15
This paper deals with detailed nonlinear electron-magnetohydrodynamic simulations of a three dimensional current shear driven instability in slab geometry. The simulations show the development of the instability in the current shear layer in the linear regime leading to the generation of electromagnetic turbulence in the nonlinear regime. The electromagnetic turbulence is first generated in the unstable shear layer and then spreads into the stable regions. The turbulence spectrum shows a new kind of anisotropy in which power transfer towards shorter scales occurs preferentially in the direction perpendicular to the electron flow. Results of the present three dimensional simulations of the current shear instability are compared with those of our earlier two dimensional simulations of sausage instability. It is found that the flattening of the mean velocity profile and thus reduction in the electron current due to generation of electromagnetic turbulence in the three dimensional case is more effective as compared to that in the two dimensional case.
Deng, Wei; Li, Hui; Zhang, Bing; Li, Shengtai
2015-06-01
We perform 3D relativistic ideal magnetohydrodynamics (MHD) simulations to study the collisions between high-σ (Poynting-flux-dominated (PFD)) blobs which contain both poloidal and toroidal magnetic field components. This is meant to mimic the interactions inside a highly variable PFD jet. We discover a significant electromagnetic field (EMF) energy dissipation with an Alfvénic rate with the efficiency around 35%. Detailed analyses show that this dissipation is mostly facilitated by the collision-induced magnetic reconnection. Additional resolution and parameter studies show a robust result that the relative EMF energy dissipation efficiency is nearly independent of the numerical resolution or most physical parameters in the relevant parameter range. The reconnection outflows in our simulation can potentially form the multi-orientation relativistic mini jets as needed for several analytical models. We also find a linear relationship between the σ values before and after the major EMF energy dissipation process. Our results give support to the proposed astrophysical models that invoke significant magnetic energy dissipation in PFD jets, such as the internal collision-induced magnetic reconnection and turbulence model for gamma-ray bursts, and reconnection triggered mini jets model for active galactic nuclei. The simulation movies are shown in http://www.physics.unlv.edu/∼deng/simulation1.html.
Relativistic MHD Simulations of Poynting Flux-Driven Jets
Guan, Xiaoyue; Li, Shengtai
2013-01-01
Relativistic, magnetized jets are observed to propagate to very large distances in many Active Galactic Nuclei (AGN). We use 3D relativistic MHD (RMHD) simulations to study the propagation of Poynting flux-driven jets in AGN. These jets are assumed already being launched from the vicinity ($\\sim 10^3$ gravitational radii) of supermassive black holes. Jet injections are characterized by a model described in Li et al. (2006) and we follow the propagation of these jets to ~ parsec scales. We find that these current-carrying jets are always collimated and mildly relativistic. When $\\alpha$, the ratio of toroidal-to-poloidal magnetic flux injection, is large the jet is subject to non-axisymmetric current-driven instabilities (CDI) which lead to substantial dissipation and reduced jet speed. However, even with the presence of instabilities, the jet is not disrupted and will continue to propagate to large distances. We suggest that the relatively weak impact by the instability is due to the nature of the instability...
Lattice Bhatnagar-Gross-Krook Simulations in 2-D Incompressible Magnetohydrodynamics
无
2005-01-01
Lattice Boltzmann Method is recently developed within numerical schemes for simulating a variety of physical systems. In this paper a new lattice Bhatnagar-Gross-Krook (LBGK) model for two-dimensional incompressible magnetohydrodynamics (IMHD) is presented. The model is an extension of a hydrodynamics lattice BGK model with 9 velocities on a square lattice, resulting in a model with 17 velocities. Most of the existing LBGK models for MHD can be viewed as compressible schemes to simulate incompressible flows. The compressible effect might lead to some undesirable errors in numerical simulations. In our model the compressible effect has been overcome successfully. The model is then applied to the Hartmann flow, giving reasonable results.
Rayleigh-Taylor instability in Magnetohydrodynamic Simulations of the Crab Nebula
Porth, Oliver; Keppens, Rony
2014-01-01
In this paper we discuss the development of Rayleigh-Taylor filaments in axisymmetric simulations of Pulsar wind nebulae (PWN). High-resolution adaptive mesh refinement magnetohydrodynamic (MHD) simulations are used to resolve the non-linear evolution of the instability. The typical separation of filaments is mediated by the turbulent flow in the nebula and hierarchical growth of the filaments. The strong magnetic dissipation and field-randomization found in recent global three-dimensional simulations of PWN suggests that magnetic tension is not strong enough to suppress the growth of RT filaments, in agreement with the observations of prominent filaments in the Crab nebula. The long-term axisymmetric results presented here confirm this finding.
Rosenberg, D.; Pouquet, A.; Germaschewski, K.; Ng, C. S.; Bhattacharjee, A.
2006-10-01
A recently developed spectral-element adaptive refinement incompressible magnetohydrodynamic (MHD) code is applied to simulate the problem of island coalescence instability (ICI) in 2D. The MHD solver is explicit, and uses the Elsasser formulation on high-order elements. It automatically takes advantage of the adaptive grid mechanics that have been described in [Rosenberg, Fournier, Fischer, Pouquet, J. Comp. Phys., 215, 59-80 (2006)], allowing both statically refined and dynamically refined grids. ICI is a MHD process that can produce strong current sheets and subsequent reconnection and heating in a high-Lundquist number plasma such as the solar corona [cf., Ng and Bhattacharjee, Phys. Plasmas, 5, 4028 (1998)]. Thus, it is desirable to use adaptive refinement grids to increase resolution, and to maintain accuracy at the same time. Results are compared with simulations using finite difference method with the same refinement grid, as well as pesudo-spectral simulations using uniform grid.
Relativistic Klystron Two-Beam Accelerator Simulation Code Development
Lidia, Steven; Ryne, Robert
1997-05-01
We present recent work on the development and testing of a 3-D simu- lation code for relativistic klystron two-beam accelerators (RK-TBAs). This new code utilizes symplectic integration techniques to push macro- particles, coupled to a circuit equation framework that advances the fields in the cavities. Space charge effects are calculated using a Green's function approach, and pipe wall effects are included in the electrostatic approximation. We present simulations of the LBNL/LLNL RK-TBA device, emphasizing cavity power development and beam dynamics, including the high- and low-frequency beam break-up instabilities.
Liu, Wei
2010-01-01
We present results from three-dimensional ideal magnetohydrodynamic simulations of unmagnetized dense plasma jet injection into a hot strongly magnetized plasma, with the aim of providing insight into core fueling of a tokamak with parameters relevant for ITER (International Thermonuclear Experimental Reactor) and NSTX (National Spherical Torus Experiment). Unmagnetized jet injection is similar to compact toroid injection but with higher possible injection density and total mass, as well as a potentially smaller footprint for the injector hardware. Our simulation results show that the unmagnetized dense jet is quickly magnetized upon injection. The penetration depth of the jet into the tokamak plasma is mostly dependent on the jet's initial kinetic energy while the jet's magnetic field determines its interior evolution. A key requirement for spatially precise fueling is for the jet's slowing-down time to be less than the time for the perturbed tokamak magnetic flux to relax due to magnetic reconnection. Thus ...
Reconnection-Driven Magnetohydrodynamic Turbulence in a Simulated Coronal-Hole Jet
Uritsky, Vadim M; DeVore, C Richard; Karpen, Judith T
2016-01-01
Extreme-ultraviolet and X-ray jets occur frequently in magnetically open coronal holes on the Sun, especially at high solar latitudes. Some of these jets are observed by white-light coronagraphs as they propagate through the outer corona toward the inner heliosphere, and it has been proposed that they give rise to microstreams and torsional Alfv\\'{e}n waves detected in situ in the solar wind. To predict and understand the signatures of coronal-hole jets, we have performed a detailed statistical analysis of such a jet simulated with an adaptively refined magnetohydrodynamics model. The results confirm the generation and persistence of three-dimensional, reconnectiondriven magnetic turbulence in the simulation. We calculate the spatial correlations of magnetic fluctuations within the jet and find that they agree best with the M\\"{u}ller - Biskamp scaling model including intermittent current sheets of various sizes coupled via hydrodynamic turbulent cascade. The anisotropy of the magnetic fluctuations and the sp...
Proga, Daniel
2007-05-15
I present results from magnetohydrodynamic (MHD) simulations of a gaseous envelope collapsing onto a black hole (BH). These results support the notion that the collapsar model is one of the most promising scenarios to explain the huge release of energy in a matter of seconds associated with gamma-ray bursts (GRBs). Additionally, the MHD simulations show that at late times, when the mass supply rate is expected to decrease, the region in the vicinity of the BH can play an important role in determining the rate of accretion, its time behaviour and ultimately the energy output. In particular, the magnetic flux accumulated around the BH can repeatedly stop and then restart the energy release. As proposed by Proga & Zhang, the episode or episodes of reoccurrence of accretion processes can correspond to X-ray flares discovered recently in a number of GRBs.
Zaliznyak, Yu A; Goedbloed, J P; Zaliznyak, Yu.
2003-01-01
We present a numerical study of an idealized magnetohydrodynamic (MHD) configuration consisting of a planar wake flow embedded into a three-dimensional (3D) sheared magnetic field. Our simulations investigate the possibility for in-situ development of large-scale compressive disturbances at cospatial current sheet -- velocity shear regions in the heliosphere. Using a linear MHD solver, we first systematically chart the destabilized wavenumbers, corresponding growth rates, and physical parameter ranges for dominant 3D sinuous-type instabilities in an equilibrium wake--current sheet system. Wakes bounded by sufficiently supersonic (Mach number $M_s > 2.6$) flow streams are found to support dominant fully 3D sinuous instabilities when the plasma beta is of order unity. Fully nonlinear, compressible 2.5D and 3D MHD simulations show the self-consistent formation of shock fronts of fast magnetosonic type. They carry density perturbations far away from the wake's center. Shock formation conditions are identified in ...
Onofri, M; Malara, F; Veltri, P
2010-11-19
A compressible magnetohydrodynamics simulation of the reversed-field pinch is performed including anisotropic thermal conductivity. When the thermal conductivity is much larger in the direction parallel to the magnetic field than in the perpendicular direction, magnetic field lines become isothermal. As a consequence, as long as magnetic surfaces exist, a temperature distribution is observed displaying a hotter confined region, while an almost uniform temperature is produced when the magnetic field lines become chaotic. To include this effect in the numerical simulation, we use a multiple-time-scale analysis, which allows us to reproduce the effect of a large parallel thermal conductivity. The resulting temperature distribution is related to the existence of closed magnetic surfaces, as observed in experiments. The magnetic field is also affected by the presence of an anisotropic thermal conductivity.
Depletion of nonlinearity in magnetohydrodynamic turbulence: Insights from analysis and simulations.
Gibbon, J D; Gupta, A; Krstulovic, G; Pandit, R; Politano, H; Ponty, Y; Pouquet, A; Sahoo, G; Stawarz, J
2016-04-01
It is shown how suitably scaled, order-m moments, D_{m}^{±}, of the Elsässer vorticity fields in three-dimensional magnetohydrodynamics (MHD) can be used to identify three possible regimes for solutions of the MHD equations with magnetic Prandtl number P_{M}=1. These vorticity fields are defined by ω^{±}=curlz^{±}=ω±j, where z^{±} are Elsässer variables, and where ω and j are, respectively, the fluid vorticity and current density. This study follows recent developments in the study of three-dimensional Navier-Stokes fluid turbulence [Gibbon et al., Nonlinearity 27, 2605 (2014)NONLE50951-771510.1088/0951-7715/27/10/2605]. Our mathematical results are then compared with those from a variety of direct numerical simulations, which demonstrate that all solutions that have been investigated remain in only one of these regimes which has depleted nonlinearity. The exponents q^{±} that characterize the inertial range power-law dependencies of the z^{±} energy spectra, E^{±}(k), are then examined, and bounds are obtained. Comments are also made on (a) the generalization of our results to the case P_{M}≠1 and (b) the relation between D_{m}^{±} and the order-m moments of gradients of magnetohydrodynamic fields, which are used to characterize intermittency in turbulent flows.
Relativistic simulation of the Vlasov equation for plasma expansion into vacuum
H Abbasi
2012-12-01
Full Text Available In this study, relativistic Vlasov simulation of plasma for expansion of collisionless plasma for into vacuum is presented. The model is based on 1+1 dimensional phase space and electrostatic approximation. For this purpose, the electron dynamics is studied by the relativistic Vlasov equation. Regardless of the ions temperature, fluid equations are used for their dynamics. The initial electrons distribution function is the relativistic Maxwellian. The results show that due to the electrons relativistic temperature, the process of the plasma expansion takes place faster, the resulting electric field is stronger and the ions are accelerated to higher velocities, in comparison to the non-relativistic case.
Do Newtonian large-scale structure simulations fail to include relativistic effects?
Faraoni, Valerio; Prain, Angus
2015-01-01
The Newtonian simulations describing the formation of large-scale structures do not include relativistic effects. A new approach to this problem is proposed, which consists of splitting the Hawking-Hayward quasi-local energy of a closed spacelike 2-surface into a "Newtonian" part due to local perturbations and a "relativistic" part due to the cosmology. It is found that the Newtonian part dominates over the relativistic one as time evolves, lending support to the validity of Newtonian simulations.
Simulation of relativistically colliding laser-generated electron flows
Yang, Xiaohu; Sarri, Gianluca; Borghesi, Marco
2012-01-01
The plasma dynamics resulting from the simultaneous impact, of two equal, ultra-intense laser pulses, in two spatially separated spots, onto a dense target is studied via particle-in-cell (PIC) simulations. The simulations show that electrons accelerated to relativistic speeds, cross the target and exit at its rear surface. Most energetic electrons are bound to the rear surface by the ambipolar electric field and expand along it. Their current is closed by a return current in the target, and this current configuration generates strong surface magnetic fields. The two electron sheaths collide at the midplane between the laser impact points. The magnetic repulsion between the counter-streaming electron beams separates them along the surface normal direction, before they can thermalize through other beam instabilities. This magnetic repulsion is also the driving mechanism for the beam-Weibel (filamentation) instability, which is thought to be responsible for magnetic field growth close to the internal shocks of ...
Sovinec, C.R.
1995-12-31
Numerical computation is used to investigate resistive magnetohydrodynamic (MHD) fluctuations in the reversed-field pinch (RFP) and in tokamak-like configurations driven solely by direct current (DC) helicity injection. A Lundquist number (S) scan of RFP turbulence without plasma pressure produces the weak scaling of S{sup -0.18} for the root-mean-square magnetic fluctuation level for 2.5x10{sup 3}{le}S{le}4x10{sup 4}. The temporal behavior of fluctuations and the reversal parameter becomes more regular as S is increased, acquiring a {open_quotes}sawtooth{close_quotes} shape at the largest value of S. Simulations with plasma pressure and anisotropic thermal conduction demonstrate energy transport resulting from parallel heat fluctuations. To investigate means of improving RFP energy confinement, three forms of current profile modification are tested. Radio frequency (RF) current drive is modeled with an auxiliary electron force, and linear stability calculations are used.
Sovinec, Carl R. [Univ. of Wisconsin, Madison, WI (United States)
1995-11-01
Numerical computation is used to investigate resistive magnetohydrodynamic (MHD) fluctuations in the reversed-field pinch (RFP) and in tokamak-like configurations driven solely by direct current (DC) helicity injection. A Lundquist number (S) scan of RFP turbulence without plasma pressure produces the weak scaling of S^{-0.18} for the root-mean-square magnetic fluctuation level for 2.5x10^{3}≤S≤4x10^{4}. The temporal behavior of fluctuations and the reversal parameter becomes more regular as S is increased, acquiring a "sawtooth" shape at the largest value of S. Simulations with plasma pressure and anisotropic thermal conduction demonstrate energy transport resulting from parallel heat fluctuations. To investigate means of improving RFP energy confinement, three forms of current profile modification are tested. Radio frequency (RF) current drive is modeled with an auxiliary electron force, and linear stability calculations are used.
Liu, Wei [Los Alamos National Laboratory; Hsu, Scott [Los Alamos National Laboratory; Li, Hui [Los Alamos National Laboratory
2009-01-01
We present results from three-dimensional ideal magnetohydrodynamic simulations of low {beta} compact toroid (CT) injection into a hot strongly magnetized plasma, with the aim of providing insight into CT fueling of a tokamak with parameters relevant for ITER (International Thermonuclear Experimental Reactor). A regime is identified in terms of CT injection speed and CT-to-background magnetic field ratio that appears promising for precise core fueling. Shock-dominated regimes, which are probably unfavorable for tokamak fueling, are also identified. The CT penetration depth is proportional to the CT injection speed and density. The entire CT evolution can be divided into three stages: (1) initial penetration, (2) compression in the direction of propagation and reconnection, and (3) coming to rest and spreading in the direction perpendicular to injection. Tilting of the CT is not observed due to the fast transit time of the CT across the background plasma.
Large-scale magnetic fields at high Reynolds numbers in magnetohydrodynamic simulations.
Hotta, H; Rempel, M; Yokoyama, T
2016-03-25
The 11-year solar magnetic cycle shows a high degree of coherence in spite of the turbulent nature of the solar convection zone. It has been found in recent high-resolution magnetohydrodynamics simulations that the maintenance of a large-scale coherent magnetic field is difficult with small viscosity and magnetic diffusivity (≲10 (12) square centimenters per second). We reproduced previous findings that indicate a reduction of the energy in the large-scale magnetic field for lower diffusivities and demonstrate the recovery of the global-scale magnetic field using unprecedentedly high resolution. We found an efficient small-scale dynamo that suppresses small-scale flows, which mimics the properties of large diffusivity. As a result, the global-scale magnetic field is maintained even in the regime of small diffusivities-that is, large Reynolds numbers.
Monte Carlo simulations of Photospheric emission in relativistic outflows
Bhattacharya, Mukul; Santana, Rodolfo; Kumar, Pawan
2016-01-01
We study the spectra of photospheric emission from highly relativistic gamma-ray burst outflows using a Monte Carlo (MC) code. We consider the Comptonization of photons with a fast cooled synchrotron spectrum in a relativistic jet with photon to electron number ratio $N_{\\gamma}/N_e = 10^5$. For all our simulations, we use mono-energetic protons which interact with thermalised electrons through the Coulomb interaction. The photons, electrons and protons are cooled adiabatically as the jet expands outwards. We find that the initial energy distribution of the protons and electrons do not have any appreciable effect on the photon peak energy and the power-law spectrum above the peak energy. We also find that the Coulomb interaction between the electrons and the protons does not affect the output photon spectrum significantly as the energy of the electrons is elevated only marginally. The peak energy and the spectral indices for the low and high energy power-law tails of the photon spectrum remain practically unc...
Zanotti, Olindo; Dumbser, Michael
2015-01-01
We present a new numerical tool for solving the special relativistic ideal MHD equations that is based on the combination of the following three key features: (i) a one-step ADER discontinuous Galerkin (DG) scheme that allows for an arbitrary order of accuracy in both space and time, (ii) an a posteriori subcell finite volume limiter that is activated to avoid spurious oscillations at discontinuities without destroying the natural subcell resolution capabilities of the DG finite element framework and finally (iii) a space-time adaptive mesh refinement (AMR) framework with time-accurate local time-stepping. The divergence-free character of the magnetic field is instead taken into account through the so-called 'divergence-cleaning' approach. The convergence of the new scheme is verified up to 5th order in space and time and the results for a sample of significant numerical tests including shock tube problems, the RMHD rotor problem and the Orszag-Tang vortex system are shown. We also consider a simple case of t...
Tchekhovskoy, Alexander
2015-01-01
Active galactic nuclei jets are thought to form in the immediate vicinity of the event horizons of supermassive black holes. Therefore, jets could be excellent probes of general relativity. However, in practice, using jets to infer near-black hole physics is not straightforward since the cause of their most basic morphological features is not understood. For instance, there is no agreement on the cause of the well-known Fanaroff-Riley (FR) morphological dichotomy of jets, with FRI jets being shorter and wiggly and FRII jets being longer and more stable. Here, we carry out 3D relativistic magnetohydrodynamic (MHD) simulations of relativistic jets propagating through the ambient medium. Because in flat density cores of galaxies ($n \\propto r^{-\\alpha}$ with $\\alpha < 2$) the mass per unit distance ahead of the jets increases with distance, the jets slow down and collimate into smaller opening angles. This makes the jets more vulnerable to the 3D magnetic kink ("corkscrew") instability, which develops faster ...
Relativistic simulation of the Vlasov equation for plasma expansion into vacuum
H ABBASI; R Shokoohi; Moridi, M.
2012-01-01
In this study, relativistic Vlasov simulation of plasma for expansion of collisionless plasma for into vacuum is presented. The model is based on 1+1 dimensional phase space and electrostatic approximation. For this purpose, the electron dynamics is studied by the relativistic Vlasov equation. Regardless of the ions temperature, fluid equations are used for their dynamics. The initial electrons distribution function is the relativistic Maxwellian. The results show that due to the electrons ...
Resistive magnetohydrodynamic simulations of X-line retreat during magnetic reconnection
Murphy, N A
2010-01-01
To investigate the impact of current sheet motion on the reconnection process, we perform resistive magnetohydrodynamic (MHD) simulations of two closely located reconnection sites which move apart from each other as reconnection develops. This simulation develops less quickly than an otherwise equivalent single perturbation simulation but eventually exhibits a higher reconnection rate. The unobstructed outflow jets are faster and longer than the outflow jets directed towards the magnetic island that forms between the two current sheets. The X-line and flow stagnation point are located near the trailing end of each current sheet very close to the obstructed exit. The speed of X-line retreat ranges from ~0.02-0.06 while the speed of stagnation point retreat ranges from ~0.03-0.07, in units of the initial upstream Alfven velocity. Early in time, the flow stagnation point is located closer to the center of the current sheet than the X-line, but later on the relative positions of these two points switch. Consequen...
Linear simulations of the cylindrical Richtmyer-Meshkov instability in magnetohydrodynamics
Bakhsh, Abeer
2016-03-09
Numerical simulations and analysis indicate that the Richtmyer-Meshkov instability(RMI) is suppressed in ideal magnetohydrodynamics(MHD) in Cartesian slab geometry. Motivated by the presence of hydrodynamic instabilities in inertial confinement fusion and suppression by means of a magnetic field, we investigate the RMI via linear MHD simulations in cylindrical geometry. The physical setup is that of a Chisnell-type converging shock interacting with a density interface with either axial or azimuthal (2D) perturbations. The linear stability is examined in the context of an initial value problem (with a time-varying base state) wherein the linearized ideal MHD equations are solved with an upwind numerical method. Linear simulations in the absence of a magnetic field indicate that RMI growth rate during the early time period is similar to that observed in Cartesian geometry. However, this RMI phase is short-lived and followed by a Rayleigh-Taylor instability phase with an accompanied exponential increase in the perturbation amplitude. We examine several strengths of the magnetic field (characterized by β=2p/B^2_r) and observe a significant suppression of the instability for β ≤ 4. The suppression of the instability is attributed to the transport of vorticity away from the interface by Alfvén fronts.
Yuan, Xingqiu; Trichtchenko, Larisa; Boteler, David
Propagation of coronal mass ejections from solar surface to the Earth magnetosphere is strongly influenced by the conditions in solar corona and ambient solar wind. Thus, reliable simulation of the background solar wind is the primary task toward the development of numerical model for the transient events. In this paper we introduce a new numerical model which has been specifically designed for numerical study of the solar corona and ambient solar wind. This model is based on our recently developed three-dimensional Spherical Coordinate Adaptive Magneto-Hydro-Dynamic (MHD) code (SCA-MHD-3D) [Yuan et al., 2009]. Modifications has been done to include the observed magnetic field at the photosphere as inner boundary conditions. The energy source term together with reduced plasma gamma are used in the nonlinear MHD equations in order to simulate the solar wind acceleration from subsonic speed at solar surface to supersonic speed at the inter-heliosphere region, and the absorbing boundary conditions are used at the solar surface. This model has been applied to simulate the background solar wind condition for several different solar rotations, and comparison between the observation and model output have shown that it reproduces many features of solar wind, including open and closed magnetic fields, fast and slow solar wind speed, sector boundaries, etc.
Liu, Wei; Li, Hui; Li, Shengtai; Lynn, Alan G
2008-01-01
Nonlinear ideal magnetohydrodynamic (MHD) simulations of the propagation and expansion of a magnetic "bubble" plasma into a lower density, weakly-magnetized background plasma are presented. These simulations mimic the geometry and parameters of the Plasma Bubble Expansion Experiment (PBEX) [A. G. Lynn, Y. Zhang, S. C. Hsu, H. Li, W. Liu, M. Gilmore, and C. Watts, Bull. Amer. Phys. Soc. {\\bf 52}, 53 (2007)], which is studying magnetic bubble expansion as a model for extra-galactic radio lobes. The simulations predict several key features of the bubble evolution. First, the direction of bubble expansion depends on the ratio of the bubble toroidal to poloidal magnetic field, with a higher ratio leading to expansion predominantly in the direction of propagation and a lower ratio leading to expansion predominantly normal to the direction of propagation. Second, an MHD shock and a trailing slow-mode compressible MHD wavefront are formed ahead of the bubble as it propagates into the background plasma. Third, the bub...
Large-Eddy Simulations of Magnetohydrodynamic Turbulence in Heliophysics and Astrophysics
Miesch, Mark; Matthaeus, William; Brandenburg, Axel; Petrosyan, Arakel; Pouquet, Annick; Cambon, Claude; Jenko, Frank; Uzdensky, Dmitri; Stone, James; Tobias, Steve; Toomre, Juri; Velli, Marco
2015-11-01
We live in an age in which high-performance computing is transforming the way we do science. Previously intractable problems are now becoming accessible by means of increasingly realistic numerical simulations. One of the most enduring and most challenging of these problems is turbulence. Yet, despite these advances, the extreme parameter regimes encountered in space physics and astrophysics (as in atmospheric and oceanic physics) still preclude direct numerical simulation. Numerical models must take a Large Eddy Simulation (LES) approach, explicitly computing only a fraction of the active dynamical scales. The success of such an approach hinges on how well the model can represent the subgrid-scales (SGS) that are not explicitly resolved. In addition to the parameter regime, heliophysical and astrophysical applications must also face an equally daunting challenge: magnetism. The presence of magnetic fields in a turbulent, electrically conducting fluid flow can dramatically alter the coupling between large and small scales, with potentially profound implications for LES/SGS modeling. In this review article, we summarize the state of the art in LES modeling of turbulent magnetohydrodynamic (MHD) flows. After discussing the nature of MHD turbulence and the small-scale processes that give rise to energy dissipation, plasma heating, and magnetic reconnection, we consider how these processes may best be captured within an LES/SGS framework. We then consider several specific applications in heliophysics and astrophysics, assessing triumphs, challenges, and future directions.
Wang, Peng; Abel, Tom; /KIPAC, Menlo Park /Santa Barbara, KITP
2007-12-18
Using magnetohydrodynamic (MHD) adaptive mesh refinement simulations, we study the formation and early evolution of disk galaxies with a magnetized interstellar medium. For a 10{sup 10} M{sub {circle_dot}} halo with initial NFW dark matter and gas profiles, we impose a uniform 10{sup -9} G magnetic field and follow its collapse, disk formation and evolution up to 1 Gyr. Comparing to a purely hydrodynamic simulation with the same initial condition, we find that a protogalactic field of this strength does not significantly influence the global disk properties. At the same time, the initial magnetic fields are quickly amplified by the differentially rotating turbulent disk. After the initial rapid amplification lasting {approx} 500 Myr, subsequent field amplification appears self-regulated. As a result, highly magnetized material begin to form above and below the disk. Interestingly, the field strengths in the self-regulated regime agrees well with the observed fields in the Milky Way galaxy both in the warm and the cold HI phase and do not change appreciably with time. Most of the cold phase shows a dispersion of order ten in the magnetic field strength. The global azimuthal magnetic fields reverse at different radii and the amplitude declines as a function of radius of the disk. By comparing the estimated star formation rate (SFR) in hydrodynamic and MHD simulations, we find that after the magnetic field strength saturates, magnetic forces provide further support in the cold gas and lead to a decline of the SFR.
Wang, Peng; Abel, Tom; /KIPAC, Menlo Park /Santa Barbara, KITP
2007-12-18
Using magnetohydrodynamic (MHD) adaptive mesh refinement simulations, we study the formation and early evolution of disk galaxies with a magnetized interstellar medium. For a 10{sup 10} M{sub {circle_dot}} halo with initial NFW dark matter and gas profiles, we impose a uniform 10{sup -9} G magnetic field and follow its collapse, disk formation and evolution up to 1 Gyr. Comparing to a purely hydrodynamic simulation with the same initial condition, we find that a protogalactic field of this strength does not significantly influence the global disk properties. At the same time, the initial magnetic fields are quickly amplified by the differentially rotating turbulent disk. After the initial rapid amplification lasting {approx} 500 Myr, subsequent field amplification appears self-regulated. As a result, highly magnetized material begin to form above and below the disk. Interestingly, the field strengths in the self-regulated regime agrees well with the observed fields in the Milky Way galaxy both in the warm and the cold HI phase and do not change appreciably with time. Most of the cold phase shows a dispersion of order ten in the magnetic field strength. The global azimuthal magnetic fields reverse at different radii and the amplitude declines as a function of radius of the disk. By comparing the estimated star formation rate (SFR) in hydrodynamic and MHD simulations, we find that after the magnetic field strength saturates, magnetic forces provide further support in the cold gas and lead to a decline of the SFR.
Chang, S.L.; Lottes, S.A.; Bouillard, J.X.; Petrick, M.
1997-11-01
This report covers application of Argonne National Laboratory`s (ANL`s) computer codes to simulation and analysis of components of the magnetohydrodynamic (MHD) power train system at the Component Development and Integration Facility (CDIF). Major components of the system include a 50-MWt coal-fired, two-stage combustor and an MHD channel. The combustor, designed and built by TRW, includes a deswirl section between the first and the second-stage combustor and a converging nozzle following the second-stage combustor, which connects to the MHD channel. ANL used computer codes to simulate and analyze flow characteristics in various components of the MHD system. The first-stage swirl combustor was deemed a mature technology and, therefore, was not included in the computer simulation. Several versions of the ICOMFLO computer code were used for the deswirl section and second-stage combustor. The MGMHD code, upgraded with a slag current leakage submodel, was used for the MHD channel. Whenever possible data from the test facilities were used to aid in calibrating parameters in the computer code, to validate the computer code, or to set base-case operating conditions for computations with the computer code. Extensive sensitivity and parametric studies were done on cold-flow mixing in the second-stage combustor, reacting flow in the second-stage combustor and converging nozzle, and particle-laden flow in the deswirl zone of the first-stage combustor, the second-stage combustor, and the converging nozzle. These simulations with subsequent analysis were able to show clearly in flow patterns and various computable measures of performance a number of sensitive and problematical areas in the design of the power train. The simulations of upstream components also provided inlet parameter profiles for simulation of the MHD power generating channel. 86 figs., 18 tabs.
Xiong, Ming; Wang, Yuming; Wang, Shui; 10.1029/2005JA011593
2009-01-01
Numerical studies have been performed to interpret the observed "shock overtaking magnetic cloud (MC)" event by a 2.5 dimensional magnetohydrodynamic (MHD) model in heliospheric meridional plane. Results of an individual MC simulation show that the MC travels with a constant bulk flow speed. The MC is injected with very strong inherent magnetic field over that in the ambient flow and expands rapidly in size initially. Consequently, the diameter of MC increases in an asymptotic speed while its angular width contracts gradually. Meanwhile, simulations of MC-shock interaction are also presented, in which both a typical MC and a strong fast shock emerge from the inner boundary and propagate along heliospheric equator, separated by an appropriate interval. The results show that the shock firstly catches up with the preceding MC, then penetrates through the MC, and finally merges with the MC-driven shock into a stronger compound shock. The morphologies of shock front in interplanetary space and MC body behave as a ...
Wang, Peng
2007-01-01
Using magnetohydrodynamic (MHD) adaptive mesh refinement simulations, we study the formation and early evolution of disk galaxies with a magnetized interstellar medium. For a $10^{10}$ \\msun halo with initial NFW dark matter and gas profiles, we impose a uniform $10^{-9}$ G magnetic field and follow its collapse, disk formation and evolution up to 1 Gyr. Comparing to a purely hydrodynamic simulation with the same initial condition, we find that a protogalactic field of this strength does not significantly influence the global disk properties. At the same time, the initial magnetic fields are quickly amplified by the differentially rotating turbulent disk. After the initial rapid amplification lasting $\\sim500$ Myr, subsequent field amplification appears self-regulated. As a result, highly magnetized material begin to form above and below the disk. Interestingly, the field strengths in the self-regulated regime agrees well with the observed fields in the Milky Way galaxy both in the warm and the cold HI phase ...
Makwana, K D; Li, H; Daughton, W; Cattaneo, F
2014-01-01
Simulations of decaying magnetohydrodynamic (MHD) turbulence are performed with a fluid and a kinetic code. The initial condition is an ensemble of long-wavelength, counter-propagating, shear-Alfv\\'{e}n waves, which interfere and rapidly generate strong MHD turbulence. The total energy is conserved and the rate of turbulent energy decay is very similar in both codes, although the fluid code has numerical dissipation whereas the kinetic code has kinetic dissipation. The inertial range power spectrum index is similar in both the codes. The fluid code shows a perpendicular wavenumber spectral slope of $k_{\\perp}^{-1.3}$. The kinetic code shows a spectral slope of $k_{\\perp}^{-1.5}$ for smaller simulation domain, and $k_{\\perp}^{-1.3}$ for larger domain. We estimate that collisionless damping mechanisms in the kinetic code can account for the dissipation of the observed nonlinear energy cascade. Current sheets are geometrically characterized. Their lengths and widths are in good agreement between the two codes. T...
Magnetohydrodynamics with Embedded Particle-in-Cell Simulation of Mercury's Magnetosphere
Chen, Y.; Toth, G.; Jia, X.; Gombosi, T. I.; Markidis, S.
2015-12-01
Mercury's magnetosphere is much more dynamic than other planetary magnetospheres because of Mercury's weak intrinsic magnetic field and its proximity to the Sun. Magnetic reconnection and Kelvin-Helmholtz phenomena occur in Mercury's magnetopause and magnetotail at higher frequencies than in other planetary magnetosphere. For instance, chains of flux transfer events (FTEs) on the magnetopause, have been frequentlyobserved by the the MErcury Surface, Space ENvironment, GEochemistry and Ranging (MESSENGER) spacecraft (Slavin et al., 2012). Because ion Larmor radius is comparable to typical spatial scales in Mercury's magnetosphere, finite Larmor radius effects need to be accounted for. In addition, it is important to take in account non-ideal dissipation mechanisms to accurately describe magnetic reconnection. A kinetic approach allows us to model these phenomena accurately. However, kinetic global simulations, even for small-size magnetospheres like Mercury's, are currently unfeasible because of the high computational cost. In this work, we carry out global simulations of Mercury's magnetosphere with the recently developed MHD-EPIC model, which is a two-way coupling of the extended magnetohydrodynamic (XMHD) code BATS-R-US with the implicit Particle-in-Cell (PIC) model iPIC3D. The PIC model can cover the regions where kinetic effects are most important, such as reconnection sites. The BATS-R-US code, on the other hand, can efficiently handle the rest of the computational domain where the MHD or Hall MHD description is sufficient. We will present our preliminary results and comparison with MESSENGER observations.
Andrew N. Guarendi
2013-01-01
Full Text Available Numerical simulations of magnetohydrodynamic (MHD hypersonic flow over a cylinder are presented for axial- and transverse-oriented dipoles with different strengths. ANSYS CFX is used to carry out calculations for steady, laminar flows at a Mach number of 6.1, with a model for electrical conductivity as a function of temperature and pressure. The low magnetic Reynolds number (≪1 calculated based on the velocity and length scales in this problem justifies the quasistatic approximation, which assumes negligible effect of velocity on magnetic fields. Therefore, the governing equations employed in the simulations are the compressible Navier-Stokes and the energy equations with MHD-related source terms such as Lorentz force and Joule dissipation. The results demonstrate the ability of the magnetic field to affect the flowfield around the cylinder, which results in an increase in shock stand-off distance and reduction in overall temperature. Also, it is observed that there is a noticeable decrease in drag with the addition of the magnetic field.
Chatterjee, Dipankar; Amiroudine, Sakir
2011-02-01
A comprehensive non-isothermal Lattice Boltzmann (LB) algorithm is proposed in this article to simulate the thermofluidic transport phenomena encountered in a direct-current (DC) magnetohydrodynamic (MHD) micropump. Inside the pump, an electrically conducting fluid is transported through the microchannel by the action of an electromagnetic Lorentz force evolved out as a consequence of the interaction between applied electric and magnetic fields. The fluid flow and thermal characteristics of the MHD micropump depend on several factors such as the channel geometry, electromagnetic field strength and electrical property of the conducting fluid. An involved analysis is carried out following the LB technique to understand the significant influences of the aforementioned controlling parameters on the overall transport phenomena. In the LB framework, the hydrodynamics is simulated by a distribution function, which obeys a single scalar kinetic equation associated with an externally imposed electromagnetic force field. The thermal history is monitored by a separate temperature distribution function through another scalar kinetic equation incorporating the Joule heating effect. Agreement with analytical, experimental and other available numerical results is found to be quantitative.
Numerical Simulation of 2D Supersonic Magnetohydrodynamic Channel and Study on Hall Effect
ZHENG Xiaomei; LU Haoyu; XU Dajun; CAI Guobiao
2011-01-01
In this research effort, numerical simulation of two-dimensional magnetohydrodynamic (MHD) channel is performed and Hall effect is studied.The computational model consists of the Navier-Stokes (N-S) equations coupled with electrical-magnetic source terms, Maxwell equations and the generalized Ohm's law.Boundary conditions for the electrical potential equation considering Hall effect are derived.To start with, the MHD channel with single-pair electrodes is studied and flow of the electric current is in accordance with physical principle.Then the MHD channel with five-pair electrodes is numerically simulated.The results show that the electrical current concentrates on the downstream of the anode and the upstream of the cathode due to Hall effect, and the flow field becomes asymmetrical.At the current value of the magnetic interaction parameter, the electrical-magnetic force affects the flow remarkably, decreasing the outlet Mach number and increasing the outlet pressure; what's more, the flow structure in the channel becomes extremely complex.Performances of MHD channels with continual electrodes and segmented electrodes are compared.The results show that performance of the MHD channel with segmented electrodes is better than that with continual electrodes with the increase of Hall parameter.
Guarendi, Andrew N; Chandy, Abhilash J
2013-01-01
Numerical simulations of magnetohydrodynamic (MHD) hypersonic flow over a cylinder are presented for axial- and transverse-oriented dipoles with different strengths. ANSYS CFX is used to carry out calculations for steady, laminar flows at a Mach number of 6.1, with a model for electrical conductivity as a function of temperature and pressure. The low magnetic Reynolds number (<1) calculated based on the velocity and length scales in this problem justifies the quasistatic approximation, which assumes negligible effect of velocity on magnetic fields. Therefore, the governing equations employed in the simulations are the compressible Navier-Stokes and the energy equations with MHD-related source terms such as Lorentz force and Joule dissipation. The results demonstrate the ability of the magnetic field to affect the flowfield around the cylinder, which results in an increase in shock stand-off distance and reduction in overall temperature. Also, it is observed that there is a noticeable decrease in drag with the addition of the magnetic field.
Conservation of Circulation in Magnetohydrodynamics
Bekenstein, Jacob D.; Oron, Asaf
2000-01-01
We demonstrate, both at the Newtonian and (general) relativistic levels, the existence of a generalization of Kelvin's circulation theorem (for pure fluids) which is applicable to perfect magnetohydrodynamics. The argument is based on the least action principle for magnetohydrodynamic flow. Examples of the new conservation law are furnished. The new theorem should be helpful in identifying new kinds of vortex phenomena distinct from magnetic ropes or fluid vortices.
Conservation of circulation in magnetohydrodynamics
Bekenstein; Oron
2000-10-01
We demonstrate at both the Newtonian and (general) relativistic levels the existence of a generalization of Kelvin's circulation theorem (for pure fluids) that is applicable to perfect magnetohydrodynamics. The argument is based on the least action principle for magnetohydrodynamic flow. Examples of the new conservation law are furnished. The new theorem should be helpful in identifying new kinds of vortex phenomena distinct from magnetic ropes or fluid vortices.
Jiang, Yan-Fei; Stone, James M.; Davis, Shane W.
2014-12-01
We study super-Eddington accretion flows onto black holes using a global three-dimensional radiation magneto-hydrodynamical simulation. We solve the time-dependent radiative transfer equation for the specific intensities to accurately calculate the angular distribution of the emitted radiation. Turbulence generated by the magneto-rotational instability provides self-consistent angular momentum transfer. The simulation reaches inflow equilibrium with an accretion rate ~220 L Edd/c 2 and forms a radiation-driven outflow along the rotation axis. The mechanical energy flux carried by the outflow is ~20% of the radiative energy flux. The total mass flux lost in the outflow is about 29% of the net accretion rate. The radiative luminosity of this flow is ~10 L Edd. This yields a radiative efficiency ~4.5%, which is comparable to the value in a standard thin disk model. In our simulation, vertical advection of radiation caused by magnetic buoyancy transports energy faster than photon diffusion, allowing a significant fraction of the photons to escape from the surface of the disk before being advected into the black hole. We contrast our results with the lower radiative efficiencies inferred in most models, such as the slim disk model, which neglect vertical advection. Our inferred radiative efficiencies also exceed published results from previous global numerical simulations, which did not attribute a significant role to vertical advection. We briefly discuss the implications for the growth of supermassive black holes in the early universe and describe how these results provided a basis for explaining the spectrum and population statistics of ultraluminous X-ray sources.
Jiang, Yan-Fei [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Stone, James M. [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Davis, Shane W. [Canadian Institute for Theoretical Astrophysics. Toronto, ON M5S3H4 (Canada)
2014-12-01
We study super-Eddington accretion flows onto black holes using a global three-dimensional radiation magneto-hydrodynamical simulation. We solve the time-dependent radiative transfer equation for the specific intensities to accurately calculate the angular distribution of the emitted radiation. Turbulence generated by the magneto-rotational instability provides self-consistent angular momentum transfer. The simulation reaches inflow equilibrium with an accretion rate ∼220 L {sub Edd}/c {sup 2} and forms a radiation-driven outflow along the rotation axis. The mechanical energy flux carried by the outflow is ∼20% of the radiative energy flux. The total mass flux lost in the outflow is about 29% of the net accretion rate. The radiative luminosity of this flow is ∼10 L {sub Edd}. This yields a radiative efficiency ∼4.5%, which is comparable to the value in a standard thin disk model. In our simulation, vertical advection of radiation caused by magnetic buoyancy transports energy faster than photon diffusion, allowing a significant fraction of the photons to escape from the surface of the disk before being advected into the black hole. We contrast our results with the lower radiative efficiencies inferred in most models, such as the slim disk model, which neglect vertical advection. Our inferred radiative efficiencies also exceed published results from previous global numerical simulations, which did not attribute a significant role to vertical advection. We briefly discuss the implications for the growth of supermassive black holes in the early universe and describe how these results provided a basis for explaining the spectrum and population statistics of ultraluminous X-ray sources.
Classical Simulation of Relativistic Quantum Mechanics in Periodic Optical Structures
Longhi, Stefano
2011-01-01
Spatial and/or temporal propagation of light waves in periodic optical structures offers a rather unique possibility to realize in a purely classical setting the optical analogues of a wide variety of quantum phenomena rooted in relativistic wave equations. In this work a brief overview of a few optical analogues of relativistic quantum phenomena, based on either spatial light transport in engineered photonic lattices or on temporal pulse propagation in Bragg grating structures, is presented. Examples include spatial and temporal photonic analogues of the Zitterbewegung of a relativistic electron, Klein tunneling, vacuum decay and pair-production, the Dirac oscillator, the relativistic Kronig-Penney model, and optical realizations of non-Hermitian extensions of relativistic wave equations.
Magnetic Dissipation in Relativistic Jets
Yosuke Mizuno
2016-10-01
Full Text Available The most promising mechanisms for producing and accelerating relativistic jets, and maintaining collimated structure of relativistic jets involve magnetohydrodynamical (MHD processes. We have investigated the magnetic dissipation mechanism in relativistic jets via relativistic MHD simulations. We found that the relativistic jets involving a helical magnetic field are unstable for the current-driven kink instability, which leads to helically distorted structure in relativistic jets. We identified the regions of high current density in filamentary current sheets, indicative of magnetic reconnection, which are associated to the kink unstable regions and correlated to the converted regions of magnetic to kinetic energies of the jets. We also found that an over-pressured relativistic jet leads to the generation of a series of stationary recollimation shocks and rarefaction structures by the nonlinear interaction of shocks and rarefaction waves. The differences in the recollimation shock structure due to the difference of the magnetic field topologies and strengths may be observable through mm-VLBI observations and space-VLBI mission.
Depletion of Nonlinearity in Magnetohydrodynamic Turbulence: Insights from Analysis and Simulations
Gibbon, J; Krstulovic, G; Pandit, R; Politano, H; Ponty, Y; Pouquet, A; Sahoo, G; Stawarz, J
2015-01-01
We build on recent developments in the study of fluid turbulence [Gibbon \\textit{et al.} Nonlinearity 27, 2605 (2014)] to define suitably scaled, order-$m$ moments, $D_m^{\\pm}$, of $\\omega^\\pm= \\omega \\pm j$, where $\\omega$ and $j$ are, respectively, the vorticity and current density in three-dimensional magnetohydrodynamics (MHD). We show by mathematical analysis, for unit magnetic Prandtl number $P_M$, how these moments can be used to identify three possible regimes for solutions of the MHD equations; these regimes are specified by inequalities for $D_m^{\\pm}$ and $D_1^{\\pm}$. We then compare our mathematical results with those from our direct numerical simulations (DNSs) and thus demonstrate that 3D MHD turbulence is like its fluid-turbulence counterpart insofar as all solutions, which we have investigated, remain in \\textit{only one of these regimes}; this regime has depleted nonlinearity. We examine the implications of our results for the exponents $q^{\\pm}$ that characterize the power-law dependences of...
Le Chat, G.; Cohen, O. [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA (United States); Kasper, J. C. [Atmospheric, Oceanic and Space Sciences Department, University of Michigan, Ann Arbor, MI (United States); Spangler, S. R., E-mail: gaetan.lechat@obspm.fr [Department of Physics and Astronomy, University of Iowa, Iowa City, IA (United States)
2014-07-10
Polarized natural radio sources passing behind the Sun experience Faraday rotation as a consequence of the electron density and magnetic field strength in coronal plasma. Since Faraday rotation is proportional to the product of the density and the component of the magnetic field along the line of sight of the observer, a model is required to interpret the observations and infer coronal structures. Faraday rotation observations have been compared with relatively ad hoc models of the corona. Here for the first time we compare these observations with magnetohydrodynamic (MHD) models of the solar corona driven by measurements of the photospheric magnetic field. We use observations made with the NRAO Very Large Array of 34 polarized radio sources occulted by the solar corona between 5 and 14 solar radii. The measurements were made during 1997 May, and 2005 March and April. We compare the observed Faraday rotation values with values extracted from MHD steady-state simulations of the solar corona. We find that (1) using a synoptic map of the solar magnetic field just one Carrington rotation off produces poorer agreements, meaning that the outer corona changes in the course of one month, even in solar minimum; (2) global MHD models of the solar corona driven by photospheric magnetic field measurements are generally able to reproduce Faraday rotation observations; and (3) some sources show significant disagreement between the model and the observations, which appears to be a function of the proximity of the line of sight to the large-scale heliospheric current sheet.
Multi-ion, multi-fluid 3-D magnetohydrodynamic simulation of the outer heliosphere
Prested, Christina; Toth, Gabor
2012-01-01
Data from the Voyager probes and the Interstellar Boundary Explorer have revealed the importance of pick-up ions (PUIs) in understanding the character and behavior of the outer heliosphere, the region of interaction between the solar wind and the interstellar medium. In the outer heliosphere PUIs carry a large fraction of the thermal pressure, which effects the nature of the termination shock, and they are a dominate component of pressure in the heliosheath. This paper describes the development of a new multi-ion, multi-fluid 3-D magnetohydrodynamic model of the outer heliosphere. This model has the added capability of tracking the individual fluid properties of multiple ion populations. For this initial study two ion populations are modeled: the thermal solar wind ions and PUIs produced in the supersonic solar wind. The model also includes 4 neutral fluids that interact through charge-exchange with the ion fluids. The new multi-ion simulation reproduces the significant heating of PUIs at the termination shoc...
Resistivity profile effects in numerical magnetohydrodynamic simulations of the reversed-field pinch
Sätherblom, H.-E.; Mazur, S.; Nordlund, P.
1996-12-01
The influence of the resistivity profile on reversed-field pinch (RFP) dynamics is investigated numerically using a three-dimensional resistive magnetohydrodynamic code. This investigation is motivated by experimental observations on the EXTRAP-T1 RFP (Nordlund P et al 1994 Int. Conf. Plasma Physics and Controlled Nuclear Fusion Research IAEA-CN-60/A6/C-P-6). Two cases with profiles mainly differing in the edge region, i.e. in the region outside the reversal surface, are simulated. It is found that increasing the resistivity in this region results in a factor of two increase in magnetic fluctuation energy and an equal amount in the fluctuation-induced electric field. In spite of this, the parallel current decreases in the edge region, resulting in a factor two reduction of the field reversal ratio. The dynamics become more irregular and the characteristic timescale is reduced. The final state is characterized by a higher loop voltage, slightly lower values of the total (fluctuating plus mean part) magnetic energy and the magnetic helicity, but almost unchanged Taylor relaxation ratio. The results indicate that the edge region can be important for RFP confinement since cooling of the plasma in this region can lead to an increased fluctuation level and degraded performance.
Comparison of magnetic island stabilization strategies from magneto-hydrodynamic simulations
Février, O.; Maget, P.; Lütjens, H.; Beyer, P.
2017-04-01
The degradation of plasma confinement in tokamaks caused by magnetic islands motivates to better understand their possible suppression using electron cyclotron current drive (ECCD) and to investigate the various strategies relevant for this purpose. In this work, we evaluate the efficiency of several control methods through nonlinear simulations of this process with the toroidal magneto-hydro-dynamic (MHD) code XTOR-2F (Lütjens and Luciani 2010 J. Comput. Phys. 229 8130–43), which has been extended to incorporate in Ohm’s law a source term modeling the driven current resulting from the interaction of the EC waves with the plasma. A basic control system has been implemented in the code, allowing testing of advanced strategies that require feedback on island position or phase. We focus in particular on the robustness of the control strategies towards uncertainties that apply to the control and ECCD systems, such as the risk of misalignment of the current deposition or the possible inability to generate narrow current deposition.
Multispectral Emission of the Sun during the First Whole Sun Month: Magnetohydrodynamic Simulations
Lionello, Roberto; Linker, Jon A.; Mikic, Zoran
2008-01-01
We demonstrate that a three-dimensional magnetohydrodynamic (MHD) simulation of the corona can model its global plasma density and temperature structure with sufficient accuracy to reproduce many of the multispectral properties of the corona observed in extreme ultraviolet (EW) and X-ray emission. The key ingredient to this new type of global MHD model is the inclusion of energy transport processes (coronal heating, anisotropic thermal conduction, and radiative losses) in the energy equation. The calculation of these processes has previously been confined to one-dimensional loop models, idealized two-dimensional computations, and three-dimensional active region models. We refer to this as the thermodynamic MHD model, and we apply it to the time period of Carrington rotation 1913 (1996 August 22 to September 18). The form of the coronal heating term strongly affects the plasma density and temperature of the solutions. We perform our calculation for three different empirical heating models: (1) a heating function exponentially decreasing in radius; (2) the model of Schrijver et al.; and (3) a model reproducing the heating properties of the quiet Sun and active regions. We produce synthetic emission images from the density and temperature calculated with these three heating functions and quantitatively compare them with observations from E W Imaging Telescope on the Solar and Heliospheric Observatory and the soft X-ray telescope on Yohkoh. Although none of the heating models provide a perfect match, heating models 2 and 3 provide a reasonable match to the observations.
Magnetohydrodynamic Simulations of A Rotating Massive Star Collapsing to A Black Hole
Fujimoto, S; Kotake, K; Sato, K; Yamada, S; Fujimoto, Shin-ichiro; Hashimoto, Masa-aki; Kotake, Kei; Sato, Katsuhiko; Yamada, Shoichi
2006-01-01
We perform two-dimensional, axisymmetric, magnetohydrodynamic simulations of the collapse of a rotating star of 40 Msun and in the light of the collapsar model of gamma-ray burst. Considering two distributions of angular momentum, up to \\sim 10^{17} cm^2/s, and the uniform vertical magnetic field, we investigate the formation of an accretion disk around a black hole and the jet production near the hole. After material reaches to the black hole with the high angular momentum, the disk is formed inside a surface of weak shock. The disk becomes in a quasi-steady state for stars whose magnetic field is less than 10^{10} G before the collapse. We find that the jet can be driven by the magnetic fields even if the central core does not rotate as rapidly as previously assumed and outer layers of the star has sufficiently high angular momentum. The magnetic fields are chiefly amplified inside the disk due to the compression and the wrapping of the field. The fields inside the disk propagate to the polar region along t...
Borissov, A.; Kontar, E. P.; Threlfall, J.; Neukirch, T.
2017-09-01
The conversion of magnetic energy into other forms (such as plasma heating, bulk plasma flows, and non-thermal particles) during solar flares is one of the outstanding open problems in solar physics. It is generally accepted that magnetic reconnection plays a crucial role in these conversion processes. In order to achieve the rapid energy release required in solar flares, an anomalous resistivity, which is orders of magnitude higher than the Spitzer resistivity, is often used in magnetohydrodynamic (MHD) simulations of reconnection in the corona. The origin of Spitzer resistivity is based on Coulomb scattering, which becomes negligible at the high energies achieved by accelerated particles. As a result, simulations of particle acceleration in reconnection events are often performed in the absence of any interaction between accelerated particles and any background plasma. This need not be the case for scattering associated with anomalous resistivity caused by turbulence within solar flares, as the higher resistivity implies an elevated scattering rate. We present results of test particle calculations, with and without pitch angle scattering, subject to fields derived from MHD simulations of two-dimensional (2D) X-point reconnection. Scattering rates proportional to the ratio of the anomalous resistivity to the local Spitzer resistivity, as well as at fixed values, are considered. Pitch angle scattering, which is independent of the anomalous resistivity, causes higher maximum energies in comparison to those obtained without scattering. Scattering rates which are dependent on the local anomalous resistivity tend to produce fewer highly energised particles due to weaker scattering in the separatrices, even though scattering in the current sheet may be stronger when compared to resistivity-independent scattering. Strong scattering also causes an increase in the number of particles exiting the computational box in the reconnection outflow region, as opposed to along the
Magnetohydrodynamic simulation of solid-deuterium-initiated Z-pinch experiments
Sheehey, Peter Trogdon [Univ. of California, Los Angeles, CA (United States)
1994-02-01
Solid-deuterium-initiated Z-pinch experiments are numerically simulated using a two-dimensional resistive magnetohydrodynamic model, which includes many important experimental details, such as ``cold-start`` initial conditions, thermal conduction, radiative energy loss, actual discharge current vs. time, and grids of sufficient size and resolution to allow realistic development of the plasma. The alternating-direction-implicit numerical technique used meets the substantial demands presented by such a computational task. Simulations of fiber-initiated experiments show that when the fiber becomes fully ionized rapidly developing m=0 instabilities, which originated in the coronal plasma generated from the ablating fiber, drive intense non-uniform heating and rapid expansion of the plasma column. The possibility that inclusion of additional physical effects would improve stability is explored. Finite-Larmor-radius-ordered Hall and diamagnetic pressure terms in the magnetic field evolution equation, corresponding energy equation terms, and separate ion and electron energy equations are included; these do not change the basic results. Model diagnostics, such as shadowgrams and interferograms, generated from simulation results, are in good agreement with experiment. Two alternative experimental approaches are explored: high-current magnetic implosion of hollow cylindrical deuterium shells, and ``plasma-on-wire`` (POW) implosion of low-density plasma onto a central deuterium fiber. By minimizing instability problems, these techniques may allow attainment of higher temperatures and densities than possible with bare fiber-initiated Z-pinches. Conditions for significant D-D or D-T fusion neutron production may be realizable with these implosion-based approaches.
Tsai, T. C.; Yu, H.-S.; Hsieh, M.-S.; Lai, S. H.; Yang, Y.-H.
2015-11-01
Nowadays most of supercomputers are based on the frame of PC cluster; therefore, the efficiency of parallel computing is of importance especially with the increasing computing scale. This paper proposes a high-order implicit predictor-corrector central finite difference (iPCCFD) scheme and demonstrates its high efficiency in parallel computing. Of special interests are the large scale numerical studies such as the magnetohydrodynamic (MHD) simulations in the planetary magnetosphere. An iPCCFD scheme is developed based on fifth-order central finite difference method and fourth-order implicit predictor-corrector method in combination with elimination-of-the-round-off-errors (ERE) technique. We examine several numerical studies such as one-dimensional Brio-Wu shock tube problem, two-dimensional Orszag-Tang vortex system, vortex type K-H instability, kink type K-H instability, field loop advection, and blast wave. All the simulation results are consistent with many literatures. iPCCFD can minimize the numerical instabilities and noises along with the additional diffusion terms. All of our studies present relatively small numerical errors without employing any divergence-free reconstruction. In particular, we obtain fairly stable results in the two-dimensional Brio-Wu shock tube problem which well conserves ∇ ṡ B = 0 throughout the simulation. The ERE technique removes the accumulation of roundoff errors in the uniform or non-disturbed system. We have also shown that iPCCFD is characterized by the high order of accuracy and the low numerical dissipation in the circularly polarized Alfvén wave tests. The proposed iPCCFD scheme is a parallel-efficient and high precision numerical scheme for solving the MHD equations in hyperbolic conservation systems.
Subramaniam, Vivek; Raja, Laxminarayan L.
2017-06-01
Recent experiments by Loebner et al. [IEEE Trans. Plasma Sci. 44, 1534 (2016)] studied the effect of a hypervelocity jet emanating from a coaxial plasma accelerator incident on target surfaces in an effort to mimic the transient loading created during edge localized mode disruption events in fusion plasmas. In this paper, we present a magnetohydrodynamic (MHD) numerical model to simulate plasma jet formation and plasma-surface contact in this coaxial plasma accelerator experiment. The MHD system of equations is spatially discretized using a cell-centered finite volume formulation. The temporal discretization is performed using a fully implicit backward Euler scheme and the resultant stiff system of nonlinear equations is solved using the Newton method. The numerical model is employed to obtain some key insights into the physical processes responsible for the generation of extreme stagnation conditions on the target surfaces. Simulations of the plume (without the target plate) are performed to isolate and study phenomena such as the magnetic pinch effect that is responsible for launching pressure pulses into the jet free stream. The simulations also yield insights into the incipient conditions responsible for producing the pinch, such as the formation of conductive channels. The jet-target impact studies indicate the existence of two distinct stages involved in the plasma-surface interaction. A fast transient stage characterized by a thin normal shock transitions into a pseudo-steady stage that exhibits an extended oblique shock structure. A quadratic scaling of the pinch and stagnation conditions with the total current discharged between the electrodes is in qualitative agreement with the results obtained in the experiments. This also illustrates the dominant contribution of the magnetic pressure term in determining the magnitude of the quantities of interest.
VizieR Online Data Catalog: Solar wind 3D magnetohydrodynamic simulation (Chhiber+, 2017)
Chhiber, R.; Subedi, P.; Usmanov, A. V.; Matthaeus, W. H.; Ruffolo, D.; Goldstein, M. L.; Parashar, T. N.
2017-08-01
We use a three-dimensional magnetohydrodynamic simulation of the solar wind to calculate cosmic-ray diffusion coefficients throughout the inner heliosphere (2Rȯ-3au). The simulation resolves large-scale solar wind flow, which is coupled to small-scale fluctuations through a turbulence model. Simulation results specify background solar wind fields and turbulence parameters, which are used to compute diffusion coefficients and study their behavior in the inner heliosphere. The parallel mean free path (mfp) is evaluated using quasi-linear theory, while the perpendicular mfp is determined from nonlinear guiding center theory with the random ballistic interpretation. Several runs examine varying turbulent energy and different solar source dipole tilts. We find that for most of the inner heliosphere, the radial mfp is dominated by diffusion parallel to the mean magnetic field; the parallel mfp remains at least an order of magnitude larger than the perpendicular mfp, except in the heliospheric current sheet, where the perpendicular mfp may be a few times larger than the parallel mfp. In the ecliptic region, the perpendicular mfp may influence the radial mfp at heliocentric distances larger than 1.5au; our estimations of the parallel mfp in the ecliptic region at 1 au agree well with the Palmer "consensus" range of 0.08-0.3au. Solar activity increases perpendicular diffusion and reduces parallel diffusion. The parallel mfp mostly varies with rigidity (P) as P.33, and the perpendicular mfp is weakly dependent on P. The mfps are weakly influenced by the choice of long-wavelength power spectra. (2 data files).
Magnetohydrodynamic simulations of mechanical stellar feedback in a sheet-like molecular cloud
Wareing, C. J.; Pittard, J. M.; Falle, S. A. E. G.
2017-03-01
We have used the adaptive-mesh-refinement hydrodynamic code, MG, to perform 3D magnetohydrodynamic simulations with self-gravity of stellar feedback in a sheet-like molecular cloud formed through the action of the thermal instability. We simulate the interaction of the mechanical energy input from a 15 star and a 40 M⊙ star into a 100 pc-diameter 17 000 M⊙ cloud with a corrugated sheet morphology that in projection appears filamentary. The stellar winds are introduced using appropriate Geneva stellar evolution models. In the 15 M⊙ star case, the wind forms a narrow bipolar cavity with minimal effect on the parent cloud. In the 40 M⊙ star case, the more powerful stellar wind creates a large cylindrical cavity through the centre of the cloud. After 12.5 and 4.97 Myr, respectively, the massive stars explode as supernovae (SNe). In the 15 M⊙ star case, the SN material and energy is primarily deposited into the molecular cloud surroundings over ∼105 yr before the SN remnant escapes the cloud. In the 40 M⊙ star case, a significant fraction of the SN material and energy rapidly escapes the molecular cloud along the wind cavity in a few tens of kiloyears. Both SN events compress the molecular cloud material around them to higher densities (so may trigger further star formation), and strengthen the magnetic field, typically by factors of 2-3 but up to a factor of 10. Our simulations are relevant to observations of bubbles in flattened ring-like molecular clouds and bipolar H II regions.
Simulations of Relativistic Collisionless Shocks: Shock Structure and Particle Acceleration
Spitkovsky, Anatoly; /KIPAC, Menlo Park
2006-04-10
We discuss 3D simulations of relativistic collisionless shocks in electron-positron pair plasmas using the particle-in-cell (PIC) method. The shock structure is mainly controlled by the shock's magnetization (''sigma'' parameter). We demonstrate how the structure of the shock varies as a function of sigma for perpendicular shocks. At low magnetizations the shock is mediated mainly by the Weibel instability which generates transient magnetic fields that can exceed the initial field. At larger magnetizations the shock is dominated by magnetic reflections. We demonstrate where the transition occurs and argue that it is impossible to have very low magnetization collisionless shocks in nature (in more than one spatial dimension). We further discuss the acceleration properties of these shocks, and show that higher magnetization perpendicular shocks do not efficiently accelerate nonthermal particles in 3D. Among other astrophysical applications, this may pose a restriction on the structure and composition of gamma-ray bursts and pulsar wind outflows.
Graham, Jonathan Pietarila; Mininni, Pablo D; Pouquet, Annick
2005-10-01
We present direct numerical simulations and Lagrangian averaged (also known as alpha model) simulations of forced and free decaying magnetohydrodynamic turbulence in two dimensions. The statistics of sign cancellations of the current at small scales is studied using both the cancellation exponent and the fractal dimension of the structures. The alpha model is found to have the same scaling behavior between positive and negative contributions as the direct numerical simulations. The alpha model is also able to reproduce the time evolution of these quantities in free decaying turbulence. At large Reynolds numbers, an independence of the cancellation exponent with the Reynolds numbers is observed.
Self-consistent hybrid neoclassical-magnetohydrodynamic simulations of axisymmetric plasmas
Lyons, Brendan Carrick
Neoclassical effects (e.g., conductivity reduction and bootstrap currents) have a profound impact on many magnetohydrodynamic (MHD) instabilities in toroidally-confined plasmas, including tearing modes, edge-localized modes, and resistive wall modes. High-fidelity simulations of such phenomena require a multiphysics code that self-consistently couples the kinetic and fluid models. We review a hybrid formulation from the recent literatureAB that is appropriate for such studies. In particular, the formulation uses a set of time-dependent drift-kinetic equations (DKEs) to advance the non-Maxwellian part of the electron and ion distribution functions (fNM) with linearized Fokker-Planck-Landau collision operators. The form of the DKEs used were derived in a Chapman-Enskog-like fashion, ensuring that fNM carries no density, momentum, or temperature. Rather, these quantities are contained within the background Maxwellian and are evolved by a set of MHD equations which are closed by moments of fNM . We then present two DKE solvers based upon this formulation in axisymmetric toroidal geometries. The Neoclassical Ion-Electron Solver (NIES) solves the steady-state DKEs in the low-collisionality limit. Convergence and benchmark studies are discussed, providing a proof-of-principle that this new formulation can accurately reproduce results from the literature in the limit considered. We then present the DK4D code which evolves the finite-collisionality DKEs time-dependently. Computational methods used and successful benchmarks to other neoclassical models and codes are discussed. Furthermore, we couple DK4D to a reduced, transport-timescale MHD code. The resulting hybrid code is used to simulate the evolution of the current density in a large-aspect-ratio plasma in the presence of several different time-dependent pressure profiles. These simulations demonstrate the self-consistent, dynamic formation of the ohmic and bootstrap currents. In the slowly-evolving plasmas considered
Wareing, C. J.; Pittard, J. M.; Falle, S. A. E. G.; Van Loo, S.
2016-06-01
We have used the adaptive mesh refinement hydrodynamic code, MG, to perform idealized 3D magnetohydrodynamical simulations of the formation of clumpy and filamentary structure in a thermally unstable medium without turbulence. A stationary thermally unstable spherical diffuse atomic cloud with uniform density in pressure equilibrium with low density surroundings was seeded with random density variations and allowed to evolve. A range of magnetic field strengths threading the cloud have been explored, from β = 0.1 to 1.0 to the zero magnetic field case (β = ∞), where β is the ratio of thermal pressure to magnetic pressure. Once the density inhomogeneities had developed to the point where gravity started to become important, self-gravity was introduced to the simulation. With no magnetic field, clouds and clumps form within the cloud with aspect ratios of around unity, whereas in the presence of a relatively strong field (β = 0.1) these become filaments, then evolve into interconnected corrugated sheets that are predominantly perpendicular to the magnetic field. With magnetic and thermal pressure equality (β = 1.0), filaments, clouds and clumps are formed. At any particular instant, the projection of the 3D structure on to a plane parallel to the magnetic field, i.e. a line of sight perpendicular to the magnetic field, resembles the appearance of filamentary molecular clouds. The filament densities, widths, velocity dispersions and temperatures resemble those observed in molecular clouds. In contrast, in the strong field case β = 0.1, projection of the 3D structure along a line of sight parallel to the magnetic field reveals a remarkably uniform structure.
Skillman, Samuel W.; Hallman, Eric J.; Burns, Jack O. [Center for Astrophysics and Space Astronomy, Department of Astrophysical and Planetary Science, University of Colorado, Boulder, CO 80309 (United States); Xu, Hao; Li, Hui; Collins, David C. [Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87544 (United States); O' Shea, Brian W. [Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States); Norman, Michael L., E-mail: samuel.skillman@colorado.edu [Center for Astrophysics and Space Sciences, University of California at San Diego, La Jolla, CA 92093 (United States)
2013-03-01
Non-thermal radio emission from cosmic-ray electrons in the vicinity of merging galaxy clusters is an important tracer of cluster merger activity, and is the result of complex physical processes that involve magnetic fields, particle acceleration, gas dynamics, and radiation. In particular, objects known as radio relics are thought to be the result of shock-accelerated electrons that, when embedded in a magnetic field, emit synchrotron radiation in the radio wavelengths. In order to properly model this emission, we utilize the adaptive mesh refinement simulation of the magnetohydrodynamic evolution of a galaxy cluster from cosmological initial conditions. We locate shock fronts and apply models of cosmic-ray electron acceleration that are then input into radio emission models. We have determined the thermodynamic properties of this radio-emitting plasma and constructed synthetic radio observations to compare observed galaxy clusters. We find a significant dependence of the observed morphology and radio relic properties on the viewing angle of the cluster, raising concerns regarding the interpretation of observed radio features in clusters. We also find that a given shock should not be characterized by a single Mach number. We find that the bulk of the radio emission comes from gas with T > 5 Multiplication-Sign 10{sup 7} K, {rho} {approx} 10{sup -28}-10{sup -27} g cm{sup -3}, with magnetic field strengths of 0.1-1.0 {mu}G, and shock Mach numbers of M {approx} 3-6. We present an analysis of the radio spectral index which suggests that the spatial variation of the spectral index can mimic synchrotron aging. Finally, we examine the polarization fraction and position angle of the simulated radio features, and compare to observations.
Rubin, M.; Jia, X.; Altwegg, K.; Combi, M. R.; Daldorff, L. K. S.; Gombosi, T. I.; Khurana, K. K.; Kivelson, M.; Tenishev, V.; Toth, G.; van der Holst, B.; Wurz, P.
2015-12-01
Jupiter's moon Europa is believed to contain a subsurface water ocean whose finite electrical conductance imposes clear induction signatures on the magnetic field in its surroundings. The evidence rests heavily on measurements performed by the magnetometer on board the Galileo spacecraft during multiple flybys of the moon. Europa's interaction with the Jovian magnetosphere has become a major target of research in planetary science, partly because of the potential of a salty ocean to harbor life outside our own planet. Thus it is of considerable interest to develop numerical simulations of the Europa-Jupiter interaction that can be compared with data in order to refine our knowledge of Europa's subsurface structure. In this presentation we show aspects of Europa's interaction with the Jovian magnetosphere extracted from a multifluid magnetohydrodynamics (MHD) code BATS-R-US recently developed at the University of Michigan. The model dynamically separates magnetospheric and pick-up ions and is capable of capturing some of the physics previously accessible only to kinetic approaches. The model utilizes an adaptive grid to maintain the high spatial resolution on the surface required to resolve the portion of Europa's neutral atmosphere with a scale height of a few tens of kilometers that is in thermal equilibrium. The model also derives the electron temperature, which is crucial to obtain the local electron impact ionization rates and hence the plasma mass loading in Europa's atmosphere. We compare our results with observations made by the plasma particles and fields instruments on the Galileo spacecraft to validate our model. We will show that multifluid MHD is able to reproduce the basic features of the plasma moments and magnetic field observations obtained during the Galileo E4 and E26 flybys at Europa.
Massively parallel simulations of relativistic fluid dynamics on graphics processing units with CUDA
Bazow, Dennis; Strickland, Michael
2016-01-01
Relativistic fluid dynamics is a major component in dynamical simulations of the quark-gluon plasma created in relativistic heavy-ion collisions. Simulations of the full three-dimensional dissipative dynamics of the quark-gluon plasma with fluctuating initial conditions are computationally expensive and typically require some degree of parallelization. In this paper, we present a GPU implementation of the Kurganov-Tadmor algorithm which solves the 3+1d relativistic viscous hydrodynamics equations including the effects of both bulk and shear viscosities. We demonstrate that the resulting CUDA-based GPU code is approximately two orders of magnitude faster than the corresponding serial implementation of the Kurganov-Tadmor algorithm. We validate the code using (semi-)analytic tests such as the relativistic shock-tube and Gubser flow.
Mumford, S J; Erdélyi, R
2013-01-01
Aims. Recent ground- and space-based observations reveal the presence of small-scale motions between convection cells in the solar photosphere. In these regions small-scale magnetic flux tubes are generated due to the interaction of granulation motion and background magnetic field. This paper aims to study the effects of these motions, in regions of enhanced magnetic field, on magnetohydrodynamic wave excitation, propagation and energy flux from the solar photosphere up towards the solar corona. Methods. Numerical experiments of magnetohydrodynamic wave propagation in a realistic gravitationally stratified solar atmosphere from five different modelled photospheric drivers are performed. Horizontal and vertical drivers to mimic granular buffeting and solar global oscillations, a uniform torsional driver, an Archimedean spiral and a logarithmic spiral to mimic observed torsional motions in the solar photosphere are investigated. The numerical results are analysed using a novel method for extracting the parallel...
General relativistic simulations of compact binary mergers as engines of short gamma-ray bursts
Paschalidis, Vasileios
2016-01-01
Black hole - neutron star (BHNS) and neutron star - neutron star (NSNS) binaries are among the favored candidates for the progenitors of the black hole - disk systems that may be the engines powering short-hard gamma ray bursts. After almost two decades of simulations of binary NSNSs and BHNSs in full general relativity we are now beginning to understand the ingredients that may be necessary for these systems to launch incipient jets. Here, we review our current understanding, and summarize the surprises and lessons learned from state-of-the-art (magnetohydrodynamic) simulations in full general relativity of BHNS and NSNS mergers as jet engines for short-hard gamma-ray bursts.
General Relativistic Simulations of Binary Neutron Star Mergers
Giacomazzo, Bruno; Rezzolla, Luciano; Baiotti, Luca; Link, David; Font, José A.
2011-08-01
Binary neutron star mergers are one of the possible candidates for the central engine of short gamma-ray bursts (GRBs) and they are also powerful sources of gravitational waves. We have used our fully general relativistic hydrodynamical code Whisky to investigate the merger of binary neutron star systems and we have in particular studied the properties of the tori that can be formed by these systems, their possible connection with the engine of short GRBs and the gravitational wave signals that detectors such as advanced LIGO will be able to detect. We have also shown how the mass of the torus varies as a function of the total mass of the neutron stars composing the binary and of their mass ratio and we have found that tori sufficiently massive to power short GRBs can indeed be formed.
Radiation magnetohydrodynamic simulation of plasma formed on a surface by a megagauss field.
Esaulov, A A; Bauer, B S; Makhin, V; Siemon, R E; Lindemuth, I R; Awe, T J; Reinovsky, R E; Struve, K W; Desjarlais, M P; Mehlhorn, T A
2008-03-01
Radiation magnetohydrodynamic modeling is used to study the plasma formed on the surface of a cylindrical metallic load, driven by megagauss magnetic field at the 1MA Zebra generator (University of Nevada, Reno). An ionized aluminum plasma is used to represent the "core-corona" behavior in which a heterogeneous Z-pinch consists of a hot low-density corona surrounding a dense low-temperature core. The radiation dynamics model included simultaneously a self-consistent treatment of both the opaque and transparent plasma regions in a corona. For the parameters of this experiment, the boundary of the opaque plasma region emits the major radiation power with Planckian black-body spectrum in the extreme ultraviolet corresponding to an equilibrium temperature of 16 eV. The radiation heat transport significantly exceeds the electron and ion kinetic heat transport in the outer layers of the opaque plasma. Electromagnetic field energy is partly radiated (13%) and partly deposited into inner corona and core regions (87%). Surface temperature estimates are sensitive to the radiation effects, but the surface motion in response to pressure and magnetic forces is not. The general results of the present investigation are applicable to the liner compression experiments at multi-MA long-pulse current accelerators such as Atlas and Shiva Star. Also the radiation magnetohydrodynamic model discussed in the paper may be useful for understanding key effects of wire array implosion dynamics.
Simulation of ultra-relativistic electrons and positrons channeling in crystals with MBN Explorer
Sushko, Gennady B.; Bezchastnov, Victor G.; Solov'yov, Ilia;
2013-01-01
A newly developed code, implemented as a part of the MBN Explorer package (Solov'yov et al., 2012; http://www.mbnexplorer.com/, 2012) [1] and [2] to simulate trajectories of an ultra-relativistic projectile in a crystalline medium, is presented. The motion of a projectile is treated classically...... by integrating the relativistic equations of motion with account for the interaction between the projectile and crystal atoms. The probabilistic element is introduced by a random choice of transverse coordinates and velocities of the projectile at the crystal entrance as well as by accounting for the random...
Simulation of the relativistic electron dynamics and acceleration in a linearly-chirped laser pulse
Jisrawi, Najeh M; Salamin, Yousef I
2014-01-01
Theoretical investigations are presented, and their results are discussed, of the laser acceleration of a single electron by a chirped pulse. Fields of the pulse are modeled by simple plane-wave oscillations and a $\\cos^2$ envelope. The dynamics emerge from analytic and numerical solutions to the relativistic Lorentz-Newton equations of motion of the electron in the fields of the pulse. All simulations have been carried out by independent Mathematica and Python codes, with identical results. Configurations of acceleration from a position of rest as well as from injection, axially and sideways, at initial relativistic speeds are studied.
Mueller, Bernhard
2009-05-07
In this thesis, we have presented the first multi-dimensional models of core-collapse supernovae that combine a detailed, up-to-date treatment of neutrino transport, the equation of state, and - in particular - general relativistic gravity. Building on the well-tested neutrino transport code VERTEX and the GR hydrodynamics code CoCoNuT, we developed and implemented a relativistic generalization of a ray-by-ray-plus method for energy-dependent neutrino transport. The result of these effort, the VERTEX-CoCoNuT code, also incorporates a number of improved numerical techniques that have not been used in the code components VERTEX and CoCoNuT before. In order to validate the VERTEX-CoCoNuT code, we conducted several test simulations in spherical symmetry, most notably a comparison with the one-dimensional relativistic supernova code AGILE-BOLTZTRAN and the Newtonian PROMETHEUSVERTEX code. (orig.)
Numerical instability due to relativistic plasma drift in EM-PIC simulations
Xu, Xinlu; Martins, Samual F; Tsung, Frank S; Decyk, Viktor K; Fonseca, Ricardo A; Lu, Wei; Silva, Luis O; Mori, Warren B
2012-01-01
The numerical instability observed in the Electromagnetic-Particle-in-cell (EM-PIC) simulations with a plasma drifting with relativistic velocities is studied using both theory and computer simulations. We derive the numerical dispersion relation for a cold plasma drifting with a relativistic velocity and find an instability attributed to the coupling between the beam modes of the drifting plasma and the electromagnetic modes in the system. The characteristic pattern of the instability in Fourier space for various simulation setups and Maxwell Equation solvers are explored by solving the corresponding numerical dispersion relations. Furthermore, based upon these characteristic patterns we derive an asymptotic expression for the instability growth rate. The results are compared against simulation results and good agreement is found. The results are used as a guide to develop possible approaches to mitigate the instability. We examine the use of a spectral solver and show that such a solver when combined with a...
Particle-in-cell Simulations of Global Relativistic Jets with Helical Magnetic Fields
Duţan, Ioana; Mizuno, Yosuke; Niemiec, Jacek; Kobzar, Oleh; Pohl, Martin; Gómez, Jose L; Pe'er, Asaf; Frederiksen, Jacob T; Nordlund, Åke; Meli, Athina; Sol, Helene; Hardee, Philip E; Hartmann, Dieter H
2016-01-01
We study the interaction of relativistic jets with their environment, using 3-dimensional relativistic particle-in-cell simulations for two cases of jet composition: (i) electron-proton ($e^{-}-p^{+}$) and (ii) electron-positron ($e^{\\pm}$) plasmas containing helical magnetic fields. We have performed simulations of "global" jets containing helical magnetic fields in order to examine how helical magnetic fields affect kinetic instabilities such as the Weibel instability, the kinetic Kelvin-Helmholtz instability and the Mushroom instability. We have found that these kinetic instabilities are suppressed and new types of instabilities can grow. For the $e^{-}-p^{+}$ jet, a recollimation-like instability occurs and jet electrons are strongly perturbed, whereas for the $e^{\\pm}$ jet, a recollimation-like instability occurs at early times followed by kinetic instability and the general structure is similar to a simulation without a helical magnetic field. We plan to perform further simulations using much larger sys...
Nishida, Keisuke; Shibata, Kazunari [Kwasan and Hida Observatories, Kyoto University, Yamashina, Kyoto 607-8471 (Japan); Nishizuka, Naoto, E-mail: nishida@kwasan.kyoto-u.ac.jp [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan)
2013-10-01
We investigated the dynamic evolution of a three-dimensional (3D) flux rope eruption and magnetic reconnection process in a solar flare by simply extending the two-dimensional (2D) resistive magnetohydrodynamic simulation model of solar flares with low β plasma to a 3D model. We succeeded in reproducing a current sheet and bi-directional reconnection outflows just below the flux rope during the eruption in our 3D simulations. We calculated four cases of a strongly twisted flux rope and a weakly twisted flux rope in 2D and 3D simulations. The time evolution of a weakly twisted flux rope in the 3D simulation shows behaviors similar to those of the 2D simulation, while a strongly twisted flux rope in the 3D simulation clearly shows a different time evolution from the 2D simulation except for the initial phase evolution. The ejection speeds of both strongly and weakly twisted flux ropes in 3D simulations are larger than in the 2D simulations, and the reconnection rates in 3D cases are also larger than in the 2D cases. This indicates positive feedback between the ejection speed of a flux rope and the reconnection rate even in the 3D simulation, and we conclude that the plasmoid-induced reconnection model can be applied to 3D. We also found that small-scale plasmoids are formed inside a current sheet and make it turbulent. These small-scale plasmoid ejections have a role in locally increasing the reconnection rate intermittently as observed in solar flares, coupled with a global eruption of a flux rope.
2-D viscous magnetohydrodynamics simulation of plasma armatures with the CE/SE method
LI Xin; WENG ChunSheng
2009-01-01
A possible two-dimensional viscous magnetohydrodynamics (MHD) model is applied to investigating the plasma armature in a railgun. The space-time conservation element and solution element (CE/SE) method for solving the coupled Navier-Stokes equations and Maxwell equations was devised. The dis-tributions of physical parameters of the plasma may thus be evaluated. The results show that extremely high pressure can always be observed ahead of the projectile, and the Lorentz force is the main pro-puIsion. The distribution of temperature is in a good agreement with the results predicted by the law of radiation at the boundaries. Due to convection, the circulation patterns of velocity are evident in both the cases considering inviscid and viscous effect. Furthermore, the velocity and acceleration oscillate over time until a new steady state is achieved. This model efficiently captures the salient features of the physical phenomena, and contributes to further studies of MHD problems in plasma armature.
Relativistic MHD with adaptive mesh refinement
Anderson, Matthew [Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803-4001 (United States); Hirschmann, Eric W [Department of Physics and Astronomy, Brigham Young University, Provo, UT 84602 (United States); Liebling, Steven L [Department of Physics, Long Island University-C W Post Campus, Brookville, NY 11548 (United States); Neilsen, David [Department of Physics and Astronomy, Brigham Young University, Provo, UT 84602 (United States)
2006-11-22
This paper presents a new computer code to solve the general relativistic magnetohydrodynamics (GRMHD) equations using distributed parallel adaptive mesh refinement (AMR). The fluid equations are solved using a finite difference convex ENO method (CENO) in 3 + 1 dimensions, and the AMR is Berger-Oliger. Hyperbolic divergence cleaning is used to control the {nabla} . B = 0 constraint. We present results from three flat space tests, and examine the accretion of a fluid onto a Schwarzschild black hole, reproducing the Michel solution. The AMR simulations substantially improve performance while reproducing the resolution equivalent unigrid simulation results. Finally, we discuss strong scaling results for parallel unigrid and AMR runs.
Simulation of laser-driven plasma beat-wave propagation in collisional weakly relativistic plasmas
Kaur, Maninder; Nandan Gupta, Devki
2016-11-01
The process of interaction of lasers beating in a plasma has been explored by virtue of particle-in-cell (PIC) simulations in the presence of electron-ion collisions. A plasma beat wave is resonantly excited by ponderomotive force by two relatively long laser pulses of different frequencies. The amplitude of the plasma wave become maximum, when the difference in the frequencies is equal to the plasma frequency. We propose to demonstrate the energy transfer between the laser beat wave and the plasma wave in the presence of electron-ion collision in nearly relativistic regime with 2D-PIC simulations. The relativistic effect and electron-ion collision both affect the energy transfer between the interacting waves. The finding of simulation results shows that there is a considerable decay in the plasma wave and the field energy over time in the presence of electron-ion collisions.
Mikellides, Ioannis G; Yorke, Harold W
2010-01-01
We present results from numerical simulations of the cooling-core cluster A2199 produced by the two-dimensional (2-D) resistive magnetohydrodynamics (MHD) code MACH2. In our simulations we explore the effect of anisotropic thermal conduction on the energy balance of the system. The results from idealized cases in 2-D axisymmetric geometry underscore the importance of the initial plasma density in ICM simulations, especially the near-core values since the radiation cooling rate is proportional to ${n_e}^2$. Heat conduction is found to be non-effective in preventing catastrophic cooling in this cluster. In addition we performed 2-D planar MHD simulations starting from initial conditions deliberately violating both thermal balance and hydrostatic equilibrium in the ICM, to assess contributions of the convective terms in the energy balance of the system against anisotropic thermal conduction. We find that in this case work done by the pressure on the plasma can dominate the early evolution of the internal energy ...
De Colle, Fabio; Ramirez-Ruiz, Enrico [Astronomy and Astrophysics Department, University of California, Santa Cruz, CA 95064 (United States); Granot, Jonathan [Racah Institute of Physics, Hebrew University, Jerusalem 91904 (Israel); Lopez-Camara, Diego, E-mail: fabio@ucolick.org [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, Ap. 70-543, 04510 D.F. (Mexico)
2012-02-20
We report on the development of Mezcal-SRHD, a new adaptive mesh refinement, special relativistic hydrodynamics (SRHD) code, developed with the aim of studying the highly relativistic flows in gamma-ray burst sources. The SRHD equations are solved using finite-volume conservative solvers, with second-order interpolation in space and time. The correct implementation of the algorithms is verified by one-dimensional (1D) and multi-dimensional tests. The code is then applied to study the propagation of 1D spherical impulsive blast waves expanding in a stratified medium with {rho}{proportional_to}r{sup -k}, bridging between the relativistic and Newtonian phases (which are described by the Blandford-McKee and Sedov-Taylor self-similar solutions, respectively), as well as to a two-dimensional (2D) cylindrically symmetric impulsive jet propagating in a constant density medium. It is shown that the deceleration to nonrelativistic speeds in one dimension occurs on scales significantly larger than the Sedov length. This transition is further delayed with respect to the Sedov length as the degree of stratification of the ambient medium is increased. This result, together with the scaling of position, Lorentz factor, and the shock velocity as a function of time and shock radius, is explained here using a simple analytical model based on energy conservation. The method used for calculating the afterglow radiation by post-processing the results of the simulations is described in detail. The light curves computed using the results of 1D numerical simulations during the relativistic stage correctly reproduce those calculated assuming the self-similar Blandford-McKee solution for the evolution of the flow. The jet dynamics from our 2D simulations and the resulting afterglow light curves, including the jet break, are in good agreement with those presented in previous works. Finally, we show how the details of the dynamics critically depend on properly resolving the structure of the
De Colle, Fabio; Granot, Jonathan; López-Cámara, Diego; Ramirez-Ruiz, Enrico
2012-02-01
We report on the development of Mezcal-SRHD, a new adaptive mesh refinement, special relativistic hydrodynamics (SRHD) code, developed with the aim of studying the highly relativistic flows in gamma-ray burst sources. The SRHD equations are solved using finite-volume conservative solvers, with second-order interpolation in space and time. The correct implementation of the algorithms is verified by one-dimensional (1D) and multi-dimensional tests. The code is then applied to study the propagation of 1D spherical impulsive blast waves expanding in a stratified medium with ρvpropr -k , bridging between the relativistic and Newtonian phases (which are described by the Blandford-McKee and Sedov-Taylor self-similar solutions, respectively), as well as to a two-dimensional (2D) cylindrically symmetric impulsive jet propagating in a constant density medium. It is shown that the deceleration to nonrelativistic speeds in one dimension occurs on scales significantly larger than the Sedov length. This transition is further delayed with respect to the Sedov length as the degree of stratification of the ambient medium is increased. This result, together with the scaling of position, Lorentz factor, and the shock velocity as a function of time and shock radius, is explained here using a simple analytical model based on energy conservation. The method used for calculating the afterglow radiation by post-processing the results of the simulations is described in detail. The light curves computed using the results of 1D numerical simulations during the relativistic stage correctly reproduce those calculated assuming the self-similar Blandford-McKee solution for the evolution of the flow. The jet dynamics from our 2D simulations and the resulting afterglow light curves, including the jet break, are in good agreement with those presented in previous works. Finally, we show how the details of the dynamics critically depend on properly resolving the structure of the relativistic flow.
Test particle acceleration in explosive magnetohydrodynamic reconnection
Ripperda, Bart; Xia, Chun; Keppens, Rony
2016-01-01
Magnetic reconnection is the mechanism behind many violent phenomena in the universe. We demonstrate that energy released during reconnection can lead to non-thermal particle distribution functions. We use a method in which we combine resistive magnetohydrodynamics (MHD) with relativistic test particle dynamics. Using our open-source grid-adaptive MPI-AMRVAC software, we simulate global MHD evolution combined with test particle treatments in MHD snapshots. This approach is used to evaluate particle acceleration in explosive reconnection. The reconnection is triggered by an ideal tilt instability in two-and-a-half dimensional (2.5D) scenarios and by a combination of ideal tilt and kink instabilities in three-dimensional (3D) scenarios. These instabilities occur in a system with two parallel, adjacent, repelling current channels in an initially force-free equilibrium, as a simplified representation of flux ropes in a stellar magnetosphere. The current channels undergo a rotation and a separation on Alfv\\'enic t...
Mitigating Particle Integration Error in Relativistic Laser-Plasma Simulations
Higuera, Adam; Weichmann, Kathleen; Cowan, Benjamin; Cary, John
2016-10-01
In particle-in-cell simulations of laser wakefield accelerators with a0 greater than unity, errors in particle trajectories produce incorrect beam charges and energies, predicting performance not realized in experiments such as the Texas Petawatt Laser. In order to avoid these errors, the simulation time step must resolve a time scale smaller than the laser period by a factor of a0. If the Yee scheme advances the fields with this time step, the laser wavelength must be over-resolved by a factor of a0 to avoid dispersion errors. Here is presented and demonstrated with Vorpal simulations, a new electromagnetic algorithm, building on previous work, correcting Yee dispersion for arbitrary sub-CFL time steps, reducing simulation times by a0.
TURBULENT RECONNECTION IN RELATIVISTIC PLASMAS AND EFFECTS OF COMPRESSIBILITY
Takamoto, Makoto [Max-Planck-Institut für Kernphysik, Heidelberg (Germany); Inoue, Tsuyoshi [Division of Theoretical Astronomy, National Astronomical Observatory of Japan (Japan); Lazarian, Alexandre, E-mail: mtakamoto@eps.s.u-tokyo.ac.jp, E-mail: tsuyoshi.inoue@nao.ac.jp, E-mail: alazarian@facstaff.wisc.edu [Department of Astronomy, University of Wisconsin, 475 North Charter Street, Madison, WI 53706 (United States)
2015-12-10
We report on the turbulence effects on magnetic reconnection in relativistic plasmas using three-dimensional relativistic resistive magnetohydrodynamics simulations. We found that the reconnection rate became independent of the plasma resistivity due to turbulence effects similarly to non-relativistic cases. We also found that compressible turbulence effects modified the turbulent reconnection rate predicted in non-relativistic incompressible plasmas; the reconnection rate saturates, and even decays, as the injected velocity approaches to the Alfvén velocity. Our results indicate that compressibility cannot be neglected when a compressible component becomes about half of the incompressible mode, occurring when the Alfvén Mach number reaches about 0.3. The obtained maximum reconnection rate is around 0.05–0.1, which will be able to reach around 0.1–0.2 if injection scales are comparable to the sheet length.
Hayashi, Keiji; Liu, Yang; Bobra, Monica G; Sun, Xudong D; Norton, Aimee A
2015-01-01
Time-dependent three-dimensional magnetohydrodynamics (MHD) simulation modules are implemented at the Joint Science Operation Center (JSOC) of Solar Dynamics Observatory (SDO). The modules regularly produce three-dimensional data of the time-relaxed minimum-energy state of the solar corona using global solar-surface magnetic-field maps created from Helioseismic Magnetic Imager (HMI) full-disk magnetogram data. With the assumption of polytropic gas with specific heat ratio of 1.05, three types of simulation products are currently generated: i) simulation data with medium spatial resolution using the definitive calibrated synoptic map of the magnetic field with a cadence of one Carrington rotation, ii) data with low spatial resolution using the definitive version of the synchronic frame format of the magnetic field, with a cadence of one day, and iii) low-resolution data using near-real-time (NRT) synchronic format of the magnetic field on daily basis. The MHD data available in the JSOC database are three-dimen...
Krumholz, Mark R; Klein, Richard I; McKee, Christopher F
2016-01-01
As star-forming clouds collapse, the gas within them fragments to ever-smaller masses, until the cascade of fragmentation is arrested at some mass scale, making smaller objects progressively less likely to form. This scale defines the peak of the initial mass function (IMF). In this paper we analyse radiation-magnetohydrodynamics simulations of star cluster formation in typical Milky Way environments in order to determine what physical process limits fragmentation in them. We examine the regions in the vicinity of stars that form in the simulations to determine the amounts of mass that are prevented from fragmenting by thermal and magnetic pressure. We show that, on small scales, thermal pressure enhanced by stellar radiation heating is the dominant mechanism limiting the ability of the gas to further fragment. In the brown dwarf mass regime, $\\sim 0.01$ $M_\\odot$, the typical object that forms in the simulations is surrounded by gas whose mass is several times its own that is unable to escape or fragment, an...
Baczynski, C; Klessen, R S
2015-01-01
We introduce a radiative transfer code module for the magnetohydrodynamical adaptive mesh refinement code FLASH 4. It is coupled to an efficient chemical network which explicitly tracks the three hydrogen species H, H_2, H+ as well as C+ and CO. The module is geared towards modeling all relevant thermal feedback processes of massive stars, and is able to follow the non-equilibrium time-dependent thermal and chemical state of the present-day interstellar medium as well as that of dense molecular clouds. We describe in detail the implementation of all relevant thermal stellar feedback mechanisms, i.e. photoelectric, photoionization and H_2 dissociation heating as well as pumping of molecular hydrogen by UV photons. All included radiative feedback processes are extensively tested. We also compare our module to dedicated photon-dominated region (PDR) codes and find good agreement in our modeled hydrogen species once our radiative transfer solution reaches equilibrium. In addition, we show that the implemented rad...
Akcay, Cihan
A comparative study of 3-D pressureless resistive (single-fluid) magnetohydrodynamic (rMHD) and 3-D pressureless two-fluid magnetohydrodynamic (2fl-MHD) models of the Helicity Injected Torus experiment (HIT-SI) is presented. HIT-SI is a spheromak current-drive experiment that uses two geometrically asymmetric helicity injectors to generate and sustain toroidal plasmas. The goal of the experiment is to demonstrate that steady inductive helicity injection (SIHI) is a viable method for driving and sustaining a magnetized plasma for the eventual purpose of electricity production with magnetic fusion power. The experiment has achieved sustainment of nearly 100 kA of plasma current for ˜1~ms. Fusion power plants are expected to sustain a burning plasma for many minutes to hours with more than 10~MA of plasma current. The purpose of project is to determine the validity of the single-fluid and two-fluid MHD models of HIT-SI. The comparable size of the collisionless ion skin depth to the diameter of the injectors and resistive skin depth predicates the importance of two-fluid effects. The simulations are run with NIMROD (non-ideal magnetohydrodynamics code with rotation-open discussion), an initial-value, 3-D extended MHD code. A constant and uniform plasma density and temperature are assumed. The helicity injectors are modeled as oscillating normal magnetic and parallel electric field boundary conditions. The simulations use parameters that closely match those of the experiment. The simulation output is compared to the formation time, plasma current, and internal and surface magnetic fields. Results of the study indicate 2fl-MHD shows quantitative agreement with the experiment while rMHD only captures the qualitative features. The validity of each model is assessed based on how accurately it reproduces the global quantities as well as the temporal and spatial dependence of the measured magnetic fields. 2fl-MHD produces the current amplification and formation time
General relativistic simulations of binary neutron star mergers
Giacomazzo, Bruno [Trento Univ. (Italy)
2016-11-01
Currently, we are running additional simulations to investigate additional models for the properties of dense matter. Furthermore, we are using remote visualization resources provided by LRZ to produce movies showing 3D visualizations of our simulations, which will be available soon on the web page of our group. One of the main challenges for our simulations is the fact that some important effects leading to magnetic field amplification happen on small length scales. This makes it very difficult to resolve them numerically. In order to further improve the accuracy, we proposed a follow- up study in which we will evolve one or more models with very high resolution and then use the results to calibrate a so-called sub-grid model, which is designed to capture the field amplification on scales not resolved with the lower, more affordable resolutions. Once calibrated, the sub-grid approach will allow to investigate a large number of models without the need for very high resolutions.
Hayashi, K.; Hoeksema, J. T.; Liu, Y.; Bobra, M. G.; Sun, X. D.; Norton, A. A.
2015-05-01
Time-dependent three-dimensional magnetohydrodynamics (MHD) simulation modules are implemented at the Joint Science Operation Center (JSOC) of the Solar Dynamics Observatory (SDO). The modules regularly produce three-dimensional data of the time-relaxed minimum-energy state of the solar corona using global solar-surface magnetic-field maps created from Helioseismic and Magnetic Imager (HMI) full-disk magnetogram data. With the assumption of a polytropic gas with specific-heat ratio of 1.05, three types of simulation products are currently generated: i) simulation data with medium spatial resolution using the definitive calibrated synoptic map of the magnetic field with a cadence of one Carrington rotation, ii) data with low spatial resolution using the definitive version of the synchronic frame format of the magnetic field, with a cadence of one day, and iii) low-resolution data using near-real-time (NRT) synchronic format of the magnetic field on a daily basis. The MHD data available in the JSOC database are three-dimensional, covering heliocentric distances from 1.025 to 4.975 solar radii, and contain all eight MHD variables: the plasma density, temperature, and three components of motion velocity, and three components of the magnetic field. This article describes details of the MHD simulations as well as the production of the input magnetic-field maps, and details of the products available at the JSOC database interface. To assess the merits and limits of the model, we show the simulated data in early 2011 and compare with the actual coronal features observed by the Atmospheric Imaging Assembly (AIA) and the near-Earth in-situ data.
Hayashi, K; Hoeksema, J T; Liu, Y; Bobra, M G; Sun, X D; Norton, A A
Time-dependent three-dimensional magnetohydrodynamics (MHD) simulation modules are implemented at the Joint Science Operation Center (JSOC) of the Solar Dynamics Observatory (SDO). The modules regularly produce three-dimensional data of the time-relaxed minimum-energy state of the solar corona using global solar-surface magnetic-field maps created from Helioseismic and Magnetic Imager (HMI) full-disk magnetogram data. With the assumption of a polytropic gas with specific-heat ratio of 1.05, three types of simulation products are currently generated: i) simulation data with medium spatial resolution using the definitive calibrated synoptic map of the magnetic field with a cadence of one Carrington rotation, ii) data with low spatial resolution using the definitive version of the synchronic frame format of the magnetic field, with a cadence of one day, and iii) low-resolution data using near-real-time (NRT) synchronic format of the magnetic field on a daily basis. The MHD data available in the JSOC database are three-dimensional, covering heliocentric distances from 1.025 to 4.975 solar radii, and contain all eight MHD variables: the plasma density, temperature, and three components of motion velocity, and three components of the magnetic field. This article describes details of the MHD simulations as well as the production of the input magnetic-field maps, and details of the products available at the JSOC database interface. To assess the merits and limits of the model, we show the simulated data in early 2011 and compare with the actual coronal features observed by the Atmospheric Imaging Assembly (AIA) and the near-Earth in-situ data.
Lorenzo, Maibys Sierra; Domingues, Margarete Oliveira; Mecías, Angela León; Menconi, Varlei Everton; Mendes, Odim
2016-12-01
A global magnetohydrodynamic (MHD) model describes the solar-terrestrial system and the physical processes that live in it. Information obtained from satellites provides input to MHD model to compose a more realistic initial state for the equations and, therefore, more accurate simulations. However, the use of high resolution in time data can produce numerical instabilities that quickly interrupt the simulations. Moreover, satellite time series may have gaps which could be a problem in this context. In order to contribute to the overcoming of such challenges, we propose in this work a methodology based on a variant of the continuous wavelet transform to introduce environmental satellite data on the global resistive MHD model originally developed by Prof. Ogino at the University of Nagoya. Our methodology uses a simplified time-scale version of the original data that preserves the most important spectral features of the phenomena of interest. Then, we can do a long-term integration using this MHD model without any computational instability, while preserving the main time-scale features of the original data set and even overcome possible occurrence of gaps on the satellite data. This methodology also contributes to keeping more realistic physical results.
Inoue, S; Magara, T; Choe, G S; Park, Y D
2014-01-01
We performed a magnetohydrodynamic (MHD) simulation using a nonlinear force-free field (NLFFF) in solar active region 11158 to clarify the dynamics of an X2.2-class solar flare. We found that the NLFFF never shows the drastic dynamics seen in observations, i.e., it is in stable state against the perturbations. On the other hand, the MHD simulation shows that when the strongly twisted lines are formed at close to the neutral line, which are produced via tether-cutting reconnection in the twisted lines of the NLFFF, consequently they erupt away from the solar surface via the complicated reconnection. This result supports the argument that the strongly twisted lines formed in NLFFF via tether-cutting reconnection are responsible for breaking the force balance condition of the magnetic fields in the lower solar corona. In addition to this the dynamical evolution of these field lines reveals that at the initial stage the spatial pattern of the footpoints caused by the reconnection of the twisted lines appropriatel...
Yuan, Xuefei
2012-07-01
Numerical simulations of the four-field extended magnetohydrodynamics (MHD) equations with hyper-resistivity terms present a difficult challenge because of demanding spatial resolution requirements. A time-dependent sequence of . r-refinement adaptive grids obtained from solving a single Monge-Ampère (MA) equation addresses the high-resolution requirements near the . x-point for numerical simulation of the magnetic reconnection problem. The MHD equations are transformed from Cartesian coordinates to solution-defined curvilinear coordinates. After the application of an implicit scheme to the time-dependent problem, the parallel Newton-Krylov-Schwarz (NKS) algorithm is used to solve the system at each time step. Convergence and accuracy studies show that the curvilinear solution requires less computational effort than a pure Cartesian treatment. This is due both to the more optimal placement of the grid points and to the improved convergence of the implicit solver, nonlinearly and linearly. The latter effect, which is significant (more than an order of magnitude in number of inner linear iterations for equivalent accuracy), does not yet seem to be widely appreciated. © 2012 Elsevier Inc.
Wareing, C J; Falle, S A E G
2016-01-01
We have used the AMR hydrodynamic code, MG, to perform 3D magnetohydrodynamic simulations with self-gravity of stellar feedback in a sheet-like molecular cloud formed through the action of the thermal instability. We simulate the interaction of the mechanical energy input from a 15Msun star and a 40Msun star into a 100pc-diameter 17000Msun cloud with a corrugated sheet morphology that in projection appears filamentary. The stellar winds are introduced using appropriate Geneva stellar evolution models. In the 15Msun star case, the wind forms a narrow bipolar cavity with minimal effect on the parent cloud. In the 40Msun star case, the more powerful stellar wind creates a large cylindrical cavity through the centre of the cloud. After 12.5Myrs and 4.97Myrs respectively, the massive stars explode as supernovae (SNe). In the 15Msun star case, the SN material and energy is primarily deposited into the molecular cloud surroundings over 10^5 years before the SN remnant escapes the cloud. In the 40Msun star case, the ...
Magnetohydrodynamic Simulation of the Chordal Wire-Array Plasma Flow Switch
Domonkos, Matthew; Amdahl, David
2015-11-01
The coaxial plasma flow switch (PFS) using a chordal wire array armature was first studied experimentally and computationally in the 1980's. That work revealed significant current interruption (dI/dt ~ 5 MA/ μs) as well as continuum x-ray emission representative of 30-45 keV bremsstrahlung. The work concluded that the voltage spike associated with the current interruption accelerated highly magnetized ions downstream at high velocity, and that energy exchange between the ions and electrons and their subsequent acceleration at the downstream boundary of the apparatus were responsible for the x-ray production. This work revisits the PFS operation up to and just beyond the point of armature lift-off from the coaxial section, where the magnetohydrodynamic model is valid and relevant. The early-time energy deposition in the wires from the pulse discharge is modeled in high-resolution 1-D and is used to set the initial conditions for the full-scale 3-D calculation. The wire array is assumed to have expanded from the initial r =0.01 cm uniformly and only in the axial direction, while the areal mass density retains its intended variation with radius. 3-D calculations are used to examine the armature, including magnetic field diffusion, as it is propelled along the coaxial geometry. These calculations will be used to set the initial conditions for follow-on particle or particle-fluid hybrid calculations of the propagation of ions and electrons to downstream obstacles and to calculate the x-ray production from the interactions of the flowing plasma with the obstacles.
General relativistic simulations of compact binary mergers as engines for short gamma-ray bursts
Paschalidis, Vasileios
2017-04-01
Black hole—neutron star (BHNS) and neutron star—neutron star (NSNS) binaries are among the favored candidates for the progenitors of the black hole—disk systems that may be the engines powering short-hard gamma ray bursts. After almost two decades of simulations of binary NSNSs and BHNSs in full general relativity we are now beginning to understand the ingredients that may be necessary for these systems to launch incipient jets. Here, we review our current understanding, and summarize the surprises and lessons learned from state-of-the-art (magnetohydrodynamic) simulations in full general relativity of BHNS and NSNS mergers as jet engines for short-hard gamma-ray bursts. We also propose a new approach to probing the nuclear equation of state by virtue of multimessenger observations.
3D General Relativistic Simulations of Coalescing Binary Neutron Stars
Oohara, K I; Nakamura, Takashi; Oohara, Ken-ichi
1999-01-01
We develop a 3 dimensional computer code to study a coalescing neutron star binary. The code can currently follow the evolution up to two stars begin to merge from two spherical stars of mass 1 solar mass and radius 8.9km with separation 35.4km. As for coordinate conditions, we use conformal slicing and pseudo-minimal distortion conditions. The evolution equations for the metric is integrated using the CIP method while the van Leer's scheme is used to integrate the equations for the matter. We present a few results of our simulations including gravitational radiation.
Haas, Fernando; Pascoal, Kellen Alves [Instituto de Física, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, 91501-970 Porto Alegre, RS (Brazil); Mendonça, José Tito [IPFN, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal and Instituto de Física, Universidade de São Paulo, 05508-090 São Paulo, SP (Brazil)
2016-01-15
A new neutrino magnetohydrodynamics (NMHD) model is formulated, where the effects of the charged weak current on the electron-ion magnetohydrodynamic fluid are taken into account. The model incorporates in a systematic way the role of the Fermi neutrino weak force in magnetized plasmas. A fast neutrino-driven short wavelengths instability associated with the magnetosonic wave is derived. Such an instability should play a central role in strongly magnetized plasma as occurs in supernovae, where dense neutrino beams also exist. In addition, in the case of nonlinear or high frequency waves, the neutrino coupling is shown to be responsible for breaking the frozen-in magnetic field lines condition even in infinite conductivity plasmas. Simplified and ideal NMHD assumptions were adopted and analyzed in detail.
Gorlin, S.M.; Ljubimov, G.A.; Bitjurin, V.A.; Kovbasjuk, V.I.; Maximenko, V.I.; Medin, S.A.; Barshak, A.E.
1979-12-25
A magnetohydrodynamic device having a duct for a conducting gas to flow at an angle with the direction of the magnetic field induction vector is described. The duct is situated in the magnetic system and is provided with a plurality of electrodes adapted to interact electrically with the gas, whereas the cross-sectional shape of the duct working space is bounded by a closed contour formed by a curve inscribed into a rectangle. 1 claim.
Numerical Hydrodynamics and Magnetohydrodynamics in General Relativity
Font José A.
2008-09-01
Full Text Available This article presents a comprehensive overview of numerical hydrodynamics and magnetohydrodynamics (MHD in general relativity. Some significant additions have been incorporated with respect to the previous two versions of this review (2000, 2003, most notably the coverage of general-relativistic MHD, a field in which remarkable activity and progress has occurred in the last few years. Correspondingly, the discussion of astrophysical simulations in general-relativistic hydrodynamics is enlarged to account for recent relevant advances, while those dealing with general-relativistic MHD are amply covered in this review for the first time. The basic outline of this article is nevertheless similar to its earlier versions, save for the addition of MHD-related issues throughout. Hence, different formulations of both the hydrodynamics and MHD equations are presented, with special mention of conservative and hyperbolic formulations well adapted to advanced numerical methods. A large sample of numerical approaches for solving such hyperbolic systems of equations is discussed, paying particular attention to solution procedures based on schemes exploiting the characteristic structure of the equations through linearized Riemann solvers. As previously stated, a comprehensive summary of astrophysical simulations in strong gravitational fields is also presented. These are detailed in three basic sections, namely gravitational collapse, black-hole accretion, and neutron-star evolutions; despite the boundaries, these sections may (and in fact do overlap throughout the discussion. The material contained in these sections highlights the numerical challenges of various representative simulations. It also follows, to some extent, the chronological development of the field, concerning advances in the formulation of the gravitational field, hydrodynamics and MHD equations and the numerical methodology designed to solve them. To keep the length of this article reasonable
Beidler, M. T.; Cassak, P. A.; Jardin, S. C.; Ferraro, N. M.
2017-02-01
We diagnose local properties of magnetic reconnection during a sawtooth crash employing the three-dimensional toroidal, extended-magnetohydrodynamic (MHD) code M3D-C1. To do so, we sample simulation data in the plane in which reconnection occurs, the plane perpendicular to the helical (m,n)=(1,1) mode at the q = 1 surface, where m and n are the poloidal and toroidal mode numbers and q is the safety factor. We study the nonlinear evolution of a particular test equilibrium in a non-reduced field representation using both resistive-MHD and extended-MHD models. We find growth rates for the extended-MHD reconnection process exhibit a nonlinear acceleration and greatly exceed that of the resistive-MHD model, as is expected from previous experimental, theoretical, and computational work. We compare the properties of reconnection in the two simulations, revealing the reconnecting current sheets are locally different in the two models and we present the first observation of the quadrupole out-of-plane Hall magnetic field that appears during extended-MHD reconnection in a 3D toroidal simulation (but not in resistive-MHD). We also explore the dependence on toroidal angle of the properties of reconnection as viewed in the plane perpendicular to the helical magnetic field, finding qualitative and quantitative effects due to changes in the symmetry of the reconnection process. This study is potentially important for a wide range of magnetically confined fusion applications, from confirming simulations with extended-MHD effects are sufficiently resolved to describe reconnection, to quantifying local reconnection rates for purposes of understanding and predicting transport, not only at the q = 1 rational surface for sawteeth, but also at higher order rational surfaces that play a role in disruptions and edge-confinement degradation.
Wong, Un-Hong; Aoki, Takayuki; Wong, Hon-Cheng
2014-07-01
Modern graphics processing units (GPUs) have been widely utilized in magnetohydrodynamic (MHD) simulations in recent years. Due to the limited memory of a single GPU, distributed multi-GPU systems are needed to be explored for large-scale MHD simulations. However, the data transfer between GPUs bottlenecks the efficiency of the simulations on such systems. In this paper we propose a novel GPU Direct-MPI hybrid approach to address this problem for overall performance enhancement. Our approach consists of two strategies: (1) We exploit GPU Direct 2.0 to speedup the data transfers between multiple GPUs in a single node and reduce the total number of message passing interface (MPI) communications; (2) We design Compute Unified Device Architecture (CUDA) kernels instead of using memory copy to speedup the fragmented data exchange in the three-dimensional (3D) decomposition. 3D decomposition is usually not preferable for distributed multi-GPU systems due to its low efficiency of the fragmented data exchange. Our approach has made a breakthrough to make 3D decomposition available on distributed multi-GPU systems. As a result, it can reduce the memory usage and computation time of each partition of the computational domain. Experiment results show twice the FLOPS comparing to common 2D decomposition MPI-only implementation method. The proposed approach has been developed in an efficient implementation for MHD simulations on distributed multi-GPU systems, called MGPU-MHD code. The code realizes the GPU parallelization of a total variation diminishing (TVD) algorithm for solving the multidimensional ideal MHD equations, extending our work from single GPU computation (Wong et al., 2011) to multiple GPUs. Numerical tests and performance measurements are conducted on the TSUBAME 2.0 supercomputer at the Tokyo Institute of Technology. Our code achieves 2 TFLOPS in double precision for the problem with 12003 grid points using 216 GPUs.
Komissarov, S S; Lyutikov, M
2015-01-01
In this paper we describe a simple numerical approach which allows to study the structure of steady-state axisymmetric relativistic jets using one-dimensional time-dependent simulations. It is based on the fact that for narrow jets with v~c the steady-state equations of relativistic magnetohydrodynamics can be accurately approximated by the one-dimensional time-dependent equations after the substitution z=ct. Since only the time-dependent codes are now publicly available this is a valuable and efficient alternative to the development of a high-specialized code for the time-independent equations. The approach is also much cheaper and more robust compared to the relaxation method. We tested this technique against numerical and analytical solutions found in literature as well as solutions we obtained using the relaxation method and found it sufficiently accurate. In the process, we discovered the reason for the failure of the self-similar analytical model of the jet reconfinement in relatively flat atmospheres a...
Godfrey, Brendan B.; Vay, Jean-Luc
2013-09-01
Rapidly growing numerical instabilities routinely occur in multidimensional particle-in-cell computer simulations of plasma-based particle accelerators, astrophysical phenomena, and relativistic charged particle beams. Reducing instability growth to acceptable levels has necessitated higher resolution grids, high-order field solvers, current filtering, etc. except for certain ratios of the time step to the axial cell size, for which numerical growth rates and saturation levels are reduced substantially. This paper derives and solves the cold beam dispersion relation for numerical instabilities in multidimensional, relativistic, electromagnetic particle-in-cell programs employing either the standard or the Cole-Karkkainnen finite difference field solver on a staggered mesh and the common Esirkepov current-gathering algorithm. Good overall agreement is achieved with previously reported results of the WARP code. In particular, the existence of select time steps for which instabilities are minimized is explained. Additionally, an alternative field interpolation algorithm is proposed for which instabilities are almost completely eliminated for a particular time step in ultra-relativistic simulations.
Parallel code NSBC: Simulations of relativistic nuclei scattering by a bent crystal
Babaev, A. A.
2014-01-01
The presented program was designed to simulate the passage of relativistic nuclei through a bent crystal. Namely, the input data is related to a nuclei beam. The nuclei move into the crystal under planar channeling and quasichanneling conditions. The program realizes the numerical algorithm to evaluate the trajectory of nucleus in the bent crystal. The program output is formed by the projectile motion data including the angular distribution of nuclei behind the crystal. The program could be useful to simulate the particle tracking at the accelerator facilities used the crystal collimation systems. The code has been written on C++ and designed for the multiprocessor systems (clusters).
Godfrey, Brendan B
2013-01-01
Rapidly growing numerical instabilities routinely occur in multidimensional particle-in-cell computer simulations of plasma-based particle accelerators, astrophysical phenomena, and relativistic charged particle beams. Reducing instability growth to acceptable levels has necessitated higher resolution grids, high-order field solvers, current filtering, etc. except for certain ratios of the time step to the axial cell size, for which numerical growth rates and saturation levels are reduced substantially. This paper derives and solves the cold beam dispersion relation for numerical instabilities in multidimensional, relativistic, electromagnetic particle-in-cell programs employing either the standard or the Cole-Karkkainnen finite difference field solver on a staggered mesh and the common Esirkepov current-gathering algorithm. Good overall agreement is achieved with previously reported results of the WARP code. In particular, the existence of select time steps for which instabilities are minimized is explained....
Probing the Internal Structure of Magnetized, Relativistic Jets with Numerical Simulations
José-María Martí
2016-10-01
Full Text Available From an observational point of view, unveiling the physical processes behind the nature of the jets emanating from radio-loud AGN demands the resolution of the structure across the jet with the highest angular resolutions. Relying on a magneto-fluid dynamical description, numerical simulations can help to characterize the internal structure of jets (transversal structure, magnetic field structure, internal shocks, etc.. In the first part of the paper, we shall discuss equilibrium models of magnetized, relativistic, infinite, axisymmetric jets with rotation propagating through a homogeneous, static, unmagnetized ambient medium. Then, these transversal equilibrium profiles will be used to build steady models of overpressured, superfast-magnetosonic, relativistic jets, with the aim of characterizing their internal structure in connection with their dominant type of energy (internal energy: hot jets; rest-mass energy: kinetically-dominated jets; magnetic energy: Poynting-flux-dominated jets.
Ohsuga, Ken
2011-01-01
We present the detailed global structure of black hole accretion flows and outflows through newly performed two-dimensional radiation-magnetohydrodynamic simulations. By starting from a torus threaded with weak toroidal magnetic fields and by controlling the central density of the initial torus, rho_0, we can reproduce three distinct modes of accretion flow. In model A with the highest central density, an optically and geometrically thick supercritical accretion disk is created. The radiation force greatly exceeds the gravity above the disk surface, thereby driving a strong outflow (or jet). Because of the mild beaming, the apparent (isotropic) photon luminosity is ~22L_E (where L_E is the Eddington luminosity) in the face-on view. Even higher apparent luminosity is feasible if we increase the flow density. In model B with a moderate density, radiative cooling of the accretion flow is so efficient that a standard-type, cold, and geometrically thin disk is formed at radii greater than ~7R_S (where R_S is the S...
Ohsuga, Ken; Mori, Masao; Kato, Yoshiaki
2009-01-01
Black-hole accretion systems are known to possess several distinct modes (or spectral states), such as low/hard state, high/soft state, and so on. Since the dynamics of the corresponding flows is distinct, theoretical models were separately discussed for each state. We here propose a unified model based on our new, global, two-dimensional radiation-magnetohydrodynamic simulations. By controlling a density normalization we could for the first time reproduce three distinct modes of accretion flow and outflow with one numerical code. When the density is large (model A), a geometrically thick, very luminous disk forms, in which photon trapping takes place. When the density is moderate (model B), the accreting gas can effectively cool by emitting radiation, thus generating a thin disk, i.e., the soft-state disk. When the density is too low for radiative cooling to be important (model C), a disk becomes hot, thick, and faint; i.e., the hard-state disk. The magnetic energy is amplified within the disk up to about tw...
Nakamura, T K M; Hasegawa, H; Shinohara, I
2010-04-01
Ion-to-magnetohydrodynamic scale physics of the transverse velocity shear layer and associated Kelvin-Helmholtz instability (KHI) in a homogeneous, collisionless plasma are investigated by means of full particle simulations. The shear layer is broadened to reach a kinetic equilibrium when its initial thickness is close to the gyrodiameter of ions crossing the layer, namely, of ion-kinetic scale. The broadened thickness is larger in B⋅Ω0 case, where Ω is the vorticity at the layer. This is because the convective electric field, which points out of (into) the layer for B⋅Ω0), extends (reduces) the gyrodiameters. Since the kinetic equilibrium is established before the KHI onset, the KHI growth rate depends on the broadened thickness. In the saturation phase of the KHI, the ion vortex flow is strengthened (weakened) for B⋅Ω0), due to ion centrifugal drift along the rotational plasma flow. In ion inertial scale vortices, this drift effect is crucial in altering the ion vortex size. These results indicate that the KHI at Mercury-like ion-scale magnetospheric boundaries could show clear dawn-dusk asymmetries in both its linear and nonlinear growth.
Synchrotron radiation of self-collimating relativistic MHD jets
Porth, Oliver; Meliani, Zakaria; Vaidya, Bhargav
2011-01-01
The goal of this paper is to derive signatures of synchrotron radiation from state-of-the-art simulation models of collimating relativistic magnetohydrodynamic (MHD) jets featuring a large-scale helical magnetic field. We perform axisymmetric special relativistic MHD simulations of the jet acceleration region using the PLUTO code. The computational domain extends from the slow magnetosonic launching surface of the disk up to 6000^2 Schwarzschild radii allowing to reach highly relativistic Lorentz factors. The Poynting dominated disk wind develops into a jet with Lorentz factors of 8 and is collimated to 1 degree. In addition to the disk jet, we evolve a thermally driven spine jet, emanating from a hypothetical black hole corona. Solving the linearly polarized synchrotron radiation transport within the jet, we derive VLBI radio and (sub-) mm diagnostics such as core shift, polarization structure, intensity maps, spectra and Faraday rotation measure (RM), directly from the Stokes parameters. We also investigate...
Boquist, Carl W.; Marchant, David D.
1978-01-01
A ceramic-metal composite suitable for use in a high-temperature environment consists of a refractory ceramic matrix containing 10 to 50 volume percent of a continuous high-temperature metal reinforcement. In a specific application of the composite, as an electrode in a magnetohydrodynamic generator, the one surface of the electrode which contacts the MHD fluid may have a layer of varying thickness of nonreinforced refractory ceramic for electrode temperature control. The side walls of the electrode may be coated with a refractory ceramic insulator. Also described is an electrode-insulator system for a MHD channel.
Melzani, Mickaël; Folini, Doris; Winisdoerffer, Christophe; Favre, Jean M
2014-01-01
Magnetic reconnection is a leading mechanism for magnetic energy conversion and high-energy non-thermal particle production in a variety of high-energy astrophysical objects, including ones with relativistic ion-electron plasmas (e.g., microquasars or AGNs) - a regime where first principle studies are scarce. We present 2D particle-in-cell (PIC) simulations of low $\\beta$ ion-electron plasmas under relativistic conditions, i.e., with inflow magnetic energy exceeding the plasma rest-mass energy. We identify outstanding properties: (i) For relativistic inflow magnetizations (here $10 80$), the reconnection electric field is sustained more by bulk inertia than by thermal inertia. It challenges the thermal-inertia-paradigm and its implications. (iii) The inflows feature sharp transitions at the entrance of the diffusion zones. These are not shocks but results from particle ballistic motions, all bouncing at the same location, provided that the thermal velocity in the inflow is far smaller than the inflow E cross...
Chen, Zaigao; Wang, Jianguo; Wang, Yue; Qiao, Hailiang; Zhang, Dianhui; Guo, Weijie
2013-11-01
Optimal design method of high-power microwave source using particle simulation and parallel genetic algorithms is presented in this paper. The output power, simulated by the fully electromagnetic particle simulation code UNIPIC, of the high-power microwave device is given as the fitness function, and the float-encoding genetic algorithms are used to optimize the high-power microwave devices. Using this method, we encode the heights of non-uniform slow wave structure in the relativistic backward wave oscillators (RBWO), and optimize the parameters on massively parallel processors. Simulation results demonstrate that we can obtain the optimal parameters of non-uniform slow wave structure in the RBWO, and the output microwave power enhances 52.6% after the device is optimized.
Takasao, Shinsuke; Nakamura, Naoki; Shibata, Kazunari [Kwasan and Hida Observatories, Kyoto University, Yamashina, Kyoto 607-8471 (Japan); Matsumoto, Takuma, E-mail: takasao@kwasan.kyoto-u.ac.jp [Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency (JAXA), 3-1-1 Yoshinodai, Sagamihara, Kanagawa 252-5210 (Japan)
2015-06-01
Solar flares are an explosive phenomenon where super-sonic flows and shocks are expected in and above the post-flare loops. To understand the dynamics of post-flare loops, a two-dimensional magnetohydrodynamic (2D MHD) simulation of a solar flare has been carried out. We found new shock structures in and above the post-flare loops, which were not resolved in the previous work by Yokoyama and Shibata. To study the dynamics of flows along the reconnected magnetic field, the kinematics and energetics of the plasma are investigated along selected field lines. It is found that shocks are crucial to determine the thermal and flow structures in the post-flare loops. On the basis of the 2D MHD simulation, we developed a new post-flare loop model, which we defined as the pseudo-2D MHD model. The model is based on the one-dimensional (1D) MHD equations, where all variables depend on one space dimension, and all the three components of the magnetic and velocity fields are considered. Our pseudo-2D model includes many features of the multi-dimensional MHD processes related to magnetic reconnection (particularly MHD shocks), which the previous 1D hydrodynamic models are not able to include. We compared the shock formation and energetics of a specific field line in the 2D calculation with those in our pseudo-2D MHD model, and found that they give similar results. This model will allow us to study the evolution of the post-flare loops in a wide parameter space without expensive computational cost or neglecting important physics associated with magnetic reconnection.
Large-Eddy Simulations of Magnetohydrodynamic Turbulence in Astrophysics and Space Physics
Miesch, Mark S; Brandenburg, Axel; Petrosyan, Arakel; Pouquet, Annick; Cambon, Claude; Jenko, Frank; Uzdensky, Dmitri; Stone, James; Tobias, Steve; Toomre, Juri; Velli, Marco
2015-01-01
We live in an age in which high-performance computing is transforming the way we do science. Previously intractable problems are now becoming accessible by means of increasingly realistic numerical simulations. One of the most enduring and most challenging of these problems is turbulence. Yet, despite these advances, the extreme parameter regimes encountered in astrophysics and space physics (as in atmospheric and oceanic physics) still preclude direct numerical simulation. Numerical models must take a Large Eddy Simulation (LES) approach, explicitly computing only a fraction of the active dynamical scales. The success of such an approach hinges on how well the model can represent the subgrid-scales (SGS) that are not explicitly resolved. In addition to the parameter regime, astrophysical and heliophysical applications must also face an equally daunting challenge: magnetism. The presence of magnetic fields in a turbulent, electrically conducting fluid flow can dramatically alter the coupling between large and...
Three-dimensional Magnetohydrodynamic Simulations of Buoyant Bubbles in Galaxy Clusters
O'Neill, S M; Jones, T W
2009-01-01
We report results of 3D MHD simulations of the dynamics of buoyant bubbles in magnetized galaxy cluster media. The simulations are three dimensional extensions of two dimensional calculations reported by Jones & De Young (2005). Initially spherical bubbles and briefly inflated spherical bubbles all with radii a few times smaller than the intracluster medium (ICM) scale height were followed as they rose through several ICM scale heights. Such bubbles quickly evolve into a toroidal form that, in the absence of magnetic influences, is stable against fragmentation in our simulations. This ring formation results from (commonly used) initial conditions that cause ICM material below the bubbles to drive upwards through the bubble, creating a vortex ring; that is, hydrostatic bubbles develop into "smoke rings", if they are initially not very much smaller or very much larger than the ICM scale height. Even modest ICM magnetic fields with beta = P_gas/P_mag ~ 10^3 can influence the dynamics of the bubbles, provided...
MERIDIONAL CIRCULATION DYNAMICS FROM 3D MAGNETOHYDRODYNAMIC GLOBAL SIMULATIONS OF SOLAR CONVECTION
Passos, Dário [CENTRA, Instituto Superior Tecnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisbon (Portugal); Charbonneau, Paul [Départment de Physique, Université de Montréal, C.P. 6128, Centre-ville, Montréal, QC H3C 3J7 (Canada); Miesch, Mark, E-mail: dariopassos@ist.utl.pt [High Altitude Observatory, NCAR, Boulder CO 80301-2252 (United States)
2015-02-10
The form of solar meridional circulation is a very important ingredient for mean field flux transport dynamo models. However, a shroud of mystery still surrounds this large-scale flow, given that its measurement using current helioseismic techniques is challenging. In this work, we use results from three-dimensional global simulations of solar convection to infer the dynamical behavior of the established meridional circulation. We make a direct comparison between the meridional circulation that arises in these simulations and the latest observations. Based on our results, we argue that there should be an equatorward flow at the base of the convection zone at mid-latitudes, below the current maximum depth helioseismic measures can probe (0.75 R{sub ⊙}). We also provide physical arguments to justify this behavior. The simulations indicate that the meridional circulation undergoes substantial changes in morphology as the magnetic cycle unfolds. We close by discussing the importance of these dynamical changes for current methods of observation which involve long averaging periods of helioseismic data. Also noteworthy is the fact that these topological changes indicate a rich interaction between magnetic fields and plasma flows, which challenges the ubiquitous kinematic approach used in the vast majority of mean field dynamo simulations.
A direct-numerical-simulation-based second-moment closure for turbulent magnetohydrodynamic flows
Kenjereš, S.; Hanjalić, K.; Bal, D.
2004-01-01
A magnetic field, imposed on turbulent flow of an electrically conductive fluid, is known to cause preferential damping of the velocity and its fluctuations in the direction of Lorentz force, thus leading to an increase in stress anisotropy. Based on direct numerical simulations (DNS), we have devel
Geant4 simulations on Compton scattering of laser photons on relativistic electrons
Filipescu, D. [Extreme Light Infrastructure - Nuclear Physics, str. Atomistilor nr. 407, Bucharest-Magurele, P.O.BOX MG6, Romania and National Institute for Physics and Nuclear Engineering Horia Hulubei, str. Atomistilor nr. 407 (Romania); Utsunomiya, H. [Department of Physics, Konan University, Okamoto 8-9-1, Higashinada, Kobe 658-8501 (Japan); Gheorghe, I.; Glodariu, T. [National Institute for Physics and Nuclear Engineering Horia Hulubei, str. Atomistilor nr. 407 (Romania); Tesileanu, O. [Extreme Light Infrastructure - Nuclear Physics, str. Atomistilor nr. 407, Bucharest-Magurele, P.O.BOX MG6 (Romania); Shima, T.; Takahisa, K. [Research Center for Nuclear Physics, Osaka University, Suita, Osaka 567-0047 (Japan); Miyamoto, S. [Laboratory of Advanced Science and Technology for Industry, University of Hyogo, 3-1-2 Kouto, Kamigori, Hyogo 678-1205 (Japan)
2015-02-24
Using Geant4, a complex simulation code of the interaction between laser photons and relativistic electrons was developed. We implemented physically constrained electron beam emittance and spacial distribution parameters and we also considered a Gaussian laser beam. The code was tested against experimental data produced at the γ-ray beam line GACKO (Gamma Collaboration Hutch of Konan University) of the synchrotron radiation facility NewSUBARU. Here we will discuss the implications of transverse missallignments of the collimation system relative to the electron beam axis.
Simulation of Ultra-Relativistic Electrons and Positrons Channeling in Crystals with MBN Explorer
Sushko, Gennady B; Solov'yov, Ilia A; Korol, Andrei V; Greiner, Walter; Solov'yov, Andrey V
2013-01-01
A newly developed code, implemented as a part of the \\MBNExplorer package \\cite{MBN_ExplorerPaper,MBN_ExplorerSite} to simulate trajectories of an ultra-relativistic projectile in a crystalline medium, is presented. The motion of a projectile is treated classically by integrating the relativistic equations of motion with account for the interaction between the projectile and crystal atoms. The probabilistic element is introduced by a random choice of transverse coordinates and velocities of the projectile at the crystal entrance as well as by accounting for the random positions of the atoms due to thermal vibrations. The simulated trajectories are used for numerical analysis of the emitted radiation. Initial approbation and verification of the code have been carried out by simulating the trajectories and calculating the radiation emitted by $\\E=6.7$ GeV and $\\E=855$ MeV electrons and positrons in oriented Si(110) crystal and in amorphous silicon. The calculated spectra are compared with the experimental data ...
Simulation of ultra-relativistic electrons and positrons channeling in crystals with MBN EXPLORER
Sushko, Gennady B.; Bezchastnov, Victor G.; Solov'yov, Ilia A.; Korol, Andrei V.; Greiner, Walter; Solov'yov, Andrey V.
2013-11-01
A newly developed code, implemented as a part of the MBN EXPLORER package (Solov'yov et al., 2012; http://www.mbnexplorer.com/, 2012) [1,2] to simulate trajectories of an ultra-relativistic projectile in a crystalline medium, is presented. The motion of a projectile is treated classically by integrating the relativistic equations of motion with account for the interaction between the projectile and crystal atoms. The probabilistic element is introduced by a random choice of transverse coordinates and velocities of the projectile at the crystal entrance as well as by accounting for the random positions of the atoms due to thermal vibrations. The simulated trajectories are used for numerical analysis of the emitted radiation. Initial approbation and verification of the code have been carried out by simulating the trajectories and calculating the radiation emitted by ε=6.7 GeV and ε=855 MeV electrons and positrons in oriented Si(110) crystal and in amorphous silicon. The calculated spectra are compared with the experimental data and with predictions of the Bethe-Heitler theory for the amorphous environment.
Maezawa, Yu; Hatsuda, Tetsuo; Koide, Tomoi
2010-01-01
Transport coefficients of causal dissipative relativistic fluid dynamics (CDR) are studied in quenched lattice simulations. CDR describes the behavior of relativistic non-Newtonian fluids in which the relaxation time appears as a new transport coefficient besides the shear and bulk viscosities. It was recently shown that these coefficients can be given by the temporal-correlation functions of the energy-momentum tensors as in the case of the Green-Kubo-Nakano formula. By using the new formula in CDR, we study the transport coefficients with lattice simulations in pure SU(3) gauge theory. After defining the energy-momentum tensor on the lattice, we extract a ratio of the shear viscosity to the relaxation time which is given only in terms of the static correlation functions. The simulations are performed on $24^3 \\times 4$--16 lattices with $\\beta_{_{\\rm LAT}} = 6.0$, which corresponds to the temperature range of $0.5 \\simle T/T_c \\simle 1.8$, where $T_c$ is the critical temperature.
Simulating gamma-ray binaries with a relativistic extension of RAMSES
Lamberts, Astrid; Dubus, Guillaume; Teyssier, Romain
2013-01-01
Gamma-ray binaries are composed of a massive star and a rotation-powered pulsar with a highly relativistic wind. The collision between the winds from both objects creates a shock structure where particles are accelerated, resulting in the observed high energy emission. We study the impact of special relativity on the structure and stability of the colliding wind region and highlight the differences with colliding winds from massive stars. We focus on evolution with increasing values of the Lorentz factor of the pulsar wind, keeping in mind that current simulations are unable to reach the expected values of the pulsar wind Lorentz factors by orders of magnitude. We use high resolution numerical simulations with a relativistic extension to the hydrodynamics code RAMSES we have developed. Using 2D simulations, we focus on the region close to the binary, neglecting orbital motion. We use different values of the Lorentz factor of the pulsar wind, up to 16. We find analytic scaling relations between stellar wind co...
The internal structure of magnetized relativistic jets
Martí, José M; Gómez, José L
2016-01-01
This work presents the first characterization of the internal structure of overpressured steady superfast magnetosonic relativistic jets in connection with their dominant type of energy. To this aim, relativistic magnetohydrodynamic simulations of different jet models threaded by a helical magnetic field have been analyzed covering a wide region in the magnetosonic Mach number - specific internal energy plane. The merit of this plane is that models dominated by different types of energy (internal energy: hot jets; rest-mass energy: kinetically dominated jets; magnetic energy: Poynting-flux dominated jets) occupy well separated regions. The analyzed models also cover a wide range of magnetizations. Models dominated by the internal energy (i.e., hot models, or Poynting-flux dominated jets with magnetizations larger than but close to 1) have a rich internal structure characterized by a series of recollimation shocks and present the largest variations in the flow Lorentz factor (and internal energy density). Conv...
O'Neill, Sean M; Begelman, Mitchell C
2012-01-01
We present the results of a numerical investigation of current-driven instability in magnetized jets. Utilizing the well-tested, relativistic magnetohydrodynamic code Athena, we construct an ensemble of local, co-moving plasma columns in which initial radial force balance is achieved through various combinations of magnetic, pressure, and rotational forces. We then examine the resulting flow morphologies and energetics to determine the degree to which these systems become disrupted, the amount of kinetic energy amplification attained, and the non-linear saturation behaviors. Our most significant finding is that the details of initial force balance have a pronounced effect on the resulting flow morphology. Models in which the initial magnetic field is force-free deform, but do not become disrupted. Systems that achieve initial equilibrium by balancing pressure gradients and/or rotation against magnetic forces, however, tend to shred, mix, and develop turbulence. In all cases, the linear growth of current-drive...
Fragile, P. Christopher Christopher; Etheridge, Sarina Marie; Anninos, Peter; Mishra, Bhupendra
2017-01-01
Many analytic, semi-analytic, and even some numerical treatments of black hole accretion parametrize the stresses within the disk as an effective viscosity, even though the true source of stresses is likely to be turbulence driven by the magneto-rotational instability. Despite some attempts to quantify the differences between these treatments, it remains unclear exactly what the consequences of a viscous treatment are, especially in the context of the temporal and spatial variability of global disk parameters. We use the astrophysics code, Cosmos++, to create two accretion disk simulations using alpha-viscosity, one thin and one thick. These simulations are then compared to similar work done using MHD in order to analyze the extent of the validity of the alpha-model. One expected result, which we, nevertheless, demonstrate is the greater spatial and temporal variability of MHD.
CFC+: Improved dynamics and gravitational waveforms from relativistic core collapse simulations
Cerdá-Durán, P; Dimmelmeier, H; Font, J A; Ibáñez, J M; Müller, E; Schäfer, G
2004-01-01
Core collapse supernovae are a promising source of detectable gravitational waves. Most of the existing (multidimensional) numerical simulations of core collapse in general relativity have been done using approximations of the Einstein field equations. As recently shown by Dimmelmeier et al (2002a,b), one of the most interesting such approximation is the so-called conformal flatness condition (CFC) of Isenberg, Wilson and Mathews. Building on this previous work we present here new results from numerical simulations of relativistic rotational core collapse in axisymmetry, aiming at improving the dynamics and the gravitational waveforms. The computer code used for these simulations evolves the coupled system of metric and fluid equations using the 3+1 formalism, specialized to a new framework for the gravitational field equations which we call CFC+. In this approach we add new degrees of freedom to the original CFC equations, which extend them by terms of second post-Newtonian order. The corrections for CFC+ ar...
Toth, G.; Daldorff, L. K. S.; Jia, X.; Gombosi, T. I.; Lapenta, G.
2014-12-01
We have recently developed a new modeling capability to embed theimplicit Particle-in-Cell (PIC) model iPIC3D into the BATS-R-USmagnetohydrodynamic model. The PIC domain can cover the regions wherekinetic effects are most important, such as reconnection sites. TheBATS-R-US code, on the other hand, can efficiently handle the rest ofthe computational domain where the MHD or Hall MHD description issufficient. As one of the very first applications of the MHD-EPICalgorithm (Daldorff et al. 2014, JCP, 268, 236) we simulate theinteraction between Jupiter's magnetospheric plasma with Ganymede'smagnetosphere, where the separation of kinetic and global scalesappears less severe than for the Earth's magnetosphere. Because theexternal Jovian magnetic field remains in an anti-parallel orientationwith respect to Ganymede's intrinsic magnetic field, magneticreconnection is believed to be the major process that couples the twomagnetospheres. As the PIC model is able to describe self-consistentlythe electron behavior, our coupled MHD-EPIC model is well suited forinvestigating the nature of magnetic reconnection in thisreconnection-driven mini-magnetosphere. We will compare the MHD-EPICsimulations with pure Hall MHD simulations and compare both modelresults with Galileo plasma and magnetic field measurements to assess therelative importance of ion and electron kinetics in controlling theconfiguration and dynamics of Ganymede's magnetosphere.
Jin Chen
2009-12-07
Efficient and robust Variable Relaxation Solver, based on pseudo-transient continuation, is developed to solve nonlinear anisotropic thermal conduction arising from fusion plasma simulations. By adding first and/or second order artificial time derivatives to the system, this type of method advances the resulting time-dependent nonlinear PDEs to steady state, which is the solution to be sought. In this process, only the stiffness matrix itself is involved so that the numerical complexity and errors can be greatly reduced. In fact, this work is an extension of integrating efficient linear elliptic solvers for fusion simulation on Cray XIE. Two schemes are derived in this work, first and second order Variable Relaxations. Four factors are observed to be critical for efficiency and preservation of solution's symmetric structure arising from periodic boundary condition: refining meshes in different coordinate directions, initializing nonlinear process, varying time steps in both temporal and spatial directions, and accurately generating nonlinear stiffness matrix. First finer mesh scale should be taken in strong transport direction; Next the system is carefully initialized by the solution with linear conductivity; Third, time step and relaxation factor are vertex-based varied and optimized at each time step; Finally, the nonlinear stiffness matrix is updated by just scaling corresponding linear one with the vector generated from nonlinear thermal conductivity.
Milroy, R. D.; Kim, C. C.; Sovinec, C. R.
2010-06-01
Three-dimensional simulations of field reversed configuration (FRC) formation and sustainment with rotating magnetic field (RMF) current drive have been performed with the NIMROD code [C. R. Sovinec et al., J. Comput. Phys. 195, 355 (2004)]. The Hall term is a zeroth order effect with strong coupling between Fourier components, and recent enhancements to the NIMROD preconditioner allow much larger time steps than was previously possible. Boundary conditions to capture the effects of a finite length RMF antenna have been added, and simulations of FRC formation from a uniform background plasma have been performed with parameters relevant to the translation, confinement, and sustainment-upgrade experiment at the University of Washington [H. Y. Guo, A. L. Hoffman, and R. D. Milroy, Phys. Plasmas 14, 112502 (2007)]. The effects of both even-parity and odd-parity antennas have been investigated, and there is no evidence of a disruptive instability for either antenna type. It has been found that RMF effects extend considerably beyond the ends of the antenna, and that a large n =0 Bθ can develop in the open-field line region, producing a back torque opposing the RMF.
Energy Extraction from Spinning Black Holes via Relativistic Jets
Narayan, Ramesh; Tchekhovskoy, Alexander
2013-01-01
It has for long been an article of faith among astrophysicists that black hole spin energy is responsible for powering the relativistic jets seen in accreting black holes. Two recent advances have strengthened the case. First, numerical general relativistic magnetohydrodynamic simulations of accreting spinning black holes show that relativistic jets form spontaneously. In at least some cases, there is unambiguous evidence that much of the jet energy comes from the black hole, not the disk. Second, spin parameters of a number of accreting stellar-mass black holes have been measured. For ballistic jets from these systems, it is found that the radio luminosity of the jet correlates with the spin of the black hole. This suggests a causal relationship between black hole spin and jet power, presumably due to a generalized Penrose process.
High order numerical simulations of the Richtmyer Meshkov instability in a relativistic fluid
Zanotti, Olindo
2014-01-01
We study the Richtmyer--Meshkov (RM) instability of a relativistic perfect fluid by means of high order numerical simulations with adaptive mesh refinement (AMR). The numerical scheme adopts a finite volume Weighted Essentially Non-Oscillatory (WENO) reconstruction to increase accuracy in space, a local space-time discontinuous Galerkin predictor method to obtain high order of accuracy in time and a high order one-step time update scheme together with a "cell-by-cell" space-time AMR strategy with time-accurate local time stepping. In this way, third order accurate (both in space and in time) numerical simulations of the RM instability are performed, spanning a wide parameter space. We present results both for the case in which a light fluid penetrates into a higher density one (Atwood number $A>0$), and for the case in which a heavy fluid penetrates into a lower density one (Atwood number $A<0$). We find that, for large Lorentz factors \\gamma_s of the incident shock wave, the relativistic RM instability is...
General Relativistic Hydrodynamic Simulation of Accretion Flow from a Stellar Tidal Disruption
Shiokawa, Hotaka; Cheng, Roseanne M; Piran, Tsvi; Noble, Scott C
2015-01-01
We study how the matter dispersed when a supermassive black hole tidally disrupts a star joins an accretion flow. Combining a relativistic hydrodynamic simulation of the stellar disruption with a relativistic hydrodynamics simulation of the tidal debris motion, we track such a system until ~80% of the stellar mass bound to the black hole has settled into an accretion flow. Shocks near the stellar pericenter and also near the apocenter of the most tightly-bound debris dissipate orbital energy, but only enough to make the characteristic radius comparable to the semi-major axis of the most-bound material, not the tidal radius as previously thought. The outer shocks are caused by post-Newtonian effects, both on the stellar orbit during its disruption and on the tidal forces. Accumulation of mass into the accretion flow is non-monotonic and slow, requiring ~3--10x the orbital period of the most tightly-bound tidal streams, while the inflow time for most of the mass may be comparable to or longer than the mass accu...
Simulation of planar FEL-amplifier with tape relativistic electron beam
Ginzburg, N S; Peskov, N Yu; Arzhannikov, A V; Sinitskij, S L
2001-01-01
The simulation of the planar microwave (4 mm) amplifier on the basis of the powerful laser on free electrons (FEL- amplifier) is carried out. The tape relativistic electron beam with the energy up to 1 MeV and operating current up to 2 kA is formed by the Y-3 accelerators. The complete nonaveraging system of the self-consistent equations describing the process of interaction of the particles, moving in the plane ondulator field is obtained. Thereafter the averaging of the above-mentioned equations was carried out and the linear and nonlinear stages of the amplification process were studied. The additional simulation of the FEL-amplifier is carried out on the basis of the two-dimensional version of the KARAT PIC-code. It is shown that the applied approaches give sufficiently close results
Kinetic simulations of the lowest-order unstable mode of relativistic magnetostatic equilibria
Nalewajko, Krzysztof; Yuan, Yajie; East, William E; Blandford, Roger D
2016-01-01
We present the results of particle-in-cell numerical pair plasma simulations of relativistic 2D magnetostatic equilibria known as the 'ABC' fields. In particular, we focus on the lowest-order unstable configuration consisting of two minima and two maxima of the magnetic vector potential. Breaking of the initial symmetry leads to exponential growth of the electric energy and to the formation of two current layers, which is consistent with the picture of 'X-point collapse' first described by Syrovatskii. Magnetic reconnection within the layers heats a fraction of particles to very high energies. After the saturation of the linear instability, the current layers are disrupted and the system evolves chaotically, diffusing the particle energies in a stochastic second-order Fermi process leading to the formation of power-law energy distributions. The power-law slopes harden with the increasing mean magnetization, but they are significantly softer than those produced in simulations initiated from Harris-type layers....
3D Radiation Nonideal Magnetohydrodynamical Simulations of the Inner Rim in Protoplanetary Disks
Flock, M.; Fromang, S.; Turner, N. J.; Benisty, M.
2017-02-01
Many planets orbit within 1 au of their stars, raising questions about their origins. Particularly puzzling are the planets found near the silicate sublimation front. We investigate conditions near the front in the protostellar disk around a young intermediate-mass star, using the first global 3D radiation nonideal MHD simulations in this context. We treat the starlight heating; the silicate grains’ sublimation and deposition at the local, time-varying temperature and density; temperature-dependent ohmic dissipation; and various initial magnetic fields. The results show magnetorotational turbulence around the sublimation front at 0.5 au. The disk interior to 0.8 au is turbulent, with velocities exceeding 10% of the sound speed. Beyond 0.8 au is the dead zone, cooler than 1000 K and with turbulence orders of magnitude weaker. A local pressure maximum just inside the dead zone concentrates solid particles, favoring their growth. Over many orbits, a vortex develops at the dead zone’s inner edge, increasing the disk’s thickness locally by around 10%. We synthetically observe the results using Monte Carlo transfer calculations, finding that the sublimation front is near-infrared bright. The models with net vertical magnetic fields develop extended, magnetically supported atmospheres that reprocess extra starlight, raising the near-infrared flux 20%. The vortex throws a nonaxisymmetric shadow on the outer disk. At wavelengths > 2 μ {{m}}, the flux varies several percent on monthly timescales. The variations are more regular when the vortex is present. The vortex is directly visible as an arc at ultraviolet through near-infrared wavelengths, given sub-au spatial resolution.
Numerical instability due to relativistic plasma drift in EM-PIC simulations
Xu, Xinlu; Yu, Peicheng; Martins, Samual F.; Tsung, Frank S.; Decyk, Viktor K.; Vieira, Jorge; Fonseca, Ricardo A.; Lu, Wei; Silva, Luis O.; Mori, Warren B.
2013-11-01
The numerical instability observed in electromagnetic particle-in-cell (EM-PIC) simulations with a plasma drifting with relativistic velocities is studied using both theory and computer simulations. We derive the numerical dispersion relation for a cold plasma drifting with a relativistic velocity, and find an instability attributed to the intersection between beam resonances and the electromagnetic modes in the drifting plasma. The intersection can occur in the fundamental Brillouin zones when EM waves with phase velocities less than the speed of light exist, and from aliasing beam resonances and aliasing EM modes. The unstable modes are neither purely transverse nor longitudinal. The characteristic patterns of the instability in Fourier space for various simulation setups and Maxwell equation solvers are explored by solving the corresponding numerical dispersion relations. Furthermore, based upon these characteristic patterns, we derive an asymptotic expression for the instability growth rate. The asymptotic expression greatly speeds up the calculation of the instability growth rate and makes the parameter scans for minimal growth rate feasible even for full three dimensions. The results are compared against simulation results, and good agreements are found. These results can be used as a guide to develop possible approaches to mitigate the instability. We examine the use of a spectral solver and show that such a solver when combined with a low pass filter with a cutoff value of |k→| essentially eliminates the instability while not modifying modes of physical interest. The use of a spectral solver also provides minimal errors to electromagnetic modes in the lowest Brillouin zones.
Simulations and Theory of Ion Injection at Non-relativistic Collisionless Shocks
Caprioli, Damiano; Pop, Ana-Roxana; Spitkovsky, Anatoly
2015-01-01
We use kinetic hybrid simulations (kinetic ions-fluid electrons) to characterize the fraction of ions that are accelerated to non-thermal energies at non-relativistic collisionless shocks. We investigate the properties of the shock discontinuity and show that shocks propagating almost along the background magnetic field (quasi-parallel shocks) reform quasi-periodically on ion cyclotron scales. Ions that impinge on the shock when the discontinuity is the steepest are specularly reflected. This is a necessary condition for being injected, but it is not sufficient. Also, by following the trajectories of reflected ions, we calculate the minimum energy needed for injection into diffusive shock acceleration, as a function of the shock inclination. We construct a minimal model that accounts for the ion reflection from quasi-periodic shock barrier, for the fraction of injected ions, and for the ion spectrum throughout the transition from thermal to non-thermal energies. This model captures the physics relevant for ion injection at non-relativistic astrophysical shocks with arbitrary strengths and magnetic inclinations, and represents a crucial ingredient for understanding the diffusive shock acceleration of cosmic rays.
Photospheric Emission of Collapsar Jet in 3D Relativistic Radiation Hydrodynamical Simulation
Ito, Hirotaka; Nagataki, Shigehiro; Warren, Donald C; Barkov, Maxim V
2015-01-01
We explore the photospheric emission from a relativistic jet breaking out from a massive stellar envelope based on relativistic hydrodynamical simulations and post-process radiation transfer calculations in three dimensions (3D). To investigate the impact of 3D dynamics on the emission, two models of injection conditions are considered for the jet at the center of the progenitor star: one with periodic precession and another without precession. We show that structures developed within the jet due to the interaction with the stellar envelope, as well as due to the precession, have a significant imprint on the resulting emission. Particularly, we find that the signature of precession activity by the central engine is not smeared out and can be directly observed in the light curve as a periodic signal. We also show non-thermal features that can account for observations of gamma-ray bursts are produced in the resulting spectra, even though only thermal photons are injected initially and the effect of non-thermal ...
The Influence of Helical Magnetic Fields in the Dynamics and Emission of Relativistic Jets
Roca-Sogorb, M; Gómez, J L; Martí, J M; Antón, L; Aloy, M A; Agudo, I
2008-01-01
We present numerical relativistic magnetohydrodynamic and emission simulations aimed to study the role played by the magnetic field in the dynamics and emission of relativistic jets in Active Galactic Nuclei. We focus our analysis on the study of the emission from recollimation shocks since they may provide an interpretation for the stationary components seen at parsec-scales in multiple sources. We show that the relative brightness of the knots associated with the recollimation shocks decreases with increasing jet magnetization, suggesting that jets presenting stationary components may have a relatively weak magnetization, with magnetic fields of the order of equipartition or below.
Strings and large scale magnetohydrodynamics
Olesen, P
1995-01-01
From computer simulations of magnetohydrodynamics one knows that a turbulent plasma becomes very intermittent, with the magnetic fields concentrated in thin flux tubes. This situation looks very "string-like", so we investigate whether strings could be solutions of the magnetohydrodynamics equations in the limit of infinite conductivity. We find that the induction equation is satisfied, and we discuss the Navier-Stokes equation (without viscosity) with the Lorentz force included. We argue that the string equations (with non-universal maximum velocity) should describe the large scale motion of narrow magnetic flux tubes, because of a large reparametrization (gauge) invariance of the magnetic and electric string fields.
Relativistic simulations of black hole-neutron star coalescence: the jet emerges
Paschalidis, Vasileios; Shapiro, Stuart L
2014-01-01
We perform magnetohydrodynamic simulations in full general relativity of an initially quasiequilibrium binary black hole-neutron star on a quasicircular orbit that undergoes merger. The binary mass ratio is $3:1$, the black hole has initial spin parameter $a/m=0.75$ aligned with the orbital angular momentum, and the neutron star is modeled as an irrotational $\\Gamma=2$ polytrope. About two orbits prior to merger (at time $t=t_B$), we seed the neutron star with a dynamically weak dipolar magnetic field [${B}_{pole}\\sim 10^{14}(1.4M_\\odot/M_{\\rm NS})$ G] that extends from the stellar interior into the exterior. At $t=t_B$ the exterior is characterized by a low density atmosphere with constant plasma parameter $\\beta\\equiv P_{\\rm gas}/P_{\\rm mag}$. Varying $\\beta$ at $t_B$ in the exterior from $0.1$ to $0.01$, we find that at $\\sim 4000M \\sim 100(M_{\\rm NS}/1.4M_\\odot)$ms following the onset of accretion of tidally disrupted debris, magnetic field winding above the remnant black hole poles builds up the magnetic...
Caprioli, Damiano
2014-01-01
We use large hybrid (kinetic ions-fluid electrons) simulations to study ion acceleration and generation of magnetic turbulence due to the streaming of energetic particles that are self-consistently accelerated at non-relativistic shocks. When acceleration is efficient (at quasi-parallel shocks), we find that the magnetic field develops transverse components and is significantly amplified in the pre-shock medium. The total amplification factor is larger than 10 for shocks with Mach number $M=100$, and scales with the square root of $M$. We find that in the shock precursor the energy spectral density of excited magnetic turbulence is proportional to spectral energy distribution of accelerated particles at corresponding resonant momenta, in good agreement with the predictions of quasilinear theory of diffusive shock acceleration. We discuss the role of Bell's instability, which is predicted and found to grow faster than resonant instability in shocks with $M\\gtrsim 30$. Ahead of these strong shocks we distinguis...
3D Simulations of Relativistic Precessing Jets Probing the Structure of Superluminal Sources
Aloy, M A; Gómez, J L; Agudo, I; Müller, E; Ibanyez, J M; Aloy, Miguel Angel; Marti, Jose Maria; Gomez, Jose Luis; Agudo, Ivan; Mueller, Ewald; Ibanyez, Jose Maria
2003-01-01
We present the results of a three-dimensional, relativistic, hydrodynamic simulation of a precessing jet into which a compact blob of matter is injected. A comparison of synthetic radio maps computed from the hydrodynamic model, taking into account the appropriate light travel time delays, with those obtained from observations of actual superluminal sources shows that the variability of the jet emission is the result of a complex combination of phase motions, viewing angle selection effects, and non-linear interactions between perturbations and the underlying jet and/or the external medium. These results question the hydrodynamic properties inferred from observed apparent motions and radio structures, and reveal that shock-in-jet models may be overly simplistic.
Ghizzo, A. [Institut Jean Lamour UMR 7163, Université de Lorraine, BP 239 F-54506 Vandoeuvre les Nancy (France)
2013-08-15
The saturation of the Weibel instability in the relativistic regime is investigated within the Hamiltonian reduction technique based on the multistream approach developed in paper I in the linear case and in paper II for the nonlinear saturation. In this work, the study is compared with results obtained by full kinetic 1D2V Vlasov-Maxwell simulations based on a semi-Lagrangian technique. For a temperature anisotropy, qualitatively different regimes are realized depending on the excitation of the longitudinal (plasma) electric field, in contrast with the existing theories of the Weibel instability based on their purely transverse characters. The emphasis here is on gaining a better understanding of the nonlinear aspects of the Weibel instability. The multistream model offers an alternate way to make calculations or numerical experiments more tractable, when only a few moments of the velocity distribution of the plasma are considered.
Geroyannis, Vassilis S
2014-01-01
We develop a "hybrid approximative scheme" in the framework of the post-Newtonian approximation for computing general-relativistic polytropic models simulating neutron stars in critical rigid rotation. We treat the differential equations governing such a model as a "complex initial value problem", and we solve it by using the so-called "complex-plane strategy". We incorporate into the computations the complete solution for the relativistic effects, this issue representing a significant improvement with regard to the classical post-Newtonian approximation, as verified by extended comparisons of the numerical results.
General-Relativistic Simulations of Three-Dimensional Core-Collapse Supernovae
Ott, C D; Moesta, P; Haas, R; Drasco, S; O'Connor, E; Reisswig, C; Meakin, C; Schnetter, E
2012-01-01
We study the three-dimensional (3D) hydrodynamics of the post-core-bounce phase of the collapse of a 27 solar-mass star and pay special attention to the development of the standing accretion shock instability (SASI) and neutrino-driven convection. To this end, we perform 3D general-relativistic simulations with a 3-species neutrino leakage scheme with neutrino heating. Unlike "light-bulb" heating/cooling schemes, the leakage scheme captures the essential aspects of neutrino cooling, heating, and lepton number exchange as predicted by radiation-hydrodynamics simulations. The 27 solar-mass progenitor was studied in 2D by B. Mueller et al. (2012; arXiv:1205.7078), who observed strong growth of the SASI while neutrino-driven convection was suppressed. In our 3D simulations, neutrino-driven convection grows from numerical perturbations imposed by our Cartesian grid. It becomes the dominant instability and leads to large-scale non-oscillatory deformations of the shock front. These will result in strongly aspherical...
3-D Simulations of MHD Jets - The Stability Problem
Nakamura, M; Nakamura, Masanori; Meier, David L.
2003-01-01
Non-relativistic three-dimensional magnetohydrodynamic simulations of Poynting-flux-dominated (PFD) jets are presented. Our study focuses on the propagation of strongly magnetized hypersonic but sub-Alfv\\'enic flow ($C_{\\rm s}^2 1$), driven in large part by the radial component of the Lorentz force.
Jenkins, Thomas G. [Tech–X Corporation, 5621 Arapahoe Avenue, Boulder, CO, 80303; Kruger, Scott E. [Tech–X Corporation, 5621 Arapahoe Avenue, Boulder, CO, 80303
2013-03-25
Work carried out by Tech-X Corporation for the DoE SciDAC Center for Simulation of RF Wave Interactions with Magnetohydrodynamics (SWIM; U.S. DoE Office of Science Award Number DE-FC02-06ER54899) is summarized and is shown to fulfil the project objectives. The Tech-X portion of the SWIM work focused on the development of analytic and computational approaches to study neoclassical tearing modes and their interaction with injected electron cyclotron current drive. Using formalism developed by Hegna, Callen, and Ramos [Phys. Plasmas 16, 112501 (2009); Phys. Plasmas 17, 082502 (2010); Phys. Plasmas 18, 102506 (2011)], analytic approximations for the RF interaction were derived and the numerical methods needed to implement these interactions in the NIMROD extended MHD code were developed. Using the SWIM IPS framework, NIMROD has successfully coupled to GENRAY, an RF ray tracing code; additionally, a numerical control system to trigger the RF injection, adjustment, and shutdown in response to tearing mode activity has been developed. We discuss these accomplishments, as well as prospects for ongoing future research that this work has enabled (which continue in a limited fashion under the SciDAC Center for Extended Magnetohydrodynamic Modeling (CEMM) project and under a baseline theory grant). Associated conference presentations, published articles, and publications in progress are also listed.
López, Rodrigo A. [Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Concepción, Concepción 4070386 (Chile); Muñoz, Víctor [Departamento de Física, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago (Chile); Viñas, Adolfo F. [Geospace Physics Laboratory, Heliophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, Maryland 20771 (United States); Valdivia, Juan A. [Departamento de Física, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago (Chile); Centro para el Desarrollo de la Nanociencia y la Nanotecnología (CEDENNA), Santiago 9170124 (Chile)
2015-09-15
We use a particle-in-cell simulation to study the propagation of localized structures in a magnetized electron-positron plasma with relativistic finite temperature. We use as initial condition for the simulation an envelope soliton solution of the nonlinear Schrödinger equation, derived from the relativistic two fluid equations in the strongly magnetized limit. This envelope soliton turns out not to be a stable solution for the simulation and splits in two localized structures propagating in opposite directions. However, these two localized structures exhibit a soliton-like behavior, as they keep their profile after they collide with each other due to the periodic boundary conditions. We also observe the formation of localized structures in the evolution of a spatially uniform circularly polarized Alfvén wave. In both cases, the localized structures propagate with an amplitude independent velocity.
Zhu, Hongyu; Alam, Shadab; Croft, Rupert A. C.; Ho, Shirley; Giusarma, Elena
2017-10-01
Large redshift surveys of galaxies and clusters are providing the first opportunities to search for distortions in the observed pattern of large-scale structure due to such effects as gravitational redshift. We focus on non-linear scales and apply a quasi-Newtonian approach using N-body simulations to predict the small asymmetries in the cross-correlation function of two galaxy different populations. Following recent work by Bonvin et al., Zhao and Peacock and Kaiser on galaxy clusters, we include effects which enter at the same order as gravitational redshift: the transverse Doppler effect, light-cone effects, relativistic beaming, luminosity distance perturbation and wide-angle effects. We find that all these effects cause asymmetries in the cross-correlation functions. Quantifying these asymmetries, we find that the total effect is dominated by the gravitational redshift and luminosity distance perturbation at small and large scales, respectively. By adding additional subresolution modelling of galaxy structure to the large-scale structure information, we find that the signal is significantly increased, indicating that structure on the smallest scales is important and should be included. We report on comparison of our simulation results with measurements from the SDSS/BOSS galaxy redshift survey in a companion paper.
Kinetic Simulations of the Lowest-order Unstable Mode of Relativistic Magnetostatic Equilibria
Nalewajko, Krzysztof; Zrake, Jonathan; Yuan, Yajie; East, William E.; Blandford, Roger D.
2016-08-01
We present the results of particle-in-cell numerical pair plasma simulations of relativistic two-dimensional magnetostatic equilibria known as the “Arnold-Beltrami-Childress” fields. In particular, we focus on the lowest-order unstable configuration consisting of two minima and two maxima of the magnetic vector potential. Breaking of the initial symmetry leads to exponential growth of the electric energy and to the formation of two current layers, which is consistent with the picture of “X-point collapse” first described by Syrovatskii. Magnetic reconnection within the layers heats a fraction of particles to very high energies. After the saturation of the linear instability, the current layers are disrupted and the system evolves chaotically, diffusing the particle energies in a stochastic second-order Fermi process, leading to the formation of power-law energy distributions. The power-law slopes harden with the increasing mean magnetization, but they are significantly softer than those produced in simulations initiated from Harris-type layers. The maximum particle energy is proportional to the mean magnetization, which is attributed partly to the increase of the effective electric field and partly to the increase of the acceleration timescale. We describe in detail the evolving structure of the dynamical current layers and report on the conservation of magnetic helicity. These results can be applied to highly magnetized astrophysical environments, where ideal plasma instabilities trigger rapid magnetic dissipation with efficient particle acceleration and flares of high-energy radiation.
WHAM: A WENO-based general relativistic numerical scheme I: Hydrodynamics
Tchekhovskoy, Alexander; Narayan, Ramesh
2007-01-01
Active galactic nuclei, x-ray binaries, pulsars, and gamma-ray bursts are all believed to be powered by compact objects surrounded by relativistic plasma flows driving phenomena such as accretion, winds, and jets. These flows are often accurately modelled by the relativistic magnetohydrodynamics (MHD) approximation. Time-dependent numerical MHD simulations have proven to be especially insightful, but one regime that remains difficult to simulate is when the energy scales (kinetic, thermal, magnetic) within the plasma become disparate. We develop a numerical scheme that significantly improves the accuracy and robustness of the solution in this regime. We use a modified form of the WENO method to construct a finite-volume general relativistic hydrodynamics code called WHAM that converges at fifth order. We avoid (1) field-by-field decomposition by adaptively reducing down to 2-point stencils near discontinuities for a more accurate treatment of shocks, and (2) excessive reduction to low order stencils, as in th...
Multi-D magnetohydrodynamic modelling of pulsar wind nebulae: recent progress and open questions
Olmi, B.; Del Zanna, L.; Amato, E.; Bucciantini, N.; Mignone, A.
2016-12-01
In the last decade, the relativistic magnetohydrodynamic (MHD) modelling of pulsar wind nebulae, and of the Crab nebula in particular, has been highly successful, with many of the observed dynamical and emission properties reproduced down to the finest detail. Here, we critically discuss the results of some of the most recent studies: namely the investigation of the origin of the radio emitting particles and the quest for the acceleration sites of particles of different energies along the termination shock, by using wisp motions as a diagnostic tool; the study of the magnetic dissipation process in high magnetization nebulae by means of new long-term three-dimensional simulations of the pulsar wind nebula evolution; the investigation of the relativistic tearing instability in thinning current sheets, leading to fast reconnection events that might be at the origin of the Crab nebula gamma-ray flares.
Multi-D magnetohydrodynamic modelling of pulsar wind nebulae: recent progress and open questions
Olmi, B; Amato, E; Bucciantini, N; Mignone, A
2016-01-01
In the last decade, the relativistic magnetohydrodynamic (MHD) modelling of pulsar wind nebulae, and of the Crab nebula in particular, has been highly successful, with many of the observed dynamical and emission properties reproduced down to the finest detail. Here, we critically discuss the results of some of the most recent studies: namely the investigation of the origin of the radio emitting particles and the quest for the acceleration sites of particles of different energies along the termination shock, by using wisps motion as a diagnostic tool; the study of the magnetic dissipation process in high magnetization nebulae by means of new long-term three-dimensional simulations of the pulsar wind nebula evolution; the investigation of the relativistic tearing instability in thinning current sheets, leading to fast reconnection events that might be at the origin of the Crab nebula gamma-ray flares.
Deng, Wei; Zhang, Bing; Li, Shengtai
2015-01-01
We perform 3D relativistic ideal MHD simulations to study the collisions between high-$\\sigma$ (Poynting-flux-dominated) blobs which contain both poloidal and toroidal magnetic field components. This is meant to mimic the interactions inside a highly variable Poynting-flux-dominated jet. We discover a significant electromagnetic field (EMF) energy dissipation with an Alfv\\'enic rate with the efficiency around 35\\%. Detailed analyses show that this dissipation is mostly facilitated by the collision-induced magnetic reconnection. Additional resolution and parameter studies show a robust result that the relative EMF energy dissipation efficiency is nearly independent of the numerical resolution or most physical parameters in the relevant parameter range. The reconnection outflows in our simulation can potentially form the multi-orientation relativistic mini-jets as needed for several analytical models. We also find a linear relationship between the $\\sigma$ values before and after the major EMF energy dissipatio...
Constraints on particle acceleration sites in the Crab Nebula from relativistic MHD simulations
Olmi, Barbara; Amato, Elena; Bucciantini, Niccolò
2015-01-01
The Crab Nebula is one of the most efficient accelerators in the Galaxy and the only galactic source showing direct evidence of PeV particles. In spite of this, the physical process behind such effective acceleration is still a deep mystery. While particle acceleration, at least at the highest energies, is commonly thought to occur at the pulsar wind termination shock, the properties of the upstream flow are thought to be non-uniform along the shock surface, and important constraints on the mechanism at work come from exact knowledge of where along this surface particles are being accelerated. Here we use axisymmetric relativistic MHD simulations to obtain constraints on the acceleration site(s) of particles of different energies in the Crab Nebula. Various scenarios are considered for the injection of particles responsible for synchrotron radiation in the different frequency bands, radio, optical and X-rays. The resulting emission properties are compared with available data on the multi wavelength time varia...
Relativistic simulations of compact object mergers for nucleonic matter and strange quark matter
Bauswein, Andreas Ottmar
2010-01-29
Under the assumption that the energy of the ground state of 3-flavor quark matter is lower than the one of nucleonic matter, the compact stellar remnants of supernova explosions are composed of this quark matter. Because of the appearance of strange quarks, such objects are called strange stars. Considering their observational features, strange stars are very similar to neutron stars made of nucleonic matter, and therefore observations cannot exclude the existence of strange stars. This thesis introduces a new method for simulating mergers of compact stars and black holes within a general relativistic framework. The main goal of the present work is the investigation of the question, whether the coalescence of two strange stars in a binary system yields observational signatures that allow one to distinguish them from colliding neutron stars. In this context the gravitational-wave signals are analyzed. It is found that in general the characteristic frequencies in the gravitational-wave spectra are higher for strange stars. Moreover, the amount of matter that becomes gravitationally unbound during the merging is determined. The detection of ejecta of strange star mergers as potential component of cosmic ray flux could serve as a proof of the existence of strange quark matter. (orig.)
A Second Relativistic Mean Field and Virial Equation of State for Astrophysical Simulations
Shen, G; O'Connor, E
2011-01-01
We generate a second equation of state (EOS) of nuclear matter for a wide range of temperatures, densities, and proton fractions for use in supernovae, neutron star mergers, and black hole formation simulations. We employ full relativistic mean field (RMF) calculations for matter at intermediate density and high density, and the Virial expansion of a non-ideal gas for matter at low density. For this EOS we use the RMF effective interaction FSUGold, whereas our earlier EOS was based on the RMF effective interaction NL3. The FSUGold interaction has a lower pressure at high densities compared to the NL3 interaction. We calculate the resulting EOS at over 100,000 grid points in the temperature range $T$ = 0 to 80 MeV, the density range $n_B$ = 10$^{-8}$ to 1.6 fm$^{-3}$, and the proton fraction range $Y_p$ = 0 to 0.56. We then interpolate these data points using a suitable scheme to generate a thermodynamically consistent equation of state table on a finer grid. We discuss differences between this EOS, our NL3 ba...
Simulations of ion acceleration at non-relativistic shocks: i) Acceleration efficiency
Caprioli, Damiano
2013-01-01
We use 2D and 3D hybrid (kinetic ions - fluid electrons) simulations to investigate particle acceleration and magnetic field amplification at non-relativistic astrophysical shocks. We show that diffusive shock acceleration operates for quasi-parallel configurations (i.e., when the background magnetic field is almost aligned with the shock normal) and, for large sonic and Alfv\\'enic Mach numbers, produces universal power-law spectra proportional to p^(-4), where p is the particle momentum. The maximum energy of accelerated ions increases with time, and it is only limited by finite box size and run time. Acceleration is mainly efficient for parallel and quasi-parallel strong shocks, where 10-20% of the bulk kinetic energy can be converted to energetic particles, and becomes ineffective for quasi-perpendicular shocks. Also, the generation of magnetic turbulence correlates with efficient ion acceleration, and vanishes for quasi-perpendicular configurations. At very oblique shocks, ions can be accelerated via shoc...
iVPIC: A low-dispersion, energy-conserving relativistic PIC solver for LPI simulations
Chacon, Luis [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2017-06-07
We have developed a novel low-dispersion, exactly energy-conserving PIC algorithm for the relativistic Vlasov-Maxwell system. The approach features an exact energy conservation theorem while preserving the favorable performance and numerical dispersion properties of explicit PIC. The new algorithm has the potential to enable much longer laser-plasma-interaction (LPI) simulations than are currently possible.
Xiong, Ming; Wang, Yuming; Wang, Shui; 10.1029/2006JA011901
2009-01-01
Numerical studies of the interplanetary "shock overtaking magnetic cloud (MC)" event are continued by a 2.5 dimensional magnetohydrodynamic (MHD) model in heliospheric meridional plane. Interplanetary direct collision (DC)/oblique collision (OC) between an MC and a shock results from their same/different initial propagation orientations. For radially erupted MC and shock in solar corona, the orientations are only determined respectively by their heliographic locations. OC is investigated in contrast with the results in DC \\citep{Xiong2006}. The shock front behaves as a smooth arc. The cannibalized part of MC is highly compressed by the shock front along its normal. As the shock propagates gradually into the preceding MC body, the most violent interaction is transferred sideways with an accompanying significant narrowing of the MC's angular width. The opposite deflections of MC body and shock aphelion in OC occur simultaneously through the process of the shock penetrating the MC. After the shock's passage, the...
Cunningham, Andrew J.; Frank, Adam; Varnière, Peggy; Mitran, Sorin; Jones, Thomas W.
2009-06-01
A description is given of the algorithms implemented in the AstroBEAR adaptive mesh-refinement code for ideal magnetohydrodynamics. The code provides several high-resolution shock-capturing schemes which are constructed to maintain conserved quantities of the flow in a finite-volume sense. Divergence-free magnetic field topologies are maintained to machine precision by collating the components of the magnetic field on a cell-interface staggered grid and utilizing the constrained transport approach for integrating the induction equations. The maintenance of magnetic field topologies on adaptive grids is achieved using prolongation and restriction operators which preserve the divergence and curl of the magnetic field across collocated grids of different resolutions. The robustness and correctness of the code is demonstrated by comparing the numerical solution of various tests with analytical solutions or previously published numerical solutions obtained by other codes.
Kinetic approach to Kaluza's magnetohydrodynamics
Sandoval-Villalbazo, A.; Garcia-Colin, L. S.
2011-11-01
Ten years ago we presented a formalism by means of which the basic tenets of relativistic magnetohydrodynamics were derived using Kaluza's ideas about unifying fields in terms of the corresponding space time curvature for a given metric. In this work we present an attempt to obtain the thermodynamic properties of a charged fluid using using Boltzmann's equation for a dilute system adapted to kaluza's formalism. The main results that we obtain are analytical expressions for the main currents and corresponding forces, within the formalism of linear irreversible thermodynamics. We also indicate how transport coefficients can be calculated. Other relevant results are also mentioned. A. Sandoval-Villalbazo and L.S. Garcia-Colin; Phys. of Plasmas 7, 4823 (2000).
Probing Acceleration and Turbulence at Relativistic Shocks in Blazar Jets
Baring, Matthew G; Summerlin, Errol J
2016-01-01
Diffusive shock acceleration (DSA) at relativistic shocks is widely thought to be an important acceleration mechanism in various astrophysical jet sources, including radio-loud active galactic nuclei such as blazars. Such acceleration can produce the non-thermal particles that emit the broadband continuum radiation that is detected from extragalactic jets. An important recent development for blazar science is the ability of Fermi-LAT spectroscopy to pin down the shape of the distribution of the underlying non-thermal particle population. This paper highlights how multi-wavelength spectra spanning optical to X-ray to gamma-ray bands can be used to probe diffusive acceleration in relativistic, oblique, magnetohydrodynamic (MHD) shocks in blazar jets. Diagnostics on the MHD turbulence near such shocks are obtained using thermal and non-thermal particle distributions resulting from detailed Monte Carlo simulations of DSA. These probes are afforded by the characteristic property that the synchrotron $\
Gillingham, David R.
2007-12-01
The ability to preserve the quality of relativistic electron beams through transport bend elements such as a bunch compressor chicane is increasingly difficult as the current increases because of effects such as coherent synchrotron radiation (CSR) and space-charge. Theoretical CSR models and simulations, in their current state, often make unrealistic assumptions about the beam dynamics and/or structures. Therefore, we have developed a model and simulation that contains as many of these elements as possible for the purpose of making high-fidelity end-to-end simulations. Specifically, we are able to model, in a completely self-consistent, three-dimensional manner, the sustained interaction of radiation and space-charge from a relativistic electron beam in a toroidal waveguide with rectangular cross-section. We have accomplished this by combining a time-domain field solver that integrates a paraxial wave equation valid in a waveguide when the dimensions are small compared to the bending radius with a particle-in-cell dynamics code. The result is shown to agree with theory under a set of constraints, namely thin rigid beams, showing the stimulation resonant modes and including comparisons for waveguides approximating vacuum, and parallel plate shielding. Using a rigid beam, we also develop a scaling for the effect of beam width, comparing both our simulation and numerical integration of the retarded potentials. We further demonstrate the simulation calculates the correct longitudinal space-charge forces to produce the appropriate potential depression for a converging beam in a straight waveguide with constant dimensions. We then run fully three-dimensional, self-consistent end-to-end simulations of two types of bunch compressor designs, illustrating some of the basic scaling properties and perform a detailed analysis of the output phase-space distribution. Lastly, we show the unique ability of our simulation to model the evolution of charge/energy perturbations on a
Amano, Takanobu
2016-01-01
A new multidimensional simulation code for relativistic two-fluid electrodynamics (RTFED) is described. The basic equations consist of the full set of Maxwell's equations coupled with relativistic hydrodynamic equations for separate two charged fluids, representing the dynamics of either an electron-positron or an electron-proton plasma. It can be recognized as an extension of conventional relativistic magnetohydrodynamics (RMHD). Finite resistivity may be introduced as a friction between the two species, which reduces to resistive RMHD in the long wavelength limit without suffering from a singularity at infinite conductivity. A numerical scheme based on HLL (Harten-Lax-Van Leer) Riemann solver is proposed that exactly preserves the two divergence constraints for Maxwell's equations simultaneously. Several benchmark problems demonstrate that it is capable of describing RMHD shocks/discontinuities at long wavelength limit, as well as dispersive characteristics due to the two-fluid effect appearing at small sca...
Dieckmann, M E; Markoff, S; Borghesi, M; Zepf, M
2015-01-01
The jets of compact accreting objects are composed of electrons and a mixture of positrons and ions. These outflows impinge on the interstellar or intergalactic medium and both plasmas interact via collisionless processes. Filamentation (beam-Weibel) instabilities give rise to the growth of strong electromagnetic fields. These fields thermalize the interpenetrating plasmas. Hitherto, the effects imposed by a spatial non-uniformity on filamentation instabilities have remained unexplored. We examine the interaction between spatially uniform background electrons and a minuscule cloud of electrons and positrons. A square micro-cloud of equally dense electrons and positrons impinges in our particle-in-cell (PIC) simulation on a spatially uniform plasma at rest. The mean speed of the micro-cloud corresponds to a relativistic factor of 15, which is relevant for laboratory experiments and for relativistic astrophysical outflows. The spatial distributions of the leptons and of the electromagnetic fields are examined a...
Relativistic Guiding Center Equations
White, R. B. [PPPL; Gobbin, M. [Euratom-ENEA Association
2014-10-01
In toroidal fusion devices it is relatively easy that electrons achieve relativistic velocities, so to simulate runaway electrons and other high energy phenomena a nonrelativistic guiding center formalism is not sufficient. Relativistic guiding center equations including flute mode time dependent field perturbations are derived. The same variables as used in a previous nonrelativistic guiding center code are adopted, so that a straightforward modifications of those equations can produce a relativistic version.
Kessar, M.; Balarac, G.; Plunian, F.
2016-10-01
In this work, the accuracy of various models used in large-eddy simulations (LES) of incompressible magnetohydrodynamic (MHD) turbulence is evaluated. Particular attention is devoted to the capabilities of models to reproduce the transfers between resolved grid- and subgrid-scales. The exact global balance of MHD turbulent flows is first evaluated from direct numerical simulation (DNS) database. This balance is controlled by the transfers between scales and between kinetic and magnetic energies. Two cases of forced homogeneous isotropic MHD turbulent flows are considered, with and without injecting large scale helicity. The strong helical case leads to domination of the magnetic energy due to an inverse cascade [A. Brandenburg, Astrophys. J. 550(2), 824 (2001); N. E. Haugen et al., Phys. Rev. E 70(1), 016308 (2004)]. The energy transfers predicted by various models are then compared with the transfer extracted from DNS results. This allows to discriminate models classically used for LES of MHD turbulence. In the non-helical case, the Smagorinsky-like model [M. L. Theobald et al., Phys. Plasmas 1, 3016 (1994)] and a mixed model are able to perform stable LES, but the helical case is a more demanding test and all the models lead to unstable simulations.
De Colle, Fabio; Lopez-Camara, Diego; Ramirez-Ruiz, Enrico
2011-01-01
We report on the development of Mezcal-SRHD, a new adaptive mesh refinement, special relativistic hydrodynamics (SRHD) code, developed with the aim of studying the highly relativistic flows in Gamma-Ray Burst sources. The SRHD equations are solved using finite volume conservative solvers. The correct implementation of the algorithms is verified by one-dimensional (1D) shock tube and multidimensional tests. The code is then applied to study the propagation of 1D spherical impulsive blast waves expanding in a stratified medium with $\\rho \\propto r^{-k}$, bridging between the relativistic and Newtonian phases, as well as to a two-dimensional (2D) cylindrically symmetric impulsive jet propagating in a constant density medium. It is shown that the deceleration to non-relativistic speeds in one-dimension occurs on scales significantly larger than the Sedov length. This transition is further delayed with respect to the Sedov length as the degree of stratification of the ambient medium is increased. This result, toge...
Experiments in Magnetohydrodynamics
Rayner, J. P.
1970-01-01
Describes three student experiments in magnetohydrodynamics (MHD). In these experiments, it was found that the electrical conductivity of the local water supply was sufficient to demonstrate effectively some of the features of MHD flowmeters, generators, and pumps. (LC)
Kim, Kyung-Chan; Shprits, Yuri; Subbotin, Dmitriy; Ni, Binbin
2012-08-01
Understanding the dynamics of relativistic electron acceleration, loss, and transport in the Earth's radiation belt during magnetic storms is a challenging task. The U.S. National Science Foundation's Geospace Environment Modeling (GEM) has identified five magnetic storms for in-depth study that occurred during the second half of the Combined Release and Radiation Effects Satellite (CRRES) mission in the year 1991. In this study, we show the responses of relativistic radiation belt electrons to the magnetic storms by comparing the time-dependent 3-D Versatile Electron Radiation Belt (VERB) simulations with the CRRES MEA 1 MeV electron observations in order to investigate the relative roles of the competing effects of previously proposed scattering mechanisms at different storm phases, as well as to examine the extent to which the simulations can reproduce observations. The major scattering processes in our model are radial transport due to Ultra Low Frequency (ULF) electromagnetic fluctuations, pitch angle and energy diffusion including mixed diffusion by whistler mode chorus waves outside the plasmasphere, and pitch angle scattering by plasmaspheric hiss inside the plasmasphere. The 3-D VERB simulations show that during the storm main phase and early recovery phase the estimated plasmapause is located deep in the inner region, indicating that pitch angle scattering by chorus waves can be a dominant loss process in the outer belt. We have also confirmed the important role played by mixed energy-pitch angle diffusion by chorus waves, which tends to reduce the fluxes enhanced by local acceleration, resulting in comparable levels of computed and measured fluxes. However, we cannot reproduce the more pronounced flux dropout near the boundary of our simulations during the main phase, which indicates that non-adiabatic losses may extend toL-shells lower than our simulation boundary. We also provide a detailed description of simulations for each of the GEM storm events.
Relativistic HD and MHD modelling for AGN jets
Keppens, R.; Porth, O.; Monceau-Baroux, R.; Walg, S.
2013-12-01
Relativistic hydro and magnetohydrodynamics (MHD) provide a continuum fluid description for plasma dynamics characterized by shock-dominated flows approaching the speed of light. Significant progress in its numerical modelling emerged in the last two decades; we highlight selected examples of modern grid-adaptive, massively parallel simulations realized by our open-source software MPI-AMRVAC (Keppens et al 2012 J. Comput. Phys. 231 718). Hydrodynamical models quantify how energy transfer from active galactic nuclei (AGN) jets to their surrounding interstellar/intergalactic medium (ISM/IGM) gets mediated through shocks and various fluid instability mechanisms (Monceau-Baroux et al 2012 Astron. Astrophys. 545 A62). With jet parameters representative for Fanaroff-Riley type-II jets with finite opening angles, we can quantify the ISM volumes affected by jet injection and distinguish the roles of mixing versus shock-heating in cocoon regions. This provides insight in energy feedback by AGN jets, usually incorporated parametrically in cosmological evolution scenarios. We discuss recent axisymmetric studies up to full 3D simulations for precessing relativistic jets, where synthetic radio maps can confront observations. While relativistic hydrodynamic models allow one to better constrain dynamical parameters like the Lorentz factor and density contrast between jets and their surroundings, the role of magnetic fields in AGN jet dynamics and propagation characteristics needs full relativistic MHD treatments. Then, we can demonstrate the collimating properties of an overal helical magnetic field backbone and study differences between poloidal versus toroidal field dominated scenarios (Keppens et al 2008 Astron. Astrophys. 486 663). Full 3D simulations allow one to consider the fate of non-axisymmetric perturbations on relativistic jet propagation from rotating magnetospheres (Porth 2013 Mon. Not. R. Astron. Soc. 429 2482). Self-stabilization mechanisms related to the detailed
Magnetohydrodynamic fluidic system
Lee, Abraham P.; Bachman, Mark G.
2004-08-24
A magnetohydrodynamic fluidic system includes a reagent source containing a reagent fluid and a sample source containing a sample fluid that includes a constituent. A reactor is operatively connected to the supply reagent source and the sample source. MHD pumps utilize a magnetohydrodynamic drive to move the reagent fluid and the sample fluid in a flow such that the reagent fluid and the sample fluid form an interface causing the constituent to be separated from the sample fluid.
Multifluid magnetohydrodynamic turbulent decay
Downes, Turlough P
2011-01-01
It is generally believed that turbulence has a significant impact on the dynamics and evolution of molecular clouds and the star formation which occurs within them. Non-ideal magnetohydrodynamic effects are known to influence the nature of this turbulence. We present the results of a suite of 512-cubed resolution simulations of the decay of initially super-Alfvenic and supersonic fully multifluid MHD turbulence. We find that ambipolar diffusion increases the rate of decay of the turbulence while the Hall effect has virtually no impact. The decay of the kinetic energy can be fitted as a power-law in time and the exponent is found to be -1.34 for fully multifluid MHD turbulence. The power spectra of density, velocity and magnetic field are all steepened significantly by the inclusion of non-ideal terms. The dominant reason for this steepening is ambipolar diffusion with the Hall effect again playing a minimal role except at short length scales where it creates extra structure in the magnetic field. Interestingl...
Non-thermal emission from relativistic MHD simulations of PWNe: from synchrotron to inverse Compton
Volpi, D; Amato, E; Bucciantini, N
2008-01-01
In this paper we complete the set of diagnostic tools for synchrotron emitting sources presented by Del Zanna et al. (Astron. Astrophys. 453, 621, 2006) with the computation of inverse Compton radiation from the same relativistic particles. Moreover we investigate, for the first time, the gamma-ray emission properties of Pulsar Wind Nebulae in the light of the axisymmetric jet-torus scenario. The method consists in evolving the relativistic MHD equations and the maximum energy of the emitting particles. The particle energy distribution function is split in two components: the radio one connected to a relic population born at the outburst of the supernova and the other associated to the wind population continuously accelerated at the termination shock and emitting up to the gamma-ray band. We consider the general Klein-Nishina cross section and three different photon targets: the nebular synchrotron photons, far-infrared thermal ones and the cosmic microwave background. The overall synchrotron spectrum is fitt...
Bonnaud, G.; Dussy, S.; Lefebvre, E. [CEA Bruyeres-le-Chatel, 91 (France). Dept. de Physique Theorique et Appliquee; Bouchut, F. [Orleans Univ., 45 (France). Dept. de Mathematiques, UMR CNRS
1998-12-31
This report presents a numerical model to simulate the electromagnetic processes involved by electrically-charged relativistic fluids. The physical model is first given. Second, the numerical methods are explained with the various packages of the code RHEA, with indication methods are explained with the various packages of the code RHEA, with indication of its performances, within a 1.5.- dimensional framework. Results from test-simulations are shown to validate the use of the code, for both academic situations and realistic context of laser-plasma interaction, for which the code has been designed: the non-linear phenomena in the context of inertial confinement fusion and the ultra-intense laser pulses. (author) 25 refs.
Bonnaud, G.; Dussy, S.; Lefebvre, E. [CEA Bruyeres-le-Chatel, 91 (France). Dept. de Physique Theorique et Appliquee; Bouchut, F. [Orleans Univ., 45 (France). Dept. de Mathematiques, UMR CNRS
1998-12-31
This report presents a numerical model to simulate the electromagnetic processes involved by electrically-charged relativistic fluids. The physical model is first given. Second, the numerical methods are explained with the various packages of the code RHEA, with indication methods are explained with the various packages of the code RHEA, with indication of its performances, within a 1.5.- dimensional framework. Results from test-simulations are shown to validate the use of the code, for both academic situations and realistic context of laser-plasma interaction, for which the code has been designed: the non-linear phenomena in the context of inertial confinement fusion and the ultra-intense laser pulses. (author) 25 refs.
Magnetohydrodynamic mechanism for pedestal formation.
Guazzotto, L; Betti, R
2011-09-16
Time-dependent two-dimensional magnetohydrodynamic simulations are carried out for tokamak plasmas with edge poloidal flow. Differently from conventional equilibrium theory, a density pedestal all around the edge is obtained when the poloidal velocity exceeds the poloidal sound speed. The outboard pedestal is induced by the transonic discontinuity, the inboard one by mass redistribution. The density pedestal follows the formation of a highly sheared flow at the transonic surface. These results may be relevant to the L-H transition and pedestal formation in high performance tokamak plasmas.
Alignment of magnetized accretion disks and relativistic jets with spinning black holes.
McKinney, Jonathan C; Tchekhovskoy, Alexander; Blandford, Roger D
2013-01-04
Accreting black holes (BHs) produce intense radiation and powerful relativistic jets, which are affected by the BH's spin magnitude and direction. Although thin disks might align with the BH spin axis via the Bardeen-Petterson effect, this does not apply to jet systems with thick disks. We used fully three-dimensional general relativistic magnetohydrodynamical simulations to study accreting BHs with various spin vectors and disk thicknesses and with magnetic flux reaching saturation. Our simulations reveal a "magneto-spin alignment" mechanism that causes magnetized disks and jets to align with the BH spin near BHs and to reorient with the outer disk farther away. This mechanism has implications for the evolution of BH mass and spin, BH feedback on host galaxies, and resolved BH images for the accreting BHs in SgrA* and M87.
Dolya, S.N.; Zhidkov, E.P.; Rubin, S.B.; Semerdzhiev, Kh.I.
1982-01-01
The methodical work on creation of computer program for numerical study of the processes of forming and motion of a virtual cathode at the injection of relativistic electron beam into a short cylindrical chamber, filled with gas, has been carried out. The obtained plots of the distributions of fields, potential and density appearing out of ion and electron gas of the beam itself are presented. The dependence of cross-section ionization on the electron velocity has been taken into account at the calculation; the resonance contribution into summarized cross-section of ionization was simulated. It is shown that the injection into the chamber without gas, some oscillations of the virtual cathode are observed. At the presence of the final front of the beam, the fields level at the initial stage is smaller than for the beam with a sharp front. However, in some time the field amplitudes are compared. The motion of simulated probe ions in the chamber is analyzed.
Acceleration and collimation of relativistic MHD disk winds
Porth, O
2009-01-01
We perform axisymmetric relativistic magnetohydrodynamic (MHD) simulations to investigate the acceleration and collimation of jets and outflows from disks around compact objects. The fiducial disk surface (respectively a slow disk wind) is prescribed as boundary condition for the outflow. We apply this technique for the first time in the context of relativistic jets. The strength of this approach is that it allows us to run a parameter study in order to investigate how the accretion disk conditions govern the outflow formation. Our simulations using the PLUTO code run for 500 inner disk rotations and on a physical grid size of 100x200 inner disk radii. In general, we obtain collimated beams of mildly relativistic speed and mass-weighted half-opening angles of 3-7 degrees. When we increase the outflow Poynting flux by injecting an additional disk toroidal field into the inlet, Lorentz factors up to 6 are reached. These flows gain super-magnetosonic speed and remain Poynting flux dominated. The light surface of...
Magnetohydrodynamically generated velocities in confined plasma
Morales, Jorge A.; Bos, Wouter J. T.; Schneider, Kai; Montgomery, David C.
2015-04-01
We investigate by numerical simulation the rotational flows in a toroid confining a conducting magnetofluid in which a current is driven by the application of externally supported electric and magnetic fields. The computation involves no microscopic instabilities and is purely magnetohydrodynamic (MHD). We show how the properties and intensity of the rotations are regulated by dimensionless numbers (Lundquist and viscous Lundquist) that contain the resistivity and viscosity of the magnetofluid. At the magnetohydrodynamic level (uniform mass density and incompressible magnetofluids), rotational flows appear in toroidal, driven MHD. The evolution of these flows with the transport coefficients, geometry, and safety factor are described.
Data assimilation for magnetohydrodynamics systems
Mendoza, O. Barrero; de Moor, B.; Bernstein, D. S.
2006-05-01
Prediction of solar storms has become a very important issue due to the fact that they can affect dramatically the telecommunication and electrical power systems at the earth. As a result, a lot of research is being done in this direction, space weather forecast. Magnetohydrodynamics systems are being studied in order to analyse the space plasma dynamics, and techniques which have been broadly used in the prediction of earth environmental variables like the Kalman filter (KF), the ensemble Kalman filter (EnKF), the extended Kalman filter (EKF), etc., are being studied and adapted to this new framework. The assimilation of a wide range of space environment data into first-principles-based global numerical models will improve our understanding of the physics of the geospace environment and the forecasting of its behaviour. Therefore, the aim of this paper is to study the performance of nonlinear observers in magnetohydrodynamics systems, namely, the EnKF.The EnKF is based on a Monte Carlo simulation approach for propagation of process and measurement errors. In this paper, the EnKF for a nonlinear two-dimensional magnetohydrodynamic (2D-MHD) system is considered. For its implementation, two software packages are merged, namely, the Versatile Advection Code (VAC) written in Fortran and Matlab of Mathworks. The 2D-MHD is simulated with the VAC code while the EnKF is computed in Matlab. In order to study the performance of the EnKF in MHD systems, different number of measurement points as well as ensemble members are set.
English, W.; Hardcastle, M. J.; Krause, M. G. H.
2016-09-01
We present results from two suites of simulations of powerful radio galaxies in poor cluster environments, with a focus on the formation and evolution of the radio lobes. One suite of models uses relativistic hydrodynamics and the other relativistic magnetohydrodynamics; both are set up to cover a range of jet powers and velocities. The dynamics of the lobes are shown to be in good agreement with analytical models and with previous numerical models, confirming in the relativistic regime that the observed widths of radio lobes may be explained if they are driven by very light jets. The ratio of energy stored in the radio lobes to that put into the intracluster gas is seen to be the same regardless of jet power, jet velocity or simulation type, suggesting that we have a robust understanding of the work done on the ambient gas by this type of radio source. For the most powerful jets, we at times find magnetic field amplification by up to a factor of 2 in energy, but mostly the magnetic energy in the lobes is consistent with the magnetic energy injected. We confirm our earlier result that for jets with a toroidally injected magnetic field, the field in the lobes is predominantly aligned with the jet axis once the lobes are well developed, and that this leads to radio flux anisotropies of up to a factor of about two for mature sources. We reproduce the relationship between 151 MHz luminosity and jet power determined analytically in the literature.
Gan, Zhaoming; Li, Hui; Li, Shengtai; Yuan, Feng
2017-04-01
The distinctive morphology of head-tail radio galaxies reveals strong interactions between the radio jets and their intra-cluster environment, the general consensus on the morphology origin of head-tail sources is that radio jets are bent by violent intra-cluster weather. We demonstrate in this paper that such strong interactions provide a great opportunity to study the jet properties and also the dynamics of the intra-cluster medium (ICM). By three-dimensional magnetohydrodynamical simulations, we analyze the detailed bending process of a magnetically dominated jet, based on the magnetic tower jet model. We use stratified atmospheres modulated by wind/shock to mimic the violent intra-cluster weather. Core sloshing is found to be inevitable during the wind-cluster core interaction, which induces significant shear motion and could finally drive ICM turbulence around the jet, making it difficult for the jet to survive. We perform a detailed comparison between the behavior of pure hydrodynamical jets and the magnetic tower jet and find that the jet-lobe morphology could not survive against the violent disruption in all of our pure hydrodynamical jet models. On the other hand, the head-tail morphology is well reproduced by using a magnetic tower jet model bent by wind, in which hydrodynamical instabilities are naturally suppressed and the jet could always keep its integrity under the protection of its internal magnetic fields. Finally, we also check the possibility for jet bending by shock only. We find that shock could not bend the jet significantly, and thus could not be expected to explain the observed long tails in head-tail radio galaxies.
Savani, N. P. [University Corporation for Atmospheric Research (UCAR), Boulder, CO 80307 (United States); Shiota, D. [Computational Astrophysics Laboratory, Advanced Science Institute, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Kusano, K. [Solar-Terrestrial Environment Laboratory, Nagoya University, Nagoya 464-8601 (Japan); Vourlidas, A. [Space Science Division, Naval Research Laboratory, Washington, DC 20375-5352 (United States); Lugaz, N., E-mail: neel.savani02@imperial.ac.uk [Experimental Space Plasma Group, University of New Hampshire, Durham, NH 03824 (United States)
2012-11-10
We perform four numerical magnetohydrodynamic simulations in 2.5 dimensions (2.5D) of fast coronal mass ejections (CMEs) and their associated shock fronts between 10 Rs and 300 Rs. We investigate the relative change in the shock standoff distance, {Delta}, as a fraction of the CME radial half-width, D {sub OB} (i.e., {Delta}/D {sub OB}). Previous hydrodynamic studies have related the shock standoff distance for Earth's magnetosphere to the density compression ratio (DR; {rho} {sub u}/{rho} {sub d}) measured across the bow shock. The DR coefficient, k {sub dr}, which is the proportionality constant between the relative standoff distance ({Delta}/D {sub OB}) and the compression ratio, was semi-empirically estimated as 1.1. For CMEs, we show that this value varies linearly as a function of heliocentric distance and changes significantly for different radii of curvature of the CME's leading edge. We find that a value of 0.8 {+-} 0.1 is more appropriate for small heliocentric distances (<30 Rs) which corresponds to the spherical geometry of a magnetosphere presented by Seiff. As the CME propagates its cross section becomes more oblate and the k {sub dr} value increases linearly with heliocentric distance, such that k {sub dr} = 1.1 is most appropriate at a heliocentric distance of about 80 Rs. For terrestrial distances (215 Rs) we estimate k {sub dr} = 1.8 {+-} 0.3, which also indicates that the CME cross-sectional structure is generally more oblate than that of Earth's magnetosphere. These alterations to the proportionality coefficients may serve to improve investigations into the estimates of the magnetic field in the corona upstream of a CME as well as the aspect ratio of CMEs as measured in situ.
Fully General Relativistic Simulations of Black Hole-Neutron Star Mergers
Etienne, Zachariah B; Liu, Yuk Tung; Shapiro, Stuart L; Taniguchi, Keisuke; Baumgarte, Thomas W
2007-01-01
Black hole-neutron star (BHNS) binaries are expected to be among the leading sources of gravitational waves observable by ground-based detectors, and may be the progenitors of short-hard gamma ray bursts (SGRBs) as well. Here, we discuss our new fully general relativistic calculations of merging BHNS binaries, which use high-accuracy, low-eccentricity, conformal thin-sandwich configurations as initial data. Our evolutions are performed using the moving puncture method and include a fully relativistic, high-resolution shock-capturing hydrodynamics treatment. Focusing on systems in which the neutron star is irrotational and the black hole is nonspinning with a 3:1 mass ratio, we investigate the inspiral, merger, and disk formation in the system. We find that the vast majority of material is promptly accreted and no more than 3% of the neutron star's rest mass is ejected into a tenuous, gravitationally bound disk. We find similar results for mass ratios of 2:1 and 1:1, even when we reduce the NS compaction in th...
Relativistic 3D jet simulations for the X-ray binary SS433
Monceau-Baroux, Remi; Meliani, Zakaria; Porth, Oliver
2013-01-01
Context. Modern high resolution observations allow to view closer into the objects powering relativistic jets. This is especially the case for SS433, an X-ray binary from which a precessing jet is observed down to the sub-parsec scale. Aims. We want to study full 3D dynamics of relativistic jets associated with AGN or XRB. We study the precessing motion of a jet as a model for the jet associated with the XRB SS433. Our study of the jet dynamics in this system focuses on the sub-parsec scales. We investigate the impact of jet precession and the variation of the Lorentz factor of the injected matter on the general 3D jet dynamics and its energy transfer to the surrounding medium. We realize synthetic radio mapping of the data, to compare our results with observations. Methods. For our study we use the code MPI-AMRVAC with SRHD model of a baryonic jet. We use a AMR scheme and an inner time-dependent boundary prescription to inject the jets. Parameters extracted from observations were used. 3D jet realizations th...
Meier, D L
2003-01-01
I review recent progress in the theory of relativistic jet production, with special emphasis on unifying black hole sources of stellar and supermassive size. Observations of both classes of objects, as well as theoretical considerations, indicate that such jets may be launched with a spine/sheath flow structure, having a much higher Lorentz factor ($\\sim 50$) near the axis and a lower speed ($\\Gamma \\sim 10$ or so) away from the axis. It has become clear that one can no longer consider models of accretion flows without also considering the production of a jet by that flow. Furthermore, the rotation rate of the black hole also must be taken into account. It provides a third parameter that should break the mass/accretion rate degeneracy and perhaps explain why some sources are radio loud and some radio quiet. Slow jet acceleration and collimation is expected theoretically, and can explain some of the observed features of AGN jet sources. Finally, relativistic jets launched by MHD/ED processes are Poynting flux ...
Solar Flares: Magnetohydrodynamic Processes
Kazunari Shibata
2011-12-01
Full Text Available This paper outlines the current understanding of solar flares, mainly focused on magnetohydrodynamic (MHD processes responsible for producing a flare. Observations show that flares are one of the most explosive phenomena in the atmosphere of the Sun, releasing a huge amount of energy up to about 10^32 erg on the timescale of hours. Flares involve the heating of plasma, mass ejection, and particle acceleration that generates high-energy particles. The key physical processes for producing a flare are: the emergence of magnetic field from the solar interior to the solar atmosphere (flux emergence, local enhancement of electric current in the corona (formation of a current sheet, and rapid dissipation of electric current (magnetic reconnection that causes shock heating, mass ejection, and particle acceleration. The evolution toward the onset of a flare is rather quasi-static when free energy is accumulated in the form of coronal electric current (field-aligned current, more precisely, while the dissipation of coronal current proceeds rapidly, producing various dynamic events that affect lower atmospheres such as the chromosphere and photosphere. Flares manifest such rapid dissipation of coronal current, and their theoretical modeling has been developed in accordance with observations, in which numerical simulations proved to be a strong tool reproducing the time-dependent, nonlinear evolution of a flare. We review the models proposed to explain the physical mechanism of flares, giving an comprehensive explanation of the key processes mentioned above. We start with basic properties of flares, then go into the details of energy build-up, release and transport in flares where magnetic reconnection works as the central engine to produce a flare.
El-Alaoui, M.; Richard, R. L.; Ashour-Abdalla, M.; Walker, R. J.; Goldstein, M. L.
2012-01-01
We report the results of MHD simulations of Earth's magnetosphere for idealized steady solar wind plasma and interplanetary magnetic field (IMF) conditions. The simulations feature purely northward and southward magnetic fields and were designed to study turbulence in the magnetotail plasma sheet. We found that the power spectral densities (PSDs) for both northward and southward IMF had the characteristics of turbulent flow. In both cases, the PSDs showed the three scale ranges expected from theory: the energy-containing scale, the inertial range, and the dissipative range. The results were generally consistent with in-situ observations and theoretical predictions. While the two cases studied, northward and southward IMF, had some similar characteristics, there were significant differences as well. For southward IMF, localized reconnection was the main energy source for the turbulence. For northward IMF, remnant reconnection contributed to driving the turbulence. Boundary waves may also have contributed. In both cases, the PSD slopes had spatial distributions in the dissipative range that reflected the pattern of resistive dissipation. For southward IMF there was a trend toward steeper slopes in the dissipative range with distance down the tail. For northward IMF there was a marked dusk-dawn asymmetry with steeper slopes on the dusk side of the tail. The inertial scale PSDs had a dusk-dawn symmetry during the northward IMF interval with steeper slopes on the dawn side. This asymmetry was not found in the distribution of inertial range slopes for southward IMF. The inertial range PSD slopes were clustered around values close to the theoretical expectation for both northward and southward IMF. In the dissipative range, however, the slopes were broadly distributed and the median values were significantly different, consistent with a different distribution of resistivity.
East, William E; Pretorius, Frans; Shapiro, Stuart L
2016-01-01
We perform general-relativistic hydrodynamical simulations of dynamical capture binary neutron star mergers, emphasizing the role played by the neutron star spin. Dynamical capture mergers may take place in globular clusters, as well as other dense stellar systems, where most neutron stars have large spins. We find significant variability in the merger outcome as a function of initial neutron star spin. For cases where the spin is aligned with the orbital angular momentum, the additional centrifugal support in the remnant hypermassive neutron star can prevent the prompt collapse to a black hole, while for antialigned cases the decreased total angular momentum can facilitate the collapse to a black hole. We show that even moderate spins can significantly increase the amount of ejected material, including the amount unbound with velocities greater than half the speed of light, leading to brighter electromagnetic signatures associated with kilonovae and interaction of the ejecta with the interstellar medium. Fur...
Reisswig, C; Ott, C D; Abdikamalov, E; Moesta, P; Pollney, D; Schnetter, E
2013-01-01
We present a new three-dimensional general-relativistic hydrodynamic evolution scheme coupled to dynamical spacetime evolutions which is capable of efficiently simulating stellar collapse, isolated neutron stars, black hole formation, and binary neutron star coalescence. We make use of a set of adapted curvi-linear grids (multipatches) coupled with flux-conservative cell-centered adaptive mesh refinement. This allows us to significantly enlarge our computational domains while still maintaining high resolution in the gravitational-wave extraction zone, the exterior layers of a star, or the region of mass ejection in merging neutron stars. The fluid is evolved with a high-resolution shock capturing finite volume scheme, while the spacetime geometry is evolved using fourth-order finite differences. We employ a multi-rate Runge-Kutta time integration scheme for efficiency, evolving the fluid with second-order and the spacetime geometry with fourth-order integration, respectively. We validate our code by a number ...
Numerical simulations of the internal shock model in magnetized relativistic jets of blazars
Rueda-Becerril, Jesus M; Aloy, Miguel A
2015-01-01
The internal shocks scenario in relativistic jets is used to explain the variability of the blazar emission. Recent studies have shown that the magnetic field significantly alters the shell collision dynamics, producing a variety of spectral energy distributions and light-curves patterns. However, the role played by magnetization in such emission processes is still not entirely understood. In this work we numerically solve the magnetohydodynamic evolution of the magnetized shells collision, and determine the influence of the magnetization on the observed radiation. Our procedure consists in systematically varying the shell Lorentz factor, relative velocity, and viewing angle. The calculations needed to produce the whole broadband spectral energy distributions and light-curves are computationally expensive, and are achieved using a high-performance parallel code.
Huarte-Espinosa, Martin; Alexander, Paul
2011-01-01
Radio observations of Fanaroff-Riley class II sources often show correlations between the synchrotron emission and the linear-polarimetric distributions. Magnetic position vectors seem to align with the projected emission of both the radio jets and the sources' edges. Using statistics we study such relation as well as its unknown time evolution via synthetic polarisation maps of model FR II sources formed in 3D-MHD numerical simulations of bipolar, hypersonic and weakly magnetised jets. The magnetic field is initially random with a Kolmogorov power spectrum, everywhere. We investigate the structure and evolution of magnetic fields in the sources as a function of the power of jets and the observational viewing angle. Our synthetic polarisation maps agree with observations, showing B-field vectors which are predominantly aligned with the jet axis, and show that magnetic fields inside sources are shaped by the jets' backflow. Polarimetry is found to correlate with time, the viewing angle and the jet-to-ambient d...
Zheng, Chun-Yang; Zhu, Shao-Ping; He, Xian-Tu
2002-07-01
The quasi-static magnetic fields created in the interaction of relativistic laser pulses with under-dense plasmas have been investigated by three-dimensional particle-in-cell simulation. The relativistic ponderomotive force can drive an intense electron current in the laser propagation direction, which is responsible for the generation of a helical magnetic field. The axial magnetic field results from a difference beat of wave-wave, which drives a solenoidal current. In particular, the physical significance of the kinetic model for the generation of the axial magnetic field is discussed.
郑春阳; 朱少平; 贺贤土
2002-01-01
The quasi-static magnetic fields created in the interaction of relativistic laser pulses with under-dense plasmashave been investigated by three-dimensional particle-in-cell simulation. The relativistic ponderomotive force candrive an intense electron current in the laser propagation direction, which is responsible for the generation ofa helical magnetic field. The axial magnetic field results from a difference beat of wave-wave, which drives asolenoidal current. In particular, the physical significance of the kinetic model for the generation of the axialmagnetic field is discussed.
Spatial Growth of the Current-Driven Instability in Relativistic Jets
Mizuno, Yosuke; Nishikawa, Ken-Ichi
2014-01-01
We have investigated the influence of velocity shear and a radial density profile on the spatial development of the current driven kink instability along helically magnetized relativistic jets via three-dimensional relativistic magnetohydrodynamic simulations. In this study, we use a non-periodic computational box, the jet flow is initially established across the computational grid, and a precessional perturbation at the inlet triggers growth of the kink instability. If the velocity shear radius is located inside the characteristic radius of the helical magnetic field, a static non-propagating current driven kink is excited as the perturbation propagates down the jet. Temporal growth disrupts the initial flow across the computational grid not too far from the inlet. On the other hand, if the velocity shear radius is outside the characteristic radius of the helical magnetic field, the kink is advected with the flow and grows spatially down the jet. In this case flow is maintained to much larger distances from ...
Deng, Wei [Los Alamos National Laboratory
2015-07-21
The question of the energy composition of the jets/outflows in high-energy astrophysical systems, e.g. GRBs, AGNs, is taken up first: Matter-flux-dominated (MFD), σ < 1, and/or Poynting-flux-dominated (PFD), σ >1? The standard fireball IS model and dissipative photosphere model are MFD, while the ICMART (Internal-Collision-induced MAgnetic Reconnection and Turbulence) model is PFD. Motivated by ICMART model and other relevant problems, such as “jets in a jet” model of AGNs, the author investigates the models from the EMF energy dissipation efficiency, relativistic outflow generation, and σ evolution points of view, and simulates collisions between high-σ blobs to mimic the situation of the interactions inside the PFD jets/outflows by using a 3D SRMHD code which solves the conservative form of the ideal MHD equations. σ_{b,f} is calculated from the simulation results (threshold = 1). The efficiency obtained from this hybrid method is similar to the efficiency got from the energy evolution of the simulations (35.2%). Efficiency is nearly σ independent, which is also confirmed by the hybrid method. σ_{b,i} - σ_{b,f} provides an interesting linear relationship. Results of several parameter studies of EMF energy dissipation efficiency are shown.
Dieckmann, M. E.; Sarri, G.; Markoff, S.; Borghesi, M.; Zepf, M.
2015-05-01
Context. The jets of compact accreting objects are composed of electrons and a mixture of positrons and ions. These outflows impinge on the interstellar or intergalactic medium and both plasmas interact via collisionless processes. Filamentation (beam-Weibel) instabilities give rise to the growth of strong electromagnetic fields. These fields thermalize the interpenetrating plasmas. Aims: Hitherto, the effects imposed by a spatial non-uniformity on filamentation instabilities have remained unexplored. We examine the interaction between spatially uniform background electrons and a minuscule cloud of electrons and positrons. The cloud size is comparable to that created in recent laboratory experiments and such clouds may exist close to internal and external shocks of leptonic jets. The purpose of our study is to determine the prevalent instabilities, their ability to generate electromagnetic fields and the mechanism, by which the lepton micro-cloud transfers energy to the background plasma. Methods: A square micro-cloud of equally dense electrons and positrons impinges in our particle-in-cell (PIC) simulation on a spatially uniform plasma at rest. The latter consists of electrons with a temperature of 1 keV and immobile ions. The initially charge- and current neutral micro-cloud has a temperature of 100 keV and a side length of 2.5 plasma skin depths of the micro-cloud. The side length is given in the reference frame of the background plasma. The mean speed of the micro-cloud corresponds to a relativistic factor of 15, which is relevant for laboratory experiments and for relativistic astrophysical outflows. The spatial distributions of the leptons and of the electromagnetic fields are examined at several times. Results: A filamentation instability develops between the magnetic field carried by the micro-cloud and the background electrons. The electromagnetic fields, which grow from noise levels, redistribute the electrons and positrons within the cloud, which boosts
Magnetohydrodynamics on Heterogeneous architectures: a performance comparison
Pang, Bijia; Perrone, Michael
2010-01-01
We present magneto-hydrodynamic simulation results for heterogeneous systems. Heterogeneous architectures combine high floating point performance many-core units hosted in conventional server nodes. Examples include Graphics Processing Units (GPU's) and Cell. They have potentially large gains in performance, at modest power and monetary cost. We implemented a magneto-hydrodynamic (MHD) simulation code on a variety of heterogeneous and multi-core architectures --- multi-core x86, Cell, Nvidia and ATI GPU --- in different languages, FORTRAN, C, Cell, CUDA and OpenCL. We present initial performance results for these systems. To our knowledge, this is the widest comparison of heterogeneous systems for MHD simulations. We review the different challenges faced in each architecture, and potential bottlenecks. We conclude that substantial gains in performance over traditional systems are possible, and in particular that is possible to extract a greater percentage of peak theoretical performance from some systems when...
Transverse electron-scale instability in relativistic shear flows
Alves, E P; Fonseca, R A; Silva, L O
2015-01-01
Electron-scale surface waves are shown to be unstable in the transverse plane of a shear flow in an initially unmagnetized plasma, unlike in the (magneto)hydrodynamics case. It is found that these unstable modes have a higher growth rate than the closely related electron-scale Kelvin-Helmholtz instability in relativistic shears. Multidimensional particle-in-cell simulations verify the analytic results and further reveal the emergence of mushroom-like electron density structures in the nonlinear phase of the instability, similar to those observed in the Rayleigh Taylor instability despite the great disparity in scales and different underlying physics. Macroscopic ($\\gg c/\\omega_{pe}$) fields are shown to be generated by these microscopic shear instabilities, which are relevant for particle acceleration, radiation emission and to seed MHD processes at long time-scales.
Demianski, Marek
2013-01-01
Relativistic Astrophysics brings together important astronomical discoveries and the significant achievements, as well as the difficulties in the field of relativistic astrophysics. This book is divided into 10 chapters that tackle some aspects of the field, including the gravitational field, stellar equilibrium, black holes, and cosmology. The opening chapters introduce the theories to delineate gravitational field and the elements of relativistic thermodynamics and hydrodynamics. The succeeding chapters deal with the gravitational fields in matter; stellar equilibrium and general relativity
Chiou, D W; Chiou, Dah-Wei; Ni, Wei-Tou
2004-01-01
ASTROD (Astrodynamical Space Test of Relativity using Optical Devices) mission concept is to conduct high-precision measurement of relativistic effects,solar-system parameters and gravitational waves. In this paper, we first extend the stochastic model to simulate the determination of the masses of three big asteroids (Ceres, Vesta and Pallas). With one range observation per day for each spacecraft from 25 days to 800 days of the mission and ten range observations per day for each spacecraft from 800 days to 1050 days of the mission (when the apparent positions of the two spacecraft are close to the Sun), the accuracies of determining these parameters are 4.6*10**(-7) for gamma, 4.0*10**(-7) for beta, 1.2*10**(-8) for J2, and 6.4*10**(-5) M_Ceres, 7.6*10**(-4) M_Pallas, 8.1*10**(-5) M_Vesta for the mass determination of Ceres, Pallas and Vesta respectively. We then include in the simulation and determination the rate of change of the gravitational constant (G-dot), and an anomalous constant acceleration (aa) ...
Magnetohydrodynamics of the sun
Priest, Eric
2014-01-01
Magnetohydrodynamics of the Sun is a completely new up-to-date rewrite from scratch of the 1982 book Solar Magnetohydrodynamics, taking account of enormous advances in understanding since that date. It describes the subtle and complex interaction between the Sun's plasma atmosphere and its magnetic field, which is responsible for many fascinating dynamic phenomena. Chapters cover the generation of the Sun's magnetic field by dynamo action, magnetoconvection and the nature of photospheric flux tubes such as sunspots, the heating of the outer atmosphere by waves or reconnection, the structure of prominences, the nature of eruptive instability and magnetic reconnection in solar flares and coronal mass ejections, and the acceleration of the solar wind by reconnection or wave-turbulence. It is essential reading for graduate students and researchers in solar physics and related fields of astronomy, plasma physics and fluid dynamics. Problem sets and other resources are available at www.cambridge.org/9780521854719.
Thermoacoustic magnetohydrodynamic electrical generator
Wheatley, John C.; Swift, Gregory W.; Migliori, Albert
1986-01-01
A thermoacoustic magnetohydrodynamic electrical generator includes an intrinsically irreversible thermoacoustic heat engine coupled to a magnetohydrodynamic electrical generator. The heat engine includes an electrically conductive liquid metal as the working fluid and includes two heat exchange and thermoacoustic structure assemblies which drive the liquid in a push-pull arrangement to cause the liquid metal to oscillate at a resonant acoustic frequency on the order of 1,000 Hz. The engine is positioned in the field of a magnet and is oriented such that the liquid metal oscillates in a direction orthogonal to the field of the magnet, whereby an alternating electrical potential is generated in the liquid metal. Low-loss, low-inductance electrical conductors electrically connected to opposite sides of the liquid metal conduct an output signal to a transformer adapted to convert the low-voltage, high-current output signal to a more usable higher voltage, lower current signal.
Lectures on magnetohydrodynamical drives
Loigom, Villem
The paper deals with nonconventional types of electrical machines and drives - magnetohydrodynamical (MHD) machines and drives. In cardinal it is based on the research conducted with participation of the author in Tallinn Technical University at the Institute of Electrical Drives and Power Electronics, where the use of magnetohydrodynamical motors and drives in the metallurgical and casting industries have been studied for a long time. Major research interests include the qualities and applications of the induction MHD-drives for set in the motion (pumping, turning, dosing, mixing, etc.) non-ferrous molten metals like Al, Mg, Sn, Pb, Na, K, and their alloys. The first part of the paper describes induction MHD motors and their electrohydraulical qualities. In the second part energy conversion problems are described. Also, on the basis of the analogy between electromechanical and electrohydraulical phenomenas, static and dynamic qualities of MHD drives with induction MHD machines are discussed.
Adventures in magnetohydrodynamics
Johnson, John L.
1988-03-01
The material in the report was presented in a series of three lectures presented on two days, October 29 and 30, 1987, at Nagoya University. A survey of magnetohydrodynamic theory was given as it applies to toroidal confinement. The material was broken down into four sections: (1) the derivation and justification of the MHD equations; (2) the equilibrium problem; (3) linearized stability; and (4) comments on nonlinear evolution, magnetic islands and transport theory.
Magnetohydrodynamic Turbulence and the Geodynamo
Shebalin, John V.
2016-01-01
Recent research results concerning forced, dissipative, rotating magnetohydrodynamic (MHD) turbulence will be discussed. In particular, we present new results from long-time Fourier method (periodic box) simulations in which forcing contains varying amounts of magnetic and kinetic helicity. Numerical results indicate that if MHD turbulence is forced so as to produce a state of relatively constant energy, then the largest-scale components are dominant and quasistationary, and in fact, have an effective dipole moment vector that aligns closely with the rotation axis. The relationship of this work to established results in ideal MHD turbulence, as well as to models of MHD turbulence in a spherical shell will also be presented. These results appear to be very pertinent to understanding the Geodynamo and the origin of its dominant dipole component. Our conclusion is that MHD turbulence, per se, may well contain the origin of the Earth's dipole magnetic field.
Vortex disruption by magnetohydrodynamic feedback
Mak, Julian; Hughes, D W
2016-01-01
In an electrically conducting fluid, vortices stretch out a weak, large-scale magnetic field to form strong current sheets on their edges. Associated with these current sheets are magnetic stresses, which are subsequently released through reconnection, leading to vortex disruption, and possibly even destruction. This disruption phenomenon is investigated here in the context of two-dimensional, homogeneous, incompressible magnetohydrodynamics. We derive a simple order of magnitude estimate for the magnetic stresses --- and thus the degree of disruption --- that depends on the strength of the background magnetic field (measured by the parameter $M$, a ratio between the Alfv\\'en speed and a typical flow speed) and on the magnetic diffusivity (measured by the magnetic Reynolds number $\\mbox{Rm}$). The resulting estimate suggests that significant disruption occurs when $M^{2}\\mbox{Rm} = O(1)$. To test our prediction, we analyse direct numerical simulations of vortices generated by the breakup of unstable shear flo...
Scale locality of magnetohydrodynamic turbulence.
Aluie, Hussein; Eyink, Gregory L
2010-02-26
We investigate the scale locality of cascades of conserved invariants at high kinetic and magnetic Reynold's numbers in the "inertial-inductive range" of magnetohydrodynamic (MHD) turbulence, where velocity and magnetic field increments exhibit suitable power-law scaling. We prove that fluxes of total energy and cross helicity-or, equivalently, fluxes of Elsässer energies-are dominated by the contributions of local triads. Flux of magnetic helicity may be dominated by nonlocal triads. The magnetic stretching term may also be dominated by nonlocal triads, but we prove that it can convert energy only between velocity and magnetic modes at comparable scales. We explain the disagreement with numerical studies that have claimed conversion nonlocally between disparate scales. We present supporting data from a 1024{3} simulation of forced MHD turbulence.
Spectrum of weak magnetohydrodynamic turbulence.
Boldyrev, Stanislav; Perez, Jean Carlos
2009-11-27
Turbulence of magnetohydrodynamic waves in nature and in the laboratory is generally cross-helical or nonbalanced, in that the energies of Alfvén waves moving in opposite directions along the guide magnetic field are unequal. Based on high-resolution numerical simulations it is proposed that such turbulence spontaneously generates a condensate of the residual energy E(v) - E(b) at small field-parallel wave numbers. As a result, the energy spectra of Alfvén waves are generally not scale invariant in an inertial interval of limited extent. In the limit of an infinite Reynolds number, the universality is asymptotically restored at large wave numbers, and both spectra attain the scaling E(k) proportional to k(perpendicular)(-2). The generation of a condensate is apparently related to the breakdown of mirror symmetry in nonbalanced turbulence.
Future of Magnetohydrodynamic Ship Propulsion,
1983-08-16
83 FOREIGN TECHNOLOGY DIVISION FUTURE OF MAGNETOHYDRODYNAMIC SHIP PROPULSION by A.P. Baranov DTIQ ~E tJ Approved for public release; 0.. distribution...MAGNETOHYDRODYNAMIC SHIP PROPULSION By: A.P. Baranov -,English pages: 10 Source: Sudostroyeniye, Nr. 12, December 1966, pp. 3-6 . Country of origin: USSR X...equations, etc. merged into this translation were extracted from the best quality copy available. FUTURE OF MAGNETOHYDRODYNAMIC SHIP PROPULSION A. P
三维磁流体强化超燃冲压发动机数值模拟%Simulation of three-dimensional magnetohydrodynamic enhanced scramjet
郑小梅; 杨兴宇
2012-01-01
Simulation model of the three-dimensional magnetohydrodynamic(MHD) enhanced scramjet viscous inner flow field was established.Geometry of a scramjet applied both MHD controlled inlet and MHD energy bypass was designed at Ma=6.Numerical simulation was performed,and three-dimensional flow field structure,distribution pattern of the electric parameters,and characteristics of energy transformation were analyzed.The results show when flight Ma=8,MHD controlled inlet can be used to draw the compressive shock waves back to the cowl lip,the separation zone disappears,and the flow field of the inner inlet recovers to the design condition.The MHD energy bypass can decrease Ma of the flow before combustor efficiently,so as to improve engine performance.In the MHD generator,distributions of flow and electric parameters are comparatively ideal to make efficient effect,while the MHD accelerator needs large amount of energy input to make a significant acceleration.In the MHD accelerator,Joule heating dissipation is severe near the electrodes,which results in local high temperature,flow field complication and performance deterioration of the MHD accelerator.%建立了三维磁流体强化超燃冲压发动机内部黏性流场的求解模型.针对马赫数为6设计了联合应用磁控进气道和磁流体能量旁路的磁流体强化超燃冲压发动机模型.针对该模型进行了数值模拟研究，分析其中的三维流场结构、电参数分布规律以及能量转换特性.结果表明：当飞行马赫数为8时，磁控进气道的应用能够使头部压缩激波回到唇口，使分离区消失，内进气道中的流动恢复到设计状态.磁流体能量旁路可有效降低燃烧室入口处的马赫数，从而改善发动机性能.其中发生器中的流动参数和电参数的分布比较理想，效果显著；而加速器要取得显著的加速效果则需要人量的能量输入.在加速器中，电极附近焦耳耗散严重，导致局部高温
Generalized global symmetries and dissipative magnetohydrodynamics
Grozdanov, Sašo; Iqbal, Nabil
2016-01-01
The conserved magnetic flux of U(1) electrodynamics coupled to matter in four dimensions is associated with a generalized global symmetry. We study the realization of such a symmetry at finite temperature and develop the hydrodynamic theory describing fluctuations of a conserved 2-form current around thermal equilibrium. This can be thought of as a systematic derivation of relativistic magnetohydrodynamics, constrained only by symmetries and effective field theory. We construct the entropy current and show that at first order in derivatives, there are six dissipative transport coefficients. We present a universal definition of resistivity in a theory of dynamical electromagnetism and derive a direct Kubo formula for the resistivity in terms of correlation functions of the electric field operator. We also study fluctuations and collective modes, deriving novel expressions for the dissipative widths of magnetosonic and Alfven modes. Finally, we demonstrate that a non-trivial truncation of the theory can be perf...
Chan, Chi-Kwan; Ozel, Feryal; Sadowski, Aleksander
2014-01-01
Recent advances in general relativistic magnetohydrodynamic simulations have expanded and improved our understanding of the dynamics of black-hole accretion disks. However, current simulations do not capture the thermodynamics of electrons in the low density accreting plasma. This poses a significant challenge in predicting accretion flow images and spectra from first principles. Because of this, simplified emission models have often been used, with widely different configurations (e.g., disk- versus jet-dominated emission), and were able to account for the observed spectral properties of accreting black-holes. Exploring the large parameter space introduced by such models, however, requires significant computational power that exceeds conventional computational facilities. In this paper, we use GRay, a fast GPU-based ray-tracing algorithm, on the GPU cluster El Gato, to compute images and spectra for a set of six general relativistic magnetohydrodynamic simulations with different magnetic field configurations...
Applications of the lahet simulation code to relativistic heavy ion detectors
Waters, L.; Gavron, A. [Los Alamos National Lab., NM (United States)
1991-12-31
The Los Alamos High Energy Transport (LAHET) simulation code has been applied to test beam data from the lead/scintillator Participant Calorimeter of BNL AGS experiment E814. The LAHET code treats hadronic interactions with the LANL version of the Oak Ridge code HETC. LAHET has now been expanded to handle hadrons with kinetic energies greater than 5 GeV with the FLUKA code, while HETC is used exclusively below 2.0 GeV. FLUKA is phased in linearly between 2.0 and 5.0 GeV. Transport of electrons and photons is done with EGS4, and an interface to the Los Alamos HMCNP3B library based code is provided to analyze neutrons with kinetic energies less than 20 MeV. Excellent agreement is found between the test data and simulation, and results for 2.46 GeV/c protons and pions are illustrated in this article.
Applications of the lahet simulation code to relativistic heavy ion detectors
Waters, L.; Gavron, A. [Los Alamos National Lab., NM (United States)
1991-12-31
The Los Alamos High Energy Transport (LAHET) simulation code has been applied to test beam data from the lead/scintillator Participant Calorimeter of BNL AGS experiment E814. The LAHET code treats hadronic interactions with the LANL version of the Oak Ridge code HETC. LAHET has now been expanded to handle hadrons with kinetic energies greater than 5 GeV with the FLUKA code, while HETC is used exclusively below 2.0 GeV. FLUKA is phased in linearly between 2.0 and 5.0 GeV. Transport of electrons and photons is done with EGS4, and an interface to the Los Alamos HMCNP3B library based code is provided to analyze neutrons with kinetic energies less than 20 MeV. Excellent agreement is found between the test data and simulation, and results for 2.46 GeV/c protons and pions are illustrated in this article.
Experimental and Simulation Studies of Hydrodynamic Tunneling of Ultra-Relativistic Protons
Burkart, Florian; Schmidt, Ruediger; Shutov, Alexander; Tahir, Naeem; Wollmann, Daniel; Zerlauth, Markus
2015-01-01
The expected damage due to the release of the full LHC beam energy at a single aperture bottleneck has been studied. These studies have shown that the range of the 7 TeV LHC proton beam is significantly extended compared to that of a single proton due to hydrodynamic tunneling effect. For instance, it was evaluated that the protons and their showers will penetrate up to a length of 25 m in solid carbon compared to a static range of around 3 m. To check the validity of these simulations, beam- target heating experiments using the 440 GeV proton beam generated by the SPS were performed at the HiRadMat test facility at CERN. Solid copper targets were facially irradiated by the beam and measurements confirmed hydrodynamic tunneling of the protons and their showers. Simulations have been done by running the energy deposition code FLUKA and the 2D hydrodynamic code, BIG2, iteratively. Very good agreement has been found between the simulations and the experimental results providing confidence in the validity of the ...
The Modified Magnetohydrodynamical Equations
Evangelos Chaliasos
2003-01-01
After finding the really self-consistent electromagnetic equations for a plasma, we proceed in a similarfashion to find how the magnetohydrodynamical equations have to be modified accordingly. Substantially this is doneby replacing the "Lorentz" force equation by the correct (in our case) force equation. Formally we have to use the vectorpotential instead of the magnetic field intensity. The appearance of the formulae presented is the one of classical vectoranalysis. We thus find a set of eight equations in eight unknowns, as previously known concerning the traditional MHDequations.
The Modified Magnetohydrodynamical Equations
EvangelosChaliasos
2003-01-01
After finding the really self-consistent electromagnetic equations for a plasma, we proceed in a similar fashion to find how the magnetohydrodynamical equations have to be modified accordingly. Substantially this is done by replacing the "Lorentz" force equation by the correct (in our case) force equation. Formally we have to use the vector potential instead of the magnetic field intensity. The appearance of the formulae presented is the one of classical vector analysis. We thus find a set of eight equations in eight unknowns, as previously known concerning the traditional MHD equations.
Solitary vortexes in magnetohydrodynamics
Vainshtein, S.I.
1985-12-01
Stationary configurations in magnetohydrodynamics are investigated for the following two particular cases: (1) there is no motion, which corresponds to a state of magnetostatic equilibrium; and (2) the magnetic field intensity becomes zero, i.e., hydrodynamic vortexes are involved. It is shown that in certain cases the line-of-force topology must be sufficiently simple in order before a stationary or equilibrium state can be achieved. It is also shown that in the two-dimensional case, the magnetic surfaces of an equilibrium configuration represent coaxial cylindrical surfaces. 12 references.
Elements of magnetohydrodynamic stability theory
Spies, G O
1976-11-01
The nonlinear equations of ideal magnetohydrodynamics are discussed along with the following topics: (1) static equilibrium, (2) strict linear theory, (3) stability of a system with one degree of freedom, (4) spectrum and variational principles in magnetohydrodynamics, (5) elementary proof of the modified energy principle, (6) sufficient stability criteria, (7) local stability, and (8) normal modes. (MOW)
STARlight: A Monte Carlo simulation program for ultra-peripheral collisions of relativistic ions
Klein, Spencer R.; Nystrand, Joakim; Seger, Janet; Gorbunov, Yuri; Butterworth, Joey
2017-03-01
Ultra-peripheral collisions (UPCs) have been a significant source of study at RHIC and the LHC. In these collisions, the two colliding nuclei interact electromagnetically, via two-photon or photonuclear interactions, but not hadronically; they effectively miss each other. Photonuclear interactions produce vector meson states or more general photonuclear final states, while two-photon interactions can produce lepton or meson pairs, or single mesons. In these interactions, the collision geometry plays a major role. We present a program, STARlight, that calculates the cross-sections for a variety of UPC final states and also creates, via Monte Carlo simulation, events for use in determining detector efficiency.
Simulation for Interaction of Linearly Polarized Relativistic Laser Pulses with Foil Targets
LIU Shi-Bing; TU Qin-Fen; YU Wei; CHEN Zhi-Hua; ZHANG Jie
2001-01-01
One-dimensional particle-in-cell simulation is presented for the interaction of ultra-short, linearly polarized intense laser pulses with thin foil targets. The results indicate that the strong competition between electromagnetic and electrostatic ponderomotive forces produced, respectively, by the laser and the electrostatic fields leads to novel behaviours of target electrons. It shows that the interaction is dominated by the 2ω (ω is laser frequency) component of the electrostatic ponderomotive force as well as that of the electromagnetic ponderomotive force.
STARlight: A Monte Carlo simulation program for ultra-peripheral collisions of relativistic ions
Klein, Spencer R; Seger, Janet; Gorbunov, Yuri; Butterworth, Joey
2016-01-01
Ultra-peripheral collisions (UPCs) have been a significant source of study at RHIC and the LHC. In these collisions, the two colliding nuclei interact electromagnetically, via two-photon or photonuclear interactions, but not hadronically; they effectively miss each other. Photonuclear interactions produce vector meson states or more general photonuclear final states, while two-photon interactions can produce lepton or meson pairs, or single mesons. In these interactions, the collision geometry plays a major role. We present a program, STARlight, that calculates the cross-sections for a variety of UPC final states and also creates, via Monte Carlo simulation, events for use in determining detector efficiency.
Simulation study of the formation of a non-relativistic pair shock
Dieckmann, M. E.; Bret, A.
2017-02-01
We examine with a particle-in-cell (PIC) simulation the collision of two equally dense clouds of cold pair plasma. The clouds interpenetrate until instabilities set in, which heat up the plasma and trigger the formation of a pair of shocks. The fastest-growing waves at the collision speed , where is the speed of light in vacuum, and low temperature are the electrostatic two-stream mode and the quasi-electrostatic oblique mode. Both waves grow and saturate via the formation of phase space vortices. The strong electric fields of these nonlinear plasma structures provide an efficient means of heating up and compressing the inflowing upstream leptons. The interaction of the hot leptons, which leak back into the upstream region, with the inflowing cool upstream leptons continuously drives electrostatic waves that mediate the shock. These waves heat up the inflowing upstream leptons primarily along the shock normal, which results in an anisotropic velocity distribution in the post-shock region. This distribution gives rise to the Weibel instability. Our simulation shows that even if the shock is mediated by quasi-electrostatic waves, strong magnetowaves will still develop in its downstream region.
Magnetohydrodynamic process in solar activity
Jingxiu Wang
2014-01-01
Full Text Available Magnetohydrodynamics is one of the major disciplines in solar physics. Vigorous magnetohydrodynamic process is taking place in the solar convection zone and atmosphere. It controls the generating and structuring of the solar magnetic fields, causes the accumulation of magnetic non-potential energy in the solar atmosphere and triggers the explosive magnetic energy release, manifested as violent solar flares and coronal mass ejections. Nowadays detailed observations in solar astrophysics from space and on the ground urge a great need for the studies of magnetohydrodynamics and plasma physics to achieve better understanding of the mechanism or mechanisms of solar activity. On the other hand, the spectacular solar activity always serves as a great laboratory of magnetohydrodynamics. In this article, we reviewed a few key unresolved problems in solar activity studies and discussed the relevant issues in solar magnetohydrodynamics.
Protostellar outflows with Smoothed Particle Magnetohydrodynamics (SPMHD)
Bürzle, Florian; Stasyszyn, Federico; Dolag, Klaus; Klessen, Ralf S
2011-01-01
The protostellar collapse of a molecular cloud core is usually accompanied by outflow phenomena. The latter are thought to be driven by magnetorotational processes from the central parts of the protostellar disc. While several 3D AMR/nested grid studies of outflow phenomena in collapsing magnetically supercritical dense cores have been reported in the literature, so far no such simulation has been performed using the Smoothed Particle Hydrodynamics (SPH) method. This is mainly due to intrinsic numerical difficulties in handling magnetohydrodynamics within SPH, which only recently were partly resolved. In this work, we use an approach where we evolve the magnetic field via the induction equation, augmented with stability correction and divergence cleaning schemes. We consider the collapse of a rotating core of one solar mass, threaded by a weak magnetic field initially parallel to the rotation axis so that the core is magnetically supercritical. We show, that Smoothed Particle Magnetohydrodynamics (SPMHD) is a...
Simulation of wake potentials induced by relativistic proton bunches in electron clouds
Petrov, Fedor; Boine-Frankenheim, Oliver; Weiland, Thomas [Technische Universitaet Darmstadt (Germany). Institut fuer Theorie Elektromagnetischer Felder (TEMF)
2012-07-01
Electron clouds limit the intensity of modern high intensity hadron accelerators. Presently electron clouds are the main limiting factor for the LHC operation with 25 ns bunch trains. The bunches passing through an electron cloud induce a wake field. When the electron cloud density exceeds a certain threshold beam instabilities occur. The presence of electron clouds results in a shift of the synchronous phase, which increases if the bunch spacing is reduced. For LHC and SPS conditions we compare the longitudinal electron cloud wake potentials and stopping powers obtained using a simplified 2D electrostatic Particle-in-Cell code with fully electromagnetic simulations using VORPAL. In addition we analyze the wake fields induced by displaced or tilted bunches.
A multidimensional grid-adaptive relativistic magnetofluid code
van der Holst, B.; Keppens, R.; Meliani, Z.
2008-01-01
A robust second order, shock-capturing numerical scheme for multidimensional special relativistic magnetohydrodynamics on computational domains with adaptive mesh refinement is presented. The base solver is a total variation diminishing Lax-Friedrichs scheme in a finite volume setting and is combine
Magnetohydrodynamics of blood flow.
Keltner, J R; Roos, M S; Brakeman, P R; Budinger, T F
1990-10-01
The changes in hydrostatic pressure and electrical potentials across vessels in the human vasculature in the presence of a large static magnetic field are estimated to determine the feasibility of in vivo NMR spectroscopy at fields as high as 10 T.A 10-T magnetic field changes the vascular pressure in a model of the human vasculature by less than 0.2%. An exact solution to the magnetohydrodynamic equations describing a conducting fluid flowing transverse to a static magnetic field in a nonconducting, straight, circular tube is used. This solution is compared to an approximate solution that assumes that no magnetic fields are induced in the fluid and that has led previous investigators to predict significant biological effects from static magnetic fields. Experimental results show that the exact solution accurately predicts the magnetohydrodynamic slowing of 15% NaCl flowing transverse to 2.3- and 4.7-T magnetic fields for fluxes below 0.5 liter/min while the approximate solution predicts a much more retarded flow.
Kuroda, Takami; Takiwaki, Tomoya
2012-01-01
We present results from the first generation of multi-dimensional hydrodynamic core-collapse simulations in full general relativity (GR) that include an approximate treatment of neutrino transport. Using a M1 closure scheme with an analytic variable Eddington factor, we solve the energy-independent set of radiation energy and momentum based on the Thorne's momentum formalism. To simplify the source terms of the transport equations, a methodology of multiflavour neutrino leakage scheme is partly employed. Our newly developed code is designed to evolve the Einstein field equation together with the GR radiation hydrodynamic equations. We follow the dynamics starting from the onset of gravitational core-collapse of a 15 $M_{\\odot}$ star, through bounce, up to about 100 ms postbounce in this study to study how the spacial multi-dimensionality and GR would affect the dynamics in the early postbounce phase. Our 3D results support the anticipation in previous 1D results that the neutrino luminosity and average neutri...
Computational Methods for Ideal Magnetohydrodynamics
Kercher, Andrew D.
Numerical schemes for the ideal magnetohydrodynamics (MHD) are widely used for modeling space weather and astrophysical flows. They are designed to resolve the different waves that propagate through a magnetohydro fluid, namely, the fast, Alfven, slow, and entropy waves. Numerical schemes for ideal magnetohydrodynamics that are based on the standard finite volume (FV) discretization exhibit pseudo-convergence in which non-regular waves no longer exist only after heavy grid refinement. A method is described for obtaining solutions for coplanar and near coplanar cases that consist of only regular waves, independent of grid refinement. The method, referred to as Compound Wave Modification (CWM), involves removing the flux associated with non-regular structures and can be used for simulations in two- and three-dimensions because it does not require explicitly tracking an Alfven wave. For a near coplanar case, and for grids with 213 points or less, we find root-mean-square-errors (RMSEs) that are as much as 6 times smaller. For the coplanar case, in which non-regular structures will exist at all levels of grid refinement for standard FV schemes, the RMSE is as much as 25 times smaller. A multidimensional ideal MHD code has been implemented for simulations on graphics processing units (GPUs). Performance measurements were conducted for both the NVIDIA GeForce GTX Titan and Intel Xeon E5645 processor. The GPU is shown to perform one to two orders of magnitude greater than the CPU when using a single core, and two to three times greater than when run in parallel with OpenMP. Performance comparisons are made for two methods of storing data on the GPU. The first approach stores data as an Array of Structures (AoS), e.g., a point coordinate array of size 3 x n is iterated over. The second approach stores data as a Structure of Arrays (SoA), e.g. three separate arrays of size n are iterated over simultaneously. For an AoS, coalescing does not occur, reducing memory efficiency
HERO - A 3D general relativistic radiative post-processor for accretion discs around black holes
Zhu, Yucong; Narayan, Ramesh; Sadowski, Aleksander; Psaltis, Dimitrios
2015-08-01
HERO (Hybrid Evaluator for Radiative Objects) is a 3D general relativistic radiative transfer code which has been tailored to the problem of analysing radiation from simulations of relativistic accretion discs around black holes. HERO is designed to be used as a post-processor. Given some fixed fluid structure for the disc (i.e. density and velocity as a function of position from a hydrodynamic or magnetohydrodynamic simulation), the code obtains a self-consistent solution for the radiation field and for the gas temperatures using the condition of radiative equilibrium. The novel aspect of HERO is that it combines two techniques: (1) a short-characteristics (SC) solver that quickly converges to a self-consistent disc temperature and radiation field, with (2) a long-characteristics (LC) solver that provides a more accurate solution for the radiation near the photosphere and in the optically thin regions. By combining these two techniques, we gain both the computational speed of SC and the high accuracy of LC. We present tests of HERO on a range of 1D, 2D, and 3D problems in flat space and show that the results agree well with both analytical and benchmark solutions. We also test the ability of the code to handle relativistic problems in curved space. Finally, we discuss the important topic of ray defects, a major limitation of the SC method, and describe our strategy for minimizing the induced error.
Introduction to magnetohydrodynamics
Thompson, Ian
2016-01-01
Magnetohydrodynamics (MHD) plays a crucial role in astrophysics, planetary magnetism, engineering and controlled nuclear fusion. This comprehensive textbook emphasizes physical ideas, rather than mathematical detail, making it accessible to a broad audience. Starting from elementary chapters on fluid mechanics and electromagnetism, it takes the reader all the way through to the latest ideas in more advanced topics, including planetary dynamos, stellar magnetism, fusion plasmas and engineering applications. With the new edition, readers will benefit from additional material on MHD instabilities, planetary dynamos and applications in astrophysics, as well as a whole new chapter on fusion plasma MHD. The development of the material from first principles and its pedagogical style makes this an ideal companion for both undergraduate students and postgraduate students in physics, applied mathematics and engineering. Elementary knowledge of vector calculus is the only prerequisite.
Magnetohydrodynamic inertial reference system
Eckelkamp-Baker, Dan; Sebesta, Henry R.; Burkhard, Kevin
2000-07-01
Optical platforms increasingly require attitude knowledge and optical instrument pointing at sub-microradian accuracy. No low-cost commercial system exists to provide this level of accuracy for guidance, navigation, and control. The need for small, inexpensive inertial sensors, which may be employed in pointing control systems that are required to satisfy angular line-of-sight stabilization jitter error budgets to levels of 1-3 microradian rms and less, has existed for at least two decades. Innovations and evolutions in small, low-noise inertial angular motion sensor technology and advances in the applications of the global positioning system have converged to allow improvement in acquisition, tracking and pointing solutions for a wide variety of payloads. We are developing a small, inexpensive, and high-performance inertial attitude reference system that uses our innovative magnetohydrodynamic angular rate sensor technology.
Magnetohydrodynamic Shearing Waves
Johnson, B M
2006-01-01
I consider the nonaxisymmetric linear theory of an isothermal magnetohydrodynamic (MHD) shear flow. The analysis is performed in the shearing box, a local model appropriate for a thin disk geometry. Linear perturbations in this model can be decomposed in terms of shearing waves (shwaves), which appear spatially as plane waves in a frame comoving with the shear. The time dependence of these waves cannot in general be expressed in terms of a frequency eigenvalue as in a normal mode decomposition, and numerical integration of a set of first-order amplitude equations is required for a complete characterization of their behavior. Their generic time dependence, however, is oscillatory with slowly-varying frequency and amplitude, and one can construct accurate analytic solutions by applying the Wentzel-Kramers-Brillouin method to the full set of amplitude equations. For the bulk of wavenumber space, therefore, the shwaves are well-approximated as modes with time-dependent frequencies and amplitudes. The incompressiv...
Astrophysical Weighted Particle Magnetohydrodynamics
Gaburov, Evghenii
2010-01-01
This paper presents applications of weighted meshless scheme for conservation laws to the Euler equations and the equations of ideal magnetohydrodynamics. The divergence constraint of the latter is maintained to the truncation error by a new meshless divergence cleaning procedure. The physics of the interaction between the particles is described by an one-dimensional Riemann problem in a moving frame. As a result, necessary diffusion which is required to treat dissipative processes is added automatically. As a result, our scheme has no free parameters that controls the physics of inter-particle interaction, with the exception of the number of the interacting neighbours which control the resolution and accuracy. The resulting equations have the form similar to SPH equations, and therefore existing SPH codes can be used to implement the weighed particle scheme. The scheme is validated in several hydrodynamic and MHD test cases. In particular, we demonstrate for the first time the ability of a meshless MHD schem...
Introduction to modern magnetohydrodynamics
Galtier, Sébastien
2016-01-01
Ninety-nine percent of ordinary matter in the Universe is in the form of ionized fluids, or plasmas. The study of the magnetic properties of such electrically conducting fluids, magnetohydrodynamics (MHD), has become a central theory in astrophysics, as well as in areas such as engineering and geophysics. This textbook offers a comprehensive introduction to MHD and its recent applications, in nature and in laboratory plasmas; from the machinery of the Sun and galaxies, to the cooling of nuclear reactors and the geodynamo. It exposes advanced undergraduate and graduate students to both classical and modern concepts, making them aware of current research and the ever-widening scope of MHD. Rigorous derivations within the text, supplemented by over 100 illustrations and followed by exercises and worked solutions at the end of each chapter, provide an engaging and practical introduction to the subject and an accessible route into this wide-ranging field.
The Formation of Relativistic Jets from Kerr Black Holes
Nishikawa, K.-I.; Richardson, G.; Preece, R.; Hardee, P.; Koide, S.; Shibata, K.; Kudoh, T.; Sol, H.; Fishman, G. J.
2003-01-01
We have performed the first fully three-dimensional general relativistic magnetohydrodynamics (GRMHD) simulation for Schwarzschild and Kerr black holes with a free falling corona and thin accretion disk. The initial simulation results with a Schwarzschild metric show that a jet is created as in the previous axisymmetric simulations with mirror symmetry at the equator. However, the time to form the jet is slightly longer than in the 2-D axisymmetric simulation. We expect that the dynamics of jet formation are modified due to the additional freedom in the azimuth dimension without axisymmetry with respect to the Z axis and reflection symmetry respect to the equatorial plane. The jet which is initially formed due to the twisted magnetic fields and shocks becomes a wind at the later time. The wind flows out with a much wider angle than the initial jet. The twisted magnetic fields at the earlier time were untwisted and less pinched. The accretion disk became thicker than the initial condition. Further simulations with initial perturbations will provide insights for accretion dynamics with instabilities such as magneto-rotational instability (MRI) and accretion-eject instability (AEI). These instabilities may contribute to variabilities observed in microquasars and AGN jets.
Three-dimensional fast magnetic reconnection driven by relativistic ultraintense femtosecond lasers.
Ping, Y L; Zhong, J Y; Sheng, Z M; Wang, X G; Liu, B; Li, Y T; Yan, X Q; He, X T; Zhang, J; Zhao, G
2014-03-01
Three-dimensional fast magnetic reconnection driven by two ultraintense femtosecond laser pulses is investigated by relativistic particle-in-cell simulation, where the two paralleled incident laser beams are shot into a near-critical plasma layer to form a magnetic reconnection configuration in self-generated magnetic fields. A reconnection X point and out-of-plane quadrupole field structures associated with magnetic reconnection are formed. The reconnection rate is found to be faster than that found in previous two-dimensional Hall magnetohydrodynamic simulations and electrostatic turbulence contribution to the reconnection electric field plays an essential role. Both in-plane and out-of-plane electron and ion accelerations up to a few MeV due to the magnetic reconnection process are also obtained.
Luciano, Rezzolla
2013-01-01
Relativistic hydrodynamics is a very successful theoretical framework to describe the dynamics of matter from scales as small as those of colliding elementary particles, up to the largest scales in the universe. This book provides an up-to-date, lively, and approachable introduction to the mathematical formalism, numerical techniques, and applications of relativistic hydrodynamics. The topic is typically covered either by very formal or by very phenomenological books, but is instead presented here in a form that will be appreciated both by students and researchers in the field. The topics covered in the book are the results of work carried out over the last 40 years, which can be found in rather technical research articles with dissimilar notations and styles. The book is not just a collection of scattered information, but a well-organized description of relativistic hydrodynamics, from the basic principles of statistical kinetic theory, down to the technical aspects of numerical methods devised for the solut...
Review of magnetohydrodynamic pump applications
Al-Habahbeh, O.M; Al-Saqqa, M; Safi, M; Abo Khater, T
2016-01-01
Magneto-hydrodynamic (MHD) principle is an important interdisciplinary field. One of the most important applications of this effect is pumping of materials that are hard to pump using conventional pumps...
Fast lattice Boltzmann solver for relativistic hydrodynamics.
Mendoza, M; Boghosian, B M; Herrmann, H J; Succi, S
2010-07-01
A lattice Boltzmann formulation for relativistic fluids is presented and numerically validated through quantitative comparison with recent hydrodynamic simulations of relativistic fluids. In order to illustrate its capability to handle complex geometries, the scheme is also applied to the case of a three-dimensional relativistic shock wave, generated by a supernova explosion, impacting on a massive interstellar cloud. This formulation opens up the possibility of exporting the proven advantages of lattice Boltzmann methods, namely, computational efficiency and easy handling of complex geometries, to the context of (mildly) relativistic fluid dynamics at large, from quark-gluon plasmas up to supernovae with relativistic outflows.
A new lattice Boltzmann model for incompressible magnetohydrodynamics
Chen Xing-Wang; Shi Bao-Chang
2005-01-01
Most of the existing lattice Boltzmann magnetohydrodynamics (MHD) models can be viewed as compressible schemes to simulate incompressible MHD flows. The compressible effect might lead to some undesired errors in numerical simulations. In this paper a new incompressible lattice Boltzmann MHD model without compressible effect is presented for simulating incompressible MHD flows. Numerical simulations of the Hartmann flow are performed. We do numerous tests and make comparison with Dellar's model in detail. The numerical results are in good agreement with the analytical error.
Fluid-magnetic helicity in axisymmetric stationary relativistic magnetohydrodynamics
Prasad, G.
2017-10-01
The present work is intended to gain a fruitful insight into the understanding of the formations of magneto-vortex configurations and their role in the physical processes of mutual exchange of energies associated with fluid's motion and the magnetic fields in an axisymmetric stationary hydromagnetic system subject to strong gravitational field (e.g., neutron star/magnetar). It is found that the vorticity flux vector field associated with vorticity 2-form is a linear combination of fluid's vorticity vector and of magnetic vorticity vector. The vorticity flux vector obeys Helmholtz's flux conservation. The energy equation associated with the vorticity flux vector field is deduced. It is shown that the mechanical rotation of vorticity flux surfaces contributes to the formation of vorticity flux vector field. The dynamo action for the generation of toroidal components of vorticity flux vector field is described in the presence of meridional circulations. It is shown that the stretching of twisting magnetic lines due to differential rotation leads to the breakdown of gravitational isorotation in the absence of meridional circulations. An explicit expression consists of rotation of vorticity flux surface, energy and angular momentum per baryon for the fluid-magnetic helicity current vector is obtained. The conservation of fluid-magnetic helicity is demonstrated. It is found that the fluid-magnetic helicity displays the energy spectrum arising due to the interaction between the mechanical rotation of vorticity flux surfaces and the fluid's motion obeying Euler's equations. The dissipation of a linear combination of modified fluid helicity and magnetic twist is shown to occur due to coupled effect of frame dragging and meridional circulation. It is found that the growing twist of magnetic lines causes the dissipation of modified fluid helicity in the absence of meridional circulations.
BOOK REVIEW: Nonlinear Magnetohydrodynamics
Shafranov, V.
1998-08-01
Nonlinear magnetohydrodynamics by Dieter Biskamp is a thorough introduction to the physics of the most impressive non-linear phenomena that occur in conducting magnetoplasmas. The basic systems, in which non-trivial dynamic processes are observed, accompanied by changes of geometry of the magnetic field and the effects of energy transformation (magnetic energy into kinetic energy or the opposite effect in magnetic dynamos), are the plasma magnetic confinement systems for nuclear fusion and space plasmas, mainly the solar plasma. A significant number of the examples of the dynamic processes considered are taken from laboratory plasmas, for which an experimental check of the theory is possible. Therefore, though the book is intended for researchers and students interested in both laboratory, including nuclear fusion, and astrophysical plasmas, it is most probably closer to the first category of reader. In the Introduction the author notes that unlike the hydrodynamics of non-conducting fluids, where the phenomena caused by rapid fluid motions are the most interesting, for plasmas in a strong magnetic field the quasi-static configurations inside which the local dynamic processes occur are often the most important. Therefore, the reader will also find in this book rather traditional material on the theory of plasma equilibrium and stability in magnetic fields. In addition, it is notable that, as opposed to a linear theory, the non-linear theory, as a rule, cannot give quite definite explanations or predictions of phenomena, and consequently there are in the book many results obtained by consideration of numerical models with the use of supercomputers. The treatment of non-linear dynamics is preceded by Chapters 2 to 4, in which the basics of MHD theory are presented with an emphasis on the role of integral invariants of the magnetic helicity type, a derivation of the reduced MHD equations is given, together with examples of the exact solutions of the equilibrium
Haba, Z
2009-02-01
We discuss relativistic diffusion in proper time in the approach of Schay (Ph.D. thesis, Princeton University, Princeton, NJ, 1961) and Dudley [Ark. Mat. 6, 241 (1965)]. We derive (Langevin) stochastic differential equations in various coordinates. We show that in some coordinates the stochastic differential equations become linear. We obtain momentum probability distribution in an explicit form. We discuss a relativistic particle diffusing in an external electromagnetic field. We solve the Langevin equations in the case of parallel electric and magnetic fields. We derive a kinetic equation for the evolution of the probability distribution. We discuss drag terms leading to an equilibrium distribution. The relativistic analog of the Ornstein-Uhlenbeck process is not unique. We show that if the drag comes from a diffusion approximation to the master equation then its form is strongly restricted. The drag leading to the Tsallis equilibrium distribution satisfies this restriction whereas the one of the Jüttner distribution does not. We show that any function of the relativistic energy can be the equilibrium distribution for a particle in a static electric field. A preliminary study of the time evolution with friction is presented. It is shown that the problem is equivalent to quantum mechanics of a particle moving on a hyperboloid with a potential determined by the drag. A relation to diffusions appearing in heavy ion collisions is briefly discussed.
Sahoo, Raghunath
2016-01-01
This lecture note covers Relativistic Kinematics, which is very useful for the beginners in the field of high-energy physics. A very practical approach has been taken, which answers "why and how" of the kinematics useful for students working in the related areas.
Magnetohydrodynamic Augmented Propulsion Experiment
Litchford, Ron J.; Cole, John; Lineberry, John; Chapman, Jim; Schmidt, Harold; Cook, Stephen (Technical Monitor)
2002-01-01
A fundamental obstacle to routine space access is the specific energy limitations associated with chemical fuels. In the case of vertical take-off, the high thrust needed for vertical liftoff and acceleration to orbit translates into power levels in the 10 GW range. Furthermore, useful payload mass fractions are possible only if the exhaust particle energy (i.e., exhaust velocity) is much greater than that available with traditional chemical propulsion. The electronic binding energy released by the best chemical reactions (e.g., LOX/LH2 for example, is less than 2 eV per product molecule (approx. 1.8 eV per H2O molecule), which translates into particle velocities less than 5 km/s. Useful payload fractions, however, will require exhaust velocities exceeding 15 km/s (i.e., particle energies greater than 20 eV). As an added challenge, the envisioned hypothetical RLV (reusable launch vehicle) should accomplish these amazing performance feats while providing relatively low acceleration levels to orbit (2-3g maximum). From such fundamental considerations, it is painfully obvious that planned and current RLV solutions based on chemical fuels alone represent only a temporary solution and can only result in minor gains, at best. What is truly needed is a revolutionary approach that will dramatically reduce the amount of fuel and size of the launch vehicle. This implies the need for new compact high-power energy sources as well as advanced accelerator technologies for increasing engine exhaust velocity. Electromagnetic acceleration techniques are of immense interest since they can be used to circumvent the thermal limits associated with conventional propulsion systems. This paper describes the Magnetohydrodynamic Augmented Propulsion Experiment (MAPX) being undertaken at NASA Marshall Space Flight Center (MSFC). In this experiment, a 1-MW arc heater is being used as a feeder for a 1-MW magnetohydrodynamic (MHD) accelerator. The purpose of the experiment is to demonstrate
Intrinsic rotation of toroidally confined magnetohydrodynamics.
Morales, Jorge A; Bos, Wouter J T; Schneider, Kai; Montgomery, David C
2012-10-26
The spatiotemporal self-organization of viscoresistive magnetohydrodynamics in a toroidal geometry is studied. Curl-free toroidal magnetic and electric fields are imposed. It is observed in our simulations that a flow is generated, which evolves from dominantly poloidal to toroidal when the Lundquist numbers are increased. It is shown that this toroidal organization of the flow is consistent with the tendency of the velocity field to align with the magnetic field. Up-down asymmetry of the geometry causes the generation of a nonzero toroidal angular momentum.
MHD数值模拟中清除伪磁场散度方法%Spurious Magnetic Field Divergence Cleaning in Magnetohydrodynamic Simulation
田正雨; 张康平; 丁国昊; 李桦
2009-01-01
针对全MHD(Magnetohydrodynamics)数值模拟中存在伪磁场散度的问题,发展了如下计算方法:基本格式基于八波对称形式方程组,补充相关源项以保持方程组守恒性,并采用投影方法辅助清除伪散度.投影方法中,基于有限体积方法求解三维Poisson方程.算例显示,对于光滑解析磁场,伪磁场散度得到有效清除;对于带激波高超声速MHD流动,全局投影下自由来流区域误差增大.提出一种局部投影方法,在高磁场散度区域进行投影.结果表明,最终流场收敛稳定,高磁场散度得到有效清除,而低散度区域散度不受影响.
Observational Signatures of Tilted Black Hole Accretion Disks from Simulations
Dexter, Jason
2011-01-01
Geometrically thick accretion flows may be present in black hole X-ray binaries observed in the low/hard state and in low-luminosity active galactic nuclei. Unlike in geometrically thin disks, the angular momentum axis in these sources is not expected to align with the black hole spin axis. We compute images from three-dimensional general relativistic magnetohydrodynamic simulations of misaligned (tilted) accretion flows using relativistic radiative transfer, and compare the estimated locations of the radiation edge with expectations from their aligned (untilted) counterparts. The radiation edge in the tilted simulations is independent of black hole spin for a tilt of 15 degrees, in stark contrast to the results for untilted simulations, which agree with the monotonic dependence on spin expected from thin accretion disk theory. Synthetic emission line profiles from the tilted simulations depend strongly on the observer's azimuth, and exhibit unique features such as broad "blue wings." Coupled with precession,...
Generalized reduced magnetohydrodynamic equations
Kruger, S.E.
1999-02-01
A new derivation of reduced magnetohydrodynamic (MHD) equations is presented. A multiple-time-scale expansion is employed. It has the advantage of clearly separating the three time scales of the problem associated with (1) MHD equilibrium, (2) fluctuations whose wave vector is aligned perpendicular to the magnetic field, and (3) those aligned parallel to the magnetic field. The derivation is carried out without relying on a large aspect ratio assumption; therefore this model can be applied to any general configuration. By accounting for the MHD equilibrium and constraints to eliminate the fast perpendicular waves, equations are derived to evolve scalar potential quantities on a time scale associated with the parallel wave vector (shear-Alfven wave time scale), which is the time scale of interest for MHD instability studies. Careful attention is given in the derivation to satisfy energy conservation and to have manifestly divergence-free magnetic fields to all orders in the expansion parameter. Additionally, neoclassical closures and equilibrium shear flow effects are easily accounted for in this model. Equations for the inner resistive layer are derived which reproduce the linear ideal and resistive stability criterion of Glasser, Greene, and Johnson. The equations have been programmed into a spectral initial value code and run with shear flow that is consistent with the equilibrium input into the code. Linear results of tearing modes with shear flow are presented which differentiate the effects of shear flow gradients in the layer with the effects of the shear flow decoupling multiple harmonics.
Amano, Takanobu
2016-11-01
A new multidimensional simulation code for relativistic two-fluid electrodynamics (RTFED) is described. The basic equations consist of the full set of Maxwell’s equations coupled with relativistic hydrodynamic equations for separate two charged fluids, representing the dynamics of either an electron-positron or an electron-proton plasma. It can be recognized as an extension of conventional relativistic magnetohydrodynamics (RMHD). Finite resistivity may be introduced as a friction between the two species, which reduces to resistive RMHD in the long wavelength limit without suffering from a singularity at infinite conductivity. A numerical scheme based on HLL (Harten-Lax-Van Leer) Riemann solver is proposed that exactly preserves the two divergence constraints for Maxwell’s equations simultaneously. Several benchmark problems demonstrate that it is capable of describing RMHD shocks/discontinuities at long wavelength limit, as well as dispersive characteristics due to the two-fluid effect appearing at small scales. This shows that the RTFED model is a promising tool for high energy astrophysics application.
Relativistic Hydrodynamics with Wavelets
DeBuhr, Jackson; Anderson, Matthew; Neilsen, David; Hirschmann, Eric W
2015-01-01
Methods to solve the relativistic hydrodynamic equations are a key computational kernel in a large number of astrophysics simulations and are crucial to understanding the electromagnetic signals that originate from the merger of astrophysical compact objects. Because of the many physical length scales present when simulating such mergers, these methods must be highly adaptive and capable of automatically resolving numerous localized features and instabilities that emerge throughout the computational domain across many temporal scales. While this has been historically accomplished with adaptive mesh refinement (AMR) based methods, alternatives based on wavelet bases and the wavelet transformation have recently achieved significant success in adaptive representation for advanced engineering applications. This work presents a new method for the integration of the relativistic hydrodynamic equations using iterated interpolating wavelets and introduces a highly adaptive implementation for multidimensional simulati...
Shprits, Yuri Y.; Elkington, Scot R.; Meredith, Nigel P.; Subbotin, Dmitriy A.
2008-11-01
In this paper, we focus on the modeling of radial transport in the Earth's outer radiation belt. A historical overview of the first observations of the radiation belts is presented, followed by a brief description of radial diffusion. We describe how resonant interactions with poloidal and toroidal components of the ULF waves can change the electron's energy and provide radial displacements. We also present radial diffusion and guiding center simulations that show the importance of radial transport in redistributing relativistic electron fluxes and also in accelerating and decelerating radiation belt electrons. We conclude by presenting guiding center simulations of the coupled particle tracing and magnetohydrodynamic (MHD) codes and by discussing the origin of relativistic electrons at geosynchronous orbit. Local acceleration and losses and 3D simulations of the dynamics of the radiation belt fluxes are discussed in the companion paper [Shprits, Y.Y., Subbotin, D.A., Meredith, N.P., Elkington, S.R., 2008. Review of modeling of losses and sources of relativistic electrons in the outer radiation belt II: Local acceleration and loss. Journal of Atmospheric and Solar-Terrestrial Physics, this issue. doi:10.1016/j.jastp.2008.06.014].
Pétri, J
2014-01-01
Pulsars are believed to loose their rotational kinetic energy primarily by a large amplitude low frequency electromagnetic wave which is eventually converted into particle creation, acceleration and followed by a broad band radiation spectrum. To date, there exist no detailed calculation of the exact spin-down luminosity with respect to the neutron star magnetic moment and spin frequency, including general-relativistic effects. Estimates are usually given according to the flat spacetime magnetodipole formula. The present paper pursue our effort to look for accurate solutions of the general-relativistic electromagnetic field around a slowly rotating magnetized neutron star. In a previous work, we already found approximate stationary solutions to this problem. Here we address again this problem but using a more general approach. We indeed solve the full set of time-dependent Maxwell equations in a curved vacuum space-time following the 3+1 formalism. The numerical code is based on our pseudo-spectral method exp...
Relativistic Cyclotron Instability in Anisotropic Plasmas
López, Rodrigo A.; Moya, Pablo S.; Navarro, Roberto E.; Araneda, Jaime A.; Muñoz, Víctor; Viñas, Adolfo F.; Alejandro Valdivia, J.
2016-11-01
A sufficiently large temperature anisotropy can sometimes drive various types of electromagnetic plasma micro-instabilities, which can play an important role in the dynamics of relativistic pair plasmas in space, astrophysics, and laboratory environments. Here, we provide a detailed description of the cyclotron instability of parallel propagating electromagnetic waves in relativistic pair plasmas on the basis of a relativistic anisotropic distribution function. Using plasma kinetic theory and particle-in-cell simulations, we study the influence of the relativistic temperature and the temperature anisotropy on the collective and noncollective modes of these plasmas. Growth rates and dispersion curves from the linear theory show a good agreement with simulations results.
Hakim, Rémi
1994-01-01
Il existe à l'heure actuelle un certain nombre de théories relativistes de la gravitation compatibles avec l'expérience et l'observation. Toutefois, la relativité générale d'Einstein fut historiquement la première à fournir des résultats théoriques corrects en accord précis avec les faits.
Jones, Bernard J. T.; Markovic, Dragoljub
1997-06-01
Preface; Prologue: Conference overview Bernard Carr; Part I. The Universe At Large and Very Large Redshifts: 2. The size and age of the Universe Gustav A. Tammann; 3. Active galaxies at large redshifts Malcolm S. Longair; 4. Observational cosmology with the cosmic microwave background George F. Smoot; 5. Future prospects in measuring the CMB power spectrum Philip M. Lubin; 6. Inflationary cosmology Michael S. Turner; 7. The signature of the Universe Bernard J. T. Jones; 8. Theory of large-scale structure Sergei F. Shandarin; 9. The origin of matter in the universe Lev A. Kofman; 10. New guises for cold-dark matter suspects Edward W. Kolb; Part II. Physics and Astrophysics Of Relativistic Compact Objects: 11. On the unification of gravitational and inertial forces Donald Lynden-Bell; 12. Internal structure of astrophysical black holes Werner Israel; 13. Black hole entropy: external facade and internal reality Valery Frolov; 14. Accretion disks around black holes Marek A. Abramowicz; 15. Black hole X-ray transients J. Craig Wheeler; 16. X-rays and gamma rays from active galactic nuclei Roland Svensson; 17. Gamma-ray bursts: a challenge to relativistic astrophysics Martin Rees; 18. Probing black holes and other exotic objects with gravitational waves Kip Thorne; Epilogue: the past and future of relativistic astrophysics Igor D. Novikov; I. D. Novikov's scientific papers and books.
Magnetohydrodynamic Modeling of the Jovian Magnetosphere
Walker, Raymond
2005-01-01
Under this grant we have undertaken a series of magnetohydrodynamic (MHD) simulation and data analysis studies to help better understand the configuration and dynamics of Jupiter's magnetosphere. We approached our studies of Jupiter's magnetosphere in two ways. First we carried out a number of studies using our existing MHD code. We carried out simulation studies of Jupiter s magnetospheric boundaries and their dependence on solar wind parameters, we studied the current systems which give the Jovian magnetosphere its unique configuration and we modeled the dynamics of Jupiter s magnetosphere following a northward turning of the interplanetary magnetic field (IMF). Second we worked to develop a new simulation code for studies of outer planet magnetospheres.
GRay: a Massively Parallel GPU-Based Code for Ray Tracing in Relativistic Spacetimes
Chan, Chi-kwan; Ozel, Feryal
2013-01-01
We introduce GRay, a massively parallel integrator designed to trace the trajectories of billions of photons in a curved spacetime. This GPU-based integrator employs the stream processing paradigm, is implemented in CUDA C/C++, and runs on nVidia graphics cards. The peak performance of GRay using single precision floating-point arithmetic on a single GPU exceeds 300 GFLOP (or 1 nanosecond per photon per time step). For a realistic problem, where the peak performance cannot be reached, GRay is two orders of magnitude faster than existing CPU-based ray tracing codes. This performance enhancement allows more effective searches of large parameter spaces when comparing theoretical predictions of images, spectra, and lightcurves from the vicinities of compact objects to observations. GRay can also perform on-the-fly ray tracing within general relativistic magnetohydrodynamic algorithms that simulate accretion flows around compact objects. Making use of this algorithm, we calculate the properties of the shadows of K...
The impact of kinetic effects on the properties of relativistic electron-positron shocks
Stockem, A; Fonseca, R A; Silva, L O
2012-01-01
We assess the impact of non-thermally shock-accelerated particles on the magnetohydrodynamic (MHD) jump conditions of relativistic shocks. The adiabatic constant is calculated directly from first principle particle-in-cell simulation data, enabling a semi-kinetic approach to improve the standard fluid model and allowing for an identification of the key parameters that define the shock structure. We find that the evolving upstream parameters have a stronger impact than the corrections due to non-thermal particles. We find that the decrease of the upstream bulk speed yields deviations from the standard MHD model up to 10%. Furthermore, we obtain a quantitative definition of the shock transition region from our analysis. For Weibel-mediated shocks the inclusion of a magnetic field in the MHD conservation equations is addressed for the first time.
Relativistic MHD in dynamical spacetimes: Improved EM gauge condition for AMR grids
Etienne, Zachariah B; Liu, Yuk Tung; Shapiro, Stuart L
2011-01-01
We recently developed a new general relativistic magnetohydrodynamic code with adaptive mesh refinement that evolves the electromagnetic (EM) vector potential (A) instead of the magnetic fields directly. Evolving A enables one to use any interpolation scheme on refinement level boundaries and still guarantee that the magnetic field remains divergenceless. As in classical EM, a gauge choice must be made when evolving A, and we chose a straightforward "algebraic" gauge condition to simplify the A evolution equation. However, magnetized black hole-neutron star (BHNS) simulations in this gauge exhibit unphysical behavior, including the spurious appearance of strong magnetic fields on refinement level boundaries. This spurious behavior is exacerbated when matter crosses refinement boundaries during tidal disruption of the NS. Applying Kreiss-Oliger dissipation to the evolution of the magnetic vector potential A slightly weakens this spurious magnetic effect, but with undesired consequences. We demonstrate via an e...
MAGNETOHYDRODYNAMIC EQUATIONS (MHD GENERATION CODE
Francisco Frutos Alfaro
2017-04-01
Full Text Available A program to generate codes in Fortran and C of the full magnetohydrodynamic equations is shown. The program uses the free computer algebra system software REDUCE. This software has a package called EXCALC, which is an exterior calculus program. The advantage of this program is that it can be modified to include another complex metric or spacetime. The output of this program is modified by means of a LINUX script which creates a new REDUCE program to manipulate the magnetohydrodynamic equations to obtain a code that can be used as a seed for a magnetohydrodynamic code for numerical applications. As an example, we present part of the output of our programs for Cartesian coordinates and how to do the discretization.
Particle energisation in a collapsing magnetic trap model: the relativistic regime
Oskoui, Solmaz Eradat
2014-01-01
In solar flares, a large number of charged particles is accelerated to high energies. By which physical processes this is achieved is one of the main open problems in solar physics. It has been suggested that during a flare, regions of the rapidly relaxing magnetic field can form a collapsing magnetic trap (CMT) and that this trap may contribute to particle energisation.} In this Research Note we focus on a particular analytical CMT model based on kinematic magnetohydrodynamics. Previous investigations of particle acceleration for this CMT model focused on the non-relativistic energy regime. It is the specific aim of this Research Note to extend the previous work to relativistic particle energies. Particle orbits were calculated numerically using the relativistic guiding centre equations. We also calculated particle orbits using the non-relativistic guiding centre equations for comparison. For mildly relativistic energies the relativistic and non-relativistic particle orbits mainly agree well, but clear devia...
Novak, Jerome; Dimmelmeier, Harrald; Font-Roda, Jose A.
2004-12-01
We present a new three-dimensional general relativistic hydrodynamics code which can be applied to study stellar core collapses and the resulting gravitational radiation. This code uses two different numerical techniques to solve partial differential equations arising in the model: high-resolution shock capturing (HRSC) schemes for the evolution of hydrodynamic quantities and spectral methods for the solution of Einstein equations. The equations are written and solved using spherical polar coordinates, best suited to stellar topology. Einstein equations are formulated within the 3+1 formalism and conformal flat condition (CFC) for the 3-metric and gravitational radiation is extracted using Newtonian quadrupole formulation.
Badarin, A. A.; Kurkin, S. A. [Saratov State University (Russian Federation); Koronovskii, A. A. [Yuri Gagarin State Technical University (Russian Federation); Rak, A. O. [Belorussian State University of Informatics and Radioelectronics (Belarus); Hramov, A. E., E-mail: hramovae@gmail.com [Saratov State University (Russian Federation)
2017-03-15
The development and interaction of Bursian and diocotron instabilities in an annular relativistic electron beam propagating in a cylindrical drift chamber are investigated analytically and numerically as functions of the beam wall thickness and the magnitude of the external uniform magnetic field. It is found that the interaction of instabilities results in the formation of a virtual cathode with a complicated rotating helical structure and several reflection regions (electron bunches) in the azimuthal direction. It is shown that the number of electron bunches in the azimuthal direction increases with decreasing beam wall thickness and depends in a complicated manner on the magnitude of the external magnetic field.
English, William; Krause, Martin G H
2016-01-01
We present results from two suites of simulations of powerful radio galaxies in poor cluster environments, with a focus on the formation and evolution of the radio lobes. One suite of models uses relativistic hydrodynamics and the other relativistic magnetohydrodynamics; both are set up to cover a range of jet powers and velocities. The dynamics of the lobes are shown to be in good agreement with analytical models and with previous numerical models, confirming in the relativistic regime that the observed widths of radio lobes may be explained if they are driven by very light jets. The ratio of energy stored in the radio lobes to that put into the intracluster gas is seen to be the same regardless of jet power, jet velocity or simulation type, suggesting that we have a robust understanding of the work done on the ambient gas by this type of radio source. For the most powerful jets we at times find magnetic field amplification by up to a factor of two in energy, but mostly the magnetic energy in the lobes is co...
Probing acceleration and turbulence at relativistic shocks in blazar jets
Baring, Matthew G.; Böttcher, Markus; Summerlin, Errol J.
2017-02-01
Diffusive shock acceleration (DSA) at relativistic shocks is widely thought to be an important acceleration mechanism in various astrophysical jet sources, including radio-loud active galactic nuclei such as blazars. Such acceleration can produce the non-thermal particles that emit the broad-band continuum radiation that is detected from extragalactic jets. An important recent development for blazar science is the ability of Fermi-Large Area Telescope spectroscopy to pin down the shape of the distribution of the underlying non-thermal particle population. This paper highlights how multiwavelength spectra spanning optical to X-ray to gamma-ray bands can be used to probe diffusive acceleration in relativistic, oblique, magnetohydrodynamic (MHD) shocks in blazar jets. Diagnostics on the MHD turbulence near such shocks are obtained using thermal and non-thermal particle distributions resulting from detailed Monte Carlo simulations of DSA. These probes are afforded by the characteristic property that the synchrotron νFν peak energy does not appear in the gamma-ray band above 100 MeV. We investigate self-consistently the radiative synchrotron and inverse Compton signatures of the simulated particle distributions. Important constraints on the diffusive mean free paths of electrons, and the level of electromagnetic field turbulence are identified for three different case study blazars, Mrk 501, BL Lacertae and AO 0235+164. The X-ray excess of AO 0235+164 in a flare state can be modelled as the signature of bulk Compton scattering of external radiation fields, thereby tightly constraining the energy-dependence of the diffusion coefficient for electrons. The concomitant interpretations that turbulence levels decline with remoteness from jet shocks, and the probable significant role for non-gyroresonant diffusion, are posited.
Spectral analysis in magnetohydrodynamic equilibria
Nunez, Manuel; Galindo, Felix [Departamento de Analisis Matematico, Universidad de Valladolid, Valladolid (Spain)
1998-12-11
It has been universally assumed that the spectrum of the magnetohydrodynamics equations, linearized around an equilibrium state, provides enough information on the short-term evolution of the plasma to study certain stability properties. We show that this is true if one takes into account viscous and resistive effects and the equilibrium satisfies certain regularity conditions. (author)
MAGNETOHYDRODYNAMIC MODELING FOR FUSION PLASMAS
Keppens, R.; Goedbloed, J. P.; Blokland, J. W. S.
2010-01-01
The magnetohydrodynamic model for fusion plasma dynamics governs the large-scale equilibrium properties, and sets the most stringent constraints on the parameter space accessible without violent disruptions. In conjunction with linear stability analysis in the complex tokamak geometry, the MHD parad
Magnetohydrodynamic Origin of Jets from Accretion Disks
Lovelace, R V E; Koldoba, A V
1999-01-01
A review is made of recent magnetohydrodynamic (MHD) theory and simulations of origin of jets from accretion disks. Many compact astrophysical objects emit powerful, highly-collimated, oppositely directed jets. Included are the extra galactic radio jets of active galaxies and quasars, and old compact stars in binaries, and emission line jets in young stellar objects. It is widely thought that these different jets arise from rotating, conducting accretion disks threaded by an ordered magnetic field. The twisting of the magnetic field by the rotation of the disk drives the jets by magnetically extracting matter, angular momentum, and energy from the accretion disk. Two main regimes have been discussed theoretically, hydromagnetic winds which have a significant mass flux, and Poynting flux jets where the mass flux is negligible. Over the past several years, exciting new developments on models of jets have come from progress in MHD simulations which now allow the study of the origin - the acceleration and collima...
Relativistic and non-relativistic geodesic equations
Giambo' , R.; Mangiarotti, L.; Sardanashvily, G. [Camerino Univ., Camerino, MC (Italy). Dipt. di Matematica e Fisica
1999-07-01
It is shown that any dynamic equation on a configuration space of non-relativistic time-dependent mechanics is associated with connections on its tangent bundle. As a consequence, every non-relativistic dynamic equation can be seen as a geodesic equation with respect to a (non-linear) connection on this tangent bundle. Using this fact, the relationships between relativistic and non-relativistic equations of motion is studied.
Wallin, Erik; Gonoskov, Arkady; Marklund, Mattias
2015-03-01
We model the emission of high energy photons due to relativistic charged particle motion in intense laser-plasma interactions. This is done within a particle-in-cell code, for which high frequency radiation normally cannot be resolved due to finite time steps and grid size. A simple expression for the synchrotron radiation spectra is used together with a Monte-Carlo method for the emittance. We extend previous work by allowing for arbitrary fields, considering the particles to be in instantaneous circular motion due to an effective magnetic field. Furthermore, we implement noise reduction techniques and present validity estimates of the method. Finally, we perform a rigorous comparison to the mechanism of radiation reaction, and find the emitted energy to be in excellent agreement with the losses calculated using radiation reaction.
Li, Xiaoze; Ye, Hu; Zhang, Yuchuan; Song, Wei; Su, Jiancang; Zhang, Ligang; Tan, Weibing; Hu, Xianggang; Zhu, Xiaoxin; Shen, Zhiyuan; Zhang, Min [Science and Technology on High Power Microwave Laboratory, Northwest Institute of Nuclear Technology, Xi' an 710024 (China)
2016-05-15
A high power capacity relativistic backward wave oscillator with an electron collection cavity (ECC) placed at the downstream of the slow wave structure (SWS) is presented. The breakdown threshold is increased, and the density of seed electron is suppressed by preventing the secondary electron, plasma, and powder generated from the bombardment of spent electron beam on the surface of the collector drifting to the extractor and beam-wave interaction region. The maximum longitudinal electric field in the device is reduced through extension of the span between electron beam and slow wave structure and weakening the Cerenkov radiation. The conversion efficiency reaches up to 52% owing to enhanced transit time radiation taking place at the entrance of the ECC. The maximum longitudinal electric field is 1.1 MV/cm on the surface of SWSs when the output power is 7.3 GW and the power capacity improves significantly.
Cotner, Eric
2016-01-01
Scalar particles are a common prediction of many beyond the Standard Model theories. If they are light and cold enough, there is a possibility they may form Bose-Einstein condensates, which will then become gravitationally bound. These boson stars are solitonic solutions to the Einstein-Klein-Gordon equations, but may be approximated in the non-relativistic regime with a coupled Schr\\"odinger-Poisson system. General properties of single soliton states are derived, including the possibility of quartic self-interactions. Binary collisions between two solitons are then studied, and the effects of different mass ratios, relative phases, self-couplings, and separation distances are characterized, leading to an easy conceptual understanding of how these parameters affect the collision outcome in terms of conservation of energy. Applications to dark matter are discussed.
HERO: A 3D General Relativistic Radiative Postprocessor for Accretion Discs around Black Holes
Zhu, Yucong; Sadowski, Aleksander; Psaltis, Dimitrios
2015-01-01
HERO (Hybrid Evaluator for Radiative Objects) is a 3D general relativistic radiative transfer code which has been tailored to the problem of analyzing radiation from simulations of relativistic accretion discs around black holes. HERO is designed to be used as a postprocessor. Given some fixed fluid structure for the disc (i.e. density and velocity as a function of position from a hydrodynamics or magnetohydrodynamics simulation), the code obtains a self-consistent solution for the radiation field and for the gas temperatures using the condition of radiative equilibrium. The novel aspect of HERO is that it combines two techniques: 1) a short characteristics (SC) solver that quickly converges to a self consistent disc temperature and radiation field, with 2) a long characteristics (LC) solver that provides a more accurate solution for the radiation near the photosphere and in the optically thin regions. By combining these two techniques, we gain both the computational speed of SC and the high accuracy of LC. W...
Narayan, Ramesh; Zhu, Yucong; Psaltis, Dimitrios; Saḑowski, Aleksander
2016-03-01
We describe Hybrid Evaluator for Radiative Objects Including Comptonization (HEROIC), an upgraded version of the relativistic radiative post-processor code HERO described in a previous paper, but which now Includes Comptonization. HEROIC models Comptonization via the Kompaneets equation, using a quadratic approximation for the source function in a short characteristics radiation solver. It employs a simple form of accelerated lambda iteration to handle regions of high scattering opacity. In addition to solving for the radiation field, HEROIC also solves for the gas temperature by applying the condition of radiative equilibrium. We present benchmarks and tests of the Comptonization module in HEROIC with simple 1D and 3D scattering problems. We also test the ability of the code to handle various relativistic effects using model atmospheres and accretion flows in a black hole space-time. We present two applications of HEROIC to general relativistic magnetohydrodynamics simulations of accretion discs. One application is to a thin accretion disc around a black hole. We find that the gas below the photosphere in the multidimensional HEROIC solution is nearly isothermal, quite different from previous solutions based on 1D plane parallel atmospheres. The second application is to a geometrically thick radiation-dominated accretion disc accreting at 11 times the Eddington rate. Here, the multidimensional HEROIC solution shows that, for observers who are on axis and look down the polar funnel, the isotropic equivalent luminosity could be more than 10 times the Eddington limit, even though the spectrum might still look thermal and show no signs of relativistic beaming.
Refining a relativistic, hydrodynamic solver: Admitting ultra-relativistic flows
Bernstein, J. P.; Hughes, P. A.
2009-09-01
We have undertaken the simulation of hydrodynamic flows with bulk Lorentz factors in the range 102-106. We discuss the application of an existing relativistic, hydrodynamic primitive variable recovery algorithm to a study of pulsar winds, and, in particular, the refinement made to admit such ultra-relativistic flows. We show that an iterative quartic root finder breaks down for Lorentz factors above 102 and employ an analytic root finder as a solution. We find that the former, which is known to be robust for Lorentz factors up to at least 50, offers a 24% speed advantage. We demonstrate the existence of a simple diagnostic allowing for a hybrid primitives recovery algorithm that includes an automatic, real-time toggle between the iterative and analytical methods. We further determine the accuracy of the iterative and hybrid algorithms for a comprehensive selection of input parameters and demonstrate the latter’s capability to elucidate the internal structure of ultra-relativistic plasmas. In particular, we discuss simulations showing that the interaction of a light, ultra-relativistic pulsar wind with a slow, dense ambient medium can give rise to asymmetry reminiscent of the Guitar nebula leading to the formation of a relativistic backflow harboring a series of internal shockwaves. The shockwaves provide thermalized energy that is available for the continued inflation of the PWN bubble. In turn, the bubble enhances the asymmetry, thereby providing positive feedback to the backflow.
Martínez-Sykora, Juan; De Pontieu, Bart; Carlsson, Mats; Hansteen, Viggo H.; Nóbrega-Siverio, Daniel; Gudiksen, Boris V.
2017-09-01
We investigate the effects of interactions between ions and neutrals on the chromosphere and overlying corona using 2.5D radiative MHD simulations with the Bifrost code. We have extended the code capabilities implementing ion–neutral interaction effects using the generalized Ohm’s law, i.e., we include the Hall term and the ambipolar diffusion (Pedersen dissipation) in the induction equation. Our models span from the upper convection zone to the corona, with the photosphere, chromosphere, and transition region partially ionized. Our simulations reveal that the interactions between ionized particles and neutral particles have important consequences for the magnetothermodynamics of these modeled layers: (1) ambipolar diffusion increases the temperature in the chromosphere; (2) sporadically the horizontal magnetic field in the photosphere is diffused into the chromosphere, due to the large ambipolar diffusion; (3) ambipolar diffusion concentrates electrical currents, leading to more violent jets and reconnection processes, resulting in (3a) the formation of longer and faster spicules, (3b) heating of plasma during the spicule evolution, and (3c) decoupling of the plasma and magnetic field in spicules. Our results indicate that ambipolar diffusion is a critical ingredient for understanding the magnetothermodynamic properties in the chromosphere and transition region. The numerical simulations have been made publicly available, similar to previous Bifrost simulations. This will allow the community to study realistic numerical simulations with a wider range of magnetic field configurations and physics modules than previously possible.
Leardini, Fabrice
2013-01-01
This manuscript presents a problem on special relativity theory (SRT) which embodies an apparent paradox relying on the concept of simultaneity. The problem is represented in the framework of Greek epic poetry and structured in a didactic way. Owing to the characteristic properties of Lorenz transformations, three events which are simultaneous in a given inertial reference system, occur at different times in the other two reference frames. In contrast to the famous twin paradox, in the present case there are three, not two, different inertial observers. This feature provides a better framework to expose some of the main characteristics of SRT, in particular, the concept of velocity and the relativistic rule of addition of velocities.
Magnetogenesis through Relativistic Velocity Shear
Miller, Evan
Magnetic fields at all scales are prevalent in our universe. However, current cosmological models predict that initially the universe was bereft of large-scale fields. Standard magnetohydrodynamics (MHD) does not permit magnetogenesis; in the MHD Faraday's law, the change in magnetic field B depends on B itself. Thus if B is initially zero, it will remain zero for all time. A more accurate physical model is needed to explain the origins of the galactic-scale magnetic fields observed today. In this thesis, I explore two velocity-driven mechanisms for magnetogenesis in 2-fluid plasma. The first is a novel kinematic 'battery' arising from convection of vorticity. A coupling between thermal and plasma oscillations, this non-relativistic mechanism can operate in flows that are incompressible, quasi-neutral and barotropic. The second mechanism results from inclusion of thermal effects in relativistic shear flow instabilities. In such flows, parallel perturbations are ubiquitously unstable at small scales, with growth rates of order with the plasma frequency over a defined range of parameter-space. Of these two processes, instabilities seem far more likely to account for galactic magnetic fields. Stable kinematic effects will, at best, be comparable to an ideal Biermann battery, which is suspected to be orders of magnitude too weak to produce the observed galactic fields. On the other hand, instabilities grow until saturation is reached, a topic that has yet to be explored in detail on cosmological scales. In addition to investigating these magnetogenesis sources, I derive a general dispersion relation for three dimensional, warm, two species plasma with discontinuous shear flow. The mathematics of relativistic plasma, sheared-flow instability and the Biermann battery are also discussed.
Variational Integrators for Reduced Magnetohydrodynamics
Kraus, Michael; Grasso, Daniela
2015-01-01
Reduced magnetohydrodynamics is a simplified set of magnetohydrodynamics equations with applications to both fusion and astrophysical plasmas, possessing a noncanonical Hamiltonian structure and consequently a number of conserved functionals. We propose a new discretisation strategy for these equations based on a discrete variational principle applied to a formal Lagrangian. The resulting integrator preserves important quantities like the total energy, magnetic helicity and cross helicity exactly (up to machine precision). As the integrator is free of numerical resistivity, spurious reconnection along current sheets is absent in the ideal case. If effects of electron inertia are added, reconnection of magnetic field lines is allowed, although the resulting model still possesses a noncanonical Hamiltonian structure. After reviewing the conservation laws of the model equations, the adopted variational principle with the related conservation laws are described both at the continuous and discrete level. We verify...
Dynamic multiscaling in magnetohydrodynamic turbulence
Ray, Samriddhi Sankar; Pandit, Rahul
2016-01-01
We present the first study of the multiscaling of time-dependent velocity and magnetic-field structure functions in homogeneous, isotropic magnetohydrodynamic (MHD) turbulence in three dimensions. We generalize the formalism that has been developed for analogous studies of time-dependent structure functions in fluid turbulence to MHD. By carrying out detailed numerical studies of such time-dependent structure functions in a shell model for three-dimensional MHD turbulence, we obtain both equal-time and dynamic scaling exponents.
Dynamic multiscaling in magnetohydrodynamic turbulence.
Ray, Samriddhi Sankar; Sahoo, Ganapati; Pandit, Rahul
2016-11-01
We present a study of the multiscaling of time-dependent velocity and magnetic-field structure functions in homogeneous, isotropic magnetohydrodynamic (MHD) turbulence in three dimensions. We generalize the formalism that has been developed for analogous studies of time-dependent structure functions in fluid turbulence to MHD. By carrying out detailed numerical studies of such time-dependent structure functions in a shell model for three-dimensional MHD turbulence, we obtain both equal-time and dynamic scaling exponents.
Classes of hydrodynamic and magnetohydrodynamic turbulent decay
Brandenburg, Axel
2016-01-01
We perform numerical simulations of decaying hydrodynamic and magnetohydrodynamic turbulence. We classify our time-dependent solutions by their evolutionary tracks in parametric plots between instantaneous scaling exponents. We find distinct classes of solutions evolving along specific trajectories toward points on a line of self-similar solutions. These trajectories are determined by the underlying physics governing individual cases, and not by the initial conditions, as is widely assumed. In the helical case, even for a scale-invariant initial spectrum (inversely proportional to wavenumber k), the solution evolves along the same trajectory as for a Batchelor spectrum (proportional to k^4). All of our self-similar solutions have an intrinsic subinertial range close to k^4$.
Acceleration of particles in imbalanced magnetohydrodynamic turbulence.
Teaca, Bogdan; Weidl, Martin S; Jenko, Frank; Schlickeiser, Reinhard
2014-08-01
The present work investigates the acceleration of test particles, relevant to the solar-wind problem, in balanced and imbalanced magnetohydrodynamic turbulence (terms referring here to turbulent states possessing zero and nonzero cross helicity, respectively). These turbulent states, obtained numerically by prescribing the injection rates for the ideal invariants, are evolved dynamically with the particles. While the energy spectrum for balanced and imbalanced states is known, the impact made on particle heating is a matter of debate, with different considerations giving different results. By performing direct numerical simulations, resonant and nonresonant particle accelerations are automatically considered and the correct turbulent phases are taken into account. For imbalanced turbulence, it is found that the acceleration rate of charged particles is reduced and the heating rate diminished. This behavior is independent of the particle gyroradius, although particles that have a stronger adiabatic motion (smaller gyroradius) tend to experience a larger heating.
Magnetohydrodynamic stability of broad line region clouds
Krause, Martin; Burkert, Andreas
2012-01-01
Hydrodynamic stability has been a longstanding issue for the cloud model of the broad line region in active galactic nuclei. We argue that the clouds may be gravitationally bound to the supermassive black hole. If true, stabilisation by thermal pressure alone becomes even more difficult. We further argue that if magnetic fields should be present in such clouds at a level that could affect the stability properties, they need to be strong enough to compete with the radiation pressure on the cloud. This would imply magnetic field values of a few Gauss for a sample of Active Galactic Nuclei we draw from the literature. We then investigate the effect of several magnetic configurations on cloud stability in axi-symmetric magnetohydrodynamic simulations. For a purely azimuthal magnetic field which provides the dominant pressure support, the cloud first gets compressed by the opposing radiative and gravitational forces. The pressure inside the cloud then increases, and it expands vertically. Kelvin-Helmholtz and colu...
Energy interactions in homogeneously sheared magnetohydrodynamic flows
Collard, Diane; Praturi, Divya Sri; Girimaji, Sharath
2016-11-01
We investigate the behavior of homogeneously sheared magnetohydrodynamic (MHD) flows subject to perturbations in various directions. We perform rapid distortion theory (RDT) analysis and direct numerical simulations (DNS) to examine the interplay between magnetic, kinetic, and internal energies. For perturbation wavevectors oriented along the spanwise direction, RDT analysis shows that the magnetic and velocity fields are decoupled. In the case of streamwise wavevectors, the magnetic and velocity fields are tightly coupled. The coupling is "harmonic" in nature. DNS is then used to confirm the RDT findings. Computations of spanwise perturbations indeed exhibit behavior that is impervious to the magnetic field. Computed streamwise perturbations exhibit oscillatory evolution of kinetic and magnetic energies for low magnetic field strength. As the strength of magnetic field increases, the oscillatory behavior intensifies even as the energy magnitude decays, indicating strong stabilization.
Arabshahi, S.; Dwyer, J. R.; Nag, A.; Rakov, V. A.; Rassoul, H. K.
2014-01-01
Compact intracloud discharges (CIDs) are sources of the powerful, often isolated radio pulses emitted by thunderstorms. The VLF-LF radio pulses are called narrow bipolar pulses (NBPs). It is still not clear how CIDs are produced, but two categories of theoretical models that have previously been considered are the Transmission Line (TL) model and the Relativistic Runaway Electron Avalanche-Extensive Air Showers (RREA-EAS) model. In this paper, we perform numerical calculations of RREA-EASs for various electric field configurations inside thunderstorms. The results of these calculations are compared to results from the other models and to the experimental data. Our analysis shows that different theoretical models predict different fundamental characteristics for CIDs. Therefore, many previously published properties of CIDs are highly model dependent. This is because of the fact that measurements of the radiation field usually provide information about the current moment of the source, and different physical models with different discharge currents could have the same current moment. We have also found that although the RREA-EAS model could explain the current moments of CIDs, the required electric fields in the thundercloud are rather large and may not be realistic. Furthermore, the production of NBPs from RREA-EAS requires very energetic primary cosmic ray particles, not observed in nature. If such ultrahigh-energy particles were responsible for NBPs, then they should be far less frequent than is actually observed.
Acceleration of positrons by a relativistic electron beam in the presence of quantum effects
Niknam, A. R. [Laser and Plasma Research Institute, Shahid Beheshti University, G.C., Tehran (Iran, Islamic Republic of); Aki, H.; Khorashadizadeh, S. M. [Physics Department, Birjand University, Birjand (Iran, Islamic Republic of)
2013-09-15
Using the quantum magnetohydrodynamic model and obtaining the dispersion relation of the Cherenkov and cyclotron waves, the acceleration of positrons by a relativistic electron beam is investigated. The Cherenkov and cyclotron acceleration mechanisms of positrons are compared together. It is shown that growth rate and, therefore, the acceleration of positrons can be increased in the presence of quantum effects.
Bar-mode instability suppression in magnetized relativistic stars
Franci, Luca; Dionysopoulou, Kyriaki; Rezzolla, Luciano
2013-01-01
We show that magnetic fields stronger than about $10^{15}$ G are able to suppress the development of the hydrodynamical bar-mode instability in relativistic stars. The suppression is due to a change in the rest-mass density and angular velocity profiles due to the formation and to the linear growth of a toroidal component that rapidly overcomes the original poloidal one, leading to an amplification of the total magnetic energy. The study is carried out performing three-dimensional ideal-magnetohydrodynamics simulations in full general relativity, superimposing to the initial (matter) equilibrium configurations a purely poloidal magnetic field in the range $10^{14}-10^{16}$ G. When the seed field is a few parts in $10^{15}$ G or above, all the evolved models show the formation of a low-density envelope surrounding the star. For much weaker fields, no effect on the matter evolution is observed, while magnetic fields which are just below the suppression threshold are observed to slow down the growth-rate of the ...
Liu, M.; Schamiloglu, E.; Jiang, W.; Fuks, M.; Liu, C.
2016-11-01
We explore the performance of a 12 stepped-cavity relativistic magnetron with axial extraction (12 stepped-cavity RMDO) driven by an "F" transparent cathode (the "F" transparent cathode is a coaxial transparent cathode with two azimuthal periods of increased thickness and which looks like the letter "F," so we call it "F" transparent cathode) through particle-in-cell (PIC) simulations. It is shown that using the "F" transparent cathode, an electronic efficiency of 70% with gigawatt output power is obtained while reducing the axial leakage current by about 50% compared to using the usual transparent cathode. Further PIC simulations demonstrate that frequency bifurcation occurs and mode switching can be achieved using several hundred kilowatts input RF power in the 12 stepped-cavity RMDO driven by an "F" transparent cathode. For example, it was found that using an applied driver power of 180 kW for 10 ns, the operating TE31 mode can be switched to the TE41 mode. It is also found that the secondary electron and backscattered electron emission and axial leakage current were two disturbing factors for the 12 stepped-cavity RMDO when it works at a stable operation mode but when the 12 stepped-cavity RMDO works near the critical magnetic field at the boundary between two modes, these two factors would lead to the operation modes changing.
da Silva, G Rocha; Kowal, G; Pino, E M de Gouveia Dal
2014-01-01
Strong downstream magnetic fields of order of $\\sim 1$G, with large correlation lengths, are believed to cause the large synchrotron emission at the afterglow phase of gamma ray bursts (GRBs). Despite of the recent theoretical efforts, models have failed to fully explain the amplification of the magnetic field, particularly in a matter dominated scenario. We revisit the problem by considering the synchrotron emission to occur at the expanding shock front of a weakly magnetized relativistic jet over a magnetized surrounding medium. Analytical estimates and a number of high resolution 2D relativistic magneto-hydrodynamical (RMHD) simulations are provided. Jet opening angles of $\\theta = 0^{\\circ} - 20^{\\circ}$, and ambient to jet density ratios of $10^{-4} - 10^2$ were considered. We found that most of the amplification is due to compression of the ambient magnetic field at the contact discontinuity between the reverse and forward shocks at the jet head, with substantial pile-up of the magnetic field lines as t...
Inoue, S; Magara, T; Choe, G S; Park, Y D
2015-01-01
We clarify a relationship of the dynamics of a solar flare and a growing Coronal Mass Ejection (CME) by investigating the dynamics of magnetic fields during the X2.2-class flare taking place in the solar active region 11158 on 2011 February 15, based on simulation results obtained from Inoue et al. 2014. We found that the strongly twisted lines formed through the tether-cutting reconnection in the twisted lines of a nonlinear force-free field (NLFFF) can break the force balance within the magnetic field, resulting in their launch from the solar surface. We further discover that a large-scale flux tube is formed during the eruption as a result of the tether-cutting reconnection between the eruptive strongly twisted lines and these ambient weakly twisted lines. Then the newly formed large flux tube exceeds the critical height of the torus instability. The tether-cutting reconnection thus plays an important role in the triggering a CME. Furthermore, we found that the tangential fields at the solar surface illust...
Structures in magnetohydrodynamic turbulence: detection and scaling.
Uritsky, V M; Pouquet, A; Rosenberg, D; Mininni, P D; Donovan, E F
2010-11-01
We present a systematic analysis of statistical properties of turbulent current and vorticity structures at a given time using cluster analysis. The data stem from numerical simulations of decaying three-dimensional magnetohydrodynamic turbulence in the absence of an imposed uniform magnetic field; the magnetic Prandtl number is taken equal to unity, and we use a periodic box with grids of up to 1536³ points and with Taylor Reynolds numbers up to 1100. The initial conditions are either an X -point configuration embedded in three dimensions, the so-called Orszag-Tang vortex, or an Arn'old-Beltrami-Childress configuration with a fully helical velocity and magnetic field. In each case two snapshots are analyzed, separated by one turn-over time, starting just after the peak of dissipation. We show that the algorithm is able to select a large number of structures (in excess of 8000) for each snapshot and that the statistical properties of these clusters are remarkably similar for the two snapshots as well as for the two flows under study in terms of scaling laws for the cluster characteristics, with the structures in the vorticity and in the current behaving in the same way. We also study the effect of Reynolds number on cluster statistics, and we finally analyze the properties of these clusters in terms of their velocity-magnetic-field correlation. Self-organized criticality features have been identified in the dissipative range of scales. A different scaling arises in the inertial range, which cannot be identified for the moment with a known self-organized criticality class consistent with magnetohydrodynamics. We suggest that this range can be governed by turbulence dynamics as opposed to criticality and propose an interpretation of intermittency in terms of propagation of local instabilities.
Plasma Relaxation in Hall Magnetohydrodynamics
Shivamoggi, B K
2011-01-01
Parker's formulation of isotopological plasma relaxation process in magnetohydrodynamics (MHD) is extended to Hall MHD. The torsion coefficient alpha in the Hall MHD Beltrami condition turns out now to be proportional to the "potential vorticity." The Hall MHD Beltrami condition becomes equivalent to the "potential vorticity" conservation equation in two-dimensional hydrodynamics if the Hall MHD Lagrange multiplier beta is taken to be proportional to the "potential vorticity" as well. The winding pattern of the magnetic field lines in Hall MHD then appears to evolve in the same way as "potential vorticity" lines in 2D hydrodynamics.
Fundamental fluid mechanics and magnetohydrodynamics
Hosking, Roger J
2016-01-01
This book is primarily intended to enable postgraduate research students to enhance their understanding and expertise in Fluid Mechanics and Magnetohydrodynamics (MHD), subjects no longer treated in isolation. The exercises throughout the book often serve to provide additional and quite significant knowledge or to develop selected mathematical skills, and may also fill in certain details or enhance readers’ understanding of essential concepts. A previous background or some preliminary reading in either of the two core subjects would be advantageous, and prior knowledge of multivariate calculus and differential equations is expected.
Parametric resonance in ideal magnetohydrodynamics
Zaqarashvili
2000-08-01
We show that an external nonelectromagnetic periodic inhomogeneous force sets up a parametric resonance in an ideal magnetohydrodynamics. Alfven waves with certain wavelengths grow exponentially in amplitude. Nonlinear interaction between the resonant harmonics produces the long-term modulation of amplitudes. The mechanism of the energy transformation from an external nonelectromagnetic force to magnetic oscillations of the system presented here can be used in understanding the physical background of the gravitational action on the magnetized medium. Future application of this theory to several astrophysical problems is briefly discussed.
Microscopic Processes in Relativistic Jets
Nishikawa, K.-I.; Hardee, P.; Mizuno, Y.; Medvedev, M.; Zhang, B.; Nordlund, A.; Fredricksen, J.; Sol, H.; Niemiec, J.; Lyubarsky, Y.;
2008-01-01
Nonthermal radiation observed from astrophysical systems containing relativistic jets and shocks, e.g., gamma-ray bursts (GRBs), active galactic nuclei (AGNs), and Galactic microquasar systems usually have power-law emission spectra. Recent PIC simulations of relativistic electron-ion (electro-positron) jets injected into a stationary medium show that particle acceleration occurs within the downstream jet. In the collisionless relativistic shock particle acceleration is due to plasma waves and their associated instabilities (e.g., the Buneman instability, other two-streaming instability, and the Weibel (filamentation) instability) created in the shocks are responsible for particle (electron, positron, and ion) acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields. These magnetic fields contribute to the electron's transverse deflection behind the jet head. The 'jitter' radiation from deflected electrons has different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants.
Anomalous k⊥(-8/3) spectrum in electron magnetohydrodynamic turbulence.
Meyrand, Romain; Galtier, Sébastien
2013-12-27
Electron magnetohydrodynamic turbulence is investigated under the presence of a relatively strong external magnetic field b0e∥ and through three-dimensional direct numerical simulations. Our study reveals the emergence of a k⊥(-8/3) scaling for the magnetic energy spectrum at scales k∥(D)≤k⊥≤k⊥(D), where k∥(D) and k⊥(D) are, respectively, the typical largest dissipative scales along and transverse to the b0 direction. Unlike standard magnetohydrodynamic, this turbulence regime is characterized by filaments of electric currents parallel to b0. The anomalous scaling is in agreement with a heuristic model in which the transfer in the parallel direction is negligible. Implications for solar wind turbulence are discussed.
Intermittency in Hall-magnetohydrodynamics with a strong guide field
Imazio, P Rodriguez; Dmitruk, P; Mininni, P D
2013-01-01
We present a detailed study of intermittency in the velocity and magnetic field fluctuations of compressible Hall-magnetohydrodynamic turbulence with an external guide field. To solve the equations numerically, a reduced model valid when a strong guide field is present is used. Different values for the ion skin depth are considered in the simulations. The resulting data is analyzed computing field increments in several directions perpendicular to the guide field, and building structure functions and probability density functions. In the magnetohydrodynamic limit we recover the usual results with the magnetic field being more intermittent than the velocity field. In the presence of the Hall effect, field fluctuations at scales smaller than the ion skin depth show a substantial decrease in the level of intermittency, with close to monofractal scaling.
Cattaneo, Carlo
2011-01-01
This title includes: Pham Mau Quam: Problemes mathematiques en hydrodynamique relativiste; A. Lichnerowicz: Ondes de choc, ondes infinitesimales et rayons en hydrodynamique et magnetohydrodynamique relativistes; A.H. Taub: Variational principles in general relativity; J. Ehlers: General relativistic kinetic theory of gases; K. Marathe: Abstract Minkowski spaces as fibre bundles; and, G. Boillat: Sur la propagation de la chaleur en relativite.
张向洪; 伍贻兆; 王江峰
2012-01-01
采用基于电子束电离的磁流体力学（MHD）控制系统,对高超声速流场附面层,以及非设计状态下的高超声速进气道流场的磁流体控制进行了深入研究.控制方程为低磁雷诺数Navier-Stokes方程,采用等离子体动力学模型与电子束模型模拟空气电离过程.研究结果表明：①电子束电离能有效提高流场的电导率,增强磁场对流场的控制效率;②基于电子束诱导电离的MHD控制系统能有效地控制高超声速流场的附面层,但其控制效率跟电子束能量大小相关;③基于电子束诱导电离的MHD控制系统能有效地改变非设计状态下高超声速飞行器的斜激波结构,使进气道重新满足Shock-on-lip（SOL）条件,但进气道的总压恢复系数以及流量将会降低.%The magnetohydrodynamic （MHD） controlling of hypersonic boundary layer and hypersonic inlets in off-design conditions were studied by magnetohydrodynamie control system based on electron beam ionization. The governing equations were low magnetic Reynolds number Navier-Stokes （N-S） equations, and the plasma kinetics model coupled with electron beam model was developed to simulate air ionization. Results indicate. （1） The electron beam ionization can improve the conductivity of flow and the control efficiency of magnetic field. （2） The MHD system can effectively control the hypersonic boundary lay- er and the control efficiency closely related with the electron beam energy. （3） The MHD system can bring oblique shock in off-design conditions back to the location of shock-on-lip （SOL） condition, and the total pressure recovery coefficient and flow mass of inlets would be reduced.
Variational integrators for reduced magnetohydrodynamics
Kraus, Michael, E-mail: michael.kraus@ipp.mpg.de [Max-Planck-Institut für Plasmaphysik, Boltzmannstraße 2, 85748 Garching (Germany); Technische Universität München, Zentrum Mathematik, Boltzmannstraße 3, 85748 Garching (Germany); Tassi, Emanuele, E-mail: tassi@cpt.univ-mrs.fr [Aix-Marseille Université, Université de Toulon, CNRS, CPT, UMR 7332, 163 avenue de Luminy, case 907, 13288 cedex 9 Marseille (France); Grasso, Daniela, E-mail: daniela.grasso@infm.polito.it [ISC-CNR and Politecnico di Torino, Dipartimento Energia, C.so Duca degli Abruzzi 24, 10129 Torino (Italy)
2016-09-15
Reduced magnetohydrodynamics is a simplified set of magnetohydrodynamics equations with applications to both fusion and astrophysical plasmas, possessing a noncanonical Hamiltonian structure and consequently a number of conserved functionals. We propose a new discretisation strategy for these equations based on a discrete variational principle applied to a formal Lagrangian. The resulting integrator preserves important quantities like the total energy, magnetic helicity and cross helicity exactly (up to machine precision). As the integrator is free of numerical resistivity, spurious reconnection along current sheets is absent in the ideal case. If effects of electron inertia are added, reconnection of magnetic field lines is allowed, although the resulting model still possesses a noncanonical Hamiltonian structure. After reviewing the conservation laws of the model equations, the adopted variational principle with the related conservation laws is described both at the continuous and discrete level. We verify the favourable properties of the variational integrator in particular with respect to the preservation of the invariants of the models under consideration and compare with results from the literature and those of a pseudo-spectral code.
Variational integrators for reduced magnetohydrodynamics
Kraus, Michael; Tassi, Emanuele; Grasso, Daniela
2016-09-01
Reduced magnetohydrodynamics is a simplified set of magnetohydrodynamics equations with applications to both fusion and astrophysical plasmas, possessing a noncanonical Hamiltonian structure and consequently a number of conserved functionals. We propose a new discretisation strategy for these equations based on a discrete variational principle applied to a formal Lagrangian. The resulting integrator preserves important quantities like the total energy, magnetic helicity and cross helicity exactly (up to machine precision). As the integrator is free of numerical resistivity, spurious reconnection along current sheets is absent in the ideal case. If effects of electron inertia are added, reconnection of magnetic field lines is allowed, although the resulting model still possesses a noncanonical Hamiltonian structure. After reviewing the conservation laws of the model equations, the adopted variational principle with the related conservation laws is described both at the continuous and discrete level. We verify the favourable properties of the variational integrator in particular with respect to the preservation of the invariants of the models under consideration and compare with results from the literature and those of a pseudo-spectral code.
MHD (Magnetohydrodynamic) Simulation of a Comet Magnetosphere.
1984-04-12
University Code 2628 (20 copies) New York, New York 10027 DTIC (2 copies) ATTN: R. Taussig R.A. Cross University of Alaska Geophysical Institute...Technology Croup Temerin, Michael Space Science Dept. Space Science Lab. Building 1-1, Room 1170 University of California One Space Park Berkeley...Minneapolis, MN 55455 Schulz, Michael Aerospace Corp. A6/2451, P.O. lox 92957 Los Angeles, California 90009 Shavhan, Stanley Dept. of Physics
Relativistic Langevin equation for runaway electrons
Mier, J. A.; Martin-Solis, J. R.; Sanchez, R.
2016-10-01
The Langevin approach to the kinetics of a collisional plasma is developed for relativistic electrons such as runaway electrons in tokamak plasmas. In this work, we consider Coulomb collisions between very fast, relativistic electrons and a relatively cool, thermal background plasma. The model is developed using the stochastic equivalence of the Fokker-Planck and Langevin equations. The resulting Langevin model equation for relativistic electrons is an stochastic differential equation, amenable to numerical simulations by means of Monte-Carlo type codes. Results of the simulations will be presented and compared with the non-relativistic Langevin equation for RE electrons used in the past. Supported by MINECO (Spain), Projects ENE2012-31753, ENE2015-66444-R.
Inertial Current Generators of Poynting Flux in MHD Simulations of Black Hole Ergospheres
Punsly, B
2005-01-01
This Letter investigates the physics that is responsible for creating the current system that supports the outgoing Poynting flux emanating from the ergosphere of a rotating black hole in the limit that the magnetic energy density greatly exceeds the plasma rest mass density (magnetically dominated limit). The underlying physics is derived from published three-dimensional simulations that obey the general relativistic equations of perfect magnetohydrodynamics (MHD). It is found that the majority of the Poynting flux emitted from the magnetically dominated regions of the ergosphere has a source associated with inertial effects outside of the event horizon.
Low-frequency 1/f fluctuations in hydrodynamic and magnetohydrodynamic turbulence.
Dmitruk, Pablo; Matthaeus, W H
2007-09-01
We investigate the occurrence of 1/f spectra of low-frequency fluctuations in numerical simulations of three-dimensional hydrodynamic and magnetohydrodynamic turbulence driven by a random forcing with a controlled correlation time. A range of one decade of 1/f spectrum is observed when a strong background magnetic field is present. The frequency spectra of individual Fourier modes is also analyzed and it is observed that the 1/f range is present in the largest available wavelength mode for the magnetohydrodynamic simulations with and without a background magnetic field and it is not observed (or is less clear) for the hydrodynamic case. The presence of 1/f spectra of low-frequency fluctuations is also analyzed for two-dimensional magnetohydrodynamic and hydrodynamic turbulence simulations and it is observed in both cases. The origin of these long period fluctuations is discussed.
Relativistic radiative transfer in relativistic spherical flows
Fukue, Jun
2017-02-01
Relativistic radiative transfer in relativistic spherical flows is numerically examined under the fully special relativistic treatment. We first derive relativistic formal solutions for the relativistic radiative transfer equation in relativistic spherical flows. We then iteratively solve the relativistic radiative transfer equation, using an impact parameter method/tangent ray method, and obtain specific intensities in the inertial and comoving frames, as well as moment quantities, and the Eddington factor. We consider several cases; a scattering wind with a luminous central core, an isothermal wind without a core, a scattering accretion on to a luminous core, and an adiabatic accretion on to a dark core. In the typical wind case with a luminous core, the emergent intensity is enhanced at the center due to the Doppler boost, while it reduces at the outskirts due to the transverse Doppler effect. In contrast to the plane-parallel case, the behavior of the Eddington factor is rather complicated in each case, since the Eddington factor depends on the optical depth, the flow velocity, and other parameters.
Dissipation and reconnection in boundary-driven reduced magnetohydrodynamics
Wan, Minping; Rappazzo, Antonio Franco; Matthaeus, William H. [Bartol Research Institute and Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 (United States); Servidio, Sergio [Dipartimento di Fisica, Università della Calabria, I-87036 Cosenza (Italy); Oughton, Sean [Department of Mathematics, University of Waikato, Hamilton 3240 (New Zealand)
2014-12-10
We study the statistics of coherent current sheets, the population of X-type critical points, and reconnection rates in a coronal loop geometry, via numerical simulations of reduced magnetohydrodynamic turbulence. Current sheets and sites of reconnection (magnetic X-points) are identified in two-dimensional planes of the three-dimensional simulation domain. The geometry of the identified current sheets—including area, length, and width—and the magnetic dissipation occurring in the current sheets are statistically characterized. We also examine the role of magnetic reconnection, by computing the reconnection rates at the identified X-points and investigating their association with current sheets.
Relativistic Hydrodynamics on Graphic Cards
Gerhard, Jochen; Bleicher, Marcus
2012-01-01
We show how to accelerate relativistic hydrodynamics simulations using graphic cards (graphic processing units, GPUs). These improvements are of highest relevance e.g. to the field of high-energetic nucleus-nucleus collisions at RHIC and LHC where (ideal and dissipative) relativistic hydrodynamics is used to calculate the evolution of hot and dense QCD matter. The results reported here are based on the Sharp And Smooth Transport Algorithm (SHASTA), which is employed in many hydrodynamical models and hybrid simulation packages, e.g. the Ultrarelativistic Quantum Molecular Dynamics model (UrQMD). We have redesigned the SHASTA using the OpenCL computing framework to work on accelerators like graphic processing units (GPUs) as well as on multi-core processors. With the redesign of the algorithm the hydrodynamic calculations have been accelerated by a factor 160 allowing for event-by-event calculations and better statistics in hybrid calculations.
Shell Models of Magnetohydrodynamic Turbulence
Plunian, Franck; Frick, Peter
2012-01-01
Shell models of hydrodynamic turbulence originated in the seventies. Their main aim was to describe the statistics of homogeneous and isotropic turbulence in spectral space, using a simple set of ordinary differential equations. In the eighties, shell models of magnetohydrodynamic (MHD) turbulence emerged based on the same principles as their hydrodynamic counter-part but also incorporating interactions between magnetic and velocity fields. In recent years, significant improvements have been made such as the inclusion of non-local interactions and appropriate definitions for helicities. Though shell models cannot account for the spatial complexity of MHD turbulence, their dynamics are not over simplified and do reflect those of real MHD turbulence including intermittency or chaotic reversals of large-scale modes. Furthermore, these models use realistic values for dimensionless parameters (high kinetic and magnetic Reynolds numbers, low or high magnetic Prandtl number) allowing extended inertial range and accu...
Method for manufacturing magnetohydrodynamic electrodes
Killpatrick, Don H.; Thresh, Henry R.
1982-01-01
A method of manufacturing electrodes for use in a magnetohydrodynamic (MHD) generator comprising the steps of preparing a billet having a core 10 of a first metal, a tubular sleeve 12 of a second metal, and an outer sheath 14, 16, 18 of an extrusile metal; evacuating the space between the parts of the assembled billet; extruding the billet; and removing the outer jacket 14. The extruded bar may be made into electrodes by cutting and bending to the shape required for an MDH channel frame. The method forms a bond between the first metal of the core 10 and the second metal of the sleeve 12 strong enough to withstand a hot and corrosive environment.
Micromachined magnetohydrodynamic actuators and sensors
Lee, Abraham P.; Lemoff, Asuncion V.
2000-01-01
A magnetohydrodynamic (MHD) micropump and microsensor which utilizes micromachining to integrate the electrodes with microchannels and includes a magnet for producing magnetic fields perpendicular to both the electrical current direction and the fluid flow direction. The magnet can also be micromachined and integrated with the micropump using existing technology. The MHD micropump, for example, can generate continuous, reversible flow, with readily controllable flow rates. The flow can be reversed by either reversing the electrical current flow or reversing the magnetic field. By mismatching the electrodes, a swirling vortex flow can be generated for potential mixing applications. No moving parts are necessary and the dead volume is minimal. The micropumps can be placed at any position in a fluidic circuit and a combination of micropumps can generate fluidic plugs and valves.
Magnetohydrodynamic turbulence: Observation and experiment
Brown, M. R.; Schaffner, D. A.; Weck, P. J. [Department of Physics and Astronomy, Swarthmore College, 500 College Avenue, Swarthmore, Pennsylvania 19081 (United States)
2015-05-15
We provide a tutorial on the paradigms and tools of magnetohydrodynamic (MHD) turbulence. The principal paradigm is that of a turbulent cascade from large scales to small, resulting in power law behavior for the frequency power spectrum for magnetic fluctuations E{sub B}(f). We will describe five useful statistical tools for MHD turbulence in the time domain: the temporal autocorrelation function, the frequency power spectrum, the probability distribution function of temporal increments, the temporal structure function, and the permutation entropy. Each of these tools will be illustrated with an example taken from MHD fluctuations in the solar wind. A single dataset from the Wind satellite will be used to illustrate all five temporal statistical tools.
Introduction to Magneto-Hydrodynamics
Pelletier, Guy
Magneto-Hydrodynamics (hereafter MHD) describes plasmas on large scales and more generally electrically conducting fluids. This description does not discriminate between the various fluids that constitute the medium. In laboratory, it allows to globally describe a plasma machine, for instance a toroidal nuclear fusion reactor like a Tokamak. In astrophysics it plays an essential role in the description of cosmic objects and their environments, as well as the media, such as the interstellar or the intergalactic medium. A set of phenomena are specific to MHD description. Some of them will be presented in this lecture such as the tension effect, confinement, magnetic diffusivity, magnetic field freezing, Alfvén waves, magneto-sonic waves, reconnection. A celebrated phenomenon of MHD will not be introduced in this brief lecture, namely the dynamo effect.
Relativistic Remnants of Non-Relativistic Electrons
Kashiwa, Taro
2015-01-01
Electrons obeying the Dirac equation are investigated under the non-relativistic $c \\mapsto \\infty$ limit. General solutions are given by derivatives of the relativistic invariant functions whose forms are different in the time- and the space-like region, yielding the delta function of $(ct)^2 - x^2$. This light-cone singularity does survive to show that the charge and the current density of electrons travel with the speed of light in spite of their massiveness.
Takamoto, Makoto; Baty, H
2015-01-01
We study the magneto-hydrodynamic tearing instability occurring in a double current sheet configuration when a guide field is present. This is investigated by means of resistive relativistic magneto-hydrodynamic (RRMHD) simulations. Following the dynamics of the double tearing mode (DTM), we are able to compute synthetic synchrotron spectra in the explosive reconnection phase. The pulsar striped wind model represents a site where such current sheets are formed, including a guide field. The variability of the Crab nebula/pulsar system, seen as flares, can be therefore naturally explained by the DTM explosive phase in the striped wind. Our results indicate that the Crab GeV flare can be explained by the double tearing mode in the striped wind region if the magnetization parameter $\\sigma$ is around $10^5$.
Stability of relativistic plasma-vacuum interfaces
Trakhinin, Yuri
2010-01-01
We study the plasma-vacuum interface problem in relativistic magnetohydrodynamics for the case when the plasma density does not go to zero continuously, but jumps. Unlike the nonrelativistic version of this problem, we have to assume that the plasma expands into the vacuum (otherwise, the problem is underdetermined). We show that even if this necessary condition is satisfied the planar interface can be still violently unstable. By using a suitable secondary symmetrization of the Maxwell equations in vacuum, we find a sufficient condition that precludes violent instabilities. Under this condition we derive a basic a priori estimate in the anisotropic weighted Sobolev space $H^1_*$ for the variable coefficients linearized problem for nonplanar plasma-vacuum interfaces and prove the well-posedness of this problem.
Evolution of Accretion Discs around a Kerr Black Hole using Extended Magnetohydrodynamics
Foucart, Francois; Gammie, Charles F; Quataert, Eliot
2015-01-01
Black holes accreting well below the Eddington rate are believed to have geometrically thick, optically thin, rotationally supported accretion discs in which the Coulomb mean free path is large compared to $GM/c^2$. In such an environment, the disc evolution may differ significantly from ideal magnetohydrodynamic predictions. We present non-ideal global axisymmetric simulations of geometrically thick discs around a rotating black hole. The simulations are carried out using a new code ${\\rm\\it grim}$, which evolves a covariant extended magnetohydrodynamics model derived by treating non-ideal effects as a perturbation of ideal magnetohydrodynamics. Non-ideal effects are modeled through heat conduction along magnetic field lines, and a difference between the pressure parallel and perpendicular to the field lines. The model relies on an effective collisionality in the disc from wave-particle scattering and velocity-space (mirror and firehose) instabilities. We find that the pressure anisotropy grows to match the ...
Relativistic quantum mechanics
Wachter, Armin
2010-01-01
Which problems do arise within relativistic enhancements of the Schrödinger theory, especially if one adheres to the usual one-particle interpretation, and to what extent can these problems be overcome? And what is the physical necessity of quantum field theories? In many books, answers to these fundamental questions are given highly insufficiently by treating the relativistic quantum mechanical one-particle concept very superficially and instead introducing field quantization as soon as possible. By contrast, this monograph emphasizes relativistic quantum mechanics in the narrow sense: it extensively discusses relativistic one-particle concepts and reveals their problems and limitations, therefore motivating the necessity of quantized fields in a physically comprehensible way. The first chapters contain a detailed presentation and comparison of the Klein-Gordon and Dirac theory, always in view of the non-relativistic theory. In the third chapter, we consider relativistic scattering processes and develop the...
Structures in magnetohydrodynamic turbulence: detection and scaling
Uritsky, Vadim M; Rosenberg, Duane; Mininni, Pablo D; Donovan, Eric
2010-01-01
We present a systematic analysis of statistical properties of turbulent current and vorticity structures at a given time using cluster analysis. The data stems from numerical simulations of decaying three-dimensional (3D) magnetohydrodynamic turbulence in the absence of an imposed uniform magnetic field; the magnetic Prandtl number is taken equal to unity, and we use a periodic box with grids of up to 1536^3 points, and with Taylor Reynolds numbers up to 1100. The initial conditions are either an X-point configuration embedded in 3D, the so-called Orszag-Tang vortex, or an Arn'old-Beltrami-Childress configuration with a fully helical velocity and magnetic field. In each case two snapshots are analyzed, separated by one turn-over time, starting just after the peak of dissipation. We show that the algorithm is able to select a large number of structures (in excess of 8,000) for each snapshot and that the statistical properties of these clusters are remarkably similar for the two snapshots as well as for the two...
Finite dissipation and intermittency in magnetohydrodynamics.
Mininni, P D; Pouquet, A
2009-08-01
We present an analysis of data stemming from numerical simulations of decaying magnetohydrodynamic (MHD) turbulence up to grid resolution of 1536(3) points and up to Taylor Reynolds number of approximately 1200 . The initial conditions are such that the initial velocity and magnetic fields are helical and in equipartition, while their correlation is negligible. Analyzing the data at the peak of dissipation, we show that the dissipation in MHD seems to asymptote to a constant as the Reynolds number increases, thereby strengthening the possibility of fast reconnection events in the solar environment for very large Reynolds numbers. Furthermore, intermittency of MHD flows, as determined by the spectrum of anomalous exponents of structure functions of the velocity and the magnetic field, is stronger than that of fluids, confirming earlier results; however, we also find that there is a measurable difference between the exponents of the velocity and those of the magnetic field, reminiscent of recent solar wind observations. Finally, we discuss the spectral scaling laws that arise in this flow.
ZHANG Peng-Fei; RUAN Tu-Nan
2001-01-01
A systematic theory on the appropriate spin operators for the relativistic states is developed. For a massive relativistic particle with arbitrary nonzero spin, the spin operator should be replaced with the relativistic one, which is called in this paper as moving spin. Further the concept of moving spin is discussed in the quantum field theory. A new is constructed. It is shown that, in virtue of the two operators, problems in quantum field concerned spin can be neatly settled.
Relativistic Linear Restoring Force
Clark, D.; Franklin, J.; Mann, N.
2012-01-01
We consider two different forms for a relativistic version of a linear restoring force. The pair comes from taking Hooke's law to be the force appearing on the right-hand side of the relativistic expressions: d"p"/d"t" or d"p"/d["tau"]. Either formulation recovers Hooke's law in the non-relativistic limit. In addition to these two forces, we…
A Two-dimensional Magnetohydrodynamics Scheme for General Unstructured Grids
Livne, Eli; Dessart, Luc; Burrows, Adam; Meakin, Casey A.
2007-05-01
We report a new finite-difference scheme for two-dimensional magnetohydrodynamics (MHD) simulations, with and without rotation, in unstructured grids with quadrilateral cells. The new scheme is implemented within the code VULCAN/2D, which already includes radiation hydrodynamics in various approximations and can be used with arbitrarily moving meshes (ALEs). The MHD scheme, which consists of cell-centered magnetic field variables, preserves the nodal finite difference representation of divB by construction, and therefore any initially divergence-free field remains divergence-free through the simulation. In this paper, we describe the new scheme in detail and present comparisons of VULCAN/2D results with those of the code ZEUS/2D for several one-dimensional and two-dimensional test problems. The code now enables two-dimensional simulations of the collapse and explosion of the rotating, magnetic cores of massive stars. Moreover, it can be used to simulate the very wide variety of astrophysical problems for which multidimensional radiation magnetohydrodynamics (RMHD) is relevant.
MALFLIET, R
1993-01-01
We discuss the present status of relativistic transport theory. Special emphasis is put on problems of topical interest: hadronic features, thermodynamical consistent approximations and spectral properties.
On the Energy Spectrum of Strong Magnetohydrodynamic Turbulence
Jean Carlos Perez
2012-10-01
Full Text Available The energy spectrum of magnetohydrodynamic turbulence attracts interest due to its fundamental importance and its relevance for interpreting astrophysical data. Here we present measurements of the energy spectra from a series of high-resolution direct numerical simulations of magnetohydrodynamics turbulence with a strong guide field and for increasing Reynolds number. The presented simulations, with numerical resolutions up to 2048^{3} mesh points and statistics accumulated over 30 to 150 eddy turnover times, constitute, to the best of our knowledge, the largest statistical sample of steady state magnetohydrodynamics turbulence to date. We study both the balanced case, where the energies associated with Alfvén modes propagating in opposite directions along the guide field, E^{+}(k_{⊥} and E^{-}(k_{⊥}, are equal, and the imbalanced case where the energies are different. In the balanced case, we find that the energy spectrum converges to a power law with exponent -3/2 as the Reynolds number is increased, which is consistent with phenomenological models that include scale-dependent dynamic alignment. For the imbalanced case, with E^{+}>E^{-}, the simulations show that E^{-}∝k_{⊥}^{-3/2} for all Reynolds numbers considered, while E^{+} has a slightly steeper spectrum at small Re. As the Reynolds number increases, E^{+} flattens. Since E^{±} are pinned at the dissipation scale and anchored at the driving scales, we postulate that at sufficiently high Re the spectra will become parallel in the inertial range and scale as E^{+}∝E^{-}∝k_{⊥}^{-3/2}. Questions regarding the universality of the spectrum and the value of the “Kolmogorov constant” are discussed.
Relativistic Binaries in Globular Clusters
Benacquista Matthew J.
2006-02-01
Full Text Available The galactic population of globular clusters are old, dense star systems, with a typical cluster containing 10^4 - 10^7 stars. As an old population of stars, globular clusters contain many collapsed and degenerate objects. As a dense population of stars, globular clusters are the scene of many interesting close dynamical interactions between stars. These dynamical interactions can alter the evolution of individual stars and can produce tight binary systems containing one or two compact objects. In this review, we discuss the theoretical models of globular cluster evolution and binary evolution, techniques for simulating this evolution which lead to relativistic binaries, and current and possible future observational evidence for this population. Globular cluster evolution will focus on the properties that boost the production of hard binary systems and on the tidal interactions of the galaxy with the cluster, which tend to alter the structure of the globular cluster with time. The interaction of the components of hard binary systems alters the evolution of both bodies and can lead to exotic objects. Direct N-body integrations and Fokker-Planck simulations of the evolution of globular clusters that incorporate tidal interactions and lead to predictions of relativistic binary populations are also discussed. We discuss the current observational evidence for cataclysmic variables, millisecond pulsars, and low-mass X-ray binaries as well as possible future detection of relativistic binaries with gravitational radiation.
Relativistic Binaries in Globular Clusters
Benacquista Matthew
2002-01-01
Full Text Available The galactic population of globular clusters are old, dense star systems, with a typical cluster containing $10^4 - 10^6$ stars. As an old population of stars, globular clusters contain many collapsed and degenerate objects. As a dense population of stars, globular clusters are the scene of many interesting close dynamical interactions between stars. These dynamical interactions can alter the evolution of individual stars and can produce tight binary systems containing one or two compact objects. In this review, we discuss the theoretical models of globular cluster evolution and binary evolution, techniques for simulating this evolution which lead to relativistic binaries, and current and possible future observational evidence for this population. Globular cluster evolution will focus on the properties that boost the production of hard binary systems and on the tidal interactions of the galaxy with the cluster, which tend to alter the structure of the globular cluster with time. The interaction of the components of hard binary systems alters the evolution of both bodies and can lead to exotic objects. Direct $N$-body integrations and Fokker--Planck simulations of the evolution of globular clusters that incorporate tidal interactions and lead to predictions of relativistic binary populations are also discussed. We discuss the current observational evidence for cataclysmic variables, millisecond pulsars, and low-mass X-ray binaries as well as possible future detection of relativistic binaries with gravitational radiation.
Relativistic Binaries in Globular Clusters
Matthew J. Benacquista
2013-03-01
Full Text Available Galactic globular clusters are old, dense star systems typically containing 10^4 – 10^6 stars. As an old population of stars, globular clusters contain many collapsed and degenerate objects. As a dense population of stars, globular clusters are the scene of many interesting close dynamical interactions between stars. These dynamical interactions can alter the evolution of individual stars and can produce tight binary systems containing one or two compact objects. In this review, we discuss theoretical models of globular cluster evolution and binary evolution, techniques for simulating this evolution that leads to relativistic binaries, and current and possible future observational evidence for this population. Our discussion of globular cluster evolution will focus on the processes that boost the production of tight binary systems and the subsequent interaction of these binaries that can alter the properties of both bodies and can lead to exotic objects. Direct N-body integrations and Fokker–Planck simulations of the evolution of globular clusters that incorporate tidal interactions and lead to predictions of relativistic binary populations are also discussed. We discuss the current observational evidence for cataclysmic variables, millisecond pulsars, and low-mass X-ray binaries as well as possible future detection of relativistic binaries with gravitational radiation.
GRMHD Simulations of Disk/Jet Systems: Application to Collapsars
De Villiers, J P; Ouyed, R; Villiers, Jean-Pierre De; Staff, Jan; Ouyed, Rachid
2005-01-01
We have carried out 2D and 3D general relativistic magnetohydrodynamic simulations of jets launched self-consistently from accretion disks orbiting Kerr black holes. The accretion flow generates energetic jets in the axial funnel region of the disk/jet system, as well as a substantial coronal wind. The jets feature knot-like structures of extremely hot, ultra-relativistic gas; the gas in these knots begins at moderate velocities near the central engine, and is accelerated to ultra-relativistic velocities (Lorentz factors of 50, and higher) by the action of the magnetic field in the axial funnel. The increase in jet velocity takes place in an acceleration zone extending to at least a few hundred gravitational radii from the central engine. The overall energetics of the jets are strongly spin-dependent, with high-spin black holes producing the highest energy and mass fluxes. In addition, with high-spin black holes, the ultra-relativistic outflow is cylindrically collimated within a few hundred gravitational rad...
Relativistic electron beams above thunderclouds
Füellekrug, M.; Roussel-Dupre, R.; Symbalisty, E. M. D.;
2011-01-01
Non-luminous relativistic electron beams above thunderclouds have been detected by the radio signals of low frequency similar to 40-400 kHz which they radiate. The electron beams occur similar to 2-9 ms after positive cloud-to-ground lightning discharges at heights between similar to 22-72 km above...... thunderclouds. Intense positive lightning discharges can also cause sprites which occur either above or prior to the electron beam. One electron beam was detected without any luminous sprite which suggests that electron beams may also occur independently of sprites. Numerical simulations show that beams...... of electrons partially discharge the lightning electric field above thunderclouds and thereby gain a mean energy of similar to 7MeV to transport a total charge of similar to-10mC upwards. The impulsive current similar to 3 x 10(-3) Am-2 associated with relativistic electron beams above thunderclouds...
Relativistic electron beams above thunderclouds
M. Füllekrug
2011-05-01
Full Text Available Non-luminous relativistic electron beams above thunderclouds are detected by radio remote sensing with low frequency radio signals from 40–400 kHz. The electron beams occur 2–9 ms after positive cloud-to-ground lightning discharges at heights between 22–72 km above thunderclouds. The positive lightning discharges also cause sprites which occur either above or before the electron beam. One electron beam was detected without any luminous sprite occurrence which suggests that electron beams may also occur independently. Numerical simulations show that the beamed electrons partially discharge the lightning electric field above thunderclouds and thereby gain a mean energy of 7 MeV to transport a total charge of 10 mC upwards. The impulsive current associated with relativistic electron beams above thunderclouds is directed downwards and needs to be considered as a novel element of the global atmospheric electric circuit.
The role of magnetohydrodynamics in heliospheric space plasma physics research
Dryer, Murray; Smith, Zdenka Kopal; Wu, Shi Tsan
1988-01-01
Magnetohydrodynamics (MHD) is a fairly recent extension of the field of fluid mechanics. While much remains to be done, it has successfully been applied to the contemporary field of heliospheric space plasma research to evaluate the 'macroscopic picture' of some vital topics via the use of conducting fluid equations and numerical modeling and simulations. Some representative examples from solar and interplanetary physics are described to demonstrate that the continuum approach to global problems (while keeping in mind the assumptions and limitations therein) can be very successful in providing insight and large scale interpretations of otherwise intractable problems in space physics.
Magnetic reconnection in two-dimensional magnetohydrodynamic turbulence.
Servidio, S; Matthaeus, W H; Shay, M A; Cassak, P A; Dmitruk, P
2009-03-20
Systematic analysis of numerical simulations of two-dimensional magnetohydrodynamic turbulence reveals the presence of a large number of X-type neutral points where magnetic reconnection occurs. We examine the statistical properties of this ensemble of reconnection events that are spontaneously generated by turbulence. The associated reconnection rates are distributed over a wide range of values and scales with the geometry of the diffusion region. Locally, these events can be described through a variant of the Sweet-Parker model, in which the parameters are externally controlled by turbulence. This new perspective on reconnection is relevant in space and astrophysical contexts, where plasma is generally in a fully turbulent regime.
Long-range correlations and coherent structures in magnetohydrodynamic equilibria.
Weichman, Peter B
2012-12-01
The equilibrium theory of the 2D magnetohydrodynamic equations is derived, accounting for the full infinite hierarchies of conserved integrals. An exact description in terms of two coupled elastic membranes emerges, producing long-ranged correlations between the magnetic and velocity fields. This is quite different from the results of previous variational treatments, which relied on a local product ansatz for the thermodynamic Gibbs distribution. The equilibria display the same type of coherent structures, such as compact eddies and zonal jets, previously found in pure fluid equilibria. Possible consequences of this for recent simulations of the solar tachocline are discussed.
Magnetohydrodynamic dynamo: global flow generation in plasma turbulence
Yokoi, Nobumitsu; Yoshizawa, Akira [Tokyo Univ. (Japan). Inst. of Industrial Science; Itoh, Kimitaka; Itoh, Sanae-I.
1999-07-01
Generation mechanism of the spontaneous plasma rotation observed in an improved confinement mode in tokamak's is examined from the viewpoint of the turbulent magnetohydrodynamic (MHD) dynamo. A dynamo model, where the concept of cross helicity (velocity/magnetic-field correlation) plays a key role, is applied to the reversed shear (RS) modes. The concave electric-current profile occurred in the RS modes is shown to be a cause of the global plasma rotation through a numerical simulation of the cross-helicity turbulence model. (author)
Center for Extended Magnetohydrodynamic Modeling Cooperative Agreement
Carl R. Sovinec
2008-02-15
The Center for Extended Magnetohydrodynamic Modeling (CEMM) is developing computer simulation models for predicting the behavior of magnetically confined plasmas. Over the first phase of support from the Department of Energy’s Scientific Discovery through Advanced Computing (SciDAC) initiative, the focus has been on macroscopic dynamics that alter the confinement properties of magnetic field configurations. The ultimate objective is to provide computational capabilities to predict plasma behavior—not unlike computational weather prediction—to optimize performance and to increase the reliability of magnetic confinement for fusion energy. Numerical modeling aids theoretical research by solving complicated mathematical models of plasma behavior including strong nonlinear effects and the influences of geometrical shaping of actual experiments. The numerical modeling itself remains an area of active research, due to challenges associated with simulating multiple temporal and spatial scales. The research summarized in this report spans computational and physical topics associated with state of the art simulation of magnetized plasmas. The tasks performed for this grant are categorized according to whether they are primarily computational, algorithmic, or application-oriented in nature. All involve the development and use of the Non-Ideal Magnetohydrodynamics with Rotation, Open Discussion (NIMROD) code, which is described at http://nimrodteam.org. With respect to computation, we have tested and refined methods for solving the large algebraic systems of equations that result from our numerical approximations of the physical model. Collaboration with the Terascale Optimal PDE Solvers (TOPS) SciDAC center led us to the SuperLU_DIST software library [http://crd.lbl.gov/~xiaoye/SuperLU/] for solving large sparse matrices using direct methods on parallel computers. Switching to this solver library boosted NIMROD’s performance by a factor of five in typical large
Electron Thermodynamics in GRMHD Simulations of Low-Luminosity Black Hole Accretion
Ressler, Sean M; Quataert, Eliot; Chandra, Mani; Gammie, Charles F
2015-01-01
Simple assumptions made regarding electron thermodynamics often limit the extent to which general relativistic magnetohydrodynamic (GRMHD) simulations can be applied to observations of low-luminosity accreting black holes. We present, implement, and test a model that self-consistently evolves an electron entropy equation and takes into account the effects of spatially varying electron heating and relativistic anisotropic thermal conduction along magnetic field lines. We neglect the back-reaction of electron pressure on the dynamics of the accretion flow. Our model is appropriate for systems accreting at $\\ll 10^{-5}$ of the Eddington rate, so radiative cooling by electrons can be neglected. It can be extended to higher accretion rates in the future by including electron cooling and proton-electron Coulomb collisions. We present a suite of tests showing that our method recovers the correct solution for electron heating under a range of circumstances, including strong shocks and driven turbulence. Our initial a...
Magnetohydrodynamics turbulence: An astronomical perspective
S Sridhar
2011-07-01
Early work on magnetohydrodynamic (MHD) turbulence in the 1960s due, independently, to Iroshnikov and Kraichnan (IK) considered isotropic inertial-range spectra. Whereas laboratory experiments were not in a position to measure the spectral index, they showed that the turbulence was strongly anisotropic. Theoretical horizons correspondingly expanded in the 1980s, to accommodate both the isotropy of the IK theory and the anisotropy suggested by the experiments. Since the discovery of pulsars in 1967, many years of work on interstellar scintillation suggested that small-scale interstellar turbulence must have a hydromagnetic origin; but the IK spectrum was too ﬂat and the ideas on anisotropic spectra too qualitative to explain the observations. In response, new theories of balanced MHD turbulence were proposed in the 1990s, which argued that the IK theory was incorrect, and made quantitative predictions of anisotropic inertial-range spectra; these theories have since found applications in many areas of astrophysics. Spacecraft measurements of solar-wind turbulence show that there is more power in Alfvén waves that travel away from the Sun than towards it. Theories of imbalanced MHD turbulence have now been proposed to address interplanetary turbulence. This very active area of research continues to be driven by astronomy.
Magnetohydrodynamic (MHD) driven droplet mixer
Lee, Abraham P.; Lemoff, Asuncion V.; Miles, Robin R.
2004-05-11
A magnetohydrodynamic fluidic system mixes a first substance and a second substance. A first substrate section includes a first flow channel and a first plurality of pairs of spaced electrodes operatively connected to the first flow channel. A second substrate section includes a second flow channel and a second plurality of pairs of spaced electrodes operatively connected to the second flow channel. A third substrate section includes a third flow channel and a third plurality of pairs of spaced electrodes operatively connected to the third flow channel. A magnetic section and a control section are operatively connected to the spaced electrodes. The first substrate section, the second substrate section, the third substrate section, the first plurality of pairs of spaced electrodes, the second plurality of pairs of spaced electrodes, the third plurality of pairs of spaced electrodes, the magnetic section, and the control section are operated to move the first substance through the first flow channel, the second substance through the second flow channel, and both the first substance and the second substance into the third flow channel where they are mixed.
Magnetohydrodynamic Propulsion for the Classroom
Font, Gabriel I.; Dudley, Scott C.
2004-10-01
The cinema industry can sometimes prove to be an ally when searching for material with which to motivate students to learn physics. Consider, for example, the electromagnetic force on a current in the presence of a magnetic field. This phenomenon is at the heart of magnetohydrodynamic (MHD) propulsion systems. A submarine employing this type of propulsion was immortalized in the movie Hunt for Red October. While mentioning this to students certainly gets their attention, it often elicits comments that it is only fiction and not physically possible. Imagine their surprise when a working system is demonstrated! It is neither difficult nor expensive to construct a working system that can be demonstrated in the front of a classroom.2 In addition, all aspects of the engineering hurdles that must be surmounted and myths concerning this "silent propulsion" system are borne out in a simple apparatus. This paper details how to construct an inexpensive MHD propulsion boat that can be demonstrated for students in the classroom.
Buoyancy-driven Magnetohydrodynamic Waves
Hague, A.; Erdélyi, R.
2016-09-01
Turbulent motions close to the visible solar surface may generate low-frequency internal gravity waves (IGWs) that propagate through the lower solar atmosphere. Magnetic activity is ubiquitous throughout the solar atmosphere, so it is expected that the behavior of IGWs is to be affected. In this article we investigate the role of an equilibrium magnetic field on propagating and standing buoyancy oscillations in a gravitationally stratified medium. We assume that this background magnetic field is parallel to the direction of gravitational stratification. It is known that when the equilibrium magnetic field is weak and the background is isothermal, the frequencies of standing IGWs are sensitive to the presence of magnetism. Here, we generalize this result to the case of a slowly varying temperature. To do this, we make use of the Boussinesq approximation. A comparison between the hydrodynamic and magnetohydrodynamic cases allows us to deduce the effects due to a magnetic field. It is shown that the frequency of IGWs may depart significantly from the Brunt-Väisälä frequency, even for a weak magnetic field. The mathematical techniques applied here give a clearer picture of the wave mode identification, which has previously been misinterpreted. An observational test is urged to validate the theoretical findings.
Magnetohydrodynamic Models of Molecular Tornadoes
Au, Kelvin; Fiege, Jason D.
2017-07-01
Recent observations near the Galactic Center (GC) have found several molecular filaments displaying striking helically wound morphology that are collectively known as molecular tornadoes. We investigate the equilibrium structure of these molecular tornadoes by formulating a magnetohydrodynamic model of a rotating, helically magnetized filament. A special analytical solution is derived where centrifugal forces balance exactly with toroidal magnetic stress. From the physics of torsional Alfvén waves we derive a constraint that links the toroidal flux-to-mass ratio and the pitch angle of the helical field to the rotation laws, which we find to be an important component in describing the molecular tornado structure. The models are compared to the Ostriker solution for isothermal, nonmagnetic, nonrotating filaments. We find that neither the analytic model nor the Alfvén wave model suffer from the unphysical density inversions noted by other authors. A Monte Carlo exploration of our parameter space is constrained by observational measurements of the Pigtail Molecular Cloud, the Double Helix Nebula, and the GC Molecular Tornado. Observable properties such as the velocity dispersion, filament radius, linear mass, and surface pressure can be used to derive three dimensionless constraints for our dimensionless models of these three objects. A virial analysis of these constrained models is studied for these three molecular tornadoes. We find that self-gravity is relatively unimportant, whereas magnetic fields and external pressure play a dominant role in the confinement and equilibrium radial structure of these objects.
Smoothed particle hydrodynamics and magnetohydrodynamics
Price, Daniel J.
2012-02-01
This paper presents an overview and introduction to smoothed particle hydrodynamics and magnetohydrodynamics in theory and in practice. Firstly, we give a basic grounding in the fundamentals of SPH, showing how the equations of motion and energy can be self-consistently derived from the density estimate. We then show how to interpret these equations using the basic SPH interpolation formulae and highlight the subtle difference in approach between SPH and other particle methods. In doing so, we also critique several 'urban myths' regarding SPH, in particular the idea that one can simply increase the 'neighbour number' more slowly than the total number of particles in order to obtain convergence. We also discuss the origin of numerical instabilities such as the pairing and tensile instabilities. Finally, we give practical advice on how to resolve three of the main issues with SPMHD: removing the tensile instability, formulating dissipative terms for MHD shocks and enforcing the divergence constraint on the particles, and we give the current status of developments in this area. Accompanying the paper is the first public release of the NDSPMHD SPH code, a 1, 2 and 3 dimensional code designed as a testbed for SPH/SPMHD algorithms that can be used to test many of the ideas and used to run all of the numerical examples contained in the paper.
NDSPMHD Smoothed Particle Magnetohydrodynamics Code
Price, Daniel J.
2011-01-01
This paper presents an overview and introduction to Smoothed Particle Hydrodynamics and Magnetohydrodynamics in theory and in practice. Firstly, we give a basic grounding in the fundamentals of SPH, showing how the equations of motion and energy can be self-consistently derived from the density estimate. We then show how to interpret these equations using the basic SPH interpolation formulae and highlight the subtle difference in approach between SPH and other particle methods. In doing so, we also critique several 'urban myths' regarding SPH, in particular the idea that one can simply increase the 'neighbour number' more slowly than the total number of particles in order to obtain convergence. We also discuss the origin of numerical instabilities such as the pairing and tensile instabilities. Finally, we give practical advice on how to resolve three of the main issues with SPMHD: removing the tensile instability, formulating dissipative terms for MHD shocks and enforcing the divergence constraint on the particles, and we give the current status of developments in this area. Accompanying the paper is the first public release of the NDSPMHD SPH code, a 1, 2 and 3 dimensional code designed as a testbed for SPH/SPMHD algorithms that can be used to test many of the ideas and used to run all of the numerical examples contained in the paper.
Computational algorithms for multiphase magnetohydrodynamics and applications to accelerator targets
R.V. Samulyak
2010-01-01
Full Text Available An interface-tracking numerical algorithm for the simulation of magnetohydrodynamic multiphase/free surface flows in the low-magnetic-Reynolds-number approximation of (Samulyak R., Du J., Glimm J., Xu Z., J. Comp. Phys., 2007, 226, 1532 is described. The algorithm has been implemented in multi-physics code FronTier and used for the simulation of MHD processes in liquids and weakly ionized plasmas. In this paper, numerical simulations of a liquid mercury jet entering strong and nonuniform magnetic field and interacting with a powerful proton pulse have been performed and compared with experiments. Such a mercury jet is a prototype of the proposed Muon Collider/Neutrino Factory, a future particle accelerator. Simulations demonstrate the elliptic distortion of the mercury jet as it enters the magnetic solenoid at a small angle to the magnetic axis, jet-surface instabilities (filamentation induced by the interaction with proton pulses, and the stabilizing effect of the magnetic field.
Relativistic quantum mechanics; Mecanique quantique relativiste
Ollitrault, J.Y. [CEA Saclay, 91 - Gif-sur-Yvette (France). Service de Physique Theorique]|[Universite Pierre et Marie Curie, 75 - Paris (France)
1998-12-01
These notes form an introduction to relativistic quantum mechanics. The mathematical formalism has been reduced to the minimum in order to enable the reader to calculate elementary physical processes. The second quantification and the field theory are the logical followings of this course. The reader is expected to know analytical mechanics (Lagrangian and Hamiltonian), non-relativistic quantum mechanics and some basis of restricted relativity. The purpose of the first 3 chapters is to define the quantum mechanics framework for already known notions about rotation transformations, wave propagation and restricted theory of relativity. The next 3 chapters are devoted to the application of relativistic quantum mechanics to a particle with 0,1/5 and 1 spin value. The last chapter deals with the processes involving several particles, these processes require field theory framework to be thoroughly described. (A.C.) 2 refs.
SpECTRE: A Task-based Discontinuous Galerkin Code for Relativistic Astrophysics
Kidder, Lawrence E; Foucart, Francois; Schnetter, Erik; Teukolsky, Saul A; Bohn, Andy; Deppe, Nils; Diener, Peter; Hébert, François; Lippuner, Jonas; Miller, Jonah; Ott, Christian D; Scheel, Mark A; Vincent, Trevor
2016-01-01
We introduce a new relativistic astrophysics code, SpECTRE, that combines a discontinuous Galerkin method with a task-based parallelism model. SpECTRE's goal is to achieve more accurate solutions for challenging relativistic astrophysics problems such as core-collapse supernovae and binary neutron star mergers. The robustness of the discontinuous Galerkin method allows for the use of high-resolution shock capturing methods in regions where (relativistic) shocks are found, while exploiting high-order accuracy in smooth regions. A task-based parallelism model allows efficient use of the largest supercomputers for problems with a heterogeneous workload over disparate spatial and temporal scales. We argue that the locality and algorithmic structure of discontinuous Galerkin methods will exhibit good scalability within a task-based parallelism framework. We demonstrate the code on a wide variety of challenging benchmark problems in (non)-relativistic (magneto)-hydrodynamics. We demonstrate the code's scalability i...
Thermal-inertial effects on magnetic reconnection in relativistic pair plasmas.
Comisso, Luca; Asenjo, Felipe A
2014-07-25
The magnetic reconnection process is studied in relativistic pair plasmas when the thermal and inertial properties of the magnetohydrodynamical fluid are included. We find that in both Sweet-Parker and Petschek relativistic scenarios there is an increase of the reconnection rate owing to the thermal-inertial effects, both satisfying causality. To characterize the new effects we define a thermal-inertial number which is independent of the relativistic Lundquist number, implying that reconnection can be achieved even for vanishing resistivity as a result of only thermal-inertial effects. The current model has fundamental importance for relativistic collisionless reconnection, as it constitutes the simplest way to get reconnection rates faster than those accessible with the sole resistivity.
Towards relativistic quantum geometry
Ridao, Luis Santiago [Instituto de Investigaciones Físicas de Mar del Plata (IFIMAR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mar del Plata (Argentina); Bellini, Mauricio, E-mail: mbellini@mdp.edu.ar [Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Funes 3350, C.P. 7600, Mar del Plata (Argentina); Instituto de Investigaciones Físicas de Mar del Plata (IFIMAR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mar del Plata (Argentina)
2015-12-17
We obtain a gauge-invariant relativistic quantum geometry by using a Weylian-like manifold with a geometric scalar field which provides a gauge-invariant relativistic quantum theory in which the algebra of the Weylian-like field depends on observers. An example for a Reissner–Nordström black-hole is studied.
Brito, T.; Hudson, M. K.; Kress, B. T.
2011-12-01
The energization and loss processes for energetic radiation belt electrons are not yet well understood. Global simulations using magnetohydrodynamics (MHD) model fields as drivers provide a valuable tool to study the dynamics of these ~MeV energetic particles. We use satellite measurements of the solar wind as the boundary condition for the Lyon-Fedder-Mobarry (LFM) 3D MHD code calculation of fields which then drive electrons in a 3D test particle simulation that keeps track of attributes like energy, pitch-angle and L-shell. Wave-particle interaction can cause both energization and pitch-angle scattering loss. Ultra Low Frequency (ULF) waves resolved by the MHD code have been correlated with both enhancement in outer zone radiation belt electron flux1 and modulation of precipitation loss to the atmosphere2. The time scales seen in several studies linking ULF waves with radiation belt flux increases are usually several hours to a few days1,3, but few studies consider the effects of ULF waves in the Pc-4 to Pc-5 range on electron loss to the atmosphere on a time scale of tens of minutes. We investigate such rapid loss, using measured solar wind input to MHD-test particle simulations for a CME-shock event that occurred on January 21, 2005. We focus on mechanisms by which ULF waves, seen both in the simulations and observations, especially ones driven by pressure variations in the solar wind, influence the radiation belts. ULF modulation was seen in precipitation detected by the MINIS balloon campaign measurements of atmospheric Bremsstrahlung from MeV electron precipitation4. We propose a coherent energization and precipitation mechanism due to trapped electron drift resonance with azimuthally propagating poloidal mode ULF waves during the CME-shock compression of the magnetosphere4; depending on the drift phase, some electrons are energized by the azimuthal electric field pulse and some are de-energized in the perpendicular direction causing them to pitch
Magnetohydrodynamic models of bipolar knotty jet in henize 2-90
Lee, C.; Sahai, R.
2004-01-01
A remarkably linear, bipolar, knotty jet was recently discovered in Hen 2-90, an object classified as a young planetary nebula. Using two-dimensional, magnetohydrodynamic simulations, we investigate periodic variations in jet density and velocity as the mechanism for producing the jet and its knotty structures.
Haverkort, J. W.; de Blank, H. J.; Huysmans, G. T. A.; Pratt, J.; Koren, B.
2016-01-01
Numerical simulations form an indispensable tool to understand the behavior of a hot plasma that is created inside a tokamak for providing nuclear fusion energy. Various aspects of tokamak plasmas have been successfully studied through the reduced magnetohydrodynamic (MHD) model. The need for more c
On the behavior of hyperbolic neutral points in two-dimensional ideal magnetohydrodynamics.
Cordoba, D; Marliani, C
1999-03-16
We study ideal incompressible magnetohydrodynamics in two dimensions. We obtain an exponential estimate on the closing of the angle at hyperbolic saddle points of the magnetic stream function under the assumption that the velocity remains bounded. The analytic results are supported by numerical simulations. These results give evidence against a standard scenario for singularity formation for these equations.