WorldWideScience

Sample records for relativistic magnetized explosions

  1. Special relativistic magnetohydrodynamic simulation of two-component outflow powered by magnetic explosion on compact stars

    Science.gov (United States)

    Matsumoto, Jin; Masada, Youhei; Asano, Eiji; Shibata, Kazunari

    2011-06-01

    The nonlinear dynamics of the outflow driven by magnetic explosion on the surface of compact object is investigated through special relativistic magnetohydrodynamic simulations. We adopt, as an initial equilibrium state, a spherical stellar object embedded in the hydrostatic plasma which has a density ρ(r) ~ r-α and is threaded by a dipole magnetic field. The injection of magnetic energy at the surface of compact star breaks the dynamical equilibrium and triggers two-component outflow. At the early evolutionary stage, the magnetic pressure increases rapidly in time around the stellar surface, initiating a magnetically driven outflow. Then it excites a strong forward shock, shock driven outflow. The expansion velocity of the magnetically driven outflow is characterized by the Alfvén velocity on the stellar surface, and follows a simple scaling relation υmag ~ υA1/2. When the initial density profile declines steeply with radius, the strong shock is accelerated self-similarly to relativistic velocity ahead of the magnetically driven component. We find that the evolution of the strong forward shock can be described by a self-similar relation Γsh ~ rsh, where Γsh is the Lorentz factor of the plasma measured at the shock surface rsh. It should be stressed that the pure hydrodynamic process is responsible for the acceleration of the shock driven outflow. Our two-component outflow model, which is the natural outcome of the magnetic explosion, would deepen the understanding of the magnetic active phenomena on various magnetized stellar objects.

  2. Special Relativistic Magnetohydrodynamic Simulation of a Two-component Outflow Powered by Magnetic Explosion on Compact Stars

    Science.gov (United States)

    Matsumoto, Jin; Masada, Youhei; Asano, Eiji; Shibata, Kazunari

    2011-05-01

    The nonlinear dynamics of outflows driven by magnetic explosion on the surface of a compact star is investigated through special relativistic magnetohydrodynamic simulations. We adopt, as the initial equilibrium state, a spherical stellar object embedded in hydrostatic plasma which has a density ρ(r) vprop r -α and is threaded by a dipole magnetic field. The injection of magnetic energy at the surface of a compact star breaks the equilibrium and triggers a two-component outflow. At the early evolutionary stage, the magnetic pressure increases rapidly around the stellar surface, initiating a magnetically driven outflow. A strong forward shock driven outflow is then excited. The expansion velocity of the magnetically driven outflow is characterized by the Alfvén velocity on the stellar surface and follows a simple scaling relation v mag vprop v A 1/2. When the initial density profile declines steeply with radius, the strong shock is accelerated self-similarly to relativistic velocity ahead of the magnetically driven component. We find that it evolves according to a self-similar relation Γsh vprop r sh, where Γsh is the Lorentz factor of the plasma measured at the shock surface r sh. A purely hydrodynamic process would be responsible for the acceleration mechanism of the shock driven outflow. Our two-component outflow model, which is the natural outcome of the magnetic explosion, can provide a better understanding of the magnetic active phenomena on various magnetized compact stars.

  3. Sub-photospheric shocks in relativistic explosions

    CERN Document Server

    Beloborodov, Andrei M

    2016-01-01

    This paper examines the mechanism of shocks in opaque outflows from astrophysical explosions, in particular in cosmological gamma-ray bursts. Sub-photospheric shocks can produce neutrino emission and affect the observed photospheric radiation from the explosion. Shocks develop from internal compressive waves and can be of different types depending on the composition of the flow: (1) Shocks in `photon gas' with small plasma inertial mass have a unique structure determined by the `force-free' condition -- zero radiation flux in the plasma rest frame. Radiation dominance over plasma inertia suppresses formation of collisionless shocks mediated by collective electromagnetic fields. (2) Strong collisionless subshocks develop in the opaque flow if it is sufficiently magnetized. We evaluate the critical magnetization for this to happen. The collisionless subshock is embedded in a thicker radiation-mediated shock structure. (3) Shocks in outflows carrying a free neutron component involve dissipation through nuclear c...

  4. Explosive Turbulent Magnetic Reconnection

    OpenAIRE

    Higashimori, Katsuaki; Yokoi, Nobumitsu; Hoshino, Masahiro

    2013-01-01

    We report simulation results for turbulent magnetic reconnection obtained using a newly developed Reynolds-averaged magnetohydrodynamics model. We find that the initial Harris current sheet develops in three ways, depending on the strength of turbulence: laminar reconnection, turbulent reconnection, and turbulent diffusion. The turbulent reconnection explosively converts the magnetic field energy into both kinetic and thermal energy of plasmas, and generates open fast reconnection jets. This ...

  5. Magnetic Dissipation in Relativistic Jets

    Directory of Open Access Journals (Sweden)

    Yosuke Mizuno

    2016-10-01

    Full Text Available The most promising mechanisms for producing and accelerating relativistic jets, and maintaining collimated structure of relativistic jets involve magnetohydrodynamical (MHD processes. We have investigated the magnetic dissipation mechanism in relativistic jets via relativistic MHD simulations. We found that the relativistic jets involving a helical magnetic field are unstable for the current-driven kink instability, which leads to helically distorted structure in relativistic jets. We identified the regions of high current density in filamentary current sheets, indicative of magnetic reconnection, which are associated to the kink unstable regions and correlated to the converted regions of magnetic to kinetic energies of the jets. We also found that an over-pressured relativistic jet leads to the generation of a series of stationary recollimation shocks and rarefaction structures by the nonlinear interaction of shocks and rarefaction waves. The differences in the recollimation shock structure due to the difference of the magnetic field topologies and strengths may be observable through mm-VLBI observations and space-VLBI mission.

  6. Particle acceleration in explosive relativistic reconnection events and Crab Nebula gamma-ray flares

    CERN Document Server

    Lyutikov, Maxim; Komissarov, Sergey; Porth, Oliver

    2016-01-01

    We develop a model of particle acceleration in explosive reconnection events in relativistic magnetically-dominated plasmas and apply it to explain gamma-ray flares from the Crab Nebula. The model relies on development of current-driven instabilities on macroscopic scales (not related to plasma skin depths). Using analytical and numerical methods (fluid and particle-in-cell simulations), we study a number of model problems in relativistic magnetically-dominated plasma: (i) we extend Syrovatsky's classical model of explosive X-point collapse to magnetically-dominated plasmas; (ii) we consider instability of two-dimensional force-free system of magnetic flux tubes; (iii) we consider merger of two zero total poloidal current magnetic flux tubes. In all cases regimes of spontaneous and driven evolution are investigated. We identify two stages of particle acceleration: (i) fast explosive prompt X-point collapse and (ii) ensuing island merger. The fastest acceleration occurs during the initial catastrophic X-point ...

  7. Explosive turbulent magnetic reconnection.

    Science.gov (United States)

    Higashimori, K; Yokoi, N; Hoshino, M

    2013-06-21

    We report simulation results for turbulent magnetic reconnection obtained using a newly developed Reynolds-averaged magnetohydrodynamics model. We find that the initial Harris current sheet develops in three ways, depending on the strength of turbulence: laminar reconnection, turbulent reconnection, and turbulent diffusion. The turbulent reconnection explosively converts the magnetic field energy into both kinetic and thermal energy of plasmas, and generates open fast reconnection jets. This fast turbulent reconnection is achieved by the localization of turbulent diffusion. Additionally, localized structure forms through the interaction of the mean field and turbulence.

  8. INVERSE CASCADE OF NONHELICAL MAGNETIC TURBULENCE IN A RELATIVISTIC FLUID

    Energy Technology Data Exchange (ETDEWEB)

    Zrake, Jonathan [Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, Menlo Park, CA 94025 (United States)

    2014-10-20

    The free decay of nonhelical relativistic magnetohydrodynamic turbulence is studied numerically, and found to exhibit cascading of magnetic energy toward large scales. Evolution of the magnetic energy spectrum P{sub M} (k, t) is self-similar in time and well modeled by a broken power law with subinertial and inertial range indices very close to 7/2 and –2, respectively. The magnetic coherence scale is found to grow in time as t {sup 2/5}, much too slow to account for optical polarization of gamma-ray burst afterglow emission if magnetic energy is to be supplied only at microphysical length scales. No bursty or explosive energy loss is observed in relativistic MHD turbulence having modest magnetization, which constrains magnetic reconnection models for rapid time variability of GRB prompt emission, blazars, and the Crab nebula.

  9. Magnetism and rotation in relativistic field theory

    Science.gov (United States)

    Mameda, Kazuya; Yamamoto, Arata

    2016-09-01

    We investigate the analogy between magnetism and rotation in relativistic theory. In nonrelativistic theory, the exact correspondence between magnetism and rotation is established in the presence of an external trapping potential. Based on this, we analyze relativistic rotation under external trapping potentials. A Landau-like quantization is obtained by considering an energy-dependent potential.

  10. On Lorentz invariants in relativistic magnetic reconnection

    Science.gov (United States)

    Yang, Shu-Di; Wang, Xiao-Gang

    2016-08-01

    Lorentz invariants whose nonrelativistic correspondences play important roles in magnetic reconnection are discussed in this paper. Particularly, the relativistic invariant of the magnetic reconnection rate is defined and investigated in a covariant two-fluid model. Certain Lorentz covariant representations for energy conversion and magnetic structures in reconnection processes are also investigated. Furthermore, relativistic measures for topological features of reconnection sites, particularly magnetic nulls and separatrices, are analyzed.

  11. Relativistic Magnetic Reconnection in the Laboratory

    CERN Document Server

    Raymond, A; McKelvey, A; Zulick, C; Alexander, N; Batson, T; Bhattacharjee, A; Campbell, P; Chen, H; Chvykov, V; Del Rio, E; Fitzsimmons, P; Fox, W; Hou, B; Maksimchuk, A; Mileham, C; Nees, J; Nilson, P M; Stoeckl, C; Thomas, A G R; Wei, M S; Yanovsky, V; Willingale, L; Krushelnick, K

    2016-01-01

    Magnetic reconnection is a fundamental plasma process involving an exchange of magnetic energy to plasma kinetic energy through changes in the magnetic field topology. In many astrophysical plasmas magnetic reconnection plays a key role in the release of large amounts of energy \\cite{hoshino1}, although making direct measurements is challenging in the case of high-energy astrophysical systems such as pulsar wind emissions \\cite{lyubarsky1}, gamma-ray bursts \\cite{thompson1}, and jets from active galactic nuclei \\cite{liu1}. Therefore, laboratory studies of magnetic reconnection provide an important platform for testing theories and characterising different regimes. Here we present experimental measurements as well as numerical modeling of relativistic magnetic reconnection driven by short-pulse, high-intensity lasers that produce relativistic plasma along with extremely strong magnetic fields. Evidence of magnetic reconnection was identified by the plasma's X-ray emission patterns, changes to the electron ene...

  12. Resistive Magnetohydrodynamic Simulations of Relativistic Magnetic Reconnection

    Science.gov (United States)

    Zenitani, Seiji; Hesse, Michael; Klimas, Alex

    2010-01-01

    Resistive relativistic magnetohydrodynamic (RRMHD) simulations are applied to investigate the system evolution of relativistic magnetic reconnection. A time-split Harten-Lan-van Leer method is employed. Under a localized resistivity, the system exhibits a fast reconnection jet with an Alfv enic Lorentz factor inside a narrow Petschek-type exhaust. Various shock structures are resolved in and around the plasmoid such as the post-plasmoid vertical shocks and the "diamond-chain" structure due to multiple shock reflections. Under a uniform resistivity, Sweet-Parker-type reconnection slowly evolves. Under a current-dependent resistivity, plasmoids are repeatedly formed in an elongated current sheet. It is concluded that the resistivity model is of critical importance for RRMHD modeling of relativistic magnetic reconnection.

  13. Resistive Magnetohydrodynamic Simulations of Relativistic Magnetic Reconnection

    CERN Document Server

    Zenitani, Seiji; Klimas, Alex

    2010-01-01

    Resistive relativistic magnetohydrodynamic (RRMHD) simulations are applied to investigate the system evolution of relativistic magnetic reconnection. A time-split Harten--Lan--van Leer (HLL) method is employed. Under a localized resistivity, the system exhibits a fast reconnection jet with an Alfv\\'{e}nic Lorentz factor inside a narrow Petschek-type exhaust. Various shock structures are resolved in and around the plasmoid such as the post-plasmoid vertical shocks and the "diamond--chain" structure due to multiple shock reflections. Under a uniform resistivity, Sweet--Parker-type reconnection slowly evolves. Under a current-dependent resistivity, plasmoids are repeatedly formed in an elongated current sheet. It is concluded that the resistivity model is of critical importance for RRMHD modeling of relativistic magnetic reconnection.

  14. The internal structure of magnetized relativistic jets

    CERN Document Server

    Martí, José M; Gómez, José L

    2016-01-01

    This work presents the first characterization of the internal structure of overpressured steady superfast magnetosonic relativistic jets in connection with their dominant type of energy. To this aim, relativistic magnetohydrodynamic simulations of different jet models threaded by a helical magnetic field have been analyzed covering a wide region in the magnetosonic Mach number - specific internal energy plane. The merit of this plane is that models dominated by different types of energy (internal energy: hot jets; rest-mass energy: kinetically dominated jets; magnetic energy: Poynting-flux dominated jets) occupy well separated regions. The analyzed models also cover a wide range of magnetizations. Models dominated by the internal energy (i.e., hot models, or Poynting-flux dominated jets with magnetizations larger than but close to 1) have a rich internal structure characterized by a series of recollimation shocks and present the largest variations in the flow Lorentz factor (and internal energy density). Conv...

  15. Exact Relativistic Magnetized Haloes around Rotating Disks

    Directory of Open Access Journals (Sweden)

    Antonio C. Gutiérrez-Piñeres

    2015-01-01

    Full Text Available The study of the dynamics of magnetic fields in galaxies is one of important problems in formation and evolution of galaxies. In this paper, we present the exact relativistic treatment of a rotating disk surrounded by a magnetized material halo. The features of the halo and disk are described by the distributional energy-momentum tensor of a general fluid in canonical form. All the relevant quantities and the metric and electromagnetic potentials are exactly determined by an arbitrary harmonic function only. For instance, the generalized Kuzmin-disk potential is used. The particular class of solutions obtained is asymptotically flat and satisfies all the energy conditions. Moreover, the motion of a charged particle on the halo is described. As far as we know, this is the first relativistic model describing analytically the magnetized halo of a rotating disk.

  16. Magnetic monopoles and relativistic cosmological models

    Energy Technology Data Exchange (ETDEWEB)

    Stein-Schabes, J.A.

    1984-01-01

    A dissertation is presented on magnetic monopoles and relativistic cosmological models. The maximum number density of monopoles in various astrophysical scenarios was investigated along with: the monopole flux in the galaxy, the allowed monopole abundance, and the formation of stable monopole orbits. Limits on the mass and lifetime of monopolonium were calculated. Boltzmann's equation was used to calculate the monopole abundance in a magnetic axisymmetric Bianchi I cosmological model, and a solution was found describing an axisymmetric Bianchi I magnetic cosmology with monopoles. New inhomogeneous solutions to Einstein's equations were found. Finally, stability and inflation in Kaluza-Klein cosmologies in d + D + 1 dimensions was studied.

  17. Corrugation of relativistic magnetized shock waves

    CERN Document Server

    Lemoine, M; Gremillet, L

    2016-01-01

    As a shock front interacts with turbulence, it develops corrugation which induces outgoing wave modes in the downstream plasma. For a fast shock wave, the incoming wave modes can either be fast magnetosonic waves originating from downstream, outrunning the shock, or eigenmodes of the upstream plasma drifting through the shock. Using linear perturbation theory in relativistic MHD, this paper provides a general analysis of the corrugation of relativistic magnetized fast shock waves resulting from their interaction with small amplitude disturbances. Transfer functions characterizing the linear response for each of the outgoing modes are calculated as a function of the magnetization of the upstream medium and as a function of the nature of the incoming wave. Interestingly, if the latter is an eigenmode of the upstream plasma, we find that there exists a resonance at which the (linear) response of the shock becomes large or even diverges. This result may have profound consequences on the phenomenology of astrophys...

  18. Magnetic collimation of the relativistic jet in M 87

    NARCIS (Netherlands)

    Gracia, JG; Tsinganos, KT; Bogovalov, SV

    2005-01-01

    We apply a two-zone MHD model to the jet of M87. The model consists of an inner relativistic outflow, which is surrounded by a non-nonrelativistic outer disk-wind. The relativistic outer disk-wind collimates very well through magnetic self-collimation and confines the inner relativistic jet into a n

  19. Magnetic Field Structure in Relativistic Jets

    Directory of Open Access Journals (Sweden)

    Jermak Helen

    2013-12-01

    Full Text Available Relativistic jets are ubiquitous when considering an accreting black hole. Two of the most extreme examples of these systems are blazars and gamma-ray bursts (GRBs, the jets of which are thought to be threaded with a magnetic field of unknown structure. The systems are made up of a black hole accreting matter and producing, as a result, relativistic jets of plasma from the poles of the black hole. Both systems are viewed as point sources from Earth, making it impossible to spatially resolve the jet. In order to explore the structure of the magnetic field within the jet we take polarisation measurements with the RINGO polarimeters on the world’s largest fully autonomous, robotic optical telescope: The Liverpool Telescope. Using the polarisation degree and angle measured by the RINGO polarimeters it is possible to distinguish between global magnetic fields created in the central engine and random tangled magnetic fields produced locally in shocks. We also monitor blazar sources regularly during quiescence with periods of flaring monitored more intensively. Reported here are the early polarisation results for GRBs 060418 and 090102, along with future prospects for the Liverpool Telescope and the RINGO polarimeters.

  20. Chiral magnetic plasmons in anomalous relativistic matter

    CERN Document Server

    Gorbar, E V; Shovkovy, I A; Sukhachov, P O

    2016-01-01

    The chiral plasmon modes of relativistic matter in background magnetic and strain-induced pseudomagnetic fields are studied in detail using the consistent chiral kinetic theory. The results reveal a number of anomalous features of these chiral magnetic and pseudomagnetic plasmons that could be used to identify them in experiment. In a system with nonzero electric (chiral) chemical potential, the background magnetic (pseudomagnetic) fields not only modify the values of the plasmon frequencies in the long wavelength limit, but also affect the qualitative dependence on the wave-vector. Similar modifications can be also induced by the chiral shift parameter in Weyl materials. Interestingly, even in the absence of the chiral shift and external fields, the chiral chemical potential alone leads to a splitting of plasmon energies at linear order in the wave vector.

  1. Discrete Self-Similarity in Ultra-Relativistic Type-II Strong Explosions

    CERN Document Server

    Oren, Yonatan; 10.1063/1.3231838

    2009-01-01

    A solution to the ultra-relativistic strong explosion problem with a non-power law density gradient is delineated. We consider a blast wave expanding into a density profile falling off as a steep radial power-law with small, spherically symmetric, and log-periodic density perturbations. We find discretely self-similar solutions to the perturbation equations and compare them to numerical simulations. These results are then generalized to encompass small spherically symmetric perturbations with arbitrary profiles.

  2. The High-Metallicity Explosion Environment of the Relativistic Supernova 2009bb

    CERN Document Server

    Levesque, E M; Foley, R J; Berger, E; Kewley, L J; Chakraborty, S; Ray, A; Torres, M A P; Challis, P; Kirshner, R P; Barthelmy, S D; Bietenholz, M F; Chandra, P; Chaplin, V; Chevalier, R A; Chugai, N; Connaughton, V; Copete, A; Fox, O; Fransson, C; Grindlay, J E; Hamuy, M A; Milne, P A; Pignata, G; Stritzinger, M D; Wieringa, M H

    2009-01-01

    We investigate the environment of the nearby (d ~ 40Mpc) broad-lined Type Ic supernova SN 2009bb. This event was observed to produce a relativistic outflow likely powered by a central accreting compact object. While such a phenomenon was previously observed only in long-duration gamma-ray bursts (LGRBs), no LGRB was detected in association with SN 2009bb. Using an optical spectrum of the SN 2009bb explosion site, we determine a variety of ISM properties for the host environment, including metallicity, young stellar population age, and star formation rate. We compare the SN explosion site properties to observations of LGRB and broad-lined SN Ic host environments on optical emission line ratio diagnostic diagrams. Based on these analyses, we find that the SN 2009bb explosion site has a very high metallicity of ~2x solar, in agreement with other broad-lined SN Ic host environments and at odds with the low-redshift LGRB host environments and recently proposed maximum metallicity limits for relativistic explosions...

  3. Relativistic Engine Based on a Permanent Magnet

    CERN Document Server

    Tuval, Miron

    2015-01-01

    Newton's third law states that any action is countered by a reaction of equal magnitude but opposite direction. The total force in a system not affected by external forces is thus zero. However, according to the principles of relativity a signal can not propagate at speeds exceeding the speed of light. Hence the action cannot be generated at the same time with the reaction due to the relativity of simultaneity, thus the total force cannot be null at a given time. The following is a continuation of a previous paper \\cite{Tuval} in which we analyzed the relativistic effects in a system of two current conducting loops. Here the analysis is repeated but one of the loops is replaced by a permanent magnet. It should be emphasized that although momentum can be created in the {\\bf material} part of the system as described in the following work momentum can not be created in the {\\bf physical} system, hence for any momentum that is acquired by matter an opposite momentum is attributed to the electromagnetic field.

  4. Relativistic Scott correction in self-generated magnetic fields

    DEFF Research Database (Denmark)

    Erdos, Laszlo; Fournais, Søren; Solovej, Jan Philip

    2012-01-01

    /3}$ and it is unchanged by including the self-generated magnetic field. We prove the first correction term to this energy, the so-called Scott correction of the form $S(\\alpha Z) Z^2$. The current paper extends the result of \\cite{SSS} on the Scott correction for relativistic molecules to include a self......-generated magnetic field. Furthermore, we show that the corresponding Scott correction function $S$, first identified in \\cite{SSS}, is unchanged by including a magnetic field. We also prove new Lieb-Thirring inequalities for the relativistic kinetic energy with magnetic fields....

  5. Magnetic field evolution in relativistic unmagnetized collisionless shocks

    CERN Document Server

    Keshet, Uri; Spitkovsky, Anatoly; Waxman, Eli

    2008-01-01

    We study relativistic unmagnetized collisionless shocks using unprecedentedly large particle-in-cell simulations of two-dimensional pair plasma. High energy particles accelerated by the shock are found to drive magnetic field evolution on a time scale >10^4 plasma times. Progressively stronger magnetic fields are generated on larger scales in a growing region around the shock. Shock-generated magnetic fields and accelerated particles carry >1% and >10% of the downstream energy flux respectively. Our results suggest limits on the magnetization of relativistic astrophysical flows.

  6. Aperiodic magnetic turbulence produced by relativistic ion beams

    CERN Document Server

    Niemiec, Jacek; Bret, Antoine; Stroman, Thomas

    2009-01-01

    Magnetic-field generation by a relativistic ion beam propagating through an electron-ion plasma along a homogeneous magnetic field is investigated with 2.5D high-resolution particle-in-cell (PIC) simulations. The studies test predictions of a strong amplification of short-wavelength modes of magnetic turbulence upstream of nonrelativistic and relativistic parallel shocks associated with supernova remnants, jets of active galactic nuclei, and gamma-ray bursts. We find good agreement in the properties of the turbulence observed in our simulations compared with the dispersion relation calculated for linear waves with arbitrary orientation of ${\\vec k}$. Depending on the parameters, the backreaction on the ion beam leads to filamentation of the ambient plasma and the beam, which in turn influences the properties of the magnetic turbulence. For mildly- and ultra-relativistic beams, the instability saturates at field amplitudes a few times larger than the homogeneous magnetic field strength. This result matches our...

  7. Neutrino oscillations in magnetically driven supernova explosions

    Energy Technology Data Exchange (ETDEWEB)

    Kawagoe, Shio; Kotake, Kei [Division of Theoretical Astronomy, National Astronomical Observatory of Japan, 2-21-1, Osawa, Mitaka, Tokyo, 181-8588 (Japan); Takiwaki, Tomoya, E-mail: shio.k@nao.ac.jp, E-mail: takiwaki.tomoya@nao.ac.jp, E-mail: kkotake@th.nao.ac.jp [Center for Computational Astrophysics, National Astronomical Observatory of Japan, 2-21-1, Osawa, Mitaka, Tokyo, 181-8588 (Japan)

    2009-09-01

    We investigate neutrino oscillations from core-collapse supernovae that produce magnetohydrodynamic (MHD) explosions. By calculating numerically the flavor conversion of neutrinos in the highly non-spherical envelope, we study how the explosion anisotropy has impacts on the emergent neutrino spectra through the Mikheyev-Smirnov-Wolfenstein effect. In the case of the inverted mass hierarchy with a relatively large θ{sub 13} (sin{sup 2} 2θ{sub 13} ∼> 10{sup −3}), we show that survival probabilities of ν-bar {sub e} and ν{sub e} seen from the rotational axis of the MHD supernovae (i.e., polar direction), can be significantly different from those along the equatorial direction. The event numbers of ν-bar {sub e} observed from the polar direction are predicted to show steepest decrease, reflecting the passage of the magneto-driven shock to the so-called high-resonance regions. Furthermore we point out that such a shock effect, depending on the original neutrino spectra, appears also for the low-resonance regions, which could lead to a noticeable decrease in the ν{sub e} signals. This reflects a unique nature of the magnetic explosion featuring a very early shock-arrival to the resonance regions, which is in sharp contrast to the neutrino-driven delayed supernova models. Our results suggest that the two features in the ν-bar {sub e} and ν{sub e} signals, if visible to the Super-Kamiokande for a Galactic supernova, could mark an observational signature of the magnetically driven explosions, presumably linked to the formation of magnetars and/or long-duration gamma-ray bursts.

  8. Relativistic collapse and explosion of rotating supermassive stars with thermonuclear effects

    CERN Document Server

    Montero, Pedro J; Mueller, Ewald

    2011-01-01

    We present results of general relativistic simulations of collapsing supermassive stars with and without rotation using the two-dimensional general relativistic numerical code Nada, which solves the Einstein equations written in the BSSN formalism and the general relativistic hydrodynamics equations with high resolution shock capturing schemes. These numerical simulations use an equation of state which includes effects of gas pressure, and in a tabulated form those associated with radiation and the electron-positron pairs. We also take into account the effect of thermonuclear energy released by hydrogen and helium burning. We find that objects with a mass of 5x10^{5} solar mass and an initial metallicity greater than Z_{CNO}~0.007 do explode if non-rotating, while the threshold metallicity for an explosion is reduced to Z_{CNO}~0.001 for objects uniformly rotating. The critical initial metallicity for a thermonuclear explosion increases for stars with mass ~10^{6} solar mass. For those stars that do not explo...

  9. Scaling of Magnetic Reconnection in Relativistic Collisionless Pair Plasmas

    Science.gov (United States)

    Liu, Yi-Hsin; Guo, Fan; Daughton, William; Li, Hui; Hesse, Michael

    2015-01-01

    Using fully kinetic simulations, we study the scaling of the inflow speed of collisionless magnetic reconnection in electron-positron plasmas from the non-relativistic to ultra-relativistic limit. In the anti-parallel configuration, the inflow speed increases with the upstream magnetization parameter sigma and approaches the speed of light when sigma is greater than O(100), leading to an enhanced reconnection rate. In all regimes, the divergence of the pressure tensor is the dominant term responsible for breaking the frozen-in condition at the x-line. The observed scaling agrees well with a simple model that accounts for the Lorentz contraction of the plasma passing through the diffusion region. The results demonstrate that the aspect ratio of the diffusion region, modified by the compression factor of proper density, remains approximately 0.1 in both the non-relativistic and relativistic limits.

  10. Searches for Relativistic Magnetic Monopoles in IceCube

    CERN Document Server

    Aartsen, M G; Ackermann, M; Adams, J; Aguilar, J A; Ahlers, M; Ahrens, M; Altmann, D; Anderson, T; Ansseau, I; Archinger, M; Arguelles, C; Arlen, T C; Auffenberg, J; Bai, X; Barwick, S W; Baum, V; Bay, R; Beatty, J J; Tjus, J Becker; Becker, K -H; Beiser, E; Berghaus, P; Berley, D; Bernardini, E; Bernhard, A; Besson, D Z; Binder, G; Bindig, D; Bissok, M; Blaufuss, E; Blumenthal, J; Boersma, D J; Bohm, C; Börner, M; Bos, F; Bose, D; Böser, S; Botner, O; Braun, J; Brayeur, L; Bretz, H -P; Buzinsky, N; Casey, J; Casier, M; Cheung, E; Chirkin, D; Christov, A; Clark, K; Classen, L; Coenders, S; Cowen, D F; Silva, A H Cruz; Daughhetee, J; Davis, J C; Day, M; de André, J P A M; De Clercq, C; Rosendo, E del Pino; Dembinski, H; De Ridder, S; Desiati, P; de Vries, K D; de Wasseige, G; de With, M; DeYoung, T; Díaz-Vélez, J C; di Lorenzo, V; Dumm, J P; Dunkman, M; Eberhardt, B; Ehrhardt, T; Eichmann, B; Euler, S; Evenson, P A; Fahey, S; Fazely, A R; Feintzeig, J; Felde, J; Filimonov, K; Finley, C; Fischer-Wasels, T; Flis, S; Fösig, C -C; Fuchs, T; Gaisser, T K; Gaior, R; Gallagher, J; Gerhardt, L; Ghorbani, K; Gier, D; Gladstone, L; Glagla, M; Glüsenkamp, T; Goldschmidt, A; Golup, G; Gonzalez, J G; Góra, D; Grant, D; Griffith, Z; Groß, A; Ha, C; Haack, C; Ismail, A Haj; Hallgren, A; Halzen, F; Hansen, E; Hansmann, B; Hanson, K; Hebecker, D; Heereman, D; Helbing, K; Hellauer, R; Hickford, S; Hignight, J; Hill, G C; Hoffman, K D; Hoffmann, R; Holzapfel, K; Homeier, A; Hoshina, K; Huang, F; Huber, M; Huelsnitz, W; Hulth, P O; Hultqvist, K; In, S; Ishihara, A; Jacobi, E; Japaridze, G S; Jeong, M; Jero, K; Jurkovic, M; Kappes, A; Karg, T; Karle, A; Kauer, M; Keivani, A; Kelley, J L; Kemp, J; Kheirandish, A; Kiryluk, J; Kläs, J; Klein, S R; Kohnen, G; Koirala, R; Kolanoski, H; Konietz, R; Köpke, L; Kopper, C; Kopper, S; Koskinen, D J; Kowalski, M; Krings, K; Kroll, G; Kroll, M; Krückl, G; Kunnen, J; Kurahashi, N; Kuwabara, T; Labare, M; Lanfranchi, J L; Larson, M J; Lesiak-Bzdak, M; Leuermann, M; Leuner, J; Lu, L; Lünemann, J; Madsen, J; Maggi, G; Mahn, K B M; Mandelartz, M; Maruyama, R; Mase, K; Matis, H S; Maunu, R; McNally, F; Meagher, K; Medici, M; Meli, A; Menne, T; Merino, G; Meures, T; Miarecki, S; Middell, E; Mohrmann, L; Montaruli, T; Morse, R; Nahnhauer, R; Naumann, U; Neer, G; Niederhausen, H; Nowicki, S C; Nygren, D R; Pollmann, A Obertacke; Olivas, A; Omairat, A; O'Murchadha, A; Palczewski, T; Pandya, H; Pankova, D V; Paul, L; Pepper, J A; Heros, C Pérez de los; Pfendner, C; Pieloth, D; Pinat, E; Posselt, J; Price, P B; Przybylski, G T; Pütz, J; Quinnan, M; Raab, C; Rädel, L; Rameez, M; Rawlins, K; Reimann, R; Relich, M; Resconi, E; Rhode, W; Richman, M; Richter, S; Riedel, B; Robertson, S; Rongen, M; Rott, C; Ruhe, T; Ryckbosch, D; Sabbatini, L; Sander, H -G; Sandrock, A; Sandroos, J; Sarkar, S; Schatto, K; Scheriau, F; Schimp, M; Schmidt, T; Schmitz, M; Schoenen, S; Schöneberg, S; Schönwald, A; Schulte, L; Schumacher, L; Seckel, D; Seunarine, S; Soldin, D; Song, M; Spiczak, G M; Spiering, C; Stahlberg, M; Stamatikos, M; Stanev, T; Stasik, A; Steuer, A; Stezelberger, T; Stokstad, R G; Stößl, A; Ström, R; Strotjohann, N L; Sullivan, G W; Sutherland, M; Taavola, H; Taboada, I; Tatar, J; Ter-Antonyan, S; Terliuk, A; Tešić, G; Tilav, S; Toale, P A; Tobin, M N; Toscano, S; Tosi, D; Tselengidou, M; Turcati, A; Unger, E; Usner, M; Vallecorsa, S; Vandenbroucke, J; van Eijndhoven, N; Vanheule, S; van Santen, J; Veenkamp, J; Vehring, M; Voge, M; Vraeghe, M; Walck, C; Wallace, A; Wallraff, M; Wandkowsky, N; Weaver, Ch; Wendt, C; Westerhoff, S; Whelan, B J; Wiebe, K; Wiebusch, C H; Wille, L; Williams, D R; Wissing, H; Wolf, M; Wood, T R; Woschnagg, K; Xu, D L; Xu, X W; Xu, Y; Yanez, J P; Yodh, G; Yoshida, S; Zoll, M

    2015-01-01

    Various extensions of the Standard Model motivate the existence of stable magnetic monopoles that could have been created during an early high-energy epoch of the Universe. These primordial magnetic monopoles would be gradually accelerated by cosmic magnetic fields and could reach high velocities that make them visible in Cherenkov detectors such as IceCube. Equivalently to electrically charged particles, magnetic monopoles produce direct and indirect Cherenkov light while traversing through matter at relativistic velocities. This paper describes searches for relativistic (v>0.76c) and mildly relativistic (v>0.51c) monopoles, each using one year of data taken in 2008/09 and 2011/12 respectively. No monopole candidate was detected. For a velocity above 0.51c the monopole flux is constrained down to a level of 1.55x10^-18 cm-2 s-1 sr-1. This is an improvement of almost two orders of magnitude over previous limits.

  11. Beaming of particles and synchrotron radiation in relativistic magnetic reconnection

    CERN Document Server

    Kagan, Daniel; Piran, Tsvi

    2016-01-01

    Relativistic reconnection has been invoked as a mechanism for particle acceleration in numerous astrophysical systems. According to idealised analytical models reconnection produces a bulk relativistic outflow emerging from the reconnection sites (X-points). The resulting radiation is therefore highly beamed. Using two-dimensional particle-in-cell (PIC) simulations, we investigate particle and radiation beaming, finding a very different picture. Instead of having a relativistic average bulk motion with isotropic electron velocity distribution in its rest frame, we find that the bulk motion of particles in X-points is similar to their Lorentz factor gamma, and the particles are beamed within about 5/gamma. On the way from the X-point to the magnetic islands, particles turn in the magnetic field, forming a fan confined to the current sheet. Once they reach the islands they isotropise after completing a full Larmor gyration and their radiation is not strongly beamed anymore. The radiation pattern at a given freq...

  12. Search for relativistic magnetic monopoles with the ANTARES neutrino telescope

    NARCIS (Netherlands)

    Adrián-Martínez, S.; Aguilar, J.A.; Kooijman, P.; Zuniga, J.

    2012-01-01

    Magnetic monopoles are predicted in various unified gauge models and could be produced at intermediate mass scales. Their detection in a neutrino telescope is facilitated by the large amount of light emitted compared to that from muons. This paper reports on a search for upgoing relativistic magneti

  13. Relativistic magnetic reconnection at X-type neutral points

    CERN Document Server

    Kojima, Yasufumi; Kato, Yugo E

    2011-01-01

    Relativistic effects in the oscillatory damping of magnetic disturbances near two-dimensional X-points are investigated. By taking into account displacement current, we study new features of extremely magnetized systems, in which the Alfv\\'en velocity is almost the speed of light. The frequencies of the least-damped mode are calculated using linearized relativistic MHD equations for wide ranges of the Lundquist number S and the magnetization parameter $\\sigma$. These timescales approach constant values in the large resistive limit: the oscillation time becomes a few times the light crossing time, irrespective of $\\sigma$, and the decay time is proportional to $\\sigma$ and therefore is longer for a highly magnetized system.

  14. Extragalactic jets with helical magnetic fields: relativistic MHD simulations

    CERN Document Server

    Keppens, R; van der Holst, B; Casse, F

    2008-01-01

    Extragalactic jets are inferred to harbor dynamically important, organized magnetic fields which presumably aid in the collimation of the relativistic jet flows. We here explore by means of grid-adaptive, high resolution numerical simulations the morphology of AGN jets pervaded by helical field and flow topologies. We concentrate on morphological features of the bow shock and the jet beam behind the Mach disk, for various jet Lorentz factors and magnetic field helicities. We investigate the influence of helical magnetic fields on jet beam propagation in overdense external medium. We use the AMRVAC code, employing a novel hybrid block-based AMR strategy, to compute ideal plasma dynamics in special relativity. The helicity of the beam magnetic field is effectively transported down the beam, with compression zones in between diagonal internal cross-shocks showing stronger toroidal field regions. In comparison with equivalent low-relativistic jets which get surrounded by cocoons with vortical backflows filled by ...

  15. Current-driven filamentation upstream of magnetized relativistic collisionless shocks

    CERN Document Server

    Lemoine, M; Gremillet, L; Plotnikov, I

    2014-01-01

    The physics of instabilities in the precursor of relativistic collisionless shocks is of broad importance in high energy astrophysics, because these instabilities build up the shock, control the particle acceleration process and generate the magnetic fields in which the accelerated particles radiate. Two crucial parameters control the micro-physics of these shocks: the magnetization of the ambient medium and the Lorentz factor of the shock front; as of today, much of this parameter space remains to be explored. In the present paper, we report on a new instability upstream of electron-positron relativistic shocks and we argue that this instability shapes the micro-physics at moderate magnetization levels and/or large Lorentz factors. This instability is seeded by the electric current carried by the accelerated particles in the shock precursor as they gyrate around the background magnetic field. The compensation current induced in the background plasma leads to an unstable configuration, with the appearance of ...

  16. Particle Acceleration in Relativistic Magnetized Collisionless Electron-Ion Shocks

    CERN Document Server

    Sironi, Lorenzo

    2010-01-01

    We investigate shock structure and particle acceleration in relativistic magnetized collisionless electron-ion shocks by means of 2.5D particle-in-cell simulations with ion-to-electron mass ratios (m_i/m_e) ranging from 16 to 1000. We explore a range of inclination angles between the pre-shock magnetic field and the shock normal. In "subluminal" shocks, where relativistic particles can escape ahead of the shock along the magnetic field lines, ions are efficiently accelerated via a Fermi-like mechanism. The downstream ion spectrum consists of a relativistic Maxwellian and a high-energy power-law tail, which contains ~5% of ions and ~30% of ion energy. Its slope is -2.1. Upstream electrons enter the shock with lower energy than ions, so they are more strongly tied to the field. As a result, only ~1% of the incoming electrons are Fermi-accelerated at the shock before being advected downstream, where they populate a steep power-law tail (with slope -3.5). For "superluminal" shocks, where relativistic particles ca...

  17. A New Multi-Dimensional General Relativistic Neutrino Hydrodynamics Code for Core-Collapse Supernovae II. Relativistic Explosion Models of Core-Collapse Supernovae

    CERN Document Server

    Mueller, B; Marek, A

    2012-01-01

    We present the first two-dimensional general relativistic (GR) simulations of stellar core collapse and explosion with the CoCoNuT hydrodynamics code in combination with the VERTEX solver for energy-dependent, three-flavor neutrino transport, using the extended conformal flatness condition for approximating the spacetime metric and a ray-by-ray-plus ansatz to tackle the multi-dimensionality of the transport. For both of the investigated 11.2 and 15 solar mass progenitors we obtain successful, though seemingly marginal, neutrino-driven supernova explosions. This outcome and the time evolution of the models basically agree with results previously obtained with the PROMETHEUS hydro solver including an approximative treatment of relativistic effects by a modified Newtonian potential. However, GR models exhibit subtle differences in the neutrinospheric conditions compared to Newtonian and pseudo-Newtonian simulations. These differences lead to significantly higher luminosities and mean energies of the radiated ele...

  18. Microscopic Processes in Global Relativistic Jets Containing Helical Magnetic Fields

    CERN Document Server

    Nishikawa, Ken-Ichi; Niemiec, Jacek; Kobzar, Oleh; Pohl, Martin; Gomez, Jose L; Dutan, Ioana; Pe'er, Asaf; Frederiksen, Jacob Trier; Nordlund, AAke; Meli, Athina; Sol, Helene; Hardee, Philip E; Hartmann, Dieter H

    2016-01-01

    In the study of relativistic jets one of the key open questions is their interaction with the environment on the microscopic level. Here, we study the initial evolution of both electron$-$proton ($e^{-}-p^{+}$) and electron$-$positron ($e^{\\pm}$) relativistic jets containing helical magnetic fields, focusing on their interaction with an ambient plasma. We have performed simulations of "global" jets containing helical magnetic fields in order to examine how helical magnetic fields affect kinetic instabilities such as the Weibel instability, the kinetic Kelvin-Helmholtz instability (kKHI) and the Mushroom instability (MI). In our initial simulation study these kinetic instabilities are suppressed and new types of instabilities can grow. In the $e^{-}-p^{+}$ jet simulation a recollimation-like instability occurs and jet electrons are strongly perturbed. In the $e^{\\pm}$ jet simulation a recollimation-like instability occurs at early times followed by a kinetic instability and the general structure is similar to ...

  19. A relativistic neutron fireball from a supernova explosion as a possible source of chiral influence.

    Science.gov (United States)

    Gusev, G A; Saito, T; Tsarev, V A; Uryson, A V

    2007-06-01

    We elaborate on a previously proposed idea that polarized electrons produced from neutrons, released in a supernova (SN) explosion, can cause chiral dissymmetry of molecules in interstellar gas-dust clouds. A specific physical mechanism of a relativistic neutron fireball with Lorentz factor of the order of 100 is assumed for propelling a great number of free neutrons outside the dense SN shell. A relativistic chiral electron-proton plasma, produced from neutron decays, is slowed down owing to collective effects in the interstellar plasma. As collective effects do not involve the particle spin, the electrons can carry their helicities to the cloud. The estimates show high chiral efficiency of such electrons. In addition to this mechanism, production of circularly polarized ultraviolet photons through polarized-electron bremsstrahlung at an early stage of the fireball evolution is considered. It is shown that these photons can escape from the fireball plasma. However, for an average density of neutrals in the interstellar medium of the order of 0.2 cm(-3) and at distances of the order of 10 pc from the SN, these photons will be absorbed with a factor of about 10(-7) due to the photoeffect. In this case, their chiral efficiency will be about five orders of magnitude less than that for polarized electrons.

  20. Relativistic ejecta from X-ray flash XRF 060218 and the rate of cosmic explosions.

    Science.gov (United States)

    Soderberg, A M; Kulkarni, S R; Nakar, E; Berger, E; Cameron, P B; Fox, D B; Frail, D; Gal-Yam, A; Sari, R; Cenko, S B; Kasliwal, M; Chevalier, R A; Piran, T; Price, P A; Schmidt, B P; Pooley, G; Moon, D-S; Penprase, B E; Ofek, E; Rau, A; Gehrels, N; Nousek, J A; Burrows, D N; Persson, S E; McCarthy, P J

    2006-08-31

    Over the past decade, long-duration gamma-ray bursts (GRBs)--including the subclass of X-ray flashes (XRFs)--have been revealed to be a rare variety of type Ibc supernova. Although all these events result from the death of massive stars, the electromagnetic luminosities of GRBs and XRFs exceed those of ordinary type Ibc supernovae by many orders of magnitude. The essential physical process that causes a dying star to produce a GRB or XRF, and not just a supernova, is still unknown. Here we report radio and X-ray observations of XRF 060218 (associated with supernova SN 2006aj), the second-nearest GRB identified until now. We show that this event is a hundred times less energetic but ten times more common than cosmological GRBs. Moreover, it is distinguished from ordinary type Ibc supernovae by the presence of 10(48) erg coupled to mildly relativistic ejecta, along with a central engine (an accretion-fed, rapidly rotating compact source) that produces X-rays for weeks after the explosion. This suggests that the production of relativistic ejecta is the key physical distinction between GRBs or XRFs and ordinary supernovae, while the nature of the central engine (black hole or magnetar) may distinguish typical bursts from low-luminosity, spherical events like XRF 060218.

  1. Relativistic ejecta from XRF 060218 and the complete census of cosmic explosions

    CERN Document Server

    Soderberg, A M; Burrows, D N; Cameron, P B; Cenko, S B; Chevalier, R A; Fox, D B; Frail, D A; Gal-Yam, A; Gehrels, N; Kasliwal, M; Kulkarni, S R; McCarthy, P J; Moon, D S; Nakar, E; Nousek, J A; Penprase, B E; Perrson, S E; Piran, T; Pooley, G; Price, P A; Sari, R; Schmidt, B P

    2006-01-01

    Over the last decade, long-duration gamma-ray bursts (GRBs) and X-ray flashes (XRFs) have been revealed to be a rare variety of Type Ibc supernova (SN). While all these events result from the death of massive stars, the electromagnetic luminosities of GRBs and XRFs exceed those of ordinary Type Ibc SNe by many orders of magnitude. The essential physical process that causes a dying star to produce a GRB or XRF, and not just an SN, remains the crucial open question. Here we present radio and X-ray observations of XRF 060218 (associated with SN 2006aj), the second nearest GRB identified to-date, which allow us to measure its total energy and place it in the larger context of cosmic explosions. We show that this event is 100 times less energetic but ten times more common than cosmological GRBs. Moreover, it is distinguished from ordinary Type Ibc SNe by the presence of 10^48 erg of mildly-relativistic ejecta, along with a central engine which produces X-rays for weeks after the explosion. This suggests that the p...

  2. Searches for relativistic magnetic monopoles in IceCube

    Energy Technology Data Exchange (ETDEWEB)

    Aartsen, M.G.; Hill, G.C.; Robertson, S.; Wallace, A.; Whelan, B.J. [University of Adelaide, Department of Physics, Adelaide (Australia); Abraham, K.; Bernhard, A.; Coenders, S.; Gross, A.; Holzapfel, K.; Huber, M.; Jurkovic, M.; Krings, K.; Resconi, E.; Turcati, A.; Veenkamp, J. [Technische Universitaet Muenchen, Garching (Germany); Ackermann, M.; Berghaus, P.; Bernardini, E.; Bretz, H.P.; Cruz Silva, A.H.; Gluesenkamp, T.; Gora, D.; Jacobi, E.; Karg, T.; Middell, E.; Mohrmann, L.; Nahnhauer, R.; Schoenwald, A.; Spiering, C.; Stasik, A.; Stoessl, A.; Strotjohann, N.L.; Terliuk, A.; Usner, M.; Santen, J. van; Yanez, J.P. [DESY, Zeuthen (Germany); Adams, J. [University of Canterbury, Department of Physics and Astronomy, Christchurch (New Zealand); Aguilar, J.A.; Ansseau, I.; Heereman, D.; Meagher, K.; Meures, T.; O' Murchadha, A.; Pinat, E.; Raab, C. [Universite Libre de Bruxelles, Brussels (Belgium); Ahlers, M.; Arguelles, C.; Beiser, E.; Braun, J.; Chirkin, D.; Day, M.; Desiati, P.; Diaz-Velez, J.C.; Fahey, S.; Feintzeig, J.; Ghorbani, K.; Gladstone, L.; Griffith, Z.; Halzen, F.; Hanson, K.; Hoshina, K.; Jero, K.; Karle, A.; Kelley, J.L.; Kheirandish, A.; McNally, F.; Merino, G.; Morse, R.; Richter, S.; Sabbatini, L.; Tobin, M.N.; Tosi, D.; Vandenbroucke, J.; Wandkowsky, N.; Wendt, C.; Westerhoff, S.; Wille, L.; Xu, D.L. [University of Wisconsin, Department of Physics and Wisconsin IceCube Particle Astrophysics Center, Madison, WI (United States); Ahrens, M.; Bohm, C.; Dumm, J.P.; Finley, C.; Flis, S.; Hulth, P.O.; Hultqvist, K.; Walck, C.; Wolf, M.; Zoll, M. [Stockholm University, Department of Physics, Oskar Klein Centre, Stockholm (Sweden); Altmann, D.; Classen, L.; Kappes, A.; Tselengidou, M. [Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Erlangen Centre for Astroparticle Physics, Erlangen (Germany); Anderson, T.; Arlen, T.C.; Dunkman, M.; Huang, F.; Keivani, A.; Lanfranchi, J.L.; Pankova, D.V.; Quinnan, M.; Tesic, G. [Pennsylvania State University, Department of Physics, University Park, PA (United States); Archinger, M.; Baum, V.; Boeser, S.; Del Pino Rosendo, E.; Di Lorenzo, V.; Eberhardt, B.; Ehrhardt, T.; Foesig, C.C.; Koepke, L.; Kroll, G.; Krueckl, G.; Sander, H.G.; Sandroos, J.; Schatto, K.; Steuer, A.; Wiebe, K. [University of Mainz, Institute of Physics, Mainz (Germany); Auffenberg, J.; Bissok, M.; Blumenthal, J.; Gier, D.; Glagla, M.; Haack, C.; Hansmann, B.; Kemp, J.; Konietz, R.; Leuermann, M.; Leuner, J.; Paul, L.; Puetz, J.; Raedel, L.; Reimann, R.; Rongen, M.; Schimp, M.; Schoenen, S.; Schumacher, L.; Stahlberg, M.; Vehring, M.; Wallraff, M.; Wiebusch, C.H. [RWTH Aachen University, III. Physikalisches Institut, Aachen (Germany); Bai, X. [South Dakota School of Mines and Technology, Physics Department, Rapid City, SD (United States); Barwick, S.W.; Yodh, G. [University of California, Department of Physics and Astronomy, Irvine, CA (United States); Bay, R.; Filimonov, K.; Price, P.B.; Woschnagg, K. [University of California, Department of Physics, Berkeley, CA (United States); Beatty, J.J. [Ohio State University, Department of Physics and Center for Cosmology and Astro-Particle Physics, Columbus, OH (United States); Ohio State University, Department of Astronomy, Columbus, OH (United States); Tjus, J.B.; Bos, F.; Eichmann, B.; Kroll, M.; Mandelartz, M.; Schoeneberg, S. [Ruhr-Universitaet Bochum, Fakultaet fuer Physik and Astronomie, Bochum (Germany); Becker, K.H.; Bindig, D.; Fischer-Wasels, T.; Helbing, K.; Hickford, S.; Hoffmann, R.; Klaes, J.; Kopper, S.; Naumann, U.; Obertacke Pollmann, A.; Omairat, A.; Posselt, J.; Soldin, D. [University of Wuppertal, Department of Physics, Wuppertal (Germany); Benabderrahmane, M.L. [New York University Abu Dhabi, Abu Dhabi (United Arab Emirates); Berley, D.; Blaufuss, E.; Cheung, E.; Felde, J.; Hellauer, R.; Hoffman, K.D.; Huelsnitz, W.; Maunu, R.; Olivas, A.; Schmidt, T.; Song, M.; Sullivan, G.W.; Wissing, H. [University of Maryland, Department of Physics, College Park, MD (United States); Besson, D.Z. [University of Kansas, Department of Physics and Astronomy, Lawrence, KS (United States); Binder, G.; Gerhardt, L.; Ha, C.; Klein, S.R.; Miarecki, S.; Tatar, J. [University of California, Department of Physics, Berkeley, CA (United States); Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Boersma, D.J.; Botner, O.; Euler, S.; Hallgren, A.; Perez de los Heros, C.; Stroem, R.; Taavola, H.; Unger, E. [Uppsala University, Department of Physics and Astronomy, Box 516, Uppsala (Sweden); and others

    2016-03-15

    Various extensions of the Standard Model motivate the existence of stable magnetic monopoles that could have been created during an early high-energy epoch of the Universe. These primordial magnetic monopoles would be gradually accelerated by cosmic magnetic fields and could reach high velocities that make them visible in Cherenkov detectors such as IceCube. Equivalently to electrically charged particles, magnetic monopoles produce direct and indirect Cherenkov light while traversing through matter at relativistic velocities. This paper describes searches for relativistic (v ≥ 0.76 c) and mildly relativistic (v ≥ 0.51 c) monopoles, each using one year of data taken in 2008/2009 and 2011/2012, respectively. No monopole candidate was detected. For a velocity above 0.51 c the monopole flux is constrained down to a level of 1.55 x 10{sup -18} cm{sup -2} s{sup -1} sr{sup -1}. This is an improvement of almost two orders of magnitude over previous limits. (orig.)

  3. Searches for relativistic magnetic monopoles in IceCube

    Science.gov (United States)

    Aartsen, M. G.; Abraham, K.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Ahrens, M.; Altmann, D.; Anderson, T.; Ansseau, I.; Archinger, M.; Arguelles, C.; Arlen, T. C.; Auffenberg, J.; Bai, X.; Barwick, S. W.; Baum, V.; Bay, R.; Beatty, J. J.; Tjus, J. Becker; Becker, K.-H.; Beiser, E.; Benabderrahmane, M. L.; Berghaus, P.; Berley, D.; Bernardini, E.; Bernhard, A.; Besson, D. Z.; Binder, G.; Bindig, D.; Bissok, M.; Blaufuss, E.; Blumenthal, J.; Boersma, D. J.; Bohm, C.; Börner, M.; Bos, F.; Bose, D.; Böser, S.; Botner, O.; Braun, J.; Brayeur, L.; Bretz, H.-P.; Buzinsky, N.; Casey, J.; Casier, M.; Cheung, E.; Chirkin, D.; Christov, A.; Clark, K.; Classen, L.; Coenders, S.; Cowen, D. F.; Cruz Silva, A. H.; Daughhetee, J.; Davis, J. C.; Day, M.; de André, J. P. A. M.; De Clercq, C.; del Pino Rosendo, E.; Dembinski, H.; De Ridder, S.; Desiati, P.; de Vries, K. D.; de Wasseige, G.; de With, M.; DeYoung, T.; Díaz-Vélez, J. C.; di Lorenzo, V.; Dumm, J. P.; Dunkman, M.; Eberhardt, B.; Ehrhardt, T.; Eichmann, B.; Euler, S.; Evenson, P. A.; Fahey, S.; Fazely, A. R.; Feintzeig, J.; Felde, J.; Filimonov, K.; Finley, C.; Fischer-Wasels, T.; Flis, S.; Fösig, C.-C.; Fuchs, T.; Gaisser, T. K.; Gaior, R.; Gallagher, J.; Gerhardt, L.; Ghorbani, K.; Gier, D.; Gladstone, L.; Glagla, M.; Glüsenkamp, T.; Goldschmidt, A.; Golup, G.; Gonzalez, J. G.; Góra, D.; Grant, D.; Griffith, Z.; Groß, A.; Ha, C.; Haack, C.; Haj Ismail, A.; Hallgren, A.; Halzen, F.; Hansen, E.; Hansmann, B.; Hanson, K.; Hebecker, D.; Heereman, D.; Helbing, K.; Hellauer, R.; Hickford, S.; Hignight, J.; Hill, G. C.; Hoffman, K. D.; Hoffmann, R.; Holzapfel, K.; Homeier, A.; Hoshina, K.; Huang, F.; Huber, M.; Huelsnitz, W.; Hulth, P. O.; Hultqvist, K.; In, S.; Ishihara, A.; Jacobi, E.; Japaridze, G. S.; Jeong, M.; Jero, K.; Jurkovic, M.; Kappes, A.; Karg, T.; Karle, A.; Kauer, M.; Keivani, A.; Kelley, J. L.; Kemp, J.; Kheirandish, A.; Kiryluk, J.; Kläs, J.; Klein, S. R.; Kohnen, G.; Koirala, R.; Kolanoski, H.; Konietz, R.; Köpke, L.; Kopper, C.; Kopper, S.; Koskinen, D. J.; Kowalski, M.; Krings, K.; Kroll, G.; Kroll, M.; Krückl, G.; Kunnen, J.; Kurahashi, N.; Kuwabara, T.; Labare, M.; Lanfranchi, J. L.; Larson, M. J.; Lesiak-Bzdak, M.; Leuermann, M.; Leuner, J.; Lu, L.; Lünemann, J.; Madsen, J.; Maggi, G.; Mahn, K. B. M.; Mandelartz, M.; Maruyama, R.; Mase, K.; Matis, H. S.; Maunu, R.; McNally, F.; Meagher, K.; Medici, M.; Meli, A.; Menne, T.; Merino, G.; Meures, T.; Miarecki, S.; Middell, E.; Mohrmann, L.; Montaruli, T.; Morse, R.; Nahnhauer, R.; Naumann, U.; Neer, G.; Niederhausen, H.; Nowicki, S. C.; Nygren, D. R.; Obertacke Pollmann, A.; Olivas, A.; Omairat, A.; O'Murchadha, A.; Palczewski, T.; Pandya, H.; Pankova, D. V.; Paul, L.; Pepper, J. A.; Pérez de los Heros, C.; Pfendner, C.; Pieloth, D.; Pinat, E.; Posselt, J.; Price, P. B.; Przybylski, G. T.; Pütz, J.; Quinnan, M.; Raab, C.; Rädel, L.; Rameez, M.; Rawlins, K.; Reimann, R.; Relich, M.; Resconi, E.; Rhode, W.; Richman, M.; Richter, S.; Riedel, B.; Robertson, S.; Rongen, M.; Rott, C.; Ruhe, T.; Ryckbosch, D.; Sabbatini, L.; Sander, H.-G.; Sandrock, A.; Sandroos, J.; Sarkar, S.; Schatto, K.; Scheriau, F.; Schimp, M.; Schmidt, T.; Schmitz, M.; Schoenen, S.; Schöneberg, S.; Schönwald, A.; Schulte, L.; Schumacher, L.; Seckel, D.; Seunarine, S.; Soldin, D.; Song, M.; Spiczak, G. M.; Spiering, C.; Stahlberg, M.; Stamatikos, M.; Stanev, T.; Stasik, A.; Steuer, A.; Stezelberger, T.; Stokstad, R. G.; Stößl, A.; Ström, R.; Strotjohann, N. L.; Sullivan, G. W.; Sutherland, M.; Taavola, H.; Taboada, I.; Tatar, J.; Ter-Antonyan, S.; Terliuk, A.; Tešić, G.; Tilav, S.; Toale, P. A.; Tobin, M. N.; Toscano, S.; Tosi, D.; Tselengidou, M.; Turcati, A.; Unger, E.; Usner, M.; Vallecorsa, S.; Vandenbroucke, J.; van Eijndhoven, N.; Vanheule, S.; van Santen, J.; Veenkamp, J.; Vehring, M.; Voge, M.; Vraeghe, M.; Walck, C.; Wallace, A.; Wallraff, M.; Wandkowsky, N.; Weaver, Ch.; Wendt, C.; Westerhoff, S.; Whelan, B. J.; Wiebe, K.; Wiebusch, C. H.; Wille, L.; Williams, D. R.; Wissing, H.; Wolf, M.; Wood, T. R.; Woschnagg, K.; Xu, D. L.; Xu, X. W.; Xu, Y.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Zoll, M.

    2016-03-01

    Various extensions of the Standard Model motivate the existence of stable magnetic monopoles that could have been created during an early high-energy epoch of the Universe. These primordial magnetic monopoles would be gradually accelerated by cosmic magnetic fields and could reach high velocities that make them visible in Cherenkov detectors such as IceCube. Equivalently to electrically charged particles, magnetic monopoles produce direct and indirect Cherenkov light while traversing through matter at relativistic velocities. This paper describes searches for relativistic (vge 0.76c) and mildly relativistic (vge 0.51c) monopoles, each using one year of data taken in 2008/2009 and 2011/2012, respectively. No monopole candidate was detected. For a velocity above 0.51 c the monopole flux is constrained down to a level of 1.55 × 10^{-18} text {cm}^{-2} text {s}^{-1} text {sr}^{-1}. This is an improvement of almost two orders of magnitude over previous limits.

  4. Search for Relativistic Magnetic Monopoles with IceCube

    CERN Document Server

    Abbasi, R; Ackermann, M; Adams, J; Aguilar, J A; Ahlers, M; Altmann, D; Andeen, K; Auffenberg, J; Bai, X; Baker, M; Barwick, S W; Baum, V; Bay, R; Beattie, K; Beatty, J J; Bechet, S; Tjus, J Becker; Becker, K -H; Bell, M; Benabderrahmane, M L; BenZvi, S; Berdermann, J; Berghaus, P; Berley, D; Bernardini, E; Bertrand, D; Besson, D Z; Bindig, D; Bissok, M; Blaufuss, E; Blumenthal, J; Boersma, D J; Bohm, C; Bose, D; Böser, S; Botner, O; Brayeur, L; Brown, A M; Bruijn, R; Brunner, J; Buitink, S; Carson, M; Casey, J; Casier, M; Chirkin, D; Christy, B; Clevermann, F; Cohen, S; Cowen, D F; Silva, A H Cruz; Danninger, M; Daughhetee, J; Davis, J C; De Clercq, C; Descamps, F; Desiati, P; de Vries-Uiterweerd, G; DeYoung, T; Díaz-Vélez, J C; Dreyer, J; Dumm, J P; Dunkman, M; Eagan, R; Eisch, J; Ellsworth, R W; Engdegård, O; Euler, S; Evenson, P A; Fadiran, O; Fazely, A R; Fedynitch, A; Feintzeig, J; Feusels, T; Filimonov, K; Finley, C; Fischer-Wasels, T; Flis, S; Franckowiak, A; Franke, R; Frantzen, K; Fuchs, T; Gaisser, T K; Gallagher, J; Gerhardt, L; Gladstone, L; Glüsenkamp, T; Goldschmidt, A; Goodman, J A; Góra, D; Grant, D; Groß, A; Grullon, S; Gurtner, M; Ha, C; Ismail, A Haj; Hallgren, A; Halzen, F; Hanson, K; Heereman, D; Heimann, P; Heinen, D; Helbing, K; Hellauer, R; Hickford, S; Hill, G C; Hoffman, K D; Hoffmann, R; Homeier, A; Hoshina, K; Huelsnitz, W; Hulth, P O; Hultqvist, K; Hussain, S; Ishihara, A; Jacobi, E; Jacobsen, J; Japaridze, G S; Jlelati, O; Kappes, A; Karg, T; Karle, A; Kiryluk, J; Kislat, F; Kläs, J; Klein, S R; Köhne, J -H; Kohnen, G; Kolanoski, H; Köpke, L; Kopper, C; Kopper, S; Koskinen, D J; Kowalski, M; Krasberg, M; Kroll, G; Kunnen, J; Kurahashi, N; Kuwabara, T; Labare, M; Laihem, K; Landsman, H; Larson, M J; Lauer, R; Lesiak-Bzdak, M; Lünemann, J; Madsen, J; Maruyama, R; Mase, K; Matis, H S; McNally, F; Meagher, K; Merck, M; Mészáros, P; Meures, T; Miarecki, S; Middell, E; Milke, N; Miller, J; Mohrmann, L; Montaruli, T; Morse, R; Movit, S M; Nahnhauer, R; Naumann, U; Nowicki, S C; Nygren, D R; Obertacke, A; Odrowski, S; Olivas, A; Olivo, M; O'Murchadha, A; Panknin, S; Paul, L; Pepper, J A; Heros, C Pérez de los; Pieloth, D; Pirk, N; Posselt, J; Price, P B; Przybylski, G T; Rädel, L; Rawlins, K; Redl, P; Resconi, E; Rhode, W; Ribordy, M; Richman, M; Riedel, B; Rodrigues, J P; Rothmaier, F; Rott, C; Ruhe, T; Ruzybayev, B; Ryckbosch, D; Saba, S M; Salameh, T; Sander, H -G; Santander, M; Sarkar, S; Schatto, K; Scheel, M; Scheriau, F; Schmidt, T; Schmitz, M; Schoenen, S; Schöneberg, S; Schönherr, L; Schönwald, A; Schukraft, A; Schulte, L; Schulz, O; Seckel, D; Seo, S H; Sestayo, Y; Seunarine, S; Smith, M W E; Soiron, M; Soldin, D; Spiczak, G M; Spiering, C; Stamatikos, M; Stanev, T; Stasik, A; Stezelberger, T; Stokstad, R G; Stößl, A; Strahler, E A; Ström, R; Sullivan, G W; Taavola, H; Taboada, I; Tamburro, A; Ter-Antonyan, S; Tilav, S; Toale, P A; Toscano, S; Usner, M; van der Drift, D; van Eijndhoven, N; Van Overloop, A; van Santen, J; Vehring, M; Voge, M; Walck, C; Waldenmaier, T; Wallraff, M; Walter, M; Wasserman, R; Weaver, Ch; Wendt, C; Westerhoff, S; Whitehorn, N; Wiebe, K; Wiebusch, C H; Williams, D R; Wissing, H; Wolf, M; Wood, T R; Woschnagg, K; Xu, C; Xu, D L; Xu, X W; Yanez, J P; Yodh, G; Yoshida, S; Zarzhitsky, P; Ziemann, J; Zilles, A; Zoll, M

    2012-01-01

    We present the first results in the search for relativistic magnetic monopoles with the IceCube detector, a subsurface neutrino telescope located in the South Polar ice cap containing a volume of 1 km$^{3}$. This analysis searches data taken on the partially completed detector during 2007 when roughly 0.2 km$^{3}$ of ice was instrumented. The lack of candidate events leads to an upper limit on the flux of relativistic magnetic monopoles of $\\Phi_{\\mathrm{90%C.L.}}\\sim 3\\e{-18}\\fluxunits$ for $\\beta\\geq0.8$. This is a factor of 4 improvement over the previous best experimental flux limits up to a Lorentz boost $\\gamma$ below $10^{7}$. This result is then interpreted for a wide range of mass and kinetic energy values.

  5. On Magnetic Self-Collimation of Relativistic Jets

    Science.gov (United States)

    Globus, N.; Cayatte, V.; Sauty, C.

    We present a semi-analytical model using the equations of general relativistic magnetohydrodynamics (GRMHD) for jets emitted by a rotating black hole. We assume steady axisymmetric outflows of a relativistic ideal fluid in Kerr metrics. We express the conservation equations in the frame of the FIDucial Observer (FIDO or ZAMO) using a 3+1 space-time splitting. Calculating the total energy variation between a non-polar field line and the polar axis, we extend to the Kerr metric the simple criterion for the magnetic collimation of jets obtained for a nonrotating black hole by Meliani et al.10 We show that the black role rotation induced a more efficient magnetic collimation of the jet.

  6. Search for relativistic magnetic monopoles with IceCube

    Science.gov (United States)

    Abbasi, R.; Abdou, Y.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Altmann, D.; Andeen, K.; Auffenberg, J.; Bai, X.; Baker, M.; Barwick, S. W.; Baum, V.; Bay, R.; Beattie, K.; Beatty, J. J.; Bechet, S.; Becker Tjus, J.; Becker, K.-H.; Bell, M.; Benabderrahmane, M. L.; BenZvi, S.; Berdermann, J.; Berghaus, P.; Berley, D.; Bernardini, E.; Bertrand, D.; Besson, D. Z.; Bindig, D.; Bissok, M.; Blaufuss, E.; Blumenthal, J.; Boersma, D. J.; Bohm, C.; Bose, D.; Böser, S.; Botner, O.; Brayeur, L.; Brown, A. M.; Bruijn, R.; Brunner, J.; Buitink, S.; Carson, M.; Casey, J.; Casier, M.; Chirkin, D.; Christy, B.; Clevermann, F.; Cohen, S.; Cowen, D. F.; Cruz Silva, A. H.; Danninger, M.; Daughhetee, J.; Davis, J. C.; De Clercq, C.; Descamps, F.; Desiati, P.; de Vries-Uiterweerd, G.; DeYoung, T.; Díaz-Vélez, J. C.; Dreyer, J.; Dumm, J. P.; Dunkman, M.; Eagan, R.; Eisch, J.; Ellsworth, R. W.; Engdegård, O.; Euler, S.; Evenson, P. A.; Fadiran, O.; Fazely, A. R.; Fedynitch, A.; Feintzeig, J.; Feusels, T.; Filimonov, K.; Finley, C.; Fischer-Wasels, T.; Flis, S.; Franckowiak, A.; Franke, R.; Frantzen, K.; Fuchs, T.; Gaisser, T. K.; Gallagher, J.; Gerhardt, L.; Gladstone, L.; Glüsenkamp, T.; Goldschmidt, A.; Goodman, J. A.; Góra, D.; Grant, D.; Groß, A.; Grullon, S.; Gurtner, M.; Ha, C.; Haj Ismail, A.; Hallgren, A.; Halzen, F.; Hanson, K.; Heereman, D.; Heimann, P.; Heinen, D.; Helbing, K.; Hellauer, R.; Hickford, S.; Hill, G. C.; Hoffman, K. D.; Hoffmann, R.; Homeier, A.; Hoshina, K.; Huelsnitz, W.; Hulth, P. O.; Hultqvist, K.; Hussain, S.; Ishihara, A.; Jacobi, E.; Jacobsen, J.; Japaridze, G. S.; Jlelati, O.; Kappes, A.; Karg, T.; Karle, A.; Kiryluk, J.; Kislat, F.; Kläs, J.; Klein, S. R.; Köhne, J.-H.; Kohnen, G.; Kolanoski, H.; Köpke, L.; Kopper, C.; Kopper, S.; Koskinen, D. J.; Kowalski, M.; Krasberg, M.; Kroll, G.; Kunnen, J.; Kurahashi, N.; Kuwabara, T.; Labare, M.; Laihem, K.; Landsman, H.; Larson, M. J.; Lauer, R.; Lesiak-Bzdak, M.; Lünemann, J.; Madsen, J.; Maruyama, R.; Mase, K.; Matis, H. S.; McNally, F.; Meagher, K.; Merck, M.; Mészáros, P.; Meures, T.; Miarecki, S.; Middell, E.; Milke, N.; Miller, J.; Mohrmann, L.; Montaruli, T.; Morse, R.; Movit, S. M.; Nahnhauer, R.; Naumann, U.; Nowicki, S. C.; Nygren, D. R.; Obertacke, A.; Odrowski, S.; Olivas, A.; Olivo, M.; O'Murchadha, A.; Panknin, S.; Paul, L.; Pepper, J. A.; Pérez de los Heros, C.; Pieloth, D.; Pirk, N.; Posselt, J.; Price, P. B.; Przybylski, G. T.; Rädel, L.; Rawlins, K.; Redl, P.; Resconi, E.; Rhode, W.; Ribordy, M.; Richman, M.; Riedel, B.; Rodrigues, J. P.; Rothmaier, F.; Rott, C.; Ruhe, T.; Ruzybayev, B.; Ryckbosch, D.; Saba, S. M.; Salameh, T.; Sander, H.-G.; Santander, M.; Sarkar, S.; Schatto, K.; Scheel, M.; Scheriau, F.; Schmidt, T.; Schmitz, M.; Schoenen, S.; Schöneberg, S.; Schönherr, L.; Schönwald, A.; Schukraft, A.; Schulte, L.; Schulz, O.; Seckel, D.; Seo, S. H.; Sestayo, Y.; Seunarine, S.; Smith, M. W. E.; Soiron, M.; Soldin, D.; Spiczak, G. M.; Spiering, C.; Stamatikos, M.; Stanev, T.; Stasik, A.; Stezelberger, T.; Stokstad, R. G.; Stößl, A.; Strahler, E. A.; Ström, R.; Sullivan, G. W.; Taavola, H.; Taboada, I.; Tamburro, A.; Ter-Antonyan, S.; Tilav, S.; Toale, P. A.; Toscano, S.; Usner, M.; van der Drift, D.; van Eijndhoven, N.; Van Overloop, A.; van Santen, J.; Vehring, M.; Voge, M.; Walck, C.; Waldenmaier, T.; Wallraff, M.; Walter, M.; Wasserman, R.; Weaver, Ch.; Wendt, C.; Westerhoff, S.; Whitehorn, N.; Wiebe, K.; Wiebusch, C. H.; Williams, D. R.; Wissing, H.; Wolf, M.; Wood, T. R.; Woschnagg, K.; Xu, C.; Xu, D. L.; Xu, X. W.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Zarzhitsky, P.; Ziemann, J.; Zilles, A.; Zoll, M.

    2013-01-01

    We present the first results in the search for relativistic magnetic monopoles with the IceCube detector, a subsurface neutrino telescope located in the South Polar ice cap containing a volume of 1km3. This analysis searches data taken on the partially completed detector during 2007 when roughly 0.2km3 of ice was instrumented. The lack of candidate events leads to an upper limit on the flux of relativistic magnetic monopoles of Φ90%C.L.˜3×10-18cm-2sr-1s-1 for β≥0.8. This is a factor of 4 improvement over the previous best experimental flux limits up to a Lorentz boost γ below 107. This result is then interpreted for a wide range of mass and kinetic energy values.

  7. Relativistic Scott correction in self-generated magnetic fields

    DEFF Research Database (Denmark)

    Erdös, Laszlo; Fournais, Søren; Solovej, Jan Philip

    2012-01-01

    We consider a large neutral molecule with total nuclear charge $Z$ in a model with self-generated classical magnetic field and where the kinetic energy of the electrons is treated relativistically. To ensure stability, we assume that $Z \\alpha .../3}$ and it is unchanged by including the self-generated magnetic field. We prove the first correction term to this energy, the so-called Scott correction of the form $S(\\alpha Z) Z^2$. The current paper extends the result of \\cite{SSS} on the Scott correction for relativistic molecules to include a self-generated...... constant. We are interested in the ground state energy in the simultaneous limit $Z \\rightarrow \\infty$, $\\alpha \\rightarrow 0$ such that $\\kappa=Z \\alpha$ is fixed. The leading term in the energy asymptotics is independent of $\\kappa$, it is given by the Thomas-Fermi energy of order $Z^{7...

  8. Effect of Magnetic Fields on Explosive Welding of Metals and Explosive Compaction of Powders

    Science.gov (United States)

    Shvetsov, G. A.; Mali, V. I.; Bashkatov, Yu. L.; Anisimov, A. G.; Matrosov, A. D.; Teslenko, T. S.

    2005-07-01

    Explosive welding and explosive compaction of powders are new technologies for producing composite materials, which have been actively studied in recent decades. Considerable experience has been accumulated in producing composite materials with new physical properties, and these materials have been widely used in industry. At the same time, these technologies have certain limitations for high-temperature materials. The present research into the influence of magnetic fields on the explosive welding of metals and the explosive compaction of powders seeks to extend the possibilities of the indicated technologies. The results of the first experiments have shown that the use of magnetic fields holds promise for extending the possibilities of material welding and powder compaction.

  9. A NEW MULTI-DIMENSIONAL GENERAL RELATIVISTIC NEUTRINO HYDRODYNAMICS CODE FOR CORE-COLLAPSE SUPERNOVAE. II. RELATIVISTIC EXPLOSION MODELS OF CORE-COLLAPSE SUPERNOVAE

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, Bernhard; Janka, Hans-Thomas; Marek, Andreas, E-mail: bjmuellr@mpa-garching.mpg.de, E-mail: thj@mpa-garching.mpg.de [Max-Planck-Institut fuer Astrophysik, Karl-Schwarzschild-Str. 1, D-85748 Garching (Germany)

    2012-09-01

    We present the first two-dimensional general relativistic (GR) simulations of stellar core collapse and explosion with the COCONUT hydrodynamics code in combination with the VERTEX solver for energy-dependent, three-flavor neutrino transport, using the extended conformal flatness condition for approximating the space-time metric and a ray-by-ray-plus ansatz to tackle the multi-dimensionality of the transport. For both of the investigated 11.2 and 15 M{sub Sun} progenitors we obtain successful, though seemingly marginal, neutrino-driven supernova explosions. This outcome and the time evolution of the models basically agree with results previously obtained with the PROMETHEUS hydro solver including an approximative treatment of relativistic effects by a modified Newtonian potential. However, GR models exhibit subtle differences in the neutrinospheric conditions compared with Newtonian and pseudo-Newtonian simulations. These differences lead to significantly higher luminosities and mean energies of the radiated electron neutrinos and antineutrinos and therefore to larger energy-deposition rates and heating efficiencies in the gain layer with favorable consequences for strong nonradial mass motions and ultimately for an explosion. Moreover, energy transfer to the stellar medium around the neutrinospheres through nucleon recoil in scattering reactions of heavy-lepton neutrinos also enhances the mentioned effects. Together with previous pseudo-Newtonian models, the presented relativistic calculations suggest that the treatment of gravity and energy-exchanging neutrino interactions can make differences of even 50%-100% in some quantities and is likely to contribute to a finally successful explosion mechanism on no minor level than hydrodynamical differences between different dimensions.

  10. Relativistic Magnetic Reconnection in Pair Plasmas in Three Dimensions

    CERN Document Server

    Kagan, Daniel; Spitkovsky, Anatoly

    2012-01-01

    We investigate guide-field magnetic reconnection and particle acceleration in relativistic pair plasmas with three-dimensional particle-in-cell (PIC) simulations of a kinetic-scale current sheet in a periodic geometry at low magnetizations. The tearing instability is the dominant mode in the current sheet for all guide field strengths, while the linear kink mode is less important even without guide field. Oblique modes seem to be suppressed entirely. In its nonlinear evolution, the reconnection layer develops a network of interconnected and interacting magnetic flux ropes. As smaller flux ropes merge into larger ones, the reconnection layer evolves toward a three-dimensional, disordered state in which the resulting flux rope segments contain magnetic substructure on plasma skin depth scales. Embedded in the flux ropes, we detect spatially and temporally intermittent sites of dissipation reflected in peaks in the parallel electric field. Magnetic dissipation and particle acceleration persist until the end of t...

  11. Particle acceleration, magnetization and radiation in relativistic shocks

    Science.gov (United States)

    Derishev, Evgeny V.; Piran, Tsvi

    2016-08-01

    The mechanisms of particle acceleration and radiation, as well as magnetic field build-up and decay in relativistic collisionless shocks, are open questions with important implications to various phenomena in high-energy astrophysics. While the Weibel instability is possibly responsible for magnetic field build-up and diffusive shock acceleration is a model for acceleration, both have problems and current particle-in-cell simulations show that particles are accelerated only under special conditions and the magnetic field decays on a very short length-scale. We present here a novel model for the structure and the emission of highly relativistic collisionless shocks. The model takes into account (and is based on) non-local energy and momentum transport across the shock front via emission and absorption of high-energy photons. This leads to a pre-acceleration of the fluid and pre-amplification of the magnetic fields in the upstream region. Both have drastic implications on the shock structure. The model explains the persistence of the shock-generated magnetic field at large distances from the shock front. The dissipation of this magnetic field results in a continuous particle acceleration within the downstream region. A unique feature of the model is the existence of an `attractor', towards which any shock will evolve. The model is applicable to any relativistic shock, but its distinctive features show up only for sufficiently large compactness. We demonstrate that prompt and afterglow gamma-ray bursts' shocks satisfy the relevant conditions, and we compare their observations with the predictions of the model.

  12. Moments of inertia of relativistic magnetized stars

    OpenAIRE

    Konno, K

    2001-01-01

    We consider principal moments of inertia of axisymmetric, magnetically deformed stars in the context of general relativity. The general expression for the moment of inertia with respect to the symmetric axis is obtained. The numerical estimates are derived for several polytropic stellar models. We find that the values of the principal moments of inertia are modified by a factor of 2 at most from Newtonian estimates.

  13. Spherical magnetic nanoparticles fabricated by electric explosion of wire

    Science.gov (United States)

    Kurlyandskaya, G. V.; Bhagat, S. M.; Safronov, A. P.; Beketov, I. V.; Larrañaga, A.

    2011-12-01

    We report the first use of an electrophysical method of electric explosion of wire for preparing magnetic nanoparticles of iron oxide. X-ray diffraction, transmission electron microscopy, magnetization and magnetic resonance measurements were comparatively analyzed. They indicated that the shape of magnetic nanoparticles is close to being spherical. The production order of 100g per hour by this method is advantageous when a large amount of material is needed for applications.

  14. Microscopic Processes in Global Relativistic Jets Containing Helical Magnetic Fields

    Directory of Open Access Journals (Sweden)

    Ken-Ichi Nishikawa

    2016-09-01

    Full Text Available In the study of relativistic jets one of the key open questions is their interaction with the environment on the microscopic level. Here, we study the initial evolution of both electron–proton ( e − – p + and electron–positron ( e ± relativistic jets containing helical magnetic fields, focusing on their interaction with an ambient plasma. We have performed simulations of “global” jets containing helical magnetic fields in order to examine how helical magnetic fields affect kinetic instabilities such as the Weibel instability, the kinetic Kelvin-Helmholtz instability (kKHI and the Mushroom instability (MI. In our initial simulation study these kinetic instabilities are suppressed and new types of instabilities can grow. In the e − – p + jet simulation a recollimation-like instability occurs and jet electrons are strongly perturbed. In the e ± jet simulation a recollimation-like instability occurs at early times followed by a kinetic instability and the general structure is similar to a simulation without helical magnetic field. Simulations using much larger systems are required in order to thoroughly follow the evolution of global jets containing helical magnetic fields.

  15. Fluctuations in the relativistic plasma and primordial magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Lemoine, D. (Institut d' Astrophysique de Paris, CNRS, 98bis Bd Arago, F-75014 Paris (France) DAEC, Observatoire de Paris, Universite Paris VII, CNRS (UA173), F-92195 Meudon Cedex (France))

    1995-03-15

    The stochastic fluctuations of the electromagnetic field in a relativistic electron-positron plasma are studied. The correlation functions of the fluctuating four-current, electric and magnetic fields are computed to leading order using the Schwinger-Keldysh closed time path formulation of thermal field theory. As an application, we consider the scenario proposed by Tajima [ital et] [ital al]. for generating a primordial magnetic field from thermal fluctuations in the prerecombination plasma. We compute the level of magnetic fluctuations sustained by the pair plasma at or before the epoch of big bang nucleosynthesis and conclude that the early Universe was pervaded by a strong low-frequency, albeit small-scale, random magnetic field. The astrophysical implications are briefly discussed.

  16. Induced Compton Scattering by Relativistic Electrons in Magnetized Astrophysical Plasmas.

    Science.gov (United States)

    Sincell, Mark William

    1994-01-01

    The effects of stimulated scattering on high brightness temperature radiation are studied in two important contexts. In the first case, we assume that the radiation is confined to a collimated beam traversing a relativistically streaming magnetized plasma. When the plasma is cold in the bulk frame, stimulated scattering is only significant if the angle between the photon motion and the plasma velocity is less than gamma^{-1} , where gamma is the bulk Lorentz factor. Under the assumption that the center of the photon beam is parallel to the bulk motion, we calculate the scattering rate as a function of the angular spread of the beam and gamma. Magnetization changes the photon recoil, without which stimulated scattering has no effect. It also introduces a strong dependence on frequency and polarization: if the photon frequency matches the electron cyclotron frequency, the scattering rate of photons polarized perpendicular to the magnetic field can be substantially enhanced relative to Thomson, and if the photon frequency is much less than the cyclotron frequency the scattering is suppressed. Applying these calculations to pulsars, we find that stimulated scattering of the radio beam in the magnetized wind believed to exist outside the light cylinder can substantially alter the spectrum and polarization state of the radio signal. We suggest that the scattering rate is so high in some pulsars that the ability of the radio signal to penetrate the pulsar magnetosphere requires modification of either the conventional model of the magnetosphere or assumptions about the effects of stimulated scattering upon a beam. In the second case, we present a model of the radio emission from synchrotron self-absorbed sources, including the effects of induced Compton scattering by the relativistic electrons in the source. Order of magnitude estimates show that stimulated scattering becomes the dominant absorption process when (kTB/m ec^2)tau_{T }_sp{~}> 0.1. Numerical simulations

  17. Stochastic Fermi Energization of Coronal Plasma during Explosive Magnetic Energy Release

    Science.gov (United States)

    Pisokas, Theophilos; Vlahos, Loukas; Isliker, Heinz; Tsiolis, Vassilis; Anastasiadis, Anastasios

    2017-02-01

    The aim of this study is to analyze the interaction of charged particles (ions and electrons) with randomly formed particle scatterers (e.g., large-scale local “magnetic fluctuations” or “coherent magnetic irregularities”) using the setup proposed initially by Fermi. These scatterers are formed by the explosive magnetic energy release and propagate with the Alfvén speed along the irregular magnetic fields. They are large-scale local fluctuations (δB/B ≈ 1) randomly distributed inside the unstable magnetic topology and will here be called Alfvénic Scatterers (AS). We constructed a 3D grid on which a small fraction of randomly chosen grid points are acting as AS. In particular, we study how a large number of test particles evolves inside a collection of AS, analyzing the evolution of their energy distribution and their escape-time distribution. We use a well-established method to estimate the transport coefficients directly from the trajectories of the particles. Using the estimated transport coefficients and solving the Fokker–Planck equation numerically, we can recover the energy distribution of the particles. We have shown that the stochastic Fermi energization of mildly relativistic and relativistic plasma can heat and accelerate the tail of the ambient particle distribution as predicted by Parker & Tidman and Ramaty. The temperature of the hot plasma and the tail of the energetic particles depend on the mean free path (λsc) of the particles between the scatterers inside the energization volume.

  18. Dielectric effects on Thomson scattering in a relativistic magnetized plasma

    DEFF Research Database (Denmark)

    Bindslev, H.

    1991-01-01

    the absorption is small. Symmetry between variables relating to incident and scattered fields is demonstrated and shown to be in agreement with the reciprocity relation. Earlier results are confirmed in the cold plasma limit. Significant relativistic effects, of practical importance to the scattering......The effects of the dielectric properties of a relativistic magnetized plasma on the scattering of electromagnetic radiation by fluctuations in electron density are investigated. The origin of the density fluctuations is not considered. Expressions for the scattering cross-section and the scattered...... power accepted by the receiving antenna are derived for a plasma with spatial dispersion. The resulting expressions allow thermal motion to be included in the description of the plasma and remain valid for frequencies of the probing radiation in the region of omega(p) and omega(ce), provided...

  19. Radiation from relativistic shocks with turbulent magnetic fields

    CERN Document Server

    Nishikawa, K -I; Medvedev, M; Zhang, B; Hardee, P; Nordlund, A; Frederiksen, J; Mizuno, Y; Sol, H; Pohl, M; Hartmann, D H; Oka, M; Fishman, G J

    2009-01-01

    Using our new 3-D relativistic electromagnetic particle (REMP) code parallelized with MPI, we investigated long-term particle acceleration associated with a relativistic electron-positron jet propagating in an unmagnetized ambient electron-positron plasma. The simulations were performed using a much longer simulation system than our previous simulations in order to investigate the full nonlinear stage of the Weibel instability and its particle acceleration mechanism. Cold jet electrons are thermalized and ambient electrons are accelerated in the resulting shocks. Acceleration of ambient electrons leads to a maximum ambient electron density three times larger than the original value. Behind the bow shock in the jet shock strong electromagnetic fields are generated. These fields may lead to time dependent afterglow emission. We calculated radiation from electrons propagating in a uniform parallel magnetic field to verify the technique. We also used the new technique to calculate emission from electrons based on...

  20. Particle acceleration, magnetization and radiation in relativistic shocks

    CERN Document Server

    Derishev, Evgeny V

    2015-01-01

    What are the mechanisms of particle acceleration and radiation, as well as magnetic field build up and decay in relativistic shocks are open questions with important implications to various phenomena in high energy astrophysics. While the Weibel instability is possibly responsible for magnetic field build up and diffusive shock acceleration is a model for acceleration, both have problems and current PIC simulation show that particles are accelerated only under special conditions and the magnetic field decays on a short length scale. We present here a novel model for the structure and the emission of highly relativistic collisionless shocks. The model takes into account (and is based on) non-local energy and momentum transport across the shock front via emission and absorption of high-energy photons. This leads to a pre-acceleration of the fluid and pre-amplificaiton of the magnetic fields in the upstream region. Both have drastic implications on the shock structure. The model explains the persistence of the s...

  1. Estimate of the maximum induced magnetic field in relativistic shocks

    Science.gov (United States)

    Ghorbanalilu, M.; Sadegzadeh, S.

    2017-01-01

    The proton-driven Weibel instability is a crucial process for amplifying the generated magnetic fields in gamma-ray bursts. An expression for the saturation level of magnetic fields is estimated in a relativistic shock consisting of electron-proton plasmas. Within the shock transition layer, the plasma is modelled with the waterbag and Maxwell-Jüttner distribution functions for asymmetric counter-propagating proton beams and isotropic background electrons, respectively. The proton-driven Weibel-type instability in the linear phase is investigated thoroughly and then the instability conditions and the stabilization mechanisms are considered in details just after the shutdown of the electron Weibel instability. The growth rate of the instability and the saturated magnetic field strength are obtained in terms of the effective proton beam Mach number, asymmetry parameter, and the background electron temperature. In this paper, fully relativistic kinetic treatment is used to formulate the dispersion relation for the proton Weibel-type instability. Then, by using the magnetic trapping criteria, the saturated magnetic field strength is computed. In the present scenario, the instability includes two stages: in the first stage the electron Weibel instability evolves very rapidly, but in the second one because of the free energy stored in the slow counter-propagating proton beams, the instability is further amplified in the context of electrons with an isotropic distribution function. Increment of the growth rate and saturated magnetic field by increasing (decreasing) the effective proton beam Mach number (the asymmetry parameter) is deduced from the results. It is shown that at the temperatures around 108 K a maximum magnetic field up to around 56 G can be detected by this mechanism after the saturation time.

  2. Parametric decays in relativistic magnetized electron-positron plasmas with relativistic temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, Rodrigo A.; Munoz, Victor [Departamento de Fisica, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago (Chile); Asenjo, Felipe A. [Institute for Fusion Studies, University of Texas at Austin, Austin, Texas 78712 (United States); Alejandro Valdivia, J. [Departamento de Fisica, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago (Chile); Centro para el Desarrollo de la Nanociencia y la Nanotecnologia, CEDENNA, Santiago (Chile)

    2012-08-15

    The nonlinear evolution of a circularly polarized electromagnetic wave in an electron-positron plasma propagating along a constant background magnetic field is considered, by studying its parametric decays. Relativistic effects, of the particle motion in the wave field and of the plasma temperature, are included to obtain the dispersion relation of the decays. The exact dispersion relation of the pump wave has been previously calculated within the context of a relativistic fluid theory and presents two branches: an electromagnetic and an Alfven one. We investigate the parametric decays for the pump wave in these two branches, including the anomalous dispersion zone of the Alfven branch where the group velocity is negative. We solve the nonlinear dispersion relation for different pump wave amplitudes and plasma temperatures, finding various resonant and nonresonant wave couplings. We are able to identify these couplings and study their behavior as we modify the plasma parameters. Some of these couplings are suppressed for larger amplitudes or temperatures. We also find two kinds of modulational instabilities, one involving two sideband daughter waves and another involving a forward-propagating electroacoustic mode and a sideband daughter wave.

  3. Static dipole magnetic susceptibilities of relativistic hydrogenlike atoms: A semianalytical approach

    Science.gov (United States)

    Poszwa, A.; Rutkowski, A.

    2007-03-01

    The binding energies and magnetic susceptibilities for states evolving from 1s1/2 , 2s1/2 , 2p1/2 , 2p3/2 , 3s1/2 , 3d3/2 , and 3d5/2 are calculated using power-series solutions of the Dirac equation for hydrogenic atoms in static and uniform magnetic B . The accuracy of the binding energies for low and medium magnetic fields exceeds that of previous variational calculations. In the low-magnetic-field limit the highly accurate values of energies are used to determine the relativistic Paschen-Back effect and relativistic magnetic susceptibilities by expansion of the fully relativistic energy into power series of the parameter B/Z2 . The linear term of this series is related to the relativistic Paschen-Back effect and the square term is proportional to the relativistic dipole magnetic susceptibility of the atom.

  4. Particle energisation in a collapsing magnetic trap model: the relativistic regime

    CERN Document Server

    Oskoui, Solmaz Eradat

    2014-01-01

    In solar flares, a large number of charged particles is accelerated to high energies. By which physical processes this is achieved is one of the main open problems in solar physics. It has been suggested that during a flare, regions of the rapidly relaxing magnetic field can form a collapsing magnetic trap (CMT) and that this trap may contribute to particle energisation.} In this Research Note we focus on a particular analytical CMT model based on kinematic magnetohydrodynamics. Previous investigations of particle acceleration for this CMT model focused on the non-relativistic energy regime. It is the specific aim of this Research Note to extend the previous work to relativistic particle energies. Particle orbits were calculated numerically using the relativistic guiding centre equations. We also calculated particle orbits using the non-relativistic guiding centre equations for comparison. For mildly relativistic energies the relativistic and non-relativistic particle orbits mainly agree well, but clear devia...

  5. Search for relativistic magnetic monopoles with the ANTARES neutrino telescope

    Science.gov (United States)

    Adrián-Martínez, S.; Aguilar, J. A.; Al Samarai, I.; Albert, A.; André, M.; Anghinolfi, M.; Anton, G.; Anvar, S.; Ardid, M.; Assis Jesus, A. C.; Astraatmadja, T.; Aubert, J.-J.; Baret, B.; Basa, S.; Bertin, V.; Biagi, S.; Bigongiari, C.; Bogazzi, C.; Bou-Cabo, M.; Bouhou, B.; Bouwhuis, M. C.; Brunner, J.; Busto, J.; Camarena, F.; Capone, A.; Cârloganu, C.; Carminati, G.; Carr, J.; Cecchini, S.; Charif, Z.; Charvis, Ph.; Chiarusi, T.; Circella, M.; Costantini, H.; Coyle, P.; Curtil, C.; Decowski, M. P.; Dekeyser, I.; Deschamps, A.; Distefano, C.; Donzaud, C.; Dornic, D.; Dorosti, Q.; Drouhin, D.; Eberl, T.; Emanuele, U.; Enzenhöfer, A.; Ernenwein, J.-P.; Escoffier, S.; Fermani, P.; Ferri, M.; Flaminio, V.; Folger, F.; Fritsch, U.; Fuda, J.-L.; Galatà, S.; Gay, P.; Giacomelli, G.; Giordano, V.; Gómez-González, J. P.; Graf, K.; Guillard, G.; Halladjian, G.; Hallewell, G.; van Haren, H.; Hartman, J.; Heijboer, A. J.; Hello, Y.; Hernández-Rey, J. J.; Herold, B.; Hößl, J.; Hsu, C. C.; de Jong, M.; Kadler, M.; Kalekin, O.; Kappes, A.; Katz, U.; Kavatsyuk, O.; Kooijman, P.; Kopper, C.; Kouchner, A.; Kreykenbohm, I.; Kulikovskiy, V.; Lahmann, R.; Lamare, P.; Larosa, G.; Lattuada, D.; Lefèvre, D.; Lim, G.; Lo Presti, D.; Loehner, H.; Loucatos, S.; Mangano, S.; Marcelin, M.; Margiotta, A.; Martínez-Mora, J. A.; Meli, A.; Montaruli, T.; Morganti, M.; Moscoso, L.; Motz, H.; Neff, M.; Nezri, E.; Palioselitis, D.; Păvălaş, G. E.; Payet, K.; Payre, P.; Petrovic, J.; Piattelli, P.; Picot-Clemente, N.; Popa, V.; Pradier, T.; Presani, E.; Racca, C.; Reed, C.; Riccobene, G.; Richardt, C.; Richter, R.; Rivière, C.; Robert, A.; Roensch, K.; Rostovtsev, A.; Ruiz-Rivas, J.; Rujoiu, M.; Russo, G. V.; Salesa, F.; Sapienza, P.; Schöck, F.; Schuller, J.-P.; Schüssler, F.; Seitz, T.; Shanidze, R.; Simeone, F.; Spies, A.; Spurio, M.; Steijger, J. J. M.; Stolarczyk, Th.; Sánchez-Losa, A.; Taiuti, M.; Tamburini, C.; Toscano, S.; Vallage, B.; Van Elewyck, V.; Vannoni, G.; Vecchi, M.; Vernin, P.; Wagner, S.; Wijnker, G.; Wilms, J.; de Wolf, E.; Yepes, H.; Zaborov, D.; Zornoza, J. D.; Zúñiga, J.

    2012-05-01

    Magnetic monopoles are predicted in various unified gauge models and could be produced at intermediate mass scales. Their detection in a neutrino telescope is facilitated by the large amount of light emitted compared to that from muons. This paper reports on a search for upgoing relativistic magnetic monopoles with the ANTARES neutrino telescope using a data set of 116 days of live time taken from December 2007 to December 2008. The one observed event is consistent with the expected atmospheric neutrino and muon background, leading to a 90% C.L. upper limit on the monopole flux between 1.3 × 10-17 and 8.9 × 10-17 cm-2 s-1 sr-1 for monopoles with velocity β ⩾ 0.625.

  6. Search for Relativistic Magnetic Monopoles with the ANTARES Neutrino Telescope

    CERN Document Server

    Adrián-Martínez, S; Samarai, I Al; Albert, A; André, M; Anghinolfi, M; Anton, G; Anvar, S; Ardid, M; Jesus, A C Assis; Astraatmadja, T; Aubert, J-J; Baret, B; Basa, S; Bertin, V; Biagi, S; Bigongiari, C; Bogazzi, C; Bou-Cabo, M; Bouhou, B; Bouwhuis, M C; Brunner, J; Busto, J; Camarena, F; Capone, A; Cârloganu, C; Carminati, G; Carr, J; Cecchini, S; Charif, Z; Charvis, Ph; Chiarusi, T; Circella, M; Costantini, H; Coyle, P; Curtil, C; Decowski, M P; Dekeyser, I; Deschamps, A; Distefano, C; Donzaud, C; Dornic, D; Dorosti, Q; Drouhin, D; Eberl, T; Emanuele, U; Enzenhöfer, A; Ernenwein, J-P; Escoffier, S; Fermani, P; Ferri, M; Flaminio, V; Folger, F; Fritsch, U; Fuda, J-L; Galatà, S; Gay, P; Giacomelli, G; Giordano, V; Gómez-González, J P; Graf, K; Guillard, G; Halladjian, G; Hallewell, G; van Haren, H; Hartman, J; Heijboer, A J; Hello, Y; Hernández-Rey, J J; Herold, B; Hößl, J; Hsu, C C; de Jong, M; Kadler, M; Kalekin, O; Kappes, A; Katz, U; Kavatsyuk, O; Kooijman, P; Kopper, C; Kouchner, A; Kreykenbohm, I; Kulikovskiy, V; Lahmann, R; Lamare, P; Larosa, G; Lattuada, D; Lefèvre, D; Lim, G; Presti, D Lo; Loehner, H; Loucatos, S; Mangano, S; Marcelin, M; Margiotta, A; Martínez-Mora, J A; Meli, A; Montaruli, T; Morganti, M; Moscoso, L; Motz, H; Neff, M; Nezri, E; Palioselitis, D; Păvălaş, G E; Payet, K; Payre, P; Petrovic, J; Piattelli, P; Picot-Clemente, N; Popa, V; Pradier, T; Presani, E; Racca, C; Reed, C; Riccobene, G; Richardt, C; Richter, R; Rivière, C; Robert, A; Roensch, K; Rostovtsev, A; Ruiz-Rivas, J; Rujoiu, M; Russo, G V; Salesa, F; Sapienza, P; Schöck, F; Schuller, J-P; Schüssler, F; Seitz, T; Shanidze, R; Simeone, F; Spies, A; Spurio, M; Steijger, J J M; Stolarczyk, Th; Sánchez-Losa, A; Taiuti, M; Tamburini, C; Toscano, S; Vallage, B; Van Elewyck, V; Vannoni, G; Vecchi, M; Vernin, P; Wagner, S; Wijnker, G; Wilms, J; de Wolf, E; Yepes, H; Zaborov, D; Zornoza, J D; Zúñiga, J

    2011-01-01

    Magnetic monopoles are predicted in various unified gauge models and could be produced at intermediate mass scales. Their detection in a neutrino telescope is facilitated by the large amount of light emitted compared to that from muons. This paper reports on a search for upgoing relativistic magnetic monopoles with the ANTARES neutrino telescope using a data set of 116 days of live time taken from December 2007 to December 2008. The one observed event is consistent with the expected atmospheric neutrino and muon background, leading to a 90% C.L. upper limit on the monopole flux between 1.3E-17 and 8.9E-17 cm-2.s-1.sr-1 for monopoles with velocity beta greater than 0.625.

  7. The central engine of GRB 130831A and the energy breakdown of a relativistic explosion

    Science.gov (United States)

    De Pasquale, M.; Oates, S. R.; Racusin, J. L.; Kann, D. A.; Zhang, B.; Pozanenko, A.; Volnova, A. A.; Trotter, A.; Frank, N.; Cucchiara, A.; Troja, E.; Sbarufatti, B.; Butler, N. R.; Schulze, S.; Cano, Z.; Page, M. J.; Castro-Tirado, A. J.; Gorosabel, J.; Lien, A.; Fox, O.; Littlejohns, O.; Bloom, J. S.; Prochaska, J. X.; de Diego, J. A.; Gonzalez, J.; Richer, M. G.; Román-Zúñiga, C.; Watson, A. M.; Gehrels, N.; Moseley, H.; Kutyrev, A.; Zane, S.; Hoette, V.; Russell, R. R.; Rumyantsev, V.; Klunko, E.; Burkhonov, O.; Breeveld, A. A.; Reichart, D. E.; Haislip, J. B.

    2016-01-01

    Gamma-ray bursts (GRBs) are the most luminous explosions in the Universe, yet the nature and physical properties of their energy sources are far from understood. Very important clues, however, can be inferred by studying the afterglows of these events. We present optical and X-ray observations of GRB 130831A obtained by Swift, Chandra, Skynet, Reionization And Transients Infra-Red camera, Maidanak, International Scientific Optical-Observation Network, Nordic Optical Telescope, Liverpool Telescope and Gran Telescopio Canarias. This burst shows a steep drop in the X-ray light curve at ≃105 s after the trigger, with a power-law decay index of α ˜ 6. Such a rare behaviour cannot be explained by the standard forward shock (FS) model and indicates that the emission, up to the fast decay at 105 s, must be of `internal origin', produced by a dissipation process within an ultrarelativistic outflow. We propose that the source of such an outflow, which must produce the X-ray flux for ≃1 d in the cosmological rest frame, is a newly born magnetar or black hole. After the drop, the faint X-ray afterglow continues with a much shallower decay. The optical emission, on the other hand, shows no break across the X-ray steep decrease, and the late-time decays of both the X-ray and optical are consistent. Using both the X-ray and optical data, we show that the emission after ≃105 s can be explained well by the FS model. We model our data to derive the kinetic energy of the ejecta and thus measure the efficiency of the central engine of a GRB with emission of internal origin visible for a long time. Furthermore, we break down the energy budget of this GRB into the prompt emission, the late internal dissipation, the kinetic energy of the relativistic ejecta, and compare it with the energy of the associated supernova, SN 2013 fu.

  8. Supernova explosions in magnetized, primordial dark matter halos

    CERN Document Server

    Seifried, D; Schleicher, D

    2013-01-01

    We present a set of high resolution simulations studying the effect of supernova explosions on magnetized, primordial halos. We focus on the evolution of an initially small-scale magnetic field formed during the collapse of the halo. We vary the degree of magnetization, the halo mass, and the amount of explosion energy in order to account for expected variations as well as to infer systematical dependencies of the results on initial conditions. Our simulations suggest that core collapse supernovae with an explosion energy of 10^51 erg and more violent pair instability supernovae with 10^53 erg are able to disrupt halos with masses up to a few 10^6 and 10^7 M_sun, respectively. The peak of the magnetic field spectra shows a continuous shift towards smaller k-values, i.e. larger length scales, over time reaching values as low as k = 4. On small scales the magnetic energy decreases at the cost of the energy on large scales resulting in well-ordered magnetic field with strengths up to about 10^-8 G depending on t...

  9. Magnetic Moment Fields in Dense Relativistic Plasma Interacting with Laser Radiations

    Directory of Open Access Journals (Sweden)

    B.Ghosh1* , S.N.Paul 1 , S.Bannerjee2 and C.Das3

    2013-04-01

    Full Text Available Theory of the generation of magnetic moment field from resonant interaction of three high frequency electromagnetic waves in un-magnetized dense electron plasma is developed including the relativistic change of electron mass. It is shown that the inclusion of relativistic effect enhances the magnetic moment field. For high intensity laser beams this moment field may be of the order of a few mega gauss. Such a high magnetic field can considerably affect the transport of electrons in fusion plasma

  10. Bar-mode instability suppression in magnetized relativistic stars

    CERN Document Server

    Franci, Luca; Dionysopoulou, Kyriaki; Rezzolla, Luciano

    2013-01-01

    We show that magnetic fields stronger than about $10^{15}$ G are able to suppress the development of the hydrodynamical bar-mode instability in relativistic stars. The suppression is due to a change in the rest-mass density and angular velocity profiles due to the formation and to the linear growth of a toroidal component that rapidly overcomes the original poloidal one, leading to an amplification of the total magnetic energy. The study is carried out performing three-dimensional ideal-magnetohydrodynamics simulations in full general relativity, superimposing to the initial (matter) equilibrium configurations a purely poloidal magnetic field in the range $10^{14}-10^{16}$ G. When the seed field is a few parts in $10^{15}$ G or above, all the evolved models show the formation of a low-density envelope surrounding the star. For much weaker fields, no effect on the matter evolution is observed, while magnetic fields which are just below the suppression threshold are observed to slow down the growth-rate of the ...

  11. The Last Hurrah: PPN Formation by a Magnetic Explosion

    CERN Document Server

    Matt, S; Blackman, E G; Matt, Sean; Frank, Adam; Blackman, Eric

    2003-01-01

    We discuss a mechanism by which a giant star can expel its envelope in an outburst, leaving its core exposed. The outburst is powered by rotational kinetic energy of the core, transferred to the envelope via the twisting of magnetic fields. We show that, if the core is magnetized, and if it has sufficient angular momentum, this mechanism may be triggered at the end of the asymptotic giant branch phase, and drive a proto-planetary nebula (pPN) outflow. This explosion of magnetic energy self-consistently explains some of the asymmetries and dynamics of pPNe.

  12. Relativistic Killingbeck energy states under external magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Eshghi, M. [Islamic Azad University, Researchers and Elite Club, Central Tehran Branch, Tehran (Iran, Islamic Republic of); Mehraban, H. [Semnan University, Faculty of Physics, Semnan (Iran, Islamic Republic of); Ikhdair, S.M. [An-Najah National University, Department of Physics, Faculty of Science, Nablus, West Bank, Palestine (Country Unknown); Near East University, Department of Electrical Engineering, Nicosia, Northern Cyprus (Turkey)

    2016-07-15

    We address the behavior of the Dirac equation with the Killingbeck radial potential including the external magnetic and Aharonov-Bohm (AB) flux fields. The spin and pseudo-spin symmetries are considered. The correct bound state spectra and their corresponding wave functions are obtained. We seek such a solution using the biconfluent Heun's differential equation method. Further, we give some of our results at the end of this study. Our final results can be reduced to their non-relativistic forms by simply using some appropriate transformations. The spectra, in the spin and pseudo-spin symmetries, are very similar with a slight difference in energy spacing between different states. (orig.)

  13. General Relativistic Simulations of Magnetized Binary Neutron Stars

    Science.gov (United States)

    Giacomazzo, Bruno

    2011-04-01

    Binary neutron stars are among the most important sources of gravitational waves which are expected to be detected by the current or next generation of gravitational wave detectors, such as LIGO and Virgo, and they are also thought to be at the origin of very important astrophysical phenomena, such as short gamma-ray bursts. I will report on some recent results obtained using the fully general relativistic magnetohydrodynamic code Whisky in simulating equal-mass binary neutron star systems during the last phases of inspiral, merger and collapse to black hole surrounded by a torus. I will in particular describe how magnetic fields can affect the gravitational wave signal emitted by these sources and their possible role in powering short gamma-ray bursts.

  14. Magnetic Domination of Recollimation Boundary Layers in Relativistic Jets

    CERN Document Server

    Kohler, Susanna

    2012-01-01

    We study the collimation of relativistic magnetohydrodynamic jets by the pressure of an ambient medium, in the limit where the jet interior loses causal contact with its surroundings. This follows up a hydrodynamic study in a previous paper, adding the effects of a toroidal magnetic field threading the jet. As the ultrarelativistic jet encounters an ambient medium with a pressure profile with a radial scaling of p ~ r^-eta where 2magnetically dominated far from the source, and that in the magnetic limit, physical self-similar solutions are admitted in which the total pressure within the layer decreases linearly with distance from the contact discontinuity inward. These sol...

  15. Magnetic Field Generation and Particle Energization in Relativistic Shear Flows

    Science.gov (United States)

    Liang, Edison; Boettcher, Markus; Smith, Ian

    2012-10-01

    We present Particle-in-Cell simulation results of magnetic field generation by relativistic shear flows in collisionless electron-ion (e-ion) and electron-positron (e+e-) plasmas. In the e+e- case, small current filaments are first generated at the shear interface due to streaming instabilities of the interpenetrating particles from boundary perturbations. Such current filaments create transverse magnetic fields which coalesce into larger and larger flux tubes with alternating polarity, eventually forming ordered flux ropes across the entire shear boundary layer. Particles are accelerated across field lines to form power-law tails by semi-coherent electric fields sustained by oblique Langmuir waves. In the e-ion case, a single laminar slab of transverse flux rope is formed at the shear boundary, sustained by thin current sheets on both sides due to different drift velocities of electrons and ions. The magnetic field has a single polarity for the entire boundary layer. Electrons are heated to a fraction of the ion energy, but there is no evidence of power-law tail forming in this case.

  16. Compton Scattering in Ultra-Strong Magnetic Fields Numerical and Analytical Behavior in the Relativistic Regime

    CERN Document Server

    Gonthier, P L; Baring, M G; Costello, R M; Mercer, C L; Gonthier, Peter L.; Harding, Alice K.; Baring, Matthew G.; Costello, Rachel M.; Mercer, Cassandra L.

    2000-01-01

    This paper explores the effects of strong magnetic fields on the Compton scattering of relativistic electrons. Recent studies of upscattering and energy loss by relativistic electrons that have used the non-relativistic, magnetic Thomson cross section for resonant scattering or the Klein-Nishina cross section for non-resonant scattering do not account for the relativistic quantum effects of strong fields ($ > 4 \\times 10^{12}$ G). We have derived a simplified expression for the exact QED scattering cross section for the broadly-applicable case where relativistic electrons move along the magnetic field. To facilitate applications to astrophysical models, we have also developed compact approximate expressions for both the differential and total polarization-dependent cross sections, with the latter representing well the exact total QED cross section even at the high fields believed to be present in environments near the stellar surfaces of Soft Gamma-Ray Repeaters and Anomalous X-Ray Pulsars. We find that stron...

  17. Magnetic field intensification by three-dimensional explosion process

    CERN Document Server

    Hotta, H; Yokoyama, T

    2012-01-01

    We investigate an intensification mechanism for the magnetic field near the base of the solar convection zone that does not rely on differential rotation. Such mechanism in addition to differential rotation has been suggested by studies of flux emergence, which typically require field strength in excess of those provided by differential rotation alone. We study here a process in which potential energy of the superadiabatically stratified convection zone is converted into magnetic energy. This mechanism, know as explosion of magnetic flux tubes, has been previously studied in the thin flux tube approximation as well as two-dimensional MHD simulations, we expand the investigation to three-dimensional MHD simulations. Our main result is that enough intensification can be achieved in a three-dimensional magnetic flux sheet as long as the spatial scale of the imposed perturbation normal to the magnetic field is sufficiently large. When this spatial scale is small, the flux sheet tends to rise toward the surface, r...

  18. Magnetic field modification to the relativistic runaway electron avalanche length

    Science.gov (United States)

    Cramer, E. S.; Dwyer, J. R.; Rassoul, H. K.

    2016-11-01

    This paper explores the impact of the geomagnetic field on the relativistic runaway electron avalanche length, λe-. Coleman and Dwyer (2006) developed an analytical fit to Monte Carlo simulations using the Runaway Electron Avalanche Model. In this work, we repeat this process but with the addition of the geomagnetic field in the range of [100,900]/n μT, where n is the ratio of the density of air at altitude to the sea level density. As the ambient electric field approaches the runaway threshold field (Eth≈284 kV/m sea level equivalent), it is shown that the magnetic field has an impact on the orientation of the resulting electron beam. The runaway electrons initially follow the vertically oriented electric field but then are deflected in the v × B direction, and as such, the electrons experience more dynamic friction due to the increase in path length. This will be shown to result in a difference in the avalanche length from the case where B = 0. It will also be shown that the average energy of the runaway electrons will decrease while the required electric field to produce runaway electrons increases. This study is also important in understanding the physics of terrestrial gamma ray flashes (TGFs). Not only will this work impact relativistic feedback rates determined from simulations, it may also be useful in studying spectroscopy of TGFs observed from balloon and aircraft measurements. These models may also be used in determining beaming properties of TGFs originating in the tropical regions seen from orbiting spacecraft.

  19. General relativistic simulations of magnetized binary neutron star mergers

    CERN Document Server

    Liu, Yuk Tung; Etienne, Zachariah B; Taniguchi, Keisuke

    2008-01-01

    Binary neutron stars (NSNS) are expected to be among the leading sources of gravitational waves observable by ground-based laser interferometers and may be the progenitors of short-hard gamma ray bursts. We present a series of general relativistic NSNS coalescence simulations both for unmagnetized and magnetized stars. We adopt quasiequilibrium initial data for circular, irrotational binaries constructed in the conformal thin-sandwich (CTS) framework. We adopt the BSSN formulation for evolving the metric and a high-resolution shock-capturing scheme to handle the magnetohydrodynamics. Our simulations of unmagnetized binaries confirm the results of Shibata, Taniguchi and Uryu (2003). In cases in which the mergers result in a prompt collapse to a black hole, we are able to use puncture gauge conditions to extend the evolution and determine the mass of the material that forms a disk. We find that the disk mass is less than 2% of the total mass in all cases studied. We then add a small poloidal magnetic field to t...

  20. Trembling motion of relativistic electrons in a magnetic field

    CERN Document Server

    Rusin, Tomasz M

    2010-01-01

    One-electron 3+1 and 2+1 Dirac equations are used to calculate the motion of a relativistic electron in a vacuum in the presence of an external magnetic field. First, calculations are carried on an operator level and exact analytical results are obtained for the electron trajectories which contain both intraband frequency components, identified as the cyclotron motion, as well as interband frequency components, identified as the trembling motion (Zitterbewegung, ZB). Next, time-dependent Heisenberg operators are used for the same problem to compute average values of electron position and velocity employing Gaussian wave packets. It is shown that the presence of a magnetic field and the resulting quantization of the energy spectrum has pronounced effects on the electron Zitterbewegung: it introduces intraband frequency components into the motion, influences all the frequencies and makes the motion stationary (not decaying in time) in case of the 2+1 Dirac equation. Finally, simulations of the 2+1 Dirac equatio...

  1. Magnetic acceleration of ultra-relativistic GRB and AGN jets

    CERN Document Server

    Maxim, Barkov

    2008-01-01

    We present numerical simulations of cold, axisymmetric, magnetically driven relativistic outflows. The outflows are initially sub-Alfv\\'enic and Poynting flux-dominated, with total--to--rest-mass energy flux ratio up to $\\mu \\sim 620$. To study the magnetic acceleration of jets we simulate flows confined within a funnel with rigid wall of prescribed shape, which we take to be $z\\propto r^a$ (in cylindrical coordinates, with $a$ ranging from 1 to 2). This allows us to eliminate the numerical dissipative effects induced by a free boundary with an ambient medium. We find that in all cases they converge to a steady state characterized by a spatially extended acceleration region. For the jet solutions the acceleration process is very efficient - on the outermost scale of the simulation more than half of the Poynting flux has been converted into kinetic energy flux, and the terminal Lorentz factor approached its maximum possible value ($\\Gamma_\\infty \\simeq \\mu$). The acceleration is accompanied by the collimation ...

  2. Classical electrodynamics in material media and relativistic transformation of magnetic dipole moment

    Science.gov (United States)

    Kholmetskii, A. L.; Missevitch, O. V.; Yarman, T.

    2016-09-01

    We consider the relativistic transformation of the magnetic dipole moment and disclose its physical meaning, shedding light on the related difficulties in the physical interpretation of classical electrodynamics in material media.

  3. The Work Function Associated with Ultra-relativistic Electron Emission from Strongly Magnetized Neutron Star Surface

    Indian Academy of Sciences (India)

    Arpita Ghosh; Somenath Chakrabarty

    2011-09-01

    Following an extremely interesting idea (Schieber 1984), published long ago, the work function associated with the emission of ultra-relativistic electrons from magnetically deformed metallic crystal (mainly iron) at the outer crust of a magnetar is obtained using relativistic version of Thomas–Fermi type model for electron distribution around the nuclei in this region. In the present scenario, surprisingly, the work function becomes anisotropic; the longitudinal part is an increasing function of magnetic field strength, whereas the transverse part diverges.

  4. 3-D Explosions: A Meditation on Rotation (and Magnetic Fields)

    CERN Document Server

    Wheeler, J C

    2004-01-01

    This is the text of an introduction to a workshop on asymmetric explosions held in Austin in June, 2003. The great progress in supernova research over thirty-odd years is briefly reviewed. The context in which the meeting was called is then summarized. The theoretical success of the intrinsically multidimensional delayed detonation paradigm in explaining the nature of Type Ia supernovae coupled with new techniques of observations in the near IR and with spectropolarimetry promise great advances in understanding binary progenitors, the explosion physics, and the ever more accurate application to cosmology. Spectropolarimetry has also revealed the strongly asymmetric nature of core collapse and given valuable perspectives on the supernova - gamma-ray burst connection. The capability of the magneto-rotational instability to rapidly create strong toroidal magnetic fields in the core collapse ambiance is outlined. This physics may be the precursor to driving MHD jets that play a role in asymmetric supernovae. Welc...

  5. Strong electromagnetic waves in a magnetized relativistic electron-positron plasma

    Energy Technology Data Exchange (ETDEWEB)

    Yu, M.Y.; Shukla, P.K.; Rao, N.N. (Bochum Univ. (Germany, F.R.). Inst. fuer Theoretische Physik)

    1984-12-01

    It is shown that in a strongly magnetized relativistic electron-positron plasma, strongly localized large amplitude circularly polarized electromagnetic wave pulses exist. The localization is due to relativistic mass variation as well as ponderomotive force effects. Three types of pulses are found analytically: the sharply spiked pulse in a strongly magnetized cold plasma, the smooth pulse in a weak magnetized warm plasma, and the moderately spiked pulse for a weakly magnetized cold plasma. The physical mechanisms giving rise to these pulses are distinct for each case. Possible implications of our investigation to pulsar radiation are discussed.

  6. The Influence of Helical Magnetic Fields in the Dynamics and Emission of Relativistic Jets

    CERN Document Server

    Roca-Sogorb, M; Gómez, J L; Martí, J M; Antón, L; Aloy, M A; Agudo, I

    2008-01-01

    We present numerical relativistic magnetohydrodynamic and emission simulations aimed to study the role played by the magnetic field in the dynamics and emission of relativistic jets in Active Galactic Nuclei. We focus our analysis on the study of the emission from recollimation shocks since they may provide an interpretation for the stationary components seen at parsec-scales in multiple sources. We show that the relative brightness of the knots associated with the recollimation shocks decreases with increasing jet magnetization, suggesting that jets presenting stationary components may have a relatively weak magnetization, with magnetic fields of the order of equipartition or below.

  7. 3-D explosions: a meditation on rotation (and magnetic fields)

    Science.gov (United States)

    Wheeler, J. C.

    This is the text of an introduction to a workshop on asymmetric explosions held in Austin in June, 2003. The great progress in supernova research over thirty-odd years is briefly reviewed. The context in which the meeting was called is then summarized. The theoretical success of the intrinsically multidimensional delayed detonation paradigm in explaining the nature of Type Ia supernovae coupled with new techniques of observations in the near IR and with spectropolarimetry promise great advances in understanding binary progenitors, the explosion physics, and the ever more accurate application to cosmology. Spectropolarimetry has also revealed the strongly asymmetric nature of core collapse and given valuable perspectives on the supernova - gamma-ray burst connection. The capability of the magneto-rotational instability to rapidly create strong toroidal magnetic fields in the core collapse ambiance is outlined. This physics may be the precursor to driving MHD jets that play a role in asymmetric supernovae. Welcome to the brave new world of three-dimensional explosions!

  8. Generation of low-frequency electric and magnetic fields during large- scale chemical and nuclear explosions

    Energy Technology Data Exchange (ETDEWEB)

    Adushkin, V.V. [Academy of Sciences, Moscow (Russian Federation). Inst. for Dynamics of the Geospheres; Dubinya, V.A.; Karaseva, V.A.; Soloviev, S.P.; Surkov, V.V. [Lawrence Livermore National Lab., CA (United States)

    1995-06-01

    We discuss the main parameters of the electric field in the surface layer of the atmosphere and the results of the investigations of the natural electric field variations. Experimental investigations of the electromagnetic field for explosions in air are presented. Electromagnetic signals generated by underground nuclear and chemical explosions are discussed and explosions for 1976--1991 are listed. Long term anomalies of the earth`s electromagnetic field in the vicinity of underground explosions were also investigated. Study of the phenomenon of the irreversible shock magnetization showed that in the zone nearest to the explosion the quasistatic magnetic field decreases in inverse proportion to the distance.

  9. Explosive Emission and Gap Closure from a Relativistic Electron Beam Diode

    Science.gov (United States)

    2013-06-01

    voltage rises on the blumlein. Second, the intrinsic impedance of the BPM and E-dot are most certainly different. The BPM is a short at low frequency...was supported by the National Nuclear Security Administration of the U.S. Department of Energy under ξ email: jecoleman@lanl.gov Abstract...These electrons are either accelerated and extracted to produce an intense relativistic electron beam, or they are terminated into a solid or

  10. Relativistic thermodynamic properties of a weakly interacting Fermi gas in a weak magnetic field

    Institute of Scientific and Technical Information of China (English)

    Men Fu-Dian; Liu Hui; Fan Zhao-Lan; Zhu Hou-Yu

    2009-01-01

    This paper derives the analytical expression of free energy for a weakly interacting Fermi gas in a weak magnetic field, by using the methods of quantum statistics as well as considering the relativistic effect. Based on the derived expression, the thermodynamic properties of the system at both high and low temperatures are given and the relativistic effect on the properties of the system is discussed. It shows that, in comparison with a nonrelativistic situation,the relativistic effect changes the influence of temperature on the thermodynamic properties of the system at high temperatures, and changes the influence of particle-number density on them at extremely low temperature. But the relativistic effect does not change the influence of the magnetic field and inter-particle interactions on the thermodynamic properties of the system at both high and extremely low temperatures.

  11. Collisionless Coupling between Explosive Debris Plasma and Magnetized Ambient Plasma

    Science.gov (United States)

    Bondarenko, Anton

    2016-10-01

    The explosive expansion of a dense debris plasma cloud into relatively tenuous, magnetized, ambient plasma characterizes a wide variety of astrophysical and space phenomena, including supernova remnants, interplanetary coronal mass ejections, and ionospheric explosions. In these rarified environments, collective electromagnetic processes rather than Coulomb collisions typically mediate the transfer of momentum and energy from the debris plasma to the ambient plasma. In an effort to better understand the detailed physics of collisionless coupling mechanisms in a reproducible laboratory setting, the present research jointly utilizes the Large Plasma Device (LAPD) and the Phoenix laser facility at UCLA to study the super-Alfvénic, quasi-perpendicular expansion of laser-produced carbon (C) and hydrogen (H) debris plasma through preformed, magnetized helium (He) ambient plasma via a variety of diagnostics, including emission spectroscopy, wavelength-filtered imaging, and magnetic field induction probes. Large Doppler shifts detected in a He II ion spectral line directly indicate initial ambient ion acceleration transverse to both the debris plasma flow and the background magnetic field, indicative of a fundamental process known as Larmor coupling. Characterization of the laser-produced debris plasma via a radiation-hydrodynamics code permits an explicit calculation of the laminar electric field in the framework of a ``hybrid'' model (kinetic ions, charge-neutralizing massless fluid electrons), thus allowing for a simulation of the initial response of a distribution of He II test ions. A synthetic Doppler-shifted spectrum constructed from the simulated velocity distribution of the accelerated test ions excellently reproduces the spectroscopic measurements, confirming the role of Larmor coupling in the debris-ambient interaction.

  12. The exact solution of the Riemann problem in relativistic MHD with tangential magnetic fields

    CERN Document Server

    Romero, R; Pons, J A; Ibáñez, J M; Miralles, J A; Romero, Roberto; Marti, Jose M.; Pons, Jose A.; Ibanez, Jose M.; Miralles, Juan A.

    2005-01-01

    We have extended the procedure to find the exact solution of the Riemann problem in relativistic hydrodynamics to a particular case of relativistic magnetohydrodynamics in which the magnetic field of the initial states is tangential to the discontinuity and orthogonal to the flow velocity. The wave pattern produced after the break up of the initial discontinuity is analogous to the non--magnetic case and we show that the problem can be understood as a purely relativistic hydrodynamical problem with a modified equation of state. The new degree of freedom introduced by the non-zero component of the magnetic field results in interesting effects consisting in the change of the wave patterns for given initial thermodynamical states, in a similar way to the effects arising from the introduction of tangential velocities. Secondly, when the magnetic field dominates the thermodynamical pressure and energy, the wave speeds approach the speed of light leading to fast shocks and fast and arbitrarily thin rarefaction wave...

  13. Four-component relativistic theory for nuclear magnetic shielding: magnetically balanced gauge-including atomic orbitals.

    Science.gov (United States)

    Cheng, Lan; Xiao, Yunlong; Liu, Wenjian

    2009-12-28

    It is recognized only recently that the incorporation of the magnetic balance condition is absolutely essential for four-component relativistic theories of magnetic properties. Another important issue to be handled is the so-called gauge problem in calculations of, e.g., molecular magnetic shielding tensors with finite bases. It is shown here that the magnetic balance can be adapted to distributed gauge origins, leading to, e.g., magnetically balanced gauge-including atomic orbitals (MB-GIAOs) in which each magnetically balanced atomic orbital has its own local gauge origin placed on its center. Such a MB-GIAO scheme can be combined with any level of theory for electron correlation. The first implementation is done here at the coupled-perturbed Dirac-Kohn-Sham level. The calculated molecular magnetic shielding tensors are not only independent of the choice of gauge origin but also converge rapidly to the basis set limit. Close inspections reveal that (zeroth order) negative energy states are only important for the expansion of first order electronic core orbitals. Their contributions to the paramagnetism are therefore transferable from atoms to molecule and are essentially canceled out for chemical shifts. This allows for simplifications of the coupled-perturbed equations.

  14. Relativistic Oscillators in a Noncommutative Space and in a Magnetic Field

    Institute of Scientific and Technical Information of China (English)

    Behrouz Mirza; Rasoul Narimani; Somayeh Zare

    2011-01-01

    In this work, we study the relativistic oscillators in a noncommutative space and in a magnetic field.It is shown that the effect of the magnetic field may compete with that of the noncommutative space and that is able to vanish the effect of the noncommutative space.

  15. Calculation of fusion gain in fast ignition with magnetic target by relativistic electrons and protons

    Directory of Open Access Journals (Sweden)

    A Parvazian

    2010-12-01

    Full Text Available Fast ignition is a new method for inertial confinement fusion (ICF in which the compression and ignition steps are separated. In the first stage, fuel is compressed by laser or ion beams. In the second phase, relativistic electrons are generated by pettawat laser in the fuel. Also, in the second phase 5-35 MeV protons can be generated in the fuel. Electrons or protons can penetrate in to the ultra-dense fuel and deposit their energy in the fuel . More recently, cylindrical rather than spherical fuel chambers with magnetic control in the plasma domain have been also considered. This is called magnetized target fusion (MTF. Magnetic field has effects on relativistic electrons energy deposition rate in fuel. In this work, fast ignition method in cylindrical fuel chambers is investigated and transportation of the relativistic electrons and protons is calculated using MCNPX and FLUKA codes with 0. 25 and 0. 5 tesla magnetic field in single and dual hot spot. Furthermore, the transfer rate of relativistic electrons and high energy protons to the fuel and fusion gain are calculated. The results show that the presence of external magnetic field guarantees higher fusion gain, and relativistic electrons are much more appropriate objects for ignition. MTF in dual hot spot can be considered as an appropriate substitution for the current ICF techniques.

  16. General Relativistic Simulations of Magnetized Plasmas around Merging Supermassive Black Holes

    CERN Document Server

    Giacomazzo, Bruno; Miller, M Coleman; Reynolds, Christopher S; van Meter, James R

    2012-01-01

    Coalescing supermassive black hole binaries are produced by the mergers of galaxies and are the most powerful sources of gravitational waves accessible to space-based gravitational observatories. Some such mergers may occur in the presence of matter and magnetic fields and hence generate an electromagnetic counterpart. In this paper we present the first general relativistic simulations of magnetized plasma around merging supermassive black holes using the general relativistic magnetohydrodynamic code Whisky. By considering different magnetic field strengths, going from non-magnetically dominated to magnetically dominated regimes, we explore how magnetic fields affect the dynamics of the plasma and the possible emission of electromagnetic signals. In particular we observe a total amplification of the magnetic field of ~2 orders of magnitude which is driven by the accretion onto the binary and that leads to much stronger electromagnetic signals, more than a factor of 10^4 larger than comparable calculations don...

  17. General Relativistic Simulations of Magnetized Plasmas around Merging Supermassive Black Holes

    Science.gov (United States)

    Giacomazzo, Bruno; Baker, John G.; Miller, M. Coleman; Reynolds, Christopher S.; van Meter, James R.

    2012-06-01

    Coalescing supermassive black hole binaries are produced by the mergers of galaxies and are the most powerful sources of gravitational waves accessible to space-based gravitational observatories. Some such mergers may occur in the presence of matter and magnetic fields and hence generate an electromagnetic counterpart. In this Letter, we present the first general relativistic simulations of magnetized plasma around merging supermassive black holes using the general relativistic magnetohydrodynamic code Whisky. By considering different magnetic field strengths, going from non-magnetically dominated to magnetically dominated regimes, we explore how magnetic fields affect the dynamics of the plasma and the possible emission of electromagnetic signals. In particular, we observe a total amplification of the magnetic field of ~2 orders of magnitude, which is driven by the accretion onto the binary and that leads to much stronger electromagnetic signals, more than a factor of 104 larger than comparable calculations done in the force-free regime where such amplifications are not possible.

  18. Relativistic theory of inverse beta-decay of polarized neutron in strong magnetic field

    Indian Academy of Sciences (India)

    S Shinkevich; A Studenikin

    2005-08-01

    The relativistic theory of the inverse beta-decay of polarized neutron, + → + -, in strong magnetic field is developed. For the proton wave function we use the exact solution of the Dirac equation in the magnetic filed that enables us to account exactly for effects of the proton momentum quantization in the magnetic field and also for the proton recoil motion. The effect of nucleons anomalous magnetic moments in strong magnetic fields is also discussed. We examine the cross-section for different energies and directions of propagation of the initial neutrino accounting for neutron polarization. It is shown that in the super-strong magnetic field the totally polarized neutron matter is transparent for neutrinos propagating antiparallel to the direction of polarization. The developed relativistic approach can be used for calculations of cross-sections of the other URCA processes in strong magnetic fields.

  19. Three-dimensional evolution of a relativistic current sheet: triggering of magnetic reconnection by the guide field.

    Science.gov (United States)

    Zenitani, S; Hoshino, M

    2005-08-26

    The linear and nonlinear evolution of a relativistic current sheet of pair (e(+/-)) plasmas is investigated by three-dimensional particle-in-cell simulations. In a Harris configuration, it is obtained that the magnetic energy is fast dissipated by the relativistic drift kink instability (RDKI). However, when a current-aligned magnetic field (the so-called "guide field") is introduced, the RDKI is stabilized by the magnetic tension force and it separates into two obliquely propagating modes, which we call the relativistic drift-kink-tearing instability. These two waves deform the current sheet so that they trigger relativistic magnetic reconnection at a crossover thinning point. Since relativistic reconnection produces a lot of nonthermal particles, the guide field is of critical importance to study the energetics of a relativistic current sheet.

  20. A New Multi-Dimensional General Relativistic Neutrino Hydrodynamics Code of Core-Collapse Supernovae III. Gravitational Wave Signals from Supernova Explosion Models

    CERN Document Server

    Mueller, Bernhard; Marek, Andreas

    2012-01-01

    We present a detailed theoretical analysis of the gravitational-wave (GW) signal of the post-bounce evolution of core-collapse supernovae (SNe), employing for the first time relativistic, two-dimensional (2D) explosion models with multi-group, three-flavor neutrino transport based on the ray-by-ray-plus approximation. The waveforms reflect the accelerated mass motions associated with the characteristic evolutionary stages that were also identified in previous works: A quasi-periodic modulation by prompt postshock convection is followed by a phase of relative quiescence before growing amplitudes signal violent hydrodynamical activity due to convection and the standing accretion shock instability during the accretion period of the stalled shock. Finally, a high-frequency, low-amplitude variation from proto-neutron star (PNS) convection below the neutrinosphere appears superimposed on the low-frequency trend associated with the aspherical expansion of the SN shock after the onset of the explosion. Relativistic e...

  1. Thermal-inertial effects on magnetic reconnection in relativistic pair plasmas.

    Science.gov (United States)

    Comisso, Luca; Asenjo, Felipe A

    2014-07-25

    The magnetic reconnection process is studied in relativistic pair plasmas when the thermal and inertial properties of the magnetohydrodynamical fluid are included. We find that in both Sweet-Parker and Petschek relativistic scenarios there is an increase of the reconnection rate owing to the thermal-inertial effects, both satisfying causality. To characterize the new effects we define a thermal-inertial number which is independent of the relativistic Lundquist number, implying that reconnection can be achieved even for vanishing resistivity as a result of only thermal-inertial effects. The current model has fundamental importance for relativistic collisionless reconnection, as it constitutes the simplest way to get reconnection rates faster than those accessible with the sole resistivity.

  2. Development of the relativistic backward wave oscillator with a permanent magnet

    Institute of Scientific and Technical Information of China (English)

    MA Qiao-Sheng; LIU Zhong; LI Zheng-Hong; JIN Xiao

    2012-01-01

    Firstly,an X-band relativistic backward wave oscillator with a low guiding magnetic field is simulated,whose output microwave power is 520 MW.Then,an experiment is carried out on an accelerator to investigate a relativistic backward wave oscillator with a permanent magnetic field whose strength is 0.46 T.When the energy of the electron is 630 keV and the current of the electron beam is 6.7 kA,a 15 ns width pulsed microwave with 510 MW output power at 8.0 GHz microwave frequency is achieved.

  3. Bose-Einstein Condensation of Relativistic Fermions in a Magnetic Field

    CERN Document Server

    Feng, Bo; Ren, Hai-cang; Wu, Ping-ping

    2015-01-01

    The Bose-Einstein condensation of bound pairs made of equally and oppositely charged fermions in a magnetic field is investigated using a relativistic model.The Gaussian fluctuations have been taken into account in order to study the spectrum of bound pairs in the strong coupling region. We found, in weak coupling reagion, the condensation temperature increases with an increasing magnetic field displaying the magnetic catalysis effect. In strong coupling region, the inverse magnetic catalysis appears when the magnetic field is low and is replaced by the usual magnetic catalysis effect when magnetic field is sufficiently high, in contrast to the nonrelativistic case where the inverse magnetic catalysis prevails in strong coupling region regardless of the strength of the magnetic field. The resulting response to the magnetic field is the consequence of the competition between the dimensional reduction by Landau orbitals in pairing dynamics and the anisotropy of the kinetic spectrum of the bound pairs. We thus c...

  4. Trends in magnetism of free Rh clusters via relativistic ab-initio calculations.

    Science.gov (United States)

    Šipr, O; Ebert, H; Minár, J

    2015-02-11

    A fully relativistic ab-initio study on free Rh clusters of 13-135 atoms is performed to identify general trends concerning their magnetism and to check whether concepts which proved to be useful in interpreting magnetism of 3d metals are applicable to magnetism of 4d systems. We found that there is no systematic relation between local magnetic moments and coordination numbers. On the other hand, the Stoner model appears well-suited both as a criterion for the onset of magnetism and as a guide for the dependence of local magnetic moments on the site-resolved density of states at the Fermi level. Large orbital magnetic moments antiparallel to spin magnetic moments were found for some sites. The intra-atomic magnetic dipole Tz term can be quite large at certain sites but as a whole it is unlikely to affect the interpretation of x-ray magnetic circular dichroism experiments based on the sum rules.

  5. Relativistic extended coupled cluster method for magnetic hyperfine structure constant

    CERN Document Server

    Sasmal, Sudip; Nayak, Malaya K; Vaval, Nayana; Pal, Sourav

    2015-01-01

    This article deals with the general implementation of 4-component spinor relativistic extended coupled cluster (ECC) method to calculate first order property of atoms and molecules in their open-shell ground state configuration. The implemented relativistic ECC is employed to calculate hyperfine structure (HFS) constant of alkali metals (Li, Na, K, Rb and Cs), singly charged alkaline earth metal atoms (Be+, Mg+, Ca+ and Sr+) and molecules (BeH, MgF and CaH). We have compared our ECC results with the calculations based on restricted active space configuration interaction (RAS-CI) method. Our results are in better agreement with the available experimental values than those of the RAS-CI values.

  6. Particle Acceleration, Magnetic Field Generation and Emission from Relativistic Jets and Supernova Remnants

    Science.gov (United States)

    Nishikawa, K.-I.; Hartmann, D. H.; Hardee, P.; Hededal, C.; Mizunno, Y.; Fishman, G. J.

    2006-01-01

    We performed numerical simulations of particle acceleration, magnetic field generation, and emission from shocks in order to understand the observed emission from relativistic jets and supernova remnants. The investigation involves the study of collisionless shocks, where the Weibel instability is responsible for particle acceleration as well as magnetic field generation. A 3-D relativistic particle-in-cell (RPIC) code has been used to investigate the shock processes in electron-positron plasmas. The evolution of theWeibe1 instability and its associated magnetic field generation and particle acceleration are studied with two different jet velocities (0 = 2,5 - slow, fast) corresponding to either outflows in supernova remnants or relativistic jets, such as those found in AGNs and microquasars. Slow jets have intrinsically different structures in both the generated magnetic fields and the accelerated particle spectrum. In particular, the jet head has a very weak magnetic field and the ambient electrons are strongly accelerated and dragged by the jet particles. The simulation results exhibit jitter radiation from inhomogeneous magnetic fields, generated by the Weibel instability, which has different spectral properties than standard synchrotron emission in a homogeneous magnetic field.

  7. Analytical model for relativistic corrections to the nuclear magnetic shielding constant in atoms

    Energy Technology Data Exchange (ETDEWEB)

    Romero, Rodolfo H. [Facultad de Ciencias Exactas, Universidad Nacional del Nordeste, Avenida Libertad 5500 (3400), Corrientes (Argentina)]. E-mail: rhromero@exa.unne.edu.ar; Gomez, Sergio S. [Facultad de Ciencias Exactas, Universidad Nacional del Nordeste, Avenida Libertad 5500 (3400), Corrientes (Argentina)

    2006-04-24

    We present a simple analytical model for calculating and rationalizing the main relativistic corrections to the nuclear magnetic shielding constant in atoms. It provides good estimates for those corrections and their trends, in reasonable agreement with accurate four-component calculations and perturbation methods. The origin of the effects in deep core atomic orbitals is manifestly shown.

  8. 4-Component relativistic calculation of the magnetically induced current density in the group 15 heteroaromatic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Bast, Radovan; Juselius, Jonas [Centre for Theoretical and Computational Chemistry (CTCC), Department of Chemistry, University of Tromso, N-9037 Tromso (Norway); Saue, Trond [Institut de Chimie de Strasbourg, CNRS et Universite Louis Pasteur, Laboratoire de Chimie Quantique, 4, rue Blaise Pascal, BP 1032, F-67070 Strasbourg (France)], E-mail: tsaue@chimie.u-strasbg.fr

    2009-02-17

    We present a 4-component relativistic implementation for calculating the magnetically induced current density within Hartree-Fock and Kohn-Sham linear response theory using a common gauge origin. We demonstrate how the current density can be decomposed into paramagnetic and diamagnetic contributions by calculating separately the contributions from rotations between positive-energy orbitals and contributions from rotations between the occupied positive-energy orbitals and the virtual negative-energy orbitals, respectively. This methodology is applied to the study of the magnetically induced current density in benzene and the group 15 heteroaromatic compounds C{sub 5}H{sub 5}E (E = N, P, As, Sb, Bi). Quantitative values for the magnetically induced ring currents are obtained by numerical integration over the current flow. We have found that the diatropic ring current is sustained for the entire series of the group 15 heteroaromatic compounds-the induced ring current susceptibility of bismabenzene being 76% of the benzene result. Having employed two hybrid and two nonhybrid generalized gradient approximation functionals, the results are found to be rather insensitive to the choice of the density functional approximation. The relativistic effect is relatively small, reaching its maximum of 8% for bismabenzene. The presented 4-component relativistic methodology opens up the possibility to visualize magnetically induced current densities of aromatic heavy-element systems with both scalar relativistic and spin-orbit effects included.

  9. The central engine of GRB 130831A and the energy breakdown of a relativistic explosion

    CERN Document Server

    De Pasquale, M; Racusin, J L; Kann, D A; Zhang, B; Pozanenko, A; Volnova, A A; Trotter, A; Frank, N; Cucchiara, A; Troja, E; Sbarufatti, B; Butler, N R; Schulze, S; Cano, Z; Page, M J; Castro-Tirado, A J; Gorosabel, J; Lien, A; Fox, O; Littlejohns, O; Bloom, J S; Prochaska, J X; de Diego, J A; Gonzalez, J; Richer, M G; Román-Zúñiga, C; Watson, A M; Gehrels, N; Moseley, H; Kutyrev, A; Zane, S; Hoette, V; Russell, R R; Rumyantsev, V; Klunko, E; Burkhonov, O; Breeveld, A A; Reichart, D E; Haislip, J B

    2015-01-01

    Gamma-ray bursts (GRBs) are the most luminous explosions in the universe, yet the nature and physical properties of their energy sources are far from understood. Very important clues, however, can be inferred by studying the afterglows of these events. We present optical and X-ray observations of GRB 130831A obtained by Swift, Chandra, Skynet, RATIR, Maidanak, ISON, NOT, LT and GTC. This burst shows a steep drop in the X-ray light-curve at $\\simeq 10^5$ s after the trigger, with a power-law decay index of $\\alpha \\sim 6$. Such a rare behaviour cannot be explained by the standard forward shock (FS) model and indicates that the emission, up to the fast decay at $10^5$ s, must be of "internal origin", produced by a dissipation process within an ultrarelativistic outflow. We propose that the source of such an outflow, which must produce the X-ray flux for $\\simeq 1$ day in the cosmological rest frame, is a newly born magnetar or black hole. After the drop, the faint X-ray afterglow continues with a much shallower...

  10. Particle-in-cell Simulations of Global Relativistic Jets with Helical Magnetic Fields

    CERN Document Server

    Duţan, Ioana; Mizuno, Yosuke; Niemiec, Jacek; Kobzar, Oleh; Pohl, Martin; Gómez, Jose L; Pe'er, Asaf; Frederiksen, Jacob T; Nordlund, Åke; Meli, Athina; Sol, Helene; Hardee, Philip E; Hartmann, Dieter H

    2016-01-01

    We study the interaction of relativistic jets with their environment, using 3-dimensional relativistic particle-in-cell simulations for two cases of jet composition: (i) electron-proton ($e^{-}-p^{+}$) and (ii) electron-positron ($e^{\\pm}$) plasmas containing helical magnetic fields. We have performed simulations of "global" jets containing helical magnetic fields in order to examine how helical magnetic fields affect kinetic instabilities such as the Weibel instability, the kinetic Kelvin-Helmholtz instability and the Mushroom instability. We have found that these kinetic instabilities are suppressed and new types of instabilities can grow. For the $e^{-}-p^{+}$ jet, a recollimation-like instability occurs and jet electrons are strongly perturbed, whereas for the $e^{\\pm}$ jet, a recollimation-like instability occurs at early times followed by kinetic instability and the general structure is similar to a simulation without a helical magnetic field. We plan to perform further simulations using much larger sys...

  11. General Relativistic Equilibrium Models of Magnetized Neutron Stars

    CERN Document Server

    Pili, A G; Del Zanna, L

    2013-01-01

    Magnetic fields play a crucial role in many astrophysical scenarios and, in particular, are of paramount importance in the emission mechanism and evolution of Neutron Stars (NSs). To understand the role of the magnetic field in compact objects it is important to obtain, as a first step, accurate equilibrium models for magnetized NSs. Using the conformally flat approximation we solve the Einstein's equations together with the GRMHD equations in the case of a static axisymmetryc NS taking into account different types of magnetic configuration. This allows us to investigate the effect of the magnetic field on global properties of NSs such as their deformation.

  12. Relativistic Magnetosonic Soliton in a Negative-Ion-Rich Magnetized Plasma

    Institute of Scientific and Technical Information of China (English)

    WANG Yun-Liang; ZHOU Zhong-Xiang; LU Yan-Zhen; NI Xiao-Dong; SHEN Jiang; ZHANG Yu

    2008-01-01

    @@ Two-dimensional (2D) relativistic magnetosonic solitons in the negative-ion-rich plasma consisting of positive ions Ar+, negative ions SF6- and electrons are investigated in the presence of an applied magnetic field Bo and can be described by a Kadomtsev-Petviashvili (KP) equation in the weakly relativistic limit. The ratio of positive ion density to negative ion density has a marked influence on the amplitude φm and width W of the steady-state KP soliton. The interaction law of the nontrivial solitons with rich web structure is studied by the Wronskian determinant method.

  13. On the perpendicular propagating modes in the ultra-relativistic weakly magnetized plasma

    Energy Technology Data Exchange (ETDEWEB)

    Abbas, Gohar; Iqbal, Z. [Department of Physics, GC University Lahore, Lahore 54000 (Pakistan); Murtaza, G. [Department of Physics, Quaid-i-Azam University, Islamabad 45320 (Pakistan)

    2015-03-15

    The dispersion relations for the weakly magnetized perpendicular propagating modes (O-mode, X-mode, and upper hybrid mode) based on the ultra-relativistic Fermi-Dirac distribution function with chemical potential are derived using the Vlasov–Maxwell model. The results are presented in terms of Polylog functions without making any approximation. It is found that as the ratio μ/T is increased, the cutoff points shift downward. A comparison is also performed with the previously derived results for ultra-relativistic Maxwellian distribution.

  14. Ion beam enhancement in magnetically insulated ion diodes for high-intensity pulsed ion beam generation in non-relativistic mode

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, X. P. [Key Laboratory of Materials Modification by Laser, Ion, and Electron Beams, Ministry of Education, Dalian University of Technology, Dalian 116024 (China); Surface Engineering Laboratory, School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024 (China); Zhang, Z. C.; Lei, M. K., E-mail: surfeng@dlut.edu.cn [Surface Engineering Laboratory, School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024 (China); Pushkarev, A. I. [Surface Engineering Laboratory, School of Materials Science and Engineering, Dalian University of Technology, Dalian 116024 (China); Laboratory of Beam and Plasma Technology, High Technologies Physics Institute, Tomsk Polytechnic University, 30, Lenin Ave, 634050 Tomsk (Russian Federation)

    2016-01-15

    High-intensity pulsed ion beam (HIPIB) with ion current density above Child-Langmuir limit is achieved by extracting ion beam from anode plasma of ion diodes with suppressing electron flow under magnetic field insulation. It was theoretically estimated that with increasing the magnetic field, a maximal value of ion current density may reach nearly 3 times that of Child-Langmuir limit in a non-relativistic mode and close to 6 times in a highly relativistic mode. In this study, the behavior of ion beam enhancement by magnetic insulation is systematically investigated in three types of magnetically insulated ion diodes (MIDs) with passive anode, taking into account the anode plasma generation process on the anode surface. A maximal enhancement factor higher than 6 over the Child-Langmuir limit can be obtained in the non-relativistic mode with accelerating voltage of 200–300 kV. The MIDs differ in two anode plasma formation mechanisms, i.e., surface flashover of a dielectric coating on the anode and explosive emission of electrons from the anode, as well as in two insulation modes of external-magnetic field and self-magnetic field with either non-closed or closed drift of electrons in the anode-cathode (A-K) gap, respectively. Combined with ion current density measurement, energy density characterization is employed to resolve the spatial distribution of energy density before focusing for exploring the ion beam generation process. Consistent results are obtained on three types of MIDs concerning control of neutralizing electron flows for the space charge of ions where the high ion beam enhancement is determined by effective electron neutralization in the A-K gap, while the HIPIB composition of different ion species downstream from the diode may be considerably affected by the ion beam neutralization during propagation.

  15. Relativistic effects in the intermolecular interaction-induced nuclear magnetic resonance parameters of xenon dimer

    DEFF Research Database (Denmark)

    Hanni, Matti; Lantto, Perttu; Ilias, Miroslav

    2007-01-01

    Relativistic effects on the 129Xe nuclear magnetic resonance shielding and 131Xe nuclear quadrupole coupling (NQC) tensors are examined in the weakly bound Xe2 system at different levels of theory including the relativistic four-component Dirac-Hartree-Fock (DHF) method. The intermolecular...... interaction-induced binary chemical shift d, the anisotropy of the shielding tensor ?s, and the NQC constant along the internuclear axis ?ll are calculated as a function of the internuclear distance. DHF shielding calculations are carried out using gauge-including atomic orbitals. For comparison, the full...... leading-order one-electron Breit-Pauli perturbation theory (BPPT) is applied using a common gauge origin. Electron correlation effects are studied at the nonrelativistic (NR) coupled-cluster singles and doubles with perturbational triples [CCSD(T)] level of theory. The fully relativistic second...

  16. Relativistic MHD simulations of core-collapse GRB jets: 3D instabilities and magnetic dissipation

    CERN Document Server

    Bromberg, Omer

    2015-01-01

    Relativistic jets naturally occur in astrophysical systems that involve accretion onto compact objects, such as core collapse of massive stars in gamma-ray bursts (GRBs) and accretion onto supermassive black holes in active galactic nuclei (AGN). It is generally accepted that these jets are powered electromagnetically, by the magnetised rotation of a central compact object. However, how they produce the observed emission and survive the propagation for many orders of magnitude in distance without being disrupted by current-driven non-axisymmetric instabilities is the subject of active debate. We carry out time-dependent 3D relativistic magnetohydrodynamic simulations of relativistic, Poynting flux dominated jets. The jets are launched self-consistently by the rotation of a strongly magnetised central compact object. This determines the natural degree of azimuthal magnetic field winding, a crucial factor that controls jet stability. We find that the jets are susceptible to two types of instability: (i) a globa...

  17. Onset of the Magnetic Explosion in Solar Polar Coronal X-Ray Jets

    Science.gov (United States)

    Moore, Ronald L.; Sterling, Alphonse C.; Panesar, Navdeep

    2017-08-01

    We examine the onset of the driving magnetic explosion in 15 random polar coronal X-ray jets. Each eruption is observed in a coronal X-ray movie from Hinode and in a coronal EUV movie from Solar Dynamics Observatory. Contrary to the Sterling et al (2015, Nature, 523, 437) scenario for minifilament eruptions that drive polar coronal jets, these observations indicate: (1) in most polar coronal jets (a) the runaway internal tether-cutting reconnection under the erupting minifilament flux rope starts after the spire-producing breakout reconnection starts, not before it, and (b) aleady at eruption onset, there is a current sheet between the explosive closed magnetic field and ambient open field; and (2) the minifilament-eruption magnetic explosion often starts with the breakout reconnection of the outside of the magnetic arcade that carries the minifilament in its core. On the other hand, the diversity of the observed sequences of occurrence of events in the jet eruptions gives further credence to the Sterlling et al (2015, Nature, 523, 437) idea that the magnetic explosions that make a polar X-ray jet work the same way as the much larger magnetic explosions that make and flare and CME. We point out that this idea, and recent observations indicating that magnetic flux cancelation is the fundamental process that builds the field in and around pre-jet minifilaments and triggers the jet-driving magnetic explosion, together imply that usually flux cancelation inside the arcade that explodes in a flare/CME eruption is the fundamental process that builds the explosive field and triggers the explosion.This work was funded by the Heliophysics Division of NASA's Science Mission Directorate through its Living With a Star Targeted Research and Technology Program, its Heliophsyics Guest Investigators Program, and the Hinode Project.

  18. Probing the Internal Structure of Magnetized, Relativistic Jets with Numerical Simulations

    Directory of Open Access Journals (Sweden)

    José-María Martí

    2016-10-01

    Full Text Available From an observational point of view, unveiling the physical processes behind the nature of the jets emanating from radio-loud AGN demands the resolution of the structure across the jet with the highest angular resolutions. Relying on a magneto-fluid dynamical description, numerical simulations can help to characterize the internal structure of jets (transversal structure, magnetic field structure, internal shocks, etc.. In the first part of the paper, we shall discuss equilibrium models of magnetized, relativistic, infinite, axisymmetric jets with rotation propagating through a homogeneous, static, unmagnetized ambient medium. Then, these transversal equilibrium profiles will be used to build steady models of overpressured, superfast-magnetosonic, relativistic jets, with the aim of characterizing their internal structure in connection with their dominant type of energy (internal energy: hot jets; rest-mass energy: kinetically-dominated jets; magnetic energy: Poynting-flux-dominated jets.

  19. Bjorken flow in one-dimensional relativistic magnetohydrodynamics with magnetization

    Science.gov (United States)

    Pu, Shi; Roy, Victor; Rezzolla, Luciano; Rischke, Dirk H.

    2016-04-01

    We study the one-dimensional, longitudinally boost-invariant motion of an ideal fluid with infinite conductivity in the presence of a transverse magnetic field, i.e., in the ideal transverse magnetohydrodynamical limit. In an extension of our previous work Roy et al., [Phys. Lett. B 750, 45 (2015)], we consider the fluid to have a nonzero magnetization. First, we assume a constant magnetic susceptibility χm and consider an ultrarelativistic ideal gas equation of state. For a paramagnetic fluid (i.e., with χm>0 ), the decay of the energy density slows down since the fluid gains energy from the magnetic field. For a diamagnetic fluid (i.e., with χmlaw ˜τ-a, two distinct solutions can be found depending on the values of a and χm. Finally, we also solve the ideal magnetohydrodynamical equations for one-dimensional Bjorken flow with a temperature-dependent magnetic susceptibility and a realistic equation of state given by lattice-QCD data. We find that the temperature and energy density decay more slowly because of the nonvanishing magnetization. For values of the magnetic field typical for heavy-ion collisions, this effect is, however, rather small. It is only for magnetic fields about an order of magnitude larger than expected for heavy-ion collisions that the system is substantially reheated and the lifetime of the quark phase might be extended.

  20. Numerical study of broadband spectra caused by internal shocks in magnetized relativistic jets of blazars

    CERN Document Server

    Rueda-Becerril, Jesus M; Aloy, Miguel A; Aloy, Carmen

    2013-01-01

    The internal-shocks scenario in relativistic jets has been used to explain the variability of blazars' outflow emission. Recent simulations have shown that the magnetic field alters the dynamics of these shocks producing a whole zoo of spectral energy density patterns. However, the role played by magnetization in such high-energy emission is still not entirely understood. With the aid of \\emph{Fermi}'s second LAT AGN catalog, a comparison with observations in the $\\gamma$-ray band was performed, in order to identify the effects of the magnetic field.

  1. Numerical study of broadband spectra caused by internal shocks in magnetized relativistic jets of blazars

    Directory of Open Access Journals (Sweden)

    Rueda-Becerril Jesús M.

    2013-12-01

    Full Text Available The internal-shocks scenario in relativistic jets has been used to explain the variability of blazars’ outflow emission. Recent simulations have shown that the magnetic field alters the dynamics of these shocks producing a whole zoo of spectral energy density patterns. However, the role played by magnetization in such high-energy emission is still not entirely understood. With the aid of Fermi’s second LAT AGN catalog, a comparison with observations in the γ-ray band was performed, in order to identify the effects of the magnetic field.

  2. A model of global magnetic reconnection rate in relativistic collisionless plasmas

    CERN Document Server

    Liu, Yi-Hsin; Guo, Fan; Daughton, William; Li, Hui

    2016-01-01

    A model of global magnetic reconnection rate in relativistic collisionless plasmas is developed and validated by the fully kinetic simulation. Through considering the force balance at the upstream and downstream of the diffusion region, we show that the global rate is bounded by a value $\\sim 0.3$ even when the local rate goes up to $\\sim O(1)$ and the local inflow speed approaches the speed of light in strongly magnetized plasmas. The derived model is general and can be applied to magnetic reconnection under widely different circumstances.

  3. Relativistic magnetic reconnection in collisionless ion-electron plasmas explored with particle-in-cell simulations

    CERN Document Server

    Melzani, Mickaël; Folini, Doris; Winisdoerffer, Christophe; Favre, Jean M

    2014-01-01

    Magnetic reconnection is a leading mechanism for magnetic energy conversion and high-energy non-thermal particle production in a variety of high-energy astrophysical objects, including ones with relativistic ion-electron plasmas (e.g., microquasars or AGNs) - a regime where first principle studies are scarce. We present 2D particle-in-cell (PIC) simulations of low $\\beta$ ion-electron plasmas under relativistic conditions, i.e., with inflow magnetic energy exceeding the plasma rest-mass energy. We identify outstanding properties: (i) For relativistic inflow magnetizations (here $10 80$), the reconnection electric field is sustained more by bulk inertia than by thermal inertia. It challenges the thermal-inertia-paradigm and its implications. (iii) The inflows feature sharp transitions at the entrance of the diffusion zones. These are not shocks but results from particle ballistic motions, all bouncing at the same location, provided that the thermal velocity in the inflow is far smaller than the inflow E cross...

  4. Fluid-magnetic helicity in axisymmetric stationary relativistic magnetohydrodynamics

    Science.gov (United States)

    Prasad, G.

    2017-10-01

    The present work is intended to gain a fruitful insight into the understanding of the formations of magneto-vortex configurations and their role in the physical processes of mutual exchange of energies associated with fluid's motion and the magnetic fields in an axisymmetric stationary hydromagnetic system subject to strong gravitational field (e.g., neutron star/magnetar). It is found that the vorticity flux vector field associated with vorticity 2-form is a linear combination of fluid's vorticity vector and of magnetic vorticity vector. The vorticity flux vector obeys Helmholtz's flux conservation. The energy equation associated with the vorticity flux vector field is deduced. It is shown that the mechanical rotation of vorticity flux surfaces contributes to the formation of vorticity flux vector field. The dynamo action for the generation of toroidal components of vorticity flux vector field is described in the presence of meridional circulations. It is shown that the stretching of twisting magnetic lines due to differential rotation leads to the breakdown of gravitational isorotation in the absence of meridional circulations. An explicit expression consists of rotation of vorticity flux surface, energy and angular momentum per baryon for the fluid-magnetic helicity current vector is obtained. The conservation of fluid-magnetic helicity is demonstrated. It is found that the fluid-magnetic helicity displays the energy spectrum arising due to the interaction between the mechanical rotation of vorticity flux surfaces and the fluid's motion obeying Euler's equations. The dissipation of a linear combination of modified fluid helicity and magnetic twist is shown to occur due to coupled effect of frame dragging and meridional circulation. It is found that the growing twist of magnetic lines causes the dissipation of modified fluid helicity in the absence of meridional circulations.

  5. Bjorken flow in one-dimensional relativistic magnetohydrodynamics with magnetization

    CERN Document Server

    Pu, Shi; Rezzolla, Luciano; Rischke, Dirk H

    2016-01-01

    We study the one-dimensional, longitudinally boost-invariant motion of an ideal fluid with infinite conductivity in the presence of a transverse magnetic field, i.e., in the ideal transverse magnetohydrodynamical limit. In an extension of our previous work [1], we consider the fluid to have a non-zero magnetization. First, we assume a constant magnetic susceptibility $\\chi_{m}$ and consider an ultrarelativistic ideal gas equation of state. For a paramagnetic fluid (i.e., with $\\chi_{m}>0$), the decay of the energy density slows down since the fluid gains energy from the magnetic field. For a diamagnetic fluid (i.e., with $\\chi_{m}<0$), the energy density decays faster because it feeds energy into the magnetic field. Furthermore, when the magnetic field is taken to be external and to decay in proper time $\\tau$ with a power law $\\sim\\tau^{-a}$, two distinct solutions can be found depending on the values of $a$ and $\\chi_m$. Finally, we also solve the ideal magnetohydrodynamical equations for one-dimensional...

  6. GENERAL RELATIVISTIC SIMULATIONS OF MAGNETIZED PLASMAS AROUND MERGING SUPERMASSIVE BLACK HOLES

    Energy Technology Data Exchange (ETDEWEB)

    Giacomazzo, Bruno [JILA, University of Colorado and National Institute of Standards and Technology, 440 UCB, Boulder, CO 80309 (United States); Baker, John G.; Van Meter, James R. [Gravitational Astrophysics Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD 21114 (United States); Coleman Miller, M.; Reynolds, Christopher S. [Department of Astronomy, University of Maryland, College Park, MD 20742 (United States)

    2012-06-10

    Coalescing supermassive black hole binaries are produced by the mergers of galaxies and are the most powerful sources of gravitational waves accessible to space-based gravitational observatories. Some such mergers may occur in the presence of matter and magnetic fields and hence generate an electromagnetic counterpart. In this Letter, we present the first general relativistic simulations of magnetized plasma around merging supermassive black holes using the general relativistic magnetohydrodynamic code Whisky. By considering different magnetic field strengths, going from non-magnetically dominated to magnetically dominated regimes, we explore how magnetic fields affect the dynamics of the plasma and the possible emission of electromagnetic signals. In particular, we observe a total amplification of the magnetic field of {approx}2 orders of magnitude, which is driven by the accretion onto the binary and that leads to much stronger electromagnetic signals, more than a factor of 10{sup 4} larger than comparable calculations done in the force-free regime where such amplifications are not possible.

  7. Formation of hard power laws in the energetic particle spectra resulting from relativistic magnetic reconnection.

    Science.gov (United States)

    Guo, Fan; Li, Hui; Daughton, William; Liu, Yi-Hsin

    2014-10-10

    Using fully kinetic simulations, we demonstrate that magnetic reconnection in relativistic plasmas is highly efficient at accelerating particles through a first-order Fermi process resulting from the curvature drift of particles in the direction of the electric field induced by the relativistic flows. This mechanism gives rise to the formation of hard power-law spectra in parameter regimes where the energy density in the reconnecting field exceeds the rest mass energy density σ ≡ B(2)/(4πnm(e)c(2))>1 and when the system size is sufficiently large. In the limit σ ≫ 1, the spectral index approaches p = 1 and most of the available energy is converted into nonthermal particles. A simple analytic model is proposed which explains these key features and predicts a general condition under which hard power-law spectra will be generated from magnetic reconnection.

  8. Kinematics of and emission from helically orbiting blobs in a relativistic magnetized jet

    CERN Document Server

    Mohan, P

    2015-01-01

    We present a general relativistic (GR) model of jet variability in active galactic nuclei due to orbiting blobs in helical motion along a funnel or cone shaped magnetic surface anchored to the accretion disk near the black hole. Considering a radiation pressure driven flow in the inner region, we find that it stabilizes the flow yielding Lorentz factors ranging between $1.1 - 7$ at small radii for reasonable initial conditions. Assuming these as inputs, simulated light curves (LCs) for the funnel model include Doppler and gravitational shifts, aberration, light bending and time delay. These LCs are studied for quasi-periodic oscillations (QPOs) and the power spectral density (PSD) shape and yield an increased amplitude ($\\sim$ 12 %); a beamed portion and a systematic phase shift with respect to that from a previous special relativistic model. The results strongly justify implementing a realistic magnetic surface geometry in a GR framework to describe effects on emission from orbital features in the jet close ...

  9. Alignment of magnetized accretion disks and relativistic jets with spinning black holes.

    Science.gov (United States)

    McKinney, Jonathan C; Tchekhovskoy, Alexander; Blandford, Roger D

    2013-01-04

    Accreting black holes (BHs) produce intense radiation and powerful relativistic jets, which are affected by the BH's spin magnitude and direction. Although thin disks might align with the BH spin axis via the Bardeen-Petterson effect, this does not apply to jet systems with thick disks. We used fully three-dimensional general relativistic magnetohydrodynamical simulations to study accreting BHs with various spin vectors and disk thicknesses and with magnetic flux reaching saturation. Our simulations reveal a "magneto-spin alignment" mechanism that causes magnetized disks and jets to align with the BH spin near BHs and to reorient with the outer disk farther away. This mechanism has implications for the evolution of BH mass and spin, BH feedback on host galaxies, and resolved BH images for the accreting BHs in SgrA* and M87.

  10. Relativistic models of magnetars: the twisted-torus magnetic field configuration

    CERN Document Server

    Ciolfi, R; Gualtieri, L; Pons, J A

    2009-01-01

    We find general relativistic solutions of equilibrium magnetic field configurations in magnetars, extending previous results of Colaiuda et al. (2008). Our method is based on the solution of the relativistic Grad-Shafranov equation, to which Maxwell's equations can be reduced in some limit. We obtain equilibrium solutions with the toroidal magnetic field component confined into a finite region inside the star, and the poloidal component extending to the exterior. These so-called twisted-torus configurations have been found to be the final outcome of dynamical simulations in the framework of Newtonian gravity, and appear to be more stable than other configurations. The solutions include higher order multipoles, which are coupled to the dominant dipolar field. We use arguments of minimal energy to constrain the ratio of the toroidal to the poloidal field.

  11. Weibel Instability Growth Rate in Magnetized Plasmas with Quasi-Relativistic Distribution Function

    Science.gov (United States)

    Hosseini, Sayed Ahmad; Mahdavi, Mohammad

    2016-12-01

    The mechanism of the Weibel instability is investigated for dense magnetized plasmas. As we know, due to the electron velocity distribution, the Coulomb collision effect of electron-ion and the relativistic properties play an important role in such study. In this study an analytical expression for the growth rate and the condition of restricting the Weibel instability are derived for low-frequency limit. These calculations are done for the oscillation frequency dependence on the electron cyclotron frequency. It is shown that, the relativistic properties of the particle lead to increasing the growth rate of the instability. On the other hand the collision effects and background magnetic field try to decrease the growth rate by decreasing the temperature anisotropy and restricting the particles movement.

  12. Nonlinear dynamics of cold magnetized non-relativistic plasma in the presence of electron-ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Sahu, Biswajit, E-mail: biswajit-sahu@yahoo.co.in [Department of Mathematics, West Bengal State University, Barasat, Kolkata 700126 (India); Sinha, Anjana, E-mail: sinha.anjana@gmail.com [Department of Instrumentation Science, Jadavpur University, Kolkata 700 032 (India); Roychoudhury, Rajkumar, E-mail: rroychoudhury123@gmail.com [Department of Mathematics, Visva-Bharati, Santiniketan - 731 204, India and Advanced Centre for Nonlinear and Complex Phenomena, 1175 Survey Park, Kolkata 700 075 (India)

    2015-09-15

    A numerical study is presented of the nonlinear dynamics of a magnetized, cold, non-relativistic plasma, in the presence of electron-ion collisions. The ions are considered to be immobile while the electrons move with non-relativistic velocities. The primary interest is to study the effects of the collision parameter, external magnetic field strength, and the initial electromagnetic polarization on the evolution of the plasma system.

  13. Analytic solution of a relativistic two-dimensional hydrogen-like atom in a constant magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Villalba, V.M. [Instituto Venezolano de Investigaciones Cientificas, Caracas (Venezuela). Centro de Fisica; Pino, R. [Instituto Venezolano de Investigaciones Cientificas, Caracas (Venezuela). Centro de Fisica]|[Centro de Quimica, Instituto Venezolano de Investigaciones Cientificas, IVIC, Apdo 21827, Caracas 1020-A (Venezuela)

    1998-01-26

    We obtain exact solutions of the Klein-Gordon and Pauli-Schroedinger equations for a two-dimensional hydrogen-like atom in the presence of a constant magnetic field. Analytic solutions for the energy spectrum are obtained for particular values of the magnetic field strength. The results are compared to those obtained in the non-relativistic and spinless case. We obtain that the relativistic spectrum does not present s states. (orig.). 7 refs.

  14. Radiation of Relativistic Particles in a Quasi-Homogeneous Magnetic Field

    CERN Document Server

    Epp, V

    2016-01-01

    Spectrum of radiation of a relativistic particle moving in a nonhomogeneous magnetic field is considered. The spectrum depends on the pitch-angle $\\alpha$ between the velocity direction and a line tangent to the field line. In case of very small $\\alpha$ the particle generates so-called curvature radiation, in an intermediate case undulator-kind radiation is produced. In this paper we present the calculations of radiation properties in a case when both curvature and undulator radiation is observed.

  15. Magnetic moments of heavy baryons in the relativistic three-quark model

    CERN Document Server

    Faessler, A; Ivanov, M A; Körner, J G; Lyubovitskij, V E; Nicmorus, D; Pumsa-ard, K; Faessler, Amand; Gutsche, Th.

    2006-01-01

    The magnetic moments of ground state single, double and triple heavy baryons containing charm or bottom quarks are calculated in a relativistic three-quark model, which, in the heavy quark limit, is consistent with Heavy Quark Effective Theory and Heavy Hadron Chiral Perturbation Theory. The internal quark structure of baryons is modeled by baryonic three-quark currents with a spin-flavor structure patterned according to standard covariant baryonic wave functions and currents used in QCD sum rule calculations.

  16. Relativistic electrons and magnetic field of the M87 jet on ~ten Schwarzschild radii scale

    CERN Document Server

    Kino, M; Hada, K; Doi, A

    2014-01-01

    We explore energy densities of magnetic field and relativistic electrons in the M87 jet. Since the radio core at the jet base is identical to the optically thick surface against synchrotron self absorption (SSA), the observing frequency is identical to the SSA turnover frequency. As a first step, we assume the radio core as a simple uniform sphere geometry. Using the observed angular size of the radio core measured by the Very Long Baseline Array at 43 GHz, we estimate the energy densities of magnetic field ($U_{B}$) and relativistic electrons ($U_{e}$) based on the standard SSA formula. Imposing the condition that the Poynting power and relativistic electron one should be smaller than the total power of the jet, we find that (i) the allowed range of the magnetic field strength ($B_{tot}$) is from 1 G to 15 G, and that (ii) $1 times 10^{-5} < U_{e}/U_{B} < 6 times 10^{2}$ holds. The uncertainty of $U_{e}/U_{B}$ comes from the strong dependence on the angular size of the radio core and the minimum Lorent...

  17. Ambient magnetic field amplification in shock fronts of relativistic jets: an application to GRB afterglows

    CERN Document Server

    da Silva, G Rocha; Kowal, G; Pino, E M de Gouveia Dal

    2014-01-01

    Strong downstream magnetic fields of order of $\\sim 1$G, with large correlation lengths, are believed to cause the large synchrotron emission at the afterglow phase of gamma ray bursts (GRBs). Despite of the recent theoretical efforts, models have failed to fully explain the amplification of the magnetic field, particularly in a matter dominated scenario. We revisit the problem by considering the synchrotron emission to occur at the expanding shock front of a weakly magnetized relativistic jet over a magnetized surrounding medium. Analytical estimates and a number of high resolution 2D relativistic magneto-hydrodynamical (RMHD) simulations are provided. Jet opening angles of $\\theta = 0^{\\circ} - 20^{\\circ}$, and ambient to jet density ratios of $10^{-4} - 10^2$ were considered. We found that most of the amplification is due to compression of the ambient magnetic field at the contact discontinuity between the reverse and forward shocks at the jet head, with substantial pile-up of the magnetic field lines as t...

  18. The role of currents distribution in general relativistic equilibria of magnetized neutron stars

    CERN Document Server

    Bucciantini, N; Del Zanna, L

    2014-01-01

    Magnetic fields play a critical role in the phenomenology of neutron stars. There is virtually no observable aspect which is not governed by them. Despite this, only recently efforts have been done to model magnetic fields in the correct general relativistic regime, characteristic of these compact objects. In this work we present, for the first time a comprehensive and detailed parameter study, in general relativity, of the role that the current distribution, and the related magnetic field structure, have in determining the precise structure of neutron stars. In particular, we show how the presence of localized currents can modify the field strength at the stellar surface, and we look for general trends, both in terms of energetic properties, and magnetic field configurations. Here we verify that, among other things, for a large class of different current distributions the resulting magnetic configurations are always dominated by the poloidal component of the current.

  19. Three-dimensional fast magnetic reconnection driven by relativistic ultraintense femtosecond lasers.

    Science.gov (United States)

    Ping, Y L; Zhong, J Y; Sheng, Z M; Wang, X G; Liu, B; Li, Y T; Yan, X Q; He, X T; Zhang, J; Zhao, G

    2014-03-01

    Three-dimensional fast magnetic reconnection driven by two ultraintense femtosecond laser pulses is investigated by relativistic particle-in-cell simulation, where the two paralleled incident laser beams are shot into a near-critical plasma layer to form a magnetic reconnection configuration in self-generated magnetic fields. A reconnection X point and out-of-plane quadrupole field structures associated with magnetic reconnection are formed. The reconnection rate is found to be faster than that found in previous two-dimensional Hall magnetohydrodynamic simulations and electrostatic turbulence contribution to the reconnection electric field plays an essential role. Both in-plane and out-of-plane electron and ion accelerations up to a few MeV due to the magnetic reconnection process are also obtained.

  20. Pressure of Degenerate and Relativistic electrons in a superhigh magnetic field

    CERN Document Server

    Gao, Zhi Fu; He, Peng Qiu; Jie, Du Yuan

    2013-01-01

    Based on our previous work, we deduce a general formula for pressure of degenerate and relativistic electrons,Pe, which is suitable for superhigh magnetic fields, discuss the quantization of Landau levels of electrons, and consider the quantum electrodynam-ic(QED) effects on the equations of states (EOSs) for different matter systems. The main conclusions are as follows:Pe is related to the magnetic field B, matter density ?, and electron fraction Ye ; the stronger the magnetic field, the higher the electron pressure becomes; the high electron pressure could be caused by high Fermi energy of electrons in a superhigh magnetic field; compared with a common radio pulsar, a magnetar could be a more compact oblate spheroid-like deformed neutron star due to the anisotropic total pressure; and an increase in the maximum mass of a magnetar is expected because of the positive contribution of the magnetic field energy to the EOS of the star.

  1. NATO Advanced Research Workshop on Explosives Detection Using Magnetic and Nuclear Resonance Techniques

    CERN Document Server

    Fraissard, Jacques

    2009-01-01

    Nuclear quadrupole resonance (NQR) a highly promising new technique for bulk explosives detection: relatively inexpensive, more compact than NMR, but with considerable selectivity. Since the NQR frequency is insensitive to long-range variations in composition, mixing explosives with other materials, such as the plasticizers in plastic explosives, makes no difference. The NQR signal strength varies linearly with the amount of explosive, and is independent of its distribution within the volume monitored. NQR spots explosive types in configurations missed by the X-ray imaging method. But if NQR is so good, why it is not used everywhere? Its main limitation is the low signal-to-noise ratio, particularly with the radio-frequency interference that exists in a field environment, NQR polarization being much weaker than that from an external magnetic field. The distinctive signatures are there, but are difficult to extract from the noise. In addition, the high selectivity is partly a disadvantage, as it is hard to bui...

  2. Search for relativistic magnetic monopoles with the AMANDA-II detector

    Energy Technology Data Exchange (ETDEWEB)

    Wissing, Henrike

    2009-02-25

    Cherenkov emissions of magnetically charged particles passing through a transparent medium will exceed those of electrically charged particles by several orders of magnitude. The Antarctic Muon And Neutrino Detector Array (AMANDA), a neutrino telescope utilizing the glacial ice at the geographic South Pole as Cherenkov medium, is capable of efficiently detecting relativistic magnetic monopoles that may pass through its sensitive volume. This thesis presents the search for Cherenkov signatures from relativistic magnetic monopoles in data taken with AMANDA during the 2000. No such signal is observed in the data, and the analysis allows to place upper limits on the flux of relativistic magnetic monopoles. The limit obtained for monopoles reaching the detector from below the horizon, i.e., those monopoles that are capable of crossing the Earth, is the most stringent experimental constraint on the flux of magnetic monopoles to date: Dependent on the monopole speed, the flux limit (at 90% confidence level) varies between 3.8 x 10{sup -17} cm{sup -2}s{sup -1}sr{sup -1} (for monopoles moving at the vacuum speed of light) and 8.8 x 10{sup -16} cm{sup -2}s{sup -1}sr{sup -1} (for monopoles moving at a speed just above the Cherenkov threshold). The limit obtained for monopoles reaching the detector from above the horizon is less stringent by roughly an order of magnitude, owing to the much larger background from down-going atmospheric muons. This looser limit is valid for a larger class of magnetic monopoles, since the monopole's capability to pass through the Earth is not a requirement. (orig.)

  3. Ionization of hydrogen by neutrino magnetic moment, relativistic muon, and WIMP

    CERN Document Server

    Chen, Jiunn-Wei; Liu, Chien-Fu; Wu, Chih-Liang

    2013-01-01

    We studied the ionization of hydrogen by scattering of neutrino magnetic moment, relativistic muon, and weakly-interacting massive particle with a QED-like interaction. Analytic results were obtained and compared with several approximation schemes often used in atomic physics. As current searches for neutrino magnetic moment and dark matter have lowered the detector threshold down to the sub-keV regime, we tried to deduce from this simple case study the influence of atomic structure on the the cross sections and the applicabilities of various approximations. The general features being found will be useful for cases where practical detector atoms are considered.

  4. The extent of power-law energy spectra in collisionless relativistic magnetic reconnection in pair plasmas

    CERN Document Server

    Werner, G R; Cerutti, B; Nalewajko, K; Begelman, M C

    2014-01-01

    Using two-dimensional particle-in-cell simulations, we characterize the energy spectra of particles accelerated by relativistic magnetic reconnection (without guide field) in collisionless electron-positron plasmas, for a wide range of upstream magnetizations $\\sigma$ and system sizes $L$. The particle spectra are well-represented by a power law $\\gamma^{-\\alpha}$, with a combination of exponential and super-exponential high-energy cutoffs, proportional to $\\sigma$ and $L$, respectively. For large $L$ and $\\sigma$, the power-law index $\\alpha$ approaches about 1.2.

  5. On Fermi acceleration and MHD-instabilities at ultra-relativistic magnetized shock waves

    CERN Document Server

    Pelletier, Guy; Marcowith, Alexandre

    2008-01-01

    Fermi acceleration can take place at ultra-relativistic shock waves if the upstream or downstream magnetic field has been remodeled so that most of the magnetic power lies on short spatial scales. The relevant conditions under which Fermi acceleration become efficient in the presence of both a coherent and a short scale turbulent magnetic field are addressed. Within the MHD approximation, this paper then studies the amplification of a pre-existing magnetic field through the streaming of cosmic rays upstream of a relativistic shock wave. The magnetic field is assumed to be perpendicular in the shock front frame, as generally expected in the limit of large shock Lorentz factor. In the MHD regime, compressive instabilities seeded by the net cosmic-ray charge in the shock precursor (as seen in the shock front frame) develop on the shortest spatial scales but saturate at a moderate level $\\delta B/B \\sim 1$, which is not sufficient for Fermi acceleration. As we argue, it is possible that other instabilities outsid...

  6. Numerical simulations of the internal shock model in magnetized relativistic jets of blazars

    CERN Document Server

    Rueda-Becerril, Jesus M; Aloy, Miguel A

    2015-01-01

    The internal shocks scenario in relativistic jets is used to explain the variability of the blazar emission. Recent studies have shown that the magnetic field significantly alters the shell collision dynamics, producing a variety of spectral energy distributions and light-curves patterns. However, the role played by magnetization in such emission processes is still not entirely understood. In this work we numerically solve the magnetohydodynamic evolution of the magnetized shells collision, and determine the influence of the magnetization on the observed radiation. Our procedure consists in systematically varying the shell Lorentz factor, relative velocity, and viewing angle. The calculations needed to produce the whole broadband spectral energy distributions and light-curves are computationally expensive, and are achieved using a high-performance parallel code.

  7. Transverse conductivity of a relativistic plasma in oblique electric and magnetic fields

    Science.gov (United States)

    Melia, Fulvio; Fatuzzo, Marco

    1991-01-01

    Resistive tearing in a primary candidate for flares occurring in stressed magnetic fields. Its possible application to the strongly magnetized environments (Hz about 10 to the 12th G) near the surface of neutron stars, particularly as a mechanism for generating the plasma heating and particle acceleration leading to gamma-ray bursts, has motivated a quantum treatment of this process, which requires knowledge of the electrical conductivity sigma of a relativistic gas in a new domain (i.e., that of a low-density n/e/) plasma in oblique electric and magnetic fields. This paper discusses the mathematical formalism for calculating sigma and present numerical results for a wide range of parameter values. The results indicate that sigma depends very strongly on both the applied electric and magnetic fields.

  8. Thermal photon production from gluon fusion induced by magnetic fields in relativistic heavy-ion collisions

    CERN Document Server

    Ayala, Alejandro; Dominguez, C A; Hernandez, L A

    2016-01-01

    We compute the production of thermal photons in relativistic heavy-ion collisions by gluon fusion in the presence of an intense magnetic field, and during the early stages of the reaction. This photon yield is an excess over calculations that do not consider magnetic field effects. We add this excess to recent hydrodynamic calculations that are close to describing the experimental transverse momentum distribution in RHIC and LHC. We then show that with reasonable values for the temperature, magnetic field strength, and strong coupling constant, our results provide a very good description of such excess. These results support the idea that the origin of at least some of the photon excess observed in heavy-ion experiments may arise from magnetic field induced processes.

  9. Magnetohydrodynamic Effects in Propagating Relativistic Ejecta: Reverse Shock and Magnetic Acceleration

    Science.gov (United States)

    Mizuno, Y.; Nishikawa, K.I.; Zhang, B.; Giacomazzo, B.; Hardee, P.E.; Nagataki, S.; Hartmann, D.H.

    2008-01-01

    We solve the Riemann problem for the deceleration of arbitrarily magnetized relativistic ejecta injected into a static unmagnetized medium. We find that for the same initial Lorentz factor, the reverse shock becomes progressively weaker with increasing magnetization s (the Poynting-to-kinetic energy flux ratio), and the shock becomes a rarefaction wave when s exceeds a critical value, sc, defined by the balance between the magnetic pressure in the ejecta and the thermal pressure in the forward shock. In the rarefaction wave regime, we find that the rarefied region is accelerated to a Lorentz factor that is significantly larger than the initial value. This acceleration mechanism is due to the strong magnetic pressure in the ejecta.

  10. Pitch angle scattering of relativistic electrons near electromagnetic ion cyclotron resonances in diverging magnetic fields

    Science.gov (United States)

    Eliasson, B.; Papadopoulos, K.

    2017-10-01

    A theoretical study of the propagation of left-hand polarized shear Alfvén waves in spatially decreasing magnetic field geometries near the EMIC resonance, including the spectrum and amplitude of the mode converted EMIC waves and the pitch angle scattering of relativistic electrons transiting the resonant region, is presented. The objective of the paper is to motivate an experimental study of the subject using the UCLA LAPD chamber. The results are relevant in exploring the possibility that shear Alfvén waves strategically injected into the radiation belts using either ionospheric heating from ground based RF transmitters or injected by transmitters based on space platforms can enhance the precipitation rate of trapped relativistic electrons. Effects of multi-ionic composition are also investigated.

  11. Compressible Relativistic Magnetohydrodynamic Turbulence in Magnetically-Dominated Plasmas And Implications for A New Regime

    CERN Document Server

    Takamoto, Makoto

    2016-01-01

    In this Letter, we report compressible mode effects on relativistic magnetohydrodynamic (RMHD) turbulence in Poynting-dominated plasmas using 3-dimensional numerical simulations. We decomposed fluctuations in the turbulence into 3 MHD modes (fast, slow, and Alfv\\'en) following the procedure mode decomposition in (Cho & Lazarian 2002), and analyzed their energy spectra and structure functions separately. We also analyzed the ratio of compressible mode to Alfv\\'en mode energy with respect to its Mach number. We found the ratio of compressible mode increases not only with the Alfv\\'en Mach number but with the background magnetization, which indicates a strong coupling between the fast and Alfv\\'en modes and appearance of a new regime of RMHD turbulence in Poynting-dominated plasmas where the fast and Alfv\\'en modes strongly couples and cannot be distinguished, different from the non-relativistic MHD case. This finding will affect particle acceleration efficiency obtained by assuming Alfv\\'enic critical balan...

  12. Enhancement of threshold electric field for relativistic runaway electrons due to magnetic fluctuation and synchrotron radiation

    Science.gov (United States)

    Li, Shucai; Wang, Lu; Chen, Zhongyong; Huang, Duwei; Tong, Ruihai

    2016-10-01

    The dynamics of relativistic electrons are analyzed using the relativistic Fokker-Planck equation including deceleration due to synchrotron radiation (SR) and radial diffusion loss caused by magnetic fluctuation (MF). Threshold electric field for avalanche growth is enhanced, and the growth rate is reduced by the combined effect of MF and SR as compared to the case with only SR. The threshold electric field is determined by the time scales balance between momentum evolution and radial diffusion loss induced by MF, and increased with level of MF. More importantly, the hysteresis behavior of runaway pointed out by does not exist anymore. This is because the ``seed electrons'' cannot be sustained as a result of diffusion loss. This work was supported by NSFC Grant No. 11305071, and the Ministry of Science and technology of China, under Contract Nos. 2013GB112002, 2015GB111002 and 2015GB111001.

  13. Electron Weibel instability in relativistic counterstreaming plasmas with flow-aligned external magnetic fields

    Science.gov (United States)

    Grassi, A.; Grech, M.; Amiranoff, F.; Pegoraro, F.; Macchi, A.; Riconda, C.

    2017-02-01

    The Weibel instability driven by two symmetric counterstreaming relativistic electron plasmas, also referred to as current-filamentation instability, is studied in a constant and uniform external magnetic field aligned with the plasma flows. Both the linear and nonlinear stages of the instability are investigated using analytical modeling and particle-in-cell simulations. While previous studies have already described the stabilizing effect of the magnetic field, we show here that the saturation stage is only weakly affected. The different mechanisms responsible for the saturation are discussed in detail in the relativistic cold fluid framework considering a single unstable mode. The application of an external field leads to a slight increase of the saturation level for large wavelengths, while it does not affect the small wavelengths. Multimode and temperature effects are then investigated. While at high temperature the saturation level is independent of the external magnetic field, at low but finite temperature the competition between different modes in the presence of an external magnetic field leads to a saturation level lower with respect to the unmagnetized case.

  14. One-photon pair annihilation in magnetized relativistic plasmas

    Science.gov (United States)

    Harding, A. K.

    1986-01-01

    In supersonic magnetic fields, electron-positron pairs may annihilate into single photons producing spectral features above 1 MeV. The paper calculates the exact one-photon annihilation rate in the general case where pairs may annihilate from excited Landau states, extending the previous studies which were restricted to pairs in the ground state. Asymptotic expressions for annihilation spectra and rates in the limit of large pair quantum numbers are also derived. It is found that the rate of annihilation from excited states can exceed the rate from the ground state by orders of magnitude in fields less than about 2 x 10 to the 12th G. This allows one-photon annihilation to be competitive with the two-photon process at typical neutron star field strengths. Annihilation spectra from a Maxwellian pair plasma at transrelativistic temperatures show fine structure near threshold on a scale (h/2pi)omega sub B as the result of contributions from individual pair states, which blend into a smooth continuum at higher energies.

  15. Role of the Kelvin-Helmholtz instability in the evolution of magnetized relativistic sheared plasma flows.

    Science.gov (United States)

    Hamlin, Nathaniel D; Newman, William I

    2013-04-01

    We explore, via analytical and numerical methods, the Kelvin-Helmholtz (KH) instability in relativistic magnetized plasmas, with applications to astrophysical jets. We solve the single-fluid relativistic magnetohydrodynamic (RMHD) equations in conservative form using a scheme which is fourth order in space and time. To recover the primitive RMHD variables, we use a highly accurate, rapidly convergent algorithm which improves upon such schemes as the Newton-Raphson method. Although the exact RMHD equations are marginally stable, numerical discretization renders them unstable. We include numerical viscosity to restore numerical stability. In relativistic flows, diffusion can lead to a mathematical anomaly associated with frame transformations. However, in our KH studies, we remain in the rest frame of the system, and therefore do not encounter this anomaly. We use a two-dimensional slab geometry with periodic boundary conditions in both directions. The initial unperturbed velocity peaks along the central axis and vanishes asymptotically at the transverse boundaries. Remaining unperturbed quantities are uniform, with a flow-aligned unperturbed magnetic field. The early evolution in the nonlinear regime corresponds to the formation of counter-rotating vortices, connected by filaments, which persist in the absence of a magnetic field. A magnetic field inhibits the vortices through a series of stages, namely, field amplification, vortex disruption, turbulent breakdown, and an approach to a flow-aligned equilibrium configuration. Similar stages have been discussed in MHD literature. We examine how and to what extent these stages manifest in RMHD for a set of representative field strengths. To characterize field strength, we define a relativistic extension of the Alfvénic Mach number M(A). We observe close complementarity between flow and magnetic field behavior. Weaker fields exhibit more vortex rotation, magnetic reconnection, jet broadening, and intermediate turbulence

  16. ON THE DISTRIBUTION OF PARTICLE ACCELERATION SITES IN PLASMOID-DOMINATED RELATIVISTIC MAGNETIC RECONNECTION

    Energy Technology Data Exchange (ETDEWEB)

    Nalewajko, Krzysztof [Kavli Institute for Particle Astrophysics and Cosmology, SLAC National Accelerator Laboratory, Stanford University, 2575 Sand Hill Road M/S 29, Menlo Park, CA 94025 (United States); Uzdensky, Dmitri A.; Werner, Gregory R. [Center for Integrated Plasma Studies, Physics Department, University of Colorado, UCB 390, Boulder, CO 80309-0390 (United States); Cerutti, Benoit [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Begelman, Mitchell C., E-mail: knalew@stanford.edu [JILA, University of Colorado and National Institute of Standards and Technology, 440 UCB, Boulder, CO 80309 (United States)

    2015-12-20

    We investigate the distribution of particle acceleration sites, independently of the actual acceleration mechanism, during plasmoid-dominated, relativistic collisionless magnetic reconnection by analyzing the results of a particle-in-cell numerical simulation. The simulation is initiated with Harris-type current layers in pair plasma with no guide magnetic field, negligible radiative losses, no initial perturbation, and using periodic boundary conditions. We find that the plasmoids develop a robust internal structure, with colder dense cores and hotter outer shells, that is recovered after each plasmoid merger on a dynamical timescale. We use spacetime diagrams of the reconnection layers to probe the evolution of plasmoids, and in this context we investigate the individual particle histories for a representative sample of energetic electrons. We distinguish three classes of particle acceleration sites associated with (1) magnetic X-points, (2) regions between merging plasmoids, and (3) the trailing edges of accelerating plasmoids. We evaluate the contribution of each class of acceleration sites to the final energy distribution of energetic electrons: magnetic X-points dominate at moderate energies, and the regions between merging plasmoids dominate at higher energies. We also identify the dominant acceleration scenarios, in order of decreasing importance: (1) single acceleration between merging plasmoids, (2) single acceleration at a magnetic X-point, and (3) acceleration at a magnetic X-point followed by acceleration in a plasmoid. Particle acceleration is absent only in the vicinity of stationary plasmoids. The effect of magnetic mirrors due to plasmoid contraction does not appear to be significant in relativistic reconnection.

  17. Effect of Self-Magnetic Fields on the Nonlinear Dynamics of Relativistic Electron Beam with Virtual Cathode

    CERN Document Server

    Hramov, A E; Koronovskii, A A; Filatova, A E; 10.1063/1.4765062

    2013-01-01

    The report is devoted to the results of the numerical study of the virtual cathode formation conditions in the relativistic electron beam under the influence of the self-magnetic and external axial magnetic fields. The azimuthal instability of the relativistic electron beam leading to the formation of the vortex electron structure in the system was found out. This instability is determined by the influence of the self-magnetic fields of the relativistic electron beam and it leads to the decrease of the critical value of the electron beam current (current when the non-stationary virtual cathode is formed in the drift space). The typical dependencies of the critical current on the external uniform magnetic field value were discovered. The effect of the beam thickness on the virtual cathode formation conditions was also analyzed.

  18. General Relativistic Magnetohydrodynamic Simulations of Magnetically Choked Accretion Flows around Black Holes

    Energy Technology Data Exchange (ETDEWEB)

    McKinney, Jonathan C.; Tchekhovskoy, Alexander; Blandford, Roger D.

    2012-04-26

    Black hole (BH) accretion flows and jets are qualitatively affected by the presence of ordered magnetic fields. We study fully three-dimensional global general relativistic magnetohydrodynamic (MHD) simulations of radially extended and thick (height H to cylindrical radius R ratio of |H/R| {approx} 0.2-1) accretion flows around BHs with various dimensionless spins (a/M, with BH mass M) and with initially toroidally-dominated ({phi}-directed) and poloidally-dominated (R-z directed) magnetic fields. Firstly, for toroidal field models and BHs with high enough |a/M|, coherent large-scale (i.e. >> H) dipolar poloidal magnetic flux patches emerge, thread the BH, and generate transient relativistic jets. Secondly, for poloidal field models, poloidal magnetic flux readily accretes through the disk from large radii and builds-up to a natural saturation point near the BH. While models with |H/R| {approx} 1 and |a/M| {le} 0.5 do not launch jets due to quenching by mass infall, for sufficiently high |a/M| or low |H/R| the polar magnetic field compresses the inflow into a geometrically thin highly non-axisymmetric 'magnetically choked accretion flow' (MCAF) within which the standard linear magneto-rotational instability is suppressed. The condition of a highly-magnetized state over most of the horizon is optimal for the Blandford-Znajek mechanism that generates persistent relativistic jets with and 100% efficiency for |a/M| {approx}> 0.9. A magnetic Rayleigh-Taylor and Kelvin-Helmholtz unstable magnetospheric interface forms between the compressed inflow and bulging jet magnetosphere, which drives a new jet-disk oscillation (JDO) type of quasi-periodic oscillation (QPO) mechanism. The high-frequency QPO has spherical harmonic |m| = 1 mode period of {tau} {approx} 70GM/c{sup 3} for a/M {approx} 0.9 with coherence quality factors Q {approx}> 10. Overall, our models are qualitatively distinct from most prior MHD simulations (typically, |H/R| << 1 and poloidal flux is

  19. Simulations of ion acceleration at non-relativistic shocks: ii) magnetic field amplification and particle diffusion

    CERN Document Server

    Caprioli, Damiano

    2014-01-01

    We use large hybrid (kinetic ions-fluid electrons) simulations to study ion acceleration and generation of magnetic turbulence due to the streaming of energetic particles that are self-consistently accelerated at non-relativistic shocks. When acceleration is efficient (at quasi-parallel shocks), we find that the magnetic field develops transverse components and is significantly amplified in the pre-shock medium. The total amplification factor is larger than 10 for shocks with Mach number $M=100$, and scales with the square root of $M$. We find that in the shock precursor the energy spectral density of excited magnetic turbulence is proportional to spectral energy distribution of accelerated particles at corresponding resonant momenta, in good agreement with the predictions of quasilinear theory of diffusive shock acceleration. We discuss the role of Bell's instability, which is predicted and found to grow faster than resonant instability in shocks with $M\\gtrsim 30$. Ahead of these strong shocks we distinguis...

  20. Magnetic structures propagating in non-equilibrium relativistic plasma of pulsar wind nebulae

    Science.gov (United States)

    Petrov, A. E.; Bykov, A. M.

    2016-11-01

    The kinetic model of highly non-equilibrium relativistic electron-positron plasma is used to study dynamical magnetic structures in pulsar wind nebulae (PWNe). The evolution equation which describes a propagation of a long-wavelength magnetosonic type perturbation of small but finite amplitude is derived. The wavelength is assumed to be longer than the scattering length of the background positrons and electrons. The rates of scattering of electrons and positrons by the stochastic magnetic field fluctuations are distinguished but the difference is supposed to be small compared with the gyrofrequencies of particles. The phase velocity, the dissipation rate and the dispersion length of the magnetic pulse are studied as the functions of plasma parameters and the scattering rates of electrons and positrons. The model being confronted to observations can help to determine the pulsar wind composition, particle distribution and non-thermal pressure in PWNe.

  1. On the calculation of second-order magnetic properties using subsystem approaches in the relativistic framework

    CERN Document Server

    Olejniczak, Malgorzata; Gomes, Andre Severo Pereira

    2016-01-01

    We report an implementation of the nuclear magnetic resonance (NMR) shielding ($\\sigma$), isotope-independent indirect spin-spin coupling ($K$) and the magnetizability ($\\xi$) tensors in the frozen density embedding (FDE) scheme using the four-component (4c) relativistic Dirac--Coulomb (DC) Hamiltonian and the non-collinear spin density functional theory (SDFT). The formalism takes into account the magnetic balance between the large and the small components of molecular spinors and assures the gauge-origin independence of NMR shielding and magnetizability results. This implementation has been applied to hydrogen-bonded HXH$\\cdots$OH$_2$ complexes (X = Se, Te, Po) and compared with the supermolecular calculations and with the approach based on the integration of the magnetically induced current density vector. A comparison with the approximate Zeroth-Order Regular Approximation (ZORA) Hamiltonian indicates non-negligible differences in $\\sigma$ and $K$ in the HPoH$\\cdots$OH$_2$ complex, and calls for a thourou...

  2. Nonthermal Particle Acceleration in 3D Relativistic Magnetic Reconnection in Pair Plasma

    Science.gov (United States)

    Werner, Gregory R.; Uzdensky, Dmitri A.

    2017-07-01

    As a fundamental process converting magnetic to plasma energy in high-energy astrophysical plasmas, relativistic magnetic reconnection is a leading explanation for the acceleration of particles to the ultrarelativistic energies that are necessary to power nonthermal emission (especially X-rays and gamma-rays) in pulsar magnetospheres and pulsar wind nebulae, coronae and jets of accreting black holes, and gamma-ray bursts. An important objective of plasma astrophysics is therefore the characterization of nonthermal particle acceleration (NTPA) effected by reconnection. Reconnection-powered NTPA has been demonstrated over a wide range of physical conditions using large 2D kinetic simulations. However, its robustness in realistic 3D reconnection—in particular, whether the 3D relativistic drift-kink instability (RDKI) disrupts NTPA—has not been systematically investigated, although pioneering 3D simulations have observed NTPA in isolated cases. Here, we present the first comprehensive study of NTPA in 3D relativistic reconnection in collisionless electron-positron plasmas, characterizing NTPA as the strength of 3D effects is varied systematically via the length in the third dimension and the strength of the guide magnetic field. We find that, while the RDKI prominently perturbs 3D reconnecting current sheets, it does not suppress particle acceleration, even for zero guide field; fully 3D reconnection robustly and efficiently produces nonthermal power-law particle spectra closely resembling those obtained in 2D. This finding provides strong support for reconnection as the key mechanism powering high-energy flares in various astrophysical systems. We also show that strong guide fields significantly inhibit NTPA, slowing reconnection and limiting the energy available for plasma energization, yielding steeper and shorter power-law spectra.

  3. Magnetic Field Generation, Particle Energization and Radiation at Relativistic Shear Boundary Layers

    Science.gov (United States)

    Liang, Edison; Fu, Wen; Spisak, Jake; Boettcher, Markus

    2015-11-01

    Recent large scale Particle-in-Cell (PIC) simulations have demonstrated that in unmagnetized relativistic shear flows, strong transverse d.c. magnetic fields are generated and sustained by ion-dominated currents on the opposite sides of the shear interface. Instead of dissipating the shear flow free energy via turbulence formation and mixing as it is usually found in MHD simulations, the kinetic results show that the relativistic boundary layer stabilizes itself via the formation of a robust vacuum gap supported by a strong magnetic field, which effectively separates the opposing shear flows, as in a maglev train. Our new PIC simulations have extended the runs to many tens of light crossing times of the simulation box. Both the vacuum gap and supporting magnetic field remain intact. The electrons are energized to reach energy equipartition with the ions, with 10% of the total energy in electromagnetic fields. The dominant radiation mechanism is similar to that of a wiggler, due to oscillating electron orbits around the boundary layer.

  4. Search for relativistic magnetic monopoles with the AMANDA-II neutrino telescope

    Energy Technology Data Exchange (ETDEWEB)

    Abbasi, R.; Aguilar, J.A.; Andeen, K.; Baker, M.; BenZvi, S.; Berghaus, P.; Braun, J.; Chirkin, D.; Desiati, P.; Diaz-Velez, J.C.; Dumm, J.P.; Eisch, J.; Gladstone, L.; Grullon, S.; Halzen, F.; Hill, G.C.; Hoshina, K.; Jacobsen, J.; Karle, A.; Kelley, J.L.; Krasberg, M.; Landsman, H.; Maruyama, R.; Merck, M.; Morse, R.; O' Murchadha, A.; Rodrigues, J.P.; Santander, M.; Toscano, S.; Santen, J. van; Weaver, C.; Wendt, C.; Westerhoff, S.; Whitehorn, N. [University of Wisconsin, Dept. of Physics, Madison, WI (United States); Abdou, Y.; Carson, M.; Descamps, F.; Vries-Uiterweerd, G. de; Feusels, T.; Ryckbosch, D.; Overloop, A. van [University of Gent, Dept. of Subatomic and Radiation Physics, Gent (Belgium); Abu-Zayyad, T.; Madsen, J.; Spiczak, G.M.; Tamburro, A. [University of Wisconsin, Dept. of Physics, River Falls, WI (United States); Adams, J.; Han, K.; Hickford, S. [University of Canterbury, Dept. of Physics and Astronomy, Private Bag 4800, Christchurch (New Zealand); Ahlers, M.; Sarkar, S. [University of Oxford, Dept. of Physics, Oxford (United Kingdom); Auffenberg, J.; Becker, K.H.; Gurtner, M.; Helbing, K.; Kampert, K.H.; Karg, T.; Matusik, M.; Naumann, U.; Posselt, J.; Schultes, A.; Semburg, B. [University of Wuppertal, Dept. of Physics, Wuppertal (Germany); Bai, X.; Clem, J.; Evenson, P.A.; Gaisser, T.K.; Hussain, S.; Kuwabara, T.; Niessen, P.; Ruzybayev, B.; Seckel, D.; Stanev, T.; Stoyanov, S.; Tilav, S.; Xu, C. [University of Delaware, Bartol Research Institute and Department of Physics and Astronomy, Newark, DE (United States); Barwick, S.W.; Nam, J.W.; Silvestri, A.; Yodh, G. [Univ. of California, Dept. of Physics and Astronomy, Irvine, CA (United States); Bay, R.; D' Agostino, M.V.; Filimonov, K.; Porrata, R.; Price, P.B.; Vandenbroucke, J.; Woschnagg, K. [Univ. of California, Dept. of Physics, Berkeley, CA (United States); Bazo Alba, J.L.; Benabderrahmane, M.L.; Berdermann, J.; Bernardini, E.; Franke, R.; Kislat, F.; Lauer, R. [and others

    2010-10-15

    We present the search for Cherenkov signatures from relativistic magnetic monopoles in data taken with the AMANDA-II detector, a neutrino telescope deployed in the Antarctic ice cap at the Geographic South Pole. The non-observation of a monopole signal in data collected during the year 2000 improves present experimental limits on the flux of relativistic magnetic monopoles: Our flux limit varies between 3.8 x 10{sup -17} cm{sup -2} s{sup -1} sr{sup -1} (for monopoles moving at the vacuum speed of light) and 8.8 x 10{sup -16} cm{sup -2} s{sup -1} sr{sup -1} (for monopoles moving at a speed {beta}=v/c=0.76, just above the Cherenkov threshold in ice). These limits apply to monopoles that are energetic enough to penetrate the Earth and enter the detector from below the horizon. The limit obtained for monopoles reaching the detector from above the horizon is less stringent by roughly an order of magnitude, due to the much larger background from down-going atmospheric muons. This looser limit is however valid for a larger class of magnetic monopoles, since the monopoles are not required to pass through the Earth. (orig.)

  5. Search for Ultra-relativistic Magnetic Monopoles with the Pierre Auger Observatory

    CERN Document Server

    Aab, A; Aglietta, M; Samarai, I Al; Albuquerque, I F M; Allekotte, I; Almela, A; Castillo, J Alvarez; Alvarez-Muñiz, J; Ambrosio, M; Anastasi, G A; Anchordoqui, L; Andrada, B; Andringa, S; Aramo, C; Arqueros, F; Arsene, N; Asorey, H; Assis, P; Aublin, J; Avila, G; Badescu, A M; Balaceanu, A; Luz, R J Barreira; Baus, C; Beatty, J J; Becker, K H; Bellido, J A; Berat, C; Bertaina, M E; Bertou, X; Biermann, P L; Billoir, P; Biteau, J; Blaess, S G; Blanco, A; Blazek, J; Bleve, C; Boháčová, M; Boncioli, D; Bonifazi, C; Borodai, N; Botti, A M; Brack, J; Brancus, I; Bretz, T; Bridgeman, A; Briechle, F L; Buchholz, P; Bueno, A; Buitink, S; Buscemi, M; Caballero-Mora, K S; Caccianiga, L; Cancio, A; Canfora, F; Caramete, L; Caruso, R; Castellina, A; Cataldi, G; Cazon, L; Cester, R; Chavez, A G; Chinellato, J A; Chudoba, J; Clay, R W; Colalillo, R; Coleman, A; Collica, L; Coluccia, M R; Conceição, R; Contreras, F; Cooper, M J; Coutu, S; Covault, C E; Cronin, J; D'Amico, S; Daniel, B; Dasso, S; Daumiller, K; Dawson, B R; de Almeida, R M; de Jong, S J; De Mauro, G; Neto, J R T de Mello; De Mitri, I; de Oliveira, J; de Souza, V; Debatin, J; Deligny, O; Di Giulio, C; Di Matteo, A; Castro, M L Díaz; Diogo, F; Dobrigkeit, C; D'Olivo, J C; Dorofeev, A; Anjos, R C dos; Dova, M T; Dundovic, A; Ebr, J; Engel, R; Erdmann, M; Erfani, M; Escobar, C O; Espadanal, J; Etchegoyen, A; Falcke, H; Fang, K; Farrar, G; Fauth, A C; Fazzini, N; Fick, B; Figueira, J M; Filipčič, A; Fratu, O; Freire, M M; Fujii, T; Fuster, A; Gaior, R; García, B; Garcia-Pinto, D; Gaté, F; Gemmeke, H; Gherghel-Lascu, A; Ghia, P L; Giaccari, U; Giammarchi, M; Giller, M; Głas, D; Glaser, C; Glass, H; Golup, G; Berisso, M Gómez; Vitale, P F Gómez; González, N; Gookin, B; Gorgi, A; Gorham, P; Gouffon, P; Grillo, A F; Grubb, T D; Guarino, F; Guedes, G P; Hampel, M R; Hansen, P; Harari, D; Harrison, T A; Harton, J L; Hasankiadeh, Q; Haungs, A; Hebbeker, T; Heck, D; Heimann, P; Herve, A E; Hill, G C; Hojvat, C; Holt, E; Homola, P; Hörandel, J R; Horvath, P; Hrabovský, M; Huege, T; Hulsman, J; Insolia, A; Isar, P G; Jandt, I; Jansen, S; Johnsen, J A; Josebachuili, M; Kääpä, A; Kambeitz, O; Kampert, K H; Kasper, P; Katkov, I; Keilhauer, B; Kemp, E; Kemp, J; Kieckhafer, R M; Klages, H O; Kleifges, M; Kleinfeller, J; Krause, R; Krohm, N; Kuempel, D; Mezek, G Kukec; Kunka, N; Awad, A Kuotb; LaHurd, D; Lauscher, M; Lebrun, P; Legumina, R; de Oliveira, M A Leigui; Letessier-Selvon, A; Lhenry-Yvon, I; Link, K; Lopes, L; López, R; Casado, A López; Luce, Q; Lucero, A; Malacari, M; Mallamaci, M; Mandat, D; Mantsch, P; Mariazzi, A G; Mariş, I C; Marsella, G; Martello, D; Martinez, H; Bravo, O Martínez; Meza, J J Masías; Mathes, H J; Mathys, S; Matthews, J; Matthews, J A J; Matthiae, G; Mayotte, E; Mazur, P O; Medina, C; Medina-Tanco, G; Melo, D; Menshikov, A; Messina, S; Micheletti, M I; Middendorf, L; Minaya, I A; Miramonti, L; Mitrica, B; Mockler, D; Molina-Bueno, L; Mollerach, S; Montanet, F; Morello, C; Mostafá, M; Müller, G; Muller, M A; Müller, S; Naranjo, I; Nellen, L; Neuser, J; Nguyen, P H; Niculescu-Oglinzanu, M; Niechciol, M; Niemietz, L; Niggemann, T; Nitz, D; Nosek, D; Novotny, V; Nožka, H; Núñez, L A; Ochilo, L; Oikonomou, F; Olinto, A; Selmi-Dei, D Pakk; Palatka, M; Pallotta, J; Papenbreer, P; Parente, G; Parra, A; Paul, T; Pech, M; Pedreira, F; Pękala, J; Pelayo, R; Peña-Rodriguez, J; Pereira, L A S; Perrone, L; Peters, C; Petrera, S; Phuntsok, J; Piegaia, R; Pierog, T; Pieroni, P; Pimenta, M; Pirronello, V; Platino, M; Plum, M; Porowski, C; Prado, R R; Privitera, P; Prouza, M; Quel, E J; Querchfeld, S; Quinn, S; Ramos-Pollan, R; Rautenberg, J; Ravignani, D; Reinert, D; Revenu, B; Ridky, J; Risse, M; Ristori, P; Rizi, V; de Carvalho, W Rodrigues; Fernandez, G Rodriguez; Rojo, J Rodriguez; Rogozin, D; Roth, M; Roulet, E; Rovero, A C; Saffi, S J; Saftoiu, A; Salamida, F; Salazar, H; Saleh, A; Greus, F Salesa; Salina, G; Gomez, J D Sanabria; Sánchez, F; Sanchez-Lucas, P; Santos, E M; Santos, E; Sarazin, F; Sarkar, B; Sarmento, R; Sarmiento, C A; Sato, R; Schauer, M; Scherini, V; Schieler, H; Schimp, M; Schmidt, D; Scholten, O; Schovánek, P; Schröder, F G; Schulz, A; Schulz, J; Schumacher, J; Sciutto, S J; Segreto, A; Settimo, M; Shadkam, A; Shellard, R C; Sigl, G; Silli, G; Sima, O; Śmiałkowski, A; Šmída, R; Snow, G R; Sommers, P; Sonntag, S; Sorokin, J; Squartini, R; Stanca, D; Stanič, S; Stasielak, J; Stassi, P; Strafella, F; Suarez, F; Durán, M Suarez; Sudholz, T; Suomijärvi, T; Supanitsky, A D; Swain, J; Szadkowski, Z; Taboada, A; Taborda, O A; Tapia, A; Theodoro, V M; Timmermans, C; Peixoto, C J Todero; Tomankova, L; Tomé, B; Elipe, G Torralba; Machado, D Torres; Torri, M; Travnicek, P; Trini, M; Ulrich, R; Unger, M; Urban, M; Galicia, J F Valdés; Valiño, I; Valore, L; van Aar, G; van Bodegom, P; Berg, A M van den; van Vliet, A; Varela, E; Cárdenas, B Vargas; Varner, G; Vázquez, J R; Vázquez, R A; Veberič, D; Quispe, I D Vergara; Verzi, V; Vicha, J; Villaseñor, L; Vorobiov, S; Wahlberg, H; Wainberg, O; Walz, D; Watson, A A; Weber, M; Weindl, A; Wiencke, L; Wilczyński, H; Winchen, T; Wittkowski, D; Wundheiler, B; Wykes, S; Yang, L; Yelos, D; Yushkov, A; Zas, E; Zavrtanik, D; Zavrtanik, M; Zepeda, A; Zimmermann, B; Ziolkowski, M; Zong, Z; Zuccarello, F

    2016-01-01

    We present a search for ultra-relativistic magnetic monopoles with the Pierre Auger Observatory. Such particles, possibly a relic of phase transitions in the early universe, would deposit a large amount of energy along their path through the atmosphere, comparable to that of ultrahigh-energy cosmic rays (UHECRs). The air shower profile of a magnetic monopole can be effectively distinguished by the fluorescence detector from that of standard UHECRs. No candidate was found in the data collected between 2004 and 2012, with an expected background of less than 0.1 event from UHECRs. The corresponding 90% confidence level (C.L.) upper limits on the flux of ultra-relativistic magnetic monopoles range from $10^{-19}$ (cm$^{2}$ sr s)$^{-1}$ for a Lorentz factor $\\gamma=10^9$ to $2.5 \\times10^{-21}$ (cm$^{2}$ sr s)$^{-1}$ for $\\gamma=10^{12}$. These results - the first obtained with a UHECR detector - improve previously published limits by up to an order of magnitude.

  6. Search for relativistic magnetic monopoles with the AMANDA-II neutrino telescope

    Science.gov (United States)

    Abbasi, R.; Abdou, Y.; Abu-Zayyad, T.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Andeen, K.; Auffenberg, J.; Bai, X.; Baker, M.; Barwick, S. W.; Bay, R.; Bazo Alba, J. L.; Beattie, K.; Beatty, J. J.; Bechet, S.; Becker, J. K.; Becker, K.-H.; Benabderrahmane, M. L.; Benzvi, S.; Berdermann, J.; Berghaus, P.; Berley, D.; Bernardini, E.; Bertrand, D.; Besson, D. Z.; Bissok, M.; Blaufuss, E.; Boersma, D. J.; Bohm, C.; Böser, S.; Botner, O.; Bradley, L.; Braun, J.; Buitink, S.; Carson, M.; Chirkin, D.; Christy, B.; Clem, J.; Clevermann, F.; Cohen, S.; Colnard, C.; Cowen, D. F.; D'Agostino, M. V.; Danninger, M.; Davis, J. C.; de Clercq, C.; Demirörs, L.; Depaepe, O.; Descamps, F.; Desiati, P.; de Vries-Uiterweerd, G.; Deyoung, T.; Díaz-Vélez, J. C.; Dierckxsens, M.; Dreyer, J.; Dumm, J. P.; Duvoort, M. R.; Ehrlich, R.; Eisch, J.; Ellsworth, R. W.; Engdegård, O.; Euler, S.; Evenson, P. A.; Fadiran, O.; Fazely, A. R.; Feusels, T.; Filimonov, K.; Finley, C.; Foerster, M. M.; Fox, B. D.; Franckowiak, A.; Franke, R.; Gaisser, T. K.; Gallagher, J.; Geisler, M.; Gerhardt, L.; Gladstone, L.; Glüsenkamp, T.; Goldschmidt, A.; Goodman, J. A.; Grant, D.; Griesel, T.; Groß, A.; Grullon, S.; Gurtner, M.; Ha, C.; Hallgren, A.; Halzen, F.; Han, K.; Hanson, K.; Helbing, K.; Herquet, P.; Hickford, S.; Hill, G. C.; Hoffman, K. D.; Homeier, A.; Hoshina, K.; Hubert, D.; Huelsnitz, W.; Hülß, J.-P.; Hulth, P. O.; Hultqvist, K.; Hussain, S.; Ishihara, A.; Jacobsen, J.; Japaridze, G. S.; Johansson, H.; Joseph, J. M.; Kampert, K.-H.; Karg, T.; Karle, A.; Kelley, J. L.; Kemming, N.; Kenny, P.; Kiryluk, J.; Kislat, F.; Klein, S. R.; Knops, S.; Köhne, J.-H.; Kohnen, G.; Kolanoski, H.; Köpke, L.; Koskinen, D. J.; Kowalski, M.; Kowarik, T.; Krasberg, M.; Krings, T.; Kroll, G.; Kuehn, K.; Kuwabara, T.; Labare, M.; Lafebre, S.; Laihem, K.; Landsman, H.; Lauer, R.; Lehmann, R.; Lennarz, D.; Lünemann, J.; Madsen, J.; Majumdar, P.; Marotta, A.; Maruyama, R.; Mase, K.; Matis, H. S.; Matusik, M.; Meagher, K.; Merck, M.; Mészáros, P.; Meures, T.; Middell, E.; Milke, N.; Miller, J.; Montaruli, T.; Morse, R.; Movit, S. M.; Nahnhauer, R.; Nam, J. W.; Naumann, U.; Nießen, P.; Nygren, D. R.; Odrowski, S.; Olivas, A.; Olivo, M.; O'Murchadha, A.; Ono, M.; Panknin, S.; Paul, L.; Pérez de Los Heros, C.; Petrovic, J.; Piegsa, A.; Pieloth, D.; Porrata, R.; Posselt, J.; Price, P. B.; Prikockis, M.; Przybylski, G. T.; Rawlins, K.; Redl, P.; Resconi, E.; Rhode, W.; Ribordy, M.; Rizzo, A.; Rodrigues, J. P.; Roth, P.; Rothmaier, F.; Rott, C.; Roucelle, C.; Ruhe, T.; Rutledge, D.; Ruzybayev, B.; Ryckbosch, D.; Sander, H.-G.; Santander, M.; Sarkar, S.; Schatto, K.; Schlenstedt, S.; Schmidt, T.; Schukraft, A.; Schultes, A.; Schulz, O.; Schunck, M.; Seckel, D.; Semburg, B.; Seo, S. H.; Sestayo, Y.; Seunarine, S.; Silvestri, A.; Slipak, A.; Spiczak, G. M.; Spiering, C.; Stamatikos, M.; Stanev, T.; Stephens, G.; Stezelberger, T.; Stokstad, R. G.; Stoyanov, S.; Strahler, E. A.; Straszheim, T.; Sullivan, G. W.; Swillens, Q.; Taavola, H.; Taboada, I.; Tamburro, A.; Tarasova, O.; Tepe, A.; Ter-Antonyan, S.; Tilav, S.; Toale, P. A.; Toscano, S.; Tosi, D.; Turčan, D.; van Eijndhoven, N.; Vandenbroucke, J.; van Overloop, A.; van Santen, J.; Voge, M.; Voigt, B.; Walck, C.; Waldenmaier, T.; Wallraff, M.; Walter, M.; Weaver, Ch.; Wendt, C.; Westerhoff, S.; Whitehorn, N.; Wiebe, K.; Wiebusch, C. H.; Wikström, G.; Williams, D. R.; Wischnewski, R.; Wissing, H.; Wolf, M.; Woschnagg, K.; Xu, C.; Xu, X. W.; Yodh, G.; Yoshida, S.; Zarzhitsky, P.

    2010-10-01

    We present the search for Cherenkov signatures from relativistic magnetic monopoles in data taken with the AMANDA-II detector, a neutrino telescope deployed in the Antarctic ice cap at the Geographic South Pole. The non-observation of a monopole signal in data collected during the year 2000 improves present experimental limits on the flux of relativistic magnetic monopoles: Our flux limit varies between 3.8×10-17 cm-2 s-1 sr-1 (for monopoles moving at the vacuum speed of light) and 8.8×10-16 cm-2 s-1 sr-1 (for monopoles moving at a speed β= v/ c=0.76, just above the Cherenkov threshold in ice). These limits apply to monopoles that are energetic enough to penetrate the Earth and enter the detector from below the horizon. The limit obtained for monopoles reaching the detector from above the horizon is less stringent by roughly an order of magnitude, due to the much larger background from down-going atmospheric muons. This looser limit is however valid for a larger class of magnetic monopoles, since the monopoles are not required to pass through the Earth.

  7. ``Pheudo-cyclotron'' radiation of non-relativistic particles in small-scale magnetic turbulence

    Science.gov (United States)

    Keenan, Brett; Ford, Alex; Medvedev, Mikhail V.

    2014-03-01

    Plasma turbulence in some astrophysical objects (e.g., weakly magnetized collisionless shocks in GRBs and SN) has small-scale magnetic field fluctuations. We study spectral characteristics of radiation produced by particles moving in such turbulence. It was shown earlier that relativistic particles produce jitter radiation, which spectral characteristics are markedly different from synchrotron radiation. Here we study radiation produced by non-relativistic particles. In the case of a homogeneous fields, such radiation is cyclotron and its spectrum consists of just a single harmonic at the cyclotron frequency. However, in the sub-Larmor-scale turbulence, the radiation spectrum is much reacher and reflects statistical properties of the underlying magnetic field. We present both analytical estimates and results of ab initio numerical simulations. We also show that particle propagation in such turbulence is diffusive and evaluate the diffusion coefficient. We demonstrate that the diffusion coefficient correlates with some spectral parameters. These results can be very valuable for remote diagnostics of laboratory and astrophysical plasmas. Supported by grant DOE grant DE-FG02-07ER54940 and NSF grant AST-1209665.

  8. Magnetic properties of f-electron systems in spin-polarized relativistic density functional theory

    Science.gov (United States)

    Yamagami, H.; Mavromaras, A.; Kübler, J.

    1997-12-01

    The magnetic ground state of the series of lanthanide and actinide trivalent ions is investigated by means of spin-polarized relativistic spin-density functional theory. In the local density functional approximation (LDA) an internal effective magnetic field due to exchange and correlation couples to the spin degrees of freedom. The resulting set of coupled Dirac equations yields ground-state multiplets that obey the well-known Hund's rules. This remarkable result comes about by the coupling of the j = l + 1/2 with the j = l - 1/2 states due to the exchange - correlation potential that is, as usual, the functional derivative of the exchange - correlation energy with respect to the spin magnetic moment. The effect of the coupling is shown to depend on the varying relative strengths of spin - orbit coupling and exchange splitting within the f series. Since in the f levels the internal exchange splitting dominates rather than the spin - orbit splitting, the energy level scheme is that of the Paschen - Back effect, and thus features of the Russell - Saunders coupling persist in spite of relativistic effects.

  9. Magnetic collimation of meridional-self-similar general relativistic MHD flows

    Science.gov (United States)

    Globus, Noemie; Sauty, Christophe; Cayatte, Véronique; Celnikier, Ludwik M.

    2014-06-01

    We present a model for the spine of relativistic Magnetohydrodynamics outflows in the Kerr geometry. Meridional self-similarity is invoked to derive semianalytical solutions close to the polar axis. The study of the energy conservation along a particular field line gives a simple criterion for the collimation of jets. Such parameter have already been derived in the classical case by Sauty et al. 1999 and also extended to the Schwarzschild metric by Meliani et al. 2006. We generalize the same study to the Kerr metric. We show that the rotation of the black hole increases the magnetic self-confinement.

  10. Magnetic collimation of meridional-self-similar general relativistic MHD flows

    CERN Document Server

    Globus, Noemie; Cayatte, Véronique; Celnikier, Ludwik M

    2014-01-01

    We present a model for the spine of relativistic MHD outflows in the Kerr geometry. Meridional self-similarity is invoked to derive semi-analytical solutions close to the polar axis. The study of the energy conservation along a particular field line gives a simple criterion for the collimation of jets. Such parameter have already been derived in the classical case by Sauty et al. 1999 and also extended to the Schwarzschild metric by Meliani et al. 2006. We generalize the same study to the Kerr metric. We show that the rotation of the black hole increases the magnetic self-confinement.

  11. Relativistic electron acceleration during HILDCAA events: are precursor CIR magnetic storms important?

    Science.gov (United States)

    Hajra, Rajkumar; Tsurutani, Bruce T.; Echer, Ezequiel; Gonzalez, Walter D.; Brum, Christiano Garnett Marques; Vieira, Luis Eduardo Antunes; Santolik, Ondrej

    2015-07-01

    We present a comparative study of high-intensity long-duration continuous AE activity (HILDCAA) events, both isolated and those occurring in the "recovery phase" of geomagnetic storms induced by corotating interaction regions (CIRs). The aim of this study is to determine the difference, if any, in relativistic electron acceleration and magnetospheric energy deposition. All HILDCAA events in solar cycle 23 (from 1995 through 2008) are used in this study. Isolated HILDCAA events are characterized by enhanced fluxes of relativistic electrons compared to the pre-event flux levels. CIR magnetic storms followed by HILDCAA events show almost the same relativistic electron signatures. Cluster 1 spacecraft showed the presence of intense whistler-mode chorus waves in the outer magnetosphere during all HILDCAA intervals (when Cluster data were available). The storm-related HILDCAA events are characterized by slightly lower solar wind input energy and larger magnetospheric/ionospheric dissipation energy compared with the isolated events. A quantitative assessment shows that the mean ring current dissipation is ~34 % higher for the storm-related events relative to the isolated events, whereas Joule heating and auroral precipitation display no (statistically) distinguishable differences. On the average, the isolated events are found to be comparatively weaker and shorter than the storm-related events, although the geomagnetic characteristics of both classes of events bear no statistically significant difference. It is concluded that the CIR storms preceding the HILDCAAs have little to do with the acceleration of relativistic electrons. Our hypothesis is that ~10-100-keV electrons are sporadically injected into the magnetosphere during HILDCAA events, the anisotropic electrons continuously generate electromagnetic chorus plasma waves, and the chorus then continuously accelerates the high-energy portion of this electron spectrum to MeV energies.

  12. Creation and transmutation of magnetized nuclei at explosively dense matter

    Directory of Open Access Journals (Sweden)

    Kondratyev V. N.

    2012-12-01

    Full Text Available Synthesis of iron group chemical elements is considered for the ultra-magnetized astrophysical plasma in supernovae. Maximum of nucleosynthesis products is shown to shift towards smaller mass numbers approaching titanium due to magnetic modification of nuclear structure. The results are corroborated with an excess of 44Ti revealed from the INTEGRAL mission data.

  13. Magnetic acceleration of ultra-relativistic jets in gamma-ray burst sources

    CERN Document Server

    Komissarov, Serguei; Konigl, Arieh; Barkov, Maxim

    2008-01-01

    We present a relativistic-MHD numerical study of axisymmetric, magnetically driven jets with parameters applicable to gamma-ray burst (GRB) flows. We also present analytic expressions for the asymptotic jet shape and other flow parameters that agree very well with the numerical results. All current-carrying outflows exhibit self-collimation and consequent acceleration near the rotation axis, but unconfined outflows lose causal connectivity across the jet and therefore do not collimate or accelerate efficiently in their outer regions. Magnetically accelerated jets confined by an external pressure that varies with distance with a power-law index 50%. They attain Lorentz factors > 30 on scales 10^9-3x10^10 cm, consistent with the possibility that short/hard GRB jets are accelerated on scales where they can be confined by moderately relativistic winds from accretion discs, and > 100 on scales 10^10-10^12 cm, consistent with the possibility that long/soft GRB jets are accelerated within the envelopes of collapsin...

  14. Relay transport of relativistic flows in extreme magnetic fields of stars

    Science.gov (United States)

    Yao, W. P.; Qiao, B.; Xu, Z.; Zhang, H.; Chang, H. X.; Zhou, C. T.; Zhu, S. P.; Wang, X. G.; He, X. T.

    2017-08-01

    We find that the transport of relativistic flows in extreme magnetic fields can be achieved in a relay manner by considering the quantum electromagnetic cascade process, where photons play a key role as a medium. During the transport, the flow emits particle energy into photons via quantum synchrotron radiation, and then gains particles back by magnetic pair creation, forming a "particle-photon-particle" relay. Particle-in-cell simulations demonstrate that forward transport of the flow density is realized by a self-replenishment process with photon-pair cascades, while that of the flow energy is accomplished due to a new coupling path through radiation of photons. This novel transport mechanism is closely associated with jet generation and disk accretion around the neutron star of X-Ray Binaries, offering a potential explanation for the powerful jets observed there.

  15. Quantumlike description of the nonlinear and collective effects on relativistic electron beams in strongly magnetized plasmas

    CERN Document Server

    Tanjia, Fatema; Fedele, Renato; Shukla, P K; Jovanovic, Dusan

    2011-01-01

    A numerical analysis of the self-interaction induced by a relativistic electron/positron beam in the presence of an intense external longitudinal magnetic field in plasmas is carried out. Within the context of the Plasma Wake Field theory in the overdense regime, the transverse beam-plasma dynamics is described by a quantumlike Zakharov system of equations in the long beam limit provided by the Thermal Wave Model. In the limiting case of beam spot size much larger than the plasma wavelength, the Zakharov system is reduced to a 2D Gross-Pitaevskii-type equation, where the trap potential well is due to the external magnetic field. Vortices, "beam halos" and nonlinear coherent states (2D solitons) are predicted.

  16. Magnetic moments of 33Mg in the time-odd relativistic mean field approach

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The configuration-fixed deformation constrained relativistic mean field approach with time-odd component has been applied to investigate the ground state properties of 33Mg with effective interaction PK1.The ground state of 33Mg has been found to be prolate deformed,β2=0.23,with the odd neutron in 1/2[330] orbital and the energy -251.85 MeV which is close to the data -252.06 MeV.The magnetic moment -0.9134 μN is obtained with the effective electromagnetic current which well reproduces the data -0.7456 μN self-consistently without introducing any parameter.The energy splittings of time reversal conjugate states,the neutron current,the energy contribution from the nuclear magnetic potential,and the effect of core polarization are discussed in detail.

  17. Relativistic Adiabatic Time-Dependent Density Functional Theory Using Hybrid Functionals and Noncollinear Spin Magnetization

    DEFF Research Database (Denmark)

    Bast, Radovan; Jensen, Hans Jørgen Aagaard; Saue, Trond

    2009-01-01

    We report an implementation of adiabatic time-dependent density functional theory based on the 4-component relativistic Dirac-Coulomb Hamiltonian and a closed-shell reference. The implementation includes noncollinear spin magnetization and full derivatives of functionals, including hybrid...... and time reversal symmetry on trial vectors to obtain even better reductions in terms of memory and run time, and without invoking approximations. Further reductions are obtained by exploiting point group symmetries for D2h and subgroups in a symmetry scheme where symmetry reductions translate...... into reduction of algebra from quaternion to complex or real. For hybrid GGAs with noncollinear spin magnetization we derive a new computationally advantageous equation for the full second variational derivatives of such exchange-correlation functionals. We apply our implementation to calculations on the ns2...

  18. Asymmetric Neutrino Reaction in Magnetized Proto-Neutron Stars in Fully Relativistic Approach

    Directory of Open Access Journals (Sweden)

    Yasutake Nobutoshi

    2012-02-01

    Full Text Available We calculate asymmetric neutrino absorption and scattering cross sections on hot and dense magnetized neutron-star matter including hyperons in fully relativistic mean-field theory. The absorption/scattering cross sections are suppressed/enhanced incoherently in the direction of the magnetic field B = Bẑ. The asymmetry is 2–4% at the matter density ρ0 ≤ ρB ≤ 3ρ0 and temperature T ≤ 40MeV for B = 2 × 1017G. Then we solve the Boltzmann equation for the neutrino transport in 1D attenuation approximation, and get the result that the kick velocity becomes about 300 km/s for the proto-neutron star with 168 solar mass at T = 20MeV.

  19. On the multistream approach of relativistic Weibel instability. II. Bernstein-Greene-Kruskal-type waves in magnetic trapping

    Energy Technology Data Exchange (ETDEWEB)

    Ghizzo, A. [Institut Jean Lamour UMR 7163, Université de Lorraine, BP 239 F-54506 Vandoeuvre les Nancy (France)

    2013-08-15

    The stationary state with magnetically trapped particles is investigated at the saturation of the relativistic Weibel instability, within the “multiring” model in a Hamiltonian framework. The multistream model and its multiring extension have been developed in Paper I, under the assumption that the generalized canonical momentum is conserved in the perpendicular direction. One dimensional relativistic Bernstein-Greene-Kruskal waves with deeply trapped particles are addressed using similar mathematical formalism developed by Lontano et al.[Phys. Plasmas 9, 2562 (2002); Phys. Plasmas 10, 639 (2003)] using several streams and in the presence of both electrostatic and magnetic trapping mechanisms.

  20. General relativistic models for rotating magnetized neutron stars in conformally flat space-time

    Science.gov (United States)

    Pili, A. G.; Bucciantini, N.; Del Zanna, L.

    2017-09-01

    The extraordinary energetic activity of magnetars is usually explained in terms of dissipation of a huge internal magnetic field of the order of 1015-16 G. How such a strong magnetic field can originate during the formation of a neutron star (NS) is still subject of active research. An important role can be played by fast rotation: if magnetars are born as millisecond rotators dynamo mechanisms may efficiently amplify the magnetic field inherited from the progenitor star during the collapse. In this case, the combination of rapid rotation and strong magnetic field determine the right physical condition not only for the development of a powerful jet-driven explosion, manifesting as a gamma-ray burst, but also for a copious gravitational waves emission. Strong magnetic fields are indeed able to induce substantial quadrupolar deformations in the star. In this paper, we analyse the joint effect of rotation and magnetization on the structure of a polytropic and axisymmetric NS, within the ideal magneto-hydrodynamic regime. We will consider either purely toroidal or purely poloidal magnetic field geometries. Through the sampling of a large parameter space, we generalize previous results in literature, inferring new quantitative relations that allow for a parametrization of the induced deformation, that takes into account also the effects due to the stellar compactness and the current distribution. Finally, in the case of purely poloidal field, we also discuss how different prescription on the surface charge distribution (a gauge freedom) modify the properties of the surrounding electrosphere and its physical implications.

  1. Experimental study of the nonlinear diffusion of a magnetic field and skin explosion of cylindrical conductors

    Energy Technology Data Exchange (ETDEWEB)

    Chaikovsky, S. A.; Datsko, I. M.; Labetskaya, N. A.; Rybka, D. V.; Ratakhin, N. A. [Institute of High Current Electronics, SB, RAN, Tomsk (Russian Federation); Oreshkin, V. I. [Institute of High Current Electronics, SB, RAN, Tomsk (Russian Federation); Tomsk Polytechnic University, Tomsk (Russian Federation)

    2015-11-15

    The paper presents the results of an experimental study of the skin explosion of cylindrical conductors of diameter 1–3 mm (copper, aluminum, titanium, steel 3, and stainless steel) at a peak magnetic field of 200–600 T. The experiments were carried out on the MIG pulsed power generator at a current of up to 2.5 MA and a current rise time of 100 ns. The surface explosion of a conductor was identified by the appearance of a flash of extreme ultraviolet radiation. A minimum magnetic induction has been determined below which no plasma is generated at the conductor surface. For copper, aluminum, steel 3, titanium, and stainless steel, the minimum magnetic induction has been estimated to be (to within 10%) 375, 270, 280, 220, and 245 T, respectively.

  2. Acoustic solitons in a magnetized quantum electron-positron-ion plasma with relativistic degenerate electrons and positrons pressure

    Science.gov (United States)

    Abdikian, A.; Mahmood, S.

    2016-12-01

    The obliquely nonlinear acoustic solitary propagation in a relativistically quantum magnetized electron-positron (e-p) plasma in the presence of the external magnetic field as well as the stationary ions for neutralizing the plasma background was studied. By considering the dynamic of the fluid e-p quantum and by using the quantum hydrodynamics model and the standard reductive perturbation technique, the Zakharov-Kuznetsov (ZK) equation is derived for small but finite amplitude waves and the solitary wave solution for the parameters relevant to dense astrophysical objects such as white dwarf stars is obtained. The numerical results show that the relativistic effects lead to propagate the electrostatic bell shape structures in quantum e-p plasmas like those in classical pair-ion or pair species for relativistic plasmas. It is also observed that by increasing the relativistic effects, the amplitude and width of the e-p acoustic solitary wave will decrease. In addition, the wave amplitude increases as positron density decreases in magnetized e-p plasmas. It is indicated that by increasing the strength of the magnetic field, the width of the soliton reduces and it becomes sharper. At the end, we have analytically and numerically shown that the pulse soliton solution of the ZK equation is unstable and have traced the dependence of the instability growth rate on electron density. It is found that by considering the relativistic pressure, the instability of the soliton pulse can be reduced. The results can be useful to study the obliquely nonlinear propagation of small amplitude localized structures in magnetized quantum e-p plasmas and be applicable to understand the particle and energy transport mechanism in compact stars such as white dwarfs, where the effects of relativistic electron degeneracy become important.

  3. Spin and orbital magnetism of coinage metal trimers (Cu3, Ag3, Au3: A relativistic density functional theory study

    Directory of Open Access Journals (Sweden)

    Mahdi Afshar

    2013-11-01

    Full Text Available We have demonstrated electronic structure and magnetic properties of Cu3, Ag3 and Au3 trimers using a full potential local orbital method in the framework of relativistic density functional theory. We have also shown that the non-relativistic generalized gradient approximation for the exchange-correlation energy functional gives reliable magnetic properties in coinage metal trimers compared to experiment. In addition we have indicated that the spin-orbit coupling changes the structure and magnetic properties of gold trimer while the structure and magnetic properties of copper and silver trimers are marginally affected. A significant orbital moment of 0.21μB was found for most stable geometry of the gold trimer whereas orbital magnetism is almost quenched in the copper and silver trimers.

  4. Search for non-relativistic magnetic monopoles with IceCube

    Energy Technology Data Exchange (ETDEWEB)

    Aartsen, M.G.; Hill, G.C.; Robertson, S.; Whelan, B.J. [University of Adelaide, School of Chemistry and Physics, Adelaide, SA (Australia); Abbasi, R.; Ahlers, M.; Arguelles, C.; Baker, M.; BenZvi, S.; Chirkin, D.; Day, M.; Desiati, P.; Diaz-Velez, J.C.; Eisch, J.; Fadiran, O.; Feintzeig, J.; Gladstone, L.; Halzen, F.; Hoshina, K.; Jacobsen, J.; Jero, K.; Karle, A.; Kauer, M.; Kelley, J.L.; Kopper, C.; Krasberg, M.; Kurahashi, N.; Landsman, H.; Maruyama, R.; McNally, F.; Merck, M.; Morse, R.; Riedel, B.; Rodrigues, J.P.; Santander, M.; Tobin, M.N.; Toscano, S.; Van Santen, J.; Weaver, C.; Wellons, M.; Wendt, C.; Westerhoff, S.; Whitehorn, N. [University of Wisconsin, Department of Physics and Wisconsin IceCube Particle Astrophysics Center, Madison, WI (United States); Ackermann, M.; Benabderrahmane, M.L.; Berghaus, P.; Bernardini, E.; Bretz, H.P.; Cruz Silva, A.H.; Gluesenkamp, T.; Jacobi, E.; Kaminsky, B.; Karg, T.; Middell, E.; Mohrmann, L.; Nahnhauer, R.; Schoenwald, A.; Shanidze, R.; Spiering, C.; Stoessl, A.; Yanez, J.P. [DESY, Zeuthen (Germany); Adams, J.; Brown, A.M.; Hickford, S.; Macias, O. [University of Canterbury, Department of Physics and Astronomy, Private Bag 4800, Christchurch (New Zealand); Aguilar, J.A.; Christov, A.; Montaruli, T.; Rameez, M.; Vallecorsa, S. [Universite de Geneve, Departement de physique nucleaire et corpusculaire, Geneva (Switzerland); Altmann, D.; Classen, L.; Gora, D.; Kappes, A.; Tselengidou, M. [Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Erlangen Centre for Astroparticle Physics, Erlangen (Germany); Arlen, T.C.; De Andre, J.P.A.M.; DeYoung, T.; Dunkman, M.; Eagan, R.; Groh, J.C.; Huang, F.; Quinnan, M.; Smith, M.W.E.; Stanisha, N.A.; Tesic, G. [Pennsylvania State University, Department of Physics, University Park, PA (United States); Auffenberg, J.; Bissok, M.; Blumenthal, J.; Gretskov, P.; Haack, C.; Hallen, P.; Heinen, D.; Jagielski, K.; Kriesten, A.; Krings, K.; Leuermann, M.; Paul, L.; Raedel, L.; Reimann, R.; Schoenen, S.; Schukraft, A.; Vehring, M.; Wallraff, M.; Wiebusch, C.H.; Zierke, S. [RWTH Aachen University, III. Physikalisches Institut, Aachen (Germany); Bai, X.; Evenson, P.A.; Gaisser, T.K.; Gonzalez, J.G.; Hussain, S.; Kuwabara, T.; Ruzybayev, B.; Seckel, D.; Stanev, T.; Tamburro, A.; Tilav, S. [University of Delaware, Bartol Research Institute and Department of Physics and Astronomy, Newark, DE (United States); Barwick, S.W.; Yodh, G. [University of California, Department of Physics and Astronomy, Irvine, CA (United States); Baum, V.; Eberhardt, B.; Koepke, L.; Kroll, G.; Luenemann, J.; Sander, H.G.; Schatto, K.; Wiebe, K. [University of Mainz, Institute of Physics, Mainz (Germany); Bay, R.; Filimonov, K.; Price, P.B.; Woschnagg, K. [University of California, Department of Physics, Berkeley, CA (United States); Beatty, J.J. [Ohio State University, Department of Physics and Center for Cosmology and Astro-Particle Physics, Columbus, OH (United States); Ohio State University, Department of Astronomy, Columbus, OH (United States); Becker Tjus, J.; Eichmann, B.; Fedynitch, A.; Saba, S.M.; Schoeneberg, S.; Unger, E. [Ruhr-Universitaet Bochum, Fakultaet fuer Physik and Astronomie, Bochum (Germany); Becker, K.H.; Bindig, D.; Fischer-Wasels, T.; Helbing, K.; Hoffmann, R.; Klaes, J.; Kopper, S.; Naumann, U.; Obertacke, A.; Omairat, A.; Posselt, J.; Soldin, D.; Tepe, A. [University of Wuppertal, Department of Physics, Wuppertal (Germany); Berley, D.; Blaufuss, E.; Christy, B.; Goodman, J.A.; Hellauer, R.; Hoffman, K.D.; Huelsnitz, W.; Meagher, K.; Olivas, A.; Redl, P.; Richman, M.; Schmidt, T.; Sullivan, G.W.; Wissing, H. [University of Maryland, Department of Physics, College Park, MD (United States); Bernhard, A.; Coenders, S.; Gross, A.; Leute, J.; Resconi, E.; Schulz, O.; Sestayo, Y. [T.U. Munich, Garching (Germany); Besson, D.Z. [University of Kansas, Department of Physics and Astronomy, Lawrence, KS (United States); Binder, G.; Gerhardt, L.; Ha, C.; Klein, S.R.; Miarecki, S. [University of California, Department of Physics, Berkeley, CA (United States); Lawrence Berkeley National Laboratory, Berkeley, CA (United States); Boersma, D.J.; Botner, O.; Euler, S.; Hallgren, A.; Perez de los Heros, C.; Stroem, R.; Taavola, H. [Uppsala University, Department of Physics and Astronomy, Box 516, Uppsala (Sweden); Bohm, C.; Danninger, M.; Finley, C.; Flis, S.; Hulth, P.O.; Hultqvist, K.; Walck, C.; Wolf, M.; Zoll, M. [Stockholm University, Oskar Klein Centre and Department of Physics, Stockholm (Sweden); Bose, D.; Rott, C. [Sungkyunkwan University, Department of Physics, Suwon (Korea, Republic of); Collaboration: IceCube Collaboration; and others

    2014-07-15

    The IceCube Neutrino Observatory is a large Cherenkov detector instrumenting 1 km{sup 3} of Antarctic ice. The detector can be used to search for signatures of particle physics beyond the Standard Model. Here, we describe the search for non-relativistic, magnetic monopoles as remnants of the Grand Unified Theory (GUT) era shortly after the Big Bang. Depending on the underlying gauge group these monopoles may catalyze the decay of nucleons via the Rubakov-Callan effect with a cross section suggested to be in the range of 10{sup -27} to 10{sup -21} cm{sup 2}. In IceCube, the Cherenkov light from nucleon decays along the monopole trajectory would produce a characteristic hit pattern. This paper presents the results of an analysis of first data taken from May 2011 until May 2012 with a dedicated slow particle trigger for DeepCore, a subdetector of IceCube. A second analysis provides better sensitivity for the brightest non-relativistic monopoles using data taken from May 2009 until May 2010. In both analyses no monopole signal was observed. For catalysis cross sections of 10{sup -22} (10{sup -24}) cm{sup 2} the flux of non-relativistic GUT monopoles is constrained up to a level of Φ{sub 90} ≤ 10{sup -18} (10{sup -17}) cm{sup -2} s{sup -1} sr{sup -1} at a 90 % confidence level, which is three orders of magnitude below the Parker bound. The limits assume a dominant decay of the proton into a positron and a neutral pion. These results improve the current best experimental limits by one to two orders of magnitude, for a wide range of assumed speeds and catalysis cross sections. (orig.)

  5. The energetics of relativistic magnetic reconnection: ion-electron repartition and particle distribution hardness

    CERN Document Server

    Melzani, Mickaël; Folini, Doris; Winisdoerffer, Christophe; Favre, Jean M

    2014-01-01

    Collisionless magnetic reconnection is a prime candidate to account for flare-like or steady emission, outflow launching, or plasma heating, in a variety of high-energy astrophysical objects, including ones with relativistic ion-electron plasmas. But the fate of the initial magnetic energy in a reconnection event remains poorly known: what is the amount given to kinetic energy, the ion/electron repartition, and the hardness of the particle distributions? We explore these questions with 2D particle-in-cell simulations of ion-electron plasmas. We find that 45 to 75% of the total initial magnetic energy ends up in kinetic energy, this fraction increasing with the inflow magnetization. Depending on the guide field strength, ions get from 30 to 60% of the total kinetic energy. Particles can be separated into two populations that only weakly mix: (i) particles initially in the current sheet, heated by its initial tearing and subsequent contraction of the islands; and (ii) particles from the background plasma that p...

  6. Search for non-relativistic Magnetic Monopoles with IceCube

    CERN Document Server

    Aartsen, M G; Ackermann, M; Adams, J; Aguilar, J A; Ahlers, M; Altmann, D; Arguelles, C; Arlen, T C; Auffenberg, J; Bai, X; Baker, M; Barwick, S W; Baum, V; Bay, R; Beatty, J J; Tjus, J Becker; Becker, K -H; Benabderrahmane, M L; BenZvi, S; Berghaus, P; Berley, D; Bernardini, E; Bernhard, A; Besson, D Z; Binder, G; Bindig, D; Bissok, M; Blaufuss, E; Blumenthal, J; Boersma, D J; Bohm, C; Bose, D; Böser, S; Botner, O; Brayeur, L; Bretz, H -P; Brown, A M; Bruijn, R; Casey, J; Casier, M; Chirkin, D; Christov, A; Christy, B; Clark, K; Classen, L; Clevermann, F; Coenders, S; Cohen, S; Cowen, D F; Silva, A H Cruz; Danninger, M; Daughhetee, J; Davis, J C; Day, M; de André, J P A M; De Clercq, C; De Ridder, S; Desiati, P; de Vries, K D; de With, M; DeYoung, T; Díaz-Vélez, J C; Dunkman, M; Eagan, R; Eberhardt, B; Eichmann, B; Eisch, J; Euler, S; Evenson, P A; Fadiran, O; Fazely, A R; Fedynitch, A; Feintzeig, J; Feusels, T; Filimonov, K; Finley, C; Fischer-Wasels, T; Flis, S; Franckowiak, A; Frantzen, K; Fuchs, T; Gaisser, T K; Gallagher, J; Gerhardt, L; Gladstone, L; Glüsenkamp, T; Goldschmidt, A; Golup, G; Gonzalez, J G; Goodman, J A; Góra, D; Grandmont, D T; Grant, D; Gretskov, P; Groh, J C; Groß, A; Ha, C; Haack, C; Ismail, A Haj; Hallen, P; Hallgren, A; Halzen, F; Hanson, K; Hebecker, D; Heereman, D; Heinen, D; Helbing, K; Hellauer, R; Hickford, S; Hill, G C; Hoffman, K D; Hoffmann, R; Homeier, A; Hoshina, K; Huang, F; Huelsnitz, W; Hulth, P O; Hultqvist, K; Hussain, S; Ishihara, A; Jacobi, E; Jacobsen, J; Jagielski, K; Japaridze, G S; Jero, K; Jlelati, O; Kaminsky, B; Kappes, A; Karg, T; Karle, A; Kauer, M; Kelley, J L; Kiryluk, J; Kläs, J; Klein, S R; Köhne, J -H; Kohnen, G; Kolanoski, H; Köpke, L; Kopper, C; Kopper, S; Koskinen, D J; Kowalski, M; Krasberg, M; Kriesten, A; Krings, K; Kroll, G; Kunnen, J; Kurahashi, N; Kuwabara, T; Labare, M; Landsman, H; Larson, M J; Lesiak-Bzdak, M; Leuermann, M; Leute, J; Lünemann, J; Macías, O; Madsen, J; Maggi, G; Maruyama, R; Mase, K; Matis, H S; McNally, F; Meagher, K; Meli, A; Merck, M; Meures, T; Miarecki, S; Middell, E; Milke, N; Miller, J; Mohrmann, L; Montaruli, T; Morse, R; Nahnhauer, R; Naumann, U; Niederhausen, H; Nowicki, S C; Nygren, D R; Obertacke, A; Odrowski, S; Olivas, A; Omairat, A; O'Murchadha, A; Palczewski, T; Paul, L; Pepper, J A; Heros, C Pérez de los; Pfendner, C; Pieloth, D; Pinat, E; Posselt, J; Price, P B; Przybylski, G T; Quinnan, M; Rädel, L; Rameez, M; Rawlins, K; Redl, P; Reimann, R; Resconi, E; Rhode, W; Ribordy, M; Richman, M; Riedel, B; Robertson, S; Rodrigues, J P; Rott, C; Ruhe, T; Ruzybayev, B; Ryckbosch, D; Saba, S M; Sander, H -G; Santander, M; Sarkar, S; Schatto, K; Scheriau, F; Schmidt, T; Schmitz, M; Schoenen, S; Schöneberg, S; Schönwald, A; Schukraft, A; Schulte, L; Schulz, O; Seckel, D; Sestayo, Y; Seunarine, S; Shanidze, R; Sheremata, C; Smith, M W E; Soldin, D; Spiczak, G M; Spiering, C; Stamatikos, M; Stanev, T; Stanisha, N A; Stasik, A; Stezelberger, T; Stokstad, R G; Stößl, A; Strahler, E A; Ström, R; Strotjohann, N L; Sullivan, G W; Taavola, H; Taboada, I; Tamburro, A; Tepe, A; Ter-Antonyan, S; Tešić, G; Tilav, S; Toale, P A; Tobin, M N; Toscano, S; Tselengidou, M; Unger, E; Usner, M; Vallecorsa, S; van Eijndhoven, N; van Santen, J; Vehring, M; Voge, M; Vraeghe, M; Walck, C; Wallraff, M; Weaver, Ch; Wellons, M; Wendt, C; Westerhoff, S; Whelan, B J; Whitehorn, N; Wiebe, K; Wiebusch, C H; Williams, D R; Wissing, H; Wolf, M; Wood, T R; Woschnagg, K; Xu, D L; Xu, X W; Yanez, J P; Yodh, G; Yoshida, S; Zarzhitsky, P; Ziemann, J; Zierke, S; Zoll, M

    2014-01-01

    The IceCube Neutrino Observatory is a large Cherenkov detector instrumenting $1\\,\\mathrm{km}^3$ of Antarctic ice. The detector can be used to search for signatures of particle physics beyond the Standard Model. Here, we describe the search for non-relativistic, magnetic monopoles as remnants of the GUT (Grand Unified Theory) era shortly after the Big Bang. These monopoles may catalyze the decay of nucleons via the Rubakov-Callan effect with a cross section suggested to be in the range of $10^{-27}\\,\\mathrm{cm^2}$ to $10^{-21}\\,\\mathrm{cm^2}$. In IceCube, the Cherenkov light from nucleon decays along the monopole trajectory would produce a characteristic hit pattern. This paper presents the results of an analysis of first data taken from May 2011 until May 2012 with a dedicated slow-particle trigger for DeepCore, a subdetector of IceCube. A second analysis provides better sensitivity for the brightest non-relativistic monopoles using data taken from May 2009 until May 2010. In both analyses no monopole signal ...

  7. Magnetic Sublevel Population Studied for H- and He-like Uranium in Relativistic Ion-Atom Collisions

    Energy Technology Data Exchange (ETDEWEB)

    Gumberidze, A.; Stoehlker, T. [GSI-Darmstadt (Germany); Bednarz, G. [Cracow University, Institute of Physics (Poland); Bosch, F. [GSI-Darmstadt (Germany); Fritzsche, S. [University of Kassel (Germany); Hagmann, S. [Kansas State University (United States); Ionescu, D. C.; Klepper, O.; Kozhuharov, C.; Kraemer, A.; Liesen, D.; Ma, X.; Mann, R.; Mokler, P. H. [GSI-Darmstadt (Germany); Sierpowski, D. [Cracow University, Institute of Physics (Poland); Stachura, Z. [INP (Poland); Steck, M.; Toleikis, S. [GSI-Darmstadt (Germany); Warczak, A. [Cracow University, Institute of Physics (Poland)

    2003-03-15

    An experimental study for K-shell excitation of helium-like uranium in relativistic collisions with low-Z gaseous target is presented. Within this experiment information about the population of the magnetic sublevels has been obtained via a photon angular differential study of the decay photons associated with the excitation process. The preliminary results presented show, for the particular case of the {sup 3}P{sub 1} level, a surprisingly strong population of the magnetic sublevels with {mu}={+-}1.

  8. Guiding of relativistic electron beams in solid targets by resistively controlled magnetic fields.

    Science.gov (United States)

    Kar, S; Robinson, A P L; Carroll, D C; Lundh, O; Markey, K; McKenna, P; Norreys, P; Zepf, M

    2009-02-06

    Guided transport of a relativistic electron beam in solid is achieved experimentally by exploiting the strong magnetic fields created at the interface of two metals of different electrical resistivities. This is of substantial relevance to the Fast Ignitor approach to fusion energy production [M. Tabak, Phys. Plasmas 12, 057305 (2005)10.1063/1.1871246], since it allows the electron deposition to be spatially tailored-thus adding substantial design flexibility and preventing inefficiencies due to electron beam spreading. In the experiment, optical transition radiation and thermal emission from the target rear surface provide a clear signature of the electron confinement within a high resistivity tin layer sandwiched transversely between two low resistivity aluminum slabs. The experimental data are found to agree well with numerical simulations.

  9. On the Infrared Problem for the Dressed Non-Relativistic Electron in a Magnetic Field

    CERN Document Server

    Amour, Laurent; Grebert, Benoit; Guillot, Jean-Claude

    2008-01-01

    We consider a non-relativistic electron interacting with a classical magnetic field pointing along the $x_3$-axis and with a quantized electromagnetic field. The system is translation invariant in the $x_3$-direction and we consider the reduced Hamiltonian $H(P_3)$ associated with the total momentum $P_3$ along the $x_3$-axis. For a fixed momentum $P_3$ sufficiently small, we prove that $H(P_3)$ has a ground state in the Fock representation if and only if $E'(P_3)=0$, where $P_3 \\mapsto E'(P_3)$ is the derivative of the map $P_3 \\mapsto E(P_3) = \\inf \\sigma (H(P_3))$. If $E'(P_3) \

  10. General Relativistic Magnetohydrodynamic Simulations of the Hard State as a Magnetically-Dominated Accretion Flow

    CERN Document Server

    Fragile, P Chris

    2008-01-01

    (Abridged) We present one of the first physically-motivated two-dimensional general relativistic magnetohydrodynamic (GRMHD) numerical simulations of a radiatively-cooled black-hole accretion disk. The fiducial simulation combines a total-energy-conserving formulation with a radiative cooling function, which includes bremsstrahlung, synchrotron, and Compton effects. By comparison with other simulations we show that in optically thin advection-dominated accretion flows, radiative cooling can significantly affect the structure, without necessarily leading to an optically thick, geometrically thin accretion disk. We further compare the results of our radiatively-cooled simulation to the predictions of a previously developed analytic model for such flows. For the very low stress parameter and accretion rate found in our simulated disk, we closely match a state called the "transition" solution between an outer advection-dominated accretion flow and what would be a magnetically-dominated accretion flow (MDAF) in th...

  11. Characterization of >100 T magnetic fields associated with relativistic Weibel instability in laser-produced plasmas

    Science.gov (United States)

    Mishra, Rohini; Ruyer, Charles; Goede, Sebastian; Roedel, Christian; Gauthier, Maxence; Zeil, Karl; Schramm, Ulrich; Glenzer, Siegfried; Fiuza, Frederico

    2016-10-01

    Weibel-type instabilities can occur in weakly magnetized and anisotropic plasmas of relevance to a wide range of astrophysical and laboratory scenarios. It leads to the conversion of a significant fraction of the kinetic energy of the plasma into magnetic energy. We will present a detailed numerical study, using 2D and 3D PIC simulations of the Weibel instability in relativistic laser-solid interactions. In this case, the instability develops due to the counter-streaming of laser-heated electrons and the background return current. We show that the growth rate of the instability is maximized near the critical density region on the rear side of the expanded plasma, producing up to 400 MG magnetic fields for Hydrogen plasmas. We have found that this strong field can be directly probed by energetic protons accelerated in rear side of the plasma by Target Normal Sheath Acceleration (TNSA). This allows the experimental characterization of the instability from the analysis of the spatial modulation of the detected protons. Our numerical results are compared with recent laser experiments with Hydrogen jets and show good agreement with the proton modulations observed experimentally. This work was supported by the DOE Office of Science, Fusion Energy Science (FWP 100182).

  12. Torsional Oscillations of Relativistic Stars with Dipole Magnetic Fields II. Global Alfv\\'en Modes

    CERN Document Server

    Sotani, H; Stergioulas, N; Vavoulidis, M

    2006-01-01

    We investigate torsional Alfv\\'{e}n modes of relativistic stars with a global dipole magnetic field. It has been noted recently (Glampedakis et al. 2006) that such oscillation modes could serve as as an alternative explanation (in contrast to torsional crustal modes) for the SGR phenomenon, if the magnetic field is not confined to the crust. We compute global Alfv\\'{e}n modes for a representative sample of equations of state and magnetar masses, in the ideal MHD approximation and ignoring $\\ell \\pm 2$ terms in the eigenfunction. We find that the presence of a realistic crust has a negligible effect on Alfv\\'{e}n modes for $B > 4\\times 10^{15}$ G. Furthermore, we find strong avoided crossings between torsional Alfv\\'{e}n modes and torsional crust modes. For magnetar-like magnetic field strengths, the spacing between consecutive Alfv\\'{e}n modes is of the same order as the gap of avoided crossings. As a result, it is not possible to identify modes of predominantly crustal character and all oscillations are pred...

  13. Relativistic theory of nuclear magnetic resonance parameters in a Gaussian basis representation.

    Science.gov (United States)

    Kutzelnigg, Werner; Liu, Wenjian

    2009-07-28

    The calculation of NMR parameters from relativistic quantum theory in a Gaussian basis expansion requires some care. While in the absence of a magnetic field the expansion in a kinetically balanced basis converges for the wave function in the mean and for the energy with any desired accuracy, this is not necessarily the case for magnetic properties. The results for the magnetizability or the nuclear magnetic shielding are not even correct in the nonrelativistic limit (nrl) if one expands the original Dirac equation in a kinetically balanced Gaussian basis. This defect disappears if one starts from the unitary transformed Dirac equation as suggested by Kutzelnigg [Phys. Rev. A 67, 032109 (2003)]. However, a new difficulty can arise instead if one applies the transformation in the presence of the magnetic field of a point nucleus. If one decomposes certain contributions, the individual terms may diverge, although their sum is regular. A controlled cancellation may become difficult and numerical instabilities can arise. Various ways exist to avoid these singularities and at the same time get the correct nrl. There are essentially three approaches intermediate between the transformed and the untransformed formulation, namely, the bispinor decomposition, the decomposition of the lower component, and the hybrid unitary transformation partially at operator and partially at matrix level. All three possibilities were first considered by Xiao et al. [J. Chem. Phys. 126, 214101 (2007)] in a different context and in a different nomenclature. Their analysis and classification in a more general context are given here for the first time. Use of an extended balanced basis has no advantages and has other drawbacks and is not competitive, while the use of a restricted magnetic balance basis can be justified.

  14. Magnetic Sublevel Population and Alignment for the Excitation of H- and He-like Uranium in Relativistic Collisions

    CERN Document Server

    Gumberidze, A; Hagmann, S; Kozhuharov, C; Ma, X; Steck, M; Surzhykov, A; Warczak, A; Stöhlker, Th

    2011-01-01

    We have measured the alignment of the L-shell magnetic-substates following the K-shell excitation of hydrogen- and helium-like uranium in relativistic collisions with a low-Z gaseous target. Within this experiment the population distribution for the L-shell magnetic sublevels has been obtained via an angular differential study of the decay photons associated with the subsequent de-excitation process. The results show a very distinctive behavior for the H- and He-like heavy systems. In particular for $K \\rightarrow L$ excitation of He-like uranium, a considerable alignment of the L-shell levels was observed. A comparison of our experimental findings with recent rigorous relativistic predictions provides a good qualitative and a reasonable quantitative agreement, emphasizing the importance of the magnetic-interaction and many-body effects in the strong-field domain of high-Z ions.

  15. Spatial growth of current-driven instability in relativistic rotating jets and the search for magnetic reconnection

    CERN Document Server

    Singh, Chandra B; Pino, Elisabete M de Gouveia Dal

    2016-01-01

    Using the three-dimensional relativistic magnetohydrodynamic code RAISHIN, we investigated the influence of radial density profile on the spatial development of the current-driven kink instability along magnetized rotating, relativistic jets. For the purpose of our study, we used a non-periodic computational box, the jet flow is initially established across the computational grid, and a precessional perturbation at the inlet triggers the growth of the kink instability. We studied light as well as heavy jets with respect to the environment depending on the density profile. Different angular velocity amplitudes have been also tested. The results show the propagation of a helically kinked structure along the jet and relatively stable configuration for the lighter jets. The jets appear to be collimated by the magnetic field and the flow is accelerated due to conversion of electromagnetic into kinetic energy. We also identify regions of high current density in filamentary current sheets, indicative of magnetic rec...

  16. Three-Dimensional Relativistic MHD Simulations of the Kelvin-Helmholtz Instability: Magnetic Field Amplification by a Turbulent Dynamo

    CERN Document Server

    Zhang, Weiqun; Wang, Peng

    2008-01-01

    Magnetic field strengths inferred for relativistic outflows including gamma-ray bursts (GRB) and active galactic nuclei (AGN) are larger than naively expected by orders of magnitude. We present three-dimensional relativistic magnetohydrodynamics (MHD) simulations demonstrating amplification and saturation of magnetic field by a macroscopic turbulent dynamo triggered by the Kelvin-Helmholtz shear instability. We find rapid growth of electromagnetic energy due to the stretching and folding of field lines in the turbulent velocity field resulting from non-linear development of the instability. Using conditions relevant for GRB internal shocks and late phases of GRB afterglow, we obtain amplification of the electromagnetic energy fraction to $\\epsilon_B \\sim 5 \\times 10^{-3}$. This value decays slowly after the shear is dissipated and appears to be largely independent of the initial field strength. The conditions required for operation of the dynamo are the presence of velocity shear and some seed magnetization b...

  17. Effect of the plasma-generated magnetic field on relativistic electron transport.

    Science.gov (United States)

    Nicolaï, Ph; Feugeas, J-L; Regan, C; Olazabal-Loumé, M; Breil, J; Dubroca, B; Morreeuw, J-P; Tikhonchuk, V

    2011-07-01

    In the fast-ignition scheme, relativistic electrons transport energy from the laser deposition zone to the dense part of the target where the fusion reactions can be ignited. The magnetic fields and electron collisions play an important role in the collimation or defocusing of this electron beam. Detailed description of these effects requires large-scale kinetic calculations and is limited to short time intervals. In this paper, a reduced kinetic model of fast electron transport coupled to the radiation hydrodynamic code is presented. It opens the possibility to carry on hybrid simulations in a time scale of tens of picoseconds or more. It is shown with this code that plasma-generated magnetic fields induced by noncollinear temperature and density gradients may strongly modify electron transport in a time scale of a few picoseconds. These fields tend to defocus the electron beam, reducing the coupling efficiency to the target. This effect, that was not seen before in shorter time simulations, has to be accounted for in any ignition design using electrons as a driver.

  18. Design of a high efficiency relativistic backward wave oscillator with low guiding magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiaoze; Song, Wei; Tan, Weibing; Zhang, Ligang; Su, Jiancang; Zhu, Xiaoxin; Hu, Xianggang; Shen, Zhiyuan; Liang, Xu; Ning, Qi [Science and Technology on High Power Microwave Laboratory, Northwest Institute of Nuclear Technology, Xi' an 710024 (China)

    2016-07-15

    A high efficiency relativistic backward wave oscillator working at a low guiding magnetic field is designed and simulated. A trapezoidal resonant reflector is used to reduce the modulation field in the resonant reflector to avoid overmodulation of the electron beam which will lead to a large momentum spread and then low conversion efficiency. The envelope of the inner radius of the slow wave structure (SWS) increases stepwise to keep conformal to the trajectory of the electron beam which will alleviate the bombardment of the electron on the surface of the SWS. The length of period of the SWS is reduced gradually to make a better match between phase velocity and electron beam, which decelerates continually and improves the RF current distribution. Meanwhile the modulation field is reduced by the introduction of nonuniform SWS also. The particle in cell simulation results reveal that a microwave with a power of 1.8 GW and a frequency of 14.7 GHz is generated with an efficiency of 47% when the diode voltage is 620 kV, the beam current 6.1 kA, and the guiding magnetic field 0.95 T.

  19. Guiding of relativistic electron beams in dense matter by longitudinally imposed strong magnetic fields

    CERN Document Server

    Bailly-Grandvaux, M; Bellei, C; Forestier-Colleoni, P; Fujioka, S; Giuffrida, L; Honrubia, J J; Batani, D; Bouillaud, R; Chevrot, M; Cross, J E; Crowston, R; Dorard, S; Dubois, J -L; Ehret, M; Gregori, G; Hulin, S; Kojima, S; Loyez, E; Marques, J -R; Morace, A; Nicolai, Ph; Roth, M; Sakata, S; Schaumann, G; Serres, F; Servel, J; Tikhonchuk, V T; Woolsey, N; Zhang, Z

    2016-01-01

    High-energy-density flows through dense matter are needed for effective progress in the production of laser-driven intense sources of energetic particles and radiation, in driving matter to extreme temperatures creating state regimes relevant for planetary or stellar science as yet inaccessible at the laboratory scale, or in achieving high-gain laser-driven thermonuclear fusion. When interacting at the surface of dense (opaque) targets, intense lasers accelerate relativistic electron beams which transport a significant fraction of the laser energy into the target depth. However, the overall laser-to-target coupling efficiency is impaired by the large divergence of the electron beam, intrinsic to the laser-plasma interaction. By imposing a longitudinal 600T laser-driven magnetic-field, our experimental results show guided >10MA-current of MeV-electrons in solid matter. Due to the applied magnetic field, the transported energy-density and the peak background electron temperature at the 60micron-thick targets re...

  20. Measuring 10-20 T magnetic fields in single wire explosions using Zeeman splitting.

    Science.gov (United States)

    Banasek, J T; Engelbrecht, J T; Pikuz, S A; Shelkovenko, T A; Hammer, D A

    2016-10-01

    We have shown that the Zeeman splitting of the sodium (Na) D-lines at 5890 Å and 5896 Å can be used to measure the magnetic field produced by the current flowing in an exploding wire prior to wire explosion. After wire explosion, the lines in question are either not visible in the strong continuum from the exploding wire plasma, or too broad to measure the magnetic field by methods discussed in this paper. We have determined magnetic fields in the range 10-20 T, which lies between the small field and Paschen-Back regimes for the Na D-lines, over a period of about 70 ns on a 10 kA peak current machine. The Na source is evaporated drops of water with a 0.171 M NaCl solution deposited on the wire. The Na desorbs from the wire as it heats up, and the excited vapor atoms are seen in emission lines. The measured magnetic field, determined by the Zeeman splitting of these emission lines, estimates the average radial location of the emitting Na vapor as a function of time under the assumption the current flows only in the wire during the time of the measurement.

  1. Measuring 10-20 T magnetic fields in single wire explosions using Zeeman splitting

    Science.gov (United States)

    Banasek, J. T.; Engelbrecht, J. T.; Pikuz, S. A.; Shelkovenko, T. A.; Hammer, D. A.

    2016-10-01

    We have shown that the Zeeman splitting of the sodium (Na) D-lines at 5890 Å and 5896 Å can be used to measure the magnetic field produced by the current flowing in an exploding wire prior to wire explosion. After wire explosion, the lines in question are either not visible in the strong continuum from the exploding wire plasma, or too broad to measure the magnetic field by methods discussed in this paper. We have determined magnetic fields in the range 10-20 T, which lies between the small field and Paschen-Back regimes for the Na D-lines, over a period of about 70 ns on a 10 kA peak current machine. The Na source is evaporated drops of water with a 0.171 M NaCl solution deposited on the wire. The Na desorbs from the wire as it heats up, and the excited vapor atoms are seen in emission lines. The measured magnetic field, determined by the Zeeman splitting of these emission lines, estimates the average radial location of the emitting Na vapor as a function of time under the assumption the current flows only in the wire during the time of the measurement.

  2. PHOTOSPHERE EMISSION FROM A HYBRID RELATIVISTIC OUTFLOW WITH ARBITRARY DIMENSIONLESS ENTROPY AND MAGNETIZATION IN GRBs

    Energy Technology Data Exchange (ETDEWEB)

    Gao, He [Current address: Department of Astronomy and Astrophysics, Department of Physics, Center for Particle Astrophysics, Pennsylvania State University, University Park, PA 16802 (United States); Zhang, Bing, E-mail: gaohe@physics.unlv.edu, E-mail: zhang@physics.unlv.edu, E-mail: hug18@psu.edu [Department of Physics and Astronomy, University of Nevada, Las Vegas, NV 89154 (United States)

    2015-03-10

    In view of the recent Fermi observations of gamma-ray burst (GRB) prompt emission spectra, we develop a theory of photosphere emission of a hybrid relativistic outflow with a hot fireball component (defined by dimensionless entropy η) and a cold Poynting-flux component (defined by magnetization σ{sub 0} at the central engine). We consider the scenarios both without and with sub-photospheric magnetic dissipations. Based on a simplified toy model of jet dynamics, we develop two approaches: a 'bottom-up' approach to predict the temperature (for a non-dissipative photosphere) and luminosity of the photosphere emission and its relative brightness for a given pair of (η, σ{sub 0}); and a 'top-down' approach to diagnose central engine parameters (η and σ{sub 0}) based on the observed quasi-thermal photosphere emission properties. We show that a variety of observed GRB prompt emission spectra with different degrees of photosphere thermal emission can be reproduced by varying η and σ{sub 0} within the non-dissipative photosphere scenario. In order to reproduce the observed spectra, the outflows of most GRBs need to have a significant σ, both at the central engine and at the photosphere. The σ value at 10{sup 15} cm from the central engine (a possible non-thermal emission site) is usually also greater than unity, so that internal-collision-induced magnetic reconnection and turbulence (ICMART) may be the mechanism to power the non-thermal emission. We apply our top-down approach to GRB 110721A and find that the temporal evolution behavior of its blackbody component can be well interpreted with a time-varying (η, σ{sub 0}) at the central engine, instead of invoking a varying engine base size r {sub 0} as proposed by previous authors.

  3. Structure, magnetic and microwave properties of FeNi nanoparticles obtained by electric explosion of wire

    Energy Technology Data Exchange (ETDEWEB)

    Kurlyandskaya, G.V., E-mail: galina@we.lc.ehu.es [University of the Basque Country UPV-EHU, Bilbao (Spain); Ural Federal University, Ekaterinburg (Russian Federation); Madinabeitia, Iñaki, E-mail: melixelbeitia@gmail.com [Ural Federal University, Ekaterinburg (Russian Federation); Beketov, I.V., E-mail: beketov@iep.uran.ru [Ural Federal University, Ekaterinburg (Russian Federation); Institute of Electrophysics, RAS, Urals Branch, Ekaterinburg (Russian Federation); Medvedev, A.I., E-mail: medtom@iep.uran.ru [Ural Federal University, Ekaterinburg (Russian Federation); Institute of Electrophysics, RAS, Urals Branch, Ekaterinburg (Russian Federation); Larrañaga, A., E-mail: aitor.larranaga@ehu.es [University of the Basque Country UPV-EHU, Bilbao (Spain); Safronov, A.P., E-mail: safronov@iep.uran.ru [Ural Federal University, Ekaterinburg (Russian Federation); Institute of Electrophysics, RAS, Urals Branch, Ekaterinburg (Russian Federation); Bhagat, S.M., E-mail: bhagat@umd.edu [University of Maryland, College Park (United States)

    2014-12-05

    Highlights: • We have prepared a new nanomaterial Fe48Ni52 by the EEW technique. • X-ray diffraction, BET, magnetization and microwave absorption were studied. • The electron microscopies showed that the grains are spherical in shape. • The field variation of the microwave loss required a deeper structural investigation. • HRTEM revealed the presence of “twinned” layers inside the grains. - Abstract: Magnetic nanoparticles (MNPs) of FeNi were prepared by the electric explosion of wire aiming to obtain a large batch of magnetic nanomaterial with enhanced effective magnetization. X-ray diffraction, transmission, scanning electron microscopy, low temperature nitrogen adsorption, magnetization and microwave absorption measurements were used for full characterization. The shape of the MNPs with weight averaged mean diameter of 69 ± 8 nm, was very close to being spherical. The saturation magnetization of about 140 emu/g up for 300 K was established. The room temperature microwave signal was very complex due to sizable zero field absorption and various contributions. We obtain reasonable agreement between structural magnetic and microwave techniques by taking into account the presence of so-called “twin” structure in the MNPs.

  4. Relativistic MHD simulations of collision-induced magnetic dissipation in Poynting-flux-dominated jets/outflows

    CERN Document Server

    Deng, Wei; Zhang, Bing; Li, Shengtai

    2015-01-01

    We perform 3D relativistic ideal MHD simulations to study the collisions between high-$\\sigma$ (Poynting-flux-dominated) blobs which contain both poloidal and toroidal magnetic field components. This is meant to mimic the interactions inside a highly variable Poynting-flux-dominated jet. We discover a significant electromagnetic field (EMF) energy dissipation with an Alfv\\'enic rate with the efficiency around 35\\%. Detailed analyses show that this dissipation is mostly facilitated by the collision-induced magnetic reconnection. Additional resolution and parameter studies show a robust result that the relative EMF energy dissipation efficiency is nearly independent of the numerical resolution or most physical parameters in the relevant parameter range. The reconnection outflows in our simulation can potentially form the multi-orientation relativistic mini-jets as needed for several analytical models. We also find a linear relationship between the $\\sigma$ values before and after the major EMF energy dissipatio...

  5. Propagation of localized structures in relativistic magnetized electron-positron plasmas using particle-in-cell simulations

    Energy Technology Data Exchange (ETDEWEB)

    López, Rodrigo A. [Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Concepción, Concepción 4070386 (Chile); Muñoz, Víctor [Departamento de Física, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago (Chile); Viñas, Adolfo F. [Geospace Physics Laboratory, Heliophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, Maryland 20771 (United States); Valdivia, Juan A. [Departamento de Física, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago (Chile); Centro para el Desarrollo de la Nanociencia y la Nanotecnología (CEDENNA), Santiago 9170124 (Chile)

    2015-09-15

    We use a particle-in-cell simulation to study the propagation of localized structures in a magnetized electron-positron plasma with relativistic finite temperature. We use as initial condition for the simulation an envelope soliton solution of the nonlinear Schrödinger equation, derived from the relativistic two fluid equations in the strongly magnetized limit. This envelope soliton turns out not to be a stable solution for the simulation and splits in two localized structures propagating in opposite directions. However, these two localized structures exhibit a soliton-like behavior, as they keep their profile after they collide with each other due to the periodic boundary conditions. We also observe the formation of localized structures in the evolution of a spatially uniform circularly polarized Alfvén wave. In both cases, the localized structures propagate with an amplitude independent velocity.

  6. Effect of temperature anisotropy on various modes and instabilities for a magnetized non-relativistic bi-Maxwellian plasma

    CERN Document Server

    Bashir, M F

    2012-01-01

    Using kinetic theory for homogeneous collisionless magnetized plasmas, we present an extended review of the plasma waves and instabilities and discuss the anisotropic response of generalized relativistic dielectric tensor and Onsager symmetry properties for arbitrary distribution functions. In general, we observe that for such plasmas only those electromagnetic modes whose magnetic field perturbations are perpendicular to the ambient magneticeld, i.e.,B1 \\perp B0, are effected by the anisotropy. However, in oblique propagation all modes do show such anisotropic effects. Considering the non-relativistic bi-Maxwellian distribution and studying the relevant components of the general dielectric tensor under appropriate conditions, we derive the dispersion relations for various modes and instabilities. We show that only the electromagnetic R- and L- waves, those derived from them and the O-mode are affected by thermal anisotropies, since they satisfy the required condition B1\\perpB0. By contrast, the perpendicular...

  7. Singular states of relativistic fermions in the field of a circularly polarized electromagnetic wave and constant magnetic field

    CERN Document Server

    Gisin, Boris V

    2012-01-01

    Dirac's equation in the field of a circularly polarized electromagnetic wave and constant magnetic field has exact localized non-stationary solutions. The solutions corresponds relativistic fermions only. Among them singular solutions with energy eigenvalues close to each other are found. The solutions are most practicable and can be separated by means of the phase matching between the momentum of the electromagnetic wave and spinor. Characteristic parameters of the singular states are defined.

  8. Explosive consolidation of Sm-Fe-N and Sm-Fe-N/(Ni, Co) magnetic powders

    Energy Technology Data Exchange (ETDEWEB)

    Chiba, A. [Faculty of Engineering, Kumamoto University, Kumamoto, Kumamoto 860-8555 (Japan)]. E-mail: chiba@gpo.kumamoto-u.ac.jp; Hokamoto, K. [Shock Wave and Condensed Matter Research Center, Kumamoto University, Kumamoto, Kumamoto 860-8555 (Japan); Sugimoto, S. [Graduate School of Engineering, Tohoku University, Sendai, Miyagi, 980-0845 (Japan); Kozuka, T. [Faculty of Engineering, Kumamoto University, Kumamoto, Kumamoto 860-8555 (Japan); Mori, A. [Shock Wave and Condensed Matter Research Center, Kumamoto University, Kumamoto, Kumamoto 860-8555 (Japan); Kakimoto, E. [Explosive R and D Center, Explosive Division, Asahi Kasei Co., 5447 Yamane, Chikushino-City, Fukuoka 813-0003 (Japan)

    2007-03-15

    Explosive consolidation of Sm{sub 2}Fe{sub 17}N{sub x} and Sm{sub 2}Fe{sub 17}N{sub x}/(Ni or Co) magnetic powders were attempted to consolidate fully dense magnetic compacts. Dense Sm{sub 2}Fe{sub 17}N{sub x} and Sm{sub 2}Fe{sub 17}N{sub x}/(Ni or Co) bulk materials were obtained by cylindrical explosive consolidation technique using water as a pressure transmitting medium. The values of (BH){sub max} of Sm{sub 2}Fe{sub 17}N{sub x}, Sm{sub 2}Fe{sub 17}N{sub x}-5wt%Ni and Sm{sub 2}Fe{sub 17}N{sub x}-30wt%Co magnets obtained were 23.8, 16.3 and 17.5MGOe (190, 130 and 140kJ/m{sup 3}), respectively.

  9. Explosive Magnetic Reconnection in Double-current Sheet Systems: Ideal versus Resistive Tearing Mode

    Science.gov (United States)

    Baty, Hubert

    2017-03-01

    Magnetic reconnection associated with the tearing instability occurring in double-current sheet systems is investigated within the framework of resistive magnetohydrodynamics (MHD) in a two-dimensional Cartesian geometry. A special emphasis on the existence of fast and explosive phases is taken. First, we extend the recent theory on the ideal tearing mode of a single-current sheet to a double-current layer configuration. A linear stability analysis shows that, in long and thin systems with (length to shear layer thickness) aspect ratios scaling as {S}L9/29 (S L being the Lundquist number based on the length scale L), tearing modes can develop on a fast Alfvénic timescale in the asymptotic limit {S}L\\to ∞ . The linear results are confirmed by means of compressible resistive MHD simulations at relatively high S L values (up to 3× {10}6) for different current sheet separations. Moreover, the nonlinear evolution of the ideal double tearing mode (IDTM) exhibits a richer dynamical behavior than its single-tearing counterpart, as a nonlinear explosive growth violently ends up with a disruption when the two current layers interact trough the merging of plasmoids. The final outcome of the system is a relaxation toward a new state, free of magnetic field reversal. The IDTM dynamics is also compared to the resistive double tearing mode dynamics, which develops in similar systems with smaller aspect ratios, ≳ 2π , and exhibits an explosive secondary reconnection, following an initial slow resistive growth phase. Finally, our results are used to discuss the flaring activity in astrophysical magnetically dominated plasmas, with a particular emphasis on pulsar systems.

  10. Relativistic electrons and magnetic fields of the M87 jet on the ∼10 Schwarzschild radii scale

    Energy Technology Data Exchange (ETDEWEB)

    Kino, M. [Korea Astronomy and Space Science Institute, 776 Daedukdae-ro, Yusong, Daejon 305-348 (Korea, Republic of); Takahara, F. [Department of Earth and Space Science, Osaka University, Toyonaka 560-0043 (Japan); Hada, K. [INAF—Istituto di Radioastronomia, via Gobetti 101, I-40129 Bologna (Italy); Doi, A. [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, 229-8510 Sagamihara (Japan)

    2014-05-01

    We explore energy densities of the magnetic fields and relativistic electrons in the M87 jet. Since the radio core at the jet base is identical to the optically thick surface against synchrotron self-absorption (SSA), the observing frequency is identical to the SSA turnover frequency. As a first step, we assume the radio core has a simple uniform sphere geometry. Using the observed angular size of the radio core measured by the Very Long Baseline Array at 43 GHz, we estimate the energy densities of magnetic fields (U{sub B} ) and relativistic electrons (U{sub e} ) on the basis of the standard SSA formula. Imposing the condition that the Poynting power and kinetic power of relativistic electrons should be smaller than the total power of the jet, we find that (1) the allowed range of the magnetic field strength (B {sub tot}) is 1 G ≤ B {sub tot} ≤ 15 G and that (2) 1 × 10{sup –5} ≤ U{sub e} /U{sub B} ≤ 6 × 10{sup 2} holds. The uncertainty of U{sub e} /U{sub B} comes from the strong dependence on the angular size of the radio core and the minimum Lorentz factor of non-thermal electrons (γ {sub e,min}) in the core. It is still unsettled whether resultant energetics are consistent with either the magnetohydrodynamic jet or the kinetic power dominated jet even on the ∼10 Schwarzschild radii scale.

  11. Very high energy emission as a probe of relativistic magnetic reconnection in pulsar winds

    CERN Document Server

    Mochol, Iwona

    2015-01-01

    The population of gamma-ray pulsars, including Crab observed in the TeV range, and Vela detected above 50 GeV, challenges existing models of pulsed high-energy emission. Such models should be universally applicable, yet they should account for spectral differences among the pulsars. We show that the gamma-ray emission of Crab and Vela can be explained by synchrotron radiation from the current sheet of a striped wind, expanding with a modest Lorentz factor $\\Gamma\\lesssim100$ in the Crab case, and $\\Gamma\\lesssim50$ in the Vela case. In the Crab spectrum a new synchrotron self-Compton component is expected to be detected by the upcoming experiment CTA. We suggest that the gamma-ray spectrum directly probes the physics of relativistic magnetic reconnection in the striped wind. In the most energetic pulsars, like Crab, with $\\dot{E}_{38}^{3/2}/P_{-2}\\gtrsim0.002$ (where $\\dot{E}$ is the spin down power, $P$ is the pulsar period, and $X=X_i\\times10^i$ in CGS units), reconnection proceeds in the radiative cooling ...

  12. Non-Hermitian ${\\cal PT}$-symmetric relativistic quantum theory in an intensive magnetic field

    CERN Document Server

    Rodionov, V N

    2016-01-01

    We develop relativistic non-Hermitian quantum theory and its application to neutrino physics in a strong magnetic field. It is well known, that one of the fundamental postulates of quantum theory is the requirement of Hermiticity of physical parameters. This condition not only guarantees the reality of the eigenvalues of Hamiltonian operators, but also implies the preservation of the probabilities of the considered quantum processes. However as it was shown relatively recently (Bender, Boettcher 1998), Hermiticity is a sufficient but it is not a necessary condition. It turned out that among non-Hermitian Hamiltonians it is possible to allocate a number of such which have real energy spectra and can ensure the development of systems over time with preserving unitarity. This type of Hamiltonians includes so-called parity-time (${\\cal PT}$) symmetric models which is already used in various fields of modern physics. The most developed in this respect are models, which used in the field of ${\\cal PT}$-symmetric op...

  13. Effect of External Magnetic Field on Critical Current for the Onset of Virtual Cathode Oscillations in Relativistic Electron Beams

    CERN Document Server

    Hramov, Alexander E; Morozov, Mikhail; Mushtakov, Alexander

    2008-01-01

    In this Letter we research the space charge limiting current value at which the oscillating virtual cathode is formed in the relativistic electron beam as a function of the external magnetic field guiding the beam electrons. It is shown that the space charge limiting (critical) current decreases with growth of the external magnetic field, and that there is an optimal induction value of the magnetic field at which the critical current for the onset of virtual cathode oscillations in the electron beam is minimum. For the strong external magnetic field the space charge limiting current corresponds to the analytical relation derived under the assumption that the motion of the electron beam is one-dimensional [High Power Microwave Sources. Artech House Microwave Library, 1987. Chapter~13]. Such behavior is explained by the characteristic features of the dynamics of electron space charge in the longitudinal and radial directions in the drift space at the different external magnetic fields.

  14. Prompt photon yield and elliptic flow from gluon fusion induced by magnetic fields in relativistic heavy-ion collisions

    Science.gov (United States)

    Ayala, Alejandro; Castaño-Yepes, Jorge David; Dominguez, C. A.; Hernández, L. A.; Hernández-Ortiz, Saúl; Tejeda-Yeomans, María Elena

    2017-07-01

    We compute photon production at early times in semicentral relativistic heavy-ion collisions from nonequilibrium gluon fusion induced by a magnetic field. The calculation accounts for the main features of the collision at these early times, namely, the intense magnetic field and the high gluon occupation number. The gluon fusion channel is made possible by the magnetic field and would otherwise be forbidden due to charge conjugation invariance. Thus, the photon yield from this process is an excess over calculations without magnetic field effects. We compare this excess to the difference between PHENIX data and recent hydrodynamic calculations for the photon transverse momentum distribution and elliptic flow coefficient v2 . We show that with reasonable values for the saturation scale and magnetic field strength, the calculation helps us better describe the experimental results obtained at RHIC energies for the lowest part of the transverse photon momentum.

  15. Generation of Helical and Axial Magnetic Fields by the Relativistic Laser Pulses in Under-dense Plasma: Three-Dimensional Particle-in-Cell Simulation

    Science.gov (United States)

    Zheng, Chun-Yang; Zhu, Shao-Ping; He, Xian-Tu

    2002-07-01

    The quasi-static magnetic fields created in the interaction of relativistic laser pulses with under-dense plasmas have been investigated by three-dimensional particle-in-cell simulation. The relativistic ponderomotive force can drive an intense electron current in the laser propagation direction, which is responsible for the generation of a helical magnetic field. The axial magnetic field results from a difference beat of wave-wave, which drives a solenoidal current. In particular, the physical significance of the kinetic model for the generation of the axial magnetic field is discussed.

  16. General Relativistic White Dwarfs and Their Astrophysical Implications

    CERN Document Server

    Boshkayev, Kuantay; Ruffini, Remo; Siutsou, Ivan

    2014-01-01

    We consider applications of general relativistic uniformly-rotating white dwarfs to several astrophysical phenomena related to the spin-up and the spin-down epochs and to delayed type Ia supernova explosions of super-Chandrasekhar white dwarfs, where we estimate the "spinning down" lifetime due to magnetic-dipole braking. In addition, we describe the physical properties of Soft Gamma Repeaters and Anomalous X-Ray Pulsars as massive rapidly-rotating highly-magnetized white dwarfs. Particularly we consider one of the so-called low-magnetic-field magnetars SGR 0418+5729 as a massive rapidly-rotating highly-magnetized white dwarf and give bounds for the mass, radius, moment of inertia, and magnetic field by requiring the general relativistic uniformly-rotating configurations to be stable.

  17. General relativistic white dwarfs and their astrophysical implications

    Energy Technology Data Exchange (ETDEWEB)

    Boshkayev, Kuantay [Al-Farabi Kazakh National University, Almaty (Kazakhstan); Rueda, Jorge A.; Ruffini, Remo [Sapienza University of Rome, Rome (Italy); Siutsou, Ivan [ICRANet, Square of Republic, Pescara (Italy)

    2014-09-15

    We consider applications of general relativistic uniformly-rotating white dwarfs to several astrophysical phenomena related to the spin-up and the spin-down epochs and to delayed type Ia supernova explosions of super-Chandrasekhar white dwarfs, where we estimate the 'spinning down' lifetime due to magnetic-dipole braking. In addition, we describe the physical properties of Soft Gamma Repeaters and Anomalous X-Ray Pulsars as massive rapidly-rotating highly-magnetized white dwarfs. Particularly we consider one of the so-called low-magnetic-field magnetars SGR 0418+5729 as a massive rapidly-rotating highly- magnetized white dwarf and give bounds for the mass, radius, moment of inertia, and magnetic field by requiring the general relativistic uniformly rotating configurations to be stable.

  18. Relativistic MHD Simulations of Collision-induced Magnetic Dissipation in Poynting-flux-dominated Jets/outflows

    Science.gov (United States)

    Deng, Wei; Li, Hui; Zhang, Bing; Li, Shengtai

    2015-06-01

    We perform 3D relativistic ideal magnetohydrodynamics (MHD) simulations to study the collisions between high-σ (Poynting-flux-dominated (PFD)) blobs which contain both poloidal and toroidal magnetic field components. This is meant to mimic the interactions inside a highly variable PFD jet. We discover a significant electromagnetic field (EMF) energy dissipation with an Alfvénic rate with the efficiency around 35%. Detailed analyses show that this dissipation is mostly facilitated by the collision-induced magnetic reconnection. Additional resolution and parameter studies show a robust result that the relative EMF energy dissipation efficiency is nearly independent of the numerical resolution or most physical parameters in the relevant parameter range. The reconnection outflows in our simulation can potentially form the multi-orientation relativistic mini jets as needed for several analytical models. We also find a linear relationship between the σ values before and after the major EMF energy dissipation process. Our results give support to the proposed astrophysical models that invoke significant magnetic energy dissipation in PFD jets, such as the internal collision-induced magnetic reconnection and turbulence model for gamma-ray bursts, and reconnection triggered mini jets model for active galactic nuclei. The simulation movies are shown in http://www.physics.unlv.edu/∼deng/simulation1.html.

  19. Iron oxide nanoparticles fabricated by electric explosion of wire: focus on magnetic nanofluids

    Science.gov (United States)

    Beketov, I. V.; Safronov, A. P.; Medvedev, A. I.; Alonso, J.; Kurlyandskaya, G. V.; Bhagat, S. M.

    2012-06-01

    Nanoparticles of iron oxides (MNPs) were prepared using the electric explosion of wire technique (EEW). The main focus was on the fabrication of de-aggregated spherical nanoparticles with a narrow size distribution. According to XRD the major crystalline phase was magnetite with an average diameter of MNPs, depending on the fraction. Further separation of air-dry EEW nanoparticles was performed in aqueous suspensions. In order to provide the stability of magnetite suspension in water, we found the optimum concentration of the electrostatic stabilizer (sodium citrate and optimum pH level) based on zeta-potential measurements. The stable suspensions still contained a substantial fraction of aggregates which were disintegrated by the excessive ultrasound treatment. The separation of the large particles out of the suspension was performed by centrifuging. The structural features, magnetic properties and microwave absorption of MNPs and their aqueous solutions confirm that we were able to obtain an ensemble in which the magnetic contributions come from the spherical MNPs. The particle size distribution in fractionated samples was narrow and they showed a similar behaviour to that expected of the superparamagnetic ensemble. Maximum obtained concentration was as high as 5 % of magnetic material (by weight). Designed assembly of de-aggregated nanoparticles is an example of on-purpose developed magnetic nanofluid.

  20. Iron oxide nanoparticles fabricated by electric explosion of wire: focus on magnetic nanofluids

    Directory of Open Access Journals (Sweden)

    I. V. Beketov

    2012-06-01

    Full Text Available Nanoparticles of iron oxides (MNPs were prepared using the electric explosion of wire technique (EEW. The main focus was on the fabrication of de-aggregated spherical nanoparticles with a narrow size distribution. According to XRD the major crystalline phase was magnetite with an average diameter of MNPs, depending on the fraction. Further separation of air-dry EEW nanoparticles was performed in aqueous suspensions. In order to provide the stability of magnetite suspension in water, we found the optimum concentration of the electrostatic stabilizer (sodium citrate and optimum pH level based on zeta-potential measurements. The stable suspensions still contained a substantial fraction of aggregates which were disintegrated by the excessive ultrasound treatment. The separation of the large particles out of the suspension was performed by centrifuging. The structural features, magnetic properties and microwave absorption of MNPs and their aqueous solutions confirm that we were able to obtain an ensemble in which the magnetic contributions come from the spherical MNPs. The particle size distribution in fractionated samples was narrow and they showed a similar behaviour to that expected of the superparamagnetic ensemble. Maximum obtained concentration was as high as 5 % of magnetic material (by weight. Designed assembly of de-aggregated nanoparticles is an example of on-purpose developed magnetic nanofluid.

  1. Generation of Helical and Axial Magnetic Fields by the Relativistic Laser Pulses in Under-dense Plasma: Three-Dimensional Particle-in-Cell Simulation

    Institute of Scientific and Technical Information of China (English)

    郑春阳; 朱少平; 贺贤土

    2002-01-01

    The quasi-static magnetic fields created in the interaction of relativistic laser pulses with under-dense plasmashave been investigated by three-dimensional particle-in-cell simulation. The relativistic ponderomotive force candrive an intense electron current in the laser propagation direction, which is responsible for the generation ofa helical magnetic field. The axial magnetic field results from a difference beat of wave-wave, which drives asolenoidal current. In particular, the physical significance of the kinetic model for the generation of the axialmagnetic field is discussed.

  2. Relativistic diffusion.

    Science.gov (United States)

    Haba, Z

    2009-02-01

    We discuss relativistic diffusion in proper time in the approach of Schay (Ph.D. thesis, Princeton University, Princeton, NJ, 1961) and Dudley [Ark. Mat. 6, 241 (1965)]. We derive (Langevin) stochastic differential equations in various coordinates. We show that in some coordinates the stochastic differential equations become linear. We obtain momentum probability distribution in an explicit form. We discuss a relativistic particle diffusing in an external electromagnetic field. We solve the Langevin equations in the case of parallel electric and magnetic fields. We derive a kinetic equation for the evolution of the probability distribution. We discuss drag terms leading to an equilibrium distribution. The relativistic analog of the Ornstein-Uhlenbeck process is not unique. We show that if the drag comes from a diffusion approximation to the master equation then its form is strongly restricted. The drag leading to the Tsallis equilibrium distribution satisfies this restriction whereas the one of the Jüttner distribution does not. We show that any function of the relativistic energy can be the equilibrium distribution for a particle in a static electric field. A preliminary study of the time evolution with friction is presented. It is shown that the problem is equivalent to quantum mechanics of a particle moving on a hyperboloid with a potential determined by the drag. A relation to diffusions appearing in heavy ion collisions is briefly discussed.

  3. Pion production via proton synchrotron radiation in strong magnetic fields in relativistic field theory: Scaling relations and angular distributions

    Science.gov (United States)

    Maruyama, Tomoyuki; Cheoun, Myung-Ki; Kajino, Toshitaka; Mathews, Grant J.

    2016-06-01

    We study pion production by proton synchrotron radiation in the presence of a strong magnetic field when the Landau numbers of the initial and final protons are ni,f ∼104-105. We find in our relativistic field theory calculations that the pion decay width depends only on the field strength parameter which previously was only conjectured based upon semi-classical arguments. Moreover, we also find new results that the decay width satisfies a robust scaling relation, and that the polar angular distribution of emitted pion momenta is very narrow and can be easily obtained. This scaling implies that one can infer the decay width in more realistic magnetic fields of 1015 G, where ni,f ∼1012-1013, from the results for ni,f ∼104-105. The resultant pion intensity and angular distributions for realistic magnetic field strengths are presented and their physical implications discussed.

  4. Polarization Signatures of Relativistic Magnetohydrodynamic Shocks in the Blazar Emission Region - I. Force-free Helical Magnetic Fields

    CERN Document Server

    Zhang, Haocheng; Li, Hui; Böttcher, Markus

    2015-01-01

    The optical radiation and polarization signatures in blazars are known to be highly variable during flaring activities. It is frequently argued that shocks are the main driver of the flaring events. However, the spectral variability modelings generally lack detailed considerations of the self-consistent magnetic field evolution modeling, thus so far the associated optical polarization signatures are poorly understood. We present the first simultaneous modeling of the optical radiation and polarization signatures based on 3D magnetohydrodynamic simulations of relativistic shocks in the blazar emission environment, with the simplest physical assumptions. By comparing the results with observations, we find that shocks in a weakly magnetized environment will largely lead to significant changes in the optical polarization signatures, which are seldom seen in observations. Hence an emission region with relatively strong magnetization is preferred. In such an environment, slow shocks may produce minor flares with ei...

  5. Relativistic electron's butterfly pitch angle distribution modulated by localized background magnetic field perturbation driven by hot ring current ions

    Science.gov (United States)

    Xiong, Ying; Chen, Lunjin; Xie, Lun; Fu, Suiyan; Xia, Zhiyang; Pu, Zuyin

    2017-05-01

    Dayside modulated relativistic electron's butterfly pitch angle distributions (PADs) from ˜200 keV to 2.6 MeV were observed by Van Allen Probe B at L = 5.3 on 15 November 2013. They were associated with localized magnetic dip driven by hot ring current ion (60-100 keV proton and 60-200 keV helium and oxygen) injections. We reproduce the electron's butterfly PADs at satellite's location using test particle simulation. The simulation results illustrate that a negative radial flux gradient contributes primarily to the formation of the modulated electron's butterfly PADs through inward transport due to the inductive electric field, while deceleration due to the inductive electric field and pitch angle change also makes in part contribution. We suggest that localized magnetic field perturbation, which is a frequent phenomenon in the magnetosphere during magnetic disturbances, is of great importance for creating electron's butterfly PADs in the Earth's radiation belts.

  6. A study on the steady-state solutions of a relativistic Bursian diode in the presence of a transverse magnetic field

    Science.gov (United States)

    Pramanik, Sourav; Kuznetsov, V. I.; Bakaleinikov, L. A.; Chakrabarti, Nikhil

    2016-08-01

    A comprehensive study on the steady states of a planar vacuum diode driven by a cold relativistic electron beam in the presence of an external transverse magnetic field is presented. The regimes, where no electrons are turned around by the external magnetic field and where they are reflected back to the emitter by the magnetic field, are both considered in a generalized way. The problem is solved by two methods: with the Euler and the Lagrange formulation. Taking non-relativistic limit, the solutions are compared with the similar ones which were obtained for the Bursian diode with a non-relativistic electron beam in previous work [Pramanik et al., Phys. Plasmas 22, 112108 (2015)]. It is shown that, at a moderate value of the relativistic factor of the injected beam, the region of the ambiguous solutions located to the right of the SCL bifurcation point (space charge limit) in the non-relativistic regime disappears. In addition, the dependencies of the characteristic bifurcation points and the transmitted current on the Larmor frequency as well as on the relativistic factor are explored.

  7. Microstructure of explosively compacted Nd-Fe-B magnet by TEM

    Institute of Scientific and Technical Information of China (English)

    AO Qi; LIU Wei; CAO Li-jun; WU Jian-sheng

    2005-01-01

    The microstructure of an explosively compacted Nd-Fe-B permanent magnet(Nd-Fe-B) was investigated by means of TEM and XRD. It is shown that there are three kinds of phases: Nd2 Fe14 B matrix phase, O-rich phases and Nd-rich phase with different structures and compositions in the magnet. The hard magnetic phase Nd2 Fe14 B is tetragonal, which lattice parameters are determined to be a=0. 88 nm and c= 1.22 nm. The O-rich phase locates at the grain boundaries and the triple junctions has fcc structure whose lattice parameter is a=0. 559 nm. A dislocation is observed in this phase. It is also found that a large number of the block-shaped Nd-rich phases with hcp structure are embedded in the Nd2 Fe14B matrix or at grain boundary. Their lattice parameters are determined to be a=0. 395 nm and c=0.628 nm.

  8. Relativistic magnetohydrodynamics in one dimension.

    Science.gov (United States)

    Lyutikov, Maxim; Hadden, Samuel

    2012-02-01

    We derive a number of solutions for one-dimensional dynamics of relativistic magnetized plasma that can be used as benchmark estimates in relativistic hydrodynamic and magnetohydrodynamic numerical codes. First, we analyze the properties of simple waves of fast modes propagating orthogonally to the magnetic field in relativistically hot plasma. The magnetic and kinetic pressures obey different equations of state, so that the system behaves as a mixture of gases with different polytropic indices. We find the self-similar solutions for the expansion of hot strongly magnetized plasma into vacuum. Second, we derive linear hodograph and Darboux equations for the relativistic Khalatnikov potential, which describe arbitrary one-dimensional isentropic relativistic motion of cold magnetized plasma and find their general and particular solutions. The obtained hodograph and Darboux equations are very powerful: A system of highly nonlinear, relativistic, time-dependent equations describing arbitrary (not necessarily self-similar) dynamics of highly magnetized plasma reduces to a single linear differential equation.

  9. Laboratory study of collisionless coupling between explosive debris plasma and magnetized ambient plasma

    Science.gov (United States)

    Bondarenko, A. S.; Schaeffer, D. B.; Everson, E. T.; Clark, S. E.; Lee, B. R.; Constantin, C. G.; Vincena, S.; Van Compernolle, B.; Tripathi, S. K. P.; Winske, D.; Niemann, C.

    2017-08-01

    The explosive expansion of a localized plasma cloud into a relatively tenuous, magnetized, ambient plasma characterizes a variety of astrophysical and space phenomena. In these rarified environments, collisionless electromagnetic processes rather than Coulomb collisions typically mediate the transfer of momentum and energy from the expanding "debris" plasma to the surrounding ambient plasma. In an effort to better understand the detailed physics of collisionless coupling mechanisms, compliment in situ measurements of space phenomena, and provide validation of previous computational and theoretical work, the present research jointly utilizes the Large Plasma Device and the Raptor laser facility at the University of California, Los Angeles to study the super-Alfvénic, quasi-perpendicular expansion of laser-produced carbon (C) and hydrogen (H) debris plasma through preformed, magnetized helium (He) ambient plasma via a variety of diagnostics, including emission spectroscopy, wavelength-filtered imaging, and a magnetic flux probe. Doppler shifts detected in a He1+ ion spectral line indicate that the ambient ions initially accelerate transverse to both the debris plasma flow and the background magnetic field. A qualitative analysis in the framework of a "hybrid" plasma model (kinetic ions and inertia-less fluid electrons) demonstrates that the ambient ion trajectories are consistent with the large-scale laminar electric field expected to develop due to the expanding debris. In particular, the transverse ambient ion motion provides direct evidence of Larmor coupling, a collisionless momentum exchange mechanism that has received extensive theoretical and numerical investigation. In order to quantitatively evaluate the observed Doppler shifts, a custom simulation utilizing a detailed model of the laser-produced debris plasma evolution calculates the laminar electric field and computes the initial response of a distribution of ambient test ions. A synthetic Doppler

  10. Magnetic field amplification and electron acceleration to near-energy equipartition with ions by a mildly relativistic quasi-parallel plasma protoshock

    OpenAIRE

    Murphy, Gareth C.; Dieckmann, Mark E.; BRET, ANTOINE; Drury, Luke O'C.

    2010-01-01

    The prompt emissions of gamma-ray bursts are seeded by radiating ultrarelativistic electrons. Internal shocks propagating through a jet launched by a stellar implosion, are expected to amplify the magnetic field & accelerate electrons. We explore the effects of density asymmetry & a quasi-parallel magnetic field on the collision of plasma clouds. A 2D relativistic PIC simulation models the collision of two plasma clouds, in the presence of a quasi-parallel magnetic field. The cloud density ra...

  11. Low-field permanent magnet quadrupoles in a new relativistic-klystron two-beam accelerator design

    Energy Technology Data Exchange (ETDEWEB)

    Yu, S.; Sessler, A. [Lawrence Berkeley Lab., CA (United States)

    1995-02-01

    Permanent magnets play a central role in the new relativistic klystron two-beam-accelerator design. The two key goals of this new design, low cost and the suppression of beam break-up instability are both intimately tied to the permanent magnet quadrupole focusing system. A recently completed systems study by a joint LBL-LLNL team concludes that a power source for a 1 TeV center-of-mass Next Linear Collider based on the new TBA design can be as low as $1 billion, and the efficiency (wall plug to rf) is estimated to be 36%. End-to-end simulations of longitudinal and transverse beam dynamics show that the drive beam is stable over the entire TBA unit.

  12. CAFE: A NEW RELATIVISTIC MHD CODE

    Energy Technology Data Exchange (ETDEWEB)

    Lora-Clavijo, F. D.; Cruz-Osorio, A. [Instituto de Astronomía, Universidad Nacional Autónoma de México, AP 70-264, Distrito Federal 04510, México (Mexico); Guzmán, F. S., E-mail: fdlora@astro.unam.mx, E-mail: aosorio@astro.unam.mx, E-mail: guzman@ifm.umich.mx [Instituto de Física y Matemáticas, Universidad Michoacana de San Nicolás de Hidalgo. Edificio C-3, Cd. Universitaria, 58040 Morelia, Michoacán, México (Mexico)

    2015-06-22

    We introduce CAFE, a new independent code designed to solve the equations of relativistic ideal magnetohydrodynamics (RMHD) in three dimensions. We present the standard tests for an RMHD code and for the relativistic hydrodynamics regime because we have not reported them before. The tests include the one-dimensional Riemann problems related to blast waves, head-on collisions of streams, and states with transverse velocities, with and without magnetic field, which is aligned or transverse, constant or discontinuous across the initial discontinuity. Among the two-dimensional (2D) and 3D tests without magnetic field, we include the 2D Riemann problem, a one-dimensional shock tube along a diagonal, the high-speed Emery wind tunnel, the Kelvin–Helmholtz (KH) instability, a set of jets, and a 3D spherical blast wave, whereas in the presence of a magnetic field we show the magnetic rotor, the cylindrical explosion, a case of Kelvin–Helmholtz instability, and a 3D magnetic field advection loop. The code uses high-resolution shock-capturing methods, and we present the error analysis for a combination that uses the Harten, Lax, van Leer, and Einfeldt (HLLE) flux formula combined with a linear, piecewise parabolic method and fifth-order weighted essentially nonoscillatory reconstructors. We use the flux-constrained transport and the divergence cleaning methods to control the divergence-free magnetic field constraint.

  13. CAFE: A New Relativistic MHD Code

    Science.gov (United States)

    Lora-Clavijo, F. D.; Cruz-Osorio, A.; Guzmán, F. S.

    2015-06-01

    We introduce CAFE, a new independent code designed to solve the equations of relativistic ideal magnetohydrodynamics (RMHD) in three dimensions. We present the standard tests for an RMHD code and for the relativistic hydrodynamics regime because we have not reported them before. The tests include the one-dimensional Riemann problems related to blast waves, head-on collisions of streams, and states with transverse velocities, with and without magnetic field, which is aligned or transverse, constant or discontinuous across the initial discontinuity. Among the two-dimensional (2D) and 3D tests without magnetic field, we include the 2D Riemann problem, a one-dimensional shock tube along a diagonal, the high-speed Emery wind tunnel, the Kelvin-Helmholtz (KH) instability, a set of jets, and a 3D spherical blast wave, whereas in the presence of a magnetic field we show the magnetic rotor, the cylindrical explosion, a case of Kelvin-Helmholtz instability, and a 3D magnetic field advection loop. The code uses high-resolution shock-capturing methods, and we present the error analysis for a combination that uses the Harten, Lax, van Leer, and Einfeldt (HLLE) flux formula combined with a linear, piecewise parabolic method and fifth-order weighted essentially nonoscillatory reconstructors. We use the flux-constrained transport and the divergence cleaning methods to control the divergence-free magnetic field constraint.

  14. Relativistic magnetohydrodynamics

    Science.gov (United States)

    Hernandez, Juan; Kovtun, Pavel

    2017-05-01

    We present the equations of relativistic hydrodynamics coupled to dynamical electromagnetic fields, including the effects of polarization, electric fields, and the derivative expansion. We enumerate the transport coefficients at leading order in derivatives, including electrical conductivities, viscosities, and thermodynamic coefficients. We find the constraints on transport coefficients due to the positivity of entropy production, and derive the corresponding Kubo formulas. For the neutral state in a magnetic field, small fluctuations include Alfvén waves, magnetosonic waves, and the dissipative modes. For the state with a non-zero dynamical charge density in a magnetic field, plasma oscillations gap out all propagating modes, except for Alfvén-like waves with a quadratic dispersion relation. We relate the transport coefficients in the "conventional" magnetohydrodynamics (formulated using Maxwell's equations in matter) to those in the "dual" version of magnetohydrodynamics (formulated using the conserved magnetic flux).

  15. Magnetic field amplification and magnetically supported explosions of collapsing, non-rotating stellar cores

    CERN Document Server

    Obergaulinger, Martin; Toras, Miguel Angel Aloy

    2014-01-01

    We study the amplification of magnetic fields in the collapse and the post-bounce evolution of the core of a non-rotating star of 15 solar masses in axisymmetry. To this end, we solve the coupled equations of magnetohydrodynamics and neutrino transport in the two-moment approximation. The pre-collapse magnetic field is strongly amplified by compression in the infall. Initial fields of the order of 1010 G translate into proto-neutron star fields similar to the ones observed in pulsars, while stronger initial fields yield magnetar-like final field strengths. After core bounce, the field is advected through the hydrodynamically unstable neutrino-heating layer, where non-radial flows due to convection and the standing accretion shock instability amplify the field further. Consequently, the resulting amplification factor of order five is the result of the number of small-eddy turnovers taking place within the time scale of advection through the post-shock layer. Due to this limit, most of our models do not reach e...

  16. Relativistic radiation belt electron responses to GEM magnetic storms: Comparison of CRRES observations with 3-D VERB simulations

    Science.gov (United States)

    Kim, Kyung-Chan; Shprits, Yuri; Subbotin, Dmitriy; Ni, Binbin

    2012-08-01

    Understanding the dynamics of relativistic electron acceleration, loss, and transport in the Earth's radiation belt during magnetic storms is a challenging task. The U.S. National Science Foundation's Geospace Environment Modeling (GEM) has identified five magnetic storms for in-depth study that occurred during the second half of the Combined Release and Radiation Effects Satellite (CRRES) mission in the year 1991. In this study, we show the responses of relativistic radiation belt electrons to the magnetic storms by comparing the time-dependent 3-D Versatile Electron Radiation Belt (VERB) simulations with the CRRES MEA 1 MeV electron observations in order to investigate the relative roles of the competing effects of previously proposed scattering mechanisms at different storm phases, as well as to examine the extent to which the simulations can reproduce observations. The major scattering processes in our model are radial transport due to Ultra Low Frequency (ULF) electromagnetic fluctuations, pitch angle and energy diffusion including mixed diffusion by whistler mode chorus waves outside the plasmasphere, and pitch angle scattering by plasmaspheric hiss inside the plasmasphere. The 3-D VERB simulations show that during the storm main phase and early recovery phase the estimated plasmapause is located deep in the inner region, indicating that pitch angle scattering by chorus waves can be a dominant loss process in the outer belt. We have also confirmed the important role played by mixed energy-pitch angle diffusion by chorus waves, which tends to reduce the fluxes enhanced by local acceleration, resulting in comparable levels of computed and measured fluxes. However, we cannot reproduce the more pronounced flux dropout near the boundary of our simulations during the main phase, which indicates that non-adiabatic losses may extend toL-shells lower than our simulation boundary. We also provide a detailed description of simulations for each of the GEM storm events.

  17. Three-dimensional Relativistic MHD Simulations of Active Galactic Nuclei Jets: Magnetic Kink Instability and Fanaroff-Riley Dichotomy

    CERN Document Server

    Tchekhovskoy, Alexander

    2015-01-01

    Active galactic nuclei jets are thought to form in the immediate vicinity of the event horizons of supermassive black holes. Therefore, jets could be excellent probes of general relativity. However, in practice, using jets to infer near-black hole physics is not straightforward since the cause of their most basic morphological features is not understood. For instance, there is no agreement on the cause of the well-known Fanaroff-Riley (FR) morphological dichotomy of jets, with FRI jets being shorter and wiggly and FRII jets being longer and more stable. Here, we carry out 3D relativistic magnetohydrodynamic (MHD) simulations of relativistic jets propagating through the ambient medium. Because in flat density cores of galaxies ($n \\propto r^{-\\alpha}$ with $\\alpha < 2$) the mass per unit distance ahead of the jets increases with distance, the jets slow down and collimate into smaller opening angles. This makes the jets more vulnerable to the 3D magnetic kink ("corkscrew") instability, which develops faster ...

  18. Experimental simulation of the energy parameters of the "ATLAS" capacitor bank using a disk explosive-magnetic generator

    CERN Document Server

    Buyko, A M; Gorbachev, Yu N; Yegorychev, B T; Zmushko, V V; Ivanov, V A; Ivanova, G G; Kuzaev, A I; Kulagin, A A; Mokhov, V N; Pavlii, V V; Pak, S V; Petrukhin, A A; Skobelev, A N; Sofronov, V N; Chernyshev, V K; Yakubov, V B; Anderson, B G; Atchison, W L; Clark, D A; Faehl, R J; Lindemuth, I R; Reinovsky, R E; Rodrigues, G; Stokes, J L; Tabaka, L J

    2001-01-01

    A joint US/Russian Advanced Liner Technology experiment ALT-1 was conducted to simulate the anticipated performance of the Atlas capacitor bank. A disk-explosive magnetic generator and foil opening switch were used to produce an electrical current waveform that reached a peak value of 32.5 MA and that imploded an aluminum liner to an inner surface velocity of 12 km/s. (6 refs).

  19. Study of the correlation of charge separation of the chiral magnetic effect in Relativistic Heavy-ion Collisions

    CERN Document Server

    Feng, Sheng-Qin; Sun, Fei; Zhong, Yang; Yin, Zhong-Bao

    2016-01-01

    It was pointed out that the Chiral Magnetic Effect is a process of charge separation with respect to the reaction plane. There is one kind of phenomenon of gauge field configurations with nonzero topological charge, which can be a sphaleron in the QCD vacuum. At high temperatures, one expects that the sphaleron process is a dominant process. One finds that left-handed quarks will become right-handed quarks, and right-handed quarks will remain right-handed in a region with negative topological charge. The strong magnetic field produced in relativistic heavy-ion collisions interacts with the magnetic moment of the quarks and locates the spins of quarks with positive (negative) electric charge to be parallel (anti-parallel) to the field direction. The Chiral Separation Effect is a similar effect in which the occurrence of a vector charge, e.g. electric charge, causes a separation of chiralities. We calculate the chiral separation effects during RHIC and LHC energy regions by studying the detailed chiral charge s...

  20. Effect of the Initial Laser Phase on the Interaction Between Relativistic Electron and Ultra-Intense Laser Field in a Strong Uniform Magnetic Field

    Institute of Scientific and Technical Information of China (English)

    HE Xin-Kui; SHUAI Bin; GE Xiao-Chun; LI Ru-Xin; XU Zhi-Zhan

    2004-01-01

    @@ We investigate the influence of the initial laser phase on the interaction between relativistic electron and ultraintense linear polarized laser field in a strong uniform magnetic field. It is found that the dynamic behaviour of the relativistic electron and the emission spectrum varies dramatically with different initial laser field phases.The effect of changing initial phase is contrary in the two parameter regions divided by the resonance condition.The phase dependence of the electron energy and velocity components are also studied. Some beat structure is found when the initial laser phase is zero and this structure is absent when the initial laser phase is a quarter of a period.

  1. CAFE: A New Relativistic MHD Code

    CERN Document Server

    Lora-Clavijo, F D; Guzman, F S

    2014-01-01

    We present CAFE, a new independent code designed to solve the equations of Relativistic ideal Magnetohydrodynamics (RMHD) in 3D. We present the standard tests for a RMHD code and for the Relativistic Hydrodynamics (RMD) regime since we have not reported them before. The tests include the 1D Riemann problems related to blast waves, head-on collision of streams and states with transverse velocities, with and without magnetic field, which is aligned or transverse, constant or discontinuous across the initial discontinuity. Among the 2D tests, without magnetic field we include the 2D Riemann problem, the high speed Emery wind tunnel, the Kelvin-Helmholtz instability test and a set of jets, whereas in the presence of a magnetic field we show the magnetic rotor, the cylindrical explosion and the Kelvin-Helmholtz instability. The code uses High Resolution Shock Capturing methods and as a standard set up we present the error analysis with a simple combination that uses the HLLE flux formula combined with linear, PPM ...

  2. Deformed neutron stars due to strong magnetic field in terms of relativistic mean field theories

    Science.gov (United States)

    Yanase, Kota; Yoshinaga, Naotaka

    2014-09-01

    Some observations suggest that magnetic field intensity of neutron stars that have particularly strong magnetic field, magnetars, reaches values up to 1014-15G. It is expected that there exists more strong magnetic field of several orders of magnitude in the interior of such stars. Neutron star matter is so affected by magnetic fields caused by intrinsic magnetic moments and electric charges of baryons that masses of neutron stars calculated by using Tolman-Oppenheimer-Volkoff equation is therefore modified. We calculate equation of state (EOS) in density-dependent magnetic field by using sigma-omega-rho model that can reproduce properties of stable nuclear matter in laboratory Furthermore we calculate modified masses of deformed neutron stars.

  3. Pion Production from Proton Synchrotron Radiation under Strong Magnetic Field in a Relativistic Quantum Approach

    Directory of Open Access Journals (Sweden)

    Maruyama Tomoyuki

    2016-01-01

    Full Text Available We study pion production from proton synchrotron radiation in the presence of strong magnetic fields by using the exact proton propagator in a strong magnetic field and explicitly including the anomalous magnetic moment. Results in this exact quantum approach do not agree with those obtained in the semi-classical approach. Then, we find that the anomalous magnetic moment of the proton greatly enhances the production rate by about two orders magnitude, and that the decay width satisfies a robust scaling law.

  4. Higher harmonic emission by a relativistic electron beam in a longitudinal magnetic wiggler

    Science.gov (United States)

    Davidson, Ronald C.; McMullin, Wayne A.

    1982-10-01

    The classical limit of the Einstein-coefficient method is used in the low-gain regime to calculate the stimulated emission from a tenuous relativistic electron beam propagating in the combined solenoidal and longitudinal wiggler fields (B0+δB k0z)e^z produced near the axis of a multiple-mirror (undulator) field configuration. Emission is found to occur at all harmonics of the wiggler wave number k0 with Doppler upshifted output frequency given by ω=(lk0Vb+ωcb)(1+Vbc)γ2b(1+γ2bV2⊥c2), where l>=1. The emission is compared to the low-gain cyclotron maser with δB=0 and to the low-gain free-electron laser (operating at higher harmonics) utilizing a transverse linearly polarized wiggler field.

  5. Fast lattice Boltzmann solver for relativistic hydrodynamics.

    Science.gov (United States)

    Mendoza, M; Boghosian, B M; Herrmann, H J; Succi, S

    2010-07-01

    A lattice Boltzmann formulation for relativistic fluids is presented and numerically validated through quantitative comparison with recent hydrodynamic simulations of relativistic fluids. In order to illustrate its capability to handle complex geometries, the scheme is also applied to the case of a three-dimensional relativistic shock wave, generated by a supernova explosion, impacting on a massive interstellar cloud. This formulation opens up the possibility of exporting the proven advantages of lattice Boltzmann methods, namely, computational efficiency and easy handling of complex geometries, to the context of (mildly) relativistic fluid dynamics at large, from quark-gluon plasmas up to supernovae with relativistic outflows.

  6. A General Relativistic Model for Magnetic Monopole-Infused Compact Objects

    CERN Document Server

    Pazameta, Zoran

    2012-01-01

    Emergent concepts from astroparticle physics are incorporated into a classical solution of the Einstein-Maxwell equations for a binary magnetohydrodynamic fluid, in order to describe the final equilibrium state of compact objects infused with magnetic monopoles produced by proton-proton collisions within the intense dipolar magnetic fields generated by these objects during their collapse. It is found that the effective mass of such an object's acquired monopolar magnetic field is three times greater than the mass of its native fluid and monopoles combined, necessitating that the interior matter undergo a transition to a state of negative pressure in order to attain equilibrium. Assuming full symmetry between the electric and magnetic Maxwell equations yields expressions for the monopole charge density and magnetic field by direct analogy with their electrostatic equivalents; inserting these into the Einstein equations then leads to an interior metric which is well-behaved from the origin to the surface, where...

  7. GRHydro: A new open source general-relativistic magnetohydrodynamics code for the Einstein Toolkit

    CERN Document Server

    Moesta, Philipp; Faber, Joshua A; Haas, Roland; Noble, Scott C; Bode, Tanja; Loeffler, Frank; Ott, Christian D; Reisswig, Christian; Schnetter, Erik

    2013-01-01

    We present the new general-relativistic magnetohydrodynamics (GRMHD) capabilities of the Einstein Toolkit, an open-source community-driven numerical relativity and computational relativistic astrophysics code. The GRMHD extension of the Toolkit builds upon previous releases and implements the evolution of relativistic magnetised fluids in the ideal MHD limit in fully dynamical spacetimes using the same shock-capturing techniques previously applied to hydrodynamical evolution. In order to maintain the divergence-free character of the magnetic field, the code implements both hyperbolic divergence cleaning and constrained transport schemes. We present test results for a number of MHD tests in Minkowski and curved spacetimes. Minkowski tests include aligned and oblique planar shocks, cylindrical explosions, magnetic rotors, Alfv\\'en waves and advected loops, as well as a set of tests designed to study the response of the divergence cleaning scheme to numerically generated monopoles. We study the code's performanc...

  8. Electromagnetic fluctuations in magnetized plasmas. I. The rigorous relativistic kinetic theory

    Energy Technology Data Exchange (ETDEWEB)

    Schlickeiser, R., E-mail: rsch@tp4.rub.de, E-mail: yoonp@umd.edu [Institut für Theoretische Physik, Lehrstuhl IV: Weltraum- und Astrophysik, Ruhr-Universität Bochum, D-44780 Bochum (Germany); Yoon, P. H., E-mail: rsch@tp4.rub.de, E-mail: yoonp@umd.edu [Institute for Physical Science and Technology, University of Maryland, College Park, Maryland 20742 (United States); School of Space Research, Kyung Hee University, Yongin-Si, Gyeonggi-Do 446-701 (Korea, Republic of)

    2015-07-15

    Using the system of the Klimontovich and Maxwell equations, the general linear fluctuation theory for magnetized plasmas is developed. General expressions for the electromagnetic fluctuation spectra (electric and magnetic fields) from uncorrelated plasma particles in plasmas with a uniform magnetic field are derived, which are covariantly correct within the theory of special relativity. The general fluctuation spectra hold for plasmas of arbitrary composition, arbitrary momentum dependences of the plasma particle distribution functions, and arbitrary orientations of the wave vector with respect to the uniform magnetic field. Moreover, no restrictions on the values of the real and the imaginary parts of the frequency are made. The derived fluctuation spectra apply to both non-collective fluctuations and collective plasma eigenmodes in magnetized plasmas. In the latter case, kinetic equations for the components of fluctuating electric and magnetic fields in magnetized plasmas are derived that include the effect of spontaneous emission and absorption. In the limiting case of an unmagnetized plasmas, the general fluctuation spectra correctly reduce to the unmagnetized fluctuation spectra derived before.

  9. Fast magnetic energy dissipation in relativistic plasma induced by high order laser modes

    Institute of Scientific and Technical Information of China (English)

    Y.J.Gu; Q.Yu; O.Klimo; T.Zh.Esirkepov; S.V.Bulanov; S.Weber; G.Korn

    2016-01-01

    Fast magnetic field annihilation in a collisionless plasma is induced by using TEM(1,0) laser pulse. The magnetic quadrupole structure formation, expansion and annihilation stages are demonstrated with 2.5-dimensional particle-in-cell simulations. The magnetic field energy is converted to the electric field and accelerate the particles inside the annihilation plane. A bunch of high energy electrons moving backwards is detected in the current sheet. The strong displacement current is the dominant contribution which induces the longitudinal inductive electric field.

  10. Size dependence of the relaxation rate for non-equilibrium redistributions of the magnetization in Ni–Fe heterestuctures: Exchange vs. relativistic damping scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Yastremsky, I.A., E-mail: yastremsky@ukr.net

    2015-05-15

    The relaxation of non-equilibrium redistributions of the magnetization in a model Ni–Fe heterostructure is analyzed on the basis of the Landau–Lifshitz equation with the relaxation terms proposed by Bar'yakhtar. Bar'yakhtar‘s terms account for both the relativistic (local) and exchange (nonlocal) relaxations. It is demonstrated that the role of the nonlocal relaxation term (a spin current flowing between layers) increases for smaller systems. For nanometer-size systems the nonlocal relaxation term significantly enhances the relaxation of the Ni layer magnetization back to equilibrium. The reason of this size dependence is a competition of fast magnetization dynamics, induced by the nonlocal relaxation term near an interface between metals and slow, relativistic dynamics, which occurs at each point of the Ni–Fe heterostructure. This study provides insight in how to achieve an exceptionally fast remagnetization in magnetic heterostructures after laser excitation. - Highlights: • The relaxation of non-equilibrium spin states in a Ni–Fe heterostructure is analyzed. • Both the exchange (nonlocal) and relativistic (local) relaxations are accounted. • The nonlocal relaxation is concurrent with the creation of a spin current. • The role of the spin current increases for thinner metallic layers. • For nanometer-size systems the relaxation is primarily driven by the spin current.

  11. Persistence of magnetic field driven by relativistic electrons in a plasma

    CERN Document Server

    Flacco, A; Lifschitz, A; Sylla, F; Kahaly, S; Veltcheva, M; Silva, L O; Malka, V

    2015-01-01

    The onset and evolution of magnetic fields in laboratory and astrophysical plasmas is determined by several mechanisms, including instabilities, dynamo effects and ultra-high energy particle flows through gas, plasma and interstellar-media. These processes are relevant over a wide range of conditions, from cosmic ray acceleration and gamma ray bursts to nuclear fusion in stars. The disparate temporal and spatial scales where each operates can be reconciled by scaling parameters that enable to recreate astrophysical conditions in the laboratory. Here we unveil a new mechanism by which the flow of ultra-energetic particles can strongly magnetize the boundary between the plasma and the non-ionized gas to magnetic fields up to 10-100 Tesla (micro Tesla in astrophysical conditions). The physics is observed from the first time-resolved large scale magnetic field measurements obtained in a laser wakefield accelerator. Particle-in-cell simulations capturing the global plasma and field dynamics over the full plasma le...

  12. The effect of cooling on particle trajectories and acceleration in relativistic magnetic reconnection

    CERN Document Server

    Kagan, Daniel; Piran, Tsvi

    2016-01-01

    The maximum synchrotron burnoff limit of 160 MeV represents a fundamental limit to radiation resulting from electromagnetic particle acceleration in one-zone ideal plasmas. In magnetic reconnection, however, particle acceleration and radiation are decoupled because the electric field is larger than the magnetic field in the diffusion region. We carry out two-dimensional particle-in-cell simulations to determine the extent to which magnetic reconnection can produce synchrotron radiation above the burnoff limit. We use the test particle comparison (TPC) method to isolate the effects of cooling by comparing the trajectories and acceleration efficiencies of test particles incident on such a reconnection region with and without cooling them. We find that the cooled and uncooled particle trajectories are typically similar during acceleration in the reconnection region, and derive an effective limit on particle acceleration that is inversely proportional to the average magnetic field experienced by the particle duri...

  13. Relativistic Two-Dimensional Harmonic Oscillator Plus Cornell Potentials in External Magnetic and AB Fields

    Directory of Open Access Journals (Sweden)

    Sameer M. Ikhdair

    2013-01-01

    Full Text Available The Klein-Gordon (KG equation for the two-dimensional scalar-vector harmonic oscillator plus Cornell potentials in the presence of external magnetic and Aharonov-Bohm (AB flux fields is solved using the wave function ansatz method. The exact energy eigenvalues and the wave functions are obtained in terms of potential parameters, magnetic field strength, AB flux field, and magnetic quantum number. The results obtained by using different Larmor frequencies are compared with the results in the absence of both magnetic field (ωL = 0 and AB flux field (ξ=0 cases. Effect of external fields on the nonrelativistic energy eigenvalues and wave function solutions is also precisely presented. Some special cases like harmonic oscillator and Coulombic fields are also studied.

  14. On The Relativistic Classical Motion of a Radiating Spinning Particle in a Magnetic Field

    CERN Document Server

    Kar, Arnab

    2010-01-01

    We propose classical equations of motion for a charged particle with magnetic moment, taking radiation reaction into account. This generalizes the Landau-Lifshitz equations for the spinless case. In the special case of spin-polarized motion in a constant magnetic field (synchrotron motion) we verify that the particle does lose energy. Previous proposals did not predict dissipation of energy and also suffered from runaway solutions analogous to those of the Lorentz-Dirac equations of motion.

  15. On the relativistic classical motion of a radiating spinning particle in a magnetic field

    Science.gov (United States)

    Kar, Arnab; Rajeev, S. G.

    2011-04-01

    We propose classical equations of motion for a charged particle with magnetic moment, taking radiation reaction into account. This generalizes the Landau-Lifshitz equations for the spinless case. In the special case of spin-polarized motion in a constant magnetic field (synchrotron motion) we verify that the particle does lose energy. Previous proposals did not predict dissipation of energy and also suffered from runaway solutions analogous to those of the Lorentz-Dirac equations of motion.

  16. The effect of magnetic fields on the r-modes of slowly rotating relativistic neutron stars

    CERN Document Server

    Chirenti, Cecilia

    2013-01-01

    We study here the r-modes in the Cowling approximation of a simple slowly rotating and magnetized neutron star, where we neglect any deformations of the spherical symmetry of the star. We were able to quantify the influence of the magnetic field in both the oscillation frequency $\\sigma_r$ of the r-modes and the growth time $t_{GW}$ of the gravitational radiation emission. We conclude that magnetic fields of the order $10^{15}$ G at the center of the star are necessary to produce any changes. Our results for $\\sigma_r$ show a decrease of up to $\\sim$ 5% in the frequency with increasing magnetic field, with a $B^2$ dependence for rotation rates $\\Omega/\\Omega_K \\gtrsim 0.07$ and $B^4$ for $\\Omega/\\Omega_K \\lesssim 0.07$. For $t_{GW}$, we find that it is approximately 30% smaller than previous Newtonian results for non-magnetized stars, which would mean a faster growth of the emission of gravitational radiation. The effect of the magnetic field in $t_{GW}$ causes a non-monotonic effect, that first slightly incr...

  17. Magnetic collimation of relativistic jets: the role of the black hole spin

    Science.gov (United States)

    Globus, N.; Sauty, C.; Cayatte, V.

    2011-06-01

    An ideal engine for producing ultrarelativistic jets is a rapidly rotating black hole threaded by a magnetic field. Following the 3+1 decomposion of spacetime of Thorne et al. (1986), we use a local inertial frame of reference attached to an observer comoving with the frame-dragging of the Kerr black hole (ZAMO) to write the GRMHD equations. Assuming θ-self similarity, analytical solutions for jets can be found for which the streamline shape is calculated exactly. Calculating the total energy variation between a non polar streamline and the polar axis, we have extended to the Kerr metric the simple criterion for the magnetic collimation of jets developed by Sauty et al. (1999). We show that the black hole rotation induces a more efficient magnetic collimation of the jet.

  18. Relativistic quark-diquark model of baryons with a spin-isospin transition interaction: Non-strange baryon spectrum and nucleon magnetic moments

    Energy Technology Data Exchange (ETDEWEB)

    Sanctis, M. de [Universidad Nacional de Colombia, Bogota (Colombia); Ferretti, J. [Universita La Sapienza, Dipartimento di Fisica, Roma (Italy); INFN, Roma (Italy); Santopinto, E.; Vassallo, A. [INFN, Sezione di Genova, Genova (Italy)

    2016-05-15

    The relativistic interacting quark-diquark model of baryons, recently developed, is here extended introducing in the mass operator a spin-isospin transition interaction. This refined version of the model is used to calculate the non-strange baryon spectrum. The results are compared to the present experimental data. A preliminary calculation of the magnetic moments of the proton and neutron is also presented. (orig.)

  19. Magnetic moments of the nucleon octet in a relativistic quark model with chiral symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Barik, N.; Dash, B.K.

    1986-11-01

    Incorporating the lowest-order pionic correction, the magnetic moments of the nucleon octet have been calculated in a chiral potential model. The potential, representing phenomenologically the nonperturbative gluon interactions including gluon self-couplings, is chosen with equally mixed scalar and vector parts in harmonic form. The results are in reasonable agreement with experiment.

  20. Relativistic MHD simulations of collision-induced magnetic dissipation in Poynting-flux-dominated jets/outflows

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Wei [Los Alamos National Laboratory

    2015-07-21

    The question of the energy composition of the jets/outflows in high-energy astrophysical systems, e.g. GRBs, AGNs, is taken up first: Matter-flux-dominated (MFD), σ < 1, and/or Poynting-flux-dominated (PFD), σ >1? The standard fireball IS model and dissipative photosphere model are MFD, while the ICMART (Internal-Collision-induced MAgnetic Reconnection and Turbulence) model is PFD. Motivated by ICMART model and other relevant problems, such as “jets in a jet” model of AGNs, the author investigates the models from the EMF energy dissipation efficiency, relativistic outflow generation, and σ evolution points of view, and simulates collisions between high-σ blobs to mimic the situation of the interactions inside the PFD jets/outflows by using a 3D SRMHD code which solves the conservative form of the ideal MHD equations. σb,f is calculated from the simulation results (threshold = 1). The efficiency obtained from this hybrid method is similar to the efficiency got from the energy evolution of the simulations (35.2%). Efficiency is nearly σ independent, which is also confirmed by the hybrid method. σb,i - σb,f provides an interesting linear relationship. Results of several parameter studies of EMF energy dissipation efficiency are shown.

  1. Gauge origin independent calculations of nuclear magnetic shieldings in relativistic four-component theory

    DEFF Research Database (Denmark)

    Ilias, Miroslav; Saue, Trond; Enevoldsen, Thomas

    2009-01-01

    The use of perturbation-dependent London atomic orbitals, also called gauge including atomic orbitals, has proven efficient for calculations of NMR shielding constants and other magnetic properties in the nonrelativistic framework. In this paper, the theory of London atomic orbitals for NMR...... calculates the diamagnetic contribution as an expectation value, leads to significant errors and is not recommended. (C) 2009 American Institute of Physics. [doi:10.1063/1.3240198]...

  2. Evaluation of One-Sided Nuclear Magnetic Resonance for Remote Detection of Explosives.

    Science.gov (United States)

    1987-10-01

    Si:znal-to-Noise Ratic 0:’ -:.-e NMR Exceri."ent", Journal o_ magnetji c Resonance 2 4, :4. 1. Hu.;chnson, ed. , The ARRL Handbook f4or tne Radio...6. 3. M. Dobratz, ed., LLNL Exzlos -4-ves Handbook -- Prc,_ert_-es o~Chemical E’xolosives and Explosives Simulants, ner: cfCalifornia Technical

  3. The controllable super-high energetic electrons by external magnetic fields at relativistic laser-solid interactions in the presence of large scale pre-plasmas

    CERN Document Server

    Wu, D; Luan, S X; Yu, W

    2016-01-01

    The two stage electron acceleration model [arXiv: 1512.02411 and arXiv: 1512.07546] is extended to the study of laser magnetized-plasmas interactions at relativistic intensities and in the presence of large-scale preformed plasmas. It is shown that the cut-off electron kinetic energy is controllable by the external magnetic field strength and directions. Further studies indicate that for a right-hand circularly polarized laser (RH-CP) of intensity $10^{20}\\ \\text{W}/\\text{cm}^2$ and pre-plasma scale length $10\\ \\mu\\text{m}$, the cut-off electron kinetic energy can be as high as $500\\ \\text{MeV}$, when a homogeneous external magnetic field of exceeding $10000\\ \\text{T}$ (or $B=\\omega_{c}/\\omega_0>1$) is loaded along the laser propagation direction, which is a significant increase compared with that $120\\ \\text{MeV}$ without external magnetic field. A laser front sharpening mechanism is identified at relativistic laser magnetized-plasmas interactions with $B=\\omega_{c}/\\omega_0>1$, which is responsible for thes...

  4. 磁场对瓦斯爆炸及其传播的影响%Effects of magnetic field on methane explosion and its propagation

    Institute of Scientific and Technical Information of China (English)

    叶青; 林柏泉; 菅从光; 贾真真

    2011-01-01

    为了弄清煤矿井下巷道中变电站、大型机电设备等产生较强的磁场对瓦斯爆炸的影响机理和影响程度,实验研究了外加磁场对瓦斯爆炸过程中爆炸应力波和火焰传播速度的影响,并从磁场影响瓦斯爆炸及其传播的传质、传热、反应过程等进行了理论分析.研究结果表明:外加磁场能增加瓦斯爆炸强度和火焰传播速度以及增大压力波超压峰值和火焰传播速度峰值,并且随着磁场强度的增大,磁场效应对瓦斯爆炸的作用增强.外加磁场能增大瓦斯爆炸反应及其传播过程的传质作用、传热作用、对流作用、反应物的扩散系数和改变反应系统的熵,以致增大湍流,增大火焰燃烧速率、加快火焰传播速度、释放更多的能量并增强爆炸波能量,从而促进瓦斯爆炸及其传播.%To master the effect of the magnetic fields produced by the giant mechanical and electrical e-quipments in coal mines on methane explosion, experimental investigations were conducted to explore the influences of the magnetic fields on explosion wave pressure and flame propagation velocity of methane explosion. And theoretical analysis was carried out to discuss the effect of the magnetic fields on heat transportation, mass transportation and reaction process of methane explosion and its propagation. It shows that the magnetic field can enhance methane explosion intensity and increase flame propagation velocity, explosion pressure. The more the magnetic field intensity, the more markedly the magnetic field affects methane explosion. The magnetic fields can increase turbulence by increasing mass transfer action, heat transfer action, convection effects, diffusion coefficient and entropy of the reaction system, so the magnetic fields can increase flame combustion velocity, flame propagation velocity, release more energy and increase shock wave energy, and then promote the methane explosion and its propagation.

  5. Statistical mechanics of relativistic spin-1 bosons in a magnetic field

    Science.gov (United States)

    Daicic, J.; Frankel, N. E.

    This paper investigates the statistical mechanics of a gas of spin-1 particles with pair creation in a homogeneous magnetic field. It is shown that expansions for the thermodynamic potential and magnetization in fields below the mass scale of the constituent particles are well behaved. However, when the field is at or above the mass scale, an intrinsic pathology of the single-particle energy spectrum manifests itself in the statistical mechanics of the system. Whilst for the spin-0 and spin-1/2 analog of this system there seemed to be no barrier ab initio to the field strength. The nature of the vacuum and the role of interactions were always borne in mind as matters to be considered in a high-order treatment, particularly when the field was at or above the mass scale. In the spin-1 case, the pathology in the single-particle energy spectrum heralds this from the beginning, and seems to be a warning that a single particle non-interacting picture of physics at high energies needs some reconsideration.

  6. Magnetic-field-induced squeezing effect at energies available at the BNL Relativistic Heavy Ion Collider and at the CERN Large Hadron Collider

    Science.gov (United States)

    Pang, Long-Gang; Endrődi, Gergely; Petersen, Hannah

    2016-04-01

    In off-central heavy-ion collisions, quark-gluon plasma (QGP) is exposed to the strongest magnetic fields ever created in the universe. Because of the paramagnetic nature of the QGP at high temperatures, the spatially inhomogeneous magnetic field configuration exerts an anisotropic force density that competes with the pressure gradients resulting from purely geometric effects. In this paper, we simulate (3+1)-dimensional ideal hydrodynamics with external magnetic fields to estimate the effect of this force density on the anisotropic expansion of the QGP in collisions at the Relativistic Heavy Ion Collider and at the Large Hadron Collider (LHC). While negligible for quickly decaying magnetic fields, we find that long-lived fields generate a substantial force density that suppresses the momentum anisotropy of the plasma by up to 20 % at the LHC energy and also leaves its imprint on the elliptic flow v2 of charged pions.

  7. High-power microwave amplifier based on overcritical relativistic electron beam without external magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Kurkin, S. A., E-mail: KurkinSA@gmail.com; Koronovskii, A. A. [Saratov State University, Astrakhanskaja 83, Saratov 410012 (Russian Federation); Saratov State Technical University, Politechnicheskaja 77, Saratov 410028 (Russian Federation); Frolov, N. S.; Hramov, A. E. [Saratov State Technical University, Politechnicheskaja 77, Saratov 410028 (Russian Federation); Saratov State University, Astrakhanskaja 83, Saratov 410012 (Russian Federation); Rak, A. O. [Belarusian State University of Informatics and Radioelectronics, Minsk (Belarus); Saratov State Technical University, Politechnicheskaja 77, Saratov 410028 (Russian Federation); Kuraev, A. A. [Belarusian State University of Informatics and Radioelectronics, Minsk (Belarus)

    2015-04-13

    The high-power scheme for the amplification of powerful microwave signals based on the overcritical electron beam with a virtual cathode (virtual cathode amplifier) has been proposed and investigated numerically. General output characteristics of the virtual cathode amplifier including the dependencies of the power gain on the input signal frequency and amplitude have been obtained and analyzed. The possibility of the geometrical working frequency tuning over the range about 8%–10% has been shown. The obtained results demonstrate that the proposed virtual cathode amplifier scheme may be considered as the perspective high-power microwave amplifier with gain up to 18 dB, and with the following important advantages: the absence of external magnetic field, the simplicity of construction, the possibility of geometrical frequency tuning, and the amplification of relatively powerful microwave signals.

  8. Relativistic astrophysics

    CERN Document Server

    Demianski, Marek

    2013-01-01

    Relativistic Astrophysics brings together important astronomical discoveries and the significant achievements, as well as the difficulties in the field of relativistic astrophysics. This book is divided into 10 chapters that tackle some aspects of the field, including the gravitational field, stellar equilibrium, black holes, and cosmology. The opening chapters introduce the theories to delineate gravitational field and the elements of relativistic thermodynamics and hydrodynamics. The succeeding chapters deal with the gravitational fields in matter; stellar equilibrium and general relativity

  9. Use of relativistic hadronic mechanics for the exact representation of nuclear magnetic moments and the prediction of new recycling of nuclear waste

    CERN Document Server

    Santilli, R M

    1997-01-01

    We present a new realization of relativistic hadronic me- chanics and its underlying iso-Poincar'e symmetry specifically constructed for nuclear physics which: 1) permits the representation of nucleons as ex- tended, nonspherical and deformable charge distributions with alterable mag- netic moments yet conventional angular momentum and spin; 2) results to be a nonunitary ``completion'' of relativistic quantum mechanics much along the EPR argument; yet 3) is axiom-preserving, thus preserves conventional quantum laws and the axioms of the special relativity. We show that the proposed new formalism permits the apparently first exact representation of the total magnetic moments of new-body nuclei under conventional physical laws. We then point out that, if experimentally confirmed the alterability of the intrinsic characteristics of nucleons would imply new forms of recycling nuclear waste by the nuclear power plants in their own site, thus avoiding its transportation and storage in a (yet unidentified) dumping a...

  10. Attosecond Electro-Magnetic Forces Acting on Metal Nanospheres Induced By Relativistic Electrons

    Science.gov (United States)

    Lagos, M. J.; Batson, P. E.; Reyes-Coronado, A.; Echenique, P. M.; Aizpurua, J.

    2014-03-01

    Swift electron scattering near nanoscale materials provides information about light-matter behavior, including induced forces. We calculate time-dependent electromagnetic forces acting on 1-1.5 nm metal nanospheres induced by passing swift electrons, finding both impulse-like and oscillatory response forces. Initially, impulse-like forces are generated by a competition between attractive electric forces and repulsive magnetic forces, lasting a few attoseconds (5-10 as). Oscillatory, plasmonic response forces take place later in time, last a few femtoseconds (1- 5 fs), and apparently rely on photon emission by decay of the electron-induced surface plasmons. A comparison of the strength of these two forces suggests that the impulse-like behavior dominates the process, and can transfer significant linear momentum to the sphere. Our results advance understanding of the physics behind the observation of both attractive and repulsive behavior of gold nano-particles induced by electron beams in aberration-corrected electron microscopy. Work supported under DOE, Award # DE-SC0005132, Basque Gov. project ETORTEK inano, Spanish Ministerio de Ciencia e Innovacion, No. FIS2010-19609-C02-01.

  11. ``Pheudo-cyclotron'' radiation and transport of non-relativistic particles in inhomogeneous sub-Larmor-scale electro-magnetic fields

    Science.gov (United States)

    Keenan, Brett; Ford, Alex; Medvedev, Mikhail

    2014-10-01

    Plasma turbulence in some astrophysical objects (e.g., weakly magnetized collisionless shocks in GRBs and SN) has small-scale electro-magnetic field fluctuations. We study spectral characteristics of radiation produced by particles moving in such turbulence and relate it to transport properties (diffusion) of these particles. It was shown earlier that relativistic particles produce jitter radiation, which spectral characteristics are markedly different from synchrotron radiation. Here we study radiation produced by non-relativistic particles. Unlike radiation in homogeneous field, which spectrum consists of a single cyclotron harmonic, radiation in the sub-Larmor-scale turbulence reflects statistical properties of the underlying magnetic field. We present both analytical estimates and results of ab initio numerical simulations. We also show that particle propagation in such turbulence is diffusive and evaluate the diffusion coefficient. We demonstrate that the diffusion coefficient correlates with some spectral parameters. These results can be very valuable for remote diagnostics of laboratory and astrophysical plasmas. Supported by grant DOE grant DE-FG02-07ER54940 and NSF grant AST-1209665.

  12. Magnetic field amplification and electron acceleration to near-energy equipartition with ions by a mildly relativistic quasi-parallel plasma protoshock

    Science.gov (United States)

    Murphy, G. C.; Dieckmann, M. E.; Bret, A.; Drury, L. O'c.

    2010-12-01

    Context. The prompt emissions of gamma-ray bursts (GRBs) are seeded by radiating ultrarelativistic electrons. Kinetic energy dominated internal shocks propagating through a jet launched by a stellar implosion, are expected to dually amplify the magnetic field and accelerate electrons. Aims: We explore the effects of density asymmetry and of a quasi-parallel magnetic field on the collision of two plasma clouds. Methods: A two-dimensional relativistic particle-in-cell (PIC) simulation models the collision with 0.9c of two plasma clouds, in the presence of a quasi-parallel magnetic field. The cloud density ratio is 10. The densities of ions and electrons and the temperature of 131 keV are equal in each cloud, and the mass ratio is 250. The peak Lorentz factor of the electrons is determined, along with the orientation and the strength of the magnetic field at the cloud collision boundary. Results: The magnetic field component orthogonal to the initial plasma flow direction is amplified to values that exceed those expected from the shock compression by over an order of magnitude. The forming shock is quasi-perpendicular due to this amplification, caused by a current sheet which develops in response to the differing deflection of the upstream electrons and ions incident on the magnetised shock transition layer. The electron deflection implies a charge separation of the upstream electrons and ions; the resulting electric field drags the electrons through the magnetic field, whereupon they acquire a relativistic mass comparable to that of the ions. We demonstrate how a magnetic field structure resembling the cross section of a flux tube grows self-consistently in the current sheet of the shock transition layer. Plasma filamentation develops behind the shock front, as well as signatures of orthogonal magnetic field striping, indicative of the filamentation instability. These magnetic fields convect away from the shock boundary and their energy density exceeds by far the

  13. Spins and parities of the odd-A P isotopes within a relativistic mean-field model and elastic magnetic electron-scattering theory

    Science.gov (United States)

    Wang, Zaijun; Ren, Zhongzhou; Dong, Tiekuang; Xu, Chang

    2014-08-01

    The ground-state spins and parities of the odd-A phosphorus isotopes 25-47P are studied with the relativistic mean-field (RMF) model and relativistic elastic magnetic electron-scattering theory (REMES). Results of the RMF model with the NL-SH, TM2, and NL3 parameters show that the 2s1/2 and 1d3/2 proton level inversion may occur for the neutron-rich isotopes 37-47P, and, consequently, the possible spin-parity values of 37-47P may be 3/2+, which, except for P47, differs from those given by the NUBASE2012 nuclear data table by Audi et al. Calculations of the elastic magnetic electron scattering of 37-47P with the single valence proton in the 2s1/2 and 1d3/2 state show that the form factors have significant differences. The results imply that elastic magnetic electron scattering can be a possible way to study the 2s1/2 and 1d3/2 level inversion and the spin-parity values of 37-47P. The results can also provide new tests as to what extent the RMF model, along with its various parameter sets, is valid for describing the nuclear structures. In addition, the contributions of the upper and lower components of the Dirac four-spinors to the form factors and the isotopic shifts of the magnetic form factors are discussed.

  14. Magnetic field amplification and electron acceleration to near-energy equipartition with ions by a mildly relativistic quasi-parallel plasma protoshock

    CERN Document Server

    Murphy, Gareth C; Bret, Antoine; Drury, Luke O'C; 10.1051/0004-6361/201015294

    2010-01-01

    The prompt emissions of gamma-ray bursts are seeded by radiating ultrarelativistic electrons. Internal shocks propagating through a jet launched by a stellar implosion, are expected to amplify the magnetic field & accelerate electrons. We explore the effects of density asymmetry & a quasi-parallel magnetic field on the collision of plasma clouds. A 2D relativistic PIC simulation models the collision of two plasma clouds, in the presence of a quasi-parallel magnetic field. The cloud density ratio is 10. The densities of ions & electrons & the temperature of 131 keV are equal in each cloud. The mass ratio is 250. The peak Lorentz factor of the electrons is determined, along with the orientation & strength of the magnetic field at the cloud collision boundary. The magnetic field component orthogonal to the initial plasma flow direction is amplified to values that exceed those expected from shock compression by over an order of magnitude. The forming shock is quasi-perpendicular due to this am...

  15. Relativistic Stern-Gerlach Deflection

    CERN Document Server

    Talman, Richard

    2016-01-01

    Modern advances in polarized beam control should make it possible to accurately measure Stern-Gerlach (S-G) deflection of relativistic beams. Toward this end a relativistically covariant S-G formalism is developed that respects the opposite behavior under inversion of electric and magnetic fields. Not at all radical, or even new, this introduces a distinction between electric and magnetic fields that is not otherwise present in pure Maxwell theory. Experimental configurations (mainly using polarized electron beams passing through magnetic or electric quadrupoles) are described. Electron beam preparation and experimental methods needed to detect the extremely small deflections are discussed.

  16. Test particle acceleration in explosive magnetohydrodynamic reconnection

    CERN Document Server

    Ripperda, Bart; Xia, Chun; Keppens, Rony

    2016-01-01

    Magnetic reconnection is the mechanism behind many violent phenomena in the universe. We demonstrate that energy released during reconnection can lead to non-thermal particle distribution functions. We use a method in which we combine resistive magnetohydrodynamics (MHD) with relativistic test particle dynamics. Using our open-source grid-adaptive MPI-AMRVAC software, we simulate global MHD evolution combined with test particle treatments in MHD snapshots. This approach is used to evaluate particle acceleration in explosive reconnection. The reconnection is triggered by an ideal tilt instability in two-and-a-half dimensional (2.5D) scenarios and by a combination of ideal tilt and kink instabilities in three-dimensional (3D) scenarios. These instabilities occur in a system with two parallel, adjacent, repelling current channels in an initially force-free equilibrium, as a simplified representation of flux ropes in a stellar magnetosphere. The current channels undergo a rotation and a separation on Alfv\\'enic t...

  17. Explosives tester

    Science.gov (United States)

    Haas, Jeffrey S [San Ramon, CA; Howard, Douglas E [Livermore, CA; Eckels, Joel D [Livermore, CA; Nunes, Peter J [Danville, CA

    2011-01-11

    An explosives tester that can be used anywhere as a screening tool by non-technical personnel to determine whether a surface contains explosives. First and second explosives detecting reagent holders and dispensers are provided. A heater is provided for receiving the first and second explosives detecting reagent holders and dispensers.

  18. Magnetically insulated coaxial vacuum diode with partial space-charge-limited explosive emission from edge-type cathode

    Energy Technology Data Exchange (ETDEWEB)

    Belomyttsev, S. Ya.; Rostov, V. V.; Romanchenko, I. V. [Institute of High Current Electronics SB RAS, 2/3 Akademichesky Avenue, 634055 Tomsk (Russian Federation); Shunailov, S. A.; Sharypov, K. A.; Shpak, V. G.; Ulmaskulov, M. R. [Institute of Electrophysics UB RAS, 106 Amundsen Str., 620016 Ekaterinburg (Russian Federation); Kolomiets, M. D. [Ural Federal University, 19 Mira Str., 620002 Ekaterinburg (Russian Federation); Mesyats, G. A. [P. N. Lebedev Physical Institute, RAS, 53 Lenin Avenue, 119991 Moscow (Russian Federation); Yalandin, M. I. [Institute of Electrophysics UB RAS, 106 Amundsen Str., 620016 Ekaterinburg (Russian Federation); P. N. Lebedev Physical Institute, RAS, 53 Lenin Avenue, 119991 Moscow (Russian Federation)

    2016-01-14

    The vacuum current associated with any type of electron emission for arbitrary configuration of the diode depends on the combination of the applied electric field and vacuum space charge (VSC) field created by the current. Such fundamental statement should give very close links between the diode current and the normalized cathode field θ which has been introduced by Forbes in 2008 for planar diodes as a reduction in the cathode surface field: θ = field-with/field-without VSC. This article reports the universal approximation of the type of cos(πθ/2) that is the ratio of the actual current and the fully space-charge-limited current. Also, the theoretical treatment and the experimental method of determination of the dynamic emissive characteristics of the macroscopic explosive emission from edge-type cathodes in the coaxial diode are developed. The experimental results obtained with a picosecond time reference between the cathode voltage and the onset of the high-current electron beam exhibit a good coincidence with the theoretical predictions. The presented methods enable the analysis of a real-time-resolved dynamics associated with the dense, magnetized electron beam formation, acceleration and drift motion, including kinematic effects and the phase-stable excitation of high-power microwave oscillators.

  19. Relativistic hydrodynamics

    CERN Document Server

    Luciano, Rezzolla

    2013-01-01

    Relativistic hydrodynamics is a very successful theoretical framework to describe the dynamics of matter from scales as small as those of colliding elementary particles, up to the largest scales in the universe. This book provides an up-to-date, lively, and approachable introduction to the mathematical formalism, numerical techniques, and applications of relativistic hydrodynamics. The topic is typically covered either by very formal or by very phenomenological books, but is instead presented here in a form that will be appreciated both by students and researchers in the field. The topics covered in the book are the results of work carried out over the last 40 years, which can be found in rather technical research articles with dissimilar notations and styles. The book is not just a collection of scattered information, but a well-organized description of relativistic hydrodynamics, from the basic principles of statistical kinetic theory, down to the technical aspects of numerical methods devised for the solut...

  20. Similarity solutions for radiation in time-dependent relativistic flows

    CERN Document Server

    Lucy, L B

    2004-01-01

    Exact analytic solutions are derived for radiation in time-dependent relativistic flows. The flows are spherically-symmetric homologous explosions or implosions of matter with a grey extinction coefficient. The solutions are suitable for testing numerical transfer codes, and this is illustrated for a fully relativistic Monte Carlo code.

  1. The infrared problem for the dressed non-relativistic electron in a magnetic field; Le probleme infrarouge pour l'electron habille non relativiste dans un champ magnetique

    Energy Technology Data Exchange (ETDEWEB)

    Amour, L. [Reims Univ., Lab. de Mathematiques EDPPM, FRE-CNRS 3111, 51 (France); Faupin, J. [Aarhus Univ., Institut for Matematiske Fag (Denmark); Grebert, B. [Nantes Univ, Lab. de Mathematiques Jean-Leray, UMR-CNRS 6629 (France); Guillot, J.C. [Ecole Polytechnique, Centre de Mathematiques Appliquees, UMR-CNRS 7641, 91 - Palaiseau (France)

    2008-10-15

    We consider a non-relativistic electron interacting with a classical magnetic field pointing along the x{sub 3}-axis and with a quantized electromagnetic field. The system is translation invariant in the x{sub 3}-direction and the corresponding Hamiltonian has a decomposition H {approx_equal}{integral}{sub R}{sup +}H(P{sub 3})dP{sub 3}. For a fixed momentum P{sub 3} sufficiently small, we prove that H(P{sub 3}) has a ground state in the Fock representation if and only if E'(P{sub 3})=0, where P{sub 3} {yields}E'(P{sub 3}) is the derivative of the map P{sub 3}{yields}E(P{sub 3})=inf{sigma}(H(P{sub 3})). If E'(P{sub 3}){ne}0, we obtain the existence of a ground state in a non-Fock representation. This result holds for sufficiently small values of the coupling constant. (authors)

  2. Relativistic impulse dynamics.

    Science.gov (United States)

    Swanson, Stanley M

    2011-08-01

    Classical electrodynamics has some annoying rough edges. The self-energy of charges is infinite without a cutoff. The calculation of relativistic trajectories is difficult because of retardation and an average radiation reaction term. By reconceptuallizing electrodynamics in terms of exchanges of impulses rather than describing it by forces and potentials, we eliminate these problems. A fully relativistic theory using photonlike null impulses is developed. Numerical calculations for a two-body, one-impulse-in-transit model are discussed. A simple relationship between center-of-mass scattering angle and angular momentum was found. It reproduces the Rutherford cross section at low velocities and agrees with the leading term of relativistic distinguishable-particle quantum cross sections (Møller, Mott) when the distance of closest approach is larger than the Compton wavelength of the particle. Magnetism emerges as a consequence of viewing retarded and advanced interactions from the vantage point of an instantaneous radius vector. Radiation reaction becomes the local conservation of energy-momentum between the radiating particle and the emitted impulse. A net action is defined that could be used in developing quantum dynamics without potentials. A reinterpretation of Newton's laws extends them to relativistic motion.

  3. Relativistic Kinematics

    CERN Document Server

    Sahoo, Raghunath

    2016-01-01

    This lecture note covers Relativistic Kinematics, which is very useful for the beginners in the field of high-energy physics. A very practical approach has been taken, which answers "why and how" of the kinematics useful for students working in the related areas.

  4. Magnetic-field-induced electric quadrupole moments for relativistic hydrogenlike atoms: Application of the Sturmian expansion of the generalized Dirac-Coulomb Green function

    CERN Document Server

    Stefańska, Patrycja

    2016-01-01

    We consider a Dirac one-electron atom placed in a weak, static, uniform magnetic field. We show that, to the first order in the strength B of the external field, the only electric multipole moments, which are induced by the perturbation in the atom, are those of an even order. Using the Sturmian expansion of the generalized Dirac-Coulomb Green function [R. Szmytkowski, J. Phys. B 30, 825 (1997); 30, 2747(E) (1997)], we derive a closed-form expression for the electric quadrupole moment induced in the atom in an arbitrary discrete energy eigenstate. The result, which has the form of a double finite sum involving the generalized hypergeometric functions 3F2 of the unit argument, agrees with the earlier relativistic formula for that quantity, obtained by us for the ground state of the atom.

  5. Non-perturbative relativistic guiding center transformation: exact magnetic moment and the gyro-phase proposed as the Kaluza-Klein 5^th dimension

    CERN Document Server

    Di Troia, Claudio

    2016-01-01

    The non perturbative guiding center transformation [Di Troia C., Phys. Plasmas 22, 042103 (2015)] is extended to the relativistic regime. The single particle dynamic is described in the Minkowski flat space-time. The main solutions are obtained in covariant form: the gyrating particle solutions and the guiding particle solution, both in gyro-kinetic as in MHD orderings. It is shown the relevance of the ideal Ohm's law in the context of the guiding center transformation. Moreover, it is also considered the presence of a gravitational field. The way to introduce the gravitational field is original and based on the Einstein conjecture on the feasibility to extend the general relativity theory to include electromagnetism. In gyro-kinetic theory, some interesting novelties appear in a natural way, such as the exactness of the conservation of magnetic moment, or the fact that the gyro-phase is treated as the non observable fifth dimension of the Kaluza-Klein model.

  6. Magnetic-field-induced electric quadrupole moments for relativistic hydrogenlike atoms: Application of the Sturmian expansion of the generalized Dirac-Coulomb Green function

    Science.gov (United States)

    Stefańska, Patrycja

    2016-02-01

    We consider a Dirac one-electron atom placed in a weak, static, uniform magnetic field. We show that, to the first order in the strength B of the external field, the only electric multipole moments, which are induced by the perturbation in the atom, are those of an even order. Using the Sturmian expansion of the generalized Dirac-Coulomb Green function [R. Szmytkowski, J. Phys. B 30, 825 (1997), 10.1088/0953-4075/30/4/007; J. Phys. B 30, 2747 (1997), 10.1088/0953-4075/30/11/023], We derive a closed-form expression for the electric quadrupole moment induced in the atom in an arbitrary discrete energy eigenstate. The result, which has the form of a double finite sum involving the generalized hypergeometric functions 3F2 of the unit argument, agrees with the earlier relativistic formula for that quantity, obtained by us for the ground state of the atom.

  7. Directed flow of charm quarks as a witness of the initial strong magnetic field in ultra-relativistic heavy ion collisions

    Science.gov (United States)

    Das, Santosh K.; Plumari, S.; Chatterjee, S.; Alam, J.; Scardina, F.; Greco, V.

    2017-05-01

    Ultra-relativistic Heavy-Ion Collision (HIC) generates very strong initial magnetic field (B →) inducing a vorticity in the reaction plane. The high B → influences the evolution dynamics that is opposed by the large Faraday current due to electric field generated by the time varying B → . We show that the resultant effects entail a significantly large directed flow (v1) of charm quarks (CQs) compared to light quarks due to a combination of several favorable conditions for CQs, mainly: (i) unlike light quarks formation time scale of CQs, τf ≃ 0.1 fm /c is comparable to the time scale when B → attains its maximum value and (ii) the kinetic relaxation time of CQs is similar to the QGP lifetime, this helps the CQ to retain the initial kick picked up from the electromagnetic field in the transverse direction. The effect is also odd under charge exchange allowing to distinguish it from the vorticity of the bulk matter due to the initial angular momentum conservation; conjointly thanks to its mass, Mc > >ΛQCD, there should be no mixing with the chiral magnetic dynamics. Hence CQs provide very crucial and independent information on the strength of the magnetic field produced in HIC.

  8. Underground Explosions

    Science.gov (United States)

    2015-09-09

    underground explosions has led to significant progress in the development of geomechanics a science studying mechanical properties of rocks and rock...mining industry. One way to improve methods of fragmentation by explosives involves utilizing the geomechanical properties of the rock massif, in...Geomekhanika krupnomasshtabnykh vzryvov ( Geomechanics of large explosions), Nedra, Moscow, 319 pp. [This book in available in electronic format

  9. Gravitation relativiste

    CERN Document Server

    Hakim, Rémi

    1994-01-01

    Il existe à l'heure actuelle un certain nombre de théories relativistes de la gravitation compatibles avec l'expérience et l'observation. Toutefois, la relativité générale d'Einstein fut historiquement la première à fournir des résultats théoriques corrects en accord précis avec les faits.

  10. Relativistic Astrophysics

    Science.gov (United States)

    Jones, Bernard J. T.; Markovic, Dragoljub

    1997-06-01

    Preface; Prologue: Conference overview Bernard Carr; Part I. The Universe At Large and Very Large Redshifts: 2. The size and age of the Universe Gustav A. Tammann; 3. Active galaxies at large redshifts Malcolm S. Longair; 4. Observational cosmology with the cosmic microwave background George F. Smoot; 5. Future prospects in measuring the CMB power spectrum Philip M. Lubin; 6. Inflationary cosmology Michael S. Turner; 7. The signature of the Universe Bernard J. T. Jones; 8. Theory of large-scale structure Sergei F. Shandarin; 9. The origin of matter in the universe Lev A. Kofman; 10. New guises for cold-dark matter suspects Edward W. Kolb; Part II. Physics and Astrophysics Of Relativistic Compact Objects: 11. On the unification of gravitational and inertial forces Donald Lynden-Bell; 12. Internal structure of astrophysical black holes Werner Israel; 13. Black hole entropy: external facade and internal reality Valery Frolov; 14. Accretion disks around black holes Marek A. Abramowicz; 15. Black hole X-ray transients J. Craig Wheeler; 16. X-rays and gamma rays from active galactic nuclei Roland Svensson; 17. Gamma-ray bursts: a challenge to relativistic astrophysics Martin Rees; 18. Probing black holes and other exotic objects with gravitational waves Kip Thorne; Epilogue: the past and future of relativistic astrophysics Igor D. Novikov; I. D. Novikov's scientific papers and books.

  11. Entropy current for non-relativistic fluid

    CERN Document Server

    Banerjee, Nabamita; Jain, Akash; Roychowdhury, Dibakar

    2014-01-01

    We study transport properties of a parity-odd, non-relativistic charged fluid in presence of background electric and magnetic fields. To obtain stress tensor and charged current for the non-relativistic system we start with the most generic relativistic fluid, living in one higher dimension and reduce the constituent equations along the light-cone direction. We also reduce the equation satisfied by the entropy current of the relativistic theory and obtain a consistent entropy current for the non-relativistic system (we call it "canonical form" of the entropy current). Demanding that the non-relativistic fluid satisfies the second law of thermodynamics we impose constraints on various first order transport coefficients. For parity even fluid, this is straight forward; it tells us positive definiteness of different transport coefficients like viscosity, thermal conductivity, electric conductivity etc. However for parity-odd fluid, canonical form of the entropy current fails to confirm the second law of thermody...

  12. Simple waves in relativistic fluids.

    Science.gov (United States)

    Lyutikov, Maxim

    2010-11-01

    We consider the Riemann problem for relativistic flows of polytropic fluids and find relations for the flow characteristics. Evolution of physical quantities takes especially simple form for the case of cold magnetized plasmas. We find exact explicit analytical solutions for one-dimensional expansion of magnetized plasma into vacuum, valid for arbitrary magnetization. We also consider expansion into cold unmagnetized external medium both for stationary initial conditions and for initially moving plasma, as well as reflection of rarefaction wave from a wall. We also find self-similar structure of three-dimensional magnetized outflows into vacuum, valid close to the plasma-vacuum interface.

  13. Relativistic and non-relativistic geodesic equations

    Energy Technology Data Exchange (ETDEWEB)

    Giambo' , R.; Mangiarotti, L.; Sardanashvily, G. [Camerino Univ., Camerino, MC (Italy). Dipt. di Matematica e Fisica

    1999-07-01

    It is shown that any dynamic equation on a configuration space of non-relativistic time-dependent mechanics is associated with connections on its tangent bundle. As a consequence, every non-relativistic dynamic equation can be seen as a geodesic equation with respect to a (non-linear) connection on this tangent bundle. Using this fact, the relationships between relativistic and non-relativistic equations of motion is studied.

  14. Liquid explosives

    CERN Document Server

    Liu, Jiping

    2015-01-01

    The book drawing on the author's nearly half a century of energetic materials research experience intends to systematically review the global researches on liquid explosives. The book focuses on the study of the conception, explosion mechanism, properties and preparation of liquid explosives. It provides a combination of theoretical knowledge and practical examples in a reader-friendly style. The book is likely to be interest of university researchers and graduate students in the fields of energetic materials, blasting engineering and mining.

  15. Canonical quantization of the D=2n dimensional relativistic spinning particle with anomalous magnetic moment in the external electromagnetic field

    CERN Document Server

    Grigoriyn, G V

    1995-01-01

    The pseudoclassical hamiltonian and action of the $D=2n$ dimensional Dirac particle with anomalous magnetic moment interacting with the external electromagnetic field is found. The Bargmann-Michel-Telegdi equation of motion for the Pauli-Lubanski vector is deduced. The canonical quantization of $D=2n$ dimensional Dirac spinning particle with anomalous magnetic moment in the external electromagnetic field is carried out in the gauge which allows to describe simultaneously particles and antiparticles (massive and massless) already at the classical level. Pseudoclassical Foldy-Wouthuysen transformation is used to obtain canonical (Newton-Wigner) coordinates and in terms of this variables the theory is quantized. The connection of this quantization with the deGroot and Suttorp's description of Dirac particle with anomalous magnetic moment in the external electromagnetic field is discussed.

  16. Relativistic RPA in axial symmetry

    CERN Document Server

    Arteaga, D Pena; 10.1103/PhysRevC.77.034317

    2009-01-01

    Covariant density functional theory, in the framework of self-consistent Relativistic Mean Field (RMF) and Relativistic Random Phase approximation (RPA), is for the first time applied to axially deformed nuclei. The fully self-consistent RMF+RRPA equations are posed for the case of axial symmetry and non-linear energy functionals, and solved with the help of a new parallel code. Formal properties of RPA theory are studied and special care is taken in order to validate the proper decoupling of spurious modes and their influence on the physical response. Sample applications to the magnetic and electric dipole transitions in $^{20}$Ne are presented and analyzed.

  17. Microscopic Processes in Relativistic Jets

    Science.gov (United States)

    Nishikawa, K.-I.; Hardee, P.; Mizuno, Y.; Medvedev, M.; Zhang, B.; Nordlund, A.; Fredricksen, J.; Sol, H.; Niemiec, J.; Lyubarsky, Y.; hide

    2008-01-01

    Nonthermal radiation observed from astrophysical systems containing relativistic jets and shocks, e.g., gamma-ray bursts (GRBs), active galactic nuclei (AGNs), and Galactic microquasar systems usually have power-law emission spectra. Recent PIC simulations of relativistic electron-ion (electro-positron) jets injected into a stationary medium show that particle acceleration occurs within the downstream jet. In the collisionless relativistic shock particle acceleration is due to plasma waves and their associated instabilities (e.g., the Buneman instability, other two-streaming instability, and the Weibel (filamentation) instability) created in the shocks are responsible for particle (electron, positron, and ion) acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields. These magnetic fields contribute to the electron's transverse deflection behind the jet head. The 'jitter' radiation from deflected electrons has different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants.

  18. Structure, magnetic and microwave properties of FeNi invar nanoparticles obtained by electrical explosion of wire in different preparation conditions

    Science.gov (United States)

    Kurlyandskaya, G. V.; Bhagat, S. M.; Bagazeev, A. V.; Medvedev, A. I.; Ballesteros, A.; Beketov, I. V.; Safronov, A. P.

    2016-11-01

    Magnetic nanoparticles (MNPs) of close to invar (Fe0.635Ni0.365) composition were prepared by the electrical explosion of wire using different conditions to insure different values of overheating rates. X-ray diffraction, transmission electron microscopy, low temperature nitrogen adsorption, magnetic and microwave measurements were used for the characterization of MNPs. Increase of the energy injected into the wire led to increase of the specific surface (Ssp) of the produced MNPs from 4.6 to 13.5 m2/g. The fabricated MNPs were spherical and weakly aggregated with the average weighted diameter in the range of 54-160 nm depending on the Ssp. The phase composition of FeNi MNPs consists of two solid solutions of Ni in α-phase and γ-phase lattices. The increase of the energy injected into the wire leads to increase of the α-phase from 5 to 10 wt% as the injected energy raised from 0.8 to 2.5 times the sublimation energies of the wire material. Comparative analysis of structure magnetic and microwave properties showed that the obtained MNPs are important magnetic materials with high saturation magnetization and significant zero field microwave absorption which can be expected to lead to important technological applications.

  19. The physics of gamma-ray bursts & relativistic jets

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Pawan, E-mail: pk@astro.as.utexas.edu [Department of Astronomy, University of Texas at Austin, Austin, TX 78712 (United States); Zhang, Bing, E-mail: zhang@physics.unlv.edu [Department of Physics & Astronomy, University of Nevada Las Vegas, Las Vegas, NV 89154 (United States)

    2015-02-24

    We provide a comprehensive review of major developments in our understanding of gamma-ray bursts, with particular focus on the discoveries made within the last fifteen years when their true nature was uncovered. We describe the observational properties of photons from the radio to 100s GeV bands, both in the prompt emission and the afterglow phases. Mechanisms for the generation of these photons in GRBs are discussed and confronted with observations to shed light on the physical properties of these explosions, their progenitor stars and the surrounding medium. After presenting observational evidence that a powerful, collimated, jet moving at close to the speed of light is produced in these explosions, we describe our current understanding regarding the generation, acceleration, and dissipation of the jet. We discuss mounting observational evidence that long duration GRBs are produced when massive stars die, and that at least some short duration bursts are associated with old, roughly solar mass, compact stars. The question of whether a black-hole or a strongly magnetized, rapidly rotating neutron star is produced in these explosions is also discussed. We provide a brief summary of what we have learned about relativistic collisionless shocks and particle acceleration from GRB afterglow studies, and discuss the current understanding of radiation mechanism during the prompt emission phase. We discuss theoretical predictions of possible high-energy neutrino emission from GRBs and the current observational constraints. Finally, we discuss how these explosions may be used to study cosmology, e.g. star formation, metal enrichment, reionization history, as well as the formation of first stars and galaxies in the universe.

  20. Magnetic-dipole-to-electric-quadrupole cross-susceptibilities for relativistic hydrogenlike atoms in some low-lying discrete energy eigenstates

    CERN Document Server

    Stefańska, Patrycja

    2016-01-01

    In this paper we present tabulated data for magnetic-dipole-to-electric-quadrupole cross-susceptibilities ($\\chi_{\\textrm{M}1 \\to \\textrm{E}2}$) for Dirac one-electron atoms with a pointlike, spinless and motionless nucleus of charge $Ze$. Numerical values of this susceptibility for the hydrogen atom ($Z=1$) and for hydrogenic ions with $2 \\leqslant Z \\leqslant 137$ are computed from the general analytical formula, recently derived by us [P. Stefa{\\'n}ska, Phys. Rev. A 93 (2016) 022504], valid for an arbitrary discrete energy eigenstate. In this work we provide 30 tables with the values of $\\chi_{\\textrm{M}1 \\to \\textrm{E}2}$ for the ground state, and also for the first, the second and the third set of excited states (i.e.: 2s$_{1/2}$, 2p$_{1/2}$, 2p$_{3/2}$, 3s$_{1/2}$, 3p$_{1/2}$, 3p$_{3/2}$, 3d$_{3/2}$, 3d$_{5/2}$, 4s$_{1/2}$, 4p$_{1/2}$, 4p$_{3/2}$, 4d$_{3/2}$, 4d$_{5/2}$, 4f$_{5/2}$ and 4f$_{7/2}$) of the relativistic hydrogenlike atoms. The value of the inverse of the fine-structure constant used in the...

  1. Relativistic Achilles

    CERN Document Server

    Leardini, Fabrice

    2013-01-01

    This manuscript presents a problem on special relativity theory (SRT) which embodies an apparent paradox relying on the concept of simultaneity. The problem is represented in the framework of Greek epic poetry and structured in a didactic way. Owing to the characteristic properties of Lorenz transformations, three events which are simultaneous in a given inertial reference system, occur at different times in the other two reference frames. In contrast to the famous twin paradox, in the present case there are three, not two, different inertial observers. This feature provides a better framework to expose some of the main characteristics of SRT, in particular, the concept of velocity and the relativistic rule of addition of velocities.

  2. Spectra of magnetic fluctuations and relativistic particles produced by a nonresonant wave instability in supernova remnant shocks

    CERN Document Server

    Vladimirov, Andrey E; Ellison, Donald C

    2009-01-01

    We model strong forward shocks in young supernova remnants with efficient particle acceleration where a nonresonant instability driven by the cosmic ray current amplifies magnetic turbulence in the shock precursor. Particle injection, magnetic field amplification (MFA) and the nonlinear feedback of particles and fields on the bulk flow are derived consistently. The shock structure depends critically on the efficiency of turbulence cascading. If cascading is suppressed, MFA is strong, the shock precursor is stratified, and the turbulence spectrum contains several discrete peaks. These peaks, as well as the amount of MFA, should influence synchrotron X-rays, allowing observational tests of cascading and other assumptions intrinsic to the nonlinear model of nonresonant wave growth.

  3. Theory and Applications of Non-Relativistic and Relativistic Turbulent Reconnection

    CERN Document Server

    Lazarian, A; Takamoto, M; Pino, E M de Gouveia Dal; Cho, J

    2015-01-01

    Realistic astrophysical environments are turbulent due to the extremely high Reynolds numbers. Therefore, the theories of reconnection intended for describing astrophysical reconnection should not ignore the effects of turbulence on magnetic reconnection. Turbulence is known to change the nature of many physical processes dramatically and in this review we claim that magnetic reconnection is not an exception. We stress that not only astrophysical turbulence is ubiquitous, but also magnetic reconnection itself induces turbulence. Thus turbulence must be accounted for in any realistic astrophysical reconnection setup. We argue that due to the similarities of MHD turbulence in relativistic and non-relativistic cases the theory of magnetic reconnection developed for the non-relativistic case can be extended to the relativistic case and we provide numerical simulations that support this conjecture. We also provide quantitative comparisons of the theoretical predictions and results of numerical experiments, includi...

  4. Emission of gravitational radiation from ultra-relativistic sources

    CERN Document Server

    Segalis, E B; Segalis, Ehud B.; Ori, Amos

    2001-01-01

    Recent observations suggest that blobs of matter are ejected with ultra-relativistic speeds in various astrophysical phenomena such as supernova explosions, quasars, and microquasars. In this paper we analyze the gravitational radiation emitted when such an ultra-relativistic blob is ejected from a massive object. We express the gravitational wave by the metric perturbation in the transverse-traceless gauge, and calculate its amplitude and angular dependence. We find that in the ultra-relativistic limit the gravitational wave has a wide angular distribution, like $1+\\cos\\theta$. The typical burst's frequency is Doppler shifted, with the blue-shift factor being strongly beamed in the forward direction. As a consequence, the energy flux carried by the gravitational radiation is beamed. In the second part of the paper we estimate the anticipated detection rate of such bursts by a gravitational-wave detector, for blobs ejected in supernova explosions. Dar and De Rujula recently proposed that ultra-relativistic bl...

  5. Relativistic Electron Experiment for the Undergraduate Laboratory

    CERN Document Server

    Marvel, Robert E

    2011-01-01

    We have developed an undergraduate laboratory experiment to make independent measurements of the momentum and kinetic energy of relativistic electrons from a \\beta -source. The momentum measurements are made with a magnetic spectrometer and a silicon surface-barrier detector is used to measure the kinetic energy. A plot of the kinetic energy as a function of momentum compared to the classical and relativistic predictions clearly shows the relativistic nature of the electrons. Accurate values for the rest mass of the electron and the speed of light are also extracted from the data.

  6. Relativistic semi-classical theory of atom ionization in ultra-intense laser

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A relativistic semi-classical theory (RSCT) of H-atom ionizationin ultra-intense laser (UIL) is proposed. A relativistic analytical expression for ionization probability of H-atom in its ground state is given. This expression, compared with non-relativistic expression, clearly shows the effects of the magnet vector in the laser, the non-dipole approximation and the relativistic mass-energy relation on the ionization processes. At the same time, we show that under some conditions the relativistic expression reduces to the non-relativistic expression of non-dipole approximation. At last, some possible applications of the relativistic theory are briefly stated.

  7. Synthesis and characterization of magnetic of Ni/ABS nanocomposites by electrical explosion of wire in liquid and solution blending methods

    Science.gov (United States)

    Thuyet-Nguyen, Minh; Hai-Nguyen, Hong; Kim, Won Joo; Kim, Ho Yoon; Kim, Jin-Chun

    2017-03-01

    Nanomaterials have attracted great attention from chemists, physicists and materials scientists because of their application benefits and special properties. Thermoplastics have been used in many applications such as molding of non-electrical components, conducting, magnetic field and 3D printing. Nanocomposites are known as a material which blends the best properties of components, a high performance material exhibits unusual property combinations and unique design possibilities. In this research, we focused to investigate and report primary results in the synthesis of magnetic nanocomposites based on acrylonitrile butadiene styrene (ABS), which are useful and important thermoplastics. Nickel nanopowder was prepared by electrical explosion of wire in a liquid were used as magnetic component. The composites were prepared by following steps, first the obtained Ni nanopowders were incorporated into the ABS matrix via a solution blending method (drop-casting), and then the solvent was evaporated. The characterizations of obtaining composites were analyzed by field emission scanning electron microscopy, X-Ray Diffraction analysis and vibrating sample magnetometer.

  8. General relativistic aspects of ferromagneto-fluid

    Energy Technology Data Exchange (ETDEWEB)

    Asgekar, G.G.; Patwardhan, C.G.

    1988-03-01

    The implications of Bianchi identities pertaining to the spacetime of relativistic ferrofluid with infinite conductivity and variable magnetic permeability are investigated. Some kinematical and dynamical corollaries emerging out of a preferred geometrical symmetry called an isometry with respect to the flow vector and the magnetic field vector are developed.

  9. General relativistic aspects of ferromagneto-fluid.

    Science.gov (United States)

    Asgekar, G. G.; Patwardhan, C. G.

    1988-03-01

    The implications of Bianchi identities pertaining to the spacetime of relativistic ferrofluid with infinite conductivity and variable magnetic permeability are investigated. Some kinematical and dynamical corollaries emerging out of a preferred geometrical symmetry called an isometry with respect to the flow vector and the magnetic field vector are developed.

  10. Applying Relativistic Reconnection to Blazar Jets

    CERN Document Server

    Nalewajko, Krzysztof

    2016-01-01

    Rapid and luminous flares of non-thermal radiation observed in blazars require an efficient mechanism of energy dissipation and particle acceleration in relativistic active galactic nuclei (AGN) jets. Particle acceleration in relativistic magnetic reconnection is being actively studied by kinetic numerical simulations. Relativistic reconnection produces hard power-law electron energy distributions N(gamma) = N_0 gamma^(-p) exp(-gamma/gamma_max) with index p -> 1 and exponential cut-off Lorentz factor gamma_max ~ sigma in the limit of magnetization sigma = B^2/(4 pi w) >> 1 (where w is the relativistic enthalpy density). Reconnection in electron-proton plasma can additionally boost gamma_max by the mass ratio m_p/m_e. Hence, in order to accelerate particles to gamma_max ~ 10^6 in the case of BL Lacs, reconnection should proceed in plasma of very high magnetization sigma_max >~ 10^3. On the other hand, moderate mean jet magnetization values are required for magnetic bulk acceleration of relativistic jets, sigma...

  11. Relativistic Fluid Dynamics

    CERN Document Server

    Cattaneo, Carlo

    2011-01-01

    This title includes: Pham Mau Quam: Problemes mathematiques en hydrodynamique relativiste; A. Lichnerowicz: Ondes de choc, ondes infinitesimales et rayons en hydrodynamique et magnetohydrodynamique relativistes; A.H. Taub: Variational principles in general relativity; J. Ehlers: General relativistic kinetic theory of gases; K. Marathe: Abstract Minkowski spaces as fibre bundles; and, G. Boillat: Sur la propagation de la chaleur en relativite.

  12. Application of continuous wave nuclear magnetic resonance to the quantitative analysis of some high explosives and propellants

    Science.gov (United States)

    Smart, R. P.

    The principles and techniques of CW NMR chemical characterization of explosives and propellants are reviewed, and some typical results are summarized. The instrument design and adjustment parameters are discussed; the need to determine the RF saturation values by trial and error for each sample is indicated; the practical steps for a typical analysis are listed; and four basic approaches (analysis vs a standard, analysis via standard additions, signal/gram measurements, and solvent extraction) are described. Results are presented for water in RDX, in nitrocellulose (NC), and in nitroglycerine-NC (NG-NC); NG in NG-NC paste and in propellant; oil in PE4 plasticizer grease; wax in RDX waxes; NG in damp NG-NC pastes; plasticizer in PE4; and TNT in chloroform solutions.

  13. On the convexity of Relativistic Ideal Magnetohydrodynamics

    CERN Document Server

    Ibáñez, José-María; Aloy, Miguel-Ángel; Martí, José-María; Miralles, Juan-Antonio

    2015-01-01

    We analyze the influence of the magnetic field in the convexity properties of the relativistic magnetohydrodynamics system of equations. To this purpose we use the approach of Lax, based on the analysis of the linearly degenerate/genuinely non-linear nature of the characteristic fields. Degenerate and non-degenerate states are discussed separately and the non-relativistic, unmagnetized limits are properly recovered. The characteristic fields corresponding to the material and Alfv\\'en waves are linearly degenerate and, then, not affected by the convexity issue. The analysis of the characteristic fields associated with the magnetosonic waves reveals, however, a dependence of the convexity condition on the magnetic field. The result is expressed in the form of a generalized fundamental derivative written as the sum of two terms. The first one is the generalized fundamental derivative in the case of purely hydrodynamical (relativistic) flow. The second one contains the effects of the magnetic field. The analysis ...

  14. Nonlinear magnetosonic waves in dense plasmas with non-relativistic and ultra-relativistic degenerate electrons

    Energy Technology Data Exchange (ETDEWEB)

    Hussain, S.; Mahmood, S.; Rehman, Aman-ur- [Theoretical Physics Division (TPD), PINSTECH, P.O. Nilore, Islamabad 44000, Pakistan and Pakistan Institute of Engineering and Applied Sciences (PIEAS), P.O. Nilore, Islamabad 44000 (Pakistan)

    2014-11-15

    Linear and nonlinear propagation of magnetosonic waves in the perpendicular direction to the ambient magnetic field is studied in dense plasmas for non-relativistic and ultra-relativistic degenerate electrons pressure. The sources of nonlinearities are the divergence of the ions and electrons fluxes, Lorentz forces on ions and electrons fluids and the plasma current density in the system. The Korteweg-de Vries equation for magnetosonic waves propagating in the perpendicular direction of the magnetic field is derived by employing reductive perturbation method for non-relativistic as well as ultra-relativistic degenerate electrons pressure cases in dense plasmas. The plots of the magnetosonic wave solitons are also shown using numerical values of the plasma parameters such a plasma density and magnetic field intensity of the white dwarfs from literature. The dependence of plasma density and magnetic field intensity on the magnetosonic wave propagation is also pointed out in dense plasmas for both non-relativistic and ultra-relativistic degenerate electrons pressure cases.

  15. Relativistic radiative transfer in relativistic spherical flows

    Science.gov (United States)

    Fukue, Jun

    2017-02-01

    Relativistic radiative transfer in relativistic spherical flows is numerically examined under the fully special relativistic treatment. We first derive relativistic formal solutions for the relativistic radiative transfer equation in relativistic spherical flows. We then iteratively solve the relativistic radiative transfer equation, using an impact parameter method/tangent ray method, and obtain specific intensities in the inertial and comoving frames, as well as moment quantities, and the Eddington factor. We consider several cases; a scattering wind with a luminous central core, an isothermal wind without a core, a scattering accretion on to a luminous core, and an adiabatic accretion on to a dark core. In the typical wind case with a luminous core, the emergent intensity is enhanced at the center due to the Doppler boost, while it reduces at the outskirts due to the transverse Doppler effect. In contrast to the plane-parallel case, the behavior of the Eddington factor is rather complicated in each case, since the Eddington factor depends on the optical depth, the flow velocity, and other parameters.

  16. Clumps in large scale relativistic jets

    CERN Document Server

    Tavecchio, F; Celotti, A

    2003-01-01

    The relatively intense X-ray emission from large scale (tens to hundreds kpc) jets discovered with Chandra likely implies that jets (at least in powerful quasars) are still relativistic at that distances from the active nucleus. In this case the emission is due to Compton scattering off seed photons provided by the Cosmic Microwave Background, and this on one hand permits to have magnetic fields close to equipartition with the emitting particles, and on the other hand minimizes the requirements about the total power carried by the jet. The emission comes from compact (kpc scale) knots, and we here investigate what we can predict about the possible emission between the bright knots. This is motivated by the fact that bulk relativistic motion makes Compton scattering off the CMB photons efficient even when electrons are cold or mildly relativistic in the comoving frame. This implies relatively long cooling times, dominated by adiabatic losses. Therefore the relativistically moving plasma can emit, by Compton sc...

  17. Magnetohydrodynamics of Chiral Relativistic Fluids

    CERN Document Server

    Boyarsky, Alexey; Ruchayskiy, Oleg

    2015-01-01

    We study the dynamics of a plasma of charged relativistic fermions at very high temperature $T\\gg m$, where $m$ is the fermion mass, coupled to the electromagnetic field. In particular, we derive a magneto-hydrodynamical description of the evolution of such a plasma. We show that, as compared to conventional MHD for a plasma of non-relativistic particles, the hydrodynamical description of the relativistic plasma involves new degrees of freedom described by a pseudo-scalar field originating in a local asymmetry in the densities of left-handed and right-handed fermions. This field can be interpreted as an effective axion field. Taking into account the chiral anomaly we present dynamical equations for the evolution of this field, as well as of other fields appearing in the MHD description of the plasma. Due to its non-linear coupling to helical magnetic fields, the axion field significantly affects the dynamics of a magnetized plasma and can give rise to a novel type of inverse cascade.

  18. Gamma-Ray Bursts as Sources of Strong Magnetic Fields

    CERN Document Server

    Granot, Jonathan; Bromberg, Omer; Racusin, Judith L; Daigne, Frédéric

    2015-01-01

    Gamma-Ray Bursts (GRBs) are the strongest explosions in the Universe, which due to their extreme character likely involve some of the strongest magnetic fields in nature. This review discusses the possible roles of magnetic fields in GRBs, from their central engines, through the launching, acceleration and collimation of their ultra-relativistic jets, to the dissipation and particle acceleration that power their $\\gamma$-ray emission, and the powerful blast wave they drive into the surrounding medium that generates their long-lived afterglow emission. An emphasis is put on particular areas in which there have been interesting developments in recent years.

  19. Generalized magnetofluid connections in relativistic magnetohydrodynamics.

    Science.gov (United States)

    Asenjo, Felipe A; Comisso, Luca

    2015-03-20

    The concept of magnetic connections is extended to nonideal relativistic magnetohydrodynamical plasmas. Adopting a general set of equations for relativistic magnetohydrodynamics including thermal-inertial, thermal electromotive, Hall, and current-inertia effects, we derive a new covariant connection equation showing the existence of generalized magnetofluid connections that are preserved during the dissipationless plasma dynamics. These connections are intimately linked to a general antisymmetric tensor that unifies the electromagnetic and fluid fields, allowing the extension of the magnetic connection notion to a much broader concept.

  20. Niche explosion.

    Science.gov (United States)

    Normark, Benjamin B; Johnson, Norman A

    2011-05-01

    The following syndrome of features occurs in several groups of phytophagous insects: (1) wingless females, (2) dispersal by larvae, (3) woody hosts, (4) extreme polyphagy, (5) high abundance, resulting in status as economic pests, (6) invasiveness, and (7) obligate parthenogenesis in some populations. If extreme polyphagy is defined as feeding on 20 or more families of hostplants, this syndrome is found convergently in several species of bagworm moths, tussock moths, root weevils, and 5 families of scale insects. We hypothesize that extreme polyphagy in these taxa results from "niche explosion", a positive feedback loop connecting large population size to broad host range. The niche explosion has a demographic component (sometimes called the "amplification effect" in studies of pathogens) as well as a population-genetic component, due mainly to the increased effectiveness of natural selection in larger populations. The frequent origins of parthenogenesis in extreme polyphages are, in our interpretation, a consequence of this increased effectiveness of natural selection and consequent reduced importance of sexuality. The niche explosion hypothesis makes detailed predictions about the comparative genomics and population genetics of extreme polyphages and related specialists. It has a number of potentially important implications, including an explanation for the lack of observed trade-offs between generalists and specialists, a re-interpretation of the ecological correlates of parthenogenesis, and a general expectation that Malthusian population explosions may be amplified by Darwinian effects.

  1. Explosive Start

    Institute of Scientific and Technical Information of China (English)

    FRANCISCO; LITTLE

    2006-01-01

    I ducked involuntarily as the first set of explosions went off and made my way in double time to the street corner, where I had spotted an arcade that could be used for shelter. Running quickly in a crouched, military maneuver while inhaling gunpowder fumes, I was totally oblivious to the laughter and head-shaking coming

  2. Numerical Simulations of Driven Supersonic Relativistic MHD Turbulence

    CERN Document Server

    Zrake, Jonathan; 10.1063/1.3621748

    2011-01-01

    Models for GRB outflows invoke turbulence in relativistically hot magnetized fluids. In order to investigate these conditions we have performed high-resolution three-dimensional numerical simulations of relativistic magneto-hydrodynamical (RMHD) turbulence. We find that magnetic energy is amplified to several percent of the total energy density by turbulent twisting and folding of magnetic field lines. Values of epsilon_B near 1% are thus naturally expected. We study the dependence of saturated magnetic field energy fraction as a function of Mach number and relativistic temperature. We then present power spectra of the turbulent kinetic and magnetic energies. We also present solenoidal (curl-like) and dilatational (divergence-like) power spectra of kinetic energy. We propose that relativistic effects introduce novel couplings between these spectral components. The case we explore in most detail is for equal amounts of thermal and rest mass energy, corresponding to conditions after collisions of shells with re...

  3. The Maximum Energy of Accelerated Particles in Relativistic Collisionless Shocks

    CERN Document Server

    Sironi, Lorenzo; Arons, Jonathan

    2013-01-01

    The afterglow emission from gamma-ray bursts (GRBs) is usually interpreted as synchrotron radiation from electrons accelerated at the GRB external shock, that propagates with relativistic velocities into the magnetized interstellar medium. By means of multi-dimensional particle-in-cell simulations, we investigate the acceleration performance of weakly magnetized relativistic shocks, in the magnetization range 0magnetic field is orthogonal to the flow, as generically expected for relativistic shocks. We find that relativistic perpendicular shocks propagating in electron-positron plasmas are efficient particle accelerators if the magnetization is sigma<1e-3. For electron-ion plasmas, the transition to efficient acceleration occurs for sigma<3e-5. Here, the acceleration process proceeds similarly for the two species, since the electrons enter the shock nearly in equipartition with the ions, as a result of strong pre-heating in the self-generated upstream turbulence. In both...

  4. Alfven solitary waves in nonrelativistic, relativistic, and ultra-relativistic degenerate quantum plasma

    Energy Technology Data Exchange (ETDEWEB)

    Rehman, M. A.; Qureshi, M. N. S. [Department of Physics, GC University, Kachery Road, Lahore 54000 (Pakistan); Shah, H. A. [Department of Physics, Forman Christian College, Ferozepur Road, Lahore 54600 (Pakistan); Masood, W. [COMSATS, Institute of Information Technology, Park Road, Chak Shehzad, Islamabad 44000 (Pakistan); National Centre for Physics (NCP) Shahdra Valley Road, Islamabad (Pakistan)

    2015-10-15

    Nonlinear circularly polarized Alfvén waves are studied in magnetized nonrelativistic, relativistic, and ultrarelativistic degenerate Fermi plasmas. Using the quantum hydrodynamic model, Zakharov equations are derived and the Sagdeev potential approach is used to investigate the properties of the electromagnetic solitary structures. It is seen that the amplitude increases with the increase of electron density in the relativistic and ultrarelativistic cases but decreases in the nonrelativistic case. Both right and left handed waves are considered, and it is seen that supersonic, subsonic, and super- and sub-Alfvénic solitary structures are obtained for different polarizations and under different relativistic regimes.

  5. Relativistic Runaway Electrons

    Science.gov (United States)

    Breizman, Boris

    2014-10-01

    This talk covers recent developments in the theory of runaway electrons in a tokamak with an emphasis on highly relativistic electrons produced via the avalanche mechanism. The rapidly growing population of runaway electrons can quickly replace a large part of the initial current carried by the bulk plasma electrons. The magnetic energy associated with this current is typically much greater than the particle kinetic energy. The current of a highly relativistic runaway beam is insensitive to the particle energy, which separates the description of the runaway current evolution from the description of the runaway energy spectrum. A strongly anisotropic distribution of fast electrons is generally prone to high-frequency kinetic instabilities that may cause beneficial enhancement of runaway energy losses. The relevant instabilities are in the frequency range of whistler waves and electron plasma waves. The instability thresholds reported in earlier work have been revised considerably to reflect strong dependence of collisional damping on the wave frequency and the role of plasma non-uniformity, including radial trapping of the excited waves in the plasma. The talk also includes a discussion of enhanced scattering of the runaways as well as the combined effect of enhanced scattering and synchrotron radiation. A noteworthy feature of the avalanche-produced runaway current is a self-sustained regime of marginal criticality: the inductive electric field has to be close to its critical value (representing avalanche threshold) at every location where the runaway current density is finite, and the current density should vanish at any point where the electric field drops below its critical value. This nonlinear Ohm's law enables complete description of the evolving current profile. Work supported by the U.S. Department of Energy Contract No. DEFG02-04ER54742 and by ITER contract ITER-CT-12-4300000273. The views and opinions expressed herein do not necessarily reflect those of

  6. A relativistic symmetry in nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Ginocchio, J N [MS B283, Theoretical Division, Los Alamos National Laboratory Los Alamos, New Mexico 87545 (Mexico)

    2007-11-15

    We review some of the empirical and theoretical evidence supporting pseudospin symmetry in nuclei as a relativistic symmetry. We review the case that the eigenfunctions of realistic relativistic nuclear mean fields approximately conserve pseudospin symmetry in nuclei. We discuss the implications of pseudospin symmetry for magnetic dipole transitions and Gamow-Teller transitions between states in pseudospin doublets. We explore a more fundamental rationale for pseudospin symmetry in terms of quantum chromodynamics (QCD), the basic theory of the strong interactions. We show that pseudospin symmetry in nuclei implies spin symmetry for an anti-nucleon in a nuclear environment. We also discuss the future and what role pseudospin symmetry may be expected to play in an effective field theory of nucleons.

  7. Theoretical Concepts for Ultra-Relativistic Heavy Ion Collisions

    CERN Document Server

    McLerran, Larry

    2009-01-01

    Various forms of matter may be produced in ultra-relativistic heavy ion collisions. These are the Quark Gluon Plasma, the Color Glass Condensate, the Glasma and Quarkyonic Matter. A novel effect that may be associated with topological charge fluctuations is the Chiral Magnetic Effect. I explain these concepts and explain how they may be seen in ultra-relativistic heavy ion collisions.

  8. 相对论重离子碰撞夸克胶子等离子体对磁场分布的影响%Effect of quark gluon plasma on the magnetic field distribution in relativistic heavy ion collisions

    Institute of Scientific and Technical Information of China (English)

    陈勋; 冯笙琴

    2016-01-01

    首先利用Woods‐Saxon分布,计算相对论重离子碰撞磁场空间分布;并在此基础上考虑夸克胶子等离子体(QGP)的响应,假定QGP为理想导体情况下,研究磁场在QGP环境下的分布特征。%Spatial distributions of magnetic field are calculated in relativistic heavy ion collision based on Woods‐Saxon dis‐tribution .We further study the characteristics of magnetic field distribution while considering Quark gluon plasma (QGP) as an ideal conductor response in a QGP environment .

  9. Relativistic Remnants of Non-Relativistic Electrons

    CERN Document Server

    Kashiwa, Taro

    2015-01-01

    Electrons obeying the Dirac equation are investigated under the non-relativistic $c \\mapsto \\infty$ limit. General solutions are given by derivatives of the relativistic invariant functions whose forms are different in the time- and the space-like region, yielding the delta function of $(ct)^2 - x^2$. This light-cone singularity does survive to show that the charge and the current density of electrons travel with the speed of light in spite of their massiveness.

  10. Magnetogenesis through Relativistic Velocity Shear

    Science.gov (United States)

    Miller, Evan

    Magnetic fields at all scales are prevalent in our universe. However, current cosmological models predict that initially the universe was bereft of large-scale fields. Standard magnetohydrodynamics (MHD) does not permit magnetogenesis; in the MHD Faraday's law, the change in magnetic field B depends on B itself. Thus if B is initially zero, it will remain zero for all time. A more accurate physical model is needed to explain the origins of the galactic-scale magnetic fields observed today. In this thesis, I explore two velocity-driven mechanisms for magnetogenesis in 2-fluid plasma. The first is a novel kinematic 'battery' arising from convection of vorticity. A coupling between thermal and plasma oscillations, this non-relativistic mechanism can operate in flows that are incompressible, quasi-neutral and barotropic. The second mechanism results from inclusion of thermal effects in relativistic shear flow instabilities. In such flows, parallel perturbations are ubiquitously unstable at small scales, with growth rates of order with the plasma frequency over a defined range of parameter-space. Of these two processes, instabilities seem far more likely to account for galactic magnetic fields. Stable kinematic effects will, at best, be comparable to an ideal Biermann battery, which is suspected to be orders of magnitude too weak to produce the observed galactic fields. On the other hand, instabilities grow until saturation is reached, a topic that has yet to be explored in detail on cosmological scales. In addition to investigating these magnetogenesis sources, I derive a general dispersion relation for three dimensional, warm, two species plasma with discontinuous shear flow. The mathematics of relativistic plasma, sheared-flow instability and the Biermann battery are also discussed.

  11. On origin and destruction of relativistic dust and its implication for ultrahigh energy cosmic rays

    CERN Document Server

    Hoang, Thiem; Schlickeiser, R

    2014-01-01

    Dust grains may be accelerated to relativistic speeds by radiation pressure of luminous sources, diffusive shocks, and other acceleration mechanisms. Such relativistic grains have been suggested as potential primary particles of ultrahigh energy cosmic rays (UHECRs). In this paper, we reexamine this idea by studying in detail different destruction mechanisms for relativistic grains moving with Lorentz factor $\\gamma$ through a variety of environment conditions. For the solar radiation field, we find that sublimation/melting is a dominant destruction mechanism for silicate grains and large graphite grains. Using an improved treatment of photoelectric emission, we calculate the closest distance that relativistic grains can approach the Sun before destroyed by Coulomb explosions. A range of survival parameters for relativistic grains (size $a$ and $\\gamma$) against both sublimation and Coulomb explosions by the solar radiation field is identified. We also study collisional destruction mechanisms, consisting of e...

  12. Relativistic quantum mechanics

    CERN Document Server

    Wachter, Armin

    2010-01-01

    Which problems do arise within relativistic enhancements of the Schrödinger theory, especially if one adheres to the usual one-particle interpretation, and to what extent can these problems be overcome? And what is the physical necessity of quantum field theories? In many books, answers to these fundamental questions are given highly insufficiently by treating the relativistic quantum mechanical one-particle concept very superficially and instead introducing field quantization as soon as possible. By contrast, this monograph emphasizes relativistic quantum mechanics in the narrow sense: it extensively discusses relativistic one-particle concepts and reveals their problems and limitations, therefore motivating the necessity of quantized fields in a physically comprehensible way. The first chapters contain a detailed presentation and comparison of the Klein-Gordon and Dirac theory, always in view of the non-relativistic theory. In the third chapter, we consider relativistic scattering processes and develop the...

  13. Modelling interaction of relativistic and non-relativistic winds in binary system PSR B1259-63/SS2883 - II. Impact of magnetization and anisotropy of the pulsar wind

    CERN Document Server

    Bogovalov, S; Koldoba, A V; Ustyugova, G V; Aharonian, F A

    2011-01-01

    In this paper, we present a numerical study of the properties of the flow produced by the collision of a magnetized anisotropic pulsar wind with its environment in binary system. We compare the impact of both the magnetic field and the wind anisotropy to the benchmark case of a purely hydrodynamical (HD) interaction of isotropic winds, which has been studied in detail by Bogovalov et al. (2008). We consider the interaction in axisymmetric approximation, i.e. the pulsar rotation axis is assumed to be oriented along the line between the pulsar and the optical star and the effects related to the pulsar orbiting are neglected. The impact of the magnetic field is studied for the case of weak magnetization (with magnetization parameter $\\sigma<0.1$), which is consistent with conventional models of pulsar winds. The effects related to anisotropy in pulsar winds are modeled assuming that the kinetic energy flux in a non-magnetized pulsar wind is strongly anisotropic, with the minimum at the pulsar rotation axis an...

  14. Relativistic calculation of nuclear magnetic shielding tensor using the regular approximation to the normalized elimination of the small component. III. Introduction of gauge-including atomic orbitals and a finite-size nuclear model

    Science.gov (United States)

    Hamaya, S.; Maeda, H.; Funaki, M.; Fukui, H.

    2008-12-01

    The relativistic calculation of nuclear magnetic shielding tensors in hydrogen halides is performed using the second-order regular approximation to the normalized elimination of the small component (SORA-NESC) method with the inclusion of the perturbation terms from the metric operator. This computational scheme is denoted as SORA-Met. The SORA-Met calculation yields anisotropies, Δσ =σ∥-σ⊥, for the halogen nuclei in hydrogen halides that are too small. In the NESC theory, the small component of the spinor is combined to the large component via the operator σ⃗ṡπ⃗U/2c, in which π⃗=p⃗+A⃗, U is a nonunitary transformation operator, and c ≅137.036 a.u. is the velocity of light. The operator U depends on the vector potential A⃗ (i.e., the magnetic perturbations in the system) with the leading order c-2 and the magnetic perturbation terms of U contribute to the Hamiltonian and metric operators of the system in the leading order c-4. It is shown that the small Δσ for halogen nuclei found in our previous studies is related to the neglect of the U(0,1) perturbation operator of U, which is independent of the external magnetic field and of the first order with respect to the nuclear magnetic dipole moment. Introduction of gauge-including atomic orbitals and a finite-size nuclear model is also discussed.

  15. Impact of steam explosion on the wheat straw lignin structure studied by solution-state nuclear magnetic resonance and density functional methods.

    Science.gov (United States)

    Heikkinen, Harri; Elder, Thomas; Maaheimo, Hannu; Rovio, Stella; Rahikainen, Jenni; Kruus, Kristiina; Tamminen, Tarja

    2014-10-29

    Chemical changes of lignin induced by the steam explosion (SE) process were elucidated. Wheat straw was studied as the raw material, and lignins were isolated by the enzymatic mild acidolysis lignin (EMAL) procedure before and after the SE treatment for analyses mainly by two-dimensional (2D) [heteronuclear single-quantum coherence (HSQC) and heteronuclear multiple-bond correlation (HMBC)] and (31)P nuclear magnetic resonance (NMR). The β-O-4 structures were found to be homolytically cleaved, followed by recoupling to β-5 linkages. The homolytic cleavage/recoupling reactions were also studied by computational methods, which verified their thermodynamic feasibility. The presence of the tricin bound to wheat straw lignin was confirmed, and it was shown to participate in lignin reactions during the SE treatment. The preferred homolytic β-O-4 cleavage reaction was calculated to follow bond dissociation energies: G-O-G (guaiacyl) (69.7 kcal/mol) > G-O-S (syringyl) (68.4 kcal/mol) > G-O-T (tricin) (67.0 kcal/mol).

  16. Relativistic Spin Operators

    Institute of Scientific and Technical Information of China (English)

    ZHANG Peng-Fei; RUAN Tu-Nan

    2001-01-01

    A systematic theory on the appropriate spin operators for the relativistic states is developed. For a massive relativistic particle with arbitrary nonzero spin, the spin operator should be replaced with the relativistic one, which is called in this paper as moving spin. Further the concept of moving spin is discussed in the quantum field theory. A new is constructed. It is shown that, in virtue of the two operators, problems in quantum field concerned spin can be neatly settled.

  17. Relativistic Guiding Center Equations

    Energy Technology Data Exchange (ETDEWEB)

    White, R. B. [PPPL; Gobbin, M. [Euratom-ENEA Association

    2014-10-01

    In toroidal fusion devices it is relatively easy that electrons achieve relativistic velocities, so to simulate runaway electrons and other high energy phenomena a nonrelativistic guiding center formalism is not sufficient. Relativistic guiding center equations including flute mode time dependent field perturbations are derived. The same variables as used in a previous nonrelativistic guiding center code are adopted, so that a straightforward modifications of those equations can produce a relativistic version.

  18. Relativistic Linear Restoring Force

    Science.gov (United States)

    Clark, D.; Franklin, J.; Mann, N.

    2012-01-01

    We consider two different forms for a relativistic version of a linear restoring force. The pair comes from taking Hooke's law to be the force appearing on the right-hand side of the relativistic expressions: d"p"/d"t" or d"p"/d["tau"]. Either formulation recovers Hooke's law in the non-relativistic limit. In addition to these two forces, we…

  19. Magnetic field-cycling NMR and (14)N, (17)O quadrupole resonance in the explosive pentaerythritol tetranitrate (PETN).

    Science.gov (United States)

    Smith, John A S; Rayner, Timothy J; Rowe, Michael D; Barras, Jamie; Peirson, Neil F; Stevens, Andrew D; Althoefer, Kaspar

    2010-05-01

    The explosive pentaerythritol tetranitrate (PETN) C(CH(2)-O-NO(2))(4) has been studied by (1)H NMR and (14)N NQR. The (14)N NQR frequency and spin-lattice relaxation time T(1Q) for the nu(+) line have been measured at temperatures from 255 to 325K. The (1)H NMR spin-lattice relaxation time T(1) has been measured at frequencies from 1.8kHz to 40MHz and at temperatures from 250 to 390K. The observed variations are interpreted as due to hindered rotation of the NO(2) group about the bond to the oxygen atom of the CH(2)-O group, which produces a transient change in the dipolar coupling of the CH(2) protons, generating a step in the (1)H T(1) at frequencies between 2 and 100kHz. The same mechanism could also explain the two minima observed in the temperature variation of the (14)N NQR T(1Q) near 284 and 316K, due in this case to the transient change in the (14)N...(1)H dipolar interaction, the first attributed to hindered rotation of the NO(2) group and the second to an increase in torsional amplitude of the NO(2) group due to molecular distortion of the flexible CH(2)-O-NO(2) chain which produces a 15% increase in the oscillational amplitude of the CH(2) group. The correlation times governing the (1)H T(1) values are approximately 25 times longer than those governing the (14)N NQR T(1Q), explained by the slow spin-lattice cross-coupling between the two spin systems. At higher frequencies, the (1)H T(1) dispersion results show well-resolved dips between 200 and 904kHz assigned to level crossing with (14)N and weaker features between 3 and 5MHz tentatively assigned to level crossing with (17)O. Copyright 2010 Elsevier Inc. All rights reserved.

  20. RELATIVISTIC TRANSPORT-THEORY

    NARCIS (Netherlands)

    MALFLIET, R

    1993-01-01

    We discuss the present status of relativistic transport theory. Special emphasis is put on problems of topical interest: hadronic features, thermodynamical consistent approximations and spectral properties.

  1. Relativistic Stern-Gerlach Deflection: Hamiltonian Formulation

    CERN Document Server

    Mane, S R

    2016-01-01

    A Hamiltonian formalism is employed to elucidate the effects of the Stern-Gerlach force on beams of relativistic spin-polarized particles, for passage through a localized region with a static magnetic or electric field gradient. The problem of the spin-orbit coupling for nonrelativistic bounded motion in a central potential (hydrogen-like atoms, in particular) is also briefly studied.

  2. Effect of Magnetic Field on the Phase Transition from Nuclear Matter to Quark Matter during Proto-Neutron Star Evolution

    CERN Document Server

    Gupta, V K; Singh, S; Anand, J D; Gupta, Asha

    2002-01-01

    We have studied phase transition from hadron matter to quark matter in the presence of high magnetic fields incorporating the trapped electron neutrinos at finite temperatures. We have used the density dependent quark mass (DDQM) model for the quark phase while the hadron phase is treated in the frame-work of relativistic mean field theory. It is seen that the nuclear energy at phase transition decreases with both magnetic field and temperature. A brief discussion of the effect of magnetic field in supernova explosions and proto-neutron star evolution is given.

  3. Thermodynamics of polarized relativistic matter

    Science.gov (United States)

    Kovtun, Pavel

    2016-07-01

    We give the free energy of equilibrium relativistic matter subject to external gravitational and electromagnetic fields, to one-derivative order in the gradients of the external fields. The free energy allows for a straightforward derivation of bound currents and bound momenta in equilibrium. At leading order, the energy-momentum tensor admits a simple expression in terms of the polarization tensor. Beyond the leading order, electric and magnetic polarization vectors are intrinsically ambiguous. The physical effects of polarization, such as the correlation between the magneto-vortically induced surface charge and the electro-vortically induced surface current, are not ambiguous.

  4. Thermodynamics of polarized relativistic matter

    CERN Document Server

    Kovtun, Pavel

    2016-01-01

    We give the free energy of equilibrium relativistic matter subject to external gravitational and electromagnetic fields, to one-derivative order in the gradients of the external fields. The free energy allows for a straightforward derivation of bound currents and bound momenta in equilibrium. At leading order, the energy-momentum tensor admits a simple expression in terms of the polarization tensor. Beyond the leading order, electric and magnetic polarization vectors are intrinsically ambiguous. The physical effects of polarization, such as the correlation between the magneto-vortically induced surface charge and the electro-vortically induced surface current, are not ambiguous.

  5. Explosive Pleuritis

    Directory of Open Access Journals (Sweden)

    Jasdeep K Sharma

    2001-01-01

    Full Text Available The objective of the present paper is to describe the clinical and computed tomography features of 'explosive pleuritis', an entity first named by Braman and Donat in 1986, and to propose a case definition. A case report of a previously healthy, 45-year-old man admitted to hospital with acute onset pleuritic chest pain is presented. The patient arrived at the emergency room at 15:00 in mild respiratory distress; the initial chest x-ray revealed a small right lower lobe effusion. The subsequent clinical course in hospital was dramatic. Within 18 h of admission, he developed severe respiratory distress with oxygen desaturation to 83% on room air and dullness of the right lung field. A repeat chest x-ray, taken the morning after admission, revealed complete opacification of the right hemithorax. A computed tomography scan of the thorax demonstrated a massive pleural effusion with compression of pulmonary tissue and mediastinal shift. Pleural fluid biochemical analysis revealed the following concentrations: glucose 3.5 mmol/L, lactate dehydrogenase 1550 U/L, protein 56.98 g/L, amylase 68 U/L and white blood cell count 600 cells/mL. The pleural fluid cultures demonstrated light growth of coagulase-negative staphylococcus and viridans streptococcus, and very light growth of Candida albicans. Cytology was negative for malignant cells. Thoracotomy was performed, which demonstrated a loculated parapneumonic effusion that required decortication. The patient responded favourably to the empirical administration of intravenous levofloxacin and ceftriaxone, and conservative surgical methods in the management of the empyema. This report also discusses the patient's rapidly progressing pleural effusion and offers a potential case definition for explosive pleuritis. Explosive pleuritis is a medical emergency defined by the rapid development of a pleural effusion involving more than 90% of the hemithorax over 24 h, which causes compression of pulmonary tissue and

  6. Explosive Pleuritis

    Directory of Open Access Journals (Sweden)

    Satish Kumar

    2012-01-01

    Full Text Available Pleural effusions associated with pneumonia (parapneumonic effusions are one of the most common causes of exudative pleural effusions in the world. Approximately 20 to 40% of patients hospitalized with pneumonia will have an accompanying pleural effusion. The term 'Explosive pleuritis' was originally described by Braman and Donat in 1986 as pleural effusions developing within hours of admission. We report a 38 years old male patient with minimal pleural effusion which progressed rapidly within one day to involve almost whole of the hemithorax. There were multiple loculations on ultrasonography of thorax. Pleural fluid was sero-sanguinous and revealed gram positive diplococcic. The patient improved with antibiotics and pigtail catheter drainage.

  7. Relativistic quantum mechanics; Mecanique quantique relativiste

    Energy Technology Data Exchange (ETDEWEB)

    Ollitrault, J.Y. [CEA Saclay, 91 - Gif-sur-Yvette (France). Service de Physique Theorique]|[Universite Pierre et Marie Curie, 75 - Paris (France)

    1998-12-01

    These notes form an introduction to relativistic quantum mechanics. The mathematical formalism has been reduced to the minimum in order to enable the reader to calculate elementary physical processes. The second quantification and the field theory are the logical followings of this course. The reader is expected to know analytical mechanics (Lagrangian and Hamiltonian), non-relativistic quantum mechanics and some basis of restricted relativity. The purpose of the first 3 chapters is to define the quantum mechanics framework for already known notions about rotation transformations, wave propagation and restricted theory of relativity. The next 3 chapters are devoted to the application of relativistic quantum mechanics to a particle with 0,1/5 and 1 spin value. The last chapter deals with the processes involving several particles, these processes require field theory framework to be thoroughly described. (A.C.) 2 refs.

  8. Towards relativistic quantum geometry

    Energy Technology Data Exchange (ETDEWEB)

    Ridao, Luis Santiago [Instituto de Investigaciones Físicas de Mar del Plata (IFIMAR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mar del Plata (Argentina); Bellini, Mauricio, E-mail: mbellini@mdp.edu.ar [Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Funes 3350, C.P. 7600, Mar del Plata (Argentina); Instituto de Investigaciones Físicas de Mar del Plata (IFIMAR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mar del Plata (Argentina)

    2015-12-17

    We obtain a gauge-invariant relativistic quantum geometry by using a Weylian-like manifold with a geometric scalar field which provides a gauge-invariant relativistic quantum theory in which the algebra of the Weylian-like field depends on observers. An example for a Reissner–Nordström black-hole is studied.

  9. Cosmic rays from trans-relativistic supernovae

    CERN Document Server

    Budnik, R; MacFadyen, A; Waxman, E

    2007-01-01

    We derive constraints which must be satisfied by the sources of ~10^{15} to ~10^{18} eV cosmic rays, under the assumption that the sources are Galactic. We show that while these constraints are not satisfied by ordinary supernovae, which are believed to be the sources of 10^{-2}, of the explosion energy in mildly relativistic, \\gamma\\beta>1, ejecta. Galactic TRSNe may therefore be the sources of cosmic rays with energies up to ~10^{18} eV.

  10. Leidenfrost explosions

    CERN Document Server

    Moreau, F; Dorbolo, S

    2012-01-01

    We present a fluid dynamics video showing the behavior of Leidenfrost droplets composed by a mixture of water and surfactant (SDS, Sodium Dodecyl sulfate). When a droplet is released on a plate heated above a given temperature a thin layer of vapor isolates the droplet from the plate. The droplet levitates over the plate. This is called the Leidenfrost effect. In this work we study the influence of the addition of a surfactant on the Leidenfrost phenomenon. As the droplet evaporates the concentration of SDS rises up to two orders of magnitude over the Critical Micelle Concentration (CMC). An unexpected and violent explosive behavior is observed. The video presents several explosions taken with a high speed camera (IDT-N4 at 30000 fps). All the presented experiments were performed on a plate heated at 300{\\deg}C. On the other hand, the initial quantity of SDS was tuned in two ways: (i) by varying the initial concentration of SDS and (ii) by varying the initial size of the droplet. By measuring the volume of th...

  11. Relativistic QED Plasma at Extremely High Temperature

    CERN Document Server

    Masood, Samina S

    2016-01-01

    Renormalization scheme of QED (Quantum Electrodynamics) at high temperatures is used to calculate the effective parameters of relativistic plasma in the early universe. Renormalization constants of QED play role of effective parameters of the theory and can be used to determine the collective behavior of the medium. We explicitly show that the dielectric constant, magnetic reluctivity, Debye length and the plasma frequency depend on temperature in the early universe. Propagation speed, refractive index, plasma frequency and Debye shielding length of a QED plasma are computed at extremely high temperatures in the early universe. We also found the favorable conditions for the relativistic plasma from this calculations.

  12. Weakly relativistic dispersion of Bernstein waves

    Science.gov (United States)

    Robinson, P. A.

    1988-01-01

    Weakly relativistic effects on the dispersion of Bernstein waves are investigated for waves propagating nearly perpendicular to a uniform magnetic field in a Maxwellian plasma. Attention is focused on those large-wave-vector branches that are either weakly damped or join continuously onto weakly damped branches since these are the modes of most interest in applications. The transition between dispersion at perpendicular and oblique propagation is examined and major weakly relativistic effects can dominate even in low-temperature plasmas. A number of simple analytic criteria are obtained which delimit the ranges of harmonic number and propagation angle within which various types of weakly damped Bernstein modes can exist.

  13. Weakly relativistic dispersion of Bernstein waves

    Science.gov (United States)

    Robinson, P. A.

    1988-01-01

    Weakly relativistic effects on the dispersion of Bernstein waves are investigated for waves propagating nearly perpendicular to a uniform magnetic field in a Maxwellian plasma. Attention is focused on those large-wave-vector branches that are either weakly damped or join continuously onto weakly damped branches since these are the modes of most interest in applications. The transition between dispersion at perpendicular and oblique propagation is examined and major weakly relativistic effects can dominate even in low-temperature plasmas. A number of simple analytic criteria are obtained which delimit the ranges of harmonic number and propagation angle within which various types of weakly damped Bernstein modes can exist.

  14. Relativistic and Non-relativistic Equations of Motion

    CERN Document Server

    Mangiarotti, L

    1998-01-01

    It is shown that any second order dynamic equation on a configuration space $X$ of non-relativistic time-dependent mechanics can be seen as a geodesic equation with respect to some (non-linear) connection on the tangent bundle $TX\\to X$ of relativistic velocities. Using this fact, the relationship between relativistic and non-relativistic equations of motion is studied.

  15. Theoretical study of the relativistic molecular rotational g-tensor

    Energy Technology Data Exchange (ETDEWEB)

    Aucar, I. Agustín, E-mail: agustin.aucar@conicet.gov.ar; Gomez, Sergio S., E-mail: ssgomez@exa.unne.edu.ar [Institute for Modeling and Technological Innovation, IMIT (CONICET-UNNE) and Faculty of Exact and Natural Sciences, Northeastern University of Argentina, Avenida Libertad 5400, W3404AAS Corrientes (Argentina); Giribet, Claudia G.; Ruiz de Azúa, Martín C. [Physics Department, Faculty of Exact and Natural Sciences, University of Buenos Aires and IFIBA CONICET, Ciudad Universitaria, Pab. I, 1428 Buenos Aires (Argentina)

    2014-11-21

    An original formulation of the relativistic molecular rotational g-tensor valid for heavy atom containing compounds is presented. In such formulation, the relevant terms of a molecular Hamiltonian for non-relativistic nuclei and relativistic electrons in the laboratory system are considered. Terms linear and bilinear in the nuclear rotation angular momentum and an external uniform magnetic field are considered within first and second order (relativistic) perturbation theory to obtain the rotational g-tensor. Relativistic effects are further analyzed by carrying out the linear response within the elimination of the small component expansion. Quantitative results for model systems HX (X=F, Cl, Br, I), XF (X=Cl, Br, I), and YH{sup +} (Y=Ne, Ar, Kr, Xe, Rn) are obtained both at the RPA and density functional theory levels of approximation. Relativistic effects are shown to be small for this molecular property. The relation between the rotational g-tensor and susceptibility tensor which is valid in the non-relativistic theory does not hold within the relativistic framework, and differences between both molecular parameters are analyzed for the model systems under study. It is found that the non-relativistic relation remains valid within 2% even for the heavy HI, IF, and XeH{sup +} systems. Only for the sixth-row Rn atom a significant deviation of this relation is found.

  16. Explosive Formulation Pilot Plant

    Data.gov (United States)

    Federal Laboratory Consortium — The Pilot Plant for Explosive Formulation supports the development of new explosives that are comprised of several components. This system is particularly beneficial...

  17. Chaotic Explosions

    CERN Document Server

    Altmann, Eduardo G; Tél, Tamás

    2015-01-01

    We investigate chaotic dynamical systems for which the intensity of trajectories might grow unlimited in time. We show that (i) the intensity grows exponentially in time and is distributed spatially according to a fractal measure with an information dimension smaller than that of the phase space,(ii) such exploding cases can be described by an operator formalism similar to the one applied to chaotic systems with absorption (decaying intensities), but (iii) the invariant quantities characterizing explosion and absorption are typically not directly related to each other, e.g., the decay rate and fractal dimensions of absorbing maps typically differ from the ones computed in the corresponding inverse (exploding) maps. We illustrate our general results through numerical simulation in the cardioid billiard mimicking a lasing optical cavity, and through analytical calculations in the baker map.

  18. Particle Acceleration and Plasma Dynamics during Magnetic Reconnection in the Magnetically-dominated Regime

    CERN Document Server

    Guo, Fan; Daughton, William; Li, Hui

    2015-01-01

    Magnetic reconnection is thought to be the driver for many explosive phenomena in the universe. The energy release and particle acceleration during reconnection have been proposed as a mechanism for producing high-energy emissions and cosmic rays. We carry out two- and three-dimensional kinetic simulations to investigate relativistic magnetic reconnection and the associated particle acceleration. The simulations focus on electron-positron plasmas starting with a magnetically dominated, force-free current sheet ($\\sigma \\equiv B^2/(4\\pi n_e m_e c^2) \\gg 1$). For this limit, we demonstrate that relativistic reconnection is highly efficient at accelerating particles through a first-order Fermi process accomplished by the curvature drift of particles along the electric field induced by the relativistic flows. This mechanism gives rise to the formation of hard power-law spectra $f \\propto (\\gamma-1)^{-p}$ and approaches $p = 1$ for sufficiently large $\\sigma$ and system size. Eventually most of the available magne...

  19. Relativistic and non-relativistic solitons in plasmas

    Science.gov (United States)

    Barman, Satyendra Nath

    This thesis entitled as "Relativistic and Non-relativistic Solitons in Plasmas" is the embodiment of a number of investigations related to the formation of ion-acoustic solitary waves in plasmas under various physical situations. The whole work of the thesis is devoted to the studies of solitary waves in cold and warm collisionless magnetized or unmagnetized plasmas with or without relativistic effect. To analyze the formation of solitary waves in all our models of plasmas, we have employed two established methods namely - reductive perturbation method to deduce the Korteweg-de Vries (KdV) equation, the solutions of which represent the important but near exact characteristic concepts of soliton-physics. Next, the pseudopotential method to deduce the energy integral with total nonlinearity in the coupling process for exact characteristic results of solitons has been incorporated. In Chapter 1, a brief description of plasma in nature and laboratory and its generation are outlined elegantly. The nonlinear differential equations to characterize solitary waves and the relevant but important methods of solutions have been mentioned in this chapter. The formation of solitary waves in unmagnetized and magnetized plasmas, and in relativistic plasmas has been described through mathematical entity. Applications of plasmas in different fields are also put forwarded briefly showing its importance. The study of plasmas as they naturally occur in the universe encompasses number of topics including sun's corona, solar wind, planetary magnetospheres, ionospheres, auroras, cosmic rays and radiation. The study of space weather to understand the universe, communications and the activities of weather satellites are some useful areas of space plasma physics. The surface cleaning, sterilization of food and medical appliances, killing of bacteria on various surfaces, destroying of viruses, fungi, spores and plasma coating in industrial instruments ( like computers) are some of the fields

  20. A Magnetohydrodynamic Boost for Relativistic Jets

    Science.gov (United States)

    Mizuno, Yosuke; Hardee, Philip; Hartmann, Dieter H.; Nishikawa, Ken-Ichi; Zhang, Bing

    2007-01-01

    We performed relativistic magnetohydrodynamic simulations of the hydrodynamic boosting mechanism for relativistic jets explored by Aloy & Rezzolla (2006) using the RAISHIN code. Simulation results show that the presence of a magnetic field changes the properties of the shock interface between the tenuous, overpressured jet (V^z j) flowing tangentially to a dense external medium. We find that magnetic fields can lead to more efficient acceleration of the jet, in comparison to the pure-hydrodynamic case. A "poloidal" magnetic field (B^z), tangent to the interface and parallel to the jet flow, produces both a stronger outward moving shock and a stronger inward moving rarefaction wave. This leads to a large velocity component normal to the interface in addition to acceleration tangent to the interface, and the jet is thus accelerated to larger Lorentz factors than those obtained in the pure-hydrodynamic case. Likewise, a strong "toroidal" magnetic field (B^y), tangent to the interface but perpendicular to the jet flow, also leads to stronger acceleration tangent to the shock interface relative to the pure-hydrodynamic case. Thus. the presence and relative orientation of a magnetic field in relativistic jets can significant modify the hydrodynamic boost mechanism studied by Aloy & Rezzolla (2006).

  1. Thermobimetals Mechanical Properties Produced by Explosive Welding with Rolling

    OpenAIRE

    Gulbin, V.; Kobelev, A.; Borissov, D.

    1997-01-01

    We used explosive welding with rolling to produce thermobimetals on the basis of beryllium bronze and alloys of nickel. It gave us possibility to obtain magnetic and non-magnetic thermobimetals possessing high physical and mechanical properties.

  2. UNIFYING THE ZOO OF JET-DRIVEN STELLAR EXPLOSIONS

    Energy Technology Data Exchange (ETDEWEB)

    Lazzati, Davide; Blackwell, Christopher H. [Department of Physics, NC State University, 2401 Stinson Drive, Raleigh, NC 27695-8202 (United States); Morsony, Brian J. [Department of Astronomy, University of Wisconsin-Madison, 2535 Sterling Hall, 475 N. Charter Street, Madison WI 53706-1582 (United States); Begelman, Mitchell C. [JILA, University of Colorado, 440 UCB, Boulder, CO 80309-0440 (United States)

    2012-05-01

    We present a set of numerical simulations of stellar explosions induced by relativistic jets emanating from a central engine sitting at the center of compact, dying stars. We explore a wide range of durations of the central engine activity, two candidate stellar progenitors, and two possible values of the total energy release. We find that even if the jets are narrowly collimated, their interaction with the star unbinds the stellar material, producing a stellar explosion. We also find that the outcome of the explosion can be very different depending on the duration of the engine activity. Only the longest-lasting engines result in successful gamma-ray bursts. Engines that power jets only for a short time result in relativistic supernova (SN) explosions, akin to observed engine-driven SNe such as SN2009bb. Engines with intermediate durations produce weak gamma-ray bursts, with properties similar to nearby bursts such as GRB 980425. Finally, we find that the engines with the shortest durations, if they exist in nature, produce stellar explosions that lack sizable amounts of relativistic ejecta and are therefore dynamically indistinguishable from ordinary core-collapse SNe.

  3. Towards Relativistic Atomic Physics and Post-Minkowskian Gravitational Waves

    CERN Document Server

    Lusanna, Luca

    2009-01-01

    A review is given of the formulation of relativistic atomic theory, in which there is an explicit realization of the Poincare' generators, both in the inertial and in the non-inertial rest-frame instant form of dynamics in Minkowski space-time. This implies the need to solve the problem of the relativistic center of mass of an isolated system and to describe the transitions from different conventions for clock synchronization, namely for the identifications of instantaneous 3-spaces, as gauge transformations. These problems, stemming from the Lorentz signature of space-time, are a source of non-locality, which induces a spatial non-separability in relativistic quantum mechanics, with implications for relativistic entanglement. Then the classical system of charged particles plus the electro-magnetic field is studied in the framework of ADM canonical tetrad gravity in asymptotically Minkowskian space-times admitting the ADM Poincare' group at spatial infinity, which allows to get the general relativistic extens...

  4. Relativistic spherical plasma waves

    Science.gov (United States)

    Bulanov, S. S.; Maksimchuk, A.; Schroeder, C. B.; Zhidkov, A. G.; Esarey, E.; Leemans, W. P.

    2012-02-01

    Tightly focused laser pulses that diverge or converge in underdense plasma can generate wake waves, having local structures that are spherical waves. Here we study theoretically and numerically relativistic spherical wake waves and their properties, including wave breaking.

  5. Relativistic GLONASS and geodesy

    Science.gov (United States)

    Mazurova, E. M.; Kopeikin, S. M.; Karpik, A. P.

    2016-12-01

    GNSS technology is playing a major role in applications to civil, industrial and scientific areas. Nowadays, there are two fully functional GNSS: American GPS and Russian GLONASS. Their data processing algorithms have been historically based on the Newtonian theory of space and time with only a few relativistic effects taken into account as small corrections preventing the system from degradation on a fairly long time. Continuously growing accuracy of geodetic measurements and atomic clocks suggests reconsidering the overall approach to the GNSS theoretical model based on the Einstein theory of general relativity. This is essentially more challenging but fundamentally consistent theoretical approach to relativistic space geodesy. In this paper, we overview the basic principles of the relativistic GNSS model and explain the advantages of such a system for GLONASS and other positioning systems. Keywords: relativistic GLONASS, Einstein theory of general relativity.

  6. Relativistic Hall Effect

    CERN Document Server

    Bliokh, Konstantin Y

    2011-01-01

    We consider the relativistic deformation of quantum waves and mechanical bodies carrying intrinsic angular momentum (AM). When observed in a moving reference frame, the centroid of the object undergoes an AM-dependent transverse shift. This is the relativistic analogue of the spin Hall effect, which occurs in free space without any external fields. Remarkably, the shifts of the geometric and energy centroids differ by a factor of 2, and both centroids are crucial for the correct Lorentz transformations of the AM tensor. We examine manifestations of the relativistic Hall effect in quantum vortices, mechanical flywheel, and discuss various fundamental aspects of the phenomenon. The perfect agreement of quantum and relativistic approaches allows applications at strikingly different scales: from elementary spinning particles, through classical light, to rotating black-holes.

  7. RELATIVISTIC SUPERNOVAE HAVE SHORTER-LIVED CENTRAL ENGINES OR MORE EXTENDED PROGENITORS: THE CASE OF SN 2012ap

    Energy Technology Data Exchange (ETDEWEB)

    Margutti, R.; Milisavljevic, D.; Soderberg, A. M.; Sanders, N.; Chakraborti, S.; Kamble, A.; Drout, M.; Parrent, J.; Zauderer, A. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Guidorzi, C. [Department of Physics and Earth Sciences, University of Ferrara, via Saragat 1, I-44122 Ferrara (Italy); Morsony, B. J. [Department of Astronomy, University of Wisconsin-Madison, 2535 Sterling Hall, 475 North Charter Street, Madison, WI 53706-1582 (United States); Ray, A. [Department of Astronomy and Astrophysics, Tata Institute of Fundamental Research, 1 Homi Bhabha Road, Mumbai 400 005 (India); Chomiuk, L. [Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States)

    2014-12-20

    Deep, late-time X-ray observations of the relativistic, engine-driven, type Ic SN 2012ap allow us to probe the nearby environment of the explosion and reveal the unique properties of relativistic supernova explosions (SNe). We find that on a local scale of ∼0.01 pc the environment was shaped directly by the evolution of the progenitor star with a pre-explosion mass-loss rate of M-dot <5×10{sup −6} M{sub ⊙} yr{sup −1}, in line with gamma-ray bursts (GRBs) and the other relativistic SN 2009bb. Like sub-energetic GRBs, SN 2012ap is characterized by a bright radio emission and evidence for mildly relativistic ejecta. However, its late-time (δt ≈ 20 days) X-ray emission is ∼100 times fainter than the faintest sub-energetic GRB at the same epoch, with no evidence for late-time central engine activity. These results support theoretical proposals that link relativistic SNe like 2009bb and 2012ap with the weakest observed engine-driven explosions, where the jet barely fails to break out. Furthermore, our observations demonstrate that the difference between relativistic SNe and sub-energetic GRBs is intrinsic and not due to line-of-sight effects. This phenomenology can either be due to an intrinsically shorter-lived engine or to a more extended progenitor in relativistic SNe.

  8. Exact Relativistic 'Antigravity' Propulsion

    CERN Document Server

    Felber, F S

    2006-01-01

    The Schwarzschild solution is used to find the exact relativistic motion of a payload in the gravitational field of a mass moving with constant velocity. At radial approach or recession speeds faster than 3^-1/2 times the speed of light, even a small mass gravitationally repels a payload. At relativistic speeds, a suitable mass can quickly propel a heavy payload from rest nearly to the speed of light with negligible stresses on the payload.

  9. Exact Relativistic `Antigravity' Propulsion

    Science.gov (United States)

    Felber, Franklin S.

    2006-01-01

    The Schwarzschild solution is used to find the exact relativistic motion of a payload in the gravitational field of a mass moving with constant velocity. At radial approach or recession speeds faster than 3-1/2 times the speed of light, even a small mass gravitationally repels a payload. At relativistic speeds, a suitable mass can quickly propel a heavy payload from rest nearly to the speed of light with negligible stresses on the payload.

  10. Relativistic quantum revivals.

    Science.gov (United States)

    Strange, P

    2010-03-26

    Quantum revivals are now a well-known phenomena within nonrelativistic quantum theory. In this Letter we display the effects of relativity on revivals and quantum carpets. It is generally believed that revivals do not occur within a relativistic regime. Here we show that while this is generally true, it is possible, in principle, to set up wave packets with specific mathematical properties that do exhibit exact revivals within a fully relativistic theory.

  11. Chemical profiling of explosives

    NARCIS (Netherlands)

    Brust, G.M.H.

    2014-01-01

    The primary goal of this thesis is to develop analytical methods for the chemical profiling of explosives. Current methodologies for the forensic analysis of explosives focus on identification of the explosive material. However, chemical profiling of explosives becomes increasingly important, as

  12. Relativistic viscoelastic fluid mechanics.

    Science.gov (United States)

    Fukuma, Masafumi; Sakatani, Yuho

    2011-08-01

    A detailed study is carried out for the relativistic theory of viscoelasticity which was recently constructed on the basis of Onsager's linear nonequilibrium thermodynamics. After rederiving the theory using a local argument with the entropy current, we show that this theory universally reduces to the standard relativistic Navier-Stokes fluid mechanics in the long time limit. Since effects of elasticity are taken into account, the dynamics at short time scales is modified from that given by the Navier-Stokes equations, so that acausal problems intrinsic to relativistic Navier-Stokes fluids are significantly remedied. We in particular show that the wave equations for the propagation of disturbance around a hydrostatic equilibrium in Minkowski space-time become symmetric hyperbolic for some range of parameters, so that the model is free of acausality problems. This observation suggests that the relativistic viscoelastic model with such parameters can be regarded as a causal completion of relativistic Navier-Stokes fluid mechanics. By adjusting parameters to various values, this theory can treat a wide variety of materials including elastic materials, Maxwell materials, Kelvin-Voigt materials, and (a nonlinearly generalized version of) simplified Israel-Stewart fluids, and thus we expect the theory to be the most universal description of single-component relativistic continuum materials. We also show that the presence of strains and the corresponding change in temperature are naturally unified through the Tolman law in a generally covariant description of continuum mechanics.

  13. Supernova explosions

    CERN Document Server

    Branch, David

    2017-01-01

    Targeting advanced students of astronomy and physics, as well as astronomers and physicists contemplating research on supernovae or related fields, David Branch and J. Craig Wheeler offer a modern account of the nature, causes and consequences of supernovae, as well as of issues that remain to be resolved. Owing especially to (1) the appearance of supernova 1987A in the nearby Large Magellanic Cloud, (2) the spectacularly successful use of supernovae as distance indicators for cosmology, (3) the association of some supernovae with the enigmatic cosmic gamma-ray bursts, and (4) the discovery of a class of superluminous supernovae, the pace of supernova research has been increasing sharply. This monograph serves as a broad survey of modern supernova research and a guide to the current literature. The book’s emphasis is on the explosive phases of supernovae. Part 1 is devoted to a survey of the kinds of observations that inform us about supernovae, some basic interpreta tions of such data, and an overview of t...

  14. Giant Primeval Magnetic Dipoles

    Science.gov (United States)

    Thompson, Christopher

    2017-07-01

    Macroscopic magnetic dipoles are considered cosmic dark matter. Permanent magnetism in relativistic field structures can involve some form of superconductivity, one example being current-carrying string loops (“springs”) with vanishing net tension. We derive the cross-section for free classical dipoles to collide, finding it depends weakly on orientation when mutual precession is rapid. The collision rate of “spring” loops with tension { T }˜ {10}-8{c}4/G in galactic halos approaches the measured rate of fast radio bursts (FRBs) if the loops compose most of the dark matter. A large superconducting dipole (LSD) with mass ˜1020 g and size ˜1 mm will form a ˜100 km magnetosphere moving through interstellar plasma. Although hydromagnetic drag is generally weak, it is strong enough to capture some LSDs into long-lived rings orbiting supermassive black holes (SMBHs) that form by the direct collapse of massive gas clouds. Repeated collisions near young SMBHs could dominate the global collision rate, thereby broadening the dipole mass spectrum. Colliding LSDs produce tiny, hot electromagnetic explosions. The accompanying paper shows that these explosions couple effectively to propagating low-frequency electromagnetic modes, with output peaking at 0.01-1 THz. We describe several constraints on, and predictions of, LSDs as cosmic dark matter. The shock formed by an infalling LSD triggers self-sustained thermonuclear burning in a C/O (ONeMg) white dwarf (WD) of mass ≳1 M ⊙ (1.3 M ⊙). The spark is generally located off the center of the WD. The rate of LSD-induced explosions matches the observed rate of Type Ia supernovae.

  15. Anomalous magnetohydrodynamics in the extreme relativistic domain

    CERN Document Server

    Giovannini, Massimo

    2016-01-01

    The evolution equations of anomalous magnetohydrodynamics are derived in the extreme relativistic regime and contrasted with the treatment of hydromagnetic nonlinearities pioneered by Lichnerowicz in the absence of anomalous currents. In particular we explore the situation where the conventional vector currents are complemented by the axial-vector currents arising either from the pseudo Nambu-Goldstone bosons of a spontaneously broken symmetry or because of finite fermionic density effects. After expanding the generally covariant equations in inverse powers of the conductivity, the relativistic analog of the magnetic diffusivity equation is derived in the presence of vortical and magnetic currents. While the anomalous contributions are generally suppressed by the diffusivity, they are shown to disappear in the perfectly conducting limit. When the flow is irrotational, boost-invariant and with vanishing four-acceleration the corresponding evolution equations are explicitly integrated so that the various physic...

  16. Understanding vented gas explosions

    Energy Technology Data Exchange (ETDEWEB)

    Lautkaski, R. [VTT Energy, Espoo (Finland). Energy Systems

    1997-12-31

    The report is an introduction to vented gas explosions for nonspecialists, particularly designers of plants for flammable gases and liquids. The phenomena leading to pressure generation in vented gas explosions in empty and congested rooms are reviewed. The four peak model of vented gas explosions is presented with simple methods to predict the values of the individual peaks. Experimental data on the external explosion of dust and gas explosions is discussed. The empirical equation relating the internal and external peak pressures in vented dust explosions is shown to be valid for gas explosion tests in 30 m{sup 3} and 550 m{sup 3} chambers. However, the difficulty of predicting the internal peak pressure in large chambers remains. Methods of explosion relief panel design and principles of vent and equipment layout to reduce explosion overpressures are reviewed. (orig.) 65 refs.

  17. Weibel instability in relativistic quantum plasmas

    Science.gov (United States)

    Mendonça, J. T.; Brodin, G.

    2015-08-01

    Generation of quasi-static magnetic fields, due to the Weibel instability is studied in a relativistic quantum plasma. This instability is induced by a temperature anisotropy. The dispersion relation and growth rates for low frequency electromagnetic perturbations are derived using a wave-kinetic equation which describes the evolution of the electron Wigner quasi-distribution. The influence of parallel kinetic effects is discussed in detail.

  18. Explosion of relativistic electron vortices in laser plasmas

    CERN Document Server

    Lezhnin, K V; Esirkepov, T Zh; Bulanov, S V; Gu, Y; Weber, S; Korn, G

    2016-01-01

    The interaction of high intensity laser radiation with underdense plasma may lead to the formation of electron vortices. Though being quasistationary on an electron timescales, these structures tend to expand on a proton timescale due to Coloumb repulsion of ions. Using a simple analytical model of a stationary vortex as initial condition, 2D PIC simulations are performed. A number of effects are observed such as vortex boundary field intensification, multistream instabilities at the vortex boundary, and bending of the vortex boundary with the subsequent transformation into smaller electron vortices.

  19. Relativistic theories of materials

    CERN Document Server

    Bressan, Aldo

    1978-01-01

    The theory of relativity was created in 1905 to solve a problem concerning electromagnetic fields. That solution was reached by means of profound changes in fundamental concepts and ideas that considerably affected the whole of physics. Moreover, when Einstein took gravitation into account, he was forced to develop radical changes also in our space-time concepts (1916). Relativistic works on heat, thermodynamics, and elasticity appeared as early as 1911. However, general theories having a thermodynamic basis, including heat conduction and constitutive equations, did not appear in general relativity until about 1955 for fluids and appeared only after 1960 for elastic or more general finitely deformed materials. These theories dealt with materials with memory, and in this connection some relativistic versions of the principle of material indifference were considered. Even more recently, relativistic theories incorporating finite deformations for polarizable and magnetizable materials and those in which couple s...

  20. Relativistic Quantum Communication

    CERN Document Server

    Hosler, Dominic

    2013-01-01

    In this Ph.D. thesis, I investigate the communication abilities of non-inertial observers and the precision to which they can measure parametrized states. I introduce relativistic quantum field theory with field quantisation, and the definition and transformations of mode functions in Minkowski, Schwarzschild and Rindler spaces. I introduce information theory by discussing the nature of information, defining the entropic information measures, and highlighting the differences between classical and quantum information. I review the field of relativistic quantum information. We investigate the communication abilities of an inertial observer to a relativistic observer hovering above a Schwarzschild black hole, using the Rindler approximation. We compare both classical communication and quantum entanglement generation of the state merging protocol, for both the single and dual rail encodings. We find that while classical communication remains finite right up to the horizon, the quantum entanglement generation tend...

  1. Relativistic quantum mechanics

    CERN Document Server

    Horwitz, Lawrence P

    2015-01-01

    This book describes a relativistic quantum theory developed by the author starting from the E.C.G. Stueckelberg approach proposed in the early 40s. In this framework a universal invariant evolution parameter (corresponding to the time originally postulated by Newton) is introduced to describe dynamical evolution. This theory is able to provide solutions for some of the fundamental problems encountered in early attempts to construct a relativistic quantum theory. A relativistically covariant construction is given for which particle spins and angular momenta can be combined through the usual rotation group Clebsch-Gordan coefficients. Solutions are defined for both the classical and quantum two body bound state and scattering problems. The recently developed quantum Lax-Phillips theory of semigroup evolution of resonant states is described. The experiment of Lindner and coworkers on interference in time is discussed showing how the property of coherence in time provides a simple understanding of the results. Th...

  2. Handbook of relativistic quantum chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wenjian (ed.) [Peking Univ., Beijing (China). Center for Computational Science and Engineering

    2017-03-01

    This handbook focuses on the foundations of relativistic quantum mechanics and addresses a number of fundamental issues never covered before in a book. For instance: How can many-body theory be combined with quantum electrodynamics? How can quantum electrodynamics be interfaced with relativistic quantum chemistry? What is the most appropriate relativistic many-electron Hamiltonian? How can we achieve relativistic explicit correlation? How can we formulate relativistic properties? - just to name a few. Since relativistic quantum chemistry is an integral component of computational chemistry, this handbook also supplements the ''Handbook of Computational Chemistry''. Generally speaking, it aims to establish the 'big picture' of relativistic molecular quantum mechanics as the union of quantum electrodynamics and relativistic quantum chemistry. Accordingly, it provides an accessible introduction for readers new to the field, presents advanced methodologies for experts, and discusses possible future perspectives, helping readers understand when/how to apply/develop the methodologies.

  3. 78 FR 64246 - Commerce in Explosives; List of Explosives Materials

    Science.gov (United States)

    2013-10-28

    ... From the Federal Register Online via the Government Publishing Office ] DEPARTMENT OF JUSTICE Bureau of Alcohol, Tobacco, Firearms, and Explosives Commerce in Explosives; List of Explosives Materials AGENCY: Bureau of Alcohol, Tobacco, Firearms, and Explosives (ATF); Department of Justice. ACTION:...

  4. Relativistic electronic dressing

    CERN Document Server

    Attaourti, Y

    2002-01-01

    We study the effects of the relativistic electronic dressing in laser-assisted electron-hydrogen atom elastic collisions. We begin by considering the case when no radiation is present. This is necessary in order to check the consistency of our calculations and we then carry out the calculations using the relativistic Dirac-Volkov states. It turns out that a simple formal analogy links the analytical expressions of the differential cross section without laser and the differential cross section in presence of a laser field.

  5. Relativistic Disc lines

    CERN Document Server

    Fabian, A C; Parker, M L

    2014-01-01

    Broad emission lines, particularly broad iron-K lines, are now commonly seen in the X-ray spectra of luminous AGN and Galactic black hole binaries. Sensitive NuSTAR spectra over the energy range of 3-78 keV and high frequency reverberation spectra now confirm that these are relativistic disc lines produced by coronal irradiation of the innermost accretion flow around rapidly spinning black holes. General relativistic effects are essential in explaining the observations. Recent results are briefly reviewed here.

  6. Relativistic Rotating Vector Model

    CERN Document Server

    Lyutikov, Maxim

    2016-01-01

    The direction of polarization produced by a moving source rotates with the respect to the rest frame. We show that this effect, induced by pulsar rotation, leads to an important correction to polarization swings within the framework of rotating vector model (RVM); this effect has been missed by previous works. We construct relativistic RVM taking into account finite heights of the emission region that lead to aberration, time-of-travel effects and relativistic rotation of polarization. Polarizations swings at different frequencies can be used, within the assumption of the radius-to-frequency mapping, to infer emission radii and geometry of pulsars.

  7. The special relativistic shock tube

    Science.gov (United States)

    Thompson, Kevin W.

    1986-01-01

    The shock-tube problem has served as a popular test for numerical hydrodynamics codes. The development of relativistic hydrodynamics codes has created a need for a similar test problem in relativistic hydrodynamics. The analytical solution to the special relativistic shock-tube problem is presented here. The relativistic shock-jump conditions and rarefaction solution which make up the shock tube are derived. The Newtonian limit of the calculations is given throughout.

  8. Totally confined explosive welding

    Science.gov (United States)

    Bement, L. J. (Inventor)

    1978-01-01

    The undesirable by-products of explosive welding are confined and the association noise is reduced by the use of a simple enclosure into which the explosive is placed and in which the explosion occurs. An infrangible enclosure is removably attached to one of the members to be bonded at the point directly opposite the bond area. An explosive is completely confined within the enclosure at a point in close proximity to the member to be bonded and a detonating means is attached to the explosive. The balance of the enclosure, not occupied by explosive, is filled with a shaped material which directs the explosive pressure toward the bond area. A detonator adaptor controls the expansion of the enclosure by the explosive force so that the enclosure at no point experiences a discontinuity in expansion which causes rupture. The use of the technique is practical in the restricted area of a space station.

  9. Cell phone explosion.

    Science.gov (United States)

    Atreya, Alok; Kanchan, Tanuj; Nepal, Samata; Pandey, Bhuwan Raj

    2016-03-01

    Cell phone explosions and resultant burn injuries are rarely reported in the scientific literature. We report a case of cell phone explosion that occurred when a young male was listening to music while the mobile was plugged in for charging.

  10. A General Quadrature Solution for Relativistic, Non-relativistic, and Weakly-Relativistic Rocket Equations

    CERN Document Server

    Bruce, Adam L

    2015-01-01

    We show the traditional rocket problem, where the ejecta velocity is assumed constant, can be reduced to an integral quadrature of which the completely non-relativistic equation of Tsiolkovsky, as well as the fully relativistic equation derived by Ackeret, are limiting cases. By expanding this quadrature in series, it is shown explicitly how relativistic corrections to the mass ratio equation as the rocket transitions from the Newtonian to the relativistic regime can be represented as products of exponential functions of the rocket velocity, ejecta velocity, and the speed of light. We find that even low order correction products approximate the traditional relativistic equation to a high accuracy in flight regimes up to $0.5c$ while retaining a clear distinction between the non-relativistic base-case and relativistic corrections. We furthermore use the results developed to consider the case where the rocket is not moving relativistically but the ejecta stream is, and where the ejecta stream is massless.

  11. Helical relativistic electron beam and THz radiation

    CERN Document Server

    Son, S

    2011-01-01

    A THz laser generation utilizing a helical relativistic electron beam propagating through a strong magnetic field is discussed. The initial amplification rate in this scheme is much stronger than that in the conventional free electron laser. A magnetic field of the order of Tesla can yield a radiation in the range of 0.5 to 3 THz, corresponding to the total energy of mJ and the duration of tens of pico-second, or the temporal power of the order of GW.

  12. NEW EXPLOSIVE WELDING TECHNIQUES

    OpenAIRE

    Lotous, V.; Dragobetskii, V.

    2015-01-01

    Purpose - analysis of the variety of factors of the physical phenomena accompanying the process of the power explosive effect for development of new processes of metal treatment: explosive film coating of hardening and updating of a superficial layer of an item. Industrial approbation of cladding techniques by explosion of item surfaces of complex configuration and determination of parameters of the process of the explosive welding of high-strength pig-iron (graphite of the spherical form) wi...

  13. Photoacoustic Sensing of Explosives

    Science.gov (United States)

    2013-11-01

    NOV 2013 2. REPORT TYPE 3. DATES COVERED 00-00-2013 to 00-00-2013 4. TITLE AND SUBTITLE Photoacoustic Sensing of Explosives 5a. CONTRACT NUMBER...2013www.ll.mit.edu Photoacoustic Sensing of Explosives (PHASE) is a promising new technology that detects trace explosive residues from significant... photoacoustic phenomena resulting from ultraviolet laser excitation. Exposed explosives are excited up to 100 meters away by using PHASE’s

  14. Inspection tester for explosives

    Science.gov (United States)

    Haas, Jeffrey S.; Simpson, Randall L.; Satcher, Joe H.

    2007-11-13

    An inspection tester that can be used anywhere as a primary screening tool by non-technical personnel to determine whether a surface contains explosives. It includes a body with a sample pad. First and second explosives detecting reagent holders and dispensers are operatively connected to the body and the sample pad. The first and second explosives detecting reagent holders and dispensers are positioned to deliver the explosives detecting reagents to the sample pad. A is heater operatively connected to the sample pad.

  15. Explosive Line Wave Generators

    Science.gov (United States)

    2013-12-01

    curvature produced by each line wave generator. Piezoelectric pins were used for an additional assessment of the explosive lens design...to a visual assessment of the wave curvature from the high speed camera images, the explosive lens design was also evaluated using piezoelectric pins...High Explosive Firing Complex (HEFC). The various explosive line wave generators were taped vertically on a supporting board and the detonation wave

  16. Relativistic cosmology; Cosmologia Relativista

    Energy Technology Data Exchange (ETDEWEB)

    Bastero-Gil, M.

    2015-07-01

    Relativistic cosmology is nothing but the study of the evolution of our universe expanding from the General Theory of Relativity, which describes the gravitational interaction at any scale and given its character far-reaching is the force that dominate the evolution of the universe. (Author)

  17. The Relativistic Rocket

    Science.gov (United States)

    Antippa, Adel F.

    2009-01-01

    We solve the problem of the relativistic rocket by making use of the relation between Lorentzian and Galilean velocities, as well as the laws of superposition of successive collinear Lorentz boosts in the limit of infinitesimal boosts. The solution is conceptually simple, and technically straightforward, and provides an example of a powerful…

  18. Relativistic length agony continued

    Directory of Open Access Journals (Sweden)

    Redžić D.V.

    2014-01-01

    Full Text Available We made an attempt to remedy recent confusing treatments of some basic relativistic concepts and results. Following the argument presented in an earlier paper (Redžić 2008b, we discussed the misconceptions that are recurrent points in the literature devoted to teaching relativity such as: there is no change in the object in Special Relativity, illusory character of relativistic length contraction, stresses and strains induced by Lorentz contraction, and related issues. We gave several examples of the traps of everyday language that lurk in Special Relativity. To remove a possible conceptual and terminological muddle, we made a distinction between the relativistic length reduction and relativistic FitzGerald-Lorentz contraction, corresponding to a passive and an active aspect of length contraction, respectively; we pointed out that both aspects have fundamental dynamical contents. As an illustration of our considerations, we discussed briefly the Dewan-Beran-Bell spaceship paradox and the ‘pole in a barn’ paradox. [Projekat Ministarstva nauke Republike Srbije, br. 171028

  19. Electric and magnetic dipole shielding constants for the ground state of the relativistic hydrogen-like atom: Application of the Sturmian expansion of the generalized Dirac-Coulomb Green function

    CERN Document Server

    Stefańska, Patrycja

    2011-01-01

    The Sturmian expansion of the generalized Dirac-Coulomb Green function [R. Szmytkowski, J. Phys. B 30 (1997) 825; erratum 30 (1997) 2747] is exploited to derive closed-form expressions for electric ($\\sigma_{\\mathrm{E}}$) and magnetic ($\\sigma_{\\mathrm{M}}$) dipole shielding constants for the ground state of the relativistic hydrogen-like atom with a point-like and spinless nucleus of charge $Ze$. It is found that $\\sigma_{\\mathrm{E}}=Z^{-1}$ (as it should be) and $$\\sigma_{\\mathrm{M}}=-(2Z\\alpha^{2}/27)(4\\gamma_{1}^{3}+6\\gamma_{1}^{2}-7\\gamma_{1}-12) /[\\gamma_{1}(\\gamma_{1}+1)(2\\gamma_{1}-1)],$$ where $\\gamma_{1}=\\sqrt{1-(Z\\alpha)^{2}}$ ($\\alpha$ is the fine-structure constant). This expression for $\\sigma_{\\mathrm{M}}$ agrees with earlier findings of several other authors, obtained with the use of other analytical techniques, and is elementary compared to an alternative one presented recently by Cheng \\emph{et al.} [J. Chem. Phys. 130 (2009) 144102], which involves an infinite series of ratios of the Euler'...

  20. Displacement of large-scale open solar magnetic fields from the zone of active longitudes and the heliospheric storm of November 3-10, 2004: 2. "Explosion" of singularity and dynamics of sunspot formation and energy release

    Science.gov (United States)

    Ivanov, K. G.

    2010-12-01

    A more detailed scenario of one stage (August-November 2004) of the quasibiennial MHD process "Origination ... and dissipation of the four-sector structure of the solar magnetic field" during the decline phase of cycle 23 has been constructed. It has been indicated that the following working hypothesis on the propagation of an MHD disturbance westward (in the direction of solar rotation) and eastward (toward the zone of active longitudes) with the displacement of the large-scale open solar magnetic field (LOSMF) from this zone can be constructed based on LOSMF model representations and data on sunspot formation, flares, active filaments, and coronal ejections as well as on the estimated contribution of sporadic energy release to the flare luminosity and kinetic energy of ejections: (1) The "explosion" of the LOSMF singularity and the formation in the explosion zone of an anemone active region (AR), which produced the satellite sunspot formation that continued west and east of the "anemone," represented a powerful and energy-intensive source of MHD processes at this stage. (2) This resulted in the origination of two "governing" large-scale MHD processes, which regulated various usual manifestations of solar activity: the fast LOSMF along the neutral line in the solar atmosphere, strongly affecting the zone of active longitudes, and the slow LOSMF in the outer layers of the convection zone. The fronts of these processes were identified by powerful (about 1031 erg) coronal ejections. (3) The collision of a wave reflected from the zone of active longitudes with the eastern front of the hydromagnetic impulse of the convection zone resulted in an increase in LOSMF magnetic fluxes, origination of an active sector boundary in the zone of active longitudes, shear-convergent motions, and generation and destabilization of the flare-productive AR 10696 responsible for the heliospheric storm of November 3-10, 2004.

  1. Nuclear Composition of Magnetized GRB Jets

    CERN Document Server

    Shibata, Sanshiro

    2015-01-01

    We investigate the fraction of metal nuclei in the relativistic jets of gamma-ray bursts associated with core-collapse supernovae. We simulate the fallback in jet-induced explosions with two-dimensional relativistic hydrodynamics calculations and the jet acceleration with steady, radial, relativistic magnetohydrodynamics calculations, and derive detail nuclear composition of the jet by postprocessing calculation. We found that if the temperature at the jet launch site is above $4.7\\times 10^9$K, quasi-statistical equilibrium (QSE) is established and heavy nuclei are dissociated to light particles such as $^4$He during the acceleration of the jets. The criterion for the survival of metal nuclei is written in terms of the isotropic jet luminosity as $L_{\\rm j}^{\\rm iso} \\lesssim 3.9\\times 10^{50}(R_{\\rm i}/10^7{\\rm cm})^2 (1+\\sigma_{\\rm i})~{\\rm erg~s^{-1}}$, where $R_{\\rm i}$ and $\\sigma_{\\rm i}$ are the initial radius of the jets and the initial magnetization parameter, respectively. If the jet is initially d...

  2. TURBULENT RECONNECTION IN RELATIVISTIC PLASMAS AND EFFECTS OF COMPRESSIBILITY

    Energy Technology Data Exchange (ETDEWEB)

    Takamoto, Makoto [Max-Planck-Institut für Kernphysik, Heidelberg (Germany); Inoue, Tsuyoshi [Division of Theoretical Astronomy, National Astronomical Observatory of Japan (Japan); Lazarian, Alexandre, E-mail: mtakamoto@eps.s.u-tokyo.ac.jp, E-mail: tsuyoshi.inoue@nao.ac.jp, E-mail: alazarian@facstaff.wisc.edu [Department of Astronomy, University of Wisconsin, 475 North Charter Street, Madison, WI 53706 (United States)

    2015-12-10

    We report on the turbulence effects on magnetic reconnection in relativistic plasmas using three-dimensional relativistic resistive magnetohydrodynamics simulations. We found that the reconnection rate became independent of the plasma resistivity due to turbulence effects similarly to non-relativistic cases. We also found that compressible turbulence effects modified the turbulent reconnection rate predicted in non-relativistic incompressible plasmas; the reconnection rate saturates, and even decays, as the injected velocity approaches to the Alfvén velocity. Our results indicate that compressibility cannot be neglected when a compressible component becomes about half of the incompressible mode, occurring when the Alfvén Mach number reaches about 0.3. The obtained maximum reconnection rate is around 0.05–0.1, which will be able to reach around 0.1–0.2 if injection scales are comparable to the sheet length.

  3. Whistler instability in a semi-relativistic bi-Maxwellian plasma

    CERN Document Server

    Bashir, M F; Iqbal, Z; Murtaza, G

    2013-01-01

    Employing linearized Vlasov-Maxwell system, the Weibel instability embedded in an ambient magnetic field is discussed for a semi-relativistic bi-Maxwellian distribution hoping such a scenario occurs in some relativistic environments e.g., gamma-ray burst sources and relativistic jet sources, supernovae, and galactic cosmic rays where the perpendicular temperature is much dominated over the parallel . The dispersion relations are analyzed analytically along with the graphical representation and the estimates of the growth rate are presented along with the instability threshold condition in the limiting cases i.e., xi>1 (non-resonant case). It is observed that the relativistic effect suppresses the instability and also lowers the threshold for the instability to set in. The ambient magnetic field contribution to instability appears only in non-resonant case resulting in reduction of growth rate. However, the effect of the ambient magnetic field is diminished as we go from the weak relativistic regime to the hig...

  4. General relativistic neutron stars with twisted magnetosphere

    CERN Document Server

    Pili, A G; Del Zanna, L

    2014-01-01

    Soft Gamma-Ray Repeaters and Anomalous X-Ray Pulsars are extreme manifestations of the most magnetized neutron stars: magnetars. The phenomenology of their emission and spectral properties strongly support the idea that the magnetospheres of these astrophysical objects are tightly twisted in the vicinity of the star. Previous studies on equilibrium configurations have so far focused on either the internal or the external magnetic field configuration, without considering a real coupling between the two fields. Here we investigate numerical equilibrium models of magnetized neutron stars endowed with a confined twisted magnetosphere, solving the general relativistic Grad-Shafranov equation both in the interior and in the exterior of the compact object. A comprehensive study of the parameters space is provided to investigate the effects of different current distributions on the overall magnetic field structure.

  5. Magnetorotational Explosive Instability in Keplerian Disks

    CERN Document Server

    Shtemler, Yuri; Mond, Michael

    2015-01-01

    In this paper it is shown that deferentially rotating disks that are in the presence of weak axial magnetic field are prone to a new nonlinear explosive instability. The latter occurs due to the near-resonance three-wave interactions of a magnetorotational instability with stable Alfven-Coriolis and magnetosonic modes. The dynamical equations that govern the temporal evolution of the amplitudes of the three interacting modes are derived. Numerical solutions of the dynamical equations indicate that small frequency mismatch gives rise to two types of behavior: 1. explosive instability which leads to infinite values of the three amplitudes within a finite time, and 2. bounded irregular oscillations of all three amplitudes. Asymptotic solutions of the dynamical equations are obtained for the explosive instability regimes and are shown to match the numerical solutions near the explosion time.

  6. Relativistic theory of tidal Love numbers

    CERN Document Server

    Binnington, Taylor

    2009-01-01

    In Newtonian gravitational theory, a tidal Love number relates the mass multipole moment created by tidal forces on a spherical body to the applied tidal field. The Love number is dimensionless, and it encodes information about the body's internal structure. We present a relativistic theory of Love numbers, which applies to compact bodies with strong internal gravities; the theory extends and completes a recent work by Flanagan and Hinderer, which revealed that the tidal Love number of a neutron star can be measured by Earth-based gravitational-wave detectors. We consider a spherical body deformed by an external tidal field, and provide precise and meaningful definitions for electric-type and magnetic-type Love numbers; and these are computed for polytropic equations of state. The theory applies to black holes as well, and we find that the relativistic Love numbers of a nonrotating black hole are all zero.

  7. Observation of relativistic antihydrogen atoms

    Energy Technology Data Exchange (ETDEWEB)

    Blanford, Glenn DelFosse

    1998-01-01

    An observation of relativistic antihydrogen atoms is reported in this dissertation. Experiment 862 at Fermi National Accelerator Laboratory observed antihydrogen atoms produced by the interaction of a circulating beam of high momentum (3 < p < 9 GeV/c) antiprotons and a jet of molecular hydrogen gas. Since the neutral antihydrogen does not bend in the antiproton source magnets, the detectors could be located far from the interaction point on a beamline tangent to the storage ring. The detection of the antihydrogen is accomplished by ionizing the atoms far from the interaction point. The positron is deflected by a magnetic spectrometer and detected, as are the back to back photons resulting from its annihilation. The antiproton travels a distance long enough for its momentum and time of flight to be measured accurately. A statistically significant sample of 101 antihydrogen atoms has been observed. A measurement of the cross section for {bar H}{sup 0} production is outlined within. The cross section corresponds to the process where a high momentum antiproton causes e{sup +} e{sup -} pair creation near a nucleus with the e{sup +} being captured by the antiproton. Antihydrogen is the first atom made exclusively of antimatter to be detected. The observation experiment's results are the first step towards an antihydrogen spectroscopy experiment which would measure the n = 2 Lamb shift and fine structure.

  8. Secular free solution up to third order of relativistic cold dissipative plasma equations for electromagnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Chandra, S.K.

    1976-01-01

    The perturbation method of Lindstedt is applied to study the relativistic nonlinear effects for an elliptically polarized transverse monochromatic wave in a cold dissipative plasma in the absence of a static magnetic field. Amplitude-dependent wavelength and frequency shifts including relativistic correlations are derived.

  9. Relativistic hydro and magnetohydrodynamic models for AGN jet propagation and deceleration

    NARCIS (Netherlands)

    Keppens, R.; Meliani, Z.

    2009-01-01

    We present grid-adaptive computational studies of both magnetized and unmagnetized jet flows, with significantly relativistic bulk speeds, as appropriate for AGN jets. Our relativistic jet studies shed light on the observationally established classification of Fanaroff-Riley galaxies, where the appe

  10. Relativistic Hydrodynamics with Wavelets

    CERN Document Server

    DeBuhr, Jackson; Anderson, Matthew; Neilsen, David; Hirschmann, Eric W

    2015-01-01

    Methods to solve the relativistic hydrodynamic equations are a key computational kernel in a large number of astrophysics simulations and are crucial to understanding the electromagnetic signals that originate from the merger of astrophysical compact objects. Because of the many physical length scales present when simulating such mergers, these methods must be highly adaptive and capable of automatically resolving numerous localized features and instabilities that emerge throughout the computational domain across many temporal scales. While this has been historically accomplished with adaptive mesh refinement (AMR) based methods, alternatives based on wavelet bases and the wavelet transformation have recently achieved significant success in adaptive representation for advanced engineering applications. This work presents a new method for the integration of the relativistic hydrodynamic equations using iterated interpolating wavelets and introduces a highly adaptive implementation for multidimensional simulati...

  11. Relativistic heavy ion reactions

    Energy Technology Data Exchange (ETDEWEB)

    Brink, D.M.

    1989-08-01

    The theory of quantum chromodynamics predicts that if nuclear matter is heated to a sufficiently high temperature then quarks might become deconfined and a quark-gluon plasma could be produced. One of the aims of relativistic heavy ion experiments is to search for this new state of matter. These lectures survey some of the new experimental results and give an introduction to the theories used to interpret them. 48 refs., 4 tabs., 11 figs.

  12. Relativistic spherical plasma waves

    CERN Document Server

    Bulanov, S S; Schroeder, C B; Zhidkov, A G; Esarey, E; Leemans, W P

    2011-01-01

    Tightly focused laser pulses as they diverge or converge in underdense plasma can generate wake waves, having local structures that are spherical waves. Here we report on theoretical study of relativistic spherical wake waves and their properties, including wave breaking. These waves may be suitable as particle injectors or as flying mirrors that both reflect and focus radiation, enabling unique X-ray sources and nonlinear QED phenomena.

  13. Relativistic Quantum Noninvasive Measurements

    CERN Document Server

    Bednorz, Adam

    2014-01-01

    Quantum weak, noninvasive measurements are defined in the framework of relativity. Invariance with respect to reference frame transformations of the results in different models is discussed. Surprisingly, the bare results of noninvasive measurements are invariant for certain class of models, but not the detection error. Consequently, any stationary quantum realism based on noninvasive measurements will break, at least spontaneously, relativistic invariance and correspondence principle at zero temperature.

  14. Relativistic cosmological hydrodynamics

    CERN Document Server

    Hwang, J

    1997-01-01

    We investigate the relativistic cosmological hydrodynamic perturbations. We present the general large scale solutions of the perturbation variables valid for the general sign of three space curvature, the cosmological constant, and generally evolving background equation of state. The large scale evolution is characterized by a conserved gauge invariant quantity which is the same as a perturbed potential (or three-space curvature) in the comoving gauge.

  15. New Mix Explosives for Explosive Welding

    Science.gov (United States)

    Andreevskikh, Leonid

    2011-06-01

    Suggested and tested were some mix explosives--powder mixtures of a brisant high explosive (HE = RDX, PETN) and an inert diluent (baking soda)--for use in explosive welding. RDX and PETN were selected in view of their high throwing ability and low critical diameter. Since the decomposition of baking soda yields a huge amount of gaseous products, its presence ensures (even at a low HE percentage) a throwing speed that is sufficient for realization of explosive welding, at a reduced brisant action of charge. Mix chargers containing 30-70 wt % HE (the rest baking soda) have been tested experimentally and optimized. For study of possibility to reduce critical diameter of HE mixture, the mixture was prepared where HE crystal sizes did not exceed 10 μm. The tests, which were performed with this HE, revealed that the mixture detonated stably with the velocity D ~ 2 km/s, if the layer thickness was d = 2 mm. The above explosives afford to markedly diminish deformations within the oblique impact zone and thus to carry out explosive welding of hollow items and thin metallic foils.

  16. Relativistic gravity gradiometry

    Science.gov (United States)

    Bini, Donato; Mashhoon, Bahram

    2016-12-01

    In general relativity, relativistic gravity gradiometry involves the measurement of the relativistic tidal matrix, which is theoretically obtained from the projection of the Riemann curvature tensor onto the orthonormal tetrad frame of an observer. The observer's 4-velocity vector defines its local temporal axis and its local spatial frame is defined by a set of three orthonormal nonrotating gyro directions. The general tidal matrix for the timelike geodesics of Kerr spacetime has been calculated by Marck [Proc. R. Soc. A 385, 431 (1983)]. We are interested in the measured components of the curvature tensor along the inclined "circular" geodesic orbit of a test mass about a slowly rotating astronomical object of mass M and angular momentum J . Therefore, we specialize Marck's results to such a "circular" orbit that is tilted with respect to the equatorial plane of the Kerr source. To linear order in J , we recover the gravitomagnetic beating phenomenon [B. Mashhoon and D. S. Theiss, Phys. Rev. Lett. 49, 1542 (1982)], where the beat frequency is the frequency of geodetic precession. The beat effect shows up as a special long-period gravitomagnetic part of the relativistic tidal matrix; moreover, the effect's short-term manifestations are contained in certain post-Newtonian secular terms. The physical interpretation of this effect is briefly discussed.

  17. Gravitationally confined relativistic neutrinos

    Science.gov (United States)

    Vayenas, C. G.; Fokas, A. S.; Grigoriou, D.

    2017-09-01

    Combining special relativity, the equivalence principle, and Newton’s universal gravitational law with gravitational rather than rest masses, one finds that gravitational interactions between relativistic neutrinos with kinetic energies above 50 MeV are very strong and can lead to the formation of gravitationally confined composite structures with the mass and other properties of hadrons. One may model such structures by considering three neutrinos moving symmetrically on a circular orbit under the influence of their gravitational attraction, and by assuming quantization of their angular momentum, as in the Bohr model of the H atom. The model contains no adjustable parameters and its solution, using a neutrino rest mass of 0.05 eV/c2, leads to composite state radii close to 1 fm and composite state masses close to 1 GeV/c2. Similar models of relativistic rotating electron - neutrino pairs give a mass of 81 GeV/c2, close to that of W bosons. This novel mechanism of generating mass suggests that the Higgs mass generation mechanism can be modeled as a latent gravitational field which gets activated by relativistic neutrinos.

  18. Relativistic Radiation Mediated Shocks

    CERN Document Server

    Budnik, Ran; Sagiv, Amir; Waxman, Eli

    2010-01-01

    The structure of relativistic radiation mediated shocks (RRMS) propagating into a cold electron-proton plasma is calculated and analyzed. A qualitative discussion of the physics of relativistic and non relativistic shocks, including order of magnitude estimates for the relevant temperature and length scales, is presented. Detailed numerical solutions are derived for shock Lorentz factors $\\Gamma_u$ in the range $6\\le\\Gamma_u\\le30$, using a novel iteration technique solving the hydrodynamics and radiation transport equations (the protons, electrons and positrons are argued to be coupled by collective plasma processes and are treated as a fluid). The shock transition (deceleration) region, where the Lorentz factor $ \\Gamma $ drops from $ \\Gamma_u $ to $ \\sim 1 $, is characterized by high plasma temperatures $ T\\sim \\Gamma m_ec^2 $ and highly anisotropic radiation, with characteristic shock-frame energy of upstream and downstream going photons of a few~$\\times\\, m_ec^2$ and $\\sim \\Gamma^2 m_ec^2$, respectively.P...

  19. A relativistic gravity train

    Science.gov (United States)

    Parker, Edward

    2017-08-01

    A nonrelativistic particle released from rest at the edge of a ball of uniform charge density or mass density oscillates with simple harmonic motion. We consider the relativistic generalizations of these situations where the particle can attain speeds arbitrarily close to the speed of light; generalizing the electrostatic and gravitational cases requires special and general relativity, respectively. We find exact closed-form relations between the position, proper time, and coordinate time in both cases, and find that they are no longer harmonic, with oscillation periods that depend on the amplitude. In the highly relativistic limit of both cases, the particle spends almost all of its proper time near the turning points, but almost all of the coordinate time moving through the bulk of the ball. Buchdahl's theorem imposes nontrivial constraints on the general-relativistic case, as a ball of given density can only attain a finite maximum radius before collapsing into a black hole. This article is intended to be pedagogical, and should be accessible to those who have taken an undergraduate course in general relativity.

  20. Point form relativistic quantum mechanics and relativistic SU(6)

    Science.gov (United States)

    Klink, W. H.

    1993-01-01

    The point form is used as a framework for formulating a relativistic quantum mechanics, with the mass operator carrying the interactions of underlying constituents. A symplectic Lie algebra of mass operators is introduced from which a relativistic harmonic oscillator mass operator is formed. Mass splittings within the degenerate harmonic oscillator levels arise from relativistically invariant spin-spin, spin-orbit, and tensor mass operators. Internal flavor (and color) symmetries are introduced which make it possible to formulate a relativistic SU(6) model of baryons (and mesons). Careful attention is paid to the permutation symmetry properties of the hadronic wave functions, which are written as polynomials in Bargmann spaces.

  1. Spin-orbit ZORA and four-component Dirac-Coulomb estimation of relativistic corrections to isotropic nuclear shieldings and chemical shifts of noble gas dimers

    DEFF Research Database (Denmark)

    Jankowska, Marzena; Kupka, Teobald; Stobiński, Leszek

    2016-01-01

    Hartree-Fock and density functional theory with the hybrid B3LYP and general gradient KT2 exchange-correlation functionals were used for non-relativistic and relativistic nuclear magnetic shielding calculations of helium, neon, argon, krypton and xenon dimers and free atoms. Relativistic...

  2. Formation of relativistic jets. Magnetohydrodynamics and synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Porth, Oliver Joachim Georg

    2011-11-09

    In this thesis, the formation of relativistic jets is investigated by means of special relativistic magnetohydrodynamic simulations and synchrotron radiative transfer. Our results show that the magnetohydrodynamic jet self-collimation paradigm can also be applied to the relativistic case. In the first part, jets launched from rotating hot accretion disk coronae are explored, leading to well collimated, but only mildly relativistic flows. Beyond the light-cylinder, the electric charge separation force balances the classical trans-field Lorentz force almost entirely, resulting in a decreased efficiency of acceleration and collimation in comparison to non-relativistic disk winds. In the second part, we examine Poynting dominated flows of various electric current distributions. By following the outflow for over 3000 Schwarzschild radii, highly relativistic jets of Lorentz factor Γ>or similar 8 and half-opening angles below 1 are obtained, providing dynamical models for the parsec scale jets of active galactic nuclei. Applying the magnetohydrodynamic structure of the quasi-stationary simulation models, we solve the relativistically beamed synchrotron radiation transport. This yields synthetic radiation maps and polarization patterns that can be used to confront high resolution radio and (sub-) mm observations of nearby active galactic nuclei. Relativistic motion together with the helical magnetic fields of the jet formation site imprint a clear signature on the observed polarization and Faraday rotation. In particular, asymmetries in the polarization direction across the jet can disclose the handedness of the magnetic helix and thus the spin direction of the central engine. Finally, we show first results from fully three-dimensional, high resolution adaptive mesh refinement simulations of jet formation from a rotating magnetosphere and examine the jet stability. Relativistic field-line rotation leads to an electric charge separation force that opposes the magnetic

  3. Magic nuclei at explosive dynamo activity

    Directory of Open Access Journals (Sweden)

    Kondratyev V. N.

    2016-01-01

    Full Text Available Explosive nucleosynthesis at conditions of magnetorotational instabilities is considered for iron group nuclides by employing arguments of nuclear statistical equilibrium. Effects of ultra-strong nuclear magnetization are demonstrated to enhance the portion of titanium product. The results are corroborated with an excess of 44Ti revealed from the Integral mission data.

  4. Explosives tester with heater

    Science.gov (United States)

    Del Eckels, Joel [Livermore, CA; Nunes, Peter J [Danville, CA; Simpson, Randall L [Livermore, CA; Whipple, Richard E [Livermore, CA; Carter, J Chance [Livermore, CA; Reynolds, John G [San Ramon, CA

    2010-08-10

    An inspection tester system for testing for explosives. The tester includes a body and a swab unit adapted to be removeably connected to the body. At least one reagent holder and dispenser is operatively connected to the body. The reagent holder and dispenser contains an explosives detecting reagent and is positioned to deliver the explosives detecting reagent to the swab unit. A heater is operatively connected to the body and the swab unit is adapted to be operatively connected to the heater.

  5. Resonant enhancement of relativistic electron fluxes during geomagnetically active periods

    Directory of Open Access Journals (Sweden)

    I. Roth

    Full Text Available The strong increase in the flux of relativistic electrons during the recovery phase of magnetic storms and during other active periods is investigated with the help of Hamiltonian formalism and simulations of test electrons which interact with whistler waves. The intensity of the whistler waves is enhanced significantly due to injection of 10-100 keV electrons during the substorm. Electrons which drift in the gradient and curvature of the magnetic field generate the rising tones of VLF whistler chorus. The seed population of relativistic electrons which bounce along the inhomogeneous magnetic field, interacts resonantly with the whistler waves. Whistler wave propagating obliquely to the magnetic field can interact with energetic electrons through Landau, cyclotron, and higher harmonic resonant interactions when the Doppler-shifted wave frequency equals any (positive or negative integer multiple of the local relativistic gyrofrequency. Because the gyroradius of a relativistic electron may be the order of or greater than the perpendicular wavelength, numerous cyclotron, harmonics can contribute to the resonant interaction which breaks down the adiabatic invariant. A similar process diffuses the pitch angle leading to electron precipitation. The irreversible changes in the adiabatic invariant depend on the relative phase between the wave and the electron, and successive resonant interactions result in electrons undergoing a random walk in energy and pitch angle. This resonant process may contribute to the 10-100 fold increase of the relativistic electron flux in the outer radiation belt, and constitute an interesting relation between substorm-generated waves and enhancements in fluxes of relativistic electrons during geomagnetic storms and other active periods.

    Key words. Magnetospheric physics (energetic particles · trapped; plasma waves and instabilities; storms and substorms

  6. Relativistic hadrons and the origin of relativistic outflows in active galactic nuclei

    Science.gov (United States)

    Contopoulos, John; Kazanas, D.

    1995-01-01

    We examine the hydrodynamic origin of relativistic outflows in active galactic nuclei (AGN). Specifically, we propose that the presence of a population of relativistic hadrons in the AGN 'central engine' and the associated neutron production suffices to produce outflows which under rather general conditions could be relativistic. The main such condition is that the size of the neutron production region be larger than the neutron flight path tau(sub n) approximately 3 x 10(exp 13) cm. This condition guarantees that the mean energy per particle in the proton fluid, resulting from the decay of the neutrons outside their production region, be greater than the proton rest mass. The expansion of this fluid can then lead naturally to a relativistic outflow by conversion of its internal energy to directed motion. We follow the development of such flows by solving the mass, energy as well as the kinetic equation for the proton gas in steady state, taking into account the source terms due to compute accurately the adiabatic index of the expanding gas, and in conjunction with Bernoulli's equation the detailed evolution of the bulk Lorentz factor. We further examine the role of large-scale magnetic fields in confining these outflows to produce the jets observed at larger scales.

  7. Explosive Technology Group

    Data.gov (United States)

    Federal Laboratory Consortium — The Explosive Technology Group (ETG) provides diverse technical expertise and an agile, integrated approach to solve complex challenges for all classes of energetic...

  8. Active explosion barrier performance against methane and coal dust explosions

    National Research Council Canada - National Science Library

    J. J. L. du Plessis

    2015-01-01

    Preventing the propagation of methane or coal dust explosions through the use of active explosion-suppression systems remains one of the most underutilised explosion controls in underground coal mines...

  9. Wave-induced loss of ultra-relativistic electrons in the Van Allen radiation belts

    Science.gov (United States)

    Shprits, Yuri Y.; Drozdov, Alexander Y.; Spasojevic, Maria; Kellerman, Adam C.; Usanova, Maria E.; Engebretson, Mark J.; Agapitov, Oleksiy V.; Zhelavskaya, Irina S.; Raita, Tero J.; Spence, Harlan E.; Baker, Daniel N.; Zhu, Hui; Aseev, Nikita A.

    2016-01-01

    The dipole configuration of the Earth's magnetic field allows for the trapping of highly energetic particles, which form the radiation belts. Although significant advances have been made in understanding the acceleration mechanisms in the radiation belts, the loss processes remain poorly understood. Unique observations on 17 January 2013 provide detailed information throughout the belts on the energy spectrum and pitch angle (angle between the velocity of a particle and the magnetic field) distribution of electrons up to ultra-relativistic energies. Here we show that although relativistic electrons are enhanced, ultra-relativistic electrons become depleted and distributions of particles show very clear telltale signatures of electromagnetic ion cyclotron wave-induced loss. Comparisons between observations and modelling of the evolution of the electron flux and pitch angle show that electromagnetic ion cyclotron waves provide the dominant loss mechanism at ultra-relativistic energies and produce a profound dropout of the ultra-relativistic radiation belt fluxes. PMID:27678050

  10. Wave-induced loss of ultra-relativistic electrons in the Van Allen radiation belts.

    Science.gov (United States)

    Shprits, Yuri Y; Drozdov, Alexander Y; Spasojevic, Maria; Kellerman, Adam C; Usanova, Maria E; Engebretson, Mark J; Agapitov, Oleksiy V; Zhelavskaya, Irina S; Raita, Tero J; Spence, Harlan E; Baker, Daniel N; Zhu, Hui; Aseev, Nikita A

    2016-09-28

    The dipole configuration of the Earth's magnetic field allows for the trapping of highly energetic particles, which form the radiation belts. Although significant advances have been made in understanding the acceleration mechanisms in the radiation belts, the loss processes remain poorly understood. Unique observations on 17 January 2013 provide detailed information throughout the belts on the energy spectrum and pitch angle (angle between the velocity of a particle and the magnetic field) distribution of electrons up to ultra-relativistic energies. Here we show that although relativistic electrons are enhanced, ultra-relativistic electrons become depleted and distributions of particles show very clear telltale signatures of electromagnetic ion cyclotron wave-induced loss. Comparisons between observations and modelling of the evolution of the electron flux and pitch angle show that electromagnetic ion cyclotron waves provide the dominant loss mechanism at ultra-relativistic energies and produce a profound dropout of the ultra-relativistic radiation belt fluxes.

  11. Wave-induced loss of ultra-relativistic electrons in the Van Allen radiation belts

    Science.gov (United States)

    Shprits, Yuri Y.; Drozdov, Alexander Y.; Spasojevic, Maria; Kellerman, Adam C.; Usanova, Maria E.; Engebretson, Mark J.; Agapitov, Oleksiy V.; Zhelavskaya, Irina S.; Raita, Tero J.; Spence, Harlan E.; Baker, Daniel N.; Zhu, Hui; Aseev, Nikita A.

    2016-09-01

    The dipole configuration of the Earth's magnetic field allows for the trapping of highly energetic particles, which form the radiation belts. Although significant advances have been made in understanding the acceleration mechanisms in the radiation belts, the loss processes remain poorly understood. Unique observations on 17 January 2013 provide detailed information throughout the belts on the energy spectrum and pitch angle (angle between the velocity of a particle and the magnetic field) distribution of electrons up to ultra-relativistic energies. Here we show that although relativistic electrons are enhanced, ultra-relativistic electrons become depleted and distributions of particles show very clear telltale signatures of electromagnetic ion cyclotron wave-induced loss. Comparisons between observations and modelling of the evolution of the electron flux and pitch angle show that electromagnetic ion cyclotron waves provide the dominant loss mechanism at ultra-relativistic energies and produce a profound dropout of the ultra-relativistic radiation belt fluxes.

  12. Hot self-similar relativistic MHD flows

    CERN Document Server

    Zakamska, Nadia L; Blandford, Roger D

    2008-01-01

    We consider axisymmetric relativistic jets with a toroidal magnetic field and an ultrarelativistic equation of state, with the goal of studying the lateral structure of jets whose pressure is matched to the pressure of the medium through which they propagate. We find all self-similar steady-state solutions of the relativistic MHD equations for this setup. One of the solutions is the case of a parabolic jet being accelerated by the pressure gradient as it propagates through a medium with pressure declining as p(z)\\propto z^{-2}. As the jet material expands due to internal pressure gradients, it runs into the ambient medium resulting in a pile-up of material along the jet boundary, while the magnetic field acts to produce a magnetic pinch along the axis of the jet. Such jets can be in a lateral pressure equilibrium only if their opening angle \\theta_j at distance z is smaller than about 1/\\gamma, where \\gamma is the characteristic bulk Lorentz-factor at this distance; otherwise, different parts of the jet canno...

  13. Relativistic astrophysics - The view from Texas in Baltimore /Review/

    Science.gov (United States)

    Trimble, V. L.; Maran, S. P.

    1981-01-01

    Recent observational and theoretical work presented at the Tenth Texas Symposium on Relativistic Astrophysics held in Baltimore, Maryland from December 15-19, 1980, is outlined. Areas covered include the theoretical foundations of relativistic astrophysics in general relativity, quantum gravitational theory and the association of grand unification with astronomical and cosmological issues, the cosmic microwave, X-ray, gamma-ray, UV, cosmic ray and gravitational wave backgrounds, the current expansion rate and average mass-energy density of the universe, and mechanisms of galaxy formation. Also discussed are the characteristics of active galaxies and clusters emitting in the gamma-ray and X-ray regions, and compact objects formed from supernova explosions, including pulsars, X-ray-emitting neutron stars, Sco X-1 and SS 433, gamma-ray sources, and X-ray and gamma-ray bursters.

  14. Microengineering laser plasma interactions at relativistic intensities

    CERN Document Server

    Jiang, S; Audesirk, H; George, K M; Snyder, J; Krygier, A; Lewis, N S; Schumacher, D W; Pukhov, A; Freeman, R R; Akli, K U

    2015-01-01

    We report on the first successful proof-of-principle experiment to manipulate laser-matter interactions on the microscale using highly ordered Si microwire arrays. The interaction of a high contrast short pulse laser with a flat target via periodic Si microwires yields a substantial enhancement in both total and cut-off energies of the produced electron beam. The self generated electric and magnetic fields behave as an electromagnetic lens that confines and guides electrons between the microwires as they acquire relativistic energies via direct laser acceleration (DLA).

  15. Microengineering Laser Plasma Interactions at Relativistic Intensities.

    Science.gov (United States)

    Jiang, S; Ji, L L; Audesirk, H; George, K M; Snyder, J; Krygier, A; Poole, P; Willis, C; Daskalova, R; Chowdhury, E; Lewis, N S; Schumacher, D W; Pukhov, A; Freeman, R R; Akli, K U

    2016-02-26

    We report on the first successful proof-of-principle experiment to manipulate laser-matter interactions on microscales using highly ordered Si microwire arrays. The interaction of a high-contrast short-pulse laser with a flat target via periodic Si microwires yields a substantial enhancement in both the total and cutoff energies of the produced electron beam. The self-generated electric and magnetic fields behave as an electromagnetic lens that confines and guides electrons between the microwires as they acquire relativistic energies via direct laser acceleration.

  16. Recurrence relation for relativistic atomic matrix elements

    CERN Document Server

    Martínez y Romero, R P; Salas-Brito, A L

    2000-01-01

    Recurrence formulae for arbitrary hydrogenic radial matrix elements are obtained in the Dirac form of relativistic quantum mechanics. Our approach is inspired on the relativistic extension of the second hypervirial method that has been succesfully employed to deduce an analogous relationship in non relativistic quantum mechanics. We obtain first the relativistic extension of the second hypervirial and then the relativistic recurrence relation. Furthermore, we use such relation to deduce relativistic versions of the Pasternack-Sternheimer rule and of the virial theorem.

  17. Relativistic twins or sextuplets?

    CERN Document Server

    Sheldon, E S

    2003-01-01

    A recent study of the relativistic twin 'paradox' by Soni in this journal affirmed that 'A simple solution of the twin paradox also shows anomalous behaviour of rigidly connected distant clocks' but entailed a pedagogic hurdle which the present treatment aims to surmount. Two scenarios are presented: the first 'flight-plan' is akin to that depicted by Soni, with constant-velocity segments, while the second portrays an alternative mission undertaken with sustained acceleration and deceleration, illustrated quantitatively for a two-way spacecraft flight from Earth to Polaris (465.9 light years distant) and back.

  18. Numerical Relativistic Quantum Optics

    Science.gov (United States)

    2013-11-08

    µm and a = 1. The condition for an atomic spectrum to be non-relativistic is Z α−1 ≈ 137, as follows from elementary Dirac theory. One concludes that...peculiar result that B0 = 1 TG is a weak field. At present, such fields are observed only in connection with astrophysical phenomena [14]. The highest...pulsars. The Astrophysical Journal, 541:367–373, Sep 2000. [15] M. Tatarakis, I. Watts, F.N. Beg, E.L. Clark, A.E. Dangor, A. Gopal, M.G. Haines, P.A

  19. Relativistic quantum information

    Science.gov (United States)

    Mann, R. B.; Ralph, T. C.

    2012-11-01

    Over the past few years, a new field of high research intensity has emerged that blends together concepts from gravitational physics and quantum computing. Known as relativistic quantum information, or RQI, the field aims to understand the relationship between special and general relativity and quantum information. Since the original discoveries of Hawking radiation and the Unruh effect, it has been known that incorporating the concepts of quantum theory into relativistic settings can produce new and surprising effects. However it is only in recent years that it has become appreciated that the basic concepts involved in quantum information science undergo significant revision in relativistic settings, and that new phenomena arise when quantum entanglement is combined with relativity. A number of examples illustrate that point. Quantum teleportation fidelity is affected between observers in uniform relative acceleration. Entanglement is an observer-dependent property that is degraded from the perspective of accelerated observers moving in flat spacetime. Entanglement can also be extracted from the vacuum of relativistic quantum field theories, and used to distinguish peculiar motion from cosmological expansion. The new quantum information-theoretic framework of quantum channels in terms of completely positive maps and operator algebras now provides powerful tools for studying matters of causality and information flow in quantum field theory in curved spacetimes. This focus issue provides a sample of the state of the art in research in RQI. Some of the articles in this issue review the subject while others provide interesting new results that will stimulate further research. What makes the subject all the more exciting is that it is beginning to enter the stage at which actual experiments can be contemplated, and some of the articles appearing in this issue discuss some of these exciting new developments. The subject of RQI pulls together concepts and ideas from

  20. Relativistic wave mechanics

    CERN Document Server

    Corinaldesi, Ernesto

    1963-01-01

    Geared toward advanced undergraduate and graduate students of physics, this text provides readers with a background in relativistic wave mechanics and prepares them for the study of field theory. The treatment originated as a series of lectures from a course on advanced quantum mechanics that has been further amplified by student contributions.An introductory section related to particles and wave functions precedes the three-part treatment. An examination of particles of spin zero follows, addressing wave equation, Lagrangian formalism, physical quantities as mean values, translation and rotat

  1. The relativist stance.

    Science.gov (United States)

    Rössler, O E; Matsuno, K

    1998-04-01

    The two mindsets of absolutism and relativism are juxtaposed, and the relational or relativist stance is vindicated. The only 'absolute' entity which undeniably exists, consciousness has the reality of a dream. The escape hatch from this prison is relational, as Descartes and Levinas found out: Unfalsified relational consistency implies exteriority. Exteriority implies infinite power which in turn makes compassion inevitable. Aside from ethics as a royal way to enlightenment, a new technology called 'deep technology' may be accessible. It changes the whole world in a demonstrable fashion by manipulation of the micro frame--that is, the observer-world interface.

  2. Magnetic resonance spectroscopic study on regional cerebral metabolic changes of rabbits with explosive brain injury%颅脑爆震伤后兔脑内代谢变化的磁共振波谱研究

    Institute of Scientific and Technical Information of China (English)

    杨艳艳; 刘家传; 张永明; 孙文江; 汤宏; 黄振山; 李兵仓; 张良潮

    2011-01-01

    目的 利用磁共振波谱技术探讨颅脑爆震伤后不同时间段脑局部代谢变化.方法 新西兰大白兔45只采用随机数字表法分为对照组(10只)和创伤组(35只),采用600 mgTNT当量纸雷管在创伤组兔脑上方约6.5 cm垂直距离爆炸,于伤后1,6,12,24 h、3,7,14 d用磁共振波谱技术观测动物存活情况,并检测脑损伤区病理及磁共振波谱表现,观察乙酰天门冬氨酸(N-acetylaspartate,NAA)/肌酸(creatine,Cr)、胆碱(choline,Cho)/Cr在爆震伤后随时间发展的演变过程.结果 创伤组兔存活时间在7 d以上,病理及常规MRI示脑挫伤病灶;NAA/Cr均值在损伤后1 h明显下降,持续至伤后24 h,24 h后义上升,7 d后再次下降.Cho/Cr均值在损伤1 h后即明显升高,12 h后下降,3 d后义逐渐升高.结论 磁共振波谱技术可反映兔颅脑爆炸伤不同时间段局部组织的代谢变化,为了解爆雀伤后局部组织变化情况及判断组织损伤类型提供理论依据.%Objective To evaluate the regional cerebral metabolic changes in different episodes by magnetic resonance spectroscopy (MRS) after explosive brain injury in rabbits. Methods Fortyfive New Zealand white rabbits were randomly divided into eight groups, ie, normal control group( 10 rabbits) and trauma group (35 rabbits). The explosive injury in trauma group was induced by explosion of 600 mg TNT equivalent of paper detonators at 6.5 cm above the rabbit brain. The rabbits in trauma group was divided into 1,6, 12, 24 hours, 3, 7, 14 days subgroups (6 rabbits per group). The survival rate was observed at different time points after explosive injury. The MRS was used to detect the regional cerebral metabolic changes including N-acetylaspartate (NAA)/creatine (Cr) ratio and choline(Cho)/Cr ratio as well as evolution of blast injuries over time. Results The rabbits survived for overseven days in the trauma groups, with typical brain contusion manifested by pathological and conventional MRI. Compared

  3. Imaging Detonations of Explosives

    Science.gov (United States)

    2016-04-01

    14. ABSTRACT The techniques and instrumentation presented in this report allow for mapping of temperature, pressure , chemical species, and...measurement in the explosive near- to far-field (0–500 charge diameters) of surface temperatures, peak air-shock pressures , some chemical species...15. SUBJECT TERMS imaging, explosions, temperature, pressure , chemical species 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT UU

  4. Explosions and static electricity

    DEFF Research Database (Denmark)

    Jonassen, Niels M

    1995-01-01

    The paper deals with the problem of electrostatic discharges as causes of ignition of vapor/gas and dust/gas mixtures. A series of examples of static-caused explosions will be discussed. The concepts of explosion limits, the incendiveness of various discharge types and safe voltages are explained...

  5. Exotic Non-relativistic String

    CERN Document Server

    Casalbuoni, Roberto; Longhi, Giorgio

    2007-01-01

    We construct a classical non-relativistic string model in 3+1 dimensions. The model contains a spurion tensor field that is responsible for the non-commutative structure of the model. Under double dimensional reduction the model reduces to the exotic non-relativistic particle in 2+1 dimensions.

  6. 'Antigravity' Propulsion and Relativistic Hyperdrive

    CERN Document Server

    Felber, F S

    2006-01-01

    Exact payload trajectories in the strong gravitational fields of compact masses moving with constant relativistic velocities are calculated. The strong field of a suitable driver mass at relativistic speeds can quickly propel a heavy payload from rest to a speed significantly faster than the driver, a condition called hyperdrive. Hyperdrive thresholds and maxima are calculated as functions of driver mass and velocity.

  7. A Simple Relativistic Bohr Atom

    Science.gov (United States)

    Terzis, Andreas F.

    2008-01-01

    A simple concise relativistic modification of the standard Bohr model for hydrogen-like atoms with circular orbits is presented. As the derivation requires basic knowledge of classical and relativistic mechanics, it can be taught in standard courses in modern physics and introductory quantum mechanics. In addition, it can be shown in a class that…

  8. A Simple Relativistic Bohr Atom

    Science.gov (United States)

    Terzis, Andreas F.

    2008-01-01

    A simple concise relativistic modification of the standard Bohr model for hydrogen-like atoms with circular orbits is presented. As the derivation requires basic knowledge of classical and relativistic mechanics, it can be taught in standard courses in modern physics and introductory quantum mechanics. In addition, it can be shown in a class that…

  9. Melt Cast High Explosives

    Directory of Open Access Journals (Sweden)

    Stanisław Cudziło

    2014-12-01

    Full Text Available [b]Abstract[/b]. This paper reviews the current state and future developments of melt-cast high explosives. First the compositions, properties and methods of preparation of trinitrotoluene based (TNT conventional mixtures with aluminum, hexogen (RDX or octogen (HMX are described. In the newer, less sensitive explosive formulations, TNT is replaced with dinitroanisole (DNANDNANDNAN and nitrotriazolone (NTONTONTO, nitroguanidine (NG or ammonium perchlorate (AP are the replacement for RDRDX and HMX. Plasticized wax or polymer-based binder systems for melt castable explosives are also included. Hydroxyl terminated polybutadiene (HPTB is the binder of choice, but polyethylene glycol, and polycaprolactone with energetic plasticizers are also used. The most advanced melt-cast explosives are compositions containing energetic thermoplastic elastomers and novel highly energetic compounds (including nitrogen rich molecules in whose particles are nanosized and practically defect-less.[b]Keywords[/b]: melt-cast explosives, detonation parameters

  10. Stationary Relativistic Jets

    CERN Document Server

    Komissarov, S S; Lyutikov, M

    2015-01-01

    In this paper we describe a simple numerical approach which allows to study the structure of steady-state axisymmetric relativistic jets using one-dimensional time-dependent simulations. It is based on the fact that for narrow jets with v~c the steady-state equations of relativistic magnetohydrodynamics can be accurately approximated by the one-dimensional time-dependent equations after the substitution z=ct. Since only the time-dependent codes are now publicly available this is a valuable and efficient alternative to the development of a high-specialized code for the time-independent equations. The approach is also much cheaper and more robust compared to the relaxation method. We tested this technique against numerical and analytical solutions found in literature as well as solutions we obtained using the relaxation method and found it sufficiently accurate. In the process, we discovered the reason for the failure of the self-similar analytical model of the jet reconfinement in relatively flat atmospheres a...

  11. Robust relativistic bit commitment

    Science.gov (United States)

    Chakraborty, Kaushik; Chailloux, André; Leverrier, Anthony

    2016-12-01

    Relativistic cryptography exploits the fact that no information can travel faster than the speed of light in order to obtain security guarantees that cannot be achieved from the laws of quantum mechanics alone. Recently, Lunghi et al. [Phys. Rev. Lett. 115, 030502 (2015), 10.1103/PhysRevLett.115.030502] presented a bit-commitment scheme where each party uses two agents that exchange classical information in a synchronized fashion, and that is both hiding and binding. A caveat is that the commitment time is intrinsically limited by the spatial configuration of the players, and increasing this time requires the agents to exchange messages during the whole duration of the protocol. While such a solution remains computationally attractive, its practicality is severely limited in realistic settings since all communication must remain perfectly synchronized at all times. In this work, we introduce a robust protocol for relativistic bit commitment that tolerates failures of the classical communication network. This is done by adding a third agent to both parties. Our scheme provides a quadratic improvement in terms of expected sustain time compared with the original protocol, while retaining the same level of security.

  12. A relativistic trolley paradox

    Science.gov (United States)

    Matvejev, Vadim N.; Matvejev, Oleg V.; Grøn, Ø.

    2016-06-01

    We present an apparent paradox within the special theory of relativity, involving a trolley with relativistic velocity and its rolling wheels. Two solutions are given, both making clear the physical reality of the Lorentz contraction, and that the distance on the rails between each time a specific point on the rim touches the rail is not equal to 2 π R , where R is the radius of the wheel, but 2 π R / √{ 1 - R 2 Ω 2 / c 2 } , where Ω is the angular velocity of the wheels. In one solution, the wheel radius is constant as the velocity of the trolley increases, and in the other the wheels contract in the radial direction. We also explain two surprising facts. First that the shape of a rolling wheel is elliptical in spite of the fact that the upper part of the wheel moves faster than the lower part, and thus is more Lorentz contracted, and second that a Lorentz contracted wheel with relativistic velocity rolls out a larger distance between two successive touches of a point of the wheel on the rails than the length of a circle with the same radius as the wheels.

  13. Fractional Dynamics of Relativistic Particle

    CERN Document Server

    Tarasov, Vasily E

    2011-01-01

    Fractional dynamics of relativistic particle is discussed. Derivatives of fractional orders with respect to proper time describe long-term memory effects that correspond to intrinsic dissipative processes. Relativistic particle subjected to a non-potential four-force is considered as a nonholonomic system. The nonholonomic constraint in four-dimensional space-time represents the relativistic invariance by the equation for four-velocity u_{\\mu} u^{\\mu}+c^2=0, where c is a speed of light in vacuum. In the general case, the fractional dynamics of relativistic particle is described as non-Hamiltonian and dissipative. Conditions for fractional relativistic particle to be a Hamiltonian system are considered.

  14. Hydrodynamical interaction of mildly relativistic ejecta with an ambient medium

    CERN Document Server

    Suzuki, Akihiro; Shigeyama, Toshikazu

    2016-01-01

    Hydrodynamical interaction of spherical ejecta freely expanding at mildly relativistic speeds into an ambient cold medium is studied in semi-analytical and numerical ways to investigate how ejecta produced in energetic stellar explosions dissipate their kinetic energy through the interaction with the surrounding medium. We especially focus on the case in which the circumstellar medium is well represented by a steady wind at a constant mass-loss rate having been ejected from the stellar surface prior to the explosion. As a result of the hydrodynamical interaction, the ejecta and circumstellar medium are swept by the reverse and forward shocks, leading to the formation of a geometrically thin shell. We present a semi-analytical model describing the dynamical evolution of the shell and compare the results with numerical simulations. The shell can give rise to bright emission as it gradually becomes transparent to photons. while it is optically thick. We develop an emission model for the expected emission from th...

  15. Relativistic Cherenkov radiation in a magneto-dielectric media

    Directory of Open Access Journals (Sweden)

    2016-09-01

    Full Text Available In this paper, relativistic Cherenkov radiation was studied in a 3-D magneto-dielectric medium. Electric permittivity and magnetic permeability of the medium as functions of frequency, are assumed to satisfy Kramers- Kronig equations. A new interaction Hamiltonian, which is different from Hamiltonian term in non-relativistic state, was introduced by the quantized vector potential field and particle field operator obtained from the second quantization method. The rate of electron energy dissipation was calculated using Fermi’s golden rule.

  16. Microscopic Processes On Radiation from Accelerated Particles in Relativistic Jets

    Science.gov (United States)

    Nishikawa, K.-I.; Hardee, P. E.; Mizuno, Y.; Medvedev, M.; Zhang, B.; Sol, H.; Niemiec, J.; Pohl, M.; Nordlund, A.; Fredriksen, J.; hide

    2009-01-01

    Nonthermal radiation observed from astrophysical systems containing relativistic jets and shocks, e.g., gamma-ray bursts (GRBs), active galactic nuclei (AGNs), and Galactic microquasar systems usually have power-law emission spectra. Recent PIC simulations of relativistic electron-ion (electro-positron) jets injected into a stationary medium show that particle acceleration occurs within the downstream jet. In the collisionless relativistic shock particle acceleration is due to plasma waves and their associated instabilities (e.g., the Buneman instability, other two-streaming instability, and the Weibel (filamentation) instability) created in the shocks are responsible for particle (electron, positron, and ion) acceleration. The simulation results show that the Weibel instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields. These magnetic fields contribute to the electron's transverse deflection behind the jet head. The jitter'' radiation from deflected electrons has different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants.

  17. COUNTER-ROTATION IN RELATIVISTIC MAGNETOHYDRODYNAMIC JETS

    Energy Technology Data Exchange (ETDEWEB)

    Cayatte, V.; Sauty, C. [Laboratoire Univers et Théories, Observatoire de Paris, UMR 8102 du CNRS, Université Paris Diderot, F-92190 Meudon (France); Vlahakis, N.; Tsinganos, K. [Department of Astrophysics, Astronomy and Mechanics, Faculty of Physics, University of Athens, 15784 Zografos, Athens (Greece); Matsakos, T. [Department of Astronomy and Astrophysics, The University of Chicago, Chicago, IL 60637 (United States); Lima, J. J. G., E-mail: veronique.cayatte@obspm.fr [Centro de Astrofísica, Universidade do Porto, Rua das Estrelas, 4150-762 Porto (Portugal)

    2014-06-10

    Young stellar object observations suggest that some jets rotate in the opposite direction with respect to their disk. In a recent study, Sauty et al. showed that this does not contradict the magnetocentrifugal mechanism that is believed to launch such outflows. Motion signatures that are transverse to the jet axis, in two opposite directions, have recently been measured in M87. One possible interpretation of this motion is that of counter-rotating knots. Here, we extend our previous analytical derivation of counter-rotation to relativistic jets, demonstrating that counter-rotation can indeed take place under rather general conditions. We show that both the magnetic field and a non-negligible enthalpy are necessary at the origin of counter-rotating outflows, and that the effect is associated with a transfer of energy flux from the matter to the electromagnetic field. This can be realized in three cases: if a decreasing enthalpy causes an increase of the Poynting flux, if the flow decelerates, or if strong gradients of the magnetic field are present. An illustration of the involved mechanism is given by an example of a relativistic magnetohydrodynamic jet simulation.

  18. Imbalanced Relativistic Force-Free Magnetohydrodynamic Turbulence

    CERN Document Server

    Cho, Jungyeon

    2013-01-01

    When magnetic energy density is much larger than that of matter, as in pulsar/black hole magnetospheres, the medium becomes force-free and we need relativity to describe it. As in non-relativistic magnetohydrodynamics (MHD), Alfv\\'enic MHD turbulence in the relativistic limit can be described by interactions of counter-traveling wave packets. In this paper we numerically study strong imbalanced MHD turbulence in such environments. Here, imbalanced turbulence means the waves traveling in one direction (dominant waves) have higher amplitudes than the opposite-traveling waves (sub-dominant waves). We find that (1) spectrum of the dominant waves is steeper than that of sub-dominant waves, (2) the anisotropy of the dominant waves is weaker than that of sub-dominant waves, and (3) the dependence of the ratio of magnetic energy densities of dominant and sub-dominant waves on the ratio of energy injection rates is steeper than quadratic (i.e., \\$b_+^2/b_-^2 \\propto (\\epsilon_+/\\epsilon_-)^n \\$ with n>2). These result...

  19. Relativistic Fractal Cosmologies

    CERN Document Server

    Ribeiro, Marcelo B

    2009-01-01

    This article reviews an approach for constructing a simple relativistic fractal cosmology whose main aim is to model the observed inhomogeneities of the distribution of galaxies by means of the Lemaitre-Tolman solution of Einstein's field equations for spherically symmetric dust in comoving coordinates. This model is based on earlier works developed by L. Pietronero and J.R. Wertz on Newtonian cosmology, whose main points are discussed. Observational relations in this spacetime are presented, together with a strategy for finding numerical solutions which approximate an averaged and smoothed out single fractal structure in the past light cone. Such fractal solutions are shown, with one of them being in agreement with some basic observational constraints, including the decay of the average density with the distance as a power law (the de Vaucouleurs' density power law) and the fractal dimension in the range 1 <= D <= 2. The spatially homogeneous Friedmann model is discussed as a special case of the Lemait...

  20. Relativistic Gravothermal Instabilities

    CERN Document Server

    Roupas, Zacharias

    2014-01-01

    The thermodynamic instabilities of the self-gravitating, classical ideal gas are studied in the case of static, spherically symmetric configurations in General Relativity taking into account the Tolman-Ehrenfest effect. One type of instabilities is found at low energies, where thermal energy becomes too weak to halt gravity and another at high energies, where gravitational attraction of thermal pressure overcomes its stabilizing effect. These turning points of stability are found to depend on the total rest mass $\\mathcal{M}$ over the radius $R$. The low energy instability is the relativistic generalization of Antonov instability, which is recovered in the limit $G\\mathcal{M} \\ll R c^2$ and low temperatures, while in the same limit and high temperatures, the high energy instability recovers the instability of the radiation equation of state. In the temperature versus energy diagram of series of equilibria, the two types of gravothermal instabilities make themselves evident as a double spiral! The two energy l...

  1. Relativistic quantum clocks

    CERN Document Server

    Lock, Maximilian P E

    2016-01-01

    The conflict between quantum theory and the theory of relativity is exemplified in their treatment of time. We examine the ways in which their conceptions differ, and describe a semiclassical clock model combining elements of both theories. The results obtained with this clock model in flat spacetime are reviewed, and the problem of generalizing the model to curved spacetime is discussed, before briefly describing an experimental setup which could be used to test of the model. Taking an operationalist view, where time is that which is measured by a clock, we discuss the conclusions that can be drawn from these results, and what clues they contain for a full quantum relativistic theory of time.

  2. Galilean relativistic fluid mechanics

    CERN Document Server

    Ván, Péter

    2015-01-01

    Single component Galilean-relativistic (nonrelativistic) fluids are treated independently of reference frames. The basic fields are given, their balances, thermodynamic relations and the entropy production is calculated. The usual relative basic fields, the mass, momentum and energy densities, the diffusion current density, the pressure tensor and the heat flux are the time- and spacelike components of the third order mass-momentum-energy density tensor according to a velocity field. The transformation rules of the basic fields are derived and prove that the non-equilibrium thermodynamic background theory, that is the Gibbs relation, extensivity condition and the entropy production is absolute, that is independent of the reference frame and also of the fluid velocity. --- Az egykomponensu Galilei-relativisztikus (azaz nemrelativisztikus) disszipativ folyadekokat vonatkoztatasi rendszertol fuggetlenul targyaljuk. Megadjuk az alapmennyisegeket, ezek merlegeit, a termodinamikai osszefuggeseket es kiszamoljuk az ...

  3. Particle-in-cell simulation of a mildly relativistic collision of an electron-ion plasma carrying a quasi-parallel magnetic field: Electron acceleration and magnetic field amplification at supernova shocks

    CERN Document Server

    Dieckmann, M E; Meli, A; O'Connor-Drury, L

    2009-01-01

    Plasma processes close to SNR shocks result in the amplification of magnetic fields and in the acceleration of electrons, injecting them into the diffusive acceleration mechanism. The acceleration of electrons and the B field amplification by the collision of two plasma clouds, each consisting of electrons and ions, at a speed of 0.5c is investigated. A quasi-parallel guiding magnetic field, a cloud density ratio of 10 and a plasma temperature of 25 keV are considered. A quasi-planar shock forms at the front of the dense plasma cloud. It is mediated by a circularly left-hand polarized electromagnetic wave with an electric field component along the guiding magnetic field. Its propagation direction is close to that of the guiding field and orthogonal to the collision boundary. It has a low frequency and a wavelength that equals several times the ion inertial length, which would be indicative of a dispersive Alfven wave close to the ion cyclotron resonance frequency of the left-handed mode (ion whistler), provid...

  4. Lattice Boltzmann model for resistive relativistic magnetohydrodynamics

    CERN Document Server

    Mohseni, F; Succi, S; Herrmann, H J

    2015-01-01

    In this paper, we develop a lattice Boltzmann model for relativistic magnetohydrodynamics (MHD). Even though the model is derived for resistive MHD, it is shown that it is numerically robust even in the high conductivity (ideal MHD) limit. In order to validate the numerical method, test simulations are carried out for both ideal and resistive limits, namely the propagation of Alfv\\'en waves in the ideal MHD and the evolution of current sheets in the resistive regime, where very good agreement is observed comparing to the analytical results. Additionally, two-dimensional magnetic reconnection driven by Kelvin-Helmholtz instability is studied and the effects of different parameters on the reconnection rate are investigated. It is shown that the density ratio has negligible effect on the magnetic reconnection rate, while an increase in shear velocity decreases the reconnection rate. Additionally, it is found that the reconnection rate is proportional to $\\sigma^{-\\frac{1}{2}}$, $\\sigma$ being the conductivity, w...

  5. Central engines of Gamma Ray Bursts. Magnetic mechanism in the collapsar model

    CERN Document Server

    Barkov, Maxim V

    2008-01-01

    In this study we explore the magnetic mechanism of hypernovae and relativistic jets of long duration gamma ray bursts within the collapsar scenario. This is an extension of our earlier work [1]. We track the collapse of massive rotating stars onto a rotating central black hole using axisymmetric general relativistic magnetohydrodynamic code that utilizes a realistic equation of state and takes into account the cooling associated with emission of neutrinos and the energy losses due to dissociation of nuclei. The neutrino heating is not included. We describe solutions with different black hole rotation, mass accretion rate, and strength of progenitor's magnetic field. Some of them exhibits strong explosions driven by Poynting-dominated jets with power up to $12\\times10^{51} {erg s}^{-1}$. These jets originate from the black hole and powered via the Blandford-Znajek mechanism. A provisional criterion for explosion is derived. A number of simulation movies can be downloaded from http://www.maths.leeds.ac.uk/~serg...

  6. Synchrotron radiation of self-collimating relativistic MHD jets

    CERN Document Server

    Porth, Oliver; Meliani, Zakaria; Vaidya, Bhargav

    2011-01-01

    The goal of this paper is to derive signatures of synchrotron radiation from state-of-the-art simulation models of collimating relativistic magnetohydrodynamic (MHD) jets featuring a large-scale helical magnetic field. We perform axisymmetric special relativistic MHD simulations of the jet acceleration region using the PLUTO code. The computational domain extends from the slow magnetosonic launching surface of the disk up to 6000^2 Schwarzschild radii allowing to reach highly relativistic Lorentz factors. The Poynting dominated disk wind develops into a jet with Lorentz factors of 8 and is collimated to 1 degree. In addition to the disk jet, we evolve a thermally driven spine jet, emanating from a hypothetical black hole corona. Solving the linearly polarized synchrotron radiation transport within the jet, we derive VLBI radio and (sub-) mm diagnostics such as core shift, polarization structure, intensity maps, spectra and Faraday rotation measure (RM), directly from the Stokes parameters. We also investigate...

  7. Investigation of Relativistic Electron Resonance with EMIC Waves

    Science.gov (United States)

    Woodger, L. A.; Millan, R. M.; Denton, R. E.

    2008-12-01

    Wave-particle interaction of relativistic electrons with EMIC waves has been proposed as an important loss mechanism for radiation belt electrons (e.g. Thorne and Andreoli, 1980). Lorentzen et al (2000) and Millan et al (2002) suggested this mechanism to be responsible for dusk side relativistic electron precipitation (REP) detected by balloon borne instrumentation. This study will use the linear electromagnetic dispersion code WHAMP to investigate the effects of density, magnetic field, anisotropy, and heavy ions on the minimum resonance energy for relativistic electrons with EMIC waves. Results will be compared with observations of REP during the MAXIS balloon campaign on Jan. 19, 2000 and the MINIS balloon campaign on Jan. 21, 2005.

  8. Fundamentals of collisionless shocks for astrophysical application, 2. Relativistic shocks

    CERN Document Server

    Bykov, A M

    2011-01-01

    We review recent progress on collisionless relativistic shocks. Kinetic instability theory is briefed including its predictions and limitations. The main focus is on numerical experiments in (i) pair and (ii) electron-nucleon plasmas. The main results are: (i) confirmation of shock evolution in non-magnetised relativistic plasma in 3D due to either the lepton-Weibel instability or the ion-Weibel instability; (ii) sensitive dependence on upstream magnetisation ; (iii) the sensitive dependence of particle dynamics on the upstream magnetic inclination angle $\\thetabn$, where particles of $\\thetabn>34^\\circ$ cannot escape upstream, leading to the distinction between `sub-luminal' and `super-luminal' shocks; (iv) particles in ultra-relativistic shocks can hardly overturn the shock and escape to upstream; they may oscillate around the shock ramp for a long time, so to speak `surfing it' and thereby becoming accelerated by a kind of SDA; (v) these particles form a power law tail on the downstream distribution; their...

  9. Blazar flares powered by plasmoids in relativistic reconnection

    CERN Document Server

    Petropoulou, Maria; Sironi, Lorenzo

    2016-01-01

    Powerful flares from blazars with short ($\\sim$ min) variability timescales are challenging for current models of blazar emission. Here, we present a physically motivated ab initio model for blazar flares based on the results of recent particle-in-cell (PIC) simulations of relativistic magnetic reconnection. PIC simulations demonstrate that quasi-spherical plasmoids filled with high-energy particles and magnetic fields are a self-consistent by-product of the reconnection process. By coupling our PIC-based results (i.e., plasmoid growth, acceleration profile, particle and magnetic content) with a kinetic equation for the evolution of the electron distribution function we demonstrate that relativistic reconnection in blazar jets can produce powerful flares whose temporal and spectral properties are consistent with the observations. In particular, our model predicts correlated synchrotron and synchrotron self-Compton flares of duration of several hours--days powered by the largest and slowest moving plasmoids th...

  10. What is "Relativistic Canonical Quantization"?

    OpenAIRE

    Arbatsky, D. A.

    2005-01-01

    The purpose of this review is to give the most popular description of the scheme of quantization of relativistic fields that was named relativistic canonical quantization (RCQ). I do not give here the full exact account of this scheme. But with the help of this review any physicist, even not a specialist in the relativistic quantum theory, will be able to get a general view of the content of RCQ, of its connection with other known approaches, of its novelty and of its fruitfulness.

  11. Aging of civil explosives (Poster)

    NARCIS (Netherlands)

    Krabbendam-La Haye, E.L.M.; Klerk, W.P.C. de; Hoen, C. 't; Krämer, R.E.

    2014-01-01

    For the Dutch MoD and police, TNO composed sets with different kinds of civil explosives to train their detection dogs. The manufacturer of these explosives guarantees several years of stability of these explosives. These sets of explosives are used under different conditions, like temperature and

  12. Parametric Explosion Spectral Model

    Energy Technology Data Exchange (ETDEWEB)

    Ford, S R; Walter, W R

    2012-01-19

    Small underground nuclear explosions need to be confidently detected, identified, and characterized in regions of the world where they have never before occurred. We develop a parametric model of the nuclear explosion seismic source spectrum derived from regional phases that is compatible with earthquake-based geometrical spreading and attenuation. Earthquake spectra are fit with a generalized version of the Brune spectrum, which is a three-parameter model that describes the long-period level, corner-frequency, and spectral slope at high-frequencies. Explosion spectra can be fit with similar spectral models whose parameters are then correlated with near-source geology and containment conditions. We observe a correlation of high gas-porosity (low-strength) with increased spectral slope. The relationship between the parametric equations and the geologic and containment conditions will assist in our physical understanding of the nuclear explosion source.

  13. Explosive Components Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The 98,000 square foot Explosive Components Facility (ECF) is a state-of-the-art facility that provides a full-range of chemical, material, and performance analysis...

  14. Intermittent Explosive Disorder

    Directory of Open Access Journals (Sweden)

    Lut Tamam

    2011-09-01

    Full Text Available Intermittent explosive disorder is an impulse control disorder characterized by the occurrence of discrete episodes of failure to resist aggressive impulses that result in violent assault or destruction of property. Though the prevalence intermittent explosive disorder has been reported to be relatively rare in frontier studies on the field, it is now common opinion that intermittent explosive disorder is far more common than previously thought especially in clinical psychiatry settings. Etiological studies displayed the role of both psychosocial factors like childhood traumas and biological factors like dysfunctional neurotransmitter systems and genetics. In differential diagnosis of the disorder, disorders involving agression as a symptom such as alcohol and drug intoxication, antisocial and borderline personality disorders, personality changes due to general medical conditions and behavioral disorder should be considered. A combination of pharmacological and psychotherapeutic approaches are suggested in the treatment of the disorder. This article briefly reviews the historical background, diagnostic criteria, epidemiology, etiology and treatment of intermittent explosive disorder.

  15. 75 FR 5545 - Explosives

    Science.gov (United States)

    2010-02-03

    ....gov . This Federal Register notice, as well as news releases and other relevant information, are also..., Tobacco, Firearms and Explosives (ATF) regulates the import, manufacture, distribution, and storage of...

  16. Ammonium nitrate explosion hazards

    Directory of Open Access Journals (Sweden)

    Negovanović Milanka

    2015-01-01

    Full Text Available Ammonium nitrate (AN primarily is used as a fertilizer but it is also very important compound in the production of industrial explosives. The application of ammonium nitrate in the production of industrial explosives was related with the early era of Nobel dynamite and widely increased with the appearance of blasting agents such as ANFO and Slurry, in the middle of the last Century. Throughout the world millions of tons of ammonium nitrate are produced annually and handled without incident. Although ammonium nitrate generally is used safely, accidental explosions involving AN have high impact resulting in loss of lives and destruction of property. The paper presents the basic properties of ammonium nitrate as well as hazards in handling of ammonium nitrate in order to prevent accidents. Several accidents with explosions of ammonium nitrate resulted in catastrophic consequences are listed in the paper as examples of non-compliance with prescribed procedures.

  17. Explosion suppression system

    Science.gov (United States)

    Sapko, Michael J.; Cortese, Robert A.

    1992-01-01

    An explosion suppression system and triggering apparatus therefor are provided for quenching gas and dust explosions. An electrically actuated suppression mechanism which dispenses an extinguishing agent into the path ahead of the propagating flame is actuated by a triggering device which is light powered. This triggering device is located upstream of the propagating flame and converts light from the flame to an electrical actuation signal. A pressure arming device electrically connects the triggering device to the suppression device only when the explosion is sensed by a further characteristic thereof beside the flame such as the pioneer pressure wave. The light powered triggering device includes a solar panel which is disposed in the path of the explosion and oriented between horizontally downward and vertical. Testing mechanisms are also preferably provided to test the operation of the solar panel and detonator as well as the pressure arming mechanism.

  18. Shock waves & explosions

    CERN Document Server

    Sachdev, PL

    2004-01-01

    Understanding the causes and effects of explosions is important to experts in a broad range of disciplines, including the military, industrial and environmental research, aeronautic engineering, and applied mathematics. Offering an introductory review of historic research, Shock Waves and Explosions brings analytic and computational methods to a wide audience in a clear and thorough way. Beginning with an overview of the research on combustion and gas dynamics in the 1970s and 1980s, the author brings you up to date by covering modeling techniques and asymptotic and perturbative methods and ending with a chapter on computational methods.Most of the book deals with the mathematical analysis of explosions, but computational results are also included wherever they are available. Historical perspectives are provided on the advent of nonlinear science, as well as on the mathematical study of the blast wave phenomenon, both when visualized as a point explosion and when simulated as the expansion of a high-pressure ...

  19. General Relativistic Radiative Transfer and GeneralRelativistic MHD Simulations of Accretion and Outflows of Black Holes

    Energy Technology Data Exchange (ETDEWEB)

    Fuerst, Steven V.; /KIPAC, Menlo Park; Mizuno, Yosuke; /USRA, Huntsville; Nishikawa, Ken-Ichi; /USRA, Huntsville /Alabama U., Huntsville; Wu, Kinwah; /Mullard Space Sci.

    2007-01-05

    We calculate the emission from relativistic flows in black hole systems using a fully general relativistic radiative transfer formulation, with flow structures obtained by general relativistic magneto-hydrodynamic simulations. We consider thermal free-free emission and thermal synchrotron emission. Bright filament-like features protrude (visually) from the accretion disk surface, which are enhancements of synchrotron emission where the magnetic field roughly aligns with the line-of-sight in the co-moving frame. The features move back and forth as the accretion flow evolves, but their visibility and morphology are robust. We propose that variations and drifts of the features produce certain X-ray quasi-periodic oscillations (QPOs) observed in black-hole X-ray binaries.

  20. Strong-field relativistic processes in highly charged ions

    Energy Technology Data Exchange (ETDEWEB)

    Postavaru, Octavian

    2010-12-08

    In this thesis we investigate strong-field relativistic processes in highly charged ions. In the first part, we study resonance fluorescence of laser-driven highly charged ions in the relativistic regime by solving the time-dependent master equation in a multi-level model. Our ab initio approach based on the Dirac equation allows for investigating highly relativistic ions, and, consequently, provides a sensitive means to test correlated relativistic dynamics, bound-state quantum electrodynamic phenomena and nuclear effects by applying coherent light with x-ray frequencies. Atomic dipole or multipole moments may be determined to unprecedented accuracy by measuring the interference-narrowed fluorescence spectrum. Furthermore, we investigate the level structure of heavy hydrogenlike ions in laser beams. Interaction with the light field leads to dynamic shifts of the electronic energy levels, which is relevant for spectroscopic experiments. We apply a fully relativistic description of the electronic states by means of the Dirac equation. Our formalism goes beyond the dipole approximation and takes into account non-dipole effects of retardation and interaction with the magnetic field components of the laser beam. We predicted cross sections for the inter-shell trielectronic recombination (TR) and quadruelectronic recombination processes which have been experimentally confirmed in electron beam ion trap measurements, mainly for C-like ions, of Ar, Fe and Kr. For Kr{sup 30}+, inter-shell TR contributions of nearly 6% to the total resonant photorecombination rate were found. (orig.)

  1. Explosive Welding with Nitroguanidine.

    Science.gov (United States)

    Sadwin, L D

    1964-03-13

    By using the explosive nitroguanidine, continuous welds can be made between similar and dissimilar metals. Since low detonation pressures are attainable, pressure transfer media are not required between the explosive and the metal surface. The need for either a space or an angle between the metals is eliminated, and very low atmospheric pressures are not required. Successful welds have been made between tantalum and 4140 steel, 3003H14 aluminum and 4140 steel, and 304 stainless steel and 3003H14 aluminum.

  2. Overview of Explosive Initiators

    Science.gov (United States)

    2015-11-01

    important characteristics of an effective primary explosive is an extremely swift deflagration to detonation transition, meaning that once the... Taylor , G. W. C., Napier, S. E., "Preparation of Explosive Substances Containing Carboxymethyl Cellulose," U.S. Patent 3,291,664, 1966. 8 Perich, A...Rinkenbach, W. H., "Study of the Action of Lead Azide on Copper," U.S. Army ARDEC, Picatinny Arsenal, NJ, Technical Report No. 1152, 1942. 11 Taylor , G. W

  3. Handbook of HE (High Explosives) Explosive Effects

    Science.gov (United States)

    1986-04-11

    uPcup SI.B iPip P 3 [ xpI os i or ,tf fects, Lx’i Osions In Air,6 19 6T~lT’ Explosions, Airblast - 19 ABSTRAC.T ’Continuje on "uri~ee it neczessary and...AIR FORCE INSTITUTE OF TECHNOLOGY/EN ATTN: MAT 0323 ATTN- LIURARY/AFIT/LDEE NAVAL OCEAN SYSTEMS CENTER AIR FORCE LOGISTICS COMMAND ATTN: CODE 825

  4. Linking accretion flow and particle acceleration in jets. I. New relativistic magnetohydrodynamical jet solutions including gravity

    CERN Document Server

    Polko, Peter; Markoff, Sera

    2012-01-01

    We present a new, approximate method for modelling the acceleration and collimation of relativistic jets in the presence of gravity. This method is self-similar throughout the computational domain where gravitational effects are negligible and, where significant, self-similar within a flux tube. These solutions are applicable to jets launched from a small region (e.g., near the inner edge of an accretion disk). As implied by earlier work, the flow can converge onto the rotation axis, potentially creating a collimation shock. In this first version of the method, we derive the gravitational contribution to the relativistic equations by analogy with non-relativistic flow. This approach captures the relativistic kinetic gravitational mass of the flowing plasma, but not that due to internal thermal and magnetic energies. A more sophisticated treatment, derived from the basic general relativistic magnetohydrodynamical equations, is currently being developed. Here we present an initial exploration of parameter space...

  5. Simulating relativistic binaries with Whisky

    Science.gov (United States)

    Baiotti, L.

    We report about our first tests and results in simulating the last phase of the coalescence and the merger of binary relativistic stars. The simulations were performed using our code Whisky and mesh refinement through the Carpet driver.

  6. Relativistic effects in atom gravimeters

    Science.gov (United States)

    Tan, Yu-Jie; Shao, Cheng-Gang; Hu, Zhong-Kun

    2017-01-01

    Atom interferometry is currently developing rapidly, which is now reaching sufficient precision to motivate laboratory tests of general relativity. Thus, it is extremely significant to develop a general relativistic model for atom interferometers. In this paper, we mainly present an analytical derivation process and first give a complete vectorial expression for the relativistic interferometric phase shift in an atom interferometer. The dynamics of the interferometer are studied, where both the atoms and the light are treated relativistically. Then, an appropriate coordinate transformation for the light is performed crucially to simplify the calculation. In addition, the Bordé A B C D matrix combined with quantum mechanics and the "perturbation" approach are applied to make a methodical calculation for the total phase shift. Finally, we derive the relativistic phase shift kept up to a sensitivity of the acceleration ˜1 0-14 m/s 2 for a 10 -m -long atom interferometer.

  7. Scattering in Relativistic Particle Mechanics.

    Science.gov (United States)

    de Bievre, Stephan

    The problem of direct interaction in relativistic particle mechanics has been extensively studied and a variety of models has been proposed avoiding the conclusions of the so-called no-interaction theorems. In this thesis we study scattering in the relativistic two-body problem. We use our results to analyse gauge invariance in Hamiltonian constraint models and the uniqueness of the symplectic structure in manifestly covariant relativistic particle mechanics. We first present a general geometric framework that underlies approaches to relativistic particle mechanics. This permits a model-independent and geometric definition of the notions of asymptotic completeness and of Moller and scattering operators. Subsequent analysis of these concepts divides into two parts. First, we study the kinematic properties of the scattering transformation, i.e. those properties that arise solely from the invariance of the theory under the Poincare group. We classify all canonical (symplectic) scattering transformations on the relativistic phase space for two free particles in terms of a single function of the two invariants of the theory. We show how this function is determined by the center of mass time delay and scattering angle and vice versa. The second part of our analysis of the relativistic two-body scattering problem is devoted to the dynamical properties of the scattering process. Hence, we turn to two approaches to relativistic particle mechanics: the Hamiltonian constraint models and the manifestly covariant formalism. Using general geometric arguments, we prove "gauge invariance" of the scattering transformation in the Todorov -Komar Hamiltonian constraint model. We conclude that the scattering cross sections of the Todorov-Komar models have the same angular dependence as their non-relativistic counterpart, irrespective of a choice of gauge. This limits the physical relevance of those models. We present a physically non -trivial Hamiltonian constraint model, starting from

  8. Soliton propagation in relativistic hydrodynamics

    CERN Document Server

    Fogaça, D A; 10.1016/j.nuclphysa.2007.03.104

    2013-01-01

    We study the conditions for the formation and propagation of Korteweg-de Vries (KdV) solitons in nuclear matter. In a previous work we have derived a KdV equation from Euler and continuity equations in non-relativistic hydrodynamics. In the present contribution we extend our formalism to relativistic fluids. We present results for a given equation of state, which is based on quantum hadrodynamics (QHD).

  9. Relativistic formulation and reference frame

    OpenAIRE

    Klioner, Sergei A.

    2004-01-01

    After a short review of experimental foundations of metric theories of gravity, the choice of general relativity as a theory to be used for the routine modeling of Gaia observations is justified. General principles of relativistic modeling of astronomical observations are then sketched and compared to the corresponding Newtonian principles. The fundamental reference system -- Barycentric Celestial Reference System, which has been chosen to be the relativistic reference system underlying the f...

  10. 49 CFR 172.522 - EXPLOSIVES 1.1, EXPLOSIVES 1.2 and EXPLOSIVES 1.3 placards.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false EXPLOSIVES 1.1, EXPLOSIVES 1.2 and EXPLOSIVES 1.3... INFORMATION, TRAINING REQUIREMENTS, AND SECURITY PLANS Placarding § 172.522 EXPLOSIVES 1.1, EXPLOSIVES 1.2 and EXPLOSIVES 1.3 placards. (a) Except for size and color, the EXPLOSIVES 1.1, EXPLOSIVES 1.2 and EXPLOSIVES 1.3...

  11. Classical and relativistic flux of energy conservation in astrophysical jets

    CERN Document Server

    Zaninetti, L

    2016-01-01

    The conservation of the energy flux in turbulent jets which propagate in the intergalactic medium (IGM) allows deducing the law of motion in the classical and relativistic cases. Three types of IGM are considered: constant density, hyperbolic and inverse power law decrease of density. An analytical law for the evolution of the magnetic field along the radio-jets is deduced using a linear relation between the magnetic pressure and the rest density. Astrophysical applications are made to the centerline intensity of synchrotron emission in NGC315 and to the magnetic field of 3C273.

  12. Relativistic HD and MHD modelling for AGN jets

    Science.gov (United States)

    Keppens, R.; Porth, O.; Monceau-Baroux, R.; Walg, S.

    2013-12-01

    Relativistic hydro and magnetohydrodynamics (MHD) provide a continuum fluid description for plasma dynamics characterized by shock-dominated flows approaching the speed of light. Significant progress in its numerical modelling emerged in the last two decades; we highlight selected examples of modern grid-adaptive, massively parallel simulations realized by our open-source software MPI-AMRVAC (Keppens et al 2012 J. Comput. Phys. 231 718). Hydrodynamical models quantify how energy transfer from active galactic nuclei (AGN) jets to their surrounding interstellar/intergalactic medium (ISM/IGM) gets mediated through shocks and various fluid instability mechanisms (Monceau-Baroux et al 2012 Astron. Astrophys. 545 A62). With jet parameters representative for Fanaroff-Riley type-II jets with finite opening angles, we can quantify the ISM volumes affected by jet injection and distinguish the roles of mixing versus shock-heating in cocoon regions. This provides insight in energy feedback by AGN jets, usually incorporated parametrically in cosmological evolution scenarios. We discuss recent axisymmetric studies up to full 3D simulations for precessing relativistic jets, where synthetic radio maps can confront observations. While relativistic hydrodynamic models allow one to better constrain dynamical parameters like the Lorentz factor and density contrast between jets and their surroundings, the role of magnetic fields in AGN jet dynamics and propagation characteristics needs full relativistic MHD treatments. Then, we can demonstrate the collimating properties of an overal helical magnetic field backbone and study differences between poloidal versus toroidal field dominated scenarios (Keppens et al 2008 Astron. Astrophys. 486 663). Full 3D simulations allow one to consider the fate of non-axisymmetric perturbations on relativistic jet propagation from rotating magnetospheres (Porth 2013 Mon. Not. R. Astron. Soc. 429 2482). Self-stabilization mechanisms related to the detailed

  13. Symmetries and couplings of non-relativistic electrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Festuccia, Guido [Department of Physics and Astronomy, Uppsala University,Lägerhyddsvägen 1, Uppsala (Sweden); Hansen, Dennis [The Niels Bohr Institute, Copenhagen University,Blegdamsvej 17, Copenhagen Ø, DK-2100 (Denmark); Hartong, Jelle [Physique Théorique et Mathématique and International Solvay Institutes,Université Libre de Bruxelles, C.P. 231, Brussels, 1050 (Belgium); Obers, Niels A. [The Niels Bohr Institute, Copenhagen University,Blegdamsvej 17, Copenhagen Ø, DK-2100 (Denmark)

    2016-11-08

    We examine three versions of non-relativistic electrodynamics, known as the electric and magnetic limit theories of Maxwell’s equations and Galilean electrodynamics (GED) which is the off-shell non-relativistic limit of Maxwell plus a free scalar field. For each of these three cases we study the couplings to non-relativistic dynamical charged matter (point particles and charged complex scalars). The GED theory contains besides the electric and magnetic potentials a so-called mass potential making the mass parameter a local function. The electric and magnetic limit theories can be coupled to twistless torsional Newton-Cartan geometry while GED can be coupled to an arbitrary torsional Newton-Cartan background. The global symmetries of the electric and magnetic limit theories on flat space consist in any dimension of the infinite dimensional Galilean conformal algebra and a U(1) current algebra. For the on-shell GED theory this symmetry is reduced but still infinite dimensional, while off-shell only the Galilei algebra plus two dilatations remain. Hence one can scale time and space independently, allowing Lifshitz scale symmetries for any value of the critical exponent z.

  14. Particle Acceleration in Relativistic Jets Due to Weibel Instability

    Science.gov (United States)

    Nishikawa, K.-I.; Hardee, P.; Richardson, G.; Preece, R.; Sol, H.; Fishman, G. J.

    2004-01-01

    Shock acceleration is a ubiquitous phenomenon in astrophysical plasmas. Plasma waves and their associated instabilities (e.g., the Buneman instability, two-streaming instability, and the Weibel instability) created in the shocks are responsible for particle (electron, positron, and ion) acceleration. Using a three-dimensional relativistic electromagnetic particle code, we have investigated particle acceleration associated with a relativistic jet front propagating through an ambient plasma with and without initial magnetic fields. We find only small differences in the results between no ambient and weak ambient magnetic fields. Simulations show that the Weibel instability created in the collisionless shock front accelerates particles perpendicular and parallel to the jet propagation direction. While some Fermi acceleration may occur at the jet front, the majority of electron acceleration takes place behind the jet front and cannot be characterized as Fermi acceleration. The simulation results show that this instability is responsible for generating and amplifying highly nonuniform, small-scale magnetic fields, which contribute to the electron s transverse deflection behind the jet head. The "jitter" radiation from deflected electrons has different properties than synchrotron radiation which is calculated in a uniform magnetic field. This jitter radiation may be important to understanding the complex time evolution and/or spectral structure in gamma-ray bursts, relativistic jets, and supernova remnants.

  15. Symmetries and Couplings of Non-Relativistic Electrodynamics

    CERN Document Server

    Festuccia, Guido; Hartong, Jelle; Obers, Niels A

    2016-01-01

    We examine three versions of non-relativistic electrodynamics, known as the electric and magnetic limit theories of Maxwell's equations and Galilean electrodynamics (GED) which is the off-shell non-relativistic limit of Maxwell plus a free scalar field. For each of these three cases we study the couplings to non-relativistic dynamical charged matter (point particles and charged complex scalars). The GED theory contains besides the electric and magnetic potentials a so-called mass potential making the mass parameter a local function. The electric and magnetic limit theories can be coupled to twistless torsional Newton-Cartan geometry while GED can be coupled to an arbitrary torsional Newton-Cartan background. The global symmetries of the electric and magnetic limit theories on flat space consist in any dimension of the infinite dimensional Galilean conformal algebra and a $U(1)$ current algebra. For the on-shell GED theory this symmetry is reduced but still infinite dimensional, while off-shell only the Galile...

  16. Self-similar ultra-relativistic jetted blast wave

    CERN Document Server

    Keshet, Uri

    2015-01-01

    Following a suggestion that a directed relativistic explosion may have a universal intermediate asymptotic, we derive a self-similar solution for an ultra-relativistic jetted blast wave. The solution involves three distinct regions: an approximately paraboloid head where the Lorentz factor $\\gamma$ exceeds $\\sim1/2$ of its maximal, nose value; a geometrically self-similar, expanding envelope slightly narrower than a paraboloid; and an axial core in which the radial flow $U$ converges inward towards the axis. Most ($\\sim 80\\%$) of the energy lies well beyond the head. Here, a radial cross section shows a maximal $\\gamma$ (separating the core and the envelope), a sign reversal in $U$, and a minimal $\\gamma$, at respectively $\\sim 1/6$, $\\sim1/4$, and $\\sim3/4$ of the shock radius. The solution is apparently unique, and approximately agrees with previous simulations, of different initial conditions, that resolved the head. This suggests that unlike a spherical relativistic blast wave, our solution is an attracto...

  17. The Full Function Test Explosive Generator

    Energy Technology Data Exchange (ETDEWEB)

    Reisman, D B; Javedani, J B; Griffith, L V; Ellsworth, G F; Kuklo, R M; Goerz, D A; White, A D; Tallerico, L J; Gidding, D A; Murphy, M J; Chase, J B

    2009-12-13

    We have conducted three tests of a new pulsed power device called the Full Function Test (FFT). These tests represented the culmination of an effort to establish a high energy pulsed power capability based on high explosive pulsed power (HEPP) technology. This involved an extensive computational modeling, engineering, fabrication, and fielding effort. The experiments were highly successful and a new US record for magnetic energy was obtained.

  18. Asymmetric Explosions of Thermonuclear Supernovae

    CERN Document Server

    Ghezzi, C R; Horváth, J E

    2004-01-01

    A type Ia supernova explosion starts in a white dwarf as a laminar deflagration at the center of the star and soon several hydrodynamic instabilities (in particular, the Rayleigh-Taylor (R-T) instability) begin to act. In previous work (Ghezzi, de Gouveia Dal Pino, & Horvath 2001), we addressed the propagation of an initially laminar thermonuclear flame in presence of a magnetic field assumed to be dipolar. We were able to show that, within the framework of a fractal model for the flame velocity, the front is affected by the field through the quenching of the R-T instability growth in the direction perpendicular to the field lines. As a consequence, an asymmetry develops between the magnetic polar and the equatorial axis that gives a prolate shape to the burning front. We have here computed numerically the total integrated asymmetry as the flame front propagates outward through the expanding shells of decreasing density of the magnetized white dwarf progenitor, for several chemical compositions, and found...

  19. Explosive welding of pipes

    Energy Technology Data Exchange (ETDEWEB)

    Drennov, O.; Burtseva, O.; Kitin, A. [Russian Federal Nuclear Center, Sarov (Russian Federation)

    2006-08-15

    Arrangement of pipelines for the transportation of oil and gas is a complicated problem. In this paper it is suggested to use the explosive welding method to weld pipes together. This method is rather new. This method can be advantageous (saving material and physical resources) comparing to its static analogs (electron-beam welding, argon-arc welding, plasma welding, gas welding, etc.), in particular, in hard-to-reach areas due to their geographic and climatic conditions. We suggest to perform explosive welding according to the following scheme: the ends of the 2 pipes are connected, the external surfaces are kept at a similar level. A cylindrical steel layer of diameter larger than the pipe diameter is set around the pipe joint and an explosive charge is placed on its external surface. The basic problem is the elimination of strains and reduction of pipe diameter in the area of the dynamic effect. The suggestion is to use water as filler: the volume of pipes in the area adjacent to the zone of explosive welding is totally filled with water. The principle of non-compressibility of liquid under quasi-dynamic loading is used. In one-dimensional gas dynamic and elastic-plastic calculations we determined non-deformed mass of water. Model experiments with pipes having radii R = 57 mm confirmed results of the calculations and the possibility in principle to weld pipes by explosion with use of water as filler.

  20. Surface explosion cavities

    CERN Document Server

    Benusiglio, Adrien; Clanet, Christophe

    2012-01-01

    We present a fluid dynamics video on cavities created by explosions of firecrackers at the water free surface. We use three types of firecrackers containing 1, 1.3 and 5 g of flash powder. The firecrackers are held with their center at the surface of water in a cubic meter pool. The movies are recorded from the side with a high-speed video camera. Without confinement the explosion produces an hemispherical cavity. Right after the explosion this cavity grows isotropically, the bottom then stops while the sides continue to expand. In the next phase the bottom of the cavity accelerates backwards to the surface. During this phase the convergence of the flow creates a central jet that rises above the free surface. In the last part of the video the explosion is confined in a vertical open tube made of glass and of centimetric diameter. The explosion creates a cylindrical cavity that develops towards the free end of the tube. Depending on the charge, the cavity can either stop inside the tube or at its exit, but nev...