WorldWideScience

Sample records for relativistic ideal gas

  1. Bose-Einstein condensation in the relativistic ideal Bose gas.

    Science.gov (United States)

    Grether, M; de Llano, M; Baker, George A

    2007-11-16

    The Bose-Einstein condensation (BEC) critical temperature in a relativistic ideal Bose gas of identical bosons, with and without the antibosons expected to be pair-produced abundantly at sufficiently hot temperatures, is exactly calculated for all boson number densities, all boson point rest masses, and all temperatures. The Helmholtz free energy at the critical BEC temperature is lower with antibosons, thus implying that omitting antibosons always leads to the computation of a metastable state.

  2. Bose-Einstein Condensation in the Relativistic Ideal Bose Gas

    International Nuclear Information System (INIS)

    Grether, M.; Llano, M. de; Baker, George A. Jr.

    2007-01-01

    The Bose-Einstein condensation (BEC) critical temperature in a relativistic ideal Bose gas of identical bosons, with and without the antibosons expected to be pair-produced abundantly at sufficiently hot temperatures, is exactly calculated for all boson number densities, all boson point rest masses, and all temperatures. The Helmholtz free energy at the critical BEC temperature is lower with antibosons, thus implying that omitting antibosons always leads to the computation of a metastable state

  3. Fluctuation theorem for entropy production during effusion of a relativistic ideal gas.

    Science.gov (United States)

    Cleuren, B; Willaert, K; Engel, A; Van den Broeck, C

    2008-02-01

    The probability distribution of the entropy production for the effusion of a relativistic ideal gas is calculated explicitly. This result is then extended to include particle and antiparticle pair production and annihilation. In both cases, the fluctuation theorem is verified.

  4. Fluctuation theorem for entropy production during effusion of a relativistic ideal gas

    OpenAIRE

    CLEUREN, Bart; WILLAERT, Koen; ENGEL, Andreas; VAN DEN BROECK, Christian

    2008-01-01

    The probability distribution of the entropy production for the effusion of a relativistic ideal gas is calculated explicitly. This result is then extended to include particle and anti-particle pair production and annihilation. In both cases, the fluctuation theorem is verified.

  5. Classical relativistic ideal gas in thermodynamic equilibrium in a uniformly accelerated reference frame

    International Nuclear Information System (INIS)

    Louis-Martinez, Domingo J

    2011-01-01

    A classical (non-quantum-mechanical) relativistic ideal gas in thermodynamic equilibrium in a uniformly accelerated frame of reference is studied using Gibbs's microcanonical and grand canonical formulations of statistical mechanics. Using these methods explicit expressions for the particle, energy and entropy density distributions are obtained, which are found to be in agreement with the well-known results of the relativistic formulation of Boltzmann's kinetic theory. Explicit expressions for the total entropy, total energy and rest mass of the gas are obtained. The position of the center of mass of the gas in equilibrium is found. The non-relativistic and ultrarelativistic approximations are also considered. The phase space volume of the system is calculated explicitly in the ultrarelativistic approximation.

  6. Existence of a critical point in the phase diagram of the ideal relativistic neutral Bose gas

    International Nuclear Information System (INIS)

    Park, Jeong-Hyuck; Kim, Sang-Woo

    2011-01-01

    We explore the phase transitions of the ideal relativistic neutral Bose gas confined in a cubic box, without assuming the thermodynamic limit nor continuous approximation. While the corresponding non-relativistic canonical partition function is essentially a one-variable function depending on a particular combination of temperature and volume, the relativistic canonical partition function is genuinely a two-variable function of them. Based on an exact expression for the canonical partition function, we performed numerical computations for up to 10 5 particles. We report that if the number of particles is equal to or greater than a critical value, which amounts to 7616, the ideal relativistic neutral Bose gas features a spinodal curve with a critical point. This enables us to depict the phase diagram of the ideal Bose gas. The consequent phase transition is first order below the critical pressure or second order at the critical pressure. The exponents corresponding to the singularities are 1/2 and 2/3, respectively. We also verify the recently observed 'Widom line' in the supercritical region.

  7. Quantum phase space for an ideal relativistic gas in d spatial dimensions

    International Nuclear Information System (INIS)

    Hayashi, M.; Vera Mendoza, H.

    1992-01-01

    We present the closed formula for the d-dimensional invariant phase-space integral for an ideal relativistic gas in an exact integral form. In the particular cases of the nonrelativistic and the extreme relativistic limits the phase-space integrals are calculated analytically. Then we consider the d-dimensional invariant phase space with quantum statistic and derive the cluster decomposition for the grand canonical and canonical partition functions as well as for the microcanonical and grand microcanonical densities of states. As a showcase, we consider the black-body radiation in d dimensions (Author)

  8. The microcanonical ensemble of the ideal relativistic quantum gas with angular momentum conservation

    International Nuclear Information System (INIS)

    Becattini, F.; Ferroni, L.

    2007-01-01

    We derive the microcanonical partition function of the ideal relativistic quantum gas with fixed intrinsic angular momentum as an expansion over fixed multiplicities. We developed a group theoretical approach by generalizing known projection techniques to the Poincare group. Our calculation is carried out in a quantum field framework and applies to particles with any spin. It extends known results in the literature in that it does not introduce any large volume approximation, and it takes particle spin fully into account. We provide expressions of the microcanonical partition function at fixed multiplicities in the limiting classical case of large volumes and large angular momenta and in the grand-canonical ensemble. We also derive the microcanonical partition function of the ideal relativistic quantum gas with fixed parity. (orig.)

  9. Relativistic Ideal Clock

    OpenAIRE

    Bratek, Łukasz

    2015-01-01

    Two particularly simple ideal clocks exhibiting intrinsic circular motion with the speed of light and opposite spin alignment are described. The clocks are singled out by singularities of an inverse Legendre transformation for relativistic rotators of which mass and spin are fixed parameters. Such clocks work always the same way, no matter how they move. When subject to high accelerations or falling in strong gravitational fields of black holes, the clocks could be used to test the clock hypo...

  10. The ideal relativistic rotating gas as a perfect fluid with spin

    International Nuclear Information System (INIS)

    Becattini, F.; Tinti, L.

    2010-01-01

    We show that the ideal relativistic spinning gas at complete thermodynamical equilibrium is a fluid with a non-vanishing spin density tensor σ μν . After having obtained the expression of the local spin-dependent phase-space density f(x, p) στ in the Boltzmann approximation, we derive the spin density tensor and show that it is proportional to the acceleration tensor Ω μν constructed with the Frenet-Serret tetrad. We recover the proper generalization of the fundamental thermodynamical relation, involving an additional term -(1/2)Ω μν σ μν . We also show that the spin density tensor has a non-vanishing projection onto the four-velocity field, i.e. t μ = σ μν u ν ≠ 0, in contrast to the common assumption t μ = 0, known as Frenkel condition, in the thus-far proposed theories of relativistic fluids with spin. We briefly address the viewpoint of the accelerated observer and inertial spin effects.

  11. Bose-Einstein condensation of a charged relativistic ideal gas in a general homogeneous magnetic field

    International Nuclear Information System (INIS)

    Toms, D.J.

    1994-01-01

    It is shown how the effective action formalism and ζ-function regularization can be used to study Bose-Einstein condensation for a relativistic charged scalar field in a general homogeneous magnetic field in a spacetime of arbitrary dimension. In the special case where the magnetic field has only one component, Bose-Einstein condensation occurs at high temperature only for D≥5 where D is the spatial dimension. When Bose-Einstein condensation does occur the ground-state expectation value of the scalar field is not constant and we determine its value. If the magnetic field has p independent nonzero components we show that the condition for Bose-Einstein condensation is D≥3+2p. In particular, Bose-Einstein condensation can never occur if the magnetic field has all of its independent components nonzero. The problem of Bose-Einstein condensation in a cylindrical box in D spatial dimensions with a uniform magnetic field directed along the axis of the cylinder is also discussed

  12. Relativistic charged Bose gas

    International Nuclear Information System (INIS)

    Hines, D.F.; Frankel, N.E.

    1979-01-01

    The charged Bose has been previously studied as a many body problem of great intrinsic interest which can also serve as a model of some real physical systems, for example, superconductors, white dwarf stars and neutron stars. In this article the excitation spectrum of a relativistic spin-zero charged Bose gas is obtained in a dielectric response formulation. Relativity introduces a dip in the spectrum and consequences of this dip for the thermodynamic functions are discussed

  13. Relativistic quantum thermodynamics of ideal gases in two dimensions.

    Science.gov (United States)

    Blas, H; Pimentel, B M; Tomazelli, J L

    1999-11-01

    In this work we study the behavior of relativistic ideal Bose and Fermi gases in two space dimensions. Making use of polylogarithm functions we derive a closed and unified expression for their densities. It is shown that both type of gases are essentially inequivalent, and only in the non-relativistic limit the spinless and equal mass Bose and Fermi gases are equivalent as known in the literature.

  14. Relativistic Quantum Thermodynamics of Ideal Gases in 2 Dimensions

    OpenAIRE

    Blas, H.; Pimentel, B. M.; Tomazelli, J. L.

    1999-01-01

    In this work we study the behavior of relativistic ideal Bose and Fermi gases in two space dimensions. Making use of polylogarithm functions we derive a closed and unified expression for their densities. It is shown that both type of gases are essentially inequivalent, and only in the non-relativistic limit the spinless and equal mass Bose and Fermi gases are equivalent as known in the literature.

  15. Temperature and the Ideal Gas

    Science.gov (United States)

    Daisley, R. E.

    1973-01-01

    Presents some organized ideas in thermodynamics which are suitable for use with high school (GCE A level or ONC) students. Emphases are placed upon macroscopic observations and intimate connection of the modern definition of temperature with the concept of ideal gas. (CC)

  16. Box of ideal gas in free fall

    Energy Technology Data Exchange (ETDEWEB)

    Kothawala, Dawood, E-mail: dawood@physics.iitm.ac.in [Department of Mathematics and Statistics, University of New Brunswick, Fredericton, NB, E3B 5A3 (Canada)

    2013-03-26

    We study the quantum partition function of non-relativistic, ideal gas in a (non-cubical) box falling freely in arbitrary curved spacetime with center 4-velocity u{sup a}. When perturbed energy eigenvalues are properly taken into account, we find that corrections to various thermodynamic quantities include a very specific, sub-dominant term which is independent of kinematic details such as box dimensions and mass of particles. This term is characterized by the dimensionless quantity, Ξ=R{sub 0{sup ^}0{sup ^}}Λ{sup 2}, where R{sub 0{sup ^}0{sup ^}}=R{sub ab}u{sup a}u{sup b} and Λ=βℏc, and, quite intriguingly, produces Euler relation of homogeneity two between entropy and energy – a relation familiar from black hole thermodynamics.

  17. Spin interaction with an ideal fermi gas

    International Nuclear Information System (INIS)

    Aizenstadt, V.V.; Malyshev, V.A.

    1987-01-01

    The authors consider the equilibrium dynamics of a system consisting of a spin interacting with an ideal Fermi gas on the lattice Z/sup v, v ≥ 3. They present two examples; when this system is unitarily equivalent to an ideal Fermi gas or to a spin in an ideal Fermi gas without interactions between them

  18. On the relativistic partition function of ideal gases

    International Nuclear Information System (INIS)

    Sinyukov, Yu.M.

    1983-01-01

    The covariant partition function method for ideal Boltzmann and Bose gases is developed within quantum field theory. This method is a basis to describe the statistical and thermodynamical properties of the gases in canonical, grand canonical and pressure ensembles in an arbitrary inertial system. It is shown that when statistical systems are described relativistically it is very important to take into account the boundary conditions. This is due to the fact that an equilibrium system is not closed mechanically. The results may find application in hadron physics. (orig.)

  19. Perumusan Model Moneter Berdasarkan Perilaku Gas Ideal

    Directory of Open Access Journals (Sweden)

    Rachmad Resmiyanto

    2014-04-01

    Full Text Available Telah disusun sebuah model moneter yang berdasarkan perilaku gas ideal. Model disusun dengan menggunakan metode kias/analogi. Model moneter gas ideal mengiaskan jumlah uang beredar dengan volume gas, daya beli dengan tekanan gas dan produksi barang dengan suhu gas. Model ini memiliki formulasi yang berbeda dengan Teori Kuantitas Uang (Quantity Theory of Money yang dicetuskan oleh Irving Fisher, model moneter Marshal-Pigou dari Cambridge serta model moneter ala Keynes. Selama ini 3 model tersebut dianggap sebagai model yang mapan dalam teori moneter pada buku-buku teks ekonomi. Model moneter gas ideal dapat menjadi cara pandang baru terhadap sistem moneter.

  20. An Ideal Gas Law Simulator for Atmospheric Gas Molecules ...

    African Journals Online (AJOL)

    The ideal gas law which is the equation of state of a hypothetical ideal gas that allows us to gain useful insights into the behavior of most real gases at low densities was utilized in this work to conceptualize, design and develop the ideal gas law simulator in a 3 dimensional space using Microsoft Visual Studio, Microsoft ...

  1. ADER discontinuous Galerkin schemes for general-relativistic ideal magnetohydrodynamics

    Science.gov (United States)

    Fambri, F.; Dumbser, M.; Köppel, S.; Rezzolla, L.; Zanotti, O.

    2018-03-01

    We present a new class of high-order accurate numerical algorithms for solving the equations of general-relativistic ideal magnetohydrodynamics in curved spacetimes. In this paper we assume the background spacetime to be given and static, i.e. we make use of the Cowling approximation. The governing partial differential equations are solved via a new family of fully-discrete and arbitrary high-order accurate path-conservative discontinuous Galerkin (DG) finite-element methods combined with adaptive mesh refinement and time accurate local timestepping. In order to deal with shock waves and other discontinuities, the high-order DG schemes are supplemented with a novel a-posteriori subcell finite-volume limiter, which makes the new algorithms as robust as classical second-order total-variation diminishing finite-volume methods at shocks and discontinuities, but also as accurate as unlimited high-order DG schemes in smooth regions of the flow. We show the advantages of this new approach by means of various classical two- and three-dimensional benchmark problems on fixed spacetimes. Finally, we present a performance and accuracy comparisons between Runge-Kutta DG schemes and ADER high-order finite-volume schemes, showing the higher efficiency of DG schemes.

  2. On the ideal gas of tachyons

    International Nuclear Information System (INIS)

    Mrowczynski, S.

    1983-01-01

    The properties of the ideal gas of classical (nonquantum) faster than light particles-tachyons have been considered. The basic notions of thermodynamics of tachyons have been introduced. We have found the partition function and other thermodynamical quantities for the ideal tachyon gas. The equation of state which we have found for tachyons is exactly the same as for the ideal gas of partictes slower than light-bradyons. The internal energy and the apecific heat have been discussed at low and at very high temperatures. It has been shown that in high temperature limit the properties of gas of tachyons and gas of bradyons are th'e same. The numerical calculations concerning the internal energy and specific heat at different temperatures were performed and the results have been presented. It has been shown that in full interval of temperature the characteristics of gas of tachyons are similar to those of gas of bradyons

  3. The ionisation equation in a relativistic gas

    International Nuclear Information System (INIS)

    Kichenassamy, S.; Krikorian, R.A.

    1983-01-01

    By deriving the relativistic form of the ionisation equation for a perfect gas it is shown that the usual Saha equation is valid to 3% for temperatures below one hundred million Kelvin. Beyond 10 9 K, the regular Saha equation is seriously incorrect and a relativistic distribution function for electrons must be taken into account. Approximate forms are derived when only the electrons are relativistic (appropriate up to 10 12 K) and also for the ultrarelativistic case (temperatures greater than 10 15 K). (author)

  4. Ideal Gas Laws: Experiments for General Chemistry

    Science.gov (United States)

    Deal, Walter J.

    1975-01-01

    Describes a series of experiments designed to verify the various relationships implicit in the ideal gas equation and shows that the success of the Graham's law effusion experiments can be explained by elementary hydrodynamics. (GS)

  5. Statistical thermodynamics of a two-dimensional relativistic gas.

    Science.gov (United States)

    Montakhab, Afshin; Ghodrat, Malihe; Barati, Mahmood

    2009-03-01

    In this paper we study a fully relativistic model of a two-dimensional hard-disk gas. This model avoids the general problems associated with relativistic particle collisions and is therefore an ideal system to study relativistic effects in statistical thermodynamics. We study this model using molecular-dynamics simulation, concentrating on the velocity distribution functions. We obtain results for x and y components of velocity in the rest frame (Gamma) as well as the moving frame (Gamma;{'}) . Our results confirm that Jüttner distribution is the correct generalization of Maxwell-Boltzmann distribution. We obtain the same "temperature" parameter beta for both frames consistent with a recent study of a limited one-dimensional model. We also address the controversial topic of temperature transformation. We show that while local thermal equilibrium holds in the moving frame, relying on statistical methods such as distribution functions or equipartition theorem are ultimately inconclusive in deciding on a correct temperature transformation law (if any).

  6. Thermodynamics of an ideal generalized gas: I. Thermodynamic laws.

    Science.gov (United States)

    Lavenda, B H

    2005-11-01

    The equations of state for an ideal relativistic, or generalized, gas, like an ideal quantum gas, are expressed in terms of power laws of the temperature. In contrast to an ideal classical gas, the internal energy is a function of volume at constant temperature, implying that the ideal generalized gas will show either attractive or repulsive interactions. This is a necessary condition in order that the third law be obeyed and for matter to have an electromagnetic origin. The transition from an ideal generalized to a classical gas occurs when the two independent solutions of the subsidiary equation to Lagrange's equation coalesce. The equation of state relating the pressure to the internal energy encompasses the full range of cosmological scenarios, from the radiation to the matter dominated universes and finally to the vacuum energy, enabling the coefficient of proportionality, analogous to the Grüeisen ratio, to be interpreted in terms of the degrees of freedom related to the temperature exponents of the internal energy and the absolute temperature expressed in terms of a power of the empirical temperature. The limit where these exponents merge is shown to be the ideal classical gas limit. A corollary to Carnot's theorem is proved, asserting that the ratio of the work done over a cycle to the heat absorbed to increase the temperature at constant volume is the same for all bodies at the same volume. As power means, the energy and entropy are incomparable, and a new adiabatic potential is introduced by showing that the volume raised to a characteristic exponent is also the integrating factor for the quantity of heat so that the second law can be based on the property that power means are monotonically increasing functions of their order. The vanishing of the chemical potential in extensive systems implies that energy cannot be transported without matter and is equivalent to the condition that Clapeyron's equation be satisfied.

  7. Relativistic gas in a Schwarzschild metric

    International Nuclear Information System (INIS)

    Kremer, Gilberto M

    2013-01-01

    A relativistic gas in a Schwarzschild metric is studied within the framework of a relativistic Boltzmann equation in the presence of gravitational fields, where Marle’s model for the collision operator of the Boltzmann equation is employed. The transport coefficients of the bulk and shear viscosities and thermal conductivity are determined from the Chapman–Enskog method. It is shown that the transport coefficients depend on the gravitational potential. Expressions for the transport coefficients in the presence of weak gravitational fields in the non-relativistic (low temperature) and ultra-relativistic (high temperature) limiting cases are given. Apart from the temperature gradient the heat flux has two relativistic terms. The first one, proposed by Eckart, is due to the inertia of energy and represents an isothermal heat flux when matter is accelerated. The other, suggested by Tolman, is proportional to the gravitational potential gradient and indicates that—in the absence of an acceleration field—a state of equilibrium of a relativistic gas in a gravitational field can be attained only if the temperature gradient is counterbalanced by a gravitational potential gradient. (paper)

  8. Derivation of the Ideal Gas Law

    Science.gov (United States)

    Laugier, Alexander; Garai, Jozsef

    2007-01-01

    Undergraduate and graduate physics and chemistry books usually state that combining the gas laws results in the ideal gas law. Leaving the derivation to the students implies that this should be a simple task, most likely a substitution. Boyle's law, Charles's law, and the Avogadro's principle are given under certain conditions; therefore, direct…

  9. Magnetized pair Bose gas: relativistic superconductor

    International Nuclear Information System (INIS)

    Daicic, J.; Frankel, N.E.; Kowalenko, V.

    1993-01-01

    The magnetized Bose gas at temperatures above pair threshold is investigated. New magnetization laws are obtained for a wide range of field strengths, and the gas is shown to exhibit the Meissner effect. Some related results for the Fermi gas, a relativistic paramagnet, are also discussed. It is concluded that the pair gases, through the interplay between pair creation, temperature, field strength, statistics and/in the case of fermions/spin, have remarkable magnetic properties. 14 refs

  10. Causal dissipation for the relativistic dynamics of ideal gases.

    Science.gov (United States)

    Freistühler, Heinrich; Temple, Blake

    2017-05-01

    We derive a general class of relativistic dissipation tensors by requiring that, combined with the relativistic Euler equations, they form a second-order system of partial differential equations which is symmetric hyperbolic in a second-order sense when written in the natural Godunov variables that make the Euler equations symmetric hyperbolic in the first-order sense. We show that this class contains a unique element representing a causal formulation of relativistic dissipative fluid dynamics which (i) is equivalent to the classical descriptions by Eckart and Landau to first order in the coefficients of viscosity and heat conduction and (ii) has its signal speeds bounded sharply by the speed of light. Based on these properties, we propose this system as a natural candidate for the relativistic counterpart of the classical Navier-Stokes equations.

  11. Cosmic anisotropy with reduced relativistic gas

    Energy Technology Data Exchange (ETDEWEB)

    Castardelli dos Reis, Simpliciano [Universidade Federal de Juiz de Fora, Departamento de Fisica, ICE, Juiz de Fora, MG (Brazil); Shapiro, Ilya L. [Universidade Federal de Juiz de Fora, Departamento de Fisica, ICE, Juiz de Fora, MG (Brazil); Tomsk State Pedagogical University, Tomsk (Russian Federation); Tomsk State University, Tomsk (Russian Federation)

    2018-02-15

    The dynamics of cosmological anisotropies is investigated for Bianchi type I universe filled by a relativistic matter represented by the reduced relativistic gas model (RRG), with equation of state interpolating between radiation and matter. Previously it was shown that the interpolation is observed in the background cosmological solutions for homogeneous and isotropic universe and also for the linear cosmological perturbations. We extend the application of RRG to the Bianchi type I anisotropic model and find that the solutions evolve to the isotropic universe with the pressureless matter contents. (orig.)

  12. Single fireball and fireball ideal gas

    International Nuclear Information System (INIS)

    Fiore, R.; Page, R.; Sertorio, L.

    1977-01-01

    In the paper the partition function of a macroscopic hadron system with two models is studied. In one model the mathematical fireball appears as a fundamental particle in a Boltzmann ideal gas occupying a volume V. In a second model the macroscopic volume V is divided in noninteracting boxes of volume Vsub(0), each one containing and interacting-pion gas. Both cases show the same limiting temperature Tsup(*) produced by the bootstrap equation, although far from Tsup(*) they represent different thermodynamic systems

  13. Quantization of an Ideal Monoatomic Gas

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 19; Issue 1. Quantization of an Ideal Monoatomic Gas. E Fermi. Classics Volume 19 Issue 1 January 2014 pp 82-96. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/019/01/0082-0096. Author Affiliations.

  14. Structural arrest in an ideal gas

    NARCIS (Netherlands)

    Ketel, W. van; Das, C.; Frenkel, D.

    2005-01-01

    We report a molecular dynamics study of a simple model system that has the static properties of an ideal gas, yet exhibits nontrivial "glassy" dynamics behavior at high densities. The constituent molecules of this system are constructs of three infinitely thin hard rods of length L, rigidly joined

  15. How Is the Ideal Gas Law Explanatory?

    Science.gov (United States)

    Woody, Andrea I.

    2013-01-01

    Using the ideal gas law as a comparative example, this essay reviews contemporary research in philosophy of science concerning scientific explanation. It outlines the inferential, causal, unification, and erotetic conceptions of explanation and discusses an alternative project, the functional perspective. In each case, the aim is to highlight…

  16. Beyond ideal magnetohydrodynamics: resistive, reactive and relativistic plasmas

    International Nuclear Information System (INIS)

    Andersson, N; Dionysopoulou, K; Hawke, I; Comer, G L

    2017-01-01

    We develop a new framework for the modelling of charged fluid dynamics in general relativity. The model, which builds on a recently developed variational multi-fluid framework for dissipative fluids, accounts for relevant effects like the inertia of both charge currents and heat and, for mature systems, the decoupling of superfluid components. We discuss how the model compares to standard relativistic magnetohydronamics and consider the connection between the fluid dynamics, the microphysics and the underlying equation of state. As illustrations of the formalism, we consider three distinct two-fluid models describing (i) an Ohm’s law for resistive charged flows, (ii) a relativistic heat equation, and (iii) an equation representing the momentum of a decoupled superfluid component. As a more complex example, we also formulate a three-fluid model which demonstrates the thermo-electric effect. The new framework allows us to model neutron stars (and related systems) at a hierarchy of increasingly complex levels, and should enable us to make progress on a range of exciting problems in astrophysics and cosmology. (paper)

  17. Structural arrest in an ideal gas.

    Science.gov (United States)

    van Ketel, Willem; Das, Chinmay; Frenkel, Daan

    2005-04-08

    We report a molecular dynamics study of a simple model system that has the static properties of an ideal gas, yet exhibits nontrivial "glassy" dynamics behavior at high densities. The constituent molecules of this system are constructs of three infinitely thin hard rods of length L, rigidly joined at their midpoints. The crosses have random but fixed orientation. The static properties of this system are those of an ideal gas, and its collision frequency can be computed analytically. For number densities NL(3)/V>1, the single-particle diffusivity goes to zero. As the system is completely structureless, standard mode-coupling theory cannot describe the observed structural arrest. Nevertheless, the system exhibits many dynamical features that appear to be mode-coupling-like. All high-density incoherent intermediate scattering functions collapse onto master curves that depend only on the wave vector.

  18. Electroweak interactions in a relativistic Fermi gas

    International Nuclear Information System (INIS)

    Vantournhout, K.; Jachowicz, N.; Ryckebusch, J.

    2006-01-01

    We present a relativistic model for computing the neutrino mean free path in neutron matter. In this model, neutron matter is described as a noninteracting Fermi gas in β equilibrium. We present results for the neutrino mean free path for temperatures of 0 to 50 MeV and a broad range of neutrino energies. We show that relativistic effects cause a considerable enhancement of neutrino-scattering cross sections in neutron matter. The influence of the Q 2 dependence in the electroweak form factors and the inclusion of a weak-magnetic term in the hadron current is discussed. The weak-magnetic term in the hadron current is at the origin of some selective spin dependence for the nucleons that are subject to neutrino interactions

  19. Weinhold'length in an isentropic Ideal and quasi-Ideal Gas

    OpenAIRE

    Santoro, Manuel

    2004-01-01

    In this paper we study thermodynamic length of an isentropic Ideal and quasi-Ideal Gas using Weinhold metric in a two-dimensional state space. We give explicit relation between length at constant entropy and work.

  20. Weinhold length in an isentropic ideal and quasi-ideal gas

    International Nuclear Information System (INIS)

    Santoro, Manuel

    2005-01-01

    In this paper, we study thermodynamic length of an isentropic ideal and quasi-ideal gas using Weinhold metric in a two-dimensional state space. We give explicit relation between length at constant entropy and work

  1. How is the Ideal Gas Law Explanatory?

    Science.gov (United States)

    Woody, Andrea I.

    2013-07-01

    Using the ideal gas law as a comparative example, this essay reviews contemporary research in philosophy of science concerning scientific explanation. It outlines the inferential, causal, unification, and erotetic conceptions of explanation and discusses an alternative project, the functional perspective. In each case, the aim is to highlight insights from these investigations that are salient for pedagogical concerns. Perhaps most importantly, this essay argues that science teachers should be mindful of the normative and prescriptive components of explanatory discourse both in the classroom and in science more generally. Giving attention to this dimension of explanation not only will do justice to the nature of explanatory activity in science but also will support the development of robust reasoning skills in science students while helping them understand an important respect in which science is more than a straightforward collection of empirical facts, and consequently, science education involves more than simply learning them.

  2. How do quantum numbers generally vary in the adiabatic transformation of an ideal gas?

    International Nuclear Information System (INIS)

    Yarman, T.; Kholmetskii, A. L.

    2011-01-01

    We continue to analyse the known law of adiabatic transformation for an ideal gas PV 5/3 = Constant, where P is the pressure and V is the volume, and following the approach of non-relativistic quantum mechanics which we suggested in a previous work (Yarman et al. 2010 Int. J. Phys. Sci. 5 1524). We explicitly determine the constant for the general parallelepiped geometry of a container. We also disclose how the quantum numbers associated with molecules of an ideal gas vary through an arbitrary adiabatic transformation. Physical implications of the results obtained are discussed. (physics of gases, plasmas, and electric discharges)

  3. Thermodynamics of a classical ideal gas at arbitrary temperatures

    OpenAIRE

    Pal, Palash B.

    2002-01-01

    We propose a fundamental relation for a classical ideal gas that is valid at all temperatures with remarkable accuracy. All thermodynamical properties of classical ideal gases can be deduced from this relation at arbitrary temperature.

  4. Local thermal equilibrium and ideal gas Stephani universes

    OpenAIRE

    Coll, Bartolomé; Ferrando, Joan Josep

    2004-01-01

    The Stephani universes that can be interpreted as an ideal gas evolving in local thermal equilibrium are determined. Five classes of thermodynamic schemes are admissible, which give rise to five classes of regular models and three classes of singular models. No Stephani universes exist representing an exact solution to a classical ideal gas (one for which the internal energy is proportional to the temperature). But some Stephani universes may approximate a classical ideal gas at first order i...

  5. The ideal Bose-Einstein gas, revisited

    International Nuclear Information System (INIS)

    Ziff, R.M.; Uhlenbeck, G.E.; Kac, M.

    1977-01-01

    Some questions concerning the ideal Bose-Einstein gas are reviewed and examined further. The bulk behavior including the condensation phenomenon is characterized by the thermodynamical properties, occupations of the states and their fluctuations, and the properties of the density matrices, including the diagonal and off-diagonal long range orders. Particular attention is focused on the difference between the canonical and grand canonical ensembles and a case is made that the latter does not represent any physical system in the condensed region. The properties in a finite region are also examined to study the approach to the bulk limit and secondly to derive the surface properties such as the surface tension (due to the boundary). This is mainly done for the special case of a rectangular parallelopiped (box) for various boundary conditions. The question of the asymptotic behavior of the fluctuations in the occupation of the ground state in the condensed region in the canonical ensemble is examined for these systems. Finally, the local properties near the wall of a half infinite system are calculated and discussed. The surface properties also follow this way and agree with the strictly thermodynamic result. Although it is not intended to be a complete review, it is largely self-contained, with the first section containing the basic formulas and a discussion of some general concepts which will be needed. Especially discussed in detail are the extra considerations that are needed in thermodynamics and statistical mechanics to include the surface properties, and the quantum hierarchy of the density matrices and local conservation laws. In the concluding remarks several problems are mentioned which need further analysis and clarification. (Auth.)

  6. Coulomb sum rules in the relativistic Fermi gas model

    International Nuclear Information System (INIS)

    Do Dang, G.; L'Huillier, M.; Nguyen Giai, Van.

    1986-11-01

    Coulomb sum rules are studied in the framework of the Fermi gas model. A distinction is made between mathematical and observable sum rules. Differences between non-relativistic and relativistic Fermi gas predictions are stressed. A method to deduce a Coulomb response function from the longitudinal response is proposed and tested numerically. This method is applied to the 40 Ca data to obtain the experimental Coulomb sum rule as a function of momentum transfer

  7. Ideal-gas thermodynamic properties for natural-gas applications

    International Nuclear Information System (INIS)

    Jaeschke, M.; Schley, P.

    1995-01-01

    Calculating caloric properties from a thermal equation of state requires information such as isobaric heat capacities in the ideal-gas state as a function of temperature. In this work, values for the parameters of the c p o correlation proposed by Aly and Lee were newly determined for 21 pure gases which are compounds of natural gas mixtures. The values of the parameters were adjusted to selected c p o data calculated form spectroscopic data for temperatures ranging from 10 to 1000 K. The data sources used are discussed and compared with literature data deduced from theoretic models and caloric measurements. The parameters presented will be applied in a current GERG project for evaluating equations of state (e.g., the AGA 8 equation) for their suitability for calculating caloric properties

  8. Relativistic density matrix in the diagonal momentum representation. Fermi-gas

    International Nuclear Information System (INIS)

    Makhlin, A.N.; Sinyukov, Yu.M.

    1984-01-01

    The relativistically invariant theory of ideal Fermi-gas is built in the framework of the quantum field theory. The average occupation numbers and correlation functions of statistical systems are found on the equal-time surfaces of arbitrary inertial frames. The effects of anisotropy in their behaviour are pointed out. The partition function method is developed to calculate the thermodynamic quantities of Fermi-gases moving as a whole

  9. Ideal gas behavior of a strongly coupled complex (dusty) plasma.

    Science.gov (United States)

    Oxtoby, Neil P; Griffith, Elias J; Durniak, Céline; Ralph, Jason F; Samsonov, Dmitry

    2013-07-05

    In a laboratory, a two-dimensional complex (dusty) plasma consists of a low-density ionized gas containing a confined suspension of Yukawa-coupled plastic microspheres. For an initial crystal-like form, we report ideal gas behavior in this strongly coupled system during shock-wave experiments. This evidence supports the use of the ideal gas law as the equation of state for soft crystals such as those formed by dusty plasmas.

  10. Relativistic Gas Drag on Dust Grains and Implications

    Energy Technology Data Exchange (ETDEWEB)

    Hoang, Thiem, E-mail: thiemhoang@kasi.re.kr [Korea Astronomy and Space Science Institute, Daejeon 34055 (Korea, Republic of); Korea University of Science and Technology, Daejeon, 34113 (Korea, Republic of)

    2017-09-20

    We study the drag force on grains moving at relativistic velocities through interstellar gas and explore its application. First, we derive a new analytical formula of the drag force at high energies and find that it is significantly reduced compared to the classical model. Second, we apply the obtained drag force to calculate the terminal velocities of interstellar grains by strong radiation sources such as supernovae and active galactic nuclei (AGNs). We find that grains can be accelerated to relativistic velocities by very luminous AGNs. We then quantify the deceleration of relativistic spacecraft proposed by the Breakthrough Starshot initiative due to gas drag on a relativistic lightsail. We find that the spacecraft’s decrease in speed is negligible because of the suppression of gas drag at relativistic velocities, suggesting that the lightsail may be open for communication during its journey to α Centauri without causing a considerable delay. Finally, we show that the damage to relativistic thin lightsails by interstellar dust is a minor effect.

  11. Bose-Einstein condensation of a relativistic Bose gas trapped in a general external potential

    International Nuclear Information System (INIS)

    Su Guozhen; Chen Jincan; Chen Lixuan

    2006-01-01

    Bose-Einstein condensation of an ideal relativistic Bose gas trapped in a generic power-law potential is investigated. The analytical expressions for some important parameters such as the critical temperature, ground-state fraction and heat capacity are derived. The general criteria on the occurrence of Bose-Einstein condensation and the discontinuity of heat capacity at the critical temperature are obtained. The results obtained here present a unified description for the Bose-Einstein condensation of a class of ideal Bose systems so that many important conclusions in the literature are included in this paper

  12. Ground-state pressure of an ideal Fermi gas

    International Nuclear Information System (INIS)

    Delsante, A.E.; Frankel, N.E.

    1979-01-01

    A simple relationship between the pressure, internal energy and Fermi energy of an ideal ultra-degenerate Fermi gas is derived in two ways. The conditions for its validity and its use in simplifying calculations are discussed

  13. Computer program for calculation of ideal gas thermodynamic data

    Science.gov (United States)

    Gordon, S.; Mc Bride, B. J.

    1968-01-01

    Computer program calculates ideal gas thermodynamic properties for any species for which molecular constant data is available. Partial functions and derivatives from formulas based on statistical mechanics are provided by the program which is written in FORTRAN 4 and MAP.

  14. Do the Particles of an Ideal Gas Collide?

    Science.gov (United States)

    Lesk, Arthur M.

    1974-01-01

    Describes the collisional properties as a logically essential component of the ideal gas model since an actual intraparticle process cannot support observable anisotropic velocity distributions without collisions taken into account. (CC)

  15. Ideal gas scattering kernel for energy dependent cross-sections

    International Nuclear Information System (INIS)

    Rothenstein, W.; Dagan, R.

    1998-01-01

    A third, and final, paper on the calculation of the joint kernel for neutron scattering by an ideal gas in thermal agitation is presented, when the scattering cross-section is energy dependent. The kernel is a function of the neutron energy after scattering, and of the cosine of the scattering angle, as in the case of the ideal gas kernel for a constant bound atom scattering cross-section. The final expression is suitable for numerical calculations

  16. On analytic solutions of (1+3)D relativistic ideal hydrodynamic equations

    International Nuclear Information System (INIS)

    Lin Shu; Liao Jinfeng

    2010-01-01

    In this paper, we find various analytic (1+3)D solutions to relativistic ideal hydrodynamic equations based on embedding of known low-dimensional scaling solutions. We first study a class of flows with 2D Hubble embedding, for which a single ordinary differential equation for the remaining velocity field can be derived. Using this equation, all solutions with transverse 2D Hubble embedding and power law ansatz for the remaining longitudinal velocity field will be found. Going beyond the power law ansatz, we further find a few solutions with transverse 2D Hubble embedding and nontrivial longitudinal velocity field. Finally we investigate general scaling flows with each component of the velocity fields scaling independently, for which we also find all possible solutions.

  17. '' Ideal Gas '' gluon plasma with medium dependent dispersion relation

    International Nuclear Information System (INIS)

    Gorenstein, M.I.

    1995-01-01

    An '' ideal gas '' model with temperature dependent particle mass is constructed for the gluon plasma equation of state. This simple model gives us an example of a system with temperature dependent effective Hamiltonian. To satisfy thermodynamical relations in these systems, standard statistical mechanics formulas have to be supplemented by special requirements which are considered in details. A self-consistent '' ideal gas '' formulation is used to describe Monte Carlo lattice data for the thermodynamical functions of SU(2) and SU(3) gluon plasma. 14 refs., 8 figs

  18. The canonical ensemble redefined - 3. Ideal Bose gas

    International Nuclear Information System (INIS)

    Venkataraman, R.

    1984-12-01

    The ideal Bose gas solved in the redefined ensemble formalism exhibits a discontinuity in the specific heat suggesting that Bose-Einstein condensation is a second order phase transition. The deviations from the classical ideal gas behaviour are larger than those predicted by Gibbs ensemble. Below Tsub(c) the pressure is not independent of the volume. For a certain range of values of VT 3 , the peak in black body radiation shows a shift in the frequency scale and this could be detected, at least in principle, experimentally. (author)

  19. Solution of Riemann problem for ideal polytropic dusty gas

    International Nuclear Information System (INIS)

    Nath, Triloki; Gupta, R.K.; Singh, L.P.

    2017-01-01

    Highlights : • A direct approach is used to solve the Riemann problem for dusty ideal polytropic gas. • An analytical solution to the Riemann problem for dusty gas flow is obtained. • The existence and uniqueness of the solution in dusty gas is discussed. • Properties of elementary wave solutions of Riemann problem are discussed. • Effect of mass fraction of solid particles on the solution is presented. - Abstract: The Riemann problem for a quasilinear hyperbolic system of equations governing the one dimensional unsteady flow of an ideal polytropic gas with dust particles is solved analytically without any restriction on magnitude of the initial states. The elementary wave solutions of the Riemann problem, that is shock waves, rarefaction waves and contact discontinuities are derived explicitly and their properties are discussed, for a dusty gas. The existence and uniqueness of the solution for Riemann problem in dusty gas is discussed. Also the conditions leading to the existence of shock waves or simple waves for a 1-family and 3-family curves in the solution of the Riemann problem are discussed. It is observed that the presence of dust particles in an ideal polytropic gas leads to more complex expression as compared to the corresponding ideal case; however all the parallel results remain same. Also, the effect of variation of mass fraction of dust particles with fixed volume fraction (Z) and the ratio of specific heat of the solid particles and the specific heat of the gas at constant pressure on the variation of velocity and density across the shock wave, rarefaction wave and contact discontinuities are discussed.

  20. The positive-entropy constraint for the classical ideal gas

    International Nuclear Information System (INIS)

    Ciccariello, Salvino

    2004-01-01

    The problem of determining the state parameters' sub-domain where the behaviour of the classical ideal gas approximates that of the Bose and Fermi ideal gases is tutorially discussed. The entropy of any quantum system being always positive, the classical approximation can only be satisfactory within the parameters' sub-domain where the classical entropy turns out to be positive. We show that the sub-domain determined by this condition is close to that where de Broglie's thermal wavelength is smaller than the mean interparticle distance. The exact determination of the state parameters' region, where the particle number density, the grand potential and the entropy of quantum ideal gases differ from those of the classical gas less than a specified quantity, is also illustrated

  1. Experimental Verification of Boyle's Law and the Ideal Gas Law

    Science.gov (United States)

    Ivanov, Dragia Trifonov

    2007-01-01

    Two new experiments are offered concerning the experimental verification of Boyle's law and the ideal gas law. To carry out the experiments, glass tubes, water, a syringe and a metal manometer are used. The pressure of the saturated water vapour is taken into consideration. For educational purposes, the experiments are characterized by their…

  2. Condensation of an ideal gas obeying non-Abelian statistics.

    Science.gov (United States)

    Mirza, Behrouz; Mohammadzadeh, Hosein

    2011-09-01

    We consider the thermodynamic geometry of an ideal non-Abelian gas. We show that, for a certain value of the fractional parameter and at the relevant maximum value of fugacity, the thermodynamic curvature has a singular point. This indicates a condensation such as Bose-Einstein condensation for non-Abelian statistics and we work out the phase transition temperature in various dimensions.

  3. Fluctuation theorem for the effusion of an ideal gas.

    Science.gov (United States)

    Cleuren, B; Van den Broeck, C; Kawai, R

    2006-08-01

    The probability distribution of the entropy production for the effusion of an ideal gas between two compartments is calculated explicitly. The fluctuation theorem is verified. The analytic results are in good agreement with numerical data from hard disk molecular dynamics simulations.

  4. Shock wave structure in an ideal dissociating gas

    Science.gov (United States)

    Liu, K. H.

    1975-01-01

    Composition changes within the shock layer due to chemical reactions are considered. The Lighthill ideal dissociating gas model was used in an effort to describe the oxygen type molecule. First, the two limiting cases, when the chemical reaction rates are very slow and very fast in comparison to local convective rates, are investigated. Then, the problem is solved for arbitrary chemical reaction rates.

  5. A Demonstration of Ideal Gas Principles Using a Football.

    Science.gov (United States)

    Bare, William D.; Andrews, Lester

    1999-01-01

    Uses a true-to-life story of accusations made against a college football team to illustrate ideal gas laws. Students are asked to decide whether helium-filled footballs would increase punt distances and how to determine whether a football contained air or helium. (WRM)

  6. From Free Expansion to Abrupt Compression of an Ideal Gas

    Science.gov (United States)

    Anacleto, Joaquim; Pereira, Mario G.

    2009-01-01

    Using macroscopic thermodynamics, the general law for adiabatic processes carried out by an ideal gas was studied. It was shown that the process reversibility is characterized by the adiabatic reversibility coefficient r, in the range 0 [less than or equal] r [less than or equal] 1 for expansions and r [greater than or equal] 1 for compressions.…

  7. On the Bose-Einstein condensation of an ideal gas

    International Nuclear Information System (INIS)

    Landau, L.J.; Wilde, I.F.

    1979-01-01

    A mathematically precise treatment is given of the well-known Bose-Einstein condensation of an ideal gas in the grand canonical ensemble at fixed density. The method works equally well for any of the standard boundary conditions and it is shown that the finite volume activity converges and that in three dimensions condensation occurs for Dirichlet, Neumann, periodic, and repulsive walls. (orig.) 891 HJ/orig. 892 CKA

  8. Measurement of Optical Feshbach Resonances in an Ideal Gas

    International Nuclear Information System (INIS)

    Blatt, S.; Nicholson, T. L.; Bloom, B. J.; Williams, J. R.; Thomsen, J. W.; Ye, J.; Julienne, P. S.

    2011-01-01

    Using a narrow intercombination line in alkaline earth atoms to mitigate large inelastic losses, we explore the optical Feshbach resonance effect in an ultracold gas of bosonic 88 Sr. A systematic measurement of three resonances allows precise determinations of the optical Feshbach resonance strength and scaling law, in agreement with coupled-channel theory. Resonant enhancement of the complex scattering length leads to thermalization mediated by elastic and inelastic collisions in an otherwise ideal gas. Optical Feshbach resonance could be used to control atomic interactions with high spatial and temporal resolution.

  9. Measurement of optical Feshbach resonances in an ideal gas.

    Science.gov (United States)

    Blatt, S; Nicholson, T L; Bloom, B J; Williams, J R; Thomsen, J W; Julienne, P S; Ye, J

    2011-08-12

    Using a narrow intercombination line in alkaline earth atoms to mitigate large inelastic losses, we explore the optical Feshbach resonance effect in an ultracold gas of bosonic (88)Sr. A systematic measurement of three resonances allows precise determinations of the optical Feshbach resonance strength and scaling law, in agreement with coupled-channel theory. Resonant enhancement of the complex scattering length leads to thermalization mediated by elastic and inelastic collisions in an otherwise ideal gas. Optical Feshbach resonance could be used to control atomic interactions with high spatial and temporal resolution.

  10. Computations of ideal and real gas high altitude plume flows

    Science.gov (United States)

    Feiereisen, William J.; Venkatapathy, Ethiraj

    1988-01-01

    In the present work, complete flow fields around generic space vehicles in supersonic and hypersonic flight regimes are studied numerically. Numerical simulation is performed with a flux-split, time asymptotic viscous flow solver that incorporates a generalized equilibrium chemistry model. Solutions to generic problems at various altitude and flight conditions show the complexity of the flow, the equilibrium chemical dissociation and its effect on the overall flow field. Viscous ideal gas solutions are compared against equilibrium gas solutions to illustrate the effect of equilibrium chemistry. Improved solution accuracy is achieved through adaptive grid refinement.

  11. Ideal Gas Resonance Scattering Kernel Routine for the NJOY Code

    International Nuclear Information System (INIS)

    Rothenstein, W.

    1999-01-01

    In a recent publication an expression for the temperature-dependent double-differential ideal gas scattering kernel is derived for the case of scattering cross sections that are energy dependent. Some tabulations and graphical representations of the characteristics of these kernels are presented in Ref. 2. They demonstrate the increased probability that neutron scattering by a heavy nuclide near one of its pronounced resonances will bring the neutron energy nearer to the resonance peak. This enhances upscattering, when a neutron with energy just below that of the resonance peak collides with such a nuclide. A routine for using the new kernel has now been introduced into the NJOY code. Here, its principal features are described, followed by comparisons between scattering data obtained by the new kernel, and the standard ideal gas kernel, when such comparisons are meaningful (i.e., for constant values of the scattering cross section a 0 K). The new ideal gas kernel for variable σ s 0 (E) at 0 K leads to the correct Doppler-broadened σ s T (E) at temperature T

  12. 40 CFR 1065.645 - Amount of water in an ideal gas.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 32 2010-07-01 2010-07-01 false Amount of water in an ideal gas. 1065... in an ideal gas. This section describes how to determine the amount of water in an ideal gas, which... of water in an ideal gas, x H20, as follows: ER30AP10.034 Where: x H20 = amount of water in an ideal...

  13. Dynamics of a massive piston in an ideal gas

    International Nuclear Information System (INIS)

    Chernov, N I; Lebowitz, J L; Sinai, Yakov G

    2002-01-01

    This survey is a study of a dynamical system consisting of a massive piston in a cubic container of large size L filled with an ideal gas. The piston has mass M∼L 2 and undergoes elastic collisions with N∼L 3 non-interacting gas particles of mass m=1. It is found that under suitable initial conditions there is a scaling regime with time and space scaled by L in which the motion of the piston and the one-particle distribution of the gas satisfy autonomous coupled equations (hydrodynamic equations) such that in the limit L→∞ the mechanical trajectory of the piston converges in probability to the solution of the hydrodynamic equations for a certain period of time. There is also a heuristic discussion of the dynamics of the system on longer intervals of time

  14. Injection of a relativistic electron beam into neutral hydrogen gas

    International Nuclear Information System (INIS)

    de Haan, P.H.; Janssen, G.C.A.M.; Hopman, H.J.; Granneman, E.H.A.

    1982-01-01

    The injection of a relativistic electron beam (0.8 MeV, 6 kA, 150 nsec) into hydrogen gas of 190 Pa pressure results in a plasma with density n/sub e/approx. =10 20 m -3 and temperature kT/sub e/< or approx. =kT/sub i/approx. =3.5 eV. The results of the measurements show good agreement with computations based on a model combining gas ionization and turbulent plasma heating. It is found that a quasistationary state exists in which the energy lost by the beam (about 6% of the total kinetic energy of the beam) is partly used to further ionize and dissociate the gas and for the other part is lost as line radiation

  15. The pressure exerted by a confined ideal gas

    International Nuclear Information System (INIS)

    Pang Hai; Dai Wusheng; Xie Mi

    2011-01-01

    In this paper, we study the pressure exerted by a confined ideal gas on the container boundary and we introduce a surface force in gases. First, the general expression for the local surface pressure tensor is obtained. We find, by examples, that the pressure vanishes at the edges of a box, peaks at the middle of the surface and its magnitude for different statistics satisfies p Fermi > p classical > p Bose on every boundary point. Then, the relation between the surface pressure tensor and generalized forces is studied. Based on the relation, we find that a confined ideal gas can exert forces whose effect is to reduce the total surface area of the boundary of an incompressible object. The force provides mechanisms for several mechanical effects. (1) The force contributes to the adhesion of two thin films in contact with each other. We derive an expression for the adhesion force between two square sheets, estimate its magnitude, and also give a method for distinguishing it from other adhesion forces. (2) The force can lead to the recoiling of a DNA-like column. We study the recoiling process using a simple model and find a deviation from the result given in the thermodynamic limit, which is in accordance with experiments. (3) An open container immersed in a gas can be compressed by this force like the Casimir effect. We discuss the effect for various geometries. (paper)

  16. Relativistic density matrix in the diagonal momentum representation. Bose-gas

    International Nuclear Information System (INIS)

    Makhlin, A.N.; Sinyukov, Yu.M.

    1984-01-01

    The relativistic-invariance treatment of the ideal Bose-system arising from the diagonal momentum representation for the density matrix is developed. The average occupation members and their correlators for statistical systems in arbitrary inertial frames are found on the equal-time hypersurfaces. The relativistic partition function method for the calculation of thermodynamic properties of gases moving as a whole is constructed

  17. Observations of density fluctuations in an elongated Bose gas: ideal gas and quasicondensate regimes.

    Science.gov (United States)

    Esteve, J; Trebbia, J-B; Schumm, T; Aspect, A; Westbrook, C I; Bouchoule, I

    2006-04-07

    We report in situ measurements of density fluctuations in a quasi-one-dimensional 87Rb Bose gas at thermal equilibrium in an elongated harmonic trap. We observe an excess of fluctuations compared to the shot-noise level expected for uncorrelated atoms. At low atomic density, the measured excess is in good agreement with the expected "bunching" for an ideal Bose gas. At high density, the measured fluctuations are strongly reduced compared to the ideal gas case. We attribute this reduction to repulsive interatomic interactions. The data are compared with a calculation for an interacting Bose gas in the quasicondensate regime.

  18. Microeconomics of the ideal gas like market models

    Science.gov (United States)

    Chakrabarti, Anindya S.; Chakrabarti, Bikas K.

    2009-10-01

    We develop a framework based on microeconomic theory from which the ideal gas like market models can be addressed. A kinetic exchange model based on that framework is proposed and its distributional features have been studied by considering its moments. Next, we derive the moments of the CC model (Eur. Phys. J. B 17 (2000) 167) as well. Some precise solutions are obtained which conform with the solutions obtained earlier. Finally, an output market is introduced with global price determination in the model with some necessary modifications.

  19. Conical flow near singular rays. [shock generation in ideal gas

    Science.gov (United States)

    Zahalak, G. I.; Myers, M. K.

    1974-01-01

    The steady flow of an ideal gas past a conical body is investigated by the method of matched asymptotic expansions, with particular emphasis on the flow near the singular ray occurring in linearized theory. The first-order problem governing the flow in this region is formulated, leading to the equation of Kuo, and an approximate solution is obtained in the case of compressive flow behind the main front. This solution is compared with the results of previous investigations with a view to assessing the applicability of the Lighthill-Whitham theories.

  20. Convection in an ideal gas at high Rayleigh numbers.

    Science.gov (United States)

    Tilgner, A

    2011-08-01

    Numerical simulations of convection in a layer filled with ideal gas are presented. The control parameters are chosen such that there is a significant variation of density of the gas in going from the bottom to the top of the layer. The relations between the Rayleigh, Peclet, and Nusselt numbers depend on the density stratification. It is proposed to use a data reduction which accounts for the variable density by introducing into the scaling laws an effective density. The relevant density is the geometric mean of the maximum and minimum densities in the layer. A good fit to the data is then obtained with power laws with the same exponent as for fluids in the Boussinesq limit. Two relations connect the top and bottom boundary layers: The kinetic energy densities computed from free fall velocities are equal at the top and bottom, and the products of free fall velocities and maximum horizontal velocities are equal for both boundaries.

  1. Boltzmann equations for a binary one-dimensional ideal gas.

    Science.gov (United States)

    Boozer, A D

    2011-09-01

    We consider a time-reversal invariant dynamical model of a binary ideal gas of N molecules in one spatial dimension. By making time-asymmetric assumptions about the behavior of the gas, we derive Boltzmann and anti-Boltzmann equations that describe the evolution of the single-molecule velocity distribution functions for an ensemble of such systems. We show that for a special class of initial states of the ensemble one can obtain an exact expression for the N-molecule velocity distribution function, and we use this expression to rigorously prove that the time-asymmetric assumptions needed to derive the Boltzmann and anti-Boltzmann equations hold in the limit of large N. Our results clarify some subtle issues regarding the origin of the time asymmetry of Boltzmann's H theorem.

  2. Small metal particles and the ideal Fermi gas

    International Nuclear Information System (INIS)

    Barma, Mustanpir

    1991-01-01

    Kubo's theoretical model of a small metal particle consists of a number of noninteraction electrons (an ideal Fermi gas) confined to a finite volume. By 'small' it meant that the size of the particle is intermediate between that of a few atoms cluster and the bulk solid, the radius of the particle being 5 to 50 Angstroms. The model is discussed and size dependence of various energy scales is studied. For a fermi gas confined in a sphere or a cube, two size-dependent energy scales are important. The inner scale δ is the mean spacing between successive energy levels. It governs the very low temperature behaviour. The outer scale Δ is associated with the shell structure when δ ≤T<Δ, thermodynamic properties show an oscillatory fluctuations around a smooth background as the size or energy is varied. (M.G.B.) 23 refs

  3. A notable difference between ideal gas and infinite molar volume limit of van der Waals gas

    Science.gov (United States)

    Liu, Q. H.; Shen, Y.; Bai, R. L.; Wang, X.

    2010-05-01

    The van der Waals equation of state does not sufficiently represent a gas unless a thermodynamic potential with two proper and independent variables is simultaneously determined. The limiting procedures under which the behaviour of the van der Waals gas approaches that of an ideal gas are letting two van der Waals coefficients be zero rather than letting the molar volume become infinitely large; otherwise, the partial derivative of internal energy with respect to pressure at a fixed temperature does not vanish.

  4. A notable difference between ideal gas and infinite molar volume limit of van der Waals gas

    International Nuclear Information System (INIS)

    Liu, Q H; Shen, Y; Bai, R L; Wang, X

    2010-01-01

    The van der Waals equation of state does not sufficiently represent a gas unless a thermodynamic potential with two proper and independent variables is simultaneously determined. The limiting procedures under which the behaviour of the van der Waals gas approaches that of an ideal gas are letting two van der Waals coefficients be zero rather than letting the molar volume become infinitely large; otherwise, the partial derivative of internal energy with respect to pressure at a fixed temperature does not vanish.

  5. Combilift ideal for maneuvering oil and gas equipment

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2009-07-15

    This article described an innovative forklift that responds to the oil industry's need for a safer, better and easier way to move long tubular products that cannot be carried high in the air. The Gator Jaw is a duplex pipe clamp attachment that secures to the Combilift forklift carriage. The clamp arm can be hydraulically moved upwards to allow the operator full use of the forks without interference from the hold down arm. The Combilift's platform is ideal for maneuvering oil and gas equipment close to the ground. Since it can travel sideways, the length of the load is not critical. The Gator Jaw's unique design makes it possible for one forklift to handle both skids and pallets. The C-Series product extends to the subsea oil and gas industry, which works with long loads such as oil drilling tools and pipe. The benefits include safer product handling, significant space savings, increased productivity and versatile indoor and outdoor use. The machines are available with a fuel-efficient liquefied petroleum gas (LPG) or diesel engine. 1 fig.

  6. Study related to the generation of the conditional intensities of ideal Bose-gas

    International Nuclear Information System (INIS)

    Al-Oklah, H.

    2007-01-01

    In this paper, we will answer on the following question: Are there any conditions on the chemical potential and temperature of an ideal BOSE gas when generating the conditional intensities of ideal Bose-gas, and will the position distribution of the ideal Bose-gas be a Gibbs-process. The study shows that there should be no conditions on the chemical potential and thermodynamical temperature of an ideal BOSE gas when we generate the conditional intensities of ideal Bose-gas except that the fundamental conditions, the chemical potential is negative and the inverse temperature is positive. Thus the position distribution of the ideal Bose-gas may only be a Gibbs-process, in the special case when the thermodynamical temperature of the ideal BOSE gas tends to the absolute zero. (author)

  7. Identifying and addressing student difficulties with the ideal gas law

    Science.gov (United States)

    Kautz, Christian Hans

    This dissertation reports on an in-depth investigation of student understanding of the ideal gas law. The research and curriculum development were mostly conducted in the context of algebra- and calculus-based introductory physics courses and a sophomore-level thermal physics course. Research methods included individual demonstration interviews and written questions. Student difficulties with the quantities: pressure, volume, temperature, and the number of moles were identified. Data suggest that students' incorrect and incomplete microscopic models about gases contribute to the difficulties they have in answering questions posed in macroscopic terms. In addition, evidence for general reasoning difficulties is presented. These research results have guided the development of curriculum to address the student difficulties that have been identified.

  8. Compressible gas flow through idealized cracks of large aspect ratio

    International Nuclear Information System (INIS)

    Chivers, T.C.; Skinner, J.; Williams, M.E.

    1975-07-01

    Gas flow through large aspect ratio idealized cracks is considered, where isothermal conditions with choking at exit are assumed in the theoretical analysis. For smooth wall cracks, comparisons are made between experimentally determined flowrates and those predicted, and good agreement is shown. This is followed by consideration of flow through a notional crack to examine the influence of width and surface roughness. By considering flow as simply proportional to Wsup(n), the treatment shows 'n' to reduce with W increasing, but surface roughness increases 'n' over the value appropriate to smooth conditions. From these observations it is concluded that further work is required to determine:- (i) real crack geometry and its influence on any leak-before-break philosophy, and (ii) the influence of real surface roughness on flowrate. (author)

  9. Thermodynamic geometry for a non-extensive ideal gas

    Science.gov (United States)

    López, J. L.; Obregón, O.; Torres-Arenas, J.

    2018-05-01

    A generalized entropy arising in the context of superstatistics is applied to an ideal gas. The curvature scalar associated to the thermodynamic space generated by this modified entropy is calculated using two formalisms of the geometric approach to thermodynamics. By means of the curvature/interaction hypothesis of the geometric approach to thermodynamic geometry it is found that as a consequence of considering a generalized statistics, an effective interaction arises but the interaction is not enough to generate a phase transition. This generalized entropy seems to be relevant in confinement or in systems with not so many degrees of freedom, so it could be interesting to use such entropies to characterize the thermodynamics of small systems.

  10. Response of a relativistic quantum magnetized electron gas

    International Nuclear Information System (INIS)

    Melrose, Donald B; Weise, Jeanette I

    2009-01-01

    The response 4-tensor is derived for a spin-independent, relativistic magnetized quantum electron gas. The sum over spins is carried out both directly and using a procedure due to Ritus. The 4-tensor components are written in terms of a sum over the two solutions of the resonance condition for the particle 4-momentum. It is shown that the dispersive properties may be described in terms of a single plasma dispersion function, for arbitrary occupation numbers for electrons and positrons in each Landau level. The plasma dispersion function is evaluated explicitly in the completely degenerate and nondegenerate thermal limits. The perpendicular wave number appears in the arguments of J-functions, which are proportional to generalized Laguerre polynomials, but not in the plasma dispersion function. The result generalizes a known form for the response tensor for parallel propagation (in the completely degenerate case), when the J-functions are either zero or unity, to arbitrary angles of propagation.

  11. D-Dimensional ideal gas in parastatistics.: thermodynamic properties

    International Nuclear Information System (INIS)

    Sousa Vieira, M. C. de; Tsallis, C.

    1986-01-01

    A parastatistics ideal gas with energy spectrum ε is proportional to |k| → sup (α) (α>0) or even more general in a d-dimensional box with volume V (periodic boundary conditions), the number N of the gas particles being well determined (real particles) or not (quasi particles), is considered. The main thermodynamic quantities (chemical potential, internal energy, specific heat C, equation of state, latent heat, average numbers of particles) for arbitrary d,α, T (temperature) and p (maximal number of particles per state allowed in the parastatistics), are calculated. The main asymptotic regimes are worked out explicitly. In particular, the Bose-Einstein condensation for fixed density, N/V appears as a non uniform convergence in the p→ ∞ limit, in complete analogy with the standard critical phenomena which appear in interacting systems in the N →∞ limit. The system behaves essentially like a Fermi-Dirac one for all finite values of p, and reveals a Bose-Einstein behavior only in the p → ∞ limit. For instance, at low temperatures C ∝ T if p d/α if p → ∞. Finally the Sommerfeld integral and its expansion are generalized to an arbitrary finite p. (author) [pt

  12. Dynamical heterogeneity in a glass-forming ideal gas.

    Science.gov (United States)

    Charbonneau, Patrick; Das, Chinmay; Frenkel, Daan

    2008-07-01

    We conduct a numerical study of the dynamical behavior of a system of three-dimensional "crosses," particles that consist of three mutually perpendicular line segments of length sigma rigidly joined at their midpoints. In an earlier study [W. van Ketel, Phys. Rev. Lett. 94, 135703 (2005)] we showed that this model has the structural properties of an ideal gas, yet the dynamical properties of a strong glass former. In the present paper we report an extensive study of the dynamical heterogeneities that appear in this system in the regime where glassy behavior sets in. On the one hand, we find that the propensity of a particle to diffuse is determined by the structure of its local environment. The local density around mobile particles is significantly less than the average density, but there is little clustering of mobile particles, and the clusters observed tend to be small. On the other hand, dynamical susceptibility results indicate that a large dynamical length scale develops even at moderate densities. This suggests that propensity and other mobility measures are an incomplete measure of the dynamical length scales in this system.

  13. From free expansion to abrupt compression of an ideal gas

    International Nuclear Information System (INIS)

    Anacleto, Joaquim; Pereira, Mario G

    2009-01-01

    Using macroscopic thermodynamics, the general law for adiabatic processes carried out by an ideal gas was studied. It was shown that the process reversibility is characterized by the adiabatic reversibility coefficient r, in the range 0 ≤ r ≤ 1 for expansions and r ≥ 1 for compressions. The particular cases of free expansion and reversible adiabatic processes correspond to r = 0 and r = 1, respectively. To conclude the interpretation of r, the relation between r and the variation of the system entropy was also obtained. Comparison between this study and one restricted to expansions following a microscopic point of view showed not only equivalent interpretations but also that our approach is more general, since it also comprises compressions, provides an objective relation between r and entropy change and considers instantaneous varying values of the adiabatic reversibility coefficient. Finally, simulations of selected adiabatic processes are performed and numerical calculations of r are presented. This paper is intended primarily for the undergraduate student, although a comparison with the aforementioned work also requires a background in thermodynamics and kinetic theory

  14. Relativistic stability of interacting Fermi gas in a strong magnetic field

    International Nuclear Information System (INIS)

    Wang Lilin; Tian Jincheng; Men Fudian; Zhang Yipeng

    2013-01-01

    By means of the single particle energy spectrum of weak interaction between fermions and Poisson formula, the thermodynamic potential function of relativistic Fermi gas in a strong magnetic field is derived. Based on this, we obtained the criterion of stability for the system. The results show that the mechanics stability of a Fermi gas with weak interacting is influenced by the interacting. While the magnetic field is able to regulate the influence and the relativistic effect has almost no effect on it. (authors)

  15. On general features of warm dark matter with reduced relativistic gas

    Science.gov (United States)

    Hipólito-Ricaldi, W. S.; vom Marttens, R. F.; Fabris, J. C.; Shapiro, I. L.; Casarini, L.

    2018-05-01

    Reduced relativistic gas (RRG) is a useful approach to describe the warm dark matter (WDM) or the warmness of baryonic matter in the approximation when the interaction between the particles is irrelevant. The use of Maxwell distribution leads to the complicated equation of state of the Jüttner model of relativistic ideal gas. The RRG enables one to reproduce the same physical situation but in a much simpler form. For this reason RRG can be a useful tool for the theories with some sort of a "new Physics". On the other hand, even without the qualitatively new physical implementations, the RRG can be useful to describe the general features of WDM in a model-independent way. In this sense one can see, in particular, to which extent the cosmological manifestations of WDM may be dependent on its Particle Physics background. In the present work RRG is used as a complementary approach to derive the main observational features for the WDM in a model-independent way. The only assumption concerns a non-negligible velocity v for dark matter particles which is parameterized by the warmness parameter b. The relatively high values of b ( b^2˜ 10^{-6}) erase the radiation (photons and neutrinos) dominated epoch and cause an early warm matter domination after inflation. Furthermore, RRG approach enables one to quantify the lack of power in linear matter spectrum at small scales and in particular, reproduces the relative transfer function commonly used in context of WDM with accuracy of ≲ 1%. A warmness with b^2≲ 10^{-6} (equivalent to v≲ 300 km/s) does not alter significantly the CMB power spectrum and is in agreement with the background observational tests.

  16. Bloch walls and the non-ideal bose gas spectrum

    International Nuclear Information System (INIS)

    Vitiello, S.A.S.

    1986-05-01

    The quasi-particle spectrum of non-ideal Bose gas with domain walls in the condensate is investigated. The existence of such a system is determined from solutions of Gross-Pitaevskii equation which represent many-soliton systems. The walls which make the condensate non-uniform are responsible for density and velocity fields ρ(x) and υ(x) repectively. In the laboratory, the Bogoliubov spectrum, supposed to be true for an uniform condensate at rest, is changed due to the velocity field to which the quasi-particles are submited. The spectrum in the laboratory frame is obtained by considering the Galileu invariance principle and the interaction energy between the quasi-particle and its medium. The importance in considering the last two facts is illustrated by the analyse of a constant density condensate which moves uniformly in the laboratory. The many-soliton spectrum configuration and structure function are studied by the Monte Carlo method. In an approximation that assumes the quasi-particle to be point like, the condensate can be treated as locally uniform. For each event the position x of a quasi-particle and its momentum in a frame with velocity υ(x) are determined. Thus, by a convenient Galileu transformation the energy spectrum in the laboratory an be obtained. The results show a phonon spectrum which splits in two branches in the high momenta region. In this region the lower energy branch exibiths a point of minimum. Analogies with the He II are explored. (author) [pt

  17. Cellular Analysis of Boltzmann Most Probable Ideal Gas Statistics

    Science.gov (United States)

    Cahill, Michael E.

    2018-04-01

    Exact treatment of Boltzmann's Most Probable Statistics for an Ideal Gas of Identical Mass Particles having Translational Kinetic Energy gives a Distribution Law for Velocity Phase Space Cell j which relates the Particle Energy and the Particle Population according toB e(j) = A - Ψ(n(j) + 1)where A & B are the Lagrange Multipliers and Ψ is the Digamma Function defined byΨ(x + 1) = d/dx ln(x!)A useful sufficiently accurate approximation for Ψ is given byΨ(x +1) ≈ ln(e-γ + x)where γ is the Euler constant (≈.5772156649) & so the above distribution equation is approximatelyB e(j) = A - ln(e-γ + n(j))which can be inverted to solve for n(j) givingn(j) = (eB (eH - e(j)) - 1) e-γwhere B eH = A + γ& where B eH is a unitless particle energy which replaces the parameter A. The 2 approximate distribution equations imply that eH is the highest particle energy and the highest particle population isnH = (eB eH - 1) e-γwhich is due to the facts that population becomes negative if e(j) > eH and kinetic energy becomes negative if n(j) > nH.An explicit construction of Cells in Velocity Space which are equal in volume and homogeneous for almost all cells is shown to be useful in the analysis.Plots for sample distribution properties using e(j) as the independent variable are presented.

  18. High School Forum. The Solution: "Derivation of the Ideal Gas Law."

    Science.gov (United States)

    Herron, J. Dudley, Ed.

    1980-01-01

    Presents responses to an earlier report concerning a procedure for the derivation of the Ideal Gas Law from Charles', Boyle's, and other gas laws. Logic errors and solutions that work are discussed. (CS)

  19. Pauli Paramagnetic Susceptibility of an Ideal Anyon Gas within Haldane Fractional Exclusion Statistics

    International Nuclear Information System (INIS)

    Qin Fang; Chen Jisheng

    2012-01-01

    The finite-temperature Pauli paramagnetic susceptibility of a three-dimensional ideal anyon gas obeying Haldane fractional exclusion statistics is studied analytically. Different from the result of an ideal Fermi gas, the susceptibility of an ideal anyon gas depends on a statistical factor g in Haldane statistics model. The low-temperature and high-temperature behaviors of the susceptibility are investigated in detail. The Pauli paramagnetic susceptibility of the two-dimensional ideal anyons is also derived. It is found that the reciprocal of the susceptibility has the similar factorizable property which is exhibited in some thermodynamic quantities in two dimensions.

  20. Ideal gas thermodynamic properties for the phenyl, phenoxy, and o-biphenyl radicals

    Science.gov (United States)

    Burcat, A.; Zeleznik, F. J.; Mcbride, B. J.

    1985-01-01

    Ideal gas thermodynamic properties of the phenyl and o-biphenyl radicals, their deuterated analogs and the phenoxy radical were calculated to 5000 K using estimated vibrational frequencies and structures. The ideal gas thermodynamic properties of benzene, biphenyl, their deuterated analogs and phenyl were also calculated.

  1. High resolution kinetic beam schemes in generalized coordinates for ideal quantum gas dynamics

    International Nuclear Information System (INIS)

    Shi, Yu-Hsin; Huang, J.C.; Yang, J.Y.

    2007-01-01

    A class of high resolution kinetic beam schemes in multiple space dimensions in general coordinates system for the ideal quantum gas is presented for the computation of quantum gas dynamical flows. The kinetic Boltzmann equation approach is adopted and the local equilibrium quantum statistics distribution is assumed. High-order accurate methods using essentially non-oscillatory interpolation concept are constructed. Computations of shock wave diffraction by a circular cylinder in an ideal quantum gas are conducted to illustrate the present method. The present method provides a viable means to explore various practical ideal quantum gas flows

  2. Ideal gas behavior of a strongly-coupled complex (dusty) plasma

    OpenAIRE

    Oxtoby, Neil P.; Griffith, Elias J.; Durniak, Céline; Ralph, Jason F.; Samsonov, Dmitry

    2012-01-01

    In a laboratory, a two-dimensional complex (dusty) plasma consists of a low-density ionized gas containing a confined suspension of Yukawa-coupled plastic microspheres. For an initial crystal-like form, we report ideal gas behavior in this strongly-coupled system during shock-wave experiments. This evidence supports the use of the ideal gas law as the equation of state for soft crystals such as those formed by dusty plasmas.

  3. Floating natural gas processing plants. Technical ideal or feasible technology

    Energy Technology Data Exchange (ETDEWEB)

    Backhaus, H

    1977-04-01

    Realizability of floating natural gas processing plants is decisively influenced by the economy of the system. Illustrated by the example of the natural gas product LPG (liquefied petroleum gas), a model cost calculation is carried out. It is demonstrated that the increase in the price level during the 1973/1974 energy crisis is an important factor for the realiability in terms of economy of such complicated technical systems. Another aspect which the model calculation revealed is that the economy of floating natural gas processing plants and storage systems can only be estimated in connection with other system components.

  4. Simulasi Tumbukan Partikel Gas Ideal Dengan Model Cellular Automata Dua Dimensi

    OpenAIRE

    Abdul Basid, Annisa Mujriati

    2010-01-01

    Telah dilakukan simulasi tumbukan partikel gas ideal dengan menggunakan  model cellular automata dua dimensi untuk memvisualisasikan tumbukan partikel gas ideal. Tumbukan partikel  disimulasikan  dengan  menggunakan  model  cellular  automata  dua  dimensi.  Di  dalam cellular automata, pergerakan partikel diatur dengan suatu aturan  yaitu aturan delapan tetangga yang merupakan aturan acak. Hasil program simulasi tumbukan partikel gas ideal dengan model cellular automata dua dimensi  mengguna...

  5. Improving Students' Understanding of the Connections between the Concepts of Real-Gas Mixtures, Gas Ideal-Solutions, and Perfect-Gas Mixtures

    Science.gov (United States)

    Privat, Romain; Jaubert, Jean-Noël; Moine, Edouard

    2016-01-01

    In many textbooks of chemical-engineering thermodynamics, a gas mixture obeying the fundamental law pV[subscript m] = RT is most often called ideal-gas mixture (in some rare cases, the term perfect-gas mixture can be found). These textbooks also define the fundamental concept of ideal solution which in theory, can be applied indifferently to…

  6. Anomalous heat conduction in a one-dimensional ideal gas.

    Science.gov (United States)

    Casati, Giulio; Prosen, Tomaz

    2003-01-01

    We provide firm convincing evidence that the energy transport in a one-dimensional gas of elastically colliding free particles of unequal masses is anomalous, i.e., the Fourier law does not hold. Our conclusions are confirmed by a theoretical and numerical analysis based on a Green-Kubo-type approach specialized to momentum-conserving lattices.

  7. Current correlation functions of ideal Fermi gas at finite temperature

    Indian Academy of Sciences (India)

    in the study of time dependent density functional theory [5] due to the work of Vignale and. Kohn [6,7]. They obtained ... part has relevance to the study of viscous effects [10] in the electron gas and to the dia- magnetic ... is found that the diamagnetic susceptibility, related to the transverse part, smoothly cross over from ...

  8. Effect of pairwise additivity on finite-temperature behavior of classical ideal gas

    Science.gov (United States)

    Shekaari, Ashkan; Jafari, Mahmoud

    2018-05-01

    Finite-temperature molecular dynamics simulations have been applied to inquire into the effect of pairwise additivity on the behavior of classical ideal gas within the temperature range of T = 250-4000 K via applying a variety of pair potentials and then examining the temperature dependence of a number of thermodynamical properties. Examining the compressibility factor reveals the most deviation from ideal-gas behavior for the Lennard-Jones system mainly due to the presence of both the attractive and repulsive terms. The systems with either attractive or repulsive intermolecular potentials are found to present no resemblance to real gases, but the most similarity to the ideal one as temperature rises.

  9. Real-gas effects 1: Simulation of ideal gas flow by cryogenic nitrogen and other selected gases

    Science.gov (United States)

    Hall, R. M.

    1980-01-01

    The thermodynamic properties of nitrogen gas do not thermodynamically approximate an ideal, diatomic gas at cryogenic temperatures. Choice of a suitable equation of state to model its behavior is discussed and the equation of Beattie and Bridgeman is selected as best meeting the needs for cryogenic wind tunnel use. The real gas behavior of nitrogen gas is compared to an ideal, diatomic gas for the following flow processes: isentropic expansion; normal shocks; boundary layers; and shock wave boundary layer interactions. The only differences in predicted pressure ratio between nitrogen and an ideal gas that may limit the minimum operating temperatures of transonic cryogenic wind tunnels seem to occur at total pressures approaching 9atmospheres and total temperatures 10 K below the corresponding saturation temperature, where the differences approach 1 percent for both isentropic expansions and normal shocks. Several alternative cryogenic test gases - air, helium, and hydrogen - are also analyzed. Differences in air from an ideal, diatomic gas are similar in magnitude to those of nitrogen. Differences for helium and hydrogen are over an order of magnitude greater than those for nitrogen or air. Helium and hydrogen do not approximate the compressible flow of an ideal, diatomic gas.

  10. Tin dioxide opals and inverted opals: near-ideal microstructures for gas sensors

    Energy Technology Data Exchange (ETDEWEB)

    Scott, R.W.J.; Yang, S.M.; Coombs, N.; Ozin, G.A. [Toronto Univ., ON (Canada). Materials Chemistry Research Group; Chabanis, G.; Williams, D.E. [University Coll., London (United Kingdom). Dept. of Chemistry

    2001-10-02

    Periodic macroporous forms of nc-SnO{sub 2} have been synthesized by two methods, giving opals and inverse opals that can be used as structurally well-defined gas sensors, as demonstrated for CO gas, as well as for toluene and ethanol vapors. The inverse opals, in particular, seem to approximate ''ideal'' behavior. (orig.)

  11. Statistical metastability of a classical ideal gas in the Schwarzschild gravitational field

    International Nuclear Information System (INIS)

    Gaina, A.B.; Zaslavskii, O.B.

    1990-01-01

    A classical ideal gas in the Schwarzschild gravitational field is considered. The lifetime of a gas influenced by thermal fluctuations has been calculated. It is shown that thermal effects can lead to the electric charging of a black hole in a plasma containing particles with different masses. (author)

  12. A Systematic Experimental Test of the Ideal Gas Equation for the General Chemistry Laboratory

    Science.gov (United States)

    Blanco, Luis H.; Romero, Carmen M.

    1995-10-01

    A set of experiments that examines each one of the terms of the ideal gas equation is described. Boyle's Law, Charles-Gay Lussac's Law, Amonton's Law, the number of moles or Molecular Weight, and the Gas Constant are studied. The experiments use very simple, easy to obtain equipment and common gases, mainly air. The results gathered by General Chemistry College students are satisfactory.

  13. A Unified Theory of Non-Ideal Gas Lattice Boltzmann Models

    Science.gov (United States)

    Luo, Li-Shi

    1998-01-01

    A non-ideal gas lattice Boltzmann model is directly derived, in an a priori fashion, from the Enskog equation for dense gases. The model is rigorously obtained by a systematic procedure to discretize the Enskog equation (in the presence of an external force) in both phase space and time. The lattice Boltzmann model derived here is thermodynamically consistent and is free of the defects which exist in previous lattice Boltzmann models for non-ideal gases. The existing lattice Boltzmann models for non-ideal gases are analyzed and compared with the model derived here.

  14. The effect of the reference frame on the thermophysical properties of an ideal gas

    International Nuclear Information System (INIS)

    Speziale, Cg.

    1986-01-01

    The effect that the frame of reference has on the thermophysical properties of an ideal gas is examined from a fundamental theoretical standpoint based on the Boltzmann equation. In continuum mechanics, the principle of material frame in deference forbids the thermophysical properties of a fluid or solid to depend in any way on the motion of the reference frame. It is demonstrated that the Boltzmann equation is only consistent with material frame-indeffrence in a strong approximate sense provided that the gas is not highly rarefield and, thus, well within the limits of classical continuum mechanics. Estimates of the mean free times for which material frame-indifference can be invoked in the modeling of gas flows are provided from an analysis of the problem of heat conduction in a rigidly rotating gas. Applications of these results in obtaining asymptotic solutions of the Boltzmann equation for the continuum description of an ideal gas are discussed briefly

  15. Shock dynamics of weak imploding cylindrical and spherical shock waves with non-ideal gas effects

    International Nuclear Information System (INIS)

    Anand, R K

    2013-01-01

    The author (Anand 2012 Astrophys. Space Sci. 342 377–88) recently obtained jump relations across a shock front in non-ideal gas flow taking into consideration the equation of state for a non-ideal gas as given by Landau and Lifshitz. In this paper an analytical solution for one-dimensional adiabatic flow behind weak converging shock waves propagating in a non-ideal gas is obtained by using Whitham's (1974 Linear and Nonlinear Waves (New York: Wiley)) geometrical shock dynamics approach. The effects of an increase in (i) the propagation distance from the centre of convergence, (ii) the non-idealness parameter and (iii) the adiabatic index of the gas, on the shock velocity, pressure, density, particle velocity, adiabatic compressibility and the change in entropy across the shock front, are analyzed. The results provided a clear picture of whether and how the non-idealness parameter and the adiabatic index affect the flow field behind the imploding shock front. (paper)

  16. Quantum degeneracy effect on performance of irreversible Otto cycle with ideal Bose gas

    International Nuclear Information System (INIS)

    Wu Feng; Chen Lingen; Sun Fengrui; Wu Chih; Guo Fangzhong; Li Qing

    2006-01-01

    An Otto cycle working with an ideal Bose gas is called a Bose Otto cycle. The internal irreversibility of the cycle is included in the factors of internal irreversibility degree. The quantum degeneracy effect on the performance of the cycle is investigated based on quantum statistical mechanics and thermodynamics. Variations of the maximum work output ratio R W and the efficiency ratio y with temperature ratio τ are examined, which reveal the influence of the quantum degeneracy of the working substance on the performance of a Bose Otto cycle. It is shown that the results obtained herein are valid under both classical and quantum ideal gas conditions

  17. Condensation and critical exponents of an ideal non-Abelian gas

    Science.gov (United States)

    Talaei, Zahra; Mirza, Behrouz; Mohammadzadeh, Hosein

    2017-11-01

    We investigate an ideal gas obeying non-Abelian statistics and derive the expressions for some thermodynamic quantities. It is found that thermodynamic quantities are finite at the condensation point where their derivatives diverge and, near this point, they behave as \\vert T-Tc\\vert^{-ρ} in which Tc denotes the condensation temperature and ρ is a critical exponent. The critical exponents related to the heat capacity and compressibility are obtained by fitting numerical results and others are obtained using the scaling law hypothesis for a three-dimensional non-Abelian ideal gas. This set of critical exponents introduces a new universality class.

  18. Transport of a relativistic electron beam through hydrogen gas

    International Nuclear Information System (INIS)

    Haan, P. de.

    1981-01-01

    In this thesis the author describes the transport properties of an electron beam through vacuum and through hydrogen gas with pressure ranging from 25 to 1000 Pa. Maximum beam energy and current are 0.8 MeV and 6 kA, respectively. The pulse length is around 150 ns. A description is given of the experimental device. Also the diagnostics for probing the beam and the plasma, produced by the beam, are discussed, as well as the data acquisition system. The interaction between the beam and hydrogen gas with a pressure around 200 Pa is considered. A plasma with density around 10 19 m -3 is produced within a few nanoseconds. Measurements yield the atomic hydrogen temperature, electron density, beam energy loss, and induced plasma current and these are compared with the results of a model combining gas ionization and dissociation, and turbulent plasma heating. The angular distribution of the beam electrons about the magnetic field axis is discussed. (Auth.)

  19. Quantized vortices in the ideal bose gas: a physical realization of random polynomials.

    Science.gov (United States)

    Castin, Yvan; Hadzibabic, Zoran; Stock, Sabine; Dalibard, Jean; Stringari, Sandro

    2006-02-03

    We propose a physical system allowing one to experimentally observe the distribution of the complex zeros of a random polynomial. We consider a degenerate, rotating, quasi-ideal atomic Bose gas prepared in the lowest Landau level. Thermal fluctuations provide the randomness of the bosonic field and of the locations of the vortex cores. These vortices can be mapped to zeros of random polynomials, and observed in the density profile of the gas.

  20. Theoretical test of Jarzynski's equality for reversible volume-switching processes of an ideal gas system.

    Science.gov (United States)

    Sung, Jaeyoung

    2007-07-01

    We present an exact theoretical test of Jarzynski's equality (JE) for reversible volume-switching processes of an ideal gas system. The exact analysis shows that the prediction of JE for the free energy difference is the same as the work done on the gas system during the reversible process that is dependent on the shape of path of the reversible volume-switching process.

  1. Recommended Ideal-Gas Thermochemical Functions for Heavy Water and its Substituent Isotopologues

    Czech Academy of Sciences Publication Activity Database

    Simkó, I.; Furtenbacher, T.; Hrubý, Jan; Zobov, N. F.; Polyansky, O. L.; Tennyson, J.; Gamache, R. R.; Szidarovszky, T.; Dénes, N.; Császár, A. G.

    2017-01-01

    Roč. 46, č. 2 (2017), č. článku 023104. ISSN 0047-2689 R&D Projects: GA ČR GA16-02647S Institutional support: RVO:61388998 Keywords : heavy water * ideal-gas thermochemical functions * partition function Subject RIV: BJ - Thermodynamics OBOR OECD: Thermodynamics Impact factor: 4.204, year: 2016

  2. Cooking under Pressure: Applying the Ideal Gas Law in the Kitchen

    Science.gov (United States)

    Chen, Ling; Anderson, Jennifer Y.; Wang, Diane R.

    2010-01-01

    This case study uses a daily cooking scenario to demonstrate how the boiling point of water is directly related to the external pressures in order to reinforce the concepts of boiling and boiling point, apply ideal gas law, and relate chemical reaction rates with temperatures. It also extends its teaching to autoclaves used to destroy…

  3. Real-Time Dynamics of an Impurity in an Ideal Bose Gas in a Trap

    DEFF Research Database (Denmark)

    Volosniev, A. G.; Hammer, H. -W.; Zinner, N. T.

    2015-01-01

    We investigate the behavior of a harmonically trapped system consisting of an impurity in a dilute ideal Bose gas after the boson-impurity interaction is suddenly switched on. As theoretical framework, we use a field theory approach in the space-time domain within the T-matrix approximation. We...

  4. Two-step condensation of the ideal Bose gas in highly anisotropic traps

    NARCIS (Netherlands)

    van Druten, N.J.; Ketterle, W.

    1997-01-01

    The ideal Bose gas in a highly anisotropic harmonic potential is studied. It is found that Bose-Einstein condensation occurs in two distinct steps as the temperature is lowered. In the first step the specific heat shows a sharp feature, but the system still occupies many one-dimensional quantum

  5. Kinetic Models for Adiabatic Reversible Expansion of a Monatomic Ideal Gas.

    Science.gov (United States)

    Chang, On-Kok

    1983-01-01

    A fixed amount of an ideal gas is confined in an adiabatic cylinder and piston device. The relation between temperature and volume in initial/final phases can be derived from the first law of thermodynamics. However, the relation can also be derived based on kinetic models. Several of these models are discussed. (JN)

  6. How Incorrect Is the Classical Partition Function for the Ideal Gas?

    Science.gov (United States)

    Kroemer, Herbert

    1980-01-01

    Discussed is the classical partition function for the ideal gas and how it differs from the exact value for bosons or fermions in the classical regime. The differences in the two values are negligible hence the classical treatment leads in the end to correct answers for all observables. (Author/DS)

  7. On the impact of the ideal gas assumption to high-pressure combustion phenomena in engines

    NARCIS (Netherlands)

    Evlampiev, A.V.; Somers, L.M.T.; Baert, R.S.G.; Goey, de L.P.H.

    2008-01-01

    The effect of the ideal gas law assumption on auto-ignition and NOx-formation in a rapid compression machine is studied. For both processes the simulations are compared to a reference simulation using a Redlich-Kwong equation-of-state based on the critical properties of all constituents.

  8. Ballistic and diffusive dynamics in a two-dimensional ideal gas of macroscopic chaotic Faraday waves.

    Science.gov (United States)

    Welch, Kyle J; Hastings-Hauss, Isaac; Parthasarathy, Raghuveer; Corwin, Eric I

    2014-04-01

    We have constructed a macroscopic driven system of chaotic Faraday waves whose statistical mechanics, we find, are surprisingly simple, mimicking those of a thermal gas. We use real-time tracking of a single floating probe, energy equipartition, and the Stokes-Einstein relation to define and measure a pseudotemperature and diffusion constant and then self-consistently determine a coefficient of viscous friction for a test particle in this pseudothermal gas. Because of its simplicity, this system can serve as a model for direct experimental investigation of nonequilibrium statistical mechanics, much as the ideal gas epitomizes equilibrium statistical mechanics.

  9. Thermal and Electrical Conductivities of a Three-Dimensional Ideal Anyon Gas with Fractional Exclusion Statistics

    International Nuclear Information System (INIS)

    Qin Fang; Wen Wen; Chen Ji-Sheng

    2014-01-01

    The thermal and electrical transport properties of an ideal anyon gas within fractional exclusion statistics are studied. By solving the Boltzmann equation with the relaxation-time approximation, the analytical expressions for the thermal and electrical conductivities of a three-dimensional ideal anyon gas are given. The low-temperature expressions for the two conductivities are obtained by using the Sommerfeld expansion. It is found that the Wiedemann—Franz law should be modified by the higher-order temperature terms, which depend on the statistical parameter g for a charged anyon gas. Neglecting the higher-order terms of temperature, the Wiedemann—Franz law is respected, which gives the Lorenz number. The Lorenz number is a function of the statistical parameter g. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  10. The separative power of a family of idealized countercurrent gas centrifuges

    International Nuclear Information System (INIS)

    Berndt, S.

    1976-01-01

    In a gas centrifuge there are always losses of separative power caused by deviations from the ideal flow velocity distribution and the optimum radial concentration distribution, as well as by axial back diffusion and mixing of streams of different concentration. The present paper is concerned with minimizing the sum of these losses within a family of idealized centrifuges characterized by a set of predetermined axially invariant velocity distributions. A computer program has been developed to do this job. It requires a user supplied subroutine generating the admitted velocity distributions. Sample results are presented for a particular type of almost axial flow. (orig.) [de

  11. Oscillatory conductive heat transfer for a fiber in an ideal gas

    Science.gov (United States)

    Kuntz, H. L.; Perreira, N. D.

    1985-01-01

    A description of the thermal effects created by placing a cylindrical fiber in an inviscid, ideal gas, through which an acoustic wave propagates, is presented. The fibers and the gas have finite heat capacities and thermal conductivities. Expressions for the temperature distribution in the gas and in the material are determined. The temperature distribution is caused by pressure oscillations in the gas which, in turn, are caused by the passage of an acoustic wave. The relative value of a dimensionless parameter is found to be indicative of whether the exact or approximate equations should be used in the solution. This parameter is a function of the thermal conductivities and heat capacities of the fiber and gas, the acoustic frequency, and the fiber diameter.

  12. Time-dependent solution for a one-dimensional piston problem in a non-ideal gas

    International Nuclear Information System (INIS)

    Purohit, S.C.

    1980-01-01

    In this article we study the effect of a non-ideal gas parameter on the piston (contact) surface when a strong shock moves into a non-uniform medium. The solution corresponding to the ideal gas can be obtained as a particular case of the analysis. (orig.)

  13. Using Rubber-Elastic Material-Ideal Gas Analogies To Teach Introductory Thermodynamics. Part II: The Laws of Thermodynamics.

    Science.gov (United States)

    Smith, Brent

    2002-01-01

    Describes the laws of thermodynamics as a supplement to an introductory thermodynamics undergraduate course. Uses rubber-elastic materials (REM) which have strong analogies to the concept of ideal gas. Provides examples of the analogies between ideal gas and REM and mathematical analogies. (YDS)

  14. Using Rubber-Elastic Material-Ideal Gas Analogies To Teach Introductory Thermodynamics. Part I: Equations of State.

    Science.gov (United States)

    Smith, Brent

    2002-01-01

    Describes equations of state as a supplement to an introductory thermodynamics undergraduate course. Uses rubber-elastic materials (REM) which have strong analogies to the concept of an ideal gas and explains the molar basis of REM. Provides examples of the analogies between ideal gas and REM and mathematical analogies. (Contains 22 references.)…

  15. Critical behavior of the ideal-gas Bose-Einstein condensation in the Apollonian network.

    Science.gov (United States)

    de Oliveira, I N; dos Santos, T B; de Moura, F A B F; Lyra, M L; Serva, M

    2013-08-01

    We show that the ideal Boson gas displays a finite-temperature Bose-Einstein condensation transition in the complex Apollonian network exhibiting scale-free, small-world, and hierarchical properties. The single-particle tight-binding Hamiltonian with properly rescaled hopping amplitudes has a fractal-like energy spectrum. The energy spectrum is analytically demonstrated to be generated by a nonlinear mapping transformation. A finite-size scaling analysis over several orders of magnitudes of network sizes is shown to provide precise estimates for the exponents characterizing the condensed fraction, correlation size, and specific heat. The critical exponents, as well as the power-law behavior of the density of states at the bottom of the band, are similar to those of the ideal Boson gas in lattices with spectral dimension d(s)=2ln(3)/ln(9/5)~/=3.74.

  16. Low-temperature behaviour of an ideal Bose gas and some forbidden thermodynamic cycles

    International Nuclear Information System (INIS)

    Chen Jincan; Lin Bihong

    2003-01-01

    Based on the equation of state of an ideal Bose gas, the heat capacities at constant volume and constant pressure of the Bose system are derived and used to analyse the low-temperature behaviour of the Bose system. It is expounded that some important thermodynamic processes such as a constant pressure and an adiabatic process cannot be carried out from the region of T > T c to that of T c , where T c is the critical temperature of Bose-Einstein condensation of the Bose system. Consequently, some typical thermodynamic cycles such as the Carnot cycle, Brayton cycle, Otto cycle, Ericsson cycle, Diesel cycle and Atkinson cycle cannot be operated across the critical temperature T c of Bose-Einstein condensation of an ideal Bose gas

  17. Isobaric expansion coefficient and isothermal compressibility for a finite-size ideal Fermi gas system

    International Nuclear Information System (INIS)

    Su, Guozhen; Chen, Liwei; Chen, Jincan

    2014-01-01

    Due to quantum size effects (QSEs), the isobaric thermal expansion coefficient and isothermal compressibility well defined for macroscopic systems are invalid for finite-size systems. The two parameters are redefined and calculated for a finite-size ideal Fermi gas confined in a rectangular container. It is found that the isobaric thermal expansion coefficient and isothermal compressibility are generally anisotropic, i.e., they are generally different in different directions. Moreover, it is found the thermal expansion coefficient may be negative in some directions under the condition that the pressures in all directions are kept constant. - Highlights: • Isobaric thermal expansion coefficient and isothermal compressibility are redefined. • The two parameters are calculated for a finite-size ideal Fermi gas. • The two parameters are generally anisotropic for a finite-size system. • Isobaric thermal expansion coefficient may be negative in some directions

  18. Statistical distribution for generalized ideal gas of fractional-statistics particles

    International Nuclear Information System (INIS)

    Wu, Y.

    1994-01-01

    We derive the occupation-number distribution in a generalized ideal gas of particles obeying fractional statistics, including mutual statistics, by adopting a state-counting definition. When there is no mutual statistics, the statistical distribution interpolates between bosons and fermions, and respects a fractional exclusion principle (except for bosons). Anyons in a strong magnetic field at low temperatures constitute such a physical system. Applications to the thermodynamic properties of quasiparticle excitations in the Laughlin quantum Hall fluid are discussed

  19. Investigation of the diffusion of a massive particle in a one-dimensional ideal gas

    International Nuclear Information System (INIS)

    Khazin, M.L.

    1987-01-01

    Numerical methods have been used to investigate the dependence of the diffusion coefficient of a massive particle in a one-dimensional ideal gas on its mass. It is shown that the lower limit for the diffusion coefficient obtained by Sinai and Soloveichick and Szasz and Toth is a greatest lower bound. In addition, application of Pearson's x 2 test showed that the limit distribution of a massive particle is not Gaussian with a high significance level

  20. Modeling shock waves in an ideal gas: combining the Burnett approximation and Holian's conjecture.

    Science.gov (United States)

    He, Yi-Guang; Tang, Xiu-Zhang; Pu, Yi-Kang

    2008-07-01

    We model a shock wave in an ideal gas by combining the Burnett approximation and Holian's conjecture. We use the temperature in the direction of shock propagation rather than the average temperature in the Burnett transport coefficients. The shock wave profiles and shock thickness are compared with other theories. The results are found to agree better with the nonequilibrium molecular dynamics (NEMD) and direct simulation Monte Carlo (DSMC) data than the Burnett equations and the modified Navier-Stokes theory.

  1. Use, misuse and extensions of "ideal gas" models of animal encounter.

    Science.gov (United States)

    Hutchinson, John M C; Waser, Peter M

    2007-08-01

    Biologists have repeatedly rediscovered classical models from physics predicting collision rates in an ideal gas. These models, and their two-dimensional analogues, have been used to predict rates and durations of encounters among animals or social groups that move randomly and independently, given population density, velocity, and distance at which an encounter occurs. They have helped to separate cases of mixed-species association based on behavioural attraction from those that simply reflect high population densities, and to detect cases of attraction or avoidance among conspecifics. They have been used to estimate the impact of population density, speeds of movement and size on rates of encounter between members of the opposite sex, between gametes, between predators and prey, and between observers and the individuals that they are counting. One limitation of published models has been that they predict rates of encounter, but give no means of determining whether observations differ significantly from predictions. Another uncertainty is the robustness of the predictions when animal movements deviate from the model's assumptions in specific, biologically relevant ways. Here, we review applications of the ideal gas model, derive extensions of the model to cover some more realistic movement patterns, correct several errors that have arisen in the literature, and show how to generate confidence limits for expected rates of encounter among independently moving individuals. We illustrate these results using data from mangabey monkeys originally used along with the ideal gas model to argue that groups avoid each other. Although agent-based simulations provide a more flexible alternative approach, the ideal gas model remains both a valuable null model and a useful, less onerous, approximation to biological reality.

  2. Thermodynamics of a one-dimensional ideal gas with fractional exclusion statistics

    International Nuclear Information System (INIS)

    Murthy, M.V.N.; Shankar, R.

    1994-01-01

    We show that the particles in the Calogero-Sutherland model obey fractional exclusion statistics as defined by Haldane. We construct anyon number densities and derive the energy distribution function. We show that the partition function factorizes in the form characteristic of an ideal gas. The virial expansion is exactly computable and interestingly it is only the second virial coefficient that encodes the statistics information

  3. Fluctuation theorem for entropy production during effusion of an ideal gas with momentum transfer.

    Science.gov (United States)

    Wood, Kevin; Van den Broeck, C; Kawai, R; Lindenberg, Katja

    2007-06-01

    We derive an exact expression for entropy production during effusion of an ideal gas driven by momentum transfer in addition to energy and particle flux. Following the treatment in Cleuren [Phys. Rev. E 74, 021117 (2006)], we construct a master equation formulation of the process and explicitly verify the thermodynamic fluctuation theorem, thereby directly exhibiting its extended applicability to particle flows and hence to hydrodynamic systems.

  4. Definitive Ideal-Gas Thermochemical Functions of the (H2O)-O-16 Molecule

    Czech Academy of Sciences Publication Activity Database

    Furtenbacher, T.; Szidarovszky, T.; Hrubý, Jan; Kyuberis, A. A.; Zobov, N. F.; Polyansky, O. L.; Tennyson, J.; Császár, A. G.

    2016-01-01

    Roč. 45, č. 4 (2016), č. článku 043104. ISSN 0047-2689 R&D Projects: GA ČR(CZ) GA16-02647S Institutional support: RVO:61388998 Keywords : ideal-gas thermochemical quantities * ortho- and para-H2 16O * partition function Subject RIV: BJ - Thermodynamics Impact factor: 4.204, year: 2016 http://aip.scitation.org/doi/pdf/10.1063/1.4967723

  5. Ideal Gas with a Varying (Negative Absolute) Temperature: an Alternative to Dark Energy?

    Science.gov (United States)

    Saha, Subhajit; Mondal, Anindita; Corda, Christian

    2018-02-01

    The present work is an attempt to investigate whether the evolutionary history of the Universe from the offset of inflation can be described by assuming the cosmic fluid to be an ideal gas with a specific gas constant but a varying negative absolute temperature (NAT). The motivation of this work is to search for an alternative to the "exotic" and "supernatural" dark energy (DE). In fact, the NAT works as an "effective quintessence" and there is need to deal neither with exotic matter like DE nor with modified gravity theories. For the sake of completeness, we release some clarifications on NATs in Section 3 of the paper.

  6. Phase diagrams for an ideal gas mixture of fermionic atoms and bosonic molecules

    DEFF Research Database (Denmark)

    Williams, J. E.; Nygaard, Nicolai; Clark, C. W.

    2004-01-01

    We calculate the phase diagrams for a harmonically trapped ideal gas mixture of fermionic atoms and bosonic molecules in chemical and thermal equilibrium, where the internal energy of the molecules can be adjusted relative to that of the atoms by use of a tunable Feshbach resonance. We plot...... diagrams obtained in recent experiments on the Bose-Einstein condensation to Bardeen-Cooper-Schrieffer crossover, in which the condensate fraction is plotted as a function of the initial temperature of the Fermi gas measured before a sweep of the magnetic field through the resonance region....

  7. Metric isomorphism of the classical ideal gas and its local perturbation

    International Nuclear Information System (INIS)

    Terletskij, Yu.A.

    1989-01-01

    The ergodic properties of the infinite-particles gas with local interaction defined in any finite number of nonintersecting bounded open convex domains Λ 1 , Λ 2 , Λ N are considered. To describe the pair interaction of particles x i and x j situated in some domain Λ m they the spherical-symmetric potential Φ(modul (x i -x j )) which is repulsive when modul(x i -x j ) is small and attractive when modul(x i -x j ) is large. The main result of the paper is the theorem of the metric isomorphism of the classical ideal gas and its local perturbation

  8. Development of Modified Incompressible Ideal Gas Model for Natural Draft Cooling Tower Flow Simulation

    Science.gov (United States)

    Hyhlík, Tomáš

    2018-06-01

    The article deals with the development of incompressible ideal gas like model, which can be used as a part of mathematical model describing natural draft wet-cooling tower flow, heat and mass transfer. It is shown, based on the results of a complex mathematical model of natural draft wet-cooling tower flow, that behaviour of pressure, temperature and density is very similar to the case of hydrostatics of moist air, where heat and mass transfer in the fill zone must be taken into account. The behaviour inside the cooling tower is documented using density, pressure and temperature distributions. The proposed equation for the density is based on the same idea like the incompressible ideal gas model, which is only dependent on temperature, specific humidity and in this case on elevation. It is shown that normalized density difference of the density based on proposed model and density based on the nonsimplified model is in the order of 10-4. The classical incompressible ideal gas model, Boussinesq model and generalised Boussinesq model are also tested. These models show deviation in percentages.

  9. Development of Modified Incompressible Ideal Gas Model for Natural Draft Cooling Tower Flow Simulation

    Directory of Open Access Journals (Sweden)

    Hyhlík Tomáš

    2018-01-01

    Full Text Available The article deals with the development of incompressible ideal gas like model, which can be used as a part of mathematical model describing natural draft wet-cooling tower flow, heat and mass transfer. It is shown, based on the results of a complex mathematical model of natural draft wet-cooling tower flow, that behaviour of pressure, temperature and density is very similar to the case of hydrostatics of moist air, where heat and mass transfer in the fill zone must be taken into account. The behaviour inside the cooling tower is documented using density, pressure and temperature distributions. The proposed equation for the density is based on the same idea like the incompressible ideal gas model, which is only dependent on temperature, specific humidity and in this case on elevation. It is shown that normalized density difference of the density based on proposed model and density based on the nonsimplified model is in the order of 10-4. The classical incompressible ideal gas model, Boussinesq model and generalised Boussinesq model are also tested. These models show deviation in percentages.

  10. The energy density distribution of an ideal gas and Bernoulli’s equations

    Science.gov (United States)

    Santos, Leonardo S. F.

    2018-05-01

    This work discusses the energy density distribution in an ideal gas and the consequences of Bernoulli’s equation and the corresponding relation for compressible fluids. The aim of this work is to study how Bernoulli’s equation determines the energy flow in a fluid, although Bernoulli’s equation does not describe the energy density itself. The model from molecular dynamic considerations that describes an ideal gas at rest with uniform density is modified to explore the gas in motion with non-uniform density and gravitational effects. The difference between the component of the speed of a particle that is parallel to the gas speed and the gas speed itself is called ‘parallel random speed’. The pressure from the ‘parallel random speed’ is denominated as parallel pressure. The modified model predicts that the energy density is the sum of kinetic and potential gravitational energy densities plus two terms with static and parallel pressures. The application of Bernoulli’s equation and the corresponding relation for compressible fluids in the energy density expression has resulted in two new formulations. For incompressible and compressible gas, the energy density expressions are written as a function of stagnation, static and parallel pressures, without any dependence on kinetic or gravitational potential energy densities. These expressions of the energy density are the main contributions of this work. When the parallel pressure was uniform, the energy density distribution for incompressible approximation and compressible gas did not converge to zero for the limit of null static pressure. This result is rather unusual because the temperature tends to zero for null pressure. When the gas was considered incompressible and the parallel pressure was equal to static pressure, the energy density maintained this unusual behaviour with small pressures. If the parallel pressure was equal to static pressure, the energy density converged to zero for the limit of the

  11. Laser heating of large noble gas clusters: from the resonant to the relativistic interaction regimes

    Energy Technology Data Exchange (ETDEWEB)

    Gumbrell, E T; Moore, A S; Clark, E L; Garbett, W J; Comley, A J; Edwards, R D; Eagleton, R E [Plasma Physics Division, AWE Aldermaston, Reading RG7 4PR (United Kingdom); Lazarus, J A; Nilson, P M; Robinson, J S; Hohenberger, M; Symes, D R; Smith, R A [Blackett Laboratory, Imperial College, London SW7 2BZ (United Kingdom); Clarke, R J [Rutherford Appleton Laboratory, Chilton OX11 0QX (United Kingdom)], E-mail: edward.gumbrell@awe.co.uk, E-mail: r.a.smith@imperial.ac.uk

    2008-12-15

    Wide-ranging measurements of sub-picosecond laser interactions with large noble gas cluster targets have been conducted in order to help clarify the nature and extent of the underlying laser-plasma heating. Within the sub-relativistic vacuum irradiance range of 10{sup 16}-10{sup 17} W cm{sup -2}, we find that electron temperatures measured with continuum x-ray spectroscopy exhibit a pronounced multi-keV enhancement. Analysis indicates this behaviour to be consistent with collisional or collisionless resonant heating mechanisms. We also present the first measurements of laser-to-cluster energy deposition at relativistic vacuum irradiances, our data demonstrating absorption fractions of 90% or more. Optical probing was used to resolve the onset of a supersonic ionization front resulting from this very high absorption, and shows that despite significant pre-focus heating, the greatest plasma energy densities can be generated about the vacuum focus position. Electron energy spectra measurements confirm that laser-plasma super-heating occurs, and together with ion data establish that relativistic laser-plasma coupling in atomic clusters can take place without significant MeV particle beam production. In conjunction with optical self-emission data, the optical probing also indicates laser pre-pulse effects at peak vacuum irradiance of 5 x 10{sup 19} W cm{sup -2}. Laser absorption, plasma heating and energy transport data are supported throughout with analytical and numerical modelling.

  12. Relativistic effects in photoionization time delay near the Cooper minimum of noble-gas atoms

    Science.gov (United States)

    Saha, Soumyajit; Mandal, Ankur; Jose, Jobin; Varma, Hari R.; Deshmukh, P. C.; Kheifets, A. S.; Dolmatov, V. K.; Manson, S. T.

    2014-11-01

    Time delay of photoemission from valence n s , n p3 /2 , and n p1 /2 subshells of noble-gas atoms is theoretically scrutinized within the framework of the dipole relativistic random phase approximation. The focus is on the variation of time delay in the vicinity of the Cooper minima in photoionization of the outer subshells of neon, argon, krypton, and xenon, where the corresponding dipole matrix element changes its sign while passing through a node. It is revealed that the presence of the Cooper minimum in one photoionization channel has a strong effect on time delay in other channels. This is shown to be due to interchannel coupling.

  13. Ideal gas approximation for a two-dimensional rarefied gas under Kawasaki dynamics

    NARCIS (Netherlands)

    Gaudillière, A.; Hollander, den W.Th.F.; Nardi, F.R.; Olivieri, E.; Scoppola, E.

    2009-01-01

    In this paper we consider a two-dimensional lattice gas under Kawasaki dynamics, i.e., particles hop around randomly subject to hard-core repulsion and nearest-neighbor attraction. We show that, at fixed temperature and in the limit as the particle density tends to zero, such a gas evolves in a way

  14. Equation of state of an ideal gas with nonergodic behavior in two connected vessels.

    Science.gov (United States)

    Naplekov, D M; Semynozhenko, V P; Yanovsky, V V

    2014-01-01

    We consider a two-dimensional collisionless ideal gas in the two vessels connected through a small hole. One of them is a well-behaved chaotic billiard, another one is known to be nonergodic. A significant part of the second vessel's phase space is occupied by an island of stability. In the works of Zaslavsky and coauthors, distribution of Poincaré recurrence times in similar systems was considered. We study the gas pressure in the vessels; it is uniform in the first vessel and not uniform in second one. An equation of the gas state in the first vessel is obtained. Despite the very different phase-space structure, behavior of the second vessel is found to be very close to the behavior of a good ergodic billiard but of different volume. The equation of state differs from the ordinary equation of ideal gas state by an amendment to the vessel's volume. Correlation of this amendment with a share of the phase space under remaining intact islands of stability is shown.

  15. Statistical mechanics of an ideal gas of non-Abelian anyons

    International Nuclear Information System (INIS)

    Mancarella, Francesco; Trombettoni, Andrea; Mussardo, Giuseppe

    2013-01-01

    We study the thermodynamical properties of an ideal gas of non-Abelian Chern–Simons particles and we compute the second virial coefficient, considering the effect of general soft-core boundary conditions for the two-body wavefunction at zero distance. The behaviour of the second virial coefficient is studied as a function of the Chern–Simons coupling, the isospin quantum number and the hard-core parameters. Expressions for the main thermodynamical quantities at the lower order of the virial expansion are also obtained: we find that at this order the relation between the internal energy and the pressure is the same found (exactly) for 2D Bose and Fermi ideal gases. A discussion of the comparison of obtained findings with available results in literature for systems of hard-core non-Abelian Chern–Simons particles is also supplied.

  16. Casimir energy of a BEC: from moderate interactions to the ideal gas

    International Nuclear Information System (INIS)

    Schiefele, J; Henkel, C

    2009-01-01

    Considering the Casimir effect due to phononic excitations of a weakly interacting dilute Bose-Einstein condensate (BEC), we derive a renormalized expression for the zero-temperature Casimir energy E C of a BEC confined to a parallel plate geometry with periodic boundary conditions. Our expression is formally equivalent to the free energy of a bosonic field at finite temperature, with a nontrivial density of modes that we compute analytically. As a function of the interaction strength, E C smoothly describes the transition from the weakly interacting Bogoliubov regime to the non-interacting ideal BEC. For the weakly interacting case, E C reduces to leading order to the Casimir energy due to zero-point fluctuations of massless phonon modes. In the limit of an ideal Bose gas, our result correctly describes the Casimir energy going to zero

  17. Fluctuations in non-ideal pion gas with dynamically fixed particle number

    Science.gov (United States)

    Kolomeitsev, E. E.; Voskresensky, D. N.

    2018-05-01

    We consider a non-ideal hot pion gas with the dynamically fixed number of particles in the model with the λϕ4 interaction. The effective Lagrangian for the description of such a system is obtained after dropping the terms responsible for the change of the total particle number. Reactions π+π- ↔π0π0, which determine the isospin balance of the medium, are permitted. Within the self-consistent Hartree approximation we compute the effective pion mass, thermodynamic characteristics of the system and the variance of the particle number at temperatures above the critical point of the induced Bose-Einstein condensation when the pion chemical potential reaches the value of the effective pion mass. We analyze conditions for the condensate formation in the process of thermalization of an initially non-equilibrium pion gas. The normalized variance of the particle number increases with a temperature decrease but remains finite in the critical point of the Bose-Einstein condensation. This is due to the non-perturbative account of the interaction and is in contrast to the ideal-gas case. In the kinetic regime of the condensate formation the variance is shown to stay finite also.

  18. Modeling shock waves in an ideal gas: Going beyond the Navier-Stokes level

    International Nuclear Information System (INIS)

    Holian, B.L.; Patterson, C.W.; Mareschal, M.; Salomons, E.

    1993-01-01

    We model a shock wave in an ideal gas by solving a modified version of the compressible Navier-Stokes equations of hydrodynamics, where, following an earlier conjecture by Holian [Phys. Rev. A 37, 2562 (1988)], we use the temperature in the direction of shock propagation T xx , rather than the average temperature T=(T xx +T yy +T zz )/3, in the evaluation of the linear transport coefficients. The results are found to agree much better with the molecular-dynamics simulations of Salomons and Mareschal [Phys. Rev. Lett. 69, 269 (1992)] than standard Navier-Stokes theory

  19. Proposal for determining changes in entropy of semi ideal gas using mean values of temperature functions

    Directory of Open Access Journals (Sweden)

    Pejović Branko B.

    2014-01-01

    Full Text Available In a semi-ideal gas, entropy changes cannot be determined through the medium specific heat capacity in a manner as determined by the change of internal energy and enthalpy, i.e. the amount of heat exchanged. Taking this into account, the authors conducted two models through which it is possible to determine the change in the specific entropy of a semi-ideal gas for arbitrary temperature interval using the spread sheet method, using the mean values of the appropriate functions. The idea is to replace integration, which occurs here in evitably, with mean values of the previous functions. The models are derived based on the functional dependence of the actual specific heat capacity on the temperature. The theorem used is that of the mean value of a function as well as the mathematical properties of the definite integral. The mean value of a fractional function is determined via its integrand while the logarithmic functions were performed by applying a suitable transformation of the differential calculus. The relations derived relation, using the computer program, have enabled the design of appropriate thermodynamic tables through which it is possible to determine the change in entropy of arbitrary state changes in an efficient and rational manner, without the use of calculus or finished forms. In this way, the change in the entropy of a semi-ideal gas is determined for an arbitrary temperature interval using the method which is analogous to that applied in determining the change of internal energy and enthalpy or the amount of heat exchanged, which was the goal of the work. Verification of the proposed method for both the above functions was performed for a a few characteristic semi-ideal gases where change c(T is significant, for the three adopted temperature intervals, for the characteristic change of state. This was compared to the results of the classical integral and the proposed method through the prepared tables. In certain or special cases

  20. Renormalisation group approach to the ideal Bose gas in d dimensions

    International Nuclear Information System (INIS)

    Singh, K.K.

    1981-01-01

    Critical behaviour of a d-dimensional ideal Bose gas is investigated from the point of view of the renormalisation-group approach. Rescaling of quantum-field amplitudes is avoided by introducing a scaling variable inversely proportional to the thermal momentum of the particles. The scaling properties of various thermodynamic quantities are seen to emerge as a consequence of the irrelevant nature of this variable. Critical behaviour is discussed at fixed particle density as well as at fixed pressure. Connection between susceptibility and correlation function of the order-parameter for a quantum system is elucidated. (author)

  1. On the accuracy of Whitham's method. [for steady ideal gas flow past cones

    Science.gov (United States)

    Zahalak, G. I.; Myers, M. K.

    1974-01-01

    The steady flow of an ideal gas past a conical body is studied by the method of matched asymptotic expansions and by Whitham's method in order to assess the accuracy of the latter. It is found that while Whitham's method does not yield a correct asymptotic representation of the perturbation field to second order in regions where the flow ahead of the Mach cone of the apex is disturbed, it does correctly predict the changes of the second-order perturbation quantities across a shock (the first-order shock strength). The results of the analysis are illustrated by a special case of a flat, rectangular plate at incidence.

  2. Two-Step Condensation of the Ideal Bose Gas in Highly Anisotropic Traps

    International Nuclear Information System (INIS)

    van Druten, N.J.; Ketterle, W.

    1997-01-01

    The ideal Bose gas in a highly anisotropic harmonic potential is studied. It is found that Bose-Einstein condensation occurs in two distinct steps as the temperature is lowered. In the first step the specific heat shows a sharp feature, but the system still occupies many one-dimensional quantum states. In the second step, at a significantly lower temperature, the ground state becomes macroscopically occupied. It should be possible to verify these predictions using present-day atom traps. The two-step behavior can occur in a rather general class of anisotropic traps, including the box potential. copyright 1997 The American Physical Society

  3. Probability theory for 3-layer remote sensing in ideal gas law environment.

    Science.gov (United States)

    Ben-David, Avishai; Davidson, Charles E

    2013-08-26

    We extend the probability model for 3-layer radiative transfer [Opt. Express 20, 10004 (2012)] to ideal gas conditions where a correlation exists between transmission and temperature of each of the 3 layers. The effect on the probability density function for the at-sensor radiances is surprisingly small, and thus the added complexity of addressing the correlation can be avoided. The small overall effect is due to (a) small perturbations by the correlation on variance population parameters and (b) cancellation of perturbation terms that appear with opposite signs in the model moment expressions.

  4. On the ground state of the two-dimensional non-ideal Bose gas

    International Nuclear Information System (INIS)

    Lozovik, Yu.E.; Yudson, V.I.

    1978-01-01

    The theory of the ground state of the two-dimensional non-ideal Bose gas is presented. The conditions for the validity of the ladder and the Bogolubov approximations are derived. These conditions ensure the existence of a Bose condensate in the ground state of two-dimensional systems. These conditions are different from the corresponding conditions for the three-dimensional case. The connection between the effective interaction and the two-dimensional scattering amplitude at some characteristic energy kappa 2 /2m (not equal to 0) is obtained (f(kappa = 0) = infinity in the two-dimensional case). (Auth.)

  5. Thermostatistic properties of a q-deformed ideal Fermi gas with a general energy spectrum

    International Nuclear Information System (INIS)

    Cai, Shukuan; Su, Guozhen; Chen, Jincan

    2007-01-01

    The thermostatistic problems of a q-deformed ideal Fermi gas in any dimensional space and with a general energy spectrum are studied, based on the q-deformed Fermi-Dirac distribution. The effects of the deformation parameter q on the properties of the system are revealed. It is shown that q-deformation results in some novel characteristics different from those of an ordinary system. Besides, it is found that the effects of the q-deformation on the properties of the Fermi systems are very different for different dimensional spaces and different energy spectrums

  6. Gas-Kinetic Theory Based Flux Splitting Method for Ideal Magnetohydrodynamics

    Science.gov (United States)

    Xu, Kun

    1998-01-01

    A gas-kinetic solver is developed for the ideal magnetohydrodynamics (MHD) equations. The new scheme is based on the direct splitting of the flux function of the MHD equations with the inclusion of "particle" collisions in the transport process. Consequently, the artificial dissipation in the new scheme is much reduced in comparison with the MHD Flux Vector Splitting Scheme. At the same time, the new scheme is compared with the well-developed Roe-type MHD solver. It is concluded that the kinetic MHD scheme is more robust and efficient than the Roe- type method, and the accuracy is competitive. In this paper the general principle of splitting the macroscopic flux function based on the gas-kinetic theory is presented. The flux construction strategy may shed some light on the possible modification of AUSM- and CUSP-type schemes for the compressible Euler equations, as well as to the development of new schemes for a non-strictly hyperbolic system.

  7. Supersonic beams at high particle densities: model description beyond the ideal gas approximation.

    Science.gov (United States)

    Christen, Wolfgang; Rademann, Klaus; Even, Uzi

    2010-10-28

    Supersonic molecular beams constitute a very powerful technique in modern chemical physics. They offer several unique features such as a directed, collision-free flow of particles, very high luminosity, and an unsurpassed strong adiabatic cooling during the jet expansion. While it is generally recognized that their maximum flow velocity depends on the molecular weight and the temperature of the working fluid in the stagnation reservoir, not a lot is known on the effects of elevated particle densities. Frequently, the characteristics of supersonic beams are treated in diverse approximations of an ideal gas expansion. In these simplified model descriptions, the real gas character of fluid systems is ignored, although particle associations are responsible for fundamental processes such as the formation of clusters, both in the reservoir at increased densities and during the jet expansion. In this contribution, the various assumptions of ideal gas treatments of supersonic beams and their shortcomings are reviewed. It is shown in detail that a straightforward thermodynamic approach considering the initial and final enthalpy is capable of characterizing the terminal mean beam velocity, even at the liquid-vapor phase boundary and the critical point. Fluid properties are obtained using the most accurate equations of state available at present. This procedure provides the opportunity to naturally include the dramatic effects of nonideal gas behavior for a large variety of fluid systems. Besides the prediction of the terminal flow velocity, thermodynamic models of isentropic jet expansions permit an estimate of the upper limit of the beam temperature and the amount of condensation in the beam. These descriptions can even be extended to include spinodal decomposition processes, thus providing a generally applicable tool for investigating the two-phase region of high supersaturations not easily accessible otherwise.

  8. The performance evaluation of a micro/nano-scaled cooler working with an ideal Bose gas

    International Nuclear Information System (INIS)

    Guo, Juncheng; Su, Guozhen; Chen, Jincan

    2012-01-01

    Based on the size effect of a confined ideal Bose gas, the design concept of a quantum cooler is originally put forward. The cooler consists of two long tubes with the same length but different sizes of cross section, which are filled up with the ideal Bose gas, and is operated between two heat reservoirs. Expressions for the refrigeration rate and coefficient of performance (COP) of the cooler are derived. The effects of the size effect on the refrigeration rate and COP are discussed. The general performance characteristics of the cooler are revealed. -- Highlights: ► The design concept of a quantum cooler is originally put forward. ► Expressions for the refrigeration rate and coefficient of performance (COP) of the cooler are derived. ► The effects of the size effect on the refrigeration rate and COP are discussed. ► The general performance characteristics of the cooler are revealed. ► The results obtained are more general and significant than those in the current literature.

  9. Numerical estimation of ultrasonic production of hydrogen: Effect of ideal and real gas based models.

    Science.gov (United States)

    Kerboua, Kaouther; Hamdaoui, Oualid

    2018-01-01

    Based on two different assumptions regarding the equation describing the state of the gases within an acoustic cavitation bubble, this paper studies the sonochemical production of hydrogen, through two numerical models treating the evolution of a chemical mechanism within a single bubble saturated with oxygen during an oscillation cycle in water. The first approach is built on an ideal gas model, while the second one is founded on Van der Waals equation, and the main objective was to analyze the effect of the considered state equation on the ultrasonic hydrogen production retrieved by simulation under various operating conditions. The obtained results show that even when the second approach gives higher values of temperature, pressure and total free radicals production, yield of hydrogen does not follow the same trend. When comparing the results released by both models regarding hydrogen production, it was noticed that the ratio of the molar amount of hydrogen is frequency and acoustic amplitude dependent. The use of Van der Waals equation leads to higher quantities of hydrogen under low acoustic amplitude and high frequencies, while employing ideal gas law based model gains the upper hand regarding hydrogen production at low frequencies and high acoustic amplitudes. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Collision of BEC dark matter structures and comparison with the collision of ideal gas structures

    International Nuclear Information System (INIS)

    Guzman, F. S.; Gonzalez, J. A.

    2010-01-01

    In this work we present an important feature of the Bose Einstein Condensate (BEC) dark matter model, that is, the head-on collision of BEC dark matter virialized structures. This model of dark matter is assumed to be ruled by the Schroedinger-Poisson system of equations, which is interpreted as the Gross-Pitaevskii equation with a gravitational potential sourced by the density of probability. It has been shown recently that during the collision of two structures a pattern formation in the density of probability appears. We explore the pattern formation for various initial dynamical conditions during the collision. In order to know whether or not the pattern formation is a particular property of the BEC dark matter, we compare with the collision of two structures of virialized ideal gas under similar dynamical initial conditions, which is a model more consistent with usual models of dark matter. In order to do so, we also solve Euler's equations using a smoothed particle hydrodynamics approach. We found that the collision of the ideal gas structures does not show interference patterns, which in turn implies that the pattern formation is a property of the BEC dark matter.

  11. A comparison of hyperbolic solvers for ideal and real gas flows

    Directory of Open Access Journals (Sweden)

    R. M. L. Coelho

    2006-09-01

    Full Text Available Classical and recent numerical schemes for solving hyperbolic conservation laws were analyzed for computational efficiency and application to nonideal gas flows. The Roe-Pike approximate Riemann solver with entropy correction, the Harten second-order scheme and the extension of the Roe-Pike method to second-order by the MUSCL strategy were compared for one-dimensional flows of an ideal gas. These methods require the so-called Roe's average state, which is frequently difficult and sometimes impossible to obtain. Other methods that do not require the average state are best suited for complex equations of state. Of these, the VFRoe, AUSM+ and Hybrid Lax-Friedrich-Lax-Wendroff methods were compared for one-dimensional compressible flows of a Van der Waals gas. All methods were evaluated regarding their accuracy for given mesh sizes and their computational cost for a given solution accuracy. It was shown that, even though they require more floating points and indirect addressing operations per time step, for a given time interval for integration the second-order methods are less-time consuming than the first-order methods for a required accuracy. It was also shown that AUSM+ and VFRoe are the most accurate methods and that AUSM+ is much faster than the others, and is thus recommended for nonideal one-phase gas flows.

  12. Propagation of exponential shock wave in an axisymmetric rotating non-ideal dusty gas

    Science.gov (United States)

    Nath, G.

    2016-09-01

    One-dimensional unsteady isothermal and adiabatic flow behind a strong exponential shock wave propagating in a rotational axisymmetric mixture of non-ideal gas and small solid particles, which has variable azimuthal and axial fluid velocities, is analyzed. The shock wave is driven out by a piston moving with time according to exponential law. The azimuthal and axial components of the fluid velocity in the ambient medium are assumed to be varying and obeying exponential laws. In the present work, small solid particles are considered as pseudo-fluid with the assumption that the equilibrium flow-conditions are maintained in the flow-field, and the viscous-stress and heat conduction of the mixture are negligible. Solutions are obtained in both the cases, when the flow between the shock and the piston is isothermal or adiabatic by taking into account the components of vorticity vector and compressibility. It is found that the assumption of zero temperature gradient brings a profound change in the density, axial component of vorticity vector and compressibility distributions as compared to that of the adiabatic case. To investigate the behavior of the flow variables and the influence on the shock wave propagation by the parameter of non-idealness of the gas overline{b} in the mixture as well as by the mass concentration of solid particles in the mixture Kp and by the ratio of the density of solid particles to the initial density of the gas G1 are worked out in detail. It is interesting to note that the shock strength increases with an increase in G1 ; whereas it decreases with an increase in overline{b} . Also, a comparison between the solutions in the cases of isothermal and adiabatic flows is made.

  13. Generic features of the wealth distribution in ideal-gas-like markets.

    Science.gov (United States)

    Mohanty, P K

    2006-07-01

    We provide an exact solution to the ideal-gas-like models studied in econophysics to understand the microscopic origin of Pareto law. In these classes of models the key ingredient necessary for having a self-organized scale-free steady-state distribution is the trading or collision rule where agents or particles save a definite fraction of their wealth or energy and invest the rest for trading. Using a Gibbs ensemble approach we could obtain the exact distribution of wealth in this model. Moreover we show that in this model (a) good savers are always rich and (b) every agent poor or rich invests the same amount for trading. Nonlinear trading rules could alter the generic scenario observed here.

  14. Fluctuating ideal-gas lattice Boltzmann method with fluctuation dissipation theorem for nonvanishing velocities.

    Science.gov (United States)

    Kaehler, G; Wagner, A J

    2013-06-01

    Current implementations of fluctuating ideal-gas descriptions with the lattice Boltzmann methods are based on a fluctuation dissipation theorem, which, while greatly simplifying the implementation, strictly holds only for zero mean velocity and small fluctuations. We show how to derive the fluctuation dissipation theorem for all k, which was done only for k=0 in previous derivations. The consistent derivation requires, in principle, locally velocity-dependent multirelaxation time transforms. Such an implementation is computationally prohibitively expensive but, with a small computational trick, it is feasible to reproduce the correct FDT without overhead in computation time. It is then shown that the previous standard implementations perform poorly for non vanishing mean velocity as indicated by violations of Galilean invariance of measured structure factors. Results obtained with the method introduced here show a significant reduction of the Galilean invariance violations.

  15. Heat-flow equation motivated by the ideal-gas shock wave.

    Science.gov (United States)

    Holian, Brad Lee; Mareschal, Michel

    2010-08-01

    We present an equation for the heat-flux vector that goes beyond Fourier's Law of heat conduction, in order to model shockwave propagation in gases. Our approach is motivated by the observation of a disequilibrium among the three components of temperature, namely, the difference between the temperature component in the direction of a planar shock wave, versus those in the transverse directions. This difference is most prominent near the shock front. We test our heat-flow equation for the case of strong shock waves in the ideal gas, which has been studied in the past and compared to Navier-Stokes solutions. The new heat-flow treatment improves the agreement with nonequilibrium molecular-dynamics simulations of hard spheres under strong shockwave conditions.

  16. Configuration-specific kinetic theory applied to an ideal binary gas mixture.

    Science.gov (United States)

    Wiseman, Floyd L

    2006-10-05

    This paper is the second in a two-part series dealing with the configuration-specific analyses for molecular collision events of hard, spherical molecules at thermal equilibrium. The first paper analyzed a single-component system, and the reader is referred to it for the fundamental concepts. In this paper, the expressions for the configuration-specific collision frequencies and the average line-of-centers collision angles and speeds are derived for an ideal binary gas mixture. The analyses show that the average line-of-centers quantities are all dependent upon the ratio of the masses of the two components, but not upon molecular size. Of course, the configuration-specific collision frequencies do depend on molecular size. The expression for the overall binary collision frequency is a simple sum of the configuration-specific collision frequencies and is identical to the conventional expression.

  17. Isobars of an ideal Bose gas within the grand canonical ensemble

    International Nuclear Information System (INIS)

    Jeon, Imtak; Park, Jeong-Hyuck; Kim, Sang-Woo

    2011-01-01

    We investigate the isobar of an ideal Bose gas confined in a cubic box within the grand canonical ensemble for a large yet finite number of particles, N. After solving the equation of the spinodal curve, we derive precise formulas for the supercooling and the superheating temperatures that reveal an N -1/3 or N -1/4 power correction to the known Bose-Einstein condensation temperature in the thermodynamic limit. Numerical computations confirm the accuracy of our analytical approximation, and further show that the isobar zigzags on the temperature-volume plane if N≥14 393. In particular, for the Avogadro's number of particles, the volume expands discretely about 10 5 times. Our results quantitatively agree with a previous study on the canonical ensemble within 0.1% error.

  18. An alternative expression to the Sackur-Tetrode entropy formula for an ideal gas

    Science.gov (United States)

    Nagata, Shoichi

    2018-03-01

    An expression for the entropy of a monoatomic classical ideal gas is known as the Sackur-Tetrode equation. This pioneering investigation about 100 years ago incorporates quantum considerations. The purpose of this paper is to provide an alternative expression for the entropy in terms of the Heisenberg uncertainty relation. The analysis is made on the basis of fluctuation theory, for a canonical system in thermal equilibrium at temperature T. This new formula indicates manifestly that the entropy of macroscopic world is recognized as a measure of uncertainty in microscopic quantum world. The entropy in the Sackur-Tetrode equation can be re-interpreted from a different perspective viewpoint. The emphasis is on the connection between the entropy and the uncertainty relation in quantum consideration.

  19. Numerical solutions of ideal quantum gas dynamical flows governed by semiclassical ellipsoidal-statistical distribution.

    Science.gov (United States)

    Yang, Jaw-Yen; Yan, Chih-Yuan; Diaz, Manuel; Huang, Juan-Chen; Li, Zhihui; Zhang, Hanxin

    2014-01-08

    The ideal quantum gas dynamics as manifested by the semiclassical ellipsoidal-statistical (ES) equilibrium distribution derived in Wu et al. (Wu et al . 2012 Proc. R. Soc. A 468 , 1799-1823 (doi:10.1098/rspa.2011.0673)) is numerically studied for particles of three statistics. This anisotropic ES equilibrium distribution was derived using the maximum entropy principle and conserves the mass, momentum and energy, but differs from the standard Fermi-Dirac or Bose-Einstein distribution. The present numerical method combines the discrete velocity (or momentum) ordinate method in momentum space and the high-resolution shock-capturing method in physical space. A decoding procedure to obtain the necessary parameters for determining the ES distribution is also devised. Computations of two-dimensional Riemann problems are presented, and various contours of the quantities unique to this ES model are illustrated. The main flow features, such as shock waves, expansion waves and slip lines and their complex nonlinear interactions, are depicted and found to be consistent with existing calculations for a classical gas.

  20. Statistics of an ideal homogeneous Bose gas with a fixed number of particles

    International Nuclear Information System (INIS)

    Alekseev, Vladimir A

    2001-01-01

    The distribution function w 0 (n 0 ) of the number n 0 of particles is found for the condensate of an ideal gas of free bosons with a fixed total number N of particles. It is shown that above the critical temperature (T > T c ) this function has the usual form w 0 (n 0 ) = (1 - e μ )e μn 0 , where μ is the chemical potential in temperature units. In a narrow vicinity of the critical temperature |T/T c - 1| ≤ N -1/3 , this distribution changes and at T c acquires the form of a resonance. The width of the resonance depends on the shape of the volume occupied by the gas and it has exponential (but not the Gaussian) wings. As the temperature is lowered, the resonance maximum shifts to larger values of n 0 and its width tends to zero, which corresponds to the suppression of fluctuations. For N → ∞, this change occurs abruptly. The distribution function of the number of particles in excited states for the systems with a fixed and a variable number of particles (when only a mean number of particles is fixed) prove to be identical and have the usual form. (physical basis of quantum electronics)

  1. Slippage and boundary layer probed in an almost ideal gas by a nanomechanical oscillator.

    Science.gov (United States)

    Defoort, M; Lulla, K J; Crozes, T; Maillet, O; Bourgeois, O; Collin, E

    2014-09-26

    We measure the interaction between ⁴He gas at 4.2 K and a high-quality nanoelectromechanical string device for its first three symmetric modes (resonating at 2.2, 6.7, and 11 MHz with quality factor Q>0.1×10⁶) over almost 6 orders of magnitude in pressure. This fluid can be viewed as the best experimental implementation of an almost ideal monoatomic and inert gas of which properties are tabulated. The experiment ranges from high pressure where the flow is of laminar Stokes-type presenting slippage down to very low pressures where the flow is molecular. In the molecular regime, when the mean-free path is of the order of the distance between the suspended nanomechanical probe and the bottom of the trench, we resolve for the first time the signature of the boundary (Knudsen) layer onto the measured dissipation. Our results are discussed in the framework of the most recent theories investigating boundary effects in fluids (both analytic approaches and direct simulation Monte Carlo methods).

  2. Numerical solutions of ideal quantum gas dynamical flows governed by semiclassical ellipsoidal-statistical distribution

    Science.gov (United States)

    Yang, Jaw-Yen; Yan, Chih-Yuan; Diaz, Manuel; Huang, Juan-Chen; Li, Zhihui; Zhang, Hanxin

    2014-01-01

    The ideal quantum gas dynamics as manifested by the semiclassical ellipsoidal-statistical (ES) equilibrium distribution derived in Wu et al. (Wu et al. 2012 Proc. R. Soc. A 468, 1799–1823 (doi:10.1098/rspa.2011.0673)) is numerically studied for particles of three statistics. This anisotropic ES equilibrium distribution was derived using the maximum entropy principle and conserves the mass, momentum and energy, but differs from the standard Fermi–Dirac or Bose–Einstein distribution. The present numerical method combines the discrete velocity (or momentum) ordinate method in momentum space and the high-resolution shock-capturing method in physical space. A decoding procedure to obtain the necessary parameters for determining the ES distribution is also devised. Computations of two-dimensional Riemann problems are presented, and various contours of the quantities unique to this ES model are illustrated. The main flow features, such as shock waves, expansion waves and slip lines and their complex nonlinear interactions, are depicted and found to be consistent with existing calculations for a classical gas. PMID:24399919

  3. The ionisation loss of relativistic charged particles in thin gas samples and its use for particle identification. I

    International Nuclear Information System (INIS)

    Cobb, J.H.; Allison, W.W.M.; Bunch, J.N.

    1976-01-01

    A brief review shows a significant discrepancy between available data and theoretical predictions on the ionisation loss of charged particles in thin gas-filled proportional counters. The discrepancy related both to the increase of the most probable loss at relativistic velocities (relativistic rise) and to the spectrum of such losses at a given velocity (the Landau distribution). The origin of this relativistic rise is discussed in simple terms and related to the phenomena of transition radiation and Cherenkov radiation. It is shown that the failure of the prediction is due to the small number of ionising collisions in a gas. This problem is overcome by using a Monte Carlo method rather than a continuous integral over the spectrum of single collision processes. A specific mode of the atomic form factors is used with a modified Born approximation to yield the differential cross sections needed for the calculation. The new predictions give improved agreement with experiment and are used to investigate the problem of identifying particles of known momenta in the relativistic region. It is shown that by measuring the ionisation loss of each particle several hundred times over 5m or more, kaon, pion and proton separation with good confidence level may be achieved. Many gases are considered and a comparison is made. The results are also compared with the velocity resolution achievable by measuring primary ionisation. (Auth.)

  4. Chemical potential for the interacting classical gas and the ideal quantum gas obeying a generalized exclusion principle

    International Nuclear Information System (INIS)

    Sevilla, F J; Olivares-Quiroz, L

    2012-01-01

    In this work, we address the concept of the chemical potential μ in classical and quantum gases towards the calculation of the equation of state μ = μ(n, T) where n is the particle density and T the absolute temperature using the methods of equilibrium statistical mechanics. Two cases seldom discussed in elementary textbooks are presented with detailed calculations. The first one refers to the explicit calculation of μ for the interacting classical gas exemplified by van der Waals gas. For this purpose, we used the method described by van Kampen (1961 Physica 27 783). The second one refers to the calculation of μ for ideal quantum gases that obey a generalized Pauli's exclusion principle that leads to statistics that go beyond the Bose-Einstein and Fermi-Dirac cases. The audience targeted in this work corresponds mainly to advanced undergraduates and graduate students in the physical-chemical sciences but it is not restricted to them. In regard of this, we have put a special emphasis on showing some additional details of calculations that usually do not appear explicitly in textbooks. (paper)

  5. Design of the Modelica Library VehProLib with Non-ideal Gas Models in Engines

    OpenAIRE

    Andersson, Conny

    2015-01-01

    This thesis covers the reconstruction and the redesign of the modeling library VehProLib,which is constructed in the modeling language Modelica with help of the modeling toolWolfram SystemModeler. The design choices are discussed and implemented. This thesisalso includes the implementation of a turbocharger package and an initial study of the justificationof the ideal gas law in vehicle modeling. The study is made with help of Van derWaals equation of states as a reference of non-ideal gas mo...

  6. The response of relativistic outflowing gas to the inner accretion disk of a black hole.

    Science.gov (United States)

    Parker, Michael L; Pinto, Ciro; Fabian, Andrew C; Lohfink, Anne; Buisson, Douglas J K; Alston, William N; Kara, Erin; Cackett, Edward M; Chiang, Chia-Ying; Dauser, Thomas; De Marco, Barbara; Gallo, Luigi C; Garcia, Javier; Harrison, Fiona A; King, Ashley L; Middleton, Matthew J; Miller, Jon M; Miniutti, Giovanni; Reynolds, Christopher S; Uttley, Phil; Vasudevan, Ranjan; Walton, Dominic J; Wilkins, Daniel R; Zoghbi, Abderahmen

    2017-03-01

    The brightness of an active galactic nucleus is set by the gas falling onto it from the galaxy, and the gas infall rate is regulated by the brightness of the active galactic nucleus; this feedback loop is the process by which supermassive black holes in the centres of galaxies may moderate the growth of their hosts. Gas outflows (in the form of disk winds) release huge quantities of energy into the interstellar medium, potentially clearing the surrounding gas. The most extreme (in terms of speed and energy) of these-the ultrafast outflows-are the subset of X-ray-detected outflows with velocities higher than 10,000 kilometres per second, believed to originate in relativistic (that is, near the speed of light) disk winds a few hundred gravitational radii from the black hole. The absorption features produced by these outflows are variable, but no clear link has been found between the behaviour of the X-ray continuum and the velocity or optical depth of the outflows, owing to the long timescales of quasar variability. Here we report the observation of multiple absorption lines from an extreme ultrafast gas flow in the X-ray spectrum of the active galactic nucleus IRAS 13224-3809, at 0.236 ± 0.006 times the speed of light (71,000 kilometres per second), where the absorption is strongly anti-correlated with the emission of X-rays from the inner regions of the accretion disk. If the gas flow is identified as a genuine outflow then it is in the fastest five per cent of such winds, and its variability is hundreds of times faster than in other variable winds, allowing us to observe in hours what would take months in a quasar. We find X-ray spectral signatures of the wind simultaneously in both low- and high-energy detectors, suggesting a single ionized outflow, linking the low- and high-energy absorption lines. That this disk wind is responding to the emission from the inner accretion disk demonstrates a connection between accretion processes occurring on very different

  7. Collisions of ideal gas molecules with a rough/fractal surface. A computational study.

    Science.gov (United States)

    Panczyk, Tomasz

    2007-02-01

    The frequency of collisions of ideal gas molecules (argon) with a rough surface has been studied. The rough/fractal surface was created using random deposition technique. By applying various depositions, the roughness of the surface was controlled and, as a measure of the irregularity, the fractal dimensions of the surfaces were determined. The surfaces were next immersed in argon (under pressures 2 x 10(3) to 2 x 10(5) Pa) and the numbers of collisions with these surfaces were counted. The calculations were carried out using a simplified molecular dynamics simulation technique (only hard core repulsions were assumed). As a result, it was stated that the frequency of collisions is a linear function of pressure for all fractal dimensions studied (D = 2, ..., 2.5). The frequency per unit pressure is quite complex function of the fractal dimension; however, the changes of that frequency with the fractal dimension are not strong. It was found that the frequency of collisions is controlled by the number of weakly folded sites on the surfaces and there is some mapping between the shape of adsorption energy distribution functions and this number of weakly folded sites. The results for the rough/fractal surfaces were compared with the prediction given by the Langmuir-Hertz equation (valid for smooth surface), generally the departure from the Langmuir-Hertz equation is not higher than 48% for the studied systems (i.e. for the surfaces created using the random deposition technique).

  8. Proof and implementation of the stochastic formula for ideal gas, energy dependent scattering kernel

    International Nuclear Information System (INIS)

    Becker, B.; Dagan, R.; Lohnert, G.

    2009-01-01

    The ideal gas, scattering kernel for heavy nuclei with pronounced resonances was developed [Rothenstein, W., Dagan, R., 1998. Ann. Nucl. Energy 25, 209-222], proved and implemented [Rothenstein, W., 2004 Ann. Nucl. Energy 31, 9-23] in the data processing code NJOY [Macfarlane, R.E., Muir, D.W., 1994. The NJOY Nuclear Data Processing System Version 91, LA-12740-M] from which the scattering probability tables were prepared [Dagan, R., 2005. Ann. Nucl. Energy 32, 367-377]. Those tables were introduced to the well known MCNP code [X-5 Monte Carlo Team. MCNP - A General Monte Carlo N-Particle Transport Code version 5 LA-UR-03-1987 code] via the 'mt' input cards in the same manner as it is done for light nuclei in the thermal energy range. In this study we present an alternative methodology for solving the double differential energy dependent scattering kernel which is based solely on stochastic consideration as far as the scattering probabilities are concerned. The solution scheme is based on an alternative rejection scheme suggested by Rothenstein [Rothenstein, W. ENS conference 1994 Tel Aviv]. Based on comparison with the above mentioned analytical (probability S(α,β)-tables) approach it is confirmed that the suggested rejection scheme provides accurate results. The uncertainty concerning the magnitude of the bias due to the enhanced multiple rejections during the sampling procedure are proved to lie within 1-2 standard deviations for all practical cases that were analysed.

  9. University Students Explaining Adiabatic Compression of an Ideal Gas--A New Phenomenon in Introductory Thermal Physics

    Science.gov (United States)

    Leinonen, Risto; Asikainen, Mervi A.; Hirvonen, Pekka E.

    2012-01-01

    This study focuses on second-year university students' explanations and reasoning related to adiabatic compression of an ideal gas. The phenomenon was new to the students, but it was one which they should have been capable of explaining using their previous upper secondary school knowledge. The students' explanations and reasoning were…

  10. An Undergraduate Exercise in the First Law of Relativistic Thermodynamics

    Science.gov (United States)

    Guemez, J.

    2010-01-01

    The isothermal compression of an ideal gas is analysed using a relativistic thermodynamics formalism based on the principle of inertia of energy (Einstein's equation) and the asynchronous formulation (Cavalleri and Salgarelli 1969 "Nuovo Cimento" 42 722-54), which is similar to the formalism developed by van Kampen (1968 "Phys. Rev." 173 295-301)…

  11. Design of ideal cascades of gas centrifuges with variable separation factors

    International Nuclear Information System (INIS)

    Olander, D.R.

    1976-01-01

    A method of designing ideal cascades in which the separation factor varies with stage number is presented and applied to centrifuges as separating units. The centrifuge is characterized by a performance function, which gives the separative power, optimized with respect to all internal variables, as a function of cut and throughput. For centrifuges with certain types of performance functions, variable-α ideal cascades can provide a product at a lower cost than the conventional ideal cascade in which the separation factor is independent of stage number

  12. Computational stability of the Von Neumann--Richtmyer method for the case of the ideal gas law

    International Nuclear Information System (INIS)

    Hicks, D.L.

    1978-07-01

    Two stability concepts are of interest for partial difference equations--one arises in theory--the other in practice. The theoretical kind, referred to here as asymptotic stability, is essentially just asymptotic (as Δt, Δx → 0) boundedness of the discrete solution. The other kind, referred to here as computational stability, is stability for a fixed Δt and Δx--computational instability is indicated in practice by oscillatory behavior of the discrete approximation--in particular, oscillations of period 2Δx. This report is concerned with computational stability. Only approximate stability analyses of the von Neumann-Richtmyer scheme have been done for the case of the ideal gas law. Herein a more rigorous computational stability analysis is sought. The analysis leads to a recommendation for the improvement of the time step restriction in WONDY for the case of the ideal gas law

  13. Magnetogasdynamic spherical shock wave in a non-ideal gas under gravitational field with conductive and radiative heat fluxes

    Science.gov (United States)

    Nath, G.; Vishwakarma, J. P.

    2016-11-01

    Similarity solutions are obtained for the flow behind a spherical shock wave in a non-ideal gas under gravitational field with conductive and radiative heat fluxes, in the presence of a spatially decreasing azimuthal magnetic field. The shock wave is driven by a piston moving with time according to power law. The radiation is considered to be of the diffusion type for an optically thick grey gas model and the heat conduction is expressed in terms of Fourier's law for heat conduction. Similarity solutions exist only when the surrounding medium is of constant density. The gas is assumed to have infinite electrical conductivity and to obey a simplified van der Waals equation of state. It is shown that an increase of the gravitational parameter or the Alfven-Mach number or the parameter of the non-idealness of the gas decreases the compressibility of the gas in the flow-field behind the shock, and hence there is a decrease in the shock strength. The pressure and density vanish at the inner surface (piston) and hence a vacuum is formed at the center of symmetry. The shock waves in conducting non-ideal gas under gravitational field with conductive and radiative heat fluxes can be important for description of shocks in supernova explosions, in the study of a flare produced shock in the solar wind, central part of star burst galaxies, nuclear explosion etc. The solutions obtained can be used to interpret measurements carried out by space craft in the solar wind and in neighborhood of the Earth's magnetosphere.

  14. Increase of temperature of an ideal nondegenerate quantum gas in a suddenly expanding box due to energy quantization

    International Nuclear Information System (INIS)

    Dodonov, V.V.; Vieira Lopes, D.O.

    2008-01-01

    We show that due to energy quantization the temperature of an ideal nondegenerate quantum gas in a rectangular box always increases after a sudden expansion of the box and a subsequent thermalization. The maximal increment of temperature is proportional to the square root of the product of the initial absolute temperature by the energy of the first discrete quantum level, i.e., it is proportional to the first power of the Planck constant

  15. Propagation of a cylindrical shock wave in a rotational axisymmetric isothermal flow of a non-ideal gas in magnetogasdynamics

    Directory of Open Access Journals (Sweden)

    G. Nath

    2012-12-01

    Full Text Available Self-similar solutions are obtained for unsteady, one-dimensional isothermal flow behind a shock wave in a rotational axisymmetric non-ideal gas in the presence of an azimuthal magnetic field. The shock wave is driven out by a piston moving with time according to power law. The fluid velocities and the azimuthal magnetic field in the ambient medium are assumed to be varying and obeying a power law. The density of the ambient medium is assumed to be constant. The gas is assumed to be non-ideal having infinite electrical conductivity and the angular velocity of the ambient medium is assumed to be decreasing as the distance from the axis increases. It is expected that such an angular velocity may occur in the atmospheres of rotating planets and stars. The effects of the non-idealness of the gas and the Alfven-Mach number on the flow-field are obtained. It is shown that the presence of azimuthal magnetic field and the rotation of the medium has decaying effect on the shock wave. Also, a comparison is made between rotating and non-rotating cases.

  16. Validation of the Jarzynski relation for a system with strong thermal coupling: an isothermal ideal gas model.

    Science.gov (United States)

    Baule, A; Evans, R M L; Olmsted, P D

    2006-12-01

    We revisit the paradigm of an ideal gas under isothermal conditions. A moving piston performs work on an ideal gas in a container that is strongly coupled to a heat reservoir. The thermal coupling is modeled by stochastic scattering at the boundaries. In contrast to recent studies of an adiabatic ideal gas with a piston [R.C. Lua and A.Y. Grosberg, J. Phys. Chem. B 109, 6805 (2005); I. Bena, Europhys. Lett. 71, 879 (2005)], the container and piston stay in contact with the heat bath during the work process. Under this condition the heat reservoir as well as the system depend on the work parameter lambda and microscopic reversibility is broken for a moving piston. Our model is thus not included in the class of systems for which the nonequilibrium work theorem has been derived rigorously either by Hamiltonian [C. Jarzynski, J. Stat. Mech. (2004) P09005] or stochastic methods [G.E. Crooks, J. Stat. Phys. 90, 1481 (1998)]. Nevertheless the validity of the nonequilibrium work theorem is confirmed both numerically for a wide range of parameter values and analytically in the limit of a very fast moving piston, i.e., in the far nonequilibrium regime.

  17. The ‘ideal selectivity’ vs ‘true selectivity’ for permeation of gas mixture in nanoporous membranes

    Science.gov (United States)

    He, Zhou; Wang, Kean

    2018-03-01

    In this study, we proposed and validated a novel and non-destructive experimental technology for measuring the permeation of binary gas mixture in nanoporous membranes. The traditional time lag rig was modified to examine the permeation characteristics of each gas component as well as that of the binary gas mixtures. The difference in boiling points of each species were explored. Binary gas mixtures of CO2/He were permeated through the nanoporous carbon molecular sieve membrane (CMSM). The results showed that, due to the strong interaction among different molecules and with the porous network of the membrane, the measured perm-selectivity or ‘true selectivity’ of a binary mixture can significantly deviate from the ‘ideal selectivity’ calculated form the permeation flux of each pure species, and this deviation is a complicated function of the molecular properties and operation conditions.

  18. Fuel Application Efficiency in Ideal Cycle of Gas Turbine Plant with Isobaric Heat Supply

    Directory of Open Access Journals (Sweden)

    A. P. Nesenchuk

    2013-01-01

    Full Text Available The paper reveals expediency to use in prospect fuels with maximum value  Qнр∑Vi and minimum theoretical burning temperature in order to obtain maximum efficiency of the ideal cycle in GTP with isobaric heat supply.

  19. On the equipartition of kinetic energy in an ideal gas mixture

    International Nuclear Information System (INIS)

    Peliti, L

    2007-01-01

    A refinement of an argument due to Maxwell for the equipartition of translational kinetic energy in a mixture of ideal gases with different masses is proposed. The argument is elementary, yet it may work as an illustration of the role of symmetry and independence postulates in kinetic theory

  20. New integrable models and analytical solutions in f (R ) cosmology with an ideal gas

    Science.gov (United States)

    Papagiannopoulos, G.; Basilakos, Spyros; Barrow, John D.; Paliathanasis, Andronikos

    2018-01-01

    In the context of f (R ) gravity with a spatially flat FLRW metric containing an ideal fluid, we use the method of invariant transformations to specify families of models which are integrable. We find three families of f (R ) theories for which new analytical solutions are given and closed-form solutions are provided.

  1. The Role of Multiple Representations in the Understanding of Ideal Gas Problems

    Science.gov (United States)

    Madden, Sean P.; Jones, Loretta L.; Rahm, Jrene

    2011-01-01

    This study examined the representational competence of students as they solved problems dealing with the temperature-pressure relationship for ideal gases. Seven students enrolled in a first-semester general chemistry course and two advanced undergraduate science majors participated in the study. The written work and transcripts from videotaped…

  2. On the Equipartition of Kinetic Energy in an Ideal Gas Mixture

    Science.gov (United States)

    Peliti, L.

    2007-01-01

    A refinement of an argument due to Maxwell for the equipartition of translational kinetic energy in a mixture of ideal gases with different masses is proposed. The argument is elementary, yet it may work as an illustration of the role of symmetry and independence postulates in kinetic theory. (Contains 1 figure.)

  3. Gas phase chemistry studies of transactinoid elements and the relativistic effects

    Czech Academy of Sciences Publication Activity Database

    Zvára, Ivo

    1999-01-01

    Roč. 49, č. 2 (1999), s. 563-571 ISSN 0011-4626 Institutional research plan: CEZ:AV0Z1048901 Keywords : transactinoid * relativistic effects * chemical properties Subject RIV: CH - Nuclear ; Quantum Chemistry Impact factor: 0.328, year: 1999

  4. Off-diagonal long-range order, cycle probabilities, and condensate fraction in the ideal Bose gas.

    Science.gov (United States)

    Chevallier, Maguelonne; Krauth, Werner

    2007-11-01

    We discuss the relationship between the cycle probabilities in the path-integral representation of the ideal Bose gas, off-diagonal long-range order, and Bose-Einstein condensation. Starting from the Landsberg recursion relation for the canonic partition function, we use elementary considerations to show that in a box of size L3 the sum of the cycle probabilities of length k>L2 equals the off-diagonal long-range order parameter in the thermodynamic limit. For arbitrary systems of ideal bosons, the integer derivative of the cycle probabilities is related to the probability of condensing k bosons. We use this relation to derive the precise form of the pik in the thermodynamic limit. We also determine the function pik for arbitrary systems. Furthermore, we use the cycle probabilities to compute the probability distribution of the maximum-length cycles both at T=0, where the ideal Bose gas reduces to the study of random permutations, and at finite temperature. We close with comments on the cycle probabilities in interacting Bose gases.

  5. ν-Dimensional ideal quantum q-gas: Bose-Einstein condensation and λ-point transition

    International Nuclear Information System (INIS)

    R-Monteiro, M.; Roditi, I.; Rodrigues, L.M.C.S.

    1994-01-01

    The authors consider an ideal quantum q-gas in ν spatial dimensions and energy spectrum ω i αp α . Departing from the Hamiltonian H = ω[N], the authors study the effect of the deformation on thermodynamic functions and equation of state of that system. The virial expansion is obtained for the high temperature (or low density) regime. The critical temperature is higher than in non-deformed ideal gases. They show that Bose-Einstein condensation always exists (unless when ν/α = 1) for finite q but not for q = ∞. Employing numerical calculations and selecting for ν/α the values 3/2, 2 and 3, the authors show the critical temperature as a function of q, the specific heat C V and the chemical potential μ as functions of T/T c q for q = 1.05 and q= 4.5. C V exhibits a λ-point discontinuity in all cases, instead of the cusp singularity found in the usual ideal gas. The results indicate that physical systems which have quantum symmetries can exhibit Bose-Einstein condensation phenomenon, the critical temperature being favored by the deformation parameter

  6. Experimental investigation of the trapping and energy loss mechanisms of intense relativistic electron rings in hydrogen gas and plasma

    International Nuclear Information System (INIS)

    Smith, A.C. Jr.

    1977-01-01

    The results of an experimental study on the trapping and energy loss mechanisms of intense, relativistic electron rings confined in Astron-like magnetic field geometries are presented. The work is subdivided into four sections: gas trapping; average ring electron energetics; plasma trapping, and hollow-beam cusp-injection into gas and plasma. The mechanisms by which the injected beam coalesces into a current ring in the existing Cornell RECE-Berta facility are considered. To investigate the nature of ring electron energy loss mechanisms following completion of the trapping process, a diagnostic was developed utilizing multi-foil X-ray absorption spectroscopy to analyze the Bremsstrahlung generated by the electrons as they impinge upon a thin tungsten wire target suspended in the circulating current. Finally, a set of preliminary experimental results is presented in which an annular electron beam was passed through a coaxial, non-adiabatic magnetic cusp located at one end of a magnetic mirror well

  7. Idealized flow patterns and transit times in gas/liquid contacting trays with multiple box downcomers

    International Nuclear Information System (INIS)

    D'Arcy, D.

    1977-08-01

    Trays with multiple box downcomers are often used in chemical process plants nowadays. In order to make a theoretical assessment of the mass transfer efficiency of such trays, knowledge is needed of the time spent by the liquid at various parts of the tray. An idealized but reasonable flow pattern has been assumed and the local velocities and transit times along ten equally-spaced stream lines have been computed. Numerical and graphical results are presented. (author)

  8. A Study on the Evaluation of Real Gas vs. Ideal Gas for its Application to the CO2 Leak Flow Model

    International Nuclear Information System (INIS)

    Jung, Hwa-Young; Lee, Jeong Ik

    2015-01-01

    The leak can cause various mechanical and thermal problems. Moreover, CO 2 also reacts with sodium by producing some solid reaction products (i.e. Na 2 CO 3 , Na 2 O, etc.), toxic gas (i.e. CO) and heat. Prior to applying the S-CO 2 Brayton cycle to the SFRs, the important safety issues that can occur in the Na-CO 2 heat exchanger should be evaluated. For this, it is essential to predict a CO 2 leak mechanism when the pressure boundary fails. The degree of sodium-CO 2 reaction is determined by several factors; a crack or rupture size, the interfacial area between sodium and CO 2 , the amount of released CO 2 , and so on. In order to simulate more reasonable and realistic CO 2 leak flow, one needs to evaluate and improve some limitations found from the previous studies. The dynamic response in the CO 2 side should be considered for varying mass flux at the nozzle exit over time. Thus, it is necessary to investigate more practical flow model to evaluate the system condition change and its consequences during the CO 2 leak. For the flow modeling, it is obvious that a real gas effect and friction force should be considered. However, due to its complexity and difficulty, it is generally assumed that CO 2 behaves as an ideal gas, and an isentropic critical flow without considering the friction force was applied for the analysis so far. In this paper, before incorporating the real gas effect and friction force to the model, gas properties are evaluated as the first step. The fluid properties of CO 2 is studied to observe how strong the real gas effect can be under SFR operating conditions. From this result, it is determined that which gas model is applicable to the CO 2 leak flow model for simulating the accident scenario in the given conditions of Na-CO 2 heat exchanger. The ideal gas law and the isentropic critical flow model are generally applied to predict the state and the flow rate of CO 2 leak in the Na-CO 2 heat exchanger previously. However, to simulate a

  9. Investigation of Bose Condensation in Ideal Bose Gas Trapped under Generic Power Law Potential in d Dimension

    Science.gov (United States)

    Mehedi Faruk, Mir; Sazzad Hossain, Md.; Muktadir Rahman, Md.

    2016-02-01

    The changes in characteristics of Bose condensation of ideal Bose gas due to an external generic power law potential U=\\sumi=1dci\\vert xi/ai\\vertni are studied carefully. Detailed calculation of Kim et al. (J. Phys. Condens. Matter 11 (1999) 10269) yielded the hierarchy of condensation transitions with changing fractional dimensionality. In this manuscript, some theorems regarding specific heat at constant volume CV are presented. Careful examination of these theorems reveal the existence of hidden hierarchy of the condensation transition in trapped systems as well.

  10. Interferograms, schlieren, and shadowgraphs constructed from real- and ideal-gas, two- and three-dimensional computed flowfields

    Science.gov (United States)

    Yates, Leslie A.

    1993-01-01

    The construction of interferograms, schlieren, and shadowgraphs from computed flowfield solutions permits one-to-one comparisons of computed and experimental results. A method of constructing these images from both ideal- and real-gas, two and three-dimensional computed flowfields is described. The computational grids can be structured or unstructured, and multiple grids are an option. Constructed images are shown for several types of computed flows including nozzle, wake, and reacting flows; comparisons to experimental images are also shown. In addition, th sensitivity of these images to errors in the flowfield solution is demonstrated, and the constructed images can be used to identify problem areas in the computations.

  11. Prediction of absolute entropy of ideal gas at 298 K of pure chemicals through GAMLR and FFNN

    International Nuclear Information System (INIS)

    Fazeli, Ali; Bagheri, Mehdi; Ghaniyari-Benis, Saeid; Aslebagh, Roshanak; Kamaloo, Elaheh

    2011-01-01

    Thermodynamical optimization for energy conversion system can be performed by decreasing entropy generation. For calculation of entropy, we need to know entropy of ideal gases at 298 K as a reference point. Entropy is a thermodynamic quantity which is not easily measured and prediction of entropy by molecular structures for new designed molecules may be a challenge. An easy and accurate equation for prediction of absolute entropy of pure ideal gas at 298 K was introduced for the first time based on the quantitative structure property relationship (QSPR) approach. Thousand seven hundred pure chemical compounds and 3224 molecular descriptors were used for finding this easy equation by genetic algorithm multi-linear regression (GAMLR) subset variable selection. Our work are based on 1700 chemicals in 81 chemical families that is the most comprehensive available data sets for absolute entropy of ideal gases. The final model is linear and has three molecular descriptors with the squared correlation coefficient of 0.9885 (R 2 = 0.9885). Also, feed forward neural network (FFNN) was used for considering non linearity effect of the model. It has the squared correlation coefficient of 0.9909 (R 2 = 0.9909). The model passes all validity check methods. The novel proposed model has the predictability for new designed molecules by having the molecular structures of them.

  12. Brownian motion in a classical ideal gas: A microscopic approach to ...

    Indian Academy of Sciences (India)

    particle reduces to a Langevin equation (valid on a coarser time-scale) with the assump- tion that the lighter gas .... probability distribution of must satisfy FDT. We explicitly show ..... parameters can be adjusted accordingly. The picture of the ...

  13. Monopole excitations of a harmonically trapped one-dimensional Bose gas from the ideal gas to the Tonks-Girardeau regime.

    Science.gov (United States)

    Choi, S; Dunjko, V; Zhang, Z D; Olshanii, M

    2015-09-11

    Using a time-dependent modified nonlinear Schrödinger equation (MNLSE)-where the conventional chemical potential proportional to the density is replaced by the one inferred from Lieb-Liniger's exact solution-we study frequencies of the collective monopole excitations of a one-dimensional Bose gas. We find that our method accurately reproduces the results of a recent experimental study [E. Haller et al., Science 325, 1224 (2009)] in the full spectrum of interaction regimes from the ideal gas, through the mean-field regime, through the mean-field Thomas-Fermi regime, all the way to the Tonks-Giradeau gas. While the former two are accessible by the standard time-dependent NLSE and inaccessible by the time-dependent local density approximation, the situation reverses in the latter case. However, the MNLSE is shown to treat all these regimes within a single numerical method.

  14. High current relativistic beam propagates stably in gas surrounded by nonconducting walls

    International Nuclear Information System (INIS)

    Clark, J.C.

    1977-01-01

    LLL has been studying the propagation of high current electron beams for a number of years to understand their behavior for use in a variety of experimental uses. Our latest experiments have shown that a mildly relativistic electron beam of 10 to 15 kA and a pulse width of 30 to 40 ns can propagate stably and with no net current transfer in insulating tubes filled with neutral gases. These experiments have been performed in the Magnetic Fusion Energy program where Electronics Engineering has been operating an electron beam accelerator, designing some of the diagnostics, such as laser interferometers, and performing the experiments. This article briefly describes our experimental observations

  15. Simulation of ideal-gas flow by nitrogen and other selected gases at cryogenic temperatures. [transonic flow in cryogenic wind tunnels

    Science.gov (United States)

    Hall, R. M.; Adcock, J. B.

    1981-01-01

    The real gas behavior of nitrogen, the gas normally used in transonic cryogenic tunnels, is reported for the following flow processes: isentropic expansion, normal shocks, boundary layers, and interactions between shock waves and boundary layers. The only difference in predicted pressure ratio between nitrogen and an ideal gas which may limit the minimum operating temperature of transonic cryogenic wind tunnels occur at total pressures approaching 9 atm and total temperatures 10 K below the corresponding saturation temperature. These pressure differences approach 1 percent for both isentropic expansions and normal shocks. Alternative cryogenic test gases were also analyzed. Differences between air and an ideal diatomic gas are similar in magnitude to those for nitrogen and should present no difficulty. However, differences for helium and hydrogen are over an order of magnitude greater than those for nitrogen or air. It is concluded that helium and cryogenic hydrogen would not approximate the compressible flow of an ideal diatomic gas.

  16. Relativistic effects in the energy loss of a fast charged particle moving parallel to a two-dimensional electron gas

    Science.gov (United States)

    Mišković, Zoran L.; Akbari, Kamran; Segui, Silvina; Gervasoni, Juana L.; Arista, Néstor R.

    2018-05-01

    We present a fully relativistic formulation for the energy loss rate of a charged particle moving parallel to a sheet containing two-dimensional electron gas, allowing that its in-plane polarization may be described by different longitudinal and transverse conductivities. We apply our formulation to the case of a doped graphene layer in the terahertz range of frequencies, where excitation of the Dirac plasmon polariton (DPP) in graphene plays a major role. By using the Drude model with zero damping we evaluate the energy loss rate due to excitation of the DPP, and show that the retardation effects are important when the incident particle speed and its distance from graphene both increase. Interestingly, the retarded energy loss rate obtained in this manner may be both larger and smaller than its non-retarded counterpart for different combinations of the particle speed and distance.

  17. The ideal oxygen/nitrous oxide fresh gas flow sequence with the Anesthesia Delivery Unit machine.

    Science.gov (United States)

    Hendrickx, Jan F A; Cardinael, Sara; Carette, Rik; Lemmens, Hendrikus J M; De Wolf, Andre M

    2007-06-01

    To determine whether early reduction of oxygen and nitrous oxide fresh gas flow from 6 L/min to 0.7 L/min could be accomplished while maintaining end-expired nitrous oxide concentration > or =50% with an Anesthesia Delivery Unit anesthesia machine. Prospective, randomized clinical study. Large teaching hospital in Belgium. 53 ASA physical status I and II patients requiring general endotracheal anesthesia and controlled mechanical ventilation. Patients were randomly assigned to one of 4 groups depending on the duration of high oxygen/nitrous oxide fresh gas flow (two and 4 L/min, respectively) before lowering total fresh gas flow to 0.7 L/min (0.3 and 0.4 L/min oxygen and nitrous oxide, respectively): one, two, three, or 5 minutes (1-minute group, 2-minute group, 3-minute group, and 5-minute group), with n = 10, 12, 13, and 8, respectively. The course of the end-expired nitrous oxide concentration and bellows volume deficit at end-expiration was compared among the 4 groups during the first 30 minutes. At the end of the high-flow period the end-expired nitrous oxide concentration was 35.6 +/- 6.2%, 48.4 +/- 4.8%, 53.7 +/- 8.7%, and 57.3 +/- 1.6% in the 4 groups, respectively. Thereafter, the end-expired nitrous oxide concentration decreased to a nadir of 36.1 +/- 4.5%, 45.4 +/- 3.8%, 50.9 +/- 6.1%, and 55.4 +/- 2.8% after three, 4, 6, and 8 minutes after flows were lowered in the 1- to 5-minute groups, respectively. A decrease in bellows volume was observed in most patients, but was most pronounced in the 2-minute group. The bellows volume deficit gradually faded within 15 to 20 minutes in all 4 groups. A 3-minute high-flow period (oxygen and nitrous oxide fresh gas flow of 2 and 4 L/min, respectively) suffices to attain and maintain end-expired nitrous oxide concentration > or =50% and ensures an adequate bellows volume during the ensuing low-flow period.

  18. Ideal gas solubilities and solubility selectivities in a binary mixture of room-temperature ionic liquids.

    Science.gov (United States)

    Finotello, Alexia; Bara, Jason E; Narayan, Suguna; Camper, Dean; Noble, Richard D

    2008-02-28

    This study focuses on the solubility behaviors of CO2, CH4, and N2 gases in binary mixtures of imidazolium-based room-temperature ionic liquids (RTILs) using 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([C2mim][Tf2N]) and 1-ethyl-3-methylimidazolium tetrafluoroborate ([C2mim][BF4]) at 40 degrees C and low pressures (approximately 1 atm). The mixtures tested were 0, 25, 50, 75, 90, 95, and 100 mol % [C2mim][BF4] in [C2mim][Tf2N]. Results show that regular solution theory (RST) can be used to describe the gas solubility and selectivity behaviors in RTIL mixtures using an average mixture solubility parameter or an average measured mixture molar volume. Interestingly, the solubility selectivity, defined as the ratio of gas mole fractions in the RTIL mixture, of CO2 with N2 or CH4 in pure [C2mim][BF4] can be enhanced by adding 5 mol % [C2mim][Tf2N].

  19. Ideal quantum gas in an expanding cavity: nature of nonadiabatic force.

    Science.gov (United States)

    Nakamura, K; Avazbaev, S K; Sobirov, Z A; Matrasulov, D U; Monnai, T

    2011-04-01

    We consider a quantum gas of noninteracting particles confined in the expanding cavity and investigate the nature of the nonadiabatic force which is generated from the gas and acts on the cavity wall. First, with use of the time-dependent canonical transformation, which transforms the expanding cavity to the nonexpanding one, we can define the force operator. Second, applying the perturbative theory, which works when the cavity wall begins to move at time origin, we find that the nonadiabatic force is quadratic in the wall velocity and thereby does not break the time-reversal symmetry, in contrast with general belief. Finally, using an assembly of the transitionless quantum states, we obtain the nonadiabatic force exactly. The exact result justifies the validity of both the definition of the force operator and the issue of the perturbative theory. The mysterious mechanism of nonadiabatic transition with the use of transitionless quantum states is also explained. The study is done for both cases of the hard- and soft-wall confinement with the time-dependent confining length. ©2011 American Physical Society

  20. Thermodynamics and kinetics of binary nucleation in ideal-gas mixtures.

    Science.gov (United States)

    Alekseechkin, Nikolay V

    2015-08-07

    The nonisothermal single-component theory of droplet nucleation [N. V. Alekseechkin, Physica A 412, 186 (2014)] is extended to binary case; the droplet volume V, composition x, and temperature T are the variables of the theory. An approach based on macroscopic kinetics (in contrast to the standard microscopic model of nucleation operating with the probabilities of monomer attachment and detachment) is developed for the droplet evolution and results in the derived droplet motion equations in the space (V, x, T)—equations for V̇≡dV/dt, ẋ, and Ṫ. The work W(V, x, T) of the droplet formation is obtained in the vicinity of the saddle point as a quadratic form with diagonal matrix. Also, the problem of generalizing the single-component Kelvin equation for the equilibrium vapor pressure to binary case is solved; it is presented here as a problem of integrability of a Pfaffian equation. The equation for Ṫ is shown to be the first law of thermodynamics for the droplet, which is a consequence of Onsager's reciprocal relations and the linked-fluxes concept. As an example of ideal solution for demonstrative numerical calculations, the o-xylene-m-xylene system is employed. Both nonisothermal and enrichment effects are shown to exist; the mean steady-state overheat of droplets and their mean steady-state enrichment are calculated with the help of the 3D distribution function. Some qualitative peculiarities of the nucleation thermodynamics and kinetics in the water-sulfuric acid system are considered in the model of regular solution. It is shown that there is a small kinetic parameter in the theory due to the small amount of the acid in the vapor and, as a consequence, the nucleation process is isothermal.

  1. Steady Secondary Flows Generated by Periodic Compression and Expansion of an Ideal Gas in a Pulse Tube

    Science.gov (United States)

    Lee, Jeffrey M.

    1999-01-01

    This study establishes a consistent set of differential equations for use in describing the steady secondary flows generated by periodic compression and expansion of an ideal gas in pulse tubes. Also considered is heat transfer between the gas and the tube wall of finite thickness. A small-amplitude series expansion solution in the inverse Strouhal number is proposed for the two-dimensional axisymmetric mass, momentum and energy equations. The anelastic approach applies when shock and acoustic energies are small compared with the energy needed to compress and expand the gas. An analytic solution to the ordered series is obtained in the strong temperature limit where the zeroth-order temperature is constant. The solution shows steady velocities increase linearly for small Valensi number and can be of order I for large Valensi number. A conversion of steady work flow to heat flow occurs whenever temperature, velocity or phase angle gradients are present. Steady enthalpy flow is reduced by heat transfer and is scaled by the Prandtl times Valensi numbers. Particle velocities from a smoke-wire experiment were compared with predictions for the basic and orifice pulse tube configurations. The theory accurately predicted the observed steady streaming.

  2. Thermodynamics of ideal quantum gas with fractional statistics in D dimensions.

    Science.gov (United States)

    Potter, Geoffrey G; Müller, Gerhard; Karbach, Michael

    2007-06-01

    We present exact and explicit results for the thermodynamic properties (isochores, isotherms, isobars, response functions, velocity of sound) of a quantum gas in dimensions D > or = 1 and with fractional exclusion statistics 0 < or = g < or =1 connecting bosons (g=0) and fermions (g=1) . In D=1 the results are equivalent to those of the Calogero-Sutherland model. Emphasis is given to the crossover between bosonlike and fermionlike features, caused by aspects of the statistical interaction that mimic long-range attraction and short-range repulsion. A phase transition along the isobar occurs at a nonzero temperature in all dimensions. The T dependence of the velocity of sound is in simple relation to isochores and isobars. The effects of soft container walls are accounted for rigorously for the case of a pure power-law potential.

  3. Unified first principles description from warm dense matter to ideal ionized gas plasma: electron-ion collisions induced friction.

    Science.gov (United States)

    Dai, Jiayu; Hou, Yong; Yuan, Jianmin

    2010-06-18

    Electron-ion interactions are central to numerous phenomena in the warm dense matter (WDM) regime and at higher temperature. The electron-ion collisions induced friction at high temperature is introduced in the procedure of ab initio molecular dynamics using the Langevin equation based on density functional theory. In this framework, as a test for Fe and H up to 1000 eV, the equation of state and the transition of electronic structures of the materials with very wide density and temperature can be described, which covers a full range of WDM up to high energy density physics. A unified first principles description from condensed matter to ideal ionized gas plasma is constructed.

  4. Proof of the formula for the ideal gas scattering kernel for nuclides with strongly energy dependent scattering cross sections

    International Nuclear Information System (INIS)

    Rothenstein, W.

    2004-01-01

    The current study is a sequel to a paper by Rothenstein and Dagan [Ann. Nucl. Energy 25 (1998) 209] where the ideal gas based kernel for scatterers with internal structure was introduced. This double differential kernel includes the neutron energy after scattering as well as the cosine of the scattering angle for isotopes with strong scattering resonances. A new mathematical formalism enables the inclusion of the new kernel in NJOY [MacFarlane, R.E., Muir, D.W., 1994. The NJOY Nuclear Data Processing System Version 91 (LA-12740-m)]. Moreover the computational time of the new kernel is reduced significantly, feasible for practical application. The completeness of the new kernel is proven mathematically and demonstrated numerically. Modifications necessary to remove the existing inconsistency of the secondary energy distribution in NJOY are presented

  5. Theory versus Practice in the Twentieth-Century Search for the Ideal Anaesthetic Gas.

    Science.gov (United States)

    Rae, Ian D

    2016-02-01

    At the beginning of the twentieth century, an anaesthetist could choose between nitrous oxide, chloroform, and ether (diethyl ether) for the induction of painrelieving unconsciousness. By the end of century, the choice was between a small number of fluorinated aliphatic ethers such as Enflurane, Desflurane, and Sevoflurane, and (in some jurisdictions) the rare gas, xenon. Between these endpoints researchers had identified a surprisingly broad range of hydrocarbons, noble gases, organohalogens, and aliphatic ethers that possessed anaesthetic properties. None was entirely satisfactory, but clinicians at various times and in various places employed substances in each of these categories. Behind the search for new anaesthetic gases was a theory of action (Meyer- Overton theory) that was known to be inadequate, but as no alternative was strong enough to displace it the search continued on purely empirical grounds, while lip-service was paid to the theory. By the time a theory couched in more modern terms was proposed, a suite of modern anaesthetic gases was in place, and there have been no attempts to use that theory to drive a new search.

  6. Gas-particle partitioning of atmospheric aerosols: interplay of physical state, non-ideal mixing and morphology.

    Science.gov (United States)

    Shiraiwa, Manabu; Zuend, Andreas; Bertram, Allan K; Seinfeld, John H

    2013-07-21

    Atmospheric aerosols, comprising organic compounds and inorganic salts, play a key role in air quality and climate. Mounting evidence exists that these particles frequently exhibit phase separation into predominantly organic and aqueous electrolyte-rich phases. As well, the presence of amorphous semi-solid or glassy particle phases has been established. Using the canonical system of ammonium sulfate mixed with organics from the ozone oxidation of α-pinene, we illustrate theoretically the interplay of physical state, non-ideality, and particle morphology affecting aerosol mass concentration and the characteristic timescale of gas-particle mass transfer. Phase separation can significantly affect overall particle mass and chemical composition. Semi-solid or glassy phases can kinetically inhibit the partitioning of semivolatile components and hygroscopic growth, in contrast to the traditional assumption that organic compounds exist in quasi-instantaneous gas-particle equilibrium. These effects have significant implications for the interpretation of laboratory data and the development of improved atmospheric air quality and climate models.

  7. Magnetic anisotropy of heteronuclear dimers in the gas phase and supported on graphene: relativistic density-functional calculations.

    Science.gov (United States)

    Błoński, Piotr; Hafner, Jürgen

    2014-04-09

    The structural and magnetic properties of mixed PtCo, PtFe, and IrCo dimers in the gas phase and supported on a free-standing graphene layer have been calculated using density-functional theory, both in the scalar-relativistic limit and self-consistently including spin-orbit coupling. The influence of the strong magnetic moments of the 3d atoms on the spin and orbital moments of the 5d atoms, and the influence of the strong spin-orbit coupling contributed by the 5d atom on the orbital moments of the 3d atoms have been studied in detail. The magnetic anisotropy energy is found to depend very sensitively on the nature of the eigenstates in the vicinity of the Fermi level, as determined by band filling, exchange splitting and spin-orbit coupling. The large magnetic anisotropy energy of free PtCo and IrCo dimers relative to the easy direction parallel to the dimer axis is coupled to a strong anisotropy of the orbital magnetic moments of the Co atom for both dimers, and also on the Ir atom in IrCo. In contrast the PtFe dimer shows a weak perpendicular anisotropy and only small spin and orbital anisotropies of opposite sign on the two atoms. For dimers supported on graphene, the strong binding within the dimer and the stronger interaction of the 3d atom with the substrate stabilizes an upright geometry. Spin and orbital moments on the 3d atom are strongly quenched, but due to the weaker binding within the dimer the properties of the 5d atom are more free-atom-like with increased spin and orbital moments. The changes in the magnetic moment are reflected in the structure of the electronic eigenstates near the Fermi level, for all three dimers the easy magnetic direction is now parallel to the dimer axis and perpendicular to the graphene layer. The already very large magnetic anisotropy energy (MAE) of IrCo is further enhanced by the interaction with the support, the MAE of PtFe changes sign, and that of the PtCo dimer is reduced. These changes are discussed in relation to

  8. Development of a Time Projection Chamber using CF4 gas for relativistic heavy ion experiments

    International Nuclear Information System (INIS)

    Isobe, T.; Hamagaki, H.; Ozawa, K.; Inuzuka, M.; Sakaguchi, T.; Matsumoto, T.; Kametani, S.; Kajihara, F.; Gunji, T.; Kurihara, N.; Oda, S.X.; Yamaguchi, Y.L.

    2006-01-01

    A prototype Time Projection Chamber (TPC) using pure CF 4 gas was developed for possible use in heavy ion experiments. Basic characteristics such as gain, drift velocity, longitudinal diffusion and attenuation length of produced electrons were measured with the TPC. At an electric field of 900V/cm, the drift velocity and longitudinal diffusion for 1cm drift were obtained as 10cm/μs and 60μm, respectively. The relatively large gain fluctuation is explained to be due to the electron attachment process in CF 4 . These characteristics are encouraging for the measurement of the charged particle trajectories under high multiplicity conditions at RHIC

  9. Exploring the Ideal Gas Law through a Quantitative Gasometric Analysis of Nitrogen Produced by the Reaction of Sodium Nitrite with Sulfamic Acid

    Science.gov (United States)

    Yu, Anne

    2010-01-01

    The gasometric analysis of nitrogen produced in a reaction between sodium nitrite, NaNO[superscript 2], and sulfamic acid, H(NH[superscript 2])SO[superscript 3], provides an alternative to more common general chemistry experiments used to study the ideal gas law, such as the experiment in which magnesium is reacted with hydrochloric acid. This…

  10. Relativistic equations

    International Nuclear Information System (INIS)

    Gross, F.

    1986-01-01

    Relativistic equations for two and three body scattering are discussed. Particular attention is paid to relativistic three body kinetics because of recent form factor measurements of the Helium 3 - Hydrogen 3 system recently completed at Saclay and Bates and the accompanying speculation that relativistic effects are important for understanding the three nucleon system. 16 refs., 4 figs

  11. Magnetogasdynamics shock waves in a rotational axisymmetric non-ideal gas with increasing energy and conductive and radiative heat-fluxes

    Science.gov (United States)

    Nath, Gorakh

    2016-07-01

    Self-similar solutions are obtained for one-dimensional adiabatic flow behind a magnetogasdynamics cylindrical shock wave propagating in a rotational axisymmetric non ideal gas with increasing energy and conductive and radiative heat fluxes in presence of an azimuthal magnetic field. The fluid velocities and the azimuthal magnetic field in the ambient medium are assume to be varying and obeying power laws. In order to find the similarity solutions the angular velocity of the ambient medium is taken to be decreasing as the distance from the axis increases. The heat conduction is expressed in terms of Fourier's law and the radiation is considered to be the diffusion type for an optically thick grey gas model. The thermal conductivity and the absorption coefficient are assumed to vary with temperature and density. The effects of the presence of radiation and conduction, the non-idealness of the gas and the magnetic field on the shock propagation and the flow behind the shock are investigated.

  12. Synchronization of streak and framing camera measurements of an intense relativistic electron beam propagating through gas

    International Nuclear Information System (INIS)

    Weidman, D.J.; Murphy, D.P.; Myers, M.C.; Meger, R.A.

    1994-01-01

    The expansion of the radius of a 5 MeV, 20 kA, 40 ns electron beam from SuperIBEX during propagation through gas is being measured. The beam is generated, conditions, equilibrated, and then passed through a thin foil that produces Cherenkov light, which is recorded by a streak camera. At a second location, the beam hits another Cherenkov emitter, which is viewed by a framing camera. Measurements at these two locations can provide a time-resolved measure of the beam expansion. The two measurements, however, must be synchronized with each other, because the beam radius is not constant throughout the pulse due to variations in beam current and energy. To correlate the timing of the two diagnostics, several shots have been taken with both diagnostics viewing Cherenkov light from the same foil. Experimental measurements of the Cherenkov light from one foil viewed by both diagnostics will be presented to demonstrate the feasibility of correlating the diagnostics with each other. Streak camera data showing the optical fiducial, as well as the final correlation of the two diagnostics, will also be presented. Preliminary beam radius measurements from Cherenkov light measured at two locations will be shown

  13. Similarity solutions for unsteady flow behind an exponential shock in a self-gravitating non-ideal gas with azimuthal magnetic field

    Science.gov (United States)

    Nath, G.; Pathak, R. P.; Dutta, Mrityunjoy

    2018-01-01

    Similarity solutions for the flow of a non-ideal gas behind a strong exponential shock driven out by a piston (cylindrical or spherical) moving with time according to an exponential law is obtained. Solutions are obtained, in both the cases, when the flow between the shock and the piston is isothermal or adiabatic. The shock wave is driven by a piston moving with time according to an exponential law. Similarity solutions exist only when the surrounding medium is of constant density. The effects of variation of ambient magnetic field, non-idealness of the gas, adiabatic exponent and gravitational parameter are worked out in detail. It is shown that the increase in the non-idealness of the gas or the adiabatic exponent of the gas or presence of magnetic field have decaying effect on the shock wave. Consideration of the isothermal flow and the self-gravitational field increase the shock strength. Also, the consideration of isothermal flow or the presence of magnetic field removes the singularity in the density distribution, which arises in the case of adiabatic flow. The result of our study may be used to interpret measurements carried out by space craft in the solar wind and in neighborhood of the Earth's magnetosphere.

  14. Relativistic astrophysics

    CERN Document Server

    Demianski, Marek

    2013-01-01

    Relativistic Astrophysics brings together important astronomical discoveries and the significant achievements, as well as the difficulties in the field of relativistic astrophysics. This book is divided into 10 chapters that tackle some aspects of the field, including the gravitational field, stellar equilibrium, black holes, and cosmology. The opening chapters introduce the theories to delineate gravitational field and the elements of relativistic thermodynamics and hydrodynamics. The succeeding chapters deal with the gravitational fields in matter; stellar equilibrium and general relativity

  15. Some problems in relativistic thermodynamics

    International Nuclear Information System (INIS)

    Veitsman, E. V.

    2007-01-01

    The relativistic equations of state for ideal and real gases, as well as for various interface regions, have been derived. These dependences help to eliminate some controversies in the relativistic thermodynamics based on the special theory of relativity. It is shown, in particular, that the temperature of system whose velocity tends to the velocity of light in vacuum varies in accordance with the Ott law T = T 0 /√1 - v 2 /c 2 . Relativistic dependences for heat and mass transfer, for Ohm's law, and for a viscous flow of a liquid have also been derived

  16. Positron kinetics in an idealized PET environment

    Science.gov (United States)

    Robson, R. E.; Brunger, M. J.; Buckman, S. J.; Garcia, G.; Petrović, Z. Lj.; White, R. D.

    2015-08-01

    The kinetic theory of non-relativistic positrons in an idealized positron emission tomography PET environment is developed by solving the Boltzmann equation, allowing for coherent and incoherent elastic, inelastic, ionizing and annihilating collisions through positronium formation. An analytic expression is obtained for the positronium formation rate, as a function of distance from a spherical source, in terms of the solutions of the general kinetic eigenvalue problem. Numerical estimates of the positron range - a fundamental limitation on the accuracy of PET, are given for positrons in a model of liquid water, a surrogate for human tissue. Comparisons are made with the ‘gas-phase’ assumption used in current models in which coherent scattering is suppressed. Our results show that this assumption leads to an error of the order of a factor of approximately 2, emphasizing the need to accurately account for the structure of the medium in PET simulations.

  17. Thermodynamic analysis of a gas turbine cycle equipped with a non-ideal adiabatic model for a double acting Stirling engine

    International Nuclear Information System (INIS)

    Korlu, Mahmood; Pirkandi, Jamasb; Maroufi, Arman

    2017-01-01

    Highlights: • A gas turbine cycle equipped with a double acting Stirling engine is proposed. • The hybrid cycle effects, efficiency and power outputs are investigated. • The energy dissipation, the net enthalpy loss and wall heat leakage are considered. • The hybrid cycle improves the efficiency from 23.6 to 38.8%. - Abstract: The aim of this study is to investigate the thermodynamic performance of a gas turbine cycle equipped with a double acting Stirling engine. A portion of gas turbine exhaust gases are allocated to providing the heat required for the Stirling engine. Employing this hybrid cycle improves gas turbine performance and power generation. The double acting Stirling engine is used in this study and the non-ideal adiabatic model is used to numerical solution. The regenerator’s net enthalpy loss, the regenerator’s wall heat leakage, the energy dissipation caused by pressure drops in heat exchangers and regenerator are the losses that were taken into account for the Stirling engine. The hybrid cycle, gas turbine governing equations and Stirling engine analyses are carried out using the Matlab software. The pressure ratio of the compressor, the inlet temperature of turbine, the porosity, length and diameter of the regenerator were chosen as essential parameters in this article. Also the hybrid cycle effects, efficiency and power outputs are investigated. The results show that the hybrid gas turbine and Stirling engine improves the efficiency from 23.6 to 38.8%.

  18. Physiological gas exchange mapping of hyperpolarized 129 Xe using spiral-IDEAL and MOXE in a model of regional radiation-induced lung injury.

    Science.gov (United States)

    Zanette, Brandon; Stirrat, Elaine; Jelveh, Salomeh; Hope, Andrew; Santyr, Giles

    2018-02-01

    To map physiological gas exchange parameters using dissolved hyperpolarized (HP) 129 Xe in a rat model of regional radiation-induced lung injury (RILI) with spiral-IDEAL and the model of xenon exchange (MOXE). Results are compared to quantitative histology of pulmonary tissue and red blood cell (RBC) distribution. Two cohorts (n = 6 each) of age-matched rats were used. One was irradiated in the right-medial lung, producing regional injury. Gas exchange was mapped 4 weeks postirradiation by imaging dissolved-phase HP 129 Xe using spiral-IDEAL at five gas exchange timepoints using a clinical 1.5 T scanner. Physiological lung parameters were extracted regionally on a voxel-wise basis using MOXE. Mean gas exchange parameters, specifically air-capillary barrier thickness (δ) and hematocrit (HCT) in the right-medial lung were compared to the contralateral lung as well as nonirradiated control animals. Whole-lung spectroscopic analysis of gas exchange was also performed. δ was significantly increased (1.43 ± 0.12 μm from 1.07 ± 0.09 μm) and HCT was significantly decreased (17.2 ± 1.2% from 23.6 ± 1.9%) in the right-medial lung (i.e., irradiated region) compared to the contralateral lung of the irradiated rats. These changes were not observed in healthy controls. δ and HCT correlated with histologically measured increases in pulmonary tissue heterogeneity (r = 0.77) and decreases in RBC distribution (r = 0.91), respectively. No changes were observed using whole-lung analysis. This work demonstrates the feasibility of mapping gas exchange using HP 129 Xe in an animal model of RILI 4 weeks postirradiation. Spatially resolved gas exchange mapping is sensitive to regional injury between cohorts that was undetected with whole-lung gas exchange analysis, in agreement with histology. Gas exchange mapping holds promise for assessing regional lung function in RILI and other pulmonary diseases. © 2017 The Authors. Medical Physics published by Wiley

  19. Finite-Difference Solution for Laminar or Turbulent Boundary Layer Flow over Axisymmetric Bodies with Ideal Gas, CF4, or Equilibrium Air Chemistry

    Science.gov (United States)

    Hamilton, H. Harris, II; Millman, Daniel R.; Greendyke, Robert B.

    1992-01-01

    A computer code was developed that uses an implicit finite-difference technique to solve nonsimilar, axisymmetric boundary layer equations for both laminar and turbulent flow. The code can treat ideal gases, air in chemical equilibrium, and carbon tetrafluoride (CF4), which is a useful gas for hypersonic blunt-body simulations. This is the only known boundary layer code that can treat CF4. Comparisons with experimental data have demonstrated that accurate solutions are obtained. The method should prove useful as an analysis tool for comparing calculations with wind tunnel experiments and for making calculations about flight vehicles where equilibrium air chemistry assumptions are valid.

  20. A proof of the Biswas-Mitra-Bhattacharyya conjecture for the ideal quantum gas trapped under the generic power law potential U=\\sum\

    Science.gov (United States)

    Mehedi Faruk, Mir; Muktadir Rahman, Md

    2016-03-01

    The well known relation for ideal classical gas $\\Delta \\epsilon^2=kT^2 C_V$ which does not remain valid for quantum system is revisited. A new connection is established between energy fluctuation and specific heat for quantum gases, valid in the classical limit and the degenerate quantum regime as well. Most importantly the proposed Biswas-Mitra-Bhattacharyya (BMB) conjecture (Biswas $et.$ $al.$, J. Stat. Mech. P03013, 2015.) relating hump in energy fluctuation and discontinuity of specific heat is proved and precised in this manuscript.

  1. Universal fine structure of the specific heat at the critical λ-point for an ideal Bose gas in an arbitrary trap

    International Nuclear Information System (INIS)

    Tarasov, S V; Kocharovsky, Vl V; Kocharovsky, V V

    2014-01-01

    We analytically find the universal fine structure of the noted discontinuity in the value and/or derivative of the specific heat of an ideal Bose gas in an arbitrary trap in the whole critical region around the λ-point of the Bose–Einstein condensation. The result reveals a remarkable dependence of the λ-point structure on the trap's form and boundary conditions, even for a macroscopically large system. We suggest measuring this strong effect in the experiments with a controllable trap potential. (paper)

  2. Ideal gas contribution to the isobaric heat capacity of refrigerants: Poling et al.’s polynomial correlation vs DIPPR data

    International Nuclear Information System (INIS)

    Mulero, Angel; Cachadiña, Isidro; Tian, Jianxiang

    2013-01-01

    Highlights: ► The ideal gas contribution to the isobaric heat capacity of 58 refrigerants is calculated. ► Poling et al.’s polynomial correlation on temperature is used. ► Results are compared with DIPPR data and the correlation extended to higher temperatures. ► New coefficients for the correlation are given. ► Mean average percentage deviations with these new coefficients are lower than 1% for 49 refrigerants. -- Abstract: The ideal gas contribution to the isobaric heat capacity of fluids is a temperature dependent property which is commonly modelled as a polynomial expression. In this work, the performance and accuracy of the polynomial correlation proposed by Poling et al. in their well-known book is checked. To this end, the data accepted in the DIPPR database for 58 refrigerants were used. The mean average percentage deviations (MAPDs) obtained in the temperature range considered by Poling et al., usually up to 1000 K, are greater than 1.5% only for six refrigerants. We extended our study to the temperature range in which accepted DIPPR data are available (usually up to 1500 K), finding that only for four refrigerants can the Poling et al. correlation be used in this extended range. New coefficients for the correlation are given for the 58 refrigerants studied which reproduce the accepted DIPPR data. The new MAPD values are then below 1% for 49 refrigerants

  3. Spin-orbit ZORA and four-component Dirac-Coulomb estimation of relativistic corrections to isotropic nuclear shieldings and chemical shifts of noble gas dimers

    DEFF Research Database (Denmark)

    Jankowska, Marzena; Kupka, Teobald; Stobiński, Leszek

    2016-01-01

    Hartree-Fock and density functional theory with the hybrid B3LYP and general gradient KT2 exchange-correlation functionals were used for non-relativistic and relativistic nuclear magnetic shielding calculations of helium, neon, argon, krypton and xenon dimers and free atoms. Relativistic...

  4. Instability in relativistic nuclear matter

    International Nuclear Information System (INIS)

    Tezuka, Hirokazu.

    1979-11-01

    The stability of the Fermi gas state in the nuclear matter which satisfies the saturation property is considered relativistically. It is shown that the Fermi gas state is stable at very low density and at high density, but it is unstable for density fluctuation in the intermediate density region including the normal density. (author)

  5. Relativistic hydrodynamics

    CERN Document Server

    Luciano, Rezzolla

    2013-01-01

    Relativistic hydrodynamics is a very successful theoretical framework to describe the dynamics of matter from scales as small as those of colliding elementary particles, up to the largest scales in the universe. This book provides an up-to-date, lively, and approachable introduction to the mathematical formalism, numerical techniques, and applications of relativistic hydrodynamics. The topic is typically covered either by very formal or by very phenomenological books, but is instead presented here in a form that will be appreciated both by students and researchers in the field. The topics covered in the book are the results of work carried out over the last 40 years, which can be found in rather technical research articles with dissimilar notations and styles. The book is not just a collection of scattered information, but a well-organized description of relativistic hydrodynamics, from the basic principles of statistical kinetic theory, down to the technical aspects of numerical methods devised for the solut...

  6. Role of single-point mutations and deletions on transition temperatures in ideal proteinogenic heteropolymer chains in the gas phase.

    Science.gov (United States)

    Olivares-Quiroz, L

    2016-07-01

    A coarse-grained statistical mechanics-based model for ideal heteropolymer proteinogenic chains of non-interacting residues is presented in terms of the size K of the chain and the set of helical propensities [Formula: see text] associated with each residue j along the chain. For this model, we provide an algorithm to compute the degeneracy tensor [Formula: see text] associated with energy level [Formula: see text] where [Formula: see text] is the number of residues with a native contact in a given conformation. From these results, we calculate the equilibrium partition function [Formula: see text] and characteristic temperature [Formula: see text] at which a transition from a low to a high entropy states is observed. The formalism is applied to analyze the effect on characteristic temperatures [Formula: see text] of single-point mutations and deletions of specific amino acids [Formula: see text] along the chain. Two probe systems are considered. First, we address the case of a random heteropolymer of size K and given helical propensities [Formula: see text] on a conformational phase space. Second, we focus our attention to a particular set of neuropentapeptides, [Met-5] and [Leu-5] enkephalins whose thermodynamic stability is a key feature on their coupling to [Formula: see text] and [Formula: see text] receptors and the triggering of biochemical responses.

  7. An introduction to relativistic hydrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Font, Jose A [Departamento de AstronomIa y AstrofIsica, Universidad de Valencia, Dr. Moliner 50, 46100 Burjassot (Valencia) (Spain)

    2007-11-15

    We review formulations of the equations of (inviscid) general relativistic hydrodynamics and (ideal) magnetohydrodynamics, along with methods for their numerical solution. Both systems can be cast as first-order, hyperbolic systems of conservation laws, following the explicit choice of an Eulerian observer and suitable fluid and magnetic field variables. During the last fifteen years, the so-called (upwind) high-resolution shock-capturing schemes based on Riemann solvers have been successfully extended from classical to relativistic fluid dynamics, both special and general. Nowadays, general relativistic hydrodynamical simulations in relativistic astrophysics are routinely performed, particularly within the test-fluid approximation but also for dynamical spacetimes. While such advances also hold true in the case of the MHD equations, the astrophysical applications investigated so far are still limited, yet the field is bound to witness major developments in the near future. The article also presents a brief overview of numerical techniques, providing state-of-the-art examples of their applicability to general relativistic fluids and magneto-fluids in characteristic scenarios of relativistic astrophysics.

  8. Relativistic astrophysics

    CERN Document Server

    Price, R H

    1993-01-01

    Work reported in the workshop on relativistic astrophysics spanned a wide varicy of topics. Two specific areas seemed of particular interest. Much attention was focussed on gravitational wave sources, especially on the waveforms they produce, and progress was reported in theoretical and observational aspects of accretion disks.

  9. Relativistic Kinematics

    OpenAIRE

    Sahoo, Raghunath

    2016-01-01

    This lecture note covers Relativistic Kinematics, which is very useful for the beginners in the field of high-energy physics. A very practical approach has been taken, which answers "why and how" of the kinematics useful for students working in the related areas.

  10. Relativistic Astrophysics

    International Nuclear Information System (INIS)

    Font, J. A.

    2015-01-01

    The relativistic astrophysics is the field of astrophysics employing the theory of relativity Einstein as physical-mathematical model is to study the universe. This discipline analyzes astronomical contexts in which the laws of classical mechanics of Newton's law of gravitation are not valid. (Author)

  11. A Method to Simulate Linear Stability of Impulsively Accelerated Density Interfaces in Ideal-MHD and Gas Dynamics

    International Nuclear Information System (INIS)

    Samtaney, Ravi

    2009-01-01

    We present a numerical method to solve the linear stability of impulsively accelerated density interfaces in two dimensions such as those arising in the Richtmyer-Meshkov instability. The method uses an Eulerian approach, and is based on an unwind method to compute the temporally evolving base state and a flux vector splitting method for the perturbations. The method is applicable to either gas dynamics or magnetohydrodynamics. Numerical examples are presented for cases in which a hydrodynamic shock interacts with a single or double density interface, and a doubly shocked single density interface. Convergence tests show that the method is spatially second order accurate for smooth flows, and between first and second order accurate for flows with shocks

  12. Effects of a delta-attractive impurity in the thermodynamics properties of an one-dimensional ideal Bose gas

    International Nuclear Information System (INIS)

    Ioriatti Junior, L.C.

    1976-01-01

    The thermodynamic behavior of the one-dimensional bose gas-attractive delta impurity system is studied. The system is shown to undergo the Bose-Einstein condensation and the cause of the phase transition is attributed to the bound state introduced by the impurity in the free particle energy spectrum. The condensed phase is composed by particles captured by the impurity, forming a drop of particles well localized in space. This gives to the Bose-Einstein condensation in this system the appearance of the ordinary vapor-liquid phase transition. The order of the phase transition is analized with the aid of the Clausius-Clayperon equation, leading to the conclusion that the transition is a first order one. This reinforces the interpretation of a vapor-liquid transition. The evaluation of the heat capacity at constant length shows the existence of a finite discontinuity at the transition temperature [pt

  13. On Classical Ideal Gases

    Directory of Open Access Journals (Sweden)

    Laurent Chusseau

    2013-02-01

    Full Text Available We show that the thermodynamics of ideal gases may be derived solely from the Democritean concept of corpuscles moving in vacuum plus a principle of simplicity, namely that these laws are independent of the laws of motion, aside from the law of energy conservation. Only a single corpuscle in contact with a heat bath submitted to a z and t-invariant force is considered. Most of the end results are known but the method appears to be novel. The mathematics being elementary, the present paper should facilitate the understanding of the ideal gas law and of classical thermodynamics even though not-usually-taught concepts are being introduced.

  14. Short-time Asymptotics of the Heat Kernel on Bounded Domain with Piecewise Smooth Boundary Conditions and Its Applications to an Ideal Gas

    Institute of Scientific and Technical Information of China (English)

    E.M.E. ZAYED

    2004-01-01

    The asymptotic expansion of the heat kernel Θ(t)(∞∑=(i=0))exp (-λi) where({λi}∞i=1) Are the eigen-values of negative Laplacian( -△n=-n∑k=1(θ/θxk)2)in Rn(n=2 or 3) is studied for short-time t for a general bounded domainθΩwith a smooth boundary θΩ.In this paper, we consider the case of a finite number of the Dirichlet conditions φ=0 on Γi (i = J +1,….,J)and the Neumann conditions and (θφ/θ vi) = 0 on Γi (i = J+1,…,k) and the Robin condition (θφ/θ vi+γi) θ=(I=k+1,… m) where γi are piecewise smooth positive impedancem(θφ=mUi=1Γi. )We construct the required asymptotics in the form of a power series over t. The senior coe.cients inthis series are speci.ed as functionals of the geometric shape of the domain Ω.This result is applied to calculatethe one-particle partition function of a "special ideal gas", i.e., the set of non-interacting particles set up in abox with Dirichlet, Neumann and Robin boundary conditions for the appropriate wave function. Calculationof the thermodynamic quantities for the ideal gas such as the internal energy, pressure and speci.c heat revealsthat these quantities alone are incapable of distinguishing between two di.erent shapes of the domain. Thisconclusion seems to be intuitively clear because it is based on a limited information given by a one-particlepartition function; nevertheless, its formal theoretical motivation is of some interest.

  15. Towards ideal NOx control technology for bio-oils and a gas multi-fuel boiler system using a plasma-chemical hybrid process

    International Nuclear Information System (INIS)

    Fujishima, Hidekatsu; Takekoshi, Kenichi; Kuroki, Tomoyuki; Tanaka, Atsushi; Otsuka, Keiichi; Okubo, Masaaki

    2013-01-01

    Highlights: • A multi-fuel boiler system combined with NO x aftertreatment is developed. • NO x is removed from flue gas by a plasma-chemical hybrid process. • Waste bio-oils are utilized as renewable energy source and for CO 2 reduction. • Ultra low NO x emission less than 2 ppm is achieved. • The boiler system is applicable for industrial use. - Abstract: A super-clean boiler system comprising a multi-fuel boiler and a reactor for plasma-chemical hybrid NO x aftertreatment is developed, and its industrial applications are examined. The purpose of this research is to optimally reduce NO x emission and utilize waste bio-oil as a renewable energy source. First, NO oxidation using indirect plasma at elevated flue gas temperatures is investigated. It is clarified that more than 98% of NO is oxidized when the temperature of the flue gas is less than 130 °C. Three types of waste bio-oils (waste vegetable oil, rice bran oil, and fish oil) are burned in the boiler as fuels with a rotary-type burner for CO 2 reduction considering carbon neutrality. NO x in the flue gases of these bio-oils is effectively reduced by the indirect plasma-chemical hybrid treatment. Ultralow NO x emission less than 2 ppm is achieved for 450 min in the firing of city natural gas fuel. The boiler system can be successfully operated automatically according to unsteady steam demand and using an empirical equation for Na 2 SO 3 supply rate, and can be used in industries as an ideal NO x control technology

  16. Relativistic klystrons

    International Nuclear Information System (INIS)

    Allen, M.A.; Azuma, O.; Callin, R.S.

    1989-03-01

    Experimental work is underway by a SLAC-LLNL-LBL collaboration to investigate the feasibility of using relativistic klystrons as a power source for future high gradient accelerators. Two different relativistic klystron configurations have been built and tested to date: a high grain multicavity klystron at 11.4 GHz and a low gain two cavity subharmonic buncher driven at 5.7 GHz. In both configurations power is extracted at 11.4 GHz. In order to understand the basic physics issues involved in extracting RF from a high power beam, we have used both a single resonant cavity and a multi-cell traveling wave structure for energy extraction. We have learned how to overcome our previously reported problem of high power RF pulse shortening, and have achieved peak RF power levels of 170 MW with the RF pulse of the same duration as the beam current pulse. 6 refs., 3 figs., 3 tabs

  17. Gravitation relativiste

    CERN Document Server

    Hakim, Rémi

    1994-01-01

    Il existe à l'heure actuelle un certain nombre de théories relativistes de la gravitation compatibles avec l'expérience et l'observation. Toutefois, la relativité générale d'Einstein fut historiquement la première à fournir des résultats théoriques corrects en accord précis avec les faits.

  18. Relativistic klystron

    International Nuclear Information System (INIS)

    Marks, R.

    1985-09-01

    Theoretical analysis is presented of a relativisic klystron; i.e. a high-relativistic bunched electron beam which is sent through a succession of tuned cavities and has its energy replenished by periodic induction accelerator units. Parameters are given for a full-size device and for an experimental device using the FEL at the ETA; namely the ELF Facility. 6 refs., 2 figs

  19. Specific heats of degenerate ideal gases

    OpenAIRE

    Caruso, Francisco; Oguri, Vitor; Silveira, Felipe

    2017-01-01

    From arguments based on Heisenberg's uncertainty principle and Pauli's exclusion principle, the molar specific heats of degenerate ideal gases at low temperatures are estimated, giving rise to values consistent with the Nerst-Planck Principle (third law of Thermodynamics). The Bose-Einstein condensation phenomenon based on the behavior of specific heat of massive and non-relativistic boson gases is also presented.

  20. Comments on "Advantages and challenges in coupling an ideal gas to atomistic models in adaptive resolution simulations" by K. Kreis, A.C. Fogarty, K. Kremer and R. Potestio

    Science.gov (United States)

    Klein, R.

    2015-09-01

    Kreis et al. (Eur. Phys. J. Special Topics, this issue, 2015, doi: 10.1140/epjst/e2015-02412-1) discuss the option of minimizing the complexity of the coarse-grained model in adaptive resolution molecular dynamics simulations (AdResS) by adopting a collisionless ideal gas model for this purpose. Here we discuss the technical detail of how an ideal gas model is implemented, the effective role in the simulation that is left to the coarse-grained model when it is drastically simplified as suggested, and relations between the force and potential interpolations adopted in different variants of AdResS.

  1. Energy Fluctuation of Ideal Fermi Gas Trapped under Generic Power Law Potential U=\\sum_{i=1}^{d} c_i\\vert x_{i}/a_{i}\\vert^{n_{i} } in d Dimensions

    Science.gov (United States)

    Mir, Mehedi Faruk; Muktadir Rahman, Md.; Dwaipayan, Debnath; Sakhawat Hossain Himel, Md.

    2016-04-01

    Energy fluctuation of ideal Fermi gas trapped under generic power law potential U=\\sumi=1d ci \\vertxi/ai \\vert n_i has been calculated in arbitrary dimensions. Energy fluctuation is scrutinized further in the degenerate limit μ ≫ KBT with the help of Sommerfeld expansion. The dependence of energy fluctuation on dimensionality and power law potential is studied in detail. Most importantly our general result can not only exactly reproduce the recently published result regarding free and harmonically trapped ideal Fermi gas in d = 3 but also can describe the outcome for any power law potential in arbitrary dimension.

  2. Sex education and ideals

    NARCIS (Netherlands)

    de Ruyter, D.J.; Spiecker, B.

    2008-01-01

    This article argues that sex education should include sexual ideals. Sexual ideals are divided into sexual ideals in the strict sense and sexual ideals in the broad sense. It is argued that ideals that refer to the context that is deemed to be most ideal for the gratification of sexual ideals in the

  3. Draws on a relativistic pinch with a longitudinal magnetic field

    International Nuclear Information System (INIS)

    Trubnikov, B.A.

    1991-01-01

    The problems of draws on a relativistic pinch with longitudinal magnetic field are discussed. The absence of collisions promoting the energy exchange between different degrees of particle freedom is assumed. The calculations are conducted using the ideal relativistic anisotropic magnetic hydrodynamics equations. The spectrum of particles accelerated in the draws, is determined

  4. Relativistic Astronomy

    Science.gov (United States)

    Zhang, Bing; Li, Kunyang

    2018-02-01

    The “Breakthrough Starshot” aims at sending near-speed-of-light cameras to nearby stellar systems in the future. Due to the relativistic effects, a transrelativistic camera naturally serves as a spectrograph, a lens, and a wide-field camera. We demonstrate this through a simulation of the optical-band image of the nearby galaxy M51 in the rest frame of the transrelativistic camera. We suggest that observing celestial objects using a transrelativistic camera may allow one to study the astronomical objects in a special way, and to perform unique tests on the principles of special relativity. We outline several examples that suggest transrelativistic cameras may make important contributions to astrophysics and suggest that the Breakthrough Starshot cameras may be launched in any direction to serve as a unique astronomical observatory.

  5. Relativistic magnetohydrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez, Juan; Kovtun, Pavel [Department of Physics and Astronomy, University of Victoria,Victoria, BC, V8P 5C2 (Canada)

    2017-05-02

    We present the equations of relativistic hydrodynamics coupled to dynamical electromagnetic fields, including the effects of polarization, electric fields, and the derivative expansion. We enumerate the transport coefficients at leading order in derivatives, including electrical conductivities, viscosities, and thermodynamic coefficients. We find the constraints on transport coefficients due to the positivity of entropy production, and derive the corresponding Kubo formulas. For the neutral state in a magnetic field, small fluctuations include Alfvén waves, magnetosonic waves, and the dissipative modes. For the state with a non-zero dynamical charge density in a magnetic field, plasma oscillations gap out all propagating modes, except for Alfvén-like waves with a quadratic dispersion relation. We relate the transport coefficients in the “conventional” magnetohydrodynamics (formulated using Maxwell’s equations in matter) to those in the “dual” version of magnetohydrodynamics (formulated using the conserved magnetic flux).

  6. Inflation of the early cold Universe filled with a nonlinear scalar field and a nonideal relativistic Fermi gas

    Energy Technology Data Exchange (ETDEWEB)

    Pashitskii, E. A., E-mail: pashitsk@iop.kiev.ua; Pentegov, V. I., E-mail: pentegov@iop.kiev.ua [National Academy of Sciences of Ukraine, Institute of Physics (Ukraine)

    2017-03-15

    We consider a possible scenario for the evolution of the early cold Universe born from a fairly large quantum fluctuation in a vacuum with a size a{sub 0} ≫ l{sub P} (where l{sub P} is the Planck length) and filled with both a nonlinear scalar field φ, whose potential energy density U(φ) determines the vacuum energy density λ, and a nonideal Fermi gas with short-range repulsion between particles, whose equation of state is characterized by the ratio of pressure P(n{sub F}) to energy density ε(n{sub F}) dependent on the number density of fermions n{sub F}. As the early Universe expands, the dimensionless quantity ν(n{sub F}) = P(n{sub F})/ε(n{sub F}) decreases with decreasing n{sub F} from its maximum value ν{sub max} = 1 for n{sub F} → ∞ to zero for n{sub F} → 0. The interaction of the scalar and gravitational fields, which is characterized by a dimensionless constant ξ, is proportional to the scalar curvature of four-dimensional space R = κ[3P(n{sub F})–ε(n{sub F})–4λ] (where κ is Einstein’s gravitational constant), and contains terms both quadratic and linear in φ. As a result, the expanding early Universe reaches the point of first-order phase transition in a finite time interval at critical values of the scalar curvature R = R{sub c} =–μ{sup 2}/ξ and radius a{sub c} ≫ a{sub 0}. Thereafter, the early closed Universe “rolls down” from the flat inflection point of the potential U(φ) to the zero potential minimum in a finite time. The release of the total potential energy of the scalar field in the entire volume of the expanding Universe as it “rolls down” must be accompanied by the production of a large number of massive particles and antiparticles of various kinds, whose annihilation plays the role of the Big Bang. We also discuss the fundamental nature of Newton’ gravitational constant G{sub N}.

  7. Inflation of the early cold Universe filled with a nonlinear scalar field and a nonideal relativistic Fermi gas

    International Nuclear Information System (INIS)

    Pashitskii, E. A.; Pentegov, V. I.

    2017-01-01

    We consider a possible scenario for the evolution of the early cold Universe born from a fairly large quantum fluctuation in a vacuum with a size a_0 ≫ l_P (where l_P is the Planck length) and filled with both a nonlinear scalar field φ, whose potential energy density U(φ) determines the vacuum energy density λ, and a nonideal Fermi gas with short-range repulsion between particles, whose equation of state is characterized by the ratio of pressure P(n_F) to energy density ε(n_F) dependent on the number density of fermions n_F. As the early Universe expands, the dimensionless quantity ν(n_F) = P(n_F)/ε(n_F) decreases with decreasing n_F from its maximum value ν_m_a_x = 1 for n_F → ∞ to zero for n_F → 0. The interaction of the scalar and gravitational fields, which is characterized by a dimensionless constant ξ, is proportional to the scalar curvature of four-dimensional space R = κ[3P(n_F)–ε(n_F)–4λ] (where κ is Einstein’s gravitational constant), and contains terms both quadratic and linear in φ. As a result, the expanding early Universe reaches the point of first-order phase transition in a finite time interval at critical values of the scalar curvature R = R_c =–μ"2/ξ and radius a_c ≫ a_0. Thereafter, the early closed Universe “rolls down” from the flat inflection point of the potential U(φ) to the zero potential minimum in a finite time. The release of the total potential energy of the scalar field in the entire volume of the expanding Universe as it “rolls down” must be accompanied by the production of a large number of massive particles and antiparticles of various kinds, whose annihilation plays the role of the Big Bang. We also discuss the fundamental nature of Newton’ gravitational constant G_N.

  8. Buoyancy-Driven Heat Transfer During Application of a Thermal Gradient for the Study of Vapor Deposition at Low Pressure Using and Ideal Gas

    Science.gov (United States)

    Frazier, D. O.; Hung, R. J.; Paley, M. S.; Penn, B. G.; Long, Y. T.

    1996-01-01

    A mathematical model has been developed to determine heat transfer during vapor deposition of source materials under a variety of orientations relative to gravitational accelerations. The model demonstrates that convection can occur at total pressures as low as 10-2 mm Hg. Through numerical computation, using physical material parameters of air, a series of time steps demonstrates the development of flow and temperature profiles during the course of vapor deposition. These computations show that in unit gravity vapor deposition occurs by transport through a fairly complicated circulating flow pattern when applying heat to the bottom of the vessel with parallel orientation with respect to the gravity vector. The model material parameters for air predict the effect of kinematic viscosity to be of the same order as thermal diffusivity, which is the case for Prandtl number approx. 1 fluids. Qualitative agreement between experiment and the model indicates that 6-(2-methyl-4-nitroanilino)-2,4-hexadiyn-l-ol (DAMNA) at these pressures indeed approximates an ideal gas at the experiment temperatures, and may validate the use of air physical constants. It is apparent that complicated nonuniform temperature distribution in the vapor could dramatically affect the homogeneity, orientation, and quality of deposited films. The experimental test i's a qualitative comparison of film thickness using ultraviolet-visible spectroscopy on films generated in appropriately oriented vapor deposition cells. In the case where heating of the reaction vessel occurs from the top, deposition of vapor does not normally occur by convection due to a stable stratified medium. When vapor deposition occurs in vessels heated at the bottom, but oriented relative to the gravity vector between these two extremes, horizontal thermal gradients induce a complex flow pattern. In the plane parallel to the tilt axis, the flow pattern is symmetrical and opposite in direction from that where the vessel is

  9. Relativistic magnetohydrodynamics as a Hamiltonian system

    International Nuclear Information System (INIS)

    Holm, D.D.; Kupershmidt, A.

    1985-01-01

    The equations of ideal relativistic magnetohydrodynamics in the laboratory frame form a noncanonical Hamiltonian system with the same Poisson bracket as for the nonrelativistic system, but with dynamical variables and Hamiltonian obtained via a regular deformation of their nonrelativistic counterparts [fr

  10. Pilot experiments with relativistic uranium projectile and fission fragments thermalized in a cryogenic gas-filled stopping cell

    Energy Technology Data Exchange (ETDEWEB)

    Reiter, Moritz Pascal

    2015-07-01

    online experiments, which is about three times larger than any stopping cell, using RF structures for the extraction of ions, has demonstrated. The area density and therefore the stopping power of the CSC is limited by the differential pumping. To overcome this limitation the CSC was tested with neon as a stopping gas with area densities of up to 11.3 mg/cm{sup 2} helium equivalent, demonstrating a unprecedented area density for stopping cells based on RF structures. The RF carpet performed reliably and its potential for the future FAIR stopping cell was shown. During the experiments at GSI the mean extraction time of {sup 221}Ac ions from the CSC to a silicon surface detector was measured, it amounts to 24 ms. This value is well in agreement with offline measurements using a pulsed {sup 223}Ra recoil ion source. The combination of a high density stopping cell with high total efficiencies and a non-scanning high-resolution mass spectrometer can be used as an independent identification detector for exotic nuclei by their mass, allowing a recalibration of the in-flight detectors of any fragment separator. As a proof-of-principal experiment the CSC and a MR-TOF-MS have been used as a mass tagger for the FRS at GSI. 134-I ions were produced by in-flight fission from an {sup 238}U primary beam at 1000 MeV/u and identified by the mass tagger. The new method does not rely on specific decay properties and therefore allows a recalibration of the fragment separator independent of the fragment and can also be used with stable nuclides. The usage of the CSC and a MR-TOF-MS will allow fast recalibration and a more effective usage of the limited amount of beam time for all experiments with exotic nuclei even in the case the nuclide of interest is not clearly identified by the in-flight detection scheme. With the CSC low energy experiments such as high-precision mass measurements and decay spectroscopy were made possible, the half lifes of {sup 221}Ac and {sup 223}Th have been measured

  11. Pilot experiments with relativistic uranium projectile and fission fragments thermalized in a cryogenic gas-filled stopping cell

    International Nuclear Information System (INIS)

    Reiter, Moritz Pascal

    2015-01-01

    experiments, which is about three times larger than any stopping cell, using RF structures for the extraction of ions, has demonstrated. The area density and therefore the stopping power of the CSC is limited by the differential pumping. To overcome this limitation the CSC was tested with neon as a stopping gas with area densities of up to 11.3 mg/cm"2 helium equivalent, demonstrating a unprecedented area density for stopping cells based on RF structures. The RF carpet performed reliably and its potential for the future FAIR stopping cell was shown. During the experiments at GSI the mean extraction time of "2"2"1Ac ions from the CSC to a silicon surface detector was measured, it amounts to 24 ms. This value is well in agreement with offline measurements using a pulsed "2"2"3Ra recoil ion source. The combination of a high density stopping cell with high total efficiencies and a non-scanning high-resolution mass spectrometer can be used as an independent identification detector for exotic nuclei by their mass, allowing a recalibration of the in-flight detectors of any fragment separator. As a proof-of-principal experiment the CSC and a MR-TOF-MS have been used as a mass tagger for the FRS at GSI. 134-I ions were produced by in-flight fission from an "2"3"8U primary beam at 1000 MeV/u and identified by the mass tagger. The new method does not rely on specific decay properties and therefore allows a recalibration of the fragment separator independent of the fragment and can also be used with stable nuclides. The usage of the CSC and a MR-TOF-MS will allow fast recalibration and a more effective usage of the limited amount of beam time for all experiments with exotic nuclei even in the case the nuclide of interest is not clearly identified by the in-flight detection scheme. With the CSC low energy experiments such as high-precision mass measurements and decay spectroscopy were made possible, the half lifes of "2"2"1Ac and "2"2"3Th have been measured, alpha spectroscopy of short

  12. Local density approximations for relativistic exchange energies

    International Nuclear Information System (INIS)

    MacDonald, A.H.

    1986-01-01

    The use of local density approximations to approximate exchange interactions in relativistic electron systems is reviewed. Particular attention is paid to the physical content of these exchange energies by discussing results for the uniform relativistic electron gas from a new point of view. Work on applying these local density approximations in atoms and solids is reviewed and it is concluded that good accuracy is usually possible provided self-interaction corrections are applied. The local density approximations necessary for spin-polarized relativistic systems are discussed and some new results are presented

  13. An undergraduate exercise in the first law of relativistic thermodynamics

    International Nuclear Information System (INIS)

    Gueemez, J

    2010-01-01

    The isothermal compression of an ideal gas is analysed using a relativistic thermodynamics formalism based on the principle of inertia of energy (Einstein's equation) and the asynchronous formulation (Cavalleri and Salgarelli 1969 Nuovo Cimento 42 722-54), which is similar to the formalism developed by van Kampen (1968 Phys. Rev. 173 295-301) and Hamity (1969 Phys. Rev. 187 1745-52). In this 4-vector Minkowski formalism mechanical and thermodynamical processes are described by the first law of thermodynamics expressed as ΔU μ = W μ + Q μ , in a Lorentz covariant way. This exercise is considered useful for undergraduate physics students interested in foundations of physics, with the only prerequisites in first courses in thermodynamics and special relativity.

  14. The relativistic virial theorem

    International Nuclear Information System (INIS)

    Lucha, W.; Schoeberl, F.F.

    1989-11-01

    The relativistic generalization of the quantum-mechanical virial theorem is derived and used to clarify the connection between the nonrelativistic and (semi-)relativistic treatment of bound states. 12 refs. (Authors)

  15. Relativistic thermodynamics of fluids

    International Nuclear Information System (INIS)

    Souriau, J.-M.

    1977-05-01

    The relativistic covariant definition of a statistical equilibrium, applied to a perfect gas, involves a 'temperature four-vector', whose direction is the mean velocity of the fluid, and whose length is the reciprocal temperature. The hypothesis of this 'temperature four-vector' being a relevant variable for the description of the dissipative motions of a simple fluid is discussed. The kinematics is defined by using a vector field and measuring the number of molecules. Such a dissipative fluid is subject to motions involving null entropy generation; the 'temperature four-vector' is then a Killing vector; the equations of motion can be completely integrated. Perfect fluids can be studied by this way and the classical results of Lichnerowicz are obtained. In weakly dissipative motions two viscosity coefficient appear together with the heat conductibility coefficient. Two other coefficients perharps measurable on real fluids. Phase transitions and shock waves are described with using the model [fr

  16. Spin-orbit ZORA and four-component Dirac-Coulomb estimation of relativistic corrections to isotropic nuclear shieldings and chemical shifts of noble gas dimers.

    Science.gov (United States)

    Jankowska, Marzena; Kupka, Teobald; Stobiński, Leszek; Faber, Rasmus; Lacerda, Evanildo G; Sauer, Stephan P A

    2016-02-05

    Hartree-Fock and density functional theory with the hybrid B3LYP and general gradient KT2 exchange-correlation functionals were used for nonrelativistic and relativistic nuclear magnetic shielding calculations of helium, neon, argon, krypton, and xenon dimers and free atoms. Relativistic corrections were calculated with the scalar and spin-orbit zeroth-order regular approximation Hamiltonian in combination with the large Slater-type basis set QZ4P as well as with the four-component Dirac-Coulomb Hamiltonian using Dyall's acv4z basis sets. The relativistic corrections to the nuclear magnetic shieldings and chemical shifts are combined with nonrelativistic coupled cluster singles and doubles with noniterative triple excitations [CCSD(T)] calculations using the very large polarization-consistent basis sets aug-pcSseg-4 for He, Ne and Ar, aug-pcSseg-3 for Kr, and the AQZP basis set for Xe. For the dimers also, zero-point vibrational (ZPV) corrections are obtained at the CCSD(T) level with the same basis sets were added. Best estimates of the dimer chemical shifts are generated from these nuclear magnetic shieldings and the relative importance of electron correlation, ZPV, and relativistic corrections for the shieldings and chemical shifts is analyzed. © 2015 Wiley Periodicals, Inc.

  17. A Comprehensive Comparison of Relativistic Particle Integrators

    Science.gov (United States)

    Ripperda, B.; Bacchini, F.; Teunissen, J.; Xia, C.; Porth, O.; Sironi, L.; Lapenta, G.; Keppens, R.

    2018-03-01

    We compare relativistic particle integrators commonly used in plasma physics, showing several test cases relevant for astrophysics. Three explicit particle pushers are considered, namely, the Boris, Vay, and Higuera–Cary schemes. We also present a new relativistic fully implicit particle integrator that is energy conserving. Furthermore, a method based on the relativistic guiding center approximation is included. The algorithms are described such that they can be readily implemented in magnetohydrodynamics codes or Particle-in-Cell codes. Our comparison focuses on the strengths and key features of the particle integrators. We test the conservation of invariants of motion and the accuracy of particle drift dynamics in highly relativistic, mildly relativistic, and non-relativistic settings. The methods are compared in idealized test cases, i.e., without considering feedback onto the electrodynamic fields, collisions, pair creation, or radiation. The test cases include uniform electric and magnetic fields, {\\boldsymbol{E}}× {\\boldsymbol{B}} fields, force-free fields, and setups relevant for high-energy astrophysics, e.g., a magnetic mirror, a magnetic dipole, and a magnetic null. These tests have direct relevance for particle acceleration in shocks and in magnetic reconnection.

  18. PADÉ APPROXIMANTS FOR THE EQUATION OF STATE FOR RELATIVISTIC HYDRODYNAMICS BY KINETIC THEORY

    Energy Technology Data Exchange (ETDEWEB)

    Tsai, Shang-Hsi; Yang, Jaw-Yen, E-mail: shanghsi@gmail.com [Institute of Applied Mechanics, National Taiwan University, Taipei 10764, Taiwan (China)

    2015-07-20

    A two-point Padé approximant (TPPA) algorithm is developed for the equation of state (EOS) for relativistic hydrodynamic systems, which are described by the classical Maxwell–Boltzmann statistics and the semiclassical Fermi–Dirac statistics with complete degeneracy. The underlying rational function is determined by the ratios of the macroscopic state variables with various orders of accuracy taken at the extreme relativistic limits. The nonunique TPPAs are validated by Taub's inequality for the consistency of the kinetic theory and the special theory of relativity. The proposed TPPA is utilized in deriving the EOS of the dilute gas and in calculating the specific heat capacity, the adiabatic index function, and the isentropic sound speed of the ideal gas. Some general guidelines are provided for the application of an arbitrary accuracy requirement. The superiority of the proposed TPPA is manifested in manipulating the constituent polynomials of the approximants, which avoids the arithmetic complexity of struggling with the modified Bessel functions and the hyperbolic trigonometric functions arising from the relativistic kinetic theory.

  19. Viscous photons in relativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Dion, Maxime; Paquet, Jean-Francois; Young, Clint; Jeon, Sangyong; Gale, Charles; Schenke, Bjoern

    2011-01-01

    Theoretical studies of the production of real thermal photons in relativistic heavy ion collisions at the Relativistic Heavy Ion Collider (RHIC) are performed. The space-time evolution of the colliding system is modelled using music, a 3+1D relativistic hydrodynamic simulation, using both its ideal and viscous versions. The inclusive spectrum and its azimuthal angular anisotropy are studied separately, and the relative contributions of the different photon sources are highlighted. It is shown that the photon v 2 coefficient is especially sensitive to the details of the microscopic dynamics like the equation of state, the ratio of shear viscosity over entropy density, η/s, and to the morphology of the initial state.

  20. Relativistic shocks and particle acceleration

    International Nuclear Information System (INIS)

    Heavens, A.F.

    1988-01-01

    In this paper, we investigate the fluid dynamics of relativistic shock waves, and use the results to calculate the spectral index of particles accelerated by the Fermi process in such shocks. We have calculated the distributions of Fermi-accelerated particles at shocks propagating into cold proton-electron plasma and also cold electron-positron plasma. We have considered two different power spectra for the scattering waves, and find, in contrast to the non-relativistic case, that the spectral index of the accelerated particles depends on the wave power spectrum. On the assumption of thermal equilibrium both upstream and downstream, we present some useful fits for the compression ratio of shocks propagating at arbitrary speeds into gas of any temperature. (author)

  1. Molecular structure and conformational composition of 1,3-dihydroxyacetone studied by combined analysis of gas-phase electron diffraction data, rotational constants, and results of theoretical calculations. Ideal gas thermodynamic properties of 1,3-dihydroxyacetone.

    Science.gov (United States)

    Dorofeeva, Olga V; Vogt, Natalja; Vogt, Jürgen; Popik, Mikhail V; Rykov, Anatolii N; Vilkov, Lev V

    2007-07-19

    The molecular structure of 1,3-dihydroxyacetone (DHA) has been studied by gas-phase electron diffraction (GED), combined analysis of GED and microwave (MW) data, ab initio, and density functional theory calculations. The equilibrium re structure of DHA was determined by a joint analysis of the GED data and rotational constants taken from the literature. The anharmonic vibrational corrections to the internuclear distances (re-ra) and to the rotational constants (B(i)e-B(i)0) needed for the estimation of the re structure were calculated from the B3LYP/cc-pVTZ cubic force field. It was found that the experimental data are well reproduced by assuming that DHA consists of a mixture of three conformers. The most stable conformer of C2v symmetry has two hydrogen bonds, whereas the next two lowest energy conformers (Cs and C1 symmetry) have one hydrogen bond and their abundance is about 30% in total. A combined analysis of GED and MW data led to the following equilibrium structural parameters (re) of the most abundant conformer of DHA (the uncertainties in parentheses are 3 times the standard deviations): r(C=O)=1.215(2) A, r(C-C)=1.516(2) A, r(C-O)=1.393(2) A, r(C-H)=1.096(4) A, r(O-H)=0.967(4) A, angleC-C=O=119.9(2) degrees, angleC-C-O=111.0(2) degrees, angleC-C-H=108.2(7) degrees, angleC-O-H=106.5(7) degrees. These structural parameters reproduce the experimental B(i)0 values within 0.05 MHz. The experimental structural parameters are in good agreement with those obtained from theoretical calculations. Ideal gas thermodynamic functions (S degrees (T), C degrees p(T), and H degrees (T)-H degrees (0)) of DHA were calculated on the basis of experimental and theoretical molecular parameters obtained in this work. The enthalpy of formation of DHA, -523+/-4 kJ/mol, was calculated by the atomization procedure using the G3X method.

  2. Quantum surface tension in ideal gases

    International Nuclear Information System (INIS)

    Sisman, A.

    2005-01-01

    Due to wave character of atoms, an ideal gas confined in a finite domain exhibits Casimir like size effects. These effects become appreciable in a domain with at least one dimension in the order of micron. On this scale, thermodynamic state functions of an ideal gas become shape and size dependent and some new effects appear. In the literature, only some domains of regular shapes have been considered. In this study, the results are generalized to a domain of an arbitrary shape by using Weyl s conjecture for density of states. It is seen that free energy expression of an ideal Maxwellian gas consists of a classical volume dependent term and also a quantum originated surface dependent term, which causes a quantum surface tension. In a rectangular box filled by an ideal gas and separated by a movable wall into two parts, it is shown that a lateral force appears on the movable wall due to quantum surface tension

  3. Relativistic Linear Restoring Force

    Science.gov (United States)

    Clark, D.; Franklin, J.; Mann, N.

    2012-01-01

    We consider two different forms for a relativistic version of a linear restoring force. The pair comes from taking Hooke's law to be the force appearing on the right-hand side of the relativistic expressions: d"p"/d"t" or d"p"/d["tau"]. Either formulation recovers Hooke's law in the non-relativistic limit. In addition to these two forces, we…

  4. Slowly rotating general relativistic superfluid neutron stars with relativistic entrainment

    International Nuclear Information System (INIS)

    Comer, G.L.

    2004-01-01

    Neutron stars that are cold enough should have two or more superfluids or supercondutors in their inner crusts and cores. The implication of superfluidity or superconductivity for equilibrium and dynamical neutron star states is that each individual particle species that forms a condensate must have its own, independent number density current and equation of motion that determines that current. An important consequence of the quasiparticle nature of each condensate is the so-called entrainment effect; i.e., the momentum of a condensate is a linear combination of its own current and those of the other condensates. We present here the first fully relativistic modeling of slowly rotating superfluid neutron stars with entrainment that is accurate to the second-order in the rotation rates. The stars consist of superfluid neutrons, superconducting protons, and a highly degenerate, relativistic gas of electrons. We use a relativistic σ-ω mean field model for the equation of state of the matter and the entrainment. We determine the effect of a relative rotation between the neutrons and protons on a star's total mass, shape, and Kepler, mass-shedding limit

  5. Relativistic quantum logic

    International Nuclear Information System (INIS)

    Mittelstaedt, P.

    1983-01-01

    on the basis of the well-known quantum logic and quantum probability a formal language of relativistic quantum physics is developed. This language incorporates quantum logical as well as relativistic restrictions. It is shown that relativity imposes serious restrictions on the validity regions of propositions in space-time. By an additional postulate this relativistic quantum logic can be made consistent. The results of this paper are derived exclusively within the formal quantum language; they are, however, in accordance with well-known facts of relativistic quantum physics in Hilbert space. (author)

  6. The ideal gases of tachyons

    International Nuclear Information System (INIS)

    Mrowczynski, St.

    1984-01-01

    The formalism of statistical mechanics of particles slower than light has been considered from the point of view of the application of this formalism for the description of tachyons. Properties of ideal gases of tachyons have been discussed in detail. After finding general formulae for quantum, Bose and Fermi gases the classical limit has been considered. It has been shown that Bose-Einstein condensation occurs. The tachyon gas of bosons violates the third principle of thermodynamics. Degenerated Fermi gas has been considered and in this case the entropy vanishes at zero temperature. Difficulties of formulating covariant statistical mechanics have been discussed

  7. Expressions for linearized perturbations in ideal-fluid cosmological models

    International Nuclear Information System (INIS)

    Ratra, B.

    1988-01-01

    We present closed-form solutions of the relativistic linear perturbation equations (in synchronous gauge) that govern the evolution of inhomogeneities in homogeneous, spatially flat, ideal-fluid, cosmological models. These expressions, which are valid for irregularities on any scale, allow one to analytically interpolate between the known approximate solutions which are valid at early times and at late times

  8. Surface dependency in thermodynamics of ideal gases

    International Nuclear Information System (INIS)

    Sisman, Altug

    2004-01-01

    The Casimir-like size effect rises in ideal gases confined in a finite domain due to the wave character of atoms. By considering this effect, thermodynamic properties of an ideal gas confined in spherical and cylindrical geometries are derived and compared with those in rectangular geometry. It is seen that an ideal gas exhibits an unavoidable quantum surface free energy and surface over volume ratio becomes a control variable on thermodynamic state functions in microscale. Thermodynamics turns into non-extensive thermodynamics and geometry difference becomes a driving force since the surface over volume ratio depends on the geometry

  9. Numerical investigation of kinetic turbulence in relativistic pair plasmas - I. Turbulence statistics

    Science.gov (United States)

    Zhdankin, Vladimir; Uzdensky, Dmitri A.; Werner, Gregory R.; Begelman, Mitchell C.

    2018-02-01

    We describe results from particle-in-cell simulations of driven turbulence in collisionless, magnetized, relativistic pair plasma. This physical regime provides a simple setting for investigating the basic properties of kinetic turbulence and is relevant for high-energy astrophysical systems such as pulsar wind nebulae and astrophysical jets. In this paper, we investigate the statistics of turbulent fluctuations in simulations on lattices of up to 10243 cells and containing up to 2 × 1011 particles. Due to the absence of a cooling mechanism in our simulations, turbulent energy dissipation reduces the magnetization parameter to order unity within a few dynamical times, causing turbulent motions to become sub-relativistic. In the developed stage, our results agree with predictions from magnetohydrodynamic turbulence phenomenology at inertial-range scales, including a power-law magnetic energy spectrum with index near -5/3, scale-dependent anisotropy of fluctuations described by critical balance, lognormal distributions for particle density and internal energy density (related by a 4/3 adiabatic index, as predicted for an ultra-relativistic ideal gas), and the presence of intermittency. We also present possible signatures of a kinetic cascade by measuring power-law spectra for the magnetic, electric and density fluctuations at sub-Larmor scales.

  10. 高二學生在理想氣體多重表徵教學前後心智模式的改變 The Evolution of the 11th Graders’ Mental Models of Ideal Gas

    Directory of Open Access Journals (Sweden)

    鍾曉蘭 Shiao-Lan Chung

    2012-12-01

    Full Text Available 學生在日常生活中的觀察,常無法察覺與體驗理想氣體的次微觀行為,易因氣體行為在巨觀現象中的表現而產生許多迷思概念或另有概念。本研究分析39 位學生經過多重表徵模型教學(高二上學期的課程中實施,總計八節課,每節50分鐘)學習理想氣體相關概念(粒子觀、氣體體積定義、氣壓成因、影響氣壓因素、剛性粒子、氣體粒子分布/運動等)的想法改變情形,並利用14 位標的學生(8 位男生、6 位女生)三次晤談(教學前、中與後)之口語及繪圖資料,進而探討學生心智模式的類型及演變情形。研究結果發現:經由具體動態的粒子模型教具及電腦動畫教學後,全體學生與14 位晤談學生在氣體粒子觀、剛性粒子及氣體粒子分布/運動情形的迷思概念已修正為正確概念,然而在氣壓成因與影響氣壓因素兩個概念仍有一些迷思概念較難移除,或是產生概念回歸的情形。在心智模式的演變上,教學前僅有1位學生為科學模式,教學中有11位學生演變成科學模式(共有12 位,85.7%)。教學後,11 位學生中有2 位學生回歸成重量模式、1 位學生演變成引力模式,仍有8 位學生的心智模式保持科學模式(共有9 位,64.3%)。晤談資料顯示,教學前學生的心智模式多半具有融貫性、情境相依的特質,教學成效則支持多重表徵模型教學有助於學生氣體粒子觀的建構,同時學生亦能持續持有正確的觀點,此教學法可作為未來課室教學策略之參考。 Students often face tremendous challenges when learning ideal gas concepts. This is probably because it is difficult for students to experience the microscopic concepts in ideal gas models in their daily observations, and several misconceptions or alternative concepts occur as a result. Thirty-nine Grade 11 students participated in

  11. Non-ideal dust acoustic waves

    International Nuclear Information System (INIS)

    Konefka, F; Contreras, J P; Puerta, J; Castro, E; MartIn, P

    2008-01-01

    The dispersion relation for dust acoustic waves (DA waves) functionally depends on the state equation for the charged dust grains. The ideal gas equation is usually used for studying the effect of temperature on this dispersion relation. However, since the space occupied by the grains can be important in high-density plasmas, the non-ideal effects can be important in this case. This paper analyses the dispersion relation for DA waves, when more precise state equations are used as those described for Pade approximants. The correction to the usual wave equation has been determined and the break point in density, where the ideal gas-state equation has been found. The non-ideal effects are more important for short wavelength ones, and the limits where those effects become important are also studied. Since there are several experimental results for these kinds of waves, the importance of the non-ideal effects in these cases is analysed in detail.

  12. Relativistic quantum mechanics; Mecanique quantique relativiste

    Energy Technology Data Exchange (ETDEWEB)

    Ollitrault, J.Y. [CEA Saclay, 91 - Gif-sur-Yvette (France). Service de Physique Theorique]|[Universite Pierre et Marie Curie, 75 - Paris (France)

    1998-12-01

    These notes form an introduction to relativistic quantum mechanics. The mathematical formalism has been reduced to the minimum in order to enable the reader to calculate elementary physical processes. The second quantification and the field theory are the logical followings of this course. The reader is expected to know analytical mechanics (Lagrangian and Hamiltonian), non-relativistic quantum mechanics and some basis of restricted relativity. The purpose of the first 3 chapters is to define the quantum mechanics framework for already known notions about rotation transformations, wave propagation and restricted theory of relativity. The next 3 chapters are devoted to the application of relativistic quantum mechanics to a particle with 0,1/5 and 1 spin value. The last chapter deals with the processes involving several particles, these processes require field theory framework to be thoroughly described. (A.C.) 2 refs.

  13. Towards relativistic quantum geometry

    Energy Technology Data Exchange (ETDEWEB)

    Ridao, Luis Santiago [Instituto de Investigaciones Físicas de Mar del Plata (IFIMAR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mar del Plata (Argentina); Bellini, Mauricio, E-mail: mbellini@mdp.edu.ar [Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Funes 3350, C.P. 7600, Mar del Plata (Argentina); Instituto de Investigaciones Físicas de Mar del Plata (IFIMAR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Mar del Plata (Argentina)

    2015-12-17

    We obtain a gauge-invariant relativistic quantum geometry by using a Weylian-like manifold with a geometric scalar field which provides a gauge-invariant relativistic quantum theory in which the algebra of the Weylian-like field depends on observers. An example for a Reissner–Nordström black-hole is studied.

  14. Relativistic Coulomb Fission

    Science.gov (United States)

    Norbury, John W.

    1992-01-01

    Nuclear fission reactions induced by the electromagnetic field of relativistic nuclei are studied for energies relevant to present and future relativistic heavy ion accelerators. Cross sections are calculated for U-238 and Pu-239 fission induced by C-12, Si-28, Au-197, and U-238 projectiles. It is found that some of the cross sections can exceed 10 b.

  15. Relativistic Shock Acceleration

    International Nuclear Information System (INIS)

    Duffy, P.; Downes, T.P.; Gallant, Y.A.; Kirk, J.G.

    1999-01-01

    In this paper we briefly review the basic theory of shock waves in relativistic hydrodynamics and magneto-hydrodynamics, emphasising some astrophysically interesting cases. We then present an overview of the theory of particle acceleration at such shocks describing the methods used to calculate the spectral indices of energetic particles. Recent results on acceleration at ultra-relativistic shocks are discussed. (author)

  16. General Relativistic Calculations for White Dwarf Stars

    OpenAIRE

    Mathew, Arun; Nandy, Malay K.

    2014-01-01

    The mass-radius relations for white dwarf stars are investigated by solving the Newtonian as well as Tolman-Oppenheimer-Volkoff (TOV) equations for hydrostatic equilibrium assuming the electron gas to be non-interacting. We find that the Newtonian limiting mass of $1.4562M_\\odot$ is modified to $1.4166M_\\odot$ in the general relativistic case for $^4_2$He (and $^{12}_{\\ 6}$C) white dwarf stars. Using the same general relativistic treatment, the critical mass for $^{56}_{26}$Fe white dwarf is ...

  17. Relativistic Kinetic Theory

    Science.gov (United States)

    Vereshchagin, Gregory V.; Aksenov, Alexey G.

    2017-02-01

    Preface; Acknowledgements; Acronyms and definitions; Introduction; Part I. Theoretical Foundations: 1. Basic concepts; 2. Kinetic equation; 3. Averaging; 4. Conservation laws and equilibrium; 5. Relativistic BBGKY hierarchy; 6. Basic parameters in gases and plasmas; Part II. Numerical Methods: 7. The basics of computational physics; 8. Direct integration of Boltzmann equations; 9. Multidimensional hydrodynamics; Part III. Applications: 10. Wave dispersion in relativistic plasma; 11. Thermalization in relativistic plasma; 12. Kinetics of particles in strong fields; 13. Compton scattering in astrophysics and cosmology; 14. Self-gravitating systems; 15. Neutrinos, gravitational collapse and supernovae; Appendices; Bibliography; Index.

  18. Structure, conformations, vibrations, and ideal-gas properties of 1-alkyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ionic pairs and constituent ions.

    Science.gov (United States)

    Paulechka, Yauheni U; Kabo, Gennady J; Emel'yanenko, Vladimir N

    2008-12-11

    Energies, geometries, and frequencies of normal vibrations have been calculated by quantum-chemical methods for different conformers of a bis(trifluoromethylsulfonyl)imide anion (NTf2-), 1-alkyl-3-methylimidazolium cations ([C(n)mim]+, n = 2, 4, 6, 8), and [C(n)mim]NTf2 ionic pairs. The assignment of frequencies for NTf2-, [C2mim]+, and [C4mim]+ in the vibrational spectra of ionic liquids have been performed. Thermodynamic properties of [C(n)mim]NTf2, [C(n)mim]+, and NTf2- in the gas state have been calculated by the statistical thermodynamic methods. The resulting entropies are in satisfactory agreement with the values obtained from the experimental data previously reported in literature.

  19. Plasma relativistic microwave electronics

    International Nuclear Information System (INIS)

    Kuzelev, M.V.; Loza, O.T.; Rukhadze, A.A.; Strelkov, P.S.; Shkvarunets, A.G.

    2001-01-01

    One formulated the principles of plasma relativistic microwave electronics based on the induced Cherenkov radiation of electromagnetic waves at interaction of a relativistic electron beam with plasma. One developed the theory of plasma relativistic generators and accelerators of microwave radiation, designed and studied the prototypes of such devices. One studied theoretically the mechanisms of radiation, calculated the efficiencies and the frequency spectra of plasma relativistic microwave generators and accelerators. The theory findings are proved by the experiment: intensity of the designed sources of microwave radiation is equal to 500 μW, the frequency of microwave radiation is increased by 7 times (from 4 up to 28 GHz), the width of radiation frequency band may vary from several up to 100%. The designed sources of microwave radiation are no else compared in the electronics [ru

  20. Pion production in relativistic collisions of nuclear drops

    International Nuclear Information System (INIS)

    Alonso, C.T.; Wilson, J.R.; McAbee, T.L.; Zingman, J.A.

    1988-09-01

    In a continuation of the long-standing effort of the nuclear physics community to model atomic nuclei as droplets of a specialized nuclear fluid, we have developed a hydrodynamic model for simulating the collisions of heavy nuclei at relativistic speeds. Our model couples ideal relativistic hydrodynamics with a new Monte Carlo treatment of dynamic pion production and tracking. The collective flow for low-energy (200 MeV/N) collisions predicted by this model compares favorably with results from earlier hydrodynamic calculations which used quite different numerical techniques. Our pion predictions at these lower energies appear to differ, however, from the experimental data on pion multiplicities. In this case of ultra-relativistic (200 GeV/N) collisions, our hydrodynamic model has produced baryonic matter distributions which are in reasonable agreement with recent experimental data. These results may shed some light on the sensitivity of relativistic collision data to the nuclear equation of state. 20 refs., 12 figs

  1. Study on ion radial acceleration in the region of virtual cathode formation on injection of relativistic electron beam into neutral gas

    International Nuclear Information System (INIS)

    Bystritskij, V.M.; Podkatov, V.I.; Chistyakov, S.A.; Yalovets, A.P.

    1982-01-01

    Results of numerical calculations and experimental investigations into different parameters of radial fluxes of deuterium ions and electrons performed in the region of virtual cathode formation when injecting a relativistic electron beam in low-pressure deuterium (10-100 μm Hg) are given. The calculations were carried out by the Monte-Carlo method within the framework of three models: Rostocker (Vsub(w) approximately equal to epsilonsub(e)/e), Olson (Vsub(w) approximately equal to (2-3)epsilonsub(e)/e) and Byistritcky (Vsub(w) approximately equal to 1.5 epsilonsub(e)/e) (where Vsub(w) - depth of a forming potential well, epsilonsub(e) - energy of beam electrons, e - electron charge). It is concluded on the basis of the comparative analysis of numerical and experimental results that there is no a deep stationary well with Vsub(w) approximately equal to (2-3)epsilonsub(e)/e, how this is postulated in the Olson model [ru

  2. The relativistic rocket

    Energy Technology Data Exchange (ETDEWEB)

    Antippa, Adel F [Departement de Physique, Universite du Quebec a Trois-Rivieres, Trois-Rivieres, Quebec G9A 5H7 (Canada)

    2009-05-15

    We solve the problem of the relativistic rocket by making use of the relation between Lorentzian and Galilean velocities, as well as the laws of superposition of successive collinear Lorentz boosts in the limit of infinitesimal boosts. The solution is conceptually simple, and technically straightforward, and provides an example of a powerful method that can be applied to a wide range of special relativistic problems of linear acceleration.

  3. Exact Relativistic `Antigravity' Propulsion

    Science.gov (United States)

    Felber, Franklin S.

    2006-01-01

    The Schwarzschild solution is used to find the exact relativistic motion of a payload in the gravitational field of a mass moving with constant velocity. At radial approach or recession speeds faster than 3-1/2 times the speed of light, even a small mass gravitationally repels a payload. At relativistic speeds, a suitable mass can quickly propel a heavy payload from rest nearly to the speed of light with negligible stresses on the payload.

  4. Relativistic Quantum Revivals

    International Nuclear Information System (INIS)

    Strange, P.

    2010-01-01

    Quantum revivals are now a well-known phenomena within nonrelativistic quantum theory. In this Letter we display the effects of relativity on revivals and quantum carpets. It is generally believed that revivals do not occur within a relativistic regime. Here we show that while this is generally true, it is possible, in principle, to set up wave packets with specific mathematical properties that do exhibit exact revivals within a fully relativistic theory.

  5. Acceleration waves in non-ideal magnetogasdynamics

    Directory of Open Access Journals (Sweden)

    R. Singh

    2014-03-01

    Full Text Available The problem of propagation of acceleration waves in an unsteady inviscid non-ideal gas under the influence of magnetic field is investigated. The characteristic solution to the problem in the neighbourhood of leading characteristics has been determined. An evolution equation governing the behaviour of acceleration waves has been derived. It is shown that a linear solution in the characteristic plane exhibits non-linear behaviour in physical plane. The effect of magnetic field on the formation of shock in non-ideal gas flow with planar and cylindrical symmetry is analysed. It is noticed that all compressive waves terminate into a shock wave. Further, we also compare/contrast the nature of solution in ideal and non-ideal magnetogasdynamic regime.

  6. Relativistic viscoelastic fluid mechanics

    International Nuclear Information System (INIS)

    Fukuma, Masafumi; Sakatani, Yuho

    2011-01-01

    A detailed study is carried out for the relativistic theory of viscoelasticity which was recently constructed on the basis of Onsager's linear nonequilibrium thermodynamics. After rederiving the theory using a local argument with the entropy current, we show that this theory universally reduces to the standard relativistic Navier-Stokes fluid mechanics in the long time limit. Since effects of elasticity are taken into account, the dynamics at short time scales is modified from that given by the Navier-Stokes equations, so that acausal problems intrinsic to relativistic Navier-Stokes fluids are significantly remedied. We in particular show that the wave equations for the propagation of disturbance around a hydrostatic equilibrium in Minkowski space-time become symmetric hyperbolic for some range of parameters, so that the model is free of acausality problems. This observation suggests that the relativistic viscoelastic model with such parameters can be regarded as a causal completion of relativistic Navier-Stokes fluid mechanics. By adjusting parameters to various values, this theory can treat a wide variety of materials including elastic materials, Maxwell materials, Kelvin-Voigt materials, and (a nonlinearly generalized version of) simplified Israel-Stewart fluids, and thus we expect the theory to be the most universal description of single-component relativistic continuum materials. We also show that the presence of strains and the corresponding change in temperature are naturally unified through the Tolman law in a generally covariant description of continuum mechanics.

  7. Relativistic viscoelastic fluid mechanics.

    Science.gov (United States)

    Fukuma, Masafumi; Sakatani, Yuho

    2011-08-01

    A detailed study is carried out for the relativistic theory of viscoelasticity which was recently constructed on the basis of Onsager's linear nonequilibrium thermodynamics. After rederiving the theory using a local argument with the entropy current, we show that this theory universally reduces to the standard relativistic Navier-Stokes fluid mechanics in the long time limit. Since effects of elasticity are taken into account, the dynamics at short time scales is modified from that given by the Navier-Stokes equations, so that acausal problems intrinsic to relativistic Navier-Stokes fluids are significantly remedied. We in particular show that the wave equations for the propagation of disturbance around a hydrostatic equilibrium in Minkowski space-time become symmetric hyperbolic for some range of parameters, so that the model is free of acausality problems. This observation suggests that the relativistic viscoelastic model with such parameters can be regarded as a causal completion of relativistic Navier-Stokes fluid mechanics. By adjusting parameters to various values, this theory can treat a wide variety of materials including elastic materials, Maxwell materials, Kelvin-Voigt materials, and (a nonlinearly generalized version of) simplified Israel-Stewart fluids, and thus we expect the theory to be the most universal description of single-component relativistic continuum materials. We also show that the presence of strains and the corresponding change in temperature are naturally unified through the Tolman law in a generally covariant description of continuum mechanics.

  8. Dissipative relativistic hydrodynamics

    International Nuclear Information System (INIS)

    Imshennik, V.S.; Morozov, Yu.I.

    1989-01-01

    Using the comoving reference frame in the general non-inertial case, the relativistic hydrodynamics equations are derived with an account for dissipative effects in the matter. From the entropy production equation, the exact from for the dissipative tensor components is obtained. As a result, the closed system of equations of dissipative relativistic hydrodynamics is obtained in the comoving reference frame as a relativistic generalization of the known Navier-Stokes equations for Lagrange coordinates. Equations of relativistic hydrodynamics with account for dissipative effects in the matter are derived using the assocoated reference system in general non-inertial case. True form of the dissipative tensor components is obtained from entropy production equation. Closed system of equations for dissipative relativistic hydrodynamics is obtained as a result in the assocoated reference system (ARS) - relativistic generalization of well-known Navier-Stokes equations for Lagrange coordinates. Equation system, obtained in this paper for ARS, may be effectively used in numerical models of explosive processes with 10 51 erg energy releases which are characteristic for flashes of supernovae, if white dwarf type compact target suggested as presupernova

  9. A NUMERICAL TREATMENT OF ANISOTROPIC RADIATION FIELDS COUPLED WITH RELATIVISTIC RESISTIVE MAGNETOFLUIDS

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Hiroyuki R. [Center for Computational Astrophysics, National Astronomical Observatory of Japan, Mitaka, Tokyo 181-8588 (Japan); Ohsuga, Ken [Division of Theoretical Astronomy, National Astronomical Observatory of Japan, Mitaka, Tokyo 181-8588 (Japan)

    2013-08-01

    We develop a numerical scheme for solving fully special relativistic, resistive radiation magnetohydrodynamics. Our code guarantees conservation of total mass, momentum, and energy. The radiation energy density and the radiation flux are consistently updated using the M-1 closure method, which can resolve an anisotropic radiation field, in contrast to the Eddington approximation, as well as the flux-limited diffusion approximation. For the resistive part, we adopt a simple form of Ohm's law. The advection terms are explicitly solved with an approximate Riemann solver, mainly the Harten-Lax-van Leer scheme; the HLLC and HLLD schemes are also solved for some tests. The source terms, which describe the gas-radiation interaction and the magnetic energy dissipation, are implicitly integrated, relaxing the Courant-Friedrichs-Lewy condition even in an optically thick regime or a large magnetic Reynolds number regime. Although we need to invert 4 Multiplication-Sign 4 matrices (for the gas-radiation interaction) and 3 Multiplication-Sign 3 matrices (for the magnetic energy dissipation) at each grid point for implicit integration, they are obtained analytically without preventing massive parallel computing. We show that our code gives reasonable outcomes in numerical tests for ideal magnetohydrodynamics, propagating radiation, and radiation hydrodynamics. We also applied our resistive code to the relativistic Petschek-type magnetic reconnection, revealing the reduction of the reconnection rate via radiation drag.

  10. A NUMERICAL TREATMENT OF ANISOTROPIC RADIATION FIELDS COUPLED WITH RELATIVISTIC RESISTIVE MAGNETOFLUIDS

    International Nuclear Information System (INIS)

    Takahashi, Hiroyuki R.; Ohsuga, Ken

    2013-01-01

    We develop a numerical scheme for solving fully special relativistic, resistive radiation magnetohydrodynamics. Our code guarantees conservation of total mass, momentum, and energy. The radiation energy density and the radiation flux are consistently updated using the M-1 closure method, which can resolve an anisotropic radiation field, in contrast to the Eddington approximation, as well as the flux-limited diffusion approximation. For the resistive part, we adopt a simple form of Ohm's law. The advection terms are explicitly solved with an approximate Riemann solver, mainly the Harten-Lax-van Leer scheme; the HLLC and HLLD schemes are also solved for some tests. The source terms, which describe the gas-radiation interaction and the magnetic energy dissipation, are implicitly integrated, relaxing the Courant-Friedrichs-Lewy condition even in an optically thick regime or a large magnetic Reynolds number regime. Although we need to invert 4 × 4 matrices (for the gas-radiation interaction) and 3 × 3 matrices (for the magnetic energy dissipation) at each grid point for implicit integration, they are obtained analytically without preventing massive parallel computing. We show that our code gives reasonable outcomes in numerical tests for ideal magnetohydrodynamics, propagating radiation, and radiation hydrodynamics. We also applied our resistive code to the relativistic Petschek-type magnetic reconnection, revealing the reduction of the reconnection rate via radiation drag

  11. Idealized mixing impacts

    International Nuclear Information System (INIS)

    Peterson, R.A.

    1999-01-01

    The dispersion of tetraphenylborate in continuous stirred tank reactors plays a significant role in the utility achieved from the tetraphenylborate. Investigating idealized mixing of the materials can illuminate how this dispersion occurs

  12. Relativistic and non-relativistic studies of nuclear matter

    NARCIS (Netherlands)

    Banerjee, MK; Tjon, JA

    2002-01-01

    We point out that the differences between the results of the non-relativistic lowest order Brueckner theory (LOBT) and the relativistic Dirac-Brueckner analysis predominantly arise from two sources. Besides effects from a nucleon mass modification M* in nuclear medium we have in a relativistic

  13. Relativistic quantum mechanics

    International Nuclear Information System (INIS)

    Ollitrault, J.Y.

    1998-12-01

    These notes form an introduction to relativistic quantum mechanics. The mathematical formalism has been reduced to the minimum in order to enable the reader to calculate elementary physical processes. The second quantification and the field theory are the logical followings of this course. The reader is expected to know analytical mechanics (Lagrangian and Hamiltonian), non-relativistic quantum mechanics and some basis of restricted relativity. The purpose of the first 3 chapters is to define the quantum mechanics framework for already known notions about rotation transformations, wave propagation and restricted theory of relativity. The next 3 chapters are devoted to the application of relativistic quantum mechanics to a particle with 0,1/5 and 1 spin value. The last chapter deals with the processes involving several particles, these processes require field theory framework to be thoroughly described. (A.C.)

  14. Relativistic solitons and pulsars

    Energy Technology Data Exchange (ETDEWEB)

    Karpman, V I [Inst. of Terrestrial Magnetism, Ionosphere, and Radio-Wave Propagation, Moscow; Norman, C A; ter Haar, D; Tsytovich, V N

    1975-05-01

    A production mechanism for stable electron bunches or sheets of localized electric fields is investigated which may account for pulsar radio emission. Possible soliton phenomena in a one-dimensional relativistic plasma are analyzed, and it is suggested that the motion of a relativistic soliton, or ''relaton'', along a curved magnetic-field line may produce radio emission with the correct polarization properties. A general MHD solution is obtained for relatons, the radiation produced by a relativistic particle colliding with a soliton is evaluated, and the emission by a soliton moving along a curved field line is estimated. It is noted that due to a number of severe physical restrictions, curvature radiation is not a very likely solution to the problem of pulsar radio emission. (IAA)

  15. Relativistic quantum mechanics

    CERN Document Server

    Horwitz, Lawrence P

    2015-01-01

    This book describes a relativistic quantum theory developed by the author starting from the E.C.G. Stueckelberg approach proposed in the early 40s. In this framework a universal invariant evolution parameter (corresponding to the time originally postulated by Newton) is introduced to describe dynamical evolution. This theory is able to provide solutions for some of the fundamental problems encountered in early attempts to construct a relativistic quantum theory. A relativistically covariant construction is given for which particle spins and angular momenta can be combined through the usual rotation group Clebsch-Gordan coefficients. Solutions are defined for both the classical and quantum two body bound state and scattering problems. The recently developed quantum Lax-Phillips theory of semigroup evolution of resonant states is described. The experiment of Lindner and coworkers on interference in time is discussed showing how the property of coherence in time provides a simple understanding of the results. Th...

  16. Relativistic theories of materials

    CERN Document Server

    Bressan, Aldo

    1978-01-01

    The theory of relativity was created in 1905 to solve a problem concerning electromagnetic fields. That solution was reached by means of profound changes in fundamental concepts and ideas that considerably affected the whole of physics. Moreover, when Einstein took gravitation into account, he was forced to develop radical changes also in our space-time concepts (1916). Relativistic works on heat, thermodynamics, and elasticity appeared as early as 1911. However, general theories having a thermodynamic basis, including heat conduction and constitutive equations, did not appear in general relativity until about 1955 for fluids and appeared only after 1960 for elastic or more general finitely deformed materials. These theories dealt with materials with memory, and in this connection some relativistic versions of the principle of material indifference were considered. Even more recently, relativistic theories incorporating finite deformations for polarizable and magnetizable materials and those in which couple s...

  17. Handbook of relativistic quantum chemistry

    International Nuclear Information System (INIS)

    Liu, Wenjian

    2017-01-01

    This handbook focuses on the foundations of relativistic quantum mechanics and addresses a number of fundamental issues never covered before in a book. For instance: How can many-body theory be combined with quantum electrodynamics? How can quantum electrodynamics be interfaced with relativistic quantum chemistry? What is the most appropriate relativistic many-electron Hamiltonian? How can we achieve relativistic explicit correlation? How can we formulate relativistic properties? - just to name a few. Since relativistic quantum chemistry is an integral component of computational chemistry, this handbook also supplements the ''Handbook of Computational Chemistry''. Generally speaking, it aims to establish the 'big picture' of relativistic molecular quantum mechanics as the union of quantum electrodynamics and relativistic quantum chemistry. Accordingly, it provides an accessible introduction for readers new to the field, presents advanced methodologies for experts, and discusses possible future perspectives, helping readers understand when/how to apply/develop the methodologies.

  18. Handbook of relativistic quantum chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Wenjian (ed.) [Peking Univ., Beijing (China). Center for Computational Science and Engineering

    2017-03-01

    This handbook focuses on the foundations of relativistic quantum mechanics and addresses a number of fundamental issues never covered before in a book. For instance: How can many-body theory be combined with quantum electrodynamics? How can quantum electrodynamics be interfaced with relativistic quantum chemistry? What is the most appropriate relativistic many-electron Hamiltonian? How can we achieve relativistic explicit correlation? How can we formulate relativistic properties? - just to name a few. Since relativistic quantum chemistry is an integral component of computational chemistry, this handbook also supplements the ''Handbook of Computational Chemistry''. Generally speaking, it aims to establish the 'big picture' of relativistic molecular quantum mechanics as the union of quantum electrodynamics and relativistic quantum chemistry. Accordingly, it provides an accessible introduction for readers new to the field, presents advanced methodologies for experts, and discusses possible future perspectives, helping readers understand when/how to apply/develop the methodologies.

  19. Massive Fermi gas in the expanding universe

    Energy Technology Data Exchange (ETDEWEB)

    Trautner, Andreas, E-mail: atrautner@uni-bonn.de [Bethe Center for Theoretical Physics and Physikalisches Institut der Universität Bonn, Nussallee 12, 53115 Bonn (Germany)

    2017-03-01

    The behavior of a decoupled ideal Fermi gas in a homogeneously expanding three-dimensional volume is investigated, starting from an equilibrium spectrum. In case the gas is massless and/or completely degenerate, the spectrum of the gas can be described by an effective temperature and/or an effective chemical potential, both of which scale down with the volume expansion. In contrast, the spectrum of a decoupled massive and non-degenerate gas can only be described by an effective temperature if there are strong enough self-interactions such as to maintain an equilibrium distribution. Assuming perpetual equilibration, we study a decoupled gas which is relativistic at decoupling and then is red-shifted until it becomes non-relativistic. We find expressions for the effective temperature and effective chemical potential which allow us to calculate the final spectrum for arbitrary initial conditions. This calculation is enabled by a new expansion of the Fermi-Dirac integral, which is for our purpose superior to the well-known Sommerfeld expansion. We also compute the behavior of the phase space density under expansion and compare it to the case of real temperature and real chemical potential. Using our results for the degenerate case, we also obtain the mean relic velocity of the recently proposed non-thermal cosmic neutrino background.

  20. Socrates: Platonic Political Ideal

    Directory of Open Access Journals (Sweden)

    Christopher P. Long

    2012-08-01

    Full Text Available This essay articulates the differences and suggests the similarities between the practices of Socratic political speaking and those of Platonic political writing. The essay delineates Socratic speaking and Platonic writing as both erotically oriented toward ideals capable of transforming the lives of individuals and their relationships with one another. Besides it shows that in the Protagoras the practices of Socratic political speaking are concerned less with Protagoras than with the individual young man, Hippocrates. In the Phaedo, this ideal of a Socrates is amplified in such a way that Platonic writing itself emerges as capable of doing with readers what Socratic speaking did with those he encountered. Socrates is the Platonic political ideal. The result is a picture of the transformative political power of Socratic speaking and Platonic writing both.

  1. Biquaternions and relativistic kinematics

    International Nuclear Information System (INIS)

    Bogush, A.A.; Kurochkin, Yu.A.; Fedorov, F.I.

    1979-01-01

    The problems concerning the use of quaternion interpretation of the Lorentz group vector parametrization are considered for solving relativistic kinematics problems. A vector theory convenient for describing the characteristic features of the Lobachevsky space is suggested. The kinematics of elementary particle scattering is investigated on the basis of this theory. A synthesis of vector parametrization and of quaternion calculation has been shown to lead to natural formulation of the theory of vectors in the three-dimensional Lobachevsky space, realized on mass hyperboloids of relativistic particles

  2. Relativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Barz, H.W.; Kaempfer, B.; Schulz, H.

    1984-12-01

    An elementary introduction is given into the scenario of relativistic heavy ion collisions. It deals with relativistic kinematics and estimates of energy densities, extrapolations of the present knowledge of hadron-hadron and hadron-nuleus to nucleus-nucleus collisions, the properties of the quark-gluon plasma and the formation of the plasma and possible experimental signatures. Comments are made on a cosmic ray experiment which could be interpreted as a first indication of the quark-gluon phase of the matter. (author)

  3. German Idealism Today

    DEFF Research Database (Denmark)

    This collection of essays provides an exemplary overwiew of the diversity and relevance of current scholarship on German Idealism. The importance of German Idealism for contemporary philosophy has recieved growing attention and acknowledgment throughout competing fields of contemporary philosophy...... scholarly debates beyond merely antiquarian perspectives. This renaissance has been a major factor of current efforts to bridge the gap between so-called "nalytic" and so-called "continental" philosophy. The volume provides a selection of readings that contributes to systematic treatments of philosophical...

  4. Relativistic particle in a box

    OpenAIRE

    Alberto, P.; Fiolhais, Carlos; Gil, Victor

    1996-01-01

    The problem of a relativistic spin 1/2 particle confined to a one-dimensional box is solved in a way that resembles closely the solution of the well known quantum-mechanical textbook problem of a non-relativistic particle in a box. The energy levels and probability density are computed and compared with the non-relativistic case

  5. The Heat Capacity of Ideal Gases

    Science.gov (United States)

    Scott, Robert L.

    2006-01-01

    The heat capacity of an ideal gas has been shown to be calculable directly by statistical mechanics if the energies of the quantum states are known. However, unless one makes careful calculations, it is not easy for a student to understand the qualitative results. Why there are maxima (and occasionally minima) in heat capacity-temperature curves…

  6. Collective excitations of harmonically trapped ideal gases

    NARCIS (Netherlands)

    Van Schaeybroeck, B.; Lazarides, A.

    2009-01-01

    We theoretically study the collective excitations of an ideal gas confined in an isotropic harmonic trap. We give an exact solution to the Boltzmann-Vlasov equation; as expected for a single-component system, the associated mode frequencies are integer multiples of the trapping frequency. We show

  7. Relativistic impulse dynamics.

    Science.gov (United States)

    Swanson, Stanley M

    2011-08-01

    Classical electrodynamics has some annoying rough edges. The self-energy of charges is infinite without a cutoff. The calculation of relativistic trajectories is difficult because of retardation and an average radiation reaction term. By reconceptuallizing electrodynamics in terms of exchanges of impulses rather than describing it by forces and potentials, we eliminate these problems. A fully relativistic theory using photonlike null impulses is developed. Numerical calculations for a two-body, one-impulse-in-transit model are discussed. A simple relationship between center-of-mass scattering angle and angular momentum was found. It reproduces the Rutherford cross section at low velocities and agrees with the leading term of relativistic distinguishable-particle quantum cross sections (Møller, Mott) when the distance of closest approach is larger than the Compton wavelength of the particle. Magnetism emerges as a consequence of viewing retarded and advanced interactions from the vantage point of an instantaneous radius vector. Radiation reaction becomes the local conservation of energy-momentum between the radiating particle and the emitted impulse. A net action is defined that could be used in developing quantum dynamics without potentials. A reinterpretation of Newton's laws extends them to relativistic motion.

  8. Non-relativistic supersymmetry

    International Nuclear Information System (INIS)

    Clark, T.E.; Love, S.T.

    1984-01-01

    The most general one- and two-body hamiltonian invariant under galilean supersymmetry is constructed in superspace. The corresponding Feynman rules are given for the superfield Green functions. As demonstrated by a simple example, it is straightforward to construct models in which the supersymmetry is spontaneously broken by the non-relativistic vacuum. (orig.)

  9. Relativistic stellar dynamics

    International Nuclear Information System (INIS)

    Contopoulos, G.

    1983-01-01

    In this paper, three main areas of relativistic stellar dynamics are reviewed: (a) The dynamics of clusters, or nuclei of galaxies, of very high density; (b) The dynamics of systems containing a massive black hole; and (c) The dynamics of particles (and photons) in an expanding Universe. The emphasis is on the use of orbit perturbations. (Auth.)

  10. Relativistic Wigner functions

    Directory of Open Access Journals (Sweden)

    Bialynicki-Birula Iwo

    2014-01-01

    Full Text Available Original definition of the Wigner function can be extended in a natural manner to relativistic domain in the framework of quantum field theory. Three such generalizations are described. They cover the cases of the Dirac particles, the photon, and the full electromagnetic field.

  11. The Relativistic Rocket

    Science.gov (United States)

    Antippa, Adel F.

    2009-01-01

    We solve the problem of the relativistic rocket by making use of the relation between Lorentzian and Galilean velocities, as well as the laws of superposition of successive collinear Lorentz boosts in the limit of infinitesimal boosts. The solution is conceptually simple, and technically straightforward, and provides an example of a powerful…

  12. Relativistic few body calculations

    International Nuclear Information System (INIS)

    Gross, F.

    1988-01-01

    A modern treatment of the nuclear few-body problem must take into account both the quark structure of baryons and mesons, which should be important at short range, and the relativistic exchange of mesons, which describes the long range, peripheral interactions. A way to model both of these aspects is described. The long range, peripheral interactions are calculated using the spectator model, a general approach in which the spectators to nucleon interactions are put on their mass-shell. Recent numerical results for a relativistic OBE model of the NN interaction, obtained by solving a relativistic equation with one-particle on mass-shell, will be presented and discussed. Two meson exchange models, one with only four mesons (π,σ,/rho/,ω) but with a 25% admixture of γ 5 coupling for the pion, and a second with six mesons (π,σ,/rho/,ω,δ,/eta/) but pure γ 5 γ/sup μ/ pion coupling, are shown to give very good quantitative fits to the NN scattering phase shifts below 400 MeV, and also a good description of the /rvec p/ 40 Ca elastic scattering observables. Applications of this model to electromagnetic interactions of the two body system, with emphasis on the determination of relativistic current operators consistent with the dynamics and the exact treatment of current conservation in the presence of phenomenological form factors, will be described. 18 refs., 8 figs

  13. Relativistic Polarizable Embedding

    DEFF Research Database (Denmark)

    Hedegård, Erik Donovan; Bast, Radovan; Kongsted, Jacob

    2017-01-01

    Most chemistry, including chemistry where relativistic effects are important, occurs in an environment, and in many cases, this environment has a significant effect on the chemistry. In nonrelativistic quantum chemistry, a lot of progress has been achieved with respect to including environments s...

  14. Relativistic length agony continued

    Directory of Open Access Journals (Sweden)

    Redžić D.V.

    2014-01-01

    Full Text Available We made an attempt to remedy recent confusing treatments of some basic relativistic concepts and results. Following the argument presented in an earlier paper (Redžić 2008b, we discussed the misconceptions that are recurrent points in the literature devoted to teaching relativity such as: there is no change in the object in Special Relativity, illusory character of relativistic length contraction, stresses and strains induced by Lorentz contraction, and related issues. We gave several examples of the traps of everyday language that lurk in Special Relativity. To remove a possible conceptual and terminological muddle, we made a distinction between the relativistic length reduction and relativistic FitzGerald-Lorentz contraction, corresponding to a passive and an active aspect of length contraction, respectively; we pointed out that both aspects have fundamental dynamical contents. As an illustration of our considerations, we discussed briefly the Dewan-Beran-Bell spaceship paradox and the ‘pole in a barn’ paradox. [Projekat Ministarstva nauke Republike Srbije, br. 171028

  15. Relativistic Coulomb excitation

    International Nuclear Information System (INIS)

    Winther, A.; Alder, K.

    1979-01-01

    Coulomb excitation of both target and projectile in relativistic heavy ion collisions is evaluated including the lowest order correction for the deviation from a straight line trajectory. Explicit results for differential and total cross sections are given in the form of tables and figures. (Auth.)

  16. Fundamental Relativistic Rotator

    International Nuclear Information System (INIS)

    Staruszkiewicz, A.

    2008-01-01

    Professor Jan Weyssenhoff was Myron Mathisson's sponsor and collaborator. He introduced a class of objects known in Cracow as '' kreciolki Weyssenhoffa '', '' Weyssenhoff's rotating little beasts ''. The Author describes a particularly simple object from this class. The relativistic rotator described in the paper is such that its both Casimir invariants are parameters rather than constants of motion. (author)

  17. Relativistic Quantum Mechanics

    International Nuclear Information System (INIS)

    Antoine, J-P

    2004-01-01

    The aim of relativistic quantum mechanics is to describe the finer details of the structure of atoms and molecules, where relativistic effects become nonnegligible. It is a sort of intermediate realm, between the familiar nonrelativistic quantum mechanics and fully relativistic quantum field theory, and thus it lacks the simplicity and elegance of both. Yet it is a necessary tool, mostly for quantum chemists. Pilkuhn's book offers to this audience an up-to-date survey of these methods, which is quite welcome since most previous textbooks are at least ten years old. The point of view of the author is to start immediately in the relativistic domain, following the lead of Maxwell's equations rather than classical mechanics, and thus to treat the nonrelativistic version as an approximation. Thus Chapter 1 takes off from Maxwell's equations (in the noncovariant Coulomb gauge) and gradually derives the basic aspects of Quantum Mechanics in a rather pedestrian way (states and observables, Hilbert space, operators, quantum measurement, scattering,. Chapter 2 starts with the Lorentz transformations, then continues with the Pauli spin equation and the Dirac equation and some of their applications (notably the hydrogen atom). Chapter 3 is entitled 'Quantum fields and particles', but falls short of treating quantum field theory properly: only creation/annihilation operators are considered, for a particle in a box. The emphasis is on two-electron states (the Pauli principle, the Foldy--Wouthuysen elimination of small components of Dirac spinors, Breit projection operators. Chapter 4 is devoted to scattering theory and the description of relativistic bound states. Chapter 5, finally, covers hyperfine interactions and radiative corrections. As we said above, relativistic quantum mechanics is by nature limited in scope and rather inelegant and Pilkuhn's book is no exception. The notation is often heavy (mostly noncovariant) and the mathematical level rather low. The central topic

  18. Relativistic positioning systems: Numerical simulations

    Science.gov (United States)

    Puchades Colmenero, Neus

    The position of users located on the Earth's surface or near it may be found with the classic positioning systems (CPS). Certain information broadcast by satellites of global navigation systems, as GPS and GALILEO, may be used for positioning. The CPS are based on the Newtonian formalism, although relativistic post-Newtonian corrections are done when they are necessary. This thesis contributes to the development of a different positioning approach, which is fully relativistic from the beginning. In the relativistic positioning systems (RPS), the space-time position of any user (ship, spacecraft, and so on) can be calculated with the help of four satellites, which broadcast their proper times by means of codified electromagnetic signals. In this thesis, we have simulated satellite 4-tuples of the GPS and GALILEO constellations. If a user receives the signals from four satellites simultaneously, the emission proper times read -after decoding- are the user "emission coordinates". In order to find the user "positioning coordinates", in an appropriate almost inertial reference system, there are two possibilities: (a) the explicit relation between positioning and emission coordinates (broadcast by the satellites) is analytically found or (b) numerical codes are designed to calculate the positioning coordinates from the emission ones. Method (a) is only viable in simple ideal cases, whereas (b) allows us to consider realistic situations. In this thesis, we have designed numerical codes with the essential aim of studying two appropriate RPS, which may be generalized. Sometimes, there are two real users placed in different positions, which receive the same proper times from the same satellites; then, we say that there is bifurcation, and additional data are needed to choose the real user position. In this thesis, bifurcation is studied in detail. We have analyzed in depth two RPS models; in both, it is considered that the satellites move in the Schwarzschild's space

  19. The Idealized Cultural Encounter

    DEFF Research Database (Denmark)

    Christiansen, Lene Bull

    Studies into cultural encounters have predominantly taken point of departure in ‘problematic encounters’, in which researchers and participants see cultural difference as an obstacle on the road to harmonious relationships (e.g. in ‘the clash of civilisations,’ or in migration/integration studies......). This paper proposes to study cultural encounters which are organised around ideals of cultural difference as a positive social and political force. The Danish People to People NGO Mellemfolkeligt Samvirke (MS) is build around ideals of equality, co-operation, mutuality and solidarity between people...... and cultures. A prominent feature of the organisation is organised cultural encounters between Northern (predominantly Danish) volunteers and Africans, which takes place at ‘training centres’ both in Denmark and in African countries, such as Kenya or Tanzania. In this paper I will outline the theoretical...

  20. Delivering ideal employee experiences.

    Science.gov (United States)

    Weiss, Marjorie D; Tyink, Steve; Kubiak, Curt

    2009-05-01

    Employee-centric strategies have moved from employee satisfaction and brand awareness to employee "affinity" or "attachment." In today's marketplace, occupational health nurses understand that differentiation (i.e., the perception of uniqueness) is the direct result of superior employee interactions, which lead to better employee care, enduring employee relationships, loyal employees, and satisfied employers. What drives employees to occupational health nurse attachment? The answer is a passion for rising above the competition to create ideal employee experiences.

  1. The cosmic-ray shock structure problem for relativistic shocks

    Science.gov (United States)

    Webb, G. M.

    1985-01-01

    The time asymptotic behaviour of a relativistic (parallel) shock wave significantly modified by the diffusive acceleration of cosmic-rays is investigated by means of relativistic hydrodynamical equations for both the cosmic-rays and thermal gas. The form of the shock structure equation and the dispersion relation for both long and short wavelength waves in the system are obtained. The dependence of the shock acceleration efficiency on the upstream fluid spped, long wavelength Mach number and the ratio N = P sub co/cP sub co+P sub go)(Psub co and P sub go are the upstream cosmic-ray and thermal gas pressures respectively) are studied.

  2. The relativistic gravity train

    Science.gov (United States)

    Seel, Max

    2018-05-01

    The gravity train that takes 42.2 min from any point A to any other point B that is connected by a straight-line tunnel through Earth has captured the imagination more than most other applications in calculus or introductory physics courses. Brachystochron and, most recently, nonlinear density solutions have been discussed. Here relativistic corrections are presented. It is discussed how the corrections affect the time to fall through Earth, the Sun, a white dwarf, a neutron star, and—the ultimate limit—the difference in time measured by a moving, a stationary and the fiducial observer at infinity if the density of the sphere approaches the density of a black hole. The relativistic gravity train can serve as a problem with approximate and exact analytic solutions and as numerical exercise in any introductory course on relativity.

  3. Relativistic gravitational instabilities

    International Nuclear Information System (INIS)

    Schutz, B.F.

    1987-01-01

    The purpose of these lectures is to review and explain what is known about the stability of relativistic stars and black holes, with particular emphases on two instabilities which are due entirely to relativistic effects. The first of these is the post-Newtonian pulsational instability discovered independently by Chandrasekhar (1964) and Fowler (1964). This effectively ruled out the then-popular supermassive star model for quasars, and it sets a limit to the central density of white dwarfs. The second instability was also discovered by Chandrasekhar (1970): the gravitational wave induced instability. This sets an upper bound on the rotation rate of neutron stars, which is near that of the millisecond pulsar PSR 1937+214, and which is beginning to constrain the equation of state of neutron matter. 111 references, 5 figures

  4. Relativistic studies in actinides

    International Nuclear Information System (INIS)

    Weinberger, P.; Gonis, A.

    1987-01-01

    In this review the theoretical background is given for a relativistic description for actinide systems. A short introduction is given of the density functional theory which forms the basis for a fully relativistic single-particle theory. A section on the Dirac Hamiltonian is followed by a brief summary on group theoretical concepts. Single site scattering is presented such that formal extensions to the case of the presence of an internal (external) magnetic field and/or anisotropic scattering are evident. Multiple scattering is discussed such that it can readily be applied also to the problem of dislocations. In connection with the problem of selfconsistency particular attention is drawn to the use of complex energies. Finally the various theoretical aspects discussed are illustrated through the results of numerical calculations. 101 refs.; 37 figs.; 5 tabs

  5. Relativistic heavy ion reactions

    Energy Technology Data Exchange (ETDEWEB)

    Brink, D M

    1989-08-01

    The theory of quantum chromodynamics predicts that if nuclear matter is heated to a sufficiently high temperature then quarks might become deconfined and a quark-gluon plasma could be produced. One of the aims of relativistic heavy ion experiments is to search for this new state of matter. These lectures survey some of the new experimental results and give an introduction to the theories used to interpret them. 48 refs., 4 tabs., 11 figs.

  6. Relativistic heavy ion reactions

    International Nuclear Information System (INIS)

    Brink, D.M.

    1989-08-01

    The theory of quantum chromodynamics predicts that if nuclear matter is heated to a sufficiently high temperature then quarks might become deconfined and a quark-gluon plasma could be produced. One of the aims of relativistic heavy ion experiments is to search for this new state of matter. These lectures survey some of the new experimental results and give an introduction to the theories used to interpret them. 48 refs., 4 tabs., 11 figs

  7. Gravitationally confined relativistic neutrinos

    Science.gov (United States)

    Vayenas, C. G.; Fokas, A. S.; Grigoriou, D.

    2017-09-01

    Combining special relativity, the equivalence principle, and Newton’s universal gravitational law with gravitational rather than rest masses, one finds that gravitational interactions between relativistic neutrinos with kinetic energies above 50 MeV are very strong and can lead to the formation of gravitationally confined composite structures with the mass and other properties of hadrons. One may model such structures by considering three neutrinos moving symmetrically on a circular orbit under the influence of their gravitational attraction, and by assuming quantization of their angular momentum, as in the Bohr model of the H atom. The model contains no adjustable parameters and its solution, using a neutrino rest mass of 0.05 eV/c2, leads to composite state radii close to 1 fm and composite state masses close to 1 GeV/c2. Similar models of relativistic rotating electron - neutrino pairs give a mass of 81 GeV/c2, close to that of W bosons. This novel mechanism of generating mass suggests that the Higgs mass generation mechanism can be modeled as a latent gravitational field which gets activated by relativistic neutrinos.

  8. Point form relativistic quantum mechanics and relativistic SU(6)

    Science.gov (United States)

    Klink, W. H.

    1993-01-01

    The point form is used as a framework for formulating a relativistic quantum mechanics, with the mass operator carrying the interactions of underlying constituents. A symplectic Lie algebra of mass operators is introduced from which a relativistic harmonic oscillator mass operator is formed. Mass splittings within the degenerate harmonic oscillator levels arise from relativistically invariant spin-spin, spin-orbit, and tensor mass operators. Internal flavor (and color) symmetries are introduced which make it possible to formulate a relativistic SU(6) model of baryons (and mesons). Careful attention is paid to the permutation symmetry properties of the hadronic wave functions, which are written as polynomials in Bargmann spaces.

  9. An ideal job.

    Science.gov (United States)

    Leonard, Kurt J

    2012-01-01

    A brief personal history illustrates how fortunate I was to have stumbled into a career in plant pathology, which turned out to be the ideal job for me. Several of the people who steered me or facilitated my development in research on plant diseases are mentioned. Starting with my PhD research, I have had the good fortune to indulge a career-long fascination with epidemiology and genetics of disease resistance in plants, particularly coevolution of gene-for-gene host-pathogen systems. I hope that my example may inspire others of like minds to consider a research career in plant pathology.

  10. Temas de Física para Ingeniería: Gases ideales

    OpenAIRE

    Beléndez Vázquez, Augusto

    1992-01-01

    Acústica, fluidos y termodinámica: "Gases ideales". Modelo molecular del gas ideal. Interpretación microscópica de la presión y la temperatura. Equipartición de la energía. Capacidades caloríficas de los gases. Proceso adiabático en un gas ideal.

  11. Certain Solutions Of Shock-Waves In Non-Ideal Gases

    Directory of Open Access Journals (Sweden)

    Kanti Pandey

    2016-05-01

    Full Text Available In present paper non similar solutions for plane, cylindrical and spherical unsteady flows of non-ideal gas behind shock wave of arbitrary strength initiated by the instantaneous release of finite energy and propagating in a non-ideal gas is investigated. Asymptotic analysis is applied to obtain a solution up to second order. Solution for numerical calculation Runga-Kutta method of fourth order is applied and is concluded that for non-ideal case there is a decrease in velocity, pressure and density for 0th and IInd order in comparison to ideal gas but a increasing tendency in velocity, pressure and density for Ist order in comparison to ideal gas. The energy of explosion J0 for ideal gas is greater in comparison to non-ideal gas for plane, cylindrical and spherical waves.

  12. An Ideal Molecular Sieve for Acetylene Removal from Ethylene with Record Selectivity and Productivity

    NARCIS (Netherlands)

    Li, B.; Cui, X.; O'Nolan, D.; Wen, H.-M.; Jiang, M.; Krishna, R.; Wu, H.; Lin, R.-B.; Chen, Y.-S.; Yuan, D.; Xing, H.; Zhou, W.; Ren, Q.; Qian, G.; Zaworotko, M.J.; Chen, B.

    2017-01-01

    Realization of ideal molecular sieves, in which the larger gas molecules are completely blocked without sacrificing high adsorption capacities of the preferred smaller gas molecules, can significantly reduce energy costs for gas separation and purification and thus facilitate a possible

  13. BOOK REVIEW: Relativistic Figures of Equilibrium

    Science.gov (United States)

    Mars, M.

    2009-08-01

    qualitatively different behaviours. The presentation of the main ideas behind this method is very clear and accessible even to the non-expert. The book then is devoted to presenting both qualitative and quantitative results for a number of models with different equations of state. The case treated more in depth is the constant density case, but results for polytropic equations of state as well as a degenerate ideal gas of neutrons and strange quark matter are also presented. The emphasis is put on the exploration of the parameter space for a fixed equation of state. This is done by studying the various limiting cases involved, namely the non-rotating limit, the Newtonian limit, the mass-shedding limit, the infinite central pressure limit, the transition from one rotating body to several bodies, the black hole limit and the disc limit. The emerging picture in the constant density case is a division of the parameter space into an infinite number of classes, all connected through the Maclaurin spheroids and approaching the limiting case of a Maclaurin disc of dust, which in turn is the Newtonian limit of the relativistic disc of dust. Although the phase space of solutions differs for other equations of state, the main feature of having classes of solutions remains. Despite the inherent complexity and variety of possible behaviours, the authors manage to describe the results in a very lucid manner, and the resulting picture emerges very clearly. The presentation also includes many well-chosen figures, which clarify greatly the understanding of the results and makes this chapter very informative indeed. Furthermore, the book has a related webpage (http://www.tpi.uni-jena.de/gravity/relastro/rfe/) where the source codes for calculating various figures of equilibrium are publicly available. Besides considering single fluids, configurations where a central and very compact object is surrounded by a ring of fluid are also treated to some extent. The central object may be a Newtonian

  14. Certain variants of multipermutohedron ideals

    Indian Academy of Sciences (India)

    quotient of an Alexander dual of a multipermutohedron ideal is the number of .... It is clearly indicated in [10] that combinatorially defined monomial ideals ...... of the 31st Southeastern International Conference on Combinatorics, Graph Theory.

  15. Transcendental idealism and structuralism

    Directory of Open Access Journals (Sweden)

    Ivan Vuković

    2016-02-01

    Full Text Available The author examines possible analogies between Kant’s transcendental idealism and de Saussure’s and Levi-Strauss’s structuralism, in order to analyse if the former can be understood as a predecessor for the later. The author shows that both teachings assume a priori formal framework, but they diverge in the ways they describe it, as well as in understanding of its function. Consequently, the author concludes that structuralism can be seen as one possible use of Kant’s idea about the existence of such a frame. Furthermore, the author claims that Ricker’s understanding of structuralism as ‘Kantianism without transcendental subject’ should be rejected, since a teaching which does not assume existence of such subject cannot be understood as Kantian.

  16. A New Perspective on Classical Ideal Gases

    Directory of Open Access Journals (Sweden)

    Fabrice Philippe

    2013-08-01

    Full Text Available The ideal-gas barometric and pressure laws are derived from the Democritian concept of independent corpuscles moving in vacuum, plus a principle of simplicity, namely that these laws are independent of the kinetic part of the Hamiltonian. A single corpuscle in contact with a heat bath in a cylinder and submitted to a constant force (weight is considered. The paper importantly supplements a previously published paper: First, the stability of ideal gases is established. Second, we show that when walls separate the cylinder into parts and are later removed, the entropy is unaffected. We obtain full agreement with Landsberg’s and others’ (1994 classical thermodynamic result for the entropy of a column of gas submitted to gravity.

  17. Relativistic Outflows from ADAFs

    Science.gov (United States)

    Becker, Peter; Subramanian, Prasad; Kazanas, Demosthenes

    2001-04-01

    Advection-dominated accretion flows (ADAFs) have a positive Bernoulli parameter, and are therefore gravitationally bound. The Newtonian ADAF model has been generalized recently to obtain the ADIOS model that includes outflows of energy and angular momentum, thereby allowing accretion to proceed self-consistently. However, the utilization of a Newtonian gravitational potential limits the ability of this model to describe the inner region of the disk, where any relativistic outflows are likely to originate. In this paper we modify the ADIOS scenario to incorporate a seudo - Newtonian potential, which approximates the effects of general relativity. The analysis yields a unique, self - similar solution for the structure of the coupled disk/wind system. Interesting features of the new solution include the relativistic character of the outflow in the vicinity of the radius of marginal stability, which represents the inner edge of the quasi-Keplerian disk in our model. Our self - similar model may therefore help to explain the origin of relativistic jets in active galaxies. At large distances the radial dependence of the accretion rate approachs the unique form dot M ∝ r^1/2, with an associated density variation given by ρ ∝ r-1. This density variation agrees with that implied by the dependence of the X-ray hard time lags on the Fourier frequency for a number of accreting galactic black hole candidates. While intriguing, the results of our self-similar model need to be confirmed in the future by incorporating a detailed physical description of the energization mechanism that drives the outflow, which is likely to be powered by the shear of the underlying accretion disk.

  18. Beware of ideals in education

    NARCIS (Netherlands)

    Heyting, G.F.

    2004-01-01

    In reaction to Doret De Ruyter's recent defence of the importance of ideals in education, I advocate cautiousness in three respects. First, I explain the importance of distinguishing ideals more sharply from goals by demonstrating the problems of considering ideals even approximately realisable.

  19. Relativistic twins or sextuplets?

    International Nuclear Information System (INIS)

    Sheldon, Eric

    2003-01-01

    A recent study of the relativistic twin 'paradox' by Soni in this journal affirmed that 'A simple solution of the twin paradox also shows anomalous behaviour of rigidly connected distant clocks' but entailed a pedagogic hurdle which the present treatment aims to surmount. Two scenarios are presented: the first 'flight-plan' is akin to that depicted by Soni, with constant-velocity segments, while the second portrays an alternative mission undertaken with sustained acceleration and deceleration, illustrated quantitatively for a two-way spacecraft flight from Earth to Polaris (465.9 light years distant) and back

  20. Relativistic twins or sextuplets?

    CERN Document Server

    Sheldon, E S

    2003-01-01

    A recent study of the relativistic twin 'paradox' by Soni in this journal affirmed that 'A simple solution of the twin paradox also shows anomalous behaviour of rigidly connected distant clocks' but entailed a pedagogic hurdle which the present treatment aims to surmount. Two scenarios are presented: the first 'flight-plan' is akin to that depicted by Soni, with constant-velocity segments, while the second portrays an alternative mission undertaken with sustained acceleration and deceleration, illustrated quantitatively for a two-way spacecraft flight from Earth to Polaris (465.9 light years distant) and back.

  1. Relativistic quantum cryptography

    Science.gov (United States)

    Kaniewski, Jedrzej

    Special relativity states that information cannot travel faster than the speed of light, which means that communication between agents occupying distinct locations incurs some minimal delay. Alternatively, we can see it as temporary communication constraints between distinct agents and such constraints turn out to be useful for cryptographic purposes. In relativistic cryptography we consider protocols in which interactions occur at distinct locations at well-defined times and we investigate why such a setting allows to implement primitives which would not be possible otherwise. (Abstract shortened by UMI.).

  2. Relativistic distances, sizes, lengths

    International Nuclear Information System (INIS)

    Strel'tsov, V.N.

    1992-01-01

    Such notion as light or retarded distance, field size, formation way, visible size of a body, relativistic or radar length and wave length of light from a moving atom are considered. The relation between these notions is cleared up, their classification is given. It is stressed that the formation way is defined by the field size of a moving particle. In the case of the electromagnetic field, longitudinal sizes increase proportionally γ 2 with growing charge velocity (γ is the Lorentz-factor). 18 refs

  3. Localization of relativistic particles

    International Nuclear Information System (INIS)

    Omnes, R.

    1997-01-01

    In order to discuss localization experiments and also to extend the consistent history interpretation of quantum mechanics to relativistic properties, the techniques introduced in a previous paper [J. Math. Phys. 38, 697 (1997)] are applied to the localization of a photon in a given region of space. An essential requirement is to exclude arbitrarily large wavelengths. The method is valid for a particle with any mass and spin. Though there is no proper position operator for a photon, one never needs one in practice. Causality is valid up to exponentially small corrections. copyright 1997 American Institute of Physics

  4. Relativistic wave mechanics

    CERN Document Server

    Corinaldesi, Ernesto

    1963-01-01

    Geared toward advanced undergraduate and graduate students of physics, this text provides readers with a background in relativistic wave mechanics and prepares them for the study of field theory. The treatment originated as a series of lectures from a course on advanced quantum mechanics that has been further amplified by student contributions.An introductory section related to particles and wave functions precedes the three-part treatment. An examination of particles of spin zero follows, addressing wave equation, Lagrangian formalism, physical quantities as mean values, translation and rotat

  5. Relativistic quarkonium dynamics

    International Nuclear Information System (INIS)

    Sazdjian, H.

    1985-06-01

    We present, in the framework of relativistic quantum mechanics of two interacting particles, a general model for quarkonium systems satisfying the following four requirements: confinement, spontaneous breakdown of chiral symmetry, soft explicit chiral symmetry breaking, short distance interactions of the vector type. The model is characterized by two arbitrary scalar functions entering in the large and short distance interaction potentials, respectively. Using relationships with corresponding quantities of the Bethe-Salpeter equation, we also present the normalization condition of the wave functions, as well as the expressions of the meson decay coupling constants. The quark masses appear in this model as free parameters

  6. Proton relativistic model

    International Nuclear Information System (INIS)

    Araujo, Wilson Roberto Barbosa de

    1995-01-01

    In this dissertation, we present a model for the nucleon, which is composed by three relativistic quarks interacting through a contract force. The nucleon wave-function was obtained from the Faddeev equation in the null-plane. The covariance of the model under kinematical null-plane boots is discussed. The electric proton form-factor, calculated from the Faddeev wave-function, was in agreement with the data for low-momentum transfers and described qualitatively the asymptotic region for momentum transfers around 2 GeV. (author)

  7. Relativistic nuclear collisions: theory

    International Nuclear Information System (INIS)

    Gyulassy, M.

    1980-07-01

    Some of the recent theoretical developments in relativistic (0.5 to 2.0-GeV/nucleon) nuclear collisions are reviewed. The statistical model, hydrodynamic model, classical equation of motion calculations, billiard ball dynamics, and intranuclear cascade models are discussed in detail. Inclusive proton and pion spectra are analyzed for a variety of reactions. Particular attention is focused on how the complex interplay of the basic reaction mechanism hinders attempts to deduce the nuclear matter equation of state from data. 102 references, 19 figures

  8. [Relativistic heavy ion research

    International Nuclear Information System (INIS)

    1991-01-01

    The present document describes our second-year application for a continuation grant on relativistic heavy-ion research at Nevis Laboratories, Columbia University, over the two-year period starting from November 15, 1990. The progress during the current budget year is presented. This year, construction of RHIC officially began. As a result, the entire Nevis nuclear physics group has made a coherent effort to create new proposal for an Open Axially Symmetric Ion Spectrometer (OASIS) proposal. Future perspectives and our plans for this proposal are described

  9. Gas

    International Nuclear Information System (INIS)

    1996-01-01

    The French government has decided to modify the conditions of extension of local natural gas authorities to neighbouring districts. The European Union is studying the conditions of internal gas market with the objective of more open markets although considering public service requirements

  10. Relativistic approach to nuclear structure

    International Nuclear Information System (INIS)

    Nguyen Van Giai; Bouyssy, A.

    1987-03-01

    Some recent works related with relativistic models of nuclear structure are briefly reviewed. The Dirac-Hartree-Fock and Dirac-Brueckner-Hartree-Fock are recalled and illustrated by some examples. The problem of isoscalar current and magnetic moments of odd nuclei is discussed. The application of the relativistic model to the nuclear response function is examined

  11. Relativistic dynamics without conservation laws

    OpenAIRE

    Rothenstein, Bernhard; Popescu, Stefan

    2006-01-01

    We show that relativistic dynamics can be approached without using conservation laws (conservation of momentum, of energy and of the centre of mass). Our approach avoids collisions that are not easy to teach without mnemonic aids. The derivations are based on the principle of relativity and on its direct consequence, the addition law of relativistic velocities.

  12. Relativistic non-Hamiltonian mechanics

    International Nuclear Information System (INIS)

    Tarasov, Vasily E.

    2010-01-01

    Relativistic particle subjected to a general four-force is considered as a nonholonomic system. The nonholonomic constraint in four-dimensional space-time represents the relativistic invariance by the equation for four-velocity u μ u μ + c 2 = 0, where c is the speed of light in vacuum. In the general case, four-forces are non-potential, and the relativistic particle is a non-Hamiltonian system in four-dimensional pseudo-Euclidean space-time. We consider non-Hamiltonian and dissipative systems in relativistic mechanics. Covariant forms of the principle of stationary action and the Hamilton's principle for relativistic mechanics of non-Hamiltonian systems are discussed. The equivalence of these principles is considered for relativistic particles subjected to potential and non-potential forces. We note that the equations of motion which follow from the Hamilton's principle are not equivalent to the equations which follow from the variational principle of stationary action. The Hamilton's principle and the principle of stationary action are not compatible in the case of systems with nonholonomic constraint and the potential forces. The principle of stationary action for relativistic particle subjected to non-potential forces can be used if the Helmholtz conditions are satisfied. The Hamilton's principle and the principle of stationary action are equivalent only for a special class of relativistic non-Hamiltonian systems.

  13. Contraint's theory and relativistic dynamics

    International Nuclear Information System (INIS)

    Longhi, G.; Lusanna, L.

    1987-01-01

    The purpose of this Workshop was to examine the current situation of relativistic dynamics. In particular, Dirac-Bergmann's theory of constraints, which lies at the heart of gauge theories, general relativity, relativistic mechanics and string theories, was chosen as the unifying theoretical framework best suited to investigate such a field. The papers discussed were on general relativity; relativistic mechanics; particle physics and mathematical physics. Also discussed were the problems of classical and quantum level, namely the identification of the classical observables of constrained systems, the equivalence of the nonequivalence of the various ways to quantize such systems; the problem of the anomalies; the best geometrical approach to the theory of constraints; the possibility of unifying all the treatments of relativistic mechanics. This book compiles the papers presented at proceedings of relativistic dynamics and constraints theory

  14. Relativistic centrifugal instability

    Science.gov (United States)

    Gourgouliatos, Konstantinos N.; Komissarov, Serguei S.

    2018-03-01

    Near the central engine, many astrophysical jets are expected to rotate about their axis. Further out they are expected to go through the processes of reconfinement and recollimation. In both these cases, the flow streams along a concave surface and hence, it is subject to the centrifugal force. It is well known that such flows may experience the centrifugal instability (CFI), to which there are many laboratory examples. The recent computer simulations of relativistic jets from active galactic nuclei undergoing the process of reconfinement show that in such jets CFI may dominate over the Kelvin-Helmholtz instability associated with velocity shear (Gourgouliatos & Komissarov). In this letter, we generalize the Rayleigh criterion for CFI in rotating fluids to relativistic flows using a heuristic analysis. We also present the results of computer simulations which support our analytic criterion for the case of an interface separating two uniformly rotating cylindrical flows. We discuss the difference between CFI and the Rayleigh-Taylor instability in flows with curved streamlines.

  15. Relativistic heavy ion physics

    International Nuclear Information System (INIS)

    Hill, J.C.; Wohn, F.K.

    1992-01-01

    In 1992 a proposal by the Iowa State University experimental nuclear physics group entitled ''Relativistic Heavy Ion Physics'' was funded by the US Department of Energy, Office of Energy Research, for a three-year period beginning November 15, 1991. This is a progress report for the first six months of that period but, in order to give a wider perspective, we report here on progress made since the beginning of calendar year 1991. In the first section, entitled ''Purpose and Trends,'' we give some background on the recent trends in our research program and its evolution from an emphasis on nuclear structure physics to its present emphasis on relativistic heavy ion and RHIC physics. The next section, entitled, ''Physics Research Programs,'' is divided into three parts. First, we discuss our participation in the program to develop a large detector named PHENIX for the RHIC accelerator. Second, we outline progress made in the study of electromagnetic dissociation (ED). A highlight of this endeavor is experiments carried out with the 197 Au beam from the AGS accelerator in April 1991. Third, we discuss progress in completion of our nuclear structure studies. In the final section a list of publications, invited talks and contributed talks starting in 1991 is given

  16. Monomial ideals, computations and applications

    CERN Document Server

    Gimenez, Philippe; Sáenz-de-Cabezón, Eduardo

    2013-01-01

    This work covers three important aspects of monomials ideals in the three chapters "Stanley decompositions" by Jürgen Herzog, "Edge ideals" by Adam Van Tuyl and "Local cohomology" by Josep Álvarez Montaner. The chapters, written by top experts, include computer tutorials that emphasize the computational aspects of the respective areas. Monomial ideals and algebras are, in a sense, among the simplest structures in commutative algebra and the main objects of combinatorial commutative algebra. Also, they are of major importance for at least three reasons. Firstly, Gröbner basis theory allows us to treat certain problems on general polynomial ideals by means of monomial ideals. Secondly, the combinatorial structure of monomial ideals connects them to other combinatorial structures and allows us to solve problems on both sides of this correspondence using the techniques of each of the respective areas. And thirdly, the combinatorial nature of monomial ideals also makes them particularly well suited to the devel...

  17. CAFE: A NEW RELATIVISTIC MHD CODE

    Energy Technology Data Exchange (ETDEWEB)

    Lora-Clavijo, F. D.; Cruz-Osorio, A. [Instituto de Astronomía, Universidad Nacional Autónoma de México, AP 70-264, Distrito Federal 04510, México (Mexico); Guzmán, F. S., E-mail: fdlora@astro.unam.mx, E-mail: aosorio@astro.unam.mx, E-mail: guzman@ifm.umich.mx [Instituto de Física y Matemáticas, Universidad Michoacana de San Nicolás de Hidalgo. Edificio C-3, Cd. Universitaria, 58040 Morelia, Michoacán, México (Mexico)

    2015-06-22

    We introduce CAFE, a new independent code designed to solve the equations of relativistic ideal magnetohydrodynamics (RMHD) in three dimensions. We present the standard tests for an RMHD code and for the relativistic hydrodynamics regime because we have not reported them before. The tests include the one-dimensional Riemann problems related to blast waves, head-on collisions of streams, and states with transverse velocities, with and without magnetic field, which is aligned or transverse, constant or discontinuous across the initial discontinuity. Among the two-dimensional (2D) and 3D tests without magnetic field, we include the 2D Riemann problem, a one-dimensional shock tube along a diagonal, the high-speed Emery wind tunnel, the Kelvin–Helmholtz (KH) instability, a set of jets, and a 3D spherical blast wave, whereas in the presence of a magnetic field we show the magnetic rotor, the cylindrical explosion, a case of Kelvin–Helmholtz instability, and a 3D magnetic field advection loop. The code uses high-resolution shock-capturing methods, and we present the error analysis for a combination that uses the Harten, Lax, van Leer, and Einfeldt (HLLE) flux formula combined with a linear, piecewise parabolic method and fifth-order weighted essentially nonoscillatory reconstructors. We use the flux-constrained transport and the divergence cleaning methods to control the divergence-free magnetic field constraint.

  18. The influence of molecular complexity on expanding flows of ideal and dense gases

    NARCIS (Netherlands)

    Harinck, J.; Guardone, A.; Colonna, P.

    2009-01-01

    This paper presents an investigation about the effect of the complexity of a fluid molecule on the fluid dynamic quantities sound speed, velocity, and Mach number in isentropic expansions. Ideal-gas and dense-gas expansions are analyzed, using the polytropic ideal gas and Van der Waals thermodynamic

  19. Ideal thermodynamic processes of oscillatory-flow regenerative engines will go to ideal stirling cycle?

    Science.gov (United States)

    Luo, Ercang

    2012-06-01

    This paper analyzes the thermodynamic cycle of oscillating-flow regenerative machines. Unlike the classical analysis of thermodynamic textbooks, the assumptions for pistons' movement limitations are not needed and only ideal flowing and heat transfer should be maintained in our present analysis. Under such simple assumptions, the meso-scale thermodynamic cycles of each gas parcel in typical locations of a regenerator are analyzed. It is observed that the gas parcels in the regenerator undergo Lorentz cycle in different temperature levels, whereas the locus of all gas parcels inside the regenerator is the Ericson-like thermodynamic cycle. Based on this new finding, the author argued that ideal oscillating-flow machines without heat transfer and flowing losses is not the Stirling cycle. However, this new thermodynamic cycle can still achieve the same efficiency of the Carnot heat engine and can be considered a new reversible thermodynamic cycle under two constant-temperature heat sinks.

  20. Search for Exotic Strange Dibaryon in Relativistic Heavy Ion Collisions

    Institute of Scientific and Technical Information of China (English)

    GAO Chong-Shou

    2003-01-01

    The exotic strange dibaryon particle (ΩΩ)0+ with S = -6 can be produced in relativistic heavyioncollisions. The yields of this kind of exotic strange dibaryon particles can increase significantly soon as the formation ofQGP does exhibit after the collision. If there is no phase transition after the collision, the upper bound of the productionof this diomega can be estimated from the free hadronic gas model for nuclear matter. The relative yield ratio of diomegato deuteron is less than 0.000205, this means that if there is no QGP creation it is difficult to observe the production ofdiomega in relativistic heavy ion collisions.

  1. Search for Exotic Strange Dibaryon in Relativistic Heavy Ion Collisions

    Institute of Scientific and Technical Information of China (English)

    GAOChong-Shou

    2003-01-01

    The exotic strange dibaryon particle (ΩΩ)0+ with S = -6 can be produced in relativistic heavy ion collisions. The yields of this kind of exotic strange dibaryon particles can increase signitlcantly soon as the formation of QGP does exhibit after the collision. If there is no phase transition after the collision, the upper bound of the production of this diomega can be estimated from the free hadronic gas model for nuclear matter. The relative yield ratio of diomega to deuteron is less than 0.000205, this means that if there is no QGP creation it is difficult to observe the production of diomega in relativistic heavy ion collisions.

  2. Relativistic coupled-cluster calculations of 20Ne, 40Ar, 84Kr, and 129Xe: Correlation energies and dipole polarizabilities

    International Nuclear Information System (INIS)

    Mani, B. K.; Angom, D.; Latha, K. V. P.

    2009-01-01

    We have carried out a detailed and systematic study of the correlation energies of inert gas atoms Ne, Ar, Kr, and Xe using relativistic many-body perturbation theory and relativistic coupled-cluster theory. In the relativistic coupled-cluster calculations, we implement perturbative triples and include these in the correlation energy calculations. We then calculate the dipole polarizability of the ground states using perturbed coupled-cluster theory.

  3. Space Sciences and Idealism

    Science.gov (United States)

    Popov, M.

    Erwin Schrodinger suggested that " Scientific knowledge forms part of the idealistic background of human life", which exalted man from a nude and savage state to true humanity [Science and Humanism, Cambridge, 1961, p9]. Modern space sciences an space exploration are a brilliant demonstration of the validity of Schrodinger's thesis on Idealism. Moreover, Schrodingers thesis could be considered also as a basic principle for the New Educational Space Philosophical Project "TIMAEUS"."TIMAEUS" is not only an attempt to to start a new dialogue between Science, the Humanities and Religion; but also it is an origin of the cultural innovations of our so strange of globilisation. TIMAEUS, thus, can reveal Idealism as something more fundamental , more refined, more developed than is now accepted by the scientific community and the piblic. TIMAEUS has a significant cultural agenda, connected with the high orbital performance of the synthetic arts, combining a knowledge of the truly spiritual as well as the universal. In particular, classical ballet as a synthetic art can be a new and powerful perfector and re-creator of the real human, real idealistic, real complex culture in orbit. As is well known, Carlo Blasis, the most important dance theorist of the 19t h .century, made probably the first attempts to use the scientific ideas of Leonardo da Vinci and Isaac Newton for the understanding of the gravitational nature of balance and allegro in ballet. In particular Blasis's idea of the limited use of the legs in classical dance realised by the gifted pupils of Enrico Cecchetti - M.Fokine, A.Pavlova and V.Nijinsky, with thinkable purity and elegance of style. V.Nijinsky in his remarkable animation of the dance of two dimensional creatures of a Euclidean flat world (L'Apres Midi d'un Faune,1912) discovered that true classical dance has some gravitational limits. For example, Nijinsky's Faunes and Nymphs mut use running on the heels (In accordance with "Partitura" 1916); they

  4. Elementary relativistic atoms

    International Nuclear Information System (INIS)

    Nemenov, L.

    2001-01-01

    The Coulomb interaction which occurs in the final state between two particles with opposite charges allows for creation of the bound state of these particles. In the case when particles are generated with large momentum in lab frame, the Lorentz factors of the bound state will also be much larger than one. The relativistic velocity of the atoms provides the opportunity to observe bound states of (π + μ - ), (π + π - ) and (π + K - ) with a lifetime as short as 10 -16 s, and to measure their parameters. The ultrarelativistic positronium atoms (A 2e ) allow us to observe the e.ect of superpenetration in matter, to study the effects caused by the formation time of A 2e from virtual e + e - pairs and to investigate the process of transformation of two virtual particles into the bound state

  5. Photoionization at relativistic energies

    International Nuclear Information System (INIS)

    Ionescu, D.C.; Technische Univ. Dresden; Soerensen, A.H.; Belkacem, A.

    2000-11-01

    At MeV energies and beyond the inner-shell vacancy production cross section associated with the photoelectric and Compton effect decrease with increasing photon energy. However, when the photon energy exceeds twice the rest energy of the electron, ionization of a bound electron may be catalyzed by the creation of an electron-positron pair. Distinctly different from all other known mechanisms for inner-shell vacancy production by photons, we show that the cross section for this ''vacuum-assisted photoionization'' increases with increasing photon energy and then saturates. As a main result, we predict that vacuum-assisted photoionization will dominate the other known photoionization mechanisms in the highly relativistic energy regime. (orig.)

  6. Relativistic heavy ion physics

    International Nuclear Information System (INIS)

    Hill, J.C.; Wohn, F.K.

    1993-01-01

    This is a progress report for the period May 1992 through April 1993. The first section, entitled ''Purpose and Trends, gives background on the recent trends in the research program and its evolution from an emphasis on nuclear structure physics to its present emphasis on relativistic heavy ion and RHIC physics. The next section, entitled ''Physics Research Progress'', is divided into four parts: participation in the program to develop a large detector named PHENIX for the RHIC accelerator; joining E864 at the AGS accelerator and the role in that experiment; progress made in the study of electromagnetic dissociation highlight of this endeavor is an experiment carried out with the 197 Au beam from the AGS accelerator in April 1992; progress in completion of the nuclear structure studies. In the final section a list of publications, invited talks, and contributed talks is given

  7. Relativistic plasma dispersion functions

    International Nuclear Information System (INIS)

    Robinson, P.A.

    1986-01-01

    The known properties of plasma dispersion functions (PDF's) for waves in weakly relativistic, magnetized, thermal plasmas are reviewed and a large number of new results are presented. The PDF's required for the description of waves with small wave number perpendicular to the magnetic field (Dnestrovskii and Shkarofsky functions) are considered in detail; these functions also arise in certain quantum electrodynamical calculations involving strongly magnetized plasmas. Series, asymptotic series, recursion relations, integral forms, derivatives, differential equations, and approximations for these functions are discussed as are their analytic properties and connections with standard transcendental functions. In addition a more general class of PDF's relevant to waves of arbitrary perpendicular wave number is introduced and a range of properties of these functions are derived

  8. Relativistic Light Sails

    Energy Technology Data Exchange (ETDEWEB)

    Kipping, David, E-mail: dkipping@astro.columbia.edu [Department of Astronomy, Columbia University, 550 W. 120th St., New York, NY 10027 (United States)

    2017-06-01

    One proposed method for spacecraft to reach nearby stars is by accelerating sails using either solar radiation pressure or directed energy. This idea constitutes the thesis behind the Breakthrough Starshot project, which aims to accelerate a gram-mass spacecraft up to one-fifth the speed of light toward Proxima Centauri. For such a case, the combination of the sail’s low mass and relativistic velocity renders previous treatments incorrect at the 10% level, including that of Einstein himself in his seminal 1905 paper introducing special relativity. To address this, we present formulae for a sail’s acceleration, first in response to a single photon and then extended to an ensemble. We show how the sail’s motion in response to an ensemble of incident photons is equivalent to that of a single photon of energy equal to that of the ensemble. We use this principle of ensemble equivalence for both perfect and imperfect mirrors, enabling a simple analytic prediction of the sail’s velocity curve. Using our results and adopting putative parameters for Starshot , we estimate that previous relativistic treatments underestimate the spacecraft’s terminal velocity by ∼10% for the same incident energy. Additionally, we use a simple model to predict the sail’s temperature and diffraction beam losses during the laser firing period; this allows us to estimate that, for firing times of a few minutes and operating temperatures below 300°C (573 K), Starshot will require a sail that absorbs less than one in 260,000 photons.

  9. Relativistic Light Sails

    International Nuclear Information System (INIS)

    Kipping, David

    2017-01-01

    One proposed method for spacecraft to reach nearby stars is by accelerating sails using either solar radiation pressure or directed energy. This idea constitutes the thesis behind the Breakthrough Starshot project, which aims to accelerate a gram-mass spacecraft up to one-fifth the speed of light toward Proxima Centauri. For such a case, the combination of the sail’s low mass and relativistic velocity renders previous treatments incorrect at the 10% level, including that of Einstein himself in his seminal 1905 paper introducing special relativity. To address this, we present formulae for a sail’s acceleration, first in response to a single photon and then extended to an ensemble. We show how the sail’s motion in response to an ensemble of incident photons is equivalent to that of a single photon of energy equal to that of the ensemble. We use this principle of ensemble equivalence for both perfect and imperfect mirrors, enabling a simple analytic prediction of the sail’s velocity curve. Using our results and adopting putative parameters for Starshot , we estimate that previous relativistic treatments underestimate the spacecraft’s terminal velocity by ∼10% for the same incident energy. Additionally, we use a simple model to predict the sail’s temperature and diffraction beam losses during the laser firing period; this allows us to estimate that, for firing times of a few minutes and operating temperatures below 300°C (573 K), Starshot will require a sail that absorbs less than one in 260,000 photons.

  10. Rotating relativistic neutron stars

    Energy Technology Data Exchange (ETDEWEB)

    Weber, F.; Glendenning, N.K.

    1991-07-21

    Models of rotating neutron stars are constructed in the framework of Einstein's theory of general relativity. For this purpose a refined version of Hartle's method is applied. The properties of these objects, e.g. gravitational mass, equatorial and polar radius, eccentricity, red- and blueshift, quadrupole moment, are investigated for Kepler frequencies of 4000 s{sup {minus}1} {le} {Omega}{sub K} {le} 9000 s{sup {minus}1}. Therefore a self-consistency problem inherent in the determination of {Omega}{sub K} must be solved. The investigation is based on neutron star matter equations of state derived from the relativistic Martin-Schwinger hierarch of coupled Green's functions. By means of introducing the Hartree, Hartree-Fock, and ladder ({Lambda}) approximations, models of the equation of state derived. A special feature of the latter approximation scheme is the inclusion of dynamical two-particle correlations. These have been calculated from the relativistic T-matrix applying both the HEA and Bonn meson-exchange potentials of the nucleon-nucleon force. The nuclear forces of the former two treatments are those of the standard scalar-vector-isovector model of quantum hadron dynamics, with parameters adjusted to the nuclear matter data. An important aspect of this work consists in testing the compatibility of different competing models of the nuclear equation of state with data on pulsar periods. By this the fundamental problem of nuclear physics concerning the behavior of the equation of state at supernuclear densities can be treated.

  11. PHYSICAL-CONSTRAINT-PRESERVING CENTRAL DISCONTINUOUS GALERKIN METHODS FOR SPECIAL RELATIVISTIC HYDRODYNAMICS WITH A GENERAL EQUATION OF STATE

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Kailiang [School of Mathematical Sciences, Peking University, Beijing 100871 (China); Tang, Huazhong, E-mail: wukl@pku.edu.cn, E-mail: hztang@math.pku.edu.cn [HEDPS, CAPT and LMAM, School of Mathematical Sciences, Peking University, Beijing 100871 (China)

    2017-01-01

    The ideal gas equation of state (EOS) with a constant adiabatic index is a poor approximation for most relativistic astrophysical flows, although it is commonly used in relativistic hydrodynamics (RHD). This paper develops high-order accurate, physical-constraints-preserving (PCP), central, discontinuous Galerkin (DG) methods for the one- and two-dimensional special RHD equations with a general EOS. It is built on our theoretical analysis of the admissible states for RHD and the PCP limiting procedure that enforce the admissibility of central DG solutions. The convexity, scaling invariance, orthogonal invariance, and Lax–Friedrichs splitting property of the admissible state set are first proved with the aid of its equivalent form. Then, the high-order central DG methods with the PCP limiting procedure and strong stability-preserving time discretization are proved, to preserve the positivity of the density, pressure, specific internal energy, and the bound of the fluid velocity, maintain high-order accuracy, and be L {sup 1}-stable. The accuracy, robustness, and effectiveness of the proposed methods are demonstrated by several 1D and 2D numerical examples involving large Lorentz factor, strong discontinuities, or low density/pressure, etc.

  12. Relativistic gravitational potential and its relation to mass-energy

    International Nuclear Information System (INIS)

    Voracek, P.

    1979-01-01

    From the general theory of relativity a relation is deduced between the mass of a particle and the gravitational field at the position of the particle. For this purpose the fall of a particle of negligible mass in the gravitational field of a massive body is used. After establishing the relativistic potential and its relationship to the rest mass of the particle, we show, assuming conservation of mass-energy, that the difference between two potential-levels depends upon the value of the radial metric coefficient at the position of an observer. Further, it is proved that the relativistic potential is compatible with the general concept of the potential also from the standpoint of kinematics. In the third section it is shown that, although the mass-energy of a body is a function of the distance from it, this does not influence the relativistic potential of the body itself. From this conclusion it follows that the mass-energy of a particle in a gravitational field is anisotropic; isotropic is the mass only. Further, the possibility of an incidental feed-back between two masses is ruled out, and the law of the composition of the relativistic gravitational potentials is deduced. Finally, it is shown, by means of a simple model, that local inhomogeneities in the ideal fluid filling the Universe have negligible influence on the total potential in large regions. (orig.)

  13. On the injection of relativistic particles into the Crab Nebula

    International Nuclear Information System (INIS)

    Shklovskij, I.S.

    1977-01-01

    It is shown that a flux of relativistic electrons from the NP 0532 pulsar magnetosphere, responsible for its synchrotron emission, cannot provide the necessary energy pumping to the Crab Nebula. A conclusion is reached that such a pumping can be effectuated by a flow of relativistic electrons leaving the NP 0532 magnetosphere at small pitch angles and giving therefore no appreciable contribution to the synchrotron emission of the pulsar. An interpretation of the Crab Nebula synchrotron spectrum is given on the assumption of secular ''softening'' of the energy spectrum of the relativistic electrons injected into the Nebula. A possibility of explanation of the observed rapid variability of some features in the central part of the Nebula by ejection of free - neutron - rich dense gas clouds from the pulsar surface during ''starquakes'' is discussed. The clouds of rather dense (nsub(e) approximately 10 7 cm -3 ) plasma, thus formed at about 10 13 cm from pulsar, will be accelerated up to relativistic velocities by the pressure of the magneto-dipole radiation of NP 0532 and will deform the magnetic field in the inner part (R 17 cm) of the Crab Nebula, that is the cause of the variability observed. In this case, favourable conditions for the acceleration of the particles in the cloud up to relativistic energies are realized; that may be an additional source of injection

  14. Conductivity of a relativistic plasma

    Energy Technology Data Exchange (ETDEWEB)

    Braams, B.J.; Karney, C.F.F.

    1989-03-01

    The collision operator for a relativistic plasma is reformulated in terms of an expansion in spherical harmonics. This formulation is used to calculate the electrical conductivity. 13 refs., 1 fig., 1 tab.

  15. Relativistic description of atomic nuclei

    International Nuclear Information System (INIS)

    Krutov, V.A.

    1985-01-01

    Papers on the relativistic description of nuclei are reviewed. The Brown and Rho ''small'' bag'' model is accepted for hardrons. Meson exchange potentials of the nucleon-nucleon interaction have been considered. Then the transition from a system of two interacting nucleons has been performed to the relativistic nucleus description as a multinucleon system on the basis of OBEP (one-boson exchange potential). The proboem of OPEP (one-pion-exchange potential) inclusion to a relativistic scheme is discussed. Simplicity of calculations and attractiveness of the Walecka model for specific computations and calculations was noted. The relativistic model of nucleons interacting through ''effective'' scalar and vector boson fields was used in the Walacka model for describing neutronaand nuclear mater matters

  16. Conductivity of a relativistic plasma

    International Nuclear Information System (INIS)

    Braams, B.J.; Karney, C.F.F.

    1989-03-01

    The collision operator for a relativistic plasma is reformulated in terms of an expansion in spherical harmonics. This formulation is used to calculate the electrical conductivity. 13 refs., 1 fig., 1 tab

  17. Relativistic heavy-ion physics

    CERN Document Server

    Herrera Corral, G

    2010-01-01

    The study of relativistic heavy-ion collisions is an important part of the LHC research programme at CERN. This emerging field of research focuses on the study of matter under extreme conditions of temperature, density, and pressure. Here we present an introduction to the general aspects of relativistic heavy-ion physics. Afterwards we give an overview of the accelerator facility at CERN and then a quick look at the ALICE project as a dedicated experiment for heavy-ion collisions.

  18. Multiplicity fluctuations and correlations in limited momentum space bins in relativistic gases

    International Nuclear Information System (INIS)

    Hauer, Michael; Torrieri, Giorgio; Wheaton, Spencer

    2009-01-01

    Multiplicity fluctuations and correlations are calculated within thermalized relativistic ideal quantum gases. These are shown to be sensitive to the choice of statistical ensemble as well as to the choice of acceptance window in momentum space. It is furthermore shown that global conservation laws introduce nontrivial correlations between disconnected regions in momentum space, even in the absence of any dynamics.

  19. Radiation dominated relativistic current sheets

    International Nuclear Information System (INIS)

    Jaroschek, C.H.

    2008-01-01

    Relativistic Current Sheets (RCS) feature plasma instabilities considered as potential key to magnetic energy dissipation and non-thermal particle generation in Poynting flux dominated plasma flows. We show in a series of kinetic plasma simulations that the physical nature of non-linear RCS evolution changes in the presence of incoherent radiation losses: In the ultra-relativistic regime (i.e. magnetization parameter sigma = 104 defined as the ratio of magnetic to plasma rest frame energy density) the combination of non-linear RCS dynamics and synchrotron emission introduces a temperature anisotropy triggering the growth of the Relativistic Tearing Mode (RTM). As direct consequence the RTM prevails over the Relativistic Drift Kink (RDK) Mode as competitive RCS instability. This is in contrast to the previously studied situation of weakly relativistic RCS (sigma ∼ 1) where the RDK is dominant and most of the plasma is thermalized. The simulations witness the typical life cycle of ultra-relativistic RCS evolving from a violent radiation induced collapse towards a radiation quiescent state in rather classical Sweet-Parker topology. Such a transition towards Sweet-Parker configuration in the late non-linear evolution has immediate consequences for the efficiency of magnetic energy dissipation and non-thermal particle generation. Ceasing dissipation rates directly affect our present understanding of non-linear RCS evolution in conventional striped wind scenarios. (author)

  20. How to deal with relativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Hagedorn, R.

    1981-01-01

    A qualitative review is given of the theoretical problems and possibilities arising when one tries to understand what happens in relativistic heavy ion collisions. The striking similarity between these and pp collisions suggests the use of techniques similar to those used five to twelve years ago in pp collisions to disentangle collective motions from thermodynamics. A very heuristic and qualitative sketch of statistical bootstrap thermodynamics concludes an idealized picture in which a relativistic heavy ion collision appears as a superposition of moving 'fireballs' with equilibrium thermodynamics in the rest frames of these fireballs. The interesting problems arise where this theoretician's picture deviates from reality: non-equilibrium, more complicated motion (shock waves, turbulence, spin) and the collision history. Only if these problems have been solved or shown to be irrelevant can we safely identify signatures of unusual states of hadronic matter as, for example, a quark-gluon plasma or density isomers. (orig.)

  1. Relativistic theory of gravitation

    International Nuclear Information System (INIS)

    Logunov, A.A.; Mestvirishvili, M.A.

    1986-01-01

    In the present paper a relativistic theory of gravitation (RTG) is unambiguously constructed on the basis of the special relativity and geometrization principle. In this a gravitational field is treated as the Faraday--Maxwell spin-2 and spin-0 physical field possessing energy and momentum. The source of a gravitational field is the total conserved energy-momentum tensor of matter and of a gravitational field in Minkowski space. In the RTG the conservation laws are strictly fulfilled for the energy-moment and for the angular momentum of matter and a gravitational field. The theory explains the whole available set of experiments on gravity. By virtue of the geometrization principle, the Riemannian space in our theory is of field origin, since it appears as an effective force space due to the action of a gravitational field on matter. The RTG leads to an exceptionally strong prediction: The universe is not closed but just ''flat.'' This suggests that in the universe a ''missing mass'' should exist in a form of matter

  2. Relativistic theory of gravitation

    International Nuclear Information System (INIS)

    Logunov, A.A.; Mestvirishvilli, M.A.

    1985-01-01

    In the present paper a relativistic theory of gravitation (RTG) is constructed in a unique way on the basis of the special relativity and geometrization principle. In this, a gravitational field is treated as the Faraday-Maxwell spin-2 and spin-0 physical field possessing energy and momentum. The source of a gravitational field is the total conserved energy-momentum tensor of matter and of a gravitational field in Minkowski space. In the RTG, the conservation laws are strictly fulfilled for the energy-momentum and for the angular momentum of matter and a gravitational field. The theory explains the whole available set of experiments on gravitation. In virtue of the geometrization principle, the Riemannian space in our theory is of field origin, since it appears as an effective force space due to the action of a gravitational field on matter. The RTg leads to an exceptionally strong prediction: The Universe is not closed but just ''flat''. This suggests that in the Universe a ''hidden mass'' should exist in some form of matter

  3. Relativistic gravitation theory

    International Nuclear Information System (INIS)

    Logunov, A.A.; Mestvirishvili, M.A.

    1984-01-01

    On the basis of the special relativity and geometrization principle a relativistic gravitation theory (RGT) is unambiguously constructed with the help of a notion of a gravitational field as a physical field in Faraday-Maxwell spirit, which posesses energy momentum and spins 2 and 0. The source of gravitation field is a total conserved energy-momentum tensor for matter and for gravitation field in Minkowski space. In the RGT conservation laws for the energy momentum and angular momentum of matter and gravitational field hold rigorously. The theory explains the whole set of gravitation experiments. Here, due to the geometrization principle the Riemannian space is of a field origin since this space arises effectively as a result of the gravitation field origin since this space arises effectively as a result of the gravitation field action on the matter. The RGT astonishing prediction is that the Universe is not closed but ''flat''. It means that in the Universe there should exist a ''missing'' mass in some form of matter

  4. Range-separated density functional theory: A 4-component relativistic study of the rare gas dimers He{sub 2}, Ne{sub 2}, Ar{sub 2}, Kr{sub 2}, Xe{sub 2}, Rn{sub 2} and Uuo{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Kullie, Ossama [Institute de Chimie de Strasbourg, CNRS et Universite de Strasbourg, Laboratoire de Chimie Quantique, 4 rue Blaise Pascal, 67070 Strasbourg (France); Saue, Trond, E-mail: trond.saue@isamc.ups-tlse.fr [Laboratoire de Chimie et Physique Quantique (UMR 5626), CNRS/Universite de Toulouse 3 (Paul Sabatier), 118 route de Narbonne, 31062 Toulouse (France)

    2012-02-20

    Highlights: Black-Right-Pointing-Pointer First implementation of 4-component relativistic long-range MP2/short-range DFT. Black-Right-Pointing-Pointer First complete study of spectroscopic constants of the rare gas dimers He{sub 2}-Uuo{sub 2}. Black-Right-Pointing-Pointer MP2-srLDA has a performance similar to pure MP2, but the overbinding of MP2 can be tuned by the range-separation parameter. - Abstract: We report the implementation of long-range second-order Moller-Plesset perturbation theory coupled with short-range density functional theory (MP2-srDFT) based on the 4-component relativistic Dirac-Coulomb Hamiltonian. The range separation of the two-electron interaction is based on the error function, such that the long-range interaction, to be handled by wave function theory, corresponds to the potential of finite electrons with a Gaussian charge distribution. We argue that the interelectronic distance associated with the range-separation parameter should accordingly be determined from a Gaussian rather than a hard-sphere model. As a first application of our relativistic MP2-srDFT implementation we calculate spectroscopic constants of the complete series of homoatomic rare gas dimers, from helium to the superheavy element 118 and with bonding dominated by dispersion forces. We find that the MP2-srDFT method is less sensitive to the basis set quality than pure MP2, but for the heavier rare gas dimers the computational cost is approximately the same as for pure MP2 if one seeks convergence with respect to both basis set and number of correlated electrons. The inclusion of a short-range DFT contribution allows to dampen the tendency of pure MP2 to overbind the heavier dimers, but it is difficult to find an optimal range-separation parameter for the whole series of diatomics. Interestingly, MP2-srLDA shows better performance than MP2-srPBE for the selected molecules.

  5. An entropic solver for ideal Lagrangian magnetohydrodynamics

    International Nuclear Information System (INIS)

    Bezard, F.; Despres, B.

    1999-01-01

    In this paper, the authors adapt to the ideal 1D lagrangian MHD equations a class of numerical schemes of order one in time and space presented in an earlier paper and applied to the gas dynamics system. They use some properties of systems of conservation laws with zero entropy flux which describe fluid models invariant by galilean transformation and reversible for regular solutions. These numerical schemes satisfy an entropy inequality under CFL conditions. In the last section, they describe a particular scheme for the MHD equations and show with some numerical applications its robustness and accuracy. The generalization to full Eulerian multidimensional MHD will be the subject of a forthcoming paper

  6. Relativistic positioning systems: perspectives and prospects

    Science.gov (United States)

    Coll Bartolomé

    2013-11-01

    Relativistic positioning systems are interesting technical objects for applications around the Earth and in the Solar system. But above all else, they are basic scientific objects allowing developing relativity from its own concepts. Some past and future features of relativistic positioning sys- tems, with special attention to the developments that they suggest for an epistemic relativity (relativistic experimental approach to physics), are analyzed. This includes relativistic stereometry, which, together with relativistic positioning systems, allows to introduce the general relativistic notion of (finite) laboratory (space-time region able to perform experiments of finite size).

  7. PROGNOSIS OF GLEs OF RELATIVISTIC SOLAR PROTONS

    Energy Technology Data Exchange (ETDEWEB)

    Pérez-Peraza, Jorge; Juárez-Zuñiga, Alan, E-mail: perperaz@geofisica.unam.mx, E-mail: z.alan.z@hotmail.com [Instituto de Geofísica, Universidad Nacional Autónoma de México, C.U., Coyoacán, 04510, México, D.F. (Mexico)

    2015-04-10

    Ground level enhancements (GLEs) are relativistic solar particles measured at ground level by the worldwide network of cosmic ray detectors. These sporadic events are associated with solar flares and are assumed to be of a quasi-random nature. Studying them gives information about their source and propagation processes, the maximum capacity of the Sun as a particle accelerator engine, the magnetic structure of the medium traversed, etc. Space vehicles, as well as electric transformers and gas pipes at high latitudes may be damaged by this kind of radiation. As a result, their prediction has turned out to be very important, but because of their random occurrence, up to now few efforts toward this goal have been made. The results of these efforts have been limited to possible warnings in real time, just before a GLE occurrence, but no specific dates have been predicted well enough in advance to prevent possible hazards. In this study we show that, in spite of the quasi-stochastic nature of GLEs, it is possible to predict them with relative precision, even for future solar cycles. Additionally, a previous study establishing synchronization among some periodicities of several layers of solar atmosphere argues against the full randomness of the phenomenon of relativistic particle production. Therefore, by means of wavelet spectral analysis combined with fuzzy logic tools, we reproduce previous known GLE events and present results for future events. The next GLE is expected to occur in the first semester of 2016.

  8. An Ideal Integrating Bolometer Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop a novel detector to enable a new class of far-IR spectroscopic surveys.  The detector, the Ideal Integrating Bolometer (IIB) is able to...

  9. Relativistic theory of gravity

    International Nuclear Information System (INIS)

    Logunov, A.A.; Mestvirishvili, M.A.

    1985-01-01

    This work presents an unambiguous construction of the relativistic theory of gravity (RTG) in the framework of relativity and the geometrization principle. The gauge principle has been formulated, and the Lagrangian density of the gravitational field has thus been constructed. This theory explains the totality of the available experimental data on the solar system and predicts the existence of gravitational waves of the Faraday-Maxwell type. According to the RTG, the Universe is infinite and ''flat'', hence it follows that its matter density should be equal to its critical density. Therefore, an appreciable ''hidden mass'' exceeding the presently observed mass of the matter almost 40-fold should exist in the Universe in some form of the matter or other. In accordance with the RTG, a massive body having a finite density ceases to contract under gravitational forces within a finite interval of proper time. From the viewpoint of an external reference frame, the brightness of the body decreases exponentially (it is getting darker), but nothing extraordinary happens in this case because its density always remains finite and, for example, for a body with the mass of about 10 8 M 0 it is equal to 2 g/cm 3 . That is why it follows from the RTG that there could be no object whatsoever (black holes) in which gravitational collapse of matter develops to an infinite density. As has been shown, the presence of a cosmological term necessarily requires the introduction of a term with an explicit dependence on the Minkowski metrics. For the long-range gravitational forces the cosmological constant vanishes

  10. Radiatively driven relativistic spherical winds under relativistic radiative transfer

    Science.gov (United States)

    Fukue, J.

    2018-05-01

    We numerically investigate radiatively driven relativistic spherical winds from the central luminous object with mass M and luminosity L* under Newtonian gravity, special relativity, and relativistic radiative transfer. We solve both the relativistic radiative transfer equation and the relativistic hydrodynamical equations for spherically symmetric flows under the double-iteration processes, to obtain the intensity and velocity fields simultaneously. We found that the momentum-driven winds with scattering are quickly accelerated near the central object to reach the terminal speed. The results of numerical solutions are roughly fitted by a relation of \\dot{m}=0.7(Γ _*-1)\\tau _* β _* β _out^{-2.6}, where \\dot{m} is the mass-loss rate normalized by the critical one, Γ* the central luminosity normalized by the critical one, τ* the typical optical depth, β* the initial flow speed at the central core of radius R*, and βout the terminal speed normalized by the speed of light. This relation is close to the non-relativistic analytical solution, \\dot{m} = 2(Γ _*-1)\\tau _* β _* β _out^{-2}, which can be re-expressed as β _out^2/2 = (Γ _*-1)GM/c^2 R_*. That is, the present solution with small optical depth is similar to that of the radiatively driven free outflow. Furthermore, we found that the normalized luminosity (Eddington parameter) must be larger than unity for the relativistic spherical wind to blow off with intermediate or small optical depth, i.e. Γ _* ≳ \\sqrt{(1+β _out)^3/(1-β _out)}. We briefly investigate and discuss an isothermal wind.

  11. Scattering in relativistic particle mechanics

    International Nuclear Information System (INIS)

    De Bievre, S.

    1986-01-01

    The problem of direct interaction in relativistic particle mechanics has been extensively studied and a variety of models has been proposed avoiding the conclusions of the so-called no-interaction theorems. In this thesis the authors studied scattering in the relativistic two-body problem. He uses the results to analyze gauge invariance in Hamiltonian constraint models and the uniqueness of the symplectic structure in manifestly covariant relativistic particle mechanics. A general geometric framework that underlies approaches to relativistic particle mechanics is presented and the kinematic properties of the scattering transformation, i.e., those properties that arise solely from the invariance of the theory under the Poincare group are studied. The second part of the analysis of the relativistic two-body scattering problem is devoted to the dynamical properties of the scattering process. Using general geometric arguments, gauge invariance of the scattering transformation in the Todorov-Komar Hamiltonian constraint model is proved. Finally, quantization of the models is discussed

  12. Scale-relativistic cosmology

    International Nuclear Information System (INIS)

    Nottale, Laurent

    2003-01-01

    The principle of relativity, when it is applied to scale transformations, leads to the suggestion of a generalization of fundamental dilations laws. These new special scale-relativistic resolution transformations involve log-Lorentz factors and lead to the occurrence of a minimal and of a maximal length-scale in nature, which are invariant under dilations. The minimal length-scale, that replaces the zero from the viewpoint of its physical properties, is identified with the Planck length l P , and the maximal scale, that replaces infinity, is identified with the cosmic scale L=Λ -1/2 , where Λ is the cosmological constant.The new interpretation of the Planck scale has several implications for the structure and history of the early Universe: we consider the questions of the origin, of the status of physical laws at very early times, of the horizon/causality problem and of fluctuations at recombination epoch.The new interpretation of the cosmic scale has consequences for our knowledge of the present universe, concerning in particular Mach's principle, the large number coincidence, the problem of the vacuum energy density, the nature and the value of the cosmological constant. The value (theoretically predicted ten years ago) of the scaled cosmological constant Ω Λ =0.75+/-0.15 is now supported by several different experiments (Hubble diagram of Supernovae, Boomerang measurements, gravitational lensing by clusters of galaxies).The scale-relativity framework also allows one to suggest a solution to the missing mass problem, and to make theoretical predictions of fundamental energy scales, thanks to the interpretation of new structures in scale space: fractal/classical transitions as Compton lengths, mass-coupling relations and critical value 4π 2 of inverse couplings. Among them, we find a structure at 3.27+/-0.26x10 20 eV, which agrees closely with the observed highest energy cosmic rays at 3.2+/-0.9x10 20 eV, and another at 5.3x10 -3 eV, which corresponds to the

  13. SPECIAL RELATIVISTIC HYDRODYNAMICS WITH GRAVITATION

    Energy Technology Data Exchange (ETDEWEB)

    Hwang, Jai-chan [Department of Astronomy and Atmospheric Sciences, Kyungpook National University, Daegu (Korea, Republic of); Noh, Hyerim [Korea Astronomy and Space Science Institute, Daejon (Korea, Republic of)

    2016-12-20

    Special relativistic hydrodynamics with weak gravity has hitherto been unknown in the literature. Whether such an asymmetric combination is possible has been unclear. Here, the hydrodynamic equations with Poisson-type gravity, considering fully relativistic velocity and pressure under the weak gravity and the action-at-a-distance limit, are consistently derived from Einstein’s theory of general relativity. An analysis is made in the maximal slicing, where the Poisson’s equation becomes much simpler than our previous study in the zero-shear gauge. Also presented is the hydrodynamic equations in the first post-Newtonian approximation, now under the general hypersurface condition. Our formulation includes the anisotropic stress.

  14. Methods in relativistic nuclear physics

    International Nuclear Information System (INIS)

    Danos, M.; Gillet, V.; Cauvin, M.

    1984-01-01

    This book is intended to provide the methods and tools for performing actual calculations for finite many-body systems of bound relativistic constituent particles. The aim is to cover thoroughly the methodological aspects of the relativistic many-body problem for bound states while avoiding the presentation of specific models. The many examples contained in the later part of the work are meant to give concrete illustrations of how to actually apply the methods which are given in the first part. The basic framework of the approach is the lagrangian field theory solved in the time-independent Schroedinger picture. (Auth.)

  15. Frontiers in relativistic celestial mechanics

    CERN Document Server

    2014-01-01

    Relativistic celestial mechanics – investigating the motion celestial bodies under the influence of general relativity – is a major tool of modern experimental gravitational physics. With a wide range of prominent authors from the field, this two-volume series consists of reviews on a multitude of advanced topics in the area of relativistic celestial mechanics – starting from more classical topics such as the regime of asymptotically-flat spacetime, light propagation and celestial ephemerides, but also including its role in cosmology and alternative theories of gravity as well as modern experiments in this area.

  16. Multiwavelength Observations of Relativistic Jets from General Relativistic Magnetohydrodynamic Simulations

    Directory of Open Access Journals (Sweden)

    Richard Anantua

    2018-03-01

    Full Text Available This work summarizes a program intended to unify three burgeoning branches of the high-energy astrophysics of relativistic jets: general relativistic magnetohydrodynamic (GRMHD simulations of ever-increasing dynamical range, the microphysical theory of particle acceleration under relativistic conditions, and multiwavelength observations resolving ever-decreasing spatiotemporal scales. The process, which involves converting simulation output into time series of images and polarization maps that can be directly compared to observations, is performed by (1 self-consistently prescribing models for emission, absorption, and particle acceleration and (2 performing time-dependent polarized radiative transfer. M87 serves as an exemplary prototype for this investigation due to its prominent and well-studied jet and the imminent prospect of learning much more from Event Horizon Telescope (EHT observations this year. Synthetic observations can be directly compared with real observations for observational signatures such as jet instabilities, collimation, relativistic beaming, and polarization. The simplest models described adopt the standard equipartition hypothesis; other models calculate emission by relating it to current density or shear. These models are intended for application to the radio jet instead of the higher frequency emission, the disk and the wind, which will be subjects of future investigations.

  17. Apparent unambiguousness of relativistic time dilation

    International Nuclear Information System (INIS)

    Strel'tsov, V.N.

    1992-01-01

    It is indicated on the definite analogy between the dependence of visible sizes of relativistic objects and period of the wave, emitted by the moving source from the observation conditions ('retradition factor'). It is noted that the definition of time for moving extended objects, led to relativistic dilation, corresponds to the definition of the relativistic (radar) length led to the 'elongation formula'. 10 refs

  18. Relativistic generalization of strong plasma turbulence

    International Nuclear Information System (INIS)

    Chian, A.C.-L.

    1982-01-01

    Two fundamental electrostatic modes of an unmagnetized plasma, namely, ion acoustic mode and Langumir mode are studied. Previous theories are generalized to include the effect of relativistic mass variations. The existence of relativistic ion acoustic solitons is demonstrated. In addition, it is shown that simple, relativistic Langumir solitons do not exist in a infinite plasma. (L.C.) [pt

  19. Quantum gates via relativistic remote control

    Energy Technology Data Exchange (ETDEWEB)

    Martín-Martínez, Eduardo, E-mail: emartinm@uwaterloo.ca [Institute for Quantum Computing, University of Waterloo, Waterloo, Ontario, N2L 3G1 (Canada); Dept. Applied Math., University of Waterloo, Ontario, N2L 3G1 (Canada); Perimeter Institute for Theoretical Physics, Waterloo, Ontario N2L 2Y5 (Canada); Sutherland, Chris [Institute for Quantum Computing, University of Waterloo, Waterloo, Ontario, N2L 3G1 (Canada)

    2014-12-12

    We harness relativistic effects to gain quantum control on a stationary qubit in an optical cavity by controlling the non-inertial motion of a different probe atom. Furthermore, we show that by considering relativistic trajectories of the probe, we enhance the efficiency of the quantum control. We explore the possible use of these relativistic techniques to build 1-qubit quantum gates.

  20. Evaluating results from the Relativistic Heavy Ion Collider with perturbative QCD and hydrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Fries, R.J.; Nonaka, C.

    2011-07-01

    We review the basic concepts of perturbative quantum chromodynamics (QCD) and relativistic hydrodynamics, and their applications to hadron production in high energy nuclear collisions. We discuss results from the Relativistic Heavy Ion Collider (RHIC) in light of these theoretical approaches. Perturbative QCD and hydrodynamics together explain a large amount of experimental data gathered during the first decade of RHIC running, although some questions remain open. We focus primarily on practical aspects of the calculations, covering basic topics like perturbation theory, initial state nuclear effects, jet quenching models, ideal hydrodynamics, dissipative corrections, freeze-out and initial conditions. We conclude by comparing key results from RHIC to calculations.

  1. Idealism and materialism in perception.

    Science.gov (United States)

    Rose, David; Brown, Dora

    2015-01-01

    Koenderink (2014, Perception, 43, 1-6) has said most Perception readers are deluded, because they believe an 'All Seeing Eye' observes an objective reality. We trace the source of Koenderink's assertion to his metaphysical idealism, and point to two major weaknesses in his position-namely, its dualism and foundationalism. We counter with arguments from modern philosophy of science for the existence of an objective material reality, contrast Koenderink's enactivism to his idealism, and point to ways in which phenomenology and cognitive science are complementary and not mutually exclusive.

  2. Fusion rings and fusion ideals

    DEFF Research Database (Denmark)

    Andersen, Troels Bak

    by the so-called fusion ideals. The fusion rings of Wess-Zumino-Witten models have been widely studied and are well understood in terms of precise combinatorial descriptions and explicit generating sets of the fusion ideals. They also appear in another, more general, setting via tilting modules for quantum......This dissertation investigates fusion rings, which are Grothendieck groups of rigid, monoidal, semisimple, abelian categories. Special interest is in rational fusion rings, i.e., fusion rings which admit a finite basis, for as commutative rings they may be presented as quotients of polynomial rings...

  3. Tensor norms and operator ideals

    CERN Document Server

    Defant, A; Floret, K

    1992-01-01

    The three chapters of this book are entitled Basic Concepts, Tensor Norms, and Special Topics. The first may serve as part of an introductory course in Functional Analysis since it shows the powerful use of the projective and injective tensor norms, as well as the basics of the theory of operator ideals. The second chapter is the main part of the book: it presents the theory of tensor norms as designed by Grothendieck in the Resumé and deals with the relation between tensor norms and operator ideals. The last chapter deals with special questions. Each section is accompanied by a series of exer

  4. Cyberinfrastructure for Computational Relativistic Astrophysics

    OpenAIRE

    Ott, Christian

    2012-01-01

    Poster presented at the NSF Office of Cyberinfrastructure CyberBridges CAREER PI workshop. This poster discusses the computational challenges involved in the modeling of complex relativistic astrophysical systems. The Einstein Toolkit is introduced. It is an open-source community infrastructure for numerical relativity and computational astrophysics.

  5. Future relativistic heavy ion experiments

    International Nuclear Information System (INIS)

    Pugh, H.G.

    1980-12-01

    Equations of state for nuclear matter and ongoing experimental studies are discussed. Relativistic heavy ion physics is the only opportunity to study in the laboratory the properties of extended multiquark systems under conditions such that quarks might run together into new arrangements previously unobserved. Several lines of further study are mentioned

  6. A relativistic radiation transfer benchmark

    International Nuclear Information System (INIS)

    Munier, A.

    1988-01-01

    We use the integral form of the radiation transfer equation in an one dimensional slab to determine the time-dependent propagation of the radiation energy, flux and pressure in a collisionless homogeneous medium. First order v/c relativistic terms are included and the solution is given in the fluid frame and the laboratory frame

  7. Relativistic models of nuclear structure

    International Nuclear Information System (INIS)

    Gillet, V.; Kim, E.J.; Cauvin, M.; Kohmura, T.; Ohnaka, S.

    1991-01-01

    The introduction of the relativistic field formalism for the description of nuclear structure has improved our understanding of fundamental nuclear mechanisms such as saturation or many body forces. We discuss some of these progresses, both in the semi-classical mean field approximation and in a quantized meson field approach. (author)

  8. Fundamental length and relativistic length

    International Nuclear Information System (INIS)

    Strel'tsov, V.N.

    1988-01-01

    It si noted that the introduction of fundamental length contradicts the conventional representations concerning the contraction of the longitudinal size of fast-moving objects. The use of the concept of relativistic length and the following ''elongation formula'' permits one to solve this problem

  9. Relativistic Descriptions of Few-Body Systems

    International Nuclear Information System (INIS)

    Karmanov, V. A.

    2011-01-01

    A brief review of relativistic effects in few-body systems, of theoretical approaches, recent developments and applications is given. Manifestations of relativistic effects in the binding energies, in the electromagnetic form factors and in three-body observables are demonstrated. The three-body forces of relativistic origin are also discussed. We conclude that relativistic effects in nuclei can be important in spite of small binding energy. At high momenta they clearly manifest themselves and are necessary to describe the deuteron e.m. form factors. At the same time, there is still a discrepancy in three-body observables which might be a result of less clarity in understanding the corresponding relativistic effects, the relativistic NN kernel and the three-body forces. Relativistic few-body physics remains to be a field of very intensive and fruitful researches. (author)

  10. Relativistic positioning in Schwarzschild space-time

    International Nuclear Information System (INIS)

    Puchades, Neus; Sáez, Diego

    2015-01-01

    In the Schwarzschild space-time created by an idealized static spherically symmetric Earth, two approaches -based on relativistic positioning- may be used to estimate the user position from the proper times broadcast by four satellites. In the first approach, satellites move in the Schwarzschild space-time and the photons emitted by the satellites follow null geodesics of the Minkowski space-time asymptotic to the Schwarzschild geometry. This assumption leads to positioning errors since the photon world lines are not geodesics of any Minkowski geometry. In the second approach -the most coherent one- satellites and photons move in the Schwarzschild space-time. This approach is a first order one in the dimensionless parameter GM/R (with the speed of light c=1). The two approaches give different inertial coordinates for a given user. The differences are estimated and appropriately represented for users located inside a great region surrounding Earth. The resulting values (errors) are small enough to justify the use of the first approach, which is the simplest and the most manageable one. The satellite evolution mimics that of the GALILEO global navigation satellite system. (paper)

  11. Kelvin Equation for a Non-Ideal Multicomponent Mixture

    DEFF Research Database (Denmark)

    Shapiro, Alexander; Stenby, Erling Halfdan

    1997-01-01

    The Kelvin equation is generalized by application to a case of a multicomponent non-ideal mixture. Such a generalization is necessary in order to describe the two-phase equilibrium in a capillary medium with respect to both normal and retrograde condensation. The equation obtained is applied...... to the equilibrium state of a hydrocarbon mixture ina gas-condensate reservoir....

  12. Construction of a Roe linearization for the ideal MHD equations

    International Nuclear Information System (INIS)

    Cargo, P.; Gallice, G.; Raviart, P.A.

    1996-01-01

    In [3], Munz has constructed a Roe linearization for the equations of gas dynamics in Lagrangian coordinates. We extend this construction to the case of the ideal magnetohydrodynamics equations again in Lagrangian coordinates. As a consequence we obtain a Roe linearization for the MHD equations in Eulerian coordinates. (author)

  13. Graham's law of diffusion: Quantum analogy and non-ideality

    Indian Academy of Sciences (India)

    Administrator

    Dedicated to the memory of the late Professor S K Rangarajan ... Abstract. We focus attention on two equivalent forms of Graham's law of diffusion that is valid for an ideal gas ... to be too slow to affect the equilibrium distribution. Secondly, we ...

  14. Ideals in algebras of unbounded operators

    International Nuclear Information System (INIS)

    Timmermann, W.

    1977-01-01

    The paper presents a continuation of investigations on ideals in algebras of unbounded operators. A general procedure is given to get ideals in L + (D) starting with ideals in B(H). A definition of the two types of ideals is given: one contains only bounded operators, the other involves both bounded and unbounded operators. Some algebraic properties of ideals Ssub(phi)(D) derived from the well-known symmetrically normed ideals Ssub(phi) are investigated. Topologies in such ideals are introduced, and some results connected with topological properties of these ideals are given

  15. Notes on nonlocal projective measurements in relativistic systems

    International Nuclear Information System (INIS)

    Lin, Shih-Yuin

    2014-01-01

    In quantum mechanical bipartite systems, naive extensions of von Neumann’s projective measurement to nonlocal variables can produce superluminal signals and thus violate causality. We analyze the projective quantum nondemolition state-verification in a two-spin system and see how the projection introduces nonlocality without entanglement. For the ideal measurements of “R-nonlocal” variables, we argue that causality violation can be resolved by introducing further restrictions on the post-measurement states, which makes the measurement “Q-nonlocal”. After we generalize these ideas to quantum mechanical harmonic oscillators, we look into the projective measurements of the particle number of a single mode or a wave-packet of a relativistic quantum field in Minkowski space. It turns out that the causality-violating terms in the expectation values of the local operators, generated either by the ideal measurement of the “R-nonlocal” variable or the quantum nondemolition verification of a Fock state, are all suppressed by the IR and UV cutoffs of the theory. Thus relativistic quantum field theories with such projective measurements are effectively causal

  16. Recent development of relativistic molecular theory

    International Nuclear Information System (INIS)

    Takahito, Nakajima; Kimihiko, Hirao

    2005-01-01

    Today it is common knowledge that relativistic effects are important in the heavy-element chemistry. The continuing development of the relativistic molecular theory is opening up rows of the periodic table that are impossible to treat with the non-relativistic approach. The most straightforward way to treat relativistic effects on heavy-element systems is to use the four-component Dirac-Hartree-Fock approach and its electron-correlation methods based on the Dirac-Coulomb(-Breit) Hamiltonian. The Dirac-Hartree-Fock (DHF) or Dirac-Kohn-Sham (DKS) equation with the four-component spinors composed of the large- and small-components demands severe computational efforts to solve, and its applications to molecules including heavy elements have been limited to small- to medium-size systems. Recently, we have developed a very efficient algorithm for the four-component DHF and DKS approaches. As an alternative approach, several quasi-relativistic approximations have also been proposed instead of explicitly solving the four-component relativistic equation. We have developed the relativistic elimination of small components (RESC) and higher-order Douglas-Kroll (DK) Hamiltonians within the framework of the two-component quasi-relativistic approach. The developing four-component relativistic and approximate quasi-relativistic methods have been implemented into a program suite named REL4D. In this article, we will introduce the efficient relativistic molecular theories to treat heavy-atomic molecular systems accurately via the four-component relativistic and the two-component quasi-relativistic approaches. We will also show several chemical applications including heavy-element systems with our relativistic molecular approaches. (author)

  17. Relativistic electron Wigner crystal formation in a cavity for electron acceleration

    CERN Document Server

    Thomas, Johannes; Pukhov, Alexander

    2014-01-01

    It is known that a gas of electrons in a uniform neutralizing background can crystallize and form a lattice if the electron density is less than a critical value. This crystallization may have two- or three-dimensional structure. Since the wake field potential in the highly-nonlinear-broken-wave regime (bubble regime) has the form of a cavity where the background electrons are evacuated from and only the positively charged ions remain, it is suited for crystallization of trapped and accelerated electron bunch. However, in this case, the crystal is moving relativistically and shows new three-dimensional structures that we call relativistic Wigner crystals. We analyze these structures using a relativistic Hamiltonian approach. We also check for stability and phase transitions of the relativistic Wigner crystals.

  18. grim: A Flexible, Conservative Scheme for Relativistic Fluid Theories

    Energy Technology Data Exchange (ETDEWEB)

    Chandra, Mani; Gammie, Charles F. [Department of Astronomy, University of Illinois, 1110 West Green Street, Urbana, IL, 61801 (United States); Foucart, Francois, E-mail: manic@illinois.edu, E-mail: gammie@illinois.edu, E-mail: fvfoucart@lbl.gov [Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States)

    2017-03-01

    Hot, diffuse, relativistic plasmas such as sub-Eddington black-hole accretion flows are expected to be collisionless, yet are commonly modeled as a fluid using ideal general relativistic magnetohydrodynamics (GRMHD). Dissipative effects such as heat conduction and viscosity can be important in a collisionless plasma and will potentially alter the dynamics and radiative properties of the flow from that in ideal fluid models; we refer to models that include these processes as Extended GRMHD. Here we describe a new conservative code, grim, that enables all of the above and additional physics to be efficiently incorporated. grim combines time evolution and primitive variable inversion needed for conservative schemes into a single step using an algorithm that only requires the residuals of the governing equations as inputs. This algorithm enables the code to be physics agnostic as well as flexibility regarding time-stepping schemes. grim runs on CPUs, as well as on GPUs, using the same code. We formulate a performance model and use it to show that our implementation runs optimally on both architectures. grim correctly captures classical GRMHD test problems as well as a new suite of linear and nonlinear test problems with anisotropic conduction and viscosity in special and general relativity. As tests and example applications, we resolve the shock substructure due to the presence of dissipation, and report on relativistic versions of the magneto-thermal instability and heat flux driven buoyancy instability, which arise due to anisotropic heat conduction, and of the firehose instability, which occurs due to anisotropic pressure (i.e., viscosity). Finally, we show an example integration of an accretion flow around a Kerr black hole, using Extended GRMHD.

  19. Relativistic quantum mechanics an introduction to relativistic quantum fields

    CERN Document Server

    Maiani, Luciano

    2016-01-01

    Written by two of the world's leading experts on particle physics and the standard model - including an award-winning former Director General of CERN - this textbook provides a completely up-to-date account of relativistic quantum mechanics and quantum field theory. It describes the formal and phenomenological aspects of the standard model of particle physics, and is suitable for advanced undergraduate and graduate students studying both theoretical and experimental physics.

  20. Calculation of relativistic and isotope shifts in Mg I

    International Nuclear Information System (INIS)

    Berengut, J.C.; Flambaum, V.V.; Kozlov, M.G.

    2005-01-01

    We present an ab initio method of calculation of the isotope and relativistic shifts in atoms with a few valence electrons. It is based on an energy calculation involving the combination of the configuration-interaction method and many-body perturbation theory. This work is motivated by analyses of quasar absorption spectra that suggest that the fine-structure constant α was smaller at an early epoch. Relativistic shifts are needed to measure this variation of α, while isotope shifts are needed to resolve systematic effects in this study. The isotope shifts can also be used to measure isotopic abundances in gas clouds in the early universe, which are needed to study nuclear reactions in stars and supernovae and test models of chemical evolution. This paper shows that the isotope shift in magnesium can be calculated to very high precision using our method

  1. Transition in the equilibrium distribution function of relativistic particles.

    Science.gov (United States)

    Mendoza, M; Araújo, N A M; Succi, S; Herrmann, H J

    2012-01-01

    We analyze a transition from single peaked to bimodal velocity distribution in a relativistic fluid under increasing temperature, in contrast with a non-relativistic gas, where only a monotonic broadening of the bell-shaped distribution is observed. Such transition results from the interplay between the raise in thermal energy and the constraint of maximum velocity imposed by the speed of light. We study the Bose-Einstein, the Fermi-Dirac, and the Maxwell-Jüttner distributions, and show that they all exhibit the same qualitative behavior. We characterize the nature of the transition in the framework of critical phenomena and show that it is either continuous or discontinuous, depending on the group velocity. We analyze the transition in one, two, and three dimensions, with special emphasis on twodimensions, for which a possible experiment in graphene, based on the measurement of the Johnson-Nyquist noise, is proposed.

  2. Heavy flavours in ultra-relativistic heavy ions collisions

    International Nuclear Information System (INIS)

    Rosnet, Ph.

    2008-01-01

    The ultra-relativistic collisions of heavy ions are the today's only means to tackle in laboratory conditions the phase diagram in quantum chromodynamics and the strong interaction. The most recent theoretical studies predict a phase transition between the cold nuclear matter (a hadronic gas) and a plasma of quarks and gluons. Heavy flavour can characterize the nuclear matter produced in a heavy ion collision as well as its spatial-temporal evolution. Their study can be made through their decay into muons. The first part of this work presents the issue of ultra-relativistic heavy ion collisions and the role of heavy flavours. In the second part the author reviews the results of experiments performed at RHIC and particularly presents the analysis of the mass spectrum of dimuons in the Phenix experiment. The third part describes the muon trigger system of the Alice experiment at CERN and the expected performances for the study of di-muons

  3. Smoothness in Binomial Edge Ideals

    Directory of Open Access Journals (Sweden)

    Hamid Damadi

    2016-06-01

    Full Text Available In this paper we study some geometric properties of the algebraic set associated to the binomial edge ideal of a graph. We study the singularity and smoothness of the algebraic set associated to the binomial edge ideal of a graph. Some of these algebraic sets are irreducible and some of them are reducible. If every irreducible component of the algebraic set is smooth we call the graph an edge smooth graph, otherwise it is called an edge singular graph. We show that complete graphs are edge smooth and introduce two conditions such that the graph G is edge singular if and only if it satisfies these conditions. Then, it is shown that cycles and most of trees are edge singular. In addition, it is proved that complete bipartite graphs are edge smooth.

  4. The Ideal of Moral Autonomy

    Directory of Open Access Journals (Sweden)

    Ricardo Marquisio Aguirre

    2017-10-01

    Full Text Available Some elements of the ideal of moral autonomy are discussed in this paper. Such ideal is a key assumption in social practices focused on normative imputation, particularly morality and law. First, a constructivist conception of normativity is introduced, taking reasons as an essential and non-reducible element, and focused on the conceptual features of moral reasons within the normative domain. Then, an idea of moral autonomy based on the self-constitution is developed including three key features: the possibility of responding to reasons based on shared social expectations; the responsibility for certain scope of actions, according to a set of reasons available to the individual and to their maximum extent of expansion; and the need to preserve autonomy as a purpose unifying the set of autonomous actions of moral agents.

  5. Intense relativistic electron beam: generation and propagation

    International Nuclear Information System (INIS)

    Mittal, K.C.; Mondal, J.

    2010-01-01

    A general review of relativistic electron beam extracted from explosive field emission diode has been presented here. The beam current in the diode gap taking into account cathode and anode plasma expansion velocity and excluding the self magnetic field effect is directly proportional to gap voltage V 3/2 and inversely proportional to the square of the effective diode gap (d-vt). In the limit of high current, self magnetic field focusing effect comes into play and results in a critical current at which pinching will take place. When the diode current exceeds the critical current, the electron flow is in the para-potential regime. Different diode geometries such as planner, coaxial, rod-pinched, reflex triode are discussed qualitatively. When the beam is injected into a vacuum drift tube the propagation of the beam is only possible in presence of a strong axial magnetic field which prevents the beam expansion in the radial direction. If the beam is injected in the drift tube filled with dense plasma, then the redistribution of the plasma electrons effectively neutralizes the beam space charge, resulting subsequent propagation of the beam along the drift tube. The beam propagation through neutral gas is similar to the plasma filled drift tube. In this case both the neutral gas pressure and the beam current regulate the transmission of the REB. (author)

  6. Relativistic quantum mechanics of bosons

    International Nuclear Information System (INIS)

    Ghose, P.; Home, D.; Sinha Roy, M.N.

    1993-01-01

    We show that it is possible to use the Klein-Gordon, Proca and Maxwell formulations to construct multi-component relativistic configuration space wavefunctions of spin-0 and spin-1 bosons in an external field. These wavefunctions satisfy the first-order Kemmer-Duffin equation. The crucial ingredient is the use of the future-causal normal n μ (n μ n μ =1, n 0 >0) to the space-like hypersurfaces foliating space-time, inherent in the concept of a relativistic wavefunction, to construct a conserved future-causal probability current four-vector from the second-rank energy-momentum tensor, following Holland's prescription. The existence of a Hermitian position operator, localized solutions, compatibility with the second quantized theories and the question of interpretation are discussed. (orig.)

  7. Kinetic approach to relativistic dissipation

    Science.gov (United States)

    Gabbana, A.; Mendoza, M.; Succi, S.; Tripiccione, R.

    2017-08-01

    Despite a long record of intense effort, the basic mechanisms by which dissipation emerges from the microscopic dynamics of a relativistic fluid still elude complete understanding. In particular, several details must still be finalized in the pathway from kinetic theory to hydrodynamics mainly in the derivation of the values of the transport coefficients. In this paper, we approach the problem by matching data from lattice-kinetic simulations with analytical predictions. Our numerical results provide neat evidence in favor of the Chapman-Enskog [The Mathematical Theory of Non-Uniform Gases, 3rd ed. (Cambridge University Press, Cambridge, U.K., 1970)] procedure as suggested by recent theoretical analyses along with qualitative hints at the basic reasons why the Chapman-Enskog expansion might be better suited than Grad's method [Commun. Pure Appl. Math. 2, 331 (1949), 10.1002/cpa.3160020403] to capture the emergence of dissipative effects in relativistic fluids.

  8. Relativistic electron beams above thunderclouds

    DEFF Research Database (Denmark)

    Füellekrug, M.; Roussel-Dupre, R.; Symbalisty, E. M. D.

    2011-01-01

    Non-luminous relativistic electron beams above thunderclouds have been detected by the radio signals of low frequency similar to 40-400 kHz which they radiate. The electron beams occur similar to 2-9 ms after positive cloud-to-ground lightning discharges at heights between similar to 22-72 km above...... thunderclouds. Intense positive lightning discharges can also cause sprites which occur either above or prior to the electron beam. One electron beam was detected without any luminous sprite which suggests that electron beams may also occur independently of sprites. Numerical simulations show that beams...... of electrons partially discharge the lightning electric field above thunderclouds and thereby gain a mean energy of similar to 7MeV to transport a total charge of similar to-10mC upwards. The impulsive current similar to 3 x 10(-3) Am-2 associated with relativistic electron beams above thunderclouds...

  9. The relativistic electron wave equation

    International Nuclear Information System (INIS)

    Dirac, P.A.M.

    1977-08-01

    The paper was presented at the European Conference on Particle Physics held in Budapest between the 4th and 9th July of 1977. A short review is given on the birth of the relativistic electron wave equation. After Schroedinger has shown the equivalence of his wave mechanics and the matrix mechanics of Heisenberg, a general transformation theory was developed by the author. This theory required a relativistic wave equation linear in delta/delta t. As the Klein--Gordon equation available at this time did not satisfy this condition the development of a new equation became necessary. The equation which was found gave the value of the electron spin and magnetic moment automatically. (D.P.)

  10. Diffraction radiation from relativistic particles

    CERN Document Server

    Potylitsyn, Alexander Petrovich; Strikhanov, Mikhail Nikolaevich; Tishchenko, Alexey Alexandrovich

    2010-01-01

    This book deals with diffraction radiation, which implies the boundary problems of electromagnetic radiation theory. Diffraction radiation is generated when a charged particle moves in a vacuum near a target edge. Diffraction radiation of non-relativistic particles is widely used to design intense emitters in the cm wavelength range. Diffraction radiation from relativistic charged particles is important for noninvasive beam diagnostics and design of free electron lasers based on Smith-Purcell radiation which is diffraction radiation from periodic structures. Different analytical models of diffraction radiation and results of recent experimental studies are presented in this book. The book may also serve as guide to classical electrodynamics applications in beam physics and electrodynamics. It can be of great use for young researchers to develop skills and for experienced scientists to obtain new results.

  11. Volatility smile as relativistic effect

    Science.gov (United States)

    Kakushadze, Zura

    2017-06-01

    We give an explicit formula for the probability distribution based on a relativistic extension of Brownian motion. The distribution (1) is properly normalized and (2) obeys the tower law (semigroup property), so we can construct martingales and self-financing hedging strategies and price claims (options). This model is a 1-constant-parameter extension of the Black-Scholes-Merton model. The new parameter is the analog of the speed of light in Special Relativity. However, in the financial context there is no ;speed limit; and the new parameter has the meaning of a characteristic diffusion speed at which relativistic effects become important and lead to a much softer asymptotic behavior, i.e., fat tails, giving rise to volatility smiles. We argue that a nonlocal stochastic description of such (Lévy) processes is inadequate and discuss a local description from physics. The presentation is intended to be pedagogical.

  12. Double Relativistic Electron Accelerating Mirror

    Directory of Open Access Journals (Sweden)

    Saltanat Sadykova

    2013-02-01

    Full Text Available In the present paper, the possibility of generation of thin dense relativistic electron layers is shown using the analytical and numerical modeling of laser pulse interaction with ultra-thin layers. It was shown that the maximum electron energy can be gained by optimal tuning between the target width, intensity and laser pulse duration. The optimal parameters were obtained from a self-consistent system of Maxwell equations and the equation of motion of electron layer. For thin relativistic electron layers, the gaining of maximum electron energies requires a second additional overdense plasma layer, thus cutting the laser radiation off the plasma screen at the instant of gaining the maximum energy (DREAM-schema.

  13. Diffraction radiation from relativistic particles

    International Nuclear Information System (INIS)

    Potylitsyn, Alexander Petrovich; Ryazanov, Mikhail Ivanovich; Strikhanov, Mikhail Nikolaevich; Tishchenko, Alexey Alexandrovich

    2010-01-01

    This book deals with diffraction radiation, which implies the boundary problems of electromagnetic radiation theory. Diffraction radiation is generated when a charged particle moves in a vacuum near a target edge. Diffraction radiation of non-relativistic particles is widely used to design intense emitters in the cm wavelength range. Diffraction radiation from relativistic charged particles is important for noninvasive beam diagnostics and design of free electron lasers based on Smith-Purcell radiation which is diffraction radiation from periodic structures. Different analytical models of diffraction radiation and results of recent experimental studies are presented in this book. The book may also serve as guide to classical electrodynamics applications in beam physics and electrodynamics. It can be of great use for young researchers to develop skills and for experienced scientists to obtain new results. (orig.)

  14. Complex Neutrosophic Subsemigroups and Ideals

    Directory of Open Access Journals (Sweden)

    Muhammad Gulistan

    2018-01-01

    Full Text Available In this article we study the idea of complex neutrosophic subsemigroups. We define the Cartesian product of complex neutrosophic subsemigroups, give some examples and study some of its related results. We also define complex neutrosophic (left, right, interior ideal in semigroup. Furthermore, we introduce the concept of characteristic function of complex neutrosophic sets, direct product of complex neutrosophic sets and study some results prove on its.

  15. Strong Ideal Convergence in Probabilistic Metric Spaces

    Indian Academy of Sciences (India)

    In the present paper we introduce the concepts of strongly ideal convergent sequence and strong ideal Cauchy sequence in a probabilistic metric (PM) space endowed with the strong topology, and establish some basic facts. Next, we define the strong ideal limit points and the strong ideal cluster points of a sequence in this ...

  16. Asymptotics of relativistic spin networks

    International Nuclear Information System (INIS)

    Barrett, John W; Steele, Christopher M

    2003-01-01

    The stationary phase technique is used to calculate asymptotic formulae for SO(4) relativistic spin networks. For the tetrahedral spin network this gives the square of the Ponzano-Regge asymptotic formula for the SU(2) 6j-symbol. For the 4-simplex (10j-symbol) the asymptotic formula is compared with numerical calculations of the spin network evaluation. Finally, we discuss the asymptotics of the SO(3, 1) 10j-symbol

  17. Analytic approaches to relativistic hydrodynamics

    Energy Technology Data Exchange (ETDEWEB)

    Hatta, Yoshitaka

    2016-12-15

    I summarize our recent work towards finding and utilizing analytic solutions of relativistic hydrodynamic. In the first part I discuss various exact solutions of the second-order conformal hydrodynamics. In the second part I compute flow harmonics v{sub n} analytically using the anisotropically deformed Gubser flow and discuss its dependence on n, p{sub T}, viscosity, the chemical potential and the charge.

  18. Pythagoras Theorem and Relativistic Kinematics

    Science.gov (United States)

    Mulaj, Zenun; Dhoqina, Polikron

    2010-01-01

    In two inertial frames that move in a particular direction, may be registered a light signal that propagates in an angle with this direction. Applying Pythagoras theorem and principles of STR in both systems, we can derive all relativistic kinematics relations like the relativity of simultaneity of events, of the time interval, of the length of objects, of the velocity of the material point, Lorentz transformations, Doppler effect and stellar aberration.

  19. Characteristic manifolds in relativistic hypoelasticity

    Energy Technology Data Exchange (ETDEWEB)

    Giambo, S [Messina Univ. (Italy). Istituto di Matematica

    1978-10-02

    The relativistic hypoelasticity is considered and the characteristic manifolds are determined by using the Cauchy-Kovalevski theorem for the Cauchy problem with analytic initial conditions. Taking into account that the characteristic manifold represents the image of the front-wave in the space-time, it is possible to determine the velocities of propagation. Three wave-species are obtained: material waves, longitudinal waves and transverse waves.

  20. A relativistic quarkonium potential model

    International Nuclear Information System (INIS)

    Klima, B.; Maor, U.

    1984-04-01

    We review a recently developed relativistic quark-antiquark bound state equation using the expansion in intermediate states. Using a QCD motivated potential we succeeded very well to fit both the heavy systems (banti b, canti c) and the light systems (santi s, uanti u and danti d). Here we emphasize our results on heavy-light sustems and on the possible (tanti t) family. (orig.)

  1. Coordinates in relativistic Hamiltonian mechanics

    International Nuclear Information System (INIS)

    Sokolov, S.N.

    1984-01-01

    The physical (covariant and measurable) coordinates of free particles and covariant coordinates of the center of inertia are found for three main forms of relativistic dynamics. In the point form of dynamics, the covariant coordinates of two directly interacting particles are found, and the equations of motion are brought to the explicitly covariant form. These equations are generalized to the case of interaction with an external electromagnetic field

  2. Relativistic mechanics with reduced fields

    International Nuclear Information System (INIS)

    Sokolov, S.N.

    1996-01-01

    A new relativistic classical mechanics of interacting particles using a concept of a reduced field (RF) os proposed. RF is a mediator of interactions, the state of which is described by a finite number of two-argument functions. Ten of these functions correspond to the generators of the Poincare group. Equations of motion contain the retardation of interactions required by the causality principle and have form of a finite system of ordinary hereditary differential equations [ru

  3. Theory of a relativistic peniotron

    International Nuclear Information System (INIS)

    Zhurakhovskii, V.A.

    1986-01-01

    A normalized mathematical model for describing the motion of electrons in a relativistic peniotron with smoothly varying magnetostatic field, which provides a state of exact gyroresonance along the entire length of the device, is constructed. The results of computer calculations of the energetics of this device are presented and an example of an effective choice of its parameterse corresponding to high electronic efficiency of a one-velocity flow are presented

  4. Relativistic beaming and quasar statistics

    International Nuclear Information System (INIS)

    Orr, M.J.L.; Browne, I.W.A.

    1982-01-01

    The statistical predictions of a unified scheme for the radio emission from quasars are explored. This scheme attributes the observed differences between flat- and steep-spectrum quasars to projection and the effects of relativistic beaming of the emission from the nuclear components. We use a simple quasar model consisting of a compact relativistically beamed core with spectral index zero and unbeamed lobes, spectral index - 1, to predict the proportion of flat-spectrum sources in flux-limited samples selected at different frequencies. In our model this fraction depends on the core Lorentz factor, γ and we find that a value of approximately 5 gives satisfactory agreement with observation. In a similar way the model is used to construct the expected number/flux density counts for flat-spectrum quasars from the observed steep-spectrum counts. Again, good agreement with the observations is obtained if the average core Lorentz factor is about 5. Independent estimates of γ from observations of superluminal motion in quasars are of the same order of magnitude. We conclude that the statistical properties of quasars are entirely consistent with the predictions of simple relativistic-beam models. (author)

  5. Relativistic Binaries in Globular Clusters

    Directory of Open Access Journals (Sweden)

    Matthew J. Benacquista

    2013-03-01

    Full Text Available Galactic globular clusters are old, dense star systems typically containing 10^4 – 10^6 stars. As an old population of stars, globular clusters contain many collapsed and degenerate objects. As a dense population of stars, globular clusters are the scene of many interesting close dynamical interactions between stars. These dynamical interactions can alter the evolution of individual stars and can produce tight binary systems containing one or two compact objects. In this review, we discuss theoretical models of globular cluster evolution and binary evolution, techniques for simulating this evolution that leads to relativistic binaries, and current and possible future observational evidence for this population. Our discussion of globular cluster evolution will focus on the processes that boost the production of tight binary systems and the subsequent interaction of these binaries that can alter the properties of both bodies and can lead to exotic objects. Direct N-body integrations and Fokker–Planck simulations of the evolution of globular clusters that incorporate tidal interactions and lead to predictions of relativistic binary populations are also discussed. We discuss the current observational evidence for cataclysmic variables, millisecond pulsars, and low-mass X-ray binaries as well as possible future detection of relativistic binaries with gravitational radiation.

  6. Nonlinear dynamics of the relativistic standard map

    International Nuclear Information System (INIS)

    Nomura, Y.; Ichikawa, Y.H.; Horton, W.

    1991-04-01

    Heating and acceleration of charged particles by RF fields have been extensively investigated by the standard map. The question arises as to how the relativistic effects change the nonlinear dynamical behavior described by the classical standard map. The relativistic standard map is a two parameter (K, Β = ω/kc) family of dynamical systems reducing to the standard map when Β → 0. For Β ≠ 0 the relativistic mass increase suppresses the onset of stochasticity. It shown that the speed of light limits the rate of advance of the phase in the relativistic standard map and introduces KAM surfaces persisting in the high momentum region. An intricate structure of mixing in the higher order periodic orbits and chaotic orbits is analyzed using the symmetry properties of the relativistic standard map. The interchange of the stability of the periodic orbits in the relativistic standard map is also observed and is explained by the local linear stability of the orbits. 12 refs., 16 figs

  7. Relativistic bound state wave functions

    International Nuclear Information System (INIS)

    Micu, L.

    2005-01-01

    A particular method of writing the bound state wave functions in relativistic form is applied to the solutions of the Dirac equation with confining potentials in order to obtain a relativistic description of a quark antiquark bound system representing a given meson. Concerning the role of the effective constituent in the present approach we first observe that without this additional constituent we couldn't expand the bound state wave function in terms of products of free states. Indeed, we notice that if the wave function depends on the relative coordinates only, all the expansion coefficients would be infinite. Secondly we remark that the effective constituent enabled us to give a Lorentz covariant meaning to the potential energy of the bound system which is now seen as the 4th component of a 4-momentum. On the other side, by relating the effective constituent to the quantum fluctuations of the background field which generate the binding, we provided a justification for the existence of some spatial degrees of freedom accompanying the interaction potential. These ones, which are quite unusual in quantum mechanics, in our model are the natural consequence of the the independence of the quarks and can be seen as the effect of the imperfect cancellation of the vector momenta during the quantum fluctuations. Related with all these we remark that the adequate representation for the relativistic description of a bound system is the momentum representation, because of the transparent and easy way of writing the conservation laws and the transformation properties of the wave functions. The only condition to be fulfilled is to find a suitable way to take into account the potential energy of the bound system. A particular feature of the present approach is that the confining forces are due to a kind of glue where both quarks are embedded. This recalls other bound state models where the wave function is factorized in terms of constituent wave functions and the confinement is

  8. Device and method for relativistic electron beam heating of a high-density plasma to drive fast liners

    International Nuclear Information System (INIS)

    Thode, L.E.

    1981-01-01

    A device and method for relativistic electron beam heating of a high-density plasma in a small localized region are described. A relativistic electron beam generator or accelerator produces a high-voltage electron beam which propagates along a vacuum drift tube and is modulated to initiate electron bunching within the beam. The beam is then directed through a low-density gas chamber which provides isolation between the vacuum modulator and the relativistic electron beam target. The relativistic beam is then applied to a high-density target plasma which typically comprises dt, dd, hydrogen boron or similar thermonuclear gas at a density of 1017 to 1020 electrons per cubic centimeter. The target gas is ionized prior to application of the electron beam by means of a laser or other preionization source to form a plasma. Utilizing a relativistic electron beam with an individual particle energy exceeding 3 mev, classical scattering by relativistic electrons passing through isolation foils is negligible. As a result, relativistic streaming instabilities are initiated within the high-density target plasma causing the relativistic electron beam to efficiently deposit its energy and momentum into a small localized region of the high-density plasma target. Fast liners disposed in the high-density target plasma are explosively or ablatively driven to implosion by a heated annular plasma surrounding the fast liner which is generated by an annular relativistic electron beam. An azimuthal magnetic field produced by axial current flow in the annular plasma, causes the energy in the heated annular plasma to converge on the fast liner

  9. Relativistic neoclassical transport coefficients with momentum correction

    International Nuclear Information System (INIS)

    Marushchenko, I.; Azarenkov, N.A.

    2016-01-01

    The parallel momentum correction technique is generalized for relativistic approach. It is required for proper calculation of the parallel neoclassical flows and, in particular, for the bootstrap current at fusion temperatures. It is shown that the obtained system of linear algebraic equations for parallel fluxes can be solved directly without calculation of the distribution function if the relativistic mono-energetic transport coefficients are already known. The first relativistic correction terms for Braginskii matrix coefficients are calculated.

  10. Loading relativistic Maxwell distributions in particle simulations

    International Nuclear Information System (INIS)

    Zenitani, Seiji

    2015-01-01

    Numerical algorithms to load relativistic Maxwell distributions in particle-in-cell (PIC) and Monte-Carlo simulations are presented. For stationary relativistic Maxwellian, the inverse transform method and the Sobol algorithm are reviewed. To boost particles to obtain relativistic shifted-Maxwellian, two rejection methods are proposed in a physically transparent manner. Their acceptance efficiencies are ≈50% for generic cases and 100% for symmetric distributions. They can be combined with arbitrary base algorithms

  11. Loading relativistic Maxwell distributions in particle simulations

    Energy Technology Data Exchange (ETDEWEB)

    Zenitani, Seiji, E-mail: seiji.zenitani@nao.ac.jp [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan)

    2015-04-15

    Numerical algorithms to load relativistic Maxwell distributions in particle-in-cell (PIC) and Monte-Carlo simulations are presented. For stationary relativistic Maxwellian, the inverse transform method and the Sobol algorithm are reviewed. To boost particles to obtain relativistic shifted-Maxwellian, two rejection methods are proposed in a physically transparent manner. Their acceptance efficiencies are ≈50% for generic cases and 100% for symmetric distributions. They can be combined with arbitrary base algorithms.

  12. Ion temperature effect on the propagation of ion acoustic solitary waves in a relativistic magnetoplasma

    International Nuclear Information System (INIS)

    Salahuddin, M.

    1990-01-01

    Using the reductive perturbation technique the Korteweg-de Vries (KdV) equation is derived for ion acoustic waves, in the presence of weak relativistic effects and warm ions, in a magnetized plasma. The influence of non ideal effects on the amplitude and width of the ion acoustic solitary waves is also discussed. The results are depicted in the figures. It is shown that the simultaneous presence of ion streaming and magnetic field stops the tendency of soliton breaking. (author)

  13. Generalised relativistic Ohm's laws, extended gauge transformations, and magnetic linking

    International Nuclear Information System (INIS)

    Pegoraro, F.

    2015-01-01

    Generalisations of the relativistic ideal Ohm's law are presented that include specific dynamical features of the current carrying particles in a plasma. Cases of interest for space and laboratory plasmas are identified where these generalisations allow for the definition of generalised electromagnetic fields that transform under a Lorentz boost in the same way as the real electromagnetic fields and that obey the same set of homogeneous Maxwell's equations

  14. Relativistic fluids in spherically symmetric space

    International Nuclear Information System (INIS)

    Dipankar, R.

    1977-12-01

    Some of McVittie and Wiltshire's (1977) solutions of Walker's (1935) isotropy conditions for relativistic perfect fluid spheres are generalized. Solutions are spherically symmetric and conformally flat

  15. Relativistic ion acceleration by ultraintense laser interactions

    International Nuclear Information System (INIS)

    Nakajima, K.; Koga, J.K.; Nakagawa, K.

    2001-01-01

    There has been a great interest in relativistic particle generation by ultraintense laser interactions with matter. We propose the use of relativistically self-focused laser pulses for the acceleration of ions. Two dimensional PIC simulations are performed, which show the formation of a large positive electrostatic field near the front of a relativistically self-focused laser pulse. Several factors contribute to the acceleration including self-focusing distance, pulse depletion, and plasma density. Ultraintense laser-plasma interactions are capable of generating enormous electrostatic fields of ∼3 TV/m for acceleration of protons with relativistic energies exceeding 1 GeV

  16. RELATIVISTIC CYCLOTRON INSTABILITY IN ANISOTROPIC PLASMAS

    Energy Technology Data Exchange (ETDEWEB)

    López, Rodrigo A.; Moya, Pablo S.; Muñoz, Víctor; Valdivia, J. Alejandro [Departamento de Física, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago (Chile); Navarro, Roberto E.; Araneda, Jaime A. [Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Concepción, Casilla 160-C, Concepción (Chile); Viñas, Adolfo F., E-mail: rlopez186@gmail.com [NASA Goddard Space Flight Center, Heliophysics Science Division, Geospace Physics Laboratory, Mail Code 673, Greenbelt, MD 20771 (United States)

    2016-11-20

    A sufficiently large temperature anisotropy can sometimes drive various types of electromagnetic plasma micro-instabilities, which can play an important role in the dynamics of relativistic pair plasmas in space, astrophysics, and laboratory environments. Here, we provide a detailed description of the cyclotron instability of parallel propagating electromagnetic waves in relativistic pair plasmas on the basis of a relativistic anisotropic distribution function. Using plasma kinetic theory and particle-in-cell simulations, we study the influence of the relativistic temperature and the temperature anisotropy on the collective and noncollective modes of these plasmas. Growth rates and dispersion curves from the linear theory show a good agreement with simulations results.

  17. Ideal 3D asymmetric concentrator

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Botella, Angel [Departamento Fisica Aplicada a los Recursos Naturales, Universidad Politecnica de Madrid, E.T.S.I. de Montes, Ciudad Universitaria s/n, 28040 Madrid (Spain); Fernandez-Balbuena, Antonio Alvarez; Vazquez, Daniel; Bernabeu, Eusebio [Departamento de Optica, Universidad Complutense de Madrid, Fac. CC. Fisicas, Ciudad Universitaria s/n, 28040 Madrid (Spain)

    2009-01-15

    Nonimaging optics is a field devoted to the design of optical components for applications such as solar concentration or illumination. In this field, many different techniques have been used for producing reflective and refractive optical devices, including reverse engineering techniques. In this paper we apply photometric field theory and elliptic ray bundles method to study 3D asymmetric - without rotational or translational symmetry - concentrators, which can be useful components for nontracking solar applications. We study the one-sheet hyperbolic concentrator and we demonstrate its behaviour as ideal 3D asymmetric concentrator. (author)

  18. Relativistic quantum Hall conductivity for 3D and 2D electron plasma in an external magnetic field

    International Nuclear Information System (INIS)

    Gonzalez Felipe, R.; Perez Martinez, A.; Perez-Rojas, H.

    1990-05-01

    The complete antisymmetric form of the conductivity tensor in the static limit, as well as the expression for the Hall conductivity, is obtained for the relativistic 3D and 2D electron gas in a magnetic field. The non-relativistic 2D limit is also discussed. The typical step form of the 2D Hall conductivity at zero temperature is obtained under the simple hypothesis of constancy of the chemical potential. (author). 6 refs, 1 fig

  19. Nanosecond radar system based on repetitive pulsed relativistic BWO

    International Nuclear Information System (INIS)

    Bunkin, B.V.; Gaponov-Grekhov, A.V.; Eltchaninov, A.S.; Zagulov, F.Ya.; Korovin, S.D.; Mesyats, G.A.; Osipov, M.L.; Otlivantchik, E.A.; Petelin, M.I.; Prokhorov, A.M.

    1993-01-01

    The paper presents the results of studies of a nanosecond radar system based on repetitive pulsed relativistic BWO. A pulsed power repetitive accelerator producing electron beams of electron energy 500-700 keV and current 5 kA in pulses of duraction 10 ns with a repetition rate of 100 pps is described. The results of experiments with a high-voltage gas-filled spark gap and a cold-cathode vacuum diode under the conditions of high repetition rates are given. Also presented are the results of studies of a relativistic BWO operating with a wavelength of 3 cm. It is shown that for a high-current beam electron energy of 500-700 keV, the BWO efficiency can reach 35%, the microwave power being 10 9 W. A superconducting solenoid creating a magnetic field of 30 kOe was used for the formation and transportation of the high-current electron beam. In conclusion, the outcome of tests of a nanosecond radar station based on a pulsed power repetitive accelerator and a relativistic BWO is reported

  20. Relativistic many-body theory of atomic transitions: the relativistic equation-of-motion approach

    International Nuclear Information System (INIS)

    Huang, K.N.

    1981-01-01

    An equation-of-motion approach is used to develop the relativistic many-body theory of atomic transitions. The relativistic equations of motion for transition matrices are formulated using techniques of quantum field theory. To reduce the equation of motion to a tractable form which is appropriate for numerical calculations, a graphical method is employed to resolve the complication arising from the antisymmetrization and angular momentum coupling. The relativistic equation-of-motion method allows an ab initio treatment of correlation and relativistic effects in both closed- and open-shell many-body systems. A special case of the present formulation reduces to the relativistic random-phase approximation

  1. Thermodynamics of polarized relativistic matter

    Energy Technology Data Exchange (ETDEWEB)

    Kovtun, Pavel [Department of Physics and Astronomy, University of Victoria,PO Box 1700 STN CSC, Victoria BC, V8W 2Y2 (Canada)

    2016-07-05

    We give the free energy of equilibrium relativistic matter subject to external gravitational and electromagnetic fields, to one-derivative order in the gradients of the external fields. The free energy allows for a straightforward derivation of bound currents and bound momenta in equilibrium. At leading order, the energy-momentum tensor admits a simple expression in terms of the polarization tensor. Beyond the leading order, electric and magnetic polarization vectors are intrinsically ambiguous. The physical effects of polarization, such as the correlation between the magneto-vortically induced surface charge and the electro-vortically induced surface current, are not ambiguous.

  2. Observation of relativistic antihydrogen atoms

    International Nuclear Information System (INIS)

    Blanford, Glenn DelFosse

    1998-01-01

    An observation of relativistic antihydrogen atoms is reported in this dissertation. Experiment 862 at Fermi National Accelerator Laboratory observed antihydrogen atoms produced by the interaction of a circulating beam of high momentum (3 0 production is outlined within. The cross section corresponds to the process where a high momentum antiproton causes e + e - pair creation near a nucleus with the e + being captured by the antiproton. Antihydrogen is the first atom made exclusively of antimatter to be detected. The observation experiment's results are the first step towards an antihydrogen spectroscopy experiment which would measure the n = 2 Lamb shift and fine structure

  3. Similarity flows in relativistic hydrodynamics

    International Nuclear Information System (INIS)

    Blaizot, J.P.; Ollitrault, J.Y.

    1986-01-01

    In ultra-relativistic heavy ion collisions, one expects in particular to observe a deconfinement transition leading to a formation of quark gluon plasma. In the framework of the hydrodynamic model, experimental signatures of such a plasma may be looked for as observable consequences of a first order transition on the evolution of the system. In most of the possible scenario, the phase transition is accompanied with discontinuities in the hydrodynamic flow, such as shock waves. The method presented in this paper has been developed to treat without too much numerical effort such discontinuous flow. It relies heavily on the use of similarity solutions of the hydrodynamic equations

  4. Relativistic heavy ion facilities: worldwide

    International Nuclear Information System (INIS)

    Schroeder, L.S.

    1986-05-01

    A review of relativistic heavy ion facilities which exist, are in a construction phase, or are on the drawing boards as proposals is presented. These facilities span the energy range from fixed target machines in the 1 to 2 GeV/nucleon regime, up to heavy ion colliders of 100 GeV/nucleon on 100 GeV/nucleon. In addition to specifying the general features of such machines, an outline of the central physics themes to be carried out at these facilities is given, along with a sampling of the detectors which will be used to extract the physics. 22 refs., 17 figs., 3 tabs

  5. Unlimited Relativistic Shock Surfing Acceleration

    International Nuclear Information System (INIS)

    Ucer, D.; Shapiro, V. D.

    2001-01-01

    Nonrelativistic shock surfing acceleration at quasiperpendicular shocks is usually considered to be a preacceleration mechanism for slow pickup ions to initiate diffusive shock acceleration. In shock surfing, the particle accelerates along the shock front under the action of the convective electric field of the plasma flow. However, the particle also gains kinetic energy normal to the shock and eventually escapes downstream. We consider the case when ions are accelerated to relativistic velocities. In this case, the ions are likely to be trapped for infinitely long times, because the energy of bounce oscillations tends to decrease during acceleration. This suggests the possibility of unlimited acceleration by shock surfing

  6. The magnetosphere in relativistic physics

    International Nuclear Information System (INIS)

    Zapffe, C.A.

    1982-01-01

    The present paper takes off from the author's earlier epistemological analysis and criticism of the Special Theory of Relativity, identifies the problem as lying in Einstein's choice of the inertial frame of Newtonian mechanics rather than the electromagnetic frame of the locally embedding Maxwellian field when discussing electrodynamics, then proposes this Maxwellian field of the magnetosphere as the specific rest frame proper to all experimentation of optical or electromagnetic sort conducted within its bounds. The result is shown to remove all paradoxes from relativistic physics. (author)

  7. Valutazione economica dello studio IDEAL

    Directory of Open Access Journals (Sweden)

    Enrica Menditto

    2007-10-01

    Full Text Available Introduction: the IDEAL (“High-dose atorvastatin vs usual-dose simvastatin for secondary prevention after myocardial infarction” study was carried out to compare intensive lowering of low-density lipoprotein (LDL-cholesterol using the highest recommended dose of atorvastatin 80 mg with simvastatin 40 mg. Aim: our aim was to investigate the economic consequence of high dose of atorvastatin vs usual-dose of simvastatin in reducing major coronary events in patients with a history of acute myocardial infarction (AMI. Methods: the analysis is based on clinical outcome data from the IDEAL study. We conducted a cost-effectiveness analysis, comparing high dose of atorvastatin (80 mg/die versus usual-dose of simvastatin (20 mg/die in the perspective of the Italian National Health Service. We identified and quantified medical costs: drug costs according to the Italian National Therapeutic Formulary and hospitalizations were quantified based on the Italian National Health Service tariffs (2006. Effects were measured in terms of mortality and morbidity reduction (number of deaths, life years gained and frequency of hospitalizations. We considered an observation period of 4.8 years. The costs borne after the first 12 months were discounted using an annual rate of 3%. We conducted one and multi-way sensitivity analyses on unit cost and effectiveness. We also conducted a threshold analysis. Results: the cost of simvastatin or atorvastatin therapy over the 4.8 years period amounted to approximately 2.3 millions euro and 2.6 millions euro per 1,000 patients respectively. Atorvastatin was more efficacious compared to simvastatin and the overall cost of care per 1,000 patients over 4.8 years of follow-up was estimated at 4.3 millions euro in the simvastatin and 4,18 millions euro in the atorvastatin group, resulting into a cost saving of 121,518 euro that is 2.8% of total costs occurred in the simvastatin group. Discussion: this study is the first economic

  8. Fractional exclusion statistics: the method for describing interacting particle systems as ideal gases

    International Nuclear Information System (INIS)

    Anghel, Dragoş-Victor

    2012-01-01

    I show that if the total energy of a system of interacting particles may be written as a sum of quasiparticle energies, then the system of quasiparticles can be viewed, in general, as an ideal gas with fractional exclusion statistics (FES). The general method for calculating the FES parameters is also provided. The interacting particle system cannot be described as an ideal gas of Bose and Fermi quasiparticles except in trivial situations.

  9. On the containment hierarchy for simplicial ideals

    OpenAIRE

    Lampa-Baczyńska, Magdalena; Malara, Grzegorz

    2014-01-01

    The purpose of this note is to study containment relations and asymptotic invariants for ideals of fixed codimension skeletons (simplicial ideals) determined by arrangements of $n + 1$ general hyperplanes in the $n-$dimensional projective space over an arbitrary field.

  10. (Fuzzy) Ideals of BN-Algebras

    Science.gov (United States)

    Walendziak, Andrzej

    2015-01-01

    The notions of an ideal and a fuzzy ideal in BN-algebras are introduced. The properties and characterizations of them are investigated. The concepts of normal ideals and normal congruences of a BN-algebra are also studied, the properties of them are displayed, and a one-to-one correspondence between them is presented. Conditions for a fuzzy set to be a fuzzy ideal are given. The relationships between ideals and fuzzy ideals of a BN-algebra are established. The homomorphic properties of fuzzy ideals of a BN-algebra are provided. Finally, characterizations of Noetherian BN-algebras and Artinian BN-algebras via fuzzy ideals are obtained. PMID:26125050

  11. Professional ideals and daily practice in journalism

    DEFF Research Database (Denmark)

    Pihl-Thingvad, Signe

    2015-01-01

    Professional ideals are crucial in terms of guiding and committing journalists in modern media organizations. But what happens if there are discrepancies between the journalists’ professional ideals and their daily working practice? Research suggests negative consequences, such as withdrawal...

  12. Relativistic Quantum Transport in Graphene Systems

    Science.gov (United States)

    2015-07-09

    dimensional Dirac material systems. 2 List of Publications 1. X. Ni, L. Huang, Y.-C. Lai, and L. M. Pecora, “Effect of chaos on relativistic quantum...development of relativistic quantum devices based on graphene or alternative two-dimensional Dirac material systems. In the project period, we studied

  13. Relativistic calculations of coalescing binary neutron stars

    Indian Academy of Sciences (India)

    We have designed and tested a new relativistic Lagrangian hydrodynamics code, which treats gravity in the conformally flat approximation to general relativity. We have tested the resulting code extensively, finding that it performs well for calculations of equilibrium single-star models, collapsing relativistic dust clouds, and ...

  14. Relativistic corrections to molecular dynamic dipole polarizabilities

    DEFF Research Database (Denmark)

    Kirpekar, Sheela; Oddershede, Jens; Jensen, Hans Jørgen Aagaard

    1995-01-01

    obtained from the use of the Darwin and mass-velocity operators to first order are included at both levels of approximation. We find that correlation and relativistic contributions are not even approximately additive for the two molecules. The importance of the relativistic corrections is smallest...

  15. A Primer to Relativistic MOND Theory

    NARCIS (Netherlands)

    Bekenstein, J.D..; Sanders, R.H.

    2005-01-01

    Abstract: We first review the nonrelativistic lagrangian theory as a framework for the MOND equation. Obstructions to a relativistic version of it are discussed leading up to TeVeS, a relativistic tensor-vector-scalar field theory which displays both MOND and Newtonian limits. The whys for its

  16. Relativistic astrophysics and theory of gravity

    International Nuclear Information System (INIS)

    Zel'dovich, Ya.B.

    1982-01-01

    A brief historical review of the development of astrophysical science in the State Astrophysical Institute named after Shternberg (SAISh) has been given in a popular form. The main directions of the SAISh astrophysical investigations have been presented: relativistic theory of gravity, relativistic astrophysics of interplanetary medium and cosmology

  17. Einstein Never Approved of Relativistic Mass

    Science.gov (United States)

    Hecht, Eugene

    2009-01-01

    During much of the 20th century it was widely believed that one of the significant insights of special relativity was "relativistic mass." Today there are two schools on that issue: the traditional view that embraces speed-dependent "relativistic mass," and the more modern position that rejects it, maintaining that there is only one mass and it's…

  18. Non-ideal magnetohydrodynamics on a moving mesh

    Science.gov (United States)

    Marinacci, Federico; Vogelsberger, Mark; Kannan, Rahul; Mocz, Philip; Pakmor, Rüdiger; Springel, Volker

    2018-05-01

    In certain astrophysical systems, the commonly employed ideal magnetohydrodynamics (MHD) approximation breaks down. Here, we introduce novel explicit and implicit numerical schemes of ohmic resistivity terms in the moving-mesh code AREPO. We include these non-ideal terms for two MHD techniques: the Powell 8-wave formalism and a constrained transport scheme, which evolves the cell-centred magnetic vector potential. We test our implementation against problems of increasing complexity, such as one- and two-dimensional diffusion problems, and the evolution of progressive and stationary Alfvén waves. On these test problems, our implementation recovers the analytic solutions to second-order accuracy. As first applications, we investigate the tearing instability in magnetized plasmas and the gravitational collapse of a rotating magnetized gas cloud. In both systems, resistivity plays a key role. In the former case, it allows for the development of the tearing instability through reconnection of the magnetic field lines. In the latter, the adopted (constant) value of ohmic resistivity has an impact on both the gas distribution around the emerging protostar and the mass loading of magnetically driven outflows. Our new non-ideal MHD implementation opens up the possibility to study magneto-hydrodynamical systems on a moving mesh beyond the ideal MHD approximation.

  19. Demonstrating the Gas Laws.

    Science.gov (United States)

    Holko, David A.

    1982-01-01

    Presents a complete computer program demonstrating the relationship between volume/pressure for Boyle's Law, volume/temperature for Charles' Law, and volume/moles of gas for Avagadro's Law. The programing reinforces students' application of gas laws and equates a simulated moving piston to theoretical values derived using the ideal gas law.…

  20. Multifragmentation in relativistic heavy ion reactions

    International Nuclear Information System (INIS)

    Trautmann, W.

    1996-11-01

    Multifragmentation is the dominant decay mode of heavy nuclear systems with excitation energies in the vicinity of their binding energies. It explores the partition space associated with the number of nucleonic constituents and it is characterized by a multiple production of nuclear fragments with intermediate mass. Reactions at relativistic bombarding energies, exceeding several hundreds of MeV per nucleon, have been found very efficient in creating such highly excited systems. Peripheral collisions of heavy symmetric systems or more central collisions of mass asymmetric systems produce spectator nuclei with properties indicating a high degree of equilibration. The observed decay patterns are well described by statistical multifragmentation models. The present experimental and theoretical studies are particularly motivated by the fact that multifragmentation is being considered a possible manifestation of the liquid-gas phase transition in finite nuclear systems. From the simultaneous measurement of the temperature and of the energy content of excited spectator systems a caloric curve of nuclei has been obtained. The characteristic S-shaped behavior resembles that of ordinary liquids. Signatures of critical phenomena in finite nuclear systems are searched for in multifragmentation data. These studies, supported by the success of percolation in reproducing the experimental mass or charge correlations, concentrate on the fluctuations observed in these observables. Attempts have been made to deduce critical-point exponents associated with multifragmentation. (orig.)