WorldWideScience

Sample records for relativistic kinetic equations

  1. Relativistic equations

    International Nuclear Information System (INIS)

    Gross, F.

    1986-01-01

    Relativistic equations for two and three body scattering are discussed. Particular attention is paid to relativistic three body kinetics because of recent form factor measurements of the Helium 3 - Hydrogen 3 system recently completed at Saclay and Bates and the accompanying speculation that relativistic effects are important for understanding the three nucleon system. 16 refs., 4 figs

  2. Non-relativistic and relativistic quantum kinetic equations in nuclear physics

    International Nuclear Information System (INIS)

    Botermans, W.M.M.

    1989-01-01

    In this thesis an attempt is made to draw up a quantummechanical tranport equation for the explicit calculation oof collision processes between two (heavy) ions, by making proper approaches of the exact equations (non-rel.: N-particles Schroedinger equation; rel.: Euler-Lagrange field equations.). An important starting point in the drag-up of the theory is the behaviour of nuclear matter in equilibrium which is determined by individual as well as collective effects. The central point in this theory is the effective interaction between two nucleons both surrounded by other nucleons. In the derivation of the tranport equations use is made of the green's function formalism as developed by Schwinger and Keldys. For the Green's function kinematic equations are drawn up and are solved by choosing a proper factorization of three- and four-particle Green's functions in terms of one- and two-particle Green's functions. The necessary boundary condition is obtained by explicitly making use of Boltzmann's assumption that colliding particles are statistically uncorrelated. Finally a transport equation is obtained in which the mean field as well as the nucleon-nucleon collisions are given by the same (medium dependent) interaction. This interaction is the non-equilibrium extension of the interaction as given in the Brueckner theory of nuclear matter. Together, kinetic equation and interaction, form a self-consistent set of equations for the case of a non-relativistic as well as for the case of a relativistic starting point. (H.W.) 148 refs.; 6 figs.; 411 schemes

  3. Relativistic Kinetic Theory

    Science.gov (United States)

    Vereshchagin, Gregory V.; Aksenov, Alexey G.

    2017-02-01

    Preface; Acknowledgements; Acronyms and definitions; Introduction; Part I. Theoretical Foundations: 1. Basic concepts; 2. Kinetic equation; 3. Averaging; 4. Conservation laws and equilibrium; 5. Relativistic BBGKY hierarchy; 6. Basic parameters in gases and plasmas; Part II. Numerical Methods: 7. The basics of computational physics; 8. Direct integration of Boltzmann equations; 9. Multidimensional hydrodynamics; Part III. Applications: 10. Wave dispersion in relativistic plasma; 11. Thermalization in relativistic plasma; 12. Kinetics of particles in strong fields; 13. Compton scattering in astrophysics and cosmology; 14. Self-gravitating systems; 15. Neutrinos, gravitational collapse and supernovae; Appendices; Bibliography; Index.

  4. Comparison of two forms of Vlasov-type relativistic kinetic equations in hadrodynamics

    International Nuclear Information System (INIS)

    Mashnik, S.G.; Maino, G.

    1996-01-01

    A comparison of two methods in the relativistic kinetic theory of the Fermi systems is carried out assuming, as an example, the simplest σω-version of quantum hadrodynamics with allowance for strong mean meson fields. It is shown that the Vlasov-type relativistic kinetic equation (VRKE) obtained by means of the procedure of squaring at an intermediate step is responsible for unphysical features. A direct method of derivation of kinetic equations is proposed. This method does not contain such drawback and gives rise to VRKE in hydrodynamics of a non-contradictory form in which both spin degrees of freedom and states with positive and negative energies are taken into account. 17 refs

  5. PADÉ APPROXIMANTS FOR THE EQUATION OF STATE FOR RELATIVISTIC HYDRODYNAMICS BY KINETIC THEORY

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, Shang-Hsi; Yang, Jaw-Yen, E-mail: shanghsi@gmail.com [Institute of Applied Mechanics, National Taiwan University, Taipei 10764, Taiwan (China)

    2015-07-20

    A two-point Padé approximant (TPPA) algorithm is developed for the equation of state (EOS) for relativistic hydrodynamic systems, which are described by the classical Maxwell–Boltzmann statistics and the semiclassical Fermi–Dirac statistics with complete degeneracy. The underlying rational function is determined by the ratios of the macroscopic state variables with various orders of accuracy taken at the extreme relativistic limits. The nonunique TPPAs are validated by Taub's inequality for the consistency of the kinetic theory and the special theory of relativity. The proposed TPPA is utilized in deriving the EOS of the dilute gas and in calculating the specific heat capacity, the adiabatic index function, and the isentropic sound speed of the ideal gas. Some general guidelines are provided for the application of an arbitrary accuracy requirement. The superiority of the proposed TPPA is manifested in manipulating the constituent polynomials of the approximants, which avoids the arithmetic complexity of struggling with the modified Bessel functions and the hyperbolic trigonometric functions arising from the relativistic kinetic theory.

  6. Relativistic charged fluids: hydrodynamic and kinetic approaches

    International Nuclear Information System (INIS)

    Debbasch, F.; Bonnaud, G.

    1991-10-01

    This report gives a rigorous and consistent hydrodynamic and kinetic description of a charged fluid and the basis equations, in a relativistic context. This study should lead to a reliable model, as much analytical as numerical, of relativistic plasmas which will appear in the interaction of a strong laser field with a plasma. For simplicity, we limited our study to a perfect fluid or, in other words, we disregarded the energy dissipation processes inside the fluid [fr

  7. DKE: a fast numerical solver for the 3-D relativistic bounce-averaged electron drift kinetic equation

    Energy Technology Data Exchange (ETDEWEB)

    Decker, J.; Peysson, Y

    2004-12-01

    A new original code for solving the 3-D relativistic and bounce-averaged electron drift kinetic equation is presented. It designed for the current drive problem in tokamak with an arbitrary magnetic equilibrium. This tool allows self-consistent calculations of the bootstrap current in presence of other external current sources. RF current drive for arbitrary type of waves may be used. Several moments of the electron distribution function are determined, like the exact and effective fractions of trapped electrons, the plasma current, absorbed RF power, runaway and magnetic ripple loss rates and non-thermal Bremsstrahlung. Advanced numerical techniques have been used to make it the first fully implicit (reverse time) 3-D solver, particularly well designed for implementation in a chain of code for realistic current drive calculations in high {beta}{sub p} plasmas. All the details of the physics background and the numerical scheme are presented, as well a some examples to illustrate main code capabilities. Several important numerical points are addressed concerning code stability and potential numerical and physical limitations. (authors)

  8. DKE: a fast numerical solver for the 3-D relativistic bounce-averaged electron drift kinetic equation

    International Nuclear Information System (INIS)

    Decker, J.; Peysson, Y.

    2004-12-01

    A new original code for solving the 3-D relativistic and bounce-averaged electron drift kinetic equation is presented. It designed for the current drive problem in tokamak with an arbitrary magnetic equilibrium. This tool allows self-consistent calculations of the bootstrap current in presence of other external current sources. RF current drive for arbitrary type of waves may be used. Several moments of the electron distribution function are determined, like the exact and effective fractions of trapped electrons, the plasma current, absorbed RF power, runaway and magnetic ripple loss rates and non-thermal Bremsstrahlung. Advanced numerical techniques have been used to make it the first fully implicit (reverse time) 3-D solver, particularly well designed for implementation in a chain of code for realistic current drive calculations in high β p plasmas. All the details of the physics background and the numerical scheme are presented, as well a some examples to illustrate main code capabilities. Several important numerical points are addressed concerning code stability and potential numerical and physical limitations. (authors)

  9. The relativistic electron wave equation

    International Nuclear Information System (INIS)

    Dirac, P.A.M.

    1977-08-01

    The paper was presented at the European Conference on Particle Physics held in Budapest between the 4th and 9th July of 1977. A short review is given on the birth of the relativistic electron wave equation. After Schroedinger has shown the equivalence of his wave mechanics and the matrix mechanics of Heisenberg, a general transformation theory was developed by the author. This theory required a relativistic wave equation linear in delta/delta t. As the Klein--Gordon equation available at this time did not satisfy this condition the development of a new equation became necessary. The equation which was found gave the value of the electron spin and magnetic moment automatically. (D.P.)

  10. Relativistic Chiral Kinetic Theory

    International Nuclear Information System (INIS)

    Stephanov, Mikhail

    2016-01-01

    This very brief review of the recent progress in chiral kinetic theory is based on the results of Refs. [J.-Y. Chen, D. T. Son, M. A. Stephanov, H.-U. Yee, Y. Yin, Lorentz Invariance in Chiral Kinetic Theory, Phys. Rev. Lett. 113 (18) (2014) 182302. doi: (10.1103/PhysRevLett.113.182302); J.-Y. Chen, D. T. Son, M. A. Stephanov, Collisions in Chiral Kinetic Theory, Phys. Rev. Lett. 115 (2) (2015) 021601. doi: (10.1103/PhysRevLett.115.021601); M. A. Stephanov, H.-U. Yee, The no-drag frame for anomalous chiral fluid, Phys. Rev. Lett. 116 (12) (2016) 122302. doi: (10.1103/PhysRevLett.116.122302)].

  11. Relativistic Chiral Kinetic Theory

    Energy Technology Data Exchange (ETDEWEB)

    Stephanov, Mikhail

    2016-12-15

    This very brief review of the recent progress in chiral kinetic theory is based on the results of Refs. [J.-Y. Chen, D. T. Son, M. A. Stephanov, H.-U. Yee, Y. Yin, Lorentz Invariance in Chiral Kinetic Theory, Phys. Rev. Lett. 113 (18) (2014) 182302. doi: (10.1103/PhysRevLett.113.182302); J.-Y. Chen, D. T. Son, M. A. Stephanov, Collisions in Chiral Kinetic Theory, Phys. Rev. Lett. 115 (2) (2015) 021601. doi: (10.1103/PhysRevLett.115.021601); M. A. Stephanov, H.-U. Yee, The no-drag frame for anomalous chiral fluid, Phys. Rev. Lett. 116 (12) (2016) 122302. doi: (10.1103/PhysRevLett.116.122302)].

  12. Relativistic kinetic theory with applications in astrophysics and cosmology

    CERN Document Server

    Vereshchagin, Gregory V

    2017-01-01

    Relativistic kinetic theory has widespread application in astrophysics and cosmology. The interest has grown in recent years as experimentalists are now able to make reliable measurements on physical systems where relativistic effects are no longer negligible. This ambitious monograph is divided into three parts. It presents the basic ideas and concepts of this theory, equations and methods, including derivation of kinetic equations from the relativistic BBGKY hierarchy and discussion of the relation between kinetic and hydrodynamic levels of description. The second part introduces elements of computational physics with special emphasis on numerical integration of Boltzmann equations and related approaches, as well as multi-component hydrodynamics. The third part presents an overview of applications ranging from covariant theory of plasma response, thermalization of relativistic plasma, comptonization in static and moving media to kinetics of self-gravitating systems, cosmological structure formation and neut...

  13. Kinetic approach to relativistic dissipation

    Science.gov (United States)

    Gabbana, A.; Mendoza, M.; Succi, S.; Tripiccione, R.

    2017-08-01

    Despite a long record of intense effort, the basic mechanisms by which dissipation emerges from the microscopic dynamics of a relativistic fluid still elude complete understanding. In particular, several details must still be finalized in the pathway from kinetic theory to hydrodynamics mainly in the derivation of the values of the transport coefficients. In this paper, we approach the problem by matching data from lattice-kinetic simulations with analytical predictions. Our numerical results provide neat evidence in favor of the Chapman-Enskog [The Mathematical Theory of Non-Uniform Gases, 3rd ed. (Cambridge University Press, Cambridge, U.K., 1970)] procedure as suggested by recent theoretical analyses along with qualitative hints at the basic reasons why the Chapman-Enskog expansion might be better suited than Grad's method [Commun. Pure Appl. Math. 2, 331 (1949), 10.1002/cpa.3160020403] to capture the emergence of dissipative effects in relativistic fluids.

  14. The ionisation equation in a relativistic gas

    International Nuclear Information System (INIS)

    Kichenassamy, S.; Krikorian, R.A.

    1983-01-01

    By deriving the relativistic form of the ionisation equation for a perfect gas it is shown that the usual Saha equation is valid to 3% for temperatures below one hundred million Kelvin. Beyond 10 9 K, the regular Saha equation is seriously incorrect and a relativistic distribution function for electrons must be taken into account. Approximate forms are derived when only the electrons are relativistic (appropriate up to 10 12 K) and also for the ultrarelativistic case (temperatures greater than 10 15 K). (author)

  15. Relativistic nuclear fluid dynamics and VUU kinetic theory

    International Nuclear Information System (INIS)

    Molitoris, J.J.; Hahn, D.; Alonso, C.; Collazo, I.; D'Alessandris, P.; McAbee, T.; Wilson, J.; Zingman, J.

    1987-01-01

    Relativistic kinetic theory may be used to understand hot dense hadronic matter. We address the questions of collective flow and pion production in a 3 D relativistic fluid dynamic model and in the VUU microscopic theory. The GSI/LBL collective flow and pion data point to a stiff equation of state. The effect of the nuclear equation of state on the thermodynamic parameters is discussed. The properties of dense hot hadronic matter are studied in Au + Au collisions from 0.1 to 10 GeV/nucleon. 22 refs., 5 figs

  16. Global existence proof for relativistic Boltzmann equation

    International Nuclear Information System (INIS)

    Dudynski, M.; Ekiel-Jezewska, M.L.

    1992-01-01

    The existence and causality of solutions to the relativistic Boltzmann equation in L 1 and in L loc 1 are proved. The solutions are shown to satisfy physically natural a priori bounds, time-independent in L 1 . The results rely upon new techniques developed for the nonrelativistic Boltzmann equation by DiPerna and Lions

  17. Relativistic thermodynamics and kinetic theory, with applications to cosmology

    International Nuclear Information System (INIS)

    Stewart, J.M.

    1973-01-01

    The discussion of relativistic thermodynamics and kinetic theory with applications to cosmology also covers the fundamentals and nonequilibrium relativistic kinetic theory and applications to cosmology and astrophysics. (U.S.)

  18. Some remarks concerning relativistic kinetic theory

    International Nuclear Information System (INIS)

    Schroeter, J.

    1990-01-01

    The starting point of our investigation is a classical kinetic theory which includes correlational effects as well as the complete electromagnetic interaction. Also classical gravitation can be incorporated. The relativistic version of this theory is written down using some heuristic arguments. Its essential feature is the difference between terms representing gravitational interaction and the metric tensor representing geometrical properties. (author)

  19. Liouville equation of relativistic charged fermion

    International Nuclear Information System (INIS)

    Wang Renchuan; Zhu Dongpei; Huang Zhuoran; Ko Che-ming

    1991-01-01

    As a form of density martrix, the Wigner function is the distribution in quantum phase space. It is a 2 X 2 matrix function when one uses it to describe the non-relativistic fermion. While describing the relativistic fermion, it is usually represented by 4 x 4 matrix function. In this paper authors obtain a Wigner function for the relativistic fermion in the form of 2 x 2 matrix, and the Liouville equation satisfied by the Wigner function. this equivalent to the Dirac equation of changed fermion in QED. The equation is also equivalent to the Dirac equation in the Walecka model applied to the intermediate energy nuclear collision while the nucleon is coupled to the vector meson only (or taking mean field approximation for the scalar meson). Authors prove that the 2 x 2 Wigner function completely describes the quantum system just the same as the relativistic fermion wave function. All the information about the observables can be obtained with above Wigner function

  20. Relativistic supersymmetric quantum mechanics based on Klein-Gordon equation

    International Nuclear Information System (INIS)

    Znojil, Miloslav

    2004-01-01

    Witten's the non-relativistic formalism of supersymmetric quantum mechanics was based on a factorization and partnership between Schroedinger equations. We show how it accommodates a transition to the partnership between relativistic Klein-Gordon equations

  1. Relativistic kinetics of baryon production in hot Universe

    International Nuclear Information System (INIS)

    Ignat'ev, Yu.G.

    1985-01-01

    The process of baryon production in the hot Universe is investigated in the framework of the relativistic kinetic theory. The exact solution of kinetic equations for supermassive bosons is obtained, thus giving the possibility to correct the results of previous papers: the known optimum domain of baryon production m sub(X) > α sub(X)msub(PI)√N js complemented by the small-mass boson domain, m sub(X) << α sub(X) m sub(PI)√N; as a result, the cosmological lower-limit restriction on the superheavy bosons masses js removed

  2. Relativistic equations of state at finite temperature

    International Nuclear Information System (INIS)

    Santos, A.M.S.; Menezes, D.P.

    2004-01-01

    In this work we study the effects of temperature on the equations of state obtained within a relativistic model with and without β equilibrium, over a wide range of densities. We integrate the TOV equations. We also compare the results of the equation of state, effective mass and strangeness fraction from the TM1, NL3 and GL sets of parameters, as well as investigating the importance of antiparticles in the treatment. The have checked that TM1 and NL3 are not appropriate for the description of neutron and protoneutron stars. (author)

  3. Relativistic point dynamics general equations, constant proper masses, interactions between electric charges, variable proper masses, collisions

    CERN Document Server

    Arzeliès, Henri

    1972-01-01

    Relativistic Point Dynamics focuses on the principles of relativistic dynamics. The book first discusses fundamental equations. The impulse postulate and its consequences and the kinetic energy theorem are then explained. The text also touches on the transformation of main quantities and relativistic decomposition of force, and then discusses fields of force derivable from scalar potentials; fields of force derivable from a scalar potential and a vector potential; and equations of motion. Other concerns include equations for fields; transfer of the equations obtained by variational methods int

  4. Relativistic many-body theory of atomic transitions: the relativistic equation-of-motion approach

    International Nuclear Information System (INIS)

    Huang, K.N.

    1981-01-01

    An equation-of-motion approach is used to develop the relativistic many-body theory of atomic transitions. The relativistic equations of motion for transition matrices are formulated using techniques of quantum field theory. To reduce the equation of motion to a tractable form which is appropriate for numerical calculations, a graphical method is employed to resolve the complication arising from the antisymmetrization and angular momentum coupling. The relativistic equation-of-motion method allows an ab initio treatment of correlation and relativistic effects in both closed- and open-shell many-body systems. A special case of the present formulation reduces to the relativistic random-phase approximation

  5. Relativistic wave equations and compton scattering

    International Nuclear Information System (INIS)

    Sutanto, S.H.; Robson, B.A.

    1998-01-01

    Full text: Recently an eight-component relativistic wave equation for spin-1/2 particles was proposed.This equation was obtained from a four-component spin-1/2 wave equation (the KG1/2 equation), which contains second-order derivatives in both space and time, by a procedure involving a linearisation of the time derivative analogous to that introduced by Feshbach and Villars for the Klein-Gordon equation. This new eight-component equation gives the same bound-state energy eigenvalue spectra for hydrogenic atoms as the Dirac equation but has been shown to predict different radiative transition probabilities for the fine structure of both the Balmer and Lyman a-lines. Since it has been shown that the new theory does not always give the same results as the Dirac theory, it is important to consider the validity of the new equation in the case of other physical problems. One of the early crucial tests of the Dirac theory was its application to the scattering of a photon by a free electron: the so-called Compton scattering problem. In this paper we apply the new theory to the calculation of Compton scattering to order e 2 . It will be shown that in spite of the considerable difference in the structure of the new theory and that of Dirac the cross section is given by the Klein-Nishina formula

  6. Balance equations for a relativistic plasma. Pt. 1

    International Nuclear Information System (INIS)

    Hebenstreit, H.

    1983-01-01

    Relativistic power moments of the four-momentum are decomposed according to a macroscopic four-velocity. The thus obtained quantities are identified as relativistic generalization of the nonrelativistic orthogonal moments, e.g. diffusion flow, heat flow, pressure, etc. From the relativistic Boltzmann equation we then derive balance equations for these quantities. Explicit expressions for the relativistic mass conservation, energy balance, pressure balance, heat flow balance are presented. The weak relativistic limit is discussed. The derivation of higher order balance equations is sketched. (orig.)

  7. Kinetic equation solution by inverse kinetic method

    International Nuclear Information System (INIS)

    Salas, G.

    1983-01-01

    We propose a computer program (CAMU) which permits to solve the inverse kinetic equation. The CAMU code is written in HPL language for a HP 982 A microcomputer with a peripheral interface HP 9876 A ''thermal graphic printer''. The CAMU code solves the inverse kinetic equation by taking as data entry the output of the ionization chambers and integrating the equation with the help of the Simpson method. With this program we calculate the evolution of the reactivity in time for a given disturbance

  8. Nonlinear dynamics in the relativistic field equation

    International Nuclear Information System (INIS)

    Tanaka, Yosuke; Mizuno, Yuji; Kado, Tatsuhiko; Zhao, Hua-An

    2007-01-01

    We have investigated relativistic equations and chaotic behaviors of the gravitational field with the use of general relativity and nonlinear dynamics. The space component of the Friedmann equation shows chaotic behaviors in case of the inflation (h=G-bar /G>0) and open (ζ=-1) universe. In other cases (h= 0 andx-bar 0 ) and the parameters (a, b, c and d); (2) the self-similarity of solutions in the x-x-bar plane and the x-ρ plane. We carried out the numerical calculations with the use of the microsoft EXCEL. The self-similarity and the hierarchy structure of the universe have been also discussed on the basis of E-infinity theory

  9. Kinetic equations in dirty superconductors

    International Nuclear Information System (INIS)

    Kraehenbuehl, Y.

    1981-01-01

    Kinetic equations for superconductors in the dirty limit are derived using a method developed for superfluid systems, which allows a systematic expansion in small parameters; exact charge conservation is obeyed. (orig.)

  10. Relativistic covariant wave equations and acausality in external fields

    International Nuclear Information System (INIS)

    Pijlgroms, R.B.J.

    1980-01-01

    The author considers linear, finite dimensional, first order relativistic wave equations: (βsup(μ)ideltasub(μ)-β)PSI(x) = 0 with βsup(μ) and β constant matrices. Firstly , the question of the relativistic covariance conditions on these equations is considered. Then the theory of these equations with β non-singular is summarized. Theories with βsup(μ), β square matrices and β singular are also discussed. Non-square systems of covariant relativistic wave equations for arbitrary spin > 1 are then considered. Finally, the interaction with external fields and the acausality problem are discussed. (G.T.H.)

  11. Relativistic three-particle dynamical equations: I. Theoretical development

    International Nuclear Information System (INIS)

    Adhikari, S.K.; Tomio, L.; Frederico, T.

    1993-11-01

    Starting from the two-particle Bethe-Salpeter equation in the ladder approximation and integrating over the time component of momentum, three dimensional scattering integral equations satisfying constrains of relativistic unitarity and covariance are rederived. These equations were first derived by Weinberg and by Blankenbecler and Sugar. These two-particle equations are shown to be related by a transformation of variables. Hence it is shown to perform and relate dynamical calculation using these two equations. Similarly, starting from the Bethe-Salpeter-Faddeev equation for the three-particle system and integrating over the time component of momentum, several three dimensional three-particle scattering equations satisfying constraints of relativistic unitary and covariance are derived. Two of these three-particle equations are related by a transformation of variables as in the two-particle case. The three-particle equations obtained are very practical and suitable for performing relativistic scattering calculations. (author)

  12. Relativistic many-body theory of atomic transitions. The relativistic equation-of-motion approach

    International Nuclear Information System (INIS)

    Huang, K.

    1982-01-01

    An equation-of-motion approach is used to develop the relativistic many-body theory of atomic transitions. The relativistic equations of motion for transition matrices are formulated with the use of techniques of quantum-field theory. To reduce the equations of motion to a tractable form which is appropriate for numerical calculations, a graphical method to resolve the complication arising from the antisymmetrization and angular-momentum coupling is employed. The relativistic equation-of-motion method allows an ab initio treatment of correlation and relativistic effects in both closed- and open-shell many-body systems. A special case of the present formulation reduces to the relativistic random-phase approximation

  13. Equations of motion in relativistic gravity

    CERN Document Server

    Lämmerzahl, Claus; Schutz, Bernard

    2015-01-01

     The present volume aims to be a comprehensive survey on the derivation of the equations of motion, both in General Relativity as well as in alternative gravity theories. The topics covered range from the description of test bodies, to self-gravitating (heavy) bodies, to current and future observations. Emphasis is put on the coverage of various approximation methods (e.g., multipolar, post-Newtonian, self-force methods) which are extensively used in the context of the relativistic problem of motion. Applications discussed in this volume range from the motion of binary systems -- and the gravitational waves emitted by such systems -- to observations of the galactic center. In particular the impact of choices at a fundamental theoretical level on the interpretation of experiments is highlighted. This book provides a broad and up-do-date status report, which will not only be of value for the experts working in this field, but also may serve as a guideline for students with background in General Relativity who ...

  14. On the relativistic Vlasov equation in guiding-center coordinates

    International Nuclear Information System (INIS)

    Salimullah, M.; Chaudhry, M.B.; Hassan, M.H.A.

    1989-11-01

    The relativistic Vlasov equation has been expressed in terms of the guiding-center coordinates in a hot magnetized plasma. It is noted that the relativistic effect reduces the cyclotron resonance frequency for electrostatic and electromagnetic waves propagating transverse to the direction of the static magnetic field in the plasma. (author). 4 refs

  15. Quantum-statistical kinetic equations

    International Nuclear Information System (INIS)

    Loss, D.; Schoeller, H.

    1989-01-01

    Considering a homogeneous normal quantum fluid consisting of identical interacting fermions or bosons, the authors derive an exact quantum-statistical generalized kinetic equation with a collision operator given as explicit cluster series where exchange effects are included through renormalized Liouville operators. This new result is obtained by applying a recently developed superoperator formalism (Liouville operators, cluster expansions, symmetrized projectors, P q -rule, etc.) to nonequilibrium systems described by a density operator ρ(t) which obeys the von Neumann equation. By means of this formalism a factorization theorem is proven (being essential for obtaining closed equations), and partial resummations (leading to renormalized quantities) are performed. As an illustrative application, the quantum-statistical versions (including exchange effects due to Fermi-Dirac or Bose-Einstein statistics) of the homogeneous Boltzmann (binary collisions) and Choh-Uhlenbeck (triple collisions) equations are derived

  16. Kinetic equations with pairing correlations

    International Nuclear Information System (INIS)

    Fauser, R.

    1995-12-01

    The Gorkov equations are derived for a general non-equilibrium system. The Gorkov factorization is generalized by the cumulant expansion of the 2-particle correlation and by a generalized Wick theorem in the case of a perturbation expansion. A stationary solution for the Green functions in the Schwinger-Keldysh formalism is presented taking into account pairing correlations. Especially the effects of collisional broadening on the spectral functions and Green functions is discussed. Kinetic equations are derived in the quasi-particle approximation and in the case of particles with width. Explicit expressions for the self-energies are given. (orig.)

  17. Some Aspects of Extended Kinetic Equation

    Directory of Open Access Journals (Sweden)

    Dilip Kumar

    2015-09-01

    Full Text Available Motivated by the pathway model of Mathai introduced in 2005 [Linear Algebra and Its Applications, 396, 317–328] we extend the standard kinetic equations. Connection of the extended kinetic equation with fractional calculus operator is established. The solution of the general form of the fractional kinetic equation is obtained through Laplace transform. The results for the standard kinetic equation are obtained as the limiting case.

  18. Kinetic analysis of thermally relativistic flow with dissipation

    International Nuclear Information System (INIS)

    Yano, Ryosuke; Suzuki, Kojiro

    2011-01-01

    Nonequilibrium flow of thermally relativistic matter with dissipation is considered in the framework of the relativistic kinetic theory. As an object of the analysis, the supersonic rarefied flow of thermally relativistic matter around the triangle prism is analyzed using the Anderson-Witting model. Obtained numerical results indicate that the flow field changes in accordance with the flow velocity and temperature of the uniform flow owing to both effects derived from the Lorentz contraction and thermally relativistic effects, even when the Mach number of the uniform flow is fixed. The profiles of the heat flux along the stagnation streamline can be approximated on the basis of the relativistic Navier-Stokes-Fourier (NSF) law except for a strong nonequilibrium regime such as the middle of the shock wave and the vicinity of the wall, whereas the profile of the heat flux behind the triangle prism cannot be approximated on the basis of the relativistic NSF law owing to rarefied effects via the expansion behind the triangle prism. Additionally, the heat flux via the gradient of the static pressure is non-negligible owing to thermally relativistic effects. The profile of the dynamic pressure is different from that approximated on the basis of the NSF law, which is obtained by the Eckart decomposition. Finally, variations of convections of the mass and momentum owing to the effects derived from the Lorentz contraction and thermally relativistic effects are numerically confirmed.

  19. The Poisson equation at second order in relativistic cosmology

    International Nuclear Information System (INIS)

    Hidalgo, J.C.; Christopherson, Adam J.; Malik, Karim A.

    2013-01-01

    We calculate the relativistic constraint equation which relates the curvature perturbation to the matter density contrast at second order in cosmological perturbation theory. This relativistic ''second order Poisson equation'' is presented in a gauge where the hydrodynamical inhomogeneities coincide with their Newtonian counterparts exactly for a perfect fluid with constant equation of state. We use this constraint to introduce primordial non-Gaussianity in the density contrast in the framework of General Relativity. We then derive expressions that can be used as the initial conditions of N-body codes for structure formation which probe the observable signature of primordial non-Gaussianity in the statistics of the evolved matter density field

  20. Relativistic Spinning Particle without Grassmann Variables and the Dirac Equation

    Directory of Open Access Journals (Sweden)

    A. A. Deriglazov

    2011-01-01

    Full Text Available We present the relativistic particle model without Grassmann variables which, being canonically quantized, leads to the Dirac equation. Classical dynamics of the model is in correspondence with the dynamics of mean values of the corresponding operators in the Dirac theory. Classical equations for the spin tensor are the same as those of the Barut-Zanghi model of spinning particle.

  1. Relativistic hydrodynamics with QHD-I equation of state

    International Nuclear Information System (INIS)

    Menezes, D.P.

    1993-04-01

    We derive the equation of state of the QHD-I lagrangian in a classical approach. The obtained equation of state is then used as input in a relativistic hydrodynamical numerical routine. Rapidity and transverse momentum distributions are calculated and compared with experimental data on heavy ion collisions obtained at BNL-AGS and CERN-SPS. (orig.). 7 figs

  2. Relativistic Tsiolkovsky equation -- a case study in special relativity

    Science.gov (United States)

    Redd, Jeremy; Panin, Alexander

    2011-10-01

    A possibility of using antimatter in future space propulsion systems is seriously discussed in scientific literature. Annihilation of matter and antimatter is not only the energy source of ultimate density 9x10^16 J/kg (provided that antimatter fuel is available on board or can be collected along the journey) but also potentially allows to reach ultimate exhaust speed -- speed of light c. Using relativistic rocket equation we discuss the feasibility of achieving relativistic velocities with annihilation powered photon engine, as well as the advantages and disadvantages of interstellar travel with relativistic and ultrarelativistic velocities.

  3. Electromagnetic interactions in relativistic infinite component wave equations

    International Nuclear Information System (INIS)

    Gerry, C.C.

    1979-01-01

    The electromagnetic interactions of a composite system described by relativistic infinite-component wave equations are considered. The noncompact group SO(4,2) is taken as the dynamical group of the systems, and its unitary irreducible representations, which are infinite dimensional, are used to find the energy spectra and to specify the states of the systems. First the interaction mechanism is examined in the nonrelativistic SO(4,2) formulation of the hydrogen atom as a heuristic guide. A way of making a minimal relativistic generalization of the minimal ineractions in the nonrelativistic equation for the hydrogen atom is proposed. In order to calculate the effects of the relativistic minimal interactions, a covariant perturbation theory suitable for infinite-component wave equations, which is an algebraic and relativistic version of the Rayleigh-Schroedinger perturbation theory, is developed. The electric and magnetic polarizabilities for the ground state of the hydrogen atom are calculated. The results have the correct nonrelativistic limits. Next, the relativistic cross section of photon absorption by the atom is evaluated. A relativistic expression for the cross section of light scattering corresponding to the seagull diagram is derived. The Born amplitude is combusted and the role of spacelike solutions is discussed. Finally, internal electromagnetic interactions that give rise to the fine structure splittings, the Lamb shifts and the hyperfine splittings are considered. The spin effects are introduced by extending the dynamical group

  4. Mass, Momentum and Kinetic Energy of a Relativistic Particle

    Science.gov (United States)

    Zanchini, Enzo

    2010-01-01

    A rigorous definition of mass in special relativity, proposed in a recent paper, is recalled and employed to obtain simple and rigorous deductions of the expressions of momentum and kinetic energy for a relativistic particle. The whole logical framework appears as the natural extension of the classical one. Only the first, second and third laws of…

  5. An investigation of relativistic microscopic optical potential in terms of relativistic Brueckner-Bethe-Goldstone equation

    International Nuclear Information System (INIS)

    Chen Baoqiu; Ma Zhongyu

    1992-01-01

    Relativistic microscopic optical potential of nucleon-nucleus is derived from the relativistic Brueckner-Bethe-Goldstone (RBBG) equation. The complex effective mass of a nucleon is determined by a fit to 200 MeV p- 40 Ca scattering data. The relativistic microscopic optical potentials with this effective mass are obtained from RBBG for p- 16O , 40 Ca, 90 Zr and 208 Pb scattering in energy range from 160 to 800 MeV. The microscopic optical potential is used to study the proton- 40 Ca scattering problem at 200 MeV. The results, such as differential cross section, analyzing power and spin rotation function are compared with those calculated from phenomenological relativistic optical potential

  6. The onset of fluid-dynamical behavior in relativistic kinetic theory

    Science.gov (United States)

    Noronha, Jorge; Denicol, Gabriel S.

    2017-11-01

    In this proceedings we discuss recent findings regarding the large order behavior of the Chapman-Enskog expansion in relativistic kinetic theory. It is shown that this series in powers of the Knudsen number has zero radius of convergence in the case of a Bjorken expanding fluid described by the Boltzmann equation in the relaxation time approximation. This divergence stems from the presence of non-hydrodynamic modes, which give non-perturbative contributions to the Knudsen series.

  7. General relativistic Boltzmann equation, II: Manifestly covariant treatment

    NARCIS (Netherlands)

    Debbasch, F.; van Leeuwen, W.A.

    2009-01-01

    In a preceding article we presented a general relativistic treatment of the derivation of the Boltzmann equation. The four-momenta occurring in this formalism were all on-shell four-momenta, verifying the mass-shell restriction p(2) = m(2)c(2). Due to this restriction, the resulting Boltzmann

  8. Relativistic phenomenological equations and transformation laws of relative coefficients

    Directory of Open Access Journals (Sweden)

    Patrizia Rogolino

    2017-06-01

    Full Text Available The aim of this paper is to derive the phenomenological equations in the context of special relativistic non-equilibrium thermodynamics with internal variables. In particular, after introducing some results developed in our previous paper, by means of classical non-equilibrium thermodynamic procedure and under suitable assumptions on the entropy density production, the phenomenological equations and transformation laws of phenomenological coefficients are derived. Finally, some symmetries of aforementioned coefficients are obtained.

  9. Newtonian hydrodynamic equations with relativistic pressure and velocity

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Jai-chan [Department of Astronomy and Atmospheric Sciences, Kyungpook National University, Daegu 702-701 (Korea, Republic of); Noh, Hyerim [Korea Astronomy and Space Science Institute, Daejeon 305-348 (Korea, Republic of); Fabris, Júlio; Piattella, Oliver F.; Zimdahl, Winfried, E-mail: jchan@knu.ac.kr, E-mail: hr@kasi.re.kr, E-mail: fabris@pq.cnpq.br, E-mail: oliver.piattella@pq.cnpq.br, E-mail: winfried.zimdahl@pq.cnpq.br [Departamento de Fisica, Universidade Federal do Espirito Santo, Vitória (Brazil)

    2016-07-01

    We present a new approximation to include fully general relativistic pressure and velocity in Newtonian hydrodynamics. The energy conservation, momentum conservation and two Poisson's equations are consistently derived from Einstein's gravity in the zero-shear gauge assuming weak gravity and action-at-a-distance limit. The equations show proper special relativity limit in the absence of gravity. Our approximation is complementary to the post-Newtonian approximation and the equations are valid in fully nonlinear situations.

  10. Relativistic electron kinetic effects on laser diagnostics in burning plasmas

    Science.gov (United States)

    Mirnov, V. V.; Den Hartog, D. J.

    2018-02-01

    Toroidal interferometry/polarimetry (TIP), poloidal polarimetry (PoPola), and Thomson scattering systems (TS) are major optical diagnostics being designed and developed for ITER. Each of them relies upon a sophisticated quantitative understanding of the electron response to laser light propagating through a burning plasma. Review of the theoretical results for two different applications is presented: interferometry/polarimetry (I/P) and polarization of Thomson scattered light, unified by the importance of relativistic (quadratic in vTe/c) electron kinetic effects. For I/P applications, rigorous analytical results are obtained perturbatively by expansion in powers of the small parameter τ = Te/me c2, where Te is electron temperature and me is electron rest mass. Experimental validation of the analytical models has been made by analyzing data of more than 1200 pulses collected from high-Te JET discharges. Based on this validation the relativistic analytical expressions are included in the error analysis and design projects of the ITER TIP and PoPola systems. The polarization properties of incoherent Thomson scattered light are being examined as a method of Te measurement relevant to ITER operational regimes. The theory is based on Stokes vector transformation and Mueller matrices formalism. The general approach is subdivided into frequency-integrated and frequency-resolved cases. For each of them, the exact analytical relativistic solutions are presented in the form of Mueller matrix elements averaged over the relativistic Maxwellian distribution function. New results related to the detailed verification of the frequency-resolved solutions are reported. The precise analytic expressions provide output much more rapidly than relativistic kinetic numerical codes allowing for direct real-time feedback control of ITER device operation.

  11. Reduced kinetic equations: An influence functional approach

    International Nuclear Information System (INIS)

    Wio, H.S.

    1985-01-01

    The author discusses a scheme for obtaining reduced descriptions of multivariate kinetic equations based on the 'influence functional' method of Feynmann. It is applied to the case of Fokker-Planck equations showing the form that results for the reduced equation. The possibility of Markovian or non-Markovian reduced description is discussed. As a particular example, the reduction of the Kramers equation to the Smoluchwski equation in the limit of high friction is also discussed

  12. Relativistic Photoionization Computations with the Time Dependent Dirac Equation

    Science.gov (United States)

    2016-10-12

    Naval Research Laboratory Washington, DC 20375-5320 NRL/MR/6795--16-9698 Relativistic Photoionization Computations with the Time Dependent Dirac... Photoionization Computations with the Time Dependent Dirac Equation Daniel F. Gordon and Bahman Hafizi Naval Research Laboratory 4555 Overlook Avenue, SW...Unclassified Unlimited Unclassified Unlimited 22 Daniel Gordon (202) 767-5036 Tunneling Photoionization Ionization of inner shell electrons by laser

  13. Numerical solution of special ultra-relativistic Euler equations using central upwind scheme

    Science.gov (United States)

    Ghaffar, Tayabia; Yousaf, Muhammad; Qamar, Shamsul

    2018-06-01

    This article is concerned with the numerical approximation of one and two-dimensional special ultra-relativistic Euler equations. The governing equations are coupled first-order nonlinear hyperbolic partial differential equations. These equations describe perfect fluid flow in terms of the particle density, the four-velocity and the pressure. A high-resolution shock-capturing central upwind scheme is employed to solve the model equations. To avoid excessive numerical diffusion, the considered scheme avails the specific information of local propagation speeds. By using Runge-Kutta time stepping method and MUSCL-type initial reconstruction, we have obtained 2nd order accuracy of the proposed scheme. After discussing the model equations and the numerical technique, several 1D and 2D test problems are investigated. For all the numerical test cases, our proposed scheme demonstrates very good agreement with the results obtained by well-established algorithms, even in the case of highly relativistic 2D test problems. For validation and comparison, the staggered central scheme and the kinetic flux-vector splitting (KFVS) method are also implemented to the same model. The robustness and efficiency of central upwind scheme is demonstrated by the numerical results.

  14. Application of Central Upwind Scheme for Solving Special Relativistic Hydrodynamic Equations

    Science.gov (United States)

    Yousaf, Muhammad; Ghaffar, Tayabia; Qamar, Shamsul

    2015-01-01

    The accurate modeling of various features in high energy astrophysical scenarios requires the solution of the Einstein equations together with those of special relativistic hydrodynamics (SRHD). Such models are more complicated than the non-relativistic ones due to the nonlinear relations between the conserved and state variables. A high-resolution shock-capturing central upwind scheme is implemented to solve the given set of equations. The proposed technique uses the precise information of local propagation speeds to avoid the excessive numerical diffusion. The second order accuracy of the scheme is obtained with the use of MUSCL-type initial reconstruction and Runge-Kutta time stepping method. After a discussion of the equations solved and of the techniques employed, a series of one and two-dimensional test problems are carried out. To validate the method and assess its accuracy, the staggered central and the kinetic flux-vector splitting schemes are also applied to the same model. The scheme is robust and efficient. Its results are comparable to those obtained from the sophisticated algorithms, even in the case of highly relativistic two-dimensional test problems. PMID:26070067

  15. N-body bound state relativistic wave equations

    International Nuclear Information System (INIS)

    Sazdjian, H.

    1988-06-01

    The manifestly covariant formalism with constraints is used for the construction of relativistic wave equations to describe the dynamics of N interacting spin 0 and/or spin 1/2 particles. The total and relative time evolutions of the system are completely determined by means of kinematic type wave equations. The internal dynamics of the system is 3 N-1 dimensional, besides the contribution of the spin degrees of freedom. It is governed by a single dynamical wave equation, that determines the eigenvalue of the total mass squared of the system. The interaction is introduced in a closed form by means of two-body potentials. The system satisfies an approximate form of separability

  16. Kinetic equation of heterogeneous catalytic isotope exchange

    Energy Technology Data Exchange (ETDEWEB)

    Trokhimets, A I [AN Belorusskoj SSR, Minsk. Inst. Fiziko-Organicheskoj Khimii

    1979-12-01

    A kinetic equation is derived for the bimolecular isotope exchange reaction between AXsub(n)sup(*) and BXsub(m)sup(o), all atoms of element X in each molecule being equivalent. The equation can be generalized for homogeneous and heterogeneous catalytic isotope exchange.

  17. Relativistic equation of the orbit of a particle in a arbitrary central force field

    International Nuclear Information System (INIS)

    Aaron, Francisc D.

    2005-01-01

    The equation of the orbit of a relativistic particle moving in an arbitrary central force field is derived. Straightforward generalizations of well-known first and second order differential equations are given. It is pointed out that the relativistic equation of the orbit has the same form as in the non-relativistic case, the only changes consisting in the appearance of additional terms proportional to 1/c 2 in both potential and total energies. (author)

  18. How one can construct a consistent relativistic quantum mechanics on the base of a relativistic wave equation

    Energy Technology Data Exchange (ETDEWEB)

    Gavrilov, S.P. [Universidade Federal de Sergipe (UFS), Aracaju, SE (Brazil); Gitman, D.M. [Sao Paulo Univ. (USP), SP (Brazil). Inst. de Fisica

    2000-07-01

    Full text follows: There is a common opinion that the construction of a consistent relativistic quantum mechanics on the base of a relativistic wave equation meets well-known difficulties related to the existence of infinite number of negative energy levels, to the existence of negative vector norms, and so on, which may be only solved in a second-quantized theory, see, for example, two basic papers devoted to the problem L.Foldy, S.Wouthuysen, Phys. Rep.78 (1950) 29; H.Feshbach, F.Villars, Rev. Mod. Phys. 30 (1958) 24, whose arguments are repeated in all handbooks in relativistic quantum theory. Even Dirac trying to solve the problem had turned last years to infinite-component relativistic wave equations, see P.A.M. Dirac, Proc. R. Soc. London, A328 (1972) 1. We believe that a consistent relativistic quantum mechanics may be constructed on the base of an extended (charge symmetric) equation, which unite both a relativistic wave equation for a particle and for an antiparticle. We present explicitly the corresponding construction, see for details hep-th/0003112. We support such a construction by two demonstrations: first, in course of a careful canonical quantization of the corresponding classical action of a relativistic particle we arrive just to such a consistent quantum mechanics; second, we demonstrate that a reduction of the QFT of a corresponding field (scalar, spinor, etc.) to one-particle sector, if such a reduction may be done, present namely this quantum mechanics. (author)

  19. Relativistic simulation of the Vlasov equation for plasma expansion into vacuum

    Directory of Open Access Journals (Sweden)

    H Abbasi

    2012-12-01

    Full Text Available   In this study, relativistic Vlasov simulation of plasma for expansion of collisionless plasma for into vacuum is presented. The model is based on 1+1 dimensional phase space and electrostatic approximation. For this purpose, the electron dynamics is studied by the relativistic Vlasov equation. Regardless of the ions temperature, fluid equations are used for their dynamics. The initial electrons distribution function is the relativistic Maxwellian. The results show that due to the electrons relativistic temperature, the process of the plasma expansion takes place faster, the resulting electric field is stronger and the ions are accelerated to higher velocities, in comparison to the non-relativistic case.

  20. Kinetic Boltzmann, Vlasov and Related Equations

    CERN Document Server

    Sinitsyn, Alexander; Vedenyapin, Victor

    2011-01-01

    Boltzmann and Vlasov equations played a great role in the past and still play an important role in modern natural sciences, technique and even philosophy of science. Classical Boltzmann equation derived in 1872 became a cornerstone for the molecular-kinetic theory, the second law of thermodynamics (increasing entropy) and derivation of the basic hydrodynamic equations. After modifications, the fields and numbers of its applications have increased to include diluted gas, radiation, neutral particles transportation, atmosphere optics and nuclear reactor modelling. Vlasov equation was obtained in

  1. Linearized gyro-kinetic equation

    International Nuclear Information System (INIS)

    Catto, P.J.; Tsang, K.T.

    1976-01-01

    An ordering of the linearized Fokker-Planck equation is performed in which gyroradius corrections are retained to lowest order and the radial dependence appropriate for sheared magnetic fields is treated without resorting to a WKB technique. This description is shown to be necessary to obtain the proper radial dependence when the product of the poloidal wavenumber and the gyroradius is large (k rho much greater than 1). A like particle collision operator valid for arbitrary k rho also has been derived. In addition, neoclassical, drift, finite β (plasma pressure/magnetic pressure), and unperturbed toroidal electric field modifications are treated

  2. A new perspective on relativistic transformation for Maxwell's equations of electrodynamics

    International Nuclear Information System (INIS)

    Huang, Y.-S.

    2009-01-01

    A new scheme for relativistic transformation of the electromagnetic fields is formulated through relativistic transformation in the wavevector space, instead of the space-time space. Maxwell's equations of electrodynamics are shown to be form-invariant among inertial frames in accordance with this new scheme of relativistic transformation. This new perspective on relativistic transformation not only fulfills the principle of relativity, but is also compatible with quantum theory.

  3. Relativistic wave equations without the Velo-Zwanziger pathology

    International Nuclear Information System (INIS)

    Khalil, M.A.K.

    1976-06-01

    For particles described by relativistic wave equations of the form: (-iGAMMA x delta + m) psi(x) = 0 interacting with an external field B(x) it is known that the ''noncausal'' propagation characteristics are not present when (1) GAMMA 0 is diagonalizable and (2) B(x) = -eGAMMA/sub mu/A/sup mu/(x) (Amar--Dozzio). The ''noncausality''difficulties arise for the Rarita--Schwinger spin 3 / 2 equation, with nondiagonalizable GAMMA 0 , in minimal coupling (i.e., B(x) = -eGAMMA x A(x)) and the PDK spin 1 equation, with diagonalizable GAMMA 0 , in a quadrupole coupling (Velo--Zwanziger) where either (1) or (2) of the Amar--Dozzio (sufficient) conditions are violated. Some sufficient conditions are derived and explored where the Velo--Zwanziger ''noncausality'' pathology can be avoided, even though one, or the other, or both of the conditions (1) and (2) are violated. Examples with both reducible and irreducible wave equations are included

  4. Relativistic dissipative hydrodynamics and the nuclear equation of state

    International Nuclear Information System (INIS)

    Olson, T.S.; Hiscock, W.A.

    1989-01-01

    The theory of dissipative, relativistic fluids due to Israel and Stewart is used to constrain the form of the nuclear equation of state. In the Israel-Stewart theory, there are conditions on the equation of state and other thermodynamic properties (the ''second-order'' coefficients) of a fluid which, if satisfied, guarantee that equilibria are stable and that fluid perturbations propagate causally and obey hyperbolic equations. The second-order coefficients in the Israel-Stewart theory, which are relaxation times for the dissipative degrees of freedom and coupling constants between different forms of dissipation, are derived for a free, degenerate Fermi gas. It is shown rigorously that the free, degenerate Fermi gas is stable (and hence causal) at all temperatures in this theory. These values for the second-order coefficients are then used in the stability conditions to constrain various proposed expressions for the nuclear ground-state energy. The stability conditions are found to provide significantly more stringent constraints on the proposed equations of state than the usual simple restriction that the adiabatic sound speed be less than the speed of light

  5. Hypocoercivity for linear kinetic equations conserving mass

    KAUST Repository

    Dolbeault, Jean; Mouhot, Clé ment; Schmeiser, Christian

    2015-01-01

    We develop a new method for proving hypocoercivity for a large class of linear kinetic equations with only one conservation law. Local mass conservation is assumed at the level of the collision kernel, while transport involves a confining potential, so that the solution relaxes towards a unique equilibrium state. Our goal is to evaluate in an appropriately weighted $ L^2$ norm the exponential rate of convergence to the equilibrium. The method covers various models, ranging from diffusive kinetic equations like Vlasov-Fokker-Planck equations, to scattering models or models with time relaxation collision kernels corresponding to polytropic Gibbs equilibria, including the case of the linear Boltzmann model. In this last case and in the case of Vlasov-Fokker-Planck equations, any linear or superlinear growth of the potential is allowed. - See more at: http://www.ams.org/journals/tran/2015-367-06/S0002-9947-2015-06012-7/#sthash.ChjyK6rc.dpuf

  6. Hypocoercivity for linear kinetic equations conserving mass

    KAUST Repository

    Dolbeault, Jean

    2015-02-03

    We develop a new method for proving hypocoercivity for a large class of linear kinetic equations with only one conservation law. Local mass conservation is assumed at the level of the collision kernel, while transport involves a confining potential, so that the solution relaxes towards a unique equilibrium state. Our goal is to evaluate in an appropriately weighted $ L^2$ norm the exponential rate of convergence to the equilibrium. The method covers various models, ranging from diffusive kinetic equations like Vlasov-Fokker-Planck equations, to scattering models or models with time relaxation collision kernels corresponding to polytropic Gibbs equilibria, including the case of the linear Boltzmann model. In this last case and in the case of Vlasov-Fokker-Planck equations, any linear or superlinear growth of the potential is allowed. - See more at: http://www.ams.org/journals/tran/2015-367-06/S0002-9947-2015-06012-7/#sthash.ChjyK6rc.dpuf

  7. The Balescu kinetic equation with exchange interaction

    International Nuclear Information System (INIS)

    Belyi, V V; Kukharenko, Yu A

    2009-01-01

    Starting with the quantum BBGKY hierarchy for the distribution functions, we have obtained the quantum kinetic equation including the dynamical screening of the interaction potential, which exactly takes into account the exchange scattering in the plasma. The collision integral is expressed in terms of the Green function of the linearized Hartree–Fock equation. The potential energy takes into account the polarization and exchange interaction too

  8. General-relativistic celestial mechanics. II. Translational equations of motion

    International Nuclear Information System (INIS)

    Damour, T.; Soffel, M.; Xu, C.

    1992-01-01

    The translational laws of motion for gravitationally interacting systems of N arbitrarily composed and shaped, weakly self-gravitating, rotating, deformable bodies are obtained at the first post-Newtonian approximation of general relativity. The derivation uses our recently introduced multi-reference-system method and obtains the translational laws of motion by writing that, in the local center-of-mass frame of each body, relativistic inertial effects combine with post-Newtonian self- and externally generated gravitational forces to produce a global equilibrium (relativistic generalization of d'Alembert's principle). Within the first post-Newtonian approximation [i.e., neglecting terms of order (v/c) 4 in the equations of motion], our work is the first to obtain complete and explicit results, in the form of infinite series, for the laws of motion of arbitrarily composed and shaped bodies. We first obtain the laws of motion of each body as an infinite series exhibiting the coupling of all the (Blanchet-Damour) post-Newtonian multipole moments of this body to the post-Newtonian tidal moments (recently defined by us) felt by this body. We then give the explicit expression of these tidal moments in terms of post-Newtonian multipole moments of the other bodies

  9. Chiral symmetry breaking and confinement - solutions of relativistic wave equations

    International Nuclear Information System (INIS)

    Murugesan, P.

    1983-01-01

    In this thesis, an attempt is made to explore the question whether confinement automatically leads to chiral symmetry breaking. While it should be accepted that chiral symmetry breaking manifests in nature in the absence of scalar partners of pseudoscalar mesons, it does not necessarily follow that confinement should lead to chiral symmetry breaking. If chiral conserving forces give rise to observed spectrum of hadrons, then the conjuncture that confinement is responsible for chiral symmetry breaking is not valid. The method employed to answer the question whether confinement leads to chiral symmetry breaking or not is to solve relativistic wave equations by introducing chiral conserving as well as chiral breaking confining potentials and compare the results with experimental observations. It is concluded that even though chiral symmetry is broken in nature, confinement of quarks need not be the cause of it

  10. Intertwining solutions for magnetic relativistic Hartree type equations

    Science.gov (United States)

    Cingolani, Silvia; Secchi, Simone

    2018-05-01

    We consider the magnetic pseudo-relativistic Schrödinger equation where , m  >  0, is an external continuous scalar potential, is a continuous vector potential and is a convolution kernel, is a constant, , . We assume that A and V are symmetric with respect to a closed subgroup G of the group of orthogonal linear transformations of . If for any , the cardinality of the G-orbit of x is infinite, then we prove the existence of infinitely many intertwining solutions assuming that is either linear in x or uniformly bounded. The results are proved by means of a new local realization of the square root of the magnetic laplacian to a local elliptic operator with Neumann boundary condition on a half-space. Moreover we derive an existence result of a ground state intertwining solution for bounded vector potentials, if G admits a finite orbit.

  11. A kinetic equation for irreversible aggregation

    International Nuclear Information System (INIS)

    Zanette, D.H.

    1990-09-01

    We introduce a kinetic equation for describing irreversible aggregation in the ballistic regime, including velocity distributions. The associated evolution for the macroscopic quantities is studied, and the general solution for Maxwell interaction models is obtained in the Fourier representation. (author). 23 refs

  12. Relativistic quantum vorticity of the quadratic form of the Dirac equation

    International Nuclear Information System (INIS)

    Asenjo, Felipe A; Mahajan, Swadesh M

    2015-01-01

    We explore the fluid version of the quadratic form of the Dirac equation, sometimes called the Feynman–Gell-Mann equation. The dynamics of the quantum spinor field is represented by equations of motion for the fluid density, the velocity field, and the spin field. In analogy with classical relativistic and non-relativistic quantum theories, the fully relativistic fluid formulation of this equation allows a vortex dynamics. The vortical form is described by a total tensor field that is the weighted combination of the inertial, electromagnetic and quantum forces. The dynamics contrives the quadratic form of the Dirac equation as a total vorticity free system. (paper)

  13. Hot QCD equations of state and relativistic heavy ion collisions

    Science.gov (United States)

    Chandra, Vinod; Kumar, Ravindra; Ravishankar, V.

    2007-11-01

    We study two recently proposed equations of state obtained from high-temperature QCD and show how they can be adapted to use them for making predictions for relativistic heavy ion collisions. The method involves extracting equilibrium distribution functions for quarks and gluons from the equation of state (EOS), which in turn will allow a determination of the transport and other bulk properties of the quark gluon-plasma. Simultaneously, the method also yields a quasiparticle description of interacting quarks and gluons. The first EOS is perturbative in the QCD coupling constant and has contributions of O(g5). The second EOS is an improvement over the first, with contributions up to O[g6ln(1/g)]; it incorporates the nonperturbative hard thermal contributions. The interaction effects are shown to be captured entirely by the effective chemical potentials for the gluons and the quarks, in both cases. The chemical potential is seen to be highly sensitive to the EOS. As an application, we determine the screening lengths, which are, indeed, the most important diagnostics for QGP. The screening lengths are seen to behave drastically differently depending on the EOS considered and therefore yield a way to distinguish the two equations of state in heavy ion collisions.

  14. Relativistic quantum kinetic analysis of a pion--nucleon system

    International Nuclear Information System (INIS)

    Alonso, J.D.

    1985-01-01

    A relativistic plasma of nucleons interacting through pions via the usual isospin-invariant Yukawa coupling is analyzed in the framework of the covariant Wigner function technique. The method is manifestly covariant and the temperature effects are considered. The relativistic quantum BBGKY hierarchy for the pion--nucleon system is derived. By generalizing the Bogolioubov analysis of the classical BBGKY hierarchy a non-perturbative renormalizable method is elaborated which allows the solution of the kinetic problem in form of power series of two cluster parameters which measure the importance of correlations. In the lowest order of the cluster expansion (Hartree approximation of zero-order approximation) the quasi-nucleon Fock space is introduced, the fermion Wigner function in the thermodynamic equilibrium is obtained and the vacuum effects are renormalized. In this approximation the plasma behaves as a perfect Fermi gas of nucleons and antinucleons, but there exists an abnormal configuration with a uniform pion condensate which is unstable. In the next approximation (quadratic in the small parameters) the quasi-pion dispersion relation is obtained and the vacuum polarization tensor is renormalized. The quasi-pion rest-mass spectra (''plasma frequency'') and the effective-coupling behaviour as functions of the thermodynamic state are given. By estimating the size of the cluster parameters the self-consistency of the approximation scheme is proved. The quasi-pion Fock space is introduced and the quasi-pion equilibrium Wigner function is obtained. From these results the problem of the higher-order corrections to the Hartree thermodynamics is outlined

  15. The incompressible non-relativistic Navier-Stokes equation from gravity

    International Nuclear Information System (INIS)

    Bhattacharyya, Sayantani; Minwalla, Shiraz; Wadia, Spenta R.

    2009-01-01

    We note that the equations of relativistic hydrodynamics reduce to the incompressible Navier-Stokes equations in a particular scaling limit. In this limit boundary metric fluctuations of the underlying relativistic system turn into a forcing function identical to the action of a background electromagnetic field on the effectively charged fluid. We demonstrate that special conformal symmetries of the parent relativistic theory descend to 'accelerated boost' symmetries of the Navier-Stokes equations, uncovering a conformal symmetry structure of these equations. Applying our scaling limit to holographically induced fluid dynamics, we find gravity dual descriptions of an arbitrary solution of the forced non-relativistic incompressible Navier-Stokes equations. In the holographic context we also find a simple forced steady state shear solution to the Navier-Stokes equations, and demonstrate that this solution turns unstable at high enough Reynolds numbers, indicating a possible eventual transition to turbulence.

  16. Relativistic two-fermion equations with form factors and anomalous magnetic moment interactions

    International Nuclear Information System (INIS)

    Ahmed, S.

    1977-04-01

    Relativistic equations for two-fermion systems are derived from quantum field theory taking into account the form factors of the particles. When the q 2 dependence of the form factors is disregarded, in the static approximation, the two-fermion equations with Coulomb and anomalous magnetic moment interactions are obtained. Separating the angular variables, a sixteen-component relativistic radial equation are finally given

  17. Quasi-linear equation for magnetoplasma oscillations in the weakly relativistic approximation

    International Nuclear Information System (INIS)

    Rizzato, F.B.

    1985-01-01

    Some limitations which are present in the dynamical equations for collisionless plasmas are discussed. Some elementary corrections to the linear theories are obtained in a heuristic form, which directly lead to the so-called quasi-linear theories in its non-relativistic and relativistic forms. The effect of the relativistic variation of the gyrofrequency on the diffusion coefficient is examined in a typically perturbative approximation. (author)

  18. On the kinetic collisional theory of beam-plasma system (relativistic dielectric tensor). Vol. 2.

    Energy Technology Data Exchange (ETDEWEB)

    Khalil, Sh M; Sayed, Y A; Zaki, N G [Plasma Physics and Nuclear Fusion Department, Nuclear Research Center, Atomic Energy Authority, Cairo, (Egypt)

    1996-03-01

    Calculation of the dielectric tensor is useful for calculating and oscillations the stability of an inhomogeneous plasma. If the dielectric tensor is known, the problem of oscillations is reduced the derivation of the Maxwellian equations. In this case, there is no need to derive the equations of the motion of charged particles every time. The properties of the plasma, especially those connected to its instability, may be equally well specified through permittivity as through conductivity. The features of plasma instabilities and the plasma dielectric tensor are essentially affected by the presence of collision. Coloumb collisions (C.C.) are very important in the process of no linear saturation of some plasma instabilities (e.g., ion cyclotron instability, electron-ion two stream instability). For C.C., two basic properties are considered; (i) the cross section decreases rapidly as the particle velocity increases, (ii) the dominate contribution arises from a commutative effect of small-angle scattering or small-momentum transfer processes. If allowance is made for C.C. to derive the kinetic wave equations in a homogeneous plasma, it will remove the divergance in the matrix elements describing nonlinear interactions. In this paper, the collisional kinetic wave equation in cylindrical hot plasma is studied. The dielectric and polarizing tensor elements which describes the kinetic relativistic electron beam (REB) interaction with magnetized plasma into consideration the effect of pair C.C. is derived. Most research carried out in this direction has neglected the effect of C.C. In the absence of collisions, a `plauste` is formed on the distribution function, and the adsorption of the energy by the plasma stops. 1 fig.

  19. Fractional Bhatnagar-Gross-Krook kinetic equation

    Science.gov (United States)

    Goychuk, Igor

    2017-11-01

    The linear Boltzmann equation (LBE) approach is generalized to describe fractional superdiffusive transport of the Lévy walk type in external force fields. The time distribution between scattering events is assumed to have a finite mean value and infinite variance. It is completely characterized by the two scattering rates, one fractional and a normal one, which defines also the mean scattering rate. We formulate a general fractional LBE approach and exemplify it with a particularly simple case of the Bohm and Gross scattering integral leading to a fractional generalization of the Bhatnagar, Gross and Krook (BGK) kinetic equation. Here, at each scattering event the particle velocity is completely randomized and takes a value from equilibrium Maxwell distribution at a given fixed temperature. We show that the retardation effects are indispensable even in the limit of infinite mean scattering rate and argue that this novel fractional kinetic equation provides a viable alternative to the fractional Kramers-Fokker-Planck (KFP) equation by Barkai and Silbey and its generalization by Friedrich et al. based on the picture of divergent mean time between scattering events. The case of divergent mean time is also discussed at length and compared with the earlier results obtained within the fractional KFP. Also a phenomenological fractional BGK equation without retardation effects is proposed in the limit of infinite scattering rates. It cannot be, however, rigorously derived from a scattering model, being rather clever postulated. It this respect, this retardationless equation is similar to the fractional KFP by Barkai and Silbey. However, it corresponds to the opposite, much more physical limit and, therefore, also presents a viable alternative.

  20. The impact of kinetic effects on the properties of relativistic electron–positron shocks

    International Nuclear Information System (INIS)

    Stockem, Anne; Fiúza, Frederico; Fonseca, Ricardo A; Silva, Luis O

    2012-01-01

    We assess the impact of non-thermally shock-accelerated particles on the magnetohydrodynamic (MHD) jump conditions of relativistic shocks. The adiabatic constant is calculated directly from first-principles particle-in-cell simulation data, enabling a semi-kinetic approach to improve the standard fluid model and allowing for an identification of the key parameters that define the shock structure. We find that the evolving upstream parameters have a stronger impact than the corrections due to non-thermal particles. We find that the decrease in the upstream bulk speed result in deviations from the standard MHD model up to 10%. Furthermore, we obtain a quantitative definition of the shock transition region from our analysis. For Weibel-mediated shocks the inclusion of a magnetic field in the MHD conservation equations is addressed for the first time. (paper)

  1. Relativistic n-body wave equations in scalar quantum field theory

    International Nuclear Information System (INIS)

    Emami-Razavi, Mohsen

    2006-01-01

    The variational method in a reformulated Hamiltonian formalism of Quantum Field Theory (QFT) is used to derive relativistic n-body wave equations for scalar particles (bosons) interacting via a massive or massless mediating scalar field (the scalar Yukawa model). Simple Fock-space variational trial states are used to derive relativistic n-body wave equations. The equations are shown to have the Schroedinger non-relativistic limits, with Coulombic interparticle potentials in the case of a massless mediating field and Yukawa interparticle potentials in the case of a massive mediating field. Some examples of approximate ground state solutions of the n-body relativistic equations are obtained for various strengths of coupling, for both massive and massless mediating fields

  2. Metamaterial characterization using Boltzmann's kinetic equation for electrons

    DEFF Research Database (Denmark)

    Novitsky, Andrey; Zhukovsky, Sergei; Novitsky, D.

    2013-01-01

    Statistical properties of electrons in metals are taken into consideration to describe the microscopic motion of electrons. Assuming degenerate electron gas in metal, we introduce the Boltzmann kinetic equation to supplement Maxwell's equations. The solution of these equations clearly shows...

  3. Kinetic equation for spin-polarized plasmas

    International Nuclear Information System (INIS)

    Cowley, S.C.; Kulsrud, R.M.; Valeo, E.

    1984-07-01

    The usual kinetic description of a plasma is extended to include variables to describe the spin. The distribution function, over phase-space and the new spin variables, provides a sufficient description of a spin-polarized plasma. The evolution equation for the distribution function is given. The equations derived are used to calculate depolarization due to four processes, inhomogeneous fields, collisions, collisions in inhomogeneous fields, and waves. It is found that depolarization by field inhomogeneity on scales large compared with the gyroradius is totally negligible. The same is true for collisional depolarization. Collisions in inhomogeneous fields yield a depolarization rate of order 10 -4 S -1 for deuterons and a negligible rate for tritons in a typical fusion reactor design. This is still sufficiently small on reactor time scales. However, small amplitude magnetic fluctuations (of order one gauss) resonant with the spin precession frequency can lead to significant depolarization (depolarises triton in ten seconds and deuteron in a hundred seconds.)

  4. Time-dependent field equations for paraxial relativistic electron beams: Beam Research Program

    International Nuclear Information System (INIS)

    Sharp, W.M.; Yu, S.S.; Lee, E.P.

    1987-01-01

    A simplified set of field equations for a paraxial relativistic electron beam is presented. These equations for the beam electrostatic potential phi and pinch potential Phi identical to A/sub z/ - phi retain previously neglected time-dependent terms and for axisymmetric beams reduce exactly to Maxwell's equations

  5. On the kinetic theory of parametric resonance in relativistic plasma

    International Nuclear Information System (INIS)

    El-Ashry, M.Y.

    1982-08-01

    The instability of relativistic hot plasma located in high-frequency external electric field is studied. The dispersion relation, in the case when the plasma electrons have relativistic oscillatory motion, is obtained. It is shown that if the electron Deby's radius is less than the wave length of plasma oscillation and far from the resonance on the overtones of the external field frequency, the oscillation build-up is possible. It is also shown that taking into account the relativistic motion of electrons leads to a considerable decrease in the frequency at which the parametric resonance takes place. (author)

  6. Logical inference approach to relativistic quantum mechanics: Derivation of the Klein–Gordon equation

    International Nuclear Information System (INIS)

    Donker, H.C.; Katsnelson, M.I.; De Raedt, H.; Michielsen, K.

    2016-01-01

    The logical inference approach to quantum theory, proposed earlier De Raedt et al. (2014), is considered in a relativistic setting. It is shown that the Klein–Gordon equation for a massive, charged, and spinless particle derives from the combination of the requirements that the space–time data collected by probing the particle is obtained from the most robust experiment and that on average, the classical relativistic equation of motion of a particle holds. - Highlights: • Logical inference applied to relativistic, massive, charged, and spinless particle experiments leads to the Klein–Gordon equation. • The relativistic Hamilton–Jacobi is scrutinized by employing a field description for the four-velocity. • Logical inference allows analysis of experiments with uncertainty in detection events and experimental conditions.

  7. Relativistic three-particle dynamical equations: II. Application to the trinucleon system

    International Nuclear Information System (INIS)

    Adhikari, S.K.; Tomio, L.

    1993-11-01

    The contribution of relativistic dynamics on the neutron-deuteron scattering length and triton binding energy is calculated employing five sets tri nucleon potential models and four types of three-dimensional relativistic three-body equations suggested in the preceding paper. The relativistic correction to binding energy may vary a lot and even change sign depending on the relativistic formulation employed. The deviations of these observables from those obtained in nonrelativistic models follow the general universal trend of deviations introduced by off- and on-shell variations of two- and three-nucleon potentials in a nonrelativistic model calculation. Consequently, it will be difficult to separate unambiguously the effect of off-and on-shell variations of two and three-nucleon potentials on low-energy three-nucleon observables from the effect of relativistic dynamics. (author)

  8. The investigation of relativistic microscopic optical potential based on RBBG equation

    International Nuclear Information System (INIS)

    Chen Baoqiu; Ma Zhongyu

    1992-01-01

    The relativistic microscopic optical potential is derived from the RBBG equation. The nucleon complex effective mass is determined phenomenologically by a fit to 200 MeV proton-nucleus scattering data. Then the relativistic microscopic optical potentials of proton scattered from different targets: 16 O, 40 Ca, 90 Zr and 208 Pb in the energies range from 160 to 800 MeV have been got. The relativistic microscopic optical potentials have been used to study proton- 40 Ca scattering at 200 MeV. Theoretical predictions for cross section and spin observables are compared with experimental data and phenomenological Dirac optical potential

  9. Probabilistic solutions of generalized birth and death equations and application to non-relativistic electrodynamics

    International Nuclear Information System (INIS)

    Serva, M.

    1986-01-01

    In this paper we give probabilistic solutions to the equations describing non-relativistic quantum electrodynamical systems. These solutions involve, besides the usual diffusion processes, also birth and death processes corresponding to the 'photons number' variables. We state some inequalities and in particular we establish bounds to the ground state energy of systems composed by a non relativistic particle interacting with a field. The result is general and it is applied as an example to the polaron problem. (orig.)

  10. Non-Abelian plasmons and their kinetics equation

    International Nuclear Information System (INIS)

    Zheng Xiaoping; Li Jiarong

    1998-01-01

    After the fluctuated modes in QGP are treated as plasmons, the kinetics equation for the plasmons in linear approximation is established starting from Yang-Mills fields equation. The kinetics equation can be considered as the balance equation for the number of plasmons, which indicates the balance of the number variation (growth or damping) in space and time because of their motion with velocities that equal to the wave's group velocity and the emission or absorption of plasmons by plasma particles

  11. Linear relativistic gyrokinetic equation in general magnetically confined plasmas

    International Nuclear Information System (INIS)

    Tsai, S.T.; Van Dam, J.W.; Chen, L.

    1983-08-01

    The gyrokinetic formalism for linear electromagnetic waves of arbitrary frequency in general magnetic-field configurations is extended to include full relativistic effects. The derivation employs the small adiabaticity parameter rho/L 0 where rho is the Larmor radius and L 0 the equilibrium scale length. The effects of the plasma and magnetic field inhomogeneities and finite Larmor-radii effects are also contained

  12. Receptor binding kinetics equations: Derivation using the Laplace transform method.

    Science.gov (United States)

    Hoare, Sam R J

    Measuring unlabeled ligand receptor binding kinetics is valuable in optimizing and understanding drug action. Unfortunately, deriving equations for estimating kinetic parameters is challenging because it involves calculus; integration can be a frustrating barrier to the pharmacologist seeking to measure simple rate parameters. Here, a well-known tool for simplifying the derivation, the Laplace transform, is applied to models of receptor-ligand interaction. The method transforms differential equations to a form in which simple algebra can be applied to solve for the variable of interest, for example the concentration of ligand-bound receptor. The goal is to provide instruction using familiar examples, to enable investigators familiar with handling equilibrium binding equations to derive kinetic equations for receptor-ligand interaction. First, the Laplace transform is used to derive the equations for association and dissociation of labeled ligand binding. Next, its use for unlabeled ligand kinetic equations is exemplified by a full derivation of the kinetics of competitive binding equation. Finally, new unlabeled ligand equations are derived using the Laplace transform. These equations incorporate a pre-incubation step with unlabeled or labeled ligand. Four equations for measuring unlabeled ligand kinetics were compared and the two new equations verified by comparison with numerical solution. Importantly, the equations have not been verified with experimental data because no such experiments are evident in the literature. Equations were formatted for use in the curve-fitting program GraphPad Prism 6.0 and fitted to simulated data. This description of the Laplace transform method will enable pharmacologists to derive kinetic equations for their model or experimental paradigm under study. Application of the transform will expand the set of equations available for the pharmacologist to measure unlabeled ligand binding kinetics, and for other time

  13. Relativistic extension of a charge-conservative finite element solver for time-dependent Maxwell-Vlasov equations

    Science.gov (United States)

    Na, D.-Y.; Moon, H.; Omelchenko, Y. A.; Teixeira, F. L.

    2018-01-01

    Accurate modeling of relativistic particle motion is essential for physical predictions in many problems involving vacuum electronic devices, particle accelerators, and relativistic plasmas. A local, explicit, and charge-conserving finite-element time-domain (FETD) particle-in-cell (PIC) algorithm for time-dependent (non-relativistic) Maxwell-Vlasov equations on irregular (unstructured) meshes was recently developed by Moon et al. [Comput. Phys. Commun. 194, 43 (2015); IEEE Trans. Plasma Sci. 44, 1353 (2016)]. Here, we extend this FETD-PIC algorithm to the relativistic regime by implementing and comparing three relativistic particle-pushers: (relativistic) Boris, Vay, and Higuera-Cary. We illustrate the application of the proposed relativistic FETD-PIC algorithm for the analysis of particle cyclotron motion at relativistic speeds, harmonic particle oscillation in the Lorentz-boosted frame, and relativistic Bernstein modes in magnetized charge-neutral (pair) plasmas.

  14. Relativistic particle in a box: Klein-Gordon versus Dirac equations

    Science.gov (United States)

    Alberto, Pedro; Das, Saurya; Vagenas, Elias C.

    2018-03-01

    The problem of a particle in a box is probably the simplest problem in quantum mechanics which allows for significant insight into the nature of quantum systems and thus is a cornerstone in the teaching of quantum mechanics. In relativistic quantum mechanics this problem allows also to highlight the implications of special relativity for quantum physics, namely the effect that spin has on the quantised energy spectra. To illustrate this point, we solve the problem of a spin zero relativistic particle in a one- and three-dimensional box using the Klein-Gordon equation in the Feshbach-Villars formalism. We compare the solutions and the energy spectra obtained with the corresponding ones from the Dirac equation for a spin one-half relativistic particle. We note the similarities and differences, in particular the spin effects in the relativistic energy spectrum. As expected, the non-relativistic limit is the same for both kinds of particles, since, for a particle in a box, the spin contribution to the energy is a relativistic effect.

  15. A discussion of the relativistic equal-time equation

    International Nuclear Information System (INIS)

    Chengrui, Q.; Danhua, Q.

    1981-03-01

    Ruan Tu-nan et al have proposed an equal-time equation for composite particles which is derived from Bethe-Salpeter (B-S) equation. Its advantage is that the kernel of this equation is a completely definite single rearrangement of the B-S irreducible kernel without any artificial assumptions. In this paper we shall give a further discussion of the properties of this equation. We discuss the behaviour of this equation as the mass of one of the two particles approaches the limit M 2 → infinite in the ladder approximation of single photon exchange. We show that up to order O(α 4 ) this equation is consistent with the Dirac equation. If the crossed two photon exchange diagrams are taken into account the difference between them is of order O(α 6 ). (author)

  16. A relativistic extended Fermi-Thomas-like equation for a self-gravitating system of fermions

    International Nuclear Information System (INIS)

    Merloni, A.; Ruffini, R.; Torroni, V.

    1998-01-01

    The authors extend previous results of a Fermi-Thomas model, describing self-gravitating fermions in their ground state, to a relativistic gravitational theory in Minkowski space. In such a theory the source term of the gravitational potential depends both on the pressure and the density of the fluid. It is shown that, in correspondence of this relativistic treatment, still a Fermi-Thomas-like equation can be derived for the self-gravitating system, though the non-linearities are much more complex. No Fermi-Thomas-like equation can be obtained in the General Relativistic treatment. The canonical results for neutron stars and white dwarfs are recovered and also some erroneous statements in the scientific literature are corrected

  17. The connection of two-particle relativistic quantum mechanics with the Bethe-Salpeter equation

    International Nuclear Information System (INIS)

    Sazdjian, H.

    1986-02-01

    We show the formal equivalence between the wave equations of two-particle relativistic quantum mechanics, based on the manifestly covariant hamiltonian formalism with constraints, and the Bethe-Salpeter equation. This is achieved by algebraically transforming the latter so as to separate it into two independent equations which match the equations of hamiltonian relativistic quantum mechanics. The first equation determines the relative time evolution of the system, while the second one yields a three-dimensional eigenvalue equation. A connection is thus established between the Bethe-Salpeter wave function and its kernel on the one hand and the quantum mechanical wave function and interaction potential on the other. For the sector of solutions of the Bethe-Salpeter equation having non-relativistic limits, this relationship can be evaluated in perturbation theory. We also device a generalized form of the instantaneous approximation which simplifies the various expressions involved in the above relations. It also permits the evaluation of the normalization condition of the quantum mechanical wave function as a three-dimensional integral

  18. Drift-free kinetic equations for turbulent dispersion

    Science.gov (United States)

    Bragg, A.; Swailes, D. C.; Skartlien, R.

    2012-11-01

    The dispersion of passive scalars and inertial particles in a turbulent flow can be described in terms of probability density functions (PDFs) defining the statistical distribution of relevant scalar or particle variables. The construction of transport equations governing the evolution of such PDFs has been the subject of numerous studies, and various authors have presented formulations for this type of equation, usually referred to as a kinetic equation. In the literature it is often stated, and widely assumed, that these PDF kinetic equation formulations are equivalent. In this paper it is shown that this is not the case, and the significance of differences among the various forms is considered. In particular, consideration is given to which form of equation is most appropriate for modeling dispersion in inhomogeneous turbulence and most consistent with the underlying particle equation of motion. In this regard the PDF equations for inertial particles are considered in the limit of zero particle Stokes number and assessed against the fully mixed (zero-drift) condition for fluid points. A long-standing question regarding the validity of kinetic equations in the fluid-point limit is answered; it is demonstrated formally that one version of the kinetic equation (derived using the Furutsu-Novikov method) provides a model that satisfies this zero-drift condition exactly in both homogeneous and inhomogeneous systems. In contrast, other forms of the kinetic equation do not satisfy this limit or apply only in a limited regime.

  19. Lorentz-like covariant equations of non-relativistic fluids

    International Nuclear Information System (INIS)

    Montigny, M de; Khanna, F C; Santana, A E

    2003-01-01

    We use a geometrical formalism of Galilean invariance to build various hydrodynamics models. It consists in embedding the Newtonian spacetime into a non-Euclidean 4 + 1 space and provides thereby a procedure that unifies models otherwise apparently unrelated. After expressing the Navier-Stokes equation within this framework, we show that slight modifications of its Lagrangian allow us to recover the Chaplygin equation of state as well as models of superfluids for liquid helium (with both its irrotational and rotational components). Other fluid equations are also expressed in a covariant form

  20. In-medium relativistic kinetic theory and nucleon-meson systems

    International Nuclear Information System (INIS)

    Morawetz, K.; Kremp, D.

    1995-01-01

    Within the σ-ω model of coupled nucleonmeson systems, a generalized relativistic Lennard-Balescu-equation is presented resulting from a relativistic random phase approximation (RRPA). This provides a systematic derivation of relativistic transport equations in the frame of nonequilibrium Green's function technique including medium effects as well as fluctuation effects. It contains all possible processes due to one-meson exchange and special attention is kept to the off-shell character of the particles. As a new feature of many-particle effects, processes are possible, which can be interpreted as particle creation and annihilation due to in-medium one-meson exchange. In-medium cross sections are obtained from the generalized derivation of collision integrals, which possess complete crossing symmetries. (orig.)

  1. Poincare group and relativistic wave equations in 2+1 dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Gitman, Dmitri M. [Instituto de Fisica, Universidade de Sao Paulo, Sao Paulo, SP (Brazil); Shelepin, A.L. [Moscow Institute of Radio Engenering, Electronics and Automation, Moscow (Russian Federation)

    1997-09-07

    Using the generalized regular representation, an explicit construction of the unitary irreducible representations of the (2+1)-Poincare group is presented. A detailed description of the angular momentum and spin in 2+1 dimensions is given. On this base the relativistic wave equations for all spins (including fractional) are constructed. (author)

  2. Three-parameter relativistic dynamics. 1. Equation of motion, energy conservation

    International Nuclear Information System (INIS)

    Rogachevskii, A.G.

    1995-01-01

    A formally geometric analog of the relativistic dynamics of a point charged particle is constructed. Time as a function of the spatial coordinates is taken as the trajectory equation, i.e., the trajectory is a hypersurface in Minkowski space. The dynamics is presented. The law of open-quotes energyclose quotes conservation is examined

  3. Relativistic Equations for Spin Particles: What can We Learn from Noncommutativity?

    International Nuclear Information System (INIS)

    Dvoeglazov, V. V.

    2009-01-01

    We derive relativistic equations for charged and neutral spin particles. The approach for higher-spin particles is based on generalizations of the Bargmann-Wigner formalism. Next, we study, what new physical information can give the introduction of non-commutativity. Additional non-commutative parameters can provide a suitable basis for explanation of the origin of mass.

  4. Relativistic wave equations for particles in electromagnetic fields

    International Nuclear Information System (INIS)

    Good, R.H. Jr.

    1989-01-01

    A new type of generalization of the Dirac equation of higher spin particles and antiparticles is given, in case only the terms proportional to the external fields need to be retained. copyright 1989 Academic Press, Inc

  5. Relativistic transport equation for a discontinuity wave of multiplicity one

    Energy Technology Data Exchange (ETDEWEB)

    Giambo, S; Palumbo, A [Istituto di Matematica, Universita degli Studi, Messina (Italy)

    1980-04-14

    In the framework of the theory of the singular hypersurfaces, the transport equation for the amplitude of a discontinuity wave, corresponding to a simple characteristic of a quasi-linear hyperbolic system, is established in the context of special relativity.

  6. Kinetic equations for the collisional plasma model

    International Nuclear Information System (INIS)

    Rij, W.I. Van; Meier, H.K.; Beasley, C.O. Jr.; McCune, J.E.

    1977-01-01

    Using the Collisional Plasma Model (CPM) representation, expressions are derived for the Vlasov operator, both in its general form and in the drift-kinetic approximation following the recursive derivation by Hazeltine. The expressions for the operators give easily calculated couplings between neighbouring components of the CPM representation. Expressions for various macroscopic observables in the drift-kinetics approximation are also given. (author)

  7. Kinetic instabilities in relativistic plasmas: the Harris instability revisited

    International Nuclear Information System (INIS)

    Tautz, R.C.

    2008-01-01

    Plasma instabilities that generate aperiodic fluctuations are of outstanding importance in the astrophysical context. Two prominent examples are the electromagnetic Weibel instability and the electrostatic Harris instability, which operate in initially non-magnetized and magnetized plasmas, respectively. In this talk, the original formulation of the Harris instability will be reviewed and generalizations will be presented such as the inclusion of (1) relativistic effects, (2) ion effects, and (3) mode coupling. It will be shown that, with these modifications, a powerful method has been developed for the determination of both the existence and the growth rate of low-frequency instabilities. Applications can be found in astrophysical jets, where the rest frame can be used and so no parallel motion is present. At the end of the talk, how the particle composition of gamma-ray burst jets can be predicted using the Harris technique. (author)

  8. A novel fractional technique for the modified point kinetics equations

    Directory of Open Access Journals (Sweden)

    Ahmed E. Aboanber

    2016-10-01

    Full Text Available A fractional model for the modified point kinetics equations is derived and analyzed. An analytical method is used to solve the fractional model for the modified point kinetics equations. This methodical technique is based on the representation of the neutron density as a power series of the relaxation time as a small parameter. The validity of the fractional model is tested for different cases of step, ramp and sinusoidal reactivity. The results show that the fractional model for the modified point kinetics equations is the best representation of neutron density for subcritical and supercritical reactors.

  9. Relativistic equations for axisymmetric gravitational collapse with escaping neutrinos

    International Nuclear Information System (INIS)

    Patel, M.D.

    1979-01-01

    Einstein's field equations for the dynamics of a self-gravitating axially symmetric source of a perfect fluid, presented by Chandrasekhar and Friedman (1964), are modified to allow emission of neutrinos. The boundary conditions at the outer surface of the radiating axisymmetric source are obtained by matching to an exterior solution of an axisymmetric rotating, radiating core. (auth.)

  10. Relativistic two-body equation for one Dirac and one Duffin-Kemmer particle

    International Nuclear Information System (INIS)

    Krolikowski, W.

    1983-01-01

    A new relativistic two-body wave equation is proposed for one spin-1/2 and one spin-0 or spin-1 particle which, if isolated from each other, are described by the Dirac and the Duffin-Kemmer equation, respectively. For a static mutual interaction this equation splits into two equations: a two-body wave equation for one Dirac and one Klein-Gordon particle (which was introduced by the author previously) and a new two-body wave equation for one Dirac and one Proca particle. The proposed equation may be applied in particular to the quark-diquark system. In Appendix, however, an alternative approach is sketched, where the diquark is described as the point limit of a very close Breit system rather than a Duffin-Kemmer particle. (Author)

  11. Solution of the reactor point kinetics equations by MATLAB computing

    Directory of Open Access Journals (Sweden)

    Singh Sudhansu S.

    2015-01-01

    Full Text Available The numerical solution of the point kinetics equations in the presence of Newtonian temperature feedback has been a challenging issue for analyzing the reactor transients. Reactor point kinetics equations are a system of stiff ordinary differential equations which need special numerical treatments. Although a plethora of numerical intricacies have been introduced to solve the point kinetics equations over the years, some of the simple and straightforward methods still work very efficiently with extraordinary accuracy. As an example, it has been shown recently that the fundamental backward Euler finite difference algorithm with its simplicity has proven to be one of the most effective legacy methods. Complementing the back-ward Euler finite difference scheme, the present work demonstrates the application of ordinary differential equation suite available in the MATLAB software package to solve the stiff reactor point kinetics equations with Newtonian temperature feedback effects very effectively by analyzing various classic benchmark cases. Fair accuracy of the results implies the efficient application of MATLAB ordinary differential equation suite for solving the reactor point kinetics equations as an alternate method for future applications.

  12. Development of kinetics equations from the Boltzmann equation; Etablissement des equations de la cinetique a partir de l'equation de Boltzmann

    Energy Technology Data Exchange (ETDEWEB)

    Plas, R.

    1962-07-01

    The author reports a study on kinetics equations for a reactor. He uses the conventional form of these equations but by using a dynamic multiplication factor. Thus, constants related to delayed neutrons are not modified by efficiency factors. The author first describes the theoretic kinetic operation of a reactor and develops the associated equations. He reports the development of equations for multiplication factors.

  13. Relativistic theory of nuclear spin-rotation tensor with kinetically balanced rotational London orbitals

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, Yunlong; Zhang, Yong; Liu, Wenjian, E-mail: liuwjbdf@gmail.com [Beijing National Laboratory for Molecular Sciences, Institute of Theoretical and Computational Chemistry, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, and Center for Computational Science and Engineering, Peking University, Beijing 100871 (China)

    2014-10-28

    Both kinetically balanced (KB) and kinetically unbalanced (KU) rotational London orbitals (RLO) are proposed to resolve the slow basis set convergence in relativistic calculations of nuclear spin-rotation (NSR) coupling tensors of molecules containing heavy elements [Y. Xiao and W. Liu, J. Chem. Phys. 138, 134104 (2013)]. While they perform rather similarly, the KB-RLO Ansatz is clearly preferred as it ensures the correct nonrelativistic limit even with a finite basis. Moreover, it gives rise to the same “direct relativistic mapping” between nuclear magnetic resonance shielding and NSR coupling tensors as that without using the London orbitals [Y. Xiao, Y. Zhang, and W. Liu, J. Chem. Theory Comput. 10, 600 (2014)].

  14. Fractional Diffusion Limit for Collisional Kinetic Equations

    KAUST Repository

    Mellet, Antoine

    2010-08-20

    This paper is devoted to diffusion limits of linear Boltzmann equations. When the equilibrium distribution function is a Maxwellian distribution, it is well known that for an appropriate time scale, the small mean free path limit gives rise to a diffusion equation. In this paper, we consider situations in which the equilibrium distribution function is a heavy-tailed distribution with infinite variance. We then show that for an appropriate time scale, the small mean free path limit gives rise to a fractional diffusion equation. © 2010 Springer-Verlag.

  15. Fractional Diffusion Limit for Collisional Kinetic Equations

    KAUST Repository

    Mellet, Antoine; Mischler, Sté phane; Mouhot, Clé ment

    2010-01-01

    This paper is devoted to diffusion limits of linear Boltzmann equations. When the equilibrium distribution function is a Maxwellian distribution, it is well known that for an appropriate time scale, the small mean free path limit gives rise to a

  16. Hamiltonian formalism of two-dimensional Vlasov kinetic equation.

    Science.gov (United States)

    Pavlov, Maxim V

    2014-12-08

    In this paper, the two-dimensional Benney system describing long wave propagation of a finite depth fluid motion and the multi-dimensional Russo-Smereka kinetic equation describing a bubbly flow are considered. The Hamiltonian approach established by J. Gibbons for the one-dimensional Vlasov kinetic equation is extended to a multi-dimensional case. A local Hamiltonian structure associated with the hydrodynamic lattice of moments derived by D. J. Benney is constructed. A relationship between this hydrodynamic lattice of moments and the two-dimensional Vlasov kinetic equation is found. In the two-dimensional case, a Hamiltonian hydrodynamic lattice for the Russo-Smereka kinetic model is constructed. Simple hydrodynamic reductions are presented.

  17. Instabilities and chaos in a kinetic equation for active nematics

    International Nuclear Information System (INIS)

    Shi, Xia-qing; Ma, Yu-qiang; Chaté, Hugues

    2014-01-01

    We study dry active nematics at the kinetic equation level, stressing the differences with the well-known Doi theory for non-active rods near thermal equilibrium. By deriving hydrodynamic equations from the kinetic equation, we show analytically that these two description levels share the same qualitative phase diagram, as defined by the linear instability limits of spatially-homogeneous solutions. In particular, we show that the ordered, homogeneous state is unstable in a region bordering the linear onset of nematic order, and is only linearly stable deeper in the ordered phase. Direct simulations of the kinetic equation reveal that its solutions are chaotic in the region of linear instability of the ordered homogeneous state. The local mechanisms for this large-scale chaos are discussed. (paper)

  18. Uncertainty quantification for hyperbolic and kinetic equations

    CERN Document Server

    Pareschi, Lorenzo

    2017-01-01

    This book explores recent advances in uncertainty quantification for hyperbolic, kinetic, and related problems. The contributions address a range of different aspects, including: polynomial chaos expansions, perturbation methods, multi-level Monte Carlo methods, importance sampling, and moment methods. The interest in these topics is rapidly growing, as their applications have now expanded to many areas in engineering, physics, biology and the social sciences. Accordingly, the book provides the scientific community with a topical overview of the latest research efforts.

  19. Analytic properties of the relativistic Thomas-Fermi equation and the total energy of atomic ions

    International Nuclear Information System (INIS)

    March, N.H.; Senatore, G.

    1985-06-01

    The analytic properties of solutions of the relativistic Thomas-Fermi equation which tend to zero at infinity are first examined, the neutral atom solution being a member of this class. A new length is shown to enter the theory, proportional to the square root of the fine structure constant. This information is used to develop a perturbation expansion around the neutral atom solution, corresponding to positive atomic ions with finite but large radii. The limiting law relating ionic radius to the degree of ionization is thereby displayed in functional form, and solved explicitly to lowest order in the fine structure constant. To embrace this knowledge of heavy positive ions, as well as results from the one-electron Dirac equation, a proposal is then advanced as to the analytic form of the relativistic total energy E(Z,N) of an atomic ion with nuclear charge Ze and total number of electrons N. The fact that, for N>1, the nucleus is known only to bind Z+n electrons, where n is 1 or 2, indicates non-analyticity in the complex Z plane, represented by a circle of radius Z approx.= N. Such non-analyticity is also a property of the non-relativistic energy derived from the many-electron Schroedinger equation. The relativistic theory, however, must also embody a second type of non-analyticity associated with the known property for N=1 that the Dirac equation predicts electron-positron pair production when the electronic binding energy becomes equal to twice the electron rest mass energy. This corresponds to a second circle of non-analyticity in E(Z,N), and hence to a Taylor-Laurent expansion of this quantity in the atomic number Z. The relation of this expansion to the Layzer-Bahcall series is finally discussed. (author)

  20. Quasistationary model of high-current relativistic electron beam. 1. Exact solution of Poisson equations

    International Nuclear Information System (INIS)

    Brenner, S.E.; Gandyl', E.M.; Podkopaev, A.P.

    1995-01-01

    The dynamics of high-current relativistic electron beam moving trough the cylindrical drift space has been modelled by the large particles, the shape of which allows to solve the Poisson equations exactly, and in such a way to avoid the linearization being usually used in those problems. The expressions for the components of own electric field of electron beam passing through the cylindrical drift space have been obtained. (author). 11 refs., 1 fig

  1. General relativistic continuum mechanics and the post-Newtonian equations of motion

    International Nuclear Information System (INIS)

    Morrill, T.H.

    1991-01-01

    Aspects are examined of general relativistic continuum mechanics. Perfectly elastic materials are dealt with but not exclusively. The derivation of their equations of motion is emphasized, in the post-Newtonian approximation. A reformulation is presented based on the tetrad formalism, of Carter and Quintana's theory of general relativistic elastic continua. A field Lagrangian is derived describing perfect material media; show that the usual covariant conservations law for perfectly elastic media is fully equivalent to the Euler-Lagrange equations describing these same media; and further show that the equations of motion for such materials follow directly from Einstein's field equations. In addition, a version of this principle shows that the local mass density in curved space-time partially depends on the amount and distribution of mass energy in the entire universe and is related to the mass density that would occur if space-time were flat. The total Lagrangian was also expanded in an EIH (Einstein, Infeld, Hoffmann) series to obtain a total post-Newtonian Lagrangian. The results agree with those found by solving Einstein's equations for the metric coefficients and by deriving the post-Newtonian equations of motion from the covariant conservation law

  2. Relativistic generalization and extension to the non-Abelian gauge theory of Feynman's proof of the Maxwell equations

    International Nuclear Information System (INIS)

    Tanimura, Shogo

    1992-01-01

    R. P. Feynman showed F. J. Dyson a proof of the Lorentz force law and the homogeneous Maxwell equations, which he obtained starting from Newton's law of motion and the commutation relations between position and velocity for a single nonrelativistic particle. The author formulate both a special relativistic and a general relativistic version of Feynman's derivation. Especially in the general relativistic version they prove that the only possible fields that can consistently act on a quantum mechanical particle are scalar, gauge, and gravitational fields. They also extend Feynman's scheme to the case of non-Abelian gauge theory in the special relativistic context. 8 refs

  3. Thermodynamics and relativistic kinetic theory for q-generalized Bose-Einstein and Fermi-Dirac systems

    Energy Technology Data Exchange (ETDEWEB)

    Mitra, Sukanya [Indian Institute of Technology Gandhinagar, Gandhinagar, Gujarat (India)

    2018-01-15

    The thermodynamics and covariant kinetic theory are elaborately investigated in a non-extensive environment considering the non-extensive generalization of Bose-Einstein (BE) and Fermi-Dirac (FD) statistics. Starting with Tsallis' entropy formula, the fundamental principles of thermostatistics are established for a grand canonical system having q-generalized BE/FD degrees of freedom. Many particle kinetic theory is set up in terms of the relativistic transport equation with q-generalized Uehling-Uhlenbeck collision term. The conservation laws are realized in terms of appropriate moments of the transport equation. The thermodynamic quantities are obtained in a weak non-extensive environment for a massive pion-nucleon and a massless quark-gluon system with non-zero baryon chemical potential. In order to get an estimate of the impact of non-extensivity on the system dynamics, the q-modified Debye mass and hence the q-modified effective coupling are estimated for a quark-gluon system. (orig.)

  4. Thermodynamics and relativistic kinetic theory for q-generalized Bose-Einstein and Fermi-Dirac systems

    Science.gov (United States)

    Mitra, Sukanya

    2018-01-01

    The thermodynamics and covariant kinetic theory are elaborately investigated in a non-extensive environment considering the non-extensive generalization of Bose-Einstein (BE) and Fermi-Dirac (FD) statistics. Starting with Tsallis' entropy formula, the fundamental principles of thermostatistics are established for a grand canonical system having q-generalized BE/FD degrees of freedom. Many particle kinetic theory is set up in terms of the relativistic transport equation with q-generalized Uehling-Uhlenbeck collision term. The conservation laws are realized in terms of appropriate moments of the transport equation. The thermodynamic quantities are obtained in a weak non-extensive environment for a massive pion-nucleon and a massless quark-gluon system with non-zero baryon chemical potential. In order to get an estimate of the impact of non-extensivity on the system dynamics, the q-modified Debye mass and hence the q-modified effective coupling are estimated for a quark-gluon system.

  5. Numerical investigation of kinetic turbulence in relativistic pair plasmas - I. Turbulence statistics

    Science.gov (United States)

    Zhdankin, Vladimir; Uzdensky, Dmitri A.; Werner, Gregory R.; Begelman, Mitchell C.

    2018-02-01

    We describe results from particle-in-cell simulations of driven turbulence in collisionless, magnetized, relativistic pair plasma. This physical regime provides a simple setting for investigating the basic properties of kinetic turbulence and is relevant for high-energy astrophysical systems such as pulsar wind nebulae and astrophysical jets. In this paper, we investigate the statistics of turbulent fluctuations in simulations on lattices of up to 10243 cells and containing up to 2 × 1011 particles. Due to the absence of a cooling mechanism in our simulations, turbulent energy dissipation reduces the magnetization parameter to order unity within a few dynamical times, causing turbulent motions to become sub-relativistic. In the developed stage, our results agree with predictions from magnetohydrodynamic turbulence phenomenology at inertial-range scales, including a power-law magnetic energy spectrum with index near -5/3, scale-dependent anisotropy of fluctuations described by critical balance, lognormal distributions for particle density and internal energy density (related by a 4/3 adiabatic index, as predicted for an ultra-relativistic ideal gas), and the presence of intermittency. We also present possible signatures of a kinetic cascade by measuring power-law spectra for the magnetic, electric and density fluctuations at sub-Larmor scales.

  6. Some solutions of the equations of motion of the relativistic string with massive ends

    International Nuclear Information System (INIS)

    Barbashov, B.M.

    1977-01-01

    The classical theory is discussed for the relativistic string with point masses at its ends. The dynamical equations are solved for the class of motions of this system when the time evolution parameter tau is the proper time of both massive string ends. In this case the solution of the boundary equations is given by the almost periodic functions. Constraints on the normal modes resulting from the orthonormal gauge conditions differ essentially from the Virasoro ones. Incidentally one obtains an exact solution for the half-infinite string with mass at one end. It is also proved that the exact solution for the string with massive ends cannot be a periodic function. (Auth.)

  7. The two-fermion relativistic wave equations of Constraint Theory in the Pauli-Schroedinger form

    International Nuclear Information System (INIS)

    Mourad, J.; Sazdjian, H.

    1994-01-01

    The two-fermion relativistic wave equations of Constraint Theory are reduced, after expressing the components of the 4x4 matrix wave function in terms of one of the 2x2 components, to a single equation of the Pauli-Schroedinger type, valid for all sectors of quantum numbers. The potentials that are present belong to the general classes of scalar, pseudoscalar and vector interactions and are calculable in perturbation theory from Feynman diagrams. In the limit when one of the masses becomes infinite, the equation reduces to the two-component form of the one-particle Dirac equation with external static potentials. The Hamiltonian, to order 1/c 2 , reproduces most of the known theoretical results obtained by other methods. The gauge invariance of the wave equation is checked, to that order, in the case of QED. The role of the c.m. energy dependence of the relativistic interquark confining potential is emphasized and the structure of the Hamiltonian, to order 1/c 2 , corresponding to confining scalar potentials, is displayed. (authors). 32 refs., 2 figs

  8. Gravitational attraction until relativistic equipartition of internal and translational kinetic energies

    Science.gov (United States)

    Bulyzhenkov, I. E.

    2018-02-01

    Translational ordering of the internal kinematic chaos provides the Special Relativity referents for the geodesic motion of warm thermodynamical bodies. Taking identical mathematics, relativistic physics of the low speed transport of time-varying heat-energies differs from Newton's physics of steady masses without internal degrees of freedom. General Relativity predicts geodesic changes of the internal heat-energy variable under the free gravitational fall and the geodesic turn in the radial field center. Internal heat variations enable cyclic dynamics of decelerated falls and accelerated takeoffs of inertial matter and its structural self-organization. The coordinate speed of the ordered spatial motion takes maximum under the equipartition of relativistic internal and translational kinetic energies. Observable predictions are discussed for verification/falsification of the principle of equipartition as a new basic for the ordered motion and self-organization in external fields, including gravitational, electromagnetic, and thermal ones.

  9. A nondissipative simulation method for the drift kinetic equation

    International Nuclear Information System (INIS)

    Watanabe, Tomo-Hiko; Sugama, Hideo; Sato, Tetsuya

    2001-07-01

    With the aim to study the ion temperature gradient (ITG) driven turbulence, a nondissipative kinetic simulation scheme is developed and comprehensively benchmarked. The new simulation method preserving the time-reversibility of basic kinetic equations can successfully reproduce the analytical solutions of asymmetric three-mode ITG equations which are extended to provide a more general reference for benchmarking than the previous work [T.-H. Watanabe, H. Sugama, and T. Sato: Phys. Plasmas 7 (2000) 984]. It is also applied to a dissipative three-mode system, and shows a good agreement with the analytical solution. The nondissipative simulation result of the ITG turbulence accurately satisfies the entropy balance equation. Usefulness of the nondissipative method for the drift kinetic simulations is confirmed in comparisons with other dissipative schemes. (author)

  10. Modelling opinion formation by means of kinetic equations

    OpenAIRE

    Boudin , Laurent; Salvarani , Francesco

    2010-01-01

    In this chapter, we review some mechanisms of opinion dynamics that can be modelled by kinetic equations. Beside the sociological phenomenon of compromise, naturally linked to collisional operators of Boltzmann kind, many other aspects, already mentioned in the sociophysical literature or no, can enter in this framework. While describing some contributions appeared in the literature, we enlighten some mathematical tools of kinetic theory that can be useful in the context of sociophysics.

  11. Turbulent kinetic energy equation and free mixing

    Science.gov (United States)

    Morel, T.; Torda, T. P.; Bradshaw, P.

    1973-01-01

    Calculation of free shear flows was carried out to investigate the usefulness of several concepts which were previously successfully applied to wall flows. The method belongs to the class of differential approaches. The turbulence is taken into account by the introduction of one additional partial differential equation, the transport equation for the turbulent shear stress. The structure of turbulence is modeled after Bradshaw et al. This model was used successfully in boundary layers and its applicability to other flows is demonstrated. The work reported differs substantially from that of an earlier attempt to use this approach for calculation of free flows. The most important difference is that the region around the center line is treated by invoking the interaction hypothesis (concerning the structure of turbulence in the regions separated by the velocity extrema). The compressibility effects on shear layer spreading at low and moderate Mach numbers were investigated. In the absence of detailed experiments in free flows, the evidence from boundary layers that at low Mach numbers the structure of turbulence is unaffected by the compressibility was relied on. The present model was tested over a range of self-preserving and developing flows including pressure gradients using identical empirical input. The dependence of the structure of turbulence on the spreading rate of the shear layer was established.

  12. Study of the equations of a particle in Non- Relativistic Quantum Mechanics

    International Nuclear Information System (INIS)

    Miltao, Milton Souza Ribeiro; Silva, Vanessa Santos Teles da

    2011-01-01

    Full text: The study of group theory is relevant to the treatment of physical problems, in which concepts of invariance and symmetry are important. In the field of Non-Relativistic Quantum Mechanics, we can do algebraic considerations taking into account the principles of symmetry, considering the framework of the study of Galileo transformations, which have characteristics of group. Therefore, we discuss the Stern-Gerlach experiment that had the historical importance of demonstrating that the electron has an intrinsic angular momentum. Through discussion of this experiment, we found that the spin appears in Non-Relativistic Quantum Mechanics as a feature of the algebraic structure underlying any physical theory represented by a group. From these studies, we have algebraic considerations for physical systems in non-relativistic domain, which are described by the Schroedinger and Pauli equations, describing the dynamics of particles of spin zero and 1/2 respectively, taking into account the structure of the transformations Galileo. Due to the operatorial, we represent Galileo's transformations by matrices by choosing an appropriate basis of space-time. Using these arrays, we saw group characteristics associated with these transformations, which we call the Galileo Group. We note the invariance of the Schroedinger and Pauli equations after these changes, as well as the physical state associated with it, which is represented by a radius vector in Hilbert space. (author)

  13. Dechanneling function for relativistic axially channeled electrons

    International Nuclear Information System (INIS)

    Muralev, V.A.; Telegin, V.I.

    1981-01-01

    Behaviour of the x(t) dechanneling function depending on the depth is theoretically studied. Theoretical consideration of x(t) for axial channeled relativistic electrons in anisotropic medium results in two-dimensional kinetic equation with mixed derivatives of the parabolic type. The kinetic equation in the approximation of the continuous Lindchard model for relativistic axial channeled electrons is numerically solved. The depth dependence of the x(t) dechanneling function is obtained [ru

  14. Fractional neutron point kinetics equations for nuclear reactor dynamics

    International Nuclear Information System (INIS)

    Espinosa-Paredes, Gilberto; Polo-Labarrios, Marco-A.; Espinosa-Martinez, Erick-G.; Valle-Gallegos, Edmundo del

    2011-01-01

    The fractional point-neutron kinetics model for the dynamic behavior in a nuclear reactor is derived and analyzed in this paper. The fractional model retains the main dynamic characteristics of the neutron motion in which the relaxation time associated with a rapid variation in the neutron flux contains a fractional order, acting as exponent of the relaxation time, to obtain the best representation of a nuclear reactor dynamics. The physical interpretation of the fractional order is related with non-Fickian effects from the neutron diffusion equation point of view. The numerical approximation to the solution of the fractional neutron point kinetics model, which can be represented as a multi-term high-order linear fractional differential equation, is calculated by reducing the problem to a system of ordinary and fractional differential equations. The numerical stability of the fractional scheme is investigated in this work. Results for neutron dynamic behavior for both positive and negative reactivity and for different values of fractional order are shown and compared with the classic neutron point kinetic equations. Additionally, a related review with the neutron point kinetics equations is presented, which encompasses papers written in English about this research topic (as well as some books and technical reports) published since 1940 up to 2010.

  15. Kinetic equations for an unstable plasma; Equations cinetiques d'un plasma instable

    Energy Technology Data Exchange (ETDEWEB)

    Laval, G; Pellat, R [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1968-07-01

    In this work, we establish the plasma kinetic equations starting from the Bogoliubov-Born-Green-Kirkwood-Yvon hierarchy of equations. We demonstrate that relations existing between correlation functions may help to justify the truncation of the hierarchy. Then we obtain the kinetic equations of a stable or unstable plasma. They do not reduce to an equation for the one-body distribution function, but generally involve two coupled equations for the one-body distribution function and the spectral density of the fluctuating electric field. We study limiting cases where the Balescu-Lenard equation, the quasi-linear theory, the Pines-Schrieffer equations and the equations of weak turbulence in the random phase approximation are recovered. At last we generalise the H-theorem for the system of equations and we define conditions for irreversible behaviour. (authors) [French] Dans ce travail nous etablissons les equations cinetiques d'un plasma a partir des equations de la recurrence de Bogoliubov, Born, Green, Kirkwood et Yvon. Nous demontrons qu'entre les fonctions de correlation d'un plasma existent des relations qui permettent de justifier la troncature de la recurrence. Nous obtenons alors les equations cinetiques d'un plasma stable ou instable. En general elles ne se reduisent pas a une equation d'evolution pour la densite simple, mais se composent de deux equations couplees portant sur la densite simple et la densite spectrale du champ electrique fluctuant. Nous etudions le cas limites ou l'on retrouve l'equation de Balescu-Lenard, les equations de la theorie quasi-lineaire, les equations de Pines et Schrieffer et les equations de la turbulence faible dans l'approximation des phases aleatoires. Enfin, nous generalisons le theoreme H pour ce systeme d'equations et nous precisons les conditions d'evolution irreversible. (auteurs)

  16. Anomalous dynamics triggered by a non-convex equation of state in relativistic flows

    Science.gov (United States)

    Ibáñez, J. M.; Marquina, A.; Serna, S.; Aloy, M. A.

    2018-05-01

    The non-monotonicity of the local speed of sound in dense matter at baryon number densities much higher than the nuclear saturation density (n0 ≈ 0.16 fm-3) suggests the possible existence of a non-convex thermodynamics which will lead to a non-convex dynamics. Here, we explore the rich and complex dynamics that an equation of state (EoS) with non-convex regions in the pressure-density plane may develop as a result of genuinely relativistic effects, without a classical counterpart. To this end, we have introduced a phenomenological EoS, the parameters of which can be restricted owing to causality and thermodynamic stability constraints. This EoS can be regarded as a toy model with which we may mimic realistic (and far more complex) EoSs of practical use in the realm of relativistic hydrodynamics.

  17. Solution of the relativistic 2-D Fokker-Planck equation for LH current drive

    International Nuclear Information System (INIS)

    Hizanidis, K.; Hewett, D.W.; Bers, A.

    1984-03-01

    We solve numerically the steady-state two-dimensional relativistic Fokker-Planck equation with strong rf diffusion using spectra relevant to recent experiments in ALCATOR-C. The results (current generated, power dissipated, and the distribution of energetic electrons) are sensitive to the location of the spectrum in momentum space. Relativistic effects play an important role, especially for wide spectra. The dependence on the ionic charge number Z/sub i/ is also investigated. Particular attention is paid to the perpendicular temperature inside the resonant region and beyond, as well as to the angular energetic particle-temperature distribution, T/sub μ/, a function of the pitch angle parameter μ. The dependence of the perpendicular temperature on the location of the spectrum is also investigated analytically with a model based on the method of moments and the results compared with those found numerically

  18. A nonlinear bounce kinetic equation for trapped electrons

    International Nuclear Information System (INIS)

    Gang, F.Y.

    1990-03-01

    A nonlinear bounce averaged drift kinetic equation for trapped electrons is derived. This equation enables one to compute the nonlinear response of the trapped electron distribution function in terms of the field-line projection of a potential fluctuation left-angle e -inqθ φ n right-angle b . It is useful for both analytical and computational studies of the nonlinear evolution of short wavelength (n much-gt 1) trapped electron mode-driven turbulence. 7 refs

  19. GENERAL EQUATIONS OF CARBONIZATION OF EUCALYPTUS SPP KINETIC MECHANISMS

    Directory of Open Access Journals (Sweden)

    Túlio Jardim Raad

    2006-06-01

    Full Text Available In the present work, a set of general equations related to kinetic mechanism of wood compound carbonization: hemicelluloses, cellulose and lignin was obtained by Avrami-Eroffev and Arrhenius equations and Thermogravimetry of Eucalyptus cloeziana, Eucalyptus camaldulensis, Corymbia citriodora, Eucalyptus urophylla and Eucalyptus grandis samples, TG-Isothermal and TG-Dynamic. The different thermal stabilities and decomposition temperature bands of those species compounds were applied as strategy to obtain the kinetic parameters: activation energy, exponential factor and reaction order. The kinetic model developed was validated by thermogravimetric curves from carbonization of others biomass such as coconut. The kinetic parameters found were - Hemicelluloses: E=98,6 kJmol, A=3,5x106s-1 n=1,0; - Cellulose: E=182,2 kJmol, A=1,2x1013s-1 n=1,5; - Lignin: E=46,6 kJmol, A=2,01s-1 n=0,41. The set of equations can be implemented in a mathematical model of wood carbonization simulation (with heat and mass transfer equations with the aim of optimizing the control and charcoal process used to produce pig iron.

  20. Review of Kaganove's solution for the reactor point kinetics equations

    International Nuclear Information System (INIS)

    Couto, R.T.; Santo, A.C.F. de.

    1993-09-01

    A review of Kaganove's method for the reactor point kinetics equations solution is performed. This was method chosen to calculate the power in ATR, a computer program for the analysis of reactivity transients. The reasons for this choice and the adaptation of the method to the purposes of ATR are presented. (author)

  1. On analytic solutions of (1+3)D relativistic ideal hydrodynamic equations

    International Nuclear Information System (INIS)

    Lin Shu; Liao Jinfeng

    2010-01-01

    In this paper, we find various analytic (1+3)D solutions to relativistic ideal hydrodynamic equations based on embedding of known low-dimensional scaling solutions. We first study a class of flows with 2D Hubble embedding, for which a single ordinary differential equation for the remaining velocity field can be derived. Using this equation, all solutions with transverse 2D Hubble embedding and power law ansatz for the remaining longitudinal velocity field will be found. Going beyond the power law ansatz, we further find a few solutions with transverse 2D Hubble embedding and nontrivial longitudinal velocity field. Finally we investigate general scaling flows with each component of the velocity fields scaling independently, for which we also find all possible solutions.

  2. Study of the stochastic point reactor kinetic equation

    International Nuclear Information System (INIS)

    Gotoh, Yorio

    1980-01-01

    Diagrammatic technique is used to solve the stochastic point reactor kinetic equation. The method gives exact results which are derived from Fokker-Plank theory. A Green's function dressed with the clouds of noise is defined, which is a transfer function of point reactor with fluctuating reactivity. An integral equation for the correlation function of neutron power is derived using the following assumptions: 1) Green's funntion should be dressed with noise, 2) The ladder type diagrams only contributes to the correlation function. For a white noise and the one delayed neutron group approximation, the norm of the integral equation and the variance to mean-squared ratio are analytically obtained. (author)

  3. A direct Primitive Variable Recovery Scheme for hyperbolic conservative equations: The case of relativistic hydrodynamics.

    Science.gov (United States)

    Aguayo-Ortiz, A; Mendoza, S; Olvera, D

    2018-01-01

    In this article we develop a Primitive Variable Recovery Scheme (PVRS) to solve any system of coupled differential conservative equations. This method obtains directly the primitive variables applying the chain rule to the time term of the conservative equations. With this, a traditional finite volume method for the flux is applied in order avoid violation of both, the entropy and "Rankine-Hugoniot" jump conditions. The time evolution is then computed using a forward finite difference scheme. This numerical technique evades the recovery of the primitive vector by solving an algebraic system of equations as it is often used and so, it generalises standard techniques to solve these kind of coupled systems. The article is presented bearing in mind special relativistic hydrodynamic numerical schemes with an added pedagogical view in the appendix section in order to easily comprehend the PVRS. We present the convergence of the method for standard shock-tube problems of special relativistic hydrodynamics and a graphical visualisation of the errors using the fluctuations of the numerical values with respect to exact analytic solutions. The PVRS circumvents the sometimes arduous computation that arises from standard numerical methods techniques, which obtain the desired primitive vector solution through an algebraic polynomial of the charges.

  4. Supergroup extensions: from central charges to quantization through relativistic wave equations

    International Nuclear Information System (INIS)

    Aldaya, V.; Azcarraga, J.A. de.

    1982-07-01

    We give in this paper the finite group law of a family of supergroups including the U(1)-extended N=2 super-Poincare group. From this family of supergroups, and by means of a canonical procedure, we are able to derive the Klein-Gordon and Dirac equations for the fields contained in the superfield. In the process, the physical content of the central charge as the mass parameter and the role of covariant derivatives are shown to come out canonically from the group structure, and the U(1)-extended supersymmetry is seen as necessary for the geometric quantization of the relativistic elementary systems. (author)

  5. Hartree Fock-type equations in relativistic quantum electrodynamics with non-linear gauge fixing

    International Nuclear Information System (INIS)

    Dietz, K.; Hess, B.A.

    1990-08-01

    Relativistic mean-field equations are obtained by minimizing the effective energy obtained from the gauge-invariant energy density by eliminating electro-magnetic degrees of freedom in certain characteristic non-linear gauges. It is shown that by an appropriate choice of gauge many-body correlations, e.g. screening, three-body 'forces' etc. can be included already at the mean-field level. The many-body perturbation theory built on the latter is then expected to show improved 'convergence'. (orig.)

  6. Solution of the Fokker-Planck equation for axially-channeled relativistic electrons

    International Nuclear Information System (INIS)

    Muralev, V.A.; Telegin, V.I.

    1981-01-01

    A method of the two dimensional kinetic equation of the Fokker-Planck type for axially-channeled electrons is proposed. This equation has been obtained recently by Beloshitsky and Kumakhov to describe the diffusion of channeling negative particles over the transverse energy and angular momentum. The results of computation of the dechanneling function of 1 GeV electrons in tungsten are presented. (author)

  7. Taylor's series method for solving the nonlinear point kinetics equations

    International Nuclear Information System (INIS)

    Nahla, Abdallah A.

    2011-01-01

    Highlights: → Taylor's series method for nonlinear point kinetics equations is applied. → The general order of derivatives are derived for this system. → Stability of Taylor's series method is studied. → Taylor's series method is A-stable for negative reactivity. → Taylor's series method is an accurate computational technique. - Abstract: Taylor's series method for solving the point reactor kinetics equations with multi-group of delayed neutrons in the presence of Newtonian temperature feedback reactivity is applied and programmed by FORTRAN. This system is the couples of the stiff nonlinear ordinary differential equations. This numerical method is based on the different order derivatives of the neutron density, the precursor concentrations of i-group of delayed neutrons and the reactivity. The r th order of derivatives are derived. The stability of Taylor's series method is discussed. Three sets of applications: step, ramp and temperature feedback reactivities are computed. Taylor's series method is an accurate computational technique and stable for negative step, negative ramp and temperature feedback reactivities. This method is useful than the traditional methods for solving the nonlinear point kinetics equations.

  8. Self-consistent relativistic Boltzmann-Uehling-Uhlenbeck equation for the Δ distribution function

    International Nuclear Information System (INIS)

    Mao, G.; Li, Z.; Zhuo, Y.

    1996-01-01

    We derive the self-consistent relativistic Boltzmann-Uehling-Uhlenbeck (RBUU) equation for the delta distribution function within the framework which we have done for nucleon close-quote s. In our approach, the Δ isobars are treated in essentially the same way as nucleons. Both mean field and collision terms of Δ close-quote s RBUU equation are derived from the same effective Lagrangian and presented analytically. We calculate the in-medium NΔ elastic and inelastic scattering cross sections up to twice nuclear matter density and the results show that the in-medium cross sections deviate substantially from Cugnon close-quote s parametrization that is commonly used in the transport model. copyright 1996 The American Physical Society

  9. The unified approach to integrable relativistic equations: Soliton solutions over non-vanishing backgrounds - 1

    International Nuclear Information System (INIS)

    Barashenkov, I.V.; Getmanov, B.S.; Kovtun, V.E.

    1992-01-01

    The scheme for unified description of integrable relativistic massive systems provides an inverse scattering formalism that covers universally all (1+1)- dimensional systems of this kind. In this work we construct the N-soliton solution (over an arbitrary background) for some generic system which is associated with the sl(2,C) case of the scheme and whose reductions include the complex sine-Gordon equation, the massive Thirring model and other equations, both in the Euclidean and Minkowski spaces. Thus the N-soliton solutions for all these systems emerge in a unified form differing only in the type of constraints imposed on their parameters. In an earlier paper the case of the zero background was considered while here we concentrate on the case of the non-vanishing constant background i.e., on the N-kink solutions. (author). 18 refs

  10. Deterministic methods for the relativistic Vlasov-Maxwell equations and the Van Allen belts dynamics

    International Nuclear Information System (INIS)

    Le Bourdiec, S.

    2007-03-01

    Artificial satellites operate in an hostile radiation environment, the Van Allen radiation belts, which partly condition their reliability and their lifespan. In order to protect them, it is necessary to characterize the dynamics of the energetic electrons trapped in these radiation belts. This dynamics is essentially determined by the interactions between the energetic electrons and the existing electromagnetic waves. This work consisted in designing a numerical scheme to solve the equations modelling these interactions: the relativistic Vlasov-Maxwell system of equations. Our choice was directed towards methods of direct integration. We propose three new spectral methods for the momentum discretization: a Galerkin method and two collocation methods. All of them are based on scaled Hermite functions. The scaling factor is chosen in order to obtain the proper velocity resolution. We present in this thesis the discretization of the one-dimensional Vlasov-Poisson system and the numerical results obtained. Then we study the possible extensions of the methods to the complete relativistic problem. In order to reduce the computing time, parallelization and optimization of the algorithms were carried out. Finally, we present 1Dx-3Dv (mono-dimensional for x and three-dimensional for velocity) computations of Weibel and whistler instabilities with one or two electrons species. (author)

  11. Numerical solution of ordinary differential equations. For classical, relativistic and nano systems

    International Nuclear Information System (INIS)

    Greenspan, D.

    2006-01-01

    An up-to-date survey on numerical solutions with theory, intuition and applications. Ordinary differential equations (ODE) play a significant role in mathematics, physics and engineering sciences, and thus are part of relevant college and university courses. Many problems, however, both traditional and modern, do not possess exact solutions, and must be treated numerically. Usually this is done with software packages, but for this to be efficient requires a sound understanding of the mathematics involved. This work meets the need for an affordable textbook that helps in understanding numerical solutions of ODE. Carefully structured by an experienced textbook author, it provides a survey of ODE for various applications, both classical and modern, including such special applications as relativistic and nano systems. The examples are carefully explained and compiled into an algorithm, each of which is presented generically, independent of a specific programming language, while each chapter is rounded off with exercises. The text meets the demands of MA200 courses and of the newly created Numerical Solution of Differential Equations courses, making it ideal for both students and lecturers in physics, mathematics, mechanical engineering, electrical engineering, as well as for physicists, mathematicians, engineers, and electrical engineers. From the Contents - Euler's Method - Runge-Kutta Methods - The Method of Taylor Expansions - Large Second Order Systems with Application to Nano Systems - Completely Conservative, Covariant Numerical Methodology - Instability - Numerical Solution of Tridiagonal Linear Algebraic Systems and Related Nonlinear Systems - Approximate Solution of Boundary Value Problems - Special Relativistic Motion - Special Topics - Appendix: Basic Matrix Operations - Bibliography. (orig.) (orig.)

  12. Some Mathematical Structures Including Simplified Non-Relativistic Quantum Teleportation Equations and Special Relativity

    International Nuclear Information System (INIS)

    Woesler, Richard

    2007-01-01

    The computations of the present text with non-relativistic quantum teleportation equations and special relativity are totally speculative, physically correct computations can be done using quantum field theory, which remain to be done in future. Proposals for what might be called statistical time loop experiments with, e.g., photon polarization states are described when assuming the simplified non-relativistic quantum teleportation equations and special relativity. However, a closed time loop would usually not occur due to phase incompatibilities of the quantum states. Histories with such phase incompatibilities are called inconsistent ones in the present text, and it is assumed that only consistent histories would occur. This is called an exclusion principle for inconsistent histories, and it would yield that probabilities for certain measurement results change. Extended multiple parallel experiments are proposed to use this statistically for transmission of classical information over distances, and regarding time. Experiments might be testable in near future. However, first a deeper analysis, including quantum field theory, remains to be done in future

  13. Critical Opalescence around the QCD Critical Point and Second-order Relativistic Hydrodynamic Equations Compatible with Boltzmann Equation

    International Nuclear Information System (INIS)

    Kunihiro, Teiji; Minami, Yuki; Tsumura, Kyosuke

    2009-01-01

    The dynamical density fluctuations around the QCD critical point (CP) are analyzed using relativistic dissipative fluid dynamics, and we show that the sound mode around the QCD CP is strongly attenuated whereas the thermal fluctuation stands out there. We speculate that if possible suppression or disappearance of a Mach cone, which seems to be created by the partonic jets at RHIC, is observed as the incident energy of the heavy-ion collisions is decreased, it can be a signal of the existence of the QCD CP. We have presented the Israel-Stewart type fluid dynamic equations that are derived rigorously on the basis of the (dynamical) renormalization group method in the second part of the talk, which we omit here because of a lack of space.

  14. Critical Opalescence around the QCD Critical Point and Second-order Relativistic Hydrodynamic Equations Compatible with Boltzmann Equation

    Science.gov (United States)

    Kunihiro, Teiji; Minami, Yuki; Tsumura, Kyosuke

    2009-11-01

    The dynamical density fluctuations around the QCD critical point (CP) are analyzed using relativistic dissipative fluid dynamics, and we show that the sound mode around the QCD CP is strongly attenuated whereas the thermal fluctuation stands out there. We speculate that if possible suppression or disappearance of a Mach cone, which seems to be created by the partonic jets at RHIC, is observed as the incident energy of the heavy-ion collisions is decreased, it can be a signal of the existence of the QCD CP. We have presented the Israel-Stewart type fluid dynamic equations that are derived rigorously on the basis of the (dynamical) renormalization group method in the second part of the talk, which we omit here because of a lack of space.

  15. Comparative analysis of solution methods of the punctual kinetic equations

    International Nuclear Information System (INIS)

    Hernandez S, A.

    2003-01-01

    The following one written it presents a comparative analysis among different analytical solutions for the punctual kinetics equation, which present two variables of interest: a) the temporary behavior of the neutronic population, and b) The temporary behavior of the different groups of precursors of delayed neutrons. The first solution is based on a method that solves the transfer function of the differential equation for the neutronic population, in which intends to obtain the different poles that give the stability of this transfer function. In this section it is demonstrated that the temporary variation of the reactivity of the system can be managed as it is required, since the integration time for this method doesn't affect the result. However, the second solution is based on an iterative method like that of Runge-Kutta or the Euler method where the algorithm was only used to solve first order differential equations giving this way solution to each differential equation that conforms the equations of punctual kinetics. In this section it is demonstrated that only it can obtain a correct temporary behavior of the neutronic population when it is integrated on an interval of very short time, forcing to the temporary variation of the reactivity to change very quick way without one has some control about the time. In both methods the same change is used so much in the reactivity of the system like in the integration times, giving validity to the results graph the one the temporary behavior of the neutronic population vs. time. (Author)

  16. Initial value problem for the equations of reactor kinetics

    International Nuclear Information System (INIS)

    Kyncl, J.

    1987-08-01

    The initial value problem for the equations of reactor kinetics is solved while taking temperature feedback into account. The space where the problem is solved is chosen such as to correspond to the mathematical properties of cross-section models. The local solution is found by the iterative method, its uniqueness is proved and it is also shown that the existence of global solution is ensured in most cases. Finally, the problem of a weak solution is discussed. (author). 5 refs

  17. Computer models for kinetic equations of magnetically confined plasmas

    International Nuclear Information System (INIS)

    Killeen, J.; Kerbel, G.D.; McCoy, M.G.; Mirin, A.A.; Horowitz, E.J.; Shumaker, D.E.

    1987-01-01

    This paper presents four working computer models developed by the computational physics group of the National Magnetic Fusion Energy Computer Center. All of the models employ a kinetic description of plasma species. Three of the models are collisional, i.e., they include the solution of the Fokker-Planck equation in velocity space. The fourth model is collisionless and treats the plasma ions by a fully three-dimensional particle-in-cell method

  18. Kinetic theory of flocking: derivation of hydrodynamic equations.

    Science.gov (United States)

    Ihle, Thomas

    2011-03-01

    It is shown how to explicitly coarse-grain the microscopic dynamics of the rule-based Vicsek model for self-propelled agents. The hydrodynamic equations are derived by means of an Enskog-type kinetic theory. Expressions for all transport coefficients are given. The transition from a disordered to a flocking state, which at large particle speeds appears to be a fluctuation-induced first-order phase transition, is studied numerically and analytically.

  19. The energetics of relativistic jets in active galactic nuclei with various kinetic powers

    Science.gov (United States)

    Musoke, Gibwa Rebecca; Young, Andrew; Molnar, Sandor; Birkinshaw, Mark

    2018-01-01

    Numerical simulations are an important tool in understanding the physical processes behind relativistic jets in active galactic nuclei. In such simulations different combinations of intrinsic jet parameters can be used to obtain the same jet kinetic powers. We present a numerical investigation of the effects of varying the jet power on the dynamic and energetic characteristics of the jets for two kinetic power regimes; in the first regime we change the jet density whilst maintaining a fixed velocity, in the second the jet density is held constant while the velocity is varied. We conduct 2D axisymmetric hydrodynamic simulations of bipolar jets propagating through an isothermal cluster atmosphere using the FLASH MHD code in pure hydrodynamics mode. The jets are simulated with kinetic powers ranging between 1045 and 1046 erg/s and internal Mach numbers ranging from 5.6 to 21.5.As the jets begin to propagate into the intracluster medium (ICM), the injected jet energy is converted into the thermal, kinetic and gravitational potential energy components of the jet cocoon and ICM. We explore the temporal evolution of the partitioning of the injected jet energy into the cocoon and the ICM and quantify the importance of entrainment process on the energy partitioning. We investigate the fraction of injected energy transferred to the thermal energy component of the jet-ICM system in the context of heating the cluster environments, noting that the jets simulated display peak thermalisation efficiencies of least 65% and a marked dependence on the jet density. We compare the efficiencies of the energy partitioning between the cocoon and ICM for the two kinetic power regimes and discuss the resulting efficiency-power scaling relations of each regime.

  20. Kinetic study of the sausage mode of a resistive instability of a relativistic electron beam

    International Nuclear Information System (INIS)

    Gureev, K.G.; Zolotarev, V.O.; Stolbetsov, S.D.

    1984-01-01

    The nonlinear problem of the growth of the sausage mode of the resistive instability of a relativistic electron beam propagating without collisions through a tenuous plasma is solved. The plasma conductivity is assumed to be high, so that the wave phase velocity is low in comparison with the velocity of light. A kinetic approach is taken to the description of the beam. A numerical solution of the problem shows that this instability occurs in a cold, uniform beam. In the nonlinear stage of the instability the beam goes through states with a hollow structure. Suppression of the instability is found for a beam with a Bennett distribution function. The stabilization results from phase mixing of the beam particles

  1. Well-posedness for Semi-relativistic Hartree Equations of Critical Type

    International Nuclear Information System (INIS)

    Lenzmann, Enno

    2007-01-01

    We prove local and global well-posedness for semi-relativistic, nonlinear Schroedinger equations with initial data in H s (R 3 ). Here F(u) is a critical Hartree nonlinearity that corresponds to Coulomb or Yukawa type self-interactions. For focusing F(u), which arise in the quantum theory of boson stars, we derive global-in-time existence for small initial data, where the smallness condition is expressed in terms of the L 2 -norm of solitary wave ground states. Our proof of well-posedness does not rely on Strichartz type estimates. As a major benefit from this, our method enables us to consider external potentials of a quite general class

  2. Supermultiplets and relativistic problems: II. The Bhabha equation of arbitrary spin and its properties

    CERN Document Server

    Moshinsky, M; Nikitin, A G; Smirnov, Yu F

    1998-01-01

    In 1945 Bhabha was probably the first to discuss the problem of a free relativistic particle with arbitrary spin in terms of a single linear equation in the four-momentum vector p subnu, but substituting the gamma supnu matrices of Dirac by other ones. He determined the latter by requiring that their appropriate Lorentz transformations lead to their formulation in terms of the generators of the O(5) group. His program was later extensively amplified by Krajcik, Nieto and others. We returned to this problem because we had an ab-initio procedure for deriving a Lorentz-invariant equation of arbitrary spin and furthermore could express the matrices appearing in them in terms of ordinary and what we called sign spins. Our procedure was similar to that of the ordinary and isotopic spin in nuclear physics that give rise to supermultiplets, hence the appearance of this word in the title. In the ordinary and sign spin formulation it is easy to transform our equation into one linear in both the p subnu and some of the ...

  3. Non-relativistic correspondence of Dirac equation with external electromagnetic field and space-time torsion

    International Nuclear Information System (INIS)

    Goncalves, Bruno; Dias Junior, Mario Marcio

    2013-01-01

    Full text: The discussion of experimental manifestations of torsion at low energies is mainly related to the torsion-spin interaction. In this respect the behavior of Dirac field and the spinning particle in an external torsion field deserves and received very special attention. In this work, we consider the combined action of torsion and magnetic field on the massive spinor field. In this case, the Dirac equation is not straightforward solved. We suppose that the spinor has two components. The equations have mixed terms between the two components. The electromagnetic field is introduced in the action by the usual gauge transformation. The torsion field is described by the field S μ . The main purpose of the work is to get an explicit form to the equation of motion that shows the possible interactions between the external fields and the spinor in a Hamiltonian that is independent to each component. We consider that S 0 is constant and is the unique non-vanishing term of S μ . This simplification is taken just to simplify the algebra, as our main point is not to describe the torsion field itself. In order to get physical analysis of the problem, we consider the non-relativistic approximation. The final result is a Hamiltonian that describes a half spin field in the presence of electromagnetic and torsion external fields. (author)

  4. Low-lying qq(qq)-bar states in a relativistic model based on the Bethe-Salpeter equation

    International Nuclear Information System (INIS)

    Ram, B.; Kriss, V.

    1985-01-01

    Low-lying qq(qq)-bar states are analysed in a previously given relativistic model based on the Bethe-Salpeter equation. It is not got M-diquonia, P-mesonia, or meson molecules, but it is got T-diquonia

  5. Statistical approach to LHCD modeling using the wave kinetic equation

    International Nuclear Information System (INIS)

    Kupfer, K.; Moreau, D.; Litaudon, X.

    1993-04-01

    Recent work has shown that for parameter regimes typical of many present day current drive experiments, the orbits of the launched LH rays are chaotic (in the Hamiltonian sense), so that wave energy diffuses through the stochastic layer and fills the spectral gap. We have analyzed this problem using a statistical approach, by solving the wave kinetic equation for the coarse-grained spectral energy density. An interesting result is that the LH absorption profile is essentially independent of both the total injected power and the level of wave stochastic diffusion

  6. Tetrahedron equations and the relativistic S-matrix of straight-strings in 2+1-dimensions

    International Nuclear Information System (INIS)

    Zamolodchikov, A.B.

    1981-01-01

    The quantum S-matrix theory of straight-strings (infinite one-dimensioanl objects like straight domain walls) in 2 + 1-dimensions is considered. The S-matrix is supposed to be purely elastic and factorized. The tetrahedron equations (which are the factorization conditions) are investigated for the special two-colour model. The relativistic three-string S-matrix, which apparently satisfies this tetrahedron equation, is proposed. (orig.)

  7. Nonequilibrium Statistical Operator Method and Generalized Kinetic Equations

    Science.gov (United States)

    Kuzemsky, A. L.

    2018-01-01

    We consider some principal problems of nonequilibrium statistical thermodynamics in the framework of the Zubarev nonequilibrium statistical operator approach. We present a brief comparative analysis of some approaches to describing irreversible processes based on the concept of nonequilibrium Gibbs ensembles and their applicability to describing nonequilibrium processes. We discuss the derivation of generalized kinetic equations for a system in a heat bath. We obtain and analyze a damped Schrödinger-type equation for a dynamical system in a heat bath. We study the dynamical behavior of a particle in a medium taking the dissipation effects into account. We consider the scattering problem for neutrons in a nonequilibrium medium and derive a generalized Van Hove formula. We show that the nonequilibrium statistical operator method is an effective, convenient tool for describing irreversible processes in condensed matter.

  8. Non-equilibrium reaction rates in chemical kinetic equations

    Science.gov (United States)

    Gorbachev, Yuriy

    2018-05-01

    Within the recently proposed asymptotic method for solving the Boltzmann equation for chemically reacting gas mixture, the chemical kinetic equations has been derived. Corresponding one-temperature non-equilibrium reaction rates are expressed in terms of specific heat capacities of the species participate in the chemical reactions, bracket integrals connected with the internal energy transfer in inelastic non-reactive collisions and energy transfer coefficients. Reactions of dissociation/recombination of homonuclear and heteronuclear diatomic molecules are considered. It is shown that all reaction rates are the complex functions of the species densities, similarly to the unimolecular reaction rates. For determining the rate coefficients it is recommended to tabulate corresponding bracket integrals, additionally to the equilibrium rate constants. Correlation of the obtained results with the irreversible thermodynamics is established.

  9. A consistent hierarchy of generalized kinetic equation approximations to the master equation applied to surface catalysis.

    Science.gov (United States)

    Herschlag, Gregory J; Mitran, Sorin; Lin, Guang

    2015-06-21

    We develop a hierarchy of approximations to the master equation for systems that exhibit translational invariance and finite-range spatial correlation. Each approximation within the hierarchy is a set of ordinary differential equations that considers spatial correlations of varying lattice distance; the assumption is that the full system will have finite spatial correlations and thus the behavior of the models within the hierarchy will approach that of the full system. We provide evidence of this convergence in the context of one- and two-dimensional numerical examples. Lower levels within the hierarchy that consider shorter spatial correlations are shown to be up to three orders of magnitude faster than traditional kinetic Monte Carlo methods (KMC) for one-dimensional systems, while predicting similar system dynamics and steady states as KMC methods. We then test the hierarchy on a two-dimensional model for the oxidation of CO on RuO2(110), showing that low-order truncations of the hierarchy efficiently capture the essential system dynamics. By considering sequences of models in the hierarchy that account for longer spatial correlations, successive model predictions may be used to establish empirical approximation of error estimates. The hierarchy may be thought of as a class of generalized phenomenological kinetic models since each element of the hierarchy approximates the master equation and the lowest level in the hierarchy is identical to a simple existing phenomenological kinetic models.

  10. Modified mean generation time parameter in the neutron point kinetics equations

    Energy Technology Data Exchange (ETDEWEB)

    Diniz, Rodrigo C.; Gonçalves, Alessandro C.; Rosa, Felipe S.S., E-mail: alessandro@nuclear.ufrj.br, E-mail: frosa@if.ufrj.br [Coordenacao de Pos-Graduacao e Pesquisa de Engenharia (PEN/COPPE/UFRJ), Rio de Janeiro, RJ (Brazil)

    2017-07-01

    This paper proposes an approximation for the modified point kinetics equations proposed by NUNES et. al, 2015, through the adjustment of a kinetic parameter. This approximation consists of analyzing the terms of the modified point kinetics equations in order to identify the least important ones for the solution, resulting in a modification of the mean generation time parameter that incorporates all influences of the additional terms of the modified kinetics. This approximation is applied on the inverse kinetics, to compare the results with the inverse kinetics from the modified kinetics in order to validate the proposed model. (author)

  11. Modified mean generation time parameter in the neutron point kinetics equations

    International Nuclear Information System (INIS)

    Diniz, Rodrigo C.; Gonçalves, Alessandro C.; Rosa, Felipe S.S.

    2017-01-01

    This paper proposes an approximation for the modified point kinetics equations proposed by NUNES et. al, 2015, through the adjustment of a kinetic parameter. This approximation consists of analyzing the terms of the modified point kinetics equations in order to identify the least important ones for the solution, resulting in a modification of the mean generation time parameter that incorporates all influences of the additional terms of the modified kinetics. This approximation is applied on the inverse kinetics, to compare the results with the inverse kinetics from the modified kinetics in order to validate the proposed model. (author)

  12. Hydrodynamic limits of kinetic equations for polyatomic and reactive gases

    Directory of Open Access Journals (Sweden)

    Bisi M.

    2017-03-01

    Full Text Available Starting from a kinetic BGK-model for a rarefied polyatomic gas, based on a molecular structure of discrete internal energy levels, an asymptotic Chapman-Enskog procedure is developed in the asymptotic continuum limit in order to derive consistent fluid-dynamic equations for macroscopic fields at Navier-Stokes level. In this way, the model allows to treat the gas as a mixture of mono-atomic species. Explicit expressions are given not only for dynamical pressure, but also for shear stress, diffusion velocities, and heat flux. The analysis is shown to deal properly also with a mixture of reactive gases, endowed for simplicity with translational degrees of freedom only, in which frame analogous results can be achieved.

  13. Second relativistic mean field and virial equation of state for astrophysical simulations

    International Nuclear Information System (INIS)

    Shen, G.; Horowitz, C. J.; O'Connor, E.

    2011-01-01

    We generate a second equation of state (EOS) of nuclear matter for a wide range of temperatures, densities, and proton fractions for use in supernovae, neutron star mergers, and black hole formation simulations. We employ full relativistic mean field (RMF) calculations for matter at intermediate density and high density, and the virial expansion of a nonideal gas for matter at low density. For this EOS we use the RMF effective interaction FSUGold, whereas our earlier EOS was based on the RMF effective interaction NL3. The FSUGold interaction has a lower pressure at high densities compared to the NL3 interaction. We calculate the resulting EOS at over 100 000 grid points in the temperature range T=0 to 80 MeV, the density range n B =10 -8 to 1.6 fm -3 , and the proton fraction range Y p =0 to 0.56. We then interpolate these data points using a suitable scheme to generate a thermodynamically consistent equation of state table on a finer grid. We discuss differences between this EOS, our NL3-based EOS, and previous EOSs by Lattimer-Swesty and H. Shen et al. for the thermodynamic properties, composition, and neutron star structure. The original FSUGold interaction produces an EOS, which we call FSU1.7, that has a maximum neutron star mass of 1.7 solar masses. A modification in the high-density EOS is introduced to increase the maximum neutron star mass to 2.1 solar masses and results in a slightly different EOS that we call FSU2.1. The EOS tables for FSU1.7 and FSU2.1 are available for download.

  14. The fully relativistic foundation of linear transfer theory in electron optics based on the Dirac equation

    NARCIS (Netherlands)

    Ferwerda, H.A.; Hoenders, B.J.; Slump, C.H.

    The fully relativistic quantum mechanical treatment of paraxial electron-optical image formation initiated in the previous paper (this issue) is worked out and leads to a rigorous foundation of the linear transfer theory. Moreover, the status of the relativistic scaling laws for mass and wavelength,

  15. Lagrangian formulation of a consistent relativistic guiding center theory

    International Nuclear Information System (INIS)

    Wimmel, H.K.

    1983-02-01

    A new relativistic guiding center mechanics is presented that conserves energy (in time-independent fields) and satisfies a Liouville's theorem. The theory reduces to Littlejohn's theory in the non-relativistic limit and agrees to leading orders in epsilon identical rsub(g)/L with the relativistic theory by Morozov and Solov'ev (which generally lacks a Liouville's theorem). The new theory is developed from an appropriate Lagrangian and is supplemented by a collisionless relativistic kinetic equation for the guiding centers. Moment equations for guiding center density and energy density are also derived. (orig.)

  16. Relativistic dissipative hydrodynamic equations at the second order for multi-component systems with multiple conserved currents

    International Nuclear Information System (INIS)

    Monnai, Akihiko; Hirano, Tetsufumi

    2010-01-01

    We derive the second order hydrodynamic equations for the relativistic system of multi-components with multiple conserved currents by generalizing the Israel-Stewart theory and Grad's moment method. We find that, in addition to the conventional moment equations, extra moment equations associated with conserved currents should be introduced to consistently match the number of equations with that of unknowns and to satisfy the Onsager reciprocal relations. Consistent expansion of the entropy current leads to constitutive equations which involve the terms not appearing in the original Israel-Stewart theory even in the single component limit. We also find several terms which exhibit thermal diffusion such as Soret and Dufour effects. We finally compare our results with those of other existing formalisms.

  17. Neutron star properties and the relativistic nuclear equation of state of many-baryon matter

    International Nuclear Information System (INIS)

    Weber, F.; Weigel, M.K.

    1989-01-01

    A relativistic model of baryons interacting via the exchange of σ-, ω-, π- and ρ-mesons (scalar-vector-isovector (SVI) theory) is used to describe the properties of both dense and superdense matter. For the theoretical frame, we used the temperature-dependent Green's function formalism. The equation of state (EOS) is calculated for nuclear as well as neutron matter in the Hartree (H) and Hartree-Fock (HF) approximation. The existence of phase transitions has been investigated. The isotherms of pressure as a function of density show for nuclear matter a critical temperature of about T c HF =16.6 MeV. (As in the usual scalar-vector (SV) theory, the phase transition is absent for neutron matter. A phase transition of both many-baryon systems in the high-pressure and high-density region, which has been found within the SV many-baryon theory, appears in the SVI theory too. The calculated maximum stable masses of neutron stars depend on 1. the underlying parameter set and/or 2. on the chosen approximation (i.e., H, HF; SV-, SVI theory, respectively). Hartree calculations lead to a mass stability limit of M max H ≤2.87 M sun (M max H ≤2.44 M sun when hyperons are taken into account). For the HF calculations we obtained M max HF ≤3.00 M sun (M max HF ≤2.85 M sun ). The corresponding maximum radii are (same notation as above) R H ≤13.2 km (R H ≤11.8 km), R HF ≤14.0 km (R HF ≤13.94 km).) The influence of the approximations, parameter sets and hyperons on the neutron star's moment of inertia is exhibited. (orig.)

  18. Relativistic energy eigenvalues for the Dirac equation in the presence of vector and scalar potentials via the simple similarity transformation

    International Nuclear Information System (INIS)

    Barakat, T

    2012-01-01

    Based on the simple similarity transformation, we were able to transform the Dirac equation whose potential contains vector V (r) = -A/r + B 1 r and scalar S(r) = B 2 r types into a form nearly identical to the Schrödinger equation. The transformed equation is so simple that one can solve it by means of the asymptotic iteration method. Moreover, within the same framework we were able to obtain the relativistic energy eigenvalues for the Dirac equation with vector Coulomb plus scalar linear, and with pure scalar linear potentials; V (r) = -A/r, S(r) = B 2 r, and V (r) = 0, S(r) = B 2 r, respectively.

  19. Multiple spatial scaling and the weak coupling approximation. II. Homogeneous kinetic equation

    Energy Technology Data Exchange (ETDEWEB)

    Kleinsmith, P E [Carnegie-Mellon Univ., Pittsburgh, Pa. (USA)

    1977-08-01

    A modified form of the Bogoliubov plasma cluster expansion is applied to the derivation of a divergence-free kinetic equation from the BBGKY hierarchy. Special attention is given to the conditions under which the Landau kinetic equation may be derived from this more general formulation.

  20. Verification of continuum drift kinetic equation solvers in NIMROD

    Energy Technology Data Exchange (ETDEWEB)

    Held, E. D.; Ji, J.-Y. [Utah State University, Logan, Utah 84322-4415 (United States); Kruger, S. E. [Tech-X Corporation, Boulder, Colorado 80303 (United States); Belli, E. A. [General Atomics, San Diego, California 92186-5608 (United States); Lyons, B. C. [Program in Plasma Physics, Princeton University, Princeton, New Jersey 08543-0451 (United States)

    2015-03-15

    Verification of continuum solutions to the electron and ion drift kinetic equations (DKEs) in NIMROD [C. R. Sovinec et al., J. Comp. Phys. 195, 355 (2004)] is demonstrated through comparison with several neoclassical transport codes, most notably NEO [E. A. Belli and J. Candy, Plasma Phys. Controlled Fusion 54, 015015 (2012)]. The DKE solutions use NIMROD's spatial representation, 2D finite-elements in the poloidal plane and a 1D Fourier expansion in toroidal angle. For 2D velocity space, a novel 1D expansion in finite elements is applied for the pitch angle dependence and a collocation grid is used for the normalized speed coordinate. The full, linearized Coulomb collision operator is kept and shown to be important for obtaining quantitative results. Bootstrap currents, parallel ion flows, and radial particle and heat fluxes show quantitative agreement between NIMROD and NEO for a variety of tokamak equilibria. In addition, velocity space distribution function contours for ions and electrons show nearly identical detailed structure and agree quantitatively. A Θ-centered, implicit time discretization and a block-preconditioned, iterative linear algebra solver provide efficient electron and ion DKE solutions that ultimately will be used to obtain closures for NIMROD's evolving fluid model.

  1. Study on the numerical analysis of nuclear reactor kinetics equations

    International Nuclear Information System (INIS)

    Yang, J.C.

    1980-01-01

    A two-step alternating direction explict method is proposed for the solution of the space-and time-dependent diffusion theory reactor kinetics equations in two space dimensions as a special case of the general class of alternating direction implicit method and the truncation error of this method is estimated. To test the validity of this method it is applied to the Pressurized Water Reactor and CANDU-PHW reactor which have been operating and underconstructing in Korea. The time dependent neutron flux of the PWR reactor during control rod insertion and time dependent neutronic power of CANDU-PHW reactor in the case of postulated loss of coolant accident are obtained from the numerical calculation results. The results of the PWR reactor problem are shown the close agreement between implicit-difference method used in the TWIGL program and this method, and the results of the CANDU-PHW reactor are compared with the results of improved quasistic method and modal method. (Author)

  2. Charge exchange of muons in gases: I. Kinetic equations

    International Nuclear Information System (INIS)

    Turner, R.E.

    1983-06-01

    Kinetic equations for the spin density operators of the diamagnetic and paramagnetic states of the positive muon are obtained for the description of the slowing-down process encountered when high energy muons thermalize in a single component gas. The motion of this two species system is generated by the Liouville superoperators associated with the diamagnetic and paramagnetic spin Hamiltonians and by time-dependent rate superoperators which depict the probabilities per collision that an electron is captured or lost. These rates are translational averages of the appropriate Boltzmann collision operators. That is, they are momentum and position integrals of the product of either the electron capture or loss total cross section with the single particle translational density operators for the muon (or muonium) and a gas particle. These rates are time dependent because the muon (or muonium) translational density operator is time dependent. The initial amplitudes and phases of the observed thermal spin polarization in μSR experiments are then obtained in terms of the spin density operators emerging from the stopping regime

  3. Charge exchange of muons in gases. Kinetic equations

    International Nuclear Information System (INIS)

    Turner, R.E.

    1983-01-01

    Kinetic equations for the spin-density operators of the diamagnetic and paramagnetic states of the positive muon are obtained for the description of the slowing-down process encountered when high-energy muons thermalize in a single-component gas. The motion of this two-species system is generated by the Liouville superoperators associated with the diamagnetic and paramagnetic spin Hamiltonians and by time-dependent rate superoperators which depict the probabilities per collision that an electron is captured or lost. These rates are translational averages of the appropriate Boltzmann collision operators. That is, they are momentum and position integrals of the product of either the electron capture or loss total cross section with the single-particle translational density operators for the muon (or muonium) and a gas particle. These rates are time dependent because the muon (or muonium) translational density operator is time dependent. The initial amplitudes and phases of the observed thermal spin polarization in muon-spin-rotation (μSR) experiments are then obtained in terms of the spin-density operators emerging from the stopping regime

  4. Conserving relativistic many-body approach: Equation of state, spectral function, and occupation probabilities of nuclear matter

    International Nuclear Information System (INIS)

    de Jong, F.; Malfliet, R.

    1991-01-01

    Starting from a relativistic Lagrangian we derive a ''conserving'' approximation for the description of nuclear matter. We show this to be a nontrivial extension over the relativistic Dirac-Brueckner scheme. The saturation point of the equation of state calculated agrees very well with the empirical saturation point. The conserving character of the approach is tested by means of the Hugenholtz--van Hove theorem. We find the theorem fulfilled very well around saturation. A new value for compression modulus is derived, K=310 MeV. Also we calculate the occupation probabilities at normal nuclear matter densities by means of the spectral function. The average depletion κ of the Fermi sea is found to be κ∼0.11

  5. The soliton solution of BBGKY quantum kinetic equations chain for different type particles system

    International Nuclear Information System (INIS)

    Rasulova, M.Yu.; Avazov, U.; Hassan, T.

    2006-12-01

    In the present paper on the basis of BBGKY chain of quantum kinetic equations the chain of equations for correlation matrices is derived, describing the evolution of a system of different types particles, which interact by pair potential. The series, which is the solution of this chain of equations for correlation matrices, is suggested. Using this series the solution of the last chain of equations is reduced to a solution of a set of homogeneous and nonhomogeneous von-Neumann's kinetic equations (analogue of Vlasov equations for quantum case). The first and second equations of this set of equations coincide with the first and second kinetic equations of the set, which is used in plasma physics. For an potential in the form of Dirac delta function, the solution of von-Neumann equation is defined through soliton solution of nonlinear Schrodinger equations. Based on von-Neumann equation one can define all terms of series, which is a solution of a chain of equations for correlation matrices. On the basis of these correlation matrices for a system of different types of particles we can define exact solution of BBGKY chain of quantum kinetic equations

  6. On a closed form solution of the point kinetics equations with reactivity feedback of temperature

    International Nuclear Information System (INIS)

    Silva, Jeronimo J.A.; Vilhena, Marco T.M.B.; Petersen, Claudio Z.; Bodmann, Bardo E.J.; Alvim, Antonio C.M.

    2011-01-01

    An analytical solution of the point kinetics equations to calculate reactivity as a function of time by the Decomposition method has recently appeared in the literature. In this paper, we go one step forward, by considering the neutron point kinetics equations together with temperature feedback effects. To accomplish that, we extended the point kinetics by a temperature perturbation, obtaining a second order nonlinear ordinary differential equation. This equation is then solved by the Decomposition Method, that is, by expanding the neutron density in a series and the nonlinear terms into Adomian Polynomials. Substituting these expansions into the nonlinear ordinary equation, we construct a recursive set of linear problems that can be solved by the methodology previously mentioned for the point kinetics equation. We also report on numerical simulations and comparisons against literature results. (author)

  7. On kinetic Boltzmann equations and related hydrodynamic flows with dry viscosity

    Directory of Open Access Journals (Sweden)

    Nikolai N. Bogoliubov (Jr.

    2007-01-01

    Full Text Available A two-component particle model of Boltzmann-Vlasov type kinetic equations in the form of special nonlinear integro-differential hydrodynamic systems on an infinite-dimensional functional manifold is discussed. We show that such systems are naturally connected with the nonlinear kinetic Boltzmann-Vlasov equations for some one-dimensional particle flows with pointwise interaction potential between particles. A new type of hydrodynamic two-component Benney equations is constructed and their Hamiltonian structure is analyzed.

  8. Effective computation of stochastic protein kinetic equation by reducing stiffness via variable transformation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lijin, E-mail: ljwang@ucas.ac.cn [School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049 (China)

    2016-06-08

    The stochastic protein kinetic equations can be stiff for certain parameters, which makes their numerical simulation rely on very small time step sizes, resulting in large computational cost and accumulated round-off errors. For such situation, we provide a method of reducing stiffness of the stochastic protein kinetic equation by means of a kind of variable transformation. Theoretical and numerical analysis show effectiveness of this method. Its generalization to a more general class of stochastic differential equation models is also discussed.

  9. Kinetic transverse dispersion relation for relativistic magnetized electron-positron plasmas with Maxwell-Jüttner velocity distribution functions

    Energy Technology Data Exchange (ETDEWEB)

    López, Rodrigo A. [Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Concepción, Concepción (Chile); Moya, Pablo S. [NASA Goddard Space Flight Center, Heliophysics Science Division, Geospace Physics Laboratory, Mail Code 673, Greenbelt, Maryland 20771 (United States); Department of Physics, Catholic University of America, Washington DC, DC 20064 (United States); Muñoz, Víctor [Departamento de Física, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago (Chile); Viñas, Adolfo F. [NASA Goddard Space Flight Center, Heliophysics Science Division, Geospace Physics Laboratory, Mail Code 673, Greenbelt, Maryland 20771 (United States); Valdivia, J. Alejandro [Departamento de Física, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago (Chile); Centro para el Desarrollo de la Nanociencia y la Nanotecnología, CEDENNA, Santiago (Chile)

    2014-09-15

    We use a kinetic treatment to study the linear transverse dispersion relation for a magnetized isotropic relativistic electron-positron plasma with finite relativistic temperature. The explicit linear dispersion relation for electromagnetic waves propagating along a constant background magnetic field is presented, including an analytical continuation to the whole complex frequency plane for the case of Maxwell-Jüttner velocity distribution functions. This dispersion relation is studied numerically for various temperatures. For left-handed solutions, the system presents two branches, the electromagnetic ordinary mode and the Alfvén mode. In the low frequency regime, the Alfvén branch has two dispersive zones, the normal zone (where ∂ω/∂k > 0) and an anomalous zone (where ∂ω/∂k < 0). We find that in the anomalous zone of the Alfvén branch, the electromagnetic waves are damped, and there is a maximum wave number for which the Alfvén branch is suppressed. We also study the dependence of the Alfvén velocity and effective plasma frequency with the temperature. We complemented the analytical and numerical approaches with relativistic full particle simulations, which consistently agree with the analytical results.

  10. An analytical solution of the one-dimensional neutron diffusion kinetic equation in cartesian geometry

    International Nuclear Information System (INIS)

    Ceolin, Celina; Vilhena, Marco T.; Petersen, Claudio Z.

    2009-01-01

    In this work we report an analytical solution for the monoenergetic neutron diffusion kinetic equation in cartesian geometry. Bearing in mind that the equation for the delayed neutron precursor concentration is a first order linear differential equation in the time variable, to make possible the application of the GITT approach to the kinetic equation, we introduce a fictitious diffusion term multiplied by a positive small value ε. By this procedure, we are able to solve this set of equations. Indeed, applying the GITT technique to the modified diffusion kinetic equation, we come out with a matrix differential equation which has a well known analytical solution when ε goes to zero. We report numerical simulations as well study of numerical convergence of the results attained. (author)

  11. The nuclear equation of state in effective relativistic field theories and pion yields in heavy-ion collisions

    International Nuclear Information System (INIS)

    Schoenhofen, M.; Cubero, M.; Gering, M.; Sambataro, M.; Feldmeier, H.; Noerenberg, W.

    1989-06-01

    Within the framework of relativistic field theory for nucleons, deltas, scalar and vector mesons, a systematic study of the nuclear equation of state and its relation to pion yields in heavy-ion collisions is presented. Not the compressibility but the effective nucleon mass at normal nuclear density turns out to be the most sensitive parameter. Effects from vaccum fluctuations are well modelled within the mean-field no-sea approximation by self-interaction terms for the scalar meson field. Incomplete thermalization in the fireball may be the reason for the low pion yields observed in heavy-ion collisions. (orig.)

  12. A family of solutions to the Einstein-Maxwell system of equations describing relativistic charged fluid spheres

    Science.gov (United States)

    Komathiraj, K.; Sharma, Ranjan

    2018-05-01

    In this paper, we present a formalism to generate a family of interior solutions to the Einstein-Maxwell system of equations for a spherically symmetric relativistic charged fluid sphere matched to the exterior Reissner-Nordström space-time. By reducing the Einstein-Maxwell system to a recurrence relation with variable rational coefficients, we show that it is possible to obtain closed-form solutions for a specific range of model parameters. A large class of solutions obtained previously are shown to be contained in our general class of solutions. We also analyse the physical viability of our new class of solutions.

  13. Comment on 'analytic solution of the relativistic Coulomb problem for a spinless Salpeter equation'

    International Nuclear Information System (INIS)

    Lucha, W.; Schoeberl, F.F.

    1994-01-01

    We demonstrate that the analytic solution for the set of energy eigenvalues of the semi-relativistic Coulomb problem reported by B. and L. Durand is in clear conflict with an upper bound on the ground-state energy level derived by some straightforward variational procedure. (authors)

  14. Deterministic methods for the relativistic Vlasov-Maxwell equations and the Van Allen belts dynamics; Methodes deterministes de resolution des equations de Vlasov-Maxwell relativistes en vue du calcul de la dynamique des ceintures de Van Allen

    Energy Technology Data Exchange (ETDEWEB)

    Le Bourdiec, S

    2007-03-15

    Artificial satellites operate in an hostile radiation environment, the Van Allen radiation belts, which partly condition their reliability and their lifespan. In order to protect them, it is necessary to characterize the dynamics of the energetic electrons trapped in these radiation belts. This dynamics is essentially determined by the interactions between the energetic electrons and the existing electromagnetic waves. This work consisted in designing a numerical scheme to solve the equations modelling these interactions: the relativistic Vlasov-Maxwell system of equations. Our choice was directed towards methods of direct integration. We propose three new spectral methods for the momentum discretization: a Galerkin method and two collocation methods. All of them are based on scaled Hermite functions. The scaling factor is chosen in order to obtain the proper velocity resolution. We present in this thesis the discretization of the one-dimensional Vlasov-Poisson system and the numerical results obtained. Then we study the possible extensions of the methods to the complete relativistic problem. In order to reduce the computing time, parallelization and optimization of the algorithms were carried out. Finally, we present 1Dx-3Dv (mono-dimensional for x and three-dimensional for velocity) computations of Weibel and whistler instabilities with one or two electrons species. (author)

  15. Empiric model for mean generation time adjustment factor for classic point kinetics equations

    Energy Technology Data Exchange (ETDEWEB)

    Goes, David A.B.V. de; Martinez, Aquilino S.; Goncalves, Alessandro da C., E-mail: david.goes@poli.ufrj.br, E-mail: aquilino@lmp.ufrj.br, E-mail: alessandro@con.ufrj.br [Coordenacao de Pos-Graduacao e Pesquisa de Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Departamento de Engenharia Nuclear

    2017-11-01

    Point reactor kinetics equations are the easiest way to observe the neutron production time behavior in a nuclear reactor. These equations are derived from the neutron transport equation using an approximation called Fick's law leading to a set of first order differential equations. The main objective of this study is to review classic point kinetics equation in order to approximate its results to the case when it is considered the time variation of the neutron currents. The computational modeling used for the calculations is based on the finite difference method. The results obtained with this model are compared with the reference model and then it is determined an empirical adjustment factor that modifies the point reactor kinetics equation to the real scenario. (author)

  16. Empiric model for mean generation time adjustment factor for classic point kinetics equations

    International Nuclear Information System (INIS)

    Goes, David A.B.V. de; Martinez, Aquilino S.; Goncalves, Alessandro da C.

    2017-01-01

    Point reactor kinetics equations are the easiest way to observe the neutron production time behavior in a nuclear reactor. These equations are derived from the neutron transport equation using an approximation called Fick's law leading to a set of first order differential equations. The main objective of this study is to review classic point kinetics equation in order to approximate its results to the case when it is considered the time variation of the neutron currents. The computational modeling used for the calculations is based on the finite difference method. The results obtained with this model are compared with the reference model and then it is determined an empirical adjustment factor that modifies the point reactor kinetics equation to the real scenario. (author)

  17. Shock waves in relativistic nuclear matter, I

    International Nuclear Information System (INIS)

    Gleeson, A.M.; Raha, S.

    1979-02-01

    The relativistic Rankine-Hugoniot relations are developed for a 3-dimensional plane shock and a 3-dimensional oblique shock. Using these discontinuity relations together with various equations of state for nuclear matter, the temperatures and the compressibilities attainable by shock compression for a wide range of laboratory kinetic energy of the projectile are calculated. 12 references

  18. Bose-Einstein correlations and the equation of state of nuclear matter in relativistic heavy-ion collisions

    International Nuclear Information System (INIS)

    Schlei, B.R.

    1998-01-01

    Experimental spectra of the CERN/SPS experiments NA44 and NA49 are fitted while using four different equations of state of nuclear matter within a relativistic hydrodynamic framework. For the freeze-out temperatures, T f = 139 MeV and T f = 116 MeV, respectively, the corresponding freeze-out hypersurfaces and Bose-Einstein correlation functions for identical pion pairs are discussed. It is concluded, that the Bose-Einstein interferometry measures the relation between the temperature and the energy density in the equation of state of nuclear matter at the late hadronic stage of the fireball expansion. It is necessary, to use the detailed detector acceptances in the calculations for the Bose-Einstein correlations

  19. A NUMERICAL SCHEME FOR SPECIAL RELATIVISTIC RADIATION MAGNETOHYDRODYNAMICS BASED ON SOLVING THE TIME-DEPENDENT RADIATIVE TRANSFER EQUATION

    Energy Technology Data Exchange (ETDEWEB)

    Ohsuga, Ken; Takahashi, Hiroyuki R. [National Astronomical Observatory of Japan, Osawa, Mitaka, Tokyo 181-8588 (Japan)

    2016-02-20

    We develop a numerical scheme for solving the equations of fully special relativistic, radiation magnetohydrodynamics (MHDs), in which the frequency-integrated, time-dependent radiation transfer equation is solved to calculate the specific intensity. The radiation energy density, the radiation flux, and the radiation stress tensor are obtained by the angular quadrature of the intensity. In the present method, conservation of total mass, momentum, and energy of the radiation magnetofluids is guaranteed. We treat not only the isotropic scattering but also the Thomson scattering. The numerical method of MHDs is the same as that of our previous work. The advection terms are explicitly solved, and the source terms, which describe the gas–radiation interaction, are implicitly integrated. Our code is suitable for massive parallel computing. We present that our code shows reasonable results in some numerical tests for propagating radiation and radiation hydrodynamics. Particularly, the correct solution is given even in the optically very thin or moderately thin regimes, and the special relativistic effects are nicely reproduced.

  20. PHYSICAL-CONSTRAINT-PRESERVING CENTRAL DISCONTINUOUS GALERKIN METHODS FOR SPECIAL RELATIVISTIC HYDRODYNAMICS WITH A GENERAL EQUATION OF STATE

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Kailiang [School of Mathematical Sciences, Peking University, Beijing 100871 (China); Tang, Huazhong, E-mail: wukl@pku.edu.cn, E-mail: hztang@math.pku.edu.cn [HEDPS, CAPT and LMAM, School of Mathematical Sciences, Peking University, Beijing 100871 (China)

    2017-01-01

    The ideal gas equation of state (EOS) with a constant adiabatic index is a poor approximation for most relativistic astrophysical flows, although it is commonly used in relativistic hydrodynamics (RHD). This paper develops high-order accurate, physical-constraints-preserving (PCP), central, discontinuous Galerkin (DG) methods for the one- and two-dimensional special RHD equations with a general EOS. It is built on our theoretical analysis of the admissible states for RHD and the PCP limiting procedure that enforce the admissibility of central DG solutions. The convexity, scaling invariance, orthogonal invariance, and Lax–Friedrichs splitting property of the admissible state set are first proved with the aid of its equivalent form. Then, the high-order central DG methods with the PCP limiting procedure and strong stability-preserving time discretization are proved, to preserve the positivity of the density, pressure, specific internal energy, and the bound of the fluid velocity, maintain high-order accuracy, and be L {sup 1}-stable. The accuracy, robustness, and effectiveness of the proposed methods are demonstrated by several 1D and 2D numerical examples involving large Lorentz factor, strong discontinuities, or low density/pressure, etc.

  1. Kinetic equations within the formalism of non-equilibrium thermo field dynamics

    International Nuclear Information System (INIS)

    Arimitsu, Toshihico

    1988-01-01

    After reviewing the real-time formalism of dissipative quantum field theory, i.e. non-equilibrium thermo field dynamics (NETFD), a kinetic equation, a self-consistent equation for the dissipation coefficient and a ''mass'' or ''chemical potential'' renormalization equation for non-equilibrium transient situations are extracted out of the two-point Green's function of the Heisenberg field, in their most general forms upon the basic requirements of NETFD. The formulation is applied to the electron-phonon system, as an example, where the gradient expansion and the quasi-particle approximation are performed. The formalism of NETFD is reinvestigated in connection with the kinetic equations. (orig.)

  2. Relativistic Boltzmann theory for a plasma

    International Nuclear Information System (INIS)

    Erkelens, H. van.

    1984-01-01

    This thesis gives a self-contained treatment of the relativistic Boltzmann theory for a plasma. Here plasma means any mixture containing electrically charged particles. The relativistic Boltzmann equation is linearized for the case of a plasma. The Chapman-Enskog method is elaborated further for transport phenomena. Linear laws for viscous phenomena are derived. Then the collision term in the Boltzmann theory is dealt with. Using the transport equation, a kinetic theory of wave phenomena is developed and the dissipation of hydromagnetic waves in a relativistic plasma is investigated. In the final chapter, it is demonstrated how the relativistic Boltzmann theory can be applied in cosmology. In doing so, expressions are derived for the electric conductivity of the cosmological plasma in the lepton era, the plasma era and the annihilation era. (Auth.)

  3. On Generalized Fractional Kinetic Equations Involving Generalized Bessel Function of the First Kind

    Directory of Open Access Journals (Sweden)

    Dinesh Kumar

    2015-01-01

    Full Text Available We develop a new and further generalized form of the fractional kinetic equation involving generalized Bessel function of the first kind. The manifold generality of the generalized Bessel function of the first kind is discussed in terms of the solution of the fractional kinetic equation in the paper. The results obtained here are quite general in nature and capable of yielding a very large number of known and (presumably new results.

  4. Transport and relaxation properties of superfluid 3He. I. Kinetic equation and Bogoliubov quasiparticle relaxation rate

    International Nuclear Information System (INIS)

    Einzel, D.; Woelfle, P.

    1978-01-01

    The kinetic equation for Bogoliubov quasiparticles for both the A and B phases of superfluid 3 He is derived from the general matrix kinetic equation. A condensed expression for the exact spin-symmetric collision integral is given. The quasiparticle relaxation rate is calculated for the BW state using the s--p approximation for the quasiparticle scattering amplitude. By using the results for the quasiparticle relaxation rate, the mean free path of Bogoliubov quasiparticles is calculated for all temperatures

  5. Parameter Estimates in Differential Equation Models for Chemical Kinetics

    Science.gov (United States)

    Winkel, Brian

    2011-01-01

    We discuss the need for devoting time in differential equations courses to modelling and the completion of the modelling process with efforts to estimate the parameters in the models using data. We estimate the parameters present in several differential equation models of chemical reactions of order n, where n = 0, 1, 2, and apply more general…

  6. Kinetic equations for clean superconductors: Application to the flux flow hall effect

    International Nuclear Information System (INIS)

    Kopnin, N.B.

    1994-01-01

    The kinetic equations for clean superconductors (l>>ζ) are derived. expanding the equations for the time dependent Green functions in the quasiclassical parameter, the new contributions are found which contain the derivatives of the distribution functions with respect to the quasiparticle momentum. The transition from the ultra-clean case (no relaxation) to a relaxation-dominated behavior, for which the kinetic equations coincide with the usual quasiclassical approximation, occurs for the relaxation time of the order of ℎE F /Δ 2 . The kinetic equations can be used for various dynamic processes in superconductors including the flux-flow Hall effect. The derived equations, after necessary modifications for the p-wave pairing, are especially suitable for nonstationary problems in the theory of superfluidity of 3 He

  7. Temperature waves and the Boltzmann kinetic equation for phonons

    International Nuclear Information System (INIS)

    Urushev, D.; Borisov, M.; Vavrek, A.

    1988-01-01

    The ordinary parabolic equation for thermal conduction based on the Fourier empiric law as well as the generalized thermal conduction equation based on the Maxwell law have been derived from the Boltzmann equation for the phonons within the relaxation time approximation. The temperature waves of the so-called second sound in crystals at low temperatures are transformed into Fourier waves at low frequencies with respect to the characteristic frequency of the U-processes. These waves are transformed into temperature waves similar to the second sound waves in He II at frequences higher than the U-processes characteristic. 1 fig., 19 refs

  8. On completeness and orthogonality of solutions of relativistic wave equations on zero plane

    International Nuclear Information System (INIS)

    Gitman, D.M.; Shakhmatov, V.M.; Shvartsman, Sh.M.

    1975-01-01

    The work considers the possible redeterminations of the scalar product for the relativistic wave fields, such as the Klein-Gordon and Dirac ones. It has been shown that a whole class of new exact solutions, for which the usual scalar product on the plane x 0 =const. could not be previously determinated, allows a correct scalar product on the zero plane x 0 -x 3 =const. The relations of orthogonality and completeness with respect to the above scalar product have been proved. Possible applications of the obtained results are discussed

  9. Homotopy analysis solutions of point kinetics equations with one delayed precursor group

    International Nuclear Information System (INIS)

    Zhu Qian; Luo Lei; Chen Zhiyun; Li Haofeng

    2010-01-01

    Homotopy analysis method is proposed to obtain series solutions of nonlinear differential equations. Homotopy analysis method was applied for the point kinetics equations with one delayed precursor group. Analytic solutions were obtained using homotopy analysis method, and the algorithm was analysed. The results show that the algorithm computation time and precision agree with the engineering requirements. (authors)

  10. An efficient technique for the point reactor kinetics equations with Newtonian temperature feedback effects

    International Nuclear Information System (INIS)

    Nahla, Abdallah A.

    2011-01-01

    Highlights: → An efficient technique for the nonlinear reactor kinetics equations is presented. → This method is based on Backward Euler or Crank Nicholson and fundamental matrix. → Stability of efficient technique is defined and discussed. → This method is applied to point kinetics equations of six-groups of delayed neutrons. → Step, ramp, sinusoidal and temperature feedback reactivities are discussed. - Abstract: The point reactor kinetics equations of multi-group of delayed neutrons in the presence Newtonian temperature feedback effects are a system of stiff nonlinear ordinary differential equations which have not any exact analytical solution. The efficient technique for this nonlinear system is based on changing this nonlinear system to a linear system by the predicted value of reactivity and solving this linear system using the fundamental matrix of the homogenous linear differential equations. The nonlinear point reactor kinetics equations are rewritten in the matrix form. The solution of this matrix form is introduced. This solution contains the exponential function of a variable coefficient matrix. This coefficient matrix contains the unknown variable, reactivity. The predicted values of reactivity in the explicit form are determined replacing the exponential function of the coefficient matrix by two kinds, Backward Euler and Crank Nicholson, of the rational approximations. The nonlinear point kinetics equations changed to a linear system of the homogenous differential equations. The fundamental matrix of this linear system is calculated using the eigenvalues and the corresponding eigenvectors of the coefficient matrix. Stability of the efficient technique is defined and discussed. The efficient technique is applied to the point kinetics equations of six-groups of delayed neutrons with step, ramp, sinusoidal and the temperature feedback reactivities. The results of these efficient techniques are compared with the traditional methods.

  11. An Explicit Finite Difference scheme for numerical solution of fractional neutron point kinetic equation

    International Nuclear Information System (INIS)

    Saha Ray, S.; Patra, A.

    2012-01-01

    Highlights: ► In this paper fractional neutron point kinetic equation has been analyzed. ► The numerical solution for fractional neutron point kinetic equation is obtained. ► Explicit Finite Difference Method has been applied. ► Supercritical reactivity, critical reactivity and subcritical reactivity analyzed. ► Comparison between fractional and classical neutron density is presented. - Abstract: In the present article, a numerical procedure to efficiently calculate the solution for fractional point kinetics equation in nuclear reactor dynamics is investigated. The Explicit Finite Difference Method is applied to solve the fractional neutron point kinetic equation with the Grunwald–Letnikov (GL) definition (). Fractional Neutron Point Kinetic Model has been analyzed for the dynamic behavior of the neutron motion in which the relaxation time associated with a variation in the neutron flux involves a fractional order acting as exponent of the relaxation time, to obtain the best operation of a nuclear reactor dynamics. Results for neutron dynamic behavior for subcritical reactivity, supercritical reactivity and critical reactivity and also for different values of fractional order have been presented and compared with the classical neutron point kinetic (NPK) equation as well as the results obtained by the learned researchers .

  12. Correlations and the Ring-Kinetic Equation in Dense Sheared Granular Flows

    Science.gov (United States)

    Kumaran, V.

    A formal way of deriving fluctuation-correlation relations in densesheared granular media, starting with the Enskog approximation for the collision integral in the Chapman-Enskog theory, is discussed. The correlation correction to the viscosity is obtained using the ring-kinetic equation, in terms of the correlations in the hydrodynamic modes of the linearised Enskog equation. It is shown that the Green-Kubo formula for the shear viscosity emerges from the two-body correlation function obtained from the ring-kinetic equation.

  13. Numerical solution of the point reactor kinetics equations with fuel burn-up and temperature feedback

    International Nuclear Information System (INIS)

    Tashakor, S.; Jahanfarnia, G.; Hashemi-Tilehnoee, M.

    2010-01-01

    Point reactor kinetics equations are solved numerically using one group of delayed neutrons and with fuel burn-up and temperature feedback included. To calculate the fraction of one-group delayed neutrons, a group of differential equations are solved by an implicit time method. Using point reactor kinetics equations, changes in mean neutrons density, temperature, and reactivity are calculated in different times during the reactor operation. The variation of reactivity, temperature, and maximum power with time are compared with the predictions by other methods.

  14. Derivation of a new kinetic equation. Application to the determination of viscosity coefficients

    International Nuclear Information System (INIS)

    Frey, Jean-Jacques

    1970-01-01

    By introducing a new hypothesis concerning the closure in the B.B.G.K.Y. equation system, an approximate expression for f 12 is obtained. By inserting this expression in the first B.B.G.K.Y. equation, a new kinetic equation results. It is verified that this equation does in fact give the fluid mechanics equations, and new expressions for the shear and expansion viscosity coefficients are obtained. The numerical calculations which have been carried out show that very satisfactory agreement exists with experimental results. (author) [fr

  15. Numerical solution of the kinetic equation in reactor shielding

    International Nuclear Information System (INIS)

    Germogenova, T.A.

    1975-01-01

    A review is made of methods of solving marginal problems of multi-group systems of equations of neutron and γ radiation transfer. The first stage of the solution - the quantification of the basic task, is determined by the qualitative behaviour of the solution - is the nature of its performance and asymptotics. In the second stage - solution of the approximating system, various modifications of the iterative method are as a rule used. A description is given of the features of the major Soviet complexes of programmes (ROZ and RADUGA) for the solution of multi-group systems of transfer equations and some methodological research findings are presented. (author)

  16. Lagrangian analysis of invariant third-order equations of motion in relativistic classical particle mechanics

    International Nuclear Information System (INIS)

    Matsyuk, R.Ya.

    1985-01-01

    The problem on the existence of the invariant third-order Euler-Poisson equations in the pseudo-Euclidean space is investigated. The locally variational problem is determined by the Lagrangian density over the space of the second-order jets. The one - parameter family of the invariant third-order Euler-Poisson equations is groved to be the only one in the three-dimensional pseudo-Euclidean space. No invariant third-order Euler-Poisson equations exist in the four-dimensional pseudo-Euclidean space. It is shown that the Mathisson equation and the equation of geodesic circles in particular cases may be considered in the context of the Ostrogradiskij mechanics and the Kavaguchi geometry

  17. Space-time Dependency of the Time and its Effect on the Relativistic Classical Equation of the String Theory

    Science.gov (United States)

    Gholibeigian, Hassan; Amirshahkarami, Abdolazim; Gholibeigian, Kazem

    2017-01-01

    In special relativity theory, time dilates in velocity of near light speed. Also based on ``Substantial motion'' theory of Sadra, relative time (time flux); R = f (mv , σ , τ) , for each atom is momentum of its involved fundamental particles, which is different from the other atoms. In this way, for modification of the relativistic classical equation of string theory and getting more precise results, we should use effect of dilation and contraction of time in equation. So we propose to add two derivatives of the time's flux to the equation as follows: n.tp∂/R ∂ τ +∂2Xμ/(σ , τ) ∂τ2 = n .tp (∂/R ∂ σ ) +c2∂2Xμ/(σ , τ) ∂σ2 In which, Xμ is space-time coordinates of the string, σ & τ are coordinates on the string world sheet, respectively space and time along the string, string's mass m , velocity of string's motion v , factor n depends on geometry of each hidden extra dimension which relates to its own flux time, and tp is Planck's time. AmirKabir University of Technology, Tehran, Iran.

  18. Equation of state of isospin-asymmetric nuclear matter in relativistic mean-field models with chiral limits

    International Nuclear Information System (INIS)

    Jiang Weizhou; Li Baozn; Chen Liewen

    2007-01-01

    Using in-medium hadron properties according to the Brown-Rho scaling due to the chiral symmetry restoration at high densities and considering naturalness of the coupling constants, we have newly constructed several relativistic mean-field Lagrangians with chiral limits. The model parameters are adjusted such that the symmetric part of the resulting equation of state at supra-normal densities is consistent with that required by the collective flow data from high energy heavy-ion reactions, while the resulting density dependence of the symmetry energy at sub-saturation densities agrees with that extracted from the recent isospin diffusion data from intermediate energy heavy-ion reactions. The resulting equations of state have the special feature of being soft at intermediate densities but stiff at high densities naturally. With these constrained equations of state, it is found that the radius of a 1.4M o canonical neutron star is in the range of 11.9 km≤R≤13.1 km, and the maximum neutron star mass is around 2.0M o close to the recent observations

  19. Relativistic two-and three-particle scattering equations using instant and light-front dynamics

    International Nuclear Information System (INIS)

    Adhikari, S.K.; Tomio, L.; Frederico, T.

    1992-01-01

    Starting from the Bethe-Salpeter equation for two particles in the ladder approximation and integrating over the time component of momentum we derive three dimensional scattering integral equations satisfying constraints of unitarity and relativity, both employing the light-front and instant-form variables. The equations we arrive at are those first derived by Weinberg and by Blankenbecler and Sugar, and are shown to be related by a transformation of variables. Hence we show how to perform and relate identical dynamical calculation using these two equations. We extends this procedure to the case of three particles interacting via two-particle separable potentials. Using light-front and instant form variables we suggest a couple of three dimensional three-particle scattering equations satisfying constraints of two and three-particle unitarity and relativity. The three-particle light-front equation is shown to be approximately related by a transformation of variables to one of the instant-form three-particle equations. (author)

  20. Calculation of statistic estimates of kinetic parameters from substrate uncompetitive inhibition equation using the median method

    Directory of Open Access Journals (Sweden)

    Pedro L. Valencia

    2017-04-01

    Full Text Available We provide initial rate data from enzymatic reaction experiments and tis processing to estimate the kinetic parameters from the substrate uncompetitive inhibition equation using the median method published by Eisenthal and Cornish-Bowden (Cornish-Bowden and Eisenthal, 1974; Eisenthal and Cornish-Bowden, 1974. The method was denominated the direct linear plot and consists in the calculation of the median from a dataset of kinetic parameters Vmax and Km from the Michaelis–Menten equation. In this opportunity we present the procedure to applicate the direct linear plot to the substrate uncompetitive inhibition equation; a three-parameter equation. The median method is characterized for its robustness and its insensibility to outlier. The calculations are presented in an Excel datasheet and a computational algorithm was developed in the free software Python. The kinetic parameters of the substrate uncompetitive inhibition equation Vmax, Km and Ks were calculated using three experimental points from the dataset formed by 13 experimental points. All the 286 combinations were calculated. The dataset of kinetic parameters resulting from this combinatorial was used to calculate the median which corresponds to the statistic estimator of the real kinetic parameters. A comparative statistical analyses between the median method and the least squares was published in Valencia et al. [3].

  1. Analytic solutions of the multigroup space-time reactor kinetics equations

    International Nuclear Information System (INIS)

    Lee, C.E.; Rottler, S.

    1986-01-01

    The development of analytical and numerical solutions to the reactor kinetics equations is reviewed. Analytic solutions of the multigroup space-time reactor kinetics equations are developed for bare and reflected slabs and spherical reactors for zero flux, zero current and extrapolated endpoint boundary conditions. The material properties of the reactors are assumed constant in space and time, but spatially-dependent source terms and initial conditions are investigated. The system of partial differential equations is reduced to a set of linear ordinary differential equations by the Laplace transform method. These equations are solved by matrix Green's functions yielding a general matrix solution for the neutron flux and precursor concentration in the Laplace transform space. The detailed pole structure of the Laplace transform matrix solutions is investigated. The temporally- and spatially-dependent solutions are determined from the inverse Laplace transform using the Cauchy residue theorem, the theorem of Frobenius, a knowledge of the detailed pole structure and matrix operators. (author)

  2. Stability of generalized Runge-Kutta methods for stiff kinetics coupled differential equations

    International Nuclear Information System (INIS)

    Aboanber, A E

    2006-01-01

    A stability and efficiency improved class of generalized Runge-Kutta methods of order 4 are developed for the numerical solution of stiff system kinetics equations for linear and/or nonlinear coupled differential equations. The determination of the coefficients required by the method is precisely obtained from the so-called equations of condition which in turn are derived by an approach based on Butcher series. Since the equations of condition are fewer in number, free parameters can be chosen for optimizing any desired feature of the process. A further related coefficient set with different values of these parameters and the region of absolute stability of the method have been introduced. In addition, the A(α) stability properties of the method are investigated. Implementing the method in a personal computer estimated the accuracy and speed of calculations and verified the good performances of the proposed new schemes for several sample problems of the stiff system point kinetics equations with reactivity feedback

  3. An accurate solution of point reactor neutron kinetics equations of multi-group of delayed neutrons

    International Nuclear Information System (INIS)

    Yamoah, S.; Akaho, E.H.K.; Nyarko, B.J.B.

    2013-01-01

    Highlights: ► Analytical solution is proposed to solve the point reactor kinetics equations (PRKE). ► The method is based on formulating a coefficient matrix of the PRKE. ► The method was applied to solve the PRKE for six groups of delayed neutrons. ► Results shows good agreement with other traditional methods in literature. ► The method is accurate and efficient for solving the point reactor kinetics equations. - Abstract: The understanding of the time-dependent behaviour of the neutron population in a nuclear reactor in response to either a planned or unplanned change in the reactor conditions is of great importance to the safe and reliable operation of the reactor. In this study, an accurate analytical solution of point reactor kinetics equations with multi-group of delayed neutrons for specified reactivity changes is proposed to calculate the change in neutron density. The method is based on formulating a coefficient matrix of the homogenous differential equations of the point reactor kinetics equations and calculating the eigenvalues and the corresponding eigenvectors of the coefficient matrix. A small time interval is chosen within which reactivity relatively stays constant. The analytical method was applied to solve the point reactor kinetics equations with six-groups delayed neutrons for a representative thermal reactor. The problems of step, ramp and temperature feedback reactivities are computed and the results compared with other traditional methods. The comparison shows that the method presented in this study is accurate and efficient for solving the point reactor kinetics equations of multi-group of delayed neutrons

  4. From quantum to semiclassical kinetic equations: Nuclear matter estimates

    International Nuclear Information System (INIS)

    Galetti, D.; Mizrahi, S.S.; Nemes, M.C.; Toledo Piza, A.F.R. de

    1985-01-01

    Starting from the exact microscopic time evolution of the quantum one body density associated with a many fermion system semiclassical approximations are derived to it. In the limit where small momentum transfer two body collisions are dominant we get a Fokker-Planck equation and work out friction and diffusion tensors explicitly for nuclear matter. If arbitrary momentum transfers are considered a Boltzmann equation is derived and used to calculate the viscosity coefficient of nuclear matter. A derivation is given of the collision term used by Landau to describe the damping of zero sound waves at low temperature in Plasmas. Memory effects are essential for this. The damping of zero sound waves in nuclear matter is also calculated and the value so obtained associated with the bulk value of the damping of giant resonances in finite nuclei. The bulk value is estimated to be quite small indicating the importance of the nuclear surface for the damping. (Author) [pt

  5. Prompt form of relativistic equations of motion in a model of singular lagrangian formalism

    International Nuclear Information System (INIS)

    Gajda, R.P.; Duviryak, A.A.; Klyuchkovskij, Yu.B.

    1983-01-01

    The purpose of the paper is to develope the way of transition from equations of motion in singular lagrangian formalism to three-dimensional equations of Newton type in the prompt form of dynamics in the framework of c -2 parameter expansion (s. c. quasireltativistic approaches), as well as to find corresponding integrals of motion. The first quasirelativistifc approach for Dominici, Gomis, Longhi model was obtained and investigated

  6. Numerical simulation of stochastic point kinetic equation in the dynamical system of nuclear reactor

    International Nuclear Information System (INIS)

    Saha Ray, S.

    2012-01-01

    Highlights: ► In this paper stochastic neutron point kinetic equations have been analyzed. ► Euler–Maruyama method and Strong Taylor 1.5 order method have been discussed. ► These methods are applied for the solution of stochastic point kinetic equations. ► Comparison between the results of these methods and others are presented in tables. ► Graphs for neutron and precursor sample paths are also presented. -- Abstract: In the present paper, the numerical approximation methods, applied to efficiently calculate the solution for stochastic point kinetic equations () in nuclear reactor dynamics, are investigated. A system of Itô stochastic differential equations has been analyzed to model the neutron density and the delayed neutron precursors in a point nuclear reactor. The resulting system of Itô stochastic differential equations are solved over each time-step size. The methods are verified by considering different initial conditions, experimental data and over constant reactivities. The computational results indicate that the methods are simple and suitable for solving stochastic point kinetic equations. In this article, a numerical investigation is made in order to observe the random oscillations in neutron and precursor population dynamics in subcritical and critical reactors.

  7. Different seeds to solve the equations of stochastic point kinetics using the Euler-Maruyama method

    International Nuclear Information System (INIS)

    Suescun D, D.; Oviedo T, M.

    2017-09-01

    In this paper, a numerical study of stochastic differential equations that describe the kinetics in a nuclear reactor is presented. These equations, known as the stochastic equations of punctual kinetics they model temporal variations in neutron population density and concentrations of deferred neutron precursors. Because these equations are probabilistic in nature (since random oscillations in the neutrons and population of precursors were considered to be approximately normally distributed, and these equations also possess strong coupling and stiffness properties) the proposed method for the numerical simulations is the Euler-Maruyama scheme that provides very good approximations for calculating the neutron population and concentrations of deferred neutron precursors. The method proposed for this work was computationally tested for different seeds, initial conditions, experimental data and forms of reactivity for a group of precursors and then for six groups of deferred neutron precursors at each time step with 5000 Brownian movements per seed. In a paper reported in the literature, the Euler-Maruyama method was proposed, but there are many doubts about the reported values, in addition to not reporting the seed used, so in this work is expected to rectify the reported values. After taking the average of the different seeds used to generate the pseudo-random numbers the results provided by the Euler-Maruyama scheme will be compared in mean and standard deviation with other methods reported in the literature and results of the deterministic model of the equations of the punctual kinetics. This comparison confirms in particular that the Euler-Maruyama scheme is an efficient method to solve the equations of stochastic point kinetics but different from the values found and reported by another author. The Euler-Maruyama method is simple and easy to implement, provides acceptable results for neutron population density and concentration of deferred neutron precursors and

  8. Time discretization of the point kinetic equations using matrix exponential method and First-Order Hold

    International Nuclear Information System (INIS)

    Park, Yujin; Kazantzis, Nikolaos; Parlos, Alexander G.; Chong, Kil To

    2013-01-01

    Highlights: • Numerical solution for stiff differential equations using matrix exponential method. • The approximation is based on First Order Hold assumption. • Various input examples applied to the point kinetics equations. • The method shows superior useful and effective activity. - Abstract: A system of nonlinear differential equations is derived to model the dynamics of neutron density and the delayed neutron precursors within a point kinetics equation modeling framework for a nuclear reactor. The point kinetic equations are mathematically characterized as stiff, occasionally nonlinear, ordinary differential equations, posing significant challenges when numerical solutions are sought and traditionally resulting in the need for smaller time step intervals within various computational schemes. In light of the above realization, the present paper proposes a new discretization method inspired by system-theoretic notions and technically based on a combination of the matrix exponential method (MEM) and the First-Order Hold (FOH) assumption. Under the proposed time discretization structure, the sampled-data representation of the nonlinear point kinetic system of equations is derived. The performance of the proposed time discretization procedure is evaluated using several case studies with sinusoidal reactivity profiles and multiple input examples (reactivity and neutron source function). It is shown, that by applying the proposed method under a First-Order Hold for the neutron density and the precursor concentrations at each time step interval, the stiffness problem associated with the point kinetic equations can be adequately addressed and resolved. Finally, as evidenced by the aforementioned detailed simulation studies, the proposed method retains its validity and accuracy for a wide range of reactor operating conditions, including large sampling periods dictated by physical and/or technical limitations associated with the current state of sensor and

  9. Quasilinear analysis of loss-cone driven weakly relativistic electron cyclotron maser instability

    International Nuclear Information System (INIS)

    Ziebell, L.F.; Yoon, P.H.

    1995-01-01

    This paper presents a quasilinear analysis of the relativistic electron cyclotron maser instability. Two electron populations are assumed: a low-temperature background component and a more energetic loss-cone population. The dispersion relation is valid for any ratio of the energetic to cold populations, and includes thermal and relativistic effects. The quasilinear analysis is based upon an efficient kinetic moment method, in which various moment equations are derived from the particle kinetic equation. A model time-dependent loss-cone electron distribution function is assumed, which allows one to evaluate the instantaneous linear growth rate as well as the moment kinetic equations. These moment equations along with the wave kinetic equation form a fully self-consistent set of equations which governs the evolution of the particles as well as unstable waves. This set of equations is solved with physical parameters typical of the earth's auroral zone plasma. copyright 1995 American Institute of Physics

  10. Simulating Chemical Kinetics Without Differential Equations: A Quantitative Theory Based on Chemical Pathways.

    Science.gov (United States)

    Bai, Shirong; Skodje, Rex T

    2017-08-17

    A new approach is presented for simulating the time-evolution of chemically reactive systems. This method provides an alternative to conventional modeling of mass-action kinetics that involves solving differential equations for the species concentrations. The method presented here avoids the need to solve the rate equations by switching to a representation based on chemical pathways. In the Sum Over Histories Representation (or SOHR) method, any time-dependent kinetic observable, such as concentration, is written as a linear combination of probabilities for chemical pathways leading to a desired outcome. In this work, an iterative method is introduced that allows the time-dependent pathway probabilities to be generated from a knowledge of the elementary rate coefficients, thus avoiding the pitfalls involved in solving the differential equations of kinetics. The method is successfully applied to the model Lotka-Volterra system and to a realistic H 2 combustion model.

  11. Initial state dependence of nonlinear kinetic equations: The classical electron gas

    International Nuclear Information System (INIS)

    Marchetti, M.C.; Cohen, E.G.D.; Dorfman, J.R.; Kirkpatrick, T.R.

    1985-01-01

    The method of nonequilibrium cluster expansion is used to study the decay to equilibrium of a weakly coupled inhomogeneous electron gas prepared in a local equilibrium state at the initial time, t=0. A nonlinear kinetic equation describing the long time behavior of the one-particle distribution function is obtained. For consistency, initial correlations have to be taken into account. The resulting kinetic equation-differs from that obtained when the initial state of the system is assumed to be factorized in a product of one-particle functions. The question of to what extent correlations in the initial state play an essential role in determining the form of the kinetic equation at long times is discussed. To that end, the present calculations are compared wih results obtained before for hard sphere gases and in general with strong short-range forces. A partial answer is proposed and some open questions are indicated

  12. The solution of the neutron point kinetics equation with stochastic extension: an analysis of two moments

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Milena Wollmann da; Vilhena, Marco Tullio M.B.; Bodmann, Bardo Ernst J.; Vasques, Richard, E-mail: milena.wollmann@ufrgs.br, E-mail: vilhena@mat.ufrgs.br, E-mail: bardobodmann@ufrgs.br, E-mail: richard.vasques@fulbrightmail.org [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Programa de Pos-Graduacao em Engenharia Mecanica

    2015-07-01

    The neutron point kinetics equation, which models the time-dependent behavior of nuclear reactors, is often used to understand the dynamics of nuclear reactor operations. It consists of a system of coupled differential equations that models the interaction between (i) the neutron population; and (II) the concentration of the delayed neutron precursors, which are radioactive isotopes formed in the fission process that decay through neutron emission. These equations are deterministic in nature, and therefore can provide only average values of the modeled populations. However, the actual dynamical process is stochastic: the neutron density and the delayed neutron precursor concentrations vary randomly with time. To address this stochastic behavior, Hayes and Allen have generalized the standard deterministic point kinetics equation. They derived a system of stochastic differential equations that can accurately model the random behavior of the neutron density and the precursor concentrations in a point reactor. Due to the stiffness of these equations, this system was numerically implemented using a stochastic piecewise constant approximation method (Stochastic PCA). Here, we present a study of the influence of stochastic fluctuations on the results of the neutron point kinetics equation. We reproduce the stochastic formulation introduced by Hayes and Allen and compute Monte Carlo numerical results for examples with constant and time-dependent reactivity, comparing these results with stochastic and deterministic methods found in the literature. Moreover, we introduce a modified version of the stochastic method to obtain a non-stiff solution, analogue to a previously derived deterministic approach. (author)

  13. The solution of the neutron point kinetics equation with stochastic extension: an analysis of two moments

    International Nuclear Information System (INIS)

    Silva, Milena Wollmann da; Vilhena, Marco Tullio M.B.; Bodmann, Bardo Ernst J.; Vasques, Richard

    2015-01-01

    The neutron point kinetics equation, which models the time-dependent behavior of nuclear reactors, is often used to understand the dynamics of nuclear reactor operations. It consists of a system of coupled differential equations that models the interaction between (i) the neutron population; and (II) the concentration of the delayed neutron precursors, which are radioactive isotopes formed in the fission process that decay through neutron emission. These equations are deterministic in nature, and therefore can provide only average values of the modeled populations. However, the actual dynamical process is stochastic: the neutron density and the delayed neutron precursor concentrations vary randomly with time. To address this stochastic behavior, Hayes and Allen have generalized the standard deterministic point kinetics equation. They derived a system of stochastic differential equations that can accurately model the random behavior of the neutron density and the precursor concentrations in a point reactor. Due to the stiffness of these equations, this system was numerically implemented using a stochastic piecewise constant approximation method (Stochastic PCA). Here, we present a study of the influence of stochastic fluctuations on the results of the neutron point kinetics equation. We reproduce the stochastic formulation introduced by Hayes and Allen and compute Monte Carlo numerical results for examples with constant and time-dependent reactivity, comparing these results with stochastic and deterministic methods found in the literature. Moreover, we introduce a modified version of the stochastic method to obtain a non-stiff solution, analogue to a previously derived deterministic approach. (author)

  14. The (ℎ/2π)-expansion for Regge-trajectories. 2. Relativistic equations

    International Nuclear Information System (INIS)

    Stepanov, S.S.; Tutik, R.S.

    1992-01-01

    The (h/2π)-expansion method, proposed earlier for deriving Regge trajectories for bound states of central potentials in the Schroedinger equation framework, is extended to the Klein-Gordon and Dirac equations with potentials having vector and scalar components. The simple recursion formulae, with the same form both for the parent and daughter Regge trajectories, are obtained. They provide, in principle, the calculation of the (h/2π)-expansion terms up to an arbitrary order. As an illustration, a superposition of the vector and scalar Coulomb potentials, and the funnel-shaped potential are treated with the technique developed. 20 refs.; 3 figs.; 1 table. (author)

  15. Comparative analysis among several methods used to solve the point kinetic equations

    International Nuclear Information System (INIS)

    Nunes, Anderson L.; Goncalves, Alessandro da C.; Martinez, Aquilino S.; Silva, Fernando Carvalho da

    2007-01-01

    The main objective of this work consists on the methodology development for comparison of several methods for the kinetics equations points solution. The evaluated methods are: the finite differences method, the stiffness confinement method, improved stiffness confinement method and the piecewise constant approximations method. These methods were implemented and compared through a systematic analysis that consists basically of confronting which one of the methods consume smaller computational time with higher precision. It was calculated the relative which function is to combine both criteria in order to reach the goal. Through the analyses of the performance factor it is possible to choose the best method for the solution of point kinetics equations. (author)

  16. Comparative analysis among several methods used to solve the point kinetic equations

    Energy Technology Data Exchange (ETDEWEB)

    Nunes, Anderson L.; Goncalves, Alessandro da C.; Martinez, Aquilino S.; Silva, Fernando Carvalho da [Universidade Federal, Rio de Janeiro, RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia. Programa de Engenharia Nuclear; E-mails: alupo@if.ufrj.br; agoncalves@con.ufrj.br; aquilino@lmp.ufrj.br; fernando@con.ufrj.br

    2007-07-01

    The main objective of this work consists on the methodology development for comparison of several methods for the kinetics equations points solution. The evaluated methods are: the finite differences method, the stiffness confinement method, improved stiffness confinement method and the piecewise constant approximations method. These methods were implemented and compared through a systematic analysis that consists basically of confronting which one of the methods consume smaller computational time with higher precision. It was calculated the relative which function is to combine both criteria in order to reach the goal. Through the analyses of the performance factor it is possible to choose the best method for the solution of point kinetics equations. (author)

  17. An analytical solution for the two-group kinetic neutron diffusion equation in cylindrical geometry

    International Nuclear Information System (INIS)

    Fernandes, Julio Cesar L.; Vilhena, Marco Tullio; Bodmann, Bardo Ernst

    2011-01-01

    Recently the two-group Kinetic Neutron Diffusion Equation with six groups of delay neutron precursor in a rectangle was solved by the Laplace Transform Technique. In this work, we report on an analytical solution for this sort of problem but in cylindrical geometry, assuming a homogeneous and infinite height cylinder. The solution is obtained applying the Hankel Transform to the Kinetic Diffusion equation and solving the transformed problem by the same procedure used in the rectangle. We also present numerical simulations and comparisons against results available in literature. (author)

  18. Beyond the Cahn-Hilliard equation: a vacancy-based kinetic theory

    International Nuclear Information System (INIS)

    Nastar, M.

    2011-01-01

    A Self-Consistent Mean Field (SCMF) kinetic theory including an explicit description of the vacancy diffusion mechanism is developed. The present theory goes beyond the usual local equilibrium hypothesis. It is applied to the study of the early time spinodal decomposition in alloys. The resulting analytical expression of the structure function highlights the contribution of the vacancy diffusion mechanism. Instead of the single amplification rate of the Cahn-Hillard linear theory, the linearized SCMF kinetic equations involve three constant rates, first one describing the vacancy relaxation kinetics, second one related to the kinetic coupling between local concentrations and pair correlations and the third one representing the spinodal amplification rate. Starting from the same vacancy diffusion model, we perform kinetic Monte Carlo simulations of a Body Centered Cubic (BCC) demixting alloy. The resulting spherically averaged structure function is compared to the SCMF predictions. Both qualitative and quantitative agreements are satisfying. (authors)

  19. Quasi-linear landau kinetic equations for magnetized plasmas: compact propagator formalism, rotation matrices and interaction

    International Nuclear Information System (INIS)

    Misguich, J.H.

    2004-04-01

    As a first step toward a nonlinear renormalized description of turbulence phenomena in magnetized plasmas, the lowest order quasi-linear description is presented here from a unified point of view for collisionless as well as for collisional plasmas in a constant magnetic field. The quasi-linear approximation is applied to a general kinetic equation obtained previously from the Klimontovich exact equation, by means of a generalised Dupree-Weinstock method. The so-obtained quasi-linear description of electromagnetic turbulence in a magnetoplasma is applied to three separate physical cases: -) weak electrostatic turbulence, -) purely magnetic field fluctuations (the classical quasi-linear results are obtained for cosmic ray diffusion in the 'slab model' of magnetostatic turbulence in the solar wind), and -) collisional kinetic equations of magnetized plasmas. This mathematical technique has allowed us to derive basic kinetic equations for turbulent plasmas and collisional plasmas, respectively in the quasi-linear and Landau approximation. In presence of a magnetic field we have shown that the systematic use of rotation matrices describing the helical particle motion allows for a much more compact derivation than usually performed. Moreover, from the formal analogy between turbulent and collisional plasmas, the results derived here in detail for the turbulent plasmas, can be immediately translated to obtain explicit results for the Landau kinetic equation

  20. Quasi-linear landau kinetic equations for magnetized plasmas: compact propagator formalism, rotation matrices and interaction

    Energy Technology Data Exchange (ETDEWEB)

    Misguich, J.H

    2004-04-01

    As a first step toward a nonlinear renormalized description of turbulence phenomena in magnetized plasmas, the lowest order quasi-linear description is presented here from a unified point of view for collisionless as well as for collisional plasmas in a constant magnetic field. The quasi-linear approximation is applied to a general kinetic equation obtained previously from the Klimontovich exact equation, by means of a generalised Dupree-Weinstock method. The so-obtained quasi-linear description of electromagnetic turbulence in a magnetoplasma is applied to three separate physical cases: -) weak electrostatic turbulence, -) purely magnetic field fluctuations (the classical quasi-linear results are obtained for cosmic ray diffusion in the 'slab model' of magnetostatic turbulence in the solar wind), and -) collisional kinetic equations of magnetized plasmas. This mathematical technique has allowed us to derive basic kinetic equations for turbulent plasmas and collisional plasmas, respectively in the quasi-linear and Landau approximation. In presence of a magnetic field we have shown that the systematic use of rotation matrices describing the helical particle motion allows for a much more compact derivation than usually performed. Moreover, from the formal analogy between turbulent and collisional plasmas, the results derived here in detail for the turbulent plasmas, can be immediately translated to obtain explicit results for the Landau kinetic equation.

  1. Is the kinetic equation for turbulent gas-particle flows ill posed?

    Science.gov (United States)

    Reeks, M; Swailes, D C; Bragg, A D

    2018-02-01

    This paper is about the kinetic equation for gas-particle flows, in particular its well-posedness and realizability and its relationship to the generalized Langevin model (GLM) probability density function (PDF) equation. Previous analyses, e.g. [J.-P. Minier and C. Profeta, Phys. Rev. E 92, 053020 (2015)PLEEE81539-375510.1103/PhysRevE.92.053020], have concluded that this kinetic equation is ill posed, that in particular it has the properties of a backward heat equation, and as a consequence, its solution will in the course of time exhibit finite-time singularities. We show that this conclusion is fundamentally flawed because it ignores the coupling between the phase space variables in the kinetic equation and the time and particle inertia dependence of the phase space diffusion tensor. This contributes an extra positive diffusion that always outweighs the negative diffusion associated with the dispersion along one of the principal axes of the phase space diffusion tensor. This is confirmed by a numerical evaluation of analytic solutions of these positive and negative contributions to the particle diffusion coefficient along this principal axis. We also examine other erroneous claims and assumptions made in previous studies that demonstrate the apparent superiority of the GLM PDF approach over the kinetic approach. In so doing, we have drawn attention to the limitations of the GLM approach, which these studies have ignored or not properly considered, to give a more balanced appraisal of the benefits of both PDF approaches.

  2. On the relativistic transport equation for a discontinuity wave of multiplicity one

    International Nuclear Information System (INIS)

    Giambo, Sebastiano; Palumbo, Annunziata

    1980-01-01

    In the framework of the theory of the singular hypersurfaces, the transport equation for the amplitude of a discontinuity wave, corresponding to a simple characteristic of a quasi-linear hyperbolic system, is established in the context of special relativity [fr

  3. Classical relativistic equations for particles with spin moving in external fields

    NARCIS (Netherlands)

    Dam, H. van; Ruijgrok, Th.W.

    1980-01-01

    We derive equations of motion for a point particle with spin in an external electromagnetic and in an external scalar field. The derivation is based on the ten conservation laws of linear and angular momentum and on a general expression for the current by which the particle interacts with the

  4. Analytic solution of the relativistic Coulomb problem for a spinless Salpeter equation

    International Nuclear Information System (INIS)

    Durand, B.; Durand, L.

    1983-01-01

    We construct an analytic solution to the spinless S-wave Salpeter equation for two quarks interacting via a Coulomb potential, [2(-del 2 +m 2 )/sup 1/2/-M-α/r] psi(r) = 0, by transforming the momentum-space form of the equation into a mapping or boundary-value problem for analytic functions. The principal part of the three-dimensional wave function is identical to the solution of a one-dimensional Salpeter equation found by one of us and discussed here. The remainder of the wave function can be constructed by the iterative solution of an inhomogeneous singular integral equation. We show that the exact bound-state eigenvalues for the Coulomb problem are M/sub n/ = 2m/(1+α 2 /4n 2 )/sup 1/2/, n = 1,2,..., and that the wave function for the static interaction diverges for r→0 as C(mr)/sup -nu/, where #betta# = (α/π)(1+α/π+...) is known exactly

  5. A new integral method for solving the point reactor neutron kinetics equations

    International Nuclear Information System (INIS)

    Li Haofeng; Chen Wenzhen; Luo Lei; Zhu Qian

    2009-01-01

    A numerical integral method that efficiently provides the solution of the point kinetics equations by using the better basis function (BBF) for the approximation of the neutron density in one time step integrations is described and investigated. The approach is based on an exact analytic integration of the neutron density equation, where the stiffness of the equations is overcome by the fully implicit formulation. The procedure is tested by using a variety of reactivity functions, including step reactivity insertion, ramp input and oscillatory reactivity changes. The solution of the better basis function method is compared to other analytical and numerical solutions of the point reactor kinetics equations. The results show that selecting a better basis function can improve the efficiency and accuracy of this integral method. The better basis function method can be used in real time forecasting for power reactors in order to prevent reactivity accidents.

  6. Microscopic kinetic analysis of space-charge induced optical microbunching in a relativistic electron beam

    Directory of Open Access Journals (Sweden)

    Agostino Marinelli

    2010-11-01

    Full Text Available Longitudinal space-charge forces from density fluctuations generated by shot noise can be a major source of microbunching instability in relativistic high brightness electron beams. The gain in microbunching due to this effect is broadband, extending at least up to optical frequencies, where the induced structure on the beam distribution gives rise to effects such as coherent optical transition radiation. In the high-frequency regime, theoretical and computational analyses of microbunching formation require a full three-dimensional treatment. In this paper we address the problem of space-charge induced optical microbunching formation in the high-frequency limit when transverse thermal motion due to finite emittance is included for the first time. We derive an analytical description of this process based on the beam’s plasma dielectric function. We discuss the effect of transverse temperature on the angular distribution of microbunching gain and its connection to the physics of Landau damping in longitudinal plasma oscillations. Application of the theory to a relevant experimental scenario is discussed. The analytical results obtained are then compared to the predictions arising from high resolution three-dimensional molecular dynamics simulations.

  7. Numerical solution of multi groups point kinetic equations by simulink toolbox of Matlab software

    International Nuclear Information System (INIS)

    Hadad, K.; Mohamadi, A.; Sabet, H.; Ayobian, N.; Khani, M.

    2004-01-01

    The simulink toolbox of Matlab Software was employed to solve the point kinetics equation with six group delayed neutrons. The method of Adams-Bash ford showed a good convergence in solving the system of simultaneous equations and the obtained results showed good agreements with other numerical schemes. The flexibility of the package in changing the system parameters and the user friendly interface makes this approach a reliable educational package in revealing the affects of reactivity changes on power incursions

  8. BRIEF COMMUNICATION: On the drift kinetic equation driven by plasma flows

    Science.gov (United States)

    Shaing, K. C.

    2010-07-01

    A drift kinetic equation that is driven by plasma flows has previously been derived by Shaing and Spong 1990 (Phys. Fluids B 2 1190). The terms that are driven by particle speed that is parallel to the magnetic field B have been neglected. Here, such terms are discussed to examine their importance to the equation and to show that these terms do not contribute to the calculations of plasma viscosity in large aspect ratio toroidal plasmas, e.g. tokamaks and stellarators.

  9. Analytical solution of point kinetic equations for sub-critical systems

    International Nuclear Information System (INIS)

    Henrice Junior, Edson; Goncalves, Alessandro C.

    2013-01-01

    This article presents an analytical solution for the set of point kinetic equations for sub-critical reactors. This solution stems from the ordinary, non-homogeneous differential equation that rules the neutron density and that presents the incomplete Gamma function in its functional form. The method used proved advantageous and allowed practical applications such as the linear insertion of reactivity, considering an external constant source or with both varying linearly. (author)

  10. Solution of the kinetic equation in the P3-approximation in a plane geometry

    International Nuclear Information System (INIS)

    Vlasov, Yu.A.

    1975-01-01

    A method and a program are described for solving single-velocity kinetic equations of neutron transfer for the plane geometry in the finite-difference approximation. A difference high-accuracy scheme and a matrix factorization method are used for the differential-difference equation systems. The program is written in the ALGOL-60 language and is adapted for M-20, M-220, M-222 and BESM-4 computers

  11. Generalized multivariate Fokker-Planck equations derived from kinetic transport theory and linear nonequilibrium thermodynamics

    International Nuclear Information System (INIS)

    Frank, T.D.

    2002-01-01

    We study many particle systems in the context of mean field forces, concentration-dependent diffusion coefficients, generalized equilibrium distributions, and quantum statistics. Using kinetic transport theory and linear nonequilibrium thermodynamics we derive for these systems a generalized multivariate Fokker-Planck equation. It is shown that this Fokker-Planck equation describes relaxation processes, has stationary maximum entropy distributions, can have multiple stationary solutions and stationary solutions that differ from Boltzmann distributions

  12. Relativistic hydrodynamics

    CERN Document Server

    Luciano, Rezzolla

    2013-01-01

    Relativistic hydrodynamics is a very successful theoretical framework to describe the dynamics of matter from scales as small as those of colliding elementary particles, up to the largest scales in the universe. This book provides an up-to-date, lively, and approachable introduction to the mathematical formalism, numerical techniques, and applications of relativistic hydrodynamics. The topic is typically covered either by very formal or by very phenomenological books, but is instead presented here in a form that will be appreciated both by students and researchers in the field. The topics covered in the book are the results of work carried out over the last 40 years, which can be found in rather technical research articles with dissimilar notations and styles. The book is not just a collection of scattered information, but a well-organized description of relativistic hydrodynamics, from the basic principles of statistical kinetic theory, down to the technical aspects of numerical methods devised for the solut...

  13. Unified implicit kinetic scheme for steady multiscale heat transfer based on the phonon Boltzmann transport equation

    Science.gov (United States)

    Zhang, Chuang; Guo, Zhaoli; Chen, Songze

    2017-12-01

    An implicit kinetic scheme is proposed to solve the stationary phonon Boltzmann transport equation (BTE) for multiscale heat transfer problem. Compared to the conventional discrete ordinate method, the present method employs a macroscopic equation to accelerate the convergence in the diffusive regime. The macroscopic equation can be taken as a moment equation for phonon BTE. The heat flux in the macroscopic equation is evaluated from the nonequilibrium distribution function in the BTE, while the equilibrium state in BTE is determined by the macroscopic equation. These two processes exchange information from different scales, such that the method is applicable to the problems with a wide range of Knudsen numbers. Implicit discretization is implemented to solve both the macroscopic equation and the BTE. In addition, a memory reduction technique, which is originally developed for the stationary kinetic equation, is also extended to phonon BTE. Numerical comparisons show that the present scheme can predict reasonable results both in ballistic and diffusive regimes with high efficiency, while the memory requirement is on the same order as solving the Fourier law of heat conduction. The excellent agreement with benchmark and the rapid converging history prove that the proposed macro-micro coupling is a feasible solution to multiscale heat transfer problems.

  14. 3D Relativistic Hydrodynamic Computations Using Lattice-QCD-Inspired Equations of State

    International Nuclear Information System (INIS)

    Hama, Yogiro; Andrade, Rone P.G.; Grassi, Frederique; Socolowski, Otavio; Kodama, Takeshi; Tavares, Bernardo; Padula, Sandra S.

    2006-01-01

    In this communication, we report results of three-dimensional hydrodynamic computations, by using equations of state with a critical end point as suggested by the lattice QCD. Some of the results are an increase of the multiplicity in the mid-rapidity region and a larger elliptic-flow parameter v 2 . We discuss also the effcts of the initial-condition fluctuations and the continuous emission

  15. 3D Relativistic Hydrodynamic Computations Using Lattice-QCD-Inspired Equations of State

    Energy Technology Data Exchange (ETDEWEB)

    Hama, Yogiro [Instituto de Fisica, Universidade de Sao Paulo (Brazil); Andrade, Rone P.G. [Instituto de Fisica, Universidade de Sao Paulo (Brazil); Grassi, Frederique [Instituto de Fisica, Universidade de Sao Paulo (Brazil); Socolowski, Otavio [Instituto Tecnologico da Aeronautica (Brazil); Kodama, Takeshi [Instituto de Fisica, Universidade Federal do Rio de Janeiro (Brazil); Tavares, Bernardo [Instituto de Fisica, Universidade Federal do Rio de Janeiro (Brazil); Padula, Sandra S. [Instituto de Fisica Teorica, Universidade Estadual Paulista (Brazil)

    2006-08-07

    In this communication, we report results of three-dimensional hydrodynamic computations, by using equations of state with a critical end point as suggested by the lattice QCD. Some of the results are an increase of the multiplicity in the mid-rapidity region and a larger elliptic-flow parameter v{sub 2}. We discuss also the effcts of the initial-condition fluctuations and the continuous emission.

  16. The neutron's Dirac-equation: Its rigorous solution at slab-like magnetic fields, non-relativistic approximation, energy spectra and statistical characteristics

    International Nuclear Information System (INIS)

    Zhang Yongde.

    1987-03-01

    In this paper, the neutron Dirac-equation is presented. After decoupling it into two equations of the simple spinors, the rigorous solution of this equation is obtained in the case of slab-like uniform magnetic fields at perpendicular incidence. At non-relativistic approximation and first order approximation of weak field (NRWFA), our results have included all results that have been obtained in references for this case up to now. The corresponding transformations of the neutron's spin vectors are given. The single particle spectrum and its approximate expression are obtained. The characteristics of quantum statistics with the approximate expression of energy spectrum are studied. (author). 15 refs

  17. On the equivalence of convergent kinetic equations for hot dilute plasmas: Generating functions for collision brackets

    NARCIS (Netherlands)

    Cohen, J.S.; Suttorp, L.G.

    1982-01-01

    The generating functions for the collision brackets associated with two alternative convergent kinetic equations are derived for small values of the plasma parameter. It is shown that the first few terms in the asymptotic expansions of these generating functions are identical. Consequently, both

  18. Analytic solution of boundary-value problems for nonstationary model kinetic equations

    International Nuclear Information System (INIS)

    Latyshev, A.V.; Yushkanov, A.A.

    1993-01-01

    A theory for constructing the solutions of boundary-value problems for non-stationary model kinetic equations is constructed. This theory was incorrectly presented equation, separation of the variables is used, this leading to a characteristic equation. Eigenfunctions are found in the space of generalized functions, and the eigenvalue spectrum is investigated. An existence and uniqueness theorem for the expansion of the Laplace transform of the solution with respect to the eigenfunctions is proved. The proof is constructive and gives explicit expressions for the expansion coefficients. An application to the Rayleigh problem is obtained, and the corresponding result of Cercignani is corrected

  19. Integral representations of solutions of the wave equation based on relativistic wavelets

    International Nuclear Information System (INIS)

    Perel, Maria; Gorodnitskiy, Evgeny

    2012-01-01

    A representation of solutions of the wave equation with two spatial coordinates in terms of localized elementary ones is presented. Elementary solutions are constructed from four solutions with the help of transformations of the affine Poincaré group, i.e. with the help of translations, dilations in space and time and Lorentz transformations. The representation can be interpreted in terms of the initial-boundary value problem for the wave equation in a half-plane. It gives the solution as an integral representation of two types of solutions: propagating localized solutions running away from the boundary under different angles and packet-like surface waves running along the boundary and exponentially decreasing away from the boundary. Properties of elementary solutions are discussed. A numerical investigation of coefficients of the decomposition is carried out. An example of the decomposition of the field created by sources moving along a line with different speeds is considered, and the dependence of coefficients on speeds of sources is discussed. (paper)

  20. On the exact solution for the multi-group kinetic neutron diffusion equation in a rectangle

    International Nuclear Information System (INIS)

    Petersen, C.Z.; Vilhena, M.T.M.B. de; Bodmann, B.E.J.

    2011-01-01

    In this work we consider the two-group bi-dimensional kinetic neutron diffusion equation. The solution procedure formalism is general with respect to the number of energy groups, neutron precursor families and regions with different chemical compositions. The fast and thermal flux and the delayed neutron precursor yields are expanded in a truncated double series in terms of eigenfunctions that, upon insertion into the kinetic equation and upon taking moments, results in a first order linear differential matrix equation with source terms. We split the matrix appearing in the transformed problem into a sum of a diagonal matrix plus the matrix containing the remaining terms and recast the transformed problem into a form that can be solved in the spirit of Adomian's recursive decomposition formalism. Convergence of the solution is guaranteed by the Cardinal Interpolation Theorem. We give numerical simulations and comparisons with available results in the literature. (author)

  1. Kinetics of subdiffusion-assisted reactions: non-Markovian stochastic Liouville equation approach

    International Nuclear Information System (INIS)

    Shushin, A I

    2005-01-01

    Anomalous specific features of the kinetics of subdiffusion-assisted bimolecular reactions (time-dependence, dependence on parameters of systems, etc) are analysed in detail with the use of the non-Markovian stochastic Liouville equation (SLE), which has been recently derived within the continuous-time random-walk (CTRW) approach. In the CTRW approach, subdiffusive motion of particles is modelled by jumps whose onset probability distribution function is of a long-tailed form. The non-Markovian SLE allows for rigorous describing of some peculiarities of these reactions; for example, very slow long-time behaviour of the kinetics, non-analytical dependence of the reaction rate on the reactivity of particles, strong manifestation of fluctuation kinetics showing itself in very slowly decreasing behaviour of the kinetics at very long times, etc

  2. A new exact solution to the classical equations of motion of the relativistic string with massive ends

    International Nuclear Information System (INIS)

    Barbashov, B.M.; Chervyakov, A.M.

    1991-01-01

    The classical histories of the relativistic string with massive ends in space-time are examined in terms of geometric invariants of both the string world surface and world lines of the point masses at the string ends. In this formulation the string variables are completely defined by means of the constant curvatures and torsions of the endpoint trajectories which are subjected to a system of differential equations with a delayed arguments that incorporates retardation effects of the interaction of two point masses through the string. The well-known example of the rotating straight-line string with massive ends corresponds to a particular solution of this system for the constant torsions. A new exact solution for the periodic torsions of the world trajectories of the massive string ends is found. In this case the string coordinates are represented in terms of normal elliptic integrals and describe a more intricate motion including its transverse vibrations than rotation of a stretched string in a given plane. 17 refs

  3. Ultrafast dynamics of laser-pulse excited semiconductors: non-Markovian quantum kinetic equations with nonequilibrium correlations

    Directory of Open Access Journals (Sweden)

    V.V.Ignatyuk

    2004-01-01

    Full Text Available Non-Markovian kinetic equations in the second Born approximation are derived for a two-zone semiconductor excited by a short laser pulse. Both collision dynamics and running nonequilibrium correlations are taken into consideration. The energy balance and relaxation of the system to equilibrium are discussed. Results of numerical solution of the kinetic equations for carriers and phonons are presented.

  4. Balance of liquid-phase turbulence kinetic energy equation for bubble-train flow

    International Nuclear Information System (INIS)

    Ilic, Milica; Woerner, Martin; Cacuci, Dan Gabriel

    2004-01-01

    In this paper the investigation of bubble-induced turbulence using direct numerical simulation (DNS) of bubbly two-phase flow is reported. DNS computations are performed for a bubble-driven liquid motion induced by a regular train of ellipsoidal bubbles rising through an initially stagnant liquid within a plane vertical channel. DNS data are used to evaluate balance terms in the balance equation for the liquid phase turbulence kinetic energy. The evaluation comprises single-phase-like terms (diffusion, dissipation and production) as well as the interfacial term. Special emphasis is placed on the procedure for evaluation of interfacial quantities. Quantitative analysis of the balance equation for the liquid phase turbulence kinetic energy shows the importance of the interfacial term which is the only source term. The DNS results are further used to validate closure assumptions employed in modelling of the liquid phase turbulence kinetic energy transport in gas-liquid bubbly flows. In this context, the performance of respective closure relations in the transport equation for liquid turbulence kinetic energy within the two-phase k-ε and the two-phase k-l model is evaluated. (author)

  5. Thermal fluctuation levels of magnetic and electric fields in unmagnetized plasma: The rigorous relativistic kinetic theory

    International Nuclear Information System (INIS)

    Yoon, P. H.; Schlickeiser, R.; Kolberg, U.

    2014-01-01

    Any fully ionized collisionless plasma with finite random particle velocities contains electric and magnetic field fluctuations. The fluctuations can be of three different types: weakly damped, weakly propagating, or aperiodic. The kinetics of these fluctuations in general unmagnetized plasmas, governed by the competition of spontaneous emission, absorption, and stimulated emission processes, is investigated, extending the well-known results for weakly damped fluctuations. The generalized Kirchhoff radiation law for both collective and noncollective fluctuations is derived, which in stationary plasmas provides the equilibrium energy densities of electromagnetic fluctuations by the ratio of the respective spontaneous emission coefficient and the true absorption coefficient. As an illustrative example, the equilibrium energy densities of aperiodic transverse collective electric and magnetic fluctuations in an isotropic thermal electron-proton plasmas of density n e are calculated as |δB|=√((δB) 2 )=2.8(n e m e c 2 ) 1/2 g 1/2 β e 7/4 and |δE|=√((δE) 2 )=3.2(n e m e c 2 ) 1/2 g 1/3 β e 2 , where g and β e denote the plasma parameter and the thermal electron velocity in units of the speed of light, respectively. For densities and temperatures of the reionized early intergalactic medium, |δB|=6·10 −18 G and |δE|=2·10 −16 G result

  6. Modified Gompertz equation for electrotherapy murine tumor growth kinetics: predictions and new hypotheses

    International Nuclear Information System (INIS)

    Cabrales, Luis E Bergues; Mateus, Miguel A O'Farril; Brooks, Soraida C Acosta; Palencia, Fabiola Suárez; Zamora, Lisset Ortiz; Quevedo, María C Céspedes; Seringe, Sarah Edward; Cuitié, Vladimir Crombet; Cabrales, Idelisa Bergues; González, Gustavo Sierra; Nava, Juan J Godina; Aguilera, Andrés Ramírez; Joa, Javier A González; Ciria, Héctor M Camué; González, Maraelys Morales; Salas, Miriam Fariñas; Jarque, Manuel Verdecia; González, Tamara Rubio

    2010-01-01

    Electrotherapy effectiveness at different doses has been demonstrated in preclinical and clinical studies; however, several aspects that occur in the tumor growth kinetics before and after treatment have not yet been revealed. Mathematical modeling is a useful instrument that can reveal some of these aspects. The aim of this paper is to describe the complete growth kinetics of unperturbed and perturbed tumors through use of the modified Gompertz equation in order to generate useful insight into the mechanisms that underpin this devastating disease. The complete tumor growth kinetics for control and treated groups are obtained by interpolation and extrapolation methods with different time steps, using experimental data of fibrosarcoma Sa-37. In the modified Gompertz equation, a delay time is introduced to describe the tumor's natural history before treatment. Different graphical strategies are used in order to reveal new information in the complete kinetics of this tumor type. The first stage of complete tumor growth kinetics is highly non linear. The model, at this stage, shows different aspects that agree with those reported theoretically and experimentally. Tumor reversibility and the proportionality between regions before and after electrotherapy are demonstrated. In tumors that reach partial remission, two antagonistic post-treatment processes are induced, whereas in complete remission, two unknown antitumor mechanisms are induced. The modified Gompertz equation is likely to lead to insights within cancer research. Such insights hold promise for increasing our understanding of tumors as self-organizing systems and, the possible existence of phase transitions in tumor growth kinetics, which, in turn, may have significant impacts both on cancer research and on clinical practice

  7. Differential equation methods for simulation of GFP kinetics in non-steady state experiments.

    Science.gov (United States)

    Phair, Robert D

    2018-03-15

    Genetically encoded fluorescent proteins, combined with fluorescence microscopy, are widely used in cell biology to collect kinetic data on intracellular trafficking. Methods for extraction of quantitative information from these data are based on the mathematics of diffusion and tracer kinetics. Current methods, although useful and powerful, depend on the assumption that the cellular system being studied is in a steady state, that is, the assumption that all the molecular concentrations and fluxes are constant for the duration of the experiment. Here, we derive new tracer kinetic analytical methods for non-steady state biological systems by constructing mechanistic nonlinear differential equation models of the underlying cell biological processes and linking them to a separate set of differential equations governing the kinetics of the fluorescent tracer. Linking the two sets of equations is based on a new application of the fundamental tracer principle of indistinguishability and, unlike current methods, supports correct dependence of tracer kinetics on cellular dynamics. This approach thus provides a general mathematical framework for applications of GFP fluorescence microscopy (including photobleaching [FRAP, FLIP] and photoactivation to frequently encountered experimental protocols involving physiological or pharmacological perturbations (e.g., growth factors, neurotransmitters, acute knockouts, inhibitors, hormones, cytokines, and metabolites) that initiate mechanistically informative intracellular transients. When a new steady state is achieved, these methods automatically reduce to classical steady state tracer kinetic analysis. © 2018 Phair. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  8. Relativistic electron beam acceleration by cascading nonlinear Landau damping of electromagnetic waves in a plasma

    International Nuclear Information System (INIS)

    Sugaya, R.; Ue, A.; Maehara, T.; Sugawa, M.

    1996-01-01

    Acceleration and heating of a relativistic electron beam by cascading nonlinear Landau damping involving three or four intense electromagnetic waves in a plasma are studied theoretically based on kinetic wave equations and transport equations derived from relativistic Vlasov endash Maxwell equations. Three or four electromagnetic waves excite successively two or three nonresonant beat-wave-driven relativistic electron plasma waves with a phase velocity near the speed of light [v p =c(1-γ -2 p ) 1/2 , γ p =ω/ω pe ]. Three beat waves interact nonlinearly with the electron beam and accelerate it to a highly relativistic energy γ p m e c 2 more effectively than by the usual nonlinear Landau damping of two electromagnetic waves. It is proved that the electron beam can be accelerated to more highly relativistic energy in the plasma whose electron density decreases temporally with an appropriate rate because of the temporal increase of γ p . copyright 1996 American Institute of Physics

  9. Equations for the kinetic modeling of supersonically flowing electrically excited lasers

    International Nuclear Information System (INIS)

    Lind, R.C.

    1973-01-01

    The equations for the kinetic modeling of a supersonically flowing electrically excited laser system are presented. The work focuses on the use of diatomic gases, in particular carbon monoxide mixtures. The equations presented include the vibrational rate equation which describes the vibrational population distribution, the electron, ion and electronic level rate equations, the gasdynamic equations for an ionized gas in the presence of an applied electric field, and the free electron Boltzmann equation including flow and gradient coupling terms. The model developed accounts for vibration--vibration collisions, vibration-translation collisions, electron-molecule inelastic excitation and superelastic de-excitation collisions, charge particle collisions, ionization and three body recombination collisions, elastic collisions, and radiative decay, all of which take place in such a system. A simplified form of the free electron Boltzmann equation is developed and discussed with emphasis placed on its coupling with the supersonic flow. A brief description of a possible solution procedure for the set of coupled equations is discussed

  10. Derivation of a reduced kinetic equation using Lie-transform techniques

    International Nuclear Information System (INIS)

    Brizard, A.

    1991-01-01

    The asymptotic elimination of fast time scales from a general kinetic equation, of the form: ∂ t f+z·∂ x f = C[f], facilitates the study of the long time behavior of its solution f(z,t). Here z describe the single-particle Hamiltonian dynamics and the operator C, which may possess nonlinear functional dependence on f, describes processes (such as discrete-particle effects, resonant wave-particle effects, or effects due to external sources) which cause changes in f as it is convectively transported along a Hamiltonian phase-space trajectory. When a fast time scale is associated with z through the dependence on a fast angle θ (whose frequency θ = Ω satisfies ε ≡ 1/Ωτ much-lt 1, where τ is a slow time scale of interest), a near-identity phase-space transformation T ε :z→Z (carried out with Lie-transform techniques) yields reduced Hamiltonian dynamical equations Z ε which are θ-independent. The corresponding transformed kinetic equation is derived. Averaging this equation over the fast angle θ yields a kinetic equation for left-angle F right-angle, the θ-averaged part of F. In general, the θ-dependence of C ε couples the kinetic equations for left-angle F right-angle and F, the θ-dependent part of F. One solves for the Fourier coefficient F l (associated with e ilθ ) as a functional of left-angle F right-angle. One obtains a reduced kinetic equation for left-angle F right-angle: d R left-angle F right-angle/dt = C R [left-angle F right-angle]. General expressions for C R are given, as well as expressions for the guiding-center and oscillation-center phase-space transformations of a linear Fokker-Planck operator. A discussion of the relationship with Mynick's work is presented

  11. An equation of state for purely kinetic k-essence inspired by cosmic topological defects

    Energy Technology Data Exchange (ETDEWEB)

    Cordero, Ruben; Gonzalez, Eduardo L.; Queijeiro, Alfonso [Instituto Politecnico Nacional, Departamento de Fisica, Escuela Superior de Fisica y Matematicas, Ciudad de Mexico (Mexico)

    2017-06-15

    We investigate the physical properties of a purely kinetic k-essence model with an equation of state motivated in superconducting membranes. We compute the equation of state parameter w and discuss its physical evolution via a nonlinear equation of state. Using the adiabatic speed of sound and energy density, we restrict the range of parameters of the model in order to have an acceptable physical behavior. We study the evolution of the scale factor and address the question of the possible existence of finite-time future singularities. Furthermore, we analyze the evolution of the luminosity distance d{sub L} with redshift z by comparing (normalizing) it with the ΛCDM model. Since the equation of state parameter is z-dependent the evolution of the luminosity distance is also analyzed using the Alcock-Paczynski test. (orig.)

  12. An integral equation method for discrete and continuous distribution of centres in thermoluminescence kinetics

    International Nuclear Information System (INIS)

    Kantorovich, L.N.; Fogel, G.M.; Gotlib, V.I.

    1990-01-01

    Thermoluminescence kinetics is discussed within the framework of a band model containing an arbitrary number of types of recombination and trapping centres at an arbitrary correlation of all centre parameters. It is shown that the initial system of kinetic equations is reduced to an equivalent system consisting of two integro-differential equations which permit one to perform an accurate generalisation, in the case of a continuous centre distribution, to their parameters for the description of irradiation and thermoluminescence, taking into account charge carrier redistribution to both types of centre. In addition, if only one electron (hole) channel is taken into account, only one integro-differential equation is obtained. On the basis of this equation a precise algebraic equation is obtained for calculation of the area of an arbitrary part of the thermoluminescence curve (TLC), consisting of one or several peaks, which slightly overlap with other peaks. It is shown that at doses which are less than the saturation dose, when the centres are not completely filled by the charge carriers, the dose dependences of such a part of the TLC may have a non-linear character at a simultaneous linear dependence of the area of the whole TLC. At doses which are greater than the saturation dose, the dose dependences of the area of the whole TLC, as well as of its separate parts, undergo breaks at the saturation doses. (author)

  13. Analytic solution of vector model kinetic equations with constant kernel and their applications

    International Nuclear Information System (INIS)

    Latyshev, A.V.

    1993-01-01

    For the first time exact solutions the heif-space boundary value problems for model kinetic equations is obtained. Here x > 0, μ is an element of (-∞, 0) union (0, +∞), Σ = diag {σ 1 , σ 2 }, C = [c ij ] - 2 x 2-matrix, Ψ (x, μ) is vector-column with elements ψ 1 and ψ 2 . Exact solution of the diffusion slip flow of the binary gas mixture as a application for the model Boltzmann equation with collision operator in the McCormack's form is found. 18 refs

  14. Numerical instability of time-discretized one-point kinetic equations

    International Nuclear Information System (INIS)

    Hashimoto, Kengo; Ikeda, Hideaki; Takeda, Toshikazu

    2000-01-01

    The one-point kinetic equations with numerical errors induced by the explicit, implicit and Crank-Nicolson integration methods are derived. The zero-power transfer functions based on the present equations are demonstrated to investigate the numerical stability of the discretized systems. These demonstrations indicate unconditional stability for the implicit and Crank-Nicolson methods but present the possibility of numerical instability for the explicit method. An upper limit of time mesh spacing for the stability is formulated and several numerical calculations are made to confirm the validity of this formula

  15. Solving the master equation without kinetic Monte Carlo: Tensor train approximations for a CO oxidation model

    International Nuclear Information System (INIS)

    Gelß, Patrick; Matera, Sebastian; Schütte, Christof

    2016-01-01

    In multiscale modeling of heterogeneous catalytic processes, one crucial point is the solution of a Markovian master equation describing the stochastic reaction kinetics. Usually, this is too high-dimensional to be solved with standard numerical techniques and one has to rely on sampling approaches based on the kinetic Monte Carlo method. In this study we break the curse of dimensionality for the direct solution of the Markovian master equation by exploiting the Tensor Train Format for this purpose. The performance of the approach is demonstrated on a first principles based, reduced model for the CO oxidation on the RuO 2 (110) surface. We investigate the complexity for increasing system size and for various reaction conditions. The advantage over the stochastic simulation approach is illustrated by a problem with increased stiffness.

  16. Solving the master equation without kinetic Monte Carlo: Tensor train approximations for a CO oxidation model

    Science.gov (United States)

    Gelß, Patrick; Matera, Sebastian; Schütte, Christof

    2016-06-01

    In multiscale modeling of heterogeneous catalytic processes, one crucial point is the solution of a Markovian master equation describing the stochastic reaction kinetics. Usually, this is too high-dimensional to be solved with standard numerical techniques and one has to rely on sampling approaches based on the kinetic Monte Carlo method. In this study we break the curse of dimensionality for the direct solution of the Markovian master equation by exploiting the Tensor Train Format for this purpose. The performance of the approach is demonstrated on a first principles based, reduced model for the CO oxidation on the RuO2(110) surface. We investigate the complexity for increasing system size and for various reaction conditions. The advantage over the stochastic simulation approach is illustrated by a problem with increased stiffness.

  17. Solving the master equation without kinetic Monte Carlo: Tensor train approximations for a CO oxidation model

    Energy Technology Data Exchange (ETDEWEB)

    Gelß, Patrick, E-mail: p.gelss@fu-berlin.de; Matera, Sebastian, E-mail: matera@math.fu-berlin.de; Schütte, Christof, E-mail: schuette@mi.fu-berlin.de

    2016-06-01

    In multiscale modeling of heterogeneous catalytic processes, one crucial point is the solution of a Markovian master equation describing the stochastic reaction kinetics. Usually, this is too high-dimensional to be solved with standard numerical techniques and one has to rely on sampling approaches based on the kinetic Monte Carlo method. In this study we break the curse of dimensionality for the direct solution of the Markovian master equation by exploiting the Tensor Train Format for this purpose. The performance of the approach is demonstrated on a first principles based, reduced model for the CO oxidation on the RuO{sub 2}(110) surface. We investigate the complexity for increasing system size and for various reaction conditions. The advantage over the stochastic simulation approach is illustrated by a problem with increased stiffness.

  18. Compactness and robustness: Applications in the solution of integral equations for chemical kinetics and electromagnetic scattering

    Science.gov (United States)

    Zhou, Yajun

    This thesis employs the topological concept of compactness to deduce robust solutions to two integral equations arising from chemistry and physics: the inverse Laplace problem in chemical kinetics and the vector wave scattering problem in dielectric optics. The inverse Laplace problem occurs in the quantitative understanding of biological processes that exhibit complex kinetic behavior: different subpopulations of transition events from the "reactant" state to the "product" state follow distinct reaction rate constants, which results in a weighted superposition of exponential decay modes. Reconstruction of the rate constant distribution from kinetic data is often critical for mechanistic understandings of chemical reactions related to biological macromolecules. We devise a "phase function approach" to recover the probability distribution of rate constants from decay data in the time domain. The robustness (numerical stability) of this reconstruction algorithm builds upon the continuity of the transformations connecting the relevant function spaces that are compact metric spaces. The robust "phase function approach" not only is useful for the analysis of heterogeneous subpopulations of exponential decays within a single transition step, but also is generalizable to the kinetic analysis of complex chemical reactions that involve multiple intermediate steps. A quantitative characterization of the light scattering is central to many meteoro-logical, optical, and medical applications. We give a rigorous treatment to electromagnetic scattering on arbitrarily shaped dielectric media via the Born equation: an integral equation with a strongly singular convolution kernel that corresponds to a non-compact Green operator. By constructing a quadratic polynomial of the Green operator that cancels out the kernel singularity and satisfies the compactness criterion, we reveal the universality of a real resonance mode in dielectric optics. Meanwhile, exploiting the properties of

  19. Application of the reactor kinetics equations to the reactor safety analysis

    International Nuclear Information System (INIS)

    Sdouz, G.

    1976-01-01

    The reactor kinetics equations which can be solved by the computer program AIREK-III are used to describe the behavior of fast reactivity transients. By supplementing this computer program it was possible to solve additional safety problems, e.g. the course of reactor excursions induced by any form of reactivity input, the control of reactivity input as a function of a threshold-energy and the computation of produced energy. (author)

  20. Application of Littlewood-Paley decomposition to the regularity of Boltzmann type kinetic equations

    International Nuclear Information System (INIS)

    EL Safadi, M.

    2007-03-01

    We study the regularity of kinetic equations of Boltzmann type.We use essentially Littlewood-Paley method from harmonic analysis, consisting mainly in working with dyadics annulus. We shall mainly concern with the homogeneous case, where the solution f(t,x,v) depends only on the time t and on the velocities v, while working with realistic and singular cross-sections (non cutoff). In the first part, we study the particular case of Maxwellian molecules. Under this hypothesis, the structure of the Boltzmann operator and his Fourier transform write in a simple form. We show a global C ∞ regularity. Then, we deal with the case of general cross-sections with 'hard potential'. We are interested in the Landau equation which is limit equation to the Boltzmann equation, taking in account grazing collisions. We prove that any weak solution belongs to Schwartz space S. We demonstrate also a similar regularity for the case of Boltzmann equation. Let us note that our method applies directly for all dimensions, and proofs are often simpler compared to other previous ones. Finally, we finish with Boltzmann-Dirac equation. In particular, we adapt the result of regularity obtained in Alexandre, Desvillettes, Wennberg and Villani work, using the dissipation rate connected with Boltzmann-Dirac equation. (author)

  1. Relativistic shocks in the systems containing domains with anomalous equation of state and quark baryonic matter hadronization

    International Nuclear Information System (INIS)

    Bugaev, K.A.; Gorenshtejn, M.I.; Zhdanov, V.I.

    1987-01-01

    Theoretical basis for general stability criterion of relativistic shocks in baryonic matter is proposed. Different formulations of shock mechanical stability are considered and applied to the analysis of rarefaction shock hadronization transition. 13 refs.; 2 figs

  2. Application of the fractional neutron point kinetic equation: Start-up of a nuclear reactor

    International Nuclear Information System (INIS)

    Polo-Labarrios, M.-A.; Espinosa-Paredes, G.

    2012-01-01

    Highlights: ► Neutron density behavior at reactor start up with fractional neutron point kinetics. ► There is a relaxation time associated with a rapid variation in the neutron flux. ► Physical interpretation of the fractional order is related with non-Fickian effects. ► Effect of the anomalous diffusion coefficient and the relaxation time is analyzed. ► Neutron density is related with speed and duration of the control rods lifting. - Abstract: In this paper we present the behavior of the variation of neutron density when the nuclear reactor power is increased using the fractional neutron point kinetic (FNPK) equation with a single-group of delayed neutron precursor. It is considered that there is a relaxation time associated with a rapid variation in the neutron flux and its physical interpretation of the fractional order is related with non-Fickian effects from the neutron diffusion equation point of view. We analyzed the case of increase the nuclear reactor power when reactor is cold start-up which is a process of inserting reactivity by lifting control rods discontinuously. The results show that for short time scales of the start-up the neutronic density behavior with FNPK shows sub-diffusive effects whose absorption are government by control rods velocity. For large times scale, the results shows that the classical equation of the neutron point kinetics over predicted the neutron density regarding to FNPK.

  3. Relations between the kinetic equation and the Langevin models in two-phase flow modelling

    International Nuclear Information System (INIS)

    Minier, J.P.; Pozorski, J.

    1997-05-01

    The purpose of this paper is to discuss PDF and stochastic models which are used in two-phase flow modelling. The aim of the present analysis is essentially to try to determine relations and consistency between different models. It is first recalled that different approaches actually correspond to PDF models written either in terms of the process trajectories or in terms of the PDF itself. The main difference lies in the choice of the independent variables which are retained. Two particular models are studied, the Kinetic Equation and the Langevin Equation model. The latter uses a Langevin equation to model the fluid velocities seen along particle trajectories. The Langevin model is more general since it contains an additional variable. It is shown that, in certain cases, this variable can be summed up exactly to retrieve the Kinetic Equation model as a marginal PDF. A joint fluid and solid particle PDF which includes the characteristics of both phases is proposed at the end of the paper. (author)

  4. Dissipative relativistic hydrodynamics

    International Nuclear Information System (INIS)

    Imshennik, V.S.; Morozov, Yu.I.

    1989-01-01

    Using the comoving reference frame in the general non-inertial case, the relativistic hydrodynamics equations are derived with an account for dissipative effects in the matter. From the entropy production equation, the exact from for the dissipative tensor components is obtained. As a result, the closed system of equations of dissipative relativistic hydrodynamics is obtained in the comoving reference frame as a relativistic generalization of the known Navier-Stokes equations for Lagrange coordinates. Equations of relativistic hydrodynamics with account for dissipative effects in the matter are derived using the assocoated reference system in general non-inertial case. True form of the dissipative tensor components is obtained from entropy production equation. Closed system of equations for dissipative relativistic hydrodynamics is obtained as a result in the assocoated reference system (ARS) - relativistic generalization of well-known Navier-Stokes equations for Lagrange coordinates. Equation system, obtained in this paper for ARS, may be effectively used in numerical models of explosive processes with 10 51 erg energy releases which are characteristic for flashes of supernovae, if white dwarf type compact target suggested as presupernova

  5. Solution for the multigroup neutron space kinetics equations by the modified Picard algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Tavares, Matheus G.; Petersen, Claudio Z., E-mail: matheus.gulartetavares@gmail.com [Universidade Federal de Pelotas (UFPEL), Capao do Leao, RS (Brazil). Departamento de Matematica e Estatistica; Schramm, Marcelo, E-mail: schrammmarcelo@gmail.com [Universidade Federal de Pelotas (UFPEL), RS (Brazil). Centro de Engenharias; Zanette, Rodrigo, E-mail: rodrigozanette@hotmail.com [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Instituto de Matematica e Estatistica

    2017-07-01

    In this work, we used a modified Picards method to solve the Multigroup Neutron Space Kinetics Equations (MNSKE) in Cartesian geometry. The method consists in assuming an initial guess for the neutron flux and using it to calculate a fictitious source term in the MNSKE. A new source term is calculated applying its solution, and so on, iteratively, until a stop criterion is satisfied. For the solution of the fast and thermal neutron fluxes equations, the Laplace Transform technique is used in time variable resulting in a rst order linear differential matrix equation, which are solved by classical methods in the literature. After each iteration, the scalar neutron flux and the delayed neutron precursors are reconstructed by polynomial interpolation. We obtain the fluxes and precursors through Numerical Inverse Laplace Transform using the Stehfest method. We present numerical simulations and comparisons with available results in literature. (author)

  6. Solution for the multigroup neutron space kinetics equations by the modified Picard algorithm

    International Nuclear Information System (INIS)

    Tavares, Matheus G.; Petersen, Claudio Z.; Schramm, Marcelo; Zanette, Rodrigo

    2017-01-01

    In this work, we used a modified Picards method to solve the Multigroup Neutron Space Kinetics Equations (MNSKE) in Cartesian geometry. The method consists in assuming an initial guess for the neutron flux and using it to calculate a fictitious source term in the MNSKE. A new source term is calculated applying its solution, and so on, iteratively, until a stop criterion is satisfied. For the solution of the fast and thermal neutron fluxes equations, the Laplace Transform technique is used in time variable resulting in a rst order linear differential matrix equation, which are solved by classical methods in the literature. After each iteration, the scalar neutron flux and the delayed neutron precursors are reconstructed by polynomial interpolation. We obtain the fluxes and precursors through Numerical Inverse Laplace Transform using the Stehfest method. We present numerical simulations and comparisons with available results in literature. (author)

  7. Magnetoresistance in organic semiconductors: Including pair correlations in the kinetic equations for hopping transport

    Science.gov (United States)

    Shumilin, A. V.; Kabanov, V. V.; Dediu, V. I.

    2018-03-01

    We derive kinetic equations for polaron hopping in organic materials that explicitly take into account the double occupation possibility and pair intersite correlations. The equations include simplified phenomenological spin dynamics and provide a self-consistent framework for the description of the bipolaron mechanism of the organic magnetoresistance. At low applied voltages, the equations can be reduced to those for an effective resistor network that generalizes the Miller-Abrahams network and includes the effect of spin relaxation on the system resistivity. Our theory discloses the close relationship between the organic magnetoresistance and the intersite correlations. Moreover, in the absence of correlations, as in an ordered system with zero Hubbard energy, the magnetoresistance vanishes.

  8. Solving kinetic equations with adaptive mesh in phase space for rarefied gas dynamics and plasma physics (Invited)

    International Nuclear Information System (INIS)

    Kolobov, Vladimir; Arslanbekov, Robert; Frolova, Anna

    2014-01-01

    The paper describes an Adaptive Mesh in Phase Space (AMPS) technique for solving kinetic equations with deterministic mesh-based methods. The AMPS technique allows automatic generation of adaptive Cartesian mesh in both physical and velocity spaces using a Tree-of-Trees data structure. We illustrate advantages of AMPS for simulations of rarefied gas dynamics and electron kinetics on low temperature plasmas. In particular, we consider formation of the velocity distribution functions in hypersonic flows, particle kinetics near oscillating boundaries, and electron kinetics in a radio-frequency sheath. AMPS provide substantial savings in computational cost and increased efficiency of the mesh-based kinetic solvers

  9. Solving kinetic equations with adaptive mesh in phase space for rarefied gas dynamics and plasma physics (Invited)

    Energy Technology Data Exchange (ETDEWEB)

    Kolobov, Vladimir [CFD Research Corporation, Huntsville, AL 35805, USA and The University of Alabama in Huntsville, Huntsville, AL 35805 (United States); Arslanbekov, Robert [CFD Research Corporation, Huntsville, AL 35805 (United States); Frolova, Anna [Computing Center of the Russian Academy of Sciences, Moscow, 119333 (Russian Federation)

    2014-12-09

    The paper describes an Adaptive Mesh in Phase Space (AMPS) technique for solving kinetic equations with deterministic mesh-based methods. The AMPS technique allows automatic generation of adaptive Cartesian mesh in both physical and velocity spaces using a Tree-of-Trees data structure. We illustrate advantages of AMPS for simulations of rarefied gas dynamics and electron kinetics on low temperature plasmas. In particular, we consider formation of the velocity distribution functions in hypersonic flows, particle kinetics near oscillating boundaries, and electron kinetics in a radio-frequency sheath. AMPS provide substantial savings in computational cost and increased efficiency of the mesh-based kinetic solvers.

  10. Integrals of periodic motion and periodic solutions for classical equations of relativistic string with masses at ends. I. Integrals of periodic motion

    International Nuclear Information System (INIS)

    Barbashov, B.M.

    1996-01-01

    Boundary equations for the relativistic string with masses at ends are formulated in terms of geometrical invariants of world trajectories of masses at the string ends. In the three-dimensional Minkowski space E 2 1 , there are two invariants of that sort, the curvature K and torsion κ. Curvatures of trajectories of the string ends with masses are always constant, K i =γ/m i (i=1,2), whereas torsions κ i obey a system of differential equations with deviating arguments. For these equations with periodic κ i (τ+nl)=κ(τ), constants of motion are obtained (part 1) and exact solutions are presented (part 2) for periods l and 2l where l is the string length in the plane of parameters τ and σ(σ 1 =0, σ 2 =l). 7 refs

  11. On a closed form approach to the fractional neutron point kinetics equation with temperature feedback

    International Nuclear Information System (INIS)

    Schramm, Marcelo; Bodmann, Bardo E.J.; Vilhena, Marco T.M.B.; Petersen, Claudio Z.; Alvim, Antonio C.M.

    2013-01-01

    Following the quest to find analytical solutions, we extend the methodology applied successfully to timely fractional neutron point kinetics (FNPK) equations by adding the effects of temperature. The FNPK equations with temperature feedback correspond to a nonlinear system and “stiff” type for the neutron density and the concentration of delayed neutron precursors. These variables determine the behavior of a nuclear reactor power with time and are influenced by the position of control rods, for example. The solutions of kinetics equations provide time information about the dynamics in a nuclear reactor in operation and are useful, for example, to understand the power fluctuations with time that occur during startup or shutdown of the reactor, due to adjustments of the control rods. The inclusion of temperature feedback in the model introduces an estimate of the transient behavior of the power and other variables, which are strongly coupled. Normally, a single value of reactivity is used across the energy spectrum. Especially in case of power change, the neutron energy spectrum changes as well as physical parameters such as the average cross sections. However, even knowing the importance of temperature effects on the control of the reactor power, the character of the set of nonlinear equations governing this system makes it difficult to obtain a purely analytical solution. Studies have been published in this sense, using numerical approaches. Here the idea is to consider temperature effects to make the model more realistic and thus solve it in a semi-analytical way. Therefore, the main objective of this paper is to obtain an analytical representation of fractional neutron point kinetics equations with temperature feedback, without having to resort to approximations inherent in numerical methods. To this end, we will use the decomposition method, which has been successfully used by the authors to solve neutron point kinetics problems. The results obtained will

  12. On a closed form approach to the fractional neutron point kinetics equation with temperature feedback

    Energy Technology Data Exchange (ETDEWEB)

    Schramm, Marcelo; Bodmann, Bardo E.J.; Vilhena, Marco T.M.B., E-mail: marceloschramm@hotmail.com, E-mail: bardo.bodmann@ufrgs.br, E-mail: mtmbvilhena@gmail.com [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Departamento de Engenharia Mecanica; Petersen, Claudio Z., E-mail: claudiopetersen@yahoo.com.br [Universidade Federal de Pelotas (UFPel), RS (Brazil). Departamento de Matematica; Alvim, Antonio C.M., E-mail: alvim@nuclear.ufrj.br [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Instituto Alberto Luiz Coimbra de Pos-Graduacao e Pesquisa em Engenharia

    2013-07-01

    Following the quest to find analytical solutions, we extend the methodology applied successfully to timely fractional neutron point kinetics (FNPK) equations by adding the effects of temperature. The FNPK equations with temperature feedback correspond to a nonlinear system and “stiff” type for the neutron density and the concentration of delayed neutron precursors. These variables determine the behavior of a nuclear reactor power with time and are influenced by the position of control rods, for example. The solutions of kinetics equations provide time information about the dynamics in a nuclear reactor in operation and are useful, for example, to understand the power fluctuations with time that occur during startup or shutdown of the reactor, due to adjustments of the control rods. The inclusion of temperature feedback in the model introduces an estimate of the transient behavior of the power and other variables, which are strongly coupled. Normally, a single value of reactivity is used across the energy spectrum. Especially in case of power change, the neutron energy spectrum changes as well as physical parameters such as the average cross sections. However, even knowing the importance of temperature effects on the control of the reactor power, the character of the set of nonlinear equations governing this system makes it difficult to obtain a purely analytical solution. Studies have been published in this sense, using numerical approaches. Here the idea is to consider temperature effects to make the model more realistic and thus solve it in a semi-analytical way. Therefore, the main objective of this paper is to obtain an analytical representation of fractional neutron point kinetics equations with temperature feedback, without having to resort to approximations inherent in numerical methods. To this end, we will use the decomposition method, which has been successfully used by the authors to solve neutron point kinetics problems. The results obtained will

  13. Expansion of the relativistic Fokker-Planck equation including non-linear terms and a non-Maxwellian background

    International Nuclear Information System (INIS)

    Shkarofsky, I.P.

    1997-01-01

    The relativistic Fokker-Planck collision term in Braams and Karney [Phys. Fluids B 1, 1355 (1989)] is expanded using Cartesian tensors (equivalent to associated Legendre spherical harmonics) retaining all non-linear terms and an arbitrary zeroth order distribution background. Expressions are given for collision terms between all harmonics and the background distribution in terms of the j and y functions in Braams and Karney. The results reduce to Braams and Karney for the first order harmonic term with a Maxwellian background and to those given by Shkarofsky [Can. J. Phys. 41, 1753 (1963)] in the non-relativistic limit. Expressions for the energy and momentum transfer associated with relativistic Coulomb collisions are given. The fast two dimensional Fokker-Planck solver in Shoucri and Shkarofsky [Comput. Phys. Commun. 82, 287 (1994)] has been extended to include the second order harmonic term. copyright 1997 American Institute of Physics

  14. AIREK-MOD, Time Dependent Reactor Kinetics with Feedback Differential Equation

    International Nuclear Information System (INIS)

    Tamagnini, C.

    1984-01-01

    1 - Nature of physical problem solved: Solves the reactor kinetic equations with respect to time. A standard form for the reactivity behaviour has been introduced in which the reactivity is given by the sum of a polynomial, sine, cosine and exponential expansion. Tabular form is also included. The presence of feedback differential equations in which the dependence on variables different from the considered one is considered enables many heat-exchange problems to be dealt with. 2 - Method of solution: The method employed for the solution of the differential equations is the one developed by E.R. Cohen (Geneva Conference, 1958). 3 - Restrictions on the complexity of the problem: The maximum number of differential equations that can be solved simultaneously is 50. Within this limitation there may be n delayed neutron groups (n less than or equal to 25), on m other linear feedback equations (n+m less than or equal to 49). CDC 1604 version was offered by EIR (Institut Federal de Recherches en matiere de reacteurs, Switzerland)

  15. Application of Elovich equation on uptake kinetics of 137Cs by living freshwater macrophytes - a short duration laboratory study

    International Nuclear Information System (INIS)

    Jaison, T.J.; Patra, A.K.; Ravi, P.M.; Tripathi, R.M.

    2014-01-01

    Application of Elovich equation on uptake kinetics of 137 Cs by two living macrophytes during controlled experiments on short duration exposure is studied. Compliance to 2 nd order kinetics indicates the mechanism could be chemi-sorption, involving polar functional groups present on the extracelluar surface of the macrophytes. Data analysis suggests that Myriophyllum s. exhibits faster adsorption rate than Hydrilla v. As Myriophyllum s. exhibits better kinetics than Hydrilla v., former could be a better natural adsorbing media for 137 Cs. (author)

  16. An accurate technique for the solution of the nonlinear point kinetics equations

    International Nuclear Information System (INIS)

    Picca, Paolo; Ganapol, Barry D.; Furfaro, Roberto

    2011-01-01

    A novel methodology for the solution of non-linear point kinetic (PK) equations is proposed. The technique is based on a piecewise constant approximation of PK system of ODEs and explicitly accounts for reactivity feedback effects, through an iterative cycle. High accuracy is reached by introducing a sub-mesh for the numerical evaluation of integrals involved and by correcting the source term to include the non-linear effect on a finer time scale. The use of extrapolation techniques for convergence acceleration is also explored. Results for adiabatic feedback model are reported and compared with other benchmarks in literature. The convergence trend makes the algorithm particularly attractive for applications, including in multi-point kinetics and quasi-static frameworks. (author)

  17. Analytical solution of Luedeking-Piret equation for a batch fermentation obeying Monod growth kinetics.

    Science.gov (United States)

    Garnier, Alain; Gaillet, Bruno

    2015-12-01

    Not so many fermentation mathematical models allow analytical solutions of batch process dynamics. The most widely used is the combination of the logistic microbial growth kinetics with Luedeking-Piret bioproduct synthesis relation. However, the logistic equation is principally based on formalistic similarities and only fits a limited range of fermentation types. In this article, we have developed an analytical solution for the combination of Monod growth kinetics with Luedeking-Piret relation, which can be identified by linear regression and used to simulate batch fermentation evolution. Two classical examples are used to show the quality of fit and the simplicity of the method proposed. A solution for the combination of Haldane substrate-limited growth model combined with Luedeking-Piret relation is also provided. These models could prove useful for the analysis of fermentation data in industry as well as academia. © 2015 Wiley Periodicals, Inc.

  18. Accelerated procedure to solve kinetic equation for neutral atoms in a hot plasma

    Science.gov (United States)

    Tokar, Mikhail Z.

    2017-12-01

    The recombination of plasma charged components, electrons and ions of hydrogen isotopes, on the wall of a fusion reactor is a source of neutral molecules and atoms, recycling back into the plasma volume. Here neutral species participate, in particular, in charge-exchange (c-x) collisions with the plasma ions and, as a result, atoms of high energies with chaotically directed velocities are generated. Some fraction of these hot atoms hit the wall. Statistical Monte Carlo methods normally used to model c-x atoms are too time consuming for reasonably small level of accident errors and extensive parameter studies are problematic. By applying pass method to evaluate integrals from functions, including the ion velocity distribution, an iteration approach to solve one-dimensional kinetic equation [1], being alternative to Monte Carlo procedure, has been tremendously accelerated, at least by a factor of 30-50 [2]. Here this approach is developed further to solve the 2-D kinetic equation, applied to model the transport of c-x atoms in the vicinity of an opening in the wall, e.g., the entrance of the duct guiding to a diagnostic installation. This is necessary to determine firmly the energy spectrum of c-x atoms penetrating into the duct and to assess the erosion of the installation there. The results of kinetic modeling are compared with those obtained with the diffusion description for c-x atoms, being strictly relevant under plasma conditions of low temperature and high density, where the mean free path length between c-x collisions is much smaller than that till the atom ionization by electrons. It is demonstrated that the previous calculations [3], done with the diffusion approximation for c-x atoms, overestimate the erosion rate of Mo mirrors in a reactor by a factor of 3 compared to the result of the present kinetic study.

  19. An asymptotic preserving unified gas kinetic scheme for gray radiative transfer equations

    International Nuclear Information System (INIS)

    Sun, Wenjun; Jiang, Song; Xu, Kun

    2015-01-01

    The solutions of radiative transport equations can cover both optical thin and optical thick regimes due to the large variation of photon's mean-free path and its interaction with the material. In the small mean free path limit, the nonlinear time-dependent radiative transfer equations can converge to an equilibrium diffusion equation due to the intensive interaction between radiation and material. In the optical thin limit, the photon free transport mechanism will emerge. In this paper, we are going to develop an accurate and robust asymptotic preserving unified gas kinetic scheme (AP-UGKS) for the gray radiative transfer equations, where the radiation transport equation is coupled with the material thermal energy equation. The current work is based on the UGKS framework for the rarefied gas dynamics [14], and is an extension of a recent work [12] from a one-dimensional linear radiation transport equation to a nonlinear two-dimensional gray radiative system. The newly developed scheme has the asymptotic preserving (AP) property in the optically thick regime in the capturing of diffusive solution without using a cell size being smaller than the photon's mean free path and time step being less than the photon collision time. Besides the diffusion limit, the scheme can capture the exact solution in the optical thin regime as well. The current scheme is a finite volume method. Due to the direct modeling for the time evolution solution of the interface radiative intensity, a smooth transition of the transport physics from optical thin to optical thick can be accurately recovered. Many numerical examples are included to validate the current approach

  20. Kinetic equations and fluctuations in μspace of one-component dilute plasmas

    International Nuclear Information System (INIS)

    Tokuyama, Michio; Mori, Hazime

    1977-01-01

    Kinetic equations for a spatially coarse-grained electron density in μ phase space A(p, r; t) with a length cutoff b and for its fluctuations are studied by a scaling method and a time-convolutionless approach developed by the present authors. An electron gas with a small plasma parameter epsilon=1/c (lambda sub(D)) 3 has three characteristic lengths; the Landau cutoff r sub(L)=epsilon lambda sub(D), the Debye length lambda sub(D)=√k sub(B)T/4πe 2 c and the mean free path l sub(f)=lambda sub(D)/epsilon, e and c being electronic charge and mean electron density, respectively. It is shown that there are two characteristic regions of the length cutoff b. One is a coherent region where r sub(L)<< b<< lambda sub(D). Its characteristic scaling is c→0, b→infinity, t→infinity with b√c and t√c being kept constant. The Vlasov equation is derived in this limit. The other is a kinetic region where lambda sub(D)<< b<< l sub(f). Its characteristic scaling is c→0, b→infinity, t→infinity with bc and tc being kept constant. The Vlasov term disappears and the Balescu-Lenard-Boltzmann-Landau equation, which is free of divergence for both close and distant collisions, is derived in this limit. It is shown that the fluctuations of A(p, r; t) obey a Markov process with scaling exponents α=0, β=1/2 in the coherent region near thermal equilibrium, while they obey a Gaussian Markov process with α=0, β=1 in the kinetic region. The present theory does not need the factorization ansatz and Bogoliubov's functional ansatz. (auth.)

  1. Theory of warm ionized gases: equation of state and kinetic Schottky anomaly.

    Science.gov (United States)

    Capolupo, A; Giampaolo, S M; Illuminati, F

    2013-10-01

    Based on accurate Lennard-Jones-type interaction potentials, we derive a closed set of state equations for the description of warm atomic gases in the presence of ionization processes. The specific heat is predicted to exhibit peaks in correspondence to single and multiple ionizations. Such kinetic analog in atomic gases of the Schottky anomaly in solids is enhanced at intermediate and low atomic densities. The case of adiabatic compression of noble gases is analyzed in detail and the implications on sonoluminescence are discussed. In particular, the predicted plasma electron density in a sonoluminescent bubble turns out to be in good agreement with the value measured in recent experiments.

  2. Microscopic theory of warm ionized gases: equation of state and kinetic Schottky anomaly

    International Nuclear Information System (INIS)

    Capolupo, A; Giampaolo, S M; Illuminati, F

    2013-01-01

    Based on accurate Lennard-Jones type interaction potentials, we derive a closed set of state equations for the description of warm atomic gases in the presence of ionization processes. The specific heat is predicted to exhibit peaks in correspondence to single and multiple ionizations. Such kinetic analogue in atomic gases of the Schottky anomaly in solids is enhanced at intermediate and low atomic densities. The case of adiabatic compression of noble gases is analyzed in detail and the implications on sonoluminescence are discussed.

  3. Simulation of light generation in cholesteric liquid crystals using kinetic equations: Time-independent solution

    Energy Technology Data Exchange (ETDEWEB)

    Shtykov, N. M., E-mail: nshtykov@mail.ru; Palto, S. P.; Umanskii, B. A. [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation)

    2013-08-15

    We report on the results of calculating the conditions for light generation in cholesteric liquid crystals doped with fluorescent dyes using kinetic equations. Specific features of spectral properties of the chiral cholesteric medium as a photonic structure and spatially distributed type of the feedback in the active medium are taken into account. The expression is derived for the threshold pump radiation intensity as a function of the dye concentration and sample thickness. The importance of taking into account the distributed loss level in the active medium for calculating the optimal parameters of the medium and for matching the calculated values with the results of experiments is demonstrated.

  4. Using Equation-Free Computation to Accelerate Network-Free Stochastic Simulation of Chemical Kinetics.

    Science.gov (United States)

    Lin, Yen Ting; Chylek, Lily A; Lemons, Nathan W; Hlavacek, William S

    2018-06-21

    The chemical kinetics of many complex systems can be concisely represented by reaction rules, which can be used to generate reaction events via a kinetic Monte Carlo method that has been termed network-free simulation. Here, we demonstrate accelerated network-free simulation through a novel approach to equation-free computation. In this process, variables are introduced that approximately capture system state. Derivatives of these variables are estimated using short bursts of exact stochastic simulation and finite differencing. The variables are then projected forward in time via a numerical integration scheme, after which a new exact stochastic simulation is initialized and the whole process repeats. The projection step increases efficiency by bypassing the firing of numerous individual reaction events. As we show, the projected variables may be defined as populations of building blocks of chemical species. The maximal number of connected molecules included in these building blocks determines the degree of approximation. Equation-free acceleration of network-free simulation is found to be both accurate and efficient.

  5. A highly accurate algorithm for the solution of the point kinetics equations

    International Nuclear Information System (INIS)

    Ganapol, B.D.

    2013-01-01

    Highlights: • Point kinetics equations for nuclear reactor transient analysis are numerically solved to extreme accuracy. • Results for classic benchmarks found in the literature are given to 9-digit accuracy. • Recent results of claimed accuracy are shown to be less accurate than claimed. • Arguably brings a chapter of numerical evaluation of the PKEs to a close. - Abstract: Attempts to resolve the point kinetics equations (PKEs) describing nuclear reactor transients have been the subject of numerous articles and texts over the past 50 years. Some very innovative methods, such as the RTS (Reactor Transient Simulation) and CAC (Continuous Analytical Continuation) methods of G.R. Keepin and J. Vigil respectively, have been shown to be exceptionally useful. Recently however, several authors have developed methods they consider accurate without a clear basis for their assertion. In response, this presentation will establish a definitive set of benchmarks to enable those developing PKE methods to truthfully assess the degree of accuracy of their methods. Then, with these benchmarks, two recently published methods, found in this journal will be shown to be less accurate than claimed and a legacy method from 1984 will be confirmed

  6. The solution of the point kinetics equations via converged accelerated Taylor series (CATS)

    Energy Technology Data Exchange (ETDEWEB)

    Ganapol, B.; Picca, P. [Dept. of Aerospace and Mechanical Engineering, Univ. of Arizona (United States); Previti, A.; Mostacci, D. [Laboratorio di Montecuccolino, Alma Mater Studiorum - Universita di Bologna (Italy)

    2012-07-01

    This paper deals with finding accurate solutions of the point kinetics equations including non-linear feedback, in a fast, efficient and straightforward way. A truncated Taylor series is coupled to continuous analytical continuation to provide the recurrence relations to solve the ordinary differential equations of point kinetics. Non-linear (Wynn-epsilon) and linear (Romberg) convergence accelerations are employed to provide highly accurate results for the evaluation of Taylor series expansions and extrapolated values of neutron and precursor densities at desired edits. The proposed Converged Accelerated Taylor Series, or CATS, algorithm automatically performs successive mesh refinements until the desired accuracy is obtained, making use of the intermediate results for converged initial values at each interval. Numerical performance is evaluated using case studies available from the literature. Nearly perfect agreement is found with the literature results generally considered most accurate. Benchmark quality results are reported for several cases of interest including step, ramp, zigzag and sinusoidal prescribed insertions and insertions with adiabatic Doppler feedback. A larger than usual (9) number of digits is included to encourage honest benchmarking. The benchmark is then applied to the enhanced piecewise constant algorithm (EPCA) currently being developed by the second author. (authors)

  7. Coupled kinetic equations for fermions and bosons in the relaxation-time approximation

    Science.gov (United States)

    Florkowski, Wojciech; Maksymiuk, Ewa; Ryblewski, Radoslaw

    2018-02-01

    Kinetic equations for fermions and bosons are solved numerically in the relaxation-time approximation for the case of one-dimensional boost-invariant geometry. Fermions are massive and carry baryon number, while bosons are massless. The conservation laws for the baryon number, energy, and momentum lead to two Landau matching conditions, which specify the coupling between the fermionic and bosonic sectors and determine the proper-time dependence of the effective temperature and baryon chemical potential of the system. The numerical results illustrate how a nonequilibrium mixture of fermions and bosons approaches hydrodynamic regime described by the Navier-Stokes equations with appropriate forms of the kinetic coefficients. The shear viscosity of a mixture is the sum of the shear viscosities of fermion and boson components, while the bulk viscosity is given by the formula known for a gas of fermions, however, with the thermodynamic variables characterising the mixture. Thus, we find that massless bosons contribute in a nontrivial way to the bulk viscosity of a mixture, provided fermions are massive. We further observe the hydrodynamization effect, which takes place earlier in the shear sector than in the bulk one. The numerical studies of the ratio of the longitudinal and transverse pressures show, to a good approximation, that it depends on the ratio of the relaxation and proper times only. This behavior is connected with the existence of an attractor solution for conformal systems.

  8. KINETIC-J: A computational kernel for solving the linearized Vlasov equation applied to calculations of the kinetic, configuration space plasma current for time harmonic wave electric fields

    Science.gov (United States)

    Green, David L.; Berry, Lee A.; Simpson, Adam B.; Younkin, Timothy R.

    2018-04-01

    We present the KINETIC-J code, a computational kernel for evaluating the linearized Vlasov equation with application to calculating the kinetic plasma response (current) to an applied time harmonic wave electric field. This code addresses the need for a configuration space evaluation of the plasma current to enable kinetic full-wave solvers for waves in hot plasmas to move beyond the limitations of the traditional Fourier spectral methods. We benchmark the kernel via comparison with the standard k →-space forms of the hot plasma conductivity tensor.

  9. Inverse kinetics equations for on line measurement of reactivity using personal computer

    International Nuclear Information System (INIS)

    Ratemi, Wajdi; El Gadamsi, Walied; Beleid, Abdul Kariem

    1993-01-01

    Computer with their astonishing speed of calculations along with their easy connection to real systems, are very appropriate for digital measurements of real system variables. In the nuclear industry, such computer application will produce compact control rooms of real power plants, where information and results display can be obtained through push button concept. In our study, we use two personal computers for the purpose of simulation and measurement. One of them is used as a digital simulator to a real reactor, where we effectively simulate the reactor power through a cross talk network. The computed power is passed at certain chosen sampling time to the other computer. The purpose of the other computer is to use the inverse kinetics equations to calculate the reactivity parameter based on the received power and then it performs on line display of the power curve and the reactivity curve using color graphics. In this study, we use the one group version of the inverse kinetics algorithm which can easily be extended to larger group version. The language of programming used in Turbo BASIC, which is very comparable, in terms of efficiency, to FORTRAN language, besides its effective graphics routines. With the use of the extended version of the Inverse Kinetics algorithm, we can effectively apply this techniques of measurement for the purpose of on line display of the reactivity of the Tajoura Research Reactor. (author)

  10. Quantum kinetic field theory in curved spacetime: Covariant Wigner function and Liouville-Vlasov equations

    International Nuclear Information System (INIS)

    Calzetta, E.; Habib, S.; Hu, B.L.

    1988-01-01

    We consider quantum fields in an external potential and show how, by using the Fourier transform on propagators, one can obtain the mass-shell constraint conditions and the Liouville-Vlasov equation for the Wigner distribution function. We then consider the Hadamard function G 1 (x 1 ,x 2 ) of a real, free, scalar field in curved space. We postulate a form for the Fourier transform F/sup (//sup Q//sup )/(X,k) of the propagator with respect to the difference variable x = x 1 -x 2 on a Riemann normal coordinate centered at Q. We show that F/sup (//sup Q//sup )/ is the result of applying a certain Q-dependent operator on a covariant Wigner function F. We derive from the wave equations for G 1 a covariant equation for the distribution function and show its consistency. We seek solutions to the set of Liouville-Vlasov equations for the vacuum and nonvacuum cases up to the third adiabatic order. Finally we apply this method to calculate the Hadamard function in the Einstein universe. We show that the covariant Wigner function can incorporate certain relevant global properties of the background spacetime. Covariant Wigner functions and Liouville-Vlasov equations are also derived for free fermions in curved spacetime. The method presented here can serve as a basis for constructing quantum kinetic theories in curved spacetime or for near-uniform systems under quasiequilibrium conditions. It can also be useful to the development of a transport theory of quantum fields for the investigation of grand unification and post-Planckian quantum processes in the early Universe

  11. DISPL-1, 2. Order Nonlinear Partial Differential Equation System Solution for Kinetics Diffusion Problems

    International Nuclear Information System (INIS)

    Leaf, G.K.; Minkoff, M.

    1982-01-01

    1 - Description of problem or function: DISPL1 is a software package for solving second-order nonlinear systems of partial differential equations including parabolic, elliptic, hyperbolic, and some mixed types. The package is designed primarily for chemical kinetics- diffusion problems, although not limited to these problems. Fairly general nonlinear boundary conditions are allowed as well as inter- face conditions for problems in an inhomogeneous medium. The spatial domain is one- or two-dimensional with rectangular Cartesian, cylindrical, or spherical (in one dimension only) geometry. 2 - Method of solution: The numerical method is based on the use of Galerkin's procedure combined with the use of B-Splines (C.W.R. de-Boor's B-spline package) to generate a system of ordinary differential equations. These equations are solved by a sophisticated ODE software package which is a modified version of Hindmarsh's GEAR package, NESC Abstract 592. 3 - Restrictions on the complexity of the problem: The spatial domain must be rectangular with sides parallel to the coordinate geometry. Cross derivative terms are not permitted in the PDE. The order of the B-Splines is at most 12. Other parameters such as the number of mesh points in each coordinate direction, the number of PDE's etc. are set in a macro table used by the MORTRAn2 preprocessor in generating the object code

  12. Numerical solution of the 1D kinetics equations using a cubic reduced nodal scheme

    International Nuclear Information System (INIS)

    Gomez T, A.M.; Valle G, E. del; Delfin L, A.; Alonso V, G.

    2003-01-01

    In this work a finite differences technique centered in mesh based on a cubic reduced nodal scheme type finite element to solve the equations of the kinetics 1 D that include the equations corresponding to the concentrations of precursors of delayed neutrons is described. The technique of finite elements used is that of Galerkin where so much the neutron flux as the concentrations of precursors its are spatially approached by means of a three grade polynomial. The matrices of rigidity and of mass that arise during this discretization process are numerically evaluated using the open quadrature non standard of Newton-Cotes and that of Radau respectively. The purpose of the application of these quadratures is the one of to eliminate in the global matrices the couplings among the values of the flow in points of the discretization with the consequent advantages as for the reduction of the order of the matrix associated to the discreet problem that is to solve. As for the time dependent part the classical integration scheme known as Θ scheme is applied. After carrying out the one reordering of unknown and equations it arrives to a reduced system that it can be solved but quickly. With the McKin compute program developed its were solved three benchmark problems and those results are shown for the relative powers. (Author)

  13. Solution of fractional kinetic equation by a class of integral transform of pathway type

    Science.gov (United States)

    Kumar, Dilip

    2013-04-01

    Solutions of fractional kinetic equations are obtained through an integral transform named Pα-transform introduced in this paper. The Pα-transform is a binomial type transform containing many class of transforms including the well known Laplace transform. The paper is motivated by the idea of pathway model introduced by Mathai [Linear Algebra Appl. 396, 317-328 (2005), 10.1016/j.laa.2004.09.022]. The composition of the transform with differential and integral operators are proved along with convolution theorem. As an illustration of applications to the general theory of differential equations, a simple differential equation is solved by the new transform. Being a new transform, the Pα-transform of some elementary functions as well as some generalized special functions such as H-function, G-function, Wright generalized hypergeometric function, generalized hypergeometric function, and Mittag-Leffler function are also obtained. The results for the classical Laplace transform is retrieved by letting α → 1.

  14. Relativistic finite-temperature Thomas-Fermi model

    Science.gov (United States)

    Faussurier, Gérald

    2017-11-01

    We investigate the relativistic finite-temperature Thomas-Fermi model, which has been proposed recently in an astrophysical context. Assuming a constant distribution of protons inside the nucleus of finite size avoids severe divergence of the electron density with respect to a point-like nucleus. A formula for the nuclear radius is chosen to treat any element. The relativistic finite-temperature Thomas-Fermi model matches the two asymptotic regimes, i.e., the non-relativistic and the ultra-relativistic finite-temperature Thomas-Fermi models. The equation of state is considered in detail. For each version of the finite-temperature Thomas-Fermi model, the pressure, the kinetic energy, and the entropy are calculated. The internal energy and free energy are also considered. The thermodynamic consistency of the three models is considered by working from the free energy. The virial question is also studied in the three cases as well as the relationship with the density functional theory. The relativistic finite-temperature Thomas-Fermi model is far more involved than the non-relativistic and ultra-relativistic finite-temperature Thomas-Fermi models that are very close to each other from a mathematical point of view.

  15. Relativistic magnetohydrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez, Juan; Kovtun, Pavel [Department of Physics and Astronomy, University of Victoria,Victoria, BC, V8P 5C2 (Canada)

    2017-05-02

    We present the equations of relativistic hydrodynamics coupled to dynamical electromagnetic fields, including the effects of polarization, electric fields, and the derivative expansion. We enumerate the transport coefficients at leading order in derivatives, including electrical conductivities, viscosities, and thermodynamic coefficients. We find the constraints on transport coefficients due to the positivity of entropy production, and derive the corresponding Kubo formulas. For the neutral state in a magnetic field, small fluctuations include Alfvén waves, magnetosonic waves, and the dissipative modes. For the state with a non-zero dynamical charge density in a magnetic field, plasma oscillations gap out all propagating modes, except for Alfvén-like waves with a quadratic dispersion relation. We relate the transport coefficients in the “conventional” magnetohydrodynamics (formulated using Maxwell’s equations in matter) to those in the “dual” version of magnetohydrodynamics (formulated using the conserved magnetic flux).

  16. Intermediate modeling between kinetic equations and hydrodynamic limits: derivation, analysis and simulations

    International Nuclear Information System (INIS)

    Parisot, M.

    2011-01-01

    This work is dedicated study of a problem resulting from plasma physics: the thermal transfer of electrons in a plasma close to equilibrium Maxwellian. Firstly, a dimensional study of the Vlasov-Fokker-Planck-Maxwell system is performed, allowing one hand to identify a physically relevant parameter of scale and also to define mathematically the contours of validity domain. The asymptotic regime called Spitzer-Harm is studied for a relatively general class of collision operator. The following part of this work is devoted to the derivation and study of the hydrodynamic limit of the system of Vlasov-Maxwell-Landau outside the strictly asymptotic. A model proposed by Schurtz and Nicolais located in this context and analyzed. The particularity of this model lies in the application of a delocalization operation in the heat flux. The link with non-local models of Luciani and Mora is established as well as mathematics properties as the principle of maximum and entropy dissipation. Then a formal derivation from the Vlasov equations with a simplified collision operator, is proposed. The derivation, inspired by the recent work of D. Levermore, involves decomposition methods according to the spherical harmonics and methods of closing called diffusion methods. A hierarchy of intermediate models between the kinetic equations and the hydrodynamic limit is described. In particular a new hydrodynamic system integro-differential by nature, is proposed. The Schurtz and Nicolai model appears as a simplification of the system resulting from the derivation, assuming a steady flow of heat. The above results are then generalized to account for the internal energy dependence which appears naturally in the equation establishment. The existence and uniqueness of the solution of the nonstationary system are established in a simplified framework. The last part is devoted was the implementation of a specific numerical scheme to solve these models. We propose a finite volume approach can be

  17. Polynomial approach method to solve the neutron point kinetics equations with use of the analytic continuation

    Energy Technology Data Exchange (ETDEWEB)

    Tumelero, Fernanda; Petersen, Claudio Zen; Goncalves, Glenio Aguiar [Universidade Federal de Pelotas, Capao do Leao, RS (Brazil). Programa de Pos Graduacao em Modelagem Matematica; Schramm, Marcelo [Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil). Programa de Pos-Graduacao em Engenharia Mecanica

    2016-12-15

    In this work, we report a solution to solve the Neutron Point Kinetics Equations applying the Polynomial Approach Method. The main idea is to expand the neutron density and delayed neutron precursors as a power series considering the reactivity as an arbitrary function of the time in a relatively short time interval around an ordinary point. In the first interval one applies the initial conditions and the analytical continuation is used to determine the solutions of the next intervals. A genuine error control is developed based on an analogy with the Rest Theorem. For illustration, we also report simulations for different approaches types (linear, quadratic and cubic). The results obtained by numerical simulations for linear approximation are compared with results in the literature.

  18. A Gas-kinetic Discontinuous Galerkin Method for Viscous Flow Equations

    International Nuclear Information System (INIS)

    Liu, Hongwei; Xu, Kun

    2007-01-01

    This paper presents a Runge-Kutta discontinuous Galerkin (RKDG) method for viscous flow computation. The construction of the RKDG method is based on a gas-kinetic formulation, which not only couples the convective and dissipative terms together, but also includes both discontinuous and continuous representation in the flux evaluation at the cell interface through a simple hybrid gas distribution function. Due to the intrinsic connection between the gaskinetic BGK model and the Navier-Stokes equations, the Navier-Stokes flux is automatically obtained by the present method. Numerical examples for both one dimensional (10) and two dimensional(20) compressible viscous flows are presented to demonstrate the accuracy and shock capturing capability of the current RKDG method

  19. Approximate method for stochastic chemical kinetics with two-time scales by chemical Langevin equations

    International Nuclear Information System (INIS)

    Wu, Fuke; Tian, Tianhai; Rawlings, James B.; Yin, George

    2016-01-01

    The frequently used reduction technique is based on the chemical master equation for stochastic chemical kinetics with two-time scales, which yields the modified stochastic simulation algorithm (SSA). For the chemical reaction processes involving a large number of molecular species and reactions, the collection of slow reactions may still include a large number of molecular species and reactions. Consequently, the SSA is still computationally expensive. Because the chemical Langevin equations (CLEs) can effectively work for a large number of molecular species and reactions, this paper develops a reduction method based on the CLE by the stochastic averaging principle developed in the work of Khasminskii and Yin [SIAM J. Appl. Math. 56, 1766–1793 (1996); ibid. 56, 1794–1819 (1996)] to average out the fast-reacting variables. This reduction method leads to a limit averaging system, which is an approximation of the slow reactions. Because in the stochastic chemical kinetics, the CLE is seen as the approximation of the SSA, the limit averaging system can be treated as the approximation of the slow reactions. As an application, we examine the reduction of computation complexity for the gene regulatory networks with two-time scales driven by intrinsic noise. For linear and nonlinear protein production functions, the simulations show that the sample average (expectation) of the limit averaging system is close to that of the slow-reaction process based on the SSA. It demonstrates that the limit averaging system is an efficient approximation of the slow-reaction process in the sense of the weak convergence.

  20. Multi-scale method for the resolution of the neutronic kinetics equations

    International Nuclear Information System (INIS)

    Chauvet, St.

    2008-10-01

    In this PhD thesis and in order to improve the time/precision ratio of the numerical simulation calculations, we investigate multi-scale techniques for the resolution of the reactor kinetics equations. We choose to focus on the mixed dual diffusion approximation and the quasi-static methods. We introduce a space dependency for the amplitude function which only depends on the time variable in the standard quasi-static context. With this new factorization, we develop two mixed dual problems which can be solved with Cea's solver MINOS. An algorithm is implemented, performing the resolution of these problems defined on different scales (for time and space). We name this approach: the Local Quasi-Static method. We present here this new multi-scale approach and its implementation. The inherent details of amplitude and shape treatments are discussed and justified. Results and performances, compared to MINOS, are studied. They illustrate the improvement on the time/precision ratio for kinetics calculations. Furthermore, we open some new possibilities to parallelize computations with MINOS. For the future, we also introduce some improvement tracks with adaptive scales. (author)

  1. Derivation of regularized Grad's moment system from kinetic equations: modes, ghosts and non-Markov fluxes

    Science.gov (United States)

    Karlin, Ilya

    2018-04-01

    Derivation of the dynamic correction to Grad's moment system from kinetic equations (regularized Grad's 13 moment system, or R13) is revisited. The R13 distribution function is found as a superposition of eight modes. Three primary modes, known from the previous derivation (Karlin et al. 1998 Phys. Rev. E 57, 1668-1672. (doi:10.1103/PhysRevE.57.1668)), are extended into the nonlinear parameter domain. Three essentially nonlinear modes are identified, and two ghost modes which do not contribute to the R13 fluxes are revealed. The eight-mode structure of the R13 distribution function implies partition of R13 fluxes into two types of contributions: dissipative fluxes (both linear and nonlinear) and nonlinear streamline convective fluxes. Physical interpretation of the latter non-dissipative and non-local in time effect is discussed. A non-perturbative R13-type solution is demonstrated for a simple Lorentz scattering kinetic model. The results of this study clarify the intrinsic structure of the R13 system. This article is part of the theme issue `Hilbert's sixth problem'.

  2. Point kinetics equations for subcritical systems based on the importance function associated to an external neutron source

    International Nuclear Information System (INIS)

    Carvalho Gonçalves, Wemerson de; Martinez, Aquilino Senra; Carvalho da Silva, Fernando

    2015-01-01

    Highlights: • We define the new function importance. • We calculate the kinetic parameters Λ, β, Γ and Q to: 0.95, 0.96, 0.97, 0.98 and 0.99. • We compared the results with those obtained by the main important functions. • We found that the calculated kinetic parameters are physically consistent. - Abstract: This paper aims to determine the parameters for a new set of equations of point kinetic subcritical systems, based on the concept of importance of Heuristic Generalized Perturbation Theory (HGPT). The importance function defined here is related to both the subcriticality and the external neutron source worth (which keeps the system at steady state). The kinetic parameters defined in this work are compared with the corresponding parameters when adopting the importance functions proposed by Gandini and Salvatores (2002), Dulla et al. (2006) and Nishihara et al. (2003). Furthermore, the point kinetics equations developed here are solved for two different transients, considering the parameters obtained with different importance functions. The results collected show that there is a similar behavior of the solution of the point kinetics equations, when used with the parameters obtained by the importance functions proposed by Gandini and Salvatores (2002) and Dulla et al. (2006), specially near the criticality. However, this is not verified as the system gets farther from criticality

  3. Generalization of the Dirac’s Equation and Sea

    DEFF Research Database (Denmark)

    Javadi, Hossein; Forouzbakhsh, Farshid; Daei Kasmaei, Hamed

    2016-01-01

    Newton's second law is motion equation in classic mechanics that does not say anything about the nature of force. The equivalent formulations and their extensions such as Lagrangian and Hamiltonian do not explain about mechanism of converting Potential energy to Kinetic energy and Vice versa....... In quantum mechanics, Schrodinger equation is similar to Newton's second law in classic mechanics. Quantum mechanics is also extension of Newtonian mechanics to atomic and subatomic scales and relativistic mechanics is extension of Newtonian mechanics to high velocities near to velocity of light too....... Schrodinger equation is not a relativistic equation, because it is not invariant under Lorentz transformations. Dirac expanded The Schrodinger equation by presenting Dirac Sea and founded relativistic quantum mechanics. In this paper by reconsidering the Dirac Sea and his equation, the structure of photon...

  4. Solution of the neutron point kinetics equations with temperature feedback effects applying the polynomial approach method

    Energy Technology Data Exchange (ETDEWEB)

    Tumelero, Fernanda, E-mail: fernanda.tumelero@yahoo.com.br [Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS (Brazil). Programa de Pos-Graduacao em Engenharia Mecanica; Petersen, Claudio Z.; Goncalves, Glenio A.; Lazzari, Luana, E-mail: claudiopeteren@yahoo.com.br, E-mail: gleniogoncalves@yahoo.com.br, E-mail: luana-lazzari@hotmail.com [Universidade Federal de Pelotas (DME/UFPEL), Capao do Leao, RS (Brazil). Instituto de Fisica e Matematica

    2015-07-01

    In this work, we present a solution of the Neutron Point Kinetics Equations with temperature feedback effects applying the Polynomial Approach Method. For the solution, we consider one and six groups of delayed neutrons precursors with temperature feedback effects and constant reactivity. The main idea is to expand the neutron density, delayed neutron precursors and temperature as a power series considering the reactivity as an arbitrary function of the time in a relatively short time interval around an ordinary point. In the first interval one applies the initial conditions of the problem and the analytical continuation is used to determine the solutions of the next intervals. With the application of the Polynomial Approximation Method it is possible to overcome the stiffness problem of the equations. In such a way, one varies the time step size of the Polynomial Approach Method and performs an analysis about the precision and computational time. Moreover, we compare the method with different types of approaches (linear, quadratic and cubic) of the power series. The answer of neutron density and temperature obtained by numerical simulations with linear approximation are compared with results in the literature. (author)

  5. Solution of the neutron point kinetics equations with temperature feedback effects applying the polynomial approach method

    International Nuclear Information System (INIS)

    Tumelero, Fernanda; Petersen, Claudio Z.; Goncalves, Glenio A.; Lazzari, Luana

    2015-01-01

    In this work, we present a solution of the Neutron Point Kinetics Equations with temperature feedback effects applying the Polynomial Approach Method. For the solution, we consider one and six groups of delayed neutrons precursors with temperature feedback effects and constant reactivity. The main idea is to expand the neutron density, delayed neutron precursors and temperature as a power series considering the reactivity as an arbitrary function of the time in a relatively short time interval around an ordinary point. In the first interval one applies the initial conditions of the problem and the analytical continuation is used to determine the solutions of the next intervals. With the application of the Polynomial Approximation Method it is possible to overcome the stiffness problem of the equations. In such a way, one varies the time step size of the Polynomial Approach Method and performs an analysis about the precision and computational time. Moreover, we compare the method with different types of approaches (linear, quadratic and cubic) of the power series. The answer of neutron density and temperature obtained by numerical simulations with linear approximation are compared with results in the literature. (author)

  6. Center manifolds for a class of degenerate evolution equations and existence of small-amplitude kinetic shocks

    Science.gov (United States)

    Pogan, Alin; Zumbrun, Kevin

    2018-06-01

    We construct center manifolds for a class of degenerate evolution equations including the steady Boltzmann equation and related kinetic models, establishing in the process existence and behavior of small-amplitude kinetic shock and boundary layers. Notably, for Boltzmann's equation, we show that elements of the center manifold decay in velocity at near-Maxwellian rate, in accord with the formal Chapman-Enskog picture of near-equilibrium flow as evolution along the manifold of Maxwellian states, or Grad moment approximation via Hermite polynomials in velocity. Our analysis is from a classical dynamical systems point of view, with a number of interesting modifications to accommodate ill-posedness of the underlying evolution equation.

  7. Gravitational Contribution to the Heat Flux in a Simple Dilute Fluid: An Approach Based on General Relativistic Kinetic Theory to First Order in the Gradients

    Directory of Open Access Journals (Sweden)

    Dominique Brun-Battistini

    2017-10-01

    Full Text Available Richard C. Tolman analyzed the relation between a temperature gradient and a gravitational field in an equilibrium situation. In 2012, Tolman’s law was generalized to a non-equilibrium situation for a simple dilute relativistic fluid. The result in that scenario, obtained by introducing the gravitational force through the molecular acceleration, couples the heat flux with the metric coefficients and the gradients of the state variables. In the present paper it is shown, by explicitly describing the single particle orbits as geodesics in Boltzmann’s equation, that a gravitational field drives a heat flux in this type of system. The calculation is devoted solely to the gravitational field contribution to this heat flux in which a Newtonian limit to the Schwarzschild metric is assumed. The corresponding transport coefficient, which is obtained within a relaxation approximation, corresponds to the dilute fluid in a weak gravitational field. The effect is negligible in the non-relativistic regime, as evidenced by the direct evaluation of the corresponding limit.

  8. Tracer kinetics: Modelling by partial differential equations of inhomogeneous compartments with age-dependent elimination rates. Pt. 2

    International Nuclear Information System (INIS)

    Winkler, E.

    1991-01-01

    The general theory of inhomogeneous compartments with age-dependent elimination rates is illustrated by examples. Mathematically, it turns out that models consisting of partial differential equations include ordinary, delayed and integro-differential equations, a general fact which is treated here in the context of linear tracer kinetics. The examples include standard compartments as a degenerate case, systems of standard compartments (compartment blocks), models resulting in special residence time distributions, models with pipes, and systems with heterogeneous particles. (orig./BBR) [de

  9. An approximate factorization procedure for solving nine-point elliptic difference equations. Application for a fast 2-D relativistic Fokker-Planck solver

    International Nuclear Information System (INIS)

    Peysson, Y.

    1997-09-01

    A full implicit numerical procedure based on the use of a nine-point difference operator is presented to solve the two dimensional (2 D ) relativistic Fokker-Planck equation for the current drive problem and synergetic effects between the lower hybrid and the electron cyclotron waves in tokamaks. As compared to the standard approach based on the use of a five-point difference operator [M. Shoucri, I. Shkarofsky, Comput. Phys. Comm. 82 (1994) 287], the convergence rate towards the steady state solution may be significantly enhanced with no loss of accuracy on the distribution function. Moreover, it is shown that the numerical stability may be strongly improved without a large degradation of the CPU time consumption as in the five-point scheme, making this approach very attractive for a fast solution of the 2-D Fokker-Planck equation on a fine grid in conjunction with other numerical codes for realistic plasma simulations. This new algorithm, based on an approximate matrix factorization technique, may be applied to all numerical problems with large sets of equations which involve nine-point difference operators. (author)

  10. An approximate factorization procedure for solving nine-point elliptic difference equations. Application for a fast 2-D relativistic Fokker-Planck solver

    Energy Technology Data Exchange (ETDEWEB)

    Peysson, Y. [Association Euratom-CEA, CEA Grenoble, 38 (France). Dept. de Recherches sur la Fusion Controlee; Choucri, M. [Centre Canadien de Fusion Magnetique, Varennes, PQ (Canada)

    1997-09-01

    A full implicit numerical procedure based on the use of a nine-point difference operator is presented to solve the two dimensional (2{sub D}) relativistic Fokker-Planck equation for the current drive problem and synergetic effects between the lower hybrid and the electron cyclotron waves in tokamaks. As compared to the standard approach based on the use of a five-point difference operator [M. Shoucri, I. Shkarofsky, Comput. Phys. Comm. 82 (1994) 287], the convergence rate towards the steady state solution may be significantly enhanced with no loss of accuracy on the distribution function. Moreover, it is shown that the numerical stability may be strongly improved without a large degradation of the CPU time consumption as in the five-point scheme, making this approach very attractive for a fast solution of the 2-D Fokker-Planck equation on a fine grid in conjunction with other numerical codes for realistic plasma simulations. This new algorithm, based on an approximate matrix factorization technique, may be applied to all numerical problems with large sets of equations which involve nine-point difference operators. (author) 21 refs.

  11. Gas-kinetic unified algorithm for hypersonic flows covering various flow regimes solving Boltzmann model equation in nonequilibrium effect

    International Nuclear Information System (INIS)

    Li, Zhihui; Ma, Qiang; Wu, Junlin; Jiang, Xinyu; Zhang, Hanxin

    2014-01-01

    Based on the Gas-Kinetic Unified Algorithm (GKUA) directly solving the Boltzmann model equation, the effect of rotational non-equilibrium is investigated recurring to the kinetic Rykov model with relaxation property of rotational degrees of freedom. The spin movement of diatomic molecule is described by moment of inertia, and the conservation of total angle momentum is taken as a new Boltzmann collision invariant. The molecular velocity distribution function is integrated by the weight factor on the internal energy, and the closed system of two kinetic controlling equations is obtained with inelastic and elastic collisions. The optimization selection technique of discrete velocity ordinate points and numerical quadrature rules for macroscopic flow variables with dynamic updating evolvement are developed to simulate hypersonic flows, and the gas-kinetic numerical scheme is constructed to capture the time evolution of the discretized velocity distribution functions. The gas-kinetic boundary conditions in thermodynamic non-equilibrium and numerical procedures are studied and implemented by directly acting on the velocity distribution function, and then the unified algorithm of Boltzmann model equation involving non-equilibrium effect is presented for the whole range of flow regimes. The hypersonic flows involving non-equilibrium effect are numerically simulated including the inner flows of shock wave structures in nitrogen with different Mach numbers of 1.5-Ma-25, the planar ramp flow with the whole range of Knudsen numbers of 0.0009-Kn-10 and the three-dimensional re-entering flows around tine double-cone body

  12. ASPECTS OF KINETICS AUTOTHERMAL THERMOPHILIC AEROBIC DIGESTION OF SEWAGE SLUDGE - THE USE OF EQUATIONS OF VARIOUS ORDERS

    Directory of Open Access Journals (Sweden)

    Magdalena Filkiewicz

    2016-12-01

    Work to identify the kinetics of the process are aimed at, among others, creating a model describing the speed of the process, including obtaining an answer whether the above equations can be the basis for further work on identifying the factors influencing the stabilization process.

  13. Hybrid dynamic modeling of Escherichia coli central metabolic network combining Michaelis–Menten and approximate kinetic equations

    DEFF Research Database (Denmark)

    Costa, Rafael S.; Machado, Daniel; Rocha, Isabel

    2010-01-01

    , represent nowadays the limiting factor in the construction of such models. In this study, we compare four alternative modeling approaches based on Michaelis–Menten kinetics for the bi-molecular reactions and different types of simplified rate equations for the remaining reactions (generalized mass action......The construction of dynamic metabolic models at reaction network level requires the use of mechanistic enzymatic rate equations that comprise a large number of parameters. The lack of knowledge on these equations and the difficulty in the experimental identification of their associated parameters...

  14. A Derivation of Source-based Kinetics Equation with Time Dependent Fission Kernel for Reactor Transient Analyses

    International Nuclear Information System (INIS)

    Kim, Song Hyun; Woo, Myeong Hyun; Shin, Chang Ho; Pyeon, Cheol Ho

    2015-01-01

    In this study, a new balance equation to overcome the problems generated by the previous methods is proposed using source-based balance equation. And then, a simple problem is analyzed with the proposed method. In this study, a source-based balance equation with the time dependent fission kernel was derived to simplify the kinetics equation. To analyze the partial variations of reactor characteristics, two representative methods were introduced in previous studies; (1) quasi-statics method and (2) multipoint technique. The main idea of quasistatics method is to use a low-order approximation for large integration times. To realize the quasi-statics method, first, time dependent flux is separated into the shape and amplitude functions, and shape function is calculated. It is noted that the method has a good accuracy; however, it can be expensive as a calculation cost aspect because the shape function should be fully recalculated to obtain accurate results. To improve the calculation efficiency, multipoint method was proposed. The multipoint method is based on the classic kinetics equation with using Green's function to analyze the flight probability from region r' to r. Those previous methods have been used to analyze the reactor kinetics analysis; however, the previous methods can have some limitations. First, three group variables (r g , E g , t g ) should be considered to solve the time dependent balance equation. This leads a big limitation to apply large system problem with good accuracy. Second, the energy group neutrons should be used to analyze reactor kinetics problems. In time dependent problem, neutron energy distribution can be changed at different time. It can affect the change of the group cross section; therefore, it can lead the accuracy problem. Third, the neutrons in a space-time region continually affect the other space-time regions; however, it is not properly considered in the previous method. Using birth history of the neutron sources

  15. A Derivation of Source-based Kinetics Equation with Time Dependent Fission Kernel for Reactor Transient Analyses

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Song Hyun; Woo, Myeong Hyun; Shin, Chang Ho [Hanyang University, Seoul (Korea, Republic of); Pyeon, Cheol Ho [Kyoto University, Osaka (Japan)

    2015-10-15

    In this study, a new balance equation to overcome the problems generated by the previous methods is proposed using source-based balance equation. And then, a simple problem is analyzed with the proposed method. In this study, a source-based balance equation with the time dependent fission kernel was derived to simplify the kinetics equation. To analyze the partial variations of reactor characteristics, two representative methods were introduced in previous studies; (1) quasi-statics method and (2) multipoint technique. The main idea of quasistatics method is to use a low-order approximation for large integration times. To realize the quasi-statics method, first, time dependent flux is separated into the shape and amplitude functions, and shape function is calculated. It is noted that the method has a good accuracy; however, it can be expensive as a calculation cost aspect because the shape function should be fully recalculated to obtain accurate results. To improve the calculation efficiency, multipoint method was proposed. The multipoint method is based on the classic kinetics equation with using Green's function to analyze the flight probability from region r' to r. Those previous methods have been used to analyze the reactor kinetics analysis; however, the previous methods can have some limitations. First, three group variables (r{sub g}, E{sub g}, t{sub g}) should be considered to solve the time dependent balance equation. This leads a big limitation to apply large system problem with good accuracy. Second, the energy group neutrons should be used to analyze reactor kinetics problems. In time dependent problem, neutron energy distribution can be changed at different time. It can affect the change of the group cross section; therefore, it can lead the accuracy problem. Third, the neutrons in a space-time region continually affect the other space-time regions; however, it is not properly considered in the previous method. Using birth history of the

  16. Tracer kinetics: Modelling by partial differential equations of inhomogeneous compartments with age-dependent elimination rates. Pt. 1

    International Nuclear Information System (INIS)

    Winkler, E.

    1991-01-01

    Mathematical models in tracer kinetics are usually based on ordinary differential equations which correspond to a system of kinetically homogeneous compartments (standard compartments). A generalization is possible by the admission of inhomogeneities in the behaviour of the elements belonging to a compartment. The important special case of the age-dependence of elimination rates is treated in its deterministic version. It leads to partial different equations (i.e., systems with distributed coefficients) with the 'age' or the 'residence time' of an element of the compartment as a variable additional to 'time'. The basic equations for one generalized compartment and for systems of such compartments are given together with their general solutions. (orig.) [de

  17. Evaluation of Lagergren Kinetics Equation by Using Novel Kinetics Expression of Sorption of Zn2+ onto Horse Dung Humic Acid (HD-HA

    Directory of Open Access Journals (Sweden)

    Bambang Rusdiarso

    2016-12-01

    Full Text Available Extraction and purification of humic acid from dry horse dung powder (HD-HA was performed successfully and the purified HD-HA was then applied as sorbent to adsorb Zn2+. Extraction and purification were performed based on procedure of Stevenson (1994 under atmospheric air. Parameters investigated in this work consist of effect of medium sorption acidity, sorption rate (ka and desorption rate constant (kd, Langmuir (monolayer and Freundlich (multilayer sorption capacities, and energy (E of sorption. The ka and kd were determined according to the kinetic model of second order sorption reaching equilibrium, monolayer sorption capacity (b and energy (E were determined according to Langmuir isotherm model, and multilayer sorption capacity (B was determined based on Freundlich isotherm model. Sorption of Zn2+ on purified HD-HA was maximum at pH 5.0. The novel kinetic expression resulted from proposed kinetic model has been shown to be more applicable than the commonly known Lagergren equation obtained from the pseudo-first order sorption model. The application of the equation revealed that the intercept of Lagergren equation, ln qe was more complex function of initial concentration of Zn2+ (a, Langmuir sorption capacity (b, and sorbed Zn2+ at equilibrium (xe.

  18. Speeds of Propagation in Classical and Relativistic Extended Thermodynamics

    Directory of Open Access Journals (Sweden)

    Müller Ingo

    1999-01-01

    Full Text Available The Navier-Stokes-Fourier theory of viscous, heat-conducting fluids provides parabolic equations and thus predicts infinite pulse speeds. Naturally this feature has disqualified the theory for relativistic thermodynamics which must insist on finite speeds and, moreover, on speeds smaller than $c$. The attempts at a remedy have proved heuristically important for a new systematic type of thermodynamics: Extended thermodynamics. That new theory has symmetric hyperbolic field equations and thus it provides finite pulse speeds. Extended thermodynamics is a whole hierarchy of theories with an increasing number of fields when gradients and rates of thermodynamic processes become steeper and faster. The first stage in this hierarchy is the 14-field theory which may already be a useful tool for the relativist in many applications. The 14 fields -- and further fields -- are conveniently chosen from the moments of the kinetic theory of gases. The hierarchy is complete only when the number of fields tends to infinity. In that case the pulse speed of non-relativistic extended thermodynamics tends to infinity while the pulse speed of relativistic extended thermodynamics tends to $c$, the speed of light. In extended thermodynamics symmetric hyperbolicity -- and finite speeds -- are implied by the concavity of the entropy density. This is still true in relativistic thermodynamics for a privileged entropy density which is the entropy density of the rest frame for non-degenerate gases.

  19. Study of carbon dioxide gas treatment based on equations of kinetics in plasma discharge reactor

    Science.gov (United States)

    Abedi-Varaki, Mehdi

    2017-08-01

    Carbon dioxide (CO2) as the primary greenhouse gas, is the main pollutant that is warming earth. CO2 is widely emitted through the cars, planes, power plants and other human activities that involve the burning of fossil fuels (coal, natural gas and oil). Thus, there is a need to develop some method to reduce CO2 emission. To this end, this study investigates the behavior of CO2 in dielectric barrier discharge (DBD) plasma reactor. The behavior of different species and their reaction rates are studied using a zero-dimensional model based on equations of kinetics inside plasma reactor. The results show that the plasma reactor has an effective reduction on the CO2 density inside the reactor. As a result of reduction in the temporal variations of reaction rate, the speed of chemical reactions for CO2 decreases and very low concentration of CO2 molecules inside the plasma reactor is generated. The obtained results are compared with the existing experimental and simulation findings in the literature.

  20. Analytic method study of point-reactor kinetic equation when cold start-up

    International Nuclear Information System (INIS)

    Zhang Fan; Chen Wenzhen; Gui Xuewen

    2008-01-01

    The reactor cold start-up is a process of inserting reactivity by lifting control rod discontinuously. Inserting too much reactivity will cause short-period and may cause an overpressure accident in the primary loop. It is therefore very important to understand the rule of neutron density variation and to find out the relationships among the speed of lifting control rod, and the duration and speed of neutron density response. It is also helpful for the operators to grasp the rule in order to avoid a start-up accident. This paper starts with one-group delayed neutron point-reactor kinetics equations and provides their analytic solution when reactivity is introduced by lifting control rods discontinuously. The analytic expression is validated by comparison with practical data. It is shown that the analytic solution agrees well with numerical solution. Using this analytical solution, the relationships among neutron density response with the speed of lifting control rod and its duration are also studied. By comparing the results with those under the condition of step inserted reactivity, useful conclusions are drawn

  1. Numerical solutions of the semiclassical Boltzmann ellipsoidal-statistical kinetic model equation

    Science.gov (United States)

    Yang, Jaw-Yen; Yan, Chin-Yuan; Huang, Juan-Chen; Li, Zhihui

    2014-01-01

    Computations of rarefied gas dynamical flows governed by the semiclassical Boltzmann ellipsoidal-statistical (ES) kinetic model equation using an accurate numerical method are presented. The semiclassical ES model was derived through the maximum entropy principle and conserves not only the mass, momentum and energy, but also contains additional higher order moments that differ from the standard quantum distributions. A different decoding procedure to obtain the necessary parameters for determining the ES distribution is also devised. The numerical method in phase space combines the discrete-ordinate method in momentum space and the high-resolution shock capturing method in physical space. Numerical solutions of two-dimensional Riemann problems for two configurations covering various degrees of rarefaction are presented and various contours of the quantities unique to this new model are illustrated. When the relaxation time becomes very small, the main flow features a display similar to that of ideal quantum gas dynamics, and the present solutions are found to be consistent with existing calculations for classical gas. The effect of a parameter that permits an adjustable Prandtl number in the flow is also studied. PMID:25104904

  2. New theories of relativistic hydrodynamics in the LHC era

    Science.gov (United States)

    Florkowski, Wojciech; Heller, Michal P.; Spaliński, Michał

    2018-04-01

    The success of relativistic hydrodynamics as an essential part of the phenomenological description of heavy-ion collisions at RHIC and the LHC has motivated a significant body of theoretical work concerning its fundamental aspects. Our review presents these developments from the perspective of the underlying microscopic physics, using the language of quantum field theory, relativistic kinetic theory, and holography. We discuss the gradient expansion, the phenomenon of hydrodynamization, as well as several models of hydrodynamic evolution equations, highlighting the interplay between collective long-lived and transient modes in relativistic matter. Our aim to provide a unified presentation of this vast subject—which is naturally expressed in diverse mathematical languages—has also led us to include several new results on the large-order behaviour of the hydrodynamic gradient expansion.

  3. Relativistic viscoelastic fluid mechanics

    International Nuclear Information System (INIS)

    Fukuma, Masafumi; Sakatani, Yuho

    2011-01-01

    A detailed study is carried out for the relativistic theory of viscoelasticity which was recently constructed on the basis of Onsager's linear nonequilibrium thermodynamics. After rederiving the theory using a local argument with the entropy current, we show that this theory universally reduces to the standard relativistic Navier-Stokes fluid mechanics in the long time limit. Since effects of elasticity are taken into account, the dynamics at short time scales is modified from that given by the Navier-Stokes equations, so that acausal problems intrinsic to relativistic Navier-Stokes fluids are significantly remedied. We in particular show that the wave equations for the propagation of disturbance around a hydrostatic equilibrium in Minkowski space-time become symmetric hyperbolic for some range of parameters, so that the model is free of acausality problems. This observation suggests that the relativistic viscoelastic model with such parameters can be regarded as a causal completion of relativistic Navier-Stokes fluid mechanics. By adjusting parameters to various values, this theory can treat a wide variety of materials including elastic materials, Maxwell materials, Kelvin-Voigt materials, and (a nonlinearly generalized version of) simplified Israel-Stewart fluids, and thus we expect the theory to be the most universal description of single-component relativistic continuum materials. We also show that the presence of strains and the corresponding change in temperature are naturally unified through the Tolman law in a generally covariant description of continuum mechanics.

  4. Relativistic viscoelastic fluid mechanics.

    Science.gov (United States)

    Fukuma, Masafumi; Sakatani, Yuho

    2011-08-01

    A detailed study is carried out for the relativistic theory of viscoelasticity which was recently constructed on the basis of Onsager's linear nonequilibrium thermodynamics. After rederiving the theory using a local argument with the entropy current, we show that this theory universally reduces to the standard relativistic Navier-Stokes fluid mechanics in the long time limit. Since effects of elasticity are taken into account, the dynamics at short time scales is modified from that given by the Navier-Stokes equations, so that acausal problems intrinsic to relativistic Navier-Stokes fluids are significantly remedied. We in particular show that the wave equations for the propagation of disturbance around a hydrostatic equilibrium in Minkowski space-time become symmetric hyperbolic for some range of parameters, so that the model is free of acausality problems. This observation suggests that the relativistic viscoelastic model with such parameters can be regarded as a causal completion of relativistic Navier-Stokes fluid mechanics. By adjusting parameters to various values, this theory can treat a wide variety of materials including elastic materials, Maxwell materials, Kelvin-Voigt materials, and (a nonlinearly generalized version of) simplified Israel-Stewart fluids, and thus we expect the theory to be the most universal description of single-component relativistic continuum materials. We also show that the presence of strains and the corresponding change in temperature are naturally unified through the Tolman law in a generally covariant description of continuum mechanics.

  5. A high-order method for the integration of the Galerkin semi-discretized nuclear reactor kinetics equations

    International Nuclear Information System (INIS)

    Vargas, L.

    1988-01-01

    The numerical approximate solution of the space-time nuclear reactor kinetics equation is investigated using a finite-element discretization of the space variable and a high order integration scheme for the resulting semi-discretized parabolic equation. The Galerkin method with spatial piecewise polynomial Lagrange basis functions are used to obtained a continuous time semi-discretized form of the space-time reactor kinetics equation. A temporal discretization is then carried out with a numerical scheme based on the Iterated Defect Correction (IDC) method using piecewise quadratic polynomials or exponential functions. The kinetics equations are thus solved with in a general finite element framework with respect to space as well as time variables in which the order of convergence of the spatial and temporal discretizations is consistently high. A computer code GALFEM/IDC is developed, to implement the numerical schemes described above. This issued to solve a one space dimensional benchmark problem. The results of the numerical experiments confirm the theoretical arguments and show that the convergence is very fast and the overall procedure is quite efficient. This is due to the good asymptotic properties of the numerical scheme which is of third order in the time interval

  6. Solving the relativistic inverse scattering problem on the basis of n/d equations and application of the resulting solution to analysis of pion-nucleon interaction at low and intermediate energies

    International Nuclear Information System (INIS)

    Safronov, A.N.

    2007-01-01

    Full text: The pion-nucleon dynamics is one of the most fundamental problems in nuclear and particle physics. It is now widely believed that QCD is fundamental theory of strong interactions. On this basis all hadron-hadron interactions are completely determined by the underlying quark-gluon dynamics. However, due to the formidable mathematical problems raised by the non-perturbative character of QCD at low and intermediate energies, we are still far from a quantitative understanding hadron-hadron interactions from this point of view. Recently the relativistic approaches to constructing effective interaction operators between strongly interacting composite particles has been proposed on the basis of analytic S-matrix theory and methods for solving the inverse quantum scattering problem. The kernel of Marchenko equation in theory of inverse scattering problem can be expressed in terms of the discontinuity of the partial wave amplitude on dynamic cut in the complex s=k 2 plane, k being the relative momentum of colliding particles. The discontinuities of partial-wave amplitudes are determined by model-independent quantities (renormalized vertex constants and amplitudes of sub-processes involving on-mass-shell particles off physical region) and can be calculated by methods of relativistic quantum field theory within various dynamical approaches. In particular, effective field theory can be used to calculate the discontinuities across dynamical cuts closest to physical region. In present work a new manifestly Poincare-invariant approach to solving the inverse scattering problem is developed with allowance for inelasticity effects. The equations of the N/D method are used as dynamical equations in this approach. With the help of N/D-equations it was earlier shown that solution of a scattering problem in case of nonzero angular momentum does not exist for arbitrary discontinuity of partial-wave amplitude. The method is elaborated allowing to determine contributions of

  7. An asymptotic preserving unified gas kinetic scheme for frequency-dependent radiative transfer equations

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Wenjun, E-mail: sun_wenjun@iapcm.ac.cn [Institute of Applied Physics and Computational Mathematics, P.O. Box 8009, Beijing 100088 (China); Jiang, Song, E-mail: jiang@iapcm.ac.cn [Institute of Applied Physics and Computational Mathematics, P.O. Box 8009, Beijing 100088 (China); Xu, Kun, E-mail: makxu@ust.hk [Department of Mathematics and Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Hong Kong (China); Li, Shu, E-mail: li_shu@iapcm.ac.cn [Institute of Applied Physics and Computational Mathematics, P.O. Box 8009, Beijing 100088 (China)

    2015-12-01

    This paper presents an extension of previous work (Sun et al., 2015 [22]) of the unified gas kinetic scheme (UGKS) for the gray radiative transfer equations to the frequency-dependent (multi-group) radiative transfer system. Different from the gray radiative transfer equations, where the optical opacity is only a function of local material temperature, the simulation of frequency-dependent radiative transfer is associated with additional difficulties from the frequency-dependent opacity. For the multiple frequency radiation, the opacity depends on both the spatial location and the frequency. For example, the opacity is typically a decreasing function of frequency. At the same spatial region the transport physics can be optically thick for the low frequency photons, and optically thin for high frequency ones. Therefore, the optical thickness is not a simple function of space location. In this paper, the UGKS for frequency-dependent radiative system is developed. The UGKS is a finite volume method and the transport physics is modeled according to the ratio of the cell size to the photon's frequency-dependent mean free path. When the cell size is much larger than the photon's mean free path, a diffusion solution for such a frequency radiation will be obtained. On the other hand, when the cell size is much smaller than the photon's mean free path, a free transport mechanism will be recovered. In the regime between the above two limits, with the variation of the ratio between the local cell size and photon's mean free path, the UGKS provides a smooth transition in the physical and frequency space to capture the corresponding transport physics accurately. The seemingly straightforward extension of the UGKS from the gray to multiple frequency radiation system is due to its intrinsic consistent multiple scale transport modeling, but it still involves lots of work to properly discretize the multiple groups in order to design an asymptotic preserving (AP

  8. Experimental verification of the relativistic fine-structure term of the Klein-Gordon equation in pionic titanium atoms

    International Nuclear Information System (INIS)

    Delker, L.; Dugan, G.; Wu, C.S.; Lu, D.C.; Caffrey, A.J.; Cheng, Y.T.; Lee, Y.K.

    1979-01-01

    A newly designed, large-aperture and high-resolution bent-crystal spectrometer has been used to observe high-intensity sources of pionic x rays. The pionic x-ray source was a target of natural titanium which was placed adjacent to a copper pion-production target in the external beam of the Nevis synchrocyclotron. The energy difference between the 5g → 4f and 5f → 4d transitions in pionic titanium was measured to be 87.6 +- 1.8 eV. Comparison with the prediction of the Klein-Gordon equation is made

  9. Numerical Calculation of Transport Based on the Drift-Kinetic Equation for Plasmas in General Toroidal Magnetic Geometry: Numerical Methods

    International Nuclear Information System (INIS)

    Reynolds, J. M.; Lopez-Bruna, D.

    2009-01-01

    In this report we continue with the description of a newly developed numerical method to solve the drift kinetic equation for ions and electrons in toroidal plasmas. Several numerical aspects, already outlined in a previous report [Informes Tecnicos Ciemat 1165, mayo 2009], will be treated now in more detail. Aside from discussing the method in the context of other existing codes, various aspects will be now explained from the viewpoint of numerical methods: the way to solve convection equations, the adopted boundary conditions, the real-space meshing procedures along with a new software developed to build them, and some additional questions related with the parallelization and the numerical integration. (Author) 16 refs

  10. Analytical solution of point kinetics equations for linear reactivity variation during the start-up of a nuclear reactor

    Energy Technology Data Exchange (ETDEWEB)

    Palma, Daniel A.P. [CEFET QUIMICA de Nilopolis/RJ, 21941-914 Rio de Janeiro (Brazil)], E-mail: agoncalves@con.ufrj.br; Martinez, Aquilino S.; Goncalves, Alessandro C. [COPPE/UFRJ - Programa de Engenharia Nuclear, Rio de Janeiro (Brazil)

    2009-09-15

    The analytical solution of point kinetics equations with a group of delayed neutrons is useful in predicting the variation of neutron density during the start-up of a nuclear reactor. In the practical case of an increase of nuclear reactor power resulting from the linear insertion of reactivity, the exact analytical solution cannot be obtained. Approximate solutions have been obtained in previous articles, based on considerations that need to be verifiable in practice. In the present article, an alternative analytic solution is presented for point kinetics equations in which the only approximation consists of disregarding the term of the second derivative for neutron density in relation to time. The results proved satisfactory when applied to practical situations in the start-up of a nuclear reactor through the control rods withdraw.

  11. Analytical solution of point kinetics equations for linear reactivity variation during the start-up of a nuclear reactor

    International Nuclear Information System (INIS)

    Palma, Daniel A.P.; Martinez, Aquilino S.; Goncalves, Alessandro C.

    2009-01-01

    The analytical solution of point kinetics equations with a group of delayed neutrons is useful in predicting the variation of neutron density during the start-up of a nuclear reactor. In the practical case of an increase of nuclear reactor power resulting from the linear insertion of reactivity, the exact analytical solution cannot be obtained. Approximate solutions have been obtained in previous articles, based on considerations that need to be verifiable in practice. In the present article, an alternative analytic solution is presented for point kinetics equations in which the only approximation consists of disregarding the term of the second derivative for neutron density in relation to time. The results proved satisfactory when applied to practical situations in the start-up of a nuclear reactor through the control rods withdraw.

  12. Analysis of atmospheric flow over a surface protrusion using the turbulence kinetic energy equation with reference to aeronautical operating systems

    Science.gov (United States)

    Frost, W.; Harper, W. L.

    1975-01-01

    Flow over surface obstructions can produce significantly large wind shears such that adverse flying conditions can occur for aeronautical systems (helicopters, STOL vehicles, etc.). Atmospheric flow fields resulting from a semi-elliptical surface obstruction in an otherwise horizontally homogeneous statistically stationary flow are modelled with the boundary-layer/Boussinesq-approximation of the governing equation of fluid mechanics. The turbulence kinetic energy equation is used to determine the dissipative effects of turbulent shear on the mean flow. Iso-lines of turbulence kinetic energy and turbulence intensity are plotted in the plane of the flow and highlight regions of high turbulence intensity in the stagnation zone and sharp gradients in intensity along the transition from adverse to favourable pressure gradient. Discussion of the effects of the disturbed wind field in CTOL and STOL aircraft flight path and obstruction clearance standards is given. The results indicate that closer inspection of these presently recommended standards as influenced by wind over irregular terrains is required.

  13. Solution of the two-dimensional space-time reactor kinetics equation by a locally one-dimensional method

    International Nuclear Information System (INIS)

    Chen, G.S.; Christenson, J.M.

    1985-01-01

    In this paper, the authors present some initial results from an investigation of the application of a locally one-dimensional (LOD) finite difference method to the solution of the two-dimensional, two-group reactor kinetics equations. Although the LOD method is relatively well known, it apparently has not been previously applied to the space-time kinetics equations. In this investigation, the LOD results were benchmarked against similar computational results (using the same computing environment, the same programming structure, and the same sample problems) obtained by the TWIGL program. For all of the problems considered, the LOD method provided accurate results in one-half to one-eight of the time required by the TWIGL program

  14. Modelling early stages of relativistic heavy-ion collisions

    Directory of Open Access Journals (Sweden)

    Ruggieri M.

    2016-01-01

    Full Text Available In this study we model early time dynamics of relativistic heavy ion collisions by an initial color-electric field which then decays to a plasma by the Schwinger mechanism. The dynamics of the many particles system produced by the decay is described by relativistic kinetic theory, taking into account the backreaction on the color field by solving self-consistently the kinetic and the field equations. Our main results concern isotropization and thermalization for a 1+1D expanding geometry. In case of small η/s (η/s ≲ 0.3 we find τisotropization ≈ 0.8 fm/c and τthermalization ≈ 1 fm/c in agreement with the common lore of hydrodynamics.

  15. Verification of a three-dimensional neutronics model based on multi-point kinetics equations for transient problems

    Energy Technology Data Exchange (ETDEWEB)

    Park, Kyung Seok; Kim, Hyun Dae; Yeom, Choong Sub [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-07-01

    A computer code for solving the three-dimensional reactor neutronic transient problems utilizing multi-point reactor kinetics equations recently developed has been developed. For evaluating its applicability, the code has been tested with typical 3-D LWR and CANDU reactor transient problems. The performance of the method and code has been compared with the results by fine and coarse meshes computer codes employing the direct methods.

  16. Relativistic non-Hamiltonian mechanics

    International Nuclear Information System (INIS)

    Tarasov, Vasily E.

    2010-01-01

    Relativistic particle subjected to a general four-force is considered as a nonholonomic system. The nonholonomic constraint in four-dimensional space-time represents the relativistic invariance by the equation for four-velocity u μ u μ + c 2 = 0, where c is the speed of light in vacuum. In the general case, four-forces are non-potential, and the relativistic particle is a non-Hamiltonian system in four-dimensional pseudo-Euclidean space-time. We consider non-Hamiltonian and dissipative systems in relativistic mechanics. Covariant forms of the principle of stationary action and the Hamilton's principle for relativistic mechanics of non-Hamiltonian systems are discussed. The equivalence of these principles is considered for relativistic particles subjected to potential and non-potential forces. We note that the equations of motion which follow from the Hamilton's principle are not equivalent to the equations which follow from the variational principle of stationary action. The Hamilton's principle and the principle of stationary action are not compatible in the case of systems with nonholonomic constraint and the potential forces. The principle of stationary action for relativistic particle subjected to non-potential forces can be used if the Helmholtz conditions are satisfied. The Hamilton's principle and the principle of stationary action are equivalent only for a special class of relativistic non-Hamiltonian systems.

  17. A unified gas-kinetic scheme for continuum and rarefied flows IV: Full Boltzmann and model equations

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Chang, E-mail: cliuaa@ust.hk [Department of Mathematics and Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong); Xu, Kun, E-mail: makxu@ust.hk [Department of Mathematics and Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon (Hong Kong); Sun, Quanhua, E-mail: qsun@imech.ac.cn [State Key Laboratory of High-temperature Gas Dynamics, Institute of Mechanics, Chinese Academy of Sciences, No. 15 Beisihuan Xi Rd, Beijing 100190 (China); Cai, Qingdong, E-mail: caiqd@mech.pku.edu.cn [Department of Mechanics and Aerospace Engineering, College of Engineering, Peking University, Beijing 100871 (China)

    2016-06-01

    Fluid dynamic equations are valid in their respective modeling scales, such as the particle mean free path scale of the Boltzmann equation and the hydrodynamic scale of the Navier–Stokes (NS) equations. With a variation of the modeling scales, theoretically there should have a continuous spectrum of fluid dynamic equations. Even though the Boltzmann equation is claimed to be valid in all scales, many Boltzmann solvers, including direct simulation Monte Carlo method, require the cell resolution to the order of particle mean free path scale. Therefore, they are still single scale methods. In order to study multiscale flow evolution efficiently, the dynamics in the computational fluid has to be changed with the scales. A direct modeling of flow physics with a changeable scale may become an appropriate approach. The unified gas-kinetic scheme (UGKS) is a direct modeling method in the mesh size scale, and its underlying flow physics depends on the resolution of the cell size relative to the particle mean free path. The cell size of UGKS is not limited by the particle mean free path. With the variation of the ratio between the numerical cell size and local particle mean free path, the UGKS recovers the flow dynamics from the particle transport and collision in the kinetic scale to the wave propagation in the hydrodynamic scale. The previous UGKS is mostly constructed from the evolution solution of kinetic model equations. Even though the UGKS is very accurate and effective in the low transition and continuum flow regimes with the time step being much larger than the particle mean free time, it still has space to develop more accurate flow solver in the region, where the time step is comparable with the local particle mean free time. In such a scale, there is dynamic difference from the full Boltzmann collision term and the model equations. This work is about the further development of the UGKS with the implementation of the full Boltzmann collision term in the region

  18. Equation of state and hybrid star properties with the weakly interacting light U-boson in relativistic models

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Dong-Rui; Jiang, Wei-Zhou; Wei, Si-Na; Yang, Rong-Yao [Southeast University, Department of Physics, Nanjing (China); Xiang, Qian-Fei [Chinese Academy of Sciences, Institute of High Energy Physics, Beijing (China)

    2016-05-15

    It has been a puzzle whether quarks may exist in the interior of massive neutron stars, since the hadron-quark phase transition softens the equation of state (EOS) and reduce the neutron star (NS) maximum mass very significantly. In this work, we consider the light U-boson that increases the NS maximum mass appreciably through its weak coupling to fermions. The inclusion of the U-boson may thus allow the existence of the quark degrees of freedom in the interior of large mass neutron stars. Unlike the consequence of the U-boson in hadronic matter, the stiffening role of the U-boson in the hybrid EOS is not sensitive to the choice of the hadron phase models. In addition, we have also investigated the effect of the effective QCD correction on the hybrid EOS. This correction may reduce the coupling strength of the U-boson that is needed to satisfy NS maximum mass constraint. While the inclusion of the U-boson also increases the NS radius significantly, we find that appropriate in-medium effects of the U-boson may reduce the NS radii significantly, satisfying both the NS radius and mass constraints well. (orig.)

  19. The analysis of the derivation principles of kinetic equations based on exactly solvable models of the bulk reaction A + B → Product

    International Nuclear Information System (INIS)

    Kipriyanov, A.A.; Doktorov, A.B.

    2005-01-01

    We have considered two many-particle models of the irreversible reaction A + B → Product for which closed kinetic equations for the mean concentration N A (t) of A species can be exactly obtained. These equations are identically recast into a unified form of integro-differential equation of general kinetic theory. It is shown that the memory functions for both models under consideration can be represented as a sum of the Markovian and non-Markovian parts. It is essential that the Markovian part of the Laplace transform of any kernel can be obtained using the Laplace transform of the kernel itself, and is the root of the non-Markovian part of the Laplace transform of the kernel. The properties established allowed us to perform correct approximation of the memory functions at small concentrations [B] of B species and derive the binary non-Markovian integro-differential equation. Within the binary theory accuracy this equation has been rewritten in a regular frame of a familiar rate equation satisfying general principles of binary kinetic equations. Thus using particular exactly solvable many-particle models, we have reproduced the most essential steps of the known general way for the derivation of the binary kinetic equation avoiding the sophisticated many-particle technique and the corresponding approximations. Besides, the results obtained can serve as an additional evidence of the approximations made in a general many-particle approach to the derivation of the binary kinetic equation

  20. Relativistic astrophysics

    CERN Document Server

    Demianski, Marek

    2013-01-01

    Relativistic Astrophysics brings together important astronomical discoveries and the significant achievements, as well as the difficulties in the field of relativistic astrophysics. This book is divided into 10 chapters that tackle some aspects of the field, including the gravitational field, stellar equilibrium, black holes, and cosmology. The opening chapters introduce the theories to delineate gravitational field and the elements of relativistic thermodynamics and hydrodynamics. The succeeding chapters deal with the gravitational fields in matter; stellar equilibrium and general relativity

  1. Classical kinetic equations for orientational effects with account for the two-particle correlation function of a crystal

    International Nuclear Information System (INIS)

    Ol'khovskij, I.I.; Sadykov, N.M.

    1980-01-01

    The paper deals with the development of classical-statistical approach to the orientational effect theory with account of the influence of the two-particle correlation function of a crystal on diffusion processes. Peculiarities of fast particle movement in the crystal moving at small angles to crystallographic axes and planes are caused by a great number of correlated collisions of the beam particle with the crystal atoms during which the particle slightly deviates in each collision from the direction of its movement before the collision. Obtained is the kinetic equation for the distribution function over coordinates and velocities describing the movement of these particles in the crystal. Lacking the particle deceleration the equation describing movement of the beam particles in the averaged potential and their diffusion by velocities is also obtained. The main peculiarity of these equations is the fact that they take into account strong spatial non-uniformity in the crystal atom distribution [ru

  2. MAKSIMA-CHEMIST: a program for Mass Action Kinetics Simulation by Automatic Chemical Equation Manipulation and Integration using Stiff Techniques

    International Nuclear Information System (INIS)

    Carver, M.B.; Hanley, D.V.; Chaplin, K.R.

    1979-02-01

    MAKSIMA-CHEMIST was written to compute the kinetics of simultaneous chemical reactions. The ordinary differential equations, which are automatically derived from the stated chemical equations, are difficult to integrate, as they are coupled in a highly nonlinear manner and frequently involve a large range in the magnitude of the reaction rates. They form a classic 'stiff' differential equaton set which can be integrated efficiently only by recently developed advanced techniques. The new program also contains provision for higher order chemical reactions, and has a dynamic storage and decision feature. This permits it to accept any number of chemical reactions and species, and choose an integraton scheme which will perform most efficiently within the available memory. Sparse matrix techniques are used when the size and structure of the equation set is suitable. Finally, a number of post-analysis options are available, including printer and Calcomp plots of transient response of selected species, and graphical representation of the reaction matrix. (auth)

  3. Rarefied gas flow simulations using high-order gas-kinetic unified algorithms for Boltzmann model equations

    Science.gov (United States)

    Li, Zhi-Hui; Peng, Ao-Ping; Zhang, Han-Xin; Yang, Jaw-Yen

    2015-04-01

    This article reviews rarefied gas flow computations based on nonlinear model Boltzmann equations using deterministic high-order gas-kinetic unified algorithms (GKUA) in phase space. The nonlinear Boltzmann model equations considered include the BGK model, the Shakhov model, the Ellipsoidal Statistical model and the Morse model. Several high-order gas-kinetic unified algorithms, which combine the discrete velocity ordinate method in velocity space and the compact high-order finite-difference schemes in physical space, are developed. The parallel strategies implemented with the accompanying algorithms are of equal importance. Accurate computations of rarefied gas flow problems using various kinetic models over wide ranges of Mach numbers 1.2-20 and Knudsen numbers 0.0001-5 are reported. The effects of different high resolution schemes on the flow resolution under the same discrete velocity ordinate method are studied. A conservative discrete velocity ordinate method to ensure the kinetic compatibility condition is also implemented. The present algorithms are tested for the one-dimensional unsteady shock-tube problems with various Knudsen numbers, the steady normal shock wave structures for different Mach numbers, the two-dimensional flows past a circular cylinder and a NACA 0012 airfoil to verify the present methodology and to simulate gas transport phenomena covering various flow regimes. Illustrations of large scale parallel computations of three-dimensional hypersonic rarefied flows over the reusable sphere-cone satellite and the re-entry spacecraft using almost the largest computer systems available in China are also reported. The present computed results are compared with the theoretical prediction from gas dynamics, related DSMC results, slip N-S solutions and experimental data, and good agreement can be found. The numerical experience indicates that although the direct model Boltzmann equation solver in phase space can be computationally expensive

  4. The Einstein-Vlasov System/Kinetic Theory.

    Science.gov (United States)

    Andréasson, Håkan

    2011-01-01

    The main purpose of this article is to provide a guide to theorems on global properties of solutions to the Einstein-Vlasov system. This system couples Einstein's equations to a kinetic matter model. Kinetic theory has been an important field of research during several decades in which the main focus has been on non-relativistic and special relativistic physics, i.e., to model the dynamics of neutral gases, plasmas, and Newtonian self-gravitating systems. In 1990, Rendall and Rein initiated a mathematical study of the Einstein-Vlasov system. Since then many theorems on global properties of solutions to this system have been established. This paper gives introductions to kinetic theory in non-curved spacetimes and then the Einstein-Vlasov system is introduced. We believe that a good understanding of kinetic theory in non-curved spacetimes is fundamental to a good comprehension of kinetic theory in general relativity.

  5. Concluding Remarks: Connecting Relativistic Heavy Ion Collisions and Neutron Star Mergers by the Equation of State of Dense Hadron- and Quark Matter as signalled by Gravitational Waves

    Science.gov (United States)

    Hanauske, Matthias; Steinheimer, Jan; Bovard, Luke; Mukherjee, Ayon; Schramm, Stefan; Takami, Kentaro; Papenfort, Jens; Wechselberger, Natascha; Rezzolla, Luciano; Stöcker, Horst

    2017-07-01

    The underlying open questions in the fields of general relativistic astrophysics and elementary particle and nuclear physics are strongly connected and their results are interdependent. Although the physical systems are quite different, the 4D-simulation of a merger of a binary system of two neutron stars and the properties of the hot and dense matter created in high energy heavy ion collisions, strongly depend on the equation of state of fundamental elementary matter. Neutron star mergers represent optimal astrophysical laboratories to investigate the QCD phase structure using a spectrogram of the post-merger phase of the emitted gravitational waves. These studies can be supplemented by observations from heavy ion collisions to possibly reach a conclusive picture on the QCD phase structure at high density and temperature. As gravitational waves (GWs) emitted from merging neutron star binaries are on the verge of their first detection, it is important to understand the main characteristics of the underlying merging system in order to predict the expected GW signal. Based on numerical-relativity simulations of merging neutron star binaries, the emitted GW and the interior structure of the generated hypermassive neutron stars (HMNS) have been analyzed in detail. This article will focus on the internal and rotational HMNS properties and their connection with the emitted GW signal. Especially, the appearance of the hadon-quark phase transition in the interior region of the HMNS and its conjunction with the spectral properties of the emitted GW will be addressed and confronted with the simulation results of high energy heavy ion collisions.

  6. On an analytical formulation for the mono-energetic neutron space-kinetic equation in full cylinder symmetry

    International Nuclear Information System (INIS)

    Oliveira, F.R.; Bodmann, B.E.J.; Vilhena, M.T.; Carvalho, F.

    2017-01-01

    Highlights: • The present work presents an exact solution to neutron spatial kinetic equation. • It is an exact solution in a heterogeneous cylinder with temporal dependence. • The solution was constructed through the separation of variables method. - Abstract: In the present work we discuss a system of partial differential equations that model neutron space-kinetics in cylindrical geometry and are defined by two sectionally homogeneous cylinder cells, mono-energetic neutrons and one group of delayed neutron precursors. The solution is determined using the technique of variable separation. The associated complete spectra with respect to each variable separation are analysed and truncated such as to allow a parameterized global solution. For the obtained solution we present some numerical results for the scalar neutron flux and its time dependence and projection on the cylinder axis z and the radial and cylinder axis projection. As a case study we consider an insertion of an absorbing medium in the upper cylinder cell. Continuity of the scalar flux at the interface between the two cylinder elements and conserved current density is explained and related to scale invariance of the partial differential equation system together with the initial and boundary conditions. Some numerical results for the scalar angular neutron flux and associated current densities are shown.

  7. Numerical Calculation of Transport Based on the Drift Kinetic Equation for plasmas in General Toroidal Magnetic Geometry

    International Nuclear Information System (INIS)

    Reynolds, J. M.; Lopez-Bruna, D.

    2009-01-01

    This report is the first of a series dedicated to the numerical calculation of the evolution of fusion plasmas in general toroidal geometry, including TJ-II plasmas. A kinetic treatment has been chosen: the evolution equation of the distribution function of one or several plasma species is solved in guiding center coordinates. The distribution function is written as a Maxwellian one modulated by polynomial series in the kinetic coordinates with no other approximations than those of the guiding center itself and the computation capabilities. The code allows also for the inclusion of the three-dimensional electrostatic potential in a self-consistent manner, but the initial objective has been set to solving only the neoclassical transport. A high order conservative method (Spectral Difference Method) has been chosen in order to discretized the equation for its numerical solution. In this first report, in addition to justifying the work, the evolution equation and its approximations are described, as well as the baseline of the numerical procedures. (Author) 28 refs

  8. A third-order gas-kinetic CPR method for the Euler and Navier-Stokes equations on triangular meshes

    Science.gov (United States)

    Zhang, Chao; Li, Qibing; Fu, Song; Wang, Z. J.

    2018-06-01

    A third-order accurate gas-kinetic scheme based on the correction procedure via reconstruction (CPR) framework is developed for the Euler and Navier-Stokes equations on triangular meshes. The scheme combines the accuracy and efficiency of the CPR formulation with the multidimensional characteristics and robustness of the gas-kinetic flux solver. Comparing with high-order finite volume gas-kinetic methods, the current scheme is more compact and efficient by avoiding wide stencils on unstructured meshes. Unlike the traditional CPR method where the inviscid and viscous terms are treated differently, the inviscid and viscous fluxes in the current scheme are coupled and computed uniformly through the kinetic evolution model. In addition, the present scheme adopts a fully coupled spatial and temporal gas distribution function for the flux evaluation, achieving high-order accuracy in both space and time within a single step. Numerical tests with a wide range of flow problems, from nearly incompressible to supersonic flows with strong shocks, for both inviscid and viscous problems, demonstrate the high accuracy and efficiency of the present scheme.

  9. Relativistic theories of materials

    CERN Document Server

    Bressan, Aldo

    1978-01-01

    The theory of relativity was created in 1905 to solve a problem concerning electromagnetic fields. That solution was reached by means of profound changes in fundamental concepts and ideas that considerably affected the whole of physics. Moreover, when Einstein took gravitation into account, he was forced to develop radical changes also in our space-time concepts (1916). Relativistic works on heat, thermodynamics, and elasticity appeared as early as 1911. However, general theories having a thermodynamic basis, including heat conduction and constitutive equations, did not appear in general relativity until about 1955 for fluids and appeared only after 1960 for elastic or more general finitely deformed materials. These theories dealt with materials with memory, and in this connection some relativistic versions of the principle of material indifference were considered. Even more recently, relativistic theories incorporating finite deformations for polarizable and magnetizable materials and those in which couple s...

  10. Galerkin method for unsplit 3-D Dirac equation using atomically/kinetically balanced B-spline basis

    International Nuclear Information System (INIS)

    Fillion-Gourdeau, F.; Lorin, E.; Bandrauk, A.D.

    2016-01-01

    A Galerkin method is developed to solve the time-dependent Dirac equation in prolate spheroidal coordinates for an electron–molecular two-center system. The initial state is evaluated from a variational principle using a kinetic/atomic balanced basis, which allows for an efficient and accurate determination of the Dirac spectrum and eigenfunctions. B-spline basis functions are used to obtain high accuracy. This numerical method is used to compute the energy spectrum of the two-center problem and then the evolution of eigenstate wavefunctions in an external electromagnetic field.

  11. A Gas-Kinetic Method for Hyperbolic-Elliptic Equations and Its Application in Two-Phase Fluid Flow

    Science.gov (United States)

    Xu, Kun

    1999-01-01

    A gas-kinetic method for the hyperbolic-elliptic equations is presented in this paper. In the mixed type system, the co-existence and the phase transition between liquid and gas are described by the van der Waals-type equation of state (EOS). Due to the unstable mechanism for a fluid in the elliptic region, interface between the liquid and gas can be kept sharp through the condensation and evaporation process to remove the "averaged" numerical fluid away from the elliptic region, and the interface thickness depends on the numerical diffusion and stiffness of the phase change. A few examples are presented in this paper for both phase transition and multifluid interface problems.

  12. Relativistic Quantum Mechanics

    International Nuclear Information System (INIS)

    Antoine, J-P

    2004-01-01

    The aim of relativistic quantum mechanics is to describe the finer details of the structure of atoms and molecules, where relativistic effects become nonnegligible. It is a sort of intermediate realm, between the familiar nonrelativistic quantum mechanics and fully relativistic quantum field theory, and thus it lacks the simplicity and elegance of both. Yet it is a necessary tool, mostly for quantum chemists. Pilkuhn's book offers to this audience an up-to-date survey of these methods, which is quite welcome since most previous textbooks are at least ten years old. The point of view of the author is to start immediately in the relativistic domain, following the lead of Maxwell's equations rather than classical mechanics, and thus to treat the nonrelativistic version as an approximation. Thus Chapter 1 takes off from Maxwell's equations (in the noncovariant Coulomb gauge) and gradually derives the basic aspects of Quantum Mechanics in a rather pedestrian way (states and observables, Hilbert space, operators, quantum measurement, scattering,. Chapter 2 starts with the Lorentz transformations, then continues with the Pauli spin equation and the Dirac equation and some of their applications (notably the hydrogen atom). Chapter 3 is entitled 'Quantum fields and particles', but falls short of treating quantum field theory properly: only creation/annihilation operators are considered, for a particle in a box. The emphasis is on two-electron states (the Pauli principle, the Foldy--Wouthuysen elimination of small components of Dirac spinors, Breit projection operators. Chapter 4 is devoted to scattering theory and the description of relativistic bound states. Chapter 5, finally, covers hyperfine interactions and radiative corrections. As we said above, relativistic quantum mechanics is by nature limited in scope and rather inelegant and Pilkuhn's book is no exception. The notation is often heavy (mostly noncovariant) and the mathematical level rather low. The central topic

  13. Observations on the properties of second and general-order kinetics equations describing the thermoluminescence processes

    International Nuclear Information System (INIS)

    Kitis, G.; Furetta, C.; Azorin, J.

    2003-01-01

    Synthetic thermoluminescent (Tl) glow peaks, following a second and general kinetics order have been generated by computer. The general properties of the so generated peaks have been investigated over several order of magnitude of simulated doses. Some non usual results which, at the best knowledge of the authors, are not reported in the literature, are obtained and discussed. (Author)

  14. Euler and Navier endash Stokes limits of the Uehling endash Uhlenbeck quantum kinetic equations

    International Nuclear Information System (INIS)

    Arlotti, L.; Lachowicz, M.

    1997-01-01

    The Uehling endash Uhlenbeck evolution equations for gases of identical quantum particles either fermions or bosons, in the case in which the collision kernel does not depend on the distribution function, are considered. The existence of solutions and their asymptotic relations with solutions of the hydrodynamic equations both at the level of the Euler system and at the level of the Navier endash Stokes system are proved. copyright 1997 American Institute of Physics

  15. On the balance equations for a dilute binary mixture in special relativity

    International Nuclear Information System (INIS)

    Moratto, Valdemar; Garcia-Perciante, A. L.; Garcia-Colin, L. S.

    2010-01-01

    In this work we study the properties of a relativistic mixture of two non-reacting species in thermal local equilibrium. We use the full Boltzmann equation (BE) to find the general balance equations. Following conventional ideas in kinetic theory, we use the concept of chaotic velocity. This is a novel approach to the problem. The resulting equations will be the starting point of the calculation exhibiting the correct thermodynamic forces and the corresponding fluxes; these results will be published elsewhere.

  16. The Wigner function in the relativistic quantum mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Kowalski, K., E-mail: kowalski@uni.lodz.pl; Rembieliński, J.

    2016-12-15

    A detailed study is presented of the relativistic Wigner function for a quantum spinless particle evolving in time according to the Salpeter equation. - Highlights: • We study the Wigner function for a quantum spinless relativistic particle. • We discuss the relativistic Wigner function introduced by Zavialov and Malokostov. • We introduce relativistic Wigner function based on the standard definition. • We find analytic expressions for relativistic Wigner functions.

  17. Analytical representation of the solution of the space kinetic diffusion equation in a one-dimensional and homogeneous domain

    Energy Technology Data Exchange (ETDEWEB)

    Tumelero, Fernanda; Bodmann, Bardo E. J.; Vilhena, Marco T. [Universidade Federal do Rio Grande do Sul (PROMEC/UFRGS), Porto Alegre, RS (Brazil). Programa de Pos Graduacao em Engenharia Mecanica; Lapa, Celso M.F., E-mail: fernanda.tumelero@yahoo.com.br, E-mail: bardo.bodmann@ufrgs.br, E-mail: mtmbvilhena@gmail.com, E-mail: lapa@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2017-07-01

    In this work we solve the space kinetic diffusion equation in a one-dimensional geometry considering a homogeneous domain, for two energy groups and six groups of delayed neutron precursors. The proposed methodology makes use of a Taylor expansion in the space variable of the scalar neutron flux (fast and thermal) and the concentration of delayed neutron precursors, allocating the time dependence to the coefficients. Upon truncating the Taylor series at quadratic order, one obtains a set of recursive systems of ordinary differential equations, where a modified decomposition method is applied. The coefficient matrix is split into two, one constant diagonal matrix and the second one with the remaining time dependent and off-diagonal terms. Moreover, the equation system is reorganized such that the terms containing the latter matrix are treated as source terms. Note, that the homogeneous equation system has a well known solution, since the matrix is diagonal and constant. This solution plays the role of the recursion initialization of the decomposition method. The recursion scheme is set up in a fashion where the solutions of the previous recursion steps determine the source terms of the subsequent steps. A second feature of the method is the choice of the initial and boundary conditions, which are satisfied by the recursion initialization, while from the rst recursion step onward the initial and boundary conditions are homogeneous. The recursion depth is then governed by a prescribed accuracy for the solution. (author)

  18. Analytical solution of the multigroup neutron diffusion kinetic equation in one-dimensional cartesian geometry by the integral transform technique

    International Nuclear Information System (INIS)

    Ceolin, Celina

    2010-01-01

    The objective of this work is to obtain an analytical solution of the neutron diffusion kinetic equation in one-dimensional cartesian geometry, to monoenergetic and multigroup problems. These equations are of the type stiff, due to large differences in the orders of magnitude of the time scales of the physical phenomena involved, which make them difficult to solve. The basic idea of the proposed method is applying the spectral expansion in the scalar flux and in the precursor concentration, taking moments and solving the resulting matrix problem by the Laplace transform technique. Bearing in mind that the equation for the precursor concentration is a first order linear differential equation in the time variable, to enable the application of the spectral method we introduce a fictitious diffusion term multiplied by a positive value which tends to zero. This procedure opened the possibility to find an analytical solution to the problem studied. We report numerical simulations and analysis of the results obtained with the precision controlled by the truncation order of the series. (author)

  19. SPECIAL RELATIVISTIC HYDRODYNAMICS WITH GRAVITATION

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Jai-chan [Department of Astronomy and Atmospheric Sciences, Kyungpook National University, Daegu (Korea, Republic of); Noh, Hyerim [Korea Astronomy and Space Science Institute, Daejon (Korea, Republic of)

    2016-12-20

    Special relativistic hydrodynamics with weak gravity has hitherto been unknown in the literature. Whether such an asymmetric combination is possible has been unclear. Here, the hydrodynamic equations with Poisson-type gravity, considering fully relativistic velocity and pressure under the weak gravity and the action-at-a-distance limit, are consistently derived from Einstein’s theory of general relativity. An analysis is made in the maximal slicing, where the Poisson’s equation becomes much simpler than our previous study in the zero-shear gauge. Also presented is the hydrodynamic equations in the first post-Newtonian approximation, now under the general hypersurface condition. Our formulation includes the anisotropic stress.

  20. Local energy equation for two-electron atoms and relation between kinetic energy and electron densities

    International Nuclear Information System (INIS)

    March, N.H.

    2002-08-01

    In early work, Dawson and March [J. Chem. Phys. 81, 5850 (1984)] proposed a local energy method for treating both Hartree-Fock and correlated electron theory. Here, an exactly solvable model two-electron atom with pure harmonic interactions is treated in its ground state in the above context. A functional relation between the kinetic energy density t(r) at the origin r=0 and the electron density p(r) at the same point then emerges. The same approach is applied to the Hookean atom; in which the two electrons repel with Coulombic energy e 2 /r 12 , with r 12 the interelectronic separation, but are still harmonically confined. Again the kinetic energy density t(r) is the focal point, but now generalization away from r=0 is also effected. Finally, brief comments are added about He-like atomic ions in the limit of large atomic number. (author)

  1. Some problems in relativistic thermodynamics

    International Nuclear Information System (INIS)

    Veitsman, E. V.

    2007-01-01

    The relativistic equations of state for ideal and real gases, as well as for various interface regions, have been derived. These dependences help to eliminate some controversies in the relativistic thermodynamics based on the special theory of relativity. It is shown, in particular, that the temperature of system whose velocity tends to the velocity of light in vacuum varies in accordance with the Ott law T = T 0 /√1 - v 2 /c 2 . Relativistic dependences for heat and mass transfer, for Ohm's law, and for a viscous flow of a liquid have also been derived

  2. Solubility of the transport equation in the kinetics of coagulation and fragmentation

    International Nuclear Information System (INIS)

    Dubovskii, P B

    2001-01-01

    We prove a local existence theorem for a continuous solution of the spatially inhomogeneous kinetic coagulation-fragmentation model of Smoluchowski. Then we prove the solubility of the problem in the large in the class of continuous functions. It is important to emphasize that we admit unbounded integral kernels in both cases. The uniqueness of the solution and its continuous dependence on the input data are also demonstrated

  3. Time-nonlocal kinetic equations, jerk and hyperjerk in plasmas and solar physics

    Science.gov (United States)

    El-Nabulsi, Rami Ahmad

    2018-06-01

    The simulation and analysis of nonlocal effects in fluids and plasmas is an inherently complicated problem due to the massive breadth of physics required to describe the nonlocal dynamics. This is a multi-physics problem that draws upon various miscellaneous fields, such as electromagnetism and statistical mechanics. In this paper we strive to focus on one narrow but motivating mathematical way: the derivation of nonlocal plasma-fluid equations from a generalized nonlocal Liouville derivative operator motivated from Suykens's nonlocal arguments. The paper aims to provide a guideline toward modeling nonlocal effects occurring in plasma-fluid systems by means of a generalized nonlocal Boltzmann equation. The generalized nonlocal equations of fluid dynamics are derived and their implications in plasma-fluid systems are addressed, discussed and analyzed. Three main topics were discussed: Landau damping in plasma electrodynamics, ideal MHD and solar wind. A number of features were revealed, analyzed and confronted with recent research results and observations.

  4. Spinless Salpeter equation: Laguerre bounds on energy levels

    International Nuclear Information System (INIS)

    Lucha, W.; Schoeberl, F.F.

    1996-08-01

    The spinless Salpeter equation may be considered either as a standard approximation to the Bethe-Salpeter formalism, designed for the description of bound states within a relativistic quantum field theory, or as the most simple, to a certain extent relativistic generalization of the customary non relativistic Schroedinger formalism. Because of the presence of the rather difficult-to-handle square-root operator of the relativistic kinetic energy in the corresponding Hamiltonian, very frequently the corresponding (discrete) spectrum of energy eigenvalues cannot be determined analytically. Therefore, we show how to calculate, by some clever choice of basis vectors in the Hilbert space of solutions, for the rather large class of power-law potentials, at least (sometimes excellent) upper bounds on these energy eigenvalues, for the lowest-lying levels this even analytically. (author)

  5. Kinetic equation of Lagrange particles and turbulence of an incompressible fluid

    International Nuclear Information System (INIS)

    Gordienko, S.N.

    1999-01-01

    Closed equation for the two-point function of the velocity and pressure gradient distribution is obtained. The spectral properties of the turbulent flow are studied on the basis of the analysis of scaling properties of the above equation and the problem on the role of the vorticity distribution in a turbulent flow alternation was considered. It is shown, that alternation is connected with boundary conditions. The geometric picture of the alternation is found. It is established, that distribution of the vorticity and correspondingly the role of alternation in the currents with spirality and without spirality are completely different

  6. Electron kinetics with attachment and ionization from higher order solutions of Boltzmann's equation

    International Nuclear Information System (INIS)

    Winkler, R.; Wilhelm, J.; Braglia, G.L.

    1989-01-01

    An appropriate approach is presented for solving the Boltzmann equation for electron swarms and nonstationary weakly ionized plasmas in the hydrodynamic stage, including ionization and attachment processes. Using a Legendre-polynomial expansion of the electron velocity distribution function the resulting eigenvalue problem has been solved at any even truncation-order. The technique has been used to study velocity distribution, mean collision frequencies, energy transfer rates, nonstationary behaviour and power balance in hydrodynamic stage, of electrons in a model plasma and a plasma of pure SF 6 . The calculations have been performed for increasing approximation-orders, up to the converged solution of the problem. In particular, the transition from dominant attachment to prevailing ionization when increasing the field strength has been studied. Finally the establishment of the hydrodynamic stage for a selected case in the model plasma has been investigated by solving the nonstationary, spatially homogeneous Boltzmann equation in twoterm approximation. (author)

  7. On the convexity of relativistic hydrodynamics

    International Nuclear Information System (INIS)

    Ibáñez, José M; Martí, José M; Cordero-Carrión, Isabel; Miralles, Juan A

    2013-01-01

    The relativistic hydrodynamic system of equations for a perfect fluid obeying a causal equation of state is hyperbolic (Anile 1989 Relativistic Fluids and Magneto-Fluids (Cambridge: Cambridge University Press)). In this report, we derive the conditions for this system to be convex in terms of the fundamental derivative of the equation of state (Menikoff and Plohr1989 Rev. Mod. Phys. 61 75). The classical limit is recovered. Communicated by L Rezzolla (note)

  8. Numerical solution of kinetics equation for point defects accumulation in metals under irradiation

    International Nuclear Information System (INIS)

    Aldzhambekova, G.T.; Iskakov, B.M.

    1999-01-01

    In the report the mathematical model, describing processes of generation and accumulation of defects in solids under irradiation is considered. The equations of this model take into account the velocity of Frenkel pairs generation, the mutual recombination of vacancies and the interstitials, as well as velocity of defects absorption by discharge channeling of vacancies and interstitials. By Runge-Kutta method the numerical solution of the model was carried out

  9. Master equation for a kinetic model of a trading market and its analytic solution.

    Science.gov (United States)

    Chatterjee, Arnab; Chakrabarti, Bikas K; Stinchcombe, Robin B

    2005-08-01

    We analyze an ideal-gas-like model of a trading market with quenched random saving factors for its agents and show that the steady state income (m) distribution P(m) in the model has a power law tail with Pareto index nu exactly equal to unity, confirming the earlier numerical studies on this model. The analysis starts with the development of a master equation for the time development of P(m) . Precise solutions are then obtained in some special cases.

  10. Impact of early stage non-equilibrium dynamics on photon production in relativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Oliva, L; Plumari, S; Scardina, F; Greco, V; Ruggieri, M

    2017-01-01

    In this study we discuss our results on the spectrum of photons emitted from the quark-gluon plasma produced in heavy ion collisions at RHIC energies. Simulating the space-time evolution of the fireball by solving the relativistic Boltzmann transport equation and including two-particle scattering processes with photon emission allows us to make a first step in the description of thermal photons from the QGP as well as of those produced in the pre-equilibrium stage. Indeed, we consider not only a standard Glauber initial condition but also a model in which quarks and gluons are produced in the very early stage through the Schwinger mechanism by the decay of an initial color-electric field. In the latter approach relativistic kinetic equations are coupled in a self-consistent way to field equations. We aim at spotting the impact of early stage non-equilibrium dynamics on the photon production. (paper)

  11. RELATIVISTIC CYCLOTRON INSTABILITY IN ANISOTROPIC PLASMAS

    Energy Technology Data Exchange (ETDEWEB)

    López, Rodrigo A.; Moya, Pablo S.; Muñoz, Víctor; Valdivia, J. Alejandro [Departamento de Física, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago (Chile); Navarro, Roberto E.; Araneda, Jaime A. [Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Concepción, Casilla 160-C, Concepción (Chile); Viñas, Adolfo F., E-mail: rlopez186@gmail.com [NASA Goddard Space Flight Center, Heliophysics Science Division, Geospace Physics Laboratory, Mail Code 673, Greenbelt, MD 20771 (United States)

    2016-11-20

    A sufficiently large temperature anisotropy can sometimes drive various types of electromagnetic plasma micro-instabilities, which can play an important role in the dynamics of relativistic pair plasmas in space, astrophysics, and laboratory environments. Here, we provide a detailed description of the cyclotron instability of parallel propagating electromagnetic waves in relativistic pair plasmas on the basis of a relativistic anisotropic distribution function. Using plasma kinetic theory and particle-in-cell simulations, we study the influence of the relativistic temperature and the temperature anisotropy on the collective and noncollective modes of these plasmas. Growth rates and dispersion curves from the linear theory show a good agreement with simulations results.

  12. Relativistic nuclear collisions: theory

    International Nuclear Information System (INIS)

    Gyulassy, M.

    1980-07-01

    Some of the recent theoretical developments in relativistic (0.5 to 2.0-GeV/nucleon) nuclear collisions are reviewed. The statistical model, hydrodynamic model, classical equation of motion calculations, billiard ball dynamics, and intranuclear cascade models are discussed in detail. Inclusive proton and pion spectra are analyzed for a variety of reactions. Particular attention is focused on how the complex interplay of the basic reaction mechanism hinders attempts to deduce the nuclear matter equation of state from data. 102 references, 19 figures

  13. Recent development of relativistic molecular theory

    International Nuclear Information System (INIS)

    Takahito, Nakajima; Kimihiko, Hirao

    2005-01-01

    Today it is common knowledge that relativistic effects are important in the heavy-element chemistry. The continuing development of the relativistic molecular theory is opening up rows of the periodic table that are impossible to treat with the non-relativistic approach. The most straightforward way to treat relativistic effects on heavy-element systems is to use the four-component Dirac-Hartree-Fock approach and its electron-correlation methods based on the Dirac-Coulomb(-Breit) Hamiltonian. The Dirac-Hartree-Fock (DHF) or Dirac-Kohn-Sham (DKS) equation with the four-component spinors composed of the large- and small-components demands severe computational efforts to solve, and its applications to molecules including heavy elements have been limited to small- to medium-size systems. Recently, we have developed a very efficient algorithm for the four-component DHF and DKS approaches. As an alternative approach, several quasi-relativistic approximations have also been proposed instead of explicitly solving the four-component relativistic equation. We have developed the relativistic elimination of small components (RESC) and higher-order Douglas-Kroll (DK) Hamiltonians within the framework of the two-component quasi-relativistic approach. The developing four-component relativistic and approximate quasi-relativistic methods have been implemented into a program suite named REL4D. In this article, we will introduce the efficient relativistic molecular theories to treat heavy-atomic molecular systems accurately via the four-component relativistic and the two-component quasi-relativistic approaches. We will also show several chemical applications including heavy-element systems with our relativistic molecular approaches. (author)

  14. Relativistic neoclassical transport coefficients with momentum correction

    International Nuclear Information System (INIS)

    Marushchenko, I.; Azarenkov, N.A.

    2016-01-01

    The parallel momentum correction technique is generalized for relativistic approach. It is required for proper calculation of the parallel neoclassical flows and, in particular, for the bootstrap current at fusion temperatures. It is shown that the obtained system of linear algebraic equations for parallel fluxes can be solved directly without calculation of the distribution function if the relativistic mono-energetic transport coefficients are already known. The first relativistic correction terms for Braginskii matrix coefficients are calculated.

  15. Relativistic few body calculations

    International Nuclear Information System (INIS)

    Gross, F.

    1988-01-01

    A modern treatment of the nuclear few-body problem must take into account both the quark structure of baryons and mesons, which should be important at short range, and the relativistic exchange of mesons, which describes the long range, peripheral interactions. A way to model both of these aspects is described. The long range, peripheral interactions are calculated using the spectator model, a general approach in which the spectators to nucleon interactions are put on their mass-shell. Recent numerical results for a relativistic OBE model of the NN interaction, obtained by solving a relativistic equation with one-particle on mass-shell, will be presented and discussed. Two meson exchange models, one with only four mesons (π,σ,/rho/,ω) but with a 25% admixture of γ 5 coupling for the pion, and a second with six mesons (π,σ,/rho/,ω,δ,/eta/) but pure γ 5 γ/sup μ/ pion coupling, are shown to give very good quantitative fits to the NN scattering phase shifts below 400 MeV, and also a good description of the /rvec p/ 40 Ca elastic scattering observables. Applications of this model to electromagnetic interactions of the two body system, with emphasis on the determination of relativistic current operators consistent with the dynamics and the exact treatment of current conservation in the presence of phenomenological form factors, will be described. 18 refs., 8 figs

  16. Efficient kinetic method for fluid simulation beyond the Navier-Stokes equation.

    Science.gov (United States)

    Zhang, Raoyang; Shan, Xiaowen; Chen, Hudong

    2006-10-01

    We present a further theoretical extension to the kinetic-theory-based formulation of the lattice Boltzmann method of Shan [J. Fluid Mech. 550, 413 (2006)]. In addition to the higher-order projection of the equilibrium distribution function and a sufficiently accurate Gauss-Hermite quadrature in the original formulation, a regularization procedure is introduced in this paper. This procedure ensures a consistent order of accuracy control over the nonequilibrium contributions in the Galerkin sense. Using this formulation, we construct a specific lattice Boltzmann model that accurately incorporates up to third-order hydrodynamic moments. Numerical evidence demonstrates that the extended model overcomes some major defects existing in conventionally known lattice Boltzmann models, so that fluid flows at finite Knudsen number Kn can be more quantitatively simulated. Results from force-driven Poiseuille flow simulations predict the Knudsen's minimum and the asymptotic behavior of flow flux at large Kn.

  17. On the maximum-entropy method for kinetic equation of radiation, particle and gas

    International Nuclear Information System (INIS)

    El-Wakil, S.A.; Madkour, M.A.; Degheidy, A.R.; Machali, H.M.

    1995-01-01

    The maximum-entropy approach is used to calculate some problems in radiative transfer and reactor physics such as the escape probability, the emergent and transmitted intensities for a finite slab as well as the emergent intensity for a semi-infinite medium. Also, it is employed to solve problems involving spherical geometry, such as luminosity (the total energy emitted by a sphere), neutron capture probability and the albedo problem. The technique is also employed in the kinetic theory of gases to calculate the Poiseuille flow and thermal creep of a rarefied gas between two plates. Numerical calculations are achieved and compared with the published data. The comparisons demonstrate that the maximum-entropy results are good in agreement with the exact ones. (orig.)

  18. Analysis of Electromagnetic Wave Propagation in a Magnetized Re-Entry Plasma Sheath Via the Kinetic Equation

    Science.gov (United States)

    Manning, Robert M.

    2009-01-01

    Based on a theoretical model of the propagation of electromagnetic waves through a hypersonically induced plasma, it has been demonstrated that the classical radiofrequency communications blackout that is experienced during atmospheric reentry can be mitigated through the appropriate control of an external magnetic field of nominal magnitude. The model is based on the kinetic equation treatment of Vlasov and involves an analytical solution for the electric and magnetic fields within the plasma allowing for a description of the attendant transmission, reflection and absorption coefficients. The ability to transmit through the magnetized plasma is due to the magnetic windows that are created within the plasma via the well-known whistler modes of propagation. The case of 2 GHz transmission through a re-entry plasma is considered. The coefficients are found to be highly sensitive to the prevailing electron density and will thus require a dynamic control mechanism to vary the magnetic field as the plasma evolves through the re-entry phase.

  19. Electric Conductivity of Hot and Dense Quark Matter in a Magnetic Field with Landau Level Resummation via Kinetic Equations

    Science.gov (United States)

    Fukushima, Kenji; Hidaka, Yoshimasa

    2018-04-01

    We compute the electric conductivity of quark matter at finite temperature T and a quark chemical potential μ under a magnetic field B beyond the lowest Landau level approximation. The electric conductivity transverse to B is dominated by the Hall conductivity σH. For the longitudinal conductivity σ∥, we need to solve kinetic equations. Then, we numerically find that σ∥ has only a mild dependence on μ and the quark mass mq. Moreover, σ∥ first decreases and then linearly increases as a function of B , leading to an intermediate B region that looks consistent with the experimental signature for the chiral magnetic effect. We also point out that σ∥ at a nonzero B remains within the range of the lattice-QCD estimate at B =0 .

  20. On the comparison of numerical methods for the integration of kinetic equations in atmospheric chemistry and transport models

    Science.gov (United States)

    Saylor, Rick D.; Ford, Gregory D.

    The integration of systems of ordinary differential equations (ODEs) that arise in atmospheric photochemistry is of significant concern to tropospheric and stratospheric chemistry modelers. As a consequence of the stiff nature of these ODE systems, their solution requires a large fraction of the total computational effort in three-dimensional chemical model simulations. Several integration techniques have been proposed and utilized over the years in an attempt to provide computationally efficient, yet accurate, solutions to chemical kinetics ODES. In this work, we present a comparison of some of these techniques and argue that valid comparisons of ODE solvers must take into account the trade-off between solution accuracy and computational efficiency. Misleading comparison results can be obtained by neglecting the fact that any ODE solution method can be made faster or slower by manipulation of the appropriate error tolerances or time steps. Comparisons among ODE solution techniques should therefore attempt to identify which technique can provide the most accurate solution with the least computational effort over the entire range of behavior of each technique. We present here a procedure by which ODE solver comparisons can achieve this goal. Using this methodology, we compare a variety of integration techniques, including methods proposed by Hesstvedt et al. (1978, Int. J. Chem. Kinet.10, 971-994), Gong and Cho (1993, Atmospheric Environment27A, 2147-2160), Young and Boris (1977, J. phys. Chem.81, 2424-2427) and Hindmarsh (1983, In Scientific Computing (edited by Stepleman R. S. et al.), pp. 55-64. North-Holland, Amsterdam). We find that Gear-type solvers such as the Livermore Solver for ordinary differential equations (LSODE) and the sparse-matrix version of LSODE (LSODES) provide the most accurate solution of our test problems with the least computational effort.

  1. An introduction to relativistic hydrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Font, Jose A [Departamento de AstronomIa y AstrofIsica, Universidad de Valencia, Dr. Moliner 50, 46100 Burjassot (Valencia) (Spain)

    2007-11-15

    We review formulations of the equations of (inviscid) general relativistic hydrodynamics and (ideal) magnetohydrodynamics, along with methods for their numerical solution. Both systems can be cast as first-order, hyperbolic systems of conservation laws, following the explicit choice of an Eulerian observer and suitable fluid and magnetic field variables. During the last fifteen years, the so-called (upwind) high-resolution shock-capturing schemes based on Riemann solvers have been successfully extended from classical to relativistic fluid dynamics, both special and general. Nowadays, general relativistic hydrodynamical simulations in relativistic astrophysics are routinely performed, particularly within the test-fluid approximation but also for dynamical spacetimes. While such advances also hold true in the case of the MHD equations, the astrophysical applications investigated so far are still limited, yet the field is bound to witness major developments in the near future. The article also presents a brief overview of numerical techniques, providing state-of-the-art examples of their applicability to general relativistic fluids and magneto-fluids in characteristic scenarios of relativistic astrophysics.

  2. Analytical representation for solution of the neutron point kinetics equation with time-dependent reactivity and free of the stiffness character

    International Nuclear Information System (INIS)

    Silva, Milena Wollmann da

    2013-01-01

    In this work, we report a genuine analytical representation for the solution of the neutron point kinetics equation free of the stiffness character, assuming that the reactivity is a continuous and sectionally continuous function of time. To this end, we initially cast the point kinetics equation in a first order linear differential equation. Next, we split the corresponding matrix as a sum of a diagonal matrix with a matrix, whose components contain the off-diagonal elements. Next, expanding the neutron density and the delayed neutron precursors concentrations in a truncated series, and replacing these expansions in the matrix equation, we come out with an equation, which allows to construct a recursive system, a first order matrix differential equation with source. The fundamental characteristic of this system relies on the fact that the corresponding matrix is diagonal, meanwhile the source term is written in terms of the matrix with the off-diagonal components. Further, the first equation of the recursive system has no source and satisfies the initial conditions. On the other hand, the remaining equations satisfy the null initial condition. Due to the diagonal feature of the matrix, we attain analytical solutions for these recursive equations. We also mention that we evaluate the results for any time value, without the analytical continuity because the purposed solution is free on the stiffness character. Finally, we present numerical simulations and comparisons against literature results, considering specific the applications for the following reactivity functions: constant, step, ramp, and sine. (author)

  3. Abstract of programs for nuclear reactor calculation and kinetic equations solution

    International Nuclear Information System (INIS)

    Marakazov, A.A.

    1977-01-01

    The collection includes about 50 annotations of programmes,developed in the Kurchatov Atomic Energy Institute in 1971-1976. The programmes are intended for calculating the neutron flux, for solving systems of multigroup equations in P 3 approximation, for calculating the reactor cell, for analysing the system stability, breeding ratio etc. The programme annotations are compiled according to the following diagram: 1.Programme title. 2.Computer type. 3.Physical problem. 4.Solution method. 5.Calculation limitations. 6.Characteristic computer time. 7.Programme characteristic features. 8.Bound programmes. 9.Programme state. 10.Literature allusions in the programme. 11.Required memory resourses. 12.Programming language. 13.Operation system. 14.Names of authors and place of programme adjusting

  4. Superfluid kinetic equation approach to the dynamics of the 3He A-B phase boundary

    International Nuclear Information System (INIS)

    Palmeri, J.

    1990-01-01

    The dynamics of the A-B phase boundary is studied using a nonequilibrium theory inspired by the microscopic approach to flux flow in type-II superconductors, namely a generalized two-fluid model consisting of coupled dynamical equations for the superfluid order parameter and the quasiparticle fluid. The interface mobility is obtained to lowest order in the front velocity in three different dynamical regimes: the gapless, hydrodynamic, and ballistic. Experiments have so far only been performed in the ballistic regime, and in this regime we find that, if only Andreev scattering processes are accounted for in the interface mobility, then the theoretical predictions for the terminal velocity of the planar interface are too big by a factor ∼2. From this we conclude that there may be other important contributions to the interface mobility in the ballistic regime, and we discuss a few possibilities

  5. An effective rate equation approach to reaction kinetics in small volumes: theory and application to biochemical reactions in nonequilibrium steady-state conditions.

    Science.gov (United States)

    Grima, R

    2010-07-21

    Chemical master equations provide a mathematical description of stochastic reaction kinetics in well-mixed conditions. They are a valid description over length scales that are larger than the reactive mean free path and thus describe kinetics in compartments of mesoscopic and macroscopic dimensions. The trajectories of the stochastic chemical processes described by the master equation can be ensemble-averaged to obtain the average number density of chemical species, i.e., the true concentration, at any spatial scale of interest. For macroscopic volumes, the true concentration is very well approximated by the solution of the corresponding deterministic and macroscopic rate equations, i.e., the macroscopic concentration. However, this equivalence breaks down for mesoscopic volumes. These deviations are particularly significant for open systems and cannot be calculated via the Fokker-Planck or linear-noise approximations of the master equation. We utilize the system-size expansion including terms of the order of Omega(-1/2) to derive a set of differential equations whose solution approximates the true concentration as given by the master equation. These equations are valid in any open or closed chemical reaction network and at both the mesoscopic and macroscopic scales. In the limit of large volumes, the effective mesoscopic rate equations become precisely equal to the conventional macroscopic rate equations. We compare the three formalisms of effective mesoscopic rate equations, conventional rate equations, and chemical master equations by applying them to several biochemical reaction systems (homodimeric and heterodimeric protein-protein interactions, series of sequential enzyme reactions, and positive feedback loops) in nonequilibrium steady-state conditions. In all cases, we find that the effective mesoscopic rate equations can predict very well the true concentration of a chemical species. This provides a useful method by which one can quickly determine the

  6. Nonextensive kinetic theory and H-theorem in general relativity

    Science.gov (United States)

    Santos, A. P.; Silva, R.; Alcaniz, J. S.; Lima, J. A. S.

    2017-11-01

    The nonextensive kinetic theory for degenerate quantum gases is discussed in the general relativistic framework. By incorporating nonadditive modifications in the collisional term of the relativistic Boltzmann equation and entropy current, it is shown that Tsallis entropic framework satisfies a H-theorem in the presence of gravitational fields. Consistency with the 2nd law of thermodynamics is obtained only whether the entropic q-parameter lies in the interval q ∈ [ 0 , 2 ] . As occurs in the absence of gravitational fields, it is also proved that the local collisional equilibrium is described by the extended Bose-Einstein (Fermi-Dirac) q-distributions.

  7. The average kinetic energy of the heavy quark in Λb in the Bethe-Salpeter equation approach

    International Nuclear Information System (INIS)

    Guo, X.-H.; Wu, H.-K.

    2007-01-01

    In the previous paper, based on the SU(2) f xSU(2) s heavy quark symmetries of the QCD Lagrangian in the heavy quark limit, the Bethe-Salpeter equation for the heavy baryon Λ b was established with the picture that Λ b is composed of a heavy quark and a scalar light diquark. In the present work, we apply this model to calculate μ π 2 for Λ b , the average kinetic energy of the heavy quark inside Λ b . This quantity is particularly interesting since it can be measured in experiments and since it contributes to the inclusive semileptonic decays of Λ b when contributions from higher order terms in 1/M b expansions are taken into account and consequently influences the determination of the Cabibbo-Kobayashi-Maskawa matrix elements V ub and V cb . We find that μ π 2 for Λ b is 0.25GeV 2 ∼0.95GeV 2 , depending on the parameters in the model including the light diquark mass and the interaction strength between the heavy quark and the light diquark in the kernel of the BS equation. We also find that this result is consistent with the value of μ π 2 for Λ b which is derived from the experimental value of μ π 2 for the B meson with the aid of the heavy quark effective theory

  8. Relativistic effects in the calibration of electrostatic electron analyzers. I. Toroidal analyzers

    Energy Technology Data Exchange (ETDEWEB)

    Keski Rahkonen, O [Helsinki University of Technology, Espoo (Finland). Laboratory of Physics; Krause, M O [Oak Ridge National Lab., Tenn. (USA)

    1978-02-01

    Relativistic correction terms up to the second order are derived for the kinetic energy of an electron travelling along the circular central trajectory of a toroidal analyzer. Furthermore, a practical energy calibration equation of the spherical sector plate analyzer is written for the variable-plate-voltage recording mode. Accurate measurements with a spherical analyzer performed using kinetic energies from 600 to 2100 eV are in good agreement with this theory showing our approximation (neglect of fringing fields, and source and detector geometry) is realistic enough for actual calibration purposes.

  9. A Primer to Relativistic MOND Theory

    NARCIS (Netherlands)

    Bekenstein, J.D..; Sanders, R.H.

    2005-01-01

    Abstract: We first review the nonrelativistic lagrangian theory as a framework for the MOND equation. Obstructions to a relativistic version of it are discussed leading up to TeVeS, a relativistic tensor-vector-scalar field theory which displays both MOND and Newtonian limits. The whys for its

  10. Relativistic astrophysics

    CERN Document Server

    Price, R H

    1993-01-01

    Work reported in the workshop on relativistic astrophysics spanned a wide varicy of topics. Two specific areas seemed of particular interest. Much attention was focussed on gravitational wave sources, especially on the waveforms they produce, and progress was reported in theoretical and observational aspects of accretion disks.

  11. Relativistic Kinematics

    OpenAIRE

    Sahoo, Raghunath

    2016-01-01

    This lecture note covers Relativistic Kinematics, which is very useful for the beginners in the field of high-energy physics. A very practical approach has been taken, which answers "why and how" of the kinematics useful for students working in the related areas.

  12. Relativistic Astrophysics

    International Nuclear Information System (INIS)

    Font, J. A.

    2015-01-01

    The relativistic astrophysics is the field of astrophysics employing the theory of relativity Einstein as physical-mathematical model is to study the universe. This discipline analyzes astronomical contexts in which the laws of classical mechanics of Newton's law of gravitation are not valid. (Author)

  13. Relativistic gravitational instabilities

    International Nuclear Information System (INIS)

    Schutz, B.F.

    1987-01-01

    The purpose of these lectures is to review and explain what is known about the stability of relativistic stars and black holes, with particular emphases on two instabilities which are due entirely to relativistic effects. The first of these is the post-Newtonian pulsational instability discovered independently by Chandrasekhar (1964) and Fowler (1964). This effectively ruled out the then-popular supermassive star model for quasars, and it sets a limit to the central density of white dwarfs. The second instability was also discovered by Chandrasekhar (1970): the gravitational wave induced instability. This sets an upper bound on the rotation rate of neutron stars, which is near that of the millisecond pulsar PSR 1937+214, and which is beginning to constrain the equation of state of neutron matter. 111 references, 5 figures

  14. Radiation dominated relativistic current sheets

    International Nuclear Information System (INIS)

    Jaroschek, C.H.

    2008-01-01

    Relativistic Current Sheets (RCS) feature plasma instabilities considered as potential key to magnetic energy dissipation and non-thermal particle generation in Poynting flux dominated plasma flows. We show in a series of kinetic plasma simulations that the physical nature of non-linear RCS evolution changes in the presence of incoherent radiation losses: In the ultra-relativistic regime (i.e. magnetization parameter sigma = 104 defined as the ratio of magnetic to plasma rest frame energy density) the combination of non-linear RCS dynamics and synchrotron emission introduces a temperature anisotropy triggering the growth of the Relativistic Tearing Mode (RTM). As direct consequence the RTM prevails over the Relativistic Drift Kink (RDK) Mode as competitive RCS instability. This is in contrast to the previously studied situation of weakly relativistic RCS (sigma ∼ 1) where the RDK is dominant and most of the plasma is thermalized. The simulations witness the typical life cycle of ultra-relativistic RCS evolving from a violent radiation induced collapse towards a radiation quiescent state in rather classical Sweet-Parker topology. Such a transition towards Sweet-Parker configuration in the late non-linear evolution has immediate consequences for the efficiency of magnetic energy dissipation and non-thermal particle generation. Ceasing dissipation rates directly affect our present understanding of non-linear RCS evolution in conventional striped wind scenarios. (author)

  15. Relativistic effects in the Thomas--Fermi atom

    International Nuclear Information System (INIS)

    Waber, J.T.; Canfield, J.M.

    1975-01-01

    Two methods of applying relativistic corrections to the Thomas--Fermi atom are considered, and numerical calculations are discussed. Radial charge distributions calculated from a relativistic Thomas--Fermi equation agree in gross form with those from more complicated self-consistent calculations. Energy eigenvalues for mercury, as determined from the relativistic Thomas--Fermi solution, are compared with other calculated and experimental values

  16. Gravitationally confined relativistic neutrinos

    Science.gov (United States)

    Vayenas, C. G.; Fokas, A. S.; Grigoriou, D.

    2017-09-01

    Combining special relativity, the equivalence principle, and Newton’s universal gravitational law with gravitational rather than rest masses, one finds that gravitational interactions between relativistic neutrinos with kinetic energies above 50 MeV are very strong and can lead to the formation of gravitationally confined composite structures with the mass and other properties of hadrons. One may model such structures by considering three neutrinos moving symmetrically on a circular orbit under the influence of their gravitational attraction, and by assuming quantization of their angular momentum, as in the Bohr model of the H atom. The model contains no adjustable parameters and its solution, using a neutrino rest mass of 0.05 eV/c2, leads to composite state radii close to 1 fm and composite state masses close to 1 GeV/c2. Similar models of relativistic rotating electron - neutrino pairs give a mass of 81 GeV/c2, close to that of W bosons. This novel mechanism of generating mass suggests that the Higgs mass generation mechanism can be modeled as a latent gravitational field which gets activated by relativistic neutrinos.

  17. Fourth sound in relativistic superfluidity theory

    International Nuclear Information System (INIS)

    Vil'chinskij, S.I.; Fomin, P.I.

    1995-01-01

    The Lorentz-covariant equations describing propagation of the fourth sound in the relativistic theory of superfluidity are derived. The expressions for the velocity of the fourth sound are obtained. The character of oscillation in sound is determined

  18. Spin force and torque in non-relativistic Dirac oscillator on a sphere

    Science.gov (United States)

    Shikakhwa, M. S.

    2018-03-01

    The spin force operator on a non-relativistic Dirac oscillator (in the non-relativistic limit the Dirac oscillator is a spin one-half 3D harmonic oscillator with strong spin-orbit interaction) is derived using the Heisenberg equations of motion and is seen to be formally similar to the force by the electromagnetic field on a moving charged particle. When confined to a sphere of radius R, it is shown that the Hamiltonian of this non-relativistic oscillator can be expressed as a mere kinetic energy operator with an anomalous part. As a result, the power by the spin force and torque operators in this case are seen to vanish. The spin force operator on the sphere is calculated explicitly and its torque is shown to be equal to the rate of change of the kinetic orbital angular momentum operator, again with an anomalous part. This, along with the conservation of the total angular momentum, suggests that the spin force exerts a spin-dependent torque on the kinetic orbital angular momentum operator in order to conserve total angular momentum. The presence of an anomalous spin part in the kinetic orbital angular momentum operator gives rise to an oscillatory behavior similar to the Zitterbewegung. It is suggested that the underlying physics that gives rise to the spin force and the Zitterbewegung is one and the same in NRDO and in systems that manifest spin Hall effect.

  19. Self-Consistent System of Equations for a Kinetic Description of the Low-Pressure Discharges Accounting for the Nonlocal and Collisionless Electron Dynamics

    International Nuclear Information System (INIS)

    Kaganovich, Igor D.; Polomarov, Oleg

    2003-01-01

    In low-pressure discharges, when the electron mean free path is larger or comparable with the discharge length, the electron dynamics is essentially non-local. Moreover, the electron energy distribution function (EEDF) deviates considerably from a Maxwellian. Therefore, an accurate kinetic description of the low-pressure discharges requires knowledge of the non-local conductivity operator and calculation of the non-Maxwellian EEDF. The previous treatments made use of simplifying assumptions: a uniform density profile and a Maxwellian EEDF. In the present study a self-consistent system of equations for the kinetic description of nonlocal, non-uniform, nearly collisionless plasmas of low-pressure discharges is derived. It consists of the nonlocal conductivity operator and the averaged kinetic equation for calculation of the non-Maxwellian EEDF. The importance of accounting for the non-uniform plasma density profile on both the current density profile and the EEDF is demonstrated

  20. Mass and heat transfer between evaporation and condensation surfaces: Atomistic simulation and solution of Boltzmann kinetic equation.

    Science.gov (United States)

    Zhakhovsky, Vasily V; Kryukov, Alexei P; Levashov, Vladimir Yu; Shishkova, Irina N; Anisimov, Sergey I

    2018-04-16

    Boundary conditions required for numerical solution of the Boltzmann kinetic equation (BKE) for mass/heat transfer between evaporation and condensation surfaces are analyzed by comparison of BKE results with molecular dynamics (MD) simulations. Lennard-Jones potential with parameters corresponding to solid argon is used to simulate evaporation from the hot side, nonequilibrium vapor flow with a Knudsen number of about 0.02, and condensation on the cold side of the condensed phase. The equilibrium density of vapor obtained in MD simulation of phase coexistence is used in BKE calculations for consistency of BKE results with MD data. The collision cross-section is also adjusted to provide a thermal flux in vapor identical to that in MD. Our MD simulations of evaporation toward a nonreflective absorbing boundary show that the velocity distribution function (VDF) of evaporated atoms has the nearly semi-Maxwellian shape because the binding energy of atoms evaporated from the interphase layer between bulk phase and vapor is much smaller than the cohesive energy in the condensed phase. Indeed, the calculated temperature and density profiles within the interphase layer indicate that the averaged kinetic energy of atoms remains near-constant with decreasing density almost until the interphase edge. Using consistent BKE and MD methods, the profiles of gas density, mass velocity, and temperatures together with VDFs in a gap of many mean free paths between the evaporation and condensation surfaces are obtained and compared. We demonstrate that the best fit of BKE results with MD simulations can be achieved with the evaporation and condensation coefficients both close to unity.

  1. Relativistic klystrons

    International Nuclear Information System (INIS)

    Allen, M.A.; Azuma, O.; Callin, R.S.

    1989-03-01

    Experimental work is underway by a SLAC-LLNL-LBL collaboration to investigate the feasibility of using relativistic klystrons as a power source for future high gradient accelerators. Two different relativistic klystron configurations have been built and tested to date: a high grain multicavity klystron at 11.4 GHz and a low gain two cavity subharmonic buncher driven at 5.7 GHz. In both configurations power is extracted at 11.4 GHz. In order to understand the basic physics issues involved in extracting RF from a high power beam, we have used both a single resonant cavity and a multi-cell traveling wave structure for energy extraction. We have learned how to overcome our previously reported problem of high power RF pulse shortening, and have achieved peak RF power levels of 170 MW with the RF pulse of the same duration as the beam current pulse. 6 refs., 3 figs., 3 tabs

  2. An energy principle for two-dimensional collisionless relativistic plasmas

    International Nuclear Information System (INIS)

    Otto, A.; Schindler, K.

    1984-01-01

    Using relativistic Vlasov theory an energy principle for two-dimensional plasmas is derived, which provides a sufficient and necessary criterion for the stability of relativistic plasma equilibria. This energy principle includes charge separating effects since the exact Poisson equation was taken into consideration. Applying the variational principle to the case of the relativistic plane plasma sheet, the same marginal wave length is found as in the non-relativistic case. (author)

  3. Fundamental laws of relativistic classical dynamics revisited

    International Nuclear Information System (INIS)

    Blaquiere, Augustin

    1977-01-01

    By stating that a linear differential form, whose coefficients are the components of the momentum and the energy of a particle, has an antiderivative, the basic equations of the dynamics of points are obtained, in the relativistic case. From the point of view of optimization theory, a connection between our condition and the Bellman-Isaacs equation of dynamic programming is discussed, with a view to extending the theory to relativistic wave mechanics [fr

  4. Gravitation relativiste

    CERN Document Server

    Hakim, Rémi

    1994-01-01

    Il existe à l'heure actuelle un certain nombre de théories relativistes de la gravitation compatibles avec l'expérience et l'observation. Toutefois, la relativité générale d'Einstein fut historiquement la première à fournir des résultats théoriques corrects en accord précis avec les faits.

  5. Relativistic klystron

    International Nuclear Information System (INIS)

    Marks, R.

    1985-09-01

    Theoretical analysis is presented of a relativisic klystron; i.e. a high-relativistic bunched electron beam which is sent through a succession of tuned cavities and has its energy replenished by periodic induction accelerator units. Parameters are given for a full-size device and for an experimental device using the FEL at the ETA; namely the ELF Facility. 6 refs., 2 figs

  6. Future relativistic heavy ion experiments

    International Nuclear Information System (INIS)

    Pugh, H.G.

    1980-12-01

    Equations of state for nuclear matter and ongoing experimental studies are discussed. Relativistic heavy ion physics is the only opportunity to study in the laboratory the properties of extended multiquark systems under conditions such that quarks might run together into new arrangements previously unobserved. Several lines of further study are mentioned

  7. A relativistic radiation transfer benchmark

    International Nuclear Information System (INIS)

    Munier, A.

    1988-01-01

    We use the integral form of the radiation transfer equation in an one dimensional slab to determine the time-dependent propagation of the radiation energy, flux and pressure in a collisionless homogeneous medium. First order v/c relativistic terms are included and the solution is given in the fluid frame and the laboratory frame

  8. Degradation kinetics and assessment of the prediction equation of indigestible fraction of neutral detergent fiber from agroindustrial byproducts

    Directory of Open Access Journals (Sweden)

    José Gilson Louzada Regadas Filho

    2011-09-01

    Full Text Available This study aimed at estimating the kinetic parameters of ruminal degradation of neutral detergent fiber from agroindustrial byproducts of cashew (pulp and cashew nut, passion fruit, melon, pineapple, West Indian cherry, grape, annatto and coconut through the gravimetric technique of nylon bag, and to evaluate the prediction equation of indigestible fraction of neutral detergent fiber suggested by the Cornell Net Carbohydrate and Protein System. Samples of feed crushed to 2 mm were placed in 7 × 14 cm nylon bags with porosity of 50 µm in a ratio of 20 g DM/cm² and incubated in duplicate in the rumen of a heifer at 0, 3, 6, 9, 12, 16, 24, 36, 48, 72, 96 and 144 hours. The incubation residues were analyzed for NDF content and evaluated by a non-linear logistic model. The evaluation process of predicting the indigestible fraction of NDF was carried out through adjustment of linear regression models between predicted and observed values. There was a wide variation in the degradation parameters of NDF among byproducts. The degradation rate of NDF ranged from 0.0267 h-1 to 0.0971 h-1 for grape and West Indian cherry, respectively. The potentially digestible fraction of NDF ranged from 4.17 to 90.67%, respectively, for melon and coconut byproducts. The CNCPS equation was sensitive to predict the indigestible fraction of neutral detergent fiber of the byproducts. However, due to the high value of the mean squared error of prediction, such estimates are very variable; hence the most suitable would be estimation by biological methods.

  9. A 3D nodal mixed dual method for nuclear reactor kinetics with improved quasistatic model and a semi-implicit scheme to solve the precursor equations

    International Nuclear Information System (INIS)

    Dahmani, M.; Baudron, A.M.; Lautard, J.J.; Erradi, L.

    2001-01-01

    The mixed dual nodal method MINOS is used to solve the reactor kinetics equations with improved quasistatic IQS model and the θ method is used to solve the precursor equations. The speed of calculation which is the main advantage of the MINOS method and the possibility to use the large time step for shape flux calculation permitted by the IQS method, allow us to reduce considerably the computing time. The IQS/MINOS method is implemented in CRONOS 3D reactor code. Numerical tests on different transient benchmarks show that the results obtained with the IQS/MINOS method and the direct numerical method used to solve the kinetics equations, are very close and the total computing time is largely reduced

  10. Coordinates in relativistic Hamiltonian mechanics

    International Nuclear Information System (INIS)

    Sokolov, S.N.

    1984-01-01

    The physical (covariant and measurable) coordinates of free particles and covariant coordinates of the center of inertia are found for three main forms of relativistic dynamics. In the point form of dynamics, the covariant coordinates of two directly interacting particles are found, and the equations of motion are brought to the explicitly covariant form. These equations are generalized to the case of interaction with an external electromagnetic field

  11. Relativistic mechanics with reduced fields

    International Nuclear Information System (INIS)

    Sokolov, S.N.

    1996-01-01

    A new relativistic classical mechanics of interacting particles using a concept of a reduced field (RF) os proposed. RF is a mediator of interactions, the state of which is described by a finite number of two-argument functions. Ten of these functions correspond to the generators of the Poincare group. Equations of motion contain the retardation of interactions required by the causality principle and have form of a finite system of ordinary hereditary differential equations [ru

  12. New derivation of relativistic dissipative fluid dynamics

    International Nuclear Information System (INIS)

    Jaiswal, Amaresh; Bhalerao, Rajeev S.; Pal, Subrata

    2012-01-01

    Relativistic dissipative hydrodynamics has been quite successful in explaining the spectra and azimuthal anisotropy of particles produced in heavy-ion collisions at the RHIC and recently at the LHC. The first-order dissipative fluid dynamics or the relativistic Navier-Stokes (NS) theory involves parabolic differential equations and suffers from a causality and instability. The second-order or Israel-Stewart (IS) theory with its hyperbolic equations restores causality but may not guarantee stability. The correct formulation of relativistic viscous fluid dynamics is far from settled and is under intense investigation

  13. The de Sitter relativistic top theory

    International Nuclear Information System (INIS)

    Armenta, J.; Nieto, J.A.

    2005-01-01

    We discuss the relativistic top theory from the point of view of the de Sitter (or anti-de Sitter) group. Our treatment rests on the Hanson-Regge spherical relativistic top Lagrangian formulation. We propose an alternative method for studying spinning objects via Kaluza-Klein theory. In particular, we derive the relativistic top equations of motion starting with the geodesic equation for a point particle in 4+N dimensions. We compare our approach with Fukuyama's formulation of spinning objects, which is also based on Kaluza-Klein theory. We also report a generalization of our approach to a 4+N+D dimensional theory

  14. Review of multi-dimensional large-scale kinetic simulation and physics validation of ion acceleration in relativistic laser-matter interaction

    International Nuclear Information System (INIS)

    Wu, Hui-Chun; Hegelich, B.M.; Fernandez, J.C.; Shah, R.C.; Palaniyappan, S.; Jung, D.; Yin, L.; Albright, B.J.; Bowers, K.; Kwan, T.J.

    2012-01-01

    Two new experimental technologies enabled realization of Break-out afterburner (BOA) - High quality Trident laser and free-standing C nm-targets. VPIC is an powerful tool for fundamental research of relativistic laser-matter interaction. Predictions from VPIC are validated - Novel BOA and Solitary ion acceleration mechanisms. VPIC is a fully explicit Particle In Cell (PIC) code: models plasma as billions of macro-particles moving on a computational mesh. VPIC particle advance (which typically dominates computation) has been optimized extensively for many different supercomputers. Laser-driven ions lead to realization promising applications - Ion-based fast ignition; active interrogation, hadron therapy.

  15. Relativistic wave mechanics

    CERN Document Server

    Corinaldesi, Ernesto

    1963-01-01

    Geared toward advanced undergraduate and graduate students of physics, this text provides readers with a background in relativistic wave mechanics and prepares them for the study of field theory. The treatment originated as a series of lectures from a course on advanced quantum mechanics that has been further amplified by student contributions.An introductory section related to particles and wave functions precedes the three-part treatment. An examination of particles of spin zero follows, addressing wave equation, Lagrangian formalism, physical quantities as mean values, translation and rotat

  16. Relativistic quarkonium dynamics

    International Nuclear Information System (INIS)

    Sazdjian, H.

    1985-06-01

    We present, in the framework of relativistic quantum mechanics of two interacting particles, a general model for quarkonium systems satisfying the following four requirements: confinement, spontaneous breakdown of chiral symmetry, soft explicit chiral symmetry breaking, short distance interactions of the vector type. The model is characterized by two arbitrary scalar functions entering in the large and short distance interaction potentials, respectively. Using relationships with corresponding quantities of the Bethe-Salpeter equation, we also present the normalization condition of the wave functions, as well as the expressions of the meson decay coupling constants. The quark masses appear in this model as free parameters

  17. Proton relativistic model

    International Nuclear Information System (INIS)

    Araujo, Wilson Roberto Barbosa de

    1995-01-01

    In this dissertation, we present a model for the nucleon, which is composed by three relativistic quarks interacting through a contract force. The nucleon wave-function was obtained from the Faddeev equation in the null-plane. The covariance of the model under kinematical null-plane boots is discussed. The electric proton form-factor, calculated from the Faddeev wave-function, was in agreement with the data for low-momentum transfers and described qualitatively the asymptotic region for momentum transfers around 2 GeV. (author)

  18. Exponential-fitted methods for integrating stiff systems of ordinary differential equations: Applications to homogeneous gas-phase chemical kinetics

    Science.gov (United States)

    Pratt, D. T.

    1984-01-01

    Conventional algorithms for the numerical integration of ordinary differential equations (ODEs) are based on the use of polynomial functions as interpolants. However, the exact solutions of stiff ODEs behave like decaying exponential functions, which are poorly approximated by polynomials. An obvious choice of interpolant are the exponential functions themselves, or their low-order diagonal Pade (rational function) approximants. A number of explicit, A-stable, integration algorithms were derived from the use of a three-parameter exponential function as interpolant, and their relationship to low-order, polynomial-based and rational-function-based implicit and explicit methods were shown by examining their low-order diagonal Pade approximants. A robust implicit formula was derived by exponential fitting the trapezoidal rule. Application of these algorithms to integration of the ODEs governing homogenous, gas-phase chemical kinetics was demonstrated in a developmental code CREK1D, which compares favorably with the Gear-Hindmarsh code LSODE in spite of the use of a primitive stepsize control strategy.

  19. A direct method for numerical solution of a class of nonlinear Volterra integro-differential equations and its application to the nonlinear fission and fusion reactor kinetics

    International Nuclear Information System (INIS)

    Nakahara, Yasuaki; Ise, Takeharu; Kobayashi, Kensuke; Itoh, Yasuyuki

    1975-12-01

    A new method has been developed for numerical solution of a class of nonlinear Volterra integro-differential equations with quadratic nonlinearity. After dividing the domain of the variable into subintervals, piecewise approximations are applied in the subintervals. The equation is first integrated over a subinterval to obtain the piecewise equation, to which six approximate treatments are applied, i.e. fully explicit, fully implicit, Crank-Nicolson, linear interpolation, quadratic and cubic spline. The numerical solution at each time step is obtained directly as a positive root of the resulting algebraic quadratic equation. The point reactor kinetics with a ramp reactivity insertion, linear temperature feedback and delayed neutrons can be described by one of this type of nonlinear Volterra integro-differential equations. The algorithm is applied to the Argonne benchmark problem and a model problem for a fast reactor without delayed neutrons. The fully implicit method has been found to be unconditionally stable in the sense that it always gives the positive real roots. The cubic spline method is divergent, and the other four methods are intermediate in between. From the estimation of the stability, convergency, accuracy and CPU time, it is concluded that the Crank-Nicolson method is best, then the linear interpolation method comes closely next to it. Discussions are also made on the possibility of applying the algorithm to the fusion reactor kinetics in the form of a nonlinear partial differential equation. (auth.)

  20. Numerical simulation of flood inundation using a well-balanced kinetic scheme for the shallow water equations with bulk recharge and discharge

    Science.gov (United States)

    Ersoy, Mehmet; Lakkis, Omar; Townsend, Philip

    2016-04-01

    The flow of water in rivers and oceans can, under general assumptions, be efficiently modelled using Saint-Venant's shallow water system of equations (SWE). SWE is a hyperbolic system of conservation laws (HSCL) which can be derived from a starting point of incompressible Navier-Stokes. A common difficulty in the numerical simulation of HSCLs is the conservation of physical entropy. Work by Audusse, Bristeau, Perthame (2000) and Perthame, Simeoni (2001), proposed numerical SWE solvers known as kinetic schemes (KSs), which can be shown to have desirable entropy-consistent properties, and are thus called well-balanced schemes. A KS is derived from kinetic equations that can be integrated into the SWE. In flood risk assessment models the SWE must be coupled with other equations describing interacting meteorological and hydrogeological phenomena such as rain and groundwater flows. The SWE must therefore be appropriately modified to accommodate source and sink terms, so kinetic schemes are no longer valid. While modifications of SWE in this direction have been recently proposed, e.g., Delestre (2010), we depart from the extant literature by proposing a novel model that is "entropy-consistent" and naturally extends the SWE by respecting its kinetic formulation connections. This allows us to derive a system of partial differential equations modelling flow of a one-dimensional river with both a precipitation term and a groundwater flow model to account for potential infiltration and recharge. We exhibit numerical simulations of the corresponding kinetic schemes. These simulations can be applied to both real world flood prediction and the tackling of wider issues on how climate and societal change are affecting flood risk.

  1. Restricted magnetically balanced basis applied for relativistic calculations of indirect nuclear spin-spin coupling tensors in the matrix Dirac-Kohn-Sham framework

    International Nuclear Information System (INIS)

    Repisky, Michal; Komorovsky, Stanislav; Malkina, Olga L.; Malkin, Vladimir G.

    2009-01-01

    The relativistic four-component density functional approach based on the use of restricted magnetically balanced basis (mDKS-RMB), applied recently for calculations of NMR shielding, was extended for calculations of NMR indirect nuclear spin-spin coupling constants. The unperturbed equations are solved with the use of a restricted kinetically balanced basis set for the small component while to solve the second-order coupled perturbed DKS equations a restricted magnetically balanced basis set for the small component was applied. Benchmark relativistic calculations have been carried out for the X-H and H-H spin-spin coupling constants in the XH 4 series (X = C, Si, Ge, Sn and Pb). The method provides an attractive alternative to existing approximate two-component methods with transformed Hamiltonians for relativistic calculations of spin-spin coupling constants of heavy-atom systems. In particular, no picture-change effects arise in our method for property calculations

  2. The Crab Pulsar and Relativistic Wind

    Science.gov (United States)

    Coroniti, F. V.

    2017-12-01

    The possibility that the Crab pulsar produces a separated ion-dominated and pair-plasma-dominated, magnetically striped relativistic wind is assessed by rough estimates of the polar cap acceleration of the ion and electron primary beams, the pair production of secondary electrons and positrons, and a simple model of the near-magnetosphere-wind zone. For simplicity, only the orthogonal rotator is considered. Below (above) the rotational equator, ions (electrons) are accelerated in a thin sheath, of order (much less than) the width of the polar cap, to Lorentz factor {γ }i≈ (5{--}10)× {10}7({γ }e≈ {10}7). The accelerating parallel electric field is shorted out by ion-photon (curvature synchrotron) pair production. With strong, but fairly reasonable, assumptions, a set of general magnetic geometry relativistic wind equations is derived and shown to reduce to conservation relations that are similar to those of the wind from a magnetic monopole. The strength of the field-aligned currents carried by the primary beams is determined by the wind’s Alfvén critical point condition to be about eight times the Goldreich-Julian value. A simple model for the transition from the dipole region wind to the asymptotic monopole wind zone is developed. The asymptotic ratio of Poynting flux to ion (pair plasma) kinetic energy flux—the wind {σ }w∞ -parameter—is found to be of order {σ }w∞ ≈ 1/2({10}4). The far wind zone is likely to be complex, with the ion-dominated and pair-plasma-dominated magnetic stripes merging, and the oppositely directed azimuthal magnetic fields annihilating.

  3. Monte Carlo steps per spin vs. time in the master equation II: Glauber kinetics for the infinite-range ising model in a static magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Suhk Kun [Chungbuk National University, Chungbuk (Korea, Republic of)

    2006-01-15

    As an extension of our previous work on the relationship between time in Monte Carlo simulation and time in the continuous master equation in the infinit-range Glauber kinetic Ising model in the absence of any magnetic field, we explored the same model in the presence of a static magnetic field. Monte Carlo steps per spin as time in the MC simulations again turns out to be proportional to time in the master equation for the model in relatively larger static magnetic fields at any temperature. At and near the critical point in a relatively smaller magnetic field, the model exhibits a significant finite-size dependence, and the solution to the Suzuki-Kubo differential equation stemming from the master equation needs to be re-scaled to fit the Monte Carlo steps per spin for the system with different numbers of spins.

  4. Separation-induced boundary layer transition: Modeling with a non-linear eddy-viscosity model coupled with the laminar kinetic energy equation

    International Nuclear Information System (INIS)

    Vlahostergios, Z.; Yakinthos, K.; Goulas, A.

    2009-01-01

    We present an effort to model the separation-induced transition on a flat plate with a semi-circular leading edge, using a cubic non-linear eddy-viscosity model combined with the laminar kinetic energy. A non-linear model, compared to a linear one, has the advantage to resolve the anisotropic behavior of the Reynolds-stresses in the near-wall region and it provides a more accurate expression for the generation of turbulence in the transport equation of the turbulence kinetic energy. Although in its original formulation the model is not able to accurately predict the separation-induced transition, the inclusion of the laminar kinetic energy increases its accuracy. The adoption of the laminar kinetic energy by the non-linear model is presented in detail, together with some additional modifications required for the adaption of the laminar kinetic energy into the basic concepts of the non-linear eddy-viscosity model. The computational results using the proposed combined model are shown together with the ones obtained using an isotropic linear eddy-viscosity model, which adopts also the laminar kinetic energy concept and in comparison with the existing experimental data.

  5. Radiatively driven relativistic spherical winds under relativistic radiative transfer

    Science.gov (United States)

    Fukue, J.

    2018-05-01

    We numerically investigate radiatively driven relativistic spherical winds from the central luminous object with mass M and luminosity L* under Newtonian gravity, special relativity, and relativistic radiative transfer. We solve both the relativistic radiative transfer equation and the relativistic hydrodynamical equations for spherically symmetric flows under the double-iteration processes, to obtain the intensity and velocity fields simultaneously. We found that the momentum-driven winds with scattering are quickly accelerated near the central object to reach the terminal speed. The results of numerical solutions are roughly fitted by a relation of \\dot{m}=0.7(Γ _*-1)\\tau _* β _* β _out^{-2.6}, where \\dot{m} is the mass-loss rate normalized by the critical one, Γ* the central luminosity normalized by the critical one, τ* the typical optical depth, β* the initial flow speed at the central core of radius R*, and βout the terminal speed normalized by the speed of light. This relation is close to the non-relativistic analytical solution, \\dot{m} = 2(Γ _*-1)\\tau _* β _* β _out^{-2}, which can be re-expressed as β _out^2/2 = (Γ _*-1)GM/c^2 R_*. That is, the present solution with small optical depth is similar to that of the radiatively driven free outflow. Furthermore, we found that the normalized luminosity (Eddington parameter) must be larger than unity for the relativistic spherical wind to blow off with intermediate or small optical depth, i.e. Γ _* ≳ \\sqrt{(1+β _out)^3/(1-β _out)}. We briefly investigate and discuss an isothermal wind.

  6. The validity of the kinetic collection equation revisited – Part 3: Sol–gel transition under turbulent conditions

    Directory of Open Access Journals (Sweden)

    D. Baumgardner

    2013-01-01

    Full Text Available Warm rain in real clouds is produced by the collision and coalescence of an initial population of small droplets. The production of rain in warm cumulus clouds is still one of the open problems in cloud physics, and although several mechanisms have been proposed in the past, at present there is no complete explanation for the rapid growth of cloud droplets within the size range of diameters from 10 to 50 μm. By using a collection kernel enhanced by turbulence and a fully stochastic simulation method, the formation of a runaway droplet is modeled through the turbulent collection process. When the runaway droplet forms, the traditional calculation using the kinetic collection equation is no longer valid, since the assumption of a continuous distribution breaks down. There is in essence a phase transition in the system from a continuous distribution to a continuous distribution plus a runaway droplet. This transition can be associated to gelation (also called sol–gel transition and is proposed here as a mechanism for the formation of large droplets required to trigger warm rain development in cumulus clouds. The fully stochastic turbulent model reveals gelation and the formation of a droplet with mass comparable to the mass of the initial system. The time when the sol–gel transition occurs is estimated with a Monte Carlo method when the parameter ρ (the ratio of the standard deviation for the largest droplet mass over all the realizations to the averaged value reaches its maximum value. Moreover, we show that the non-turbulent case does not exhibit the sol–gel transition that can account for the impossibility of producing raindrop embryos in such a system. In the context of cloud physics theory, gelation can be interpreted as the formation of the "lucky droplet" that grows at a much faster rate than the rest of the population and becomes the embryo for runaway raindrops.

  7. Application of Littlewood-Paley decomposition to the regularity of Boltzmann type kinetic equations; Application de la decomposition de Littlewood-Paley a la regularite pour des equations cinetiques de type Boltzmann

    Energy Technology Data Exchange (ETDEWEB)

    EL Safadi, M

    2007-03-15

    We study the regularity of kinetic equations of Boltzmann type.We use essentially Littlewood-Paley method from harmonic analysis, consisting mainly in working with dyadics annulus. We shall mainly concern with the homogeneous case, where the solution f(t,x,v) depends only on the time t and on the velocities v, while working with realistic and singular cross-sections (non cutoff). In the first part, we study the particular case of Maxwellian molecules. Under this hypothesis, the structure of the Boltzmann operator and his Fourier transform write in a simple form. We show a global C{sup {infinity}} regularity. Then, we deal with the case of general cross-sections with 'hard potential'. We are interested in the Landau equation which is limit equation to the Boltzmann equation, taking in account grazing collisions. We prove that any weak solution belongs to Schwartz space S. We demonstrate also a similar regularity for the case of Boltzmann equation. Let us note that our method applies directly for all dimensions, and proofs are often simpler compared to other previous ones. Finally, we finish with Boltzmann-Dirac equation. In particular, we adapt the result of regularity obtained in Alexandre, Desvillettes, Wennberg and Villani work, using the dissipation rate connected with Boltzmann-Dirac equation. (author)

  8. Rotating relativistic neutron stars

    Energy Technology Data Exchange (ETDEWEB)

    Weber, F.; Glendenning, N.K.

    1991-07-21

    Models of rotating neutron stars are constructed in the framework of Einstein's theory of general relativity. For this purpose a refined version of Hartle's method is applied. The properties of these objects, e.g. gravitational mass, equatorial and polar radius, eccentricity, red- and blueshift, quadrupole moment, are investigated for Kepler frequencies of 4000 s{sup {minus}1} {le} {Omega}{sub K} {le} 9000 s{sup {minus}1}. Therefore a self-consistency problem inherent in the determination of {Omega}{sub K} must be solved. The investigation is based on neutron star matter equations of state derived from the relativistic Martin-Schwinger hierarch of coupled Green's functions. By means of introducing the Hartree, Hartree-Fock, and ladder ({Lambda}) approximations, models of the equation of state derived. A special feature of the latter approximation scheme is the inclusion of dynamical two-particle correlations. These have been calculated from the relativistic T-matrix applying both the HEA and Bonn meson-exchange potentials of the nucleon-nucleon force. The nuclear forces of the former two treatments are those of the standard scalar-vector-isovector model of quantum hadron dynamics, with parameters adjusted to the nuclear matter data. An important aspect of this work consists in testing the compatibility of different competing models of the nuclear equation of state with data on pulsar periods. By this the fundamental problem of nuclear physics concerning the behavior of the equation of state at supernuclear densities can be treated.

  9. Solution of the point kinetics equations in the presence of Newtonian temperature feedback by Pade approximations via the analytical inversion method

    International Nuclear Information System (INIS)

    Aboanber, A E; Nahla, A A

    2002-01-01

    A method based on the Pade approximations is applied to the solution of the point kinetics equations with a time varying reactivity. The technique consists of treating explicitly the roots of the inhour formula. A significant improvement has been observed by treating explicitly the most dominant roots of the inhour equation, which usually would make the Pade approximation inaccurate. Also the analytical inversion method which permits a fast inversion of polynomials of the point kinetics matrix is applied to the Pade approximations. Results are presented for several cases of Pade approximations using various options of the method with different types of reactivity. The formalism is applicable equally well to non-linear problems, where the reactivity depends on the neutron density through temperature feedback. It was evident that the presented method is particularly good for cases in which the reactivity can be represented by a series of steps and performed quite well for more general cases

  10. Utilization of integrated Michaelis-Menten equations for enzyme inhibition diagnosis and determination of kinetic constants using Solver supplement of Microsoft Office Excel.

    Science.gov (United States)

    Bezerra, Rui M F; Fraga, Irene; Dias, Albino A

    2013-01-01

    Enzyme kinetic parameters are usually determined from initial rates nevertheless, laboratory instruments only measure substrate or product concentration versus reaction time (progress curves). To overcome this problem we present a methodology which uses integrated models based on Michaelis-Menten equation. The most severe practical limitation of progress curve analysis occurs when the enzyme shows a loss of activity under the chosen assay conditions. To avoid this problem it is possible to work with the same experimental points utilized for initial rates determination. This methodology is illustrated by the use of integrated kinetic equations with the well-known reaction catalyzed by alkaline phosphatase enzyme. In this work nonlinear regression was performed with the Solver supplement (Microsoft Office Excel). It is easy to work with and track graphically the convergence of SSE (sum of square errors). The diagnosis of enzyme inhibition was performed according to Akaike information criterion. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  11. Relativistic Astronomy

    Science.gov (United States)

    Zhang, Bing; Li, Kunyang

    2018-02-01

    The “Breakthrough Starshot” aims at sending near-speed-of-light cameras to nearby stellar systems in the future. Due to the relativistic effects, a transrelativistic camera naturally serves as a spectrograph, a lens, and a wide-field camera. We demonstrate this through a simulation of the optical-band image of the nearby galaxy M51 in the rest frame of the transrelativistic camera. We suggest that observing celestial objects using a transrelativistic camera may allow one to study the astronomical objects in a special way, and to perform unique tests on the principles of special relativity. We outline several examples that suggest transrelativistic cameras may make important contributions to astrophysics and suggest that the Breakthrough Starshot cameras may be launched in any direction to serve as a unique astronomical observatory.

  12. Four-Component Relativistic Density-Functional Theory Calculations of Nuclear Spin-Rotation Constants: Relativistic Effects in p-Block Hydrides.

    Science.gov (United States)

    Komorovsky, Stanislav; Repisky, Michal; Malkin, Elena; Demissie, Taye B; Ruud, Kenneth

    2015-08-11

    We present an implementation of the nuclear spin-rotation (SR) constants based on the relativistic four-component Dirac-Coulomb Hamiltonian. This formalism has been implemented in the framework of the Hartree-Fock and Kohn-Sham theory, allowing assessment of both pure and hybrid exchange-correlation functionals. In the density-functional theory (DFT) implementation of the response equations, a noncollinear generalized gradient approximation (GGA) has been used. The present approach enforces a restricted kinetic balance condition for the small-component basis at the integral level, leading to very efficient calculations of the property. We apply the methodology to study relativistic effects on the spin-rotation constants by performing calculations on XHn (n = 1-4) for all elements X in the p-block of the periodic table and comparing the effects of relativity on the nuclear SR tensors to that observed for the nuclear magnetic shielding tensors. Correlation effects as described by the density-functional theory are shown to be significant for the spin-rotation constants, whereas the differences between the use of GGA and hybrid density functionals are much smaller. Our calculated relativistic spin-rotation constants at the DFT level of theory are only in fair agreement with available experimental data. It is shown that the scaling of the relativistic effects for the spin-rotation constants (varying between Z(3.8) and Z(4.5)) is as strong as for the chemical shieldings but with a much smaller prefactor.

  13. Time-dependent integral equations of neutron transport for calculating the kinetics of nuclear reactors by the Monte Carlo method

    Energy Technology Data Exchange (ETDEWEB)

    Davidenko, V. D., E-mail: Davidenko-VD@nrcki.ru; Zinchenko, A. S., E-mail: zin-sn@mail.ru; Harchenko, I. K. [National Research Centre Kurchatov Institute (Russian Federation)

    2016-12-15

    Integral equations for the shape functions in the adiabatic, quasi-static, and improved quasi-static approximations are presented. The approach to solving these equations by the Monte Carlo method is described.

  14. Plasma kinetic theory

    International Nuclear Information System (INIS)

    Elliott, J.A.

    1993-01-01

    Plasma kinetic theory is discussed and a comparison made with the kinetic theory of gases. The plasma is described by a modified set of fluid equations and it is shown how these fluid equations can be derived. (UK)

  15. Circular relativistic motion of two identical bodies

    International Nuclear Information System (INIS)

    Shavokhina, N.S.

    1983-01-01

    Circular relativistic motion of two bodies as a solution of the earlier obtained equations with a deflecting argument where the self-deflection of the argument is an unknown function of time is considered. In case of circular motion the argument deflection is independent from time and it is the root of the transcendental equation obtained in the paper

  16. On the dispersion characteristics of extraordinary mode in a relativistic fully degenerate electron plasma

    Science.gov (United States)

    Noureen, S.; Abbas, G.; Sarfraz, M.

    2018-01-01

    The study of relativistic degenerate plasmas is important in many astrophysical and laboratory environments. Using linearized relativistic Vlasov-Maxwell equations, a generalized expression for the plasma conductivity tensor is derived. Employing Fermi-Dirac distribution at zero temperature, the dispersion relation of the extraordinary mode in a relativistic degenerate electron plasma is investigated. The propagation characteristics are examined in different relativistic density ranges. The shifting of cutoff points due to relativistic effects is observed analytically and graphically. Non-relativistic and ultra-relativistic limiting cases are also presented.

  17. Kinetic theory of nonequilibrium ensembles, irreversible thermodynamics, and generalized hydrodynamics

    CERN Document Server

    Eu, Byung Chan

    2016-01-01

    This book presents the fundamentals of irreversible thermodynamics for nonlinear transport processes in gases and liquids, as well as for generalized hydrodynamics extending the classical hydrodynamics of Navier, Stokes, Fourier, and Fick. Together with its companion volume on relativistic theories, it provides a comprehensive picture of the kinetic theory formulated from the viewpoint of nonequilibrium ensembles in both nonrelativistic and, in Vol. 2, relativistic contexts. Theories of macroscopic irreversible processes must strictly conform to the thermodynamic laws at every step and in all approximations that enter their derivation from the mechanical principles. Upholding this as the inviolable tenet, the author develops theories of irreversible transport processes in fluids (gases or liquids) on the basis of irreversible kinetic equations satisfying the H theorem. They apply regardless of whether the processes are near to or far removed from equilibrium, or whether they are linear or nonlinear with respe...

  18. Double Relativistic Electron Accelerating Mirror

    Directory of Open Access Journals (Sweden)

    Saltanat Sadykova

    2013-02-01

    Full Text Available In the present paper, the possibility of generation of thin dense relativistic electron layers is shown using the analytical and numerical modeling of laser pulse interaction with ultra-thin layers. It was shown that the maximum electron energy can be gained by optimal tuning between the target width, intensity and laser pulse duration. The optimal parameters were obtained from a self-consistent system of Maxwell equations and the equation of motion of electron layer. For thin relativistic electron layers, the gaining of maximum electron energies requires a second additional overdense plasma layer, thus cutting the laser radiation off the plasma screen at the instant of gaining the maximum energy (DREAM-schema.

  19. A relativistic quarkonium potential model

    International Nuclear Information System (INIS)

    Klima, B.; Maor, U.

    1984-04-01

    We review a recently developed relativistic quark-antiquark bound state equation using the expansion in intermediate states. Using a QCD motivated potential we succeeded very well to fit both the heavy systems (banti b, canti c) and the light systems (santi s, uanti u and danti d). Here we emphasize our results on heavy-light sustems and on the possible (tanti t) family. (orig.)

  20. Optical analogue of relativistic Dirac solitons in binary waveguide arrays

    Energy Technology Data Exchange (ETDEWEB)

    Tran, Truong X., E-mail: truong.tran@mpl.mpg.de [Department of Physics, Le Quy Don University, 236 Hoang Quoc Viet str., 10000 Hanoi (Viet Nam); Max Planck Institute for the Science of Light, Günther-Scharowsky str. 1, 91058 Erlangen (Germany); Longhi, Stefano [Department of Physics, Politecnico di Milano and Istituto di Fotonica e Nanotecnologie del Consiglio Nazionale delle Ricerche, Piazza L. da Vinci 32, I-20133 Milano (Italy); Biancalana, Fabio [Max Planck Institute for the Science of Light, Günther-Scharowsky str. 1, 91058 Erlangen (Germany); School of Engineering and Physical Sciences, Heriot-Watt University, EH14 4AS Edinburgh (United Kingdom)

    2014-01-15

    We study analytically and numerically an optical analogue of Dirac solitons in binary waveguide arrays in the presence of Kerr nonlinearity. Pseudo-relativistic soliton solutions of the coupled-mode equations describing dynamics in the array are analytically derived. We demonstrate that with the found soliton solutions, the coupled mode equations can be converted into the nonlinear relativistic 1D Dirac equation. This paves the way for using binary waveguide arrays as a classical simulator of quantum nonlinear effects arising from the Dirac equation, something that is thought to be impossible to achieve in conventional (i.e. linear) quantum field theory. -- Highlights: •An optical analogue of Dirac solitons in nonlinear binary waveguide arrays is suggested. •Analytical solutions to pseudo-relativistic solitons are presented. •A correspondence of optical coupled-mode equations with the nonlinear relativistic Dirac equation is established.

  1. Gamma rays from relativistic electrons undergoing Compton losses in isotropic photon fields

    International Nuclear Information System (INIS)

    Zdziarski, A.A.

    1989-01-01

    The kinetic equation describing Compton losses of relativistic electrons in an isotropic field of soft background photons is solved exactly including both continuous energy losses in the classical Thomson regime and catastrophic losses in the quantum Klein-Nishina regime. This extends the previous treatments of this problem, which assumed the validity of either one of these regimes alone. The problem is relevant to astrophysical sources containing relativistic electrons. Analytical solutions for the steady state electron and gamma-ray spectra in the case of power-law soft photons and monoenergetic and power-law electron injections are obtained. Numerical solutions are presented for monoenergetic, blackbody, and power-law soft photons. A comparison between the numerical and the available analytic solutions is made. 15 refs

  2. Relativistic analysis

    International Nuclear Information System (INIS)

    Unterberger, A.

    1987-01-01

    We study the Klein-Gordon symbolic calculus of operators acting on solutions of the free Klein-Gordon equation. It contracts to the Weyl calculus as c→∞. Mathematically, it may also be considered as a pseudodifferential analysis on the unit ball of R n [fr

  3. Relativistic thermodynamics of fluids

    International Nuclear Information System (INIS)

    Souriau, J.-M.

    1977-05-01

    The relativistic covariant definition of a statistical equilibrium, applied to a perfect gas, involves a 'temperature four-vector', whose direction is the mean velocity of the fluid, and whose length is the reciprocal temperature. The hypothesis of this 'temperature four-vector' being a relevant variable for the description of the dissipative motions of a simple fluid is discussed. The kinematics is defined by using a vector field and measuring the number of molecules. Such a dissipative fluid is subject to motions involving null entropy generation; the 'temperature four-vector' is then a Killing vector; the equations of motion can be completely integrated. Perfect fluids can be studied by this way and the classical results of Lichnerowicz are obtained. In weakly dissipative motions two viscosity coefficient appear together with the heat conductibility coefficient. Two other coefficients perharps measurable on real fluids. Phase transitions and shock waves are described with using the model [fr

  4. Relativistic plasma dispersion functions

    International Nuclear Information System (INIS)

    Robinson, P.A.

    1986-01-01

    The known properties of plasma dispersion functions (PDF's) for waves in weakly relativistic, magnetized, thermal plasmas are reviewed and a large number of new results are presented. The PDF's required for the description of waves with small wave number perpendicular to the magnetic field (Dnestrovskii and Shkarofsky functions) are considered in detail; these functions also arise in certain quantum electrodynamical calculations involving strongly magnetized plasmas. Series, asymptotic series, recursion relations, integral forms, derivatives, differential equations, and approximations for these functions are discussed as are their analytic properties and connections with standard transcendental functions. In addition a more general class of PDF's relevant to waves of arbitrary perpendicular wave number is introduced and a range of properties of these functions are derived

  5. Comparative analysis of solution methods of the punctual kinetic equations; Analisis comparativo de metodos de solucion de las ecuaciones de cinetica puntual

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez S, A. [UNAM-LAIRN, Jiutepec, Morelos (Mexico)] e-mail: augusto_vib@yahoo.com.mx

    2003-07-01

    The following one written it presents a comparative analysis among different analytical solutions for the punctual kinetics equation, which present two variables of interest: a) the temporary behavior of the neutronic population, and b) The temporary behavior of the different groups of precursors of delayed neutrons. The first solution is based on a method that solves the transfer function of the differential equation for the neutronic population, in which intends to obtain the different poles that give the stability of this transfer function. In this section it is demonstrated that the temporary variation of the reactivity of the system can be managed as it is required, since the integration time for this method doesn't affect the result. However, the second solution is based on an iterative method like that of Runge-Kutta or the Euler method where the algorithm was only used to solve first order differential equations giving this way solution to each differential equation that conforms the equations of punctual kinetics. In this section it is demonstrated that only it can obtain a correct temporary behavior of the neutronic population when it is integrated on an interval of very short time, forcing to the temporary variation of the reactivity to change very quick way without one has some control about the time. In both methods the same change is used so much in the reactivity of the system like in the integration times, giving validity to the results graph the one the temporary behavior of the neutronic population vs. time. (Author)

  6. RANKINE-HUGONIOT RELATIONS IN RELATIVISTIC COMBUSTION WAVES

    International Nuclear Information System (INIS)

    Gao Yang; Law, Chung K.

    2012-01-01

    As a foundational element describing relativistic reacting waves of relevance to astrophysical phenomena, the Rankine-Hugoniot relations classifying the various propagation modes of detonation and deflagration are analyzed in the relativistic regime, with the results properly degenerating to the non-relativistic and highly relativistic limits. The existence of negative-pressure downstream flows is noted for relativistic shocks, which could be of interest in the understanding of the nature of dark energy. Entropy analysis for relativistic shock waves is also performed for relativistic fluids with different equations of state (EoS), denoting the existence of rarefaction shocks in fluids with adiabatic index Γ < 1 in their EoS. The analysis further shows that weak detonations and strong deflagrations, which are rare phenomena in terrestrial environments, are expected to exist more commonly in astrophysical systems because of the various endothermic reactions present therein. Additional topics of relevance to astrophysical phenomena are also discussed.

  7. Relativistic treatment of fermion-antifermion bound states

    International Nuclear Information System (INIS)

    Lucha, W.; Rupprecht, H.; Schoeberl, F.F.

    1990-01-01

    We discuss the relativistic treatment of fermion-antifermion bound states by an effective-Hamiltonian method which imitates their description in terms of nonrelativistic potential models: the effective interaction potential, to be used in a Schroedinger equation which incorporates relativistic kinematics, is derived from the underlying quantum field theory. This approach is equivalent to the instantaneous approximation to the Bethe-Salpeter equation called Salpeter equation but comes closer to physical intuition than the latter one. (Author) 14 refs

  8. Extended Galilean symmetries of non-relativistic strings

    Energy Technology Data Exchange (ETDEWEB)

    Batlle, Carles [Departament de Matemàtiques and IOC, Universitat Politècnica de Catalunya, EPSEVG,Av. V. Balaguer 1, E-08808 Vilanova i la Geltrú (Spain); Gomis, Joaquim; Not, Daniel [Departament de Física Quàntica i Astrofísica and Institut de Ciències del Cosmos (ICCUB),Universitat de Barcelona,Martí i Franquès 1, E-08028 Barcelona (Spain)

    2017-02-09

    We consider two non-relativistic strings and their Galilean symmetries. These strings are obtained as the two possible non-relativistic (NR) limits of a relativistic string. One of them is non-vibrating and represents a continuum of non-relativistic massless particles, and the other one is a non-relativistic vibrating string. For both cases we write the generator of the most general point transformation and impose the condition of Noether symmetry. As a result we obtain two sets of non-relativistic Killing equations for the vector fields that generate the symmetry transformations. Solving these equations shows that NR strings exhibit two extended, infinite dimensional space-time symmetries which contain, as a subset, the Galilean symmetries. For each case, we compute the associated conserved charges and discuss the existence of non-central extensions.

  9. Coupled electron and atomic kinetics through the solution of the Boltzmann equation for generating time-dependent X-ray spectra

    International Nuclear Information System (INIS)

    Sherrill, M.E.; Abdallah, J. Jr.; Csanak, G.; Kilcrease, D.P.; Dodd, E.S.; Fukuda, Y.; Akahane, Y.; Aoyama, M.; Inoue, N.; Ueda, H.; Yamakawa, K.; Faenov, A.Ya.; Magunov, A.I.; Pikuz, T.A.; Skobelev, I.Yu.

    2006-01-01

    In this work, we present a model that solves self-consistently the electron and atomic kinetics to characterize highly non-equilibrium plasmas, in particular for those systems where both the electron distribution function is far from Maxwellian and the evolution of the ion level populations are dominated by time-dependent atomic kinetics. In this model, level populations are obtained from a detailed collisional-radiative model where collision rates are computed from a time varying electron distribution function obtained from the solution of the zero-dimensional Boltzmann equation. The Boltzmann collision term includes the effects of electron-electron collisions, electron collisional ionization, excitation and de-excitation. An application for He α spectra from a short pulse laser irradiated argon cluster target will be shown to illustrate the results of our model

  10. Coupled electron and atomic kinetics through the solution of the Boltzmann equation for generating time-dependent X-ray spectra

    Energy Technology Data Exchange (ETDEWEB)

    Sherrill, M.E. [Los Alamos National Laboratory, T-4, Los Alamos, NM 87545 (United States)]. E-mail: manolo@t4.lanl.gov; Abdallah, J. Jr. [Los Alamos National Laboratory, T-4, Los Alamos, NM 87545 (United States); Csanak, G. [Los Alamos National Laboratory, T-4, Los Alamos, NM 87545 (United States); Kilcrease, D.P. [Los Alamos National Laboratory, T-4, Los Alamos, NM 87545 (United States); Dodd, E.S. [Los Alamos National Laboratory, X-1, Los Alamos, NM 87545 (United States); Fukuda, Y. [Advanced Photon Research Center, JAERI, Kyoto 619-0215 (Japan); Akahane, Y. [Advanced Photon Research Center, JAERI, Kyoto 619-0215 (Japan); Aoyama, M. [Advanced Photon Research Center, JAERI, Kyoto 619-0215 (Japan); Inoue, N. [Advanced Photon Research Center, JAERI, Kyoto 619-0215 (Japan); Ueda, H. [Advanced Photon Research Center, JAERI, Kyoto 619-0215 (Japan); Yamakawa, K. [Advanced Photon Research Center, JAERI, Kyoto 619-0215 (Japan); Faenov, A.Ya. [Multicharged Ions Spectra Data Center of VNIIFTRI, Mendeleevo, Moscow Region 141570 (Russian Federation); Magunov, A.I. [Multicharged Ions Spectra Data Center of VNIIFTRI, Mendeleevo, Moscow Region 141570 (Russian Federation); Pikuz, T.A. [Multicharged Ions Spectra Data Center of VNIIFTRI, Mendeleevo, Moscow Region 141570 (Russian Federation); Skobelev, I.Yu. [Multicharged Ions Spectra Data Center of VNIIFTRI, Mendeleevo, Moscow Region 141570 (Russian Federation)

    2006-05-15

    In this work, we present a model that solves self-consistently the electron and atomic kinetics to characterize highly non-equilibrium plasmas, in particular for those systems where both the electron distribution function is far from Maxwellian and the evolution of the ion level populations are dominated by time-dependent atomic kinetics. In this model, level populations are obtained from a detailed collisional-radiative model where collision rates are computed from a time varying electron distribution function obtained from the solution of the zero-dimensional Boltzmann equation. The Boltzmann collision term includes the effects of electron-electron collisions, electron collisional ionization, excitation and de-excitation. An application for He{sub {alpha}} spectra from a short pulse laser irradiated argon cluster target will be shown to illustrate the results of our model.

  11. Stoichiometric network analysis and associated dimensionless kinetic equations. Application to a model of the Bray-Liebhafsky reaction.

    Science.gov (United States)

    Schmitz, Guy; Kolar-Anić, Ljiljana Z; Anić, Slobodan R; Cupić, Zeljko D

    2008-12-25

    The stoichiometric network analysis (SNA) introduced by B. L. Clarke is applied to a simplified model of the complex oscillating Bray-Liebhafsky reaction under batch conditions, which was not examined by this method earlier. This powerful method for the analysis of steady-states stability is also used to transform the classical differential equations into dimensionless equations. This transformation is easy and leads to a form of the equations combining the advantages of classical dimensionless equations with the advantages of the SNA. The used dimensionless parameters have orders of magnitude given by the experimental information about concentrations and currents. This simplifies greatly the study of the slow manifold and shows which parameters are essential for controlling its shape and consequently have an important influence on the trajectories. The effectiveness of these equations is illustrated on two examples: the study of the bifurcations points and a simple sensitivity analysis, different from the classical one, more based on the chemistry of the studied system.

  12. Relativistic quantum mechanics and introduction to field theory

    Energy Technology Data Exchange (ETDEWEB)

    Yndurain, F.J. [Universidad Autonoma de Madrid (Spain). Dept. de Fisica Teorica

    1996-12-01

    The following topics were dealt with: relativistic transformations, the Lorentz group, Klein-Gordon equation, spinless particles, spin 1/2 particles, Dirac particle in a potential, massive spin 1 particles, massless spin 1 particles, relativistic collisions, S matrix, cross sections, decay rates, partial wave analysis, electromagnetic field quantization, interaction of radiation with matter, interactions in quantum field theory and relativistic interactions with classical sources.

  13. Relativistic quantum mechanics and introduction to field theory

    International Nuclear Information System (INIS)

    Yndurain, F.J.

    1996-01-01

    The following topics were dealt with: relativistic transformations, the Lorentz group, Klein-Gordon equation, spinless particles, spin 1/2 particles, Dirac particle in a potential, massive spin 1 particles, massless spin 1 particles, relativistic collisions, S matrix, cross sections, decay rates, partial wave analysis, electromagnetic field quantization, interaction of radiation with matter, interactions in quantum field theory and relativistic interactions with classical sources

  14. Breakup of relativistic π+π- atoms in matter

    International Nuclear Information System (INIS)

    Afanasyev, L.G.; Tarasov, A.V.

    1996-01-01

    The relativistic motion of atoms formed by π+ and π- mesons in matter is considered. Exact analytic expressions for the form factors of hydrogenlike atoms for discrete-discrete transitions are obtained in a form convenient for numerical calculations. The total and transition cross sections for the interaction of π+π- atoms with matter are calculated in the Born approximation. The evolution of atomic-state populations is treated in terms of kinetic equations. The method of calculation makes it possible to obtain the populations of discrete atomic states, as well as the probability of transitions to the continuous spectrum (ionization). The proposed method yields the first experimental estimate of the lifetime of the π+π- atom

  15. The relativistic virial theorem

    International Nuclear Information System (INIS)

    Lucha, W.; Schoeberl, F.F.

    1989-11-01

    The relativistic generalization of the quantum-mechanical virial theorem is derived and used to clarify the connection between the nonrelativistic and (semi-)relativistic treatment of bound states. 12 refs. (Authors)

  16. Quasiclassical Theory of Spin Dynamics in Superfluid ^3He: Kinetic Equations in the Bulk and Spin Response of Surface Majorana States

    Science.gov (United States)

    Silaev, M. A.

    2018-06-01

    We develop a theory based on the formalism of quasiclassical Green's functions to study the spin dynamics in superfluid ^3He. First, we derive kinetic equations for the spin-dependent distribution function in the bulk superfluid reproducing the results obtained earlier without quasiclassical approximation. Then, we consider spin dynamics near the surface of fully gapped ^3He-B-phase taking into account spin relaxation due to the transitions in the spectrum of localized fermionic states. The lifetimes of longitudinal and transverse spin waves are calculated taking into account the Fermi-liquid corrections which lead to a crucial modification of fermionic spectrum and spin responses.

  17. Slowly rotating general relativistic superfluid neutron stars with relativistic entrainment

    International Nuclear Information System (INIS)

    Comer, G.L.

    2004-01-01

    Neutron stars that are cold enough should have two or more superfluids or supercondutors in their inner crusts and cores. The implication of superfluidity or superconductivity for equilibrium and dynamical neutron star states is that each individual particle species that forms a condensate must have its own, independent number density current and equation of motion that determines that current. An important consequence of the quasiparticle nature of each condensate is the so-called entrainment effect; i.e., the momentum of a condensate is a linear combination of its own current and those of the other condensates. We present here the first fully relativistic modeling of slowly rotating superfluid neutron stars with entrainment that is accurate to the second-order in the rotation rates. The stars consist of superfluid neutrons, superconducting protons, and a highly degenerate, relativistic gas of electrons. We use a relativistic σ-ω mean field model for the equation of state of the matter and the entrainment. We determine the effect of a relative rotation between the neutrons and protons on a star's total mass, shape, and Kepler, mass-shedding limit

  18. Numerical Calculation of Transport Based on the Drift-Kinetic Equation for Plasmas in General Toroidal Magnetic Geometry: Convergence and Testing

    International Nuclear Information System (INIS)

    Reynolds, J. M.; Lopez-Bruna, D.

    2009-01-01

    This report is the third of a series [Informes Tecnicos Ciemat 1165 y 1172] devoted to the development of a new numerical code to solve the guiding center equation for electrons and ions in toroidal plasmas. Two calculation meshes corresponding to axisymmetric tokamaks are now prepared and the kinetic equation is expanded so the standard terms of neoclassical theory --fi rst order terms in the Larmor radius expansion-- can be identified, restricting the calculations correspondingly. Using model density and temperature profiles for the plasma, several convergence test are performed depending on the calculation meshes and the expansions of the distribution function; then the results are compared with the theory [Hinton and Hazeltine, Rev. Mod. Phys. (1976)]. (Author) 18 refs

  19. Relativistic classical limit of quantum theory

    International Nuclear Information System (INIS)

    Shin, G.R.; Rafelski, J.

    1993-01-01

    We study the classical limit of the equal-time relativistic quantum transport theory. We discuss in qualitative terms the need to fold first the Wigner function with a coarse-graining function. Only then does the singularity at ℎ→0 seem to be manageable. In the limit ℎ→0, we obtain the relativistic Vlasov equations for the particle and the antiparticle sector of the Fock space. Similarly, we address the evolution equations of the spin and the magnetic-moment density

  20. Relativistic gas in a Schwarzschild metric

    International Nuclear Information System (INIS)

    Kremer, Gilberto M

    2013-01-01

    A relativistic gas in a Schwarzschild metric is studied within the framework of a relativistic Boltzmann equation in the presence of gravitational fields, where Marle’s model for the collision operator of the Boltzmann equation is employed. The transport coefficients of the bulk and shear viscosities and thermal conductivity are determined from the Chapman–Enskog method. It is shown that the transport coefficients depend on the gravitational potential. Expressions for the transport coefficients in the presence of weak gravitational fields in the non-relativistic (low temperature) and ultra-relativistic (high temperature) limiting cases are given. Apart from the temperature gradient the heat flux has two relativistic terms. The first one, proposed by Eckart, is due to the inertia of energy and represents an isothermal heat flux when matter is accelerated. The other, suggested by Tolman, is proportional to the gravitational potential gradient and indicates that—in the absence of an acceleration field—a state of equilibrium of a relativistic gas in a gravitational field can be attained only if the temperature gradient is counterbalanced by a gravitational potential gradient. (paper)

  1. Development and analysis of prognostic equations for mesoscale kinetic energy and mesoscale (subgrid scale) fluxes for large-scale atmospheric models

    Science.gov (United States)

    Avissar, Roni; Chen, Fei

    1993-01-01

    Generated by landscape discontinuities (e.g., sea breezes) mesoscale circulation processes are not represented in large-scale atmospheric models (e.g., general circulation models), which have an inappropiate grid-scale resolution. With the assumption that atmospheric variables can be separated into large scale, mesoscale, and turbulent scale, a set of prognostic equations applicable in large-scale atmospheric models for momentum, temperature, moisture, and any other gaseous or aerosol material, which includes both mesoscale and turbulent fluxes is developed. Prognostic equations are also developed for these mesoscale fluxes, which indicate a closure problem and, therefore, require a parameterization. For this purpose, the mean mesoscale kinetic energy (MKE) per unit of mass is used, defined as E-tilde = 0.5 (the mean value of u'(sub i exp 2), where u'(sub i) represents the three Cartesian components of a mesoscale circulation (the angle bracket symbol is the grid-scale, horizontal averaging operator in the large-scale model, and a tilde indicates a corresponding large-scale mean value). A prognostic equation is developed for E-tilde, and an analysis of the different terms of this equation indicates that the mesoscale vertical heat flux, the mesoscale pressure correlation, and the interaction between turbulence and mesoscale perturbations are the major terms that affect the time tendency of E-tilde. A-state-of-the-art mesoscale atmospheric model is used to investigate the relationship between MKE, landscape discontinuities (as characterized by the spatial distribution of heat fluxes at the earth's surface), and mesoscale sensible and latent heat fluxes in the atmosphere. MKE is compared with turbulence kinetic energy to illustrate the importance of mesoscale processes as compared to turbulent processes. This analysis emphasizes the potential use of MKE to bridge between landscape discontinuities and mesoscale fluxes and, therefore, to parameterize mesoscale fluxes

  2. Algorithm for research of mathematical physics equations symmetries. Symmetries of the free Schroedinger equation

    International Nuclear Information System (INIS)

    Kotel'nikov, G.A.

    1994-01-01

    An algorithm id proposed for research the symmetries of mathematical physics equation. The application of this algorithm to the Schroedinger equation permitted to establish, that in addition to the known symmetry the Schroedinger equation possesses also the relativistic symmetry

  3. Time Operator in Relativistic Quantum Mechanics

    Science.gov (United States)

    Khorasani, Sina

    2017-07-01

    It is first shown that the Dirac’s equation in a relativistic frame could be modified to allow discrete time, in agreement to a recently published upper bound. Next, an exact self-adjoint 4 × 4 relativistic time operator for spin-1/2 particles is found and the time eigenstates for the non-relativistic case are obtained and discussed. Results confirm the quantum mechanical speculation that particles can indeed occupy negative energy levels with vanishingly small but non-zero probablity, contrary to the general expectation from classical physics. Hence, Wolfgang Pauli’s objection regarding the existence of a self-adjoint time operator is fully resolved. It is shown that using the time operator, a bosonic field referred here to as energons may be created, whose number state representations in non-relativistic momentum space can be explicitly found.

  4. Nonlineart theory of relativistic beam-plasma instabilities in the regime of the collective Cherenkov effect

    Energy Technology Data Exchange (ETDEWEB)

    Bobylev, Yu. V. [L.N. Tolstoy Tula State Pedagogical University (Russian Federation); Kuzelev, M. V. [Moscow State University (Russian Federation); Rukhadze, A. A. [Russian Academy of Sciences, Prokhorov Institute of General Physics (Russian Federation)

    2008-02-15

    A general mathematical model is proposed that is based on the Vlasov kinetic equation with a self-consistent field and describes the nonlinear dynamics of the electromagnetic instabilities of a relativistic electron beam in a spatially bounded plasma. Two limiting cases are analyzed, namely, high-frequency (HF) and low-frequency (LF) instabilities of a relativistic electron beam, of which the LF instability is a qualitatively new phenomenon in comparison with the known Cherenkov resonance effects. For instabilities in the regime of the collective Cherenkov effect, the equations containing cubic nonlinearities and describing the nonlinear saturation of the instabilities of a relativistic beam in a plasma are derived by using the methods of expansion in small perturbations of the trajectories and momenta of the beam electrons. Analytic expressions for the amplitudes of the interacting beam and plasma waves are obtained. The analytical results are shown to agree well with the exact solutions obtained numerically from the basic general mathematical model of the instabilities in question. The general mathematical model is also used to discuss the effects associated with variation in the constant component of the electron current in a beam-plasma system.

  5. Draws on a relativistic pinch with a longitudinal magnetic field

    International Nuclear Information System (INIS)

    Trubnikov, B.A.

    1991-01-01

    The problems of draws on a relativistic pinch with longitudinal magnetic field are discussed. The absence of collisions promoting the energy exchange between different degrees of particle freedom is assumed. The calculations are conducted using the ideal relativistic anisotropic magnetic hydrodynamics equations. The spectrum of particles accelerated in the draws, is determined

  6. Particle Acceleration and Radiative Losses at Relativistic Shocks

    Science.gov (United States)

    Dempsey, P.; Duffy, P.

    A semi-analytic approach to the relativistic transport equation with isotropic diffusion and consistent radiative losses is presented. It is based on the eigenvalue method first introduced in Kirk & Schneider [5]and Heavens & Drury [3]. We demonstrate the pitch-angle dependence of the cut-off in relativistic shocks.

  7. On the relativistic extended Thomas-Fermi method

    International Nuclear Information System (INIS)

    Centelles, M.; Vinas, X.; Barranco, M.; Schuck, P.

    1990-01-01

    We have derived the semiclassical relativistic energy functional for a set of fermions moving in the mean field arising from scalar and vector fields, including up to ℎ 2 corrective terms. The method is applied to a relativistic harmonic oscillator model for which the semiclassical result can be compared with the exact solution of the Dirac equation. (orig.)

  8. On the relativistic extended Thomas-Fermi method

    International Nuclear Information System (INIS)

    Centelles, M.; Vinas, X.; Barranco, M.; Schuck, P.

    1990-01-01

    We have derived the semiclassical relativistic energy functional for a set of fermions moving in the mean field arising from scalar and vector fields, including up to ℎ 2 corrective terms. The method is applied to a relativistic harmonic oscillator model for which the semiclassical result can be compared with the exact solution of the Dirac equation

  9. Unlimited Relativistic Shock Surfing Acceleration

    International Nuclear Information System (INIS)

    Ucer, D.; Shapiro, V. D.

    2001-01-01

    Nonrelativistic shock surfing acceleration at quasiperpendicular shocks is usually considered to be a preacceleration mechanism for slow pickup ions to initiate diffusive shock acceleration. In shock surfing, the particle accelerates along the shock front under the action of the convective electric field of the plasma flow. However, the particle also gains kinetic energy normal to the shock and eventually escapes downstream. We consider the case when ions are accelerated to relativistic velocities. In this case, the ions are likely to be trapped for infinitely long times, because the energy of bounce oscillations tends to decrease during acceleration. This suggests the possibility of unlimited acceleration by shock surfing

  10. Kinetic description of intense nonneutral beam propagation through a periodic solenoidal focusing field based on the nonlinear Vlasov-Maxwell equations

    International Nuclear Information System (INIS)

    Davidson, R.C.; Chen, C.

    1997-08-01

    A kinetic description of intense nonneutral beam propagation through a periodic solenoidal focusing field B sol (rvec x) is developed. The analysis is carried out for a thin beam with characteristic beam radius r b much-lt S, and directed axial momentum γ b mβ b c (in the z-direction) large compared with the transverse momentum and axial momentum spread of the beam particles. Making use of the nonlinear Vlasov-Maxwell equations for general distribution function f b (rvec x,rvec p,t) and self-consistent electrostatic field consistent with the thin-beam approximation, the kinetic model is used to investigate detailed beam equilibrium properties for a variety of distribution functions. Examples are presented both for the case of a uniform solenoidal focusing field B z (z) = B 0 = const. and for the case of a periodic solenoidal focusing field B z (z + S) = B z (z). The nonlinear Vlasov-Maxwell equations are simplified in the thin-beam approximation, and an alternative Hamiltonian formulation is developed that is particularly well-suited to intense beam propagation in periodic focusing systems. Based on the present analysis, the Vlasov-Maxwell description of intense nonneutral beam propagation through a periodic solenoidal focusing field rvec B sol (rvec x) is found to be remarkably tractable and rich in physics content. The Vlasov-Maxwell formalism developed here can be extended in a straightforward manner to investigate detailed stability behavior for perturbations about specific choices of beam equilibria

  11. A Classical Based Derivation of Time Dilation Providing First Order Accuracy to Schwarzschild's Solution of Einstein's Field Equations

    Science.gov (United States)

    Austin, Rickey W.

    In Einstein's theory of Special Relativity (SR), one method to derive relativistic kinetic energy is via applying the classical work-energy theorem to relativistic momentum. This approach starts with a classical based work-energy theorem and applies SR's momentum to the derivation. One outcome of this derivation is relativistic kinetic energy. From this derivation, it is rather straight forward to form a kinetic energy based time dilation function. In the derivation of General Relativity a common approach is to bypass classical laws as a starting point. Instead a rigorous development of differential geometry and Riemannian space is constructed, from which classical based laws are derived. This is in contrast to SR's approach of starting with classical laws and applying the consequences of the universal speed of light by all observers. A possible method to derive time dilation due to Newtonian gravitational potential energy (NGPE) is to apply SR's approach to deriving relativistic kinetic energy. It will be shown this method gives a first order accuracy compared to Schwarzschild's metric. The SR's kinetic energy and the newly derived NGPE derivation are combined to form a Riemannian metric based on these two energies. A geodesic is derived and calculations compared to Schwarzschild's geodesic for an orbiting test mass about a central, non-rotating, non-charged massive body. The new metric results in high accuracy calculations when compared to Einsteins General Relativity's prediction. The new method provides a candidate approach for starting with classical laws and deriving General Relativity effects. This approach mimics SR's method of starting with classical mechanics when deriving relativistic equations. As a compliment to introducing General Relativity, it provides a plausible scaffolding method from classical physics when teaching introductory General Relativity. A straight forward path from classical laws to General Relativity will be derived. This derivation

  12. Chaos and maps in relativistic rynamical systems

    Directory of Open Access Journals (Sweden)

    L. P. Horwitz

    2000-01-01

    Full Text Available The basic work of Zaslavskii et al showed that the classical non-relativistic electromagnetically kicked oscillator can be cast into the form of an iterative map on the phase space; the resulting evolution contains a stochastic flow to unbounded energy. Subsequent studies have formulated the problem in terms of a relativistic charged particle in interaction with the electromagnetic field. We review the structure of the covariant Lorentz force used to study this problem. We show that the Lorentz force equation can be derived as well from the manifestly covariant mechanics of Stueckelberg in the presence of a standard Maxwell field, establishing a connection between these equations and mass shell constraints. We argue that these relativistic generalizations of the problem are intrinsically inaccurate due to an inconsistency in the structure of the relativistic Lorentz force, and show that a reformulation of the relativistic problem, permitting variations (classically in both the particle mass and the effective “mass” of the interacting electromagnetic field, provides a consistent system of classical equations for describing such processes.

  13. The Work and the Energy in Special Theory of Relativistic Dynamics%相对论中的功和能

    Institute of Scientific and Technical Information of China (English)

    籍延坤; 郭红

    2001-01-01

    以经典力学某些量为线索,根据经典动力学的基本方程,采用物理上常用的类比的方法建立了狭义相对论动力学的基本方程,由该基本方程对空间的累积效应,可以引入相对论动力学中质点和质点系的质量、运动质量、动量、动能、静能、机械能、相对论能量和力以及力的功的基本概念。得到了相对论动力学中的功和能关系式即质点和质点系的动能定理、质点系的功能原理、机械能守恒定律与能量守恒定律以及能量准守恒定律。%Some quantities in classical mechanics being taken as clue, a fundamental equation of special theory of relativistic dynamics has been established based on the fundamental equation of classical mechanics and by using analogy method . From the accumulative effect of this equation to space, the basic concepts of rest mass, moving mass, momentum, kinetic energy, rest energy, mechanical energy, relativistic energy , force, and the work of force of particle or particle system in special theory of relativistic dynamics can be introduced. The relation formula between work and energy in special theory of relativistic dynamics, i.e. kinetic energy theorem of particle or particle system, the principle of work and energy, the conservation law of mechanical energy and quasi-conservation law of energy in particle system have been obtained as well.

  14. Relativistic quantum mechanics of bosons

    International Nuclear Information System (INIS)

    Ghose, P.; Home, D.; Sinha Roy, M.N.

    1993-01-01

    We show that it is possible to use the Klein-Gordon, Proca and Maxwell formulations to construct multi-component relativistic configuration space wavefunctions of spin-0 and spin-1 bosons in an external field. These wavefunctions satisfy the first-order Kemmer-Duffin equation. The crucial ingredient is the use of the future-causal normal n μ (n μ n μ =1, n 0 >0) to the space-like hypersurfaces foliating space-time, inherent in the concept of a relativistic wavefunction, to construct a conserved future-causal probability current four-vector from the second-rank energy-momentum tensor, following Holland's prescription. The existence of a Hermitian position operator, localized solutions, compatibility with the second quantized theories and the question of interpretation are discussed. (orig.)

  15. An efficient and accurate two-stage fourth-order gas-kinetic scheme for the Euler and Navier-Stokes equations

    Science.gov (United States)

    Pan, Liang; Xu, Kun; Li, Qibing; Li, Jiequan

    2016-12-01

    For computational fluid dynamics (CFD), the generalized Riemann problem (GRP) solver and the second-order gas-kinetic scheme (GKS) provide a time-accurate flux function starting from a discontinuous piecewise linear flow distributions around a cell interface. With the adoption of time derivative of the flux function, a two-stage Lax-Wendroff-type (L-W for short) time stepping method has been recently proposed in the design of a fourth-order time accurate method for inviscid flow [21]. In this paper, based on the same time-stepping method and the second-order GKS flux function [42], a fourth-order gas-kinetic scheme is constructed for the Euler and Navier-Stokes (NS) equations. In comparison with the formal one-stage time-stepping third-order gas-kinetic solver [24], the current fourth-order method not only reduces the complexity of the flux function, but also improves the accuracy of the scheme. In terms of the computational cost, a two-dimensional third-order GKS flux function takes about six times of the computational time of a second-order GKS flux function. However, a fifth-order WENO reconstruction may take more than ten times of the computational cost of a second-order GKS flux function. Therefore, it is fully legitimate to develop a two-stage fourth order time accurate method (two reconstruction) instead of standard four stage fourth-order Runge-Kutta method (four reconstruction). Most importantly, the robustness of the fourth-order GKS is as good as the second-order one. In the current computational fluid dynamics (CFD) research, it is still a difficult problem to extend the higher-order Euler solver to the NS one due to the change of governing equations from hyperbolic to parabolic type and the initial interface discontinuity. This problem remains distinctively for the hypersonic viscous and heat conducting flow. The GKS is based on the kinetic equation with the hyperbolic transport and the relaxation source term. The time-dependent GKS flux function

  16. Closure of multi-fluid and kinetic equations for cyclotron-resonant interactions of solar wind ions with Alfvén waves

    Directory of Open Access Journals (Sweden)

    E. Marsch

    1998-01-01

    Full Text Available Based on quasilinear theory, a closure scheme for anisotropic multi-component fluid equations is developed for the wave-particle interactions of ions with electromagnetic Alfvén and ion-cyclotron waves propagating along the mean magnetic field. Acceleration and heating rates are calculated. They may be used in the multi-fluid momentum and energy equations as anomalous transport terms. The corresponding evolution equation for the average wave spectrum is established, and the effective growth/damping rate for the spectrum is calculated. Given a simple power-law spectrum, an anomalous collision frequency can be derived which depends on the slope and average intensity of the spectrum, and on the gyrofrequency and the differential motion (with respect to the wave frame of the actual ion species considered. The wave-particle interaction terms attain simple forms resembling the ones for collisional friction and temperature anisotropy relaxation (due to pitch angle scattering with collision rates that are proportional to the gyrofrequency but diminished substantially by the relative wave energy or the fluctuation level with respect the background field. In addition, a set of quasilinear diffusion equations is derived for the reduced (with respect to the perpendicular velocity component velocity distribution functions (VDFs, as they occur in the wave dispersion equation and the related dielectric function for parallel propagation. These reduced VDFs allow one to describe adequately the most prominent observed features, such as an ion beam and temperature anisotropy, in association with the resonant interactions of the particles with the waves on a kinetic level, yet have the advantage of being only dependent upon the parallel velocity component.

  17. Reflected‑Point‑Reactor Kinetics Model for Neutron Coincidence Counting: Comments on the Equation for the Leakage Self‑Multiplication

    International Nuclear Information System (INIS)

    Croft, S.; McElroy, RD.; Favalli, A.; Hauck, D.; Henzlova, D.; Henzl, V.; Santi, PA.

    2015-01-01

    Passive neutron correlation counting is widely used, for example by international inspection agencies, for the non‑destructive assay of spontaneously fissile nuclear materials for nuclear safeguards. The mass of special nuclear material present in an item is usually estimated from the observed neutron counting rates by using equations based on mathematically describing the object as an isolated multiplying point‑like source. Calibration using representative physical standards can often adequately compensate for this theoretical oversimplification through the introduction and use of effective‑interpretational‑model‑parameters meaning that useful assay results are obtained. In this work we extend the point‑model treatment by including a simple reflector around the fissioning material. Specifically we show how the leakage self‑multiplication equation mathematically connects the traditional bare source and the reflected source cases. In doing so we explicitly demonstrate that although the presence of a simple reflector changes the leakage self‑multiplication the traditional bare‑item point model multiplicity equations retain the same mathematical form. Making and explaining this connection is important because it helps to explain and justify the practical success and use of the traditional point‑model equations even when the assumptions used to generate the key functional dependences are violated. We are not aware that this point has been recognized previously.

  18. Relativistic transport theory for cosmic-rays

    International Nuclear Information System (INIS)

    Webb, G.M.

    1985-01-01

    Various aspects of the transport of cosmic-rays in a relativistically moving magnetized plasma supporting a spectrum of hydromagnetic waves that scatter the cosmic-rays are presented. A local Lorentz frame moving with the waves or turbulence scattering the cosmic-rays is used to specify the individual particle momentum. The comoving frame is in general a noninertial frame in which the observer's volume element is expanding and shearing, geometric energy change terms appear in the cosmic-ray transport equation which consist of the relativistic generalization of the adiabatic deceleration term and a further term involving the acceleration vector of the scatterers. A relativistic version of the pitch angle evolution equation, including the effects of adiabatic focussing, pitch angle scattering, and energy changes is presented

  19. Positron kinetics in an idealized PET environment

    Science.gov (United States)

    Robson, R. E.; Brunger, M. J.; Buckman, S. J.; Garcia, G.; Petrović, Z. Lj.; White, R. D.

    2015-08-01

    The kinetic theory of non-relativistic positrons in an idealized positron emission tomography PET environment is developed by solving the Boltzmann equation, allowing for coherent and incoherent elastic, inelastic, ionizing and annihilating collisions through positronium formation. An analytic expression is obtained for the positronium formation rate, as a function of distance from a spherical source, in terms of the solutions of the general kinetic eigenvalue problem. Numerical estimates of the positron range - a fundamental limitation on the accuracy of PET, are given for positrons in a model of liquid water, a surrogate for human tissue. Comparisons are made with the ‘gas-phase’ assumption used in current models in which coherent scattering is suppressed. Our results show that this assumption leads to an error of the order of a factor of approximately 2, emphasizing the need to accurately account for the structure of the medium in PET simulations.

  20. Relativistic modeling capabilities in PERSEUS extended MHD simulation code for HED plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Hamlin, Nathaniel D., E-mail: nh322@cornell.edu [438 Rhodes Hall, Cornell University, Ithaca, NY, 14853 (United States); Seyler, Charles E., E-mail: ces7@cornell.edu [Cornell University, Ithaca, NY, 14853 (United States)

    2014-12-15

    We discuss the incorporation of relativistic modeling capabilities into the PERSEUS extended MHD simulation code for high-energy-density (HED) plasmas, and present the latest hybrid X-pinch simulation results. The use of fully relativistic equations enables the model to remain self-consistent in simulations of such relativistic phenomena as X-pinches and laser-plasma interactions. By suitable formulation of the relativistic generalized Ohm’s law as an evolution equation, we have reduced the recovery of primitive variables, a major technical challenge in relativistic codes, to a straightforward algebraic computation. Our code recovers expected results in the non-relativistic limit, and reveals new physics in the modeling of electron beam acceleration following an X-pinch. Through the use of a relaxation scheme, relativistic PERSEUS is able to handle nine orders of magnitude in density variation, making it the first fluid code, to our knowledge, that can simulate relativistic HED plasmas.